Science.gov

Sample records for border oil palm

  1. Palm Oil

    MedlinePlus

    Palm oil is obtained from the fruit of the oil palm tree. Palm oil is used for preventing vitamin A deficiency, cancer, ... blood pressure, high cholesterol, and cyanide poisoning. Palm oil is used for weight loss and increasing the ...

  2. Palm Oil

    MedlinePlus

    ... A deficiency, cancer, brain disease, aging; and treating malaria, high blood pressure, high cholesterol, and cyanide poisoning. ... oils, such as soybean, canola, or sunflower oil. Malaria. Some research suggests that dietary consumption of palm ...

  3. Integrated palm oil processing

    SciTech Connect

    Compere, A.L.; Griffith, W.L.; Googin, J.M.

    1983-01-01

    Tree palms are a promising source of fuel extenders and substitutes. They are perennials which bear oil for a period of two to three decades after a roughly four year preliminary growth period. Tree palms are now one of the most efficient energy crops: the best modern varieties can provide up to 6 tonnes per hectare per year of mesocarp and kernal oils. Palms are particularly attractive in areas where more conventional farming would pose a significant threat of laterization of cause major ecological problems. Technology for palm oil production is can range between village level manual operations and highly industrialized mills. Process energy is often supplied by combustion of byproducts. Although palm oil is a good energy crop, its physical and combustion properties preclude most use in conventional diesel engines, although palm oil could be directly blended with residual fuel oils for use in some large engines. At present, two uses for palm oil as a diesel fuel extender or substitute appear attractive: microemulsion blends using palm soapstock and monoesters produced by exchanging small alcohols for the glycerol in triglycerides. The amount of alcohols required for conversion of a substantial fraction of palm oil or palm oil soapstock to fuel extenders or substitutes is proportionately small, and, to a major extent, can be supplied by palm processing waste materials. Fermentation and gasification produced alcohols in the one to four carbon range are suitable for use in formulating palm oil based fuels. On a stoichiometric basis, it appears that the value of the palm oil and alcohols are very close to their value as export items. Use of these palm oil fuels could help to decrease balance of payments problems for developing countries, as well as provide a secure market for agricultural products and improved rural employment.

  4. Integrated palm oil processing

    SciTech Connect

    Compere, A.L.; Googin, J.M.; Griffith, W.L.

    1983-12-01

    Tree palms are a promising source of fuel extenders and substitutes. They are perennials which bear oil for a period of two to three decades after a roughly four year preliminary growth period. Because palms are an important crop in many areas of Asia, Africa, and South America, considerable attention has been given to palm genetic improvement, with the result that tree palms are one of the most efficient energy crops, providing much better solar energy capture than, for example, sugar cane and cassava. Tree palms are particularly attractive in areas where more conventional farming would pose a significant threat of laterization or cause major ecological problems. Technology for palm oil production, including harvest, tree management, and oil pressing are generally suited to village or plantation use, and, for the most part, have been directed toward supplying process energy through the combustion of process waste products, such as palm fruit residue and palm bunch fibers.

  5. Palm oil and palm olein frying applications.

    PubMed

    Ismail, Razali

    2005-01-01

    Several million tones of palm oil and palm olein are used annually in the world for frying. This paper will discuss their frying performances in three major applications - industrial production of potato chips/crisps, industrial production of pre-fried frozen French fries and in fast food outlets. In the first study, about four tones of potato chips were continuously fried 8 hours a day and five days a week. The palm olein used (with proper management) performed well and was still in excellent condition and usable at the end of the trial. This was reflected in its low free fatty acid (FFA) content of around 0.23%, peroxide value of 4 meq/kg, anisidine value of 16, low polar and polymer contents of 10% and 2%, respectively, induction period (OSI) of 21 hours and high content of tocopehrols and tocotrienols of 530 ppm even after >1900 hours. In the second study in which an average 12 tones pre-fried frozen French fries were continuously fried a day for 5 days a week, palm oil performed excellently as reflected by its low FFA of 0.34%, food oil sensor reading of 1.1, low polar and polymer contents of 17% and 2.8%, respectively, over the 12 days of trial. In the third study in which palm shortening, palm oil and palm olein were simultaneously used to intermittently fry chicken parts in the laboratory simulating the conditions in fast food outlets, the three frying oils also performed very satisfactorily as reflected by their reasonably low FFA of <1%, smoke points of >180 degrees C, and polar and polymer contents of <25% and <6%, respectively, after 5 days of consecutive frying. All the quality indicators did not exceed the maximum discard points for frying oils/fats in the three applications, while the fried food product was well accepted by the in-house train sensory panel using a-nine point hedonic score. PMID:16326649

  6. Coconut, date and oil palm genomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A review of genomics research is presented for the three most economically important palm crops, coconut (Cocos nucifera), date palm (Phoenix dactylifera) and oil palm (Elaeis guineensis), encompassing molecular markers studies of genetic diversity, genetic mapping, quantitative trait loci discovery...

  7. Transgenic oil palm: production and projection.

    PubMed

    Parveez, G K; Masri, M M; Zainal, A; Majid, N A; Yunus, A M; Fadilah, H H; Rasid, O; Cheah, S C

    2000-12-01

    Oil palm is an important economic crop for Malaysia. Genetic engineering could be applied to produce transgenic oil palms with high value-added fatty acids and novel products to ensure the sustainability of the palm oil industry. Establishment of a reliable transformation and regeneration system is essential for genetic engineering. Biolistic was initially chosen as the method for oil palm transformation as it has been the most successful method for monocotyledons to date. Optimization of physical and biological parameters, including testing of promoters and selective agents, was carried out as a prerequisite for stable transformation. This has resulted in the successful transfer of reporter genes into oil palm and the regeneration of transgenic oil palm, thus making it possible to improve the oil palm through genetic engineering. Besides application of the Biolistics method, studies on transformation mediated by Agrobacterium and utilization of the green fluorescent protein gene as a selectable marker gene have been initiated. Upon the development of a reliable transformation system, a number of useful targets are being projected for oil palm improvement. Among these targets are high-oleate and high-stearate oils, and the production of industrial feedstock such as biodegradable plastics. The efforts in oil palm genetic engineering are thus not targeted as commodity palm oil. Due to the long life cycle of the palm and the time taken to regenerate plants in tissue culture, it is envisaged that commercial planting of transgenic palms will not occur any earlier than the year 2020. PMID:11171275

  8. Research advancements in palm oil nutrition*

    PubMed Central

    May, Choo Yuen; Nesaretnam, Kalanithi

    2014-01-01

    Palm oil is the major oil produced, with annual world production in excess of 50 million tonnes. About 85% of global palm oil produced is used in food applications. Over the past three decades, research on nutritional benefits of palm oil have demonstrated the nutritional adequacy of palm oil and its products, and have resulted in transitions in the understanding these attributes. Numerous studies have demonstrated that palm oil was similar to unsaturated oils with regards to effects on blood lipids. Palm oil provides a healthy alternative to trans-fatty acid containing hydrogenated fats that have been demonstrated to have serious deleterious effects on health. The similar effects of palm oil on blood lipids, comparable to other vegetable oils could very well be due to the structure of the major triglycerides in palm oil, which has an unsaturated fatty acid in the stereospecific numbers (sn)-2 position of the glycerol backbone. In addition, palm oil is well endowed with a bouquet of phytonutrients beneficial to health, such as tocotrienols, carotenoids, and phytosterols. This review will provide an overview of studies that have established palm oil as a balanced and nutritious oil. PMID:25821404

  9. Transpiration in an oil palm landscape: effects of palm age

    NASA Astrophysics Data System (ADS)

    Röll, A.; Niu, F.; Meijide, A.; Hardanto, A.; Hendrayanto; Knohl, A.; Hölscher, D.

    2015-10-01

    Oil palm (Elaeis guineensis Jacq.) plantations cover large and continuously increasing areas of humid tropical lowlands. Landscapes dominated by oil palms usually consist of a mosaic of mono-cultural, homogeneous stands of varying age, which may be heterogeneous in their water use characteristics. However, studies on the water use characteristics of oil palms are still at an early stage and there is a lack of knowledge on how oil palm expansion will affect the major components of the hydrological cycle. To provide first insights into hydrological landscape-level consequences of oil palm cultivation, we derived transpiration rates of oil palms in stands of varying age, estimated the contribution of palm transpiration to evapotranspiration, and analyzed the influence of fluctuations in environmental variables on oil palm water use. We studied 15 two- to 25-year old stands in the lowlands of Jambi, Indonesia. A sap flux technique with an oil palm specific calibration and sampling scheme was used to derive leaf-, palm- and stand-level water use rates in all stands under comparable environmental conditions. Additionally, in a two- and a 12-year old stand, eddy covariance measurements were conducted to derive evapotranspiration rates. Water use rates per leaf and palm increased 5-fold from an age of 2 years to a stand age of approx. 10 years and then remained relatively constant. A similar trend was visible, but less pronounced, for estimated stand transpiration rates of oil palms; they varied 12-fold, from 0.2 mm day-1 in a 2-year old to 2.5 mm day-1 in a 12-year old stand, showing particularly high variability in transpiration rates among medium-aged stands. Comparing sap flux and eddy-covariance derived water fluxes suggests that transpiration contributed 8 % to evapotranspiration in the 2-year old stand and 53 % in the 12-year old stand, indicating variable and substantial additional sources of evaporation, e.g., from the soil, the ground vegetation and from trunk

  10. Transpiration in an oil palm landscape: effects of palm age

    NASA Astrophysics Data System (ADS)

    Röll, A.; Niu, F.; Meijide, A.; Hardanto, A.; Hendrayanto; Knohl, A.; Hölscher, D.

    2015-06-01

    Oil palm (Elaeis guineensis Jacq.) plantations cover large and continuously increasing areas of humid tropical lowlands. Landscapes dominated by oil palms usually consist of a mosaic of mono-cultural, homogeneous stands of varying age, which may be heterogeneous in their water use characteristics. However, studies on the water use characteristics of oil palms are still at an early stage and there is a lack of knowledge on how oil palm expansion will affect the major components of the hydrological cycle. To provide first insights into hydrological landscape-level consequences of oil palm cultivation, we derived transpiration rates of oil palms in stands of varying age, estimated the contribution of palm transpiration to evapotranspiration, and analyzed the influence of fluctuations in environmental variables on oil palm water use. We studied 15 two- to 25 year old stands in the lowlands of Jambi, Indonesia. A sap flux technique with an oil palm specific calibration and sampling scheme was used to derive leaf-, palm- and stand-level water use rates in all stands under comparable environmental conditions. Additionally, in a two- and a 12 year old stand, eddy covariance measurements were conducted to derive evapotranspiration rates. Water use rates per leaf and palm increased 5-fold from an age of two years to a stand age of approx. 10 years and then remained relatively constant. A similar trend was visible, but less pronounced, for estimated stand transpiration rates of oil palms; they varied 12-fold, from 0.2 mm day-1 in a 2 year old to 2.5 mm day-1 in a 12 year old stand, showing particularly high variability in transpiration rates among medium-aged stands. Confronting sap flux and eddy-covariance derived water fluxes suggests that transpiration contributed 8 % to evapotranspiration in the 2 year old stand and 53 % in the 12 year old stand, indicating variable and substantial additional sources of evaporation, e.g. from the soil, the ground vegetation and from trunk

  11. Palm oil and the heart: A review

    PubMed Central

    Odia, Osaretin J; Ofori, Sandra; Maduka, Omosivie

    2015-01-01

    Palm oil consumption and its effects on serum lipid levels and cardiovascular disease in humans is still a subject of debate. Advocacy groups with varying agenda fuel the controversy. This update intends to identify evidence-based evaluations of the influence of palm oil on serum lipid profile and cardiovascular disease. Furthermore, it suggests a direction for future research. The sources of information were based on a PubMed, Google Scholar, African Journal online and Medline search using key words including: palm oil, palmitic acid, saturated fatty acids and heart disease. Published animal and human experiments on the association of palm oil and its constituents on the serum lipid profile and cardiovascular disease were also explored for relevant information. These papers are reviewed and the available evidence is discussed. Most of the information in mainstream literature is targeted at consumers and food companies with a view to discourage the consumption of palm oil. The main argument against the use of palm oil as an edible oil is the fact that it contains palmitic acid, which is a saturated fatty acid and by extrapolation should give rise to elevated total cholesterol and low-density lipoprotein cholesterol levels. However, there are many scientific studies, both in animals and humans that clearly show that palm oil consumption does not give rise to elevated serum cholesterol levels and that palm oil is not atherogenic. Apart from palmitic acid, palm oil consists of oleic and linoleic acids which are monounsaturated and polyunsaturated respectively. Palm oil also consists of vitamins A and E, which are powerful antioxidants. Palm oil has been scientifically shown to protect the heart and blood vessels from plaques and ischemic injuries. Palm oil consumed as a dietary fat as a part of a healthy balanced diet does not have incremental risk for cardiovascular disease. Little or no additional benefit will be obtained by replacing it with other oils rich in mono

  12. Palm oil and the heart: A review.

    PubMed

    Odia, Osaretin J; Ofori, Sandra; Maduka, Omosivie

    2015-03-26

    Palm oil consumption and its effects on serum lipid levels and cardiovascular disease in humans is still a subject of debate. Advocacy groups with varying agenda fuel the controversy. This update intends to identify evidence-based evaluations of the influence of palm oil on serum lipid profile and cardiovascular disease. Furthermore, it suggests a direction for future research. The sources of information were based on a PubMed, Google Scholar, African Journal online and Medline search using key words including: palm oil, palmitic acid, saturated fatty acids and heart disease. Published animal and human experiments on the association of palm oil and its constituents on the serum lipid profile and cardiovascular disease were also explored for relevant information. These papers are reviewed and the available evidence is discussed. Most of the information in mainstream literature is targeted at consumers and food companies with a view to discourage the consumption of palm oil. The main argument against the use of palm oil as an edible oil is the fact that it contains palmitic acid, which is a saturated fatty acid and by extrapolation should give rise to elevated total cholesterol and low-density lipoprotein cholesterol levels. However, there are many scientific studies, both in animals and humans that clearly show that palm oil consumption does not give rise to elevated serum cholesterol levels and that palm oil is not atherogenic. Apart from palmitic acid, palm oil consists of oleic and linoleic acids which are monounsaturated and polyunsaturated respectively. Palm oil also consists of vitamins A and E, which are powerful antioxidants. Palm oil has been scientifically shown to protect the heart and blood vessels from plaques and ischemic injuries. Palm oil consumed as a dietary fat as a part of a healthy balanced diet does not have incremental risk for cardiovascular disease. Little or no additional benefit will be obtained by replacing it with other oils rich in mono

  13. Effects of palm oil on cardiovascular risk.

    PubMed

    Chong, Y H; Ng, T K

    1991-03-01

    A major public health concern of affluent nations is the excessive consumption of dietary fats which are now closely linked to coronary heart disease. Against this scenario, the tropical oils and palm oil in particular, have been cast as major villains in the U.S.A., despite the fact that palm oil consumption there is negligible. The unsuspecting public may not realise that the call to avoid palm oil is nothing more than a trade ploy since in recent years palm oil has been very competitive and has gained a major share of the world's edible oils and fats market. Many also lose sight of the fact that, palm oil, like other edible oils and fats, is an important component of the diet. The allegation that palm oil consumption leads to raised blood cholesterol levels and is therefore atherogenic is without scientific foundation. Examination of the chemical and fatty acid composition of palm oil or its liquid fraction should convince most nutritionists that the oil has little cholesterol-raising potential. The rationale for these are: it is considered cholesterol free. its major saturated fatty acid, palmitic acid (16:0) has recently been shown to be neutral in its cholesterolaemic effect, particularly in situations where the LDL receptors have not been down-regulated by dietary means or through a genetic effect. palm oil contains negligible amounts (less than 1.5%) of the hypercholesterolemic saturated fatty acids, namely lauric acid (12:0) and myristic acid (14:0). it has moderately rich amounts of the hypocholesterolaemic, monounsaturated oleic acid (18:1, omega-9) and adequate amounts of linoleic acid. (18:2, omega-6). It contains minor components such as the vitamin E tocotrienols which are not only powerful antioxidants but are also natural inhibitors of cholesterol synthesis. Feeding experiments in various animal species and humans also do not support the allegation that palm oil is atherogenic. On the contrary, palm oil consumption reduces blood cholesterol in

  14. Life Cycle Assessment for the Production of Oil Palm Seeds

    PubMed Central

    Muhamad, Halimah; Ai, Tan Yew; Khairuddin, Nik Sasha Khatrina; Amiruddin, Mohd Din; May, Choo Yuen

    2014-01-01

    The oil palm seed production unit that generates germinated oil palm seeds is the first link in the palm oil supply chain, followed by the nursery to produce seedling, the plantation to produce fresh fruit bunches (FFB), the mill to produce crude palm oil (CPO) and palm kernel, the kernel crushers to produce crude palm kernel oil (CPKO), the refinery to produce refined palm oil (RPO) and finally the palm biodiesel plant to produce palm biodiesel. This assessment aims to investigate the life cycle assessment (LCA) of germinated oil palm seeds and the use of LCA to identify the stage/s in the production of germinated oil palm seeds that could contribute to the environmental load. The method for the life cycle impact assessment (LCIA) is modelled using SimaPro version 7, (System for Integrated environMental Assessment of PROducts), an internationally established tool used by LCA practitioners. This software contains European and US databases on a number of materials in addition to a variety of European- and US-developed impact assessment methodologies. LCA was successfully conducted for five seed production units and it was found that the environmental impact for the production of germinated oil palm was not significant. The characterised results of the LCIA for the production of 1000 germinated oil palm seeds showed that fossil fuel was the major impact category followed by respiratory inorganics and climate change. PMID:27073598

  15. Life Cycle Assessment for the Production of Oil Palm Seeds.

    PubMed

    Muhamad, Halimah; Ai, Tan Yew; Khairuddin, Nik Sasha Khatrina; Amiruddin, Mohd Din; May, Choo Yuen

    2014-12-01

    The oil palm seed production unit that generates germinated oil palm seeds is the first link in the palm oil supply chain, followed by the nursery to produce seedling, the plantation to produce fresh fruit bunches (FFB), the mill to produce crude palm oil (CPO) and palm kernel, the kernel crushers to produce crude palm kernel oil (CPKO), the refinery to produce refined palm oil (RPO) and finally the palm biodiesel plant to produce palm biodiesel. This assessment aims to investigate the life cycle assessment (LCA) of germinated oil palm seeds and the use of LCA to identify the stage/s in the production of germinated oil palm seeds that could contribute to the environmental load. The method for the life cycle impact assessment (LCIA) is modelled using SimaPro version 7, (System for Integrated environMental Assessment of PROducts), an internationally established tool used by LCA practitioners. This software contains European and US databases on a number of materials in addition to a variety of European- and US-developed impact assessment methodologies. LCA was successfully conducted for five seed production units and it was found that the environmental impact for the production of germinated oil palm was not significant. The characterised results of the LCIA for the production of 1000 germinated oil palm seeds showed that fossil fuel was the major impact category followed by respiratory inorganics and climate change. PMID:27073598

  16. Transformation of oil palm using Agrobacterium tumefaciens.

    PubMed

    Izawati, Abang Masli Dayang; Parveez, Ghulam Kadir Ahmad; Masani, Mat Yunus Abdul

    2012-01-01

    Transgenic oil palm (Elaeis guineensis Jacq.) plantlets are regenerated after Agrobacterium tumefaciens-mediated transformation of embryogenic calli derived from young leaves of oil palm. The calli are transformed with an Agrobacterium strain, LBA4404, harboring the plasmid pUBA, which carries a selectable marker gene (bar) for resistance to the herbicide Basta and is driven by a maize ubiquitin promoter. Modifications of the transformation method, treatment of the target tissues using acetosyringone, exposure to a plasmolysis medium, and physical injury via biolistics are applied. The main reasons for such modifications are to activate the bacterial virulence system and, subsequently, to increase the transformation efficiency. Transgenic oil palm cells are selected and regenerated on a medium containing herbicide Basta. Molecular analyses revealed the presence and integration of the introduced bar gene into the genome of the transformants. PMID:22351008

  17. Analyses of Hypomethylated Oil Palm Gene Space

    PubMed Central

    Jayanthi, Nagappan; Mohd-Amin, Ab Halim; Azizi, Norazah; Chan, Kuang-Lim; Maqbool, Nauman J.; Maclean, Paul; Brauning, Rudi; McCulloch, Alan; Moraga, Roger; Ong-Abdullah, Meilina; Singh, Rajinder

    2014-01-01

    Demand for palm oil has been increasing by an average of ∼8% the past decade and currently accounts for about 59% of the world's vegetable oil market. This drives the need to increase palm oil production. Nevertheless, due to the increasing need for sustainable production, it is imperative to increase productivity rather than the area cultivated. Studies on the oil palm genome are essential to help identify genes or markers that are associated with important processes or traits, such as flowering, yield and disease resistance. To achieve this, 294,115 and 150,744 sequences from the hypomethylated or gene-rich regions of Elaeis guineensis and E. oleifera genome were sequenced and assembled into contigs. An additional 16,427 shot-gun sequences and 176 bacterial artificial chromosomes (BAC) were also generated to check the quality of libraries constructed. Comparison of these sequences revealed that although the methylation-filtered libraries were sequenced at low coverage, they still tagged at least 66% of the RefSeq supported genes in the BAC and had a filtration power of at least 2.0. A total 33,752 microsatellites and 40,820 high-quality single nucleotide polymorphism (SNP) markers were identified. These represent the most comprehensive collection of microsatellites and SNPs to date and would be an important resource for genetic mapping and association studies. The gene models predicted from the assembled contigs were mined for genes of interest, and 242, 65 and 14 oil palm transcription factors, resistance genes and miRNAs were identified respectively. Examples of the transcriptional factors tagged include those associated with floral development and tissue culture, such as homeodomain proteins, MADS, Squamosa and Apetala2. The E. guineensis and E. oleifera hypomethylated sequences provide an important resource to understand the molecular mechanisms associated with important agronomic traits in oil palm. PMID:24497974

  18. Analyses of hypomethylated oil palm gene space.

    PubMed

    Low, Eng-Ti L; Rosli, Rozana; Jayanthi, Nagappan; Mohd-Amin, Ab Halim; Azizi, Norazah; Chan, Kuang-Lim; Maqbool, Nauman J; Maclean, Paul; Brauning, Rudi; McCulloch, Alan; Moraga, Roger; Ong-Abdullah, Meilina; Singh, Rajinder

    2014-01-01

    Demand for palm oil has been increasing by an average of ∼8% the past decade and currently accounts for about 59% of the world's vegetable oil market. This drives the need to increase palm oil production. Nevertheless, due to the increasing need for sustainable production, it is imperative to increase productivity rather than the area cultivated. Studies on the oil palm genome are essential to help identify genes or markers that are associated with important processes or traits, such as flowering, yield and disease resistance. To achieve this, 294,115 and 150,744 sequences from the hypomethylated or gene-rich regions of Elaeis guineensis and E. oleifera genome were sequenced and assembled into contigs. An additional 16,427 shot-gun sequences and 176 bacterial artificial chromosomes (BAC) were also generated to check the quality of libraries constructed. Comparison of these sequences revealed that although the methylation-filtered libraries were sequenced at low coverage, they still tagged at least 66% of the RefSeq supported genes in the BAC and had a filtration power of at least 2.0. A total 33,752 microsatellites and 40,820 high-quality single nucleotide polymorphism (SNP) markers were identified. These represent the most comprehensive collection of microsatellites and SNPs to date and would be an important resource for genetic mapping and association studies. The gene models predicted from the assembled contigs were mined for genes of interest, and 242, 65 and 14 oil palm transcription factors, resistance genes and miRNAs were identified respectively. Examples of the transcriptional factors tagged include those associated with floral development and tissue culture, such as homeodomain proteins, MADS, Squamosa and Apetala2. The E. guineensis and E. oleifera hypomethylated sequences provide an important resource to understand the molecular mechanisms associated with important agronomic traits in oil palm. PMID:24497974

  19. Microwave induced pyrolysis of oil palm biomass.

    PubMed

    Salema, Arshad Adam; Ani, Farid Nasir

    2011-02-01

    The purpose of this paper was to carry out microwave induced pyrolysis of oil palm biomass (shell and fibers) with the help of char as microwave absorber (MA). Rapid heating and yield of microwave pyrolysis products such as bio-oil, char, and gas was found to depend on the ratio of biomass to microwave absorber. Temperature profiles revealed the heating characteristics of the biomass materials which can rapidly heat-up to high temperature within seconds in presence of MA. Some characterization of pyrolysis products was also presented. The advantage of this technique includes substantial reduction in consumption of energy, time and cost in order to produce bio-oil from biomass materials. Large biomass particle size can be used directly in microwave heating, thus saving grinding as well as moisture removal cost. A synergistic effect was found in using MA with oil palm biomass. PMID:20970995

  20. 21 CFR 172.861 - Cocoa butter substitute from coconut oil, palm kernel oil, or both oils.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Cocoa butter substitute from coconut oil, palm... substitute from coconut oil, palm kernel oil, or both oils. The food additive, cocoa butter substitute from coconut oil, palm kernel oil, or both oils, may be safely used in food in accordance with the...

  1. 21 CFR 172.861 - Cocoa butter substitute from coconut oil, palm kernel oil, or both oils.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Cocoa butter substitute from coconut oil, palm... substitute from coconut oil, palm kernel oil, or both oils. The food additive, cocoa butter substitute from coconut oil, palm kernel oil, or both oils, may be safely used in food in accordance with the...

  2. 21 CFR 172.861 - Cocoa butter substitute from coconut oil, palm kernel oil, or both oils.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Cocoa butter substitute from coconut oil, palm... substitute from coconut oil, palm kernel oil, or both oils. The food additive, cocoa butter substitute from coconut oil, palm kernel oil, or both oils, may be safely used in food in accordance with the...

  3. Will oil palm's homecoming spell doom for Africa's great apes?

    PubMed

    Wich, Serge A; Garcia-Ulloa, John; Kühl, Hjalmar S; Humle, Tatanya; Lee, Janice S H; Koh, Lian Pin

    2014-07-21

    Expansion of oil palm plantations has led to extensive wildlife habitat conversion in Southeast Asia [1]. This expansion is driven by a global demand for palm oil for products ranging from foods to detergents [2], and more recently for biofuels [3]. The negative impacts of oil palm development on biodiversity [1, 4, 5], and on orangutans (Pongo spp.) in particular, have been well documented [6, 7] and publicized [8, 9]. Although the oil palm is of African origin, Africa's production historically lags behind that of Southeast Asia. Recently, significant investments have been made that will likely drive the expansion of Africa's oil palm industry [10]. There is concern that this will lead to biodiversity losses similar to those in Southeast Asia. Here, we analyze the potential impact of oil palm development on Africa's great apes. Current great ape distribution in Africa substantially overlaps with current oil palm concessions (by 58.7%) and areas suitable for oil palm production (by 42.3%). More importantly, 39.9% of the distribution of great ape species on unprotected lands overlaps with suitable oil palm areas. There is an urgent need to develop guidelines for the expansion of oil palm in Africa to minimize the negative effects on apes and other wildlife. There is also a need for research to support land use decisions to reconcile economic development, great ape conservation, and avoiding carbon emissions. PMID:25017207

  4. 21 CFR 172.861 - Cocoa butter substitute from coconut oil, palm kernel oil, or both oils.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Cocoa butter substitute from coconut oil, palm... HUMAN CONSUMPTION Multipurpose Additives § 172.861 Cocoa butter substitute from coconut oil, palm kernel oil, or both oils. The food additive, cocoa butter substitute from coconut oil, palm kernel oil,...

  5. Oil palm deserves government attention in Brazil

    NASA Astrophysics Data System (ADS)

    Moreira, José R.; Goldemberg, José

    2015-07-01

    Englund et al (2015 Environ. Res. Lett. 10 044002) have recently analyzed biodiesel production from oil palm plantations as one possible way to mitigate climate change while providing cost effective results. They show that data for detailed quantification of biological carbon sequestration is available allowing a high confidence evaluation of positive impacts when oil palm plantation for food and biodiesel production is carried out in degraded, cultivated soil, and also with some varieties of natural vegetation in the Amazon. Nevertheless, economic risk associated with the future price of fossil fuels and uncertainties related with carbon subsidy are barriers. Here we discuss the assumptions under which such controversial proposal is based and suggest further analysis for Brazilian decision makers.

  6. Carbon emissions from forest conversion by Kalimantan oil palm plantations

    NASA Astrophysics Data System (ADS)

    Carlson, Kimberly M.; Curran, Lisa M.; Asner, Gregory P.; Pittman, Alice Mcdonald; Trigg, Simon N.; Marion Adeney, J.

    2013-03-01

    Oil palm supplies >30% of world vegetable oil production. Plantation expansion is occurring throughout the tropics, predominantly in Indonesia, where forests with heterogeneous carbon stocks undergo high conversion rates. Quantifying oil palm's contribution to global carbon budgets therefore requires refined spatio-temporal assessments of land cover converted to plantations. Here, we report oil palm development across Kalimantan (538,346km2) from 1990 to 2010, and project expansion to 2020 within government-allocated leases. Using Landsat satellite analyses to discern multiple land covers, coupled with above- and below-ground carbon accounting, we develop the first high-resolution carbon flux estimates from Kalimantan plantations. From 1990 to 2010, 90% of lands converted to oil palm were forested (47% intact, 22% logged, 21% agroforests). By 2010, 87% of total oil palm area (31,640km2) occurred on mineral soils, and these plantations contributed 61-73% of 1990-2010 net oil palm emissions (0.020-0.024GtCyr-1). Although oil palm expanded 278% from 2000 to 2010, 79% of allocated leases remained undeveloped. By 2020, full lease development would convert 93,844km2 (~ 90% forested lands, including 41% intact forests). Oil palm would then occupy 34% of lowlands outside protected areas. Plantation expansion in Kalimantan alone is projected to contribute 18-22% (0.12-0.15GtCyr-1) of Indonesia's 2020 CO2-equivalent emissions. Allocated oil palm leases represent a critical yet undocumented source of deforestation and carbon emissions.

  7. Water footprints of products of oil palm plantations and palm oil mills in Thailand.

    PubMed

    Suttayakul, Phetrada; H-Kittikun, Aran; Suksaroj, Chaisri; Mungkalasiri, Jitti; Wisansuwannakorn, Ruthairat; Musikavong, Charongpun

    2016-01-15

    The water footprint (WF) of fresh fruit bunches (FFBs) from oil palm plantations and crude palm oil (CPO) from palm oil mills in southern and eastern Thailand were determined over 25 years. Climatic conditions, soil characteristics, and the characteristics of oil palm growth were considered. The WF of FFBs was 1063 m(3)/ton (t) on average. Green, blue, and grey waters comprised of 68, 18, and 14% of total WF, respectively. The oil palm plantations in Thailand required smaller amounts of indirect blue water. The average WF for producing a ton of CPO of seven mills was 5083 m(3). Most of the waters used in the mills originated from indirect green, blue and grey waters from the plantations. The direct blue water used in the mills had less impact on the total WF, lower than 1% of the total WF. Average percentages of green, blue, and grey waters of 69, 16, and 15% of total WF were determined for the mills, respectively. The water deprivation of the FFBs and CPO ranged from 0.73-12.9 and 3.44-58.3 m(3)H2Oeq/t, respectively. In 2013, the CPO production in Thailand including green, blue, and grey waters from plantation and blue water from mills required 11,343 million m(3) water. If the oil palm variety Suratthani 7 is used in the plantation, it would increase the yield from 15.2 to 22.8 t FFBs/ha-year and decrease the WF to 888 m(3)/t FFBs. The average value of the oil extraction rate (OER) of mills was 18.1%. With an increase in the OER of 1%, a reduction of the WF of 250 m(3)/t CPO or 5.1% of total WF could be obtained. PMID:26520275

  8. Oil palm natural diversity and the potential for yield improvement.

    PubMed

    Barcelos, Edson; Rios, Sara de Almeida; Cunha, Raimundo N V; Lopes, Ricardo; Motoike, Sérgio Y; Babiychuk, Elena; Skirycz, Aleksandra; Kushnir, Sergei

    2015-01-01

    African oil palm has the highest productivity amongst cultivated oleaginous crops. Species can constitute a single crop capable to fulfill the growing global demand for vegetable oils, which is estimated to reach 240 million tons by 2050. Two types of vegetable oil are extracted from the palm fruit on commercial scale. The crude palm oil and kernel palm oil have different fatty acid profiles, which increases versatility of the crop in industrial applications. Plantations of the current varieties have economic life-span around 25-30 years and produce fruits around the year. Thus, predictable annual palm oil supply enables marketing plans and adjustments in line with the economic forecasts. Oil palm cultivation is one of the most profitable land uses in the humid tropics. Oil palm fruits are the richest plant source of pro-vitamin A and vitamin E. Hence, crop both alleviates poverty, and could provide a simple practical solution to eliminate global pro-vitamin A deficiency. Oil palm is a perennial, evergreen tree adapted to cultivation in biodiversity rich equatorial land areas. The growing demand for the palm oil threatens the future of the rain forests and has a large negative impact on biodiversity. Plant science faces three major challenges to make oil palm the key element of building the future sustainable world. The global average yield of 3.5 tons of oil per hectare (t) should be raised to the full yield potential estimated at 11-18t. The tree architecture must be changed to lower labor intensity and improve mechanization of the harvest. Oil composition should be tailored to the evolving needs of the food, oleochemical and fuel industries. The release of the oil palm reference genome sequence in 2013 was the key step toward this goal. The molecular bases of agronomically important traits can be and are beginning to be understood at the single base pair resolution, enabling gene-centered breeding and engineering of this remarkable crop. PMID:25870604

  9. Oil palm natural diversity and the potential for yield improvement

    PubMed Central

    Barcelos, Edson; Rios, Sara de Almeida; Cunha, Raimundo N. V.; Lopes, Ricardo; Motoike, Sérgio Y.; Babiychuk, Elena; Skirycz, Aleksandra; Kushnir, Sergei

    2015-01-01

    African oil palm has the highest productivity amongst cultivated oleaginous crops. Species can constitute a single crop capable to fulfill the growing global demand for vegetable oils, which is estimated to reach 240 million tons by 2050. Two types of vegetable oil are extracted from the palm fruit on commercial scale. The crude palm oil and kernel palm oil have different fatty acid profiles, which increases versatility of the crop in industrial applications. Plantations of the current varieties have economic life-span around 25–30 years and produce fruits around the year. Thus, predictable annual palm oil supply enables marketing plans and adjustments in line with the economic forecasts. Oil palm cultivation is one of the most profitable land uses in the humid tropics. Oil palm fruits are the richest plant source of pro-vitamin A and vitamin E. Hence, crop both alleviates poverty, and could provide a simple practical solution to eliminate global pro-vitamin A deficiency. Oil palm is a perennial, evergreen tree adapted to cultivation in biodiversity rich equatorial land areas. The growing demand for the palm oil threatens the future of the rain forests and has a large negative impact on biodiversity. Plant science faces three major challenges to make oil palm the key element of building the future sustainable world. The global average yield of 3.5 tons of oil per hectare (t) should be raised to the full yield potential estimated at 11–18t. The tree architecture must be changed to lower labor intensity and improve mechanization of the harvest. Oil composition should be tailored to the evolving needs of the food, oleochemical and fuel industries. The release of the oil palm reference genome sequence in 2013 was the key step toward this goal. The molecular bases of agronomically important traits can be and are beginning to be understood at the single base pair resolution, enabling gene-centered breeding and engineering of this remarkable crop. PMID:25870604

  10. Time series ARIMA models for daily price of palm oil

    NASA Astrophysics Data System (ADS)

    Ariff, Noratiqah Mohd; Zamhawari, Nor Hashimah; Bakar, Mohd Aftar Abu

    2015-02-01

    Palm oil is deemed as one of the most important commodity that forms the economic backbone of Malaysia. Modeling and forecasting the daily price of palm oil is of great interest for Malaysia's economic growth. In this study, time series ARIMA models are used to fit the daily price of palm oil. The Akaike Infromation Criterion (AIC), Akaike Infromation Criterion with a correction for finite sample sizes (AICc) and Bayesian Information Criterion (BIC) are used to compare between different ARIMA models being considered. It is found that ARIMA(1,2,1) model is suitable for daily price of crude palm oil in Malaysia for the year 2010 to 2012.

  11. Poor prospects for avian biodiversity in Amazonian oil palm.

    PubMed

    Lees, Alexander C; Moura, Nárgila G; de Almeida, Arlete Silva; Vieira, Ima C G

    2015-01-01

    Expansion of oil palm plantations across the humid tropics has precipitated massive loss of tropical forest habitats and their associated speciose biotas. Oil palm plantation monocultures have been identified as an emerging threat to Amazonian biodiversity, but there are no quantitative studies exploring the impact of these plantations on the biome's biota. Understanding these impacts is extremely important given the rapid projected expansion of oil palm cultivation in the basin. Here we investigate the biodiversity value of oil palm plantations in comparison with other dominant regional land-uses in Eastern Amazonia. We carried out bird surveys in oil palm plantations of varying ages, primary and secondary forests, and cattle pastures. We found that oil palm plantations retained impoverished avian communities with a similar species composition to pastures and agrarian land-uses and did not offer habitat for most forest-associated species, including restricted range species and species of conservation concern. On the other hand, the forests that the oil palm companies are legally obliged to protect hosted a relatively species-rich community including several globally-threatened bird species. We consider oil palm to be no less detrimental to regional biodiversity than other agricultural land-uses and that political pressure exerted by large landowners to allow oil palm to count as a substitute for native forest vegetation in private landholdings with forest restoration deficits would have dire consequences for regional biodiversity. PMID:25955243

  12. Poor Prospects for Avian Biodiversity in Amazonian Oil Palm

    PubMed Central

    Lees, Alexander C.; Vieira, Ima C. G.

    2015-01-01

    Expansion of oil palm plantations across the humid tropics has precipitated massive loss of tropical forest habitats and their associated speciose biotas. Oil palm plantation monocultures have been identified as an emerging threat to Amazonian biodiversity, but there are no quantitative studies exploring the impact of these plantations on the biome’s biota. Understanding these impacts is extremely important given the rapid projected expansion of oil palm cultivation in the basin. Here we investigate the biodiversity value of oil palm plantations in comparison with other dominant regional land-uses in Eastern Amazonia. We carried out bird surveys in oil palm plantations of varying ages, primary and secondary forests, and cattle pastures. We found that oil palm plantations retained impoverished avian communities with a similar species composition to pastures and agrarian land-uses and did not offer habitat for most forest-associated species, including restricted range species and species of conservation concern. On the other hand, the forests that the oil palm companies are legally obliged to protect hosted a relatively species-rich community including several globally-threatened bird species. We consider oil palm to be no less detrimental to regional biodiversity than other agricultural land-uses and that political pressure exerted by large landowners to allow oil palm to count as a substitute for native forest vegetation in private landholdings with forest restoration deficits would have dire consequences for regional biodiversity. PMID:25955243

  13. Mating Compatibility and Restriction Analysis of Ganoderma Isolates from Oil Palm and Other Palm Hosts.

    PubMed

    Jing, Chan Jer; Seman, Idris Abu; Zakaria, Latiffah

    2015-12-01

    Mating compatibility and restriction analyses of Internal Transcribed Spacer (ITS) regions were performed to determine the relations between Ganoderma boninense, the most common species associated with basal stem rot in oil palm and Ganoderma isolates from infected oil palm, two ornamental palms, sealing wax palm (Cyrtostachys renda) and MacArthur palm (Ptychosperma macarthurii), an isolate from coconut stump (Cocos nucifera), Ganoderma miniatocinctum, Ganoderma zonatum and Ganoderma tornatum. The results showed that G. boninense was compatible with Ganoderma isolates from oil palm, G. miniatocinctum and G. zonatum, Ganoderma isolates from sealing wax palm, MacArthur palm and coconut stump. G. boninense was not compatible with G. tornatum. Therefore, the results suggested that the G. boninense, G. miniatocinctum, G. zonatum, and Ganoderma isolates from oil palm, ornamental palms and coconut stump could represent the same biological species. In performing a restriction analysis of the ITS regions, variations were observed in which five haplotypes were generated from the restriction patterns. An unweighted pair-group method with arithmetic averages (UPGMA) cluster analysis showed that all the Ganoderma isolates were grouped into five primary groups, and the similarity values of the isolates ranged from 97% to 100%. Thus, a restriction analysis of the ITS regions showed that G. boninense and the Ganoderma isolates from other palm hosts were closely related. On the basis of the mating compatibility test and the restriction analysis of the ITS regions performed in this study, a diverse group of Ganoderma species from oil palm and other palm hosts are closely related, except for G. tornatum and Ganoderma isolates from tea and rubber. PMID:26868709

  14. Mating Compatibility and Restriction Analysis of Ganoderma Isolates from Oil Palm and Other Palm Hosts

    PubMed Central

    Jing, Chan Jer; Seman, Idris Abu; Zakaria, Latiffah

    2015-01-01

    Mating compatibility and restriction analyses of Internal Transcribed Spacer (ITS) regions were performed to determine the relations between Ganoderma boninense, the most common species associated with basal stem rot in oil palm and Ganoderma isolates from infected oil palm, two ornamental palms, sealing wax palm (Cyrtostachys renda) and MacArthur palm (Ptychosperma macarthurii), an isolate from coconut stump (Cocos nucifera), Ganoderma miniatocinctum, Ganoderma zonatum and Ganoderma tornatum. The results showed that G. boninense was compatible with Ganoderma isolates from oil palm, G. miniatocinctum and G. zonatum, Ganoderma isolates from sealing wax palm, MacArthur palm and coconut stump. G. boninense was not compatible with G. tornatum. Therefore, the results suggested that the G. boninense, G. miniatocinctum, G. zonatum, and Ganoderma isolates from oil palm, ornamental palms and coconut stump could represent the same biological species. In performing a restriction analysis of the ITS regions, variations were observed in which five haplotypes were generated from the restriction patterns. An unweighted pair-group method with arithmetic averages (UPGMA) cluster analysis showed that all the Ganoderma isolates were grouped into five primary groups, and the similarity values of the isolates ranged from 97% to 100%. Thus, a restriction analysis of the ITS regions showed that G. boninense and the Ganoderma isolates from other palm hosts were closely related. On the basis of the mating compatibility test and the restriction analysis of the ITS regions performed in this study, a diverse group of Ganoderma species from oil palm and other palm hosts are closely related, except for G. tornatum and Ganoderma isolates from tea and rubber. PMID:26868709

  15. Minimizing the biodiversity impact of Neotropical oil palm development.

    PubMed

    Gilroy, James J; Prescott, Graham W; Cardenas, Johann S; Castañeda, Pamela González del Pliego; Sánchez, Andrés; Rojas-Murcia, Luis E; Medina Uribe, Claudia A; Haugaasen, Torbjørn; Edwards, David P

    2015-04-01

    Oil palm agriculture is rapidly expanding in the Neotropics, at the expense of a range of natural and seminatural habitats. A key question is how this expansion should be managed to reduce negative impacts on biodiversity. Focusing on the Llanos of Colombia, a mixed grassland-forest system identified as a priority zone for future oil palm development, we survey communities of ants, dung beetles, birds and herpetofauna occurring in oil palm plantations and the other principal form of agriculture in the region--improved cattle pasture--together with those of surrounding natural forests. We show that oil palm plantations have similar or higher species richness across all four taxonomic groups than improved pasture. For dung beetles, species richness in oil palm was equal to that of forest, whereas the other three taxa had highest species richness in forests. Hierarchical modelling of species occupancy probabilities indicated that oil palm plantations supported a higher proportion of species characteristic of forests than did cattle pastures. Across the bird community, occupancy probabilities within oil palm were positively influenced by increasing forest cover in a surrounding 250 m radius, whereas surrounding forest cover did not strongly influence the occurrence of other taxonomic groups in oil palm. Overall, our results suggest that the conversion of existing improved pastures to oil palm has limited negative impacts on biodiversity. As such, existing cattle pastures of the Colombian Llanos could offer a key opportunity to meet governmental targets for oil palm development without incurring significant biodiversity costs. Our results also highlight the value of preserving remnant forests within these agricultural landscapes, protecting high biodiversity and exporting avian 'spill-over' effects into oil palm plantations. PMID:25175402

  16. Palm oil mill effluent treatment and utilization to ensure the sustainability of palm oil industries.

    PubMed

    Hasanudin, U; Sugiharto, R; Haryanto, A; Setiadi, T; Fujie, K

    2015-01-01

    The purpose of this study was to evaluate the current condition of palm oil mill effluent (POME) treatment and utilization and to propose alternative scenarios to improve the sustainability of palm oil industries. The research was conducted through field survey at some palm oil mills in Indonesia, in which different waste management systems were used. Laboratory experiment was also carried out using a 5 m(3) pilot-scale wet anaerobic digester. Currently, POME is treated through anaerobic digestion without or with methane capture followed by utilization of treated POME as liquid fertilizer or further treatment (aerobic process) to fulfill the wastewater quality standard. A methane capturing system was estimated to successfully produce renewable energy of about 25.4-40.7 kWh/ton of fresh fruit bunches (FFBs) and reduce greenhouse gas (GHG) emissions by about 109.41-175.35 kgCO2e/tonFFB (CO2e: carbon dioxide equivalent). Utilization of treated POME as liquid fertilizer increased FFB production by about 13%. A palm oil mill with 45 ton FFB/hour capacity has potential to generate about 0.95-1.52 MW of electricity. Coupling the POME-based biogas digester and anaerobic co-composting of empty fruit bunches (EFBs) is capable of adding another 0.93 MW. The utilization of POME and EFB not only increases the added value of POME and EFB by producing renewable energy, compost, and liquid fertilizer, but also lowers environmental burden. PMID:26398023

  17. Molecular defense response of oil palm to Ganoderma infection.

    PubMed

    Ho, C-L; Tan, Y-C

    2015-06-01

    Basal stem rot (BSR) of oil palm roots is due to the invasion of fungal mycelia of Ganoderma species which spreads to the bole of the stem. In addition to root contact, BSR can also spread by airborne basidiospores. These fungi are able to break down cell wall components including lignin. BSR not only decreases oil yield, it also causes the stands to collapse thus causing severe economic loss to the oil palm industry. The transmission and mode of action of Ganoderma, its interactions with oil palm as a hemibiotroph, and the molecular defence responses of oil palm to the infection of Ganoderma boninense in BSR are reviewed, based on the transcript profiles of infected oil palms. The knowledge gaps that need to be filled in oil palm-Ganoderma molecular interactions i.e. the associations of hypersensitive reaction (HR)-induced cell death and reactive oxygen species (ROS) kinetics to the susceptibility of oil palm to Ganoderma spp., the interactions of phytohormones (salicylate, jasmonate and ethylene) at early and late stages of BSR, and cell wall strengthening through increased production of guaiacyl (G)-type lignin, are also discussed. PMID:25457484

  18. Fast pyrolysis of oil palm shell (OPS)

    NASA Astrophysics Data System (ADS)

    Abdullah, Nurhayati; Sulaiman, Fauziah; Aliasak, Zalila

    2015-04-01

    Biomass is an important renewable source of energy. Residues that are obtained from harvesting and agricultural products can be utilised as fuel for energy generation by conducting any thermal energy conversion technology. The conversion of biomass to bio oil is one of the prospective alternative energy resources. Therefore, in this study fast pyrolysis of oil palm shell was conducted. The main objective of this study was to find the optimum condition for high yield bio-oil production. The experiment was conducted using fixed-bed fluidizing pyrolysis system. The biomass sample was pyrolysed at variation temperature of 450°C - 650°C and at variation residence time of 0.9s - 1.35s. The results obtained were further discussed in this paper. The basic characteristic of the biomass sample was also presented here. The experiment shows that the optimum bio-oil yield was obtained at temperature of 500°C at residence time 1.15s.

  19. Palm oil: a healthful and cost-effective dietary component.

    PubMed

    Ong, A S H; Goh, S H

    2002-03-01

    Palm oil is an excellent choice for food manufacturers because of its nutritional benefits and versatility. The oil is highly structured to contain predominantly oleic acid at the sn2-position in the major triacylglycerols to account for the beneficial effects described in numerous nutritional studies. Oil quality and nutritional benefits have been assured for the variety of foods that can be manufactured from the oil directly or from blends with other oils while remaining trans-free. The oxidative stability coupled with the cost-effectiveness is unparalleled among cholesterol-free oils, and these values can be extended to blends of polyunsaturated oils to provide long shelf-life. Presently the supply of genetic-modification-free palm oil is assured at economic prices, since the oil palm is a perennial crop with unparalleled productivity. Numerous studies have confirmed the nutritional value of palm oil as a result of the high monounsaturation at the crucial 2-position of the oil's triacylglycerols, making the oil as healthful as olive oil. It is now recognized that the contribution of dietary fats to blood lipids and cholesterol modulation is a consequence of the digestion, absorption, and metabolism of the fats. Lipolytic hydrolysis of palm oil glycerides containing predominantly oleic acid at the 2 position and palmitic and stearic acids at the 1 and 3 positions allows for the ready absorption of the 2-monoacrylglycerols while the saturated free fatty acids remain poorly absorbed. Dietary palm oil in balanced diets generally reduced blood cholesterol, low-density lipoprotein (LDL) cholesterol, and triglycerides while raising the high-density lipoprotein (HDL) cholesterol. Improved lipoprotein(a) and apo-A1 levels were also demonstrated from palm oil diets; an important benefits also comes from the lowering of blood triglycerides (or reduced fat storage) as compared with those from polyunsaturated fat diets. Virgin palm oil also provides carotenes apart from

  20. Electrocoagulation of Palm Oil Mill Effluent

    PubMed Central

    Agustin, Melissa B.; Sengpracha, Waya P.; Phutdhawong, Weerachai

    2008-01-01

    Electrocoagulation (EC) is an electrochemical technique which has been employed in the treatment of various kinds of wastewater. In this work the potential use of EC for the treatment of palm oil mill effluent (POME) was investigated. In a laboratory scale, POME from a factory site in Chumporn Province (Thailand) was subjected to EC using aluminum as electrodes and sodium chloride as supporting electrolyte. Results show that EC can reduce the turbidity, acidity, COD, and BOD of the POME as well as some of its heavy metal contents. Phenolic compounds are also removed from the effluent. Recovery techniques were employed in the coagulated fraction and the recovered compounds was analysed for antioxidant activity by DPPH method. The isolate was found to have a moderate antioxidant activity. From this investigation, it can be concluded that EC is an efficient method for the treatment of POME. PMID:19139537

  1. Screening for lipase activity in the oil palm.

    PubMed

    Sambanthamurthi, R; Rajanaidu, N; Hasnah Parman, S

    2000-12-01

    The oil palm mesocarp contains an endogenous lipase which is strongly activated at low temperature. Lipase activity is thus very conveniently assayed by prior exposure of the fruits to low temperature. More than 100 oil palm samples from the germplasm collection of the Palm Oil Research Institute of Malaysia (now known as the Malaysian Palm Oil Board) were screened for non-esterified fatty acid activity using both the low-temperature activation assay and a radioactivity assay. The results showed good correlation between assay procedures. The different samples had a very wide range of lipase activity. Elaeis oleifera samples had significantly lower lipase activity compared with E. guineensis (var. tenera) samples. Even within E. guineensis (var. tenera), there was a wide range of activity. The results confirmed that lipase activity is genotype-dependent. Selection for lipase genotypes is thus possible and this will have obvious commercial value. PMID:11171201

  2. Oil palm plantation effects on water quality in Kalimantan, Indonesia

    NASA Astrophysics Data System (ADS)

    Carlson, K. M.; Curran, L. M.

    2011-12-01

    Global demand for palm oil has stimulated a 7-fold increase in oil palm (Elaeis guineensis) plantation area in Indonesia since 1990. Expansion will continue as Indonesia plans to double current production by 2020. Oil palm fertilizers, effluent from oil palm mills, and erosion from land clearing and roads threaten river water quality near plantations. These rivers provide essential ecosystem services including water for drinking, cooking, and washing. Robust empirical measurements of plantation expansion impacts on water resources are necessary to discern the effects of agribusiness on local livelihoods and ecosystems. In Ketapang District, West Kalimantan, Indonesian Borneo, we evaluated the effects of land cover change on water quality by assessing water chemistry in streams draining four end-member watersheds ( ~600-1900 ha watershed-1): Logged forest, mixed agro-forest dominated by rubber and upland rice fallows, young oil palm forest (0-5 years), and old oil palm forest (10-15 years). To assess land cover change, we used CLASLite software to derive fractional cover from a time series (1989-2008) of Landsat data. Nearest neighbor classification and post-classification change detection yielded classes including primary forest, logged forest, secondary forest regrowth, smallholder agriculture, and oil palm. Stream water quality (temperature, dissolved oxygen, turbidity, optical chlorphyll, and pH) and quantity (discharge) were quantified with the YSI 6600-V2 sonde. The sonde was deployed in each stream for month-long intervals 2-3 times from 2009-2010. Such extended deployment captures episodic events such as intense storms and allows examination of interdiel dynamics by sampling continuously and at high frequency, every 10 minutes. We find that across the Ketapang District study region (~12,000 km2), oil palm has cleared mostly forests (49%) and agroforests (39%). What are the impacts of such land cover changes on water quality? Compared to forests and

  3. Oil palm for biodiesel in Brazil—risks and opportunities

    NASA Astrophysics Data System (ADS)

    Englund, Oskar; Berndes, Göran; Persson, U. Martin; Sparovek, Gerd

    2015-04-01

    Although mainly used for other purposes, and historically mainly established at the expense of tropical forests, oil palm can be the most land efficient feedstock for biodiesel. Large parts of Brazil are suitable for oil palm cultivation and a series of policy initiatives have recently been launched to promote oil palm production. These initiatives are however highly debated both in the parliament and in academia. Here we present results of a high resolution modelling study of opportunities and risks associated with oil palm production for biodiesel in Brazil, under different energy, policy, and infrastructure scenarios. Oil palm was found to be profitable on extensive areas, including areas under native vegetation where establishment would cause large land use change (LUC) emissions. However, some 40-60 Mha could support profitable biodiesel production corresponding to approximately 10% of the global diesel demand, without causing direct LUC emissions or impinging on protected areas. Pricing of LUC emissions could make oil palm production unprofitable on most lands where conversion would impact on native ecosystems and carbon stocks, if the carbon price is at the level 125/tC, or higher.

  4. Catalytic processes towards the production of biofuels in a palm oil and oil palm biomass-based biorefinery.

    PubMed

    Chew, Thiam Leng; Bhatia, Subhash

    2008-11-01

    In Malaysia, there has been interest in the utilization of palm oil and oil palm biomass for the production of environmental friendly biofuels. A biorefinery based on palm oil and oil palm biomass for the production of biofuels has been proposed. The catalytic technology plays major role in the different processing stages in a biorefinery for the production of liquid as well as gaseous biofuels. There are number of challenges to find suitable catalytic technology to be used in a typical biorefinery. These challenges include (1) economic barriers, (2) catalysts that facilitate highly selective conversion of substrate to desired products and (3) the issues related to design, operation and control of catalytic reactor. Therefore, the catalytic technology is one of the critical factors that control the successful operation of biorefinery. There are number of catalytic processes in a biorefinery which convert the renewable feedstocks into the desired biofuels. These include biodiesel production from palm oil, catalytic cracking of palm oil for the production of biofuels, the production of hydrogen as well as syngas from biomass gasification, Fischer-Tropsch synthesis (FTS) for the conversion of syngas into liquid fuels and upgrading of liquid/gas fuels obtained from liquefaction/pyrolysis of biomass. The selection of catalysts for these processes is essential in determining the product distribution (olefins, paraffins and oxygenated products). The integration of catalytic technology with compatible separation processes is a key challenge for biorefinery operation from the economic point of view. This paper focuses on different types of catalysts and their role in the catalytic processes for the production of biofuels in a typical palm oil and oil palm biomass-based biorefinery. PMID:18434141

  5. Comparative transcriptome and metabolite analysis of oil palm and date palm mesocarp that differ dramatically in carbon partitioning.

    PubMed

    Bourgis, Fabienne; Kilaru, Aruna; Cao, Xia; Ngando-Ebongue, Georges-Frank; Drira, Noureddine; Ohlrogge, John B; Arondel, Vincent

    2011-07-26

    Oil palm can accumulate up to 90% oil in its mesocarp, the highest level observed in the plant kingdom. In contrast, the closely related date palm accumulates almost exclusively sugars. To gain insight into the mechanisms that lead to such an extreme difference in carbon partitioning, the transcriptome and metabolite content of oil palm and date palm were compared during mesocarp development. Compared with date palm, the high oil content in oil palm was associated with much higher transcript levels for all fatty acid synthesis enzymes, specific plastid transporters, and key enzymes of plastidial carbon metabolism, including phosphofructokinase, pyruvate kinase, and pyruvate dehydrogenase. Transcripts representing an ortholog of the WRI1 transcription factor were 57-fold higher in oil palm relative to date palm and displayed a temporal pattern similar to its target genes. Unexpectedly, despite more than a 100-fold difference in flux to lipids, most enzymes of triacylglycerol assembly were expressed at similar levels in oil palm and date palm. Similarly, transcript levels for all but one cytosolic enzyme of glycolysis were comparable in both species. Together, these data point to synthesis of fatty acids and supply of pyruvate in the plastid, rather than acyl assembly into triacylglycerol, as a major control over the storage of oil in the mesocarp of oil palm. In addition to greatly increasing molecular resources devoted to oil palm and date palm, the combination of temporal and comparative studies illustrates how deep sequencing can provide insights into gene expression patterns of two species that lack genome sequence information. PMID:21709233

  6. Improvement in Sensitivity of an Inductive Oil Palm Fruit Sensor

    PubMed Central

    Misron, Norhisam; Harun, Noor Hasmiza; Lee, Yeoh Kian; Sidek, Roslina Mohd; Aris, Ishak; Wakiwaka, Hiroyuki; Tashiro, Kunihisa

    2014-01-01

    Among palm oil millers, the ripeness of oil palm Fresh Fruit Bunch (FFB) is determined through visual inspection. To increase the productivity of the millers, many researchers have proposed with a new detection method to replace the conventional one. The sensitivity of such a sensor plays a crucial role in determining the effectiveness of the method. In our preliminary study a novel oil palm fruit sensor to detect the maturity of oil palm fruit bunches is proposed. The design of the proposed air coil sensor based on an inductive sensor is further investigated to improve its sensitivity. This paper investigates the results pertaining to the effects of the air coil structure of an oil palm fruit sensor, taking consideration of the used copper wire diameter ranging from 0.10 mm to 0.18 mm with 60 turns. The flat-type shape of air coil was used on twenty samples of fruitlets from two categories, namely ripe and unripe. Samples are tested with frequencies ranging from 20 Hz to 120 MHz. The sensitivity of the sensor between air to fruitlet samples increases as the coil diameter increases. As for the sensitivity differences between ripe and unripe samples, the 5 mm air coil length with the 0.12 mm coil diameter provides the highest percentage difference between samples and it is amongst the highest deviation value between samples. The result from this study is important to improve the sensitivity of the inductive oil palm fruit sensor mainly with regards to the design of the air coil structure. The efficiency of the sensor to determine the maturity of the oil palm FFB and the ripening process of the fruitlet could further be enhanced. PMID:24496313

  7. Synthesis of polyhydroxyalkanoate from palm oil and some new applications.

    PubMed

    Sudesh, Kumar; Bhubalan, Kesaven; Chuah, Jo-Ann; Kek, Yik-Kang; Kamilah, Hanisah; Sridewi, Nanthini; Lee, Yan-Fen

    2011-03-01

    Polyhydroxyalkanoate (PHA) is a potential substitute for some petrochemical-based plastics. This biodegradable plastic is derived from microbial fermentation using various carbon substrates. Since carbon source has been identified as one of the major cost-absorbing factors in PHA production, cheap and renewable substrates are currently being investigated as substitutes for existing sugar-based feedstock. Plant oils have been found to result in high-yield PHA production. Malaysia, being the world's second largest producer of palm oil, is able to ensure continuous supply of palm oil products for sustainable PHA production. The biosynthesis and characterization of various types of PHA using palm oil products have been described in detail in this review. Besides, by-products and waste stream from palm oil industry have also demonstrated promising results as carbon sources for PHA biosynthesis. Some new applications in cosmetic and wastewater treatment show the diversity of PHA usage. With proper management practices and efficient milling processes, it may be possible to supply enough palm oil-based raw materials for human consumption and other biotechnological applications such as production of PHA in a sustainable manner. PMID:21279347

  8. Tool Wear Characteristics of Oil Palm Empty Fruit Bunch Particleboard

    NASA Astrophysics Data System (ADS)

    Ratnasingam, Jegatheswaran; Chew Tek, Tee; Farrokhpayam, Saied Reza

    A series of machining experiments on the Oil-Palm Empty Fruit Bunch (OPEFB) particleboard were carried out using a CNC router, to evaluate the tool wearing properties of the composite in comparison to the conventional wood-material particleboard. A single-fluted tungsten-carbide router bit (12 mm φ, 18 000 rpm), with a rake angle of 15° was used in this experiment, in which the depth of cut was 1.5 mm and feed speed was 4.5 m min-1. The router bit machined the edge of the board, moving along the full length before returning to repeat the cycle. The tool was examined for the extent of wear after complete failure had occurred. The result found that the wear pattern was similar in the oil-palm based particleboard and the wood-based particleboard, but the former was twice more abrasive compared to the latter. Microscopic examination of the cutter edge revealed greater incidence of micro-fracture when cutting the oil-palm based particleboard, indicating the presence of hard impurities in the composite. From an economic perspective, the tooling cost for machining oil-palm based particleboard is estimated to be twice of the cost for machining wood-based particleboard. This study shows that the machining properties of oil-palm based particleboard will be a primary concern, if the board is to find widespread application as a potential substitute for wood-based particleboard.

  9. SSR mining in oil palm EST database: application in oil palm germplasm diversity studies.

    PubMed

    Ting, Ngoot-Chin; Zaki, Noorhariza Mohd; Rosli, Rozana; Low, Eng-Ti Leslie; Ithnin, Maizura; Cheah, Suan-Choo; Tan, Soon-Guan; Singh, Rajinder

    2010-08-01

    This study reports on the detection of additional expressed sequence tags (EST) derived simple sequence repeat (SSR) markers for the oil palm. A large collection of 19243 Elaeis guineensis ESTs were assembled to give 10258 unique sequences, of which 629 ESTs were found to contain 722 SSRs with a variety of motifs. Dinucleotide repeats formed the largest group (45.6%) consisting of 66.9% AG/CT, 21.9% AT/AT, 10.9% AC/GT and 0.3% CG/CG motifs. This was followed by trinucleotide repeats, which is the second most abundant repeat types (34.5%) consisting of AAG/CTT (23.3%), AGG/CCT (13.7%), CCG/CGG (11.2%), AAT/ATT (10.8%), AGC/GCT (10.0%), ACT/AGT (8.8%), ACG/CGT (7.6%), ACC/GGT (7.2%), AAC/GTT (3.6%) and AGT/ACT (3.6%) motifs. Primer pairs were designed for 405 unique EST-SSRs and 15 of these were used to genotype 105 E. guineensis and 30 E. oleifera accessions. Fourteen SSRs were polymorphic in at least one germplasm revealing a total of 101 alleles. The high percentage (78.0%) of alleles found to be specific for either E. guineensis or E. oleifera has increased the power for discriminating the two species. The estimates of genetic differentiation detected by EST-SSRs were compared to those reported previously. The transferability across palm taxa to two Cocos nucifera and six exotic palms is also presented. The polymerase chain reaction (PCR) products of three primer-pairs detected in E. guineensis, E. oleifera, C. nucifera and Jessinia bataua were cloned and sequenced. Sequence alignments showed mutations within the SSR site and the flanking regions. Phenetic analysis based on the sequence data revealed that C. nucifera is closer to oil palm compared to J. bataua; consistent with the taxanomic classification. PMID:20861564

  10. Indonesia palm oil production without deforestation and peat conversion by 2050.

    PubMed

    Afriyanti, Dian; Kroeze, Carolien; Saad, Asmadi

    2016-07-01

    Palm oil is a promising source of cooking oil and biodiesel. The demand for palm oil has been increasing worldwide. However, concerns exist surrounding the environmental and socio-economic sustainability of palm oil production. Indonesia is a major palm oil producing country. We explored scenarios for palm oil production in Indonesia until 2050, focusing on Sumatra, Kalimantan and Papua. Our scenarios describe possible trends in crude palm oil production in Indonesia, while considering the demand for cooking oil and biodiesel, the available land for plantations, production capacity (for crude palm oil and fresh fruit bunches) and environmentally restricting conditions. We first assessed past developments in palm oil production. Next, we analysed scenarios for the future. In the past 20years, 95% of the Indonesian oil palm production area was in Sumatra and Kalimantan and was increasingly cultivated in peatlands. Our scenarios for the future indicate that Indonesia can meet a considerable part of the global and Asian demand for palm oil, while avoiding further cultivation of peatlands and forest. By 2050, 264-447Mt crude palm oil may be needed for cooking oil and biodiesel worldwide. In Indonesia, the area that is potentially suitable for oil palm is 17 to 26Mha with a potential production rate of 27-38t fresh fruit bunches/ha, yielding 130-176Mt crude palm oil. Thus Indonesia can meet 39-60% of the international demand. In our scenarios this would be produced in Sumatra (21-26%), Kalimantan (12-16%), and Papua (2%). The potential areas include the current oil palm plantation in mineral lands, but exclude the current oil palm plantations in peatlands. PMID:27037877

  11. Comparative alteration in atherogenic indices and hypocholesteremic effect of palm oil and palm oil mill effluent in normal albino rats.

    PubMed

    Ajiboye, John A; Erukainure, Ochuko L; Lawal, Babatunde A; Nwachukwu, Viola A; Tugbobo-Amisu, Adesewa O; Okafor, Ebelechukwu N

    2015-09-01

    The comparative hypocholesteremic effect of feeding palm oil and palm oil mill effluent (POME) was investigated in male albino rats. Diets were prepared and designed to contain 50% of energy as carbohydrate, 35% as fat, and 15% as protein. Groups of six rats were each fed one of these diets, while a group was fed pelletized mouse chow which served as the control. Feeding on palm oil and POME led to a significant increase (p < 0.05) in serum total cholesterol, triglyceride, and vLDL. Feeding on POME led to significant increase (p < 0.05) in cholesterol, triglyceride and LDL levels in brain tissues. Increased hepatic LDL level was also observed in POME fed rats. Except for hepatic triglyceride and tissues HDL level, a rather reduced level of the studied lipids was observed in the serum and tissues of palm oil fed rats compared to POME. These results indicate the protective potentials of palm oil against cardiovascular disease, as well as hyperlipidemia that characterize obesity and hypertension; as compared to its effluent. PMID:27441210

  12. BVOC fluxes from oil palm canopies in South East Asia

    NASA Astrophysics Data System (ADS)

    Misztal, P. K.; Cape, J. N.; Langford, B.; Nemitz, E.; Helfter, C.; Owen, S.; Heal, M. R.; Hewitt, C. N.; Fowler, D.

    2009-04-01

    Fluxes by virtual disjunct eddy covariance were measured for the first time in South-East Asia in 2008 from an oil palm plantation. Malaysia and Indonesia account for more than 80% of world oil palm production. Our in situ findings suggest much higher isoprene emissions from oil palms than from rainforest, which is consistent with earlier lab-based predictions of emissions from oil palms (Wilkinson et al., 2006). 50% of global biogenic VOC emissions are estimated to derive from tropical rainforests (Guenther et al., 1995) although in fact a large portion of the emission may derive from oil palms in the tropics. Isoprene and monoterpenes are regarded as the most important biogenic VOCs for the atmospheric chemistry. Overall, maximum isoprene emissions from oil palms were recorded at 11:00 local time, with a mean value of 13 mg m-2 h-1. At the rainforest, the maximum fluxes of isoprene were observed later in the day, at about 13:00 with an average of 2.5 mg m-2 h-1. Initial flux results for total monoterpenes indicate that their mass emission ratio with respect to isoprene was about 1:9 at the rainforest and 1:18 at the oil palm plantation. The results are presented with reference to temperature, photosynthetic radiation and meteorological drivers as well as in comparison with CO2 and H2O fluxes. Empirical parameters in the Guenther algorithm for MEGAN (Guenther et al, 2006), which was originally designed for the Amazon region, have been optimised for this oil palm study. The emission factor obtained from eddy covariance measurements was 18.8 mg m-2 h-1, while the one obtained from leaf level studies at the site was 19.5 mg m-2 h-1. Isoprene fluxes from both Amazonia (Karl et al., 2007) and from rainforest in Borneo 2008 seem to be much lower than from oil palms. This can have consequences for atmospheric chemistry of land use change from rainforest to oil palm plantation, including formation of ozone, SOA and particles and indirect effects on the removal rate of

  13. Profiling of metabolites in oil palm mesocarp at different stages of oil biosynthesis.

    PubMed

    Neoh, Bee Keat; Teh, Huey Fang; Ng, Theresa Lee Mei; Tiong, Soon Huat; Thang, Yin Mee; Ersad, Mohd Amiron; Mohamed, Mohaimi; Chew, Fook Tim; Kulaveerasingam, Harikrishna; Appleton, David R

    2013-02-27

    Oil palm is one of the most productive oil producing crops and can store up to 90% oil in its fruit mesocarp. However, the biosynthetic regulation and drivers of palm mesocarp development are still not well understood. Multiplatform metabolomics technology was used to profile palm metabolites during six critical stages of fruit development in order to better understand lipid biosynthesis. Significantly higher amino acid levels were observed in palm mesocarp preceding lipid biosynthesis. Nucleosides were found to be in high concentration during lipid biosynthesis, whereas levels of metabolites involved in the tricarboxylic acid cycle were more concentrated during early fruit development. Apart from insights into the regulation of metabolites during fruit development in oil palm, these results provide potentially useful metabolite yield markers and genes of interest for use in breeding programs. PMID:23384169

  14. Inhibition of palm oil oxidation by zeolite nanocrystals.

    PubMed

    Tan, Kok-Hou; Awala, Hussein; Mukti, Rino R; Wong, Ka-Lun; Rigaud, Baptiste; Ling, Tau Chuan; Aleksandrov, Hristiyan A; Koleva, Iskra Z; Vayssilov, Georgi N; Mintova, Svetlana; Ng, Eng-Poh

    2015-05-13

    The efficiency of zeolite X nanocrystals (FAU-type framework structure) containing different extra-framework cations (Li(+), Na(+), K(+), and Ca(2+)) in slowing the thermal oxidation of palm oil is reported. The oxidation study of palm oil is conducted in the presence of zeolite nanocrystals (0.5 wt %) at 150 °C. Several characterization techniques such as visual analysis, colorimetry, rheometry, total acid number (TAN), FT-IR spectroscopy, (1)H NMR spectroscopy, and Karl Fischer analyses are applied to follow the oxidative evolution of the oil. It was found that zeolite nanocrystals decelerate the oxidation of palm oil through stabilization of hydroperoxides, which are the primary oxidation product, and concurrently via adsorption of the secondary oxidation products (alcohols, aldehydes, ketones, carboxylic acids, and esters). In addition to the experimental results, periodic density functional theory (DFT) calculations are performed to elucidate further the oxidation process of the palm oil in the presence of zeolite nanocrystals. The DFT calculations show that the metal complexes formed with peroxides are more stable than the complexes with alkenes with the same ions. The peroxides captured in the zeolite X nanocrystals consequently decelerate further oxidation toward formation of acids. Unlike the monovalent alkali metal cations in the zeolite X nanocrystals (K(+), Na(+), and Li(+)), Ca(2+) reduced the acidity of the oil by neutralizing the acidic carboxylate compounds to COO(-)(Ca(2+))1/2 species. PMID:25897618

  15. Kinetic Study on Pyrolysis of Oil Palm Frond

    NASA Astrophysics Data System (ADS)

    Soon, V. S. Y.; Chin, B. L. F.; Lim, A. C. R.

    2016-03-01

    The pyrolysis of oil palm frond is studied using thermogravimetric analysis (TGA) equipment. The present study investigates the thermal degradation behaviour and determination of the kinetic parameters such as the activation energy (EA ) and pre-exponential factor (A) values of oil palm frond under pyrolysis condition. The kinetic data is produced based on first order rate of reaction. In this study, the experiments are conducted at different heating rates of 10, 20, 30, 40 and 50 K/min in the temperature range of 323-1173 K under non-isothermal condition. Argon gas is used as an inert gas to remove any entrapment of gases in the TGA equipment.

  16. Chicken meat nutritional value when feeding red palm oil, palm oil or rendered animal fat in combinations with linseed oil, rapeseed oil and two levels of selenium

    PubMed Central

    2013-01-01

    Chicken meat nutritional value with regard to fatty acid composition and selenium content depends on the choice of dietary oil and selenium level used in the chickens’ feed. The objective of this study was to investigate the effect of replacing commonly used rendered animal fat as a dietary source of saturated fatty acids and soybean oil as a source of unsaturated fatty acids, with palm oil and red palm oil in combinations with rapeseed oil, linseed oil and two levels of selenium enriched yeast on chicken breast meat nutritional value. The study also wished to see whether red palm oil had a cholesterol lowering effect on chicken plasma. 204 male, newly hatched broiler chickens were randomly divided into twelve dietary treatment groups, and individually fed one out of six dietary fat combinations combined with either low (0.1 mg Se /kg feed) or high (1 mg Se/kg feed) dietary selenium levels. Linseed oil, independent of accompanying dietary fat source, lead to increased levels of the n-3 EPA, DPA and DHA and reduced levels of the n-6 arachidonic acid (AA). The ratio between AA/EPA was reduced from 19/1 in the soybean oil dietary groups to 1.7/1 in the linseed oil dietary groups. Dietary red palm oil reduced total chicken plasma cholesterol levels. There were no differences between the dietary groups with regard to measured meat antioxidant capacity or sensory evaluation. Chicken meat selenium levels were clearly influenced by dietary selenium levels, but were not influenced by feed fatty acid composition. High dietary selenium level lead to marginally increased n-3 EPA and higher meat fat % in breast muscle but did not influence the other LC PUFA levels. Chicken breast meat nutritional value from the soybean oil and low selenium dietary groups may be regarded as less beneficial compared to the breast meat from the linseed oil and high selenium dietary groups. Replacing rendered animal fat with palm oil and red palm oil had no negative effects on chicken muscle

  17. Development of young oil palm tree recognition using Haar- based rectangular windows

    NASA Astrophysics Data System (ADS)

    Daliman, S.; Abu-Bakar, S. A. R.; Nor Azam, S. H. Md

    2016-06-01

    This paper presents development of Haar-based rectangular windows for recognition of young oil palm tree based on WorldView-2 imagery data. Haar-based rectangular windows or also known as Haar-like rectangular features have been popular in face recognition as used in Viola-Jones object detection framework. Similar to face recognition, the oil palm tree recognition would also need a suitable Haar-based rectangular windows that best suit to the characteristics of oil palm tree. A set of seven Haar-based rectangular windows have been designed to better match specifically the young oil palm tree as the crown size is much smaller compared to the matured ones. Determination of features for oil palm tree is an essential task to ensure a high successful rate of correct oil palm tree detection. Furthermore, features that reflects the identification of oil palm tree indicate distinctiveness between an oil palm tree and other objects in the image such as buildings, roads and drainage. These features will be trained using support vector machine (SVM) to model the oil palm tree for classifying the testing set and subimages of WorldView-2 imagery data. The resulting classification of young oil palm tree with sensitivity of 98.58% and accuracy of 92.73% shows a promising result that it can be used for intention of developing automatic young oil palm tree counting.

  18. Suitability of online 3D visualization technique in oil palm plantation management

    NASA Astrophysics Data System (ADS)

    Mat, Ruzinoor Che; Nordin, Norani; Zulkifli, Abdul Nasir; Yusof, Shahrul Azmi Mohd

    2016-08-01

    Oil palm industry has been the backbone for the growth of Malaysia economy. The exports of this commodity increasing almost every year. Therefore, there are many studies focusing on how to help this industry increased its productivity. In order to increase the productivity, the management of oil palm plantation need to be improved and strengthen. One of the solution in helping the oil palm manager is by implementing online 3D visualization technique for oil palm plantation using game engine technology. The potential of this application is that it can helps in fertilizer and irrigation management. For this reason, the aim of this paper is to investigate the issues in managing oil palm plantation from the view of oil palm manager by interview. The results from this interview will helps in identifying the suitable issues could be highlight in implementing online 3D visualization technique for oil palm plantation management.

  19. Degumming of crude palm oil by membrane filtration.

    PubMed

    Ong, K K; Fakhru'l-Razi, A; Baharin, B S; Hassan, M A

    1999-01-01

    The application of membrane separation in palm oil refining process has potential for energy and cost savings. The conventional refining of crude palm oil results in loss of oil and a contaminated effluent. Degumming of crude palm oil by membrane technology is conducted in this study. The objective of this research is to study the feasibility of membrane filtration for the removal of phospholipids in the degumming of crude palm oil, including analyses of phosphorus content, carotene content free fatty acids (as palmitic acid), colour and volatile matter. A PCI membrane module was used which was equipped with polyethersulfone membranes having a molecular weight cut off of 9,000 (type ES209). In this study, phosphorus content was the most important parameter monitored. The membrane effectively removed phospholipids resulting in a permeate with a phosphorus content of less than 0.3 ppm The percentage removal of phosphorus was 96.4% and was considered as a good removal. Lovibond colour was reduced from 27R 50Y to 20R 30Y. The percentage removal of carotene was 15.8%. The removal of colour was considered good but the removal of carotene was considered insignificant by the membrane. Free fatty acids and volatile matter were not removed. Typical of membrane operations, the permeate flux decreased with time and must be improved in order to be adopted on an industrial scale. Membrane technology was found to have good potential in crude palm oil degumming. However, an appropriate method has to be developed to clean the membranes for reuse. PMID:10595436

  20. Development of an aerial counting system in oil palm plantations

    NASA Astrophysics Data System (ADS)

    Zulyma Miserque Castillo, Jhany; Laverde Diaz, Rubbermaid; Rueda Guzmán, Claudia Leonor

    2016-07-01

    This paper proposes the development of a counting aerial system capable of capturing, process and analyzing images of an oil palm plantation to register the number of cultivated palms. It begins with a study of the available UAV technologies to define the most appropriate model according to the project needs. As result, a DJI Phantom 2 Vision+ is used to capture pictures that are processed by a photogrammetry software to create orthomosaics from the areas of interest, which are handled by the developed software to calculate the number of palms contained in them. The implemented algorithm uses a sliding window technique in image pyramids to generate candidate windows, an LBP descriptor to model the texture of the picture, a logistic regression model to classify the windows and a non-maximum suppression algorithm to refine the decision. The system was tested in different images than the ones used for training and for establishing the set point. As result, the system showed a 95.34% detection rate with a 97.83% precision in mature palms and a 79.26% detection rate with a 97.53% precision in young palms giving an FI score of 0.97 for mature palms and 0.87 for the small ones. The results are satisfactory getting the census and high-quality images from which is possible to get more information from the area of interest. All this, achieved through a low-cost system capable of work even in cloudy conditions.

  1. Large estragole fluxes from oil palms in Borneo

    EPA Science Inventory

    During two field campaigns (OP3 and ACES), which ran in Borneo in 2008, we measured large emissions of estragole in ambient air above oil palm canopies flower enclosures. However, we did not detect this compound at a nearby rainforest. Estragole is a known attractant of the Afric...

  2. Production of haploids and doubled haploids in oil palm

    PubMed Central

    2010-01-01

    Background Oil palm is the world's most productive oil-food crop despite yielding well below its theoretical maximum. This maximum could be approached with the introduction of elite F1 varieties. The development of such elite lines has thus far been prevented by difficulties in generating homozygous parental types for F1 generation. Results Here we present the first high-throughput screen to identify spontaneously-formed haploid (H) and doubled haploid (DH) palms. We secured over 1,000 Hs and one DH from genetically diverse material and derived further DH/mixoploid palms from Hs using colchicine. We demonstrated viability of pollen from H plants and expect to generate 100% homogeneous F1 seed from intercrosses between DH/mixoploids once they develop female inflorescences. Conclusions This study has generated genetically diverse H/DH palms from which parental clones can be selected in sufficient numbers to enable the commercial-scale breeding of F1 varieties. The anticipated step increase in productivity may help to relieve pressure to extend palm cultivation, and limit further expansion into biodiverse rainforest. PMID:20929530

  3. Oil palm biomass as an adsorbent for heavy metals.

    PubMed

    Vakili, Mohammadtaghi; Rafatullah, Mohd; Ibrahim, Mahamad Hakimi; Abdullah, Ahmad Zuhairi; Salamatinia, Babak; Gholami, Zahra

    2014-01-01

    Many industries discharge untreated wastewater into the environment. Heavy metals from many industrial processes end up as hazardous pollutants of wastewaters.Heavy metal pollution has increased in recent decades and there is a growing concern for the public health risk they may pose. To remove heavy metal ions from polluted waste streams, adsorption processes are among the most common and effective treatment methods. The adsorbents that are used to remove heavy metal ions from aqueous media have both advantages and disadvantages. Cost and effectiveness are two of the most prominent criteria for choosing adsorbents. Because cost is so important, great effort has been extended to study and find effective lower cost adsorbents.One class of adsorbents that is gaining considerable attention is agricultural wastes. Among many alternatives, palm oil biomasses have shown promise as effective adsorbents for removing heavy metals from wastewater. The palm oil industry has rapidly expanded in recent years, and a large amount of palm oil biomass is available. This biomass is a low-cost agricultural waste that exhibits, either in its raw form or after being processed, the potential for eliminating heavy metal ions from wastewater. In this article, we provide background information on oil palm biomass and describe studies that indicate its potential as an alternative adsorbent for removing heavy metal ions from wastewater. From having reviewed the cogent literature on this topic we are encouraged that low-cost oil-palm-related adsorbents have already demonstrated outstanding removal capabilities for various pollutants.Because cost is so important to those who choose to clean waste streams by using adsorbents, the use of cheap sources of unconventional adsorbents is increasingly being investigated. An adsorbent is considered to be inexpensive when it is readily available, is environmentally friendly, is cost-effective and be effectively used in economical processes. The

  4. Process integration possibilities for biodiesel production from palm oil using ethanol obtained from lignocellulosic residues of oil palm industry.

    PubMed

    Gutiérrez, Luis F; Sánchez, Oscar J; Cardona, Carlos A

    2009-02-01

    In this paper, integration possibilities for production of biodiesel and bioethanol using a single source of biomass as a feedstock (oil palm) were explored through process simulation. The oil extracted from Fresh Fruit Bunches was considered as the feedstock for biodiesel production. An extractive reaction process is proposed for transesterification reaction using in situ produced ethanol, which is obtained from two types of lignocellulosic residues of palm industry (Empty Fruit Bunches and Palm Press Fiber). Several ways of integration were analyzed. The integration of material flows between ethanol and biodiesel production lines allowed a reduction in unit energy costs down to 3.4%, whereas the material and energy integration leaded to 39.8% decrease of those costs. The proposed integrated configuration is an important option when the technology for ethanol production from biomass reaches such a degree of maturity that its production costs be comparable with those of grain or cane ethanol. PMID:18930392

  5. Remotely sensed evidence of tropical peatland conversion to oil palm.

    PubMed

    Koh, Lian Pin; Miettinen, Jukka; Liew, Soo Chin; Ghazoul, Jaboury

    2011-03-22

    Rising global demands for food and biofuels are driving forest clearance in the tropics. Oil-palm expansion contributes to biodiversity declines and carbon emissions in Southeast Asia. However, the magnitudes of these impacts remain largely unquantified until now. We produce a 250-m spatial resolution map of closed canopy oil-palm plantations in the lowlands of Peninsular Malaysia (2 million ha), Borneo (2.4 million ha), and Sumatra (3.9 million ha). We demonstrate that 6% (or ≈880,000 ha) of tropical peatlands in the region had been converted to oil-palm plantations by the early 2000s. Conversion of peatswamp forests to oil palm led to biodiversity declines of 1% in Borneo (equivalent to four species of forest-dwelling birds), 3.4% in Sumatra (16 species), and 12.1% in Peninsular Malaysia (46 species). This land-use change also contributed to the loss of ≈140 million Mg of aboveground biomass carbon, and annual emissions of ≈4.6 million Mg of belowground carbon from peat oxidation. Additionally, the loss of peatswamp forests implies the loss of carbon sequestration service through peat accumulation, which amounts to ≈660,000 Mg of carbon annually. By 2010, 2.3 million ha of peatswamp forests were clear-felled, and currently occur as degraded lands. Reforestation of these clearings could enhance biodiversity by up to ≈20%, whereas oil-palm establishment would exacerbate species losses by up to ≈12%. To safeguard the region's biodiversity and carbon stocks, conservation and reforestation efforts should target Central Kalimantan, Riau, and West Kalimantan, which retain three-quarters (3.9 million ha) of the remaining peatswamp forests in Southeast Asia. PMID:21383161

  6. Remotely sensed evidence of tropical peatland conversion to oil palm

    PubMed Central

    Koh, Lian Pin; Miettinen, Jukka; Liew, Soo Chin; Ghazoul, Jaboury

    2011-01-01

    Rising global demands for food and biofuels are driving forest clearance in the tropics. Oil-palm expansion contributes to biodiversity declines and carbon emissions in Southeast Asia. However, the magnitudes of these impacts remain largely unquantified until now. We produce a 250-m spatial resolution map of closed canopy oil-palm plantations in the lowlands of Peninsular Malaysia (2 million ha), Borneo (2.4 million ha), and Sumatra (3.9 million ha). We demonstrate that 6% (or ≈880,000 ha) of tropical peatlands in the region had been converted to oil-palm plantations by the early 2000s. Conversion of peatswamp forests to oil palm led to biodiversity declines of 1% in Borneo (equivalent to four species of forest-dwelling birds), 3.4% in Sumatra (16 species), and 12.1% in Peninsular Malaysia (46 species). This land-use change also contributed to the loss of ≈140 million Mg of aboveground biomass carbon, and annual emissions of ≈4.6 million Mg of belowground carbon from peat oxidation. Additionally, the loss of peatswamp forests implies the loss of carbon sequestration service through peat accumulation, which amounts to ≈660,000 Mg of carbon annually. By 2010, 2.3 million ha of peatswamp forests were clear-felled, and currently occur as degraded lands. Reforestation of these clearings could enhance biodiversity by up to ≈20%, whereas oil-palm establishment would exacerbate species losses by up to ≈12%. To safeguard the region's biodiversity and carbon stocks, conservation and reforestation efforts should target Central Kalimantan, Riau, and West Kalimantan, which retain three-quarters (3.9 million ha) of the remaining peatswamp forests in Southeast Asia. PMID:21383161

  7. Biosurfactants production by Pseudomonas aeruginosa FR using palm oil.

    PubMed

    Oliveira, Fernando J S; Vazquez, Leonardo; De Campos, Norberto P; de França, Francisca P

    2006-03-01

    Biosurfactants production by a strain of Pseudomonas aeruginosa using palm oil as a sole carbon source was investigated. The experiments were carried out in 500-mL conical flasks containing 100 mL of mineral media supplemented with palm oil as the sole carbon source. The P. aeruginosa FR strain was able to reduce surface tension of three tested inorganic media. Rotation velocities from 100 to 150 rpm provided free-cell fermented media with the lowest surface tension of approx 33 mN/m. Emulsification index results of even 100% were achieved when diesel was used as oil phase. Eight surface-active compounds produced by the bacterium were identified by mass spectrometry. PMID:18563649

  8. Following basal stem rot in young oil palm plantings.

    PubMed

    Panchal, G; Bridge, P D

    2005-01-01

    The PCR primer GanET has previously been shown to be suitable for the specific amplification of DNA from Ganoderma boninense. A DNA extraction and PCR method has been developed that allows for the amplification of the G. boninense DNA from environmental samples of oil palm tissue. The GanET primer reaction was used in conjunction with a palm-sampling programme to investigate the possible infection of young palms through cut frond base surfaces. Ganoderma DNA was detected in frond base material at a greater frequency than would be expected by comparison with current infection levels. Comparisons are made between the height of the frond base infected, the number of frond bases infected, and subsequent development of basal stem rot. The preliminary results suggest that the development of basal stem rot may be more likely to occur when young lower frond bases are infected. PMID:15750744

  9. Recovery of Palm Oil and Valuable Material from Oil Palm Empty Fruit Bunch by Sub-critical Water.

    PubMed

    Ahmad Kurnin, Nor Azrin; Shah Ismail, Mohd Halim; Yoshida, Hiroyuki; Izhar, Shamsul

    2016-01-01

    Oil palm empty fruit bunch (EFB) is one of the solid wastes produced in huge volume by palm oil mill. Whilst it still contains valuable oil, approximately 22.6 million tons is generated annually and treated as solid waste. In this work, sub-critical water (sub-cw) was used to extract oil, sugar and tar from spikelet of EFB. The spikelet was treated with sub-cw between 180-280°C and a reaction time of 2 and 5 minutes. The highest yield of oil was 0.075 g-oil/g-dry EFB, obtained at 240°C and reaction time of 5 minutes. Astonishingly, oil that was extracted through this method was 84.5% of that obtained through Soxhlet method using hexane. Yield of oil extracted was strongly affected by the reaction temperature and time. Higher reaction temperature induces the dielectric constant of water towards the non-polar properties of solvent; thus increases the oil extraction capability. Meanwhile, the highest yield of sugar was 0.20 g-sugar/g-dry EFB obtained at 220°C. At this temperature, the ion product of water is high enough to enable maximum sub-critical water hydrolysis reaction. This study showed that oil and other valuable material can be recovered using water at sub-critical condition, and most attractive without the use of harmful organic solvent. PMID:27041513

  10. Comprehensive analysis of lipid composition in crude palm oil using multiple lipidomic approaches.

    PubMed

    Cheong, Wei Fun; Wenk, Markus R; Shui, Guanghou

    2014-05-20

    Palm oil is currently the leading edible oil consumed worldwide. Triacylglycerol (TAG) and diacylglycerol (DAG) are the dominant lipid classes in palm oil. Other lipid classes present in crude palm oil, such as phospholipids and galactolipids, are very low in abundance. These low-abundance lipids constitute key intermediates in lipid biosynthesis. In this study, we applied multiple lipidomic approaches, including high-sensitivity and high-specificity multiple reaction monitoring, to comprehensively quantify individual lipid species in crude palm oil. We also established a new liquid chromatography-coupled mass spectrometry method that allows direct quantification of low-abundance galactolipids in palm oil without the need for sample pretreatment. As crude palm oil contains large amounts of neutral lipids, our direct-detection method circumvents many of the challenges encountered with conventional lipid quantification methods. This approach allows direct measurement of lipids with no hassle during sample preparation and is more accurate and precise compared with other methods. PMID:24894356

  11. Improved Method for the Qualitative Analyses of Palm Oil Carotenes Using UPLC.

    PubMed

    Ng, Mei Han; Choo, Yuen May

    2016-04-01

    Palm oil is the richest source of natural carotenes, comprising 500-700 ppm in crude palm oil (CPO). Its concentration is found to be much higher in oil extracted from palm-pressed fiber, a by-product from the milling of oil palm fruits. There are 11 types of carotenes in palm oil, excluding the cis/trans isomers of some of the carotenes. Qualitative separation of these individual carotenes is particularly useful for the identification and confirmation of different types of oil as the carotenes profile is unique to each type of vegetable oil. Previous studies on HPLC separation of the individual palm carotenes reported a total analyses time of up to 100 min using C30 stationary phase. In this study, the separation was completed in <5 min. The qualitative separation was successfully carried out using a commonly used stationary phase, C18. PMID:26941414

  12. Effects of palm and sunflower oils on serum cholesterol and fatty liver in rats.

    PubMed

    Go, Ryeo-Eun; Hwang, Kyung-A; Kim, Ye-Seul; Kim, Seung-Hee; Nam, Ki-Hoan; Choi, Kyung-Chul

    2015-03-01

    Palm oil is a common cooking ingredient used in the commercial food industry as the second largest consumed vegetable oil in the world. Because of its lower cost and highly saturated nature, it usually maintains a solid form at room temperature and is used as a cheap substitute for butter. However, there has been a growing health concern about palm oil because of the link between dietary fats and coronary heart disease. Palm oil contains ∼49% saturated fat, a relatively high concentration compared with other vegetable oils. Consequently, high intakes of saturated fat from palm oil induce a larger increase in plasma concentrations of total cholesterol and low-density lipoproteins. In the present study, we examined the hyperlipidemia of palm oil and the risk of cardiovascular disease (CVD) using a rat model in comparison with sunflower oil with a relatively low level of saturated fat. On in vivo examination using Sprague-Dawley (SD) rats for 22 days, there were no significant differences in serum lipid levels, suggesting that palm oil may not cause hyperlipidemia and elevate CVD risk. However, liver samples obtained from SD rats fed with palm oil showed a lot of large lipid inclusions stained with the Oil Red O working solution, but not much lipid accumulation was observed in rats treated with sunflower oil. In addition, lipid accumulation in the mixed oil group fed the combination of palm and sunflower (1:1) oil was shown to be at an intermediary level between the palm oil group and sunflower oil group. Taken together, these results indicate that palm oil, a highly saturated form of vegetable oil, may induce dysfunction of the liver lipid metabolism before affecting serum lipid levels. On the other hand, sunflower oil, a highly unsaturated vegetable oil, was shown to be well metabolized in liver. PMID:25393932

  13. The oil palm SHELL gene controls oil yield and encodes a homologue of SEEDSTICK.

    PubMed

    Singh, Rajinder; Low, Eng-Ti Leslie; Ooi, Leslie Cheng-Li; Ong-Abdullah, Meilina; Ting, Ngoot-Chin; Nagappan, Jayanthi; Nookiah, Rajanaidu; Amiruddin, Mohd Din; Rosli, Rozana; Manaf, Mohamad Arif Abdul; Chan, Kuang-Lim; Halim, Mohd Amin; Azizi, Norazah; Lakey, Nathan; Smith, Steven W; Budiman, Muhammad A; Hogan, Michael; Bacher, Blaire; Van Brunt, Andrew; Wang, Chunyan; Ordway, Jared M; Sambanthamurthi, Ravigadevi; Martienssen, Robert A

    2013-08-15

    A key event in the domestication and breeding of the oil palm Elaeis guineensis was loss of the thick coconut-like shell surrounding the kernel. Modern E. guineensis has three fruit forms, dura (thick-shelled), pisifera (shell-less) and tenera (thin-shelled), a hybrid between dura and pisifera. The pisifera palm is usually female-sterile. The tenera palm yields far more oil than dura, and is the basis for commercial palm oil production in all of southeast Asia. Here we describe the mapping and identification of the SHELL gene responsible for the different fruit forms. Using homozygosity mapping by sequencing, we found two independent mutations in the DNA-binding domain of a homologue of the MADS-box gene SEEDSTICK (STK, also known as AGAMOUS-LIKE 11), which controls ovule identity and seed development in Arabidopsis. The SHELL gene is responsible for the tenera phenotype in both cultivated and wild palms from sub-Saharan Africa, and our findings provide a genetic explanation for the single gene hybrid vigour (or heterosis) attributed to SHELL, via heterodimerization. This gene mutation explains the single most important economic trait in oil palm, and has implications for the competing interests of global edible oil production, biofuels and rainforest conservation. PMID:23883930

  14. Dissipation of the fungicide hexaconazole in oil palm plantation.

    PubMed

    Maznah, Zainol; Halimah, Muhamad; Ismail, Sahid; Idris, Abu Seman

    2015-12-01

    Hexaconazole is a potential fungicide to be used in the oil palm plantation for controlling the basal stem root (BSR) disease caused by Ganoderma boninense. Therefore, the dissipation rate of hexaconazole in an oil palm agroecosystem under field conditions was studied. Two experimental plots were treated with hexaconazole at the recommended dosage of 4.5 g a.i. palm(-1) (active ingredient) and at double the recommended dosage (9.0 g a.i. palm(-1)), whilst one plot was untreated as control. The residue of hexaconazole was detected in soil samples in the range of 2.74 to 0.78 and 7.13 to 1.66 mg kg(-1) at the recommended and double recommended dosage plots, respectively. An initial relatively rapid dissipation rate of hexaconazole residues occurred but reduced with time. The dissipation of hexaconazole in soil was described using first-order kinetics with the value of coefficient regression (r (2) > 0.8). The results indicated that hexaconazole has moderate persistence in the soil and the half-life was found to be 69.3 and 86.6 days in the recommended and double recommended dosage plot, respectively. The results obtained highlight that downward movement of hexaconazole was led by preferential flow as shown in image analysis. It can be concluded that varying soil conditions, environmental factors, and pesticide chemical properties of hexaconazole has a significant impact on dissipation of hexaconazole in soil under humid conditions. PMID:26276276

  15. Modification of palm oil by chemical and enzyme catalyzed interesterification.

    PubMed

    Krishna De, Bijay; Dahyabhai Patel, Jignesh

    2010-01-01

    In a unique attempt modification of only palm oil has been investigated. Triacylglycerols of palm oil has been randomized by chemical and biochemical means. Chemical randomization was carried out using sodium methoxide (NaOMe: 0.4 to 0.6 %, w/w) whereas the biochemical modifications were performed using five different commercial lipases from Amano Enzymes. It was observed that after chemical randomization (for 15 minutes at 90 degrees C) using sodium methoxide (0.5 %, w/w) catalyst the melting point of refined palm oil has risen from 32.0 degrees C to 40.1 degrees C. Chemical treatments for 15 minutes at 60 degrees C in miscella phase (60 %, w/v oil in hexane) using 0.5 %, w/v sodium methoxide resulted increase in melting point from 32.0 degrees C to 42.0 degrees C. After enzymatic treatment using lipases it was observed that the melting point may rise from 32.0 degrees C to 38.5 degrees C (in 15 minutes at 45.0 degrees C). All the five enzymes were found to be active in respect of randomization capacity and active at very low concentration 0.004 to 0.010 % (w/w). PMID:20484834

  16. Palm oil: biochemical, physiological, nutritional, hematological, and toxicological aspects: a review.

    PubMed

    Edem, D O

    2002-01-01

    The link between dietary fats and cardiovascular diseases has necessitated a growing research interest in palm oil, the second largest consumed vegetable oil in the world. Palm oil, obtained from a tropical plant, Elaeis guineensis contains 50% saturated fatty acids, yet it does not promote atherosclerosis and arterial thrombosis. The saturated fatty acid to unsaturated fatty acid ratio of palm oil is close to unity and it contains a high amount of the antioxidants, beta-carotene, and vitamin E. Although palm oil-based diets induce a higher blood cholesterol level than do corn, soybean, safflower seed, and sunflower oils, the consumption of palm oil causes the endogenous cholesterol level to drop. This phenomenon seems to arise from the presence of the tocotrienols and the peculiar isomeric position of its fatty acids. The benefits of palm oil to health include reduction in risk of arterial thrombosis and atherosclerosis, inhibition of endogenous cholesterol biosynthesis, platelet aggregation, and reduction in blood pressure. Palm oil has been used in the fresh state and/or at various levels of oxidation. Oxidation is a result of processing the oil for various culinary purposes. However, a considerable amount of the commonly used palm oil is in the oxidized state, which poses potential dangers to the biochemical and physiological functions of the body. Unlike fresh palm oil, oxidized palm oil induces an adverse lipid profile, reproductive toxicity and toxicity of the kidney, lung, liver, and heart. This may be as a result of the generation of toxicants brought on by oxidation. In contrast to oxidized palm oil, red or refined palm oil at moderate levels in the diet of experimental animals promotes efficient utilization of nutrients, favorable body weight gains, induction of hepatic drug metabolizing enzymes, adequate hemoglobinization of red cells and improvement of immune function. Howerer, high palm oil levels in the diet induce toxicity to the liver as shown by

  17. The Impacts of Oil Palm on Recent Deforestation and Biodiversity Loss.

    PubMed

    Vijay, Varsha; Pimm, Stuart L; Jenkins, Clinton N; Smith, Sharon J

    2016-01-01

    Palm oil is the most widely traded vegetable oil globally, with demand projected to increase substantially in the future. Almost all oil palm grows in areas that were once tropical moist forests, some of them quite recently. The conversion to date, and future expansion, threatens biodiversity and increases greenhouse gas emissions. Today, consumer pressure is pushing companies toward deforestation-free sources of palm oil. To guide interventions aimed at reducing tropical deforestation due to oil palm, we analysed recent expansions and modelled likely future ones. We assessed sample areas to find where oil palm plantations have recently replaced forests in 20 countries, using a combination of high-resolution imagery from Google Earth and Landsat. We then compared these trends to countrywide trends in FAO data for oil palm planted area. Finally, we assessed which forests have high agricultural suitability for future oil palm development, which we refer to as vulnerable forests, and identified critical areas for biodiversity that oil palm expansion threatens. Our analysis reveals regional trends in deforestation associated with oil palm agriculture. In Southeast Asia, 45% of sampled oil palm plantations came from areas that were forests in 1989. For South America, the percentage was 31%. By contrast, in Mesoamerica and Africa, we observed only 2% and 7% of oil palm plantations coming from areas that were forest in 1989. The largest areas of vulnerable forest are in Africa and South America. Vulnerable forests in all four regions of production contain globally high concentrations of mammal and bird species at risk of extinction. However, priority areas for biodiversity conservation differ based on taxa and criteria used. Government regulation and voluntary market interventions can help incentivize the expansion of oil palm plantations in ways that protect biodiversity-rich ecosystems. PMID:27462984

  18. The Impacts of Oil Palm on Recent Deforestation and Biodiversity Loss

    PubMed Central

    Pimm, Stuart L.; Jenkins, Clinton N.; Smith, Sharon J.

    2016-01-01

    Palm oil is the most widely traded vegetable oil globally, with demand projected to increase substantially in the future. Almost all oil palm grows in areas that were once tropical moist forests, some of them quite recently. The conversion to date, and future expansion, threatens biodiversity and increases greenhouse gas emissions. Today, consumer pressure is pushing companies toward deforestation-free sources of palm oil. To guide interventions aimed at reducing tropical deforestation due to oil palm, we analysed recent expansions and modelled likely future ones. We assessed sample areas to find where oil palm plantations have recently replaced forests in 20 countries, using a combination of high-resolution imagery from Google Earth and Landsat. We then compared these trends to countrywide trends in FAO data for oil palm planted area. Finally, we assessed which forests have high agricultural suitability for future oil palm development, which we refer to as vulnerable forests, and identified critical areas for biodiversity that oil palm expansion threatens. Our analysis reveals regional trends in deforestation associated with oil palm agriculture. In Southeast Asia, 45% of sampled oil palm plantations came from areas that were forests in 1989. For South America, the percentage was 31%. By contrast, in Mesoamerica and Africa, we observed only 2% and 7% of oil palm plantations coming from areas that were forest in 1989. The largest areas of vulnerable forest are in Africa and South America. Vulnerable forests in all four regions of production contain globally high concentrations of mammal and bird species at risk of extinction. However, priority areas for biodiversity conservation differ based on taxa and criteria used. Government regulation and voluntary market interventions can help incentivize the expansion of oil palm plantations in ways that protect biodiversity-rich ecosystems. PMID:27462984

  19. Chars pyrolyzed from oil palm wastes for activated carbon preparation

    SciTech Connect

    Lua, A.C.; Guo, J.

    1999-01-01

    Chars pyrolyzed from extracted oil palm fibers for the preparation of activated carbons were studied. The effects of pyrolysis temperature and hold time on density, porosity, yield, BET and micropore surface areas, total pore volume, and pore size distributions of chars were investigated. The optimum conditions for pyrolysis were found to be at a pyrolysis temperature of 850 C for a hold time of 3.5 h. Scanning electron micrographs of the char surfaces verified the presence of porosities. The experimental results showed that it was feasible to produce chars with high BET and micropore surface areas from extracted oil palm fibers. The resulting chars will be subjected to steam or carbon dioxide activation to prepare activated carbons for use as gas adsorbents for air pollution control.

  20. Biolistic-mediated production of transgenic oil palm.

    PubMed

    Parveez, Ghulam Kadir Ahmad; Bahariah, Bohari

    2012-01-01

    The effectiveness of mannose (using phosphomannose isomerase [pmi] gene) as a positive selection agent to preferably allow the growth of transformed oil palm embryogenic calli was successfully evaluated. Using the above selection agent in combination with the previously optimized physical and biological parameters and the best constitutive promoter, oil palm embryogenic calli were transformed with pmi gene for producing transgenic plants. Bombarded embryogenic calli were exposed to embryogenic calli medium containing 30:0 g/L mannose to sucrose 3 weeks postbombardment. Selectively, proliferating embryogenic calli started to emerge around 6 months on the above selection medium. The proliferated embryogenic calli were individually isolated once they reached a specific size and regenerated to produce complete plantlets. The complete regenerated plantlets were evaluated for the presence of transgenes by PCR and Southern analyses. PMID:22351007

  1. Auto Guided Oil Palm Planter by using multi-GNSS

    NASA Astrophysics Data System (ADS)

    Nur Aini, I.; W, Aimrun; Amin, M. S. M.; Ezrin, M. H.; Shafri, H. Z.

    2014-06-01

    Planting is one of the most important operations in plantation because it could affect the total area of productivity since it is the starting point in cultivation. In oil palm plantation, lining and spacing of oil palm shall be laid out and coincided with the topographic area and a system of drains. Conventionally, planting of oil palm will require the polarization process in order to prevent and overcome the lack of influence of the sun rise and get a regular crop row. Polarization is done after the completion of the opening area by using the spike wood with 1 m length painted at the top and 100 m length of wire. This process will generally require at least five persons at a time to pull the wire and carry the spikes while the other two persons will act as observer and spikes craftsmen respectively with the ability of the team is 3ha/day. Therefore, the aim of this project is to develop the oil palm planting technique by using multi- GNSS (Global Navigation Satellite System). Generally, this project will involve five main steps mainly; design of planting pattern by using SOLIDWORKS software, determine the boundary coordinate of planting area, georeference process with ArcGIS, stakeout process with Tracy software and finally marking up the location with the wooden spikes. The results proved that the multi- GNSS is capable to provide the high accuracy with less than 1 m in precise positioning system without augmentation data. With the ability of one person, time taken to complete 70 m × 50 m planting area is 290 min, which is 25 min faster than using GPS (Global Positioning System) only.

  2. A full body mathematical model of an oil palm harvester

    NASA Astrophysics Data System (ADS)

    Tumit, NP; Rambely, A. S.; BMT, Shamsul; Shahriman A., B.; Ng Y., G.; Deros, B. M.; Zailina, H.; Goh Y., M.; Arumugam, Manohar; Ismail I., A.; Abdul Hafiz A., R.

    2015-09-01

    The main purpose of this article is to develop a mathematical model of human body during harvesting via Kane's method. This paper is an extension model of previous biomechanical model representing a harvester movement during harvesting a Fresh Fruit Bunch (FFB) from a palm oil tree. The ten segment model consists of foot, leg, trunk, the head and the arms segment. Finally, the inverse dynamic equations are represented in a matrix form.

  3. Dual Resonant Frequencies Effects on an Induction-Based Oil Palm Fruit Sensor

    PubMed Central

    Harun, Noor Hasmiza; Misron, Norhisam; Sidek, Roslina Mohd; Aris, Ishak; Wakiwaka, Hiroyuki; Tashiro, Kunihisa

    2014-01-01

    As the main exporter in the oil palm industry, the need to improve the quality of palm oil has become the main interest among all the palm oil millers in Malaysia. To produce good quality palm oil, it is important for the miller to harvest a good oil palm Fresh Fruit Bunch (FFB). Conventionally, the main reference used by Malaysian harvesters is the manual grading standard published by the Malaysian Palm Oil Board (MPOB). A good oil palm FFB consists of all matured fruitlets, aged between 18 to 21 weeks of antheses (WAA). To expedite the harvesting process, it is crucial to implement an automated detection system for determining the maturity of the oil palm FFB. Various automated detection methods have been proposed by researchers in the field to replace the conventional method. In our preliminary study, a novel oil palm fruit sensor to detect the maturity of oil palm fruit bunch was proposed. The design of the proposed air coil sensor based on the inductive sensor was further investigated mainly in the context of the effect of coil diameter to improve its sensitivity. In this paper, the sensitivity of the inductive sensor was further examined with a dual flat-type shape of air coil. The dual air coils were tested on fifteen samples of fruitlet from two categories, namely ripe and unripe. Samples were tested within 20 Hz to 10 MHz while evaluations on both peaks were done separately before the gap between peaks was analyzed. A comparative analysis was conducted to investigate the improvement in sensitivity of the induction-based oil palm fruit sensor as compared to previous works. Results from the comparative study proved that the inductive sensor using a dual flat-type shape air coil has improved by up to 167%. This provides an indication in the improvement in the coil sensitivity of the palm oil fruit sensor based on the induction concept. PMID:25414970

  4. Dual resonant frequencies effects on an induction-based oil palm fruit sensor.

    PubMed

    Harun, Noor Hasmiza; Misron, Norhisam; Mohd Sidek, Roslina; Aris, Ishak; Wakiwaka, Hiroyuki; Tashiro, Kunihisa

    2014-01-01

    As the main exporter in the oil palm industry, the need to improve the quality of palm oil has become the main interest among all the palm oil millers in Malaysia. To produce good quality palm oil, it is important for the miller to harvest a good oil palm Fresh Fruit Bunch (FFB). Conventionally, the main reference used by Malaysian harvesters is the manual grading standard published by the Malaysian Palm Oil Board (MPOB). A good oil palm FFB consists of all matured fruitlets, aged between 18 to 21 weeks of antheses (WAA). To expedite the harvesting process, it is crucial to implement an automated detection system for determining the maturity of the oil palm FFB. Various automated detection methods have been proposed by researchers in the field to replace the conventional method. In our preliminary study, a novel oil palm fruit sensor to detect the maturity of oil palm fruit bunch was proposed. The design of the proposed air coil sensor based on the inductive sensor was further investigated mainly in the context of the effect of coil diameter to improve its sensitivity. In this paper, the sensitivity of the inductive sensor was further examined with a dual flat-type shape of air coil. The dual air coils were tested on fifteen samples of fruitlet from two categories, namely ripe and unripe. Samples were tested within 20 Hz to 10 MHz while evaluations on both peaks were done separately before the gap between peaks was analyzed. A comparative analysis was conducted to investigate the improvement in sensitivity of the induction-based oil palm fruit sensor as compared to previous works. Results from the comparative study proved that the inductive sensor using a dual flat-type shape air coil has improved by up to 167%. This provides an indication in the improvement in the coil sensitivity of the palm oil fruit sensor based on the induction concept. PMID:25414970

  5. Conservation Value and Permeability of Neotropical Oil Palm Landscapes for Orchid Bees

    PubMed Central

    Livingston, George; Jha, Shalene; Vega, Andres; Gilbert, Lawrence

    2013-01-01

    The proliferation of oil palm plantations has led to dramatic changes in tropical landscapes across the globe. However, relatively little is known about the effects of oil palm expansion on biodiversity, especially in key ecosystem-service providing organisms like pollinators. Rapid land use change is exacerbated by limited knowledge of the mechanisms causing biodiversity decline in the tropics, particularly those involving landscape features. We examined these mechanisms by undertaking a survey of orchid bees, a well-known group of Neotropical pollinators, across forest and oil palm plantations in Costa Rica. We used chemical baits to survey the community in four regions: continuous forest sites, oil palm sites immediately adjacent to forest, oil palm sites 2km from forest, and oil palm sites greater than 5km from forest. We found that although orchid bees are present in all environments, orchid bee communities diverged across the gradient, and community richness, abundance, and similarity to forest declined as distance from forest increased. In addition, mean phylogenetic distance of the orchid bee community declined and was more clustered in oil palm. Community traits also differed with individuals in oil palm having shorter average tongue length and larger average geographic range size than those in the forest. Our results indicate two key features about Neotropical landscapes that contain oil palm: 1) oil palm is selectively permeable to orchid bees and 2) orchid bee communities in oil palm have distinct phylogenetic and trait structure compared to communities in forest. These results suggest that conservation and management efforts in oil palm-cultivating regions should focus on landscape features. PMID:24147137

  6. Conservation value and permeability of neotropical oil palm landscapes for orchid bees.

    PubMed

    Livingston, George; Jha, Shalene; Vega, Andres; Gilbert, Lawrence

    2013-01-01

    The proliferation of oil palm plantations has led to dramatic changes in tropical landscapes across the globe. However, relatively little is known about the effects of oil palm expansion on biodiversity, especially in key ecosystem-service providing organisms like pollinators. Rapid land use change is exacerbated by limited knowledge of the mechanisms causing biodiversity decline in the tropics, particularly those involving landscape features. We examined these mechanisms by undertaking a survey of orchid bees, a well-known group of Neotropical pollinators, across forest and oil palm plantations in Costa Rica. We used chemical baits to survey the community in four regions: continuous forest sites, oil palm sites immediately adjacent to forest, oil palm sites 2 km from forest, and oil palm sites greater than 5 km from forest. We found that although orchid bees are present in all environments, orchid bee communities diverged across the gradient, and community richness, abundance, and similarity to forest declined as distance from forest increased. In addition, mean phylogenetic distance of the orchid bee community declined and was more clustered in oil palm. Community traits also differed with individuals in oil palm having shorter average tongue length and larger average geographic range size than those in the forest. Our results indicate two key features about Neotropical landscapes that contain oil palm: 1) oil palm is selectively permeable to orchid bees and 2) orchid bee communities in oil palm have distinct phylogenetic and trait structure compared to communities in forest. These results suggest that conservation and management efforts in oil palm-cultivating regions should focus on landscape features. PMID:24147137

  7. PALM AND PARTIALLY HYDROGENATED SOYBEAN OILS ADVERSELY ALTER LIPOPROTEIN PROFILES COMPARED WITH SOYBEAN AND CANOLA OILS IN MODERATELY HYPERLIPIDEMIC SUBJECTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Partially-hydrogenated fat has an unfavorable effect on cardiovascular disease risk. Palm oil has reemerged as a potential substitute due to favorable physical characteristics. Objective: To assess the effect of palm oil relative to both partially-hydrogenated fat and oils high in mon...

  8. Age of oil palm plantations causes a strong change in surface biophysical variables

    NASA Astrophysics Data System (ADS)

    Sabajo, Clifton; le Maire, Guerric; Knohl, Alexander

    2016-04-01

    Over the last decades, Indonesia has experienced dramatic land transformations with an expansion of oil palm plantations at the expense of tropical forests. As vegetation is a modifier of the climate near the ground these large-scale land transformations are expected to have major impacts on the surface biophysical variables i.e. surface temperature, albedo, and vegetation indices, e.g. the NDVI. Remote sensing data are needed to assess such changes at regional scale. We used 2 Landsat images from Jambi Province in Sumatra/Indonesia covering a chronosequence of oil palm plantations to study the 20 - 25 years life cycle of oil palm plantations and its relation with biophysical variables. Our results show large differences between the surface temperature of young oil palm plantations and forest (up to 9.5 ± 1.5 °C) indicating that the surface temperature is raised substantially after the establishment of oil palm plantations following the removal of forests. During the oil palm plantation lifecycle the surface temperature differences gradually decreases and approaches zero around an oil palm plantation age of 10 years. Similarly, NDVI increases and the albedo decreases approaching typical values of forests. Our results show that in order to assess the full climate effects of oil palm expansion biophysical processes play an important role and the full life cycle of oil palm plantations need to be considered.

  9. Recycled palm oil is better than soy oil in maintaining bone properties in a menopausal syndrome model of ovariectomized rat.

    PubMed

    Shuid, Ahmad Nazrun; Chuan, Loh Hong; Mohamed, Norazlina; Jaarin, Kamsiah; Fong, Yew Su; Soelaiman, Ima Nirwana

    2007-01-01

    Palm oil is shown to have antioxidant, anticancer and cholesterol lowering effects. It is resistant to oxidation when heated compared to other frying oils such as soy oil. When a frying oil is heated repeatedly, it forms toxic degradation products, such as aldehydes which when consumed, may be absorbed into the systemic circulation. We have studied the effects of taking soy or palm oil that were mixed with rat chow on the bone histomorphometric parameters of ovariectomised rats. Female Sprague-Dawley rats were divided into eight groups: (1) normal control group; (2) ovariectomised-control group; (3) ovariectomised and fresh soy oil; (4) ovariectomised and soy oil heated once; (5) ovariectomised and soy oil heated five times; (6) ovariectomised and fresh palm oil; (7) ovariectomised and palm oil heated once; (8) ovariectomised and palm oil heated five times. These oils were mixed with rat chow at weight ratio of 15:100 and were given to the rats daily for six months. Ovariectomy had caused negative effects on the bone histomorphometric parameters. Ingestion of both fresh and once-heated oils, were able to offer protections against the negative effects of ovariectomy, but these protections were lost when the oils were heated five times. Soy oil that was heated five times actually worsens the histomorphometric parameters of ovariectomised rats. Therefore, it may be better for postmenopausal who are at risk of osteoporosis to use palm oil as frying oil especially if they practice recycling of frying oils. PMID:17704019

  10. Factors impacting the formation of monochloropropanediol (MCPD) fatty acid diesters during palm (Elaeis guineensis) oil production.

    PubMed

    Craft, Brian D; Nagy, Kornél; Sandoz, Laurence; Destaillats, Frédéric

    2012-01-01

    Recently, organic and inorganic chlorinated compounds were detected in crude and commercially refined palm oils. Further, the predominant formation mechanism of monochloropropanediol (MCPD) diesters at high temperatures (>170-180°C) was revealed. The present study involved the development and comparison of solutions to mitigate MCPD diester levels in oils from various stages of palm oil production. Partially refined palm oil samples and oil extracted from fresh palm fruits were submitted to bench-top deodorisation experiments. Application of glycerol and ethanol as refining aids during the deodorisation of refined-bleached palm oil proved to be moderately effective; about 25%-35% reduction of MCPD diester levels was achieved. Washing crude palm oil with ethanol-water (1:1) prior to deodorisation was also an effective strategy yielding an ∼30% reduction of MCPD diester contents. Washing palm fruit pulp before oil extraction, however, was most impactful, resulting in a 95% reduction of MCPD diesters when compared to the deodorised control oil. This suggests that intervention upstream in the process chain is most efficient in reducing levels of these contaminants in refined oils. Following the study, a root-cause analysis was performed in order to map the parameters potentially responsible for the occurrence of MCPD diesters in refined palm oil and related fractions. PMID:22168150

  11. Application of lidar and optical data for oil palm plantation management in Malaysia

    NASA Astrophysics Data System (ADS)

    Shafri, Helmi Z. M.; Ismail, Mohd Hasmadi; Razi, Mohd Khairil M.; Anuar, Mohd Izzuddin; Ahmad, Abdul Rahman

    2012-11-01

    Proper oil palm plantation management is crucial for Malaysia as the country depends heavily on palm oil as a major source of national income. Precision agriculture is considered as one of the approaches that can be adopted to improve plantation practices for plantation managers such as the government-owned FELDA. However, currently the implementation of precision agriculture based on remote sensing and GIS is still lacking. This study explores the potential of the use of LiDAR and optical remote sensing data for plantation road and terrain planning for planting purposes. Traditional approaches use land surveying techniques that are time consuming and costly for vast plantation areas. The first ever airborne LiDAR and multispectral survey for oil palm plantation was carried out in early 2012 to test its feasibility. Preliminary results show the efficiency of such technology in demanding engineering and agricultural requirements of oil palm plantation. The most significant advantage of the approach is that it allows plantation managers to accurately plan the plantation road and determine the planting positions of new oil palm seedlings. Furthermore, this creates for the first time, digital database of oil palm estate and the airborne imagery can also be used for related activities such as oil palm tree inventory and detection of palm diseases. This work serves as the pioneer towards a more frequent application of LiDAR and multispectral data for oil palm plantation in Malaysia.

  12. 21 CFR 172.861 - Cocoa butter substitute from coconut oil, palm kernel oil, or both oils.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Cocoa butter substitute from coconut oil, palm kernel oil, or both oils. 172.861 Section 172.861 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR...

  13. Estimating primary productivity of tropical oil palm in Malaysia using remote sensing technique and ancillary data

    NASA Astrophysics Data System (ADS)

    Kanniah, K. D.; Tan, K. P.; Cracknell, A. P.

    2014-10-01

    The amount of carbon sequestration by vegetation can be estimated using vegetation productivity. At present, there is a knowledge gap in oil palm net primary productivity (NPP) at a regional scale. Therefore, in this study NPP of oil palm trees in Peninsular Malaysia was estimated using remote sensing based light use efficiency (LUE) model with inputs from local meteorological data, upscaled leaf area index/fractional photosynthetically active radiation (LAI/fPAR) derived using UK-DMC 2 satellite data and a constant maximum LUE value from the literature. NPP values estimated from the model was then compared and validated with NPP estimated using allometric equations developed by Corley and Tinker (2003), Henson (2003) and Syahrinudin (2005) with diameter at breast height, age and the height of the oil palm trees collected from three estates in Peninsular Malaysia. Results of this study show that oil palm NPP derived using a light use efficiency model increases with respect to the age of oil palm trees, and it stabilises after ten years old. The mean value of oil palm NPP at 118 plots as derived using the LUE model is 968.72 g C m-2 year-1 and this is 188% - 273% higher than the NPP derived from the allometric equations. The estimated oil palm NPP of young oil palm trees is lower compared to mature oil palm trees (<10 years old), as young oil palm trees contribute to lower oil palm LAI and therefore fPAR, which is an important variable in the LUE model. In contrast, it is noted that oil palm NPP decreases with respect to the age of oil palm trees as estimated using the allomeric equations. It was found in this study that LUE models could not capture NPP variation of oil palm trees if LAI/fPAR is used. On the other hand, tree height and DBH are found to be important variables that can capture changes in oil palm NPP as a function of age.

  14. Quality evaluation of noble mixed oil blended with palm and canola oil.

    PubMed

    Choi, Hyesook; Lee, Eunji; Lee, Kwang-Geun

    2014-01-01

    Noble blended oils (canola: palm oil = 3:7, 4:6, 5:5, 6:4 and 7:3) were prepared and their frying qualities were evaluated. Frying qualities such as fatty acid composition, acid value, peroxide value, viscosity, smoke point, color, antioxidant activity, and sensory evaluation were measured to elucidate the optimum blend ratio of canola and palm oil. The ratio of unsaturated to saturated fatty acid of the blended oils was higher than that of palm oil after frying 50 times. The blended oil (3:7, Ca: Pa) had a relatively high oxidative stability and its peroxide values were 44.2-70.7 meq/kg after frying. The 3:7 (Ca: Pa) blended oil had excellent flavor, taste, and texture compared to those of the other frying oils as a result of a sensory evaluation of raw and fried potatoes. The results suggest that the 3:7 (Ca: Pa) blended oil is a good alternative oil for frying potatoes. PMID:24976612

  15. Combustion performance evaluation of air staging of palm oil blends.

    PubMed

    Mohd Jaafar, Mohammad Nazri; Eldrainy, Yehia A; Mat Ali, Muhammad Faiser; Wan Omar, W Z; Mohd Hizam, Mohd Faizi Arif

    2012-02-21

    The problems of global warming and the unstable price of petroleum oils have led to a race to develop environmentally friendly biofuels, such as palm oil or ethanol derived from corn and sugar cane. Biofuels are a potential replacement for fossil fuel, since they are renewable and environmentally friendly. This paper evaluates the combustion performance and emission characteristics of Refined, Bleached, and Deodorized Palm Oil (RBDPO)/diesel blends B5, B10, B15, B20, and B25 by volume, using an industrial oil burner with and without secondary air. Wall temperature profiles along the combustion chamber axis were measured using a series of thermocouples fitted axially on the combustion chamber wall, and emissions released were measured using a gas analyzer. The results show that RBDPO blend B25 produced the maximum emission reduction of 56.9% of CO, 74.7% of NOx, 68.5% of SO(2), and 77.5% of UHC compared to petroleum diesel, while air staging (secondary air) in most cases reduces the emissions further. However, increasing concentrations of RBDPO in the blends also reduced the energy released from the combustion. The maximum wall temperature reduction was 62.7% for B25 at the exit of the combustion chamber. PMID:22296110

  16. Effects of linseed oil and palm oil on growth performance, tibia fatty acid and biomarkers of bone metabolism in broilers.

    PubMed

    Zhong, X; Gao, S; Wang, J J; Dong, L; Huang, J; Zhang, L L; Wang, T

    2014-01-01

    1. This study was conducted to determine the effects of different dietary fat sources on growth performance, tibia fatty acids and biomarkers of bone metabolism in broilers. 2. One-d-old commercial Arbor Acres broilers were fed with a maize-soya bean basal diet for 42 d, supplemented with oils according to the following 5 treatments: lard (lard group); linseed oil (linseed oil group); palm oil (palm oil group); linseed oil + palm oil (60:40 or 40:60 w/w, LP-1 group and LP-2 group, respectively). 3. No significant differences in weight gain, feed intake and gain/feed ratio were observed between the lard and linseed oil groups. Birds fed on palm oil had significantly greater weight gain and feed intake than those fed on lard or linseed oil. Growth performance in LP-1 and LP-2 was significantly greater than that of single-oil groups. 4. Tibia growth and bone characteristics were not influenced by supplementation with lard, linseed oil, or palm oil alone, but broilers fed on a mixture of fats had significantly greater tibia weight and length compared to broilers fed on linseed oil. Bone mineral density in tibia was significantly increased in LP-1 and LP-2 groups. 5. Supplementation of linseed oil alone or in combination with palm oil enhanced apparent digestibility of calcium, reduced serum calcium and increased tibia calcium concentrations. Moreover, supplementation with linseed oil alone or in combination with palm oil had a positive effect on biomarkers of bone growth. 6. The combination of linseed and palm oils was beneficial for growth performance, tibia growth and biomarkers of bone metabolism. PMID:24641587

  17. Evaluation of Palm Oil as a Suitable Vegetable Oil for Vitamin A Fortification Programs

    PubMed Central

    Pignitter, Marc; Hernler, Natalie; Zaunschirm, Mathias; Kienesberger, Julia; Somoza, Mark Manuel; Kraemer, Klaus; Somoza, Veronika

    2016-01-01

    Fortification programs are considered to be an effective strategy to mitigate vitamin A deficiency in populations at risk. Fortified vegetable oils rich in polyunsaturated fatty acids were shown to be prone to oxidation, leading to limited vitamin A stability. Thus, it was hypothesized that fortified oils consisting of mainly saturated fatty acids might enhance the stability of vitamin A. Mildly (peroxide value: 1.0 meq O2/kg) and highly (peroxide value: 7.5 meq O2/kg) oxidized palm oil was stored, after fortification with 60 International Units/g retinyl palmitate, in 0.5 L transparent polyethylene terephthalate bottles under cold fluorescent lighting (12 h/day) at 32 °C for 57 days. An increase of the peroxide value by 15 meq O2/kg, which was also reflected by a decrease of α-tocopherol congener by 15%–18%, was determined independent of the initial rancidity. The oxidative deterioration of the highly oxidized palm oil during storage was correlated with a significant 46% decline of the vitamin A content. However, household storage of mildly oxidized palm oil for two months did not induce any losses of vitamin A. Thus, mildly oxidized palm oil may be recommended for vitamin A fortification programs, when other sources of essential fatty acids are available. PMID:27338464

  18. Evaluation of Palm Oil as a Suitable Vegetable Oil for Vitamin A Fortification Programs.

    PubMed

    Pignitter, Marc; Hernler, Natalie; Zaunschirm, Mathias; Kienesberger, Julia; Somoza, Mark Manuel; Kraemer, Klaus; Somoza, Veronika

    2016-01-01

    Fortification programs are considered to be an effective strategy to mitigate vitamin A deficiency in populations at risk. Fortified vegetable oils rich in polyunsaturated fatty acids were shown to be prone to oxidation, leading to limited vitamin A stability. Thus, it was hypothesized that fortified oils consisting of mainly saturated fatty acids might enhance the stability of vitamin A. Mildly (peroxide value: 1.0 meq O₂/kg) and highly (peroxide value: 7.5 meq O₂/kg) oxidized palm oil was stored, after fortification with 60 International Units/g retinyl palmitate, in 0.5 L transparent polyethylene terephthalate bottles under cold fluorescent lighting (12 h/day) at 32 °C for 57 days. An increase of the peroxide value by 15 meq O₂/kg, which was also reflected by a decrease of α-tocopherol congener by 15%-18%, was determined independent of the initial rancidity. The oxidative deterioration of the highly oxidized palm oil during storage was correlated with a significant 46% decline of the vitamin A content. However, household storage of mildly oxidized palm oil for two months did not induce any losses of vitamin A. Thus, mildly oxidized palm oil may be recommended for vitamin A fortification programs, when other sources of essential fatty acids are available. PMID:27338464

  19. Efficient Transformation of Oil Palm Protoplasts by PEG-Mediated Transfection and DNA Microinjection

    PubMed Central

    Masani, Mat Yunus Abdul; Noll, Gundula A.; Parveez, Ghulam Kadir Ahmad; Sambanthamurthi, Ravigadevi; Prüfer, Dirk

    2014-01-01

    Background Genetic engineering remains a major challenge in oil palm (Elaeis guineensis) because particle bombardment and Agrobacterium-mediated transformation are laborious and/or inefficient in this species, often producing chimeric plants and escapes. Protoplasts are beneficial as a starting material for genetic engineering because they are totipotent, and chimeras are avoided by regenerating transgenic plants from single cells. Novel approaches for the transformation of oil palm protoplasts could therefore offer a new and efficient strategy for the development of transgenic oil palm plants. Methodology/Principal Findings We recently achieved the regeneration of healthy and fertile oil palms from protoplasts. Therefore, we focused on the development of a reliable PEG-mediated transformation protocol for oil palm protoplasts by establishing and validating optimal heat shock conditions, concentrations of DNA, PEG and magnesium chloride, and the transfection procedure. We also investigated the transformation of oil palm protoplasts by DNA microinjection and successfully regenerated transgenic microcalli expressing green fluorescent protein as a visible marker to determine the efficiency of transformation. Conclusions/Significance We have established the first successful protocols for the transformation of oil palm protoplasts by PEG-mediated transfection and DNA microinjection. These novel protocols allow the rapid and efficient generation of non-chimeric transgenic callus and represent a significant milestone in the use of protoplasts as a starting material for the development of genetically-engineered oil palm plants. PMID:24821306

  20. A case study of pyrolysis of oil palm wastes in Malaysia

    NASA Astrophysics Data System (ADS)

    Abdullah, Nurhayati; Sulaiman, Fauziah; Aliasak, Zalila

    2013-05-01

    Biomass seems to have a great potential as a source of renewable energy compared with other sources. The use of biomass as a source of energy could help to reduce the wastes and also to minimize the dependency on non-renewable energy, hence minimize environmental degradation. Among other types of biomass, oil palm wastes are the major contribution for energy production in Malaysia since Malaysia is one of the primary palm oil producers in the world. Currently, Malaysia's plantation area covers around 5 million hectares. In the oil palm mill, only 10% palm oil is produced and the other 90% is in the form of wastes such as empty fruit bunches (EFB), oil palm shells (OPS), oil palm fibre (OPFb) and palm oil mill effluent (POME). If these wastes are being used as a source of renewable energy, it is believed that it will help to increase the country's economy. Recently, the most potential and efficient thermal energy conversion technology is pyrolysis process. The objective of this paper is to review the current research on pyrolysis of oil palm wastes in Malaysia. The scope of this paper is to discuss on the types of pyrolysis process and its production. At present, most of the research conducted in this country is on EFB and OPS by fast, slow and microwave-assisted pyrolysis processes for fuel applications.

  1. A high performance liquid chromatography method for determination of furfural in crude palm oil.

    PubMed

    Loi, Chia Chun; Boo, Huey Chern; Mohammed, Abdulkarim Sabo; Ariffin, Abdul Azis

    2011-09-01

    A modified steam distillation method was developed to extract furfural from crude palm oil (CPO). The collected distillates were analysed using high performance liquid chromatography (HPLC) coupled with an ultraviolet diode detector at 284nm. The HPLC method allowed identification and quantification of furfural in CPO. The unique thermal extraction of CPO whereby the fresh fruit bunches (FFB) are first subjected to steam treatment, distinguishes itself from other solvent-extracted or cold-pressed vegetable oils. The presence of furfural was also determined in the fresh palm oil from FFB (without undergoing the normal extraction process), palm olein, palm stearin, olive oil, coconut oil, sunflower oil, soya oil and corn oil. The chromatograms of the extracts were compared to that of standard furfural. Furfural was only detected in CPO. The CPO consignments obtained from four mills were shown to contain 7.54 to 20.60mg/kg furfural. PMID:25214353

  2. Determination of fatty acid composition and quality characteristics of oils from palm fruits using solvent extraction

    NASA Astrophysics Data System (ADS)

    Kasmin, Hasimah; Lazim, Azwan Mat; Awang, Roila

    2015-09-01

    Palm oil contains about 45% of saturated palmitic acid and 39% of mono-unsaturated oleic acid. Investigations made in the past to trace the fatty acid composition in palm revealed that ripeness of fresh fruit bunch (FFB) affect oil composition. However, there is no evidence that processing operations affect oil composition, although different stage of processing does affect the quality of oil extracted. An improved method for sterilizing the oil palm fruits by dry heating, followed by oil extraction has been studied. This method eliminates the use of water, thus, increasing the extraction of lipid soluble. The objective of this study is to determine the possibility production of palm oil with different fatty acid composition (FAC) as well as the changes in quality from conventional milling. The unripe and ripe FFB were collected, sterilized and extracted using different method of solvent extraction. Preliminary data have shown that variation in FAC will also alter the physical and chemical properties of the oil extracted.

  3. In-situ data collection for oil palm tree height determination using synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Pohl, C.; Loong, C. K.

    2016-04-01

    The oil palm is recognized as the “golden crop,” producing the highest oil yield among oil seed crops. Malaysia, the world's second largest producer of palm oil, has 16 per cent of its territory planted with oil palms. To cope with the increasing global demand on edible oil, additional areas of oil palm are forecast to increase globally by 12 to 19 million hectares by 2050. Due to the limited land bank in Malaysia, new strategies have to be developed to avoid unauthorized clearing of primary forest for the use of oil palm cultivation. Microwave remote sensing could play a part by providing relevant, timely and accurate information for a plantation monitoring system. The use of synthetic aperture radar (SAR) has the advantage of daylight- and weather-independence, a criterion that is very relevant in constantly cloud-covered tropical regions, such as Malaysia. Using interferometric SAR, (InSAR) topographical and tree height profiles of oil palm plantations can be created; such information is useful for mapping oil palm age profiles of the plantations in the country. This paper reports on the use of SAR and InSAR in a multisensory context to provide up-to-date information at plantation level. Remote sensing and in-situ data collection for tree height determination are described. Further research to be carried out over the next two years is outlined.

  4. Catalytic cracking of palm oil for the production of biofuels: optimization studies.

    PubMed

    Tamunaidu, Pramila; Bhatia, Subhash

    2007-12-01

    Oil palm is widely grown in Malaysia. Palm oil has attracted the attention of researchers to develop an 'environmentally friendly' and high quality fuel, free of nitrogen and sulfur. In the present study, the catalytic cracking of palm oil to biofuel was studied over REY catalyst in a transport riser reactor at atmospheric pressure. The effect of reaction temperature (400-500 degrees C), catalyst/palm oil ratio (5-10) and residence time (10-30s) was studied over the yield of bio-gasoline and gas as fuel. Design of experiments was used to study the effect of operating variables over conversion of palm oil and yield of hydrocarbon fuel. The response surface methodology was used to determine the optimum value of the operating variables for maximum yield of bio-gasoline fraction in the liquid product obtained. PMID:17208441

  5. Palm oil industry: A review of the literature on the modelling approaches and potential solution

    NASA Astrophysics Data System (ADS)

    Zabid, M. Faeid M.; Abidin, Norhaslinda Zainal

    2015-12-01

    Palm oil industry plays an important role as a backbone to the economy of a country, especially in many developing countries. Various issues related to the palm oil context have been studied rigorously by previous researchers using appropriate modeling approaches. Thus, the purpose of this paper is to present an overview of existing modeling approaches used by researchers in studying several issues in the palm oil industry. However, there are still limited numbers of researches that focus to determine the impact of strategy policies on palm oil studies. Furthermore, this paper introduces an improved system dynamics and genetic algorithm technique to facilitate the policy design process in palm oil industry. The proposed method is expected to become a framework for structured policy design process to assist the policy maker in evaluating and designing appropriate policies.

  6. Expression Comparison of Oil Biosynthesis Genes in Oil Palm Mesocarp Tissue Using Custom Array

    PubMed Central

    Wong, Yick Ching; Kwong, Qi Bin; Lee, Heng Leng; Ong, Chuang Kee; Mayes, Sean; Chew, Fook Tim; Appleton, David R.; Kulaveerasingam, Harikrishna

    2014-01-01

    Gene expression changes that occur during mesocarp development are a major research focus in oil palm research due to the economic importance of this tissue and the relatively rapid increase in lipid content to very high levels at fruit ripeness. Here, we report the development of a transcriptome-based 105,000-probe oil palm mesocarp microarray. The expression of genes involved in fatty acid (FA) and triacylglycerol (TAG) assembly, along with the tricarboxylic acid cycle (TCA) and glycolysis pathway at 16 Weeks After Anthesis (WAA) exhibited significantly higher signals compared to those obtained from a cross-species hybridization to the Arabidopsis (p-value < 0.01), and rice (p-value < 0.01) arrays. The oil palm microarray data also showed comparable correlation of expression (r2 = 0.569, p < 0.01) throughout mesocarp development to transcriptome (RNA sequencing) data, and improved correlation over quantitative real-time PCR (qPCR) (r2 = 0.721, p < 0.01) of the same RNA samples. The results confirm the advantage of the custom microarray over commercially available arrays derived from model species. We demonstrate the utility of this custom microarray to gain a better understanding of gene expression patterns in the oil palm mesocarp that may lead to increasing future oil yield.

  7. Devolatilization studies of oil palm biomass for torrefaction process optimization

    NASA Astrophysics Data System (ADS)

    Daud, D.; Abd Rahman, A.; Shamsuddin, A. H.

    2013-06-01

    Torrefaction of palm biomass, namely Empty Fruit Bunch (EFB) and Palm Kernel Shell (PKS), was conducted using thermogravimetric analyser (TGA). The experiment was conducted in variation of temperatures of 200 °C, 260 °C and 300 °C at a constant residence time of 30 minutes. During the torrefaction process, the sample went through identifiable drying and devolatilization stages from the TGA mass loss. The percentage of volatile gases released was then derived for each condition referring to proximate analysis results for both biomass. It was observed an average of 96.64% and 87.53 % of the total moisture is released for EFB and PKS respectively. In all cases the volatiles released was observed to increase as the torrefaction temperature was increased with significant variation between EFB and PKS. At 300°C EFB lost almost half of its volatiles matter while PKS lost slightly over one third. Results obtained can be used to optimise condition of torrefaction according to different types of oil palm biomass.

  8. Concrete using waste oil palm shells as aggregate

    SciTech Connect

    Basri, H.B.; Mannan, M.A.; Zain, M.F.M.

    1999-04-01

    Concrete with oil palm shells (OPS) as coarse aggregate was investigated for its workability, density, and compressive strength development over 56 days under three curing conditions. The effect of fly ash as partial cement replacement was also studied. Fresh OPS concrete was found to have better workability while its 28-day air-dry density was 19--20% lower than ordinary concrete. Compressive strength after 56 days was found to be 41--50% lower than ordinary concrete. These results were still within the normal range for structural lightweight concrete. Fly ash was found to lower the compressive strength of OPS concrete, which was the opposite of its effect on normal concrete.

  9. UV-curable acrylated coating from epoxidized palm oil

    NASA Astrophysics Data System (ADS)

    Rahman, Nurliyana Abd; Badri, Khairiah Haji; Salleh, Nik Ghazali Nik

    2014-09-01

    The properties of coating film prepared from the incorporation of acrylated palm oil (EPOLA) in commercial epoxy acrylate have been studied. A series of different amount of EPOLA was mixed with commercial epoxy acrylate. The blended acrylates passed through UV light to produce a non-tacky film. The conversion of acrylate double bond was monitored by FTIR. The effect of EPOLA concentration onto coated films were investigated by determination of the pendulum hardness and gel content. The higher the amount of EPOLA, the lower the pendulum hardness and the gel content but to a level acceptable for usage in the high-end applications.

  10. Mechanical Properties of Oil Palm Empty Fruit Bunch Fiber

    NASA Astrophysics Data System (ADS)

    Gunawan, Fergyanto E.; Homma, Hiroomi; Brodjonegoro, Satryo S.; Hudin, Afzer Bin Baseri; Zainuddin, Aryanti Binti

    In tropical countries such as Indonesia and Malaysia, the empty fruit bunches are wastes of the oil palm industry. The wastes are abundantly available and has reached a level that severely threats the environment. Therefore, it is a great need to find useful applications of those waste materials; but firstly, the mechanical properties of the EFB fiber should be quantified. In this work, a small tensile test machine is manufactured, and the tensile test is performed on the EFB fibers. The results show that the strength of the EFB fiber is strongly affected by the fiber diameter; however, the fiber strength is relatively low in comparison to other natural fibers.

  11. Oil palm genome sequence reveals divergence of interfertile species in Old and New worlds.

    PubMed

    Singh, Rajinder; Ong-Abdullah, Meilina; Low, Eng-Ti Leslie; Manaf, Mohamad Arif Abdul; Rosli, Rozana; Nookiah, Rajanaidu; Ooi, Leslie Cheng-Li; Ooi, Siew-Eng; Chan, Kuang-Lim; Halim, Mohd Amin; Azizi, Norazah; Nagappan, Jayanthi; Bacher, Blaire; Lakey, Nathan; Smith, Steven W; He, Dong; Hogan, Michael; Budiman, Muhammad A; Lee, Ernest K; DeSalle, Rob; Kudrna, David; Goicoechea, Jose Luis; Wing, Rod A; Wilson, Richard K; Fulton, Robert S; Ordway, Jared M; Martienssen, Robert A; Sambanthamurthi, Ravigadevi

    2013-08-15

    Oil palm is the most productive oil-bearing crop. Although it is planted on only 5% of the total world vegetable oil acreage, palm oil accounts for 33% of vegetable oil and 45% of edible oil worldwide, but increased cultivation competes with dwindling rainforest reserves. We report the 1.8-gigabase (Gb) genome sequence of the African oil palm Elaeis guineensis, the predominant source of worldwide oil production. A total of 1.535 Gb of assembled sequence and transcriptome data from 30 tissue types were used to predict at least 34,802 genes, including oil biosynthesis genes and homologues of WRINKLED1 (WRI1), and other transcriptional regulators, which are highly expressed in the kernel. We also report the draft sequence of the South American oil palm Elaeis oleifera, which has the same number of chromosomes (2n = 32) and produces fertile interspecific hybrids with E. guineensis but seems to have diverged in the New World. Segmental duplications of chromosome arms define the palaeotetraploid origin of palm trees. The oil palm sequence enables the discovery of genes for important traits as well as somaclonal epigenetic alterations that restrict the use of clones in commercial plantings, and should therefore help to achieve sustainability for biofuels and edible oils, reducing the rainforest footprint of this tropical plantation crop. PMID:23883927

  12. Life cycle inventory for the production of germinated oil palm seeds at a selected seed production unit in Malaysia

    NASA Astrophysics Data System (ADS)

    Khairuddin, Nik Sasha Khatrina; Ismail, B. S.; Muhamad, Halimah; May, Choo Yuen

    2013-11-01

    The increasing global demand for edible oil has encouraged Malaysia to increase the areas under oil palm cultivation. The total demand for germinated oil palm seeds in the years 2009, 2010, 2011 and 2012 were 86.4, 76.5, 72.6 and 75.2 million, respectively. Production of germinated oil palm seeds is the first link in the palm oil supply chain. Therefore, good management practices at seed production stage is required to ensure only high quality germinated oil palm seeds are produced before sale to customers. Life cycle assessment (LCA) has been used as a tool to assess environmental impact of the processes throughout a product's lifespan and this approach is an important tool for assessing green house gas (GHG) emission. For this study, a gate-to-gate life cycle inventory (LCI) of a single germinated oil palm seed production unit was carried out. The functional unit used for this LCI was one germinated oil palm seed. To determine the environmental impact for the production of germinated oil palm seeds, information on the inputs were obtained. The inputs for the production of germinated oil palm seeds involved materials such as polyethylene bags, electricity, water, chemicals and fungicides. For this study, the system boundary involved seed germination process and management of germinated oil palm seeds. It was found that the amount of input such as materials and energy used in the production of germinated oil palm seeds was very minimal.

  13. Chemical interesterification of blends of palm stearin, coconut oil, and canola oil: physicochemical properties.

    PubMed

    Soares, Fabiana Andreia Schäfer De Martini; da Silva, Roberta Claro; Hazzan, Márcia; Capacla, Isabele Renata; Viccola, Elise Raduan; Maruyama, Jessica Mayumi; Gioielli, Luiz Antonio

    2012-02-15

    trans-Free interesterified fat was produced for possible usage as a margarine. Palm stearin, coconut oil, and canola oil were used as substrates for chemical interesterification. The main aim of the present study was to evaluate the physicochemical properties of blends of palm stearin, coconut oil, and canola oil submitted to chemical interesterification using sodium methoxide as the catalyst. The original and interesterified blends were examined for fatty acid composition, softening and melting points, solid fat content, and consistency. Chemical interesterification reduced softening and melting points, consistency, and solid fat content. The interesterified fats showed desirable physicochemical properties for possible use as a margarine. Therefore, our result suggested that the interesterified fat without trans-fatty acids could be used as an alternative to partially hydrogenated fat. PMID:22229347

  14. CO2 and CH4 fluxes from oil palm plantations in Sumatra, Indonesia: effects of palm age and environmental conditions

    NASA Astrophysics Data System (ADS)

    Meijide, A.; Hassler, E.; Corre, M. D.; June, T.; Sabajo, C.; Veldkamp, E.; Knohl, A.

    2015-12-01

    Global increasing demand of palm oil is leading to the expansion of oil palm plantations, particularly in SE Asia, which in Sumatran lowlands has resulted in a 21% forest area loss. Large photosynthesis rates are expected for oil palms, due to their high growth and yield production. However, there is very limited information on their effect on carbon dioxide (CO2) fluxes and their sink or source strength at ecosystem scale. For methane (CH4) fluxes, research has mainly focused in oil palm plantations located on peatlands, but no information is available at ecosystem level from plantations on mineral soils. With the aim of studying CO2 fluxes during the non-productive and productive phases of oil palm cultivation, an eddy covariance (EC) tower was installed in a 2 year old oil palm plantation, where it was measuring for 8 months, and was subsequently moved to a 12 year old plantation, both in the province of Jambi, Sumatra. The EC system consisted of a Licor 7500A and an ultrasonic Metek anemometer, operating at 10 Hz, installed on a 7m and 22m tower respectively. In the 12 year old plantation, the tower was also equipped with a Los Gatos FGGA-24EP, to assess CH4 fluxes. Chamber measurements were also carried out to obtain information on respiration and CH4 fluxes from the soil. Radiation was the major driver controlling net carbon uptake, while soil moisture did not play a significant role. Average net ecosystem exchange in the hours of the day with higher radiation for the whole measurement period was 10 μmol m-2 s-1 for the 2 year old plantation and -22 μmol m-2 s-1 in the 12 year old. The analysis of the cumulative fluxes show that the non-productive plantation was a carbon source of around 636 g CO2 m-2 during the 8 months of measurements, while in the productive period, it acted as a strong carbon sink (-794 g CO2 m-2 yr-1). Methane uptake was observed in the soil in both plantations and also for the whole ecosystem in the 12 year old one, but its

  15. Bio-char from treated and untreated oil palm fronds

    NASA Astrophysics Data System (ADS)

    Sulaiman, Fauziah; Abdullah, Nurhayati; Rahman, Aizuddin Abdul

    2013-05-01

    The palm oil industry generates almost 94% of biomass in Malaysia, while other agricultural and forestry by-products contribute the remaining of 6%. Oil palm fronds (OPF) are estimated to be the highest available biomass amounting to 44.84 million tonnes in Malaysia. However, studies on OPF for thermochemical conversion technology which has good potential for energy conversion are still lacking. In this work, pyrolysis of OPF is conducted by using a fixed bed reactor. Samples were carbonized at slow pyrolysis temperature of around 300 to 500°C with heating rate of 10°C min-1. In addition, samples were treated for 20 min with distilled water at ambient temperature to reduce the ash content. Effectiveness of pre-treatment can be determined by observing the percentage of ash content reduction of each sample after undergoing washing pre-treatment. At 300°C, the char yields of the untreated OPF were slightly higher at 50.95% compared to the treated sample at 49.77%. Approximately all bio-char from the treated samples have better high heating value (HHV) of around 18-20 MJ kg-1 compared to the untreated samples. Besides that, all treated OPF char is more carbon rich and considered to be environmental friendly due to its low nitrogen content compared to the untreated OPF char. In this work, microscopic analysis of OPF bio-char were also studied by observing and evaluating their structure surface and morphology.

  16. Combustion of oil palm solid wastes in fluidized bed combustor

    SciTech Connect

    Shamsuddin, A.H.; Sopian, K.

    1995-12-31

    The palm oil industry of Malaysia is the largest in the world producing about 55% of the world production. The industry has approximately 270 mills throughout the country with processing sizes ranging from 10 tonnes/hour to 120 tonnes/hour. All mills produce solid wastes, about 50% of the fresh fruit bunches in terms of weight. The solid wastes produced are in the form of empty fruit bunches, fibers and shells. These wastes have high energy value, ranging from 14 to 18 MJ/kg. The industry is currently self-sufficient in terms of energy. Fibers and shell wastes are being used as boiler fuel to raise steam for electrical power production and process steam. However, the combustion technology currently being employed is obsolete with low efficiency and polluting. A fluidized bed combustor pilot plant is designed and constructed at Combustion Research Laboratory, Universiti Kebangsaan Malaysia. The combustor is made up of 600 mm {times} 900 mm rectangular bed filled with sand up to 400 mm height, static. A bank of heat transfer tubes is imbedded in the bed, designed to absorb 50% of heat released by the fuel in the bed. The remaining heat is transferred in tubes placed on the wall of the freeboard area. Experimental studies were carried out in the pilot plant using palm oil solid wastes. The combustion temperatures were maintained in the range 800--900 C. The performance of the combustor was evaluated in terms of combustion and boiler efficiencies and flue gas emissions monitored.

  17. Chemical interesterification of blends with palm stearin and patawa oil.

    PubMed

    Oliveira, Pedro D; Rodrigues, Antonio M C; Bezerra, Carolina V; Silva, Luiza H M

    2017-01-15

    The present study sought to develop lipid bases from blends between patawa oil and palm stearin. These blends were analyzed before and after the chemical interesterification process for their fatty acid and triacylglycerol composition, free fatty acid (FFA) content, peroxide index, thermal properties, melting point, consistency, and solid fat content (SFC). Blends with unsaturated fatty acid contents between 60 and 70% were obtained, with a good ratio between saturated and unsaturated fatty acids, which indicates a healthy content of fatty acids. Variations in the triacylglycerol contents and melting and crystallization thermograms evidenced the reaction. The blend with 50% stearin and 50% patawa oil showed the best results after the chemical interesterification reaction regarding the possible application in fatty products for its appropriate melting point, SFC similar to that of soft table margarines, plastic and spreadable consistency at refrigeration temperature, thus combining physical and nutritional properties desirable for the food industry. PMID:27542488

  18. Effects of oil and drug concentrations on droplets size of palm oil esters (POEs) nanoemulsion.

    PubMed

    Sakeena, M H F; Elrashid, S M; Munavvar, A S; Azmin, M N

    2011-01-01

    Aim of the present work is to study the effects of oil and drug concentrations on droplets size of a nanoemulsion. Newly introduced oil, palm oil esters (POEs) by Universiti Putra Malaysia researchers was selected for the oil phase of the nanoemulsion, because the oil was reported to be a good vehicle for pharmaceutical use. Nanoemulsions were prepared with different concentrations of oil and drug and their effects on droplets size were studied by laser scattering spectroscopy (Nanophox). The results of droplets size analysis shows the droplets size increase with increasing concentration of oil and drug concentrations. It can be concluded from this study, that oil and drug concentrations have an effect on the droplets size of POEs nanoemulsion system. PMID:21427510

  19. Reconciling Oil Palm Expansion and Climate Change Mitigation in Kalimantan, Indonesia

    PubMed Central

    Austin, Kemen G.; Kasibhatla, Prasad S.; Urban, Dean L.; Stolle, Fred; Vincent, Jeffrey

    2015-01-01

    Our society faces the pressing challenge of increasing agricultural production while minimizing negative consequences on ecosystems and the global climate. Indonesia, which has pledged to reduce greenhouse gas (GHG) emissions from deforestation while doubling production of several major agricultural commodities, exemplifies this challenge. Here we focus on palm oil, the world’s most abundant vegetable oil and a commodity that has contributed significantly to Indonesia’s economy. Most oil palm expansion in the country has occurred at the expense of forests, resulting in significant GHG emissions. We examine the extent to which land management policies can resolve the apparently conflicting goals of oil palm expansion and GHG mitigation in Kalimantan, a major oil palm growing region of Indonesia. Using a logistic regression model to predict the locations of new oil palm between 2010 and 2020 we evaluate the impacts of six alternative policy scenarios on future emissions. We estimate net emissions of 128.4–211.4 MtCO2 yr-1 under business as usual expansion of oil palm plantations. The impact of diverting new plantations to low carbon stock land depends on the design of the policy. We estimate that emissions can be reduced by 9-10% by extending the current moratorium on new concessions in primary forests and peat lands, 35% by limiting expansion on all peat and forestlands, 46% by limiting expansion to areas with moderate carbon stocks, and 55–60% by limiting expansion to areas with low carbon stocks. Our results suggest that these policies would reduce oil palm profits only moderately but would vary greatly in terms of cost-effectiveness of emissions reductions. We conclude that a carefully designed and implemented oil palm expansion plan can contribute significantly towards Indonesia’s national emissions mitigation goal, while allowing oil palm area to double. PMID:26011182

  20. Reconciling oil palm expansion and climate change mitigation in Kalimantan, Indonesia.

    PubMed

    Austin, Kemen G; Kasibhatla, Prasad S; Urban, Dean L; Stolle, Fred; Vincent, Jeffrey

    2015-01-01

    Our society faces the pressing challenge of increasing agricultural production while minimizing negative consequences on ecosystems and the global climate. Indonesia, which has pledged to reduce greenhouse gas (GHG) emissions from deforestation while doubling production of several major agricultural commodities, exemplifies this challenge. Here we focus on palm oil, the world's most abundant vegetable oil and a commodity that has contributed significantly to Indonesia's economy. Most oil palm expansion in the country has occurred at the expense of forests, resulting in significant GHG emissions. We examine the extent to which land management policies can resolve the apparently conflicting goals of oil palm expansion and GHG mitigation in Kalimantan, a major oil palm growing region of Indonesia. Using a logistic regression model to predict the locations of new oil palm between 2010 and 2020 we evaluate the impacts of six alternative policy scenarios on future emissions. We estimate net emissions of 128.4-211.4 MtCO2 yr(-1) under business as usual expansion of oil palm plantations. The impact of diverting new plantations to low carbon stock land depends on the design of the policy. We estimate that emissions can be reduced by 9-10% by extending the current moratorium on new concessions in primary forests and peat lands, 35% by limiting expansion on all peat and forestlands, 46% by limiting expansion to areas with moderate carbon stocks, and 55-60% by limiting expansion to areas with low carbon stocks. Our results suggest that these policies would reduce oil palm profits only moderately but would vary greatly in terms of cost-effectiveness of emissions reductions. We conclude that a carefully designed and implemented oil palm expansion plan can contribute significantly towards Indonesia's national emissions mitigation goal, while allowing oil palm area to double. PMID:26011182

  1. The impact of tropical forest logging and oil palm agriculture on the soil microbiome.

    PubMed

    Tripathi, Binu M; Edwards, David P; Mendes, Lucas William; Kim, Mincheol; Dong, Ke; Kim, Hyoki; Adams, Jonathan M

    2016-05-01

    Selective logging and forest conversion to oil palm agriculture are rapidly altering tropical forests. However, functional responses of the soil microbiome to these land-use changes are poorly understood. Using 16S rRNA gene and shotgun metagenomic sequencing, we compared composition and functional attributes of soil biota between unlogged, once-logged and twice-logged rainforest, and areas converted to oil palm plantations in Sabah, Borneo. Although there was no significant effect of logging history, we found a significant difference between the taxonomic and functional composition of both primary and logged forests and oil palm. Oil palm had greater abundances of genes associated with DNA, RNA, protein metabolism and other core metabolic functions, but conversely, lower abundance of genes associated with secondary metabolism and cell-cell interactions, indicating less importance of antagonism or mutualism in the more oligotrophic oil palm environment. Overall, these results show a striking difference in taxonomic composition and functional gene diversity of soil microorganisms between oil palm and forest, but no significant difference between primary forest and forest areas with differing logging history. This reinforces the view that logged forest retains most features and functions of the original soil community. However, networks based on strong correlations between taxonomy and functions showed that network complexity is unexpectedly increased due to both logging and oil palm agriculture, which suggests a pervasive effect of both land-use changes on the interaction of soil microbes. PMID:26994316

  2. Biotechnology of oil palm: strategies towards manipulation of lipid content and composition.

    PubMed

    Parveez, Ghulam Kadir Ahmad; Rasid, Omar Abdul; Masani, Mat Yunus Abdul; Sambanthamurthi, Ravigadevi

    2015-04-01

    Oil palm is a major economic crop for Malaysia. The major challenges faced by the industry are labor shortage, availability of arable land and unstable commodity price. This has caused the industry to diversify its applications into higher value products besides increasing its yield. While conventional breeding has its limitations, biotechnology was identified as one of the tools for overcoming the above challenges. Research on biotechnology of oil palm began more than two decades ago leveraging a multidisciplinary approach involving biochemical studies, gene and promoter isolation, transformation vector construction and finally genetic transformation to produce the targeted products. The main target of oil palm biotechnology research is to increase oleic acid in the mesocarp. Other targets are stearic acid, palmitoleic acid, ricinoleic acid, lycopene (carotenoid) and biodegradable plastics. Significant achievements were reported for the biochemical studies, isolation of useful oil palm genes and characterization of important promoters. A large number of transformation constructs for various targeted products were successfully produced using the isolated oil palm genes and promoters. Finally transformation of these constructs into oil palm embryogenic calli was carried out while the regeneration of transgenic oil palm harboring the useful genes is in progress. PMID:25480400

  3. Natural weathering studies of oil palm trunk lumber (OPTL) green polymer composites enhanced with oil palm shell (OPS) nanoparticles.

    PubMed

    Islam, Md Nazrul; Dungani, Rudi; Abdul Khalil, Hps; Alwani, M Siti; Nadirah, Wo Wan; Fizree, H Mohammad

    2013-01-01

    In this study, a green composite was produced from Oil Palm Trunk Lumber (OPTL) by impregnating oil palm shell (OPS) nanoparticles with formaldehyde resin. The changes of physical, mechanical and morphological properties of the OPS nanoparticles impregnated OPTL as a result of natural weathering was investigated. The OPS fibres were ground with a ball-mill for producing nanoparticles before being mixed with the phenol formaldehyde (PF) resin at a concentration of 1, 3, 5 and 10% w/w basis and impregnated into the OPTL by vacuum-pressure method. The treated OPTL samples were exposed to natural weathering for the period of 6 and 12 months in West Java, Indonesia according to ASTM D1435-99 standard. Physical and mechanical tests were done for analyzing the changes in phenol formaldehyde-nanoparticles impregnated (PF-NPI) OPTL. FT-IR and SEM studies were done to analyze the morphological changes. The results showed that both exposure time of weathering and concentration of PF-NPI had significant impact on physical and mechanical properties of OPTL. The longer exposure of samples to weathering condition reduced the wave numbers during FT-IR test. However, all these physical, mechanical and morphological changes were significant when compared with the untreated samples or only PF impregnated samples. Thus, it can be concluded that PF-NP impregnation into OPTL improved the resistance against natural weathering and would pave the ground for improved products from OPTL for outdoor conditions. PMID:25674417

  4. Breaking the Link between Environmental Degradation and Oil Palm Expansion: A Method for Enabling Sustainable Oil Palm Expansion

    PubMed Central

    Smit, Hans Harmen; Meijaard, Erik; van der Laan, Carina; Mantel, Stephan; Budiman, Arif; Verweij, Pita

    2013-01-01

    Land degradation is a global concern. In tropical areas it primarily concerns the conversion of forest into non-forest lands and the associated losses of environmental services. Defining such degradation is not straightforward hampering effective reduction in degradation and use of already degraded lands for more productive purposes. To facilitate the processes of avoided degradation and land rehabilitation, we have developed a methodology in which we have used international environmental and social sustainability standards to determine the suitability of lands for sustainable agricultural expansion. The method was developed and tested in one of the frontiers of agricultural expansion, West Kalimantan province in Indonesia. The focus was on oil palm expansion, which is considered as a major driver for deforestation in tropical regions globally. The results suggest that substantial changes in current land-use planning are necessary for most new plantations to comply with international sustainability standards. Through visualizing options for sustainable expansion with our methodology, we demonstrate that the link between oil palm expansion and degradation can be broken. Application of the methodology with criteria and thresholds similar to ours could help the Indonesian government and the industry to achieve its pro-growth, pro-job, pro-poor and pro-environment development goals. For sustainable agricultural production, context specific guidance has to be developed in areas suitable for expansion. Our methodology can serve as a template for designing such commodity and country specific tools and deliver such guidance. PMID:24039700

  5. Breaking the link between environmental degradation and oil palm expansion: a method for enabling sustainable oil palm expansion.

    PubMed

    Harmen Smit, Hans; Meijaard, Erik; van der Laan, Carina; Mantel, Stephan; Budiman, Arif; Verweij, Pita

    2013-01-01

    Land degradation is a global concern. In tropical areas it primarily concerns the conversion of forest into non-forest lands and the associated losses of environmental services. Defining such degradation is not straightforward hampering effective reduction in degradation and use of already degraded lands for more productive purposes. To facilitate the processes of avoided degradation and land rehabilitation, we have developed a methodology in which we have used international environmental and social sustainability standards to determine the suitability of lands for sustainable agricultural expansion. The method was developed and tested in one of the frontiers of agricultural expansion, West Kalimantan province in Indonesia. The focus was on oil palm expansion, which is considered as a major driver for deforestation in tropical regions globally. The results suggest that substantial changes in current land-use planning are necessary for most new plantations to comply with international sustainability standards. Through visualizing options for sustainable expansion with our methodology, we demonstrate that the link between oil palm expansion and degradation can be broken. Application of the methodology with criteria and thresholds similar to ours could help the Indonesian government and the industry to achieve its pro-growth, pro-job, pro-poor and pro-environment development goals. For sustainable agricultural production, context specific guidance has to be developed in areas suitable for expansion. Our methodology can serve as a template for designing such commodity and country specific tools and deliver such guidance. PMID:24039700

  6. Proteomic analysis of the oil palm fruit mesocarp reveals elevated oxidative phosphorylation activity is critical for increased storage oil production.

    PubMed

    Loei, Hendrick; Lim, Justin; Tan, Melvin; Lim, Teck Kwang; Lin, Qing Song; Chew, Fook Tim; Kulaveerasingam, Harikrishna; Chung, Maxey C M

    2013-11-01

    Palm oil is a highly versatile commodity with wide applications in the food, cosmetics, and biofuel industries. Storage oil in the oil palm mesocarp can make up a remarkable 80% of its dry mass, making it the oil crop with the richest oil content in the world. As such, there has been an ongoing interest in understanding the mechanism of oil production in oil palm fruits. To identify the proteome changes during oil palm fruit maturation and factors affecting oil yield in oil palm fruits, we examined the proteomic profiles of oil palm mesocarps at four developing stages--12, 16, 18, and 22 weeks after pollination--by 8-plex iTRAQ labeling coupled to 2D-LC and MALDI-TOF/TOF MS. It was found that proteins from several important metabolic processes, including starch and sucrose metabolism, glycolysis, pentose phosphate shunt, fatty acid biosynthesis, and oxidative phosphorylation, were differentially expressed in a concerted manner. These increases led to an increase in carbon flux and a diversion of resources such as ATP and NADH that are required for lipid biosynthesis. The temporal proteome profiles between the high-oil-yielding (HY) and low-oil-yielding (LY) fruits also showed significant differences in the levels of proteins involved in the regulation of the TCA cycle and oxidative phosphorylation. In particular, the expression level of the β subunit of the ATP synthase complex (complex IV of the electron transport chain) was found to be increased during fruit maturation in HY but decreased in the LY during the fruit maturation. These results suggested that increased energy supply is necessary for augmented oil yield in the HY oil palm trees. PMID:24083564

  7. Sustainable Management in Crop Monocultures: The Impact of Retaining Forest on Oil Palm Yield

    PubMed Central

    Edwards, Felicity A.; Edwards, David P.; Sloan, Sean; Hamer, Keith C.

    2014-01-01

    Tropical agriculture is expanding rapidly at the expense of forest, driving a global extinction crisis. How to create agricultural landscapes that minimise the clearance of forest and maximise sustainability is thus a key issue. One possibility is protecting natural forest within or adjacent to crop monocultures to harness important ecosystem services provided by biodiversity spill-over that may facilitate production. Yet this contrasts with the conflicting potential that the retention of forest exports dis-services, such as agricultural pests. We focus on oil palm and obtained yields from 499 plantation parcels spanning a total of ≈23,000 ha of oil palm plantation in Sabah, Malaysian Borneo. We investigate the relationship between the extent and proximity of both contiguous and fragmented dipterocarp forest cover and oil palm yield, controlling for variation in oil palm age and for environmental heterogeneity by incorporating proximity to non-native forestry plantations, other oil palm plantations, and large rivers, elevation and soil type in our models. The extent of forest cover and proximity to dipterocarp forest were not significant predictors of oil palm yield. Similarly, proximity to large rivers and other oil palm plantations, as well as soil type had no significant effect. Instead, lower elevation and closer proximity to forestry plantations had significant positive impacts on oil palm yield. These findings suggest that if dipterocarp forests are exporting ecosystem service benefits or ecosystem dis-services, that the net effect on yield is neutral. There is thus no evidence to support arguments that forest should be retained within or adjacent to oil palm monocultures for the provision of ecosystem services that benefit yield. We urge for more nuanced assessments of the impacts of forest and biodiversity on yields in crop monocultures to better understand their role in sustainable agriculture. PMID:24638038

  8. Mitigating the impact of oil-palm monoculture on freshwater fishes in Southeast Asia.

    PubMed

    Giam, Xingli; Hadiaty, Renny K; Tan, Heok Hui; Parenti, Lynne R; Wowor, Daisy; Sauri, Sopian; Chong, Kwek Yan; Yeo, Darren C J; Wilcove, David S

    2015-10-01

    Anthropogenic land-cover change is driving biodiversity loss worldwide. At the epicenter of this crisis lies Southeast Asia, where biodiversity-rich forests are being converted to oil-palm monocultures. As demand for palm oil increases, there is an urgent need to find strategies that maintain biodiversity in plantations. Previous studies found that retaining forest patches within plantations benefited some terrestrial taxa but not others. However, no study has focused on aquatic taxa such as fishes, despite their importance to human well-being. We assessed the efficacy of forested riparian reserves in conserving freshwater fish biodiversity in oil-palm monoculture by sampling stream fish communities in an oil-palm plantation in Central Kalimantan, Indonesia. Forested riparian reserves maintained preconversion local fish species richness and functional diversity. In contrast, local and total species richness, biomass, and functional diversity declined markedly in streams without riparian reserves. Mechanistically, riparian reserves appeared to increase local species richness by increasing leaf litter cover and maintaining coarse substrate. The loss of fishes specializing in leaf litter and coarse substrate decreased functional diversity and altered community composition in oil-palm plantation streams that lacked riparian reserves. Thus, a land-sharing strategy that incorporates the retention of forested riparian reserves may maintain the ecological integrity of fish communities in oil-palm plantations. We urge policy makers and growers to make retention of riparian reserves in oil-palm plantations standard practice, and we encourage palm-oil purchasers to source only palm oil from plantations that employ this practice. PMID:25800305

  9. Sustainable management in crop monocultures: the impact of retaining forest on oil palm yield.

    PubMed

    Edwards, Felicity A; Edwards, David P; Sloan, Sean; Hamer, Keith C

    2014-01-01

    Tropical agriculture is expanding rapidly at the expense of forest, driving a global extinction crisis. How to create agricultural landscapes that minimise the clearance of forest and maximise sustainability is thus a key issue. One possibility is protecting natural forest within or adjacent to crop monocultures to harness important ecosystem services provided by biodiversity spill-over that may facilitate production. Yet this contrasts with the conflicting potential that the retention of forest exports dis-services, such as agricultural pests. We focus on oil palm and obtained yields from 499 plantation parcels spanning a total of ≈23,000 ha of oil palm plantation in Sabah, Malaysian Borneo. We investigate the relationship between the extent and proximity of both contiguous and fragmented dipterocarp forest cover and oil palm yield, controlling for variation in oil palm age and for environmental heterogeneity by incorporating proximity to non-native forestry plantations, other oil palm plantations, and large rivers, elevation and soil type in our models. The extent of forest cover and proximity to dipterocarp forest were not significant predictors of oil palm yield. Similarly, proximity to large rivers and other oil palm plantations, as well as soil type had no significant effect. Instead, lower elevation and closer proximity to forestry plantations had significant positive impacts on oil palm yield. These findings suggest that if dipterocarp forests are exporting ecosystem service benefits or ecosystem dis-services, that the net effect on yield is neutral. There is thus no evidence to support arguments that forest should be retained within or adjacent to oil palm monocultures for the provision of ecosystem services that benefit yield. We urge for more nuanced assessments of the impacts of forest and biodiversity on yields in crop monocultures to better understand their role in sustainable agriculture. PMID:24638038

  10. Two-component mixture model: Application to palm oil and exchange rate

    NASA Astrophysics Data System (ADS)

    Phoong, Seuk-Yen; Ismail, Mohd Tahir; Hamzah, Firdaus Mohamad

    2014-12-01

    Palm oil is a seed crop which is widely adopt for food and non-food products such as cookie, vegetable oil, cosmetics, household products and others. Palm oil is majority growth in Malaysia and Indonesia. However, the demand for palm oil is getting growth and rapidly running out over the years. This phenomenal cause illegal logging of trees and destroy the natural habitat. Hence, the present paper investigates the relationship between exchange rate and palm oil price in Malaysia by using Maximum Likelihood Estimation via Newton-Raphson algorithm to fit a two components mixture model. Besides, this paper proposes a mixture of normal distribution to accommodate with asymmetry characteristics and platykurtic time series data.

  11. Biological and Nutritional Properties of Palm Oil and Palmitic Acid: Effects on Health.

    PubMed

    Mancini, Annamaria; Imperlini, Esther; Nigro, Ersilia; Montagnese, Concetta; Daniele, Aurora; Orrù, Stefania; Buono, Pasqualina

    2015-01-01

    A growing body of evidence highlights the close association between nutrition and human health. Fat is an essential macronutrient, and vegetable oils, such as palm oil, are widely used in the food industry and highly represented in the human diet. Palmitic acid, a saturated fatty acid, is the principal constituent of refined palm oil. In the last few decades, controversial studies have reported potential unhealthy effects of palm oil due to the high palmitic acid content. In this review we provide a concise and comprehensive update on the functional role of palm oil and palmitic acid in the development of obesity, type 2 diabetes mellitus, cardiovascular diseases and cancer. The atherogenic potential of palmitic acid and its stereospecific position in triacylglycerols are also discussed. PMID:26393565

  12. Hormones, polyamines, and cell wall metabolism during oil palm fruit mesocarp development and ripening.

    PubMed

    Teh, Huey Fang; Neoh, Bee Keat; Wong, Yick Ching; Kwong, Qi Bin; Ooi, Tony Eng Keong; Ng, Theresa Lee Mei; Tiong, Soon Huat; Low, Jaime Yoke Sum; Danial, Asma Dazni; Ersad, Mohd Amiron; Kulaveerasingam, Harikrishna; Appleton, David R

    2014-08-13

    Oil palm is one of the most productive oil-producing crops and can store up to 90% oil in its fruit mesocarp. Oil palm fruit is a sessile drupe consisting of a fleshy mesocarp from which palm oil is extracted. Biochemical changes in the mesocarp cell walls, polyamines, and hormones at different ripening stages of oil palm fruits were studied, and the relationship between the structural and the biochemical metabolism of oil palm fruits during ripening is discussed. Time-course analysis of the changes in expression of polyamines, hormones, and cell-wall-related genes and metabolites provided insights into the complex processes and interactions involved in fruit development. Overall, a strong reduction in auxin-responsive gene expression was observed from 18 to 22 weeks after pollination. High polyamine concentrations coincided with fruit enlargement during lipid accumulation and latter stages of maturation. The trend of abscisic acid (ABA) concentration was concordant with GA₄ but opposite to the GA₃ profile such that as ABA levels increase the resulting elevated ABA/GA₃ ratio clearly coincides with maturation. Polygalacturonase, expansin, and actin gene expressions were also observed to increase during fruit maturation. The identification of the master regulators of these coordinated processes may allow screening for oil palm variants with altered ripening profiles. PMID:25032485

  13. The study of palm oil methyl ester and its corrosiveness

    NASA Astrophysics Data System (ADS)

    Sani, W. B. Wan; Samo, K. B.; Da, T. H.; Zulkifli, M. F. R.

    2012-06-01

    The present aim of this study is to determine the corrosion effect of palm oil methyl ester (POME) on aluminium alloy 5083 (AA5083). The static immersion test was carried out at 60°C for 68 days according to ASTM G-31-72. The corrosion analysis was done by using weight loss method and electrochemical test. The POME was analyzed by using Fourier Transform Infrared (FTIR) to determine its functional group. The result from weight loss method shows the decreasing in weight loss of AA5083 which signifies the ability of POME to reduce corrosion rate. The electrochemical test shows the decreasing in polarization resistance, Rp while the corrosion current densities, icorr increase. The corrosion rate reduces from 2.250mpy to 0.1946mpy. The low concentration of fatty acid C18:2 and high anti oxidant element contributes to the reduction of corrosion rate of AA5083 in POME.

  14. The palm oil supply chain, deforestation and peat clearing

    NASA Astrophysics Data System (ADS)

    Boucher, D. H.

    2013-12-01

    The palm oil industry has expanded rapidly in the last two decades, particularly in Indonesia. A considerable amount of this expansion has been at the expense of forests and peatlands, resulting in considerable greenhouse gas emissions. Now the industry is faced with two new challenges. There is a possible oversupply on the global market due to recent expansion and the time lag between clearing and new production coming on line, which may depress prices considerably. Furthermore, there is increasing pressure to reduce the industry's impact on climate and biodiversity, exemplified by the commitment by the businesses of the Consumer Goods Forum to eliminate deforestation from their supply chains by 2020. This presentation will examine the interaction between these two challenges and its implications for the industry, in both southeast Asia and new regions of expansion, and how this interaction could transform the industry's mode of expansion in the coming decade.

  15. Wavelet neural networks applied to pulping of oil palm fronds.

    PubMed

    Zainuddin, Zarita; Wan Daud, Wan Rosli; Pauline, Ong; Shafie, Amran

    2011-12-01

    In the organosolv pulping of the oil palm fronds, the influence of the operational variables of the pulping reactor (viz. cooking temperature and time, ethanol and NaOH concentration) on the properties of the resulting pulp (yield and kappa number) and paper sheets (tensile index and tear index) was investigated using a wavelet neural network model. The experimental results with error less than 0.0965 (in terms of MSE) were produced, and were then compared with those obtained from the response surface methodology. Performance assessment indicated that the neural network model possessed superior predictive ability than the polynomial model, since a very close agreement between the experimental and the predicted values was obtained. PMID:21996481

  16. Characterization of cellulose extracted from oil palm empty fruit bunch

    NASA Astrophysics Data System (ADS)

    Sisak, Muhammad Asri Abdul; Daik, Rusli; Ramli, Suria

    2015-09-01

    Recently, cellulose has been studied by many researchers due to its promising properties such as biodegradability, biocompatibility, hydrophilicity and robustness. Due to that it is applied in many fields such as paper, film, drug delivery, membranes, etc. Cellulose can be extracted from various plants while oil palm empty fruit bunch (OPEFB) is the one of its sources. In this study, cellulose was extracted by chemical treatments which involved the use of formic acid and hydrogen peroxide to remove hemicellulose and lignin components. Maximum yield was 43.22%. Based on the FT-IR spectra, the peak of wax (1735 cm-1), hemicellulose (1375 cm-1) and lignin (1248 cm-1 and 1037 cm-1) were not observed in extracted cellulose. TGA analysis showed that the extracted cellulose starts to thermally degrade at 340 °C. The SEM analysis suggested that the cellulose extracted from OPEFB was not much different from commercial cellulose.

  17. Physicochemical properties of hydrothermally treated hemicellulose from oil palm frond.

    PubMed

    Fazilah, Ariffin; Azemi, Mohamed N Mohd; Karim, Alias A; Norakma, Mohd N

    2009-02-25

    Hemicelluloses from oil palm frond (OPF) were extracted using 3 M potassium hydroxide (KOH) for 4 h at 40 degrees C with stirring at 400 rpm to obtain hemicelluloses A and B. The total yield of the hemicellulose isolated from OPF was 33% (dry weight). Both hemicelluloses A and B were then subjected to hydrothermal treatment at 121 degrees C and 1.03 x 10(5) Pa for 10, 30, and 50 min. Physicochemical characterizations of hydrothermally treated hemicelluloses, such as Klason lignin content and reducing sugar content, were performed to study the effect of autohydrolysis processing on OPF-derived hemicelluloses. It was shown that Klason lignin content in hemicellulose A was higher than that in hemicellulose B and decreased after hydrothermal treatment. Hydrothermal treatment enhanced the solubility of hemicelluloses, which reflects their higher reducing sugar content. Monosaccharide analysis using HPLC showed that xylose was the predominant monosaccharide for both hemicelluloses A and B. PMID:19166335

  18. Physicochemical characterization of oil palm mesocarp fibre treated with glycerol

    NASA Astrophysics Data System (ADS)

    Nor Hamizah M., A.; Roila, A.; Rahimi M., Y.

    2015-09-01

    Lignocellulose has been identified as another source for conversion into value added products. In the present work, physicochemical features from the oil palm mesocarp fibre treated by using pure glycerol with 2% (w/w) NaOH catalyst and crude glycerol have been studied. Treatment was conducted at temperatures 150 °C for 60 min. Fibre treated by crude glycerol resulted in high percentages of holocellulose and lower content of insoluble lignin. These results suggest that crude glycerol can be used as an alternative solvent for pretreatment process. The characterization treated fibre by means of FTIR and TGA has shown significant differences compared to untreated fibre. It was revealed that treated fibre successful eliminated hemicellulose and reduce of lignin content.

  19. Physicochemical characterizations of nano-palm oil fuel ash

    NASA Astrophysics Data System (ADS)

    Rajak, Mohd Azrul Abdul; Majid, Zaiton Abdul; Ismail, Mohammad

    2015-07-01

    Palm Oil Fuel Ash (POFA) is known as a good supplementary cementing material due to its siliceous-rich content. The application of nanotechnology in the pozzolanic materials could invent new functions in the efficiency of physical and chemical properties of materials. Thus, the present study aims to generate nano-sized POFA and characterize the physicochemical properties of nano-palm oil fuel ash (nPOFA). The nPOFA was prepared by mechanically grinding micro POFA using a high intensity ball milling for 6 hours. The physicochemical properties of nPOFA were characterized via X-Ray Fluoresence (XRF), Scanning Emission microscopy- Energy Dispersive X-Ray (SEM-EDX), Transmission Electron Microscope (TEM) and X-Ray Diffraction (XRD). The particle size of nPOFA acquired from TEM analysis was in the range of 20 nm to 90 nm, while the average crystallite size calculated from XRD diffractogram was 61.5 nm. The resulting nPOFA has a BET surface area of 145.35 m2/g, which is more than 85% increment in surface area compared to micro-sized POFA. The morphology and elemental studies showed the presence of spherical as well as irregularly shaped and fine nPOFA particles contains with high silicon content. The presence of α-quartz as the major phase of the nPOFA was identified through XRD analysis. The study concludes that nPOFA has the potential as a supplementary cementing material due to the high silica content, high surface area and the unique behaviors of nano-structured particles.

  20. Physicochemical characterizations of nano-palm oil fuel ash

    SciTech Connect

    Rajak, Mohd Azrul Abdul; Majid, Zaiton Abdul; Ismail, Mohammad

    2015-07-22

    Palm Oil Fuel Ash (POFA) is known as a good supplementary cementing material due to its siliceous-rich content. The application of nanotechnology in the pozzolanic materials could invent new functions in the efficiency of physical and chemical properties of materials. Thus, the present study aims to generate nano-sized POFA and characterize the physicochemical properties of nano-palm oil fuel ash (nPOFA). The nPOFA was prepared by mechanically grinding micro POFA using a high intensity ball milling for 6 hours. The physicochemical properties of nPOFA were characterized via X-Ray Fluoresence (XRF), Scanning Emission microscopy- Energy Dispersive X-Ray (SEM-EDX), Transmission Electron Microscope (TEM) and X-Ray Diffraction (XRD). The particle size of nPOFA acquired from TEM analysis was in the range of 20 nm to 90 nm, while the average crystallite size calculated from XRD diffractogram was 61.5 nm. The resulting nPOFA has a BET surface area of 145.35 m{sup 2}/g, which is more than 85% increment in surface area compared to micro-sized POFA. The morphology and elemental studies showed the presence of spherical as well as irregularly shaped and fine nPOFA particles contains with high silicon content. The presence of α-quartz as the major phase of the nPOFA was identified through XRD analysis. The study concludes that nPOFA has the potential as a supplementary cementing material due to the high silica content, high surface area and the unique behaviors of nano-structured particles.

  1. Intelligent Color Vision System for Ripeness Classification of Oil Palm Fresh Fruit Bunch

    PubMed Central

    Fadilah, Norasyikin; Mohamad-Saleh, Junita; Halim, Zaini Abdul; Ibrahim, Haidi; Ali, Syed Salim Syed

    2012-01-01

    Ripeness classification of oil palm fresh fruit bunches (FFBs) during harvesting is important to ensure that they are harvested during optimum stage for maximum oil production. This paper presents the application of color vision for automated ripeness classification of oil palm FFB. Images of oil palm FFBs of type DxP Yangambi were collected and analyzed using digital image processing techniques. Then the color features were extracted from those images and used as the inputs for Artificial Neural Network (ANN) learning. The performance of the ANN for ripeness classification of oil palm FFB was investigated using two methods: training ANN with full features and training ANN with reduced features based on the Principal Component Analysis (PCA) data reduction technique. Results showed that compared with using full features in ANN, using the ANN trained with reduced features can improve the classification accuracy by 1.66% and is more effective in developing an automated ripeness classifier for oil palm FFB. The developed ripeness classifier can act as a sensor in determining the correct oil palm FFB ripeness category. PMID:23202043

  2. Mapping palm oil expansion using SAR to study the impact on the CO2 cycle

    NASA Astrophysics Data System (ADS)

    Pohl, Christine

    2014-06-01

    With Malaysia being the second largest palm oil producer in the world and the fact that palm oil ranks first in vegetable oil production on the world market the palm oil industry became an important factor in the country. Along with the expansion of palm oil across the nation causing deforestation of natural rain forest and conversion of peat land into plantation land there are several factors causing a tremendous increase in carbon dioxide (CO2) emissions. Main causes of CO2 emission apart from deforestation and peat-land conversion are the fires to create plantation land plus the fires burning waste products of the plantations itself. This paper describes a project that aims at the development of a remote sensing monitoring system to allow a continuous observation of oil palm plantation activities and expansion in order to be able to quantify CO2 emissions. The research concentrates on developing a spaceborne synthetic aperture radar information extraction system for palm oil plantations in the Tropics. This will lead to objective figures that can be used internationally to create a policy implementation plan to sustainably reduce CO2 emission in the future.

  3. Intelligent color vision system for ripeness classification of oil palm fresh fruit bunch.

    PubMed

    Fadilah, Norasyikin; Mohamad-Saleh, Junita; Abdul Halim, Zaini; Ibrahim, Haidi; Syed Ali, Syed Salim

    2012-01-01

    Ripeness classification of oil palm fresh fruit bunches (FFBs) during harvesting is important to ensure that they are harvested during optimum stage for maximum oil production. This paper presents the application of color vision for automated ripeness classification of oil palm FFB. Images of oil palm FFBs of type DxP Yangambi were collected and analyzed using digital image processing techniques. Then the color features were extracted from those images and used as the inputs for Artificial Neural Network (ANN) learning. The performance of the ANN for ripeness classification of oil palm FFB was investigated using two methods: training ANN with full features and training ANN with reduced features based on the Principal Component Analysis (PCA) data reduction technique. Results showed that compared with using full features in ANN, using the ANN trained with reduced features can improve the classification accuracy by 1.66% and is more effective in developing an automated ripeness classifier for oil palm FFB. The developed ripeness classifier can act as a sensor in determining the correct oil palm FFB ripeness category. PMID:23202043

  4. Topological and thermal properties of polypropylene composites based on oil palm biomass

    SciTech Connect

    Bhat, A. H. E-mail: anie-yal88@yahoo.com; Dasan, Y. K. E-mail: anie-yal88@yahoo.com

    2014-10-24

    Roughness on pristine and polymer composite surfaces is of enormous practical importance for polymer applications. This study deals with the use of varying quantity of oil palm ash as a nanofiller in a polypropylene based matrix. The oil palm ash sample was preprocessed to break the particles into small diameter by using ultra sonication before using microfluidizer for further deduction in size and homogenization. The oil palm ash was made to undergo many passes through the microfluidizer for fine distribution of particles. Polypropylene based composites containing different loading percentage oil palm ash was granulated by twin screw extruder and then injection molded. The surface morphology of the OPA passed through microfluidizer was analyzed by Tapping Mode - Atomic Force Microscopy (TMAFM). Thermal analysis results showed an increase in the activation energy values. The thermal stability of the composite samples showed improvement as compared to the virgin polymer as corroborated by the on-set degradation temperatures and the temperatures at which 50% degradation occurred.

  5. Modeling and simulation of an enzymatic reactor for hydrolysis of palm oil.

    PubMed

    Bhatia, S; Naidu, A D; Kamaruddin, A H

    1999-01-01

    Hydrolysis of palm oil has become an important process in Oleochemical industries. Therefore, an investigation was carried out for hydrolysis of palm oil to fatty acid and glycerol using immobilized lipase in packed bed reactor. The conversion vs. residence time data were used in Michaelis-Menten rate equation to evaluate the kinetic parameters. A mathematical model for the rate of palm oil hydrolysis was proposed incorporating role of external mass transfer and pore diffusion. The model was simulated for steady-state isothermal operation of immobilized lipase packed bed reactor. The experimental data were compared with the simulated results. External mass transfer was found to affect the rate of palm oil hydrolysis at higher residence time. PMID:10595445

  6. Multigeneration studies on red palm oil, and on hydrogenated vegetable oil containing mahua oil.

    PubMed

    Manorama, R; Chinnasamy, N; Rukmini, C

    1993-05-01

    Edible grade red palm oil (RPO; Elaeis guineensis) is being considered for use an an edible oil in India since it is one of the richest natural sources of carotenoids. Earlier chemical and nutritional evaluations in rats indicated no adverse effects. Multigeneration breeding studies in rats have now been carried out. Mahua oil (MO; Madhuca latifolia) is used in hydrogenated vegetable oil (HVO) for human consumption. Earlier studies on MO indicated adverse effects on the male reproductive system. Hence, a study was undertaken to evaluate the safety of HVO containing 30% MO (MO-HVO) in terms of reproductive performance. A three-generation study was conducted with groups of 12 male and 12 female Wistar/NIN/inbred albino rats fed, at 10% in the diet (20% protein), groundnut oil (controls), RPO, refined, bleached and deodorized palmolein (RBDPO), or MO-HVO. Reproductive parameters including percentage conception, birth weight, litter size, weanling weight, sex ratio at birth and weaning, preweaning mortality and number of days from introduction to mating, were recorded. Behavioural and reflexological tests were conducted on preweaning animals. Adult animals were subjected to weekly observation. No significant differences were found between the RPO and MO-HVO groups in comparison with groups fed GNO or RBDPO in any of the above parameters. However, certain indications of reduced fertility were observed in the MO-HVO group in the first and third generations. The results indicate that RPO did not produce any adverse effect on reproductive performance or other toxicological parameters studied, and therefore it can be considered as safe for consumption. On the other hand, HVO containing 30% MO needs further testing with a larger number of animals. PMID:8505022

  7. Effect of adding palm oil mill decanter cake slurry with regular turning operation on the composting process and quality of compost from oil palm empty fruit bunches.

    PubMed

    Yahya, Azmi; Sye, Chong Puay; Ishola, Tajudeen Abiodun; Suryanto, Hadi

    2010-11-01

    Formation of compost from oil palm empty fruit bunches (EFB) and decanter cake slurry by adding palm oil mill effluent (POME) with regular turning operation was investigated. The experiment was conducted in a commercial composting plant under the normal production process. The addition of decanter cake slurry has hastened the composting process of the EFB. The C/N ratio after 51 days for the mature compost with the decanter cake slurry was 18.65 while that of the matured compost without the decanter cake slurry remained high at 28.96. The compost formed from the addition of decanter cake to EFB and POME had 46.4% nitrogen, 17.9% phosphorus, 17.7% potassium and 23.1% calcium more than that without decanter cake. The use of compost produced from EFB, POME and decanter cake slurry could solve more environmental problems and enhance economic benefits in the oil palm industry. PMID:20609579

  8. Responses of tropical fruit bats to monoculture and polyculture farming in oil palm smallholdings

    NASA Astrophysics Data System (ADS)

    Syafiq, Muhamad; Nur Atiqah, Abd Rahman; Ghazali, Amal; Asmah, Siti; Yahya, Muhammad S.; Aziz, Najjib; Puan, Chong Leong; Azhar, Badrul

    2016-07-01

    The oil palm industry is one of the main economic drivers in Southeast Asia. The industry has caused tropical deforestation on a massive scale in producing countries, and this forest conversion to oil palm agriculture has decimated the habitat of numerous native species. Monoculture and polyculture practices are two distinctive oil palm production systems. We hypothesize that polyculture farming hosts a greater diversity of species than monoculture farming. Habitat complexity in smallholdings is influenced by multiple farming practices (i.e. polyculture and monoculture). However, little is known about the effects of such farming practices in smallholdings on mammalian biodiversity, and particularly frugivorous bats. Our study aimed to find the best farming practice to reconcile oil palm production with biodiversity conservation. Mist-nets were used to trap frugivorous bats at 120 smallholdings in Peninsular Malaysia. We compared species richness and the abundance of frugivorous bats between monoculture and polyculture smallholdings. We investigated their relationships with vegetation structure characteristics. Our results revealed that species richness and abundance of frugivorous bats were significantly greater in polyculture smallholdings than monoculture smallholdings. We also found that 28.21% of the variation in species richness was explained by in situ habitat characteristics, including the number of dead standing oil palms and immature oil palms, non-grass cover, height of non-grass cover, and farming practices. The in situ habitat quality was closely associated with oil palm farming management. Commercial growers should implement polyculture rather than monoculture farming because polyculture farming has positive effects on the abundance and species richness of bats in oil palm production landscapes.

  9. Use of re-esterified palm oils, differing in their acylglycerol structure, in fattening pig diets.

    PubMed

    Vilarrasa, E; Barroeta, A C; Tres, A; Esteve-Garcia, E

    2015-10-01

    Re-esterified oils are new fat sources obtained from the chemical esterification of acid oils with glycerol (both economically interesting by-products from oil refining and biodiesel industries, respectively). The different fatty acid (FA) positional distribution and acylglycerol composition of re-esterified oils may enhance the apparent absorption of saturated fatty acids (SFA) and, therefore, their overall nutritive value, which might lead to an increased deposition of SFA. The aim of the present study was to investigate the potential use of re-esterified palm oils, in comparison with their corresponding acid and native oils in fattening pig diets, studying their effects on fatty acid apparent absorption, acylglycerol and free fatty acid (FFA) composition of feces, growth performance, carcass-fat depots and fatty acid composition of backfat. Seventy-two crossbred boars and gilts (average weight of 24.7 ± 2.55 kg) were blocked by initial BW (nine blocks of BW for each gender), housed in adjacent individual boxes, and fed one of the four dietary treatments, which were the result of a basal diet supplemented with 4% (as-fed basis) of native palm oil (PN), acid palm oil (PA), re-esterified palm oil low in mono- and diacylglycerols (PEL), or re-esterified palm oil high in mono- and diacylglycerols (PEH). Regarding results from the digestibility balance, PA and PN showed similar apparent absorption coefficients (P>0.05), despite the high, FFA content of the former. However, re-esterified palm oils (both PEL and PEH) showed a higher apparent absorption of total FA than did their corresponding native and acid oils (P0.05). We conclude that re-esterified oils are interesting fat sources to be considered in fattening pigs. PMID:26133484

  10. Non-isothermal thermogravimetric analysis of oil-palm solid wastes.

    PubMed

    Luangkiattikhun, P; Tangsathitkulchai, C; Tangsathitkulchai, M

    2008-03-01

    Thermal decomposition of oil-palm solid wastes, including oil-palm shell, fibre and kernel, was studied by thermogravimetric analysis (TGA). Effect of heating rate and sample particle size on the behaviour of thermogram and kinetic parameters were investigated. The one-step global model, two-step consecutive model and two-parallel reactions model were used to simulate the pyrolysis process of the three materials studied. The one-step global model was able to describe the fractional weight loss upon pyrolysis of oil-palm kernel reasonably well but gave a large deviation for oil-palm shell and fibre. The two-step consecutive model could improve the fitting for oil-palm shell and fibre, but it cannot account for the inflection characteristic of the thermogram. Prediction by the two-parallel reactions model gave the best fitting with the experimental data of all oil-palm wastes under all pyrolysis conditions investigated. This proposed model was also tested with other biomass materials and proved to be satisfactory. PMID:17451942

  11. Effect of frying on the rheological and chemical properties of palm oil and its blends.

    PubMed

    Siddique, Bazlul Mobin; Muhamad, Ida Idayu; Ahmad, Anees; Ayob, Afizah; Ibrahim, Mahamad Hakimi; Ak, Mohd Omar

    2015-03-01

    The aim of this research was to determine the changes in the physicochemical properties of palm oil and its blends by FTIR and rheological measurements. Application of heat produces some chemical compounds as impurities and even toxic compounds in oils and fats that give absorbance at different region. FTIR spectra of pure palm olein shows an absorbance at 3002 cm(-1) whereas other pure oils show maximum absorption at around 3007 cm(-1) due to C-H stretching vibration of cis-double bond (=C-H). By blending of high unsaturated oils with palm olein, a clear shift of 3007 cm(-1) band to 3005 cm(-1) occurs. Viscosity of palm olein was found higher among all oils while it subsequently and substantially reduced by blending with other oils. Since it is a function of temperature, viscosity of pure oils and their blends decreases with the increase of temperature. The loss modulus (G''), for all oil blends before and after frying, in rheological experiment was found higher for all oils than the storage modulus (G'), therefore, the viscous property was found higher than elastic property of oils and blends. However, the critical stress for all oil blends was found higher than that of pure oils. PMID:25745212

  12. Life cycle assessment of a palm oil system with simultaneous production of biodiesel and cooking oil in Cameroon.

    PubMed

    Achten, Wouter M J; Vandenbempt, Pieter; Almeida, Joana; Mathijs, Erik; Muys, Bart

    2010-06-15

    The use of palm oil as a biofuel has been heavily debated for its land-use conflict with nature and its competition with food production, being the number one cooking oil worldwide. In that context, we present a life cycle assessment of a palm oil production process yielding both biodiesel and cooking oil, incorporating the land-use impact and evaluating the effect of treating the palm oil mill effluent (POME) prior to disposal. The results show that the nonrenewable energy requirement, global warming potential (GWP; exclusive land-use change), and acidification potential are lower than those of the fossil alternative. However, the system triggers an increase in eutrophication potential (EP) compared to the fossil fuel reference. This system shows less energy requirement, global warming and acidification reduction, and less eutrophication increase compared to the reference than the same system converting all palm oil into biodiesel (no cooking oil production). The land occupation of palm oil triggers ecosystem quality (EQ) loss of 30-45% compared to the potential natural vegetation. Furthermore, such land-use change triggers a carbon debt neutralizing the GWP reduction for 45-53 years. The POME treatment scenarios reveal a trade-off between GWP and EP. PMID:20496929

  13. Non-stationary time series modeling on caterpillars pest of palm oil for early warning system

    NASA Astrophysics Data System (ADS)

    Setiyowati, Susi; Nugraha, Rida F.; Mukhaiyar, Utriweni

    2015-12-01

    The oil palm production has an important role for the plantation and economic sector in Indonesia. One of the important problems in the cultivation of oil palm plantation is pests which causes damage to the quality of fruits. The caterpillar pest which feed palm tree's leaves will cause decline in quality of palm oil production. Early warning system is needed to minimize losses due to this pest. Here, we applied non-stationary time series modeling, especially the family of autoregressive models to predict the number of pests based on its historical data. We realized that there is some uniqueness of these pests data, i.e. the spike value that occur almost periodically. Through some simulations and case study, we obtain that the selection of constant factor has a significance influence to the model so that it can shoot the spikes value precisely.

  14. Isolation and characterization of oil palm constitutive promoter derived from ubiquitin extension protein (uep1) gene.

    PubMed

    Masura, Subhi Siti; Parveez, Ghulam Kadir Ahmad; Ismail, Ismanizan

    2010-09-30

    The ubiquitin extension protein (uep1) gene was identified as a constitutively expressed gene in oil palm. We have isolated and characterized the 5' region of the oil palm uep1 gene, which contains an 828 bp sequence upstream of the uep1 translational start site. Construction of a pUEP1 transformation vector, which contains gusA reporter gene under the control of uep1 promoter, was carried out for functional analysis of the promoter through transient expression studies. It was found that the 5' region of uep1 functions as a constitutive promoter in oil palm and could drive GUS expression in all tissues tested, including embryogenic calli, embryoid, immature embryo, young leaflet from mature palm, green leaf, mesocarp and meristematic tissues (shoot tip). This promoter could also be used in dicot systems as it was demonstrated to be capable of driving gusA gene expression in tobacco. PMID:20123048

  15. Differential Metabolite Profiles during Fruit Development in High-Yielding Oil Palm Mesocarp

    PubMed Central

    Teh, Huey Fang; Neoh, Bee Keat; Hong, May Ping Li; Low, Jaime Yoke Sum; Ng, Theresa Lee Mei; Ithnin, Nalisha; Thang, Yin Mee; Mohamed, Mohaimi; Chew, Fook Tim; Yusof, Hirzun Mohd.; Kulaveerasingam, Harikrishna; Appleton, David R.

    2013-01-01

    To better understand lipid biosynthesis in oil palm mesocarp, in particular the differences in gene regulation leading to and including de novo fatty acid biosynthesis, a multi-platform metabolomics technology was used to profile mesocarp metabolites during six critical stages of fruit development in comparatively high- and low-yielding oil palm populations. Significantly higher amino acid levels preceding lipid biosynthesis and nucleosides during lipid biosynthesis were observed in a higher yielding commercial palm population. Levels of metabolites involved in glycolysis revealed interesting divergence of flux towards glycerol-3-phosphate, while carbon utilization differences in the TCA cycle were proven by an increase in malic acid/citric acid ratio. Apart from insights into the regulation of enhanced lipid production in oil palm, these results provide potentially useful metabolite yield markers and genes of interest for use in breeding programmes. PMID:23593468

  16. Differential metabolite profiles during fruit development in high-yielding oil palm mesocarp.

    PubMed

    Teh, Huey Fang; Neoh, Bee Keat; Hong, May Ping Li; Low, Jaime Yoke Sum; Ng, Theresa Lee Mei; Ithnin, Nalisha; Thang, Yin Mee; Mohamed, Mohaimi; Chew, Fook Tim; Yusof, Hirzun Mohd; Kulaveerasingam, Harikrishna; Appleton, David R

    2013-01-01

    To better understand lipid biosynthesis in oil palm mesocarp, in particular the differences in gene regulation leading to and including de novo fatty acid biosynthesis, a multi-platform metabolomics technology was used to profile mesocarp metabolites during six critical stages of fruit development in comparatively high- and low-yielding oil palm populations. Significantly higher amino acid levels preceding lipid biosynthesis and nucleosides during lipid biosynthesis were observed in a higher yielding commercial palm population. Levels of metabolites involved in glycolysis revealed interesting divergence of flux towards glycerol-3-phosphate, while carbon utilization differences in the TCA cycle were proven by an increase in malic acid/citric acid ratio. Apart from insights into the regulation of enhanced lipid production in oil palm, these results provide potentially useful metabolite yield markers and genes of interest for use in breeding programmes. PMID:23593468

  17. Effect of four different vegetable oils (red palm olein, palm olein, corn oil, coconut oil) on antioxidant enzymes activity of rat liver.

    PubMed

    Dauqan, Eqbal; Sani, Halimah Abdullah; Abdullah, Aminah; Kasim, Zalifah Mohd

    2011-03-15

    The objective of the study was to evaluate the effect of four different vegetable oils [red palm olein (RPO), palm olein (PO), corn oil (CO), coconut oil (COC)] on antioxidant enzymes activity of rat liver. Sixty six Sprague Dawley male rats which were randomly divided into eleven groups of 6 rats per group and were treated with 15% of RPO, PO, CO and COC for 4 and 8 weeks. Rats in the control group were given normal rat pellet only while in treated groups, 15% of additional different vegetable oils were given. After 4 weeks of treatment the catalase (CAT) activity results showed that there was no significance difference (p > or = 0.05) between the control group and treated groups while after 8 weeks of treatment showed that there was no significant different (p > or = 0.05) between control group and RPO group but the treated rat liver with PO, CO and COC groups were the lowest and it were significantly lower (> or = 0.05) than control group. For superoxide dismutase (SOD) there was no significance difference (p > or = 0.05) between the control group and treated groups of vegetable oils after 4 and 8 weeks of treatment. Thus the study indicated that there was no significant (p > or = 0.05) effect on antioxidant enzyme (superoxide dismutase) but there was significant effect (p > or = 0.05) on catalase in rat liver. PMID:21902064

  18. Characterization of Coconut cadang-cadang viroid variants from oil palm affected by orange spotting disease in Malaysia.

    PubMed

    Wu, Y H; Cheong, L C; Meon, S; Lau, W H; Kong, L L; Joseph, H; Vadamalai, G

    2013-06-01

    A 246-nt variant of Coconut cadang-cadang viroid (CCCVd) has been identified and described from oil palms with orange spotting symptoms in Malaysia. Compared with the 246-nt form of CCCVd from coconut, the oil palm variant substituted C(31)→U in the pathogenicity domain and G(70)→C in the central conserved domain. This is the first sequence reported for a 246-nt variant of CCCVd in oil palms expressing orange spotting symptoms. PMID:23397332

  19. Utilization of palm oil sludge through pyrolysis for bio-oil and bio-char production.

    PubMed

    Thangalazhy-Gopakumar, Suchithra; Al-Nadheri, Wail Mohammed Ahmed; Jegarajan, Dinesh; Sahu, J N; Mubarak, N M; Nizamuddin, S

    2015-02-01

    In this study, pyrolysis technique was utilized for converting palm oil sludge to value added materials: bio-oil (liquid fuel) and bio-char (soil amendment). The bio-oil yield obtained was 27.4±1.7 wt.% having a heating value of 22.2±3.7 MJ/kg and a negligible ash content of 0.23±0.01 wt.%. The pH of bio-oil was in alkaline region. The bio-char yielded 49.9±0.3 wt.%, which was further investigated for sorption efficiency by adsorbing metal (Cd(2+) ions) from water. The removal efficiency of Cd(2+) was 89.4±2%, which was almost similar to the removal efficiency of a commercial activated carbon. The adsorption isotherm was well described by Langmuir model. Therefore, pyrolysis is proved as an efficient tool for palm oil sludge management, where the waste was converted into valuable products. PMID:25278112

  20. Bud Rot Caused by Phytophthora palmivora: A Destructive Emerging Disease of Oil Palm.

    PubMed

    Torres, G A; Sarria, G A; Martinez, G; Varon, F; Drenth, A; Guest, D I

    2016-04-01

    Oomycetes from the genus Phytophthora are among the most important plant pathogens in agriculture. Epidemics caused by P. infestans precipitated the great Irish famine and had a major impact on society and human history. In the tropics, P. palmivora is a pathogen of many plant species including cacao (Theobroma cacao), citrus (Citrus sp.), durian (Durio zibethines), jackfruit (Artrocarpus heterophyllus), rubber (Hevea brasiliensis), and several palm species including coconut (Cocos nucifera), and the African oil palm (Elaeis guineensis) as determined recently. The first localized epidemics of bud rot in oil palm in Colombia were reported in 1964. However, recent epidemics of bud rot have destroyed more than 70,000 ha of oil palm in the Western and Central oil palm growing regions of Colombia. The agricultural, social, and economic implications of these outbreaks have been significant in Colombia. Identification of the pathogen after 100 years of investigating the disease in the world enabled further understanding of infection, expression of a range of symptoms, and epidemiology of the disease. This review examines the identification of P. palmivora as the cause of bud rot in Colombia, its epidemiology, and discusses the importance of P. palmivora as a major threat to oil palm plantings globally. PMID:26714102

  1. Environmental regulation of sex determination in oil palm: current knowledge and insights from other species

    PubMed Central

    Adam, Hélène; Collin, Myriam; Richaud, Frédérique; Beulé, Thierry; Cros, David; Omoré, Alphonse; Nodichao, Leifi; Nouy, Bruno; Tregear, James W.

    2011-01-01

    Background The African oil palm (Elaeis guineensis) is a monoecious species of the palm subfamily Arecoideae. It may be qualified as ‘temporally dioecious’ in that it produces functionally unisexual male and female inflorescences in an alternating cycle on the same plant, resulting in an allogamous mode of reproduction. The ‘sex ratio’ of an oil palm stand is influenced by both genetic and environmental factors. In particular, the enhancement of male inflorescence production in response to water stress has been well documented. Scope This paper presents a review of our current understanding of the sex determination process in oil palm and discusses possible insights that can be gained from other species. Although some informative phenological studies have been carried out, nothing is as yet known about the genetic basis of sex determination in oil palm, nor the mechanisms by which this process is regulated. Nevertheless new genomics-based techniques, when combined with field studies and biochemical and molecular cytological-based approaches, should provide a new understanding of the complex processes governing oil palm sex determination in the foreseeable future. Current hypotheses and strategies for future research are discussed. PMID:21712294

  2. Oil Palm expansion over Southeast Asia: land use change and air quality

    NASA Astrophysics Data System (ADS)

    Silva, S. J.; Heald, C. L.; Geddes, J.; Marlier, M. E.; Austin, K.; Kasibhatla, P. S.

    2015-12-01

    Over recent decades oil palm plantations have rapidly expanded across Southeast Asia (SEA). Much of this expansion has come at the expense of natural forests and grasslands. Aircraft measurements from a 2008 campaign, OP3, found that oil palm plantations emit as much as 7 times more isoprene than nearby natural forests. Furthermore, SEA is a rapidly developing region, with increasing urban population, and growing air quality concerns. Thus, SEA represents an ideal case study to examine the impacts of land use change on air quality in the region, and whether those changes can be detected from satellite observations of atmospheric composition. We investigate the impacts of historical and future oil palm expansion in SEA using satellite data, high-resolution land maps, and the chemical transport model GEOS-Chem. We examine the impact of palm plantations on surface-atmosphere processes (dry deposition, biogenic emissions). We show the sensitivity of air quality to current and future oil palm expansion scenarios, and discuss the limitations of current satellite measurements in capturing these changes. Our results indicate that while the impact of oil palm expansion on air quality can be significant, the retrieval error and sensitivity of the satellite measurements limit our ability to observe these impacts from space.

  3. Natural (13) C distribution in oil palm (Elaeis guineensis Jacq.) and consequences for allocation pattern.

    PubMed

    Lamade, Emmanuelle; Tcherkez, Guillaume; Darlan, Nuzul Hijri; Rodrigues, Rosario Lobato; Fresneau, Chantal; Mauve, Caroline; Lamothe-Sibold, Marlène; Sketriené, Diana; Ghashghaie, Jaleh

    2016-01-01

    Oil palm has now become one of the most important crops, palm oil representing nearly 25% of global plant oil consumption. Many studies have thus addressed oil palm ecophysiology and photosynthesis-based models of carbon allocation have been used. However, there is a lack of experimental data on carbon fixation and redistribution within palm trees, and important C-sinks have not been fully characterized yet. Here, we carried out extensive measurement of natural (13) C-abundance (δ(13) C) in oil palm tissues, including fruits at different maturation stages. We find a (13) C-enrichment in heterotrophic organs compared to mature leaves, with roots being the most (13) C-enriched. The δ(13) C in fruits decreased during maturation, reflecting the accumulation in (13) C-depleted lipids. We further used observed δ(13) C values to compute plausible carbon fluxes using a steady-state model of (13) C-distribution including metabolic isotope effects ((12) v/(13) v). The results suggest that fruits represent a major respiratory loss (≈39% of total tree respiration) and that sink organs such as fruits are fed by sucrose from leaves. That is, glucose appears to be a quantitatively important compound in palm tissues, but computations indicate that it is involved in dynamic starch metabolism rather that C-exchange between organs. PMID:26228944

  4. Ecosystem-based greenhouse budgets in oil palm plantations differ with plantation age

    NASA Astrophysics Data System (ADS)

    Meijide, Ana; Hassler, Evelyn; Corre, Marife D.; June, Tania; Veldkamp, Edzo; Knohl, Alexander

    2016-04-01

    Global increase in demand of palm oil is leading to the expansion of oil palm plantations, particularly in SE Asia. Oil palm plantations in Sumatra, Indonesia, together with those in Kalimantan, are responsible for half of the world's palm oil production. Available studies point to plantations being large carbon dioxide (CO2) sinks due to the high photosynthetic rates of oil palm as a result of high fertilizer inputs, especially in large-scale plantations. However, methane (CH4) uptake in the soil of oil palm plantations is reduced and soil nitrous oxide (N2O) emissions increased right after nitrogen (N) fertilization. Greenhouse gas (GHG) budgets at the ecosystem level are still missing, and the few available information was derived from mature plantations, pointing to a lack of knowledge on the changes of these GHG budgets with plantation age. With the aim of quantifying CO2, CH4 and N2O fluxes during the non-productive and productive phases of oil palm cultivation, an eddy covariance (EC) tower was installed in a 2-year old (non-productive) oil palm plantation and was subsequently moved to a 12-year old (productive) plantation. Both sites were on Acrisol soils and were located in Jambi province, Sumatra. Chamber-based measurements of soil GHG fluxes were also carried out along the EC footprint. Net ecosystem exchange (NEE), based on EC measurement, showed that the non-productive plantation was a strong CO2 source (990 g C m-2 yr-1) whereas the productive plantation was a CO2 sink (-790 g C m-2 yr-1). For CH4 fluxes, both plantations showed similar soil CH4 uptake that led to a small carbon sink of (~1.3 g C m-2 yr-1). Soil N2O fluxes were high in the productive plantation (3.26 ± 1.73 kg N ha-1 yr-1), as measurements were carried out in a plantation with high fertilization rates. In the non-productive plantation, soil N2O fluxes were lower and were associated with fertilization events. Our results show that the global warming potential of a non-productive oil

  5. Interactions Between the Bud Rot Disease of Oil Palm and Rhynchophorus palmarum (Coleoptera: Curculionidae).

    PubMed

    Plata-Rueda, Angelica; Martínez, Luis Carlos; Fernandes, Flávio Lemes; de Sousa Ramalho, Francisco; Zanuncio, José Cola; Serrão, José Eduardo

    2016-04-01

    Rhynchophorus palmarum (L.) causes great losses to the oil palm plantations, and therefore, the spatial and temporal distribution of this insect should be studied, to manage its populations. Insect sampling was done for 2 yr in an oil palm plantation from Colombia. In total, 60 pheromone traps were used in healthy palm trees and infected ones with the Bud Rot disease. On the other hand, developmental stages of this insect were quantified on healthy and diseased palms for two consecutive years. Number of adult R. palmarum per sampling was higher in the plantation with diseased palm trees, 3.85 and 74.7 insects per trap, than in those with healthy ones, 1.91 and 9.48 insects per trap, in the first and second years, respectively. After the integration of pheromone traps, there was a significant increase in the infestation level at all stages of development of the insect. For the first time, the presence of R. palmarum attracted to diseased palms is reported. The association between R. palmarum and the Bud Rot disease is a cause of death and great loss to the oil palm plantations. PMID:26791821

  6. Improving palm oil quality through identification and mapping of the lipase gene causing oil deterioration.

    PubMed

    Morcillo, F; Cros, D; Billotte, N; Ngando-Ebongue, G-F; Domonhédo, H; Pizot, M; Cuéllar, T; Espéout, S; Dhouib, R; Bourgis, F; Claverol, S; Tranbarger, T J; Nouy, B; Arondel, V

    2013-01-01

    The oil palm fruit mesocarp contains high lipase activity that increases free fatty acids and necessitates post-harvest inactivation by heat treatment of fruit bunches. Even before heat treatment the mesocarp lipase activity causes consequential oil losses and requires costly measures to limit free fatty acids quantities. Here we demonstrate that elite low-lipase lines yield oil with substantially less free fatty acids than standard genotypes, allowing more flexibility for post-harvest fruit processing and extended ripening for increased yields. We identify the lipase and its gene cosegregates with the low-/high-lipase trait, providing breeders a marker to rapidly identify potent elite genitors and introgress the trait into major cultivars. Overall, economic gains brought by wide adoption of this material could represent up to one billion dollars per year. Expected benefits concern all planters but are likely to be highest for African smallholders who would be more able to produce oil that meets international quality standards. PMID:23857501

  7. Non-tenera Contamination and the Economic Impact of SHELL Genetic Testing in the Malaysian Independent Oil Palm Industry.

    PubMed

    Ooi, Leslie C-L; Low, Eng-Ti L; Abdullah, Meilina O; Nookiah, Rajanaidu; Ting, Ngoot C; Nagappan, Jayanthi; Manaf, Mohamad A A; Chan, Kuang-Lim; Halim, Mohd A; Azizi, Norazah; Omar, Wahid; Murad, Abdul J; Lakey, Nathan; Ordway, Jared M; Favello, Anthony; Budiman, Muhammad A; Van Brunt, Andrew; Beil, Melissa; Leininger, Michael T; Jiang, Nan; Smith, Steven W; Brown, Clyde R; Kuek, Alex C S; Bahrain, Shabani; Hoynes-O'Connor, Allison; Nguyen, Amelia Y; Chaudhari, Hemangi G; Shah, Shivam A; Choo, Yuen-May; Sambanthamurthi, Ravigadevi; Singh, Rajinder

    2016-01-01

    Oil palm (Elaeis guineensis) is the most productive oil bearing crop worldwide. It has three fruit forms, namely dura (thick-shelled), pisifera (shell-less) and tenera (thin-shelled), which are controlled by the SHELL gene. The fruit forms exhibit monogenic co-dominant inheritance, where tenera is a hybrid obtained by crossing maternal dura and paternal pisifera palms. Commercial palm oil production is based on planting thin-shelled tenera palms, which typically yield 30% more oil than dura palms, while pisifera palms are female-sterile and have little to no palm oil yield. It is clear that tenera hybrids produce more oil than either parent due to single gene heterosis. The unintentional planting of dura or pisifera palms reduces overall yield and impacts land utilization that would otherwise be devoted to more productive tenera palms. Here, we identify three additional novel mutant alleles of the SHELL gene, which encode a type II MADS-box transcription factor, and determine oil yield via control of shell fruit form phenotype in a manner similar to two previously identified mutant SHELL alleles. Assays encompassing all five mutations account for all dura and pisifera palms analyzed. By assaying for these variants in 10,224 mature palms or seedlings, we report the first large scale accurate genotype-based determination of the fruit forms in independent oil palm planting sites and in the nurseries that supply them throughout Malaysia. The measured non-tenera contamination rate (10.9% overall on a weighted average basis) underscores the importance of SHELL genetic testing of seedlings prior to planting in production fields. By eliminating non-tenera contamination, comprehensive SHELL genetic testing can improve sustainability by increasing yield on existing planted lands. In addition, economic modeling demonstrates that SHELL gene testing will confer substantial annual economic gains to the oil palm industry, to Malaysian gross national income and to Malaysian

  8. Non-tenera Contamination and the Economic Impact of SHELL Genetic Testing in the Malaysian Independent Oil Palm Industry

    PubMed Central

    Ooi, Leslie C.-L.; Low, Eng-Ti L.; Abdullah, Meilina O.; Nookiah, Rajanaidu; Ting, Ngoot C.; Nagappan, Jayanthi; Manaf, Mohamad A. A.; Chan, Kuang-Lim; Halim, Mohd A.; Azizi, Norazah; Omar, Wahid; Murad, Abdul J.; Lakey, Nathan; Ordway, Jared M.; Favello, Anthony; Budiman, Muhammad A.; Van Brunt, Andrew; Beil, Melissa; Leininger, Michael T.; Jiang, Nan; Smith, Steven W.; Brown, Clyde R.; Kuek, Alex C. S.; Bahrain, Shabani; Hoynes-O’Connor, Allison; Nguyen, Amelia Y.; Chaudhari, Hemangi G.; Shah, Shivam A.; Choo, Yuen-May; Sambanthamurthi, Ravigadevi; Singh, Rajinder

    2016-01-01

    Oil palm (Elaeis guineensis) is the most productive oil bearing crop worldwide. It has three fruit forms, namely dura (thick-shelled), pisifera (shell-less) and tenera (thin-shelled), which are controlled by the SHELL gene. The fruit forms exhibit monogenic co-dominant inheritance, where tenera is a hybrid obtained by crossing maternal dura and paternal pisifera palms. Commercial palm oil production is based on planting thin-shelled tenera palms, which typically yield 30% more oil than dura palms, while pisifera palms are female-sterile and have little to no palm oil yield. It is clear that tenera hybrids produce more oil than either parent due to single gene heterosis. The unintentional planting of dura or pisifera palms reduces overall yield and impacts land utilization that would otherwise be devoted to more productive tenera palms. Here, we identify three additional novel mutant alleles of the SHELL gene, which encode a type II MADS-box transcription factor, and determine oil yield via control of shell fruit form phenotype in a manner similar to two previously identified mutant SHELL alleles. Assays encompassing all five mutations account for all dura and pisifera palms analyzed. By assaying for these variants in 10,224 mature palms or seedlings, we report the first large scale accurate genotype-based determination of the fruit forms in independent oil palm planting sites and in the nurseries that supply them throughout Malaysia. The measured non-tenera contamination rate (10.9% overall on a weighted average basis) underscores the importance of SHELL genetic testing of seedlings prior to planting in production fields. By eliminating non-tenera contamination, comprehensive SHELL genetic testing can improve sustainability by increasing yield on existing planted lands. In addition, economic modeling demonstrates that SHELL gene testing will confer substantial annual economic gains to the oil palm industry, to Malaysian gross national income and to Malaysian

  9. Comparative transcriptome analysis of three oil palm fruit and seed tissues that differ in oil content and fatty acid composition.

    PubMed

    Dussert, Stéphane; Guerin, Chloé; Andersson, Mariette; Joët, Thierry; Tranbarger, Timothy J; Pizot, Maxime; Sarah, Gautier; Omore, Alphonse; Durand-Gasselin, Tristan; Morcillo, Fabienne

    2013-07-01

    Oil palm (Elaeis guineensis) produces two oils of major economic importance, commonly referred to as palm oil and palm kernel oil, extracted from the mesocarp and the endosperm, respectively. While lauric acid predominates in endosperm oil, the major fatty acids (FAs) of mesocarp oil are palmitic and oleic acids. The oil palm embryo also stores oil, which contains a significant proportion of linoleic acid. In addition, the three tissues display high variation for oil content at maturity. To gain insight into the mechanisms that govern such differences in oil content and FA composition, tissue transcriptome and lipid composition were compared during development. The contribution of the cytosolic and plastidial glycolytic routes differed markedly between the mesocarp and seed tissues, but transcriptional patterns of genes involved in the conversion of sucrose to pyruvate were not related to variations for oil content. Accumulation of lauric acid relied on the dramatic up-regulation of a specialized acyl-acyl carrier protein thioesterase paralog and the concerted recruitment of specific isoforms of triacylglycerol assembly enzymes. Three paralogs of the WRINKLED1 (WRI1) transcription factor were identified, of which EgWRI1-1 and EgWRI1-2 were massively transcribed during oil deposition in the mesocarp and the endosperm, respectively. None of the three WRI1 paralogs were detected in the embryo. The transcription level of FA synthesis genes correlated with the amount of WRI1 transcripts and oil content. Changes in triacylglycerol content and FA composition of Nicotiana benthamiana leaves infiltrated with various combinations of WRI1 and FatB paralogs from oil palm validated functions inferred from transcriptome analysis. PMID:23735505

  10. Influence of mineral matter on pyrolysis of palm oil wastes

    SciTech Connect

    Yang, Haiping; Chen, Hanping; Zheng, Chuguang; Yan, Rong; Lee, Dong Ho; Liang, David Tee

    2006-09-15

    The influence of mineral matter on pyrolysis of biomass (including pure biomass components, synthesized biomass, and natural biomass) was investigated using a thermogravimetric analyzer (TGA). First, the mineral matter, KCl, K{sub 2}CO{sub 3}, Na{sub 2}CO{sub 3}, CaMg(CO{sub 3}){sub 2}, Fe{sub 2}O{sub 3}, and Al{sub 2}O{sub 3}, was mixed respectively with the three main biomass components (hemicellulose, cellulose, and lignin) at a weight ratio (C/W) of 0.1 and its pyrolysis characteristics were investigated. Most of these mineral additives, except for K{sub 2}CO{sub 3}, demonstrated negligible influence. Adding K{sub 2}CO{sub 3} inhibited the pyrolysis of hemicellulose by lowering its mass loss rate by 0.3 wt%/{sup o}C, while it enhanced the pyrolysis of cellulose by shifting the pyrolysis to a lower temperature. With increased K{sub 2}CO{sub 3} added, the weight loss of cellulose in the lower temperature zone (200-315 {sup o}C) increased greatly, and the activation energies of hemicellulose and cellulose pyrolysis decreased notably from 204 to 42 kJ/mol. Second, studies on the synthetic biomass of hemicellulose, cellulose, lignin, and K{sub 2}CO{sub 3} (as a representative of minerals) indicated that peaks of cellulose and hemicellulose pyrolysis became overlapped with addition of K{sub 2}CO{sub 3} (at C/W=0.05-0.1), due to the catalytic effect of K{sub 2}CO{sub 3} lowering cellulose pyrolysis to a lower temperature. Finally, a local representative biomass--palm oil waste (in the forms of original material and material pretreated through water washing or K{sub 2}CO{sub 3} addition)--was studied. Water washing shifted pyrolysis of palm oil waste to a higher temperature by 20 {sup o}C, while K{sub 2}CO{sub 3} addition lowered the peak temperature of pyrolysis by {approx}50{sup o}C. It was therefore concluded that the obvious catalytic effect of adding K{sub 2}CO{sub 3} might be attributed to certain fundamental changes in terms of chemical structure of

  11. Comparison of Oxidation Stability and Quenchant Cooling Curve Performance of Soybean Oil and Palm Oil

    NASA Astrophysics Data System (ADS)

    Said, Diego; Belinato, Gabriela; Sarmiento, Gustavo S.; Otero, Rosa L. Simencio; Totten, George E.; Gastón, Analía; Canale, Lauralice C. F.

    2013-07-01

    The potential use of vegetable oil-derived industrial oils continues to be of great interest because vegetable oils are relatively non-toxic, biodegradable, and they are a renewable basestock alternative to petroleum oil. However, the fatty ester components containing conjugated double bonds of the triglyceride structure of vegetable oils typically produce considerably poorer thermal-oxidative stability than that achievable with petroleum basestocks under typical use conditions. Typically, these conditions involve furnace loads of hot steel (850 °C), which are rapidly immersed and cooled to bath temperatures of approximately 50-60 °C. This is especially true when a vegetable oil is held in an open tank with agitation and exposed to air at elevated temperatures for extended periods of time (months or years). This paper will describe the thermal-oxidative stability and quenching performance of soybean oil and palm oil and the resulting impact on the heat transfer coefficient. These results are compared to typical fully formulated, commercially available accelerated (fast) and an unaccelerated (slow) petroleum oil-based quenchants.

  12. Thermal profiles, crystallization behaviors and microstructure of diacylglycerol-enriched palm oil blends with diacylglycerol-enriched palm olein.

    PubMed

    Xu, Yayuan; Zhao, Xiaoqing; Wang, Qiang; Peng, Zhen; Dong, Cao

    2016-07-01

    To elucidate the possible interaction mechanisms between DAG-enriched oils, this study investigated how mixtures of DAG-enriched palm-based oils influenced the phase behavior, thermal properties, crystallization behaviors and the microstructure in binary fat blends. DAG-enriched palm oil (PO-DAGE) was blended with DAG-enriched palm olein (POL-DAGE) in various percentages (0%, 10%, 30%, 50%, 70%, 90%, 100%). Based on the observation of iso-solid diagram and phase diagram, the binary mixture of PO-DAGE/POL-DAGE showed a better compatibility in comparison with their corresponding original blends. DSC thermal profiles exhibited that the melting and crystallization properties of PO-DAGE/POL-DAGE were distinctively different from corresponding original blends. Crystallization kinetics revealed that PO-DAGE/POL-DAGE blends displayed a rather high crystallization rate and exhibited no spherulitic crystal growth. From the results of polarized light micrographs, PO-DAGE/POL-DAGE blends showed more dense structure with very small needle-like crystals than PO/POL. X-ray diffraction evaluation revealed when POL-DAGE was added in high contents to PO-DAGE, above 30%, β-polymorph dominated, and the mount of β' forms crystals was decreasing. PMID:26920306

  13. Impact of Logging and Forest Conversion to Oil Palm Plantations on Soil Bacterial Communities in Borneo

    PubMed Central

    Lee-Cruz, Larisa; Edwards, David P.; Tripathi, Binu M.

    2013-01-01

    Tropical forests are being rapidly altered by logging and cleared for agriculture. Understanding the effects of these land use changes on soil bacteria, which constitute a large proportion of total biodiversity and perform important ecosystem functions, is a major conservation frontier. Here we studied the effects of logging history and forest conversion to oil palm plantations in Sabah, Borneo, on the soil bacterial community. We used paired-end Illumina sequencing of the 16S rRNA gene, V3 region, to compare the bacterial communities in primary, once-logged, and twice-logged forest and land converted to oil palm plantations. Bacteria were grouped into operational taxonomic units (OTUs) at the 97% similarity level, and OTU richness and local-scale α-diversity showed no difference between the various forest types and oil palm plantations. Focusing on the turnover of bacteria across space, true β-diversity was higher in oil palm plantation soil than in forest soil, whereas community dissimilarity-based metrics of β-diversity were only marginally different between habitats, suggesting that at large scales, oil palm plantation soil could have higher overall γ-diversity than forest soil, driven by a slightly more heterogeneous community across space. Clearance of primary and logged forest for oil palm plantations did, however, significantly impact the composition of soil bacterial communities, reflecting in part the loss of some forest bacteria, whereas primary and logged forests did not differ in composition. Overall, our results suggest that the soil bacteria of tropical forest are to some extent resilient or resistant to logging but that the impacts of forest conversion to oil palm plantations are more severe. PMID:24056463

  14. Responses of soil fungi to logging and oil palm agriculture in Southeast Asian tropical forests.

    PubMed

    McGuire, K L; D'Angelo, H; Brearley, F Q; Gedallovich, S M; Babar, N; Yang, N; Gillikin, C M; Gradoville, R; Bateman, C; Turner, B L; Mansor, P; Leff, J W; Fierer, N

    2015-05-01

    Human land use alters soil microbial composition and function in a variety of systems, although few comparable studies have been done in tropical forests and tropical agricultural production areas. Logging and the expansion of oil palm agriculture are two of the most significant drivers of tropical deforestation, and the latter is most prevalent in Southeast Asia. The aim of this study was to compare soil fungal communities from three sites in Malaysia that represent three of the most dominant land-use types in the Southeast Asia tropics: a primary forest, a regenerating forest that had been selectively logged 50 years previously, and a 25-year-old oil palm plantation. Soil cores were collected from three replicate plots at each site, and fungal communities were sequenced using the Illumina platform. Extracellular enzyme assays were assessed as a proxy for soil microbial function. We found that fungal communities were distinct across all sites, although fungal composition in the regenerating forest was more similar to the primary forest than either forest community was to the oil palm site. Ectomycorrhizal fungi, which are important associates of the dominant Dipterocarpaceae tree family in this region, were compositionally distinct across forests, but were nearly absent from oil palm soils. Extracellular enzyme assays indicated that the soil ecosystem in oil palm plantations experienced altered nutrient cycling dynamics, but there were few differences between regenerating and primary forest soils. Together, these results show that logging and the replacement of primary forest with oil palm plantations alter fungal community and function, although forests regenerating from logging had more similarities with primary forests in terms of fungal composition and nutrient cycling potential. Since oil palm agriculture is currently the mostly rapidly expanding equatorial crop and logging is pervasive across tropical ecosystems, these findings may have broad applicability

  15. Persistent Effects of Oil Palm Plantation Agriculture on Freshwater Stream Function in Indonesian Borneo

    NASA Astrophysics Data System (ADS)

    Carlson, K. M.; Curran, L.; Ratnasari, D.

    2012-12-01

    Conversion of forests to agricultural land uses alters freshwater stream ecosystems by changing flows of physical, chemical, and biological stream inputs. In contrast with annual agricultural crops, oil palm agribusiness may have distinctive effects on stream function because these plantations replace existing land cover with 1,000-20,000 ha tree-like monocultures that have 20-30 year rotation cycles. From 2008 to 2012 in Kalimantan (Indonesian Borneo), we measured water temperature, metabolism, and sediment and nutrient loads in four streams draining watersheds dominated (> ~70%) by intact and logged forests, agroforests and agricultural fallows, and young (< 3 y) and mature (> 10 y) oil palm plantations. We find that mean daily stream temperature was elevated 12% at the mature and 8% at the young oil palm site compared to the forest stream (25.5 ± 0.3°C). No clear relationship emerged between land cover type and ecosystem respiration (ER, g O2 m-2 d-1) or gross primary production (GPP, g O2 m-2 d-1). Yet GPP:ER ratios were 600% and 650% greater at young and mature oil palm watersheds, respectively, than the forested watershed (0.020 ± 0.005). Sediment loads (t d-1) across measured water yields (m d-1) were higher in the young oil palm stream compared to all other streams. Total phosphorous, total dissolved phosphorous, and total nitrogen loads for measured water yields were elevated in the agroforest and young oil palm sites compared to the forest site. Our results indicate that oil palm plantation land use alters tropical stream temperature, metabolism, nutrient loads, and sediment loads; moreover, these conditions appear to persist for ≥ 15 years. We discuss the implications of these findings for local human communities and ecosystems.

  16. Hot compressed water extraction curve for palm oil and beta carotene concentration

    NASA Astrophysics Data System (ADS)

    Sharizan, M. S. M.; Azian, M. N.; Yoshiyuki, Y.; Kamal, A. A. M.; Che Yunus, M. A.

    2016-06-01

    Hot compressed water extraction (HCWE) is a promising green alternative for palm oil milling. The kinetic characteristic of HCWE for palm oil and it β-carotene concentration was experimentally investigated in this study at the different temperature and pressure. Semi-batch HCW extractor from 120 to 180 oC and 30 to 50 bar was used to evaluated the process for 60 mins of extraction in 10 mins interval. The results obtain using the HCWE process was compared with other extraction method. The oil extraction achieved the maximum extraction rate within 20 mins of extraction in most of the condition and starting to decrease until 60 mins of extraction time. The extraction rate for β-carotene was achieved the maximum rate in 10 mins and starting to decrease until 30 mins. None of β-carotene concentration had been extracted out from the palm oil mesocarp after 30 mins of extraction in all condition. The oil recovery of using HCWE was relatively low compare with the mechanical screw press, subcritical R134b, supercritical carbon dioxide and hexane extraction due to the oil loses in the oil-water emulsion. However, the β-carotene concentration in extracted oil using HCWE was improved compare with commercial crude palm oil (CPO) and subcritical R134a extraction.

  17. A sub-canopy structure for simulating oil palm in the Community Land Model (CLM-Palm): phenology, allocation and yield

    NASA Astrophysics Data System (ADS)

    Fan, Y.; Roupsard, O.; Bernoux, M.; Le Maire, G.; Panferov, O.; Kotowska, M. M.; Knohl, A.

    2015-11-01

    In order to quantify the effects of forests to oil palm conversion occurring in the tropics on land-atmosphere carbon, water and energy fluxes, we develop a new perennial crop sub-model CLM-Palm for simulating a palm plant functional type (PFT) within the framework of the Community Land Model (CLM4.5). CLM-Palm is tested here on oil palm only but is meant of generic interest for other palm crops (e.g., coconut). The oil palm has monopodial morphology and sequential phenology of around 40 stacked phytomers, each carrying a large leaf and a fruit bunch, forming a multilayer canopy. A sub-canopy phenological and physiological parameterization is thus introduced so that each phytomer has its own prognostic leaf growth and fruit yield capacity but with shared stem and root components. Phenology and carbon and nitrogen allocation operate on the different phytomers in parallel but at unsynchronized steps, separated by a thermal period. An important phenological phase is identified for the oil palm - the storage growth period of bud and "spear" leaves which are photosynthetically inactive before expansion. Agricultural practices such as transplanting, fertilization and leaf pruning are represented. Parameters introduced for the oil palm were calibrated and validated with field measurements of leaf area index (LAI), yield and net primary production (NPP) from Sumatra, Indonesia. In calibration with a mature oil palm plantation, the cumulative yields from 2005 to 2014 matched notably well between simulation and observation (mean percentage error = 3 %). Simulated inter-annual dynamics of PFT-level and phytomer-level LAI were both within the range of field measurements. Validation from eight independent oil palm sites shows the ability of the model to adequately predict the average leaf growth and fruit yield across sites and sufficiently represent the significant nitrogen- and age-related site-to-site variability in NPP and yield. Results also indicate that seasonal dynamics

  18. Oil palm plantations fail to support mammal diversity.

    PubMed

    Yue, Sam; Brodie, Jedediah F; Zipkin, Elise F; Bernard, Henry

    2015-12-01

    Agricultural expansion is the largest threat to global biodiversity. In particular, the rapid spread of tree plantations is a primary driver of deforestation in hyperdiverse tropical regions. Plantations tend to support considerably lower biodiversity than native forest, but it remains unclear whether plantation traits affect their ability to sustain native wildlife populations, particularly for threatened taxa. If animal diversity varies across plantations with different characteristics, these traits could be manipulated to make plantations more "wildlife friendly." The degree to which plantations create edge effects that degrade habitat quality in adjacent forest also remains unclear, limiting our ability to predict wildlife persistence in mixed-use landscapes. We used systematic camera trapping to investigate mammal occurrence and diversity in oil palm plantations and adjacent forest in Sabah, Malaysian Borneo. Mammals within plantations were largely constrained to locations near native forest; the occurrence of most species and overall species richness declined abruptly with decreasing forest proximity from an estimated 14 species at the forest ecotone to -1 species 2 km into the plantation. Neither tree height nor canopy cover within plantations strongly affected mammal diversity or occurrence, suggesting that manipulating tree spacing or planting cycles might not make plantations more wildlife friendly. Plantations did not appear to generate strong edge effects; mammal richness within forest remained high and consistent up to the plantation ecotone. Our results suggest that land-sparing strategies, as opposed to efforts to make plantations more wildlife-friendly, are required for regional wildlife conservation in biodiverse tropical ecosystems. PMID:26910955

  19. Co-composting of palm oil mill sludge-sawdust.

    PubMed

    Yaser, Abu Zahrim; Abd Rahman, Rakmi; Kalil, Mohd Sahaid

    2007-12-15

    Composting of Palm Oil Mill Sludge (POMS) with sawdust was conducted in natural aerated reactor. Composting using natural aerated reactor is cheap and simple. The goal of this study is to observe the potential of composting process and utilizing compost as media for growing Cymbopogun citratus, one of Malaysia herbal plant. The highest maximum temperature achieved is about 40 degrees C and to increase temperature bed, more biodegradable substrate needs to be added. The pH value decrease along the process with final pH compost is acidic (pH 5.7). The highest maximum organic losses are about 50% with final C/N ratio of the compost is about 19. Final compost also showed some fertilizing value but need to be adjusted to obtain an ideal substrate. Addition of about 70% sandy soil causes highest yield and excellent root development for C. citratus in potted media. Beside that, compost from POMS-sawdust also found to have fertilizer value and easy to handle. Composting of POMS with sawdust shows potential as an alternative treatment to dispose and recycle waste components. PMID:19093514

  20. Acetylation of oil palm empty fruit bunch fiber as an adsorbent for removal of crude oil.

    PubMed

    Asadpour, Robabeh; Sapari, Nasiman B; Isa, Mohamed Hasnain; Kakooei, Saeid

    2016-06-01

    Removal of oil spillage from the environment is a global concern. Various methods, including the use of fibers as sorbents, have been developed for oil spill control. Oil palm empty fruit bunch (OPEFB) fiber is a plant biomass that may be acetylated by acetic anhydride using N-bromosuccinimide (NBS) as a catalyst; here, the extent of acetylation may be calculated in terms of weight percent gain (WPG). The modified fiber was used to remove Tapis and Arabian crude oils. The optimum time, temperature, and catalyst concentration were 4 h, 120 °C, and 3 %, respectively, and these parameters could achieve an 11.49 % increase in WPG. The optimized parameters improved the adsorption capacity of OPEFB fibers for crude oil removal. The acetylated OPEFB fibers were characterized by using Fourier transform infrared spectroscopy and field emission scanning electron microscopy to observe the functional groups available and morphology. Kinetic and isotherm studies were conducted using different contact times and oil/water ratios. The rate of oil sorption onto the OPEFB fibers can be adequately described by the pseudo-second-order equation. Adsorption studies revealed that adsorption of crude oil on treated OPEFB fiber could be best described by the Langmuir isotherm model. PMID:26944428

  1. Palm oil taxes and cardiovascular disease mortality in India: economic-epidemiologic model

    PubMed Central

    Babiarz, Kim S; Ebrahim, Shah; Vellakkal, Sukumar; Stuckler, David; Goldhaber-Fiebert, Jeremy D

    2013-01-01

    Objective To examine the potential effect of a tax on palm oil on hyperlipidemia and on mortality due to cardiovascular disease in India. Design Economic-epidemiologic model. Modeling methods A microsimulation model of mortality due to myocardial infarction and stroke among Indian populations was constructed, incorporating nationally representative data on systolic blood pressure, total cholesterol, tobacco smoking, diabetes, and cardiovascular event history, and stratified by age, sex, and urban/rural residence. Household expenditure data were used to estimate the change in consumption of palm oil following changes in oil price and the potential substitution of alternative oils that might occur after imposition of a tax. A 20% excise tax on palm oil purchases was simulated over the period 2014-23. Main outcome measures The model was used to project future mortality due to myocardial infarction and stroke, as well as the potential effect of a tax on food insecurity, accounting for the effect of increased food prices. Results A 20% tax on palm oil purchases would be expected to avert approximately 363 000 (95% confidence interval 247 000 to 479 000) deaths from myocardial infarctions and strokes over the period 2014-23 in India (1.3% reduction in cardiovascular deaths) if people do not substitute other oils for reduced palm oil consumption. Given estimates of substitution of palm oil with other oils following a 20% price increase for palm oil, the beneficial effects of increased polyunsaturated fat consumption would be expected to enhance the projected reduction in deaths to as much as 421 000 (256 000 to 586 000). The tax would be expected to benefit men more than women and urban populations more than rural populations, given differential consumption and cardiovascular risk. In a scenario incorporating the effect of taxation on overall food expenditures, the tax may increase food insecurity by <1%, resulting in 16 000 (95% confidence interval 12 000

  2. Variability and performance evaluation of introgressed Nigerian dura x Deli dura oil palm progenies.

    PubMed

    Noh, A; Rafii, M Y; Mohd Din, A; Kushairi, A; Norziha, A; Rajanaidu, N; Latif, M A; Malek, M A

    2014-01-01

    Twelve introgressed oil palm (Elaeis guineensis) progenies of Nigerian dura x Deli dura were evaluated for bunch yield, yield attributes, bunch quality components and vegetative characters at the Malaysian Palm Oil Board Research Station, in Keratong, Pahang, Malaysia. Analysis of variance revealed significant to highly significant genotypic differences, indicating sufficient genetic variability among the progenies for bunch yield and its attributes, vegetative characters and bunch quality components, except fruit to bunch ratio. Fresh fruit bunch yield ranged from 167 kg·palm(-1)·year(-1) in PK1330 to 212 kg·palm(-1)·year(-1) in PK1351, with a mean yield of 192 kg·palm(-1)·year(-1). Among the progeny, PK1313 had the highest oil to bunch ratio (19.36%), due to its high mesocarp to fruit ratio, fruit to bunch ratio and low shell to fruit ratio. Among the progenies, PK1313 produced the highest oil yield of 31.4 kg·palm(-1)·year(-1), due to a high mesocarp to fruit ratio (61.2%) and a low shell to fruit ratio (30.7%), coupled with high fruit to bunch ratio (65.6%). PK1330 was found promising for selection, as it had desirable vegetative characters, including smaller petiole cross section (27.15 cm2), short rachis length (4.83 m), short palm height (1.85 m), and the lowest leaf number (164.6), as these vegetative characters are prerequisites for selecting palms for high density planting and high yield per hectare. The genetic variability among the progenies was found to be high, indicating ample scope for further breeding, followed by selection. PMID:24781997

  3. Influence of Blending Canola, Palm, Soybean, and Sunflower Oil Methyl Esters on Fuel Properties of Bioiesel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Single, binary, ternary, and quaternary mixtures of canola (low erucic acid rapeseed), palm, soybean, and sunflower (high oleic acid) oil methyl esters (CME, PME, SME, and SFME, respectively) were prepared and important fuel properties measured, such as oil stability index (OSI), cold filter pluggin...

  4. Soil burial biodegradation studies of palm oil-based UV-curable films

    NASA Astrophysics Data System (ADS)

    Tajau, Rida; Salleh, Mek Zah; Salleh, Nik Ghazali Nik; Abdurahman, Mohamad Norahiman; Salih, Ashraf Mohammed; Fathy, Siti Farhana; Azman, Anis Asmi; Hamidi, Nur Amira

    2016-01-01

    The palm oil-based ultraviolet (uv)-curable films were subjected to an outdoor soil burial test to investigate the biodegradation under natural environment. The films were burial in the soil experiment plot at the Nuclear Malaysia's Dengkil complex. The uv-curable films were synthesized from the epoxidized palm oil acrylated (EPOLA) resin and the polyurethane palm oil (POBUA) resin, respectively. Biodegradation tests are more specific to burial film in soil experiments for 12 months under natural conditions. The biodegradability of palm oil resin based uv-curable films were investigated and compared with the petrochemical resin based film. The films properties were compared with respect to properties of the thermal characteristic, the crystallinity, the morphology and the weight loss which are analyzed using the thermogravimetric analysis (TGA), the differential scanning calorimetry (DSC), the scanning electron microscope (SEM), an optical microscope and the weight loss of film calculation. These findings suggested that the palm oil-based uv-curable films show quite satisfactory biodegradation levels.

  5. Forecasting of palm oil price in Malaysia using linear and nonlinear methods

    NASA Astrophysics Data System (ADS)

    Nor, Abu Hassan Shaari Md; Sarmidi, Tamat; Hosseinidoust, Ehsan

    2014-09-01

    The first question that comes to the mind is: "How can we predict the palm oil price accurately?" This question is the authorities, policy makers and economist's question for a long period of time. The first reason is that in the recent years Malaysia showed a comparative advantage in palm oil production and has become top producer and exporter in the world. Secondly, palm oil price plays significant role in government budget and represents important source of income for Malaysia, which potentially can influence the magnitude of monetary policies and eventually have an impact on inflation. Thirdly, knowledge on the future trends would be helpful in the planning and decision making procedures and will generate precise fiscal and monetary policy. Daily data on palm oil prices along with the ARIMA models, neural networks and fuzzy logic systems are employed in this paper. Empirical findings indicate that the dynamic neural network of NARX and the hybrid system of ANFIS provide higher accuracy than the ARIMA and static neural network for forecasting the palm oil price in Malaysia.

  6. Ball milling pretreatment of oil palm biomass for enhancing enzymatic hydrolysis.

    PubMed

    Zakaria, Mohd Rafein; Fujimoto, Shinji; Hirata, Satoshi; Hassan, Mohd Ali

    2014-08-01

    Oil palm biomass, namely empty fruit bunch and frond fiber, were pretreated using a planetary ball mill. Particle sizes and crystallinity index values of the oil palm biomass were significantly reduced with extended ball mill processing time. The treatment efficiency was evaluated by the generation of glucose, xylose, and total sugar conversion yields from the pretreatment process compared to the amount of sugars from raw materials. Glucose and xylose contents were determined using high-performance liquid chromatography. An increasing trend in glucose and xylose yield as well as total sugar conversion yield was observed with decreasing particle size and crystallinity index. Oil palm frond fiber exhibited the best material yields using ball milling pretreatment with generated glucose, xylose, and total sugar conversion yields of 87.0, 81.6, and 85.4%, respectively. In contrast, oil palm empty fruit bunch afforded glucose and xylose of 70.0 and 82.3%, respectively. The results obtained in this study showed that ball mill-treated oil palm biomass is a suitable pretreatment method for high conversion of glucose and xylose. PMID:24908052

  7. Effect of Oil Palm Fibres Volume Fraction on Mechanical Properties of Polyester Composites

    NASA Astrophysics Data System (ADS)

    Yousif, B. F.

    The effect of two types of oil palm fibres (bunch and fruit) on mechanical properties of polyester composites is examined in the current work considering different volume fractions. Tensile, compression, and flexural properties of the composites were investigated. In addition to that, tensile strengths were calculated theoretically using Hirsch model. Scanning electron microscope (SEM) was used to observe the fracture mechanism of the specimens. Single fibre pull-out tests were performed to determine the interfacial shear strength between polyester resin and both types of oil palm fibres. Results revealed that both types of oil palm fibres enhanced the mechanical performance of polyester composites. At a higher volume fraction (40-50%), tensile strength of the polyester composite was improved, i.e., 2.5 times improvement in the tensile strength value. Experimental tensile strength values of oil palm bunch/polyester composites have a good correlation with the theoretical results, especially at low volume fractions of fibre. Flexural strength of polyester worsened with oil palm fibres at all volume fractions of fibre.

  8. Climate impacts on palm oil yields in the Nigerian Niger Delta

    NASA Astrophysics Data System (ADS)

    Okoro, Stanley U.; Schickhoff, Udo; Boehner, Juergen; Schneider, Uwe A.; Huth, Neil

    2016-04-01

    Palm oil production has increased in recent decades and is estimated to increase further. The optimal role of palm oil production, however, is controversial because of resource conflicts with alternative land uses. Local conditions and climate change affect resource competition and the desirability of palm oil production. Based on this, crop yield simulations using different climate model output under different climate scenarios could be important tool in addressing the problem of uncertainty quantification among different climate model outputs. Previous studies on this region have focused mostly on single experimental fields, not considering variations in Agro-Ecological Zones, climatic conditions, varieties and management practices and, in most cases not extending to various IPCC climate scenarios and were mostly based on single climate model output. Furthermore, the uncertainty quantification of the climate- impact model has rarely been investigated on this region. To this end we use the biophysical simulation model APSIM (Agricultural Production Systems Simulator) to simulate the regional climate impact on oil palm yield over the Nigerian Niger Delta. We also examine whether the use of crop yield model output ensemble reduces the uncertainty rather than the use of climate model output ensemble. The results could serve as a baseline for policy makers in this region in understanding the interaction between potentials of energy crop production of the region as well as its food security and other negative feedbacks that could be associated with bioenergy from oil palm. Keywords: Climate Change, Climate impacts, Land use and Crop yields.

  9. Fatty acid composition and sensory traits of beef fed palm oil supplements.

    PubMed

    Partida, J A; Olleta, J L; Sañudo, C; Albertí, P; Campo, M M

    2007-07-01

    This study measured the effect of replacing dietary fat from an animal source with palm oil supplements on the intramuscular fatty acid profile and sensory quality traits of the meat from young bulls. Thirty-six entire male Friesian calves (mean age=6.8±1.1 months, mean live weight=162.5±28.6kg) were assigned to one of four isoenergetic (1.03 MFU/kg DM) and isoproteinic (15.5% CP) diets, that differed in their fat additives: (D1) lard-tallow mix (control); (D2) hydrogenated palm oil fatty acids (PFA); (D3) calcium salt of partially hydrogenated PFA, and (D4) calcium salt of the fatty acid distillate from palm oil. Bulls (mean live weight=391.3±30.3kg) were slaughtered under commercial conditions and sensory tests were performed to evaluate the effects of the four diets and ageing time (1, 10, and 21d). Only the proportions of C16:0 and C18:0 were significantly affected by the palm oil dietary supplement. Ageing time affected grass odour, tenderness, juiciness, fibrosity, liver flavour, and acid flavour. Nevertheless, palm oil supplements did not negatively alter the organoleptic characteristics of the meat. PMID:22060986

  10. Conceptual design of semi-automatic wheelbarrow to overcome ergonomics problems among palm oil plantation workers

    NASA Astrophysics Data System (ADS)

    Nawik, N. S. M.; Deros, B. M.; Rahman, M. N. A.; Sukadarin, E. H.; Nordin, N.; Tamrin, S. B. M.; Bakar, S. A.; Norzan, M. L.

    2015-12-01

    An ergonomics problem is one of the main issues faced by palm oil plantation workers especially during harvesting and collecting of fresh fruit bunches (FFB). Intensive manual handling and labor activities involved have been associated with high prevalence of musculoskeletal disorders (MSDs) among palm oil plantation workers. New and safe technology on machines and equipment in palm oil plantation are very important in order to help workers reduce risks and injuries while working. The aim of this research is to improve the design of a wheelbarrow, which is suitable for workers and a small size oil palm plantation. The wheelbarrow design was drawn using CATIA ergonomic features. The characteristic of ergonomics assessment is performed by comparing the existing design of wheelbarrow. Conceptual design was developed based on the problems that have been reported by workers. From the analysis of the problem, finally have resulting concept design the ergonomic quality of semi-automatic wheelbarrow with safe and suitable used for palm oil plantation workers.

  11. Oil palm fruit grading using a hyperspectral device and machine learning algorithm

    NASA Astrophysics Data System (ADS)

    Bensaeed, O. M.; Shariff, A. M.; Mahmud, A. B.; Shafri, H.; Alfatni, M.

    2014-06-01

    In this paper, a hyperspectral-based system was introduced to detect the ripeness of oil palm fresh fruit bunches (FFB). The FFBs were scanned using a hyperspectral device, and reflectance was recorded at different wavelengths. A total of 469 fruits from oil palm FFBs (nigrescens, virescens, oleifera) were categorized as overripe, ripe, and underripe. Fruit attributes in the visible and nearinfrared (400 nm to1000 nm) wavelength range regions were measured. Artificial neural network (ANN), classified the different wavelength regions on oil palm fruit through pixel-wise processing. The developed ANN model successfully classified oil palm fruits into the three ripeness categories (ripe, underripe, and overripe). The accuracy achieved by our approach was compared against that of the conventional system employing manual classification based on the observations of a human grader. Our classification approach had an accuracy of more than 95% for all three types of oil palm fruits. The research findings will help increase the quality harvesting and grading efficiency of FFBs.

  12. Influence of palm oil and glycerol on properties of fish skin gelatin-based films.

    PubMed

    Nilsuwan, Krisana; Benjakul, Soottawat; Prodpran, Thummanoon

    2016-06-01

    Properties of fish skin gelatin film incorporated with palm oil at 50 and 75 % (w/w) as affected by glycerol at 0-30 % (w/w) were investigated. Increases in water vapour permeability and elongation at break along with decrease in tensile strength were noticed when levels of glycerol were increased (p < 0.05). Decrease in L*- and a*-values with coincidental increase in b*- and ΔE*-values were observed in emulsified films when amount of palm oil incorporated increased (p < 0.05). Light transmittance of all films increased as glycerol levels were increased (p < 0.05). FTIR results suggested that the protein-protein interaction in film matrix decreased when palm oil was incorporated. Films added with palm oil had lower glass transition and degradation temperatures than control films. The addition of 75 % palm oil and 10 % glycerol improved water vapour barrier property of fish skin gelatin films without drastic alteration of mechanical properties. PMID:27478227

  13. Optimization of Protein Extraction and Two-Dimensional Electrophoresis Protocols for Oil Palm Leaf.

    PubMed

    Daim, Leona Daniela Jeffery; Ooi, Tony Eng Keong; Yusof, Hirzun Mohd; Majid, Nazia Abdul; Karsani, Saiful Anuar Bin

    2015-08-01

    Oil palm (Elaeis guineensis) is an important economic crop cultivated for its nutritional palm oil. A significant amount of effort has been undertaken to understand oil palm growth and physiology at the molecular level, particularly in genomics and transcriptomics. Recently, proteomics studies have begun to garner interest. However, this effort is impeded by technical challenges. Plant sample preparation for proteomics analysis is plagued with technical challenges due to the presence of polysaccharides, secondary metabolites and other interfering compounds. Although protein extraction methods for plant tissues exist, none work universally on all sample types. Therefore, this study aims to compare and optimize different protein extraction protocols for use with two-dimensional gel electrophoresis of young and mature leaves from the oil palm. Four protein extraction methods were evaluated: phenol-guanidine isothiocyanate, trichloroacetic acid-acetone precipitation, sucrose and trichloroacetic acid-acetone-phenol. Of these four protocols, the trichloroacetic acid-acetone-phenol method was found to give the highest resolution and most reproducible gel. The results from this study can be used in sample preparations of oil palm tissue for proteomics work. PMID:26263918

  14. Adsorbent capability testing using desorption efficiency method on palm oil fiber

    NASA Astrophysics Data System (ADS)

    Manap, Nor Rahafza Abdul; Shamsudin, Roslinda

    2015-09-01

    The palm oil fiber had been used as filler in making thermoplastics, biocomposites and also used as adsorbent in treating waste water. In this study, palm oil fiber was used as adsorbent to treat indoor air pollutants that caused by toluene, ethylbenzene, ortho-, meta-, and para- xylene (o-, m-, p-xylene). Known amount of pollutants, ranges between 1.3 to 28 ppm was spiked into palm oil fiber and left in refrigerator for 24 hours. Then, elution of the pollutants was carried out by carbon disulphide as mobile phase or eluent. The ability of palm oil fiber as adsorbent was determine using desorption efficiency technique by gas chromatography with flame ionization detector (GC/FID). The desorption efficiency percentage given by toluene was in the range of 88.9% to 100%, 91% to 100% for ethylbenzene, 65% to 100% for pm-xylene and 92.9% to 100% for o-xylene. This percentage indicates that palm oil fiber can be used as adsorbent to treat indoor air pollutants.

  15. Development of palm oil-based UV-curable epoxy acrylate and urethane acrylate resins for wood coating application

    SciTech Connect

    Tajau, Rida; Mahmood, Mohd Hilmi; Salleh, Mek Zah; Salleh, Nik Ghazali Nik; Ibrahim, Mohammad Izzat; Yunus, Nurulhuda Mohd

    2014-02-12

    The trend of using renewable sources such as palm oil as raw material in radiation curing is growing due to the demand from the market to produce a more environmental friendly product. In this study, the radiation curable process was done using epoxy acrylate and urethane acrylate resins which are known as epoxidised palm olein acrylate (EPOLA) and palm oil based urethane acrylate (POBUA), respectively. The purpose of the study was to investigate curing properties and the application of this UV-curable palm oil resins for wood coating. Furthermore, the properties of palm oil based coatings are compared with the petrochemical-based compound such as ebecryl (EB) i.e. EB264 and EB830. From the experiment done, the resins from petrochemical-based compounds resulted higher degree of crosslinking (up to 80%) than the palm oil based compounds (up to 70%), where the different is around 10-15%. The hardness property from this two type coatings can reached until 50% at the lower percentage of the oligomer. However, the coatings from petrochemical-based have a high scratch resistance as it can withstand at least up to 3.0 Newtons (N) compared to the palm oil-based compounds which are difficult to withstand the load up to 1.0 N. Finally, the test on the rubber wood substrate showed that the coatings containing benzophenone photoinitiator give higher adhesion property and their also showed a higher glosiness property on the glass substrate compared to the coatings containing irgacure-819 photoinitiator. This study showed that the palm oil coatings can be a suitable for the replacement of petrochemicals compound for wood coating. The palm oil coatings can be more competitive in the market if the problems of using high percentage palm oil oligomer can be overcome as the palm oil price is cheap enough.

  16. Development of palm oil-based UV-curable epoxy acrylate and urethane acrylate resins for wood coating application

    NASA Astrophysics Data System (ADS)

    Tajau, Rida; Ibrahim, Mohammad Izzat; Yunus, Nurulhuda Mohd; Mahmood, Mohd Hilmi; Salleh, Mek Zah; Salleh, Nik Ghazali Nik

    2014-02-01

    The trend of using renewable sources such as palm oil as raw material in radiation curing is growing due to the demand from the market to produce a more environmental friendly product. In this study, the radiation curable process was done using epoxy acrylate and urethane acrylate resins which are known as epoxidised palm olein acrylate (EPOLA) and palm oil based urethane acrylate (POBUA), respectively. The purpose of the study was to investigate curing properties and the application of this UV-curable palm oil resins for wood coating. Furthermore, the properties of palm oil based coatings are compared with the petrochemical-based compound such as ebecryl (EB) i.e. EB264 and EB830. From the experiment done, the resins from petrochemical-based compounds resulted higher degree of crosslinking (up to 80%) than the palm oil based compounds (up to 70%), where the different is around 10-15%. The hardness property from this two type coatings can reached until 50% at the lower percentage of the oligomer. However, the coatings from petrochemical-based have a high scratch resistance as it can withstand at least up to 3.0 Newtons (N) compared to the palm oil-based compounds which are difficult to withstand the load up to 1.0 N. Finally, the test on the rubber wood substrate showed that the coatings containing benzophenone photoinitiator give higher adhesion property and their also showed a higher glosiness property on the glass substrate compared to the coatings containing irgacure-819 photoinitiator. This study showed that the palm oil coatings can be a suitable for the replacement of petrochemicals compound for wood coating. The palm oil coatings can be more competitive in the market if the problems of using high percentage palm oil oligomer can be overcome as the palm oil price is cheap enough.

  17. Synergies for Improving Oil Palm Production and Forest Conservation in Floodplain Landscapes

    PubMed Central

    Abram, Nicola K.; Xofis, Panteleimon; Tzanopoulos, Joseph; MacMillan, Douglas C.; Ancrenaz, Marc; Chung, Robin; Peter, Lucy; Ong, Robert; Lackman, Isabelle; Goossens, Benoit; Ambu, Laurentius; Knight, Andrew T.

    2014-01-01

    Lowland tropical forests are increasingly threatened with conversion to oil palm as global demand and high profit drives crop expansion throughout the world’s tropical regions. Yet, landscapes are not homogeneous and regional constraints dictate land suitability for this crop. We conducted a regional study to investigate spatial and economic components of forest conversion to oil palm within a tropical floodplain in the Lower Kinabatangan, Sabah, Malaysian Borneo. The Kinabatangan ecosystem harbours significant biodiversity with globally threatened species but has suffered forest loss and fragmentation. We mapped the oil palm and forested landscapes (using object-based-image analysis, classification and regression tree analysis and on-screen digitising of high-resolution imagery) and undertook economic modelling. Within the study region (520,269 ha), 250,617 ha is cultivated with oil palm with 77% having high Net-Present-Value (NPV) estimates ($413/ha−yr–$637/ha−yr); but 20.5% is under-producing. In fact 6.3% (15,810 ha) of oil palm is commercially redundant (with negative NPV of $-299/ha−yr-$-65/ha−yr) due to palm mortality from flood inundation. These areas would have been important riparian or flooded forest types. Moreover, 30,173 ha of unprotected forest remain and despite its value for connectivity and biodiversity 64% is allocated for future oil palm. However, we estimate that at minimum 54% of these forests are unsuitable for this crop due to inundation events. If conversion to oil palm occurs, we predict a further 16,207 ha will become commercially redundant. This means that over 32,000 ha of forest within the floodplain would have been converted for little or no financial gain yet with significant cost to the ecosystem. Our findings have globally relevant implications for similar floodplain landscapes undergoing forest transformation to agriculture such as oil palm. Understanding landscape level constraints to this crop, and transferring these

  18. CO2 and energy fluxes from an oil palm plantation in Sumatra, Indonesia

    NASA Astrophysics Data System (ADS)

    Meijide, Ana; Herbst, Mathias; Knohl, Alexander

    2014-05-01

    Oil palm plantations are expanding in Indonesia due to global increased demand of palm oil. Such plantations are usually set in previously forested land and in Sumatra, massive transformation of lowland forest into oil palm plantations is taking place. These land transformations have been identified as a potential driver of climate change, as they might result in changes of greenhouse gas (GHG) fluxes. However, very limited information is available on GHG fluxes from oil palm plantations and their sink or source strength at ecosystem scale is yet unknown. An eddy covariance tower was therefore installed in a 2 year old oil palm plantation in the province of Jambi, Sumatra (1° 50' 7'S, 103° 17' 44'E), with the aim of studying carbon dioxide, water and energy fluxes during the non-productive phase of oil palm cultivation. The canopy was not yet closed and trees were around 2m high. The eddy covariance system consists of a Licor 7500A and an ultrasonic Metek Anemometer, operating at 10 Hz and installed on a 7m tower. In addition to the eddy covariance measurements, the site is equipped with a weather station, measuring short and long wave radiation, PAR, rainfall, profiles of air temperature, air humidity and wind speed, soil temperature and moisture and soil heat fluxes. Measurements started in July 2013 until January 2014, in order to capture possible differences which may happen during the dry (July-October) and wet (November-February) seasons. A large CO2 uptake would have been expected at this young oil palm plantation, as palm trees during this period of their cultivation are growing fast. However, our preliminary results show that during the first 5 months of measurements, the ecosystem was a small carbon source (below 10 g CO2 m-2). Latent heat flux was higher than sensible heat flux during the period of study, indicative of the high evaporation taking place. Our results show that both for CO2 and energy fluxes, large differences were observed between the

  19. Synergies for improving oil palm production and forest conservation in floodplain landscapes.

    PubMed

    Abram, Nicola K; Xofis, Panteleimon; Tzanopoulos, Joseph; MacMillan, Douglas C; Ancrenaz, Marc; Chung, Robin; Peter, Lucy; Ong, Robert; Lackman, Isabelle; Goossens, Benoit; Ambu, Laurentius; Knight, Andrew T

    2014-01-01

    Lowland tropical forests are increasingly threatened with conversion to oil palm as global demand and high profit drives crop expansion throughout the world's tropical regions. Yet, landscapes are not homogeneous and regional constraints dictate land suitability for this crop. We conducted a regional study to investigate spatial and economic components of forest conversion to oil palm within a tropical floodplain in the Lower Kinabatangan, Sabah, Malaysian Borneo. The Kinabatangan ecosystem harbours significant biodiversity with globally threatened species but has suffered forest loss and fragmentation. We mapped the oil palm and forested landscapes (using object-based-image analysis, classification and regression tree analysis and on-screen digitising of high-resolution imagery) and undertook economic modelling. Within the study region (520,269 ha), 250,617 ha is cultivated with oil palm with 77% having high Net-Present-Value (NPV) estimates ($413/ha-yr-$637/ha-yr); but 20.5% is under-producing. In fact 6.3% (15,810 ha) of oil palm is commercially redundant (with negative NPV of $-299/ha-yr-$-65/ha-yr) due to palm mortality from flood inundation. These areas would have been important riparian or flooded forest types. Moreover, 30,173 ha of unprotected forest remain and despite its value for connectivity and biodiversity 64% is allocated for future oil palm. However, we estimate that at minimum 54% of these forests are unsuitable for this crop due to inundation events. If conversion to oil palm occurs, we predict a further 16,207 ha will become commercially redundant. This means that over 32,000 ha of forest within the floodplain would have been converted for little or no financial gain yet with significant cost to the ecosystem. Our findings have globally relevant implications for similar floodplain landscapes undergoing forest transformation to agriculture such as oil palm. Understanding landscape level constraints to this crop, and transferring these into policy

  20. Palm oil and cardiovascular disease: a randomized trial of the effects of hybrid palm oil supplementation on human plasma lipid patterns.

    PubMed

    Lucci, P; Borrero, M; Ruiz, A; Pacetti, D; Frega, N G; Diez, O; Ojeda, M; Gagliardi, R; Parra, L; Angel, M

    2016-01-01

    This study examines, for the first time, the effect of hybrid Elaeis oleifera × E. guineensis palm oil supplementation on human plasma lipids related to CVD risk factors. One hundred sixty eligible participants were randomized and assigned to one of the two treatments: 25 mL hybrid palm oil (HPO group) or 25 mL extra virgin olive oil (EVOO group) daily for 3 months. Fasting venous samples were obtained at baseline and after 1, 2 and 3 months for measurement of plasma lipids (TC, LDL-C, HDL-C and TAGs). Changes in body mass index and waist circumference were also assessed. Although there was an overall reduction in TC (7.4%, p < 0.001) and in LDL-C (15.6%, p < 0.001), no significant differences were found between the treatment groups in a repeated measures analysis of variance for TC (p = 0.0525), LDL-C (p = 0.2356), HDL-C (p = 0.8293) or TAGs (p = 0.3749). Furthermore, HPO consumption had similar effects on plasma lipids to EVOO, thus providing additional support for the concept that hybrid Elaeis oleifera × E. guineensis palm oil can be seen as a "tropical equivalent of olive oil". PMID:26488229

  1. The Expression of Adipogenic Genes in Adipose Tissues of Feedlot Steers Fed Supplementary Palm Oil or Soybean Oil.

    PubMed

    Choi, Seong Ho; Park, Sung Kwon; Choi, Chang Weon; Li, Xiang Zi; Kim, Kyoung Hoon; Kim, Won Young; Jeong, Joon; Johnson, Bradley J; Zan, Linsen; Smith, Stephen B

    2016-03-01

    We hypothesized that supplementing finishing diets with palm oil would promote adipogenic gene expression and stearoyl-CoA desaturase (SCD) gene expression in subcutaneous (s.c.) and intramuscular (i.m.) adipose tissues of feedlot steers. Eighteen Angus and Angus crossbred steers were assigned to three groups of 6 steers and fed a basal diet (control), with 3% palm oil, or with 3% soybean oil, for 70 d, top-dressed daily. Tailhead s.c. adipose tissue was obtained by biopsy at 14 d before the initiation of dietary treatments and at 35 d of dietary treatments. At slaughter, after 70 d of dietary treatment, tailhead s.c. adipose tissue and i.m. adipose tissue were obtained from the longissimus thoracis muscle. Palm oil increased plasma palmitic acid and soybean oil increased plasma linoleic acid and α-linolenic acid relative to the initial sampling time. Expression of AMP-activated protein kinase alpha (AMPKα) and peroxisome proliferator-activated receptor gamma (PPARγ) increased between the initial and intermediate biopsies and declined thereafter (p<0.03). SCD gene expression did not change between the initial and intermediate biopsies but declined by over 75% by the final period (p = 0.04), and G-coupled protein receptor 43 (GPR43) gene expression was unaffected by diet or time on trial. Soybean oil decreased (p = 0.01) PPARγ gene expression at the intermediate sample time. At the terminal sample time, PPARγ and SCD gene expression was less in i.m. adipose tissue than in s.c. adipose tissue (p<0.05). AMPKα gene expression was less in s.c. adipose tissue of palm oil-fed steers than in control steers (p = 0.04) and CCAAT enhancer binding protein-beta (CEBPβ) gene expression was less in s.c. and i.m. adipose tissues of palm oil-fed steers than in soybean oil-fed steers (p<0.03). Soybean oil decreased SCD gene expression in s.c. adipose tissue (p = 0.05); SCD gene expression in palm oil-fed steers was intermediate between control and soybean oil-fed steers

  2. The Expression of Adipogenic Genes in Adipose Tissues of Feedlot Steers Fed Supplementary Palm Oil or Soybean Oil

    PubMed Central

    Choi, Seong Ho; Park, Sung Kwon; Choi, Chang Weon; Li, Xiang Zi; Kim, Kyoung Hoon; Kim, Won Young; Jeong, Joon; Johnson, Bradley J.; Zan, Linsen; Smith, Stephen B.

    2016-01-01

    We hypothesized that supplementing finishing diets with palm oil would promote adipogenic gene expression and stearoyl-CoA desaturase (SCD) gene expression in subcutaneous (s.c.) and intramuscular (i.m.) adipose tissues of feedlot steers. Eighteen Angus and Angus crossbred steers were assigned to three groups of 6 steers and fed a basal diet (control), with 3% palm oil, or with 3% soybean oil, for 70 d, top-dressed daily. Tailhead s.c. adipose tissue was obtained by biopsy at 14 d before the initiation of dietary treatments and at 35 d of dietary treatments. At slaughter, after 70 d of dietary treatment, tailhead s.c. adipose tissue and i.m. adipose tissue were obtained from the longissimus thoracis muscle. Palm oil increased plasma palmitic acid and soybean oil increased plasma linoleic acid and α-linolenic acid relative to the initial sampling time. Expression of AMP-activated protein kinase alpha (AMPKα) and peroxisome proliferator-activated receptor gamma (PPARγ) increased between the initial and intermediate biopsies and declined thereafter (p<0.03). SCD gene expression did not change between the initial and intermediate biopsies but declined by over 75% by the final period (p = 0.04), and G-coupled protein receptor 43 (GPR43) gene expression was unaffected by diet or time on trial. Soybean oil decreased (p = 0.01) PPARγ gene expression at the intermediate sample time. At the terminal sample time, PPARγ and SCD gene expression was less in i.m. adipose tissue than in s.c. adipose tissue (p<0.05). AMPKα gene expression was less in s.c. adipose tissue of palm oil-fed steers than in control steers (p = 0.04) and CCAAT enhancer binding protein-beta (CEBPβ) gene expression was less in s.c. and i.m. adipose tissues of palm oil-fed steers than in soybean oil-fed steers (p<0.03). Soybean oil decreased SCD gene expression in s.c. adipose tissue (p = 0.05); SCD gene expression in palm oil-fed steers was intermediate between control and soybean oil-fed steers

  3. The Impact of Selective-Logging and Forest Clearance for Oil Palm on Fungal Communities in Borneo

    PubMed Central

    Kerfahi, Dorsaf; Tripathi, Binu M.; Lee, Junghoon; Edwards, David P.; Adams, Jonathan M.

    2014-01-01

    Tropical forests are being rapidly altered by logging, and cleared for agriculture. Understanding the effects of these land use changes on soil fungi, which play vital roles in the soil ecosystem functioning and services, is a major conservation frontier. Using 454-pyrosequencing of the ITS1 region of extracted soil DNA, we compared communities of soil fungi between unlogged, once-logged, and twice-logged rainforest, and areas cleared for oil palm, in Sabah, Malaysia. Overall fungal community composition differed significantly between forest and oil palm plantation. The OTU richness and Chao 1 were higher in forest, compared to oil palm plantation. As a proportion of total reads, Basidiomycota were more abundant in forest soil, compared to oil palm plantation soil. The turnover of fungal OTUs across space, true β-diversity, was also higher in forest than oil palm plantation. Ectomycorrhizal (EcM) fungal abundance was significantly different between land uses, with highest relative abundance (out of total fungal reads) observed in unlogged forest soil, lower abundance in logged forest, and lowest in oil palm. In their entirety, these results indicate a pervasive effect of conversion to oil palm on fungal community structure. Such wholesale changes in fungal communities might impact the long-term sustainability of oil palm agriculture. Logging also has more subtle long term effects, on relative abundance of EcM fungi, which might affect tree recruitment and nutrient cycling. However, in general the logged forest retains most of the diversity and community composition of unlogged forest. PMID:25405609

  4. The impact of selective-logging and forest clearance for oil palm on fungal communities in Borneo.

    PubMed

    Kerfahi, Dorsaf; Tripathi, Binu M; Lee, Junghoon; Edwards, David P; Adams, Jonathan M

    2014-01-01

    Tropical forests are being rapidly altered by logging, and cleared for agriculture. Understanding the effects of these land use changes on soil fungi, which play vital roles in the soil ecosystem functioning and services, is a major conservation frontier. Using 454-pyrosequencing of the ITS1 region of extracted soil DNA, we compared communities of soil fungi between unlogged, once-logged, and twice-logged rainforest, and areas cleared for oil palm, in Sabah, Malaysia. Overall fungal community composition differed significantly between forest and oil palm plantation. The OTU richness and Chao 1 were higher in forest, compared to oil palm plantation. As a proportion of total reads, Basidiomycota were more abundant in forest soil, compared to oil palm plantation soil. The turnover of fungal OTUs across space, true β-diversity, was also higher in forest than oil palm plantation. Ectomycorrhizal (EcM) fungal abundance was significantly different between land uses, with highest relative abundance (out of total fungal reads) observed in unlogged forest soil, lower abundance in logged forest, and lowest in oil palm. In their entirety, these results indicate a pervasive effect of conversion to oil palm on fungal community structure. Such wholesale changes in fungal communities might impact the long-term sustainability of oil palm agriculture. Logging also has more subtle long term effects, on relative abundance of EcM fungi, which might affect tree recruitment and nutrient cycling. However, in general the logged forest retains most of the diversity and community composition of unlogged forest. PMID:25405609

  5. Ethanol production from oil palm trunks treated with aqueous ammonia and cellulase.

    PubMed

    Jung, Young Hoon; Kim, In Jung; Kim, Jae Jin; Oh, Kyeong Keun; Han, Jong-In; Choi, In-Geol; Kim, Kyoung Heon

    2011-08-01

    Oil palm trunks are a possible lignocellulosic source for ethanol production. Low enzymatic digestibility of this type of material (11.9% of the theoretical glucose yield) makes pretreatment necessary. An enzymatic digestibility of 95.4% with insoluble solids recovery of 49.8% was achieved after soaking shredded oil palm trunks in ammonia under optimum conditions (80°C, 1:12 solid-to-liquid ratio, 8h and 7% (w/w) ammonia solution). Treatment with 60 FPU of commercial cellulase (Accellerase 1000) per gram of glucan and fermentation with Saccharomyces cerevisiae D(5)A resulted in an ethanol concentration of 13.3g/L and an ethanol yield of 78.3% (based on the theoretical maximum) after 96 h. These results indicate that oil palm trunks are a biomass feedstock that can be used for bioethanol production. PMID:21616661

  6. Value-added utilization of oil palm ash: a superior recycling of the industrial agricultural waste.

    PubMed

    Foo, K Y; Hameed, B H

    2009-12-30

    Concern about environmental protection has increased over the years from a global viewpoint. To date, the infiltration of oil palm ash into the groundwater tables and aquifer systems which poses a potential risk and significant hazards towards the public health and ecosystems, remain an intricate challenge for the 21st century. With the revolution of biomass reutilization strategy, there has been a steadily growing interest in this research field. Confirming the assertion, this paper presents a state of art review of oil palm ash industry, its fundamental characteristics and environmental implications. Moreover, the key advance of its implementations, major challenges together with the future expectation are summarized and discussed. Conclusively, the expanding of oil palm ash in numerous field of application represents a plausible and powerful circumstance, for accruing the worldwide environmental benefit and shaping the national economy. PMID:19695771

  7. Prediction of oil palm production using the weighted average of fuzzy sets concept approach

    NASA Astrophysics Data System (ADS)

    Nugraha, R. F.; Setiyowati, Susi; Mukhaiyar, Utriweni; Yuliawati, Apriliani

    2015-12-01

    Proper planning becomes crucial for decision making in a company. For oil palm producer companies, the prediction of future products realizations is useful and considered in making company's strategies. It is mean that to do the best in predicting is absolute. Until now, to predict the next monthly oil palm productions, the company use simple mean statistics of the latest five-year observations. Lately, imprecision in estimates of oil palm production (overestimate) becomes a problem and the focus of attention in a company. Here we proposed weighted mean approach by using fuzzy concept approach to do estimation and prediction. We obtain that the prediction using fuzzy concept almost always give underestimate of realizations than the simple mean.

  8. A review on palm oil mill biogas plant wastewater treatment using coagulation-ozonation

    NASA Astrophysics Data System (ADS)

    Dexter, Z. D.; Joseph, C. G.; Zahrim, A. Y.

    2016-06-01

    Palm oil mill effluent (POME) generated from the palm oil industry is highly polluted and requires urgent attention for treatment due to its high organic content. Biogas plant containing anaerobic digester is capable to treat the high organic content of the POME while generating valuable biogas at the same time. This green energy from POME is environmental-friendly but the wastewater produced is still highly polluted and blackish in colour. Therefore a novel concept of combining coagulation with ozonation treatment is proposed to treat pollution of this nature. Several parameters should be taken under consideration in order to ensure the effectiveness of the hybrid treatment including ozone dosage, ozone contact time, pH of the water or wastewater, coagulant dosage, and mixing and settling time. This review paper will elucidate the importance of hybrid coagulation-ozonation treatment in producing a clear treated wastewater which is known as the main challenge in palm oil industry

  9. Hydrothermal pretreatment enhanced enzymatic hydrolysis and glucose production from oil palm biomass.

    PubMed

    Zakaria, Mohd Rafein; Hirata, Satoshi; Hassan, Mohd Ali

    2015-01-01

    The present works investigate hydrothermal pretreatment of oil palm empty fruit bunch and oil palm frond fiber in a batch tube reactor system with temperature and time range from 170 to 250°C and 10 to 20min, respectively. The behavior of soluble sugars, acids, furans, and phenols dramatically changed over treatment severities as determined by HPLC. The cellulose-rich treated solids were analyzed by SEM, WAXD, and BET surface area. Enzymatic hydrolysis was performed from both pretreated slurries and washed solid, and data obtained suggested that tannic acid derived from lignin degradation was a potential cellulase inhibitor. Both partial removal of hemicellulose and migration of lignin during hydrothermal pretreatment caused structural changes on the cellulose-hemicellulose-lignin matrix, resulting in the opening and expansion of specific surface area and pore volume. The current results provided important factors that maximize conversion of cellulose to glucose from oil palm biomass by hydrothermal process. PMID:25460995

  10. Torrefaction and low temperature carbonization of oil palm fiber and Eucalyptus in nitrogen and air atmospheres.

    PubMed

    Lu, Ke-Miao; Lee, Wen-Jhy; Chen, Wei-Hsin; Liu, Shih-Hsien; Lin, Ta-Chang

    2012-11-01

    Torrefaction is a pretreatment method for upgrading biomass as solid fuels. To provide flexible operations for effectively upgrading biomass at lower costs, the aim of this study was to investigate the properties of oil palm fiber and eucalyptus pretreated in nitrogen and air atmospheres at temperatures of 250-350°C for 1h. Based on energy and solid yield and introducing an energy-mass co-benefit index (EMCI), oil palm fiber pretreatment under nitrogen at 300°C provided the solid fuel with higher energy density and less volume compared to other temperatures. Pretreatment of oil palm fiber in air resulted in the fuel with low solid and energy yields and is therefore not recommended. For eucalyptus, nitrogen and air can be employed to upgrade the biomass, and the suggested temperatures are 325 and 275°C, respectively. PMID:22940305

  11. Water footprint assessment of oil palm in Malaysia: A preliminary study

    NASA Astrophysics Data System (ADS)

    Muhammad-Muaz, A.; Marlia, M. H.

    2014-09-01

    This study evaluates the water footprint of growing oil palm in Malaysia based on the water footprint method. The crop water use was determined using the CROPWAT 8.0 model developed by the Land and Water Development Division of FAO. The total water footprint for growing oil palm is 243 m3/ton. The result of this study showed that the green water footprint is 1.5 orders of magnitude larger compared to the blue water footprint. Besides providing updated status of total water used from the oil palm plantation, our result also shows that this baseline information helps in identifying which areas need to be conserved and what type of recommendation that should be drawn. As the results of the water footprint can differ between locations, the inclusion of local water stress index should be considered in the calculation of water footprint.

  12. Low-cost RFID-based palm oil monitoring system (PMS): First prototype

    NASA Astrophysics Data System (ADS)

    Kiama, J. W.; Raman, V.; Patrick, T. H. H.

    2014-02-01

    Under collaboration with our local oil palm plantation enterprise, our research focuses on producing proof-of-concept by using RFID technology to monitor palm oil productivity. Passive RFID tags are used in the plantation field to uniquely identify each palm oil tree and their Fresh Fruit Bunches (FFB) production is collected and monitored by scanning the passive RFID tags using high frequency RFID scanners. This technology aims to convert the harvest data into digital information which can be processed and analyzed by PMS system and presented as informative outputs such as dynamic charts. This analyzed information is further used as input to a proprietary GIS system where it is mapped as color-coded spatial data which enables an accurate evaluation and monitoring of the overall plantation productivity.

  13. Identification of Proteins of Altered Abundance in Oil Palm Infected with Ganoderma boninense

    PubMed Central

    Al-Obaidi, Jameel R.; Mohd-Yusuf, Yusmin; Razali, Nurhanani; Jayapalan, Jaime Jacqueline; Tey, Chin-Chong; Md-Noh, Normahnani; Junit, Sarni Mat; Othman, Rofina Yasmin; Hashim, Onn Haji

    2014-01-01

    Basal stem rot is a common disease that affects oil palm, causing loss of yield and finally killing the trees. The disease, caused by fungus Ganoderma boninense, devastates thousands of hectares of oil palm plantings in Southeast Asia every year. In the present study, root proteins of healthy oil palm seedlings, and those infected with G. boninense, were analyzed by 2-dimensional gel electrophoresis (2-DE). When the 2-DE profiles were analyzed for proteins, which exhibit consistent significant change of abundance upon infection with G. boninense, 21 passed our screening criteria. Subsequent analyses by mass spectrometry and database search identified caffeoyl-CoA O-methyltransferase, caffeic acid O-methyltransferase, enolase, fructokinase, cysteine synthase, malate dehydrogenase, and ATP synthase as among proteins of which abundances were markedly altered. PMID:24663087

  14. Extraction of oil palm plantations on the undulating terrains in the Borneo using PALSAR Global Mosaic

    NASA Astrophysics Data System (ADS)

    Tanigaki, Y.; Ishii, R.; Kobayashi, H.; Nagai, S.; Suzuki, R.

    2013-12-01

    Conversions of forests and peat swamps into oil palm plantations might cause decrease of net ecosystem production, change of water stream and loss of biodiversity. Most of the oil plantations in the South East Asia have been expanded in the past decade. For monitoring the distribution and condition of these plantations, the PALSAR Global Mosaic data set (PGM) have been utilized. This PGM is one of the L-Band Synthetic Aparture Radar (SAR) data sets orthorectified and mosaicked (unified). Unlike optical satellite imagery, the L-band SAR is useful especially for cloudy tropic regions. In addition, PGM have high resolution (about 10 m) and contains cross polarization (HV) SAR data which is useful for observation of forest because cross polarization SAR data contain data of the volume scattering which reflect the volume of plant bodies. On the other hand, topographic effect in PGM is not reduced sufficiently because of low resolution of DEM utilized to make PGM. As a result, pixel value of PGM is affected by the highlight effect especially in undulating terrains. These undulating terrains consist of rises which have about 10m height, exist in about 100m horizontal interval and cause striped patterns on SAR images. These patterns result in difficulty in extracting oil palm plantation using SAR imagery in the undulating terrains. However, many papers extracting oil palm plantations didn't show the accuracy of distributions extracted as oil palm plantation in the undulating terrains and thus it isn't clear how well oil palm plantations on the undulating terrains can be extracted. In this study, we carried out a supervised classification and extracted oil palm plantations in the north-west of Borneo Island. The Island is a part of the South East Asia and contains undulating terrains. In this extraction, we used the PGM data, a learning model and the training data made from PGM data, aerial photograph, high resolution optical satellite data and field survey data. After

  15. Oil palm (Elaeis guineensis Jacq.) tissue culture ESTs: Identifying genes associated with callogenesis and embryogenesis

    PubMed Central

    Low, Eng-Ti L; Alias, Halimah; Boon, Soo-Heong; Shariff, Elyana M; Tan, Chi-Yee A; Ooi, Leslie CL; Cheah, Suan-Choo; Raha, Abdul-Rahim; Wan, Kiew-Lian; Singh, Rajinder

    2008-01-01

    Background Oil palm (Elaeis guineensis Jacq.) is one of the most important oil bearing crops in the world. However, genetic improvement of oil palm through conventional breeding is extremely slow and costly, as the breeding cycle can take up to 10 years. This has brought about interest in vegetative propagation of oil palm. Since the introduction of oil palm tissue culture in the 1970s, clonal propagation has proven to be useful, not only in producing uniform planting materials, but also in the development of the genetic engineering programme. Despite considerable progress in improving the tissue culture techniques, the callusing and embryogenesis rates from proliferating callus cultures remain very low. Thus, understanding the gene diversity and expression profiles in oil palm tissue culture is critical in increasing the efficiency of these processes. Results A total of 12 standard cDNA libraries, representing three main developmental stages in oil palm tissue culture, were generated in this study. Random sequencing of clones from these cDNA libraries generated 17,599 expressed sequence tags (ESTs). The ESTs were analysed, annotated and assembled to generate 9,584 putative unigenes distributed in 3,268 consensi and 6,316 singletons. These unigenes were assigned putative functions based on similarity and gene ontology annotations. Cluster analysis, which surveyed the relatedness of each library based on the abundance of ESTs in each consensus, revealed that lipid transfer proteins were highly expressed in embryogenic tissues. A glutathione S-transferase was found to be highly expressed in non-embryogenic callus. Further analysis of the unigenes identified 648 non-redundant simple sequence repeats and 211 putative full-length open reading frames. Conclusion This study has provided an overview of genes expressed during oil palm tissue culture. Candidate genes with expression that are modulated during tissue culture were identified. However, in order to confirm

  16. GammaScorpion: mobile gamma-ray tomography system for early detection of basal stem rot in oil palm plantations

    NASA Astrophysics Data System (ADS)

    Abdullah, Jaafar; Hassan, Hearie; Shari, Mohamad Rabaie; Mohd, Salzali; Mustapha, Mahadi; Mahmood, Airwan Affendi; Jamaludin, Shahrizan; Ngah, Mohd Rosdi; Hamid, Noor Hisham

    2013-03-01

    Detection of the oil palm stem rot disease Ganoderma is a major issue in estate management and production in Malaysia. Conventional diagnostic techniques are difficult and time consuming when using visual inspection, and destructive and expensive when based on the chemical analysis of root or stem tissue. As an alternative, a transportable gamma-ray computed tomography system for the early detection of basal stem rot (BSR) of oil palms due to Ganoderma was developed locally at the Malaysian Nuclear Agency, Kajang, Malaysia. This system produces high quality tomographic images that clearly differentiate between healthy and Ganoderma infected oil palm stems. It has been successfully tested and used to detect the extent of BSR damage in oil palm plantations in Malaysia without the need to cut down the trees. This method offers promise for in situ inspection of oil palm stem diseases compared to the more conventional methods.

  17. Rapid detection of Ganoderma-infected oil palms by microwave ergosterol extraction with HPLC and TLC.

    PubMed

    Muniroh, M S; Sariah, M; Zainal Abidin, M A; Lima, N; Paterson, R R M

    2014-05-01

    Detection of basal stem rot (BSR) by Ganoderma of oil palms was based on foliar symptoms and production of basidiomata. Enzyme-Linked Immunosorbent Assays-Polyclonal Antibody (ELISA-PAB) and PCR have been proposed as early detection methods for the disease. These techniques are complex, time consuming and have accuracy limitations. An ergosterol method was developed which correlated well with the degree of infection in oil palms, including samples growing in plantations. However, the method was capable of being optimised. This current study was designed to develop a simpler, more rapid and efficient ergosterol method with utility in the field that involved the use of microwave extraction. The optimised procedure involved extracting a small amount of Ganoderma, or Ganoderma-infected oil palm suspended in low volumes of solvent followed by irradiation in a conventional microwave oven at 70°C and medium high power for 30s, resulting in simultaneous extraction and saponification. Ergosterol was detected by thin layer chromatography (TLC) and quantified using high performance liquid chromatography with diode array detection. The TLC method was novel and provided a simple, inexpensive method with utility in the field. The new method was particularly effective at extracting high yields of ergosterol from infected oil palm and enables rapid analysis of field samples on site, allowing infected oil palms to be treated or culled very rapidly. Some limitations of the method are discussed herein. The procedures lend themselves to controlling the disease more effectively and allowing more effective use of land currently employed to grow oil palms, thereby reducing pressure to develop new plantations. PMID:24681306

  18. Elemental and thermo-chemical analysis of oil palm fronds for biomass energy conversion

    NASA Astrophysics Data System (ADS)

    Guangul, Fiseha Mekonnen; Sulaiman, Shaharin Anwar; Raghavan, Vijay R.

    2012-06-01

    Oil palm frond is the most abundant yet untapped biomass waste in Malaysia. This paper investigates the characteristics of raw oil palm fronds and its ash to evaluate its potential utilization as a biomass fuel for gasification process using single throat downdraft gasifier. The morphological nature, elemental content, proximate and ultimate analysis and calorific value were studied. Field emission scanning electron microscopy and x-ray fluorescence were used to investigate the surface morphology, elemental and mineralogical nature of oil palm frond and its ash. The results were compared with other agricultural and forestry biomass wastes. From proximate analysis volatile matter, fixed carbon and ash were found to be 83.5%, 15.2% and 1.3%, respectively on dry basis. From ultimate analysis result values of 44.58%, 4.53%, 0.71% and 0.07% for carbon, hydrogen, nitrogen and sulfur were found respectively on dry basis. Oxygen was determined by difference and found to be 48.81%. The proximate and ultimate analysis results indicate that oil palm frond is better than agricultural wastes and less than most forestry wastes to use as a feedstock in the gasification process in order to get a better quality of syngas. The amount of ash content in OPF was found to be much less than in agricultural wastes and higher than most forestry wastes. From x-ray fluorescence analysis CaO and K2O were found as the major oxides in oil palm fronds and rice husk ash with the amount of 28.46% and 15.71% respectively. The overall results of oil palm fronds were found to be satisfactory to use as a feedstock for the process of gasification.

  19. Processes of inclusion and adverse incorporation: oil palm and agrarian change in Sumatra, Indonesia.

    PubMed

    McCarthy, John

    2010-01-01

    Changes in globalised agriculture raise critical questions as rapid agricultural development leads to widespread social and environmental transformation. With increased global demand for vegetable oils and biofuel, in Indonesia the area under oil palm has doubled over the last decade. This paper presents a case study of how micro-processes that are linked to wider dynamics shape oil palm related agrarian change in villages in Sumatra, Indonesia. It pursues related questions regarding the impact of agribusiness-driven agriculture, the fate of smallholders experiencing contemporary agrarian transition, and the impact of increased demand for vegetable oils and biofuels on agrarian structures in Sumatra. It argues that the paths of agrarian change are highly uneven and depend on how changing livelihood strategies are enabled or constrained by economic, social and political relations that vary over time and space. In contrast to simplifying narratives of inclusion/exclusion, it argues that outcomes depend on the terms under which smallholders engage with oil palm. Distinguishing between exogenous processes of agribusiness expansion and endogenous commodity market expansion, it finds each is associated with characteristic processes of change. It concludes that the way successive policy interventions have worked with the specific characteristics of oil palm have cumulatively shaped the space where agrarian change occurs in Sumatra. PMID:20873030

  20. Biosynthesis and characterization of poly(3-hydroxybutyrate-co-3- hydroxyhexanoate) from palm oil products in a Wautersia eutropha mutant.

    PubMed

    Loo, Ching-Yee; Lee, Wing-Hin; Tsuge, Takeharu; Doi, Yoshiharu; Sudesh, Kumar

    2005-09-01

    Palm kernel oil, palm olein, crude palm oil and palm acid oil were used for the synthesis of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHx)] by a mutant strain of Wautersia eutropha (formerly Ralstonia eutropha) harboring the Aeromonas caviae polyhydroxyalkanoate (PHA) synthase gene. Palm kernel oil was an excellent carbon source for the production of cell biomass and P(3HB-co-3HHx). About 87% (w/w) of the cell dry weight as P(3HB-co-3HHx) was obtained using 5 g palm kernel oil/l. Gravimetric and microscopic analyses further confirmed the high PHA content in the recombinant cells. The molar fraction of 3HHx remained constant at 5 mol % regardless of the type and concentration of palm oil products used. The small amount of 3HHx units was confirmed by 13C NMR analysis. The number average molecular weight (M(n)) of the PHA copolymer produced from the various palm oil products ranged from 27 0000 to 46 0000 Da. The polydispersity was in the range of 2.6-3.9. PMID:16215858

  1. Lipase production from a novel thermo-tolerant and extreme acidophile Bacillus pumilus using palm oil as the substrate and treatment of palm oil-containing wastewater.

    PubMed

    Saranya, P; Sukanya Kumari, H; Prasad Rao, B; Sekaran, G

    2014-03-01

    The thermo-tolerant and extreme acidophilic microorganism Bacillus pumilus was isolated from the soil collected from a commercial edible-oil extraction industry. Optimisation of conditions for the lipase production was conducted using response surface methodology. The optimum conditions for obtaining the maximum activity (1,100 U/mL) of extremely acidic thermostable lipase were fermentation time, 96 h; pH, 1; temperature, 50 °C; and concentration of palm oil, 50 g/L. After purification, a 7.1-fold purity of lipase with specific activity of 5,173 U/mg protein was obtained. The molecular weight of the thermo-tolerant acidophilic lipase (TAL) was 55 kDa. The predominant amino acid in the TAL was glycine. The functional groups of lipase were determined by Fourier transform infrared spectroscopy. TAL exhibited enhanced activity (114 %) with dimethyl sulphoxide (20 %, v/v), and it showed a moderate activity with methanol, hexane and benzene. The optimum conditions for the treatment of palm oil in wastewater using the TAL were found to be time, 3 h; pH, 1; temperature, 50 °C with pseudo second-order kinetic constant of 1.88 × 10(-3) L mol(-1) min(-1). The Michaelis-Menten enzyme kinetic model and the nonlinear kinetic model were evaluated for the TAL. TAL established hydrolysis efficiency of 96 % for palm oil in wastewater at 50 °C. PMID:24293300

  2. Fabrication of silver nanoparticles dispersed in palm oil using laser ablation.

    PubMed

    Zamiri, Reza; Zakaria, Azmi; Ahangar, Hossein Abbastabar; Sadrolhosseini, Amir Reza; Mahdi, Mohd Adzir

    2010-01-01

    In this study we used a laser ablation technique for preparation of silver nanoparticles. The fabrication process was carried out by ablation of a silver plate immersed in palm oil. A pulsed Nd:YAG laser at a wavelength of 1064 nm was used for ablation of the plate at different times. The palm coconut oil allowed formation of nanoparticles with very small and uniform particle size, which are dispersed very homogeneously within the solution. The obtained particle sizes for 15 and 30 minute ablation times were 2.5 and 2 nm, respectively. Stability study shows that all of the samples remained stable for a reasonable period of time. PMID:21151470

  3. Intake of repeatedly heated palm oil causes elevation in blood pressure with impaired vasorelaxation in rats.

    PubMed

    Leong, Xin-Fang; Najib, Mohd Nadzri Mohd; Das, Srijit; Mustafa, Mohd Rais; Jaarin, Kamsiah

    2009-09-01

    Oxidization of dietary cooking oil increases the risk of cardiovascular diseases such as hypertension by increasing the formation oxidative oxygen radicals. The aim of study was to investigate the effects of repeatedly heated palm oil on blood pressure, plasma nitrites, and vascular reactivity. Nitrites were measured, as an indirect marker for nitric oxide production. Male Sprague-Dawley rats were divided into four groups: control group fed with basal diet and other three groups fortified with 15% weight/weight fresh palm oil (FPO), palm oil heated five times (5HPO) or palm oil heated ten times (10HPO) for 24 weeks. The oil was heated to 180 degrees C for 10 min. Blood pressure was measured at baseline and at intervals of four weeks for 24 weeks using non-invasive tail-cuff method. Following 24 weeks, the rats were sacrificed and thoracic aortas were dissected for measurement of vascular reactivity. Blood pressure was elevated significantly (p < 0.05) in 5HPO and 10HPO groups, with the 10HPO group showing higher values. Aortic rings from animals fed with heated oil showed diminished relaxation in response to acetylcholine or sodium nitroprusside, and greater contraction to phenylephrine. Acetylcholine and sodium nitroprusside cause endothelium-dependent and endothelium-independent relaxation, respectively. Relaxation responses remained unaltered in the FPO group, with the attenuated contractile response to phenylephrine, compared to control group. FPO increased plasma nitrites by 28%, whereas 5HPO and 10HPO reduced them by 25% and 33%, respectively. Intake of repeatedly heated palm oil causes an increase in blood pressure, which may be accounted for by the attenuated endothelium-dependent vasorelaxant response. PMID:19713687

  4. Characteristics of Palm Fatty Acid Ester (PFAE), a New Vegetable Based Insulating Oil for Transformers

    NASA Astrophysics Data System (ADS)

    Suzuki, Takashi; Kanoh, Takaaki; Koide, Hidenobu; Hikosaka, Tomoyuki

    We have developed new vegetable based insulating oil for transformers called PFAE (Palm Fatty Acid Ester). PFAE has 0.6 times less viscosity and 1.3 times higher dielectric constant compared to mineral oil. The oxidative stability, biodegradability and acute toxicity to fish of PFAE has also been determined to be superior to mineral oil. In this paper, in order to optimize the characteristics of fatty acid esters originating from palm oil, several kinds of fatty acid alkyl esters were first synthesized in the laboratory by the molecular design technique and the transesterification from fatty acid methyl esters and alkyl alcohols. Next the electro-chemical characteristics of the fatty acid alkyl esters as insulating oil were analyzed.

  5. Pyrolysis of oil palm empty fruit bunch biomass pellets using multimode microwave irradiation.

    PubMed

    Salema, Arshad Adam; Ani, Farid Nasir

    2012-12-01

    Oil palm empty fruit bunch pellets were subjected to pyrolysis in a multimode microwave (MW) system (1 kW and 2.45 GHz frequency) with and without the MW absorber, activated carbon. The ratio of biomass to MW absorber not only affected the temperature profiles of the EFB but also pyrolysis products such as bio-oil, char, and gas. The highest bio-oil yield of about 21 wt.% was obtained with 25% MW absorber. The bio-oil consisted of phenolic compounds of about 60-70 area% as detected by GC-MS and confirmed by FT-IR analysis. Ball lightning (plasma arc) occurred due to residual palm oil in the EFB biomass without using an MW absorber. The bio-char can be utilized as potential alternative fuel because of its heating value (25 MJ/kg). PMID:23026320

  6. Baseline study of methane emission from anaerobic ponds of palm oil mill effluent treatment.

    PubMed

    Yacob, Shahrakbah; Ali Hassan, Mohd; Shirai, Yoshihito; Wakisaka, Minato; Subash, Sunderaj

    2006-07-31

    The world currently obtains its energy from the fossil fuels such as oil, natural gas and coal. However, the international crisis in the Middle East, rapid depletion of fossil fuel reserves as well as climate change have driven the world towards renewable energy sources which are abundant, untapped and environmentally friendly. Malaysia has abundant biomass resources generated from the agricultural industry particularly the large commodity, palm oil. This paper will focus on palm oil mill effluent (POME) as the source of renewable energy from the generation of methane and establish the current methane emission from the anaerobic treatment facility. The emission was measured from two anaerobic ponds in Felda Serting Palm Oil Mill for 52 weeks. The results showed that the methane content was between 35.0% and 70.0% and biogas flow rate ranged between 0.5 and 2.4 L/min/m(2). Total methane emission per anaerobic pond was 1043.1 kg/day. The total methane emission calculated from the two equations derived from relationships between methane emission and total carbon removal and POME discharged were comparable with field measurement. This study also revealed that anaerobic pond system is more efficient than open digesting tank system for POME treatment. Two main factors affecting the methane emission were mill activities and oil palm seasonal cropping. PMID:16125215

  7. Protein profiling and histone deacetylation activities in somaclonal variants of oil palm (Elaeis guineensis Jacq.).

    PubMed

    Yaacob, Jamilah Syafawati; Loh, Hwei-San; Mat Taha, Rosna

    2013-01-01

    Mantled fruits as a result of somaclonal variation are often observed from the oil palm plantlets regenerated via tissue culture. The mantling of fruits with finger-like and thick outer coating phenotypes significantly reduces the seed size and oil content, posing a threat to oil palm planters, and may jeopardize the economic growth of countries that depend particularly on oil palm plantation. The molecular aspects of the occurrence of somaclonal variations are yet to be known, possibly due to gene repression such as DNA methylation, histone methylation and histone deacetylation. Histone deacetylases (HDACs), involved in eukaryotic gene regulation by catalyzing the acetyl groups are removal from lysine residues on histone, hence transcriptionally repress gene expression. This paper described the total protein polymorphism profiles of somaclonal variants of oil palm and the effects of histone deacetylation on this phenomenon. Parallel to the different phenotypes, the protein polymorphism profiles of the mantled samples (leaves, fruits, and florets) and the phenotypically normal samples were proven to be different. Higher HDAC activity was found in mantled leaf samples than in the phenotypically normal leaf samples, leading to a preliminary conclusion that histone deacetylation suppressed gene expression and contributed to the development of somaclonal variants. PMID:23844406

  8. Effect of lard, palm and rapeseed oils life conservation in aged mice.

    PubMed

    Suzuki, H; Yamazaki, M; Arai, S; Nagao, A; Terao, J

    1991-11-01

    Effects of lard, palm and rapeseed oil diets on the survival and fatty acid composition of liver and brain lipids were studied in male and female mice for 15 months. Over 80% of mice fed on lard and rapeseed oil (n-3 PUFA sufficient) diets survived to the end of feeding trial, however, 60% of male mice fed on palm oil (n-3 PUFA deficient) diet died before the end. Although a survival curve in female mice fed on palm oil diet was similar to that in male, it was not as dramatic as that of the male. The fatty acid analyses revealed that severe n-3 PUFA deficiency occurred in the mice fed on a palm oil diet. Moreover, the fatty acid was more deficient in the male than in the female. These results suggest that short life in mice may be caused by n-3 PUFA deficiency and, therefore, the fatty acid may be essential in enjoying a long life. PMID:1753809

  9. Evapotranspiration components determined by eddy covariance and sap flux measurements in oil palm plantations in Sumatra, Indonesia

    NASA Astrophysics Data System (ADS)

    Meijide, Ana; Röll, Alexander; Niu, Furong; June, Tania; Hölscher, Dirk; Knohl, Alexander

    2015-04-01

    The expansion of oil palm cultivation fueled by the increasing global demand for palm oil is leading to massive land transformations in tropical areas, particularly in South-East Asia. Conversions of forest land to oil palm plantations likely affect ecosystem water fluxes. However, there is a lack of information on water fluxes from oil palm plantations as well as on the partitioning of these fluxes into its different components such as transpiration and evaporation. It is expected that water fluxes from oil palm plantations vary temporally, both long-term, i.e. between different age-classes of plantations, and short-term, i.e. from day to day within a certain plantation (e.g. during or after periods of rainfall). A proper evaluation of water fluxes from oil palm plantations thus requires an experimental design encompassing these types of variability. To assess evapotranspiration (ET) rates, an eddy covariance tower was installed in a 2-year-old oil palm plantation in the lowlands of Jambi, Sumatra; it was subsequently moved to a 12-year-old oil palm plantation located in the same region. In parallel to the ET, sap flux density was measured on 16 leaf petioles on four oil palms; stand transpiration rates were derived from these measurements with stand inventory data. The parallel measurements ran for several weeks in both plantations. Preliminary results for our period of study show that the average ET rate of the 2-year-old oil palm plantation was 5.2 mm day-1; values up to 7.0 mm day-1 were observed on dry, sunny days with non-limiting soil moisture. Stand transpiration (T) by the young oil palms was very low, 0.3 mm day-1on average, and only showed a small variation between days. Under optimal environmental conditions, the ratio of T to total ET was up to 0.08 in the young plantation, while in the mature, 12-year-old plantation, it was significantly higher and reached 0.5. Transpiration rates in the mature oil palm plantation were about six- to seven-fold higher

  10. Virgin coconut oil prevents blood pressure elevation and improves endothelial functions in rats fed with repeatedly heated palm oil.

    PubMed

    Nurul-Iman, Badlishah Sham; Kamisah, Yusof; Jaarin, Kamsiah; Qodriyah, Hj Mohd Saad

    2013-01-01

    This study was performed to explore the effects of virgin coconut oil (VCO) in male rats that were fed with repeatedly heated palm oil on blood pressure, plasma nitric oxide level, and vascular reactivity. Thirty-two male Sprague-Dawley rats were divided into four groups: (i) control (basal diet), (ii) VCO (1.42 mL/kg, oral), (iii) five-times-heated palm oil (15%) (5HPO), and (iv) five-times-heated palm oil (15%) and VCO (1.42 mL/kg, oral) (5HPO + VCO). Blood pressure was significantly increased in the group that was given the 5HPO diet compared to the control group. Blood pressure in the 5HPO + VCO group was significantly lower than the 5HPO group. Plasma nitric oxide (NO) level in the 5HPO group was significantly lower compared to the control group, whereas in the 5HPO + VCO group, the plasma NO level was significantly higher compared to the 5HPO group. Aortic rings from the 5HPO group exhibited attenuated relaxation in response to acetylcholine and sodium nitroprusside as well as increased vasoconstriction to phenylephrine compared to the control group. Aortic rings from the 5HPO + VCO group showed only attenuated vasoconstriction to phenylephrine compared to the 5HPO group. In conclusion, VCO prevents blood pressure elevation and improves endothelial functions in rats fed with repeatedly heated palm oil. PMID:23861707

  11. Virgin Coconut Oil Prevents Blood Pressure Elevation and Improves Endothelial Functions in Rats Fed with Repeatedly Heated Palm Oil

    PubMed Central

    Nurul-Iman, Badlishah Sham; Kamisah, Yusof; Jaarin, Kamsiah; Qodriyah, Hj Mohd Saad

    2013-01-01

    This study was performed to explore the effects of virgin coconut oil (VCO) in male rats that were fed with repeatedly heated palm oil on blood pressure, plasma nitric oxide level, and vascular reactivity. Thirty-two male Sprague-Dawley rats were divided into four groups: (i) control (basal diet), (ii) VCO (1.42 mL/kg, oral), (iii) five-times-heated palm oil (15%) (5HPO), and (iv) five-times-heated palm oil (15%) and VCO (1.42 mL/kg, oral) (5HPO + VCO). Blood pressure was significantly increased in the group that was given the 5HPO diet compared to the control group. Blood pressure in the 5HPO + VCO group was significantly lower than the 5HPO group. Plasma nitric oxide (NO) level in the 5HPO group was significantly lower compared to the control group, whereas in the 5HPO + VCO group, the plasma NO level was significantly higher compared to the 5HPO group. Aortic rings from the 5HPO group exhibited attenuated relaxation in response to acetylcholine and sodium nitroprusside as well as increased vasoconstriction to phenylephrine compared to the control group. Aortic rings from the 5HPO + VCO group showed only attenuated vasoconstriction to phenylephrine compared to the 5HPO group. In conclusion, VCO prevents blood pressure elevation and improves endothelial functions in rats fed with repeatedly heated palm oil. PMID:23861707

  12. Investigations on a Novel Inductive Concept Frequency Technique for the Grading of Oil Palm Fresh Fruit Bunches

    PubMed Central

    Harun, Noor Hasmiza; Misron, Norhisam; Sidek, Roslina Mohd; Aris, Ishak; Ahmad, Desa; Wakiwaka, Hiroyuki; Tashiro, Kunihisa

    2013-01-01

    From the Malaysian harvester's perspective, the determination of the ripeness of the oil palm (FFB) is a critical factor to maximize palm oil production. A preliminary study of a novel oil palm fruit sensor to detect the maturity of oil palm fruit bunches is presented. To optimize the functionality of the sensor, the frequency characteristics of air coils of various diameters are investigated to determine their inductance and resonant characteristics. Sixteen samples from two categories, namely ripe oil palm fruitlets and unripe oil palm fruitlets, are tested from 100 Hz up to 100 MHz frequency. The results showed the inductance and resonant characteristics of the air coil sensors display significant changes among the samples of each category. The investigations on the frequency characteristics of the sensor air coils are studied to observe the effect of variations in the coil diameter. The effect of coil diameter yields a significant 0.02643 MHz difference between unripe samples to air and 0.01084 MHz for ripe samples to air. The designed sensor exhibits significant potential in determining the maturity of oil palm fruits. PMID:23435051

  13. An investigation of age and yield of fresh fruit bunches of oil palm based on ALOS PALSAR 2

    NASA Astrophysics Data System (ADS)

    Darmawan, S.; Takeuchi, W.; Haryati, A.; M, R. Najib A.; Na'aim, M.

    2016-06-01

    The objective on this study is to investigate age and yield of FFB of oil palms based on ALOS PALSAR 2. Study areas in oil palm plantations areas of Jerantut, Pahang Malaysia. Methodology consists collecting of ALOS PALSAR 2 and tabular data on the study area, processing of ALOS PALSAR 2 including of converting digital numbers to normalize radar cross sections (NRCS), topography correction and filtering, making of regions of interest according to areas of age and yield of FFB of oil palms and making of relationship analysis between backscatter value of HH, HV and age and yield of FFB of oil palm. The results have showed relationship between HH, HV and age of oil palm which R2 of 0.63 for HH and 0.42 for HV that indicated increasing of age of oil palm as increasing of HH and HV value. Also relationship between HH, HV and yield of FFB of oil palm which R2 of 0.26 for HH and 0.15 for HV, that indicated increasing of yield of FFB as decreasing of HH and HV value.

  14. Investigations on a novel inductive concept frequency technique for the grading of oil palm fresh fruit bunches.

    PubMed

    Harun, Noor Hasmiza; Misron, Norhisam; Sidek, Roslina Mohd; Aris, Ishak; Ahmad, Desa; Wakiwaka, Hiroyuki; Tashiro, Kunihisa

    2013-01-01

    From the Malaysian harvester's perspective, the determination of the ripeness of the oil palm (FFB) is a critical factor to maximize palm oil production. A preliminary study of a novel oil palm fruit sensor to detect the maturity of oil palm fruit bunches is presented. To optimize the functionality of the sensor, the frequency characteristics of air coils of various diameters are investigated to determine their inductance and resonant characteristics. Sixteen samples from two categories, namely ripe oil palm fruitlets and unripe oil palm fruitlets, are tested from 100 Hz up to 100 MHz frequency. The results showed the inductance and resonant characteristics of the air coil sensors display significant changes among the samples of each category. The investigations on the frequency characteristics of the sensor air coils are studied to observe the effect of variations in the coil diameter. The effect of coil diameter yields a significant 0.02643 MHz difference between unripe samples to air and 0.01084 MHz for ripe samples to air. The designed sensor exhibits significant potential in determining the maturity of oil palm fruits. PMID:23435051

  15. Simultaneous treatment of raw palm oil mill effluent and biodegradation of palm fiber in a high-rate CSTR.

    PubMed

    Khemkhao, Maneerat; Techkarnjanaruk, Somkiet; Phalakornkule, Chantaraporn

    2015-02-01

    A high-rate continuous stirred tank reactor (CSTR) was used to produce biogas from raw palm oil mill effluent (POME) at 55°C at a highest organic loading rate (OLR) of 19 g COD/ld. Physical and chemical pretreatments were not performed on the raw POME. In order to promote retention of suspended solids, the CSTR was installed with a deflector at its upper section. The average methane yield was 0.27 l/g COD, and the biogas production rate per reactor volume was 6.23 l/l d, and the tCOD removal efficiency was 82%. The hydrolysis rate of cellulose, hemicelluloses and lignin was 6.7, 3.0 and 1.9 g/d, respectively. The results of denaturing gradient gel electrophoresis (DGGE) suggested that the dominant hydrolytic bacteria responsible for the biodegradation of the palm fiber and residual oil were Clostridium sp., while the dominant methanogens were Methanothermobacter sp. PMID:25479389

  16. Archaeal Community Changes Associated with Cultivation of Amazon Forest Soil with Oil Palm

    PubMed Central

    Tupinambá, Daiva Domenech; Cantão, Maurício Egídio; Costa, Ohana Yonara Assis; Bergmann, Jessica Carvalho; Kruger, Ricardo Henrique; Kyaw, Cynthia Maria; Barreto, Cristine Chaves; Quirino, Betania Ferraz

    2016-01-01

    This study compared soil archaeal communities of the Amazon forest with that of an adjacent area under oil palm cultivation by 16S ribosomal RNA gene pyrosequencing. Species richness and diversity were greater in native forest soil than in the oil palm-cultivated area, and 130 OTUs (13.7%) were shared between these areas. Among the classified sequences, Thaumarchaeota were predominant in the native forest, whereas Euryarchaeota were predominant in the oil palm-cultivated area. Archaeal species diversity was 1.7 times higher in the native forest soil, according to the Simpson diversity index, and the Chao1 index showed that richness was five times higher in the native forest soil. A phylogenetic tree of unclassified Thaumarchaeota sequences showed that most of the OTUs belong to Miscellaneous Crenarchaeotic Group. Several archaeal genera involved in nutrient cycling (e.g., methanogens and ammonia oxidizers) were identified in both areas, but significant differences were found in the relative abundances of Candidatus Nitrososphaera and unclassified Soil Crenarchaeotic Group (prevalent in the native forest) and Candidatus Nitrosotalea and unclassified Terrestrial Group (prevalent in the oil palm-cultivated area). More studies are needed to culture some of these Archaea in the laboratory so that their metabolism and physiology can be studied. PMID:27006640

  17. Palm oil thorn-induced squamous cell carcinoma with underlying burns scar.

    PubMed

    Qi Qi, Choo; Ajit Singh, Vivek

    2012-01-01

    Marjolin's ulcers are malignancies that arise from previously traumatised, chronically inflamed or scarred skin. We present a case with childhood burns, who had repeated irritation of his forearm skin with palm oil thorns that eventually led to malignant change. PMID:22865804

  18. Evaluation of oil palm research and the dissemination of its results in Nigeria

    SciTech Connect

    Agiobenebo, T.J.

    1986-01-01

    This dissertation evaluates public investment in oil palm research and the dissemination of research results in Nigeria using the economic surplus technique adapted to suit the specific setting in which these activities are carried out. The issues raised include: (1) development of appropriate test of investment effectiveness suitable for appraising public investment in hybrid palm research and extension; (2) specification and econometric estimation of supply and demand functions for oil and kernels; (3) computation of the social returns to research; (4) sensitivity of returns to variations in extraction rates for both oil and kernels; (5) sensitivity of returns to research to types of supply shift; and (6) isolation of qualitative implications for public policy with respect to maximum exploitation of the economic opportunities offered by the knowledge generated by oil palm research. The author found that investments in hybrid palm research and extension are socially profitable under a wide range of conditions. The returns to research and related activities were computed and reported by periods according to the data situation and accrued, expected and total benefits over the investment.

  19. Red palm oil as an intervention food to prevent vitamin A deficiency.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vitamin A deficiency (VAD) is an important cause of blindness. Red palm oil (RPO) is the richest food source of VA-forming carotenoids. We evaluated RPO carotenoid concentration and bioavailability, and used this data to estimate the amount of RPO needed to meet VA requirements. Amounts ranged fr...

  20. Plant sources of vitamin A and human nutrition: red palm oil does the job.

    PubMed

    Solomons, N W

    1998-10-01

    Studies in India demonstrate that the beta-carotene in red palm oil is as effective as high-dose retinyl palmitate as a supplement to restore and preserve vitamin A nutriture in schoolchildren and may be an effective food-based strategy to combat hypovitaminosis A. PMID:9810811

  1. In Silico RAPD Priming Sites in Expressed Sequences and iSCAR Markers for Oil Palm

    PubMed Central

    Premkrishnan, Balakrishnan Vasanthakumari; Arunachalam, Vadivel

    2012-01-01

    RAPD is a simple dominant marker system widely used in biology. Effectiveness of RAPD can be improved by selecting and redesigning primers whose priming sites occur in target sequence(s) of gene or organism at optimum distance. We developed software that uses sequences of random decamer primers and nucleotide sequence(s) as two input files. It locates the priming sites in input sequences and generates output files listing frequency and distance between priming sites. When the priming sites of a single primer occur more than once in a sequence with a distance of 200 to 2000 bp, the software also designs pairs of iSCAR primers. An input of 387 RAPD primers and 42,432 expressed sequences of oil palm are used as test. Wet-lab PCR results from a publication that used the same set of primers were compared with software output on priming sites. In the test sequences of oil palm covering 1.4% of genome, we found that at least 60% the primers chosen using software are sure of giving PCR amplification. We designed 641 iSCAR primers suitable for amplification of oil palm DNA. The software successfully predicted 92% (67 out of 73) of published polymorphic RAPD primers in oil palm. PMID:22474414

  2. Ethanol and lactic acid production using sap squeezed from old oil palm trunks felled for replanting.

    PubMed

    Kosugi, Akihiko; Tanaka, Ryohei; Magara, Kengo; Murata, Yoshinori; Arai, Takamitsu; Sulaiman, Othman; Hashim, Rokiah; Hamid, Zubaidah Aimi Abdul; Yahya, Mohd Khairul Azri; Yusof, Mohd Nor Mohd; Ibrahim, Wan Asma; Mori, Yutaka

    2010-09-01

    Old oil palm trunks that had been felled for replanting were found to contain large quantities of high glucose content sap. Notably, the sap in the inner part of the trunk accounted for more than 80% of the whole trunk weight. The glucose concentration of the sap from the inner part was 85.2g/L and decreased towards the outer part. Other sugars found in relatively low concentrations were sucrose, fructose, galactose, xylose, and rhamnose. In addition, oil palm sap was found to be rich in various kinds of amino acids, organic acids, minerals and vitamins. Based on these findings, we fermented the sap to produce ethanol using the sake brewing yeast strain, Saccharomyces cerevisiae Kyokai no.7. Ethanol was produced from the sap without the addition of nutrients, at a comparable rate and yield to the reference fermentation on YPD medium with glucose as a carbon source. Likewise, we produced lactic acid, a promising material for bio-plastics, poly-lactate, from the sap using the homolactic acid bacterium Lactobacillus lactis ATCC19435. We confirmed that sugars contained in the sap were readily converted to lactic acid with almost the same efficiency as the reference fermentation on MSR medium with glucose as a substrate. These results indicate that oil palm trunks felled for replanting are a significant resource for the production of fuel ethanol and lactic acid in palm oil-producing countries such as Malaysia and Indonesia. PMID:20547348

  3. Gasifier selection, design and gasification of oil palm fronds with preheated and unheated gasifying air.

    PubMed

    Guangul, Fiseha M; Sulaiman, Shaharin A; Ramli, Anita

    2012-12-01

    Oil palm frond biomass is abundantly available in Malaysia, but underutilized. In this study, gasifiers were evaluated based on the available literature data and downdraft gasifiers were found to be the best option for the study of oil palm fronds gasification. A downdraft gasifier was constructed with a novel height adjustment mechanism for changing the position of gasifying air and steam inlet. The oil palm fronds gasification results showed that preheating the gasifying air improved the volumetric percentage of H(2) from 8.47% to 10.53%, CO from 22.87% to 24.94%, CH(4) from 2.02% to 2.03%, and higher heating value from 4.66 to 5.31 MJ/Nm(3) of the syngas. In general, the results of the current study demonstrated that oil palm fronds can be used as an alternative energy source in the energy diversification plan of Malaysia through gasification, along with, the resulting syngas quality can be improved by preheating the gasifying air. PMID:23073112

  4. The effect of frying on glycidyl esters content in palm oil.

    PubMed

    Aniołowska, Magda; Kita, Agnieszka

    2016-07-15

    The changes in palm oil, as affected by frying temperature, and content of the glycidyl esters (GEs) were studied. Potato chips were fried intermittently in palm oil, which was heated for 8 h daily over five consecutive days. Frying was conducted at three frying temperatures: 150, 165 and 180 °C. Thermo-oxidative alterations of the oil were measured by acid and anisidine values, changes in fatty acid composition, total polar components, polar fraction composition and colour components formation. Content of GE was measured by liquid chromatography-mass spectrometry. Results showed that amount of products of hydrolysis, oxidation and polymerization (excluding decrease of degree of unsaturation) increased significantly as a function of frying temperature and time. Between GEs of fatty acids the most abundant were esters of palmitic and oleic acids. With increasing temperature and frying time, the content of GE decreased. The extent of GE decrease was correlated with degree of oil degradation. PMID:26948594

  5. Nutrient leaching losses in lowland forests converted to oil palm and rubber plantations in Sumatra, Indonesia

    NASA Astrophysics Data System (ADS)

    Kurniawan, Syahrul; Corre, Marife D.; Rahayu Utami, Sri; Veldkamp, Edzo

    2015-04-01

    In the last two decades, Sumatra, Indonesia is experiencing rapid expansion of oil palm and rubber plantations by conversion of rainforest. This is evident from the 2.9 thousand km2 decrease in forest area in this region over the last 15 years. Such rapid land-use change necessitates assessment of its environmental impacts. Our study was aimed to assess the impact of forest conversion to oil palm and rubber plantations on nutrient leaching losses. Land-use conversion increases nutrient leaching losses due to changes in vegetation litter input, rooting depth, nutrient cycling and management (e.g. fertilization) practices. Our study area was in Jambi Province, Sumatra, Indonesia. We selected two soil landscapes in this region: loam and clay Acrisol soils. At each soil landscape, we investigated four land-use systems: lowland secondary rainforest, secondary forest with regenerating rubber (referred here as jungle rubber), rubber (7-17 years old) and oil palm plantations (9-16 years old). Each land use in each soil landscape was represented by four sites as replicates, totaling to 32 sites. We measured leaching losses using suction lysimeters installed at 1.5-m soil depth, which was well below the rooting depth, with bi-weekly to monthly sampling from February to December 2013. In general, the loam Acrisol landscape, particularly the forest and oil palm plantations, had lower soil solution pH and higher leaching fluxes of dissolved organic N, Na, Ca, Mg, total Al, total S and Cl than the clay Acrisol of the same land uses (all P ≤ 0.05). Among land uses in the loam Acrisol landscape, oil palm had lower soil solution pH and higher leaching fluxes of NH4+, NO3-, dissolved organic C, total P, total S and Cl than rubber plantation whereas forest and jungle rubber showed intermediate fluxes (all P ≤ 0.05, except P ≤ 0.09 for total P); oil palm had also higher Na, Ca, Mg and total Al leaching fluxes than all the other land uses (all P ≤ 0.05, except P ≤ 0.09 for Na

  6. Biophysical Impacts of Tropical Land Transformation from Forest to Oil Palm and Rubber Plantations in Indonesia

    NASA Astrophysics Data System (ADS)

    Knohl, A.; Meijide, A.; Fan, Y.; Hölscher, D.; June, T.; Niu, F.; Panferov, O.; Ringeler, A.; Röll, A.; Sabajo, C.; Tiralla, N.

    2015-12-01

    Indonesia currently experiences rapid and large-scale land-use changes resulting in forest loss and the expansion of cash crop plantations such as oil palm and rubber. Such land transformations are associated with changes in surface properties that affect biophysical processes influencing the atmosphere. Yet, the overall effect of such land transformations on the atmosphere at local and regional scale remains unclear. In our study, we combine measurements of microclimate, transpiration via sap-flux, surface energy fluxes via eddy covariance, surface temperature via remote sensing, land surface (CLM) and regional climate modeling (WRF) for Jambi Province in Indonesia. Our microclimatic measurements showed that air temperature within the canopy was on average 0.7-0.8°C higher in monoculture plantations (oil palm and rubber) compared to forest. Remote sensing analysis using MODIS and Landsat revealed a higher canopy surface temperature for oil palm plantations (+1.5°C) compared to forest, but only little differences for rubber plantations. Transpiration (T) and evapotranspiration (ET) as well as the contribution of T to ET of oil palm showed a strong age-dependent increase. The sensible to latent heat flux ratio decreased with age. Overall, rubber plantations showed the lowest transpirations rates (320 mm year-1), oil palm intermediate rates (414 mm year-1), and forest the highest rates (558 mm year-1) indicating substantial differences in water use. Despite the differences in water use and the higher within-canopy and surface temperatures of the plantations compared to the forest, there was only a minor effect of land transformation on the atmosphere at the regional scale (<0.2 °C), irrespectively of the large spatial extend of the transformation. In conclusion, our study shows a strong local scale biophysical impact affecting the conditions at the stand level, which is however mitigated in the atmosphere at the regional level.

  7. Biophysical Impacts of Tropical Land Transformation from Forest to Oil Palm and Rubber Plantations in Indonesia

    NASA Astrophysics Data System (ADS)

    Knohl, Alexander; Meijide, Ana; Fan, Yuanchao; Gunawan, Dodo; Hölscher, Dirk; June, Tania; Niu, Furong; Panferov, Oleg; Ringeler, Andre; Röll, Alexander; Sabajo, Clifton; Tiralla, Nina

    2016-04-01

    Indonesia currently experiences rapid and large-scale land-use changes resulting in forest loss and the expansion of cash crop plantations such as oil palm and rubber. Such land transformations are associated with changes in surface properties that affect biophysical processes influencing the atmosphere. Yet, the overall effect of such land transformations on the atmosphere at local and regional scale remains unclear. In our study, we combine measurements of microclimate, transpiration via sap-flux, surface energy fluxes via eddy covariance, surface temperature via remote sensing, land surface (CLM) and regional climate modeling (WRF) for Jambi Province in Indonesia. Our microclimatic measurements showed that air temperature within the canopy was on average 0.7-0.8°C higher in monoculture plantations (oil palm and rubber) compared to forest. Remote sensing analysis using MODIS and Landsat revealed a higher canopy surface temperature for oil palm plantations (+1.5°C) compared to forest, but only little differences for rubber plantations. Transpiration (T) and evapotranspiration (ET) as well as the contribution of T to ET of oil palm showed a strong age-dependent increase. The sensible to latent heat flux ratio decreased with age. Overall, rubber plantations showed the lowest transpirations rates (320 mm year-1), oil palm intermediate rates (414 mm year-1), and forest the highest rates (558 mm year-1) indicating substantial differences in water use. Despite the differences in water use and the higher within-canopy and surface temperatures of the plantations compared to the forest, there was only a minor effect of land transformation on the atmosphere at the regional scale (<0.2 °C), irrespectively of the large spatial extend of the transformation. In conclusion, our study shows a strong local scale biophysical impact affecting the conditions at the stand level, which is however mitigated in the atmosphere at the regional level.

  8. Development and Validation of a High-Density SNP Genotyping Array for African Oil Palm.

    PubMed

    Kwong, Qi Bin; Teh, Chee Keng; Ong, Ai Ling; Heng, Huey Ying; Lee, Heng Leng; Mohamed, Mohaimi; Low, Joel Zi-Bin; Apparow, Sukganah; Chew, Fook Tim; Mayes, Sean; Kulaveerasingam, Harikrishna; Tammi, Martti; Appleton, David Ross

    2016-08-01

    High-density single nucleotide polymorphism (SNP) genotyping arrays are powerful tools that can measure the level of genetic polymorphism within a population. To develop a whole-genome SNP array for oil palms, SNP discovery was performed using deep resequencing of eight libraries derived from 132 Elaeis guineensis and Elaeis oleifera palms belonging to 59 origins, resulting in the discovery of >3 million putative SNPs. After SNP filtering, the Illumina OP200K custom array was built with 170 860 successful probes. Phenetic clustering analysis revealed that the array could distinguish between palms of different origins in a way consistent with pedigree records. Genome-wide linkage disequilibrium declined more slowly for the commercial populations (ranging from 120 kb at r(2) = 0.43 to 146 kb at r(2) = 0.50) when compared with the semi-wild populations (19.5 kb at r(2) = 0.22). Genetic fixation mapping comparing the semi-wild and commercial population identified 321 selective sweeps. A genome-wide association study (GWAS) detected a significant peak on chromosome 2 associated with the polygenic component of the shell thickness trait (based on the trait shell-to-fruit; S/F %) in tenera palms. Testing of a genomic selection model on the same trait resulted in good prediction accuracy (r = 0.65) with 42% of the S/F % variation explained. The first high-density SNP genotyping array for oil palm has been developed and shown to be robust for use in genetic studies and with potential for developing early trait prediction to shorten the oil palm breeding cycle. PMID:27112659

  9. Enhancing biological control of basal stem rot disease (Ganoderma boninense) in oil palm plantations.

    PubMed

    Susanto, A; Sudharto, P S; Purba, R Y

    2005-01-01

    Basal Stem Rot (BSR) disease caused by Ganoderma boninense is the most destructive disease in oil palm, especially in Indonesia and Malaysia. The available control measures for BSR disease such as cultural practices and mechanical and chemical treatment have not proved satisfactory due to the fact that Ganoderma has various resting stages such as melanised mycelium, basidiospores and pseudosclerotia. Alternative control measures to overcome the Ganoderma problem are focused on the use of biological control agents and planting resistant material. Present studies conducted at Indonesian Oil Palm Research Institute (IOPRI) are focused on enhancing the use of biological control agents for Ganoderma. These activities include screening biological agents from the oil palm rhizosphere in order to evaluate their effectiveness as biological agents in glasshouse and field trials, testing their antagonistic activities in large scale experiments and eradicating potential disease inoculum with biological agents. Several promising biological agents have been isolated, mainly Trichoderma harzianum, T. viride, Gliocladium viride, Pseudomonas fluorescens, and Bacillus sp. A glasshouse and field trial for Ganoderma control indicated that treatment with T. harzianum and G. viride was superior to Bacillus sp. A large scale trial showed that the disease incidence was lower in a field treated with biological agents than in untreated fields. In a short term programme, research activities at IOPRI are currently focusing on selecting fungi that can completely degrade plant material in order to eradicate inoculum. Digging holes around the palm bole and adding empty fruit bunches have been investigated as ways to stimulate biological agents. PMID:15750748

  10. Spatial statistical analysis of basal stem root disease under natural field epidemic of oil palm

    NASA Astrophysics Data System (ADS)

    Kamu, Assis; Phin, Chong Khim; Seman, Idris Abu; Wan, Hoong Hak; Mun, Ho Chong

    2015-02-01

    Oil palm or scientifically known as Elaeis guineensis Jacq. is the most important commodity crop in Malaysia and has greatly contributed to the economy growth of the country. As far as disease is concerned in the industry, Basal Stem Rot (BSR) caused by Ganoderma boninence remains the most important disease. BSR disease is the most widely studied with information available for oil palm disease in Malaysia. However, there is still limited study on the spatial as well as temporal pattern or distribution of the disease especially under natural field epidemic condition in oil palm plantation. The objective of this study is to spatially identify the pattern of BSR disease under natural field epidemic using two geospatial analytical techniques, which are quadrat analysis for the first order properties of partial pattern analysis and nearest-neighbor analysis (NNA) for the second order properties of partial pattern analysis. Two study sites were selected with different age of tree. Both sites are located in Tawau, Sabah and managed by the same company. The results showed that at least one of the point pattern analysis used which is NNA (i.e. the second order properties of partial pattern analysis) has confirmed the disease is complete spatial randomness. This suggests the spread of the disease is not from tree to tree and the age of palm does not play a significance role in determining the spatial pattern of the disease. From the spatial pattern of the disease, it would help in the disease management program and for the industry in the future. The statistical modelling is expected to help in identifying the right model to estimate the yield loss of oil palm due to BSR disease in the future.

  11. Enzymatic Biodiesel Synthesis Using a Byproduct Obtained from Palm Oil Refining

    PubMed Central

    dos Santos Corrêa, Igor Nascentes; Lorena de Souza, Susana; Catran, Marly; Bernardes, Otávio Luiz; Portilho, Márcio Figueiredo; Langone, Marta Antunes Pereira

    2011-01-01

    An alternative route to produce biodiesel is based on esterification of free fatty acids present in byproducts obtained from vegetable oil refining, such as palm oil fatty acid distillate (PFAD). PFAD is a byproduct of the production of edible palm oil, which contains 96 wt.% of free fatty acids. The purpose of this work was to study biodiesel synthesis via esterification of PFAD with methanol and ethanol, catalyzed by commercial immobilized lipases (Novozym 435, Lipozyme RM-IM, and Lipozyme TL-IM), in a solvent-free system. The effects of reaction parameters such as type of lipase, enzyme amount, type of alcohol, alcohol amount, and enzyme reuse were studied. Fatty acid conversion of 93% was obtained after 2.5 h of esterification reaction between PFAD and ethanol using 1.0 wt.% of Novozym 435 at 60°C. PMID:21687622

  12. Oxidative stability of red palm oils blended chicken nuggets during frozen storage

    NASA Astrophysics Data System (ADS)

    Kamaruzaman, Nurkhuzaiah; Babji, Abdul Salam

    2014-09-01

    The effects of red palm oils known as Naturally Vitamin Rich Oil (NVRO) on the lipid stability of chicken nuggets were determined. Lipid oxidation was analyzed during frozen storage (-18 °C) for up to 4 months. Thiobarbituric acid (TBA) values and peroxide value (PV) for all samples chicken nuggets increased throughout 3 months of frozen storage and then start to decrease thereafter. Chicken nuggets formulated with NVRO, NVRO-100 and NVRO-50 showed lower TBA values and PV compared to the samples prepared with chicken fat. However, among NVRO, there were not significantly different for most of the months. It was concluded that the utilization of red palm oils in chicken nuggets significantly reduced the oxidation of lipid, which was indicated by the PV throughout 4 months of frozen storage.

  13. Effects of emulsifier addition on the crystallization and melting behavior of palm olein and coconut oil.

    PubMed

    Maruyama, Jessica Mayumi; Soares, Fabiana Andreia Schafer De Martini; D'Agostinho, Natalia Roque; Gonçalves, Maria Inês Almeida; Gioielli, Luiz Antonio; da Silva, Roberta Claro

    2014-03-12

    Two commercial emulsifiers (EM1 and EM2), containing predominantly monoacylglycerols (MAGs), were added in proportiond of 1.0 and 3.0% (w/w) to coconut oil and palm olein. EM1 consisted of approximately 90% MAGs, whereas EM2 consisted of approximately 50% MAGs. The crystallization behavior of these systems was evaluated by differential scanning calorimetry (DSC) and microscopy under polarized light. On the basis of DSC results, it was clear that the addition of EM2 accelerated the crystallization of coconut oil and delayed the crystallization of palm olein. In both oils EM2 addition led to the formation of smaller spherulites, and these effects improved the possibilities for using these fats as ingredients. In coconut oil the spherulites were maintained even at higher temperatures (20 °C). The addition of EM1 to coconut oil changed the crystallization pattern. In palm olein, the addition of 3.0% (w/w) of this emulsifier altered the pattern of crystallization of this fat. PMID:24547939

  14. Stability of Silica- and Enzyme-Treated Palm Oil Under Deep Frying Conditions.

    PubMed

    Karim, Nur Azwani Ab; Noor, Ahmadilfitri Md; Lee, Yee-Ying; Lai, Oi-Ming

    2015-12-01

    The oxidative and thermal stability of low diglycerides palm oil produced via silica treatment (sPO) and enzymatic treatment (ePO) compared with standard quality palm oil (SQ) and premium quality palm oil (PQ) was investigated. Both of the oils displayed better oxidative stability compared with SQ as well as significantly higher (P < 0.05) thermal resistance and oxidative strength than SQ and PQ due to lower amounts of partial glycerides. Although the initial induction periods (IPs) of sPO and ePO were significantly lower compared with SQ and PQ, both the oils showed slower drops in their IP values. The darkening effect after frying was significantly (P < 0.05) slower in sPO compared with SQ, PQ, and ePO. Besides, there is no difference p > 0.05 in the rate of FFA formation between sPO and PQ. The anisidine value and peroxide values were lowest in sPO, followed by ePO, PQ, and SQ. PMID:26523850

  15. Soil-atmosphere trace gas exchange from tropical oil palm plantations on peat

    NASA Astrophysics Data System (ADS)

    Arn Teh, Yit; Manning, Frances; Zin Zawawi, Norliyana; Hill, Timothy; Chocholek, Melanie; Khoon Kho, Lip

    2015-04-01

    Oil palm is the largest agricultural crop in the tropics, accounting for 13 % of all tropical land cover. Due to its large areal extent, oil palm cultivation may have important implications not only for terrestrial stores of C and N, but may also impact regional and global exchanges of material and energy, including fluxes of trace gases and water vapor. In particular, recent expansion of oil palm into tropical peatlands has raised concerns over enhanced soil C emissions from degradation of peat, and elevated N-gas fluxes linked to N fertilizer application. Here we report our preliminary findings on soil carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) fluxes from a long-term, multi-scale project investigating the C, N and greenhouse gas (GHG) dynamics of oil palm ecosystems established on peat soils in Sarawak, Malaysian Borneo. Flux chamber measurements indicate that soil CO2, CH4 and N2O fluxes averaged 20.0 ± 16.0 Mg CO2-C ha-1 yr-1, 37.4 ± 29.9 kg CH4-C ha-1 yr-1 and 4.7 ± 4.2 g N2O-N ha-1 yr-1, respectively. Soil CO2 fluxes were on par with other drained tropical peatlands; whereas CH4 fluxes exceeded observations from similar study sites elsewhere. Nitrous oxide fluxes were in a similar range to fluxes from other drained tropical peatlands, but lower than emissions from mineral-soil plantations by up to three orders of magnitude. Fluxes of soil CO2 and N2O were spatially stratified, and contingent upon the distribution of plants, deposited harvest residues, and soil moisture. Soil CO2 fluxes were most heavily influenced by the distribution of palms and their roots. On average, autotrophic (root) respiration accounted for approximately 78 % of total soil CO2 flux, and total soil respiration declined steeply away from palms; e.g. soil CO2 fluxes in the immediate 1 m radius around palms were up to 6 times greater than fluxes in inter-palm spaces due to higher densities of roots. Placement of harvest residues played an important - but secondary

  16. Differential effects of natural palm oil, chemically- and enzymatically-modified palm oil on weight gain, blood lipid metabolites and fat deposition in a pediatric pig model

    PubMed Central

    2011-01-01

    Background Increasing prevalence of obesity and overweight in the Western world, continue to be a major health threat and is responsible for increased health care costs. Dietary intervention studies show a strong positive association between saturated fat intake and the development of obesity and cardiovascular disease. This study investigated the effect of positional distribution of palmitic acid (Sn-1, 2 & 3) of palm oil on cardiovascular health and development of obesity, using weaner pigs as a model for young children. Methods Male and female weaner piglets were randomly allocated to 4 dietary treatment groups: 1) pork lard (LRD); 2) natural palm olein (NPO); 3) chemically inter-esterified PO (CPO) and 4) enzymatically inter-esterified PO (EnPO) as the fat source. Diets were formulated with 11% lard or with palm olein in order to provide 31% of digestible energy from fat in the diet and were balanced for cholesterol, protein and energy across treatments. Results From 8 weeks onwards, pigs on EnPO diet gained (P < 0.05) more weight than all other groups. Feed conversion efficiency (feed to gain) over the 12 week experimental period did not vary between treatment groups. Plasma LDL-C content and LDL-C/HDL-C ratio in pigs fed natural PO tended to be lower compared to all other diets. The natural PO lowered (P < 0.02) the plasma triglyceride (TG) content relative to the lard or EnPO diets, but was not different from the CPO diet. The natural PO diet was associated with lower (P < 0.05) saturated fat levels in subcutaneous adipose tissue than the CPO and EnPO diets that had lower saturated fat levels than the lard diet. Female pigs had lower lean and higher fat and fat:lean ratio in the body compared with male pigs. No difference in weight gain or blood lipid parameters was observed between sexes. Conclusions The observations on plasma TG, muscle and adipose tissue saturated fatty acid contents and back fat (subcutaneous) thickness suggest that natural palm oil may

  17. Wrinkled1, a ubiquitous regulator in oil accumulating tissues from Arabidopsis embryos to oil palm mesocarp.

    PubMed

    Ma, Wei; Kong, Que; Arondel, Vincent; Kilaru, Aruna; Bates, Philip D; Thrower, Nicholas A; Benning, Christoph; Ohlrogge, John B

    2013-01-01

    Wrinkled1 (AtWRI1) is a key transcription factor in the regulation of plant oil synthesis in seed and non-seed tissues. The structural features of WRI1 important for its function are not well understood. Comparison of WRI1 orthologs across many diverse plant species revealed a conserved 9 bp exon encoding the amino acids "VYL". Site-directed mutagenesis of amino acids within the 'VYL' exon of AtWRI1 failed to restore the full oil content of wri1-1 seeds, providing direct evidence for an essential role of this small exon in AtWRI1 function. Arabidopsis WRI1 is predicted to have three alternative splice forms. To understand expression of these splice forms we performed RNASeq of Arabidopsis developing seeds and queried other EST and RNASeq databases from several tissues and plant species. In all cases, only one splice form was detected and VYL was observed in transcripts of all WRI1 orthologs investigated. We also characterized a phylogenetically distant WRI1 ortholog (EgWRI1) as an example of a non-seed isoform that is highly expressed in the mesocarp tissue of oil palm. The C-terminal region of EgWRI1 is over 90 amino acids shorter than AtWRI1 and has surprisingly low sequence conservation. Nevertheless, the EgWRI1 protein can restore multiple phenotypes of the Arabidopsis wri1-1 loss-of-function mutant, including reduced seed oil, the "wrinkled" seed coat, reduced seed germination, and impaired seedling establishment. Taken together, this study provides an example of combining phylogenetic analysis with mutagenesis, deep-sequencing technology and computational analysis to examine key elements of the structure and function of the WRI1 plant transcription factor. PMID:23922666

  18. Greenhouse gas reductions through enhanced use of residues in the life cycle of Malaysian palm oil derived biodiesel.

    PubMed

    Hansen, Sune Balle; Olsen, Stig Irving; Ujang, Zaini

    2012-01-01

    This study identifies the potential greenhouse gas (GHG) reductions, which can be achieved by optimizing the use of residues in the life cycle of palm oil derived biodiesel. This is done through compilation of data on existing and prospective treatment technologies as well as practical experiments on methane potentials from empty fruit bunches. Methane capture from the anaerobic digestion of palm oil mill effluent was found to result in the highest GHG reductions. Among the solid residues, energy extraction from shells was found to constitute the biggest GHG savings per ton of residue, whereas energy extraction from empty fruit bunches was found to be the most significant in the biodiesel production life cycle. All the studied waste treatment technologies performed significantly better than the conventional practices and with dedicated efforts of optimized use in the palm oil industry, the production of palm oil derived biodiesel can be almost carbon neutral. PMID:22137753

  19. Oil palm water use: calibration of a sap flux method and a field measurement scheme.

    PubMed

    Niu, Furong; Röll, Alexander; Hardanto, Afik; Meijide, Ana; Köhler, Michael; Hendrayanto; Hölscher, Dirk

    2015-05-01

    Oil palm (Elaeis guineensis Jacq.) water use was assessed by sap flux density measurements with the aim to establish the method and derive water-use characteristics. Thermal dissipation probes were inserted into leaf petioles of mature oil palms. In the laboratory, we tested our set-up against gravimetric measurements and derived new parameters for the original calibration equation that are specific to oil palm petioles. In the lowlands of Jambi, Indonesia, in a 12-year-old monoculture plantation, 56 leaves on 10 palms were equipped with one sensor per leaf. A 10-fold variation in individual leaf water use among leaves was observed, but we did not find significant correlations to the variables trunk height and diameter, leaf azimuthal orientation, leaf inclination or estimated horizontal leaf shading. We thus took an un-stratified approach to determine an appropriate sampling design to estimate stand transpiration (Es, mm day(-1)) rates of oil palm. We used the relative standard error of the mean (SEn, %) as a measure for the potential estimation error of Es associated with sample size. It was 14% for a sample size of 13 leaves to determine the average leaf water use and four palms to determine the average number of leaves per palm. Increasing these sample sizes only led to minor further decreases of the SEn of Es. The observed 90-day average of Es was 1.1 mm day(-1) (error margin ± 0.2 mm day(-1)), which seems relatively low, but does not contradict Penman-Monteith-derived estimates of evapotranspiration. Examining the environmental drivers of Es on an intra-daily scale indicates an early, pre-noon maximum of Es rates (11 am) due to a very sensitive reaction of Es to increasing vapor pressure deficit in the morning. This early peak is followed by a steady decline of Es rates for the rest of the day, despite further rising levels of vapor pressure deficit and radiation; this results in pronounced hysteresis, particularly between Es and vapor pressure deficit. PMID

  20. Nitrogen management is essential to prevent tropical oil palm plantations from causing ground-level ozone pollution

    NASA Astrophysics Data System (ADS)

    Hewitt, Nick; Lee, James

    2010-05-01

    More than half the world's rainforest has been lost to agriculture since the Industrial Revolution. Among the most widespread tropical crops is oil palm (Elaeis guineensis): global production now exceeds 35 million tonnes per year. In Malaysia, for example, 13% of land area is now oil palm plantation, compared with 1% in 1974. There are enormous pressures to increase palm oil production for food, domestic products, and, especially, biofuels. Greater use of palm oil for biofuel production is predicated on the assumption that palm oil is an ‘‘environmentally friendly'' fuel feedstock. Here we show, using measurements and models, that oil palm plantations in Malaysia directly emit more oxides of nitrogen and volatile organic compounds than rainforest. These compounds lead to the production of ground-level ozone (O3), an air pollutant that damages human health, plants, and materials, reduces crop productivity, and has effects on the Earth's climate. Our measurements show that, at present, O3 concentrations do not differ significantly over rainforest and adjacent oil palm plantation landscapes. However, our model calculations predict that if concentrations of oxides of nitrogen in Borneo are allowed to reach those currently seen over rural North America and Europe, ground-level O3 concentrations will reach 100 parts per billion (109) volume (ppbv) and exceed levels known to be harmful to human health. Our study provides an early warning of the urgent need to develop policies that manage nitrogen emissions if the detrimental effects of palm oil production on air quality and climate are to be avoided.

  1. Characterisation of crude palm oil O/W emulsion produced with Tween 80 and potential in residual oil recovery of palm pressed mesocarp fibre

    NASA Astrophysics Data System (ADS)

    Ramly, N. H.; Zakaria, R.; Naim, M. N.

    2016-06-01

    Surfactant-assisted aqueous extraction has been proposed as a “green” alternative to hexane extraction for the recovery of oil from plant matters. An efficient aqueous surfactant extraction system usually use an extended type of ionic surfactant with the ability to produce Winsor type III microemulsion, reducing the interfacial tension (IFT) between plant oil and surfactant solution to an ultralow level (10-3 mN/m). However, the safe used of this surfactant in food processing is uncertain leading to non-food application of the recovered oil. In the present study, the potential of Tween 80, a commercial food-grade non-ionic surfactant, was evaluated in the recovery of residual oil from palm-pressed mesocarp. The emulsion produced between Tween 80 and crude palm oil (CPO) was characterised in terms of IFT, droplet size, viscosity and phase inversion temperature (PIT). The effect of surfactant concentration, electrolyte (NaCl) and temperature were studied to determine whether a Winsor Type III microemulsion can be produced. Results shows that although these parameters were able to reduce the IFT to very low values, Winsor type III microemulsion was not produced with this single surfactant. Emulsion of CPO and Tween 80 solution did not produce a PIT even after heating to 100°C indicating that middle phase emulsion was not able to be formed with increasing temperature. The highest percentage of oil extraction (38.84%) was obtained at the concentration above the critical micelle concentration (CMC) of Tween 80 and CPO, which was at 0.5 wt% Tween 80 with 6% NaCl, and temperature of 60°C. At this concentration, the IFT value is 0.253 mN/m with a droplet size of 4183.8 nm, and a viscosity of 7.38 cp.

  2. Mining for single nucleotide polymorphisms and insertions / deletions in expressed sequence tag libraries of oil palm.

    PubMed

    Riju, Aykkal; Chandrasekar, Arumugam; Arunachalam, Vadivel

    2007-01-01

    The oil palm is a tropical oil bearing tree. Recently EST-derived SNPs and SSRs are a free by-product of the currently expanding EST (Expressed Sequence Tag) data bases. The development of high-throughput methods for the detection of SNPs (Single Nucleotide Polymorphism) and small indels (insertion / deletion) has led to a revolution in their use as molecular markers. Available (5452) Oil palm EST sequences were mined from dbEST of NCBI. CAP3 program was used to assemble EST sequences into contigs. Candidate SNPs and Indel polymorphisms were detected using the perl script auto_snip version 1.0 which has used 576 ESTs for detecting SNPs and Indel sites. We found 1180 SNP sites and 137 indel polymorphisms with frequency 1.36 SNPs / 100 bp. Among the six tissues from which the EST libraries had been generated, mesocarp had high frequency of 2.91 SNPs and indels per 100 bp whereas the zygotic embryos had lowest frequency of 0.15 per 100 bp. We also used the Shannon index to analyze the proportion of ten possible types of SNP/indels. ESTs from tissues of normal apex showed highest values of Shannon index (0.60) whereas abnormal apex had least value (0.02). The present report deals the use of Shannon index for comparing SNP/ indel frequencies mined from ESTlibraries and also confirm that the frequency of SNP occurrence in oil palm to use them as markers for genetic studies. PMID:21670789

  3. Mutagenicity of edible palm oil on the Ghanaian market before and after repeated heating.

    PubMed

    Asare, George A; Okyere, Genevieve O; Asante, Matilda; Brown, Charles A; Santa, Sheila; Asiedu, Bernice

    2013-12-01

    Red palm oil produced in Ghana largely by village folks has never been tested for its mutagenic potential. The study aimed at determining the mutagenicity of high-energy heated red palm oil (RRPO) and refined, bleached imported palm oil (PO) on the Ghanaian market. Samples of RRPO and PO were 1× and 5× heated for 10 min at 180 °C with a cooling period of 5 h in-between. Unheated, together with heated samples, were tested for mutagenicity using Salmonella typhimurium TA 98 and TA 100 tester stains. Unheated PO was negative for the Ames mutagenicity test with TA 98 strain. However, 1× and 5× heated PO were mutagenic (P = 0.05, each). Testing PO, using TA 100 strain was negative. RRPO was mutagenic with TA 98 strain for heated oils (P = 0.05, each). Assays with TA 100 strain showed highly significant mutations (P = 0.001, each) that increased with increasing heating frequency. PO 1× and 5× heated samples caused significant frameshift mutation in the S. typhimurium TA 98 strain. RRPO caused highly significant point and frameshift mutations in heated samples. Furthermore, unheated RRPO mutagenic potential has serious health implications. PMID:24171816

  4. Establishing the evidence base for maintaining biodiversity and ecosystem function in the oil palm landscapes of South East Asia

    PubMed Central

    Foster, William A.; Snaddon, Jake L.; Turner, Edgar C.; Fayle, Tom M.; Cockerill, Timothy D.; Ellwood, M. D. Farnon; Broad, Gavin R.; Chung, Arthur Y. C.; Eggleton, Paul; Khen, Chey Vun; Yusah, Kalsum M.

    2011-01-01

    The conversion of natural forest to oil palm plantation is a major current threat to the conservation of biodiversity in South East Asia. Most animal taxa decrease in both species richness and abundance on conversion of forest to oil palm, and there is usually a severe loss of forest species. The extent of loss varies significantly across both different taxa and different microhabitats within the oil palm habitat. The principal driver of this loss in diversity is probably the biological and physical simplification of the habitat, but there is little direct evidence for this. The conservation of forest species requires the preservation of large reserves of intact forest, but we must not lose sight of the importance of conserving biodiversity and ecosystem processes within the oil palm habitat itself. We urgently need to carry out research that will establish whether maintaining diversity supports economically and ecologically important processes. There is some evidence that both landscape and local complexity can have positive impacts on biodiversity in the oil palm habitat. By intelligent manipulation of habitat complexity, it could be possible to enhance not only the number of species that can live in oil palm plantations but also their contribution to the healthy functioning of this exceptionally important and widespread landscape. PMID:22006968

  5. Renewable and sustainable bioenergies production from palm oil mill effluent (POME): win-win strategies toward better environmental protection.

    PubMed

    Lam, Man Kee; Lee, Keat Teong

    2011-01-01

    Palm oil industry is one of the leading agricultural industries in Malaysia with average crude palm oil production of more than 13 million tonne per year. However, production of such huge amount of crude palm oil has consequently resulted to even larger amount of palm oil mill effluent (POME). POME is a highly polluting wastewater with high chemical oxygen demand (COD) and biochemical oxygen demand (BOD) in which can caused severe pollution to the environment, typically pollution to water resources. On the other hand, POME was identified as a potential source to generate renewable bioenergies such as biomethane and biohydrogen through anaerobic digestion. In other words, a combination of wastewater treatment and renewable bioenergies production would be an added advantage to the palm oil industry. In line with the world's focus on sustainability concept, such strategy should be implemented immediately to ensure palm oil is produced in an environmental friendly and sustainable manner. This review aims to discuss various technologies to convert POME to biomethane and biohydrogen in a commercial scale. Furthermore, discussion on using POME to culture microalgae for biodiesel and bioethanol production was included in the present paper as a new remedy to utilize POME with a greater beneficial return. PMID:20940036

  6. Establishing the evidence base for maintaining biodiversity and ecosystem function in the oil palm landscapes of South East Asia.

    PubMed

    Foster, William A; Snaddon, Jake L; Turner, Edgar C; Fayle, Tom M; Cockerill, Timothy D; Ellwood, M D Farnon; Broad, Gavin R; Chung, Arthur Y C; Eggleton, Paul; Khen, Chey Vun; Yusah, Kalsum M

    2011-11-27

    The conversion of natural forest to oil palm plantation is a major current threat to the conservation of biodiversity in South East Asia. Most animal taxa decrease in both species richness and abundance on conversion of forest to oil palm, and there is usually a severe loss of forest species. The extent of loss varies significantly across both different taxa and different microhabitats within the oil palm habitat. The principal driver of this loss in diversity is probably the biological and physical simplification of the habitat, but there is little direct evidence for this. The conservation of forest species requires the preservation of large reserves of intact forest, but we must not lose sight of the importance of conserving biodiversity and ecosystem processes within the oil palm habitat itself. We urgently need to carry out research that will establish whether maintaining diversity supports economically and ecologically important processes. There is some evidence that both landscape and local complexity can have positive impacts on biodiversity in the oil palm habitat. By intelligent manipulation of habitat complexity, it could be possible to enhance not only the number of species that can live in oil palm plantations but also their contribution to the healthy functioning of this exceptionally important and widespread landscape. PMID:22006968

  7. The effects of physical refining on the formation of 3-monochloropropane-1,2-diol esters in relation to palm oil minor components.

    PubMed

    Zulkurnain, Musfirah; Lai, Oi Ming; Latip, Razam Abdul; Nehdi, Imededdine Arbi; Ling, Tau Chuan; Tan, Chin Ping

    2012-11-15

    The formation of 3-monochloropropane-1,2-diol (3-MCPD) esters in refined palm oil during deodorisation is attributed to the intrinsic composition of crude palm oil. Utilising D-optimal design, the effects of the degumming and bleaching processes on the reduction in 3-MCPD ester formation in refined palm oil from poor-quality crude palm oil were studied relative to the palm oil minor components that are likely to be their precursors. Water degumming remarkably reduced 3-MCPD ester formation by up to 84%, from 9.79 mg/kg to 1.55 mg/kg. Bleaching with synthetic magnesium silicate caused a further 10% reduction, to 0.487 mg/kg. The reduction in 3-MCPD ester formation could be due to the removal of related precursors prior to the deodorisation step. The phosphorus content of bleached palm oil showed a significant correlation with 3-MCPD ester formation. PMID:22868161

  8. Production and characterization of hydrophobic zinc borate by using palm oil

    NASA Astrophysics Data System (ADS)

    Acarali, Nil Baran; Tugrul, Nurcan; Derun, Emek Moroydor; Piskin, Sabriye

    2013-11-01

    Zinc borate (ZB) was synthesized using zinc oxide, boric acid synthesized from colemanite, and reference ZB as seed. The effects of reaction parameters such as reaction time, reactant ratio, and seed ratio on its yield were examined. Then, the effects of palm oil with solvents (isopropyl alcohol (IPA), ethanol, and methanol) added to the reaction on its hydrophobicity were explored. Reactions were carried out under determined reaction conditions with magnetically and mechanically stirred systems. The produced ZB was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and measurements of contact angle identified hydrophobicity. The results showed that hydrophobic ZB was successfully produced under determined reaction conditions. The change of process parameters influenced its yield and the usage of palm oil provided hydrophobicity.

  9. Electrical Conductivity of Carbon Pellets from Mixtures of Pyropolymer from Oil Palm Bunch and Cotton Cellulose

    NASA Astrophysics Data System (ADS)

    Deraman, Mohamad; Zakaria, Sarani; Omar, Ramli; Aziz, Astimar A.

    2000-12-01

    Self-adhesive carbon grains (sacg1) and heat-treated kraft lignin (htkl) were prepared from the oil palm empty fruit bunch, a potential precursor for carbon products due to its large availability from palm oil mills, and sacg was prepared from cellulose (sacg2). Pellets were prepared from mixtures of sacg1 and htkl, as well as sacg1 and sacg2, with varying percentages of htkl (Phtkl%) and sacg2 (Psacg2%). After carbonization up to 1000°C, the measured electrical conductivities, σ (Ω{\\cdot}cm)-1, of the respective pellets follow the equations σ=4.13Phtkl+2.43 and σ=0.53Psacg2+2.55, respectively, indicating that htkl has improved in its conducting phase compared to sacg2.

  10. Evaluation of Some Finishing Properties of Oil Palm Particleboard for Furniture Application

    NASA Astrophysics Data System (ADS)

    Ratnasingam, J.; Nyugen, V.; Ioras, F.

    The finishing properties of particleboard made from the Empty-Fruit Bunch (EFB) of oil palm (Elaeis guineensis Jacq.) were evaluated for its suitability for furniture applications, using different coating and overlay materials. The results found that the thick plastic-formica overlay provided the best surface finish, in terms of surface smoothness, adhesion strength and impact resistance. Although the polyurethane lacquer provided an acceptable finish, its quality and performance is not comparable to that of the thick plastic overlay. Despite the fact that the use of such overlay material may render the material not aesthetically appealing and limit it to concealed applications or where the thick overlay material is tolerated, its cost competitiveness and environmental friendliness may be able to position the oil palm particleboard as a substitute for the conventional wood-based particleboard in the furniture manufacturing industry.

  11. Permeability of filter cakes of palm oil in relation to mechanical expression

    SciTech Connect

    Kamst, G.F.; Bruinsma, O.S.L.; Graauw, J. de

    1997-03-01

    Permeability and compressibility data are required for an adequate process model for compressible-cake filtration and mechanical expression. Experimental and modeling results of the permeability of palm-oil filter cakes (a highly compressible viscoelastic material) are combined with compressibility data, leading to a model for the expression step. Permeability measurements show that permeability depends strongly on the quantity of fine particles in the cake. Removal of fine particles from the slurry before expression significantly increases the solid-phase content during expression due to higher permeability. Modeling results of the expression step show that for palm-oil filter cakes there is a pressure above which the attainable mass fraction of solids becomes independent of pressure. Decrease in specific cake resistance has two effects: a higher mass fraction of solids at the same pressure and a higher pressure at which the mass fraction of solids is not affected further.

  12. Solid-phase creep during the expression of palm-oil filter cakes

    SciTech Connect

    Kamst, G.F.; Bruinsma, O.S.L.; Graauw, J. de

    1997-03-01

    For an adequate model of the processes of compressible cake filtration and mechanical expression, permeability and compressibility data are required. Experimental and modeling results of the creep behavior of palm-oil filter cakes at constant and time-dependent pressures are presented. Creep curves of palm-oil cakes at constant pressures cannot be modeled with linear viscoelastic models. Modeling with a modified form of the empirical equation of Nutting gives satisfactory results. This modification does not lead to unrealistic values of the porosity at extreme conditions, contrary to the original form of the equation of Nutting. Creep curves at time-dependent pressures were modeled with two nonlinear viscoelastic models, which describe the time-dependent creep behavior as a function of the pressure history and creep curves at constant pressures. Modeling with the strain-hardening model provides the best porosity predictions.

  13. Application of high-intensity ultrasound to palm oil in a continuous system.

    PubMed

    Ye, Yubin; Martini, Silvana

    2015-01-14

    High-intensity ultrasound (HIU) was used in a continuous system to change the crystallization behavior of palm oil. Different power levels (75, 110, and 180 W) and pulse durations (continuous application and 5, 10, and 15 s pulses) were used to optimize sonication conditions. Results showed that HIU applied at low power level (75 W) was the most efficient condition in inducing palm oil crystallization at 35 °C, generating a crystalline network with higher solid fat content (SFC), higher elasticity, and sharper melting profile after 60 min of crystallization. Changes in elasticity observed as a consequence of sonication were maintained after tempering the samples at 25 °C for 24 h, but were lost after tempering at 5 °C. No significant differences (α = 0.05) were observed in SFC values of the sonicated and nonsonicated samples after tempering, whereas the sharper melting behavior observed in the sonicated sample was maintained after tempering. PMID:25516404

  14. Oil palm biomass-based adsorbents for the removal of water pollutants--a review.

    PubMed

    Ahmad, Tanweer; Rafatullah, Mohd; Ghazali, Arniza; Sulaiman, Othman; Hashim, Rokiah

    2011-07-01

    This article presents a review on the role of oil palm biomass (trunks, fronds, leaves, empty fruit bunches, shells, etc.) as adsorbents in the removal of water pollutants such as acid and basic dyes, heavy metals, phenolic compounds, various gaseous pollutants, and so on. Numerous studies on adsorption properties of various low-cost adsorbents, such as agricultural wastes and its based activated carbons, have been reported in recent years. Studies have shown that oil palm-based adsorbent, among the low-cost adsorbents mentioned, is the most promising adsorbent for removing water pollutants. Further, these bioadsorbents can be chemically modified for better efficiency and can undergo multiple reuses to enhance their applicability at an industrial scale. It is evident from a literature survey of more than 100 recent papers that low-cost adsorbents have demonstrated outstanding removal capabilities for various pollutants. The conclusion is been drawn from the reviewed literature, and suggestions for future research are proposed. PMID:21929380

  15. Characterization of cassava starch based foam blended with plant proteins, kraft fiber, and palm oil.

    PubMed

    Kaisangsri, Nattapon; Kerdchoechuen, Orapin; Laohakunjit, Natta

    2014-09-22

    Cassava starch foam (CSF) trays blended with zein, gluten, soy protein, kraft fiber, and palm oil at various concentrations: 0, 5, 10 and 15% by weight of starch, were characterized. The addition of zein and gluten into CSF resulted in consolidated and homogeneous structural foams compared to its controls. Moreover, the flexural and compressive strength increased with increasing kraft, zein and gluten. CSF containing 15% kraft gave the highest flexural and compressive strength. However, the addition of palm oil into CSF gave the lowest flexural strength and compressive strength. The observed water absorption and water solubility index of CSFs blended with 15% zein and 15% gluten protein was lowest. Although kraft, zein and gluten could improve mechanical properties, water absorption and water solubility were greater than the expanded polystyrene foam (EPS). The CSF trays in this study might be an alternative for packing low water content foods. PMID:24906730

  16. Micromechanical modelling of oil palm empty fruit bunch fibres containing silica bodies.

    PubMed

    Omar, Farah Nadia; Hanipah, Suhaiza Hanim; Xiang, Loo Yu; Mohammed, Mohd Afandi P; Baharuddin, Azhari Samsu; Abdullah, Jaafar

    2016-09-01

    Experimental and numerical investigation was conducted to study the micromechanics of oil palm empty fruit bunch fibres containing silica bodies. The finite viscoelastic-plastic material model called Parallel Rheological Network model was proposed, that fitted well with cyclic and stress relaxation tensile tests of the fibres. Representative volume element and microstructure models were developed using finite element method, where the models information was obtained from microscopy and X-ray micro-tomography analyses. Simulation results showed that difference of the fibres model with silica bodies and those without ones is larger under shear than compression and tension. However, in comparison to geometrical effect (i.e. silica bodies), it is suggested that ultrastructure components of the fibres (modelled using finite viscoelastic-plastic model) is responsible for the complex mechanical behaviour of oil palm fibres. This can be due to cellulose, hemicellulose and lignin components and the interface behaviour, as reported on other lignocellulosic materials. PMID:27183430

  17. Polyhydroxybutyrate production from oil palm empty fruit bunch using Bacillus megaterium R11.

    PubMed

    Zhang, Youhong; Sun, Wandong; Wang, Hengwei; Geng, Anli

    2013-11-01

    Oil palm empty fruit bunch (OPEFB), contains abundant cellulose and hemicelluloses and can be used as a renewable resource for fuel and chemical production. This study, as the first attempt, aims to convert OPEFB derived sugars to polyhydroxybutyrate (PHB). OPEFB collected from a Malaysia palm oil refinery plant was chemically pretreated and enzymatically hydrolyzed by an in-house prepared cellulase cocktail. The PHB producer, Bacillus megaterium R11, was isolated in Singapore and could accumulate PHB up to 51.3% of its cell dry weight (CDW) from both glucose and xylose. Tryptone was identified as its best nitrogen source. PHB content and production reached 58.5% and 9.32 g/L, respectively, for an overall OPEFB sugar concentration of 45 g/L. These respectively reached 51.6% and 12.48 g/L for OPEFB hydrolysate containing 60 g/L sugar with a productivity of 0.260 g/L/h. PMID:24001560

  18. An overview of oil palm biomass torrefaction: Effects of temperature and residence time

    NASA Astrophysics Data System (ADS)

    Yaacob, N.; Rahman, N. A.; Matali, S.; Idris, S. S.; Alias, A. B.

    2016-06-01

    Biomass is characterized as high moisture content, low bulk and energy density, possesses hygroscopic behaviour and poor grindability material as compared to the superior coal. A thermal treatment called torrefaction is a heating of biomass in a temperature range between 200°C to 300°C under inert atmosphere in order to upgrade biomass properties. Torrefied biomass has many similar characteristics to coal such as low moisture content, high bulk and energy density, hydrophobic and good grindability. This paper reviews the effects of oil palm biomass torrefaction in terms of temperature and residence time. This is because comprehensive studies on torrefaction parameters need to be carried out since different parameters might affect the chemical and physical characteristic of the torrefied product. Hence, this paper aims to discuss the effects of different torrefaction temperature and residence time towards physicochemical characteristic, mass and energy yield as well as calorific value of torrefied oil palm biomass.

  19. Conventional methods and emerging wastewater polishing technologies for palm oil mill effluent treatment: a review.

    PubMed

    Liew, Wai Loan; Kassim, Mohd Azraai; Muda, Khalida; Loh, Soh Kheang; Affam, Augustine Chioma

    2015-02-01

    The Malaysian palm oil industry is a major revenue earner and the country is ranked as one of the largest producers in the world. However, growth of the industry is synonymous with a massive production of agro-industrial wastewater. As an environmental protection and public health concern, the highly polluting palm oil mill effluent (POME) has become a major attention-grabber. Hence, the industry is targeting for POME pollution abatement in order to promote a greener image of palm oil and to achieve sustainability. At present, most palm oil mills have adopted the ponding system for treatment. Due to the successful POME pollution abatement experiences, Malaysia is currently planning to revise the effluent quality standards towards a more stringent discharge limits. Hence, the current trend of POME research focuses on developing tertiary treatment or polishing systems for better effluent management. Biotechnologically-advanced POME tertiary (polishing) technologies as well as other physicochemical methods are gaining much attention as these processes are the key players to push the industry towards the goal of environmental sustainability. There are still ongoing treatment technologies being researched and the outcomes maybe available in a while. However, the research completed so far are compiled herein and reported for the first time to acquire a better perspective and insight on the subject with a view of meeting the new standards. To this end, the most feasible technology could be the combination of advanced biological processes (bioreactor systems) with extended aeration, followed by solids separation prior to discharge. Chemical dosing is favoured only if effluent of higher quality is anticipated. PMID:25463585

  20. Phenology and growth adjustments of oil palm (Elaeis guineensis) to photoperiod and climate variability

    PubMed Central

    Legros, S.; Mialet-Serra, I.; Caliman, J.-P.; Siregar, F. A.; Clément-Vidal, A.; Dingkuhn, M.

    2009-01-01

    Background and Aims Oil palm flowering and fruit production show seasonal maxima whose causes are unknown. Drought periods confound these rhythms, making it difficult to analyse or predict dynamics of production. The present work aims to analyse phenological and growth responses of adult oil palms to seasonal and inter-annual climatic variability. Methods Two oil palm genotypes planted in a replicated design at two sites in Indonesia underwent monthly observations during 22 months in 2006–2008. Measurements included growth of vegetative and reproductive organs, morphology and phenology. Drought was estimated from climatic water balance (rainfall – potential evapotranspiration) and simulated fraction of transpirable soil water. Production history of the same plants for 2001–2005 was used for inter-annual analyses. Key Results Drought was absent at the equatorial Kandista site (0°55′N) but the Batu Mulia site (3°12′S) had a dry season with variable severity. Vegetative growth and leaf appearance rate fluctuated with drought level. Yield of fruit, a function of the number of female inflorescences produced, was negatively correlated with photoperiod at Kandista. Dual annual maxima were observed supporting a recent theory of circadian control. The photoperiod-sensitive phases were estimated at 9 (or 9 + 12 × n) months before bunch maturity for a given phytomer. The main sensitive phase for drought effects was estimated at 29 months before bunch maturity, presumably associated with inflorescence sex determination. Conclusion It is assumed that seasonal peaks of flowering in oil palm are controlled even near the equator by photoperiod response within a phytomer. These patterns are confounded with drought effects that affect flowering (yield) with long time-lag. Resulting dynamics are complex, but if the present results are confirmed it will be possible to predict them with models. PMID:19748909

  1. Baseline study of methane emission from open digesting tanks of palm oil mill effluent treatment.

    PubMed

    Yacob, Shahrakbah; Hassan, Mohd Ali; Shirai, Yoshihito; Wakisaka, Minato; Subash, Sunderaj

    2005-06-01

    Anthropogenic release of greenhouse gases, especially CO2 and CH4 has been recognized as one of the main causes of global warming. Several measures under the Kyoto Protocol 1997 have been drawn up to reduce the greenhouse gases emission. One of the measures is Clean Development Mechanisms (CDM) that was created to enable developed countries to cooperate with developing countries in emission reduction activities. In Malaysia, palm oil industry particularly from palm oil mill effluent (POME) anaerobic treatment has been identified as an important source of CH4. However, there is no study to quantify the actual CH4 emission from the commercial scale wastewater treatment facility. Hence, this paper shall address the CH4 emission from the open digesting tanks in Felda Serting Hilir Palm Oil Mill. CH4 emission pattern was recorded for 52 weeks from 3600 m3 open digesting tanks. The findings indicated that the CH4 content was between 13.5% and 49.0% which was lower than the value of 65% reported earlier. The biogas flow rate ranged between 0.8l min(-1)m(-2) and 9.8l min(-1)m(-2). Total CH4 emission per open digesting tank was 518.9 kgday(-1). Relationships between CH4 emission and total carbon removal and POME discharged were also discussed. Fluctuation of biogas production was observed throughout the studies as a result of seasonal oil palm cropping, mill activities, variation of POME quality and quantity discharged from the mill. Thus only through long-term field measurement CH4 emission can be accurately estimated. PMID:15894045

  2. Conversion of different part core oil palm trunk into methyl levulinate & hydroxymethylfurfural production

    NASA Astrophysics Data System (ADS)

    Khosnan, Afifah Aqilah Alias; Jahar, NoorHasmiera Abu; Jaafar, Sharifah Nabihah Syed; Zakaria, Sarani; Hua, Chin Chia

    2015-09-01

    In this study, sugar was extracted from the of core oil palm trunk (OPT) and undergoes methanolysis process. The objective of this research is to study the production of methyl levulinate (MLA) and hydroxymethyl furfurals (HMF) from four different parts of OPT such as inner, middle, outer and whole. After methanolysis, samples were characterized by gas chromatography mass spectrometry (GC-MS) and high performance liquid chromatography (HPLC).

  3. Yield estimation comparison of oil palm based on plant density coefficient variation index using spot-6 imagery in part of Riau

    NASA Astrophysics Data System (ADS)

    Setyowati, H. A.; S, S. H. Murti B.; Widyatmanti, W.

    2016-06-01

    Oil palm plantations consist of diverse plant density level that influence the appearance of soil surface or commonly in remote sensing terms called as soil background. Choosing the right density coefficient of vegetation transformation can decrease the noise of soil background for estimating oil palm yield. This research aims 1) to examine the accuracy of SPOT-6 to identify the oil palm l plant growth level and to estimate their yield 2) to know the variation of oil palm yield based on SAVI index vegetation using different density coefficient; and 3) to determine the best density coefficient to estimate the yield of oil palm. This research was held in part of Air Molek, Indragiri Hulu Regency, Riau, one of the largest oil palm plantations in Indonesia. This research method utilises SAVI transformation with density coefficient L-0, L-0.5, and L-1, and regression statistics analysis. The land-cover primary data is derived from SPOT-6 imagery archived in 13rd June 2013. The field survey was conducted in the same month of image's acquisition time and 120 sample areas were taken during that time. Two steps of regression analyses were applied to see the correlation between, first, vegetation index value and oil palm plant; and second, oil palm plant, vegetation index values, and oil palm yield from field observation. These steps produced a model to estimate the oil palm yield based on the index values of yield and vegetation, and the productivity estimation. The result shows that SPOT-6 imagery has 96% accuracy level which is considered high for identifying the oil palm variation. The R value for L-0 density coefficient is 0.8, for L-5 is 0.81 whereas for L-1 is 0.82. The best plant's density coefficient for estimating oil palm yield/yield is L-0 with yield estimation accuracy of 83.33%.

  4. Effect of autohydrolysis and enzymatic treatment on oil palm (Elaeis guineensis Jacq.) frond fibres for xylose and xylooligosaccharides production.

    PubMed

    Sabiha-Hanim, Saleh; Noor, Mohd Azemi Mohd; Rosma, Ahmad

    2011-01-01

    Oil palm (Elaeis guineensis Jacq.) is one of the most important commercial crops for the production of palm oil, which generates 10.88 tons of oil palm fronds per hectare of plantation as a by-product. In this study, oil palm frond fibres were subjected to an autohydrolysis treatment using an autoclave, operated at 121 °C for 20-80 min, to facilitate the separation of hemicelluloses. The hemicellulose-rich solution (autohydrolysate) was subjected to further hydrolysis with 4-16 U of mixed Trichoderma viride endo-(1,4)-β-xylanases (EC 3.2.1.8) per 100 mg of autohydrolysate. Autoclaving of palm fronds at 121°C for 60 min (a severity factor of 2.40) recovered 75% of the solid residue, containing 57.9% cellulose and 18% Klason lignin, and an autohydrolysate containing 14.94% hemicellulose, with a fractionation efficiency of 49.20%. Subsequent enzymatic hydrolysis of the autohydrolysate with 8 U of endoxylanase at 40 °C for 24 h produced a solution containing 17.5% xylooligosaccharides and 25.6% xylose. The results clearly indicate the potential utilization of oil palm frond, an abundantly available lignocellulosic biomass for the production of xylose and xylooligosaccharides which can serve as functional food ingredients. PMID:20797853

  5. Electrocoagulation of palm oil mill effluent as wastewater treatment and hydrogen production using electrode aluminum.

    PubMed

    Nasution, M Ansori; Yaakob, Z; Ali, Ehsan; Tasirin, S M; Abdullah, S R S

    2011-01-01

    Palm oil mill effluent (POME) is highly polluting wastewater generated from the palm oil milling process. Palm oil mill effluent was used as an electrolyte without any additive or pretreatment to perform electrocoagulation (EC) using electricity (direct current) ranging from 2 to 4 volts in the presence of aluminum electrodes with a reactor volume of 20 L. The production of hydrogen gas, removal of chemical oxygen demand (COD), and turbidity as a result of electrocoagulation of POME were determined. The results show that EC can reduce the COD and turbidity of POME by 57 and 62%, respectively, in addition to the 42% hydrogen production. Hydrogen production was also helpful to remove the lighter suspended solids toward the surface. The production of Al(OH)XHO at the aluminum electrode (anode) was responsible for the flocculation-coagulation process of suspended solids followed by sedimentation under gravity. The production of hydrogen gas from POME during EC was also compared with hydrogen gas production by electrolysis of tap water at pH 4 and tap water without pH adjustment under the same conditions. The main advantage of this study is to produce hydrogen gas while treating POME with EC to reduce COD and turbidity effectively. PMID:21712603

  6. Production of cellulose phosphate from oil palm empty fruit bunch: Effect of chemical ratio

    NASA Astrophysics Data System (ADS)

    Rohaizu, R.; Wanrosli, W. D.

    2015-06-01

    Cellulose phosphate was synthesized from oil palm biomass residue that has the potential to represent a considerable added value product for the oil palm biomass utilization. Cellulose phosphate (CP) is prepared viaa phosphorylation process using the H3PO4/P2O5/Et3PO4/hexanol sequence using oil palm empty fruit bunch microcrystalline cellulose (OPEFB-MCC) as the starting material. Various factors affect its synthesis; one of them which is the subject of this investigation is the orthophosphoric acid (H3PO4) to triethylphosphate(Et3PO4) ratio which have the capability to increase the phosphorus content of CP. It is believed that during this reaction, the esterification of the free hydroxyl groups of the cellulose occurred. The H3PO4/Et3PO4 ratios applied were 0.16, 1.00, and 1.84. The effect of the H3PO4/Et3PO4 ratio on phosphorus content, yield, water swelling and molecular structure of CP are discussed.

  7. Study on the spectrophotometric detection of free fatty acids in palm oil utilizing enzymatic reactions.

    PubMed

    Azeman, Nur Hidayah; Yusof, Nor Azah; Abdullah, Jaafar; Yunus, Robiah; Hamidon, Mohd Nizar; Hajian, Reza

    2015-01-01

    In this paper, a comprehensive study has been made on the detection of free fatty acids (FFAs) in palm oil via an optical technique based on enzymatic aminolysis reactions. FFAs in crude palm oil (CPO) were converted into fatty hydroxamic acids (FHAs) in a biphasic lipid/aqueous medium in the presence of immobilized lipase. The colored compound formed after complexation between FHA and vanadium (V) ion solution was proportional to the FFA content in the CPO samples and was analyzed using a spectrophotometric method. In order to develop a rapid detection system, the parameters involved in the aminolysis process were studied. The utilization of immobilized lipase as catalyst during the aminolysis process offers simplicity in the product isolation and the possibility of conducting the process under extreme reaction conditions. A good agreement was found between the developed method using immobilized Thermomyces lanuginose lipase as catalyst for the aminolysis process and the Malaysian Palm Oil Board (MPOB) standard titration method (R2 = 0.9453). PMID:26198220

  8. Analysis on the grinding quality of palm oil fibers by using combined grinding equipment

    NASA Astrophysics Data System (ADS)

    Gan, H. L.; Gan, L. M.; Law, H. C.

    2015-12-01

    As known, Malaysia is the second largest palm oil producer worldwide after Indonesia, therefore indicating the abundance of its wastes within the country. The plantation would be seen to increase to at least 5.2 million ha by 2020, and the waste generation would be 50-70 times the plantation. However, the efficiency of bulk density is reduced. This is one of the main reasons of the initiation of this size reduction/ grinding research. With appropriate parameters, grinding will be seen to be helping in enhancing the inter-particle bindings, subsequently increasing the quality of final products. This paper focuses on the grinding quality involving palm oil wastes by using the Scanning Electron Microscope (SEM). The samples would first be ground to powder at varying grinding speed and finally got the randomly chosen particles measured to obtain the size range. The grinding speed was manipulated from 15 Hz to 40 Hz. From the data obtained, it was found the particles fineness increased with increasing grinding speed. In general, the size ranged from 45 μm to about 600 μm, where the finest was recorded at the speed of 40 Hz. It was also found that the binding was not so encouraging at very low speeds. Therefore, the optimum grinding speed for oil palm residues lied in the range of 25 Hz to 30 Hz. However, there were still limitations to be overcome if the accuracy of the image clarity is to be enhanced.

  9. Effects of oil palm shell coarse aggregate species on high strength lightweight concrete.

    PubMed

    Yew, Ming Kun; Bin Mahmud, Hilmi; Ang, Bee Chin; Yew, Ming Chian

    2014-01-01

    The objective of this study was to investigate the effects of different species of oil palm shell (OPS) coarse aggregates on the properties of high strength lightweight concrete (HSLWC). Original and crushed OPS coarse aggregates of different species and age categories were investigated in this study. The research focused on two OPS species (dura and tenera), in which the coarse aggregates were taken from oil palm trees of the following age categories (3-5, 6-9, and 10-15 years old). The results showed that the workability and dry density of the oil palm shell concrete (OPSC) increase with an increase in age category of OPS species. The compressive strength of specimen CD3 increases significantly compared to specimen CT3 by 21.8%. The maximum achievable 28-day and 90-day compressive strength is 54 and 56 MPa, respectively, which is within the range for 10-15-year-old crushed dura OPS. The water absorption was determined to be within the range for good concrete for the different species of OPSC. In addition, the ultrasonic pulse velocity (UPV) results showed that the OPS HSLWC attain good condition at the age of 3 days. PMID:24982946

  10. A potential tocopherol acetate loaded palm oil esters-in-water nanoemulsions for nanocosmeceuticals

    PubMed Central

    2010-01-01

    Background Cosmeceuticals are cosmetic-pharmaceutical hybrids intended to enhance health and beauty of the skin. Nanocosmeceuticals use nano-sized system for the delivery of active ingredients to the targeted cells for better penetration. In this work, nanoemulsion from palm oil esters was developed as a delivery system to produce nanocosmeceuticals. The stability of the resulting formulation was tested using various methods. In addition, the effect of components i.e. Vitamin E and Pluronic F-68 on the formulation was also studied. Results Both vitamin E and Pluronic F-68 were found to co-emulsify and co-stabilized the formulations. The best formulation was found to be the one having the composition of 10% Palm Oil Esters (POEs), 10% vitamin E, 24% Tween 80, 2.4% Pluronic F-68 and 53.6% deionised water. Those compositions are considered to be the best as a nanocosmeceutical product due to the small particle size (94.21 nm), low occurrence of Ostwald ripening and stable at different storing temperatures (5, 25 and 45°C) for four weeks. Conclusions Palm oil esters-in-water nanoemulsions loaded with vitamin E was successfully formulated and has the potential for the use as nanocosmeceuticals. PMID:20178581

  11. Mesophilic co-digestion of palm oil mill effluent and empty fruit bunches.

    PubMed

    Kim, Sang-Hyoun; Choi, Seon-Mi; Ju, Hyun-Jun; Jung, Jin-Young

    2013-01-01

    The palm oil mill industry generates palm oil mill effluent (POME) and empty fruit bunches (EFB) as by-products. This study reports the mesophilic co-digestion of POME with EFB. The biochemical methane potential (BMP) of POME and EFB was 0.397 L CH4/g volatile solids (VS) and 0.264 L CH4/g VS, respectively. In a series of batch tests at various EFB to POME ratios, the maximum methane production rate was achieved at an EFB:POME ratio of 0.25-0.31:1. Performance data from lab-scale digesters confirmed the positive synergism by the addition of EFB to POME, which was attributed to the balanced chemical composition, for example the chemical oxygen demand (COD) to total Kjeldahl nitrogen (TKN) ratio. The EFB addition enhanced the acceptable organic loading rate, methane production, COD removal, and microbial activity. The mesophilic co-digestion of POME and EFB promises to be a viable recycling method to alleviate pollution problems and recover renewable energy in the palm oil mill industry. PMID:24350470

  12. Fenitrothion Alters Sperm Characteristics in Rats: Ameliorating Effects of Palm Oil Tocotrienol-Rich Fraction

    PubMed Central

    Taib, Izatus Shima; Budin, Siti Balkis; Ghazali, Ahmad Rohi; Jayusman,, Putri Ayu; Mohamed, Jamaludin

    2014-01-01

    Exposure to organophosphate insecticides such as fenitrothion (FNT) in agriculture and public health has been reported to affect sperm quality. Antioxidants may have a potential to reduce spermatotoxic effects induced by organophosphate. The present study was carried out to evaluate the effects of palm oil tocotrienol-rich fraction (TRF) in reducing the detrimental effects occurring in spermatozoa of FNT-treated rats. Adult male Sprague-Dawley rats were divided into four equal groups: a control group and groups of rats treated orally with palm oil TRF (200 mg/kg), FNT (20 mg/kg) and palm oil TRF (200 mg/kg) combined with FNT (20 mg/kg). The sperm characteristics, DNA damage, superoxide dismutase (SOD) activity, and levels of reduced glutathione (GSH), malondialdehyde (MDA), and protein carbonyl (PC) were evaluated. Supplementation with TRF attenuated the detrimental effects of FNT by significantly increasing the sperm counts, motility, and viability and decreased the abnormal sperm morphology. The SOD activity and GSH level were significantly increased, whereas the MDA and PC levels were significantly decreased in the TRF+FNT group compared with the rats receiving FNT alone. TRF significantly decreased the DNA damage in the sperm of FNT-treated rats. A significant correlation between abnormal sperm morphology and DNA damage was found in all groups. TRF showed the potential to reduce the detrimental effects occurring in spermatozoa of FNT-treated rats. PMID:25030881

  13. A consensus linkage map of oil palm and a major QTL for stem height

    PubMed Central

    Lee, May; Xia, Jun Hong; Zou, Zhongwei; Ye, Jian; Rahmadsyah; Alfiko, Yuzer; Jin, Jingjing; Lieando, Jessica Virginia; Purnamasari, Maria Indah; Lim, Chin Huat; Suwanto, Antonius; Wong, Limsoon; Chua, Nam-Hai; Yue, Gen Hua

    2015-01-01

    Oil palm (Elaeis guinensis Jacquin) is the most important source of vegetable oil and fat. Several linkage maps had been constructed using dominant and co-dominant markers to facilitate mapping of QTL. However, dominant markers are not easily transferable among different laboratories. We constructed a consensus linkage map for oil palm using co-dominant markers (i.e. microsatellite and SNPs) and two F1 breeding populations generated by crossing Dura and Pisifera individuals. Four hundreds and forty-four microsatellites and 36 SNPs were mapped onto 16 linkage groups. The map length was 1565.6 cM, with an average marker space of 3.72 cM. A genome-wide scan of QTL identified a major QTL for stem height on the linkage group 5, which explained 51% of the phenotypic variation. Genes in the QTL were predicted using the palm genome sequence and bioinformatic tools. The linkage map supplies a base for mapping QTL for accelerating the genetic improvement, and will be also useful in the improvement of the assembly of the genome sequences. Markers linked to the QTL may be used in selecting dwarf trees. Genes within the QTL will be characterized to understand the mechanisms underlying dwarfing. PMID:25648560

  14. Does logging and forest conversion to oil palm agriculture alter functional diversity in a biodiversity hotspot?

    PubMed Central

    Edwards, F A; Edwards, D P; Larsen, T H; Hsu, W W; Benedick, S; Chung, A; Vun Khen, C; Wilcove, D S; Hamer, K C

    2014-01-01

    Forests in Southeast Asia are rapidly being logged and converted to oil palm. These changes in land-use are known to affect species diversity but consequences for the functional diversity of species assemblages are poorly understood. Environmental filtering of species with similar traits could lead to disproportionate reductions in trait diversity in degraded habitats. Here, we focus on dung beetles, which play a key role in ecosystem processes such as nutrient recycling and seed dispersal. We use morphological and behavioural traits to calculate a variety of functional diversity measures across a gradient of disturbance from primary forest through intensively logged forest to oil palm. Logging caused significant shifts in community composition but had very little effect on functional diversity, even after a repeated timber harvest. These data provide evidence for functional redundancy of dung beetles within primary forest and emphasize the high value of logged forests as refugia for biodiversity. In contrast, conversion of forest to oil palm greatly reduced taxonomic and functional diversity, with a marked decrease in the abundance of nocturnal foragers, a higher proportion of species with small body sizes and the complete loss of telecoprid species (dung-rollers), all indicating a decrease in the functional capacity of dung beetles within plantations. These changes also highlight the vulnerability of community functioning within logged forests in the event of further environmental degradation. PMID:25821399

  15. Efficient oil palm total RNA extraction with a total RNA extraction kit.

    PubMed

    Habib, S H; Saud, H M; Kausar, H

    2014-01-01

    Oil palm tissues are rich in polyphenols, polysaccharides and secondary metabolites; these can co-precipitate with RNA, causing problems for downstream applications. We compared two different methods (one conventional and a kit-based method - Easy-Blue(TM) Total RNA Extraction Kit) to isolate total RNA from leaves, roots and shoot apical meristems of tissue culture derived truncated leaf syndrome somaclonal oil palm seedlings. The quality and quantity of total RNA were compared through spectrophotometry and formaldehyde gel electrophoresis. The specificity and applicability of the protocols were evaluated for downstream applications, including cDNA synthesis and RT-PCR analysis. We found that the conventional method gave higher yields of RNA but took longer, and it was contaminated with genomic DNA. This method required extra genomic DNA removal steps that further reduced the RNA yield. The kit-based method, on the other hand, produced good yields as well as well as good quality RNA, within a very short period of time from a small amount of starting material. Moreover, the RNA from the kit-based method was more suitable for synthesizing cDNA and RT-PCR amplification than the conventional method. Therefore, we conclude that the Easy-BlueTM Total RNA Extraction Kit method is suitable and superior for isolation of total RNA from oil palm leaf, root and shoot apical meristem. PMID:24781991

  16. Felled oil palm trunk as a renewable source for biobutanol production by Clostridium spp.

    PubMed

    Komonkiat, Itsara; Cheirsilp, Benjamas

    2013-10-01

    This study aimed to convert felled oil palm trunk to biobutanol by Clostridium spp. For efficient utilization of oil palm trunk, it was separated into sap and trunk fiber. The sap was used directly while the trunk fiber was hydrolyzed to fermentable sugars before use. Among five clostridia strains screened, Clostridium acetobutylicum DSM 1731 was the most suitable strain for butanol production from the sap without any supplementation of nutrients. It produced the highest amount of butanol (14.4 g/L) from the sap (sugar concentration of 50 g/L) with butanol yield of 0.35 g/g. When hydrolysate from the trunk fiber was used as an alternative carbon source (sugar concentration of 30 g/L), of the strains tested Clostridium beijerinckii TISTR 1461 produced the highest amount of butanol (10.0 g/L) with butanol yield of 0.41 g/g. The results presented herein suggest that oil palm trunk is a promising renewable substrate for biobutanol production. PMID:23933028

  17. Chimpanzee oil-palm use in southern Cantanhez National Park, Guinea-Bissau.

    PubMed

    Sousa, Joana; Barata, André V; Sousa, Cláudia; Casanova, Catarina C N; Vicente, Luís

    2011-05-01

    Cantanhez National Park in southern Guinea-Bissau is a mosaic of forest, mangrove, savanna, and agricultural fields, with a high prevalence of oil-palm trees (Elaeis guineensis). It hosts many different animal species, including the chimpanzee (Pan troglodytes verus). Very little is known about the ecology of chimpanzees inhabiting this area. The main aims of this study were to evaluate chimpanzee nesting behavior, define trends of habitat use, and estimate chimpanzee density in four separate forests by applying the marked nest counts methodology. From the 287 new nests counted, 92% were built in oil-palm trees with a significantly higher frequency of nests in the forest edge than in forest cores. Differences in nest detection rates were observed in the four monitored forests, with two forests being more important for chimpanzee's nesting demands. The number of nests documented in the forests seemed to be correlated with the frequency of other signs of chimpanzee activity. Although chimpanzees selected nests on the forest edge, they were most frequently observed in forest core areas. Constraints associated with estimating chimpanzee density through oil-palm nest counting are discussed. PMID:21259301

  18. Analysis of operating costs for producing biodiesel from palm oil at pilot-scale in Colombia.

    PubMed

    Acevedo, Juan C; Hernández, Jorge A; Valdés, Carlos F; Khanal, Samir Kumar

    2015-01-01

    The present study aims to evaluate the operating costs of biodiesel production using palm oil in a pilot-scale plant with a capacity of 20,000 L/day (850 L/batch). The production plant uses crude palm oil as a feedstock, and methanol in a molar ratio of 1:10. The process incorporated acid esterification, basic transesterification, and dry washing with absorbent powder. Production costs considered in the analysis were feedstock, supplies, labor, electricity, quality and maintenance; amounting to $3.75/gal ($0.99/L) for 2013. Feedstocks required for biodiesel production were among the highest costs, namely 72.6% of total production cost. Process efficiency to convert fatty acids to biodiesel was over 99% and generated a profit of $1.08/gal (i.e., >22% of the total income). According to sensitivity analyses, it is more economically viable for biodiesel production processes to use crude palm oil as a feedstock and take advantage of the byproducts such as glycerine and fertilizers. PMID:25660089

  19. Valorization of Palm Oil Industrial Waste as Feedstock for Lipase Production.

    PubMed

    Silveira, Erick A; Tardioli, Paulo W; Farinas, Cristiane S

    2016-06-01

    The use of residues from the industrial processing of palm oil as carbon source and inducer for microbial lipase production can be a way to add value to such residues and to contribute to reduced enzyme costs. The aim of this work was to investigate the feasibility of using palm oil industrial waste as feedstock for lipase production in different cultivation systems. Evaluation was made of lipase production by a selected strain of Aspergillus niger cultivated under solid-state (SSF) and submerged fermentation (SmF). Lipase activity levels up to 15.41 IU/mL were achieved under SSF. The effects of pH and temperature on the lipase activity of the SSF extract were evaluated using statistical design methodology, and maximum activities were obtained between pH 4.0 and 6.5 and at temperatures between 37 and 55 °C. This lipase presented good thermal stability up to 60 °C and higher specificity towards long carbon chain substrates. The results demonstrate the potential application of palm oil industrial residues for lipase production and contribute to the technological advances needed to develop processes for industrial enzymes production. PMID:26892007

  20. Microbial Inoculation Improves Growth of Oil Palm Plants (Elaeis guineensis Jacq.)

    PubMed Central

    Om, Azlin Che; Ghazali, Amir Hamzah Ahmad; Keng, Chan Lai; Ishak, Zamzuri

    2009-01-01

    Introduction of diazotrophic rhizobacteria to oil palm tissues during the in vitro micropropagation process establishes an early associative interaction between the plant cells and bacteria. In the association, the diazotrophs provide the host plants with phytohormones and fixed nitrogen. This study was conducted to observe growth of bacterised tissue cultured oil palm plants under ex vitro conditions after 280 days of growth. Root dry weight, shoot dry weight, root volume, bacterial colonisation, leaf protein and chlorophyll content of the host plants were observed. The results revealed that the inocula successfully colonised roots of the host plants. Plants inoculated with Acetobacter diazotrophicus (R12) had more root dry weight and volume than plants inoculated with Azospirillum brasilense (Sp7). Leaf protein and chlorophyll content were higher in the bacterised plants compared to Control 2 plants (inoculated with killed Sp7). These results suggest that the diazotrophs successfully improved the growth of the host plant (oil palm) and minimised the amount of N fertiliser necessary for growth. PMID:24575180

  1. Bioconversion of oil palm frond by Aspergillus niger to enhances it's fermentable sugar production.

    PubMed

    Lim, Sheh-Hong; Ibrahim, Darah

    2013-09-15

    The aim of this study was to develop an economical bioprocess to produce the fermentable sugars at laboratory scales Using Oil Palm Frond (OPF) as substrate in Solid State Fermentation (SSF). OPF waste generated by oil palm plantations is a major problem in terms of waste management. However, this lignocellulosic waste material is a cheap source of cellulose. We used OPF as substrate to produce fermentable sugars. The high content of cellulose in OPF promises the high fermentable sugars production in SSF. Saccharification of OPF waste by A. niger USMAI1 generates fermentable sugars and was evaluated through a solid state fermentation. Physical parameters, e.g., inoculum size, initial substrate moisture, initial pH, incubation temperature and the size of substrate were optimized to obtain the maximum fermentable sugars from oil palm fronds. Up to 77 mg of fermentable sugars per gram substrate was produced under the optimal physical parameter conditions. Lower productivity of fermentable sugars, 32 mg fermentable sugars per gram substrate was obtained under non optimized conditions. The results indicated that about 140.6% increase in fermentable sugar production after optimization of the physical parameters. Glucose was the major end component amongst the fermentable sugars obtained. This study indicated that under optimum physical parameter conditions, the OPF waste can be utilized to produce fermentable sugars which then convert into other products such as alcohol. PMID:24502148

  2. The Effect of Oil Palm Fibers as Reinforcement on Tribological Performance of Polyester Composite

    NASA Astrophysics Data System (ADS)

    Yousif, B. F.; El-Tayeb, N. S. M.

    In the present work, the effect of oil palm fibers on tribological performance of polyester composite against a polished stainless steel counterface is investigated using a pin-on-disc machine. Wear and friction characteristics of oil palm fiber reinforced polyester (OPRP) composite and neat polyester were tested at different sliding distances (0-5 km), sliding velocities (1.7-3.9 m/s), and applied loads (30-70 N) under dry contact condition. SEM observations were performed on the worn surfaces to examine the damage features. The results showed that the test parameters significantly influenced the tribo-performance of OPRP composite and neat polyester. The presence of oil palm fiber in the polyester enhanced the wear property by about three to four times compared to neat polyester. In addition, the friction coefficient of OPRP composite was less by about 23% than that of the neat polyester. Wear mechanisms of OPRP composite were categorized by debonding, bending and tear of fibers, and high deformation in resinous region.

  3. Removal of chromium (VI) from aqueous solution using treated oil palm fibre.

    PubMed

    Isa, Mohamed Hasnain; Ibrahim, Naimah; Aziz, Hamidi Abdul; Adlan, Mohd Nordin; Sabiani, Nor Habsah Md; Zinatizadeh, Ali Akbar Lorestani; Kutty, Shamsul Rahman Mohamed

    2008-04-01

    This study proposed an oil palm by-product as a low-cost adsorbent for the removal of hexavalent chromium [Cr (VI)] from aqueous solution. Adsorption of Cr (VI) by sulphuric acid and heat-treated oil palm fibre was conducted using batch tests. The influence of pH, contact time, initial chromium concentration and adsorbent dosage on the removal of Cr (VI) from the solutions was investigated. The optimum initial pH for maximum uptake of Cr (VI) from aqueous solution was found to be 1.5. The removal efficiency was found to correlate with the initial Cr (VI) concentration, adsorbent dosage as well as the contact time between Cr (VI) and the adsorbent. The adsorption kinetics tested with pseudo first order and pseudo second order models yielded high R(2) values from 0.9254 to 0.9870 and from 0.9936 to 0.9998, respectively. The analysis of variance (ANOVA) showed significant difference between the R(2) values of the two models at 99% confidence level. The Freundlich isotherm (R(2)=0.8778) described Cr (VI) adsorption slightly better than the Langmuir isotherm (R(2)=0.8715). Difficulty in desorption of Cr (VI) suggests the suitability of treated oil palm fibre as a single-use adsorbent for Cr (VI) removal from aqueous solution. PMID:17714862

  4. Detecting nutrients deficiencies of oil palm trees using remotely sensed data

    NASA Astrophysics Data System (ADS)

    Marzukhi, Faradina; Liyana Elahami, Aina; Norashikin Bohari, Sharifah

    2016-06-01

    Oil palm plantation management involve crucial role for the farmers. The remote sensing imagery has widely used nowadays in order to monitor oil palm tree in plantation. To pact with the problem, the use of vegetation indices analysis on satellite image on plantation will examine the ability of spectral data in determining the greenness of the trees. Vegetation Indices are used for estimating the crops and vegetation variables by using visible and nearinfrared region (NIR) from the electromagnetic spectrum. The healthy tree will display very low reflectance and transmitted in visible region and very high reflectance transmitted in NIR. The chlorophyll absorption in reflectance and normalizes pigment chlorophyll vegetation indexes will show a loss of chlorophyll pigment compared to healthy oil palm trees. Besides, pH. value and soil nutrient will be examined to determine their effect towards the trees. In addition, the laboratory test sample is done to analyse the pH. value and major nutrient status of nitrogen (N), phosphorus (P) and potassium (K) together with their relationship with the remotely sensed data.

  5. Effects of Oil Palm Shell Coarse Aggregate Species on High Strength Lightweight Concrete

    PubMed Central

    Yew, Ming Kun; Bin Mahmud, Hilmi; Ang, Bee Chin; Yew, Ming Chian

    2014-01-01

    The objective of this study was to investigate the effects of different species of oil palm shell (OPS) coarse aggregates on the properties of high strength lightweight concrete (HSLWC). Original and crushed OPS coarse aggregates of different species and age categories were investigated in this study. The research focused on two OPS species (dura and tenera), in which the coarse aggregates were taken from oil palm trees of the following age categories (3–5, 6–9, and 10–15 years old). The results showed that the workability and dry density of the oil palm shell concrete (OPSC) increase with an increase in age category of OPS species. The compressive strength of specimen CD3 increases significantly compared to specimen CT3 by 21.8%. The maximum achievable 28-day and 90-day compressive strength is 54 and 56 MPa, respectively, which is within the range for 10–15-year-old crushed dura OPS. The water absorption was determined to be within the range for good concrete for the different species of OPSC. In addition, the ultrasonic pulse velocity (UPV) results showed that the OPS HSLWC attain good condition at the age of 3 days. PMID:24982946

  6. Ambient Aerosol in Southeast Asia: High Resolution Aerosol Mass Spectrometer Measurements Over Oil Palm (Elaeis guineensis)

    NASA Astrophysics Data System (ADS)

    Phillips, G.; Dimarco, C.; Misztal, P.; Nemitz, E.; Farmer, D.; Kimmel, J.; Jimenez, J.

    2008-12-01

    The emission of organic compounds in the troposphere is important factor in the formation of secondary organic aerosol (SOA). A very large proportion of organic material emitted globally is estimated to arise from biogenic sources, with almost half coming from tropical and sub-tropical forests. Preliminary analyses of leave cuvette emission studies suggest that oil palm (Elaeis guineensis) is a significantly larger source of isoprene than tropical forest. Much larger sources of isoprene over oil palm allied with a larger anthropogenic component of local emissions contrast greatly with the remote tropical forest environment and therefore the character of SOA formed may differ significantly. These issues, allied with the high price of palm oil on international markets leading to increased use of land for oil palm production, could give rise to rapidly changing chemical and aerosol regimes in the tropics. It is therefore important to understand the current emissions and composition of organic aerosol over all important land-uses in the tropical environment. This in turn will lead to a greater understanding of the present, and to an improvement in predictive capacity for the future system. To help address these issues, a high resolution time of flight aerosol mass spectrometer (HR-ToF-AMS) was deployed in the Sabahmas (PPB OIL) oil palm plantation near Lahad Datu, in Eastern Sabah, as part of the field component of the Aerosol Coupling in the Earth System (ACES) project, part of the UK NERC APPRAISE program. This project was allied closely with measurements made of similar chemical species and aerosol components at a forest site in the Danum Valley as part of the UK Oxidant and Particle Photochemical Processes above a Southeast Asian tropical rainforest (OP3) project. Measurements of submicron non- refractory aerosol composition are presented along with some preliminary analysis of chemically resolved aerosol fluxes made with a new eddy covariance system, based on the

  7. Genome-wide association study identifies three key loci for high mesocarp oil content in perennial crop oil palm

    PubMed Central

    Teh, Chee-Keng; Ong, Ai-Ling; Kwong, Qi-Bin; Apparow, Sukganah; Chew, Fook-Tim; Mayes, Sean; Mohamed, Mohaimi; Appleton, David; Kulaveerasingam, Harikrishna

    2016-01-01

    GWAS in out-crossing perennial crops is typically limited by insufficient marker density to account for population diversity and effects of population structure resulting in high false positive rates. The perennial crop oil palm is the most productive oil crop. We performed GWAS for oil-to-dry-mesocarp content (O/DM) on 2,045 genotyped tenera palms using 200K SNPs that were selected based on the short-range linkage disequilibrium distance, which is inherent with long breeding cycles and heterogeneous breeding populations. Eighty loci were significantly associated with O/DM (p ≤ 10−4) and three key signals were found. We then evaluated the progeny of a Deli x AVROS breeding trial and a 4% higher O/DM was observed amongst those having the beneficial genotypes at two of the three key loci (p < 0.05). We have initiated MAS and large-scale planting of elite dura and pisifera parents to generate the new commercial tenera palms with higher O/DM potential. PMID:26743827

  8. Genome-wide association study identifies three key loci for high mesocarp oil content in perennial crop oil palm.

    PubMed

    Teh, Chee-Keng; Ong, Ai-Ling; Kwong, Qi-Bin; Apparow, Sukganah; Chew, Fook-Tim; Mayes, Sean; Mohamed, Mohaimi; Appleton, David; Kulaveerasingam, Harikrishna

    2016-01-01

    GWAS in out-crossing perennial crops is typically limited by insufficient marker density to account for population diversity and effects of population structure resulting in high false positive rates. The perennial crop oil palm is the most productive oil crop. We performed GWAS for oil-to-dry-mesocarp content (O/DM) on 2,045 genotyped tenera palms using 200K SNPs that were selected based on the short-range linkage disequilibrium distance, which is inherent with long breeding cycles and heterogeneous breeding populations. Eighty loci were significantly associated with O/DM (p ≤ 10(-4)) and three key signals were found. We then evaluated the progeny of a Deli x AVROS breeding trial and a 4% higher O/DM was observed amongst those having the beneficial genotypes at two of the three key loci (p < 0.05). We have initiated MAS and large-scale planting of elite dura and pisifera parents to generate the new commercial tenera palms with higher O/DM potential. PMID:26743827

  9. Toxicity of water-soluble fractions of biodiesel fuels derived from castor oil, palm oil, and waste cooking oil.

    PubMed

    Leite, Maria Bernadete Neiva Lemos; de Araújo, Milena Maria Sampaio; Nascimento, Iracema Andrade; da Cruz, Andrea Cristina Santos; Pereira, Solange Andrade; do Nascimento, Núbia Costa

    2011-04-01

    Concerns over the sustained availability of fossil fuels and their impact on global warming and pollution have led to the search for fuels from renewable sources to address worldwide rising energy demands. Biodiesel is emerging as one of the possible solutions for the transport sector. It shows comparable engine performance to that of conventional diesel fuel, while reducing greenhouse gas emissions. However, the toxicity of products and effluents from the biodiesel industry has not yet been sufficiently investigated. Brazil has a very high potential as a biodiesel producer, in view of its climatic conditions and vast areas for cropland, with consequent environmental risks because of possible accidental biodiesel spillages into water bodies and runoff to coastal areas. This research determined the toxicity to two marine organisms of the water-soluble fractions (WSF) of three different biodiesel fuels obtained by methanol transesterification of castor oil (CO), palm oil (PO), and waste cooking oil (WCO). Microalgae and sea urchins were used as the test organisms, respectively, for culture-growth-inhibition and early-life-stage-toxicity tests. The toxicity levels of the analyzed biodiesel WSF showed the highest toxicity for the CO, followed by WCO and the PO. Methanol was the most prominent contaminant; concentrations increased over time in WSF samples stored up to 120 d. PMID:21184529

  10. Method development and survey of Sudan I–IV in palm oil and chilli spices in the Washington, DC, area

    PubMed Central

    Genualdi, Susie; MacMahon, Shaun; Robbins, Katherine; Farris, Samantha; Shyong, Nicole; DeJager, Lowri

    2016-01-01

    Sudan I, II, III and IV dyes are banned for use as food colorants in the United States and European Union because they are toxic and carcinogenic. These dyes have been illegally used as food additives in products such as chilli spices and palm oil to enhance their red colour. From 2003 to 2005, the European Union made a series of decisions requiring chilli spices and palm oil imported to the European Union to contain analytical reports declaring them free of Sudan I–IV. In order for the USFDA to investigate the adulteration of palm oil and chilli spices with unapproved colour additives in the United States, a method was developed for the extraction and analysis of Sudan dyes in palm oil, and previous methods were validated for Sudan dyes in chilli spices. Both LC-DAD and LC-MS/MS methods were examined for their limitations and effectiveness in identifying adulterated samples. Method validation was performed for both chilli spices and palm oil by spiking samples known to be free of Sudan dyes at concentrations close to the limit of detection. Reproducibility, matrix effects, and selectivity of the method were also investigated. Additionally, for the first time a survey of palm oil and chilli spices was performed in the United States, specifically in the Washington, DC, area. Illegal dyes, primarily Sudan IV, were detected in palm oil at concentrations from 150 to 24 000 ng ml−1. Low concentrations (< 21 μg kg−1) of Sudan dyes were found in 11 out of 57 spices and are most likely a result of cross-contamination during preparation and storage and not intentional adulteration. PMID:26824489

  11. Method development and survey of Sudan I-IV in palm oil and chilli spices in the Washington, DC, area.

    PubMed

    Genualdi, Susie; MacMahon, Shaun; Robbins, Katherine; Farris, Samantha; Shyong, Nicole; DeJager, Lowri

    2016-01-01

    Sudan I, II, III and IV dyes are banned for use as food colorants in the United States and European Union because they are toxic and carcinogenic. These dyes have been illegally used as food additives in products such as chilli spices and palm oil to enhance their red colour. From 2003 to 2005, the European Union made a series of decisions requiring chilli spices and palm oil imported to the European Union to contain analytical reports declaring them free of Sudan I-IV. In order for the USFDA to investigate the adulteration of palm oil and chilli spices with unapproved colour additives in the United States, a method was developed for the extraction and analysis of Sudan dyes in palm oil, and previous methods were validated for Sudan dyes in chilli spices. Both LC-DAD and LC-MS/MS methods were examined for their limitations and effectiveness in identifying adulterated samples. Method validation was performed for both chilli spices and palm oil by spiking samples known to be free of Sudan dyes at concentrations close to the limit of detection. Reproducibility, matrix effects, and selectivity of the method were also investigated. Additionally, for the first time a survey of palm oil and chilli spices was performed in the United States, specifically in the Washington, DC, area. Illegal dyes, primarily Sudan IV, were detected in palm oil at concentrations from 150 to 24 000 ng ml(-1). Low concentrations (< 21 µg kg(-1)) of Sudan dyes were found in 11 out of 57 spices and are most likely a result of cross-contamination during preparation and storage and not intentional adulteration. PMID:26824489

  12. Different palm oil preparations reduce plasma cholesterol concentrations and aortic cholesterol accumulation compared to coconut oil in hypercholesterolemic hamsters.

    PubMed

    Wilson, Thomas A; Nicolosi, Robert J; Kotyla, Timothy; Sundram, Kalyana; Kritchevsky, David

    2005-10-01

    Several studies have reported on the effect of refined, bleached and deodorized palm oil (RBD-PO) incorporation into the diet on blood cholesterol concentrations and on the development of atherosclerosis. However, very little work has been reported on the influence of red palm oil (RPO), which is higher in carotenoid and tocopherol content than RBD-PO. Thus, we studied the influence of RPO, RBD-PO and a RBD-PO plus red palm oil extract (reconstituted RBD-PO) on plasma cholesterol concentrations and aortic accumulation vs. hamsters fed coconut oil. Forty-eight F1B Golden Syrian hamsters (Mesocricetus auratus) (BioBreeders, Watertown, MA) were group housed (three/cage) in hanging polystyrene cages with bedding in an air-conditioned facility maintained on a 12-h light/dark cycle. The hamsters were fed a chow-based hypercholesterolemic diet (HCD) containing 10% coconut oil and 0.1% cholesterol for 2 weeks at which time they were bled after an overnight fast and segregated into four groups of 12 with similar plasma cholesterol concentrations. Group 1 continued on the HCD, Group 2 was fed the HCD containing 10% RPO in place of coconut oil, Group 3 was fed the HCD containing 10% RBD-PO in place of coconut oil and Group 4 was fed the HCD with 10% reconstituted RBD-PO for an additional 10 weeks. Plasma total cholesterol (TC) and non-high-density lipoprotein-cholesterol (HDL-C) (very low- and low-density lipoprotein) concentrations were significantly lower in the hamsters fed the RPO (-42% and -48%), RBD-PO (-32% and -36%) and the reconstituted RBD-PO (-37% and -41%) compared to the coconut oil-fed hamsters. Plasma HDL-C concentrations were significantly higher by 14% and 31% in hamsters fed the RBD-PO and RPO compared to the coconut oil-fed hamsters. Plasma triglyceride (TG) concentrations were significantly lower in hamsters fed RBD-PO (-32%) and the reconstituted RBD-PO (-31%) compared to the coconut oil-fed hamsters. The plasma gamma-tocopherol concentrations were higher

  13. Production of biofuel from waste cooking palm oil using nanocrystalline zeolite as catalyst: process optimization studies.

    PubMed

    Taufiqurrahmi, Niken; Mohamed, Abdul Rahman; Bhatia, Subhash

    2011-11-01

    The catalytic cracking of waste cooking palm oil to biofuel was studied over different types of nano-crystalline zeolite catalysts in a fixed bed reactor. The effect of reaction temperature (400-500 °C), catalyst-to-oil ratio (6-14) and catalyst pore size of different nanocrystalline zeolites (0.54-0.80 nm) were studied over the conversion of waste cooking palm oil, yields of Organic Liquid Product (OLP) and gasoline fraction in the OLP following central composite design (CCD). The response surface methodology was used to determine the optimum value of the operating variables for maximum conversion as well as maximum yield of OLP and gasoline fraction, respectively. The optimum reaction temperature of 458 °C with oil/catalyst ratio=6 over the nanocrystalline zeolite Y with pore size of 0.67 nm gave 86.4 wt% oil conversion, 46.5 wt% OLP yield and 33.5 wt% gasoline fraction yield, respectively. The experimental results were in agreement with the simulated values within an experimental error of less than 5%. PMID:21924606

  14. Palm oil derived trimethylolpropane triesters synthetic lubricants and usage in industrial metalworking fluid.

    PubMed

    Chang, Teck-Sin; Yunus, Robiah; Rashid, Umer; Choong, Thomas S Y; Awang Biak, Dayang Radiah; Syam, Azhari M

    2015-01-01

    Trimethylolpropane triesters are biodegradable synthetic lubricant base oil alternative to mineral oils, polyalphaolefins and diesters. These oils can be produced from trimethylolpropane (TMP) and fatty acid methyl esters via chemical or enzymatic catalyzed synthesis methods. In the present study, a commercial palm oil derived winter grade biodiesel (ME18) was evaluated as a viable and sustainable methyl ester source for the synthesis of high oleic trimethylolpropane triesters (HO-TMPTE). ME18 has fatty acid profile containing 86.8% oleic acid, 8.7% linoleic acid with the remaining minor concentration of palmitic acid, stearic acid and linolenic acid. It's high oleic property makes it superior to produce synthetic lubricant base oil that fulfills both the good low temperature property as well as good oxidative stability. The synthetic base oil produced had a viscosity of 44.3 mm(2)/s at 40°C meeting the needs for ISO 46 oils. It also exhibited an excellent viscosity index of 219 that is higher than some other commercial brands of trimethylolpropane trioleate. Properties of base oil such as cloud point, density, acid value, demulsibility and soap content were also examined. The oil was then used in the formulation of tapping oil and appraised in term of adaptability, stability and field test performance. PMID:25748374

  15. Optimising the operational parameters of a spherical steriliser for the treatment of oil palm fresh fruit bunch

    NASA Astrophysics Data System (ADS)

    Kumaradevan, D.; Chuah, K. H.; Moey, L. K.; Mohan, V.; Wan, W. T.

    2015-09-01

    The extraction of crude palm oil (CPO) begins with the sterilization of oil palm fresh fruit bunch (FFB) in a pressurized, saturated-steam chamber. Sterilization loosens the palm fruits from the stalks and deactivates the free fatty acid (FFA)-producing enzymes. Operational parameters affecting the quality and yield of CPO from an industrial spherical sterilizer are studied at a palm oil mill. The factors are the ripeness of FFB, the number of days before treatment of FFB, and the number of pressure peaks applied in the sterilization process. The results indicate that the degree of ripeness of FFB is the most important parameter affecting the quality and yield of CPO. Ripeness is graded based on the fruits’ colour and the presence of loose fruits. Over ripe FFB that goes for the sterilization process has higher FFA content in CPO and more oil loss to the condensate chamber. The spontaneous reaction on FFB due to accumulation at the loading ramp also gives rise to higher FFA content. Oil loss to condensate chamber is reduced using a two-peak sterilization technique for over ripe FFB; the peak refers to the pressure level of stream after a flushing and refilling cycle. Overall, the generated solution improves the quality and yield of the palm oil mill.

  16. Combustion characteristics of Malaysian oil palm biomass, sub-bituminous coal and their respective blends via thermogravimetric analysis (TGA).

    PubMed

    Idris, Siti Shawalliah; Rahman, Norazah Abd; Ismail, Khudzir

    2012-11-01

    The combustion characteristics of Malaysia oil palm biomass (palm kernel shell (PKS), palm mesocarp fibre (PMF) and empty fruit bunches (EFB)), sub-bituminous coal (Mukah Balingian) and coal/biomass blends via thermogravimetric analysis (TGA) were investigated. Six weight ratios of coal/biomass blends were prepared and oxidised under dynamic conditions from temperature 25 to 1100°C at four heating rates. The thermogravimetric analysis demonstrated that the EFB and PKS evolved additional peak besides drying, devolatilisation and char oxidation steps during combustion. Ignition and burn out temperatures of blends were improved in comparison to coal. No interactions were observed between the coal and biomass during combustion. The apparent activation energy during this process was evaluated using iso-conversional model free kinetics which resulted in highest activation energy during combustion of PKS followed by PMF, EFB and MB coal. Blending oil palm biomass with coal reduces the apparent activation energy value. PMID:22944493

  17. Comparative Transcriptome Analysis of Three Oil Palm Fruit and Seed Tissues That Differ in Oil Content and Fatty Acid Composition1[C][W][OA

    PubMed Central

    Dussert, Stéphane; Guerin, Chloé; Andersson, Mariette; Joët, Thierry; Tranbarger, Timothy J.; Pizot, Maxime; Sarah, Gautier; Omore, Alphonse; Durand-Gasselin, Tristan; Morcillo, Fabienne

    2013-01-01

    Oil palm (Elaeis guineensis) produces two oils of major economic importance, commonly referred to as palm oil and palm kernel oil, extracted from the mesocarp and the endosperm, respectively. While lauric acid predominates in endosperm oil, the major fatty acids (FAs) of mesocarp oil are palmitic and oleic acids. The oil palm embryo also stores oil, which contains a significant proportion of linoleic acid. In addition, the three tissues display high variation for oil content at maturity. To gain insight into the mechanisms that govern such differences in oil content and FA composition, tissue transcriptome and lipid composition were compared during development. The contribution of the cytosolic and plastidial glycolytic routes differed markedly between the mesocarp and seed tissues, but transcriptional patterns of genes involved in the conversion of sucrose to pyruvate were not related to variations for oil content. Accumulation of lauric acid relied on the dramatic up-regulation of a specialized acyl-acyl carrier protein thioesterase paralog and the concerted recruitment of specific isoforms of triacylglycerol assembly enzymes. Three paralogs of the WRINKLED1 (WRI1) transcription factor were identified, of which EgWRI1-1 and EgWRI1-2 were massively transcribed during oil deposition in the mesocarp and the endosperm, respectively. None of the three WRI1 paralogs were detected in the embryo. The transcription level of FA synthesis genes correlated with the amount of WRI1 transcripts and oil content. Changes in triacylglycerol content and FA composition of Nicotiana benthamiana leaves infiltrated with various combinations of WRI1 and FatB paralogs from oil palm validated functions inferred from transcriptome analysis. PMID:23735505

  18. Devolatilization Studies of Oil Palm Biomass for Torrefaction Process through Scanning Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Daud, D.; Abd. Rahman, A.; Shamsuddin, A. H.

    2016-03-01

    In this work, palm oil biomass consisting of empty fruit bunch (EFB), mesocarp fibre and palm kernel shell (PKS) were chosen as raw material for torrefaction process. Torrefaction process was conducted at various temperatures of 240 °C, 270 °C and 300 °C with a residence time of 60 minutes. The morphology of the raw and torrefied biomass was then observed through Scanning Electron Microscopy (SEM) images. Also, through this experiment the correlation between the torrefaction temperatures with the volatile gases released were studied. From the observation, the morphology structure of the biomass exhibited inter-particle gaps due to the release of volatile gases and it is obviously seen more at higher temperatures. Moreover, the change of the biomass structure is influenced by the alteration of the lignocellulose biomass.

  19. Identifying Where REDD+ Financially Out-Competes Oil Palm in Floodplain Landscapes Using a Fine-Scale Approach

    PubMed Central

    MacMillan, Douglas C.; Xofis, Panteleimon; Ancrenaz, Marc; Tzanopoulos, Joseph; Ong, Robert; Goossens, Benoit; Koh, Lian Pin; Del Valle, Christian; Peter, Lucy; Morel, Alexandra C.; Lackman, Isabelle; Chung, Robin; Kler, Harjinder; Ambu, Laurentius; Baya, William; Knight, Andrew T.

    2016-01-01

    Reducing Emissions from Deforestation and forest Degradation (REDD+) aims to avoid forest conversion to alternative land-uses through financial incentives. Oil-palm has high opportunity costs, which according to current literature questions the financial competitiveness of REDD+ in tropical lowlands. To understand this more, we undertook regional fine-scale and coarse-scale analyses (through carbon mapping and economic modelling) to assess the financial viability of REDD+ in safeguarding unprotected forest (30,173 ha) in the Lower Kinabatangan floodplain in Malaysian Borneo. Results estimate 4.7 million metric tons of carbon (MgC) in unprotected forest, with 64% allocated for oil-palm cultivations. Through fine-scale mapping and carbon accounting, we demonstrated that REDD+ can outcompete oil-palm in regions with low suitability, with low carbon prices and low carbon stock. In areas with medium oil-palm suitability, REDD+ could outcompete oil palm in areas with: very high carbon and lower carbon price; medium carbon price and average carbon stock; or, low carbon stock and high carbon price. Areas with high oil palm suitability, REDD+ could only outcompete with higher carbon price and higher carbon stock. In the coarse-scale model, oil-palm outcompeted REDD+ in all cases. For the fine-scale models at the landscape level, low carbon offset prices (US $3 MgCO2e) would enable REDD+ to outcompete oil-palm in 55% of the unprotected forests requiring US $27 million to secure these areas for 25 years. Higher carbon offset price (US $30 MgCO2e) would increase the competitiveness of REDD+ within the landscape but would still only capture between 69%-74% of the unprotected forest, requiring US $380–416 million in carbon financing. REDD+ has been identified as a strategy to mitigate climate change by many countries (including Malaysia). Although REDD+ in certain scenarios cannot outcompete oil palm, this research contributes to the global REDD+ debate by: highlighting REDD

  20. Identifying Where REDD+ Financially Out-Competes Oil Palm in Floodplain Landscapes Using a Fine-Scale Approach.

    PubMed

    Abram, Nicola K; MacMillan, Douglas C; Xofis, Panteleimon; Ancrenaz, Marc; Tzanopoulos, Joseph; Ong, Robert; Goossens, Benoit; Koh, Lian Pin; Del Valle, Christian; Peter, Lucy; Morel, Alexandra C; Lackman, Isabelle; Chung, Robin; Kler, Harjinder; Ambu, Laurentius; Baya, William; Knight, Andrew T

    2016-01-01

    Reducing Emissions from Deforestation and forest Degradation (REDD+) aims to avoid forest conversion to alternative land-uses through financial incentives. Oil-palm has high opportunity costs, which according to current literature questions the financial competitiveness of REDD+ in tropical lowlands. To understand this more, we undertook regional fine-scale and coarse-scale analyses (through carbon mapping and economic modelling) to assess the financial viability of REDD+ in safeguarding unprotected forest (30,173 ha) in the Lower Kinabatangan floodplain in Malaysian Borneo. Results estimate 4.7 million metric tons of carbon (MgC) in unprotected forest, with 64% allocated for oil-palm cultivations. Through fine-scale mapping and carbon accounting, we demonstrated that REDD+ can outcompete oil-palm in regions with low suitability, with low carbon prices and low carbon stock. In areas with medium oil-palm suitability, REDD+ could outcompete oil palm in areas with: very high carbon and lower carbon price; medium carbon price and average carbon stock; or, low carbon stock and high carbon price. Areas with high oil palm suitability, REDD+ could only outcompete with higher carbon price and higher carbon stock. In the coarse-scale model, oil-palm outcompeted REDD+ in all cases. For the fine-scale models at the landscape level, low carbon offset prices (US $3 MgCO2e) would enable REDD+ to outcompete oil-palm in 55% of the unprotected forests requiring US $27 million to secure these areas for 25 years. Higher carbon offset price (US $30 MgCO2e) would increase the competitiveness of REDD+ within the landscape but would still only capture between 69%-74% of the unprotected forest, requiring US $380-416 million in carbon financing. REDD+ has been identified as a strategy to mitigate climate change by many countries (including Malaysia). Although REDD+ in certain scenarios cannot outcompete oil palm, this research contributes to the global REDD+ debate by: highlighting REDD

  1. Mapping quantitative trait loci (QTLs) for fatty acid composition in an interspecific cross of oil palm

    PubMed Central

    Singh, Rajinder; Tan, Soon G; Panandam, Jothi M; Rahman, Rahimah Abdul; Ooi, Leslie CL; Low, Eng-Ti L; Sharma, Mukesh; Jansen, Johannes; Cheah, Suan-Choo

    2009-01-01

    Background Marker Assisted Selection (MAS) is well suited to a perennial crop like oil palm, in which the economic products are not produced until several years after planting. The use of DNA markers for selection in such crops can greatly reduce the number of breeding cycles needed. With the use of DNA markers, informed decisions can be made at the nursery stage, regarding which individuals should be retained as breeding stock, which are satisfactory for agricultural production, and which should be culled. The trait associated with oil quality, measured in terms of its fatty acid composition, is an important agronomic trait that can eventually be tracked using molecular markers. This will speed up the production of new and improved oil palm planting materials. Results A map was constructed using AFLP, RFLP and SSR markers for an interspecific cross involving a Colombian Elaeis oleifera (UP1026) and a Nigerian E. guinneensis (T128). A framework map was generated for the male parent, T128, using Joinmap ver. 4.0. In the paternal (E. guineensis) map, 252 markers (199 AFLP, 38 RFLP and 15 SSR) could be ordered in 21 linkage groups (1815 cM). Interval mapping and multiple-QTL model (MQM) mapping (also known as composite interval mapping, CIM) were used to detect quantitative trait loci (QTLs) controlling oil quality (measured in terms of iodine value and fatty acid composition). At a 5% genome-wide significance threshold level, QTLs associated with iodine value (IV), myristic acid (C14:0), palmitic acid (C16:0), palmitoleic acid (C16:1), stearic acid (C18:0), oleic acid (C18:1) and linoleic acid (C18:2) content were detected. One genomic region on Group 1 appears to be influencing IV, C14:0, C16:0, C18:0 and C18:1 content. Significant QTL for C14:0, C16:1, C18:0 and C18:1 content was detected around the same locus on Group 15, thus revealing another major locus influencing fatty acid composition in oil palm. Additional QTL for C18:0 was detected on Group 3. A minor QTL

  2. Benefits of clean development mechanism application on the life cycle assessment perspective: a case study in the palm oil industry.

    PubMed

    Chuen, Onn Chiu; Yusoff, Sumiani

    2012-03-01

    This study performed an assessment on the beneficial of the Clean Development Mechanism (CDM) application on waste treatment system in a local palm oil industry in Malaysia. Life cycle assessment (LCA) was conducted to assess the environmental impacts of the greenhouse gas (GHG) reduction from the CDM application. Calculations on the emission reduction used the methodology based on AM002 (Avoided Wastewater and On-site Energy Use Emissions in the Industrial Sector) Version 4 published by United Nations Framework Convention on Climate Change (UNFCC). The results from the studies showed that the introduction of CDM in the palm oil mill through conversion of the captured biogas from palm oil mill effluent (POME) treatment into power generation were able to reduce approximate 0.12 tonnes CO2 equivalent concentration (tCO2e) emission and 30 kW x hr power generation per 1 tonne of fresh fruit bunch processed. Thus, the application of CDM methodology on palm oil mill wastewater treatment was able to reduce up to 1/4 of the overall environment impact generated in palm oil mill. PMID:22482288

  3. Intestinal Fluid and Glucose Transport in Wistar Rats following Chronic Consumption of Fresh or Oxidised Palm Oil Diet

    PubMed Central

    Obembe, Agona O.; Owu, Daniel U.; Okwari, Obem O.; Antai, Atim B.; Osim, Eme E.

    2011-01-01

    Chronic ingestion of thermoxidized palm oil causes functional derangement of various tissues. This study was therefore carried out to determine the effect of chronic ingestion of thermoxidized and fresh palm oil diets on intestinal fluid and glucose absorption in rats using the everted sac technique. Thirty Wistar rats were divided into three groups of 10 rats per group. The first group was the control and was fed on normal rat chow while the second (FPO) and third groups (TPO) were fed diet containing either fresh or thermoxidized palm oil (15% wt/wt) for 14 weeks. Villus height and crypt depth were measured. The gut fluid uptake and gut glucose uptake were significantly (P < .001) lower in the TPO group than those in the FPO and control groups, respectively. The villus height in the TPO was significantly (P < .01) lower than that in FPO and control. The villus depth in TPO was significantly (P < .05) higher than that in FPO and control groups, respectively. These results suggest that ingestion of thermoxidized palm oil and not fresh palm oil may lead to distortion in villus morphology with a concomitant malabsorption of fluid and glucose in rats due to its harmful free radicals. PMID:21991537

  4. Optimization of the enzyme-catalyzed synthesis of amino acid-based surfactants from palm oil fractions.

    PubMed

    Soo, Ee Lin; Salleh, Abu Bakar; Basri, Mahiran; Zaliha Raja Abdul Rahman, Raja Noor; Kamaruddin, Kamarulzaman

    2003-01-01

    The feasibility of using palm oil fractions as cheap and abundant sources of raw material for the synthesis of amino acid surfactants was investigated. Of a number of enzymes screened, the best results were obtained with the immobilized enzyme, Lipozyme. The effects of temperature, solvent, incubation period, fatty substrate/amino acid molar ratio, enzyme amount, and water removal on the reactions were analyzed and compared to those on reactions with free fatty acids and pure triglycerides as fatty substrates. All reactions were most efficient when carried out at high temperatures (70-80 degrees C) in hexane as a solvent. However, while reactions with free fatty acids proceeded better when a slight excess of the free fatty acids over the amino acids was used, reactions with triglycerides and palm oil fractions were best performed at equimolar ratios. Also, the addition of molecular sieves slightly enhanced reactions with free fatty acids but adversely affected reactions with triglycerides and palm oil fractions. Although reactions with palm oil fractions took longer (6 d) to reach equilibrium compared to reactions with free fatty acids (4 d) and pure triglycerides (4 d), better yields were obtained. Such lipase-catalyzed transacylation of palm oil fractions with amino acids is potentially useful in the production of mixed medium- to long-chain surfactants for specific applications. PMID:16233420

  5. A holistic approach to managing palm oil mill effluent (POME): biotechnological advances in the sustainable reuse of POME.

    PubMed

    Wu, Ta Yeong; Mohammad, Abdul Wahab; Jahim, Jamaliah Md; Anuar, Nurina

    2009-01-01

    During the last century, a great deal of research and development as well as applications has been devoted to waste. These include waste minimization and treatment, the environmental assessment of waste, minimization of environmental impact, life cycle assessment and others. The major reason for such huge efforts is that waste generation constitutes one of the major environmental problems where production industries are concerned. Until now, an increasing pressure has been put on finding methods of reusing waste, for instance through cleaner production, thus mirroring rapid changes in environmental policies. The palm oil industry is one of the leading industries in Malaysia with a yearly production of more than 13 million tons of crude palm oil and plantations covering 11% of the Malaysian land area. However, the production of such amounts of crude palm oil result in even larger amounts of palm oil mill effluent (POME), estimated at nearly three times the quantity of crude palm oil. Normally, POME is treated using end-of-pipe processes, but it is worth considering the potential value of POME prior to its treatment through introduction of a cleaner production. It is envisaged that POME can be sustainably reused as a fermentation substrate in the production of various metabolites, fertilizers and animal feeds through biotechnological advances. The present paper thus discusses various technically feasible and economically beneficial means of transforming the POME into low or preferably high value added products. PMID:18804158

  6. Zero Discharge Performance of an Industrial Pilot-Scale Plant Treating Palm Oil Mill Effluent

    PubMed Central

    Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Chi, Li-Na; Li, Xu-Dong

    2015-01-01

    Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME) pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated “zero discharge” pilot-scale industrial plant comprising “pretreatment-anaerobic and aerobic process-membrane separation” was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF); average COD reduced to about 3587 mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C) to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer. PMID:25685798

  7. Biodiesel production from palm oil using combined mechanical stirred and ultrasonic reactor.

    PubMed

    Choedkiatsakul, I; Ngaosuwan, K; Cravotto, G; Assabumrungrat, S

    2014-07-01

    This paper investigates the production of biodiesel from palm oil using a combined mechanical stirred and ultrasonic reactor (MS-US). The incorporation of mechanical stirring into the ultrasonic reactor explored the further improvement the transesterification of palm oil. Initial reaction rate values were 54.1, 142.9 and 164.2 mmol/L min for the mechanical-stirred (MS), ultrasonic (US) and MS-US reactors, respectively. Suitable methanol to oil molar ratio and the catalyst loading values were found to be 6 and 1 of oil, respectively. The effect of ultrasonic operating parameters; i.e. frequency, location, and number of transducer, has been investigated. Based on the conversion yield at the reactor outlet after 1 h, the number of transducers showed a relevant role in the reaction rate. Frequency and transducer location would appear to have no significant effect. The properties of the obtained biodiesel (density, viscosity, pour point, and flash point) satisfy the ASTM standard. The combined MS-US reactors improved the reaction rate affording the methyl esters in higher yield. PMID:24418101

  8. Zero discharge performance of an industrial pilot-scale plant treating palm oil mill effluent.

    PubMed

    Wang, Jin; Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Chi, Li-Na; Li, Xu-Dong

    2015-01-01

    Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME) pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated "zero discharge" pilot-scale industrial plant comprising "pretreatment-anaerobic and aerobic process-membrane separation" was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF); average COD reduced to about 3587 mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C) to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer. PMID:25685798

  9. Changes of headspace volatile constituents of palm olein and selected oils after frying French fries.

    PubMed

    Omar, Muhammad Nor Bin; Nor, Nor Nazuha M; Idris, Nor Aini

    2007-04-01

    Changes of aroma constituents of palm olein and selected oils after frying French fries have been studied. The aroma constituents of used oils were collected using a solid-phase microextraction (SPME) headspace technique with an absorbent of a divinylbenzene/carboxen (DVB/CAR) (50/30 microm) on polydimethylsiloxane (PDMS) fibre. The extracted volatiles were desorbed from the fibre in the injection port of the gas chromatograph at 250 degrees C and the aroma constituents were identified by GC-MS. Analytical data showed that volatile constituents of palm olein, soybean oil, corn oil and sunflower oil changed while frying continued from 2 to 40 h, respectively. In palm olein, the 2t,4t-decadienal content decreased from 14.7 to 5.5 microg g(-1) (40 h) whilst hexanal increased from 7.9 microg g(-1) (2 h) to 29.2 microg g(-1) (40 h), respectively. Similar result was also obtained from soybean oil after frying French fries. The 2t,4t-decadienal content decreased from 15.9 microg g(-1) (2 h) to 3.2 microg g(-1) after 40 h frying whilst hexanal increased from 10.2 microg g(-1) (2 h) to 34.2 microg g(-1) (40 h). Meanwhile, in corn oil, it was found that 2t,4t-decadienal decreased from 15.6 microg g(-1) (2 h) to 3.2 microg g(-1) (40 h) whilst hexanal increased from 11.3 microg g(-1) (2 h) to 33.8 microg g(-1) when frying time reached 40 h. In sunflower oil, it was found that 2t,4t-decadienal, decreased from 16.8 microg g(-1) (2 h) to 1.2 microg g(-1) (40 h) while hexanal increased from 9.5 microg g(-1) (2 h) to 32.4 microg g(-1) when frying time reached 40 h. It also showed that used oils exhibited off-odour characteristics due to the increasing amount ofhexanal while their freshness characteristics diminished due to the decreasing amount of 2t, 4t-decadienal. PMID:19070048

  10. Assessment of transesterified palm olein and Moringa oleifera oil blends as vanaspati substitutes.

    PubMed

    Nadeem, Muhammad; Azeem, Muhammad Waqar; Rahman, Fazal

    2015-04-01

    This study aimed to investigate the suitability of Moringa oleifera oil and palm olein blends as vanaspati substitutes on the basis of physico-chemical and sensory characteristics. Blends were prepared either by blending Moringa oleifera oil or palm olein at 25:75, 50:50, 75:25, and 100 ratios, transesterified by Rhizopus miehei, compared with market vanaspati, designated as T1, T2, T3, T4 and T5, respectively. The blends were filled in 3-layer polyethylene pouch packs, stored at ambient temperature, sampled at every at 0, 90 and 180-days for the assessment of storage stability. The melting point and iodine value of T2 and control were 36.8, 37.2 °C and 62.2, 51.8, with no effect on free fatty acids content, peroxide, anisidine values and color of the deodorized stuffs. C18:1 content of T2 was 59.7 % with no trans fatty acids. Trans fatty acid content of the market vanaspati was 22.9 %. The addition of Moringa oleifera oil improved the induction period of the blends strongly inhibited the formation of primary and secondary oxidation products. The overall acceptability score of French fries prepared in T2 was 81 % of the total score (9). Blend containing 50 % palm olein and 50 % Moringa oleifera oil can be used in the formulation of a functional shelf stable fat that can be used as a vanaspati substitute. PMID:25829626

  11. A detailed microscopic study of the changes in the aorta of experimental model of postmenopausal rats fed with repeatedly heated palm oil

    PubMed Central

    Adam, Siti Khadijah; Das, Srijit; Jaarin, Kamsiah

    2009-01-01

    Hypercholesterolaemia, increase in lipid peroxidation and hyperhomocysteinaemia may contribute to the pathogenesis of atherosclerosis. This study was performed to examine the effects of repeatedly heated palm oil mixed with 2% cholesterol diet on atherosclerosis in oestrogen-deficient postmenopausal rats. Ovariectomy causes disruption of tunica intima layer of the rat aorta simulating a postmenopausal condition in females. Twenty-four ovariectomized female Sprague–Dawley rats were divided into four groups. The control group received 2% cholesterol diet without palm oil. A diet with 2% cholesterol content fortified with fresh, once-heated and five-times-heated palm oil was given to the other treatment groups. The rats were sacrificed at the end of 4 months of study and the aortic arch tissue was processed for histomorphometry and electron microscopy. On observation, there was disruption of the intimal layer of the ovariectomized rat aorta. There was no obvious ultrastructural change in the aorta of the rats fed with fresh palm oil. The ultrastructural changes were minimal with once-heated palm oil, in which there was a focal disruption of the endothelial layer. The focal disruption was more pronounced with five-times-heated palm oil. The results of this study show that the ingestion of fresh palm oil may have a protective effect on the aorta but such a protective action may be lost when the palm oil is repeatedly heated. The study may be clinically important for all postmenopausal women who are susceptible to atherosclerosis. PMID:19563614

  12. A detailed microscopic study of the changes in the aorta of experimental model of postmenopausal rats fed with repeatedly heated palm oil.

    PubMed

    Adam, Siti Khadijah; Das, Srijit; Jaarin, Kamsiah

    2009-06-01

    Hypercholesterolaemia, increase in lipid peroxidation and hyperhomocysteinaemia may contribute to the pathogenesis of atherosclerosis. This study was performed to examine the effects of repeatedly heated palm oil mixed with 2% cholesterol diet on atherosclerosis in oestrogen-deficient postmenopausal rats. Ovariectomy causes disruption of tunica intima layer of the rat aorta simulating a postmenopausal condition in females. Twenty-four ovariectomized female Sprague-Dawley rats were divided into four groups. The control group received 2% cholesterol diet without palm oil. A diet with 2% cholesterol content fortified with fresh, once-heated and five-times-heated palm oil was given to the other treatment groups. The rats were sacrificed at the end of 4 months of study and the aortic arch tissue was processed for histomorphometry and electron microscopy. On observation, there was disruption of the intimal layer of the ovariectomized rat aorta. There was no obvious ultrastructural change in the aorta of the rats fed with fresh palm oil. The ultrastructural changes were minimal with once-heated palm oil, in which there was a focal disruption of the endothelial layer. The focal disruption was more pronounced with five-times-heated palm oil. The results of this study show that the ingestion of fresh palm oil may have a protective effect on the aorta but such a protective action may be lost when the palm oil is repeatedly heated. The study may be clinically important for all postmenopausal women who are susceptible to atherosclerosis. PMID:19563614

  13. A study on the oil palm fresh fruit bunch (FFB) ripeness detection by using Hue, Saturation and Intensity (HSI) approach

    NASA Astrophysics Data System (ADS)

    Kashfi Shabdin, Muhammad; Shariff, Abdul Rashid Mohamed; Nazrul Azlan Johari, Mohd; Kamilah Saat, Nor; Abbas, Zulkifly

    2016-06-01

    To increase the quality of palm oil means to accurately grade the oil palm fresh fruit bunches (FFB) for processing. In this paper, HSI color model was used to determine the relationship between FFB ’ s color with the underipe and ripe category so that the grading system could be accurately done. From the analysis manipulation, a formula was generated and applied to the data obtained. The by linear regression in the data shows an average success rate at 45% accuracy for oil palm ripeness detection. Artificial Neural Network (ANN) however return a better accuracy result for both underipe and ripe categories which are 60% and 80% respectively. This yield an overall accuracy of 70%. This can be increased more by improving the grading system.

  14. A transient assay to evaluate the expression of polyhydroxybutyrate genes regulated by oil palm mesocarp-specific promoter.

    PubMed

    Omidvar, V; Siti Nor Akmar, A; Marziah, M; Maheran, A A

    2008-09-01

    The promoter of the oil palm metallothionein-like gene (MT3-A) demonstrated mesocarp-specific activity in functional analysis using transient expression assay of reporter gene in bombarded oil palm tissue slices. In order to investigate the tissue-specific expression of polyhydroxybutyrate (PHB) biosynthetic pathway genes, a multi-gene construct carrying PHB genes fused to the oil palm MT3-A promoter was co-transferred with a construct carrying GFP reporter gene using microprojectile bombardment targeting the mesocarp and leaf tissues of the oil palm. Transcriptional analysis using RT-PCR revealed successful transcription of all the three phbA, phbB, and phbC genes in transiently transformed mesocarp but not in transiently transformed leaf tissues. Furthermore, all the three expected sizes of PHB-encoded protein products were only detected in transiently transformed mesocarp tissues on a silver stained polyacrylamide gel. Western blot analysis using polyclonal antibody specific for phbB product confirmed successful translation of phbB mRNA transcript into protein product. This study provided valuable information, supporting the future engineering of PHB-producing transgenic palms. PMID:18563415

  15. Retaining biodiversity in intensive farmland: epiphyte removal in oil palm plantations does not affect yield

    PubMed Central

    Prescott, Graham W; Edwards, David P; Foster, William A

    2015-01-01

    The expansion of agriculture into tropical forest frontiers is one of the primary drivers of the global extinction crisis, resulting in calls to intensify tropical agriculture to reduce demand for more forest land and thus spare land for nature. Intensification is likely to reduce habitat complexity, with profound consequences for biodiversity within agricultural landscapes. Understanding which features of habitat complexity are essential for maintaining biodiversity and associated ecosystem services within agricultural landscapes without compromising productivity is therefore key to limiting the environmental damage associated with producing food intensively. Here, we focus on oil palm, a rapidly expanding crop in the tropics and subject to frequent calls for increased intensification. One promoted strategy is to remove epiphytes that cover the trunks of oil palms, and we ask whether this treatment affects either biodiversity or yield. We experimentally tested this by removing epiphytes from four-hectare plots and seeing if the biodiversity and production of fruit bunches 2 months and 16 months later differed from equivalent control plots where epiphytes were left uncut. We found a species-rich and taxonomically diverse epiphyte community of 58 species from 31 families. Epiphyte removal did not affect the production of fresh fruit bunches, or the species richness and community composition of birds and ants, although the impact on other components of biodiversity remains unknown. We conclude that as they do not adversely affect palm oil production, the diverse epiphyte flora should be left uncut. Our results underscore the importance of experimentally determining the effects of habitat complexity on yield before introducing intensive methods with no discernible benefits. PMID:26045947

  16. Retaining biodiversity in intensive farmland: epiphyte removal in oil palm plantations does not affect yield.

    PubMed

    Prescott, Graham W; Edwards, David P; Foster, William A

    2015-05-01

    The expansion of agriculture into tropical forest frontiers is one of the primary drivers of the global extinction crisis, resulting in calls to intensify tropical agriculture to reduce demand for more forest land and thus spare land for nature. Intensification is likely to reduce habitat complexity, with profound consequences for biodiversity within agricultural landscapes. Understanding which features of habitat complexity are essential for maintaining biodiversity and associated ecosystem services within agricultural landscapes without compromising productivity is therefore key to limiting the environmental damage associated with producing food intensively. Here, we focus on oil palm, a rapidly expanding crop in the tropics and subject to frequent calls for increased intensification. One promoted strategy is to remove epiphytes that cover the trunks of oil palms, and we ask whether this treatment affects either biodiversity or yield. We experimentally tested this by removing epiphytes from four-hectare plots and seeing if the biodiversity and production of fruit bunches 2 months and 16 months later differed from equivalent control plots where epiphytes were left uncut. We found a species-rich and taxonomically diverse epiphyte community of 58 species from 31 families. Epiphyte removal did not affect the production of fresh fruit bunches, or the species richness and community composition of birds and ants, although the impact on other components of biodiversity remains unknown. We conclude that as they do not adversely affect palm oil production, the diverse epiphyte flora should be left uncut. Our results underscore the importance of experimentally determining the effects of habitat complexity on yield before introducing intensive methods with no discernible benefits. PMID:26045947

  17. The utilization natural mineral in the process of palm oil glycerolysis

    NASA Astrophysics Data System (ADS)

    Mujdalipah, Siti

    2015-09-01

    The reaction of glycerolysis currently has weakness, which uses a catalyst with a high price and performed at a high temperature. Indonesia is rich in minerals that have the potential to be used as a catalyst. Besides that, the solvent allows the glycerolysis reaction done in a low temperature so that it can maintain the quality of product. The purpose of this research is to study the influence of a type of solvent and a type of natural mineral to the chemistry and physical characteristic of palm oil glycerolysis product. The research activity consists of four steps. The first is the analysis of chemistry characteristics of palm oil. The second is the process of palm oil as the effect of a type of solvent and a type of natural mineral factors. The third is the analysis of chemistry and physical characteristics of glycerolysis product. The last is the analysis of data. Based on the analysis variant at α=0.05, it shows that type of solvent and type of natural mineral doesnot influence significantly to the ability of glycerolysis product in decreasing the water surface tension and to the free glycerol content. The best product is able to decrease the water surface tension from 44.933 dyne/cm to 29.00 dyne/cm. It contains the free glycerol content of 1.30%, 1-monoglyceride content of 43.10%, acid number of 0.146 mg KOH/g sample, and it has simillar fatty acid composition with the raw material.

  18. A New Emulsion Liquid Membrane Based on a Palm Oil for the Extraction of Heavy Metals

    PubMed Central

    Björkegren, Sanna; Fassihi Karimi, Rose; Martinelli, Anna; Jayakumar, Natesan Subramanian; Hashim, Mohd Ali

    2015-01-01

    The extraction efficiency of hexavalent chromium, Cr(VI), from water has been investigated using a vegetable oil based emulsion liquid membrane (ELM) technique. The main purpose of this study was to create a novel ELM formulation by choosing a more environmentally friendly and non-toxic diluent such as palm oil. The membrane phase so formulated includes the mobile carrier tri-n-octylmethylammonium chloride (TOMAC), to facilitate the metal transport, and the hydrophilic surfactant Tween 80 to facilitate the dispersion of the ELM phase in the aqueous solution. Span 80 is used as surfactant and butanol as co-surfactant. Our results demonstrate that this novel ELM formulation, using the vegetable palm oil as diluent, is useful for the removal of hexavalent chromium with an efficiency of over 99% and is thus competitive with the already existing, yet less environmentally friendly, ELM formulations. This result was achieved with an optimal concentration of 0.1 M NaOH as stripping agent and an external phase pH of 0.5. Different water qualities have also been investigated showing that the type of water (deionized, distilled, or tap water) does not significantly influence the extraction rate. PMID:25915191

  19. Integration of biological method and membrane technology in treating palm oil mill effluent.

    PubMed

    Zhang, Yejian; Yan, Li; Qiao, Xiangli; Chi, Lina; Niu, Xiangjun; Mei, Zhijian; Zhang, Zhenjia

    2008-01-01

    Palm oil industry is the most important agro-industry in Malaysia, but its by-product-palm oil mill effluent (POME), posed a great threat to water environment. In the past decades, several treatment and disposal methods have been proposed and investigated to solve this problem. A two-stage pilot-scale plant was designed and constructed for POME treatment. Anaerobic digestion and aerobic biodegradation constituted the first biological stage, while ultrafiltration (UF) and reverse osmosis (RO) membrane units were combined as the second membrane separation stage. In the anaerobic expanded granular sludge bed (EGSB) reactor, about 43% organic matter in POME was converted into biogas, and COD reduction efficiency reached 93% and 22% in EGSB and the following aerobic reactor, respectively. With the treatment in the first biological stage, suspended solids and oil also decreased to a low degree. All these alleviated the membrane fouling and prolonged the membrane life. In the membrane process unit, almost all the suspended solids were captured by UF membranes, while RO membrane excluded most of the dissolved solids or inorganic salts from RO permeate. After the whole treatment processes, organic matter in POME expressed by BOD and COD was removed almost thoroughly. Suspended solids and color were not detectable in RO permeate any more, and mineral elements only existed in trace amount (except for K and Na). The high-quality effluent was crystal clear and could be used as the boiler feed water. PMID:18575108

  20. Properties of Amorphous Carbon Microspheres Synthesised by Palm Oil-CVD Method

    SciTech Connect

    Zobir, S. A. M.; Zainal, Z.; Sarijo, S. H.; Rusop, M.

    2011-03-30

    Amorphous carbon microspheres were synthesized using a dual-furnace chemical vapour deposition method at 800-1000 deg. C. Palm oil-based cooking oil (PO) and zinc nitrate solution was used as a carbon source and catalyst precursor, respectively with PO to zinc nitrate ratio of 30:20 (v/v) and a silicon wafer as the sample target. Regular microsphere shape of the amorphous carbons was obtained and a uniform microsphere structure improved as the carbonization temperature increased from 800 to 1000 deg. C. At 800 deg. C, no regular microspheres were formed but more uniform structure is observed at 900 deg. C. Generally the microspheres size is uniform when the heating temperature was increased to 1000 deg. C, but the presence of mixed sizes can still be observed. X-ray diffraction patterns show the presence of oxide of carbon, ZnO phase together with Zn oxalate phase. Raman spectra show two broad peaks characteristic to amorphous carbon at 1344 and 1582 cm{sup -1} for the D and G bands, respectively. These bands become more prominent as the preparation temperature increased from 800 to 1000 deg. C. This is in agreement with the formation of amorphous carbon microspheres as shown by the FESEM study and other Zn-based phases as a result of the oxidation process of the palm oil as the carbon source and the zinc nitrate as the catalyst precursor, respectively.

  1. Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm.

    PubMed

    Ong-Abdullah, Meilina; Ordway, Jared M; Jiang, Nan; Ooi, Siew-Eng; Kok, Sau-Yee; Sarpan, Norashikin; Azimi, Nuraziyan; Hashim, Ahmad Tarmizi; Ishak, Zamzuri; Rosli, Samsul Kamal; Malike, Fadila Ahmad; Bakar, Nor Azwani Abu; Marjuni, Marhalil; Abdullah, Norziha; Yaakub, Zulkifli; Amiruddin, Mohd Din; Nookiah, Rajanaidu; Singh, Rajinder; Low, Eng-Ti Leslie; Chan, Kuang-Lim; Azizi, Norazah; Smith, Steven W; Bacher, Blaire; Budiman, Muhammad A; Van Brunt, Andrew; Wischmeyer, Corey; Beil, Melissa; Hogan, Michael; Lakey, Nathan; Lim, Chin-Ching; Arulandoo, Xaviar; Wong, Choo-Kien; Choo, Chin-Nee; Wong, Wei-Chee; Kwan, Yen-Yen; Alwee, Sharifah Shahrul Rabiah Syed; Sambanthamurthi, Ravigadevi; Martienssen, Robert A

    2015-09-24

    Somaclonal variation arises in plants and animals when differentiated somatic cells are induced into a pluripotent state, but the resulting clones differ from each other and from their parents. In agriculture, somaclonal variation has hindered the micropropagation of elite hybrids and genetically modified crops, but the mechanism responsible remains unknown. The oil palm fruit 'mantled' abnormality is a somaclonal variant arising from tissue culture that drastically reduces yield, and has largely halted efforts to clone elite hybrids for oil production. Widely regarded as an epigenetic phenomenon, 'mantling' has defied explanation, but here we identify the MANTLED locus using epigenome-wide association studies of the African oil palm Elaeis guineensis. DNA hypomethylation of a LINE retrotransposon related to rice Karma, in the intron of the homeotic gene DEFICIENS, is common to all mantled clones and is associated with alternative splicing and premature termination. Dense methylation near the Karma splice site (termed the Good Karma epiallele) predicts normal fruit set, whereas hypomethylation (the Bad Karma epiallele) predicts homeotic transformation, parthenocarpy and marked loss of yield. Loss of Karma methylation and of small RNA in tissue culture contributes to the origin of mantled, while restoration in spontaneous revertants accounts for non-Mendelian inheritance. The ability to predict and cull mantling at the plantlet stage will facilitate the introduction of higher performing clones and optimize environmentally sensitive land resources. PMID:26352475

  2. A new emulsion liquid membrane based on a palm oil for the extraction of heavy metals.

    PubMed

    Björkegren, Sanna; Karimi, Rose Fassihi; Martinelli, Anna; Jayakumar, Natesan Subramanian; Hashim, Mohd Ali

    2015-01-01

    The extraction efficiency of hexavalent chromium, Cr(VI), from water has been investigated using a vegetable oil based emulsion liquid membrane (ELM) technique. The main purpose of this study was to create a novel ELM formulation by choosing a more environmentally friendly and non-toxic diluent such as palm oil. The membrane phase so formulated includes the mobile carrier tri-n-octylmethylammonium chloride (TOMAC), to facilitate the metal transport, and the hydrophilic surfactant Tween 80 to facilitate the dispersion of the ELM phase in the aqueous solution. Span 80 is used as surfactant and butanol as co-surfactant. Our results demonstrate that this novel ELM formulation, using the vegetable palm oil as diluent, is useful for the removal of hexavalent chromium with an efficiency of over 99% and is thus competitive with the already existing, yet less environmentally friendly, ELM formulations. This result was achieved with an optimal concentration of 0.1 M NaOH as stripping agent and an external phase pH of 0.5. Different water qualities have also been investigated showing that the type of water (deionized, distilled, or tap water) does not significantly influence the extraction rate. PMID:25915191

  3. Genetic Linkage Map of a High Yielding FELDA Deli×Yangambi Oil Palm Cross

    PubMed Central

    Seng, Tzer-Ying; Mohamed Saad, Siti Hawa; Chin, Cheuk-Weng; Ting, Ngoot-Chin; Harminder Singh, Rajinder Singh; Qamaruz Zaman, Faridah; Tan, Soon-Guan; Syed Alwee, Sharifah Shahrul Rabiah

    2011-01-01

    Enroute to mapping QTLs for yield components in oil palm, we constructed the linkage map of a FELDA high yielding oil palm (Elaeis guineensis), hybrid cross. The parents of the mapping population are a Deli dura and a pisifera of Yangambi origin. The cross out-yielded the average by 8–21% in four trials all of which yielded comparably to the best current commercial planting materials. The higher yield derived from a higher fruit oil content. SSR markers in the public domain - from CIRAD and MPOB, as well as some developed in FELDA - were used for the mapping, augmented by locally-designed AFLP markers. The female parent linkage map comprised 317 marker loci and the male parent map 331 loci, both in 16 linkage groups each. The number of markers per group ranged from 8–47 in the former and 12–40 in the latter. The integrated map was 2,247.5 cM long and included 479 markers and 168 anchor points. The number of markers per linkage group was 15–57, the average being 29, and the average map density 4.7 cM. The linkage groups ranged in length from 77.5 cM to 223.7 cM, with an average of 137 cM. The map is currently being validated against a closely related population and also being expanded to include yield related QTLs. PMID:22069457

  4. Genetic linkage map of a high yielding FELDA deli×yangambi oil palm cross.

    PubMed

    Seng, Tzer-Ying; Mohamed Saad, Siti Hawa; Chin, Cheuk-Weng; Ting, Ngoot-Chin; Harminder Singh, Rajinder Singh; Qamaruz Zaman, Faridah; Tan, Soon-Guan; Syed Alwee, Sharifah Shahrul Rabiah

    2011-01-01

    Enroute to mapping QTLs for yield components in oil palm, we constructed the linkage map of a FELDA high yielding oil palm (Elaeis guineensis), hybrid cross. The parents of the mapping population are a Deli dura and a pisifera of Yangambi origin. The cross out-yielded the average by 8-21% in four trials all of which yielded comparably to the best current commercial planting materials. The higher yield derived from a higher fruit oil content. SSR markers in the public domain - from CIRAD and MPOB, as well as some developed in FELDA - were used for the mapping, augmented by locally-designed AFLP markers. The female parent linkage map comprised 317 marker loci and the male parent map 331 loci, both in 16 linkage groups each. The number of markers per group ranged from 8-47 in the former and 12-40 in the latter. The integrated map was 2,247.5 cM long and included 479 markers and 168 anchor points. The number of markers per linkage group was 15-57, the average being 29, and the average map density 4.7 cM. The linkage groups ranged in length from 77.5 cM to 223.7 cM, with an average of 137 cM. The map is currently being validated against a closely related population and also being expanded to include yield related QTLs. PMID:22069457

  5. Characterization of structural stability of palm oil esters-based nanocosmeceuticals loaded with tocotrienol

    PubMed Central

    2013-01-01

    Background Palm oil esters (POEs) are esters derived from palm oil and oleyl alcohol have great potential in the cosmetic and pharmaceutical industries due to the excellent wetting behavior of the esters without the oily feel. The role of oil-in-water nanoemulsions loaded with tocotrienol sedimentation behavior was studied. LUMiFuge® 116 particle separation analyzer was used to investigate the sedimentation behavior of POEs/tocotrienol/xanthan gum nanoemulsion system during centrifugation. Analyzing the sedimentation kinetics of dispersions in a centrifugal field also yields information about the rheological behavior and structural stability. Methods Experiments were performed in an analytical centrifuge at 11×g to 1140×g (LUMiFuge® 116 particle separation analyzer). The samples in the LUMiFuge® 116 particle separation analyzer were centrifuged at 3000 rpm for 15 h at 32°C. Sample volume of 2 cm3 was used. The rheological property of nanoemulsions was investigated using oscillatory measurements test. A rotational/oscillatory viscometer, Kinexus Rheometer (Malvern Instrument, UK) was used. All measurements were performed with a stainless steel cone-plate sensor at 25.0 ± 0.1°C with 4°/40 mm. Results The stable nanoemulsions showed sedimentation rates at earth gravity of 5.2, 3.0 and 2.6 mm/month for 10%, 20% and 30% (w/w) oil phase, respectively. Rheological behavior is an important target during the design of palm oil esters-based nanocosmeceuticals. The presence of a network structure was indicated by measurements which showed G’ to be greater than G”. This result implied the predominant elastic response and high storage stability of the nanoemulsion. It was also observed that the increase in oil phase concentration led to the profile which strongly indicated that the solid like elastic property; where the values of phase angle, δ of these nanoemulsions was lower than 45°. Conclusions The nanoemulsions with higher oil phase concentration

  6. Successful scaling-up of self-sustained pyrolysis of oil palm biomass under pool-type reactor.

    PubMed

    Idris, Juferi; Shirai, Yoshihito; Andou, Yoshito; Mohd Ali, Ahmad Amiruddin; Othman, Mohd Ridzuan; Ibrahim, Izzudin; Yamamoto, Akio; Yasuda, Nobuhiko; Hassan, Mohd Ali

    2016-02-01

    An appropriate technology for waste utilisation, especially for a large amount of abundant pressed-shredded oil palm empty fruit bunch (OFEFB), is important for the oil palm industry. Self-sustained pyrolysis, whereby oil palm biomass was combusted by itself to provide the heat for pyrolysis without an electrical heater, is more preferable owing to its simplicity, ease of operation and low energy requirement. In this study, biochar production under self-sustained pyrolysis of oil palm biomass in the form of oil palm empty fruit bunch was tested in a 3-t large-scale pool-type reactor. During the pyrolysis process, the biomass was loaded layer by layer when the smoke appeared on the top, to minimise the entrance of oxygen. This method had significantly increased the yield of biochar. In our previous report, we have tested on a 30-kg pilot-scale capacity under self-sustained pyrolysis and found that the higher heating value (HHV) obtained was 22.6-24.7 MJ kg(-1) with a 23.5%-25.0% yield. In this scaled-up study, a 3-t large-scale procedure produced HHV of 22.0-24.3 MJ kg(-1) with a 30%-34% yield based on a wet-weight basis. The maximum self-sustained pyrolysis temperature for the large-scale procedure can reach between 600 °C and 700 °C. We concluded that large-scale biochar production under self-sustained pyrolysis was successfully conducted owing to the comparable biochar produced, compared with medium-scale and other studies with an electrical heating element, making it an appropriate technology for waste utilisation, particularly for the oil palm industry. PMID:26612557

  7. Epigenetic imbalance and the floral developmental abnormality of the in vitro-regenerated oil palm Elaeis guineensis

    PubMed Central

    Jaligot, Estelle; Adler, Sophie; Debladis, Émilie; Beulé, Thierry; Richaud, Frédérique; Ilbert, Pascal; Finnegan, E. Jean; Rival, Alain

    2011-01-01

    Background The large-scale clonal propagation of oil palm (Elaeis guineensis) is being stalled by the occurrence of the mantled somaclonal variation. Indeed, this abnormality which presents a homeotic-like conversion of male floral organs into carpelloid structures, hampers oil production since the supernumerary female organs are either sterile or produce fruits with poor oil yields. Scope In the last 15 years, the prevailing point of view on the origin of the mantled floral phenotype has evolved from a random mutation event triggered by in vitro culture to a hormone-dependent dysfunction of gene regulation processes. In this review, we retrace the history of the research on the mantled variation in the light of the parallel advances made in the understanding of plant development regulation in model systems and more specifically in the role of epigenetic mechanisms. An overview of the current state of oil palm genomic and transcriptomic resources, which are key to any comparison with model organisms, is given. We show that, while displaying original characteristics, the mantled phenotype of oil palm is morphologically, and possibly molecularly, related to MADS-box genes mutants described in model plants. We also discuss the occurrence of comparable floral phenotypes in other palm species. Conclusions Beyond its primary interest in the search for discriminating markers against an economically crippling phenotype, the study of the mantled abnormality also provides a unique opportunity to investigate the regulation of reproductive development in a perennial tropical palm. On the basis of recent results, we propose that future efforts should concentrate on the epigenetic regulation targeting MADS-box genes and transposable elements of oil palm, since both types of sequences are most likely to be involved in the mantled variant phenotype. PMID:21224269

  8. Drying Pre-treatment on Empty Fruit Whole Bunches of Oil Palm Wastes

    NASA Astrophysics Data System (ADS)

    Khalib, N. Che; Abdullah, N.; Sulaiman, F.

    2010-07-01

    This study is focused on the drying pre-treatment on whole empty fruit bunches [EFB] oil palm wastes. The drying process of whole EFB wastes by conventional method is investigated using the conventional oven in order to obtain less than 10 mf wt % moisture content. Normally, the biomass is dried to less than 10 mf wt % in most laboratory experiments and commercial processes for thermal conversion technologies such as pyrolysis. The result shows that the moisture content of EFB of less than 10 mf wt % is achieved after 29 hours of drying process.

  9. Deforestation for oil palm alters the fundamental balance of the soil N cycle

    NASA Astrophysics Data System (ADS)

    Hamilton, Liz; Trimmer, Mark; Bradley, Chris; Pinay, Gilles

    2016-04-01

    Expansion of commercial agriculture in equatorial regions has significant implications for regional nitrogen (N) budgets, particularly nitrous oxide (N2O) and nitric oxide (NO) emissions, produced largely by microbial nitrification and denitrification. However, current estimates of soil N turnover are poorly constrained in Southeast Asia for nitrogen gas (N2) production and lesser known N transformations such as nitrate ammonification (DNRA) and anaerobic ammonium oxidation (anammox). We investigated changes in N availability and turnover following replacement of tropical forest with oil palm plantations along a chronosequence of oil palm maturity (3-months to 15-year-old stands) and secondary to primary forest succession in Sabah, Malaysian Borneo. Samples were taken from ten sites during March and April 2012. Using 15N tracing techniques, we measured rates of gross ammonium (NH4+) and nitrate (NO3‑) production (mineralisation and nitrification) and consumption (n= 8), potential denitrification, DNRA and anammox (n= 12) in soil cores and slurries respectively. Gross mineralisation rates (0.05 - 3.08 g N m‑2 d‑1) remained unchanged in oil palm relative to forests. However, a significant reduction in gross nitrification (0.04 - 2.31 g N m‑2 d‑1) and an increase in NH4+ immobilisation disrupt the pathway to N2 production substantially reducing (by > 90%) rates of denitrification and anammox in recently planted oil palm relative to primary forest. In forests, N2 produced via anammox was ˜30% of that from denitrification highlighting the potential for anammox to contribute significantly to N2 production. NH4+ production rates from DNRA were over two orders of magnitude less than N2 production rates indicating that denitrification is the primary dissimilatory nitrate consumption process in these soils. Potential N2O emissions were greater than potential N2 production, remaining unchanged across the chronosequence and indicating an increased N2O:N2 emission

  10. A kinetic study of lipase-catalyzed alcoholysis of palm kernel oil.

    PubMed

    de Oliveira, D; Alves, T L

    2000-01-01

    The use of lipases as biocatalysts in interesterification reactions has been the object of growing interest, owing to the importance of esters as emulsifiers, intermediates to produce oleochemicals, and fuel alternatives. We consider in this article a kinetic study of lipase-catalyzed alcoholysis of palm kernel oil, using n-hexane as the solvent. In a first step the ester production was maximized by using a Taguchi design, and then an empirical model was built to determine the influence of the process variables. Taking into account the results obtained in the first step, we performed a kinetic study and developed a simple model for this system. PMID:10849779

  11. Experimental study on temperature profile of fixed - bed gasification of oil-palm fronds

    NASA Astrophysics Data System (ADS)

    Atnaw, Samson M.; Sulaiman, Shaharin A.; Moni, M. Nazmi Z.

    2012-06-01

    Currently the world's second largest palm oil producer Malaysia produces large amount of oil palm biomass each year. The abundance of the biomass introduces a challenge to utilize them as main feedstock for heat and energy generation. Although some oil palm parts and derivatives like empty fruit bunch and fibre have been commercialized as fuel, less attention has been given to oil palm fronds (OPF). Initial feasibility and characterization studies of OPF showed that it is highly feasible as fuel for gasification to produce high value gaseous fuel or syngas. This paper discusses the experimental gasification attempt carried out on OPF using a 50 kW lab scale downdraft gasifier and its results. The conducted study focused on the temperature distributions within the reactor and the characteristics of the dynamic temperature profile for each temperature zones during operation. OPF feedstock of one cubic inch in individual size with 15% average moisture content was utilized. An average pyrolysis zone temperature of 324°Cand an average oxidation zone temperature of 796°Cwere obtained over a total gasification period of 74 minutes. A maximum oxidation zone temperature of 952°Cwas obtained at 486 lpm inlet air flow rate and 10 kg/hr feedstock consumption rate. Stable bluish flare was produced for more than 70% of the total gasification time. The recorded temperature profiles produced closely similar patterns with the temperature profiles recorded from the gasification of woody materials. Similar temperature profile was obtained comparing the results from OPF gasification with that of woody biomass. Furthermore, the successful ignition of the syngas produced from OPF gasification ascertained that OPF indeed has a higher potential as gasification feedstock. Hence, more detailed studies need to be done for better understanding in exploiting the biomass as a high prospect alternative energy solution. In addition, a study of the effect of initial moisture content of OPF

  12. Biosurfactant production by Pseudomonas aeruginosa A41 using palm oil as carbon source.

    PubMed

    Thaniyavarn, Jiraporn; Chongchin, Aree; Wanitsuksombut, Nopparat; Thaniyavarn, Suthep; Pinphanichakarn, Pairoh; Leepipatpiboon, Natthanant; Morikawa, Masaaki; Kanaya, Shigenori

    2006-08-01

    Biosurfactant production by Pseudomonas aeruginosa A41, a strain isolated from seawater in the gulf of Thailand, was examined when grown in defined medium containing 2% vegetable oil or fatty acid as a carbon source in the presence of vitamins, trace elements and 0.4% NH(4)NO(3), at pH 7 and 30 degrees C with 200 rpm-shaking for 7 days. The yield of biosurfactant steadily increased even after a stationary phase. Under such conditions the surface tension of the medium was lowered from 55-70 mN/m to 27.8-30 mN/m with every carbon source tested. However, types of carbon sources were found to affect biosurfactant yield. The yields of rhamnolipid biosurfactant were 6.58 g/L, 2.91 g/L and 2.93 g/L determined as rhamnose content when olive oil, palm oil and coconut oil, respectively, were used as a carbon source. Among them, biosurfactant obtained from palm oil was the best in lowering surface tension of the medium. Increase in biosurfactant activities in terms of oil displacement test and rhamnose content were observed to be higher with shorter chain fatty acids than that of the longer chains (C12>C14>C16). In addition, we found that C18:2, highly unsaturated fatty acid, showed higher oil displacement activity and rhamnose content than that of C18:1. The optimal oil displacement activity was found at pH 7-9 and in the presence of 0.5-3% NaCl. The oil displacement activity was stable to temperatures up to 100 degrees C for 15 h. Surface tension reduction activity was relatively stable at pH 2-12 and 0-5% of NaCl. Emusification activity tested with various types of hydrocarbons and vegetable oils showed similarity of up to 60% stability. The partially purified biosurfactant via TLC and silica gel column chromatography gave three main peaks on HPLC with mass spectra of 527, 272, and 661 m/z respectively, corresponding to sodium-monorhamnodecanoate, hydroxyhexadecanoic acid and an unknown compound, respectively. PMID:17116970

  13. Palm oil and ground nut oil supplementation effects on blood glucose and antioxidant status in alloxan-induced diabetic rats.

    PubMed

    Adewale, Olabiyi Folorunso; Isaac, OlatunjiOlusola; Tunmise, Makinwa Temitope; Omoniyi, OguntibejuOluwafemi

    2016-01-01

    This study investigated the effects of two common cooking oils (palm oil, PO) and (groundnut oil, GO) supplementation on the antioxidant status and diabetic indices in Alloxan (100mg/kg) induced diabetic Wistar rats. A total of forty-eight Wistar rats of both sexes were used for this study. They were divided into four groups of 12 animals each as: control, diabetic non-supplemented, diabetic supplemented with PO (200mg/kg/day) and diabetic supplemented with GO (200mg/kg/day) rats. Blood glucose, plasma vitamin E, SOD, Total Protein and Albumin levels were measured using standard laboratory procedures. After three weeks of supplementation there was a significant (p<0.05) reduction in blood glucose of supplemented groups compared with the diabetic non-supplemented group. Plasma Vitamins C and E, SOD, and Albumin levels were significantly (p<0.05) increased in the supplemented groups when compared with the diabetic non-supplemented group. However, the plasma levels of these parameters were found to be significantly (p<0.05) higher in the GO supplemented rats compared with the PO supplemented group. The plasma vitamin C levels in the diabetic groups were lower than in other groups while increased levels in the plasma total protein were not significant. There was no significant difference in the measured parameters in reference to the gender of the animals. It was concluded from this study that GO exhibited superior antioxidant activities and that the supplementation of red palm oil and ground nut oil as a source of antioxidant was beneficial in diabetic state as it reduced blood glucose and enhance antioxidant status. PMID:26826842

  14. A specific PFT and sub-canopy structure for simulating oil palm in the Community Land Model

    NASA Astrophysics Data System (ADS)

    Fan, Y.; Knohl, A.; Roupsard, O.; Bernoux, M.; LE Maire, G.; Panferov, O.; Kotowska, M.; Meijide, A.

    2015-12-01

    Towards an effort to quantify the effects of rainforests to oil palm conversion on land-atmosphere carbon, water and energy fluxes, a specific plant functional type (PFT) and sub-canopy structure are developed for simulating oil palm within the Community Land Model (CLM4.5). Current global land surface models only simulate annual crops beside natural vegetation. In this study, a multilayer oil palm subroutine is developed in CLM4.5 for simulating oil palm's phenology and carbon and nitrogen allocation. The oil palm has monopodial morphology and sequential phenology of around 40 stacked phytomers, each carrying a large leaf and a fruit bunch, forming a natural multilayer canopy. A sub-canopy phenological and physiological parameterization is thus introduced, so that multiple phytomer components develop simultaneously but according to their different phenological steps (growth, yield and senescence) at different canopy layers. This specific multilayer structure was proved useful for simulating canopy development in terms of leaf area index (LAI) and fruit yield in terms of carbon and nitrogen outputs in Jambi, Sumatra (Fan et al. 2015). The study supports that species-specific traits, such as palm's monopodial morphology and sequential phenology, are necessary representations in terrestrial biosphere models in order to accurately simulate vegetation dynamics and feedbacks to climate. Further, oil palm's multilayer structure allows adding all canopy-level calculations of radiation, photosynthesis, stomatal conductance and respiration, beside phenology, also to the sub-canopy level, so as to eliminate scale mismatch problem among different processes. A series of adaptations are made to the CLM model. Initial results show that the adapted multilayer radiative transfer scheme and the explicit represention of oil palm's canopy structure improve on simulating photosynthesis-light response curve. The explicit photosynthesis and dynamic leaf nitrogen calculations per canopy

  15. Ethanesulfonic acid-based esterification of industrial acidic crude palm oil for biodiesel production.

    PubMed

    Hayyan, Adeeb; Mjalli, Farouq S; Hashim, Mohd Ali; Hayyan, Maan; AlNashef, Inas M; Al-Zahrani, Saeed M; Al-Saadi, Mohammed A

    2011-10-01

    An industrial grade acidic crude palm oil (ACPO) pre-treatment process was carried out using ethanesulfonic acid (ESA) as a catalyst in the esterification reaction. ESA was used in different dosages to reduce free fatty acid (FFA) to a minimum level for the second stage of biodiesel production via alkaline transesterification reaction. Different process operating conditions were optimized such as ESA dosage (0.25-3.5% wt/wt), methanol to ACPO molar ratio (1:1-20:1), reaction temperature (40-70 °C), and reaction time (3-150 min). This study revealed the potential use of abundant quantities of ACPO from oil palm mills for biodiesel production. The lab scale results showed the effectiveness of the pre-treatment process using ESA catalyst. Three consecutive catalyst recycling runs were achieved without significant degradation in its performance. Second and third reuse runs needed more reaction time to achieve the target level of FFA content. Esterification and transesterification using ESA and KOH respectively is proposed for biodiesel industrial scale production. The produced biodiesel meets the international standards specifications for biodiesel fuel (EN 14214 and ASTM D6751). PMID:21855329

  16. Image analysis of palm oil crystallisation as observed by hot stage microscopy

    NASA Astrophysics Data System (ADS)

    Harrison, Peter D.; Smith, Kevin W.; Bhaggan, Krishnadath; Stapley, Andrew G. F.

    2016-06-01

    An image processing algorithm previously used to analyse the crystallisation of a pure fat (tripalmitin) has been applied to the crystallisation of a multicomponent natural fat (palm oil). In contrast to tripalmitin, which produced circular crystals with a constant growth rate, palm oil produced speckled crystals caused by the inclusion of entrapped liquid, and growth rates gradually decreased with time. This can be explained by the depletion of crystallisable material in the liquid phase, whereas direct impingement of crystals (the basis of the Avrami equation) was less common. A theoretical analysis combining this depletion with assuming that the growth rate is proportional to the supersaturation of a crystallisable pseudo-component predicted a tanh function variation of radius with time. This was generally able to provide good fits to the growth curves. It was found that growth rate was a relatively mild function of temperature but also varied from crystal to crystal and even between different sides of the same crystal, which may be due to variations in composition within the liquid phase. Nucleation rates were confirmed to vary approximately exponentially with decreasing temperature, resulting in much greater numbers of crystals and a smaller final average crystal size at lower temperatures.

  17. Future climate effects on suitability for growth of oil palms in Malaysia and Indonesia

    PubMed Central

    Paterson, R. Russell M.; Kumar, Lalit; Taylor, Subhashni; Lima, Nelson

    2015-01-01

    The production of palm oil (PO) is highly profitable. The economies of the principal producers, Malaysia and Indonesia, and others, benefit considerably. Climate change (CC) will most likely have an impact on the distribution of oil palms (OP) (Elaeis guineensis). Here we present modelled CC projections with respect to the suitability of growing OP, in Malaysia and Indonesia. A process-oriented niche model of OP was developed using CLIMEX to estimate its potential distribution under current and future climate scenarios. Two Global Climate Models (GCMs), CSIRO-Mk3.0 and MIROC-H, were used to explore the impacts of CC under the A1B and A2 scenarios for 2030, 2070 and 2100. Decreases in climatic suitability for OP in the region were gradual by 2030 but became more pronounced by 2100. These projections imply that OP growth will be affected severely by CC, with obvious implications to the economies of (a) Indonesia and Malaysia and (b) the PO industry, but with potential benefits towards reducing CC. A possible remedial action is to concentrate research on development of new varieties of OP that are less vulnerable to CC. PMID:26399638

  18. Use of high-boiling point organic solvents for pulping oil palm empty fruit bunches.

    PubMed

    Rodríguez, Alejandro; Serrano, Luis; Moral, Ana; Pérez, Antonio; Jiménez, Luis

    2008-04-01

    Oil palm empty fruit bunches were used as an alternative raw material to obtain cellulosic pulp. Pulping was done by using high-boiling point organic solvents of decreased polluting power relative to classical (Kraft, sulphite) solvents but affording operation at similar pressure levels. The holocellulose, alpha-cellulose and lignin contents of oil palm empty fruit bunches (viz. 66.97%, 47.91% and 24.45%, respectively) are similar to those of some woody raw materials such as pine and eucalyptus, and various non-wood materials including olive tree prunings, wheat straw and sunflower stalks. Pulping tests were conducted by using ethyleneglycol, diethyleneglycol, ethanolamine and diethanolamine under two different sets of operating conditions, namely: (a) a 70% solvent concentration, 170 degrees C and 90 min; and (b) 80% solvent, 180 degrees C and 150 min. The solid/liquid ratio was six in both cases. The amine solvents were found to provide pulp with better properties than did the glycol solvents. Ethanolamine pulp exhibited the best viscosity and drainage index (viz. 636 mL/g and 17 degrees SR, respectively), and paper made from it the best breaking length (1709 m), stretch (1.95%), burst index (0.98 kN/g) and tear index (0.33 mNm(2)/g). Operating costs can be reduced by using milder conditions, which provide similar results. In any case, the amines are to be preferred to the glycols as solvents for this purpose. PMID:17507215

  19. The effect of synthesis time on graphene growth from palm oil as green carbon precursor

    NASA Astrophysics Data System (ADS)

    Salifairus, M. J.; Hamid, S. B. Abd; Alrokayan, Salman A. H.; Khan, Haseeb A.; Rusop, M.

    2016-07-01

    Graphene is the new material that arises after carbon nanotubes (CNTs) era and has extraordinary optical, electronic and mechanical properties compared to CNTs. The 2D graphene is the sp2 carbon allotropes compared to other dimensionality. It also can be in three forms that are zero-dimensional, one-dimensional or three-dimensional. The different dimensionality also called fullerenes, nanotubes and graphite. Therefore, the graphene is known as centre potential materials in expanding research area than others ever. The 2cm × 2cm silicon wafer was seeded with nickel (Ni) at different thickness by using sputter coater. The palm oil, carbon source, was placed in the precursor furnace and the silicon was placed in the second furnace (deposition furnace). The palm oil will mix with Nitrogen gas was used as carrier gas in the CVD under certain temperature and pressure to undergo pyrolysis proses. The deposition temperature was set at 1000 °C. The deposition time varied from 3 minutes, 5 minutes and 7 minutes. The graphene was growth at ambient pressure in the CVD system. Electron microscopy and Raman Spectrometer revealed the structural properties and surface morphology of the grapheme on the substrate. The D and G band appear approximately at 1350 cm-1 and 1850 cm-1. It can be concluded that the growth of graphene varies at different deposition time.

  20. Validation of a HPLC method for determination of hydroxymethylfurfural in crude palm oil.

    PubMed

    Ariffin, Abdul Azis; Ghazali, H M; Kavousi, Parviz

    2014-07-01

    For the first time 5-hydroxymethyl-2-furaldehyde (HMF) was separated from crude palm oil (CPO), and its authenticity was determined using an RP-HPLC method. Separation was accomplished with isocratic elution of a mobile phase comprising water and methanol (92:8 v/v) on a Purospher Star RP-18e column (250mm×4.6mm, 5.0μm). The flow rate was adjusted to 1ml/min and detection was performed at 284nm. The method was validated, and results obtained exhibit a good recovery (95.58% to 98.39%). Assessment of precision showed that the relative standard deviations (RSD%) of retention times and peak areas of spiked samples were less than 0.59% and 2.66%, respectively. Further, the limit of detection (LOD) and LOQ were 0.02, 0.05mg/kg, respectively, and the response was linear across the applied ranges. The crude palm oil samples analysed exhibited HMF content less than 2.27mg/kg. PMID:24518321

  1. Method developments to extract proteins from oil palm chromoplast for proteomic analysis.

    PubMed

    Lau, Benjamin Yii Chung; Deb-Choudhury, Santanu; Morton, James D; Clerens, Stefan; Dyer, Jolon M; Ramli, Umi Salamah

    2015-01-01

    Proteins from the plant chromoplast are essential for many physiological processes such as fatty acid biosynthesis. Different protein extraction methods were tested to find the most robust method to obtain oil palm chromoplast proteins for mass spectrometry analysis. Initially, two different solvents were employed to reduce the fruit lipids. Then, two plant cell wall digestive enzymes were used to acquire the protoplasts to increase the protein extraction effectiveness. A two-stage centrifugation-based fractionation approach enhanced the number of identified proteins, particularly the fatty acid biosynthetic enzymes. The effectiveness of each extraction method was assessed using protein yields and 2DE gel profiles. The ideal method was successfully used to establish the 2DE chromoplast proteome maps of low and high oleic acid mesocarps of oil palm. Further nanoLC-MS/MS analysis of the extracted chromoplast proteins led to the identification of 162 proteins, including some of the main enzymes involved in the fatty acid biosynthesis. The established procedures would provide a solid foundation for further functional studies, including fatty acid biosynthetic expression profiling and evaluation of regulatory function. PMID:26702380

  2. Catalytic conversion of palm oil to hydrocarbons: Performance of various zeolite catalysts

    SciTech Connect

    Twaiq, F.A.; Zabidi, N.A.M.; Bhatia, S.

    1999-09-01

    The catalytic cracking of palm oil to fuels was studied in a fixed bed microreactor operated at atmospheric pressure, a reaction temperature of 350--450 C and weight hourly space velocities (WHSVs) of 1--4 h{sup {minus}1}. HZSM-5, zeolite {beta}, and ultrastable Y (USY) zeolites with different pore sizes were used to study the effects of reaction temperature and WHSV on the conversion of palm oil and yields of gasoline. The performances of HZSM-5-USY and HZSM-5-zeolite {beta} hybrid catalysts containing 10, 20, and 30 wt % HZSM-5 were investigated. Potassium-impregnated K-HZSM-5 catalysts with different potassium loadings were used to study the effect of acidity on the selectivity for gasoline formation. The major products obtained were organic liquid product (OLP), hydrocarbon gases, and water. HZSM-5 catalyst gave conversion of 99 wt % and a gasoline yield of 28 wt % at a reaction temperature of 350 C and WHSV of 1 h{sup {minus}1} and was the best among the three zeolites tested. The HZSM-5-USY hybrid catalyst performed better than USY catalyst as it resulted in a higher gasoline yield, whereas HZSM-5-zeolite {beta} hybrid catalyst gave lower conversion compared to that of zeolite {beta}. The selectivity for gasoline decreased from 45 to 10 wt % with an increase in potassium concentration from 0 to 1.5 wt %.

  3. Methane gas generation from waste water extraction process of crude palm oil in experimental digesters

    NASA Astrophysics Data System (ADS)

    Dillon, A.; Penafiel, R.; Garzón, P. V.; Ochoa, V.

    2015-12-01

    Industrial processes to extract crude palm oil, generates large amounts of waste water. High concentrations of COD, ST, SV, NH4 + and low solubility of O2, make the treatment of these effluents starts with anaerobic processes. The anaerobic digestion process has several advantages over aerobic degradation: lower operating costs (not aeration), low sludge production, methane gas generation. The 4 stages of anaerobic digestion are: hydrolysis, acidogenic, acetogenesis and methanogenesis. Through the action of enzymes synthesized by microbial consortia are met. The products of each step to serve as reagents is conducted as follows. The organic load times and cell hydraulic retention, solids content, nutrient availability, pH and temperature are factors that influence directly in biodigesters. The objectives of this presentation is to; characterize the microbial inoculum and water (from palm oil wasted water) to be used in biodigestores, make specific methanogenic activity in bioassays, acclimatize the microorganisms to produce methane gas using basal mineral medium with acetate for the input power, and to determine the production of methane gas digesters high organic load.

  4. Synthesis of Radiation Curable Palm Oil-Based Epoxy Acrylate: NMR and FTIR Spectroscopic Investigations.

    PubMed

    Salih, Ashraf M; Ahmad, Mansor Bin; Ibrahim, Nor Azowa; Dahlan, Khairul Zaman Hj Mohd; Tajau, Rida; Mahmood, Mohd Hilmi; Yunus, Wan Md Zin Wan

    2015-01-01

    Over the past few decades, there has been an increasing demand for bio-based polymers and resins in industrial applications, due to their potential lower cost and environmental impact compared with petroleum-based counterparts. The present research concerns the synthesis of epoxidized palm oil acrylate (EPOLA) from an epoxidized palm oil product (EPOP) as environmentally friendly material. EPOP was acrylated by acrylic acid via a ring opening reaction. The kinetics of the acrylation reaction were monitored throughout the reaction course and the acid value of the reaction mixture reached 10 mg KOH/g after 16 h, indicating the consumption of the acrylic acid. The obtained epoxy acrylate was investigated intensively by means of FTIR and NMR spectroscopy, and the results revealed that the ring opening reaction was completed successfully with an acrylation yield about 82%. The UV free radical polymerization of EPOLA was carried out using two types of photoinitiators. The radiation curing behavior was determined by following the conversion of the acrylate groups. The cross-linking density and the hardness of the cured EPOLA films were measured to evaluate the effect of the photoinitiator on the solid film characteristics, besides, the thermal and mechanical properties were also evaluated. PMID:26248072

  5. Cloning of a palmitoyl-acyl carrier protein thioesterase from oil palm.

    PubMed

    Othman, A; Lazarus, C; Fraser, T; Stobart, K

    2000-12-01

    A palmitoyl-acyl carrier protein (ACP) thioesterase cDNA clone was isolated from an oil palm cDNA library. The cDNA was expressed in Escherichia coli as a glutathione S-transferase fusion protein and a crude bacterial extract was assayed for acyl-CoA-hydrolysing activity. The recombinant enzyme was able to hydrolyse medium- and long-chain acyl-CoAs. Northern-blot analysis showed a high level of gene expression in leaf, flower and 15-, 17- and 18-week mesocarp tissues. Low-level gene expression was detected in germinated seedlings and 8- and 12-week mesocarp tissues, but no transcript was detected in any kernel tissues. Southern-blot analysis indicated the presence of a single gene and we have also isolated a genomic clone using the cDNA as a probe. Two genomic fragments were subcloned and a 7 kb contiguous stretch of the oil palm genome was sequenced. Comparison of this sequence with the cDNA sequence identified a putative 93 amino acid transit peptide, most of which is missing from the cDNA. The coding region of the gene consisted of seven exons and six introns. PMID:11171146

  6. Optimization studies on acid hydrolysis of oil palm empty fruit bunch fiber for production of xylose.

    PubMed

    Rahman, S H A; Choudhury, J P; Ahmad, A L; Kamaruddin, A H

    2007-02-01

    Oil palm empty fruit bunch fiber is a lignocellulosic waste from palm oil mills. It is a potential source of xylose which can be used as a raw material for production of xylitol, a high value product. The increasing interest on use of lignocellulosic waste for bioconversion to fuels and chemicals is justifiable as these materials are low cost, renewable and widespread sources of sugars. The objective of the present study was to determine the effect of H(2)SO(4) concentration, reaction temperature and reaction time for production of xylose. Batch reactions were carried out under various reaction temperature, reaction time and acid concentrations and Response Surface Methodology (RSM) was followed to optimize the hydrolysis process in order to obtain high xylose yield. The optimum reaction temperature, reaction time and acid concentration found were 119 degrees C, 60 min and 2%, respectively. Under these conditions xylose yield and selectivity were found to be 91.27% and 17.97 g/g, respectively. PMID:16647852

  7. Isolation and regeneration protoplast of an oil palm pathogen, Ganoderma boninense

    NASA Astrophysics Data System (ADS)

    Irene, Liza Isaac; Bakar, Farah Diba Abu; Idris, Abu Seman; Murad, Abdul Munir Abdul

    2015-09-01

    Ganoderma boninense is a known cause for basal stem rot (BSR) in oil palm. Thus, to curb the infection towards oil palm, the establishment of protoplast isolation and regeneration protocol is crucial to be studied. This will provide information on the functional genes especially those which leads towards infection and pathogenicity. In this study, a method was outlined to isolated protoplast in G. boninense by manipulating parameters such as mycelium age, concentration of lysing enzyme, and duration of mycelia incubation in lytic solution. The results shows that from 0.1 g of wet weight mycelia, the highest protoplast yield obtained was 5.5 × 108 protoplast/ml using 5th day old culture in a lytic mixture containing 2.0 % of lysing enzyme incubated for 4 hours at 30 °C with agitation of 80-100 rpm. The highest percentage of protoplast regeneration obtained from this study was 0.2 % using CYM medium supplemented with 0.6 M sorbitol. To date, this is the first report of protoplast isolation and regeneration for this phytopathogen.

  8. Enhancement of Biodegradation of Palm Oil Mill Effluents by Local Isolated Microorganisms

    PubMed Central

    Soleimaninanadegani, Mohammadreza

    2014-01-01

    This study was designed to investigate the microorganisms associated with palm oil mill effluent (POME) in Johor Bahru state, Malaysia. Biodegradation of palm oil mill effluents (POME) was conducted to measure the discarded POME based on physicochemical quality. The bacteria that were isolated are Micrococcus species, Bacillus species, Pseudomonas species, and Staphylococcus aureus, while the fungi that were isolated are Aspergillus niger, Aspergillus fumigatus, Candida species, Fusarium species, Mucor species, and Penicillium species. The autoclaved and unautoclaved raw POME samples were incubated for 7 days and the activities of the microorganisms were observed each 12 hours. The supernatants of the digested POME were investigated for the removal of chemical oxygen demand (COD), color (ADMI), and biochemical oxygen demand (BOD) at the end of each digestion cycle. The results showed that the unautoclaved raw POME sample degraded better than the inoculated POME sample and this suggests that the microorganisms that are indigenous in the POME are more effective than the introduced microorganisms. This result, however, indicates the prospect of isolating indigenous microorganisms in the POME for effective biodegradation of POME. Moreover, the effective treatment of POME yields useful products such as reduction of BOD, COD, and color. PMID:27433516

  9. Does palm oil vitamin E reduce the risk of pregnancy induced hypertension?

    PubMed

    Mahdy, Zaleha Abdullah; Siraj, Harlina Halizah; Khaza'ai, Huzwah; Mutalib, Mohd Sokhini Abdul; Azwar, Muhammad Hatta; Wahab, Marianah Abdul; Dali, Ahmad Zailani Hatta Md; Jaafar, Rohana; Ismail, Nor Azlin Mohd; Jamil, Muhammad Abdul; Adeeb, Nafisah

    2013-01-01

    In view of the high anti-oxidative potential oftocotrienol, the role of the tocotrienol-rich fraction (TRF) of palm oil in preventing pregnancy induced hypertension (PIH) was explored in a randomized double-blind placebo-controlled clinical trial in an urban teaching hospital. Healthy primigravidae were randomized to receive either oral TRF 100 mg daily or placebo, from early second trimester until delivery. Out of 299 women, 151 were randomized into the TRF arm and 148 into the placebo arm. A total of 15 (5.0%) developed PIH. Although there was no statistically significant difference in the incidence of PIH (4/151 or 2.6% in the TRF arm vs. 11/148 or 7.4% in the placebo arm, p = 0.058) between the two arms, there was a tendency towards a lower incidence of PIH in the TRF arm compared to the placebo arm. With TRF supplementation, the relative risk (RR) of PIH was 0.36 (95% CI 0.12-1.09). In conclusion, although TRF from palm oil does not statistically significantly reduce the risk of development of PIH in the population studied, the 64% reduction in incidence of PIH is substantial. The findings warrant further clinical trials, particularly in high risk populations. PMID:24592747

  10. Density and Ultrasonic Characterization of Oil Palm Trunk Infected by Ganoderma Boninense Disease

    NASA Astrophysics Data System (ADS)

    Najmie, M. M. K.; Khalid, K.; Sidek, A. A.; Jusoh, M. A.

    2011-01-01

    Oil palm trunks infected by Ganoderma boninense disease have been studied using density and ultrasonic characterizations. The ultrasonic characterizations have been performed using a commercial ultrasonic instrument at the frequency of 54 kHz. The measurements have been done in 3 zones: inner zone, central zone and peripheral zone. It was found that the stem density of the oil palm infected by Ganoderma boninense disease was reduced by 50% in comparison to the original healthy trunk. From this effect the velocity of the ultrasonic wave propagated through the Longitudinal, Radial, and Tangential directions is lower for the trunk infected by Ganoderma boninense disease compared to a healthy trunk. For the 10 cm thickness of samples, the ultrasonic velocity for all transit directions was in range of 260 - 750 ms-1 for the infected sample, whereas for healthy samples was in the range of 460 - 900 ms-1. These results are very useful for the detection of the area which has been affected by the disease.

  11. Future climate effects on suitability for growth of oil palms in Malaysia and Indonesia.

    PubMed

    Paterson, R Russell M; Kumar, Lalit; Taylor, Subhashni; Lima, Nelson

    2015-01-01

    The production of palm oil (PO) is highly profitable. The economies of the principal producers, Malaysia and Indonesia, and others, benefit considerably. Climate change (CC) will most likely have an impact on the distribution of oil palms (OP) (Elaeis guineensis). Here we present modelled CC projections with respect to the suitability of growing OP, in Malaysia and Indonesia. A process-oriented niche model of OP was developed using CLIMEX to estimate its potential distribution under current and future climate scenarios. Two Global Climate Models (GCMs), CSIRO-Mk3.0 and MIROC-H, were used to explore the impacts of CC under the A1B and A2 scenarios for 2030, 2070 and 2100. Decreases in climatic suitability for OP in the region were gradual by 2030 but became more pronounced by 2100. These projections imply that OP growth will be affected severely by CC, with obvious implications to the economies of (a) Indonesia and Malaysia and (b) the PO industry, but with potential benefits towards reducing CC. A possible remedial action is to concentrate research on development of new varieties of OP that are less vulnerable to CC. PMID:26399638

  12. Investigations on the causes of upper stem rot (USR) on standing mature oil palms.

    PubMed

    Hasan, Y; Foster, H L; Flood, J

    2005-01-01

    Three different trials to examine the cause of upper stem rot (USR) infection in oil palm failed to achieve any infection. In the first experiment, inoculum was applied as colonised rubber wood blocks or as spore suspensions. In the second experiment, particular attention was given to ensure that the Ganoderma spores were freshly collected to maintain viability but no infection was observed around the inoculation sites of any of the different oil palm tissues treated. Lastly in the third experiment, both monokaryotic and dikaryotic mycelial cultures were applied directly to cut fronds, which were protected with a moist covering, but no infection was detected after more than two years. Failure to achieve infection by direct inoculation would indicate that USR does not arise from direct infection of living tissues by Ganoderma spores or mycelium, this is probably because of insufficient inoculum potential to cause infection. It is suggested that USR infection is achieved only when a sufficiently large source of inoculum has built up in dead material, probably in frond axils, and this allows invasion of the living tissues. PMID:15750741

  13. Fractionation of oil palm frond hemicelluloses by water or alkaline impregnation and steam explosion.

    PubMed

    Sabiha-Hanim, Saleh; Mohd Noor, Mohd Azemi; Rosma, Ahmad

    2015-01-22

    Steam explosion of oil palm frond has been carried out under different temperatures between 180 and 210°C for 4 min (severity of 2.96-3.84) after impregnation of the frond chips with water or KOH solution. The effects of impregnation and steam explosion conditions of oil palm fronds on the water soluble fraction and insoluble fraction were investigated. The maximum yield of hemicelluloses in water soluble fractions recovered was 23.49% and 25.33% for water and KOH impregnation, treated with steam explosion at temperature of 210°C (severity of 3.84) with a fractionation efficiency of 77.30% and 83.32%, respectively. Under this condition, the water insoluble fractions contained celluloses at 60.83% and 64.80% for water and KOH impregnation, respectively. The steam explosion temperature of 210°C for 4 min (logR(o) 3.84) was found to be the best condition in the extraction of hemicelluloses from OPF for both types of impregnation. PMID:25439929

  14. Removal of Zn and Cu from Wastewater by Sorption on Oil Palm Tree-Derived Biomasses

    NASA Astrophysics Data System (ADS)

    Salamatinia, B.; Kamaruddin, A. H.; Abdullah, A. Z.

    In this study Oil Palm Bark (OPB), Oil Palm Frond (OPF) and Empty Fruit Bunch (EFB) were evaluated as low-cost sorbent materials for removal of Cu and Zn from water in a batch mode. All the biomasses were used without any chemical modification to evaluate their initial sorption capacity. The sorption processes were performed in a batch mode with 250 mL Cu and Zn solutions at 100 mg L-1 using between 0.5 and 1.0 g of sorbent. The samples were tested every 24 h up to 168 h in normal room temperature. No diffusion limitation was observed in the sorption process. A Zn removal efficiency of 51.5 and 46.0% with 1.0 of OPF and EFB, respectively was observed while OPB showed the lowest removal efficiency. For Cu, the removal achieved was 54% for 1.0 g OPF and 56.5% using 1.0 g of EFB. Cu showed better sorption on the three biomasses. The OPB and EFB introduced excessive amounts of soluble organics into the water. The experimental data obtained with OPF sorbent could fit Freundlich isotherm model better with R2>0.99. This result suggested the heterogeneous binding sites in the biomass.

  15. Oil palm pest infestation monitoring and evaluation by helicopter-mounted, low altitude remote sensing platform

    NASA Astrophysics Data System (ADS)

    Samseemoung, Grianggai; Jayasuriya, Hemantha P. W.; Soni, Peeyush

    2011-01-01

    Timely detection of pest or disease infections is extremely important for controlling the spread of disease and preventing crop productivity losses. A specifically designed radio-controlled helicopter mounted low altitude remote sensing (LARS) platform can offer near-real-time results upon user demand. The acquired LARS images were processed to estimate vegetative-indices and thereby detecting upper stem rot (Phellinus Noxius) disease in both young and mature oil palm plants. The indices helped discriminate healthy and infested plants by visualization, analysis and presentation of digital imagery software, which were validated with ground truth data. Good correlations and clear data clusters were obtained in characteristic plots of normalized difference vegetation index (NDVI)LARS and green normalized difference vegetation indexLARS against NDVISpectro and chlorophyll content, by which infested plants were discriminated from healthy plants in both young and mature crops. The chlorophyll content values (μmol m-2) showed notable differences among clusters for healthy young (972 to 1100), for infested young (253 to 400), for healthy mature (1210 to 1500), and for infested mature (440 to 550) oil palm. The correlation coefficients (R2) were in a reasonably acceptable range (0.62 to 0.88). The vegetation indices based on LARS images, provided satisfactory results when compared to other approaches. The developed technology showed promising scope for medium and large plantations.

  16. Use of re-esterified palm oils, differing in their acylglycerol structure, in weaning-piglet diets.

    PubMed

    Vilarrasa, E; Barroeta, A C; Tres, A; Esteve-Garcia, E

    2015-08-01

    Re-esterified oils are new fat sources obtained from chemical esterification of acid oils with glycerol (both economically interesting by-products from oil refining and biodiesel industries, respectively). The different fatty acid (FA) positional distribution and acylglycerol composition of re-esterified oils may enhance the apparent absorption of saturated fatty acids (SFA) and, thus, their overall nutritive value. The aim of the present study was to investigate the potential use of re-esterified palm oils, in comparison with their corresponding acid and native oils, and also with an unsaturated fat source in weaning-piglet diets. The parameters assessed were: FA apparent absorption, acylglycerol and free fatty acid (FFA) composition of feces, and growth performance. One-hundred and twenty weaning piglets (average weight of 8.50±1.778 kg) were blocked by initial BW (six blocks) and randomly assigned to five dietary treatments, resulting in four piglets per pen and six replicates per treatment. Dietary treatments were a basal diet supplemented with 10% (as-fed basis) of native soybean oil (SN), native palm oil (PN), acid palm oil (PA), re-esterified palm oil low in mono- (MAG) and diacylglycerols (DAG) (PEL), or re-esterified palm oil high in MAG and DAG (PEH). Results from the digestibility balance showed that SN reached the greatest total FA apparent absorption, and statistically different from PN, PA and PEL (P0.05), but PEH achieved the greatest total FA apparent absorption. Animals fed PEL, despite the fact that PEL oil contained more sn-2 SFA, did not show an improved absorption of SFA (P>0.05). Animals fed PA and PN showed similar apparent absorption coefficients (P>0.05), despite the high FFA content of PA oil. The acylglycerol and FFA composition of feces was mainly composed of FFA. There were no significant differences in growth performance (P>0.05). Results of the present study suggest that, despite the different acylglycerol structure of re

  17. Formulation optimization of palm kernel oil esters nanoemulsion-loaded with chloramphenicol suitable for meningitis treatment.

    PubMed

    Musa, Siti Hajar; Basri, Mahiran; Masoumi, Hamid Reza Fard; Karjiban, Roghayeh Abedi; Malek, Emilia Abd; Basri, Hamidon; Shamsuddin, Ahmad Fuad

    2013-12-01

    Palm kernel oil esters nanoemulsion-loaded with chloramphenicol was optimized using response surface methodology (RSM), a multivariate statistical technique. Effect of independent variables (oil amount, lecithin amount and glycerol amount) toward response variables (particle size, polydispersity index, zeta potential and osmolality) were studied using central composite design (CCD). RSM analysis showed that the experimental data could be fitted into a second-order polynomial model. Chloramphenicol-loaded nanoemulsion was formulated by using high pressure homogenizer. The optimized chloramphenicol-loaded nanoemulsion response values for particle size, PDI, zeta potential and osmolality were 95.33nm, 0.238, -36.91mV, and 200mOsm/kg, respectively. The actual values of the formulated nanoemulsion were in good agreement with the predicted values obtained from RSM. The results showed that the optimized compositions have the potential to be used as a parenteral emulsion to cross blood-brain barrier (BBB) for meningitis treatment. PMID:23974000

  18. Pretreatment of palm oil mill effluent (POME) using Moringa oleifera seeds as natural coagulant.

    PubMed

    Bhatia, Subhash; Othman, Zalina; Ahmad, Abdul Latif

    2007-06-25

    Moringa oleifera seeds, an environmental friendly and natural coagulant are reported for the pretreatment of palm oil mill effluent (POME). In coagulation-flocculation process, the M. oleifera seeds after oil extraction (MOAE) are an effective coagulant with the removal of 95% suspended solids and 52.2% reduction in the chemical oxygen demand (COD). The combination of MOAE with flocculant (NALCO 7751), the suspended solids removal increased to 99.3% and COD reduction was 52.5%. The coagulation-flocculation process at the temperature of 30 degrees C resulted in better suspended solids removal and COD reduction compared to the temperature of 40, 55 and 70 degrees C. The MOAE combined with flocculant (NALCO 7751) reduced the sludge volume index (SVI) to 210mL/g with higher recovery of dry mass of sludge (87.25%) and water (50.3%). PMID:17141409

  19. Isolation and characterization of an oil palm constitutive promoter derived from a translationally control tumor protein (TCTP) gene.

    PubMed

    Masura, Subhi Siti; Parveez, Ghulam Kadir Ahmad; Ti, Leslie Low Eng

    2011-07-01

    We have characterized an oil palm (Elaeis guineensis Jacq.) constitutive promoter that is derived from a translationally control tumor protein (TCTP) gene. The TCTP promoter was fused transcriptionally with the gusA reporter gene and transferred to monocot and dicot systems in order to study its regulatory role in a transient expression study. It was found that the 5' region of TCTP was capable of driving the gusA expression in all the oil palm tissues tested, including immature embryo, embryogenic callus, embryoid, young leaflet from mature palm, green leaf, mesocarp and stem. It could also be used in dicot systems as it was also capable of driving gusA expression in tobacco leaves. The results indicate that the TCTP promoter could be used for the production of recombinant proteins that require constitutive expression in the plant system. PMID:21549610

  20. Preparation of Biodiesel from Microalgae and Palm Oil by Direct Transesterification in a Batch Microwave Reactor

    NASA Astrophysics Data System (ADS)

    Marwan; Suhendrayatna; Indarti, E.

    2015-06-01

    The present work was aimed to study the so-called direct transesterification of microalgae lipids to biodiesel in a batch microwave reactor. As a comparison, preparation of palm oil to biodiesel by alkaline catalyzed ethanolysis was also carried out. Palm oil biodiesel was recovered close to an equilibrium conversion (94-96% yield) under microwave heating for at least 6 min, while the conventional method required more than 45 minutes reaching the same yield. A very short reaction time suggests the benefit of microwave effect over conventional heating method in making biodiesel. FTIR analysis revealed the presence of fatty acid ethyl esters with no undesired chemical groups or compounds formed due to local heat generated by microwave effect, thus the conversion only followed transesterification route. Oil containing microalgae of Chlorella sp. isolated from the local brackish water pond was used as a potential source of biodiesel. High yield of biodiesel (above 0.6 g/g of dried algae) was also attainable for the direct transesterification of microalgae in the microwave reactor. Effect of water content of the algae biomass became insignificant at 11.9%(w/w) or less, related to the algae biomass dried for longer than 6 h. Fast transesterification of the algal oil towards equilibrium conversion was obtained at reaction time of 6 min, and at longer times the biodiesel yield remains unchanged. FAME profile indicates unsaturated fatty acids as major constituents. It was shown that microwave irradiation contributes not only to enhance the transeseterification, but also to assist effective release of fatty acid containing molecules (e.g. triacylglycerol, free fatty acids and phospholipids) from algal cells.

  1. A sub-canopy structure for simulating oil palm in the Community Land Model: phenology, allocation and yield

    NASA Astrophysics Data System (ADS)

    Fan, Y.; Roupsard, O.; Bernoux, M.; Le Maire, G.; Panferov, O.; Kotowska, M. M.; Knohl, A.

    2015-06-01

    Land surface modelling has been widely used to characterize the two-way interactions between climate and human activities in terrestrial ecosystems such as deforestation, agricultural expansion, and urbanization. Towards an effort to quantify the effects of forests to oil palm conversion occurring in the tropics on land-atmosphere carbon, water and energy fluxes, we introduce a new perennial crop plant functional type (PFT) for oil palm. Due to the modular and sequential nature of oil palm growth (around 40 stacked phytomers) and yield (fruit bunches axillated on each phytomer), we developed a specific sub-canopy structure for simulating palm's growth and yield within the framework of the Community Land Model (CLM4.5). In this structure each phytomer has its own prognostic leaf growth and fruit yield capacity like a PFT but with shared stem and root components among all phytomers. Phenology and carbon and nitrogen allocation operate on the different phytomers in parallel but at unsynchronized steps, so that multiple fruit yields per annum are enabled in terms of carbon and nitrogen outputs. An important phenological phase is identified for the palm PFT - the storage growth period of bud and "spear" leaves which are photosynthetically inactive before expansion. Agricultural practices such as transplanting, fertilization, and leaf pruning are represented. Parameters introduced for the new PFT were calibrated and validated with field measurements of leaf area index (LAI) and yield from Sumatra, Indonesia. In calibration with a mature oil palm plantation, the cumulative yields from 2005 to 2014 matched perfectly between simulation and observation (mean percentage error = 4 %). Simulated inter-annual dynamics of PFT-level and phytomer-level LAI were both within the range of field measurements. Validation from eight independent oil palm sites shows the ability of the model to adequately predict the average leaf growth and fruit yield across sites but also indicates that

  2. Milk cytokines and subclinical breast inflammation in Tanzanian women: effects of dietary red palm oil or sunflower oil supplementation

    PubMed Central

    Filteau, S M; Lietz, G; Mulokozi, G; Bilotta, S; Henry, C J K; Tomkins, A M

    1999-01-01

    Previously, we have found that subclinical breast inflammation, as indicated by raised breastmilk concentrations of sodium and the inflammatory cytokine, interleukin-8 (IL-8), was highly prevalent in Bangladesh and associated with poor infant growth. In order to investigate further the prevalence of subclinical breast inflammation and to assess the impact of dietary intervention, we studied rural Tanzanian women taking part in a study of dietary sunflower or red palm oil supplementation during late pregnancy and lactation. We measured breastmilk concentrations of IL-8, the anti-inflammatory cytokine, transforming growth factor-β2 (TGF-β) and the ratio of sodium to potassium. We also estimated systemic inflammation by plasma concentrations of the acute phase proteins, α1-acid glycoprotein and C-reactive protein. There were highly significant intercorrelations among milk Na/K ratio and concentrations of IL-8 and TGF-β, the last only after treatment with bile salts which also improved TGF-β recovery in the enzyme-linked immunosorbent assay (ELISA). Plasma acute phase protein concentrations tended to correlate with milk Na/K ratio and IL-8, suggesting that subclinical breast inflammation was related to systemic inflammation. Dietary supplementation with vitamin E-rich sunflower oil but not provitamin A-containing red palm oil decreased milk Na/K, IL-8 and TGF-β at 3 months postpartum; however, the effect was significant only for Na/K ratio. The results suggest that milk Na/K ratio, IL-8, and TGF-β all measure the same phenomenon of subclinical breast inflammation but that Na/K ratio, having the lowest assay variability, is the most useful. Subclinical breast inflammation may result in part from systemic inflammation and may be improved by increased dietary intake of vitamin E-rich sunflower oil. PMID:10457212

  3. Retroelements, transposons and methylation status in the genome of oil palm (Elaeis guineensis) and the relationship to somaclonal variation.

    PubMed

    Kubis, Sybille E; Castilho, Alexandra M M F; Vershinin, Alexander V; Heslop-Harrison, John Seymour Pat

    2003-05-01

    We isolated and characterized different classes of transposable DNA elements in oil palm (Elaeis guineensis) plants grown from seed, and plants regenerated from tissue culture that show mantling, an abnormality leading to flower abortion. Using PCR assays, reverse transcriptase fragments belonging to LINE-like and gypsy-like retroelements and transposase fragments of En/Spm transposons were cloned. Sequence analysis revealed the presence of a major family of LINEs in oil palm, with other diverged copies. Gypsy-like retrotransposons form a single homologous group, whereas En/Spm transposons are present in several diverged families. Southern analysis revealed their presence in low (LINEs) to medium (gypsy and En/Spm) copy numbers in oil palm, and in situ hybridization showed a limited number of distinct loci for each class of transposable element. No differences in the genomic organization of the different classes of transposable DNA elements between ortet palm (parent) and regenerated palm trees with mantled phenotype were detected, but different levels of sequence methylation were observed. During tissue culture, McrBC digestion revealed the genome-wide reduction in DNA methylation, which was restored to near-normal levels in regenerated trees. HPLC analysis showed that methylation levels were slightly lower in the regenerated trees compared to the ortet parent. The genomic organization of the transposable DNA elements in different oil palm species, accessions and individual regenerated trees was investigated revealing only minor differences. The results suggest that the mantled phenotype is not caused by major rearrangements of transposable elements but may relate to changes in the methylation pattern of other genomic components. PMID:12825690

  4. Formulation and in vitro evaluation of ketoprofen in palm oil esters nanoemulsion for topical delivery.

    PubMed

    Sakeena, M H F; Muthanna, F A; Ghassan, Z A; Kanakal, M M; Elrashid, S M; Munavvar, A S; Azmin, M N

    2010-01-01

    The aim of the present study is to formulate and investigate the potential of nanoemulsion formulation for topical delivery of ketoprofen. In this study, Palm Oil Esters (POEs) a newly introduced oil by Universiti Putra Malaysia researchers was chosen for the oil phase of the nanoemulsion, because the oil was reported to be a good vehicle for pharmaceutical use. Oil-in-water nanoemulsion was prepared by spontaneous emulsification method. The droplets size was studied by laser scattering spectroscopy (Nanophox) and Transmission Electron Microscopy (TEM). Franz diffusion cells were used, to determine the drug release and drug transferred through methyl acetate cellulose membrane (artificial membrane). The results of droplets size analysis shows the droplets are in the range of nanoemulsion which is below than 500 nm. The in vitro release profile shows a sufficient percentage of drugs released through the methyl acetate cellulose membrane. This initial study showed that the nanoemulsion formulated using POEs has great potential for topical delivery of ketoprofen. PMID:20299769

  5. Genetic Architecture of Palm Oil Fatty Acid Composition in Cultivated Oil Palm (Elaeis guineensis Jacq.) Compared to Its Wild Relative E. oleifera (H.B.K) Cortés

    PubMed Central

    Montoya, Carmenza; Cochard, Benoit; Flori, Albert; Cros, David; Lopes, Ricardo; Cuellar, Teresa; Espeout, Sandra; Syaputra, Indra; Villeneuve, Pierre; Pina, Michel; Ritter, Enrique; Leroy, Thierry; Billotte, Norbert

    2014-01-01

    We searched for quantitative trait loci (QTL) associated with the palm oil fatty acid composition of mature fruits of the oil palm E. guineensis Jacq. in comparison with its wild relative E. oleifera (H.B.K) Cortés. The oil palm cross LM2T x DA10D between two heterozygous parents was considered in our experiment as an intraspecific representative of E. guineensis. Its QTLs were compared to QTLs published for the same traits in an interspecific Elaeis pseudo-backcross used as an indirect representative of E. oleifera. Few correlations were found in E. guineensis between pulp fatty acid proportions and yield traits, allowing for the rather independent selection of both types of traits. Sixteen QTLs affecting palm oil fatty acid proportions and iodine value were identified in oil palm. The phenotypic variation explained by the detected QTLs was low to medium in E. guineensis, ranging between 10% and 36%. The explained cumulative variation was 29% for palmitic acid C16:0 (one QTL), 68% for stearic acid C18:0 (two QTLs), 50% for oleic acid C18:1 (three QTLs), 25% for linoleic acid C18:2 (one QTL), and 40% (two QTLs) for the iodine value. Good marker co-linearity was observed between the intraspecific and interspecific Simple Sequence Repeat (SSR) linkage maps. Specific QTL regions for several traits were found in each mapping population. Our comparative QTL results in both E. guineensis and interspecific materials strongly suggest that, apart from two common QTL zones, there are two specific QTL regions with major effects, which might be one in E. guineensis, the other in E. oleifera, which are independent of each other and harbor QTLs for several traits, indicating either pleiotropic effects or linkage. Using QTL maps connected by highly transferable SSR markers, our study established a good basis to decipher in the future such hypothesis at the Elaeis genus level. PMID:24816555

  6. Genetic architecture of palm oil fatty acid composition in cultivated oil palm (Elaeis guineensis Jacq.) compared to its wild relative E. oleifera (H.B.K) Cortés.

    PubMed

    Montoya, Carmenza; Cochard, Benoit; Flori, Albert; Cros, David; Lopes, Ricardo; Cuellar, Teresa; Espeout, Sandra; Syaputra, Indra; Villeneuve, Pierre; Pina, Michel; Ritter, Enrique; Leroy, Thierry; Billotte, Norbert

    2014-01-01

    We searched for quantitative trait loci (QTL) associated with the palm oil fatty acid composition of mature fruits of the oil palm E. guineensis Jacq. in comparison with its wild relative E. oleifera (H.B.K) Cortés. The oil palm cross LM2T x DA10D between two heterozygous parents was considered in our experiment as an intraspecific representative of E. guineensis. Its QTLs were compared to QTLs published for the same traits in an interspecific Elaeis pseudo-backcross used as an indirect representative of E. oleifera. Few correlations were found in E. guineensis between pulp fatty acid proportions and yield traits, allowing for the rather independent selection of both types of traits. Sixteen QTLs affecting palm oil fatty acid proportions and iodine value were identified in oil palm. The phenotypic variation explained by the detected QTLs was low to medium in E. guineensis, ranging between 10% and 36%. The explained cumulative variation was 29% for palmitic acid C16:0 (one QTL), 68% for stearic acid C18:0 (two QTLs), 50% for oleic acid C18:1 (three QTLs), 25% for linoleic acid C18:2 (one QTL), and 40% (two QTLs) for the iodine value. Good marker co-linearity was observed between the intraspecific and interspecific Simple Sequence Repeat (SSR) linkage maps. Specific QTL regions for several traits were found in each mapping population. Our comparative QTL results in both E. guineensis and interspecific materials strongly suggest that, apart from two common QTL zones, there are two specific QTL regions with major effects, which might be one in E. guineensis, the other in E. oleifera, which are independent of each other and harbor QTLs for several traits, indicating either pleiotropic effects or linkage. Using QTL maps connected by highly transferable SSR markers, our study established a good basis to decipher in the future such hypothesis at the Elaeis genus level. PMID:24816555

  7. 77 FR 19663 - Notice of Data Availability Concerning Renewable Fuels Produced from Palm Oil Under the RFS...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-02

    ..., 2012 (77 FR 4300). The public comment period was to end on February 27, 2012--30 days after publication... to the final rule published on March 26, 2010, which made changes to the RFS program (75 FR 14670... comment on EPA's analyses of palm oil used as a feedstock to produce biodiesel and renewable diesel...

  8. 77 FR 8254 - Notice of Data Availability Concerning Renewable Fuels Produced From Palm Oil Under the RFS...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-14

    ..., 2012 (77 FR 4300). The public comment period was to end on February 27, 2012--30 days after publication... published on March 26, 2010, which made changes to the RFS program (75 FR 14670). EPA's analysis of the two... of palm oil used as a feedstock to produce biodiesel and renewable diesel under the Renewable...

  9. 77 FR 4300 - Notice of Data Availability Concerning Renewable Fuels Produced From Palm Oil Under the RFS Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-27

    ... to the RFS2 final rule preamble (75 FR 14670) or the RFS2 Regulatory Impact Analysis (RIA).\\2\\ These... produce biodiesel and renewable diesel under the Renewable Fuel Standard (RFS) program. EPA's analysis of the two types of biofuel shows that ] biodiesel and renewable diesel produced from palm oil...

  10. Capability of Integrated MODIS Imagery and ALOS for Oil Palm, Rubber and Forest Areas Mapping in Tropical Forest Regions

    PubMed Central

    Razali, Sheriza Mohd; Marin, Arnaldo; Nuruddin, Ahmad Ainuddin; Shafri, Helmi Zulhaidi Mohd; Hamid, Hazandy Abdul

    2014-01-01

    Various classification methods have been applied for low resolution of the entire Earth's surface from recorded satellite images, but insufficient study has determined which method, for which satellite data, is economically viable for tropical forest land use mapping. This study employed Iterative Self Organizing Data Analysis Techniques (ISODATA) and K-Means classification techniques to classified Moderate Resolution Imaging Spectroradiometer (MODIS) Surface Reflectance satellite image into forests, oil palm groves, rubber plantations, mixed horticulture, mixed oil palm and rubber and mixed forest and rubber. Even though frequent cloud cover has been a challenge for mapping tropical forests, our MODIS land use classification map found that 2008 ISODATA-1 performed well with overall accuracy of 94%, with the highest Producer's Accuracy of Forest with 86%, and were consistent with MODIS Land Cover 2008 (MOD12Q1), respectively. The MODIS land use classification was able to distinguish young oil palm groves from open areas, rubber and mature oil palm plantations, on the Advanced Land Observing Satellite (ALOS) map, whereas rubber was more easily distinguished from an open area than from mixed rubber and forest. This study provides insight on the potential for integrating regional databases and temporal MODIS data, in order to map land use in tropical forest regions. PMID:24811079

  11. Influence of extended storage on fuel properties of methyl esters prepared from canola, palm, soybean, and sunflower oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acid methyl esters prepared from canola, palm, soybean, and sunflower oils by homogenous base-catalyzed methanolysis were stored for 12 months at three constant temperatures (-15, 22, and 40 deg C) and properties such as oxidative stability, acid value, kinematic viscosity, low temperature ope...

  12. A meta-analytic review of life cycle assessment and flow analyses studies of palm oil biodiesel.

    PubMed

    Manik, Yosef; Halog, Anthony

    2013-01-01

    This work reviews and performs a meta-analysis of the recent life cycle assessment and flow analyses studies palm oil biodiesel. The best available data and information are extracted, summarized, and discussed. Most studies found palm oil biodiesel would produce positive energy balance with an energy ratio between 2.27 and 4.81, and with a net energy production of 112 GJ ha(-1) y(-1). With the exception of a few studies, most conclude that palm oil biodiesel is a net emitter of greenhouse gases (GHG). The origin of oil palm plantation (planted area) is the foremost determinant of GHG emissions and C payback time (CPBT). Converting peatland forest results in GHG emissions up to 60 tons CO(2) equivalent (eq) ha(-1) y(-1) leading to 420 years of CPBT. In contrast, converting degraded land or grassland for plantation can positively offset the system to become a net sequester of 5 tons CO(2) eq ha(-1) y(-1). Few studies have discussed cradle-to-grave environmental impacts such as acidification, eutrophication, toxicity, and biodiversity, which open opportunity for further studies. PMID:22941969

  13. Identification of QTLs associated with callogenesis and embryogenesis in oil palm using genetic linkage maps improved with SSR markers.

    PubMed

    Ting, Ngoot-Chin; Jansen, Johannes; Nagappan, Jayanthi; Ishak, Zamzuri; Chin, Cheuk-Weng; Tan, Soon-Guan; Cheah, Suan-Choo; Singh, Rajinder

    2013-01-01

    Clonal reproduction of oil palm by means of tissue culture is a very inefficient process. Tissue culturability is known to be genotype dependent with some genotypes being more amenable to tissue culture than others. In this study, genetic linkage maps enriched with simple sequence repeat (SSR) markers were developed for dura (ENL48) and pisifera (ML161), the two fruit forms of oil palm, Elaeis guineensis. The SSR markers were mapped onto earlier reported parental maps based on amplified fragment length polymorphism (AFLP) and restriction fragment length polymorphism (RFLP) markers. The new linkage map of ENL48 contains 148 markers (33 AFLPs, 38 RFLPs and 77 SSRs) in 23 linkage groups (LGs), covering a total map length of 798.0 cM. The ML161 map contains 240 markers (50 AFLPs, 71 RFLPs and 119 SSRs) in 24 LGs covering a total of 1,328.1 cM. Using the improved maps, two quantitative trait loci (QTLs) associated with tissue culturability were identified each for callusing rate and embryogenesis rate. A QTL for callogenesis was identified in LGD4b of ENL48 and explained 17.5% of the phenotypic variation. For embryogenesis rate, a QTL was detected on LGP16b in ML161 and explained 20.1% of the variation. This study is the first attempt to identify QTL associated with tissue culture amenity in oil palm which is an important step towards understanding the molecular processes underlying clonal regeneration of oil palm. PMID:23382832

  14. Effect of polyglycerol esters additive on palm oil crystallization using focused beam reflectance measurement and differential scanning calorimetry.

    PubMed

    Saw, M H; Hishamuddin, E; Chong, C L; Yeoh, C B; Lim, W H

    2017-01-01

    The effect of 0.1-0.7% (w/w) of polyglycerol esters (PGEmix-8) on palm oil crystallization was studied using focused beam reflectance measurement (FBRM) to analyze the in-line changes of crystal size distribution during the crystallization. FBRM results show that 0.1-0.5% (w/w) of PGEmix-8 did not significantly affect nucleation but slightly retarded crystal growth. The use of 0.7% (w/w) additive showed greater heterogeneous nucleation compared to those with lower dosages of additive. Crystal growth was also greatly reduced when using 0.7% (w/w) dosage. The morphological study indicated that the palm oil crystals were smaller and more even in size than when more additive was added. Isothermal crystallization studies using differential scanning calorimetry (DSC) showed increased inhibitory effects on palm oil crystal growth with increasing concentration of PGEmix-8. These results imply that PGEmix-8 is a nucleation enhancing and crystal growth retarding additive in palm oil crystallization at 0.7% (w/w) dosage. PMID:27507476

  15. Exploring the Potential of High Resolution Remote Sensing Data for Mapping Vegetation and the Age Groups of Oil Palm Plantation

    NASA Astrophysics Data System (ADS)

    Kamiran, N.; Sarker, M. L. R.

    2014-02-01

    The land use/land cover transformation in Malaysia is enormous due to palm oil plantation which has provided huge economical benefits but also created a huge concern for carbon emission and biodiversity. Accurate information about oil palm plantation and the age of plantation is important for a sustainable production, estimation of carbon storage capacity, biodiversity and the climate model. However, the problem is that this information cannot be extracted easily due to the spectral signature for forest and age group of palm oil plantations is similar. Therefore, a noble approach "multi-scale and multi-texture algorithms" was used for mapping vegetation and different age groups of palm oil plantation using a high resolution panchromatic image (WorldView-1) considering the fact that pan imagery has a potential for more detailed and accurate mapping with an effective image processing technique. Seven texture algorithms of second-order Grey Level Co-occurrence Matrix (GLCM) with different scales (from 3×3 to 39×39) were used for texture generation. All texture parameters were classified step by step using a robust classifier "Artificial Neural Network (ANN)". Results indicate that single spectral band was unable to provide good result (overall accuracy = 34.92%), while higher overall classification accuracies (73.48%, 84.76% and 93.18%) were obtained when textural information from multi-scale and multi-texture approach were used in the classification algorithm.

  16. Capability of integrated MODIS imagery and ALOS for oil palm, rubber and forest areas mapping in tropical forest regions.

    PubMed

    Razali, Sheriza Mohd; Marin, Arnaldo; Nuruddin, Ahmad Ainuddin; Shafri, Helmi Zulhaidi Mohd; Hamid, Hazandy Abdul

    2014-01-01

    Various classification methods have been applied for low resolution of the entire Earth's surface from recorded satellite images, but insufficient study has determined which method, for which satellite data, is economically viable for tropical forest land use mapping. This study employed Iterative Self Organizing Data Analysis Techniques (ISODATA) and K-Means classification techniques to classified Moderate Resolution Imaging Spectroradiometer (MODIS) Surface Reflectance satellite image into forests, oil palm groves, rubber plantations, mixed horticulture, mixed oil palm and rubber and mixed forest and rubber. Even though frequent cloud cover has been a challenge for mapping tropical forests, our MODIS land use classification map found that 2008 ISODATA-1 performed well with overall accuracy of 94%, with the highest Producer's Accuracy of Forest with 86%, and were consistent with MODIS Land Cover 2008 (MOD12Q1), respectively. The MODIS land use classification was able to distinguish young oil palm groves from open areas, rubber and mature oil palm plantations, on the Advanced Land Observing Satellite (ALOS) map, whereas rubber was more easily distinguished from an open area than from mixed rubber and forest. This study provides insight on the potential for integrating regional databases and temporal MODIS data, in order to map land use in tropical forest regions. PMID:24811079

  17. Identification of QTLs Associated with Callogenesis and Embryogenesis in Oil Palm Using Genetic Linkage Maps Improved with SSR Markers

    PubMed Central

    Ting, Ngoot-Chin; Jansen, Johannes; Nagappan, Jayanthi; Ishak, Zamzuri; Chin, Cheuk-Weng; Tan, Soon-Guan; Cheah, Suan-Choo; Singh, Rajinder

    2013-01-01

    Clonal reproduction of oil palm by means of tissue culture is a very inefficient process. Tissue culturability is known to be genotype dependent with some genotypes being more amenable to tissue culture than others. In this study, genetic linkage maps enriched with simple sequence repeat (SSR) markers were developed for dura (ENL48) and pisifera (ML161), the two fruit forms of oil palm, Elaeis guineensis. The SSR markers were mapped onto earlier reported parental maps based on amplified fragment length polymorphism (AFLP) and restriction fragment length polymorphism (RFLP) markers. The new linkage map of ENL48 contains 148 markers (33 AFLPs, 38 RFLPs and 77 SSRs) in 23 linkage groups (LGs), covering a total map length of 798.0 cM. The ML161 map contains 240 markers (50 AFLPs, 71 RFLPs and 119 SSRs) in 24 LGs covering a total of 1,328.1 cM. Using the improved maps, two quantitative trait loci (QTLs) associated with tissue culturability were identified each for callusing rate and embryogenesis rate. A QTL for callogenesis was identified in LGD4b of ENL48 and explained 17.5% of the phenotypic variation. For embryogenesis rate, a QTL was detected on LGP16b in ML161 and explained 20.1% of the variation. This study is the first attempt to identify QTL associated with tissue culture amenity in oil palm which is an important step towards understanding the molecular processes underlying clonal regeneration of oil palm. PMID:23382832

  18. Effects of land use on surface–atmosphere exchanges of trace gases and energy in Borneo: comparing fluxes over oil palm plantations and a rainforest

    PubMed Central

    Fowler, David; Nemitz, Eiko; Misztal, Pawel; Di Marco, Chiara; Skiba, Ute; Ryder, James; Helfter, Carole; Cape, J. Neil; Owen, Sue; Dorsey, James; Gallagher, Martin W.; Coyle, Mhairi; Phillips, Gavin; Davison, Brian; Langford, Ben; MacKenzie, Rob; Muller, Jennifer; Siong, Jambery; Dari-Salisburgo, Cesare; Di Carlo, Piero; Aruffo, Eleonora; Giammaria, Franco; Pyle, John A.; Hewitt, C. Nicholas

    2011-01-01

    This paper reports measurements of land–atmosphere fluxes of sensible and latent heat, momentum, CO2, volatile organic compounds (VOCs), NO, NO2, N2O and O3 over a 30 m high rainforest canopy and a 12 m high oil palm plantation in the same region of Sabah in Borneo between April and July 2008. The daytime maximum CO2 flux to the two canopies differs by approximately a factor of 2, 1200 mg C m−2 h−1 for the oil palm and 700 mg C m−2 h−1 for the rainforest, with the oil palm plantation showing a substantially greater quantum efficiency. Total VOC emissions are also larger over the oil palm than over the rainforest by a factor of 3. Emissions of isoprene from the oil palm canopy represented 80 per cent of the VOC emissions and exceeded those over the rainforest in similar light and temperature conditions by on average a factor of 5. Substantial emissions of estragole (1-allyl-4-methoxybenzene) from the oil palm plantation were detected and no trace of this VOC was detected in or above the rainforest. Deposition velocities for O3 to the rainforest were a factor of 2 larger than over oil palm. Emissions of nitrous oxide were larger from the soils of the oil palm plantation than from the soils of the rainforest by approximately 25 per cent. It is clear from the measurements that the large change in the species composition generated by replacing rainforest with oil palm leads to profound changes in the net exchange of most of the trace gases measured, and thus on the chemical composition of the boundary layer over these surfaces. PMID:22006962

  19. Committed carbon emissions, deforestation, and community land conversion from oil palm plantation expansion in West Kalimantan, Indonesia

    PubMed Central

    Carlson, Kimberly M.; Curran, Lisa M.; Ratnasari, Dessy; Pittman, Alice M.; Soares-Filho, Britaldo S.; Asner, Gregory P.; Trigg, Simon N.; Gaveau, David A.; Lawrence, Deborah; Rodrigues, Hermann O.

    2012-01-01

    Industrial agricultural plantations are a rapidly increasing yet largely unmeasured source of tropical land cover change. Here, we evaluate impacts of oil palm plantation development on land cover, carbon flux, and agrarian community lands in West Kalimantan, Indonesian Borneo. With a spatially explicit land change/carbon bookkeeping model, parameterized using high-resolution satellite time series and informed by socioeconomic surveys, we assess previous and project future plantation expansion under five scenarios. Although fire was the primary proximate cause of 1989–2008 deforestation (93%) and net carbon emissions (69%), by 2007–2008, oil palm directly caused 27% of total and 40% of peatland deforestation. Plantation land sources exhibited distinctive temporal dynamics, comprising 81% forests on mineral soils (1994–2001), shifting to 69% peatlands (2008–2011). Plantation leases reveal vast development potential. In 2008, leases spanned ∼65% of the region, including 62% on peatlands and 59% of community-managed lands, yet <10% of lease area was planted. Projecting business as usual (BAU), by 2020 ∼40% of regional and 35% of community lands are cleared for oil palm, generating 26% of net carbon emissions. Intact forest cover declines to 4%, and the proportion of emissions sourced from peatlands increases 38%. Prohibiting intact and logged forest and peatland conversion to oil palm reduces emissions only 4% below BAU, because of continued uncontrolled fire. Protecting logged forests achieves greater carbon emissions reductions (21%) than protecting intact forests alone (9%) and is critical for mitigating carbon emissions. Extensive allocated leases constrain land management options, requiring trade-offs among oil palm production, carbon emissions mitigation, and maintaining community landholdings. PMID:22523241

  20. Analysis of Trade as a Driver of Oil Palm Expansion: The Implication for Peatlands in Indonesia and Malaysia

    NASA Astrophysics Data System (ADS)

    Morel, A. C.

    2011-12-01

    There is international concern regarding the carbon emissions of oil palm cultivation, particularly where areas of tropical peatlands are cleared, drained and planted. This is increasingly becoming a problem as areas of suitable agricultural land are being lost to degradation or urbanization, which displaces cultivation to marginal lands such as peatlands. Southeast Asia is home to approximately 24.8 million hectares (mha) of peatland, with an estimated 2.1 mha in Indonesia and Malaysia currently planted with industrial oil palm plantations. Peat areas are not evenly distributed across these countries and are subject to differing governance regimes and local authority development priorities. In addition, global demand for palm oil as an input for food and fuel is driving greater production. This additional volume may be realized through either expansion of planted area or improved yields on existing plantations; therefore, to project future expansion a better understanding of these trade dynamics and how they are interacting with local governance priorities is necessary. This study focuses on Indonesia and Malaysia, looking at recent peatland cultivation and projecting likely oil palm cultivation including the proportion expected to occur on peatlands using a computable general equilibrium model, MIRAGE. The time frame for this modeling is over 50 years, where replanting, peat subsidence and climate change are important factors to consider. The carbon emission implications for Malaysia and Indonesia from land use conversions are presented for a number of trade scenarios, with the understanding that emerging palm oil producers in Latin America and Africa will be significant in the future.

  1. Development of SNP markers and their application for genetic diversity analysis in the oil palm (Elaeis guineensis).

    PubMed

    Ong, P W; Maizura, I; Abdullah, N A P; Rafii, M Y; Ooi, L C L; Low, E T L; Singh, R

    2015-01-01

    The genetic evaluation of oil palm germplasm collections is required for insight into the variability among populations. The information obtained is also useful for incorporating new genetic materials into current breeding programs. Single nucleotide polymorphisms (SNPs) have been widely used in many plant genetic studies due to the availability of large numbers of genomic sequences and expressed sequence tags. The present study examined 219 oil palms collected from two natural Angolan populations, a few hundred kilometers apart. A total of 62 SNPs were designed from oil palm genomic sequences and converted to cleaved amplified polymorphic sequence (CAPS). Of these, nine were found to be informative across the two populations. The nine informative SNPs revealed mean major allele frequency of 0.693. The average expected and observed heterozygosities were 0.398 and 0.400, respectively. The mean polymorphism information content was 0.315 (ranging between 0.223 and 0.375). None of the loci deviated from Hardy-Weinberg equilibrium and no rare alleles were detected. In cluster analysis using unweighted pair group method with arithmetic, the 219 oil palms fell into two clusters. This was further supported by the population structure analysis result (K = 2), suggesting that the samples were divided into two main genetic groups. However, the two groups did not coincide with the geographic populations. Analysis of molecular variance indicated that within-population variation contributed 93% of the total genetic variation. This study showed that SNP-based CAPS markers are useful for studying the genetic diversity of oil palm and have potential application for marker-trait association studies. PMID:26505369

  2. Assaying lipase activity from oil palm fruit (Elaeis guineensis Jacq.) mesocarp.

    PubMed

    Ngando Ebongue, G F; Dhouib, R; Carrière, F; Amvam Zollo, P-H; Arondel, V

    2006-10-01

    The mesocarp of mature oil palm fruit undergoes intensive triglycerides hydrolysis upon abscission and bruising. This generates such a high amount of free fatty acids that the oil might become unfit for human consumption without appropriate refining. The lipase (EC 3.1.1.3) involved in the breakdown of the oil is not stable after homogenization of the tissue in aqueous buffers. In this study, we have devised a solvent-based procedure that allowed us to obtain fractions with stable lipase activity. Using these fractions, we have determined the optimal conditions for assaying mesocarp lipase activity. The activity was highest at a temperature of 35 degrees C and a pH of 9. The lipase was found to be strictly calcium dependent. The specific activity of the lipase measured in optimal conditions was found to be 33 mumol fatty acids released min(-1) mg(-1) protein using olive oil as substrate. The mesocarp contains about 190 U of lipase g(-1) fresh weight. This activity was found to be inhibited by the lipase inhibitor tetrahydrolipstatin (THL), suggesting that the lipase is a serine hydrolase. PMID:17064925

  3. [Modern conceptions about the possible impact of palm oil on human health].

    PubMed

    Medvedev, O S; Medvedeva, N A

    2016-01-01

    Review of the scientific literature on the evidence of the relationship between palm oil (PO) and its components and adverse effects on human health, on the mechanisms of cholesterol control and risks for development of cardiovascular diseases. PO is solid or semisolid at room temperature and often is used as a natural substitute for partially hydrogenated vegetable oils containing trans fatty acids which increase risks of hypercholesteremia. PO contains both saturated and unsaturated fats as well as substances with antioxidant activity. Taking into account the lipid theory of atherosclerosis pathogenesis, and sn-2 hypothesis, PO was compared with other vegetable oils, like olive, sunflower or soybean oils, and did not show great differences in changes of LDL, HDL or total cholesterol levels. Comparison of diets rich in PO with diets rich in trans fatty acids shows improvement of lipid profiles in groups with PO, and serves as a basis for replacement of trans fatty acids in food with PO and its fractions. In addition to fatty acids content, PO contains several phytonutrients including 4 forms of tocopherols and tocotrienols, carotenoids, sterols, and some others. Most of these compounds are considered beneficial for human health, mainly on account of their antioxidant activity. It is concluded that PO is safe component of food, when we pay attention to the rather high content of saturated fats in it. PMID:27228696

  4. Ozone fluxes over South-East Asian tropical rainforest and oil palm plantation

    NASA Astrophysics Data System (ADS)

    Muller, Jennifer; Coyle, Mhairi; Helfter, Carole; Dorsey, James; Gallagher, Martin; Percival, Carl; Nemitz, Eiko; Fowler, David

    2010-05-01

    Ozone flux measurements were made over a South-East Asian tropical rainforest (April & June/July 2008) and an oil palm plantation (June 2008), as part of the NERC OP3 and ACES projects. Flux measurements over the rainforest were made at the Bukit Atur Global Atmospheric Watch (GAW) tower, where ozone fluxes were measured by the gradient approach (concentrations at 30, 45, 60, 75 m) and by eddy-covariance (45 and 75 m). The hourly median flux at the forest site peaked before midday and did not differ greatly between Period 1 (P1, April, end of wet season) and Period 3 (P3, June/July, dry season). The periods were however clearly contrasted by the different levels of ambient ozone and concentrations were larger during P1 by about 50 %, with diurnal hourly medians ranging from 26 - 38 ?g m-3 in P1 versus 15 - 27 ?g m-3 in P3. Ozone deposition velocities were smaller during P1 than P3 and median daytime maxima of deposition velocity in P1 were 5 mm s-1 compared to 11 mm s-1 in P3. The magnitude of fluxes and deposition velocities are similar to those observed over the Amazon rainforest (Rummel et al., 2007), but the diurnal profile differs slightly as ozone concentrations showed a stronger diurnal amplitude in the Amazon. Fluxes from 45 and 75 m are compared and ozone flux divergence with height is investigated. Flux measurements at the oil palm plantation were made using the eddy covariance method for 8 days (4th to 11th June 2008). During this period concentrations were very small with a diurnal range of 0 - 7 ?g m-3, probably due to the combined effect of a low measurement height, low turbulence and O3 destruction by soil NO emissions. However, median deposition velocity was 5 mm s-1 indicating that the oil palms are an effective sink for ozone. The ozone flux will be decomposed into stomatal ozone uptake by the vegetation, estimated from conductance modelling, ozone destruction by VOC chemistry (estimated from the measured VOC concentrations) and ozone destruction

  5. Replacing trans fat: the argument for palm oil with a cautionary note on interesterification.

    PubMed

    Hayes, K C; Pronczuk, Andrzej

    2010-06-01

    To replace dietary trans fatty acids (TFA), two practical options exist: revert to a natural saturated fat without cholesterol (most likely palm oil or its fractions) or move to a newer model of modified fat hardened by interesterification (IE). This review summarizes the relative risks for cardiovascular disease inherent in these options. Interestingly, both types of fat have been the subject of nutritional scrutiny for approximately the last 40 years, and both have positive and negative attributes. Only during that period has palm oil production developed to the point where it has become the major edible oil in world markets, making clinical studies of it an important objective. On the other hand, approximately 25 human studies have fed interesterified fat in one form or another over this period, some for weeks, some as a single meal. Two types of diet designs exist. Several fed a small amount of interesterified fat, usually incorporated within a margarine, and stayed below the radar of biological detection of any abnormal metabolism. A few fed interesterified fat that incorporated stearic acid, as interesterified 18:0 (IE-18:0), even comparing it to trans fat and saturated fat, as a major part of total daily calories to assess its metabolic impact per se. These latter 5 to 6 studies clearly reveal negative biological effects on lipoproteins, blood glucose, insulin, immune function, or liver enzymes when relatively high intake of IE-18:0 or palmitic acid (IE-16:0) were fed in fats with sn2-saturated fatty acids. High intake of 18:0 in natural fats can depress total lipoproteins, while IE-18:0 and IE-16:0 at high levels adversely affect lipoprotein metabolism. Still other studies have supplied interesterified fat as a single meal or fed such fat daily only in a single snack, as opposed to incorporating the fat into the entire fat pool consumed at all meals in association with most foods (which is the more physiological approach and more apt to elicit effects

  6. Variants of Coconut cadang-cadang viroid isolated from an African oil palm (Elaies guineensis Jacq.) in Malaysia.

    PubMed

    Vadamalai, G; Hanold, D; Rezaian, M A; Randles, J W

    2006-07-01

    Variants of Coconut cadang-cadang viroid have been identified in a plantation oil palm growing in Malaysia. Three size classes are described, comprising 297, 293, and 270 nt. Compared with the 296-nt form of coconut cadang-cadang viroid (CCCVd), all variants substituted C31 --> U in the pathogenicity domain and A175 --> C in the right-hand terminus. Other mutations and deletions accounted for the different sizes. These are the first sequences reported for variants of Coconut cadang-cadang viroid in a species other than coconut palm, and this is the first evidence that variants closely related to CCCVd occur outside the Philippines. PMID:16470341

  7. Illegitimacy and sibship assignments in oil palm (Elaeis guineensis Jacq.) half-sib families using single locus DNA microsatellite markers.

    PubMed

    Hama-Ali, Emad Omer; Alwee, Sharifah Shahrul Rabiah Syed; Tan, Soon Guan; Panandam, Jothi Malar; Ling, Ho Chai; Namasivayam, Parameswari; Peng, Hoh Boon

    2015-05-01

    Oil palm breeding has been progressing very well in Southeast Asia, especially in Malaysia and Indonesia. Despite this progress, there are still problems due to the difficulty of controlled crossing in oil palm. Contaminated/illegitimate progeny has appeared in some breeding programs; late and failure of detection by the traditional method causes a waste of time and labor. The use of molecular markers improves the integrity of breeding programs in perennial crops such as oil palm. Four half-sib families with a total of 200 progeny were used in this study. Thirty polymorphic single locus DNA microsatellites markers were typed to identify the illegitimate individuals and to obtain the correct parental and progeny assignments by using the CERVUS and COLONY programs. Three illegitimate palms (1.5%) were found, and 16 loci proved to be sufficient for sibship assignments without parental genotypes by using the COLONY program. The pairwise-likelihood score (PLS) method was better for half-sib family assignments than the full likelihood (FL) method. PMID:25399079

  8. Lipase catalyzed interesterification of Amazonian patauá oil and palm stearin for preparation of specific-structured oils.

    PubMed

    Speranza, Paula; Ribeiro, Ana Paula Badan; Macedo, Gabriela Alves

    2015-12-01

    This study showed that enzymatic interesterification of Amazonian oils could be an important tool in order to produce new oils with physicochemical properties that improve the applications of these raw materials. Structured oils of Amazonian patauá oil and palm stearin using two lipases were produced in three different enzymatic systems: first, a crude lipase from the fungus Rhizopus sp (a microorganism isolated in our laboratory); second, a commercial lipase; and third, to check any synergistic effect, a mixture of both lipases (Rhizopus sp and commercial). The lipase from Rhizopus sp was specific in the incorporation of oleic acid at the sn-1,3 positions of the triacylglycerol, resulting in an oil richer in saturated fatty acid in the sn-2 position. This enzyme, produced by solid-state fermentation, even though crude, was fatty acid and positional specific and able to operate at low concentration (2.5 %, w/w). In the second enzyme system, the commercial lipase from Thermomyces lanuginosus was not specific in the tested conditions; there was no change in the distribution of saturated and unsaturated fatty acids in the three positions of the triacylglycerol profile, there was only a replacement by the type of fatty acid at the same position. In the third enzyme system, the mixture of both lipases shows no synergic effect. The structured oils retained the concentration of bioactive α- and γ- tocopherol in the three enzyme systems. Triacylglycerol classes and Thermal behavior tests indicated the formation of more homogeneous triacylglycerols, especially the mono and di-unsaturated. PMID:26604403

  9. Anaerobic Treatment of Palm Oil Mill Effluent in Pilot-Scale Anaerobic EGSB Reactor.

    PubMed

    Wang, Jin; Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Li, Xu-Dong

    2015-01-01

    Large volumes of untreated palm oil mill effluent (POME) pose threat to aquatic environment due to the presence of very high organic content. The present investigation involved two pilot-scale anaerobic expanded granular sludge bed (EGSB) reactors, continuously operated for 1 year to treat POME. Setting HRT at 9.8 d, the anaerobic EGSB reactors reduced COD from 71179 mg/L to 12341 mg/L and recycled half of sludge by a dissolved air flotation (DAF). The average effluent COD was 3587 mg/L with the consistent COD removal efficiency of 94.89%. Adding cationic polymer (PAM) dose of 30 mg/L to DAF unit and recycling its half of sludge caused granulation of anaerobic sludge. Bacilli and small coccid bacteria were the dominant microbial species of the reactor. The reactor produced 27.65 m(3) of biogas per m(3) of POME which was utilized for electricity generation. PMID:26167485

  10. Steam explosion pretreatment of oil palm empty fruit bunches (EFB) using autocatalytic hydrolysis: A biorefinery approach.

    PubMed

    Medina, Jesus David Coral; Woiciechowski, Adenise; Zandona Filho, Arion; Nigam, Poonam Singh; Ramos, Luiz Pereira; Soccol, Carlos Ricardo

    2016-01-01

    The oil palm empty fruit bunches (EFB) are an attractive source of carbon for the production of biochemical products, therefore, the aim of this work is to analyze the effect of the steam explosion (SE) pretreatment under autocatalytic conditions on EFB using a full experimental design. Temperature and reaction time were the operational variables studied. The EFB treated at 195°C for 6 min showed an increase of 34.69% in glycan (mostly cellulose), and a reduction of 68.12% in hemicelluloses, with increased enzymatic digestibility to 33% producing 4.2 g L(-1) of glucose. Scanning electron micrographs of the steam treated EFB exhibited surface erosion and an increased fiber porosity. Fourier transform infrared spectroscopy showed the solubilization of hemicellulose and modification of cellulose in treated EFB. PMID:26343575

  11. Solid state bioconversion of oil palm biomass for ligninase enzyme production.

    PubMed

    Alam, Md Zahangir; Mahmat, Mohd Erman; Muhammad, Nurdina

    2005-01-01

    A laboratory-scale study of bioconversion of local lignocellulosic material, oil palm biomass (OPB) was conducted by evaluating the enzyme production through microbial treatment in solid state bioconversion (SSB). OPB in the form of empty fruit bunches (EFB) was used as a solid substrate and treated with the white-rot fungus, Phanerochaete chrysosporium, to produce ligninase. The results showed that the highest ligninase activity of 400.27 U/liter was obtained at day 12 of fermentation. While the optimum study indicated the enzyme production of 1472.8 U/liter with moisture content of 50%, 578.7 U/liter with 10% v/w of inoculum size, and 721.8 U/liter with co-substrate concentration of 1% (w/w) at days 9, 9 and 12 of fungal treatment, respectively. The parameters glucosamine and reducing sugar were observed to evaluate the growth and substrate utilization in the experiment. PMID:16317964

  12. Aqueous ammonia pretreatment of oil palm empty fruit bunches for ethanol production.

    PubMed

    Jung, Young Hoon; Kim, In Jung; Han, Jong-In; Choi, In-Geol; Kim, Kyoung Heon

    2011-10-01

    Oil palm empty fruit bunches (EFB) were pretreated by aqueous ammonia soaking for ethanol production. Pretreated EFB, which were pretreated at the optimal conditions of 60 °C, 12 h, and 21% (w/w) aqueous ammonia, showed 19.5% and 41.4% glucose yields during an enzymatic digestibility test for 96 h when using 15 and 60 FPU of cellulase, respectively. Using the pretreated EFB, simultaneous saccharification and fermentation for 168 h with 5% (w/v) glucan loading and 60 FPU of cellulase and 30 CBU of β-glucosidase per gram glucan resulted in ethanol production of 18.6 g/L titer, 65.6% of theoretical maximum yield, and 0.11 g/L/h of productivity. PMID:21852123

  13. Effect of Catalyst Concentration on the Growth of Palm oil Based Vertically Aligned Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Suriani, A. B.; Mohamad, F.; Azira, A. A.; Hajar, Nadya; Mamat, M. H.; Sarah, M. S. P.; Musa, M. Z.; Nor, Roslan Md; Rusop, M.

    2010-07-01

    The effects of catalyst concentration on the synthesis of vertically aligned carbon nanotubes (VACNTs) using ferrocene as catalyst and palm oil as bio-hydrocarbon source in thermal chemical vapor deposition (CVD) method were studied. The CVD reaction took 30 minutes followed by 10 minutes annealing process at various ferrocene concentration; 0.66, 1.33, 2.66, 3.99, 5.33, 6.66 and 7.99 wt% at fixed synthesis temperature 750 °C. The VACNTs were characterized by field emission scanning electron microscopy (FESEM) and Raman spectroscopy. The growth rate, the diameters, and the degree of crystalinity of the VACNTs were found to be dependent on the catalyst concentration.

  14. Cellulose acetate from oil palm empty fruit bunch via a one step heterogeneous acetylation.

    PubMed

    Wan Daud, Wan Rosli; Djuned, Fauzi Muhammad

    2015-11-01

    Acetone soluble oil palm empty fruit bunch cellulose acetate (OPEFB-CA) of DS 2.52 has been successfully synthesized in a one-step heterogeneous acetylation of OPEFB cellulose without necessitating the hydrolysis stage. This has only been made possible by the mathematical modeling of the acetylation process by manipulating the variables of reaction time and acetic anhydride/cellulose ratio (RR). The obtained model was verified by experimental data with an error of less than 2.5%. NMR analysis showed that the distribution of the acetyl moiety among the three OH groups of cellulose indicates a preference at the C6 position, followed by C3 and C2. XRD revealed that OPEFB-CA is highly amorphous with a degree of crystallinity estimated to be ca. 6.41% as determined from DSC. The OPEFB-CA films exhibited good mechanical properties being their tensile strength and Young's modulus higher than those of the commercial CA. PMID:26256348

  15. Thermal Losses of Tertiary Butylhydroquinone (TBHQ) and Its Effect on the Qualities of Palm Oil.

    PubMed

    Liu, Cuifang; Li, Jun; Bi, Yanlan; Wang, Xuede; Sun, Shangde; Yang, Guolong

    2016-09-01

    The rules and patterns of thermal losses of tertiary butylhydroquinone (TBHQ) in palm oil (PO) and its effect on the qualities of PO were investigated by oven heating method. Volatilization and transformation products of TBHQ in PO were also studied in detail under heating treatment. Results showed that at low temperature (< 135°C), TBHQ had better antioxidative properties, while its antioxidative potency to PO was significantly weakened at high temperature (≥ 135°C). In addition, as heating temperatures increased and heating time prolonged, losses of TBHQ significantly increased in PO. Volatilization was the major pathway for losses of TBHQ in PO under heating treatment. Meanwhile, a small portion of TBHQ was transformed and the major transformation product was 2-tertbutyl-1,4- benzoquinone (TQ). Moreover, TQ and several decomposition products of PO were also observed in the volatilization products of TBHQ. PMID:27477072

  16. Development of anaerobic digestion methods for palm oil mill effluent (POME) treatment.

    PubMed

    Poh, P E; Chong, M F

    2009-01-01

    Palm oil mill effluent (POME) is a highly polluting wastewater that pollutes the environment if discharged directly due to its high chemical oxygen demand (COD) and biochemical oxygen demand (BOD) concentration. Anaerobic digestion has been widely used for POME treatment with large emphasis placed on capturing the methane gas released as a product of this biodegradation treatment method. The anaerobic digestion method is recognized as a clean development mechanism (CDM) under the Kyoto protocol. Certified emission reduction (CER) can be obtained by using methane gas as a renewable energy. This review aims to discuss the various anaerobic treatments of POME and factors that influence the operation of anaerobic treatment. The POME treatment at both mesophilic and thermophilic temperature ranges are also analyzed. PMID:18657414

  17. Sorption of Pb(ll) by poly(hydroxamic acid) grafted oil palm empty fruit bunch.

    PubMed

    Haron, M J; Tiansin, M; Ibrahim, N A; Kassim, A; Wan Yunus, W M Z; Talebi, S M

    2011-01-01

    This paper describes the sorption of Pb(ll) from aqueous solution. Oil palm empty fruit bunch (OPEFB) fiber was first grafted with poly(methylacrylate) and then treated with hydroxylammonium chloride in alkaline medium to produce hydroxamic acid (PHA) grafted OPEFB. Sorption of Pb(ll) by PHA-OPEFB was maximum at pH 5. The sorption followed the Langmuir model with maximum capacityof 125.0 mg g-1 at 25 degrees C. The sorption process was exothermic, as shown by the negative value of enthalpy change, Delta H0. The free energy change (DeltaG0) for the sorption was negative, showing that the sorption process was spontaneous. A kinetic study showed that the Pb(ll) sorption followed a second order kinetic model. PMID:21866782

  18. Abrasive wear: The efects of fibres size on oil palm empty fruit bunch polyester composite

    NASA Astrophysics Data System (ADS)

    Kasolang, S.; Kalam, A.; Ahmad, M. A.; Rahman, N. A.; Suhadah, W. N.

    2012-06-01

    This paper presents an experimental investigation carried out to determine the effect of palm oil empty fruit bunch (OPEFB) fibre size in dry sliding testing of polyester composite. These composite samples were produced by mixing raw OPEFB fibre with resin. The samples were prepared at different sizes of fibre (100, 125, 180 and 250μm). Abrasion Resistance Tester (TR-600) was used to carried out abrasive wear tests in dry sliding conditions. These tests were performed at room temperature for two different loads (10 and 30N) and at a constant sliding velocity of 1.4m/s. The specific wear rates of OPEFB polyester composites were obtained. The morphology of composite surface before and after tests was also examined using 3D microscope imaging. Preliminary work on thermal distribution at the abrasive wheel point was also conducted for selected samples.

  19. Morphological and spectroscopic analysis of cellulose nanocrystals extracted from oil palm empty fruit bunch fiber

    SciTech Connect

    Dasan, Y. K. Bhat, A. H.; Faiz, A.

    2015-07-22

    This work evaluates the use of oil palm empty fruit bunch (OPEFB) fiber as a source of cellulose to obtain nanocrystalline cellulose (CNC) by acid hydrolysis reaction. The raw OPEFB fibers were pretreated with aqueous Sodium hydroxide at 80°C followed by bleaching treatment and further hydrolyzed with Sulphuric acid at 45°C with limited range of hydrolysis time and acid concentration. The resulting CNC’s were characterized for spectroscopic, crystallographic and morphological properties using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffractometer (XRD), Transmission Electron Microscope (TEM) and Atomic Force Microscopy (AFM). Finding of this study shows that the properties of CNC’s are strongly dependent on the hydrolysis time and acid concentration.

  20. Production of a bioflocculant from Aspergillus niger using palm oil mill effluent as carbon source.

    PubMed

    Aljuboori, Ahmad H Rajab; Uemura, Yoshimitsu; Osman, Noridah Binti; Yusup, Suzana

    2014-11-01

    This study evaluated the potential of bioflocculant production from Aspergillus niger using palm oil mill effluent (POME) as carbon source. The bioflocculant named PM-5 produced by A. niger showed a good flocculating capability and flocculating rate of 76.8% to kaolin suspension could be achieved at 60 h of culture time. Glutamic acid was the most favorable nitrogen source for A. niger in bioflocculant production at pH 6 and temperature 35 °C. The chemical composition of purified PM-5 was mainly carbohydrate and protein with 66.8% and 31.4%, respectively. Results showed the novel bioflocculant (PM-5) had high potential to treat river water from colloids and 63% of turbidity removal with the present of Ca(2+) ion. PMID:25189510

  1. Properties of polylactic acid composites reinforced with oil palm biomass microcrystalline cellulose.

    PubMed

    Haafiz, M K Mohamad; Hassan, Azman; Zakaria, Zainoha; Inuwa, I M; Islam, M S; Jawaid, M

    2013-10-15

    In this work, polylactic acid (PLA) composites filled with microcrystalline cellulose (MCC) from oil palm biomass were successfully prepared through solution casting. Fourier transform infrared (FT-IR) spectroscopy indicates that there are no significant changes in the peak positions, suggesting that incorporation of MCC in PLA did not result in any significant change in chemical structure of PLA. Thermogravimetric analysis was conducted on the samples. The T50 decomposition temperature improved with addition of MCC, showing increase in thermal stability of the composites. The synthesized composites were characterized in terms of tensile properties. The Young's modulus increased by about 30%, while the tensile strength and elongation at break for composites decreased with addition of MCC. Scanning electron microscopy (SEM) of the composites fractured surface shows that the MCC remained as aggregates of crystalline cellulose. Atomic force microscopy (AFM) topographic image of the composite surfaces show clustering of MCC with uneven distribution. PMID:23987327

  2. Isolation and characterization of microcrystalline cellulose from oil palm biomass residue.

    PubMed

    Mohamad Haafiz, M K; Eichhorn, S J; Hassan, Azman; Jawaid, M

    2013-04-01

    In this work, we successfully isolated microcrystalline cellulose (MCC) from oil palm empty fruit bunch (OPEFB) fiber-total chlorine free (TCF) pulp using acid hydrolysis method. TCF pulp bleaching carried out using an oxygen-ozone-hydrogen peroxide bleaching sequence. Fourier transform infrared (FT-IR) spectroscopy indicates that acid hydrolysis does not affect the chemical structure of the cellulosic fragments. The morphology of the hydrolyzed MCC was investigated using scanning electron microscopy (SEM), showing a compact structure and a rough surface. Furthermore, atomic force microscopy (AFM) image of the surface indicates the presence of spherical features. X-ray diffraction (XRD) shows that the MCC produced is a cellulose-I polymorph, with 87% crystallinity. The MCC obtained from OPEFB-pulp is shown to have a good thermal stability. The potential for a range of applications such as green nano biocomposites reinforced with this form of MCC and pharmaceutical tableting material is discussed. PMID:23499105

  3. Effect of pulping variables on the characteristics of oil-palm frond-fiber.

    PubMed

    Wan Rosli, W D; Law, K N; Zainuddin, Z; Asro, R

    2004-07-01

    Caustic pulping of oil-palm frond-fiber strands was conducted following a central composite design using a two-level factorial plan involving three pulping variables (temperature: 160-180 degrees C, time: 1-2 h, alkali charge: 20-30% NaOH). Responses of pulp properties to the process variables were analyzed using a statistical software (DESIGN-EXPERT). The results indicated that frond-fiber strands could be pulped with ease to about 35-45% yield. Statistically, the reaction time was not a significant factor while the influences of the treatment temperature and caustic charge were in general significantly relative to the properties of the resultant pulps. PMID:15062817

  4. Morphological and spectroscopic analysis of cellulose nanocrystals extracted from oil palm empty fruit bunch fiber

    NASA Astrophysics Data System (ADS)

    Dasan, Y. K.; Bhat, A. H.; Faiz, A.

    2015-07-01

    This work evaluates the use of oil palm empty fruit bunch (OPEFB) fiber as a source of cellulose to obtain nanocrystalline cellulose (CNC) by acid hydrolysis reaction. The raw OPEFB fibers were pretreated with aqueous Sodium hydroxide at 80°C followed by bleaching treatment and further hydrolyzed with Sulphuric acid at 45°C with limited range of hydrolysis time and acid concentration. The resulting CNC's were characterized for spectroscopic, crystallographic and morphological properties using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffractometer (XRD), Transmission Electron Microscope (TEM) and Atomic Force Microscopy (AFM). Finding of this study shows that the properties of CNC's are strongly dependent on the hydrolysis time and acid concentration.

  5. Batch Production of Trimetylolpropane Ester from Palm Oil as Lubricant Base Stock

    NASA Astrophysics Data System (ADS)

    Zubaidah Sulaiman, Siti; Luqman Chuah, A.; Fakhru`L-Razi, A.

    A batch process for the ransesterification of Palm Oil Methyl Ester (POME) with trimethylolpropane (TMP) to TMP ester was investigated in a mini pilot reactor. The process was equipped with a high vacuum pump. The experimental studies explored effects of vacuum pressure, temperature, molar ratio, catalyst amount and agitator speed on the overall conversion. Five liters of TMP esters containing 83 to 87 w/w % triesterss (TE) were successfully synthesized after 2 h of reaction time Application of vacuum pump enhanced conversion of TE (w/w %) for the process. High catalyst amount resulted in higher conversion of TE (w/w %) but increased in solid content of the product. This has reduced the product yield due to inefficient separation by gravity settling.

  6. Carbon Nanotubes Using Palm Oil as Carbon Source in Spray Pyrolysis System

    NASA Astrophysics Data System (ADS)

    Azira, A. A.; Zainal, N. F. A.; Nik, S. F.; Rusop, M.

    2009-06-01

    Carbon nanotubes (CNTs) have been synthesized by catalytic decomposition of palm oil, on a silica powder support impregnated with Co, Ni and Co/Ni catalysts in the temperature range 500-900° C by the Spray Pyrolysis System. Co/Ni catalyst with 5 wt.% (molar ratio of Co:Ni = 1:1), impregnated in silica was found most suitable. Field Emission Scanning Electron Microscope (FESEM) reveals that the CNTs diameter ranging from 33-53 nm depending upon the conditions of deposition. The morphological studies support `tip growth mechanism' and `base growth mechanism' depending on the size of catalyst for the growth of the CNT's. FTIR results also presented in the paper.

  7. Binary Effect of Fly Ash and Palm Oil Fuel Ash on Heat of Hydration Aerated Concrete

    PubMed Central

    Mehmannavaz, Taha; Ismail, Mohammad; Radin Sumadi, Salihuddin; Rafique Bhutta, Muhammad Aamer; Samadi, Mostafa

    2014-01-01

    The binary effect of pulverized fuel ash (PFA) and palm oil fuel ash (POFA) on heat of hydration of aerated concrete was studied. Three aerated concrete mixes were prepared, namely, concrete containing 100% ordinary Portland cement (control sample or Type I), binary concrete made from 50% POFA (Type II), and ternary concrete containing 30% POFA and 20% PFA (Type III). It is found that the temperature increases due to heat of hydration through all the concrete specimens especially in the control sample. However, the total temperature rises caused by the heat of hydration through both of the new binary and ternary concrete were significantly lower than the control sample. The obtained results reveal that the replacement of Portland cement with binary and ternary materials is beneficial, particularly for mass concrete where thermal cracking due to extreme heat rise is of great concern. PMID:24696646

  8. Kinetics of transesterification of palm oil and dimethyl carbonate for biodiesel production at the catalysis of heterogeneous base catalyst.

    PubMed

    Zhang, Liping; Sheng, Boyang; Xin, Zhong; Liu, Qun; Sun, Shuzhen

    2010-11-01

    The transesterification of palm oil with dimethyl carbonate (DMC) for preparing biodiesel has been studied in solvent-free system at the catalysis of potassium hydroxide (KOH) as heterogeneous catalyst. Fatty acid methyl esters (FAMEs) were analyzed by GC with internal standard method. The effects of reaction conditions (molar ratio of DMC and palm oil, catalyst amount and time) on FAMEs yield were investigated. The highest FAMEs yield could reach 96.2% at refluxing temperature for 8h with molar ratio of DMC and oil 9:1 and 8.5% KOH (based on oil weight). Kinetics of the KOH-catalyzed transesterification of palm oil and DMC was researched over a temperature range of 65-75 degrees C. A pseudo first-order model was proposed. The activation energy (E(a)) was 79.1 kJ mo1(-1) and the pre-exponential factor (k(o)) was 1.26 x 10(9) min(-1) from Arrhenius equation. Further, a plausible reaction mechanism for the catalytic process with DMC as acyl acceptor was proposed. PMID:20591662

  9. Construction of efficient and effective transformation vectors for palmitoyl-acyl carrier protein thioesterase gene silencing in oil palm

    PubMed Central

    Bhore, Subhash Janardhan; Shah, Farida Habib

    2011-01-01

    Palm oil obtained from E. guineensis Jacq. Tenera is known to have about 44% of palmitic acid (C16:0). Palmitoyl-Acyl Carrier Protein Thioesterase (PATE) is one of the key enzymes involved in plastidial fatty acid biosynthesis; and it determines the level of the C16:0 assimilation in oilseeds. This enzyme's activity in oil palm is responsible for high (> 44 % in E. guineensis Jacq. Tenera and 25 % in E. oleifera) content of C16:0 in its oil. By post-transcriptional PATE gene silencing, C16:0 content can be minimized for nutritional value improvement of the palm oil. The objective of this study was the construction of novel transformation vectors for PATE gene silencing. Six different transformation vectors targeted against PATE gene were constructed using 619 bp long PATE gene (5' region) fragment (from GenBank AF507115). In one set of three transformation vectors, PATE gene fragment was fused with CaMV 35S promoter in antisense, intron-spliced inverted repeat (ISIR), and inverted repeat (IR) orientations to generate antisense mRNA and hair-pin RNAs (hpRNA). In another set of three transformation vectors with same design, CaMV 35S was replaced with Oil palm mesocarp tissue-specific promoter (MSP). The expression cassette of antisense, ISIR, and IR of PATE gene fragments were constructed in primary cloning vector, pHANNIBAL or its derivative/s. Finally, all 6 expression cassettes were sub-cloned into pCAMBIA 1301 which contains the Hygromycinr and the GUS reporter genes for transformant selection and transformation detection respectively. The results of the RE analyses of the constructs and sequence analyses of PATE and MSP shows and confirms the orientation, size and locations of all the components from constructs. We hypothesize that 4 (pISIRPATE-PC, pIRPATE-PC, pMISIRPATE-PC and pMIRPATE-PC) out of 6 transformation vectors constructed in this study will be efficient and effective in palmitoyl-ACP thioesterase gene silencing in oil palm. Abbreviations anti

  10. Prevalence and determinants of current contraceptive method use in a palm oil company in Cameroon.

    PubMed

    Ekani-Bessala, M M; Carre, N; Calvez, T; Thonneau, P

    1998-07-01

    The principal reasons given by African women for not using contraception include their lack of economic power and control over their choice of partner. An epidemiologic descriptive survey of a cross-section of the female personnel of a Cameroonian palm oil company (SOCAPALM) was carried out in August 1995, to evaluate the various determinants and level of use of various family planning methods in a well defined population of women in employment. An exhaustive list of all the households in the five villages of SOCAPALM was compiled and all women between 15 and 49 years of age who had lived on the palm oil plantation for at least a year were interviewed. The adjusted odds ratios showed that use of modern contraceptive methods was significantly associated with the woman having received secondary education, having more than three children, being the head of the household and, in cases where there was a man regularly present in the household, his approval of family planning. Recently receiving information (during the last month) about family planning was not identified by multivariate analysis as a significant factor affecting the decision to use modern or traditional contraception. The same factors were found to be associated with the use of traditional methods of contraception, but having had an illegal abortion was also associated with the use of such methods. Thus, the level of knowledge about family planning and the prevalence of contraceptive use was significantly higher for women living in industrial environments (such as SOCAPALM), than in the overall population of women in Cameroon. The economic power of the woman, the presence of a strong social reproductive health network, and the positive attitude of men and community leaders were the most important factors affecting the family planning decision of the women. PMID:9743893

  11. Reductions in emissions from deforestation from Indonesia's moratorium on new oil palm, timber, and logging concessions.

    PubMed

    Busch, Jonah; Ferretti-Gallon, Kalifi; Engelmann, Jens; Wright, Max; Austin, Kemen G; Stolle, Fred; Turubanova, Svetlana; Potapov, Peter V; Margono, Belinda; Hansen, Matthew C; Baccini, Alessandro

    2015-02-01

    To reduce greenhouse gas emissions from deforestation, Indonesia instituted a nationwide moratorium on new license areas ("concessions") for oil palm plantations, timber plantations, and logging activity on primary forests and peat lands after May 2011. Here we indirectly evaluate the effectiveness of this policy using annual nationwide data on deforestation, concession licenses, and potential agricultural revenue from the decade preceding the moratorium. We estimate that on average granting a concession for oil palm, timber, or logging in Indonesia increased site-level deforestation rates by 17-127%, 44-129%, or 3.1-11.1%, respectively, above what would have occurred otherwise. We further estimate that if Indonesia's moratorium had been in place from 2000 to 2010, then nationwide emissions from deforestation over that decade would have been 241-615 MtCO2e (2.8-7.2%) lower without leakage, or 213-545 MtCO2e (2.5-6.4%) lower with leakage. As a benchmark, an equivalent reduction in emissions could have been achieved using a carbon price-based instrument at a carbon price of $3.30-7.50/tCO2e (mandatory) or $12.95-19.45/tCO2e (voluntary). For Indonesia to have achieved its target of reducing emissions by 26%, the geographic scope of the moratorium would have had to expand beyond new concessions (15.0% of emissions from deforestation and peat degradation) to also include existing concessions (21.1% of emissions) and address deforestation outside of concessions and protected areas (58.7% of emissions). Place-based policies, such as moratoria, may be best thought of as bridge strategies that can be implemented rapidly while the institutions necessary to enable carbon price-based instruments are developed. PMID:25605880

  12. A place for palm fruit oil to eliminate vitamin A deficiency.

    PubMed

    Benade, A J Spinnler

    2003-01-01

    There is general consensus that food-based approaches are viable and sustainable options for addressing vitamin A deficiency in populations. One such example is the fortification of food which, if properly monitored, could make a significant contribution towards improving the vitamin A status of populations throughout the world. Red palm fruit oil (RPO) with its high content of natural carotenoids, lends itself exceptionally well to this purpose at both household and commercial level. Results are now available from several feeding trials incorporating RPO into diets at household level or into commercially manufactured products. RPO in the maternal diet was shown to improve the vitamin A status of lactating mothers and their infants. Consumption of RPO incorporated in a sweet snack or biscuits significantly improved plasma retinol concentrations in children with subclinical vitamin A deficiency. There is evidence that if only 35-50% of the recommended daily intake for vitamin A were to be provided by RPO, it may be sufficient to prevent vitamin A deficiency (hypovitaminosis A). Red palm oil has a highly bioconvertible form of alpha- and beta-carotene, a long shelf life, and a higher cost/benefit ratio when compared to other approaches such as high-dose-vitamin A supplements and fortification of foods with retinyl ester fortificants. Consumption of RPO is safe and cannot produce hypervitaminosis A. Considering all the current information about RPO, the initiation of food-based interventions involving its use in developing countries with an endemic vitamin A deficiency problem, appears to be a logical choice. PMID:14506003

  13. Oil palm phenolics confer neuroprotective effects involving cognitive and motor functions in mice

    PubMed Central

    Leow, Soon-Sen; Sekaran, Shamala Devi; Tan, YewAi; Sundram, Kalyana; Sambanthamurthi, Ravigadevi

    2013-01-01

    Objectives Phenolics are important phytochemicals which have positive effects on chronic diseases, including neurodegenerative ailments. The oil palm (Elaeis guineensis) is a rich source of water-soluble phenolics. This study was carried out to discover the effects of administering oil palm phenolics (OPP) to mice, with the aim of identifying whether these compounds possess significant neuroprotective properties. Methods OPP was given to BALB/c mice on a normal diet as fluids for 6 weeks while the controls were given distilled water. These animals were tested in a water maze and on a rotarod weekly to assess the effects of OPP on cognitive and motor functions, respectively. Using Illumina microarrays, we further explored the brain gene expression changes caused by OPP in order to determine the molecular mechanisms involved. Real-time quantitative reverse transcription-polymerase chain reaction experiments were then carried out to validate the microarray data. Results We found that mice given OPP showed better cognitive function and spatial learning when tested in a water maze, and their performance also improved when tested on a rotarod, possibly due to better motor function and balance. Microarray gene expression analysis showed that these compounds up-regulated genes involved in brain development and activity, such as those under the regulation of the brain-derived neurotrophic factor. OPP also down-regulated genes involved in inflammation. Discussion These results suggest that the improvement of mouse cognitive and motor functions by OPP is caused by the neuroprotective and anti-inflammatory effects of the extract. PMID:23433062

  14. Differential transcriptomic profiles effected by oil palm phenolics indicate novel health outcomes

    PubMed Central

    2011-01-01

    Background Plant phenolics are important nutritional antioxidants which could aid in overcoming chronic diseases such as cardiovascular disease and cancer, two leading causes of death in the world. The oil palm (Elaeis guineensis) is a rich source of water-soluble phenolics which have high antioxidant activities. This study aimed to identify the in vivo effects and molecular mechanisms involved in the biological activities of oil palm phenolics (OPP) during healthy states via microarray gene expression profiling, using mice supplemented with a normal diet as biological models. Results Having confirmed via histology, haematology and clinical biochemistry analyses that OPP is not toxic to mice, we further explored the gene expression changes caused by OPP through statistical and functional analyses using Illumina microarrays. OPP showed numerous biological activities in three major organs of mice, the liver, spleen and heart. In livers of mice given OPP, four lipid catabolism genes were up-regulated while five cholesterol biosynthesis genes were down-regulated, suggesting that OPP may play a role in reducing cardiovascular disease. OPP also up-regulated eighteen blood coagulation genes in spleens of mice. OPP elicited gene expression changes similar to the effects of caloric restriction in the hearts of mice supplemented with OPP. Microarray gene expression fold changes for six target genes in the three major organs tested were validated with real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and the correlation of fold changes obtained with these two techniques was high (R2 = 0.9653). Conclusions OPP showed non-toxicity and various pleiotropic effects in mice. This study implies the potential application of OPP as a valuable source of wellness nutraceuticals, and further suggests the molecular mechanisms as to how dietary phenolics work in vivo. PMID:21864415

  15. Challenges associated with pre-border management of biofouling on oil rigs.

    PubMed

    Hopkins, Grant A; Forrest, Barrie M

    2010-11-01

    The potential for oil rigs to transport diverse, reef-like communities around the globe makes them high risk vectors for the inadvertent spread of non-indigenous species (NIS). This paper describes two case studies where a suite of pre-border management approaches was applied to semi-submersible drilling rigs. In the first case study, a drilling rig was defouled in-water prior to departure from New Zealand to Australia. Risk mitigation measures were successful in reducing biosecurity risks to the recipient region, but they resulted in the unintentional introduction of the non-indigenous brown mussel (Perna perna) to New Zealand when the rig was defouled in-water by divers. In the second case study, lessons learned from this high-profile incursion resulted in a more structured approach to pre-border management, and this serves as a useful template for future rig transfers. PMID:20696440

  16. [Oxidative and hydrolytic deterioration of palm oil and fat products based on it under various conditions of storage and transportation].

    PubMed

    Bessonov, V V; Zaĭtseva, L V; Stepanova, L I; Baĭkov, V G

    2012-01-01

    Studies have been conducted on the effect of storage conditions for refined deodorized palm oil on the quality and safety: in containers made of ferrous metals (mild steel) at unregulated temperature, in sealed plastic bags at the temperature -20 degrees C in stainless steel under stratification of nitrogen at the temperature of 40+/-1 degrees C. The choice of the objects of study determined by the normative documents of the Russian Federation governing the transportation and storage of vegetable oils and fat products based on them. All samples of palm oil with peroxide value of 1,0 to 1,5 meq O2/kg indicated the presence of a weak foreign taste, is not peculiar impersonalfat, the samples with peroxide value above 1,5 meq O2/kg were observed pronounced off-flavors and odors characteristic of stale oil. Rancidity was observed in samples having peroxide value of 2,0 meq O2/kg or more. Free acid value and anizidin value for the studied period changed to a lesser extent, from 0,06 to 0,1 mg KOH/g and from 1,2 to 1,4 respectively. It is proved that, transportation/storage of palm oil at the temperature above 50 degrees C without stratification of nitrogen greatly accelerates the process of oxidative damage. Based on these data we can recommend transportation/storage and management process with the least possible time of contact of melted palm oil with oxygen to produce high-quality final product (within 2-3 hours from the time of melting). PMID:23156046

  17. Sub/supercritical liquefaction of oil palm fruit press fiber for the production of bio-oil: effect of solvents.

    PubMed

    Mazaheri, Hossein; Lee, Keat Teong; Bhatia, Subhash; Mohamed, Abdul Rahman

    2010-10-01

    Thermal decomposition of oil palm fruit press fiber (FPF) with sub/supercritical methanol, ethanol, acetone, and 1,4-dioxane treatments were investigated using a high-pressure autoclave reactor. When FPF was decomposed with methanol, ethanol, and acetone from 483 to 603 K, the highest degree of conversion obtained were 81.5%, 77.8%, and 67.9% while the highest liquid product yield (LP) obtained were 38.0%, 36.9%, and 38.5%, respectively. For the case of 1,4-dioxane, the conversion of FPF increased from 18.30% to 80.00%, while LP yield increased dramatically from 13.30% to 50.90% (consisting of 42.3% bio-oil compounds) when the reaction temperature was increased from 483 to 563 K. However, the conversion of FPF and LP yield decreased to 69.60% and 24.10%, respectively, when the temperature was further increased to 603 K. Comparison between all the solvents, subcritical 1,4-dioxane treatment was found very effective in the degradation of FPF to produce bio-oil component. PMID:20510608

  18. Changes of Major Antioxidant Compounds and Radical Scavenging Activity of Palm Oil and Rice Bran Oil during Deep-Frying

    PubMed Central

    Abdul Hamid, Azizah; Pak Dek, Mohd Sabri; Tan, Chin Ping; Mohd Zainudin, Mohd Asraf; Wee Fang, Evelyn Koh

    2014-01-01

    Changes in antioxidant properties and degradation of bioactives in palm oil (PO) and rice bran oil (RBO) during deep-frying were investigated. The alpha (α)-tocopherol, gamma (γ)-tocotrienol and γ-oryzanol contents of the deep-fried oils were monitored using high performance liquid chromatography, and antioxidant activity was determined using 2-diphenyl-1-picryl hydrazyl (DPPH) radical scavenging activity. Results revealed that the antioxidant activity of PO decreased significantly (p < 0.05), while that of RBO was preserved after deep-frying of fries. As expected, the concentration of α-tocopherol in PO and γ-tocotrienol in both PO and RBO decreased significantly (p < 0.05) with increased frying. Results also showed that γ-tocotrienol was found to be more susceptible to degradation compared to that of α-tocopherol in both PO and RBO. Interestingly, no significant degradation of α-tocopherol was observed in RBO. It is suggested that the presence of γ-oryzanol and γ-tocotrienol in RBO may have a protective effect on α-tocopherol during deep-frying. PMID:26785067

  19. Hydrogeomorphological and water quality impacts of oil palm conversion and logging in Sabah, Malaysian Borneo: a multi-catchment approach

    NASA Astrophysics Data System (ADS)

    Walsh, Rory; Nainar, Anand; Bidin, Kawi; Higton, Sam; Annammala, Kogilavani; Blake, William; Luke, Sarah; Murphy, Laura; Perryman, Emily; Wall, Katy; Hanapi, Jamil

    2016-04-01

    The last three decades have seen a combination of logging and land-use change across most of the rainforest tropics. This has involved conversion to oil palm across large parts of SE Asia. Although much is now known about the hydrological and sediment transport impacts of logging, relatively little is known about how impacts of oil palm conversion compare with those of logging. Furthermore little is known about the impacts of both on river morphology and water quality. This paper reports some findings of the first phase of a ten-year large-scale manipulative multi-catchment experiment (part of the SAFE - Stability of Altered Forest Ecosystems - Project), based in the upper part of the Brantian Catchment in Sabah, Malaysian Borneo; the project is designed to assess the degree to which adverse impacts of oil palm conversion (on erosion, downstream channel change, water quality and river ecology) might be reduced by retaining buffer zones of riparian forest of varying width from zero to 120 metres. Ten 2 km2 catchments of contrasting land use history have been instrumented since 2011 to record discharge, turbidity, conductivity and water temperature at 5-minute intervals. These comprise 6 repeat-logged catchments being subjected in 2015-16 to conversion to oil palm with varying riparian forest widths; a repeat-logged 'control' catchment; an old regrowth catchment; an oil palm catchment; and a primary forest catchment. In addition, (1) monthly water samples from the catchments have been analysed for nitrates and phosphates, (2) channel cross-sectional change along each stream has been monitored at six-monthly intervals and (3) supplementary surveys have been made of downstream bankfull channel cross-sectional size and water chemistry at a wider range of catchment sites, and (4) sediment cores have been taken and contemporary deposition monitored at a hierarchical network of sites in the large Brantian catchment for geochemical analysis and dating to establish the

  20. Modification of palm kernel oil esters nanoemulsions with hydrocolloid gum for enhanced topical delivery of ibuprofen

    PubMed Central

    Salim, Norazlinaliza; Basri, Mahiran; Rahman, Mohd BA; Abdullah, Dzulkefly K; Basri, Hamidon

    2012-01-01

    Introduction During recent years, there has been growing interest in the use of nanoemulsion as a drug-carrier system for topical delivery. A nanoemulsion is a transparent mixture of oil, surfactant and water with a very low viscosity, usually the product of its high water content. The present study investigated the modification of nanoemulsions with different hydrocolloid gums, to enhanced drug delivery of ibuprofen. The in vitro characterization of the initial and modified nanoemulsions was also studied. Methods A palm kernel oil esters nanoemulsion was modified with different hydrocolloid gums for the topical delivery of ibuprofen. Three different hydrocolloids (gellan gum, xanthan gum, and carrageenan) were selected for use. Ternary phase diagrams were constructed using palm kernel oil esters as the oil, Tween 80 as the surfactant, and water. Nanoemulsions were prepared by phase inversion composition, and were gradually mixed with the freshly prepared hydrocolloids. The initial nanoemulsion and modified nanoemulsions were characterized. The abilities of the nanoemulsions to deliver ibuprofen were assessed in vitro, using a Franz diffusion cell fitted with rat skin. Results No significant changes were observed in droplet size (~16–20 nm) but a significant difference in polydispersity indexes were observed before and after the modification of nanoemulsions using gellan gum, carrageenan, and xanthan gum. The zeta potentials of the initial nanoemulsions (−11.0 mV) increased to −19.6 mV, −13.9 mV, and −41.9 mV, respectively. The abilities of both the initial nanoemulsion (T802) and the modified nanoemulsion to deliver ibuprofen through the skin were evaluated in vitro, using Franz diffusion cells fitted with rat skin. The in vitro permeation data showed that the modified nanoemulsion (Kp value of 55.4 × 10−3 cm · h−1) increased the permeability of ibuprofen 4.40 times over T802 (Kp value of 12.6 × 10−3 cm · h−1) (P < 0.05). Conclusion The

  1. Effects of peach palm oil on performance, serum lipoproteins and haemostasis in broilers.

    PubMed

    Baldizán, G; Oviedo, M; Michelangeli, C; Vargas, R E

    2010-12-01

    1. An experiment was conducted to study the comparative effects of peach palm oil (PPO, Bactris gasipaes H.B.K), crude palm oil (CPO, Elaeis guinenesis), maize oil (MO) and beef tallow (BT) on serum total and lipoprotein cholesterol levels and haemostatic factors in broiler chickens. 2. Four experimental diets were formulated to be isocaloric (14·2 MJ AME(N)/kg) and isonitrogenous (230 g CP/kg). PPO was extracted from the whole dry fruit with hexane. Each fat was added to the diet in an amount equivalent to 25% of total dietary calories. Six replicate groups of eight male broiler chicks were assigned randomly to each dietary treatment. Diets were fed on ad libitum basis. The experiment lasted 42 d. 3. At 42 d, birds were fasted overnight and three chickens/dietary treatment were utilised to draw blood for lipoprotein separation. Various haemostatic factors were determined in thrombocyte-poor plasma. Thrombocyte aggregation was assayed in whole blood. 4. No significant differences were detected in body-weight gain or feed efficiency between the chickens fed on the PPO diet and those receiving the CPO, MO or BT diets. Total serum cholesterol (TC), very low density lipoprotein cholesterol and low density lipoprotein cholesterol (LDL(C)) were not significantly affected after consuming the PPO, CPO and MO diets. Serum high density lipoprotein cholesterol (HDL(C)) was reduced only by the MO diet. Birds fed on the PPO diet had a significantly lower [corrected] LDLC/HDLC ratio compared with other dietary treatments 5. Thrombocyte count and thrombin time were not significantly affected by the experimental diets. Dietary oils significantly affected prothrombin time, fibrinogen concentration and thrombocyte aggregation. PPO and MO diets elicited the lowest fibrinogen levels compared to the CPO and BT diets. Thrombocyte aggregation in broilers fed on the PPO diet was similar to that of the CPO, MO and BT diets. 6. The results suggest that PPO might efficiently provide up to

  2. Hydrothermal liquefaction of palm oil empty fruit bunch (EFB) into bio-oil in different organic solvents

    NASA Astrophysics Data System (ADS)

    Sarwono, Rakhman; Pusfitasari, Eka Dian; Ghozali, Muhammad

    2016-06-01

    Thermochemical Liquefaction of empty fruit bunch (EFB) of palm oil in different organic solvents (water, methanol, ethanol, acetone, toluene and hexane) were comparatively investigated. Experiments were carried out in an autoclave at different temperatures of 300, 350 and 400 °C with a fixed solid/liquid rasio of 3 gram in 50 ml solvent, without catalysts and reaction time of 5 hours. The efficiency of above solvents in terms of conversion rate, soluble liquid and carbon products were investigated in the experiments. Increasing the reaction temperature increased the conversion rate in all organic solvents and water, but gaseous products also increased using a reaction temperature of 400 oC. The water solvent gave higher conversion rate of 49.14%, while toluene, acetone, methanol, hexane and ethanol gave conversion of 35.76%, 26.5%, 25.98%, 24.26 %, and 22.24%, respectively. The bio-oil produced in order of the largest amount were using methanol, water, ethanol, toluene, acetone, and hexane solvents. The chemical properties of bio-oil products were significantly affected by the type of liquefaction solvent. The composition of bio-oil consisted of mostly of a mixture of organic acids, ketones, and esters. The methanol and ethanol solvents resulted in mostly esters, while toluene and hexane resulted in mostly organic acids. Acetone solvent resulted in the same amount of organic acid and esters. In water as a solvent resulted in 2-pentanone, 4-hydroxy-4-methyl. The bio-oil consisted of a range of carbon C6 - C20 fragments.

  3. The effects of forest conversion to oil palm on ground-foraging ant communities depend on beta diversity and sampling grain

    PubMed Central

    Wang, Wendy Y; Foster, William A

    2015-01-01

    Beta diversity – the variation in species composition among spatially discrete communities – and sampling grain – the size of samples being compared – may alter our perspectives of diversity within and between landscapes before and after agricultural conversion. Such assumptions are usually based on point comparisons, which do not accurately capture actual differences in total diversity. Beta diversity is often not rigorously examined. We investigated the beta diversity of ground-foraging ant communities in fragmented oil palm and forest landscapes in Sabah, Malaysia, using diversity metrics transformed from Hill number equivalents to remove dependences on alpha diversity. We compared the beta diversities of oil palm and forest, across three hierarchically nested sampling grains. We found that oil palm and forest communities had a greater percentage of total shared species when larger samples were compared. Across all grains and disregarding relative abundances, there was higher beta diversity of all species among forest communities. However, there were higher beta diversities of common and very abundant (dominant) species in oil palm as compared to forests. Differences in beta diversities between oil palm and forest were greatest at the largest sampling grain. Larger sampling grains in oil palm may generate bigger species pools, increasing the probability of shared species with forest samples. Greater beta diversity of all species in forest may be attributed to rare species. Oil palm communities may be more heterogeneous in common and dominant species because of variable community assembly events. Rare and also common species are better captured at larger grains, boosting differences in beta diversity between larger samples of forest and oil palm communities. Although agricultural landscapes support a lower total diversity than natural forests, diversity especially of abundant species is still important for maintaining ecosystem stability. Diversity in

  4. The effects of forest conversion to oil palm on ground-foraging ant communities depend on beta diversity and sampling grain.

    PubMed

    Wang, Wendy Y; Foster, William A

    2015-08-01

    Beta diversity - the variation in species composition among spatially discrete communities - and sampling grain - the size of samples being compared - may alter our perspectives of diversity within and between landscapes before and after agricultural conversion. Such assumptions are usually based on point comparisons, which do not accurately capture actual differences in total diversity. Beta diversity is often not rigorously examined. We investigated the beta diversity of ground-foraging ant communities in fragmented oil palm and forest landscapes in Sabah, Malaysia, using diversity metrics transformed from Hill number equivalents to remove dependences on alpha diversity. We compared the beta diversities of oil palm and forest, across three hierarchically nested sampling grains. We found that oil palm and forest communities had a greater percentage of total shared species when larger samples were compared. Across all grains and disregarding relative abundances, there was higher beta diversity of all species among forest communities. However, there were higher beta diversities of common and very abundant (dominant) species in oil palm as compared to forests. Differences in beta diversities between oil palm and forest were greatest at the largest sampling grain. Larger sampling grains in oil palm may generate bigger species pools, increasing the probability of shared species with forest samples. Greater beta diversity of all species in forest may be attributed to rare species. Oil palm communities may be more heterogeneous in common and dominant species because of variable community assembly events. Rare and also common species are better captured at larger grains, boosting differences in beta diversity between larger samples of forest and oil palm communities. Although agricultural landscapes support a lower total diversity than natural forests, diversity especially of abundant species is still important for maintaining ecosystem stability. Diversity in

  5. Effect of feeding palm oil by-products based diets on muscle fatty acid composition in goats.

    PubMed

    Abubakr, Abdelrahim; Alimon, Abdul Razak; Yaakub, Halimatun; Abdullah, Norhani; Ivan, Michael

    2015-01-01

    The present study aims to evaluate the effects of feeding palm oil by-products based diets on different muscle fatty acid profiles in goats. Thirty-two Cacang × Boer goats were randomly assigned to four dietary treatments: (1) control diet (CD), (2) 80% decanter cake diet (DCD), (3) 80% palm kernel cake diet (PKCD) and (4) CD plus 5% palm oil (PO) supplemented diet (CPOD). After 100 days of feeding, four goats from each group were slaughtered and longissimus dorsi (LD), infraspinatus (IS) and biceps femoris (BF) were sampled for analysis of fatty acids. Goats fed the PKCD had higher (P<0.05) concentration of lauric acid (C12:0) than those fed the other diets in all the muscles tested. Compared to the other diets, the concentrations of palmitic acid (C16:0) and stearic acid (C18:0) were lower (P<0.05) and that of linoleic acid (C18:2 n-6) was higher (P<0.05) in the muscles from goats fed the CD. It was concluded that palm kernel cake and decanter cake can be included in the diet of goats up to 80% with more beneficial than detrimental effects on the fatty acid profile of their meat. PMID:25789610

  6. Effect of Feeding Palm Oil By-Products Based Diets on Muscle Fatty Acid Composition in Goats

    PubMed Central

    Abubakr, Abdelrahim; Alimon, Abdul Razak; Yaakub, Halimatun; Abdullah, Norhani; Ivan, Michael

    2015-01-01

    The present study aims to evaluate the effects of feeding palm oil by-products based diets on different muscle fatty acid profiles in goats. Thirty-two Cacang × Boer goats were randomly assigned to four dietary treatments: (1) control diet (CD), (2) 80% decanter cake diet (DCD), (3) 80% palm kernel cake diet (PKCD) and (4) CD plus 5% palm oil (PO) supplemented diet (CPOD). After 100 days of feeding, four goats from each group were slaughtered and longissimus dorsi (LD), infraspinatus (IS) and biceps femoris (BF) were sampled for analysis of fatty acids. Goats fed the PKCD had higher (P<0.05) concentration of lauric acid (C12:0) than those fed the other diets in all the muscles tested. Compared to the other diets, the concentrations of palmitic acid (C16:0) and stearic acid (C18:0) were lower (P<0.05) and that of linoleic acid (C18:2 n-6) was higher (P<0.05) in the muscles from goats fed the CD. It was concluded that palm kernel cake and decanter cake can be included in the diet of goats up to 80% with more beneficial than detrimental effects on the fatty acid profile of their meat. PMID:25789610

  7. Optimization of palm oil physical refining process for reduction of 3-monochloropropane-1,2-diol (3-MCPD) ester formation.

    PubMed

    Zulkurnain, Musfirah; Lai, Oi Ming; Tan, Soo Choon; Abdul Latip, Razam; Tan, Chin Ping

    2013-04-01

    The reduction of 3-monochloropropane-1,2-diol (3-MCPD) ester formation in refined palm oil was achieved by incorporation of additional processing steps in the physical refining process to remove chloroester precursors prior to the deodorization step. The modified refining process was optimized for the least 3-MCPD ester formation and acceptable refined palm oil quality using response surface methodology (RSM) with five processing parameters: water dosage, phosphoric acid dosage, degumming temperature, activated clay dosage, and deodorization temperature. The removal of chloroester precursors was largely accomplished by increasing the water dosage, while the reduction of 3-MCPD esters was a compromise in oxidative stability and color of the refined palm oil because some factors such as acid dosage, degumming temperature, and deodorization temperature showed contradictory effects. The optimization resulted in 87.2% reduction of 3-MCPD esters from 2.9 mg/kg in the conventional refining process to 0.4 mg/kg, with color and oil stability index values of 2.4 R and 14.3 h, respectively. PMID:23464796

  8. Land Use Changes and GHG Emissions from Tropical Forest Conversion by Oil Palm Plantations in Riau Province, Indonesia

    PubMed Central

    Ramdani, Fatwa; Hino, Masateru

    2013-01-01

    Increasing prices and demand for biofuel and cooking oil from importer countries have caused a remarkable expansion of oil palm plantations in Indonesia. In this paper, we attempt to monitor the expansion of oil palm plantations on peat land and in tropical forests. We measure the GHG emissions from the land conversion activities at provincial scale. Using Landsat images from three different periods (1990s, 2000s and 2012), we classified LULC of the Riau Province, which is the largest oil palm producing region in Indonesia. A hybrid method of integration, generated by combining automatic processing and manual analysis, yields the best results. We found that the tropical rainforest cover decreased from ∼63% in the 1990s to ∼37% in the 2000s. By 2012, the remaining tropical rainforest cover was only ∼22%. From the 1990s to the 2000s, conversion of forests and peat lands was the primary source of emissions, total CO2 emitted to the atmosphere was estimated at ∼26.6 million tCO2.y-1, with 40.62% and 59.38% of the emissions from conversion of peat lands and forests, respectively. Between 2000 and 2012, the total CO2 emitted to the atmosphere was estimated at ∼5.2 million tCO2. y-1, with 69.94% and 27.62% of the emissions from converted peat lands and converted forests, respectively. The results show that in the Riau Province, the oil palm industry boomed in the period from 1990 to 2000, with transformation of tropical forest and peat land as the primary source of emissions. The decrease of CO2 emissions in the period from 2000 to 2012 is possibly due to the enforcement of a moratorium on deforestation. PMID:23936186

  9. Land use changes and GHG emissions from tropical forest conversion by oil palm plantations in Riau Province, Indonesia.

    PubMed

    Ramdani, Fatwa; Hino, Masateru

    2013-01-01

    Increasing prices and demand for biofuel and cooking oil from importer countries have caused a remarkable expansion of oil palm plantations in Indonesia. In this paper, we attempt to monitor the expansion of oil palm plantations on peat land and in tropical forests. We measure the GHG emissions from the land conversion activities at provincial scale. Using Landsat images from three different periods (1990s, 2000s and 2012), we classified LULC of the Riau Province, which is the largest oil palm producing region in Indonesia. A hybrid method of integration, generated by combining automatic processing and manual analysis, yields the best results. We found that the tropical rainforest cover decreased from ∼63% in the 1990s to ∼37% in the 2000s. By 2012, the remaining tropical rainforest cover was only ∼22%. From the 1990s to the 2000s, conversion of forests and peat lands was the primary source of emissions, total CO2 emitted to the atmosphere was estimated at ∼26.6 million tCO2.y(-1), with 40.62% and 59.38% of the emissions from conversion of peat lands and forests, respectively. Between 2000 and 2012, the total CO2 emitted to the atmosphere was estimated at ∼5.2 million tCO2. y(-1), with 69.94% and 27.62% of the emissions from converted peat lands and converted forests, respectively. The results show that in the Riau Province, the oil palm industry boomed in the period from 1990 to 2000, with transformation of tropical forest and peat land as the primary source of emissions. The decrease of CO2 emissions in the period from 2000 to 2012 is possibly due to the enforcement of a moratorium on deforestation. PMID:23936186

  10. Analysis of genetic diversity and population structure of oil palm (Elaeis guineensis) from China and Malaysia based on species-specific simple sequence repeat markers.

    PubMed

    Zhou, L X; Xiao, Y; Xia, W; Yang, Y D

    2015-01-01

    Genetic diversity and patterns of population structure of the 94 oil palm lines were investigated using species-specific simple sequence repeat (SSR) markers. We designed primers for 63 SSR loci based on their flanking sequences and conducted amplification in 94 oil palm DNA samples. The amplification result showed that a relatively high level of genetic diversity was observed between oil palm individuals according a set of 21 polymorphic microsatellite loci. The observed heterozygosity (Ho) was 0.3683 and 0.4035, with an average of 0.3859. The Ho value was a reliable determinant of the discriminatory power of the SSR primer combinations. The principal component analysis and unweighted pair-group method with arithmetic averaging cluster analysis showed the 94 oil palm lines were grouped into one cluster. These results demonstrated that the oil palm in Hainan Province of China and the germplasm introduced from Malaysia may be from the same source. The SSR protocol was effective and reliable for assessing the genetic diversity of oil palm. Knowledge of the genetic diversity and population structure will be crucial for establishing appropriate management stocks for this species. PMID:26662418

  11. Designing Agricultural Development Projects for the Small Scale Farmers: Some Lessons from the World Bank Assistance Small Holder Oil Palm Development Scheme in Nigeria

    NASA Astrophysics Data System (ADS)

    Orewa, S. I.

    The study was carried out to investigate farmers reasons for intercropping their oil palm farms with food and other cash crops rather than the sole oil palm planting arrangement specified for participation in the World Bank Assistance Smallholder Oil Palm development project financed during the 1975-83 period. The study was conducted at the Ekuku-Agbor Tree Crop Unit Zone (to the East) and Mosogar Tree Crop Unit Zone (to the Southwest) of the old Bendel State of Nigeria. A total of 35 oil palm farmers were randomly selected from each zone for the study. The study tried to identify the size of oil palm cultivated, types of food and cash crops planted and the proportion consumed and sold and the sufficiency of labour for various farm activities. The study showed that the average oil palm farm size at Ekuku-Agbor zone was smaller (about 1.57 ha) and more fragmented while for Mosogar zone it was 2.28 ha. However a greater percentage (over 65%) of the farms at both locations were within 0.01-2.00 ha farm size range which could be said to be relatively small. The study revealed that among other factors the farmers desire to ensure adequate family food needs which equates to food security and some cash to meet regular family financial needs necessitated their intercropping of the oil palm farms. Others include the need to maximize the returns from the use of labour which they considered a major limiting factor in farm maintenance and to take advantage of the relative high unit price of cassava and its products that prevailed then by cultivating on any available land space including the palm plantations and thereby increasing their farm income.

  12. Preparation of human milk fat analogue by enzymatic interesterification reaction using palm stearin and fish oil.

    PubMed

    Ghosh, Moumita; Sengupta, Avery; Bhattacharyya, D K; Ghosh, Mahua

    2016-04-01

    Palm stearin fractionate (PSF), obtained from palm stearin by further fractionation with solvents and n-3 polyunsaturated fatty acids (n-3 PUFA) rich fish oil (FO) were subjected to interesterification at 1:1, 1:2, 1:3, 2:1 and 3:1 substrate molar ratio and catalyzed by lipase from Thermomyces lanuginosa for obtaining a product with triacylglycerol (TAG) structure similar to that of human milk fat (HMF). The parameters (molar ratio and time) of the interesterification reaction were standardized. The temperature of 60 °C and enzyme concentration of 10 % (w/w) were kept fixed as these parameters were previously optimized. The reactions were carried out in a stirred tank reactor equipped with a magnetic stirrer for 6, 12, 18 and 24 h. The blends were analyzed for fatty acid (FA) composition of both total FAs and those at the sn-2 position after pancreatic lipase hydrolysis. All the blended products were subjected to melting point determination and free fatty acid content. Finally, blend of PSF and FO at 2:1 molar ratio with 69.70 % palmitic acid (PA) content and 12 h of reaction produced the desired product with 75.98 % of PA at sn-2 position, 0.27 % arachidonic acid (AA), 3.43 % eicosapentaenoic acid (EPA) and 4.25 % docosahexaenoic acid (DHA) and with melting point of 42 °C. This study portrayed a successful preparation of TAG containing unique FA composition i.e. ≥ 70 % of the PA, by weight, were esterified at the sn-2 position which could be used in infant formulation with health benefits of n-3 PUFAs. PMID:27413229

  13. Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm