Science.gov

Sample records for borehole radar borehole

  1. Advanced Borehole Radar for Hydrogeology

    NASA Astrophysics Data System (ADS)

    Sato, M.

    2014-12-01

    Ground Penetrating Radar is a useful tool for monitoring the hydrogeological environment. We have developed GPR systems which can be applied to these purposes, and we will demonstrate examples borehole radar measurements. In order to have longer radar detection range, frequency lower than100MHz has been normally adopted in borehole radar. Typical subsurface fractures of our interests have a few mm aperture and radar resolution is much poorer than a few cm in this frequency range. We are proposing and demonstrating to use radar polarimetry to solve this problem. We have demonstrated that a full-polarimetry borehole radar can be used for characterization of subsurface fractures. Together with signal processing for antenna characteristic compensation to equalize the signal by a dipole antenna and slot antennas, we could demonstrate that polarimetric borehole radar can estimate the surface roughness of subsurface fractures, We believe the surface roughness is closely related to water permeability through the fractures. We then developed a directional borehole radar, which uses optical field sensor. A dipole antenna in a borehole has omni-directional radiation pattern, and we cannot get azimuthal information about the scatterers. We use multiple dipole antennas set around the borehole axis, and from the phase differences, we can estimate the 3-diemnational orientation of subsurface structures. We are using optical electric field sensor for receiver of borehole radar. This is a passive sensor and connected only with optical fibers and does not require any electric power supply to operate the receiver. It has two major advantages; the first one is that the receiver can be electrically isolated from other parts, and wave coupling to a logging cable is avoided. Then, secondary, it can operate for a long time, because it does not require battery installed inside the system. It makes it possible to set sensors in fixed positions to monitor the change of environmental

  2. Downhole Imaging With Borehole Radar

    NASA Astrophysics Data System (ADS)

    Fokkema, J. T.; van den Berg, P. M.; van Dongen, K. W. A.; Luthi, S. M.

    We describe a directional borehole radar system. The antennas are positioned in a bi-static set-up. In order to obtain a focused radiation pattern, the transmitting and receiving dipoles are shielded with a curved reflector. The radiation pattern of this scattered wavefield is computed by solving the integral equation for the unknown elec- tric surface current at the conducting surface. Based on these numerical simulations, a prototype was built. The effective radiation pattern is in good agreement with the computed pattern. We also present a three-dimensional imaging method for this bore- hole radar. The computed radiation pattern is used in such a way that deconvolution for the angular radiation pattern can be applied. Data from preliminary laboratory and field tests under controlled conditions are promising. The applications of this method include the detection of unexploded ordinance from boreholes, the detection of objects and layers in tunnels, and the determination of the diameter of concrete columns in the Jetgrout Diameter System. With appropriate modifications, this system may be appli- cable in the oil- and gas industry for the detection of layers and fractures in borehole. It covers a gap between conventional logging measurements in boreholes, and seismic surface surveys.

  3. Radiation pattern of a borehole radar antenna

    USGS Publications Warehouse

    Ellefsen, K.J.; Wright, D.L.

    2002-01-01

    To understand better how a borehole antenna radiates radar waves into a formation, this phenomenon is simulated numerically using the finite-difference, time-domain method. The simulations are of two different antenna models that include features like a driving point fed by a coaxial cable, resistive loading of the antenna, and a water-filled borehole. For each model, traces are calculated in the far-field region, and then, from these traces, radiation patterns are calculated. The radiation patterns show that the amplitude of the radar wave is strongly affected by its frequency, its propagation direction, and the resistive loading of the antenna.

  4. Radiation pattern of a borehole radar antenna

    USGS Publications Warehouse

    Ellefsen, K.J.; Wright, D.L.

    2005-01-01

    The finite-difference time-domain method was used to simulate radar waves that were generated by a transmitting antenna inside a borehole. The simulations were of four different models that included features such as a water-filled borehole and an antenna with resistive loading. For each model, radiation patterns for the far-field region were calculated. The radiation patterns show that the amplitude of the radar wave was strongly affected by its frequency, the water-filled borehole, the resistive loading of the antenna, and the external metal parts of the antenna (e.g., the cable head and the battery pack). For the models with a water-filled borehole, their normalized radiation patterns were practically identical to the normalized radiation pattern of a finite-length electric dipole when the wavelength in the formation was significantly greater than the total length of the radiating elements of the model antenna. The minimum wavelength at which this criterion was satisfied depended upon the features of the antenna, especially its external metal parts. ?? 2005 Society of Exploration Geophysicists. All rights reserved.

  5. Feasibility of a borehole VHF radar technique for fracture mapping

    SciTech Connect

    Chang, H.T.

    1984-01-01

    Experiments were conducted to establish the feasibility of a downhole high-frequency electromagnetic technique for location of fractures in the vicinity of boreholes. An existing flame-cut slot in granite was filled with salt water to simulate a brine-filled fracture. A transmitter consisting of a phased dual-dipole array arranged to provide a directional signal toward the fracture was installed in a borehole opposite the fracture. A receiver operated at 30 to 300 MHz was also located in the same borehole. The radar returns from the simulated fracture were detectable in boreholes located at distances of up to 12 meters from the fracture. These results indicate for the first time the feasibility of a downhole VHF radar for use in a single borehole for detection of fractures located away from the borehole.

  6. The experimental results and analysis of a borehole radar prototype

    NASA Astrophysics Data System (ADS)

    Liu, Sixin; Wu, Junjun; Dong, Hang; Fu, Lei; Wang, Fei

    2012-04-01

    A prototype of borehole radar has been successfully tested in three sites for different purposes under a field condition. The objective of the prototype is providing an effective down-hole tool for detecting targets in deep boreholes situated in a relatively high conductivity area such as the metal ores. The first testing site is at a geothermal field. The fractures extending more than 20 m from the borehole are delineated by the borehole radar in the single-hole reflection mode. The second testing site is located in a jade mine for basement evaluation. The cross-hole measurement mode was used to detect the cavities made by previous unorganized mining activities. Several high-velocity anomalies were found in the velocity profile and presumably the targets of the mine shafts and tunnels. The third test site is located in a mineralized belt characterized by low resistivity less than 1000 Ohm m, the surface-borehole measurement was carried out and the data were processed with velocity tomography. The low-velocity zone corresponds to a mineralized zone from geological records. The three testing results proved the readiness of this borehole radar prototype for further deployment in more complicated and realistic field situations.

  7. Elements of a continuous-wave borehole radar. Final report

    SciTech Connect

    Caffey, T.W.H.

    1997-08-01

    The theory is developed for the antenna array for a proposed continuous-wave, ground-penetrating radar for use in a borehole, and field measurements are presented. Accomplishments include the underground measurement of the transmitting beam in the azimuth plane, active azimuth-steering of the transmitting beam, and the development of a range-to-target algorithm. The excellent performance of the antenna array supports the concept of a continuous-wave borehole radar. A field-prototype should be developed for use in both geothermal zones and for the exploration and recovery of oil and gas.

  8. Analysis of borehole-radar reflection logs from selected HC boreholes at the Project Shoal area, Churchill County, Nevada

    USGS Publications Warehouse

    Lane, J.W., Jr.; Joesten, P.K.; Pohll, G.M.; Mihevic, Todd

    2001-01-01

    Single-hole borehole-radar reflection logs were collected and interpreted in support of a study to characterize ground-water flow and transport at the Project Shoal Area (PSA) in Churchill County, Nevada. Radar logging was conducted in six boreholes using 60-MHz omni-directional electric-dipole antennas and a 60-MHz magnetic-dipole directional receiving antenna.Radar data from five boreholes were interpreted to identify the location, orientation, estimated length, and spatial continuity of planar reflectors present in the logs. The overall quality of the radar data is marginal and ranges from very poor to good. Twenty-seven reflectors were interpreted from the directional radar reflection logs. Although the range of orientation interpreted for the reflectors is large, a significant number of reflectors strike northeast-southwest and east-west to slightly northwest-southeast. Reflectors are moderate to steeply dipping and reflector length ranged from less than 7 m to more than 133 m.Qualitative scores were assigned to each reflector to provide a sense of the spatial continuity of the reflector and the characteristics of the field data relative to an ideal planar reflector (orientation score). The overall orientation scores are low, which reflects the general data quality, but also indicates that the properties of most reflectors depart from the ideal planar case. The low scores are consistent with reflections from fracture zones that contain numerous, closely spaced, sub-parallel fractures.Interpretation of borehole-radar direct-wave velocity and amplitude logs identified several characteristics of the logged boreholes: (1) low-velocity zones correlate with decreased direct-wave amplitude, indicating the presence of fracture zones; (2) direct-wave amplitude increases with depth in three of the boreholes, suggesting an increase in electrical resistivity with depth resulting from changes in mineral assemblage or from a decrease in the specific conductance of ground

  9. Analysis of Borehole-Radar Reflection Data from Machiasport, Maine, December 2003

    USGS Publications Warehouse

    Johnson, Carole D.; Joesten, Peter K.

    2005-01-01

    In December 2003, the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, collected borehole-radar reflection logs in two boreholes in Machiasport, Maine. These bedrock boreholes were drilled as part of a hydrogeologic investigation of the area surrounding the former Air Force Radar Tracking Station site on Howard Mountain near Bucks Harbor. The boreholes, MW09 and MW10, are located approximately 50 meters (m) from, and at the site of, respectively, the locations of former buildings where trichloroethylene was used as part of defense-site operations. These areas are thought to be potential source areas for contamination that has been detected in downgradient bedrock wells. This investigation focused on testing borehole-radar methods at this site. Single-hole radar-reflection surveys were used to identify the depth, orientation, and spatial continuity of reflectors that intersect and surround the boreholes. In addition, the methods were used to (1) identify the radial depth of penetration of the radar waves in the electrically resistive bimodal volcanic formation at the site, (2) provide information for locating additional boreholes at the site, and (3) test the potential applications of borehole-radar methods for further aquifer characterization and (or) evaluation of source-area remediation efforts. Borehole-radar reflection logging uses a pair of downhole transmitting and receiving antennas to record the reflected wave amplitude and transit time of high-frequency electromagnetic waves. For this investigation, 60- and 100-megahertz antennas were used. The electromagnetic waves emitted by the transmitter penetrate into the formation surrounding the borehole and are reflected off of a material with different electromagnetic properties, such as a fracture or change in rock type. Single-hole directional radar surveys indicate the bedrock surrounding these boreholes is highly fractured, because several reflectors were identified in the radar

  10. Advances in directional borehole radar data analysis and visualization

    USGS Publications Warehouse

    Smith, D.V.G.; Brown, P.J., II

    2002-01-01

    The U.S. Geological Survey is developing a directional borehole radar (DBOR) tool for mapping fractures, lithologic changes, and underground utility and void detection. An important part of the development of the DBOR tool is data analysis and visualization, with the aim of making the software graphical user interface (GUI) intuitive and easy to use. The DBOR software system consists of a suite of signal and image processing routines written in Research Systems' Interactive Data Language (IDL). The software also serves as a front-end to many widely accepted Colorado School of Mines Center for Wave Phenomena (CWP) Seismic UNIX (SU) algorithms (Cohen and Stockwell, 2001). Although the SU collection runs natively in a UNIX environment, our system seamlessly emulates a UNIX session within a widely used PC operating system (MicroSoft Windows) using GNU tools (Noer, 1998). Examples are presented of laboratory data acquired with the prototype tool from two different experimental settings. The first experiment imaged plastic pipes in a macro-scale sand tank. The second experiment monitored the progress of an invasion front resulting from oil injection. Finally, challenges to further development and planned future work are discussed.

  11. Borehole radar investigations for locating ice ring formed by cryogenic condition in an underground cavern

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Ho; Park, Sam-Gyu; Yi, Myeong-Jong; Son, Jeong-Sul; Cho, Seong-Jun

    2007-07-01

    A small underground pilot plant was constructed and operated at Korea Institute of Geoscience and Mineral Resources for investigating the feasibility of a new concept of storing liquefied natural gas (LNG) in a lined hard rock cavern. In the real operation of the pilot plant, liquid nitrogen (LN2) was stored instead of LNG for safety purpose. A drainage system controls the development of an impervious ring of ice formed due to storage of LN2 in extremely low temperature. The ice ring formed around the storage cavern is very important because this can act as the final barrier to secure the LNG storage. We carried out borehole radar surveys to study the applicability of the borehole radar reflection method to locating the ice ring formation. Prior to conducting the fieldwork, we performed numerical experiments of borehole radar reflection survey; through the analysis of the numerical modeled data we obtained the most appropriate interpretation strategies for locating the ice rings. Before and after storing the LN2 in the underground cavern, we conducted borehole radar reflection and crosshole level scanning surveys. The data obtained at the two stages of the surveys were compared in order to identify changes occurring in basement rock after storing the LN2. The interpretation of the borehole radar data clearly showed that the ice rings only developed under and in front of the LNG storage cavern of the pilot plant, but not over it. Through the numerical modeling experiments and field monitoring exercises, we were able to know that borehole radar reflection technique is an effective method for locating ice rings formed in basement rock for storing material of extremely low temperature in an underground cavern.

  12. Use of borehole radar tomography to monitor steam injection in fractured limestone

    USGS Publications Warehouse

    Gregoire, C.; Joesten, P.K.

    2006-01-01

    Borehole radar tomography was used as part of a pilot study to monitor steam-enhanced remediation of a fractured limestone contaminated with volatile organic compounds at the former Loring Air Force Base, Maine, USA. Radar tomography data were collected using 100-MHz electric-dipole antennae before and during steam injection to evaluate whether cross-hole radar methods could detect changes in medium properties resulting from the steam injection. Cross-hole levelrun profiles, in which transmitting and receiving antennae are positioned at a common depth, were made before and after the collection of each full tomography data set to check the stability of the radar instruments. Before tomographic inversion, the levelrun profiles were used to calibrate the radar tomography data to compensate for changes in traveltime and antenna power caused by instrument drift. Observed changes in cross-hole radar traveltime and attenuation before and during steam injection were small. Slowness- and attenuation-difference tomograms indicate small increases in radar slowness and attenuation at depths greater than about 22 m below the surface, consistent with increases in water temperature observed in the boreholes used for the tomography. Based on theoretical modelling results, increases in slowness and attenuation are interpreted as delineating zones where steam injection heating increased the electrical conductivity of the limestone matrix and fluid. The results of this study show the potential of cross-hole radar tomography methods to monitor the effects of steam-induced heating in fractured rock environments. ?? 2006 European Association of Geoscientists & Engineers.

  13. Basalt-flow imaging using a high-resolution directional borehole radar

    USGS Publications Warehouse

    Moulton, C.W.; Wright, D.L.; Hutton, S.R.; Smith, D.V.G.; Abraham, J.D.

    2002-01-01

    A new high-resolution directional borehole radar-logging tool (DBOR tool) was used to log three wells at the Idaho National Engineering and Environmental Laboratory (INEEL). The radar system uses identical directional cavity-backed monopole transmitting and receiving antennas that can be mechanically rotated while the tool is stationary or moving slowly in a borehole. Faster reconnaissance logging with no antenna rotation was also done to find zones of interest. The microprocessor-controlled motor/encoder in the tool can rotate the antennas azimuthally, to a commanded angle, accurate to a within few degrees. The three logged wells in the unsaturated zone at the INEEL had been cored with good core recovery through most zones. After coring, PVC casing was installed in the wells. The unsaturated zone consists of layered basalt flows that are interbedded with thin layers of coarse-to-fine grained sediments. Several zones were found that show distinctive signatures consistent with fractures in the basalt. These zones may correspond to suspected preferential flow paths. The DBOR data were compared to core, and other borehole log information to help provide better understanding of hydraulic flow and transport in preferential flow paths in the unsaturated zone basalts at the INEEL.

  14. Subsurface fracture characterisation using full polarimetric borehole radar data analysis with numerical simulation validation

    NASA Astrophysics Data System (ADS)

    Mansour, Khamis; Sato, Motoyuki

    2012-04-01

    We report on the utilisation of a full polarimetric subsurface borehole radar measuring system for efficient characterisation of subsurface fractures. This system can measure the full polarisation (HH, HV, VV and VH) of electromagnetic waves for one borehole, and thus enables us to obtain more information about subsurface fractures compared to that obtained from conventional borehole radar systems, which usually use only single polarisation. Polarimetric datasets have been acquired at several sites, particularly at Mirror Lake, USA, which is a well known site for testing subsurface fractures. Nine fracture sets were observed in one borehole, FSE-1, in the Mirror Lake site. These were divided into four category fracture sets depending on polarimetric analysis of alpha, entropy and anisotropy decomposition analysis of scattering behaviour from fractures at frequency 30MHz. We found that the characterised four fractures sets have the highest hydraulic permeable zones at depths of 24.75m, and 47.80m. The lowest hydraulic permeable zones were found to be at 28.50m, 36.15m and 44.80m. These results show a good consistency with the hydraulic fractures permeability tracer test that was done by USGS. To validate these conclusions we implemented numerical simulation for a synthesised fractures property using the Finite Difference Time Domain (FDTD) method. Here, we used a plane wave as an electromagnetic source with frequency ranging from 1MHz to 200MHz, and monitored the electromagnetic scattering for various fractures. We found that distributions of alpha, entropy and anisotropy polarimetric parameters differ with the fracture roughness property which validates the polarimetric analysis of the measured data.

  15. On Boreholes and PBO Borehole Strain

    NASA Astrophysics Data System (ADS)

    Gladwin, M. T.; Mee, M. W.

    2003-12-01

    Borehole tensor strainmeters (GTSM) installed in Australia and California have established a baseline of data spanning more than twenty years. The current baseline of data allows characterisation of a moderate number of instruments in a range of very different environments in a way which defines reasonable performance expectations for the upcoming PBO deployments. A generic understanding of effects which result from the process of installation of the instrument in a stressed rock mass emerges. This indicates that, provided due allowance is made for experimentally determined borehole recovery effects, the contribution of borehole strain meters more than adequately fills the observational gap between high stability/long term geodetic measurements of strain and strain rates and high resolution/high frequency seismic observations of earth deformation processes. The various strain relief processes associated with the installation procedures and borehole recovery effects associated with pre-existing stress fields will be documented. Procedures for calibration of the total borehole inclusion and for progressive removal of effects due to rock anisotropy and visco-elastic creep of the grout and rock close to the borehole from far field tectonic effects will be defined and illustrated with examples. Observed deviations from these processes will be shown to be small and consistent with otherwise observed or implied fault motions. Full details of these borehole induced processes are, however, difficult to determine in the early years following installation, particularly if there is significant tectonic activity at the time. Once quantified for each site, the effects can be robustly removed from data streams.

  16. MICROPROCESSOR-BASED DATA-ACQUISITION SYSTEM FOR A BOREHOLE RADAR.

    USGS Publications Warehouse

    Bradley, Jerry A.; Wright, David L.

    1987-01-01

    An efficient microprocessor-based system is described that permits real-time acquisition, stacking, and digital recording of data generated by a borehole radar system. Although the system digitizes, stacks, and records independently of a computer, it is interfaced to a desktop computer for program control over system parameters such as sampling interval, number of samples, number of times the data are stacked prior to recording on nine-track tape, and for graphics display of the digitized data. The data can be transferred to the desktop computer during recording, or it can be played back from a tape at a latter time. Using the desktop computer, the operator observes results while recording data and generates hard-copy graphics in the field. Thus, the radar operator can immediately evaluate the quality of data being obtained, modify system parameters, study the radar logs before leaving the field, and rerun borehole logs if necessary. The system has proven to be reliable in the field and has increased productivity both in the field and in the laboratory.

  17. Analysis of borehole breakouts

    SciTech Connect

    Zheng, Z.; Kemeny, J.; Cook, N. G. W.

    1989-06-10

    Boreholes drilled into rock, which is subjected to stresses that amount to a significant fraction of the strength of the rock, may cause the rock to fail adjacent to the borehole surface. Often this results in the elongation of the cross section of the borehole in the direction of the minimum principal (compressive) stress orthogonal to the borehole axis. Such breakouts are valuable indicators of the direction of the minimum compressive stress orthogonal to the axis of the borehole. Their shapes may provide information about the magnitudes of both the maximum and minimum stresses relative to the strength of the rock. Borehole breakouts also may be impediments to drilling and to in situ measurement techniques, such as hydraulic fracturing. Observations and analyses of borehole breakouts raise three important questions. First, how does the shape of the borehole breakout evolve Second, why are breakout shapes stable despite the very high compressive stress concentrations that they produce Third, how is the shape of the breakout related to the magnitudes of the stresses in the rock In this paper, extensile splitting of rock in unconfined, plane strain compression is assumed to be the process of rock failure adjacent to the circumference of the borehole, by which a breakout forms. To simulate the evolution of a borehole breakout, this process is combined with a numerical boundary element analysis of the stresses around a borehole as its cross section evolves from the originally circular shape to that of a stable breakout.

  18. Tomographic data developed using the ABEM RAMAC borehole radar system at the Mixed Waste Landfill Integrated Demonstration

    SciTech Connect

    MacLeod, G.A.; Barker, D.L.; Molnar, S.

    1994-02-18

    The ABEM RAMAC borehole radar system was run as part of the Mixed Waste Landfill Integrated Demonstration for Sandia National Laboratories at Kirtland AFB. Tomograms were created between three test boreholes-UCAP No. 1, UCAP No. 2, and UCAP No. 3. These tomograms clearly delineate areas of amplitude attenuation and residual time of arrival or slowness differences. Plots for slowness were made using both the maximum and minimum of the first arrival pulse. The data demonstrates that the ABEM RAMAC 60-MHz pulse sampling radar system can be used to collect usable data in a highly conductive environment.

  19. Quantitative Eatimation of Ground Water Recharge Process in Vadose Zone Beneath a Rice Paddy Field Using Cross-Borehole Radar

    NASA Astrophysics Data System (ADS)

    Kuroda, S.; Shiina, Y.; Okuyama, T.; Takeutch, M.

    2005-12-01

    Wet Rice Paddy field is one of most important components of land uses in monsoon Asia. It is known to have some other beneficial functions than food production, for example ground water recharge, purification of surface and subsurface water, and alleviation of flood. Though ground water recharge process of paddy field is essential for those functions, the actual conditions of ground water recharge process beneath paddy field has not been clarified besides in the zone of about 1m depth from soil surface. Recently cross borehole radar is recognized as one of usefull methods for measurement of soil water distribution and its change. We applied cross borehole radar for monitoring of soil water in vadose zone beneath a paddy field to clarify the ground water recharge process. Cross borehole radar monitoring clarified the infiltration process into the vadose zone and shallow ground water aquifer beneath the paddy field. We estimated the increment of soil volumetric water content from CRIME model, the descent velocity of wetting front, and infiltration rate from cross borehole radar data quantitatively. They were almost coincident with the directly measured results. Using these results,we tried to estimate permeability based on some hypothesis of infiltration process.

  20. Borehole data transmission apparatus

    DOEpatents

    Kotlyar, O.M.

    1993-03-23

    A borehole data transmission apparatus is described whereby a centrifugal pump impeller(s) is used to provide a turbine stage having substantial pressure characteristics in response to changing rotational speed of a shaft for the pressure pulsing of data from the borehole through the drilling mud to the surface of the earth.

  1. Borehole data transmission apparatus

    DOEpatents

    Kotlyar, Oleg M.

    1993-01-01

    A borehole data transmission apparatus whereby a centrifugal pump impeller(s) is used to provide a turbine stage having substantial pressure characteristics in response to changing rotational speed of a shaft for the pressure pulsing of data from the borehole through the drilling mud to the surface of the earth.

  2. Automated water content reconstruction of zero-offset borehole ground penetrating radar data using simulated annealing

    NASA Astrophysics Data System (ADS)

    Rucker, Dale F.; Ferré, Ty P. A.

    2005-07-01

    The automated inversion of water content profiles from first arrival travel time data collected with zero-offset borehole ground penetrating radar is discussed. The inversion algorithm sets out to find the water content profile that minimizes a least-squares objective function representing the difference between the modeled and measured first arrival travel time. Ray-tracing analysis is used to determine the travel time for direct and critically refracted paths to identify the first arrival travel time. This automated method offers improvement over a previously presented graphical solution that considers both direct and critical refractions. Specifically, this approach can identify thinner layers and allow for the incorporation of uncertainty in the travel time measurements to determine the depth-specific uncertainty of the inferred water content profile through multiple simulations using a stochastic approach.

  3. PBO Borehole Strainmeters

    NASA Astrophysics Data System (ADS)

    David, M.; Hasting, M.; Jackson, M.; Dittmann, S. T.; Johnson, W.; Venator, S.; Andersen, G.; Hodgkinson, K.; Mueller, B.; Prescott, W.

    2006-12-01

    UNAVCO is a non-profit, community-based organization funded by the National Science Foundation to install and operate the geodetic component of EarthScope called the Plate Boundary Observatory (PBO). UNAVCO will install 103 borehole tensor strainmeters/seismometers and 28 borehole tiltmeters These instruments will be used to study the three-dimensional strain field resulting from deformation across the active boundary zone between the Pacific and North American plates in the western United States in hopes of increasing our understanding of the causes and mechanisms associated with earthquakes and volcanic activity. This represents almost a tripling of all installed borehole strainmeters in North America. Since the initial deployment of strainmeters in the early 1980's, borehole strainmeters have contributed valuable data at periods ranging from minutes to weeks with sensitivities two to three orders of magnitude better than continuous GPS at periods of days to weeks. Borehole strainmeters have been used to image earthquakes, slow earthquakes, creep events and volcanic eruptions in the US, Iceland and Japan. Initial PBO strainmeter deployments show promising results but there are still major hurdles to overcome in production, installation processes, data quality control, data processing and near real time delivery of calibrated strain data. PBO has made significant steps forward with the installation of 19 borehole strainmeters as of September 1st, 2006 with 28 total instruments planned by early December. In addition to strainmeters, each borehole contains a three-component geophone and a pore pressure transducer. A subset of the boreholes are also used for heat flow measurements. When completed the PBO borehole strainmeter network will be the largest network of strainmeters installed to date and one of the world's largest borehole seismic networks. These instruments will bridge the gap between seismology and space-geodetic techniques and represents the first dense

  4. Imaging saline tracer infiltration into unsaturated sandy soil using full-waveform inversion of cross-borehole ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Looms, M. C.; Haarder, E. B.; Keskinen, J.; Nielsen, L.; Van Der Kruk, J.; Klotzsche, A.

    2015-12-01

    Cross-borehole ground penetrating radar (GPR) can provide high-resolution (tens of centimeter) information of the subsurface between boreholes located 5-10 m apart. The method is minimal invasive and therefore provides a unique opportunity to image subsurface variability not possible with standard point-scale equipment, such as TDR- and/or capacitance probes. Full-waveform inversion (FWI) of cross-borehole GPR uses the entire waveform of the transmitted electromagnetic signal. The recorded data contains information on the travel time of the pulse, as well as the attenuation, resulting in moisture content and electrical conductivity images of the subsurface using just one method. Few case studies of cross-borehole GPR FWI using real data have been published to date. The majority of these studies focus on estimating the variation in porosity in the saturated zone (e.g. in gravel aquifers, fractured metamorphic rock, and heterogeneous chalk sediments). In this study, we use cross-borehole GPR to monitor the infiltration of a saline tracer into an unsaturated sandy soil. In September 2011, saline water was added across a 142 m2 area at an agricultural field site in Denmark. A total of 3.3 mm saline water was applied mimicking a natural infiltration event. During the following year, the tracer infiltration into the subsurface was monitored using cross-borehole GPR at weekly to monthly intervals. Furthermore, five cores were extracted within the field site to obtain independent profiles of soil moisture and pore water conductivity for comparison. The cross-borehole GPR data were inverted using ray-based and FWI techniques. For the FWI an appropriate starting model and an effective wavelet must be estimated. Preliminary results indicate that the data modeled for the FWI results mimic better the measured data compared to the ray-based results. However, more research is needed to investigate the influence of the used starting model and the effective wavelet estimation.

  5. Borehole seismic modeling

    NASA Astrophysics Data System (ADS)

    Zhen, Tao

    In many borehole seismic experiments, the velocity of the tube wave is higher than that of the surrounding rock shear wave. This fast tube wave creates a strong conical shear wave in the surrounding rock, similar to the Mach wave in supersonic aviation and the Cherenkov radiation in electrodynamics. Many geophysicists have tried to utilize the conical signal in VSP (vertical seismic profiling) and cross borehole data interpretation, using quasi static approximations to model the borehole effect. Two popular quasi static approximations are: the effective source array method for source borehole modeling and the squeeze strain method for receiver borehole modeling. These quasi static approximations are sensible as they qualitatively conform to Hueygen's principle and the typical wavelength of a VSP or a cross borehole seismic experiment is much larger than the borehole radius. However, they have not been quantitatively benchmarked against other non approximation method such as the frequency wave number method. The frequency wave number method is a rigorous, non approximation method for modeling straight boreholes without lengthwise variation. The boreholes may consist of many coaxial, homogeneous and axially symmetric shells. In this thesis, the results of the quasi static approximations are compared to the results obtained from the frequency wave number method. The comparison demonstrates that both the effective source array method and squeeze strain method gives the correct arrival time. The effective source array method gives incorrect amplitude and waveform for direct arrivals and tube waves due to its arbitrary assumption of the elementary source radiation pattern. The squeeze strain method gives fairly accurate amplitude and waveform for P and S direct arrivals but it fails to match the tube wave results obtained from the frequency wave number method. The omission of tube wave dispersion and amplitude loss by the quasi static approximation methods also

  6. Estimation of Biogenic Gas Distribution in a Northern Peatland Using Surface and Borehole Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Comas, X.; Slater, L.; Reeve, A.

    2005-05-01

    A combination of borehole and surface ground penetrating radar (GPR), time domain reflectometry (TDR) and direct gas sampling was performed to detect biogenic gas accumulation areas in Caribou Bog, a multi-unit peatland in central Maine (Orono). Areas of electromagnetic (EM) signal scattering (or shadow zones, similar to those reported with the seismic reflection method) observed in the surface GPR coincide with sampled zones of high CH4 and CO2 concentration. Shadow zones also correlate with areas of high EM wave velocity detected in zero offset profiles (ZOP) conducted with the borehole GPR, and with areas of low water content inferred with TDR. Application of the Complex Refractive Index Model (CRIM) to the EM wave velocities implies that the anomalous high velocity zones results from a volumetric gas content of 7% and 10% for a peat soil porosity of 91% and 94% respectively. In the absence of gas, the CRIM model predicts a porosity value of only 84% to reach the maximum EM wave velocity recorded, a value not supported by our peat porosity measurements in the laboratory and inconsistent with the high porosity of peat recorded by others. Strong reflectors detected with the surface GPR are interpreted as confining layers acting as biogenic gas traps and inducing overpressurized biogenic gas pockets as postulated by others. Spatial gas distribution and volumetric gas content can be roughly estimated considering the areas affected by EM wave blanking. These findings also have implications for the monitoring of temporal behavior of biogenic gas emissions to the atmosphere from peatlands.

  7. Borehole induction coil transmitter

    DOEpatents

    Holladay, Gale; Wilt, Michael J.

    2002-01-01

    A borehole induction coil transmitter which is a part of a cross-borehole electromagnetic field system that is used for underground imaging applications. The transmitter consists of four major parts: 1) a wound ferrite or mu-metal core, 2) an array of tuning capacitors, 3) a current driver circuit board, and 4) a flux monitor. The core is wound with several hundred turns of wire and connected in series with the capacitor array, to produce a tuned coil. This tuned coil uses internal circuitry to generate sinusoidal signals that are transmitted through the earth to a receiver coil in another borehole. The transmitter can operate at frequencies from 1-200 kHz and supplies sufficient power to permit the field system to operate in boreholes separated by up to 400 meters.

  8. Integrating Ground Penetrating Radar, Electrical Resistivity, Seismic Refraction, and Borehole Data to Image an Alluvial Aquifer in Three Dimensions

    NASA Astrophysics Data System (ADS)

    Bailey, B. L.; Marshall, S. T.; Anderson, W. P.

    2010-12-01

    In this study we image the subsurface of a mountain stream floodplain in order to determine the three-dimensional aquifer geometry and degree of hydrologic connectivity. On site borehole data provides detailed information about the subsurface including direct measurements of depth to the water table; however, boreholes are not cost effective over a large area, the existing boreholes only have a penetration depth of ~3 meters, and subsurface stratigraphic features may only be locally present. We therefore combine borehole data with ground-penetrating radar (GPR), electrical resistivity, and seismic refraction data collected in linear transects perpendicular to the stream in order to effectively image a larger portion of the subsurface in three-dimensions. GPR data images several buried/abandoned channels, but no significant hydrologic barriers, such as clay lenses, have been found. Strong shallow reflectors in GPR data correlate to borehole measurements of water table depth and indicate a relatively flat water table surface. Furthermore, the GPR data show strong reflectors at the bedrock/sedimentary basin interface, which appears to dip towards the river mimicking the nearby surface topography. Resistivity transects also clearly delineate the water table and bedrock interface, reinforcing the GPR results. Seismic refraction data successfully resolves the dipping nature of the bedrock interface beyond the GPR penetration depth. Because bedrock was only encountered in one borehole, integrating the geophysical data provides constraints on overall aquifer volume. Future modeling studies of groundwater dynamics will better represent realistic aquifer properties by utilizing the data gathered here. Our continuing work will involve comparing the effectiveness of each geophysical technique for specific geologic targets, determining which techniques have the best resolution, and expanding the survey region.

  9. Improved analysis of zero offset profiling borehole ground penetrating radar measurements for hydrologic monitoring

    NASA Astrophysics Data System (ADS)

    Rucker, D. F.; Ferre, T. P. A.

    2003-04-01

    Zero Offset Profiling (ZOP) Borehole Ground Penetrating Radar (BGPR) offers the possibility of monitoring the water content to great depths with high spatial and temporal resolution. This could greatly enhance our ability to monitor transient hydrologic processes, such as the advance of a wetting front or the accumulation or removal of light nonaqueous phase liquids. However, the presence of critical refractions from subsurface layers of contrasting volumetric water contents can limit the utility of ZOP BGPR. We present a method to infer the volumetric water content of near surface sediments based on the slope of a ZOP BGPR travel time profile. In addition, we present a method whereby critical refractions can be accounted for, leading to reconstruction of the true velocity profile from measured ZOP travel time profiles. This method relies on rapid, efficient genetic algorithms to identify the velocity profile that corresponds with the measured first arrival travel time profile. Finally, we show that this velocity reconstruction approach can allow for the analysis of hydraulic properties from ZOP BGPR measurements made during the advance of a wetting front and can improve the ability of ZOP BGPR to identify thin horizons associated with textural changes or the presence of nonaqueous phase liquids in the subsurface.

  10. A 3D numerical investigation of reservoir monitoring with borehole radar and its application in smart well

    NASA Astrophysics Data System (ADS)

    Zhou, F.; Miorali, M.; Slob, E. C.; Arts, R.

    2011-12-01

    Smart wells, a new generation of wells used in oil production, combine down-hole monitoring and control of the reservoir flow. Smart technology allows the implementation of proactive strategies that can mitigate potential problems, such as the approach of undesired fluids, before they impact production from the well. The effectiveness of the proactive strategies depends on the ability of monitoring the near-well region. We propose that borehole radar is a promising technology for this purpose. We couple 3D reservoir flow modeling with 3D radar modeling. The time-lapse analysis of the electromagnetic simulations confirms that radar can map the movement of the oil-water contact in a range of 1-10 m from the well. The comparison of the 3D reflected signals with the 2D show a good correlation, which allows cheaper simulation for a large-scale reservoir model. We use the radar results to implement a proactive control strategy in a realistic reservoir scenario. The NPV(Net Present Value) has improved by controlling the production according to the modeled radar measurements. We suggest borehole radar as a promising application in oil production optimization if an effective smart well control strategy is combined.

  11. Microexplosions in boreholes

    NASA Astrophysics Data System (ADS)

    Moren, P.

    1983-12-01

    At present micro explosions are the only known source that provides sufficient energy for large scale (about 0.5 to 1 km) seismic crosshole measurements. Results from a test of nondestructiveness on bore-hole walls from micro explosions are summarized. From geophysical well loggings in the holes it was found that only micro explosions with yields of 100 g and greater have a measurable effect on the bore-hole walls. However, the chemical properties of the bore-hole water changed as a result of collodial carbon of the explosive paste. Geophone-recordings from a series of shots with yields in the range 5 up to 200 g showed that the recorded maximum amplitude was linearly dependent of explosion yield.

  12. A scaled down laboratory experiment of cross-borehole pulse radar signatures for detection of a terminated tunnel

    NASA Astrophysics Data System (ADS)

    Cho, Jae-Hyoung; Jung, Ji-Hyun; Kim, Se-Yun; Yook, Jong-Gwan

    2016-09-01

    In the cross-borehole pulse radar signatures measured near the front end of a terminated tunnel, the time-of-arrival (TOA) with fully penetrated tunnel is significantly shortened due to the relatively fast pulse propagation in an empty tunnel compared with the TOA obtained without a tunnel. To analyze the TOA variation with the protrusion length of the terminated tunnel from the line-of-sight between two antennas or boreholes, additional borehole pairs are required around the terminated tunnel in spite of their high construction costs. As an alternative, a laboratory scaled down experiment, which has a high ability to simulate different underground configurations, is designed for investigation into the TOA effects of tunnel termination. A round ceramic rod with a careful selection of its dielectric constant is immersed in pure water in a water tank and used to simulate the tunnel in the experiment. Coaxial fed dipole antennas with balanced wire and ferrite cores are used not only to suppress borehole-guided waves but also to generate a symmetric radiation pattern. The accuracy of the laboratory scaled down experiment is verified by the symmetricity of the measured diffraction pattern of the fully penetrated ceramic rod. Then, the TOA variation is measured for the protrusion length of the ceramic rod relative to the line-of-sight between two antennas from  +80 mm to  ‑80 mm with an equal step of 5 mm. Based on the scaled down experimental measurements of the TOA, it is found that a tunnel 1.2 m away from the measuring cross-borehole section closely approaches the scaled up variation curve under the same conditions of the protrusion length.

  13. Steam injection pilot study in a contaminated fractured limestone (Maine, USA): Modeling and analysis of borehole radar reflection data

    USGS Publications Warehouse

    Gregoire, C.; Lane, J.W., Jr.; Joesten, P.K.

    2005-01-01

    Steam-enhanced remediation (SER) has been successfully used to remove DNAPL and LNAPL contaminants in porous media. Between August and November 2002, SER was tested in fractured limestone at the former Loring Air Force Base, in Maine, USA. During the SER investigation, the U.S. Geological Survey conducted a series of borehole radar surveys to evaluate the effectiveness of radar methods for monitoring the movement of steam and heat through the fractured limestone. The data were collected before steam injection, 10 days after the beginning of injection, and at the end of injection. In this paper, reflection-mode borehole radar data from wells JBW-7816 and JBW-7817A are presented and discussed. Theoretical modeling was performed to predict the variation of fracture reflectivity owed to heating, to show displacement of water and to assess the effect of SER at the site. Analysis of the radar profile data indicates some variations resulting from heating (increase of continuity of reflectors, attenuation of deeper reflections) but no substantial variation of traveltimes. Spectral content analysis of several individual reflections surrounding the boreholes was used to investigate the replacement of water by steam in the fractures. Observed decrease in radar reflectivity was too small to be explained by a replacement of water by steam, except for two high-amplitude reflectors, which disappeared near the end of the injection; moreover, no change of polarity, consistent with steam replacing water, was observed. The decrease of amplitude was greater for reflectors near well JBW-7817A and is explained by a greater heating around this well.

  14. Use of Borehole-Radar Methods to Monitor a Steam-Enhanced Remediation Pilot Study at a Quarry at the Former Loring Air Force Base, Maine

    USGS Publications Warehouse

    Gregoire, Colette; Joesten, Peter K.; Lane, Jr., John W.

    2007-01-01

    Single-hole radar reflection and crosshole radar tomography surveys were used in conjunction with conventional borehole-geophysical methods to evaluate the effectiveness of borehole-radar methods for monitoring the movement of steam and heat through fractured bedrock. The U.S. Geological Survey, in cooperation with U.S. Environmental Protection Agency (USEPA), conducted surveys in an abandoned limestone quarry at the former Loring Air Force Base during a field-scale, steam-enhanced remediation (SER) pilot project conducted by the USEPA, the U.S. Air Force, and the Maine Department of Environmental Protection to study the viability of SER to remediate non-aqueous phase liquid contamination in fractured bedrock. Numerical modeling and field experiments indicate that borehole-radar methods have the potential to monitor the presence of steam and to measure large temperature changes in the limestone matrix during SER operations. Based on modeling results, the replacement of water by steam in fractures should produce a decrease in radar reflectivity (amplitude of the reflected wave) by a factor of 10 and a change in reflection polarity. In addition, heating the limestone matrix should increase the bulk electrical conductivity and decrease the bulk dielectric permittivity. These changes result in an increase in radar attenuation and an increase in radar-wave propagation velocity, respectively. Single-hole radar reflection and crosshole radar tomography data were collected in two boreholes using 100-megahertz antennas before the start of steam injection, about 10 days after the steam injection began, and 2 months later, near the end of the injection. Fluid temperature logs show that the temperature of the fluid in the boreholes increased by 10?C (degrees Celsius) in one borehole and 40?C in the other; maximum temperatures were measured near the bottom of the boreholes. The results of the numerical modeling were used to interpret the borehole-radar data. Analyses of the

  15. Time-lapse borehole radar for monitoring rainfall infiltration through podosol horizons in a sandy vadose zone

    NASA Astrophysics Data System (ADS)

    Strobach, Elmar; Harris, B. D.; Dupuis, J. C.; Kepic, A. W.

    2014-03-01

    The shallow aquifer on the Gnangara Mound, north of Perth, Western Australia, is recharged by winter rainfall. Water infiltrates through a sandy Podosol where cemented accumulation (B-) horizons are common. They are water retentive and may impede recharge. To observe wetting fronts and the influence of soil horizons on unsaturated flow, we deployed time-lapse borehole radar techniques sensitive to soil moisture variations during an annual recharge cycle. Zero-offset crosswell profiling (ZOP) and vertical radar profiling (VRP) measurements were performed at six sites on a monthly basis before, during, and after annual rainfall in 2011. Water content profiles are derived from ZOP logs acquired in closely spaced wells. Sites with small separation between wells present potential repeatability and accuracy difficulties. Such problems could be lessened by (i) ZOP saturated zone velocity matching of time-lapse curves, and (ii) matching of ZOP and VRP results. The moisture contents for the baseline condition and subsequent observations are computed using the Topp relationship. Time-lapse moisture curves reveal characteristic vadose zone infiltration regimes. Examples are (I) full recharge potential after 200 mm rainfall, (II) delayed wetting and impeded recharge, and (III) no recharge below 7 m depth. Seasonal infiltration trends derived from long-term time-lapse neutron logging at several sites are shown to be comparable with infiltration trends recovered from time-lapse crosswell radar measurements. However, radar measurements sample a larger volume of earth while being safer to deploy than the neutron method which employs a radioactive source. For the regime (III) site, where time-lapse radar indicates no net recharge or zero flux to the water table, a simple water balance provides an evapotranspiration value of 620 mm for the study period. This value compares favorably to previous studies at similar test sites in the region. Our six field examples demonstrate

  16. Piezotube borehole seismic source

    SciTech Connect

    Daley, Tom M; Solbau, Ray D; Majer, Ernest L

    2014-05-06

    A piezoelectric borehole source capable of permanent or semipermanent insertion into a well for uninterrupted well operations is described. The source itself comprises a series of piezoelectric rings mounted to an insulative mandrel internally sized to fit over a section of well tubing, the rings encased in a protective housing and electrically connected to a power source. Providing an AC voltage to the rings will cause expansion and contraction sufficient to create a sonic pulse. The piezoelectric borehole source fits into a standard well, and allows for uninterrupted pass-through of production tubing, and other tubing and electrical cables. Testing using the source may be done at any time, even concurrent with well operations, during standard production.

  17. Micro borehole drilling platform

    SciTech Connect

    1996-10-01

    This study by CTES, L.C. meets two main objectives. First, evaluate the feasibility of using coiled tubing (CT) to drill 1.0 inches-2.5 inches diameter directional holes in hard rocks. Second, develop a conceptual design for a micro borehole drilling platform (MBDP) meeting specific size, weight, and performance requirements. The Statement of Work (SOW) in Appendix A contains detailed specifications for the feasibility study and conceptual design.

  18. Ice-Borehole Probe

    NASA Technical Reports Server (NTRS)

    Behar, Alberto; Carsey, Frank; Lane, Arthur; Engelhardt, Herman

    2006-01-01

    An instrumentation system has been developed for studying interactions between a glacier or ice sheet and the underlying rock and/or soil. Prior borehole imaging systems have been used in well-drilling and mineral-exploration applications and for studying relatively thin valley glaciers, but have not been used for studying thick ice sheets like those of Antarctica. The system includes a cylindrical imaging probe that is lowered into a hole that has been bored through the ice to the ice/bedrock interface by use of an established hot-water-jet technique. The images acquired by the cameras yield information on the movement of the ice relative to the bedrock and on visible features of the lower structure of the ice sheet, including ice layers formed at different times, bubbles, and mineralogical inclusions. At the time of reporting the information for this article, the system was just deployed in two boreholes on the Amery ice shelf in East Antarctica and after successful 2000 2001 deployments in 4 boreholes at Ice Stream C, West Antarctica, and in 2002 at Black Rapids Glacier, Alaska. The probe is designed to operate at temperatures from 40 to +40 C and to withstand the cold, wet, high-pressure [130-atm (13.20-MPa)] environment at the bottom of a water-filled borehole in ice as deep as 1.6 km. A current version is being outfitted to service 2.4-km-deep boreholes at the Rutford Ice Stream in West Antarctica. The probe (see figure) contains a sidelooking charge-coupled-device (CCD) camera that generates both a real-time analog video signal and a sequence of still-image data, and contains a digital videotape recorder. The probe also contains a downward-looking CCD analog video camera, plus halogen lamps to illuminate the fields of view of both cameras. The analog video outputs of the cameras are converted to optical signals that are transmitted to a surface station via optical fibers in a cable. Electric power is supplied to the probe through wires in the cable at a

  19. Borehole sealing method and apparatus

    DOEpatents

    Hartley, James N.; Jansen, Jr., George

    1977-01-01

    A method and apparatus is described for sealing boreholes in the earth. The borehole is blocked at the sealing level, and a sealing apparatus capable of melting rock and earth is positioned in the borehole just above seal level. The apparatus is heated to rock-melting temperature and powdered rock or other sealing material is transported down the borehole to the apparatus where it is melted, pooling on the mechanical block and allowed to cool and solidify, sealing the hole. Any length of the borehole can be sealed by slowly raising the apparatus in the borehole while continuously supplying powdered rock to the apparatus to be melted and added to the top of the column of molten and cooling rock, forming a continuous borehole seal. The sealing apparatus consists of a heater capable of melting rock, including means for supplying power to the heater, means for transporting powdered rock down the borehole to the heater, means for cooling the apparatus and means for positioning the apparatus in the borehole.

  20. Borehole survey method and apparatus for drilling substantially horizontal boreholes

    SciTech Connect

    Trowsdale, L.S.

    1982-11-30

    A borehole survey method and apparatus are claimed for use in drilling substantially horizontal boreholes through a mineral deposit wherein a dip accelerometer, a roll accelerometer assembly and a fluxgate are disposed near the drill bit, which is mounted on a bent sub, and connected to a surface computation and display unit by a cable which extends through the drill string. The dip angle of the borehole near the drill bit, the azimuth of the borehole near the drill bit and the roll angle or orientation of the bent sub are measured and selectively displayed at the surface while the drill string is in the borehole for utilization in guiding the drill bit through the mineral deposit along a predetermined path.

  1. Borehole survey instrument

    SciTech Connect

    Sharp, H.E.; Lin, J.W. III; Macha, E.S.; Smither, M.A.

    1984-12-04

    A borehole survey instrument is provided having a meniscus type floating compass member with indicia thereon for indicating azimuth and inclination. A light source is disposed below the indicia for illuminating the indicia upward through the liquid through which the meniscus type floating compass member floats. A lens system is provided for focusing the image of the illuminated compass member upon a film disposed below the compass member. This arrangement permits the centering post for the compass member to be of minimum diameter consistent with rigidity requirements and permits a high angle compass member to indicate angles of inclination approaching ninety degrees. A multiple light bulb light source is utilized and each light bulb is mounted in a manner which permits a single light bulb to illuminate the entire compass member. A hand-held programming and diagnostic unit is provided which may be momentarily electrically mated with the borehole survey tool to input a programmed timed delay and diagnostically test both the condition of the light bulbs utilized as the illumination source and the state of the batteries within the instrument. This hand-held programmable unit eliminates all the mechanical programming switches and permits the instrument to be completely sealed from the pressure, fluids and contaminants normally found in a well bore.

  2. Topical report on subsurface fracture mapping from geothermal wellbores. Phase I. Pulsed radar techniques. Phase II. Conventional logging methods. Phase III. Magnetic borehole ranging

    SciTech Connect

    Hartenbaum, B.A.; Rawson, G.

    1980-09-01

    To advance the state-of-the-art in Hot Dry Rock technology, an evaluation is made of (i) the use of radar to map far-field fractures, (ii) the use of more than twenty different conventional well logging tools to map borehole-fracture intercepts, and (iii) the use of magnetic dipole ranging to determine the relative positions of the injection well and the production well within the fractured zone. It is found that according to calculations, VHF backscatter radar has the potential for mapping fractures within a distance of 50 +- 20 meters from the wellbore. A new technique for improving fracture identification is presented. Analyses of extant data indicate that when used synergistically the (1) caliper, (2) resistivity dipmeter, (3) televiewer, (4) television, (5) impression packer, and (6) acoustic transmission are useful for mapping borehole-fracture intercepts. Improvements in both data interpretation techniques and high temperature operation are required. The surveying of one borehole from another appears feasible at ranges of up to 200 to 500 meters by using a low frequency magnetic field generated by a moderately strong dipole source (a solenoid) located in one borehole, a sensitive B field detector that traverses part of the second borehole, narrow band filtering, and special data inversion techniques.

  3. Side hole drilling in boreholes

    NASA Technical Reports Server (NTRS)

    Collins, Jr., Earl R. (Inventor)

    1980-01-01

    Apparatus for use in a borehole or other restricted space to bore a side hole into the strata surrounding the borehole, including a flexible shaft with a drill at its end, and two trains of sheathing members that can be progressively locked together into a rigid structure around the flexible shaft as it is directed sidewardly into the strata.

  4. Constraining Vadose Zone Flow Model Parameterisation Using Gamma Ray Borehole Logs And Zero-offset Cross-hole Radar Profiles.

    NASA Astrophysics Data System (ADS)

    Cassiani, G.; Binley, A. M.; Winship, P.

    The identification of unsaturated flow parameters is traditionally based on core re- trieval and laboratory testing. This approach is notoriously affected by severe draw- backs, such as the likely disturbance to samples and a mismatch between the scale of interest (m) and the sample scale (cm). In this study, we endorse a different approach, which relies upon borehole geophysical (natural gamma) logs for structural/geological information and cross-hole geophysical (radar) data for the measurement of the hy- drological response to natural loads (effective rainfall). This approach is applied to the results of an extensive monitoring programme at the Eggborough experimental site in Yorkshire, UK. The gamma ray logs are utilised in a geostatistical framework to gen- erate, in a stochastic fashion, simplified lithology scenarios. Each lithology is charac- terised by a set of unsaturated flow parameters using the van Genuchten model. Each lithological scenario is used for 1D vertical unsaturated flow simulations of rainfall recharge at a few locations. Cross-hole zero-offset radar surveys at several locations are used to provide time-varying vertical profiles of water content. For each simu- lation, a goodness-of-fit index between predicted and measured moisture content is computed, and is used to rank the likelihood of that parameter set. Both lithology and flow parameters are generated via a nested Monte Carlo approach. As a result, the likely ranges of unsaturated hydraulic parameters are estimated.

  5. Geological disaster survey based on Curvelet transform with borehole Ground Penetrating Radar in Tonglushan old mine site.

    PubMed

    Tang, Xinjian; Sun, Tao; Tang, Zhijie; Zhou, Zenghui; Wei, Baoming

    2011-06-01

    Tonglushan old mine site located in Huangshi City, China, is very famous in the world. However, some of the ruins had suffered from geological disasters such as local deformation, surface cracking, in recent years. Structural abnormalities of rock-mass in deep underground were surveyed with borehole ground penetrating radar (GPR) to find out whether there were any mined galleries or mined-out areas below the ruins. With both the multiresolution analysis and sub-band directional of Curvelet transform, the feature information of targets' GPR signals were studied on Curvelet transform domain. Heterogeneity of geotechnical media and clutter jamming of complicated background of GPR signals could be conquered well, and the singularity characteristic information of typical rock mass signals could be extracted. Random noise had be removed by thresholding combined with Curvelet and the statistical characteristics of wanted signals and the noise, then direct wave suppression and the spatial distribution feature extraction could obtain a better result by making use of Curvelet transform directional. GprMax numerical modeling and analyzing of the sample data have verified the feasibility and effectiveness of our method. It is important and applicable for the analyzing of the geological structure and the disaster development about the Tonglushan old mine site. PMID:25084600

  6. Borehole temperature variability at Hoher Sonnblick, Austria

    NASA Astrophysics Data System (ADS)

    Heinrich, Georg; Schöner, Wolfgang; Prinz, Rainer; Pfeiler, Stefan; Reisenhofer, Stefan; Riedl, Claudia

    2016-04-01

    The overarching aim of the project 'Atmosphere - permafrost relationship in the Austrian Alps - atmospheric extreme events and their relevance for the mean state of the active layer (ATMOperm)' is to improve the understanding of the impacts of atmospheric extreme events on the thermal state of the active layer using a combined measurement and modeling approach as the basis for a long-term monitoring strategy. For this purpose, the Sonnblick Observatory at the summit of Hoher Sonnblick (3106 m.a.s.l) is particularly well-suited due to its comprehensive long-term atmospheric and permafrost monitoring network (i.a. three 20 m deep boreholes since 2007). In ATMOperm, a robust and accurate permanent monitoring of active layer thickness at Hoher Sonnblick will be set up using innovative monitoring approaches by automated electrical resistivity tomography (ERT). The ERT monitoring is further supplemented by additional geophysical measurements such as ground penetrating radar, refraction seismic, electromagnetic induction and transient electromagnetics in order to optimally complement the gained ERT information. On the other hand, atmospheric energy fluxes over permafrost ground and their impact on the thermal state of permafrost and active layer thickness with a particular focus on atmospheric extreme events will be investigated based on physically-based permafrost modeling. For model evaluation, the borehole temperature records will play a key role and, therefore, an in-depth quality control of the borehole temperatures is an important prerequisite. In this study we will show preliminary results regarding the borehole temperature variability at Hoher Sonnblick with focus on the active layer. The borehole temperatures will be related to specific atmospheric conditions using the rich data set of atmospheric measurements of the site in order to detect potential errors in the borehole temperature measurements. Furthermore, we will evaluate the potential of filling gaps in

  7. Evaluation of borehole electromagnetic and seismic detection of fractures

    SciTech Connect

    Chang, H.T.; Suhler, S.A.; Owen, T.E.

    1984-02-01

    Experiments were conducted to establish the feasibility of downhole high-frequency techniques for location of fractures in the vicinity of boreholes. An existing flame-cut slot in granite was filled with salt water to simulate a brine-filled fracture. The first method used an electromagnetic wave at 30 to 300 MHz, vhf frequencies. A transmitter consisting of a phased dual-dipole array arranged to provide a directional signal toward the fracture was installed in a borehole opposite the fracture. A receiver was also located in the same borehole. The radar returns from the simulated fracture were detectable in boreholes located at distances of up to 12 meters from the fracture. These results indicate for the first time the feasibility of a downhole vhf radar for use in a single borehole for detection of fractures located away from the borehole. Similar experiments were also conducted using seismic waves at 4.5 to 6 KHz. The transmitter and the receiver in this case were located in separate boreholes. During this experiment, reflections from the slot were obtained only with the transducers oriented for shear wave illumination and detection. These results suggest that a high-frequency shear wave can also be used to detect fractures away from a borehole.

  8. Four models used for numerical simulation of a borehole radar antenna

    USGS Publications Warehouse

    Ellefsen, Karl J.; Wright, David L.

    2003-01-01

    In this report are four different models that represent an antenna used by personnel at the U.S. Geological Survey for crosswell investigations. The four models vary in complexity and concomitantly the accuracy with which they represent the actual antenna. These models are used in numerical simulations of the antenna to determine how it radiates radar waves.

  9. Maine Geological Survey Borehole Temperature Profiles

    DOE Data Explorer

    Marvinney, Robert

    2013-11-06

    This dataset includes temperature profiles from 30 boreholes throughout Maine that were selected for their depth, location, and lithologies encountered. Depths range from about 300 feet to 2,200 feet. Most of the boreholes selected for measurement were completed in granite because this lithology can be assumed to be nearly homogeneous over the depth of the borehole. Boreholes were also selected to address gaps in existing geothermal datasets. Temperature profiles were collected in October and November, 2012.

  10. Use of borehole radar reflection logging to monitor steam-enhanced remediation in fractured limestone-results of numerical modelling and a field experiment

    USGS Publications Warehouse

    Gregoire, C.; Joesten, P.K.; Lane, J.W., Jr.

    2006-01-01

    Ground penetrating radar is an efficient geophysical method for the detection and location of fractures and fracture zones in electrically resistive rocks. In this study, the use of down-hole (borehole) radar reflection logs to monitor the injection of steam in fractured rocks was tested as part of a field-scale, steam-enhanced remediation pilot study conducted at a fractured limestone quarry contaminated with chlorinated hydrocarbons at the former Loring Air Force Base, Limestone, Maine, USA. In support of the pilot study, borehole radar reflection logs were collected three times (before, during, and near the end of steam injection) using broadband 100 MHz electric dipole antennas. Numerical modelling was performed to predict the effect of heating on radar-frequency electromagnetic (EM) wave velocity, attenuation, and fracture reflectivity. The modelling results indicate that EM wave velocity and attenuation change substantially if heating increases the electrical conductivity of the limestone matrix. Furthermore, the net effect of heat-induced variations in fracture-fluid dielectric properties on average medium velocity is insignificant because the expected total fracture porosity is low. In contrast, changes in fracture fluid electrical conductivity can have a significant effect on EM wave attenuation and fracture reflectivity. Total replacement of water by steam in a fracture decreases fracture reflectivity of a factor of 10 and induces a change in reflected wave polarity. Based on the numerical modelling results, a reflection amplitude analysis method was developed to delineate fractures where steam has displaced water. Radar reflection logs collected during the three acquisition periods were analysed in the frequency domain to determine if steam had replaced water in the fractures (after normalizing the logs to compensate for differences in antenna performance between logging runs). Analysis of the radar reflection logs from a borehole where the temperature

  11. 30 CFR 75.1322 - Stemming boreholes

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Stemming boreholes 75.1322 Section 75.1322... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1322 Stemming boreholes (a) Only noncombustible material shall be used for stemming boreholes. (b) Stemming materials other...

  12. Waste Isolation Pilot Plant borehole data

    SciTech Connect

    1995-04-01

    Data pertaining to all the surface boreholes used at the WIPP site for site characterization hydrological testing and resource evaluation exist in numerous source documents. This project was initiated to develop a comprehensive data base that would include the data on all WIPP related surface boreholes from the Atomic Energy Commission, Waste Isolation Pilot Plant Energy Research and Development Administration, Department of Energy, and Hydrologic Test Borehole Programs. The data compiled from each borehole includes: operator, permit number, location, total depth, type of well, driller, drilling record, casing record, plugging schedule, and stratigraphic summary. There are six groups of boreholes contained in this data base, they are as follows: Commercially Drilled Potash Boreholes, Energy Department Wells, Geologic Exploration Boreholes, Hydrologic Test Boreholes, Potash Boreholes, and Subsurface Exploration Boreholes. There were numerous references which contained borehole data. In some cases the data found in one document was inconsistent with data in another document. In order to ensure consistency and accuracy in the data base, the same references were used for as many of the boreholes as possible. For example, all elevations and locations were taken from Compilation and Comparison of Test-Hole Location Surveys in the Vicinity of the WIPP Site. SAND 88-1065, Table 3-5. There are some sections where a data field is left blank. In this case, the information was either not applicable or was unavailable.

  13. 30 CFR 75.1322 - Stemming boreholes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Stemming boreholes. 75.1322 Section 75.1322... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1322 Stemming boreholes. (a) Only noncombustible material shall be used for stemming boreholes. (b) Stemming materials other...

  14. 30 CFR 75.1322 - Stemming boreholes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Stemming boreholes. 75.1322 Section 75.1322... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1322 Stemming boreholes. (a) Only noncombustible material shall be used for stemming boreholes. (b) Stemming materials other...

  15. 30 CFR 75.1322 - Stemming boreholes

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Stemming boreholes 75.1322 Section 75.1322... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1322 Stemming boreholes (a) Only noncombustible material shall be used for stemming boreholes. (b) Stemming materials other...

  16. 30 CFR 75.1322 - Stemming boreholes

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Stemming boreholes 75.1322 Section 75.1322... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1322 Stemming boreholes (a) Only noncombustible material shall be used for stemming boreholes. (b) Stemming materials other...

  17. Detecting a fluid-filled borehole using elastic waves from a remote borehole.

    PubMed

    Tang, Xiaoming; Cao, Jingji; Li, Zhen; Su, Yuanda

    2016-08-01

    The interaction of a fluid-filled borehole with incident elastic waves is an important topic for downhole acoustic measurements. By analyzing the wave phenomena of this problem, one can simulate the detection of a borehole target using a source-receiver system in a remote borehole. The analysis result shows that the wave signals from the target borehole are of sufficient amplitude even though the borehole size is small compared to wavelength. Consequently, the target borehole can be detected when the two boreholes are far away from each other. The result can be utilized to provide a method for testing downhole acoustic imaging tools. PMID:27586782

  18. MWD tool for deep, small diameter boreholes

    SciTech Connect

    Buytaert, J.P.R.; Duckworth, A.

    1992-03-17

    This patent describes an apparatus for measuring a drilling parameters while drilling a borehole in an earth formation, wherein the borehole includes a small diameter deep borehole portion and a large diameter upper borehole portion. It includes small diameter drillstring means for drilling the deep borehole portion; sensor means, disposed within the small diameter drillstring means, for measuring a drilling parameter characteristic of the deep portion of the borehole while drilling the deep portion of the borehole and for providing sensor output signals indicative of the measured parameter; an upper drillstring portion extending between the surface of the formation and the small diameter drillstring means, the upper drillstring portion including a large diameter drillstring portion; data transmission means disposed within the large diameter drillstring portion and responsive to the sensor output.

  19. Borehole Effects in Triaxial Induction Logging

    SciTech Connect

    Bertete-Aguirre, H; Cherkaev, E; Tripp, A

    2000-09-15

    Traditional induction tools use source arrays in which both receiving and transmitting magnetic dipoles are oriented along the borehole axis. This orientation has been preferred for traditional isotropic formation evaluation in vertical boreholes because borehole effects are minimized by the source-receiver-borehole symmetry. However, this source-receiver geometry tends to minimize the response of potentially interesting geological features? such as bed resistivity anisotropy and fracturing which parallels the borehole. Traditional uniaxial tool responses are also ambiguous in highly deviated boreholes in horizontally layered formations. Resolution of these features would be enhanced by incorporating one or more source transmitters that are perpendicular to the borehole axis. Although these transmitters can introduce borehole effects, resistive oil-based muds minimize borehole effects for horizontal source data collection and interpretation. However, the use of oil based muds is contraindicated in environmentally sensitive areas. For this reason, it is important to be able to assess the influence of conductive water based muds on the new generation of triaxial induction tools directed toward geothermal resource evaluation and to develop means of ameliorating any deleterious effects. The present paper investigates the effects of a borehole on triaxial measurements. The literature contains a great deal of work on analytic expressions for the EM response of a magnetic dipole contained in a borehole with possible invasion zones. Moran and Gianzero (1979) for example investigate borehole effects using such an expression. They show that for conductive borehole fluids, the borehole response can easily swamp the formation response for horizontal dipoles. This is also true when the source dipoles are enclosed in a resistive cavity, as shown by Howard (1981) using a mode match modeling technique.

  20. Slant Borehole Demonstration Summary Report

    SciTech Connect

    GARDNER, M.G.

    2000-07-19

    This report provides a summary of the demonstration project for development of a slant borehole to retrieve soil samples from beneath the SX-108 single-shell tank. It provides a summary of the findings from the demonstration activities and recommendations for tool selection and methods to deploy into the SX Tank Farm. Daily work activities were recorded on Drilling and Sampling Daily Work Record Reports. The work described in this document was performed during March and April 2000.

  1. Electromagnetic fields in cased borehole

    SciTech Connect

    Lee, Ki Ha; Kim, Hee Joon; Uchida, Toshihiro

    2001-07-20

    Borehole electromagnetic (EM) measurements, using fiberglass-cased boreholes, have proven useful in oil field reservoir characterization and process monitoring (Wilt et al., 1995). It has been presumed that these measurements would be impossible in steel-cased wells due to the very large EM attenuation and phase shifts. Recent laboratory and field studies have indicated that detection of EM signals through steel casing should be possible at low frequencies, and that these data provide a reasonable conductivity image at a useful scale. Thus, we see an increased application of this technique to mature oilfields, and an immediate extension to geothermal industry as well. Along with the field experiments numerical model studies have been carried out for analyzing the effect of steel casing to the EM fields. The model used to be an infinitely long uniform casing embedded in a homogeneous whole space. Nevertheless, the results indicated that the formation signal could be accurately recovered if the casing characteristics were independently known (Becker et al., 1998; Lee el al., 1998). Real steel-cased wells are much more complex than the simple laboratory models used in work to date. The purpose of this study is to develop efficient numerical methods for analyzing EM fields in realistic settings, and to evaluate the potential application of EM technologies to cross-borehole and single-hole environment for reservoir characterization and monitoring.

  2. Geoscience experiments in boreholes: instrumentation

    SciTech Connect

    Traeger, R.K.

    1984-05-01

    Drilling is the only method available to obtain unambiguous information on processes occurring in the earth's crust. When core and virgin formation fluid samples are available, the geological state of the formation may be defined in the vicinity of the borehole with little ambiguity. Unfortunately, core recovery is expensive and often not complete, and drilling muds contaminate formation fluids. Thus, investigations turn to downhole instrumentation systems to evaluate in situ formation parameters. Some such instruments and the associated interpretative techniques are well developed, especially if they find usage in the evaluation of hydrocarbon reservoirs. Other sytems, particularly those that yield geochemical information are, at best, shallow-hole devices, but they could be engineered for deep-hole applications. Interpretations of logs obtained in igneous and metamorphic systems are not well developed. Finally, measurements away from the immediate vicinity of the borehole are possible but the technology is primitive. In situ instrumentation capabilities and needs for research in boreholes will be reviewed; the review will include details from recent US and European discussions of instrumentation needs. The capability and availability of slim hole logging tools will be summarized. Temperature limitations of the overall logging system will be discussed (current limits are 300/sup 0/C) and options for measurements to 500/sup 0/C will be described.

  3. Borehole Stability in High-Temperature Formations

    NASA Astrophysics Data System (ADS)

    Yan, Chuanliang; Deng, Jingen; Yu, Baohua; Li, Wenliang; Chen, Zijian; Hu, Lianbo; Li, Yang

    2014-11-01

    In oil and gas drilling or geothermal well drilling, the temperature difference between the drilling fluid and formation will lead to an apparent temperature change around the borehole, which will influence the stress state around the borehole and tend to cause borehole instability in high geothermal gradient formations. The thermal effect is usually not considered as a factor in most of the conventional borehole stability models. In this research, in order to solve the borehole instability in high-temperature formations, a calculation model of the temperature field around the borehole during drilling is established. The effects of drilling fluid circulation, drilling fluid density, and mud displacement on the temperature field are analyzed. Besides these effects, the effect of temperature change on the stress around the borehole is analyzed based on thermoelasticity theory. In addition, the relationships between temperature and strength of four types of rocks are respectively established based on experimental results, and thermal expansion coefficients are also tested. On this basis, a borehole stability model is established considering thermal effects and the effect of temperature change on borehole stability is also analyzed. The results show that the fracture pressure and collapse pressure will both increase as the temperature of borehole rises, and vice versa. The fracture pressure is more sensitive to temperature. Temperature has different effects on collapse pressures due to different lithological characters; however, the variation of fracture pressure is unrelated to lithology. The research results can provide a reference for the design of drilling fluid density in high-temperature wells.

  4. Hydraulically controlled discrete sampling from open boreholes

    USGS Publications Warehouse

    Harte, Philip T.

    2013-01-01

    Groundwater sampling from open boreholes in fractured-rock aquifers is particularly challenging because of mixing and dilution of fluid within the borehole from multiple fractures. This note presents an alternative to traditional sampling in open boreholes with packer assemblies. The alternative system called ZONFLO (zonal flow) is based on hydraulic control of borehole flow conditions. Fluid from discrete fractures zones are hydraulically isolated allowing for the collection of representative samples. In rough-faced open boreholes and formations with less competent rock, hydraulic containment may offer an attractive alternative to physical containment with packers. Preliminary test results indicate a discrete zone can be effectively hydraulically isolated from other zones within a borehole for the purpose of groundwater sampling using this new method.

  5. Shear wave transducer for boreholes

    DOEpatents

    Mao, N.H.

    1984-08-23

    A technique and apparatus is provided for estimating in situ stresses by measuring stress-induced velocity anisotropy around a borehole. Two sets each of radially and tangentially polarized transducers are placed inside the hole with displacement directions either parallel or perpendicular to the principal stress directions. With this configuration, relative travel times are measured by both a pulsed phase-locked loop technique and a cross correlation of digitized waveforms. The biaxial velocity data are used to back-calculate the applied stress.

  6. Borehole Summary Report for Core Hole C4998 – Waste Treatment Plant Seismic Boreholes Project

    SciTech Connect

    Barnett, D. BRENT; Garcia, Benjamin J.

    2006-12-15

    Seismic borehole C4998 was cored through the upper portion of the Columbia River Basalt Group and Ellensburg Formation to provide detailed lithologic information and intact rock samples that represent the geology at the Waste Treatment Plant. This report describes the drilling of borehole C4998 and documents the geologic data collected during the drilling of the cored portion of the borehole.

  7. Coupled aquifer-borehole simulation.

    PubMed

    Clemo, Tom

    2010-01-01

    A model coupling fluid hydraulics in a borehole with fluid flow in an aquifer is developed in this paper. Conservation of momentum is used to create a one-dimensional steady-state model of vertical flow in an open borehole combined with radially symmetric flow in an aquifer and with inflow to the well through the wellbore screen. Both laminar and turbulent wellbore conditions are treated. The influence of inflow through the wellbore screen on vertical flow in the wellbore is included, using a relation developed by Siwoń (1987). The influence of inflow reduces the predicted vertical variation in head up to 15% compared to a calculation of head losses due to fluid acceleration and the conventional Colebrook-White formulation of friction losses in a circular pipe. The wellbore flow model is embedded into the MODFLOW-2000 ground water flow code. The nonlinear conservation of momentum equations are iteratively linearized to calculate the conductance terms for vertical flow in the wellbore. The resulting simulations agree favorably with previously published results when the model is adjusted to meet the assumptions of the previous coupled models. PMID:19682095

  8. 30 CFR 75.1318 - Loading boreholes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... shall be the primer cartridge with the end of the cartridge containing the detonator facing the back of... between each cartridge in the borehole. (d) When loading other boreholes— (1) The primer cartridge shall... inserted shall face the back of the borehole; and (3) The primer cartridge and other explosives shall...

  9. 30 CFR 75.1318 - Loading boreholes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... shall be the primer cartridge with the end of the cartridge containing the detonator facing the back of... between each cartridge in the borehole. (d) When loading other boreholes— (1) The primer cartridge shall... inserted shall face the back of the borehole; and (3) The primer cartridge and other explosives shall...

  10. Cross-borehole and surface-to-borehole electromagnetic induction for reservoir characterization

    SciTech Connect

    Wilt, M.J.; Morrison, H.F.; Becker, A.; Lee, K.H.

    1991-08-01

    Audio-frequency cross-borehole and surface-to-borehole electromagnetics (EM) are interesting alternatives to existing techniques for petroleum reservoir characterization and monitoring. With these methods signals may be propagated several hundreds of meters through typical sand/shale reservoirs and data may be collected at high accuracy with a high sensitivity to the subsurface resistivity distribution. Field systems for cross-borehole and surface-to-borehole EM measurements have been designed and built by Lawrence Livermore and Lawrence Berkeley Laboratories for reservoir evaluation and monitoring. The cross-borehole system utilizes vertical axis induction coil antennas for transmission and detection of sinusoidal signals. Data are collected in profiles with the source coil moving continuously while its signal is detected by a stationary receiver coil located in a separate well. Subsequent profiles are collected using a different receiver depth and the same transmitter span until a suite of profiles is obtained that cover the desired interval in the borehole. The surface-to-borehole system uses a large diameter surface loop transmitter and a vertical axis borehole receiver. Due to its high signal strength this system operates using a sweep frequency transmitter waveform so that data may be simultaneously collected over several decades of frequency. Surface-to-borehole profiles are equally repeatable and although this data is less sensitive than cross-borehole EM, it can be fit to a resistivity section consistent with the borehole log. 8 refs., 14 figs.

  11. Backtracking urbanization from borehole temperature

    NASA Astrophysics Data System (ADS)

    Bayer, Peter; Rivera, Jaime A.; Blum, Philipp; Rybach, Ladislaus

    2016-04-01

    The thermal regime in shallow ground is influenced by various factors such as short and long term climatic variations, atmospheric urban warming, land use change and geothermal energy use. Temperature profiles measured in boreholes represent precious archives of the past thermal conditions at the ground surface. Changes at the ground surface induce time-dependent variations in heat transfer. Consequently, instantaneous and persistent changes such as recent atmospheric climate change or paving of streets cause perturbations in temperature profiles, which now can be found in depths of hundred meters and even more. In our work, we focus on the influence of urbanization on temperature profiles. We inspect profiles measured in borehole heat exchanger (BHE) tubes before start of energy extraction. These were obtained at four locations in the city and suburbs of Zurich, Switzerland, by lowering a specifically developed temperature logging sensor in the 200-400 m long tubes. Increased temperatures indicate the existence of a subsurface urban heat island (SUHI). At the studied locations groundwater flow can be considered negligible, and thus conduction is the governing heat transport process. These locations are also favorable, as long-term land use changes and atmospheric temperature variations are well documented for more than the last century. For simulating transient land use changes and their effects on borehole temperature profiles, a novel analytical framework based on the superposition of Green's functions is presented. This allows flexible and fast computation of the long term three-dimensional evolution of the thermal regime in shallow ground. It also facilitates calibration of unknown spatially distributed parameter values and their correlation. With the given spatial and temporal discretization of land use and background atmospheric temperature variations, we are able to quantify the heat contribution by asphalt and buildings. By Bayesian inversion it is

  12. Kimama Well - Borehole Geophysics Database

    DOE Data Explorer

    Shervais, John

    2011-07-04

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Kimama drill site was set up to acquire a continuous record of basaltic volcanism along the central volcanic axis and to test the extent of geothermal resources beneath the Snake River aquifer. Data submitted by project collaborator Doug Schmitt, University of Alberta

  13. Kimberly Well - Borehole Geophysics Database

    DOE Data Explorer

    Shervais, John

    2011-07-04

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Kimberly drill hole was selected to document continuous volcanism when analysed in conjunction with the Kimama and is located near the margin of the plain. Data submitted by project collaborator Doug Schmitt, University of Alberta

  14. PBO Borehole Strain and Siesmic Network

    NASA Astrophysics Data System (ADS)

    Mencin, D.; Jackson, M.; Anderson, G.; Hodgkinson, K.; Hasting, M.; Dittman, T.; Johnson, W.; Meertens, C.

    2007-05-01

    UNAVCO is a non-profit, community-based organization funded by the National Science Foundation to install and operate the geodetic component of EarthScope called the Plate Boundary Observatory (PBO). UNAVCO will install 103 borehole tensor strainmeters/seismometers and 28 borehole tiltmeters These instruments will be used to study the three-dimensional strain field resulting from deformation across the active boundary zone between the Pacific and North American plates in the western United States in hopes of increasing our understanding of the causes and mechanisms associated with earthquakes and volcanic activity. This represents almost a tripling of all installed borehole strainmeters in North America. Since the initial deployment of strainmeters in the early 1980's, borehole strainmeters have contributed valuable data at periods ranging from minutes to weeks with sensitivities two to three orders of magnitude better than continuous GPS at periods of days to weeks. Borehole strainmeters have been used to image earthquakes, slow earthquakes, creep events and volcanic eruptions in the US, Iceland and Japan. A brief history of US BSM program is presented. Initial PBO strainmeter deployments show promising results: imaging two slow slip events in the PNW along with excellent tele-siesmic imaging. Exciting work has been done in the PBO community relating modeled strain from the GPS network to observed strain from the BSM network. PBO also plans the installation of three volcanic arrays at Mt St Helens, Yellowstone and Long Valley. In addition to strainmeters, each borehole contains a three-component geophone and a pore pressure transducer. A subset of the boreholes are also used for heat flow measurements. When completed the PBO borehole strainmeter network will be the largest network of strainmeters installed to date and one of the world's largest borehole seismic networks. These instruments will bridge the gap between seismology and space-geodetic techniques and

  15. Advanced motor driven clamped borehole seismic receiver

    DOEpatents

    Engler, Bruce P.; Sleefe, Gerard E.; Striker, Richard P.

    1993-01-01

    A borehole seismic tool including a borehole clamp which only moves perpendicular to the borehole. The clamp is driven by an electric motor, via a right angle drive. When used as a seismic receiver, the tool has a three part housing, two of which are hermetically sealed. Accelerometers or geophones are mounted in one hermetically sealed part, the electric meter in the other hermetically sealed part, and the clamp and right angle drive in the third part. Preferably the tool includes cable connectors at both ends. Optionally a shear plate can be added to the clamp to extend the range of the tool.

  16. Advanced motor driven clamped borehole seismic receiver

    DOEpatents

    Engler, B.P.; Sleefe, G.E.; Striker, R.P.

    1993-02-23

    A borehole seismic tool is described including a borehole clamp which only moves perpendicular to the borehole. The clamp is driven by an electric motor, via a right angle drive. When used as a seismic receiver, the tool has a three part housing, two of which are hermetically sealed. Accelerometers or geophones are mounted in one hermetically sealed part, the electric motor in the other hermetically sealed part, and the clamp and right angle drive in the third part. Preferably the tool includes cable connectors at both ends. Optionally a shear plate can be added to the clamp to extend the range of the tool.

  17. Borehole Summary Report for Waste Treatment Plant Seismic Borehole C4993

    SciTech Connect

    Rust, Colleen F.; Barnett, D. BRENT; Bowles, Nathan A.; Horner, Jake A.

    2007-02-28

    A core hole (C4998) and three boreholes (C4993, C4996, and C4997) were drilled to acquire stratigraphic and downhole seismic data to model potential seismic impacts and to refine design specifications and seismic criteria for the Waste Treatment Plant (WTP) under construction on the Hanford Site. Borehole C4993 was completed through the Saddle Mountains Basalt, the upper portion of the Wanapum Basalt, and associated sedimentary interbeds, to provide a continuous record of the rock penetrated by all four holes and to provide access to the subsurface for geophysical measure¬ment. Presented and compiled in this report are field-generated records for the deep mud rotary borehole C4993 at the WTP site. Material for C4993 includes borehole logs, lithologic summary, and record of rock chip samples collected during drilling through the months of August through early October. The borehole summary report also includes documentation of the mud rotary drilling, borehole logging, and sample collection.

  18. Application of ground-penetrating radar, digital optical borehole images, and cores for characterization of porosity hydraulic conductivity and paleokarst in the Biscayne aquifer, southeastern Florida, USA

    USGS Publications Warehouse

    Cunningham, K.J.

    2004-01-01

    This paper presents examples of ground-penetrating radar (GPR) data from two study sites in southeastern Florida where karstic Pleistocene platform carbonates that comprise the unconfined Biscayne aquifer were imaged. Important features shown on resultant GPR profiles include: (1) upward and lateral qualitative interpretative distribution of porosity and hydraulic conductivity; (2) paleotopographic relief on karstic subaerial exposure surfaces; and (3) vertical stacking of chronostratigraphic high-frequency cycles (HFCs). These characteristics were verified by comparison to rock properties observed and measured in core samples, and identified in digital optical borehole images. Results demonstrate that an empirical relation exists between measured whole-core porosity and hydraulic conductivity, observed porosity on digital optical borehole images, formation conductivity, and GPR reflection amplitudes-as porosity and hydraulic conductivity determined from core and borehole images increases, formation conductivity increases, and GPR reflection amplitude decreases. This relation allows for qualitative interpretation of the vertical and lateral distribution of porosity and hydraulic conductivity within HFCs. Two subtidal HFCs in the uppermost Biscayne aquifer have significantly unique populations of whole-core porosity values and vertical hydraulic conductivity values. Porosity measurements from one cycle has a median value about two to three times greater than the values from the other HFC, and median values of vertical hydraulic-conductivity about three orders of magnitude higher than the other HFC. The HFC with the higher porosity and hydraulic conductivity values is shown as a discrete package of relatively low-amplitude reflections, whereas the HFC characterized by lower porosity and hydraulic-conductivity measurements is expressed by higher amplitude reflections. Porosity and hydraulic-conductivity values measured from whole-core samples, and vuggy porosity

  19. Which boreholes do we need to resolve the Common Era in borehole paleoclimatology?

    NASA Astrophysics Data System (ADS)

    Rath, V.; Smerdon, J. E.; Gonzalez-Rouco, F. J.; Beltrami, H.

    2011-12-01

    The global database of borehole temperature profiles used to estimate paleoclimatic ground surface temperature histories (GSTHs) has typically focused on the last 500 years. his is mainly due to the fact that the borehole database is dominated by shallow boreholes (~200-300 m). Nevertheless, it has been shown that these boreholes may be too shallow for proper separation of the downwelling climatic transient and the long-term background steady-state signal associated with heat loss from the earth's interior. The mere inclusion of deeper boreholes, however, does not necessarily mitigate the problem. Borehole temperature profiles of any depth show the signatures of earlier climatic changes, including the strong warming following the last glacial maximum (LGM). In shallow boreholes this effect is very similar to a linear trend, usually cannot be discriminated from a steady-state geotherm, and is unlikely to strongly impact estimates of GSTHs spanning common-era timescales. In deeper boreholes, however, the signature of the LGM cannot be approximated linearly, and biases associated with the LGM may impact GSTH reconstructions during the Common Era. The combined incentive to employ deep boreholes for reliable estimation of the background steady-state signal, while limiting the LGM impacts on reconstructions of Common-Era GSTHs thus leads to an multi-objective optimization problem seeking a trade-off between the impacts of the two effects. Such an optimization of the borehole maximum depth criterion is investigated in this study using numerical models. A Monte Carlo ensemble approach is used to quantify the impact of various reconstruction decisions as temperature histories, error characteristics, thermophysical properties, and maximum borehole depths. The findings have implications for interpretations of current global reconstruction products and future efforts to analyze the global borehole database for Common-Era GSTH reconstructions.

  20. Which boreholes do we need to resolve the Common Era in borehole paleoclimatology?

    NASA Astrophysics Data System (ADS)

    Rath, V.; Smerdon, J. E.; González-Rouco, J. F.; Beltrami, H.

    2012-04-01

    The global database of borehole temperature profiles used to estimate paleoclimatic ground surface temperature histories (GSTHs) has typically focused on the last 500 years. his is mainly due to the fact that the borehole database is dominated by shallow boreholes (~200-300 m). Nevertheless, it has been shown that these boreholes may be too shallow for proper separation of the downwelling climatic transient and the long-term background steady-state signal associated with heat loss from the earth's interior. The mere inclusion of deeper boreholes, however, does not necessarily mitigate the problem. Borehole temperature profiles of any depth show the signatures of earlier climatic changes, including the strong warming following the last glacial maximum (LGM). In shallow boreholes this effect is very similar to a linear trend, usually cannot be discriminated from a steady-state geotherm, and is unlikely to strongly impact estimates of GSTHs spanning common-era timescales. In deeper boreholes, however, the signature of the LGM cannot be approximated linearly, and biases associated with the LGM may impact GSTH reconstructions during the Common Era. The combined incentive to employ deep boreholes for reliable estimation of the background steady-state signal, while limiting the LGM impacts on reconstructions of Common-Era GSTHs thus leads to an multi-objective optimization problem seeking a trade-off between the impacts of the two effects. Such an optimization of the borehole maximum depth criterion is investigated in this study using numerical models. A Monte Carlo ensemble approach is used to quantify the impact of various reconstruction decisions as temperature histories, error characteristics, thermophysical properties, and maximum borehole depths. The findings have implications for interpretations of current global reconstruction products and future efforts to analyze the global borehole database for Common-Era GSTH reconstructions. (http://palma.fis.ucm.es/~volker/)

  1. Borehole Summary Report for Waste Treatment Plant Seismic Borehole C4996

    SciTech Connect

    Adams , S. C.; Ahlquist, Stephen T.; Fetters, Jeffree R.; Garcia, Ben; Rust, Colleen F.

    2007-01-28

    This report presents the field-generated borehole log, lithologic summary, and the record of samples collected during the recent drilling and sampling of the basalt interval of borehole C4996 at the Waste Treatment Plant (WTP) on the Hanford Site. Borehole C4996 was one of four exploratory borings, one core hole and three boreholes, drilled to investigate and acquire detailed stratigraphic and down-hole seismic data. This data will be used to define potential seismic impacts and refine design specifications for the Hanford Site WTP.

  2. Using Boreholes as Windows into Groundwater Ecosystems

    PubMed Central

    Sorensen, James P. R.; Maurice, Louise; Edwards, François K.; Lapworth, Daniel J.; Read, Daniel S.; Allen, Debbie; Butcher, Andrew S.; Newbold, Lindsay K.; Townsend, Barry R.; Williams, Peter J.

    2013-01-01

    Groundwater ecosystems remain poorly understood yet may provide ecosystem services, make a unique contribution to biodiversity and contain useful bio-indicators of water quality. Little is known about ecosystem variability, the distribution of invertebrates within aquifers, or how representative boreholes are of aquifers. We addressed these issues using borehole imaging and single borehole dilution tests to identify three potential aquifer habitats (fractures, fissures or conduits) intercepted by two Chalk boreholes at different depths beneath the surface (34 to 98 m). These habitats were characterised by sampling the invertebrates, microbiology and hydrochemistry using a packer system to isolate them. Samples were taken with progressively increasing pumped volume to assess differences between borehole and aquifer communities. The study provides a new conceptual framework to infer the origin of water, invertebrates and microbes sampled from boreholes. It demonstrates that pumping 5 m3 at 0.4–1.8 l/sec was sufficient to entrain invertebrates from five to tens of metres into the aquifer during these packer tests. Invertebrates and bacteria were more abundant in the boreholes than in the aquifer, with associated water chemistry variations indicating that boreholes act as sites of enhanced biogeochemical cycling. There was some variability in invertebrate abundance and bacterial community structure between habitats, indicating ecological heterogeneity within the aquifer. However, invertebrates were captured in all aquifer samples, and bacterial abundance, major ion chemistry and dissolved oxygen remained similar. Therefore the study demonstrates that in the Chalk, ecosystems comprising bacteria and invertebrates extend from around the water table to 70 m below it. Hydrogeological techniques provide excellent scope for tackling outstanding questions in groundwater ecology, provided an appropriate conceptual hydrogeological understanding is applied. PMID:23936176

  3. Borehole stability in densely welded tuffs

    SciTech Connect

    Fuenkajorn, K.; Daemen, J.J.K.

    1992-07-01

    The stability of boreholes, or more generally of underground openings (i.e. including shafts, ramps, drifts, tunnels, etc.) at locations where seals or plugs are to be placed is an important consideration in seal design for a repository (Juhlin and Sandstedt, 1989). Borehole instability or borehole breakouts induced by stress redistribution could negate the effectiveness of seals or plugs. Breakout fractures along the wall of repository excavations or exploratory holes could provide a preferential flowpath for groundwater or gaseous radionuclides to bypass the plugs. After plug installation, swelling pressures exerted by a plug could induce radial cracks or could open or widen preexisting cracks in the rock at the bottom of the breakouts where the tangential compressive stresses have been released by the breakout process. The purpose of the work reported here is to determine experimentally the stability of a circular hole in a welded tuff sample subjected to various external boundary loads. Triaxial and biaxial borehole stability tests have been performed on densely welded Apache Leap tuff samples and Topopah Spring tuff samples. The nominal diameter of the test hole is 13.3 or 14.4 mm for triaxial testing, and 25.4 mm for biaxial testing. The borehole axis is parallel to one of the principal stress axes. The boreholes are drilled through the samples prior to applying external boundary loads. The boundary loads are progressively increased until breakouts occur or until the maximum load capacity of the loading system has been reached. 74 refs.

  4. Means and method for protecting apparatus situated in a borehole from closure of the borehole

    SciTech Connect

    Haberman, J.P.

    1983-08-16

    Apparatus, situated in a borehole traversing an earth formation, is protected from closure of the borehole by being encased in an inflatable device. Surface equipment inflates and maintains the inflatable device at a sufficient pressure so as to prevent the earth formation from closing in an contacting the apparatus.

  5. Seismoelectric Wave Measurements in Borehole Models

    NASA Astrophysics Data System (ADS)

    Wang, J.; Hu, H.; Guan, W.

    2014-12-01

    An experimental system was built in the laboratory based on the electrokinetic theory, which contains a small scaled seismoelectric detector and a high resolution digitizer ( 1 MS/s, 22 bits ). The electrokinetic measurements are carried out with seismoelectric well logging technique in borehole models at high frequency (90 kHz), and the localized electrokinetic fields that accompany compressional wave, shear wave and Stoneley wave are clearly observed with monopole source in two sandstone models that are saturated by tap water. The magnitudes of these seismoelectric waves are in the range of 1-100 microvolt, which is useful for designing the seismoelectric logging instruments. The experimental results also show that the seismoelectric well logging signals are related to the permeability of borehole formations. Their amplitudes become larger in the high permeability model, which can be used to measure the permeability of rock formation although no such relationship has ever been provided in existing theories. We also made seismoelectric measurements in a lucite borehole model, but no observable seismoelectric signals were recorded by the electrode. This is not out of our expectation because the lucite formation is not porous and no electrokinetic conversion occurs in such material. However, the electric signal recorded in the Lucite borehole represents the background noise of our measurement system, which is less than 0.5 microvolt. This study verifies the feasibility of seismoelectric well logging, and also presents the range of seismoelectric signals in borehole saturated by tap water that is much closer to the condition of actual formation.

  6. Inverse borehole coupling filters and their applications

    SciTech Connect

    Peng, C.

    1994-12-31

    This paper describes a new procedure for processing VSP and crosswell data acquired using an array of hydrophone. The procedure consists of three steps. In the first step the authors apply an inverse borehole coupling equation to convert hydrophone pressure data into borehole squeeze pressure data, by which the tube waves are significantly attenuated and the P-wave and S-wave are partially compensated for the borehole effects. In the second step, they make use of a partial differential equation that relates the borehole squeeze pressure to the pressure of the incident P-wave. In the third step, they show that one can also map the hydrophone pressure data into the geophone response, provided that both the P-wave and S-wave velocity profiles along the borehole are known. Several synthetic examples are used to demonstrate its accuracy. The Kent Cliffs hydrophone data are successfully processed using the above steps, and the data quality is found to be significantly improved.

  7. On the Pitfalls and Limitations of Applying Petrophysical Models to Geophysical Tomograms: Examples in Cross-Borehole Radar and Electrical-Resistivity Tomography

    NASA Astrophysics Data System (ADS)

    Day-Lewis, F. D.; Singha, K.; Binley, A. M.

    2004-05-01

    Geophysical field data have traditionally provided qualitative information on aquifer structure for hydrogeologic characterization; however, there is increasing interest in the application of petrophysical models to convert geophysical tomograms of electrical resistivity or radar velocity, for example, to hydrologic parameters, such as permeability, porosity, water content, and (or) salinity. Unfortunately, application of theoretical or empirical petrophysical models may be inappropriate in many situations, given the limited and variable resolution of tomographic estimates. The resolution of tomograms is a function of (1) the measurement physics, for example, electrical conduction or electromagnetic wave propagation; (2) the parameterization and regularization used for inversion; (3) measurement error; and (4) the length scale of heterogeneity. We present a framework to predict how core-scale relations between geophysical properties and hydrologic parameters break down in the inversion, which produces smoothly-varying pixel-scale estimates. Our approach upscales the core-scale relationship to the pixel-scale based on the model resolution matrix from the inversion, random field averaging, and spatial statistics of the geophysical property. In synthetic examples, we use the approach to evaluate the utility of tomograms for quantitative hydrologic estimation, in light of their resolution-dependent limitations. Comparison of examples for cross-borehole electrical resistivity tomography and radar tomography demonstrates the role of the measurement physics on the spatially-variable pixel-scale relationships between geophysical estimates and hydrologic parameters of interest. The goals of this work are to (1) raise awareness of the limitations of geophysical data, (2) provide a framework to improve survey design and assess tomograms for hydrologic estimation, and (3) promote additional research to improve the links between geophysical and hydrogeologic characterization.

  8. Gamma-ray spectral calculations for uranium borehole logging

    SciTech Connect

    Close, D.A.; Evans, M.L.; Jain, M.

    1980-06-01

    Gamma-ray transport calculations were performed to determine the energy distribution of gamma rays inside a borehole introduced into an infinite medium. The gamma rays from the naturally occurring radioactive isotopes of potassium, thorium, and uranium were uniformly distributed in a sandstone formation (having a porosity of 0.30 and a saturation of 1.0) surrounding the borehole. A sonde was placed coaxially inside the borehole. Parametric studies were done to determine how the borehole radius, borehole fluid, and borehole casing influence the gamma-ray flux inside the sonde.

  9. Excess plutonium disposition: The deep borehole option

    SciTech Connect

    Ferguson, K.L.

    1994-08-09

    This report reviews the current status of technologies required for the disposition of plutonium in Very Deep Holes (VDH). It is in response to a recent National Academy of Sciences (NAS) report which addressed the management of excess weapons plutonium and recommended three approaches to the ultimate disposition of excess plutonium: (1) fabrication and use as a fuel in existing or modified reactors in a once-through cycle, (2) vitrification with high-level radioactive waste for repository disposition, (3) burial in deep boreholes. As indicated in the NAS report, substantial effort would be required to address the broad range of issues related to deep bore-hole emplacement. Subjects reviewed in this report include geology and hydrology, design and engineering, safety and licensing, policy decisions that can impact the viability of the concept, and applicable international programs. Key technical areas that would require attention should decisions be made to further develop the borehole emplacement option are identified.

  10. Development of a geothermal acoustic borehole televiewer

    SciTech Connect

    Heard, F.E.; Bauman, T.J.

    1983-08-01

    Most geothermal wells are drilled in hard rock formations where fluid flow is through systems of open fractures. Productivity of these wells is usually determined by the extent of intersection of the wellbore with the fracture system. A need exists for fracture mapping methods and tools which can operate in a geothermal environment. In less hostile environments, the acoustic borehole televiewer has been shown to be a useful tool for determining location, orientation, and characterization of fractures as they intersect the borehole and for general wellbore and casing inspection. The development conducted at Sandia National Laboratories to adapt an acoustic borehole televiewer for operation in a geothermal environment is described. The modified instrument has been successfully tested at temperatures as high as 280/sup 0/C and pressures up to 5000 psi, and used successfully to map fractures and casing damage in geothermal wells.

  11. VTT test borehole for bedrock investigations

    NASA Astrophysics Data System (ADS)

    Okko, Olli; Hassinen, Pertti; Front, Kai

    1994-02-01

    A borehole of depth 150 m and diameter 56 mm has been drilled in the area adjacent to the premises of the Technical Research Center of Finland (VTT) at Otaniemi, Espoo, for the purposes of calibrating geophysical measurement devices. The report presents the test results obtained so far and illustrates the processing of these, in which the various measurements are plotted as curves and combinations of curves. The interpretations provided so far consist of analyses of lithological variations, bedrock fracturing, the nature and occurrence of fracture zones and groundwater flow patterns. Samples were taken from those parts of the core shown by the borehole measurements to be homogeneous and thin sections made from these for mineralogical determinations. The rock mechanical and petrophysical properties of the same points were examined. The core is in the possession of VTT, and the hole itself is available to outsiders for the calibration and testing of borehole measurement equipment.

  12. Using borehole geophysics and cross-borehole flow testing to define hydraulic connections between fracture zones in bedrock aquifers

    USGS Publications Warehouse

    Paillet, Frederick L.

    1993-01-01

    Nearly a decade of intensive geophysical logging at fractured rock hydrology research sites indicates that geophysical logs can be used to identify and characterize fractures intersecting boreholes. However, borehole-to-borehole flow tests indicate that only a few of the apparently open fractures found to intersect boreholes conduct flow under test conditions. This paper presents a systematic approach to fracture characterization designed to define the distribution of fractures along boreholes, relate the measured fracture distribution to structure and lithology of the rock mass, and define the nature of fracture flow paths across borehole arrays. Conventional electrical resistivity, gamma, and caliper logs are used to define lithology and large-scale structure. Borehole wall image logs obtained with the borehole televiewer are used to give the depth, orientation, and relative size of fractures in situ. High-resolution flowmeter measurements are used to identify fractures conducting flow in the rock mass adjacent to the boreholes. Changes in the flow field over time are used to characterize the hydraulic properties of fracture intersections between boreholes. Application of this approach to an array of 13 boreholes at the Mirror Lake, New Hamsphire site demonstrates that the transient flow analysis can be used to distinguish between fractures communicating with each other between observation boreholes, and those that are hydraulically isolated from each other in the surrounding rock mass. The Mirror Lake results also demonstrate that the method is sensitive to the effects of boreholes on the hydraulic properties of the fractured-rock aquifer. Experiments conducted before and after the drilling of additional boreholes in the array and before and after installation of packers in existing boreholes demonstrate that the presence of new boreholes or the inflation of packers in existing boreholes has a large effect on the measured hydraulic properties of the rock mass

  13. Borehole Summary Report for C4997 Rotary Drilling, WTP Seismic Boreholes Project, CY 2006

    SciTech Connect

    Difebbo, Thomas J.

    2007-02-28

    The following Final Geologic Borehole Report briefly describes the drilling of a single borehole at the Waste Treatment Plant (WTP) on the Hanford, Washington, U.S. Department of Energy (DOE) reservation. The location of the WTP is illustrated in Figure 1-1. The borehole was designated as “C4997”, and was drilled to obtain seismic and lithologic data for the Pretreatment Facility and High-Level Waste Vitrification Plant in the WTP. Borehole C4997 was drilled and logged to a total depth of 1428 ft below ground surface (bgs) on October 8, 2006, and was located approximately 150 ft from a recently cored borehole, designated as “C4998”. Pacific Northwest National Laboratory (PNNL) determined the locations for C4997, C4998, and other boreholes at the WTP in cooperation with the U.S. Army Corps of Engineers (USACE) Review Panel, and the Defense Nuclear Facilities Safety Board (DNFSB). The total depth of Borehole C4997 was also determined by PNNL.

  14. A borehole jack for deformability, strength, and stress measurements in a 2-inch borehole

    NASA Technical Reports Server (NTRS)

    Goodman, R. E.; Hovland, H. J.; Chirapuntu, S.

    1971-01-01

    A borehole jack devised for lunar exploration is described and results of its use in simulated lunar solids are presented. A hydraulic cylinder mounted between two stiff plates acts to spread the plates apart against the borehole walls when pressured. The spreading is measured by a displacement transducer and the load is measured hydraulically. The main improvement over previous instruments is the increased stroke, which allows large deformations of the borehole. Twenty-eight pistons are used to obtain a high hydraulic efficiency, and three return pistons are also provided. Pressure-deformation curves were obtained for each test on Lunar Soil Simulant No. 2, a light gray silty basalt powder.

  15. Method for isolating two aquifers in a single borehole

    DOEpatents

    Burklund, Patrick W.

    1985-10-22

    A method for isolating and individually instrumenting separate aquifers within a single borehole. A borehole is first drilled from the ground surface, through an upper aquifer, and into a separating confining bed. A casing, having upper and lower sections separated by a coupling collar, is lowered into the borehole. The borehole is grouted in the vicinity of the lower section of the casing. A borehole is then drilled through the grout plug and into a lower aquifer. After the lower aquifer is instrumented, the borehole is grouted back into the lower portion of the casing. Then the upper section of the casing is unscrewed via the coupling collar and removed from the borehole. Finally, instrumentation is added to the upper aquifer and the borehole is appropriately grouted. The coupling collar is designed to have upper right-hand screw threads and lower left-hand screw thread, whereby the sections of the casing can be readily separated.

  16. Method for isolating two aquifers in a single borehole

    DOEpatents

    Burklund, P.W.

    1984-01-20

    A method for isolating and individually instrumenting separate aquifers within a single borehole is disclosed. A borehole is first drilled from the ground surface, through an upper aquifer, and into a separating confining bed. A casing, having upper and lower sections separated by a coupling collar, is lowered into the borehole. The borehole is grouted in the vicinity of the lower section of the casing. A borehole is then drilled through the grout plug and into a lower aquifer. After the lower aquifer is instrumented, the borehole is grouted back into the lower portion of the casing. Then the upper section of the casing is unscrewed via the coupling collar and removed from the borehole. Finally, instrumentation is added to the upper aquifer and the borehole is appropriately grouted. The coupling collar is designed to have upper right-hand screw threads and lower left-hand screw thread, whereby the sections of the casing can be readily separated.

  17. BOREHOLE FLOWMETERS: FIELD APPLICATION AND DATA ANALYSIS

    EPA Science Inventory

    This paper reviews application of borehole flowmeters in granular and fractured rocks. Basic data obtained in the field are the ambient flow log and the pumping-induced flow log. These basic logs may then be used to calculate other quantities of interest. The paper describes the ...

  18. BOREHOLE FLOWMETERS: FIELD APPLICATION AND DATA ANALYSIS

    EPA Science Inventory

    This paper reviews application of borehole flowmeters in granular and fractured rocks. asic data obtained in the field are the ambient flow log and the pumping-induced flow log. hese basic logs may then be used to calculate other quantities of interest. he paper describes the app...

  19. Entry Boreholes Summary Report for the Waste Treatment Plant Seismic Boreholes Project

    SciTech Connect

    Horner, Jake A.

    2007-02-28

    This report describes the 2006 fiscal year field activities associated with the installation of four cable-tool-drilled boreholes located within the boundary of the Waste Treatment Plant (WTP), DOE Hanford site, Washington. The cable-tool-drilled boreholes extend from surface to ~20 ft below the top of basalt and were utilized as cased entry holes for three deep boreholes (approximately 1400 ft) that were drilled to support the acquisition of sub-surface geophysical data, and one deep corehole (1400 ft) that was drilled to acquire continuous core samples from underlying basalt and sedimentary interbeds. The geophysical data acquired from these boreholes will be integrated into a seismic response model that will provide the basis for defining the seismic design criteria for the WTP facilities.

  20. 30 CFR 75.1315 - Boreholes for explosives.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Boreholes for explosives. 75.1315 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1315 Boreholes for explosives. (a) All explosives fired underground shall be confined in boreholes except— (1)...

  1. 30 CFR 75.1315 - Boreholes for explosives.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Boreholes for explosives. 75.1315 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1315 Boreholes for explosives. (a) All explosives fired underground shall be confined in boreholes except— (1)...

  2. 30 CFR 75.1315 - Boreholes for explosives.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Boreholes for explosives. 75.1315 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1315 Boreholes for explosives. (a) All explosives fired underground shall be confined in boreholes except— (1)...

  3. 30 CFR 75.1315 - Boreholes for explosives.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Boreholes for explosives. 75.1315 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1315 Boreholes for explosives. (a) All explosives fired underground shall be confined in boreholes except— (1)...

  4. 30 CFR 75.388 - Boreholes in advance of mining.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Boreholes in advance of mining. 75.388 Section 75.388 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.388 Boreholes in advance of mining. (a) Boreholes shall be drilled...

  5. 30 CFR 75.388 - Boreholes in advance of mining.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Boreholes in advance of mining. 75.388 Section 75.388 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.388 Boreholes in advance of mining. (a) Boreholes shall be drilled...

  6. 30 CFR 75.1315 - Boreholes for explosives.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Boreholes for explosives. 75.1315 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1315 Boreholes for explosives. (a) All explosives fired underground shall be confined in boreholes except— (1)...

  7. Integrated 3-D Ground-Penetrating Radar, Outcrop, and Borehole Data Applied to Reservoir Characterization and Flow Simulation

    SciTech Connect

    George McMechan; Rucsandra Corbeanu; Craig Forster; Kristian Soegaard; Xiaoxian Zeng; Carlos Aiken; Robert Szerbiak; Janok Bhattacharya; Michael Wizevich; Xueming Xu; Stephen Snelgrove; Karen Roche; Siang Joo Lim; Djuro Navakovic; Christopher White; Laura Crossey; Deming Wang; John Thurmond; William Hammon III; Mamadou BAlde; Ari Menitove

    2001-08-31

    OAK-B135 (IPLD Cleared) Existing reservoir models are based on 2-D outcrop studies; 3-D aspects are inferred from correlation between wells, and so are inadequately constrained for reservoir simulations. To overcome these deficiencies, we initiated a multidimensional characterization of reservoir analogs in the Cretaceous Ferron Sandstone in Utah. The study was conducted at two sites (Corbula Gulch and Coyote Basin); results from both sites are contained in this report. Detailed sedimentary facies maps of cliff faces define the geometry and distribution of potential reservoir flow units, barriers and baffles at the outcrop. High resolution 2-D and 3-D ground-penetrating radar (GPR) images extend these reservoir characteristics into 3-D, to allow development of realistic 3-D reservoir models. Models use geometric information from the mapping and the GPR data, petrophysical data from surface and cliff-face outcrops, lab analyses of outcrop and core samples, and petrography. The measurements are all integrated into a single coordinate system using GPS and laser mapping of the main sedimentological features and boundaries.The final step is analysis of results of 3-D fluid flow modeling to demonstrate applicability of our reservoir analog studies to well siting and reservoir engineering for maximization of hydrocarbon production. The main goals of the project are achieved. These are the construction of a deterministic 3-D reservoir analog model from a variety of geophysical and geologic measurements at the field sites, integrating these into comprehensive petrophysical models, and flow simulations through these models. This unique approach represents a significant advance in characterization and use of reservoir analogs.

  8. Electrical resistance tomography from measurements inside a steel cased borehole

    DOEpatents

    Daily, William D.; Schenkel, Clifford; Ramirez, Abelardo L.

    2000-01-01

    Electrical resistance tomography (ERT) produced from measurements taken inside a steel cased borehole. A tomographic inversion of electrical resistance measurements made within a steel casing was then made for the purpose of imaging the electrical resistivity distribution in the formation remotely from the borehole. The ERT method involves combining electrical resistance measurements made inside a steel casing of a borehole to determine the electrical resistivity in the formation adjacent to the borehole; and the inversion of electrical resistance measurements made from a borehole not cased with an electrically conducting casing to determine the electrical resistivity distribution remotely from a borehole. It has been demonstrated that by using these combined techniques, highly accurate current injection and voltage measurements, made at appropriate points within the casing, can be tomographically inverted to yield useful information outside the borehole casing.

  9. BOREHOLE NEUTRON ACTIVATION: THE RARE EARTHS.

    USGS Publications Warehouse

    Mikesell, J.L.; Senftle, F.E.

    1987-01-01

    Neutron-induced borehole gamma-ray spectroscopy has been widely used as a geophysical exploration technique by the petroleum industry, but its use for mineral exploration is not as common. Nuclear methods can be applied to mineral exploration, for determining stratigraphy and bed correlations, for mapping ore deposits, and for studying mineral concentration gradients. High-resolution detectors are essential for mineral exploration, and by using them an analysis of the major element concentrations in a borehole can usually be made. A number of economically important elements can be detected at typical ore-grade concentrations using this method. Because of the application of the rare-earth elements to high-temperature superconductors, these elements are examined in detail as an example of how nuclear techniques can be applied to mineral exploration.

  10. Design parameters for borehole strain instrumentation

    NASA Astrophysics Data System (ADS)

    Gladwin, Michael T.; Hart, Rhodes

    1985-01-01

    The response of a borehole strain meter to hydrostatic and shear deformations in an isotropic medium is calculated to facilitate optimum instrument design and produce instrument response factors for parameters typically encountered in installed instruments. Results for an empty borehole are first compared with results for an instrument in intimate contact with the surrounding rock. The effects of the grout used to install the instrument are then examined. Where possible, analytic forms for the response factors are given. Results for typical installations are then presented in graphical form for optimizing instrument design in an environment of known elastic parameters. Alternatively, the results may be applied in the measurement of unknown strain signals, to correct for instrument response or to provide in-situ estimates of the elastic properties of the environment by examination of observed strain response to known strain signals.

  11. High-precision multicomponent borehole deformation monitoring

    NASA Astrophysics Data System (ADS)

    Gladwin, Michael T.

    1984-12-01

    An instrument capable of deep borehole measurement of vector plane strain to 0.3 nstrain and tilt to 1.0 nrad has been developed for deployment in crustal deformation and earthquake prediction studies. The instrument has been deployed in California where shear strains dominate the deformation. The 125-mm-diam package is grouted in 175-mm boreholes at depths of approximately 200 m. The wall thickness and the grout thickness are chosen to match instrument strength to expected rock parameters. The instrument is capable of flat response from dc to 10 Hz on any single channel. The electronics package is stable to three parts in 108 over the temperature range 10 to 45° C. Reliable shear strain data is available immediately on installation when simple volume strain meters show only bond curing effects or thermal recovery signals.

  12. Low Noise Borehole Triaxial Seismometer Phase II

    SciTech Connect

    Kerr, James D; McClung, David W

    2006-11-06

    This report describes the preliminary design and the effort to date of Phase II of a Low Noise Borehole Triaxial Seismometer for use in networks of seismic stations for monitoring underground nuclear explosions. The design uses the latest technology of broadband seismic instrumentation. Each parameter of the seismometer is defined in terms of the known physical limits of the parameter. These limits are defined by the commercially available components, and the physical size constraints. A theoretical design is proposed, and a preliminary prototype model of the proposed instrument has been built. This prototype used the sensor module of the KS2000. The installation equipment (hole locks, etc.) has been designed and one unit has been installed in a borehole. The final design of the sensors and electronics and leveling mechanism is in process. Noise testing is scheduled for the last quarter of 2006.

  13. Advances in borehole geophysics for hydrology

    SciTech Connect

    Nelson, P.H.

    1982-01-01

    Borehole geophysical methods provide vital subsurface information on rock properties, fluid movement, and the condition of engineered borehole structures. Within the first category, salient advances include the continuing improvement of the borehole televiewer, refinement of the electrical conductivity dipmeter for fracture characterization, and the development of a gigahertz-frequency electromagnetic propagation tool for water saturation measurements. The exploration of the rock mass between boreholes remains a challenging problem with high potential; promising methods are now incorporating high-density spatial sampling and sophisticated data processing. Flow-rate measurement methods appear adequate for all but low-flow situations. At low rates the tagging method seems the most attractive. The current exploitation of neutron-activation techniques for tagging means that the wellbore fluid itself is tagged, thereby eliminating the mixing of an alien fluid into the wellbore. Another method uses the acoustic noise generated by flow through constrictions and in and behind casing to detect and locate flaws in the production system. With the advent of field-recorded digital data, the interpretation of logs from sedimentary sequences is now reaching a sophisticated level with the aid of computer processing and the application of statistical methods. Lagging behind are interpretive schemes for the low-porosity, fracture-controlled igneous and metamorphic rocks encountered in the geothermal reservoirs and in potential waste-storage sites. Progress is being made on the general problem of fracture detection by use of electrical and acoustical techniques, but the reliable definition of permeability continues to be an elusive goal.

  14. Borehole fracture detection using magnetic powder

    SciTech Connect

    Smith, D.G.

    1985-01-01

    A method for detecting fractures in a formation penetrated by a borehole wherein the fracture is first filled with a magnetic material and the formation then logged with an instrument that responds to the earth's magnetic field. The fracture can be filled with a magnetic material by including it in the drilling mud when the well is drilled and changing the mud system before logging. The logging tool can comprise a simple compass or a magnetometer.

  15. Promising pneumatic punchers for borehole drilling

    SciTech Connect

    A.A. Lipin

    2005-03-15

    The state of borehole drilling by downhole pneumatic punchers and their potential use in open and underground mining as well as in exploration for reliable sampling are analyzed. Performance specification is presented for the new-generation pneumatic punchers equipped with a pin tool, effectively operating at a compressed-air pressure of 0.5-0.7 MPa, and with an additional extended exhaust from the power stroke chamber during working cycle.

  16. A borehole-to-surface electromagnetic survey

    SciTech Connect

    Tseng, Hung-Wen; Becker, A.; Wilt, M.; Descz-Pan, M.

    1995-12-31

    We have assessed the feasibility of borehole to surface electromagnetic measurements for fluid injection monitoring. To do this we performed a vertical electromagnetic profiling (VEMP) experiment at the University of California Richmond Field Station where a saline water injection zone was created at a subsurface depth of 30 meters. The methodology used is quite similar to the conventional seismic (VSP) procedure for surface to borehole measurements. In our case however, the transmitter was located in a PVC cased borehole while the receivers were deployed on the surface. With a carefully designed system operating at 9.6 kHz we were able to make measurements accurate to 1 % in amplitude and 1 degree in phase. The data profiles at surface were centered on the injection well and extended for 60 m on either side of it. Measurements were made at 5 m intervals. Although the VEMP process is quite vulnerable to near surface conductivity anomalies we readily detected the flat tabular target zone which was about 3 m thick and covered an area of about 120 M{sup 2}.

  17. Preliminary results from hot-water drilling and borehole instrumentation on Store Glacier, West Greenland

    NASA Astrophysics Data System (ADS)

    Doyle, S. H.; Christoffersen, P.; Hubbard, B. P.; Young, T. J.; Hofstede, C. M.; Box, J.; Todd, J.; Bougamont, M. H.; Hubbard, A.

    2015-12-01

    As part of the Subglacial Access and Fast Ice Research Experiment (SAFIRE) pressurised hot water was used to drill four 603-616 m-long boreholes to the bed of the Greenland Ice Sheet at a site located 30 km from the calving front of fast-flowing, marine-terminating Store Glacier (70° N, ~1000 m elevation). Despite the boreholes freezing within hours, 4 wired sensor strings were successfully deployed in three of the boreholes. These included a thermistor string to obtain the englacial temperature profile installed in the same borehole as a string of tilt sensors to measure borehole deformation, and two sets of water pressure, electrical conductivity and turbidity sensors installed just above the bed in separate, adjacent boreholes. The boreholes made a strong hydrological connection to the bed during drilling, draining rapidly to ~80 m below the ice surface. The connection of subsequent boreholes was observed as a perturbation in water pressure and temperature recorded in neighbouring boreholes, indicating an effective hydrological sub- or en-glacial connection between them. The sensors, which were all connected to loggers at the surface by cables, operated for between ~30 and 80+ days before indications suggest that the cables stretched and then snapped - with the lowermost sensors failing first. The records obtained from these sensors reveal (i) high and increasing water pressure varying diurnally close to overburden albeit of a small magnitude (~ 0.3 m H2O), (ii) a minimum extrapolated englacial temperature of -21°C with above-freezing temperatures at the bed, and (iv) high rates of internal deformation and strain increasing towards the bed as evinced by increasing tilt with depth. These borehole observations are complemented by GPS measurements of ice motion, meteorological data, and seismic and radar surveys.

  18. Effect of borehole design on electrical impedance tomography measurements

    NASA Astrophysics Data System (ADS)

    Mozaffari, Amirpasha; Huisman, Johan Alexander; Treichel, Andrea; Zimmermann, Egon; Kelter, Matthias; Vereecken, Harry

    2015-04-01

    Electrical Impedance Tomography (EIT) is a sophisticated non-invasive tool to investigate the subsurface in engineering and environmental studies. To increase the depth of investigation, EIT measurements can be made in boreholes. However, the presence of the borehole may affect EIT measurements. Here, we aim to investigate the effect of different borehole components on EIT measurements using 2,5-D and 3D finite element modeling and unstructured meshes. To investigate the effect of different borehole components on EIT measurements, a variety of scenarios were designed. In particular, the effect of the water-filled borehole, the PVC casing, and the gravel filter were investigated relative to complex resistivity simulations for a homogenous medium with chain and electrode modules. It was found that the results of the complex resistivity simulations were best understood using the sensitivity distribution of the electrode configuration under consideration. In all simulations, the sensitivity in the vicinity of the borehole was predominantly negative. Therefore, the introduction of the water-filled borehole caused an increase in the real part of the impedance, and a decrease (more negative) in the imaginary part of the simulated impedance. The PVC casing mostly enhanced the effect of the water-filled borehole described above, although this effect was less clear for some electrode configuration. The effect of the gravel filter mostly reduced the effect of the water-filled borehole with PVC casing. For EIT measurements in a single borehole, the highest simulated phase error was 12% for a Wenner configuration with electrode spacing of 0.33 m. This error decreased with increasing electrode spacing. In the case of cross-well configurations, the error in the phase shit was as high as 6%. Here, it was found that the highest errors occur when both current electrodes are located in the same borehole. These results indicated that cross-well measurements are less affected by the

  19. Borehole Paleoclimatology: In search of a minimum depth criterion for terrestrial borehole temperature profiles

    NASA Astrophysics Data System (ADS)

    Beltrami, H.; Smerdon, J. E.; Matharoo, G.; Nickerson, N. R.

    2010-12-01

    One important uncertainty in borehole paleoclimatology that has been overlooked is the degree to which ground surface temperature (GST) reconstructions depend on the maximum depth of the profile. Because the vast majority of measured borehole temperature profiles are acquired from boreholes of opportunity, the maximum measurement depth in data used for paleoclimatic studies varies considerably (beginning at depths as shallow as 100-150 m and extending to depths of more than 1 km). The depth of the borehole is important because the downwelling climatic signal must be separated from the quasi-steady state thermal regime established by the energy in the Earth's interior. This component of the signal is estimated as a linear increase in temperature with depth from the lower section of a borehole temperature profile, which is assumed to be unperturbed by recent changes in climate at the surface. The validity of this assumption is dependent on both the subsurface thermophysical properties and the character of the downwelling climatic signal. Such uncertainties can significantly impact the determination of the quasi-steady state thermal regime, and consequently the magnitude of the temperature anomaly interpreted as a climatic signal. Here we illustrate how the minimum depth of a temperature-depth profile impacts the estimation of the climatic transient and the resultant GST reconstruction. In particular, we attempt to quantitatively illustrate the effects and uncertainties that arise from the analysis of borehole temperature logs of different depths. Our results demonstrate that widely different GST histories can be derived from a single temperature profile truncated at different depths. We show that borehole temperature measurements approaching 500-600 m depths provide the most robust GST reconstructions and are preferable for inferring past climatic variations at the ground surface. Furthermore, we find that the bias introduced by a temperature profile of depths

  20. Effects of the deviation characteristics of nuclear waste emplacement boreholes on borehole liner stresses; Yucca Mountain Project

    SciTech Connect

    Glowka, D.A.

    1990-09-01

    This report investigates the effects of borehole deviation on the useability of lined boreholes for the disposal of high-level nuclear waste at the proposed Yucca Mountain Repository in Nevada. Items that lead to constraints on borehole deviation include excessive stresses that could cause liner failure and possible binding of a waste container inside the liner during waste emplacement and retrieval operations. Liner stress models are developed for two general borehole configurations, one for boreholes drilled with a steerable bit and one for boreholes drilled with a non-steerable bit. Procedures are developed for calculating liner stresses that arise both during insertion of the liner into a borehole and during the thermal expansion process that follows waste emplacement. The effects of borehole curvature on the ability of the waste container to pass freely inside the liner without binding are also examined. Based on the results, specifications on borehole deviation allowances are developed for specific vertical and horizontal borehole configurations of current interest. 11 refs., 22 figs., 4 tabs.

  1. Canister, Sealing Method And Composition For Sealing A Borehole

    DOEpatents

    Brown, Donald W.; Wagh, Arun S.

    2005-06-28

    Method and composition for sealing a borehole. A chemically bonded phosphate ceramic sealant for sealing, stabilizing, or plugging boreholes is prepared by combining an oxide or hydroxide and a phosphate with water to form slurry. The slurry is introduced into the borehole where the seal, stabilization or plug is desired, and then allowed to set up to form the high strength, minimally porous sealant, which binds strongly to itself and to underground formations, steel and ceramics.

  2. Borehole-geophysical investigation of the University of Connecticut landfill, Storrs, Connecticut

    USGS Publications Warehouse

    Johnson, Carole D.; Haeni, F.P.; Lane, Jr., John W.; White, Eric A.

    2002-01-01

    A borehole-geophysical investigation was conducted to help characterize the hydrogeology of the fractured-rock aquifer and the distribution of unconsolidated glacial deposits near the former landfill and chemical waste-disposal pits at the University of Connecticut in Storrs, Connecticut. Eight bedrock boreholes near the landfill and three abandoned domestic wells located nearby were logged using conventional and advanced borehole-geophysical methods from June to October 1999. The conventional geophysical-logging methods included caliper, gamma, fluid temperature, fluid resistivity, and electromagnetic induction. The advanced methods included deviation, optical and acoustic imaging of the borehole wall, heat-pulse flowmeter, and directional radar reflection. Twenty-one shallow piezometers (less than 50-feet deep) were logged with gamma and electromagnetic induction tools to delineate unconsolidated glacial deposits. Five additional shallow bedrock wells were logged with conventional video camera, caliper, electromagnetic induction, and fluid resistivity and temperature tools. The rock type, foliation, and fracturing of the site were characterized from high-resolution optical-televiewer (OTV) images of rocks penetrated by the boreholes. The rocks are interpreted as fine- to medium-grained quartz-feldspar-biotite-garnet gneiss and schist with local intrusions of quartz diorite and pegmatite and minor concentrations of sulfide mineralization similar to rocks described as the Bigelow Brook Formation on regional geologic maps. Layers containing high concentrations of sulfide minerals appear as high electrical conductivity zones on electromagnetic-induction and borehole-radar logs. Foliation in the rocks generally strikes to the northeast-southwest and dips to the west, consistent with local outcrop observations. The orientation of foliation and small-scale gneissic layering in the rocks, however, varies locally and with depth in some of the boreholes. In two of the

  3. Borehole sounding device with sealed depth and water level sensors

    DOEpatents

    Skalski, Joseph C.; Henke, Michael D.

    2005-08-02

    A borehole device having proximal and distal ends comprises an enclosure at the proximal end for accepting an aircraft cable containing a plurality of insulated conductors from a remote position. A water sensing enclosure is sealingly attached to the enclosure and contains means for detecting water, and sending a signal on the cable to the remote position indicating water has been detected. A bottom sensing enclosure is sealingly attached to the water sensing enclosure for determining when the borehole device encounters borehole bottom and sends a signal on the cable to the remote position indicating that borehole bottom has been encountered.

  4. Method and apparatus for multipole acoustic wave borehole logging

    SciTech Connect

    Winbow, G.A.; Baker, L.J.

    1987-03-10

    A method is described for determining the radial thickness of an invaded zone of an earth formation surrounding a borehole where a virgin earth formation surrounds the borehole and is separated from the borehole by the invaded zone. The method comprises: (a) transmitting a 2/sup n/-pole P-wave from a point in the borehole into the earth formation surrounding the borehole, n being an integer greater than zero; (b) measuring the P-wave velocity of a zone of the earth formation located at a first radial distance from the borehole by detecting the arrival of the 2/sup n/-pole P-wave at a first location and at a second location in the borehole spaced longitudinally along the borehole from the point of transmission and from each other. The second location is spaced farther from the point of transmission than is the first location, the time arrival between the detections of the 2/sup n/-pole P-wave arrival is measured at the first location and the second location; and (c) repeating the steps (a) and (b) with successively increased longitudinal spacings between the point of transmission and the first location and between the point of transmission and the second location to measure the P-wave velocities of zones of the earth formation located successively radially farther away from the borehole.

  5. A borehole-to-surface electromagnetic survey

    USGS Publications Warehouse

    Tseng, H.-W.; Becker, A.; Wilt, M.J.; Deszcz-Pan, M.

    1998-01-01

    The results of a limited field trial confirm the usefulness of borehole-to-surface electromagnetic (EM) measurements for monitoring fluid extraction. A vertical EM profiling experiment was done at the University of California Richmond Field Station, where we simulated a brine spill plume by creating a saline water injection zone at a depth of 30 m. The data acquisition mode was analogous to the reverse vertical seismic profiling (VSP) configuration used for seismic measurements in that the EM transmitter traversed the PVC-cased borehole used for fluid injection and extraction while the receivers were deployed on the surface. The EM measurements were made at 9.6 kHz with an accuracy of 1% in signal amplitude and 1??in signal phase. Observations were taken at 5-m intervals along two intersecting profiles that were centered on the injection well and extended for 60 m on either side of it. The presence of the injected salt water, at the expected 30 m depth, was indicated clearly by differences between the pre-extraction and postextraction data. A limited amount of numerical modeling showed that the experimental data were consistent with the presence of two superposed saline plumes. The uppermost of these, located at 26 m depth, was 2 m thick and had an area of 30 m2. The lower plume, located at 30 m, is the major cause of the observed anomally, as it has an areal extent of 120 m2 and a thickness of 3 m. Surprisingly, the measurements were very sensitive to the presence of cultural surficial conductivity anomalies. These spurious effect were reduced by spatial filtering of the data prior to interpretation.The results of a limited field trial confirm the usefulness of borehole-to-surface electromagnetic (EM) measurements for monitoring fluid extraction. A brine spill plume is simulated by creating a saline water injection zone at a depth of 30 m. The data acquisition mode was analogous to the reverse vertical seismic profiling (VSP) configuration used for seismic

  6. Mountain Home Well - Borehole Geophysics Database

    DOE Data Explorer

    Shervais, John

    2012-11-11

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. Data submitted by project collaborator Doug Schmitt, University of Alberta

  7. Fiber optic communication in borehole applications

    SciTech Connect

    Franco, R.J.; Morgan, J.R.

    1997-04-01

    The Telemetry Technology Development Department have, in support of the Advanced Geophysical Technology Department and the Oil Recovery Technology Partnership, developed a fiber optic communication capability for use in borehole applications. This environment requires the use of packaging and component technologies to operate at high temperature (up to 175{degrees}C) and survive rugged handling. Fiber optic wireline technology has been developed by The Rochester Corporation under contract to Sandia National Labs and produced a very rugged, versatile wireline cable. This development has utilized commercial fiber optic component technologies and demonstrated their utility in extreme operating environments.

  8. Phase Identification of Seismic Borehole Samples

    SciTech Connect

    Crum, Jarrod V.; Riley, Brian J.

    2006-11-01

    This report documents the phase identification results obtained by x-ray diffraction (XRD) analysis of samples taken from borehole C4998 drilled at the Waste Treatment Plant (WTP) on the Hanford Site (REF). XRD samples were taken from fractures and vesicles or are minerals of interest at areas of interest within the basalt formations cored. The samples were powder mounted and analyzed. Search-match software was used to select the best match from the ICDD mineral database based on peak locations and intensities.

  9. Repeat temperature measurements in borehole GC-1, northwestern Utah - Towards isolating a climate-change signal in borehole temperature profiles

    SciTech Connect

    Chapman, D.S.; Harris, R.N. )

    1993-09-01

    Temperature-depth profiles in borehole GC-1, northwestern Utah, were measured in 1978, 1990, and 1992. Borehole temperatures below 80 m depth are highly reproducible over the 14 year period indicating long term thermal stability. A slowly changing temperature field above 80 m depth has similiar characteristics to synthetic temperature profiles computed from a 100 year record of air temperature changes at Park Valley weather station 50 km northeast of the borehole site. 6 refs.

  10. The Role of Active Fractures on Borehole Breakout Development

    NASA Astrophysics Data System (ADS)

    Sahara, D.; Kohl, T.; Schoenball, M.; Müller, B.

    2013-12-01

    The properties of georeservoirs are strongly related to the stress field and their interpretation is a major target in geotechnical management. Borehole breakouts are direct indicators of the stress field as they develop due to the concentration of the highest compressional stress toward the minimum horizontal stress direction. However, the interaction with fractures might create local perturbations. Such weakened zones are often observed by localized anomalies of the borehole breakout orientation. We examined high-quality acoustic borehole televiewer (UBI) logs run in the entire granite sections at the deep well GPK4 at Soultz-sous-Forêts, France. The borehole is moderately inclined (15° - 35°) in its middle section. Detailed analysis of 1221 borehole elongation pairs in the vicinity of 1871 natural fractures observed in GPK4 well is used to infer the role of fractures on the borehole breakouts shape and orientation. Patterns of borehole breakout orientation in the vicinity of active fractures suggest that the wavelength of the borehole breakout orientation anomalies in this granite rock depend on the scale of the fracture while the rotation amplitude and direction is strongly influenced by the fracture orientation. In the upper and middle part of the well even a linear trend between fracture and breakout orientations could be established. In addition to the rotation, breakouts typically are found to be asymmetrically formed in zones of high fracture density. We find that major faults tend to create a systematic rotation of borehole breakout orientation with long spatial wavelength while abrupt changes are often observed around small fractures. The finding suggest that the borehole breakout heterogeneities are not merely governed by the principal stress heterogeneities, but that the effect of mechanical heterogeneities like elastic moduli changes, rock strength anisotropy and fracturing must be taken into account. Thus, one has to be careful to infer the

  11. Hydrogeologic framework and borehole yields in Ghana

    NASA Astrophysics Data System (ADS)

    Dapaah-Siakwan, S.; Gyau-Boakye, P.

    2000-08-01

    In Ghana, 68% of the population live in rural communities, which are scattered and remote. Groundwater is the most feasible source of potable water supply for most of these dispersed and remote settlements. To meet the present and future challenges of population expansion vis-à-vis the observed declining rainfall in most parts of Africa including Ghana, it is necessary to assess, efficiently manage, and utilize the groundwater resources. The objective of this paper is therefore to describe the hydrogeologic framework and analyze borehole yields as part of the groundwater-resources assessment of Ghana. The hydrogeologic units are broadly categorized as: (1) the Basement Complex (crystalline rocks), which underlies about 54% of the country; (2) the Voltaian System, which underlies about 45%; and (3) the Cenozoic, Mesozoic, and Paleozoic sedimentary strata (Coastal Provinces), which underlie the remaining 1% of the country. The Basement Complex and the Coastal Provinces have higher groundwater potential than the Voltaian System. This is particularly significant, because the Basement Complex and the Coastal Provinces underlie the most densely populated areas of the country and can hence be tapped for human use. The average borehole yields of the Basement Complex, the Coastal Provinces and the Voltaian System range from 2.7-12.7, 3.9-15.6, and 6.2-8.5 m3/h, respectively.

  12. Optical Seismometers: Borehole and Vault Applications

    NASA Astrophysics Data System (ADS)

    Otero, J. D.; Berger, J.; Wyatt, F. K.; Zumberge, M. A.

    2009-12-01

    We have developed an interferometric seismometer which uses optics instead of electronics to infer ground motion. The sensor, assembled exclusively from glass and metal materials, could be deployed into deep boreholes where temperatures often exceed 150 °C. Our first prototype consists of a leaf-spring suspension and an optical-fiber-linked interferometer, which monitors vertical displacement of the seismic mass. Several years of testing and improvements have increased its performance at both low (e.g., tidal) and high (tens of Hz) frequencies. The prototype sensor performs as well as or better than most observatory grade seismometers and has an overall observed dynamic range of 109 or 30 bits of resolution (based on its observed noise floor and its maximum mass velocity). We have also built a simple horizontal component prototype which consists of a mass suspended from a vertical pendulum whose flexure is fabricated from a single block of material. Just as our vertical seismometer can serve as a gravity meter, the horizontal prototype can serve as a tiltmeter (both of their responses are flat to DC). Tests are currently being conducted with the new sensor in our Piñon Flat Seismic Test Facility (California). One advantage of our optical displacement transducer is its dynamic range, which relaxes the requirement that the horizontal component sensor be level, simplifying borehole installations. We have already achieved a dynamic range of ±5° and we expect that a range of ±10° is possible with some effort.

  13. Second ILAW Site Borehole Characterization Plan

    SciTech Connect

    SP Reidel

    2000-08-10

    The US Department of Energy's Hanford Site has the most diverse and largest amounts of radioactive tank waste in the US. High-level radioactive waste has been stored at Hanford since 1944. Approximately 209,000 m{sup 3} (54 Mgal) of waste are currently stored in 177 tanks. Vitrification and onsite disposal of low-activity tank waste (LAW) are embodied in the strategy described in the Tri-Party Agreement. The tank waste is to be retrieved, separated into low- and high-level fractions, and then immobilized. The low-activity vitrified waste will be disposed of in the 200 East Area of the Hanford Site. This report is a plan to drill and characterize the second borehole for the Performance Assessment. The first characterization borehole was drilled in 1998. The plan describes data collection activities for determining physical and chemical properties of the vadose zone and saturated zone on the northeast side of the proposed disposal site. These data will then be used in the 2005 Performance Assessment.

  14. A combined surface and borehole seismic survey at the COSC-1 borehole

    NASA Astrophysics Data System (ADS)

    Simon, Helge; Krauß, Felix; Hedin, Peter; Buske, Stefan; Giese, Rüdiger; Juhlin, Christopher

    2015-04-01

    The ICDP project COSC (Collisional Orogeny in the Scandinavian Caledonides) focuses on the mid Paleozoic Caledonide Orogen in Scandinavia in order to better understand orogenic processes, from the past and in recent active mountain belts. The Scandinavian Caledonides provide a well preserved example of a Paleozoic continent-continent collision. Surface geology in combination with geophysical data provide control of the geometry of the Caledonian structure, including the allochthon and the underlying autochthon, as well as the shallow W-dipping décollement surface that separates the two and consist of a thin skin of Cambrian black shales. During spring/summer 2014 the COSC-1 borehole was drilled to approx. 2.5 km depth near the town of Åre (western Jämtland/Sweden) with nearly 100 % of core recovery and cores in best quality. After the drilling was finished, a major seismic survey was conducted in and around the COSC-1 borehole which comprised both seismic reflection and transmission experiments. Besides a high resolution zero-offset VSP (Vertical Seismic Profiling) experiment also a multi-azimuthal walkaway VSP survey took place. For the latter the source points were distributed along three profile lines centered radially around the borehole. For the central part up to 2.5 km away from the borehole, a hydraulic hammer source was used, which hits the ground for about 20 s with an linear increasing hit rate. For the far offset shots up to 5 km, explosive sources were used. The wavefield of both source types was recorded in the borehole using an array of 15 three-component receivers with a geophone spacing of 10 m. This array was deployed at 7 different depth levels during the survey. At the same time the wavefield was also recorded at the surface by 180 standalone three-component receivers placed along each of the three up to 10 km long lines, as well as with a 3D array of single-component receivers in the central part of the survey area around the borehole. Here

  15. Geomechanical Considerations for the Deep Borehole Field Test

    NASA Astrophysics Data System (ADS)

    Park, B. Y.

    2015-12-01

    Deep borehole disposal of high-level radioactive waste is under consideration as a potential alternative to shallower mined repositories. The disposal concept consists of drilling a borehole into crystalline basement rocks to a depth of 5 km, emplacement of canisters containing solid waste in the lower 2 km, and plugging and sealing the upper 3 km of the borehole. Crystalline rocks such as granites are particularly attractive for borehole emplacement because of their low permeability and porosity at depth, and high mechanical strength to resist borehole deformation. In addition, high overburden pressures contribute to sealing of some of the fractures that provide transport pathways. We present geomechanical considerations during construction (e.g., borehole breakouts, disturbed rock zone development, and creep closure), relevant to both the smaller-diameter characterization borehole (8.5") and the larger-diameter field test borehole (17"). Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  16. Development of a new borehole acoustic televiewer for geothermal applications

    SciTech Connect

    Moore, T.K.; Hinz, K.; Archuleta, J.

    1985-01-01

    Currently Westfalische Berggewerkschaftskasse (WBK) of West Germany and the Los Alamos National Laboratory of the United States are jointly developing a borehole acoustic televiewer for use in geothermal wellbores. The tool can be described as five subsystems working together to produce a borehole image. Each of the subsystems will be described. 2 refs., 2 figs.

  17. First quarter chemical borehole studies in the drift scale test

    SciTech Connect

    DeLoach, L., LLNL

    1998-05-19

    The chemistry boreholes of the Drift Scale Test (DST) have been designed to gather geochemical information and assess the impact of thermal perturbations on gas and liquid phases present in pore spaces and fractures within the rock. There are a total of ten boreholes dedicated to these chemical studies. Two arrays of five boreholes each were drilled from the access/observation drift (AOD) in planes which run normal to the heater drift and which are located approximately 15 and 45% of the way along the length of the drift as measured from the bulkhead. The boreholes each have a length of about 40 meters and have been drilled at low angles directed just above or just below the heater plane. In each array, three boreholes are directed at increasingly steeper angles (< 25-) above the line of wing heaters and two are directed at shallow angles below the wing heater plane.

  18. Dependence of Body Wave Velocity on Borehole Stress Concentration

    NASA Astrophysics Data System (ADS)

    Tian, Jiayong; Man, Yuanpeng; Qi, Hui

    In order to develop ultrasonic method for the quantitative measurement of in-situ rock stresses, we investigate the influence of stress concentration on the body-wave velocities around a borehole. First, the acoustoelasticity theory of finite-deformation solids yields a direct and explicit quantitative borehole acoustoelasticity, which reveals that the orientations of the maximum and minimum wave-velocity shifts at the borehole surface coincide with the directions of the minimum and maximum far-field principal stresses, respectively. Second, pulse-echo measurement of wave-velocity variations at the borehole surface in the sandstone sample under the biaxial compressional loadings is performed to validate the quantitative borehole acoustoelasticity. The consistence of the experimental results with the theoretical prediction means that the ultrasonic method based on acoustoelasticity theory could be a promising noncontact and non-destructive method for the quantitative measurement of in-situ rock stresses.

  19. Numerical Borehole Breakdown Investigations using XFEM

    NASA Astrophysics Data System (ADS)

    Beckhuis, Sven; Leonhart, Dirk; Meschke, Günther

    2016-04-01

    During pressurization of a wellbore a typical downhole pressure record shows the following regimes: first the applied wellbore pressure balances the reservoir pressure, then after the compressive circumferential hole stresses are overcome, tensile stresses are induced on the inside surface of the hole. When the magnitude of these stresses reach the tensile failure stress of the surrounding rock medium, a fracture is initiated and propagates into the reservoir. [1] In standard theories this pressure, the so called breakdown pressure, is the peak pressure in the down-hole pressure record. However experimental investigations [2] show that the breakdown did not occur even if a fracture was initiated at the borehole wall. Drilling muds had the tendency to seal and stabilize fractures and prevent fracture propagation. Also fracture mechanics analysis of breakdown process in mini-frac or leak off tests [3] show that the breakdown pressure could be either equal or larger than the fracture initiation pressure. In order to gain a deeper understanding of the breakdown process in reservoir rock, numerical investigations using the extended finite element method (XFEM) for hydraulic fracturing of porous materials [4] are discussed. The reservoir rock is assumed to be pre-fractured. During pressurization of the borehole, the injection pressure, the pressure distribution and the position of the highest flux along the fracture for different fracturing fluid viscosities are recorded and the influence of the aforementioned values on the stability of fracture propagation is discussed. [1] YEW, C. H. (1997), "Mechanics of Hydraulic Fracturing", Gulf Publishing Company [2] MORITA, N.; BLACK, A. D.; FUH, G.-F. (1996), "Borehole Breakdown Pressure with Drilling Fluids". International Journal of Rock Mechanics and Mining Sciences 33, pp. 39-51 [3] DETOURNAY, E.; CARBONELL, R. (1996), "Fracture Mechanics Analysis of the Breakdown Process in Minifrac or Leakoff Test", Society of Petroleum

  20. Borehole-to-borehole geophysical methods applied to investigations of high level waste repository sites

    SciTech Connect

    Ramirez, A.L.

    1983-01-01

    This discussion focuses on the use of borehole to borehole geophysical measurements to detect geological discontinuities in High Level Waste (HLW) repository sites. The need for these techniques arises from: (a) the requirement that a HLW repository's characteristics and projected performance be known with a high degree of confidence; and (b) the inadequacy of other geophysical methods in mapping fractures. Probing configurations which can be used to characterize HLW sites are described. Results from experiments in which these techniques were applied to problems similar to those expected at repository sites are briefly discussed. The use of a procedure designed to reduce uncertainty associated with all geophysical exploration techniques is proposed; key components of the procedure are defined.

  1. Head assembly for multiposition borehole extensometer

    DOEpatents

    Frank, Donald N.

    1983-01-01

    A head assembly for a borehole extensometer and an improved extensometer for measuring subsurface subsidence. A plurality of inflatable anchors provide discrete measurement points. A metering rod is fixed to each of the anchors which are displaced when subsidence occurs, thereby translating the attached rod. The head assembly includes a sprocket wheel rotatably mounted on a standpipe and engaged by a chain which is connected at one end to the metering rod and at the other end to a counterweight. A second sprocket wheel connected to the standpipe also engages the chain and drives a connected potentiometer. The head assembly converts the linear displacement of the metering rod to the rotary motion of the second sprocket wheel, which is measured by the potentiometer, producing a continuous electrical output.

  2. Borehole hydraulic coal mining system analysis

    NASA Technical Reports Server (NTRS)

    Floyd, E. L.

    1977-01-01

    The borehole hydraulic coal mining system accesses the coal seam through a hole drilled in the overburden. The mining device is lowered through the hole into the coal seam where it fragments the coal with high pressure water jets which pump it to the surface as a slurry by a jet pump located in the center of the mining device. The coal slurry is then injected into a pipeline for transport to the preparation plant. The system was analyzed for performance in the thick, shallow coal seams of Wyoming, and the steeply pitching seams of western Colorado. Considered were all the aspects of the mining operation for a 20-year mine life, producing 2,640,000 tons/yr. Effects on the environment and the cost of restoration, as well as concern for health and safety, were studied. Assumptions for design of the mine, the analytical method, and results of the analysis are detailed.

  3. Multiple fracturing experiments: propellant and borehole considerations

    SciTech Connect

    Cuderman, J F

    1982-01-01

    The technology for multiple fracturing of a wellbore, using progressively burning propellants, is being developed to enhance natural gas recovery. Multiple fracturing appears especially attractive for stimulating naturally fractured reservoirs such as Devonian shales where it is expected to effectively intersect existing fractures and connect them to a wellbore. Previous experiments and modeling efforts defined pressure risetimes required for multiple fracturing as a function of borehole diameter, but identified only a weak dependence on peak pressure attained. Typically, from four to eight equally spaced major fractures occur as a function of pressure risetime and in situ stress orientation. The present experiments address propellant and rock response considerations required to achieve the desired pressure risetimes for reliable multiple fracturing.

  4. Waterborne cryptosporidiosis associated with a borehole supply.

    PubMed

    Morgan, D; Allaby, M; Crook, S; Casemore, D; Healing, T D; Soltanpoor, N; Hill, S; Hooper, W

    1995-06-23

    From 1 April to 31 May 1993, 64 cases of cryptosporidiosis were diagnosed within one district health authority. Forty were classified as primary cases, 35 of whom were clustered in an area supplied by a discrete public water supply that supplied the majority of homes in a large town. Most of the water in this supply is abstracted from boreholes and some is filtered before distribution. Households that received mains water from this supply were 15 times more likely to be affected than households nearby that received water from other sources. A case control study demonstrated a dose response relationship between consumption of water obtained from the town supply and risk of illness. Very low concentrations of cryptosporidial oocysts were detected in the water supply on four occasions several weeks after the outbreak. Environmental investigation failed to reveal a likely mechanism for contamination of the water supply. PMID:7613587

  5. Advances in crosswell electromagnetics steel cased boreholes

    SciTech Connect

    Harben, P E; Kirkendall, B A; Lewis, J P

    1999-03-01

    The Crosswell electromagnetic (EM) induction technique ideally measures the resistivity distribution between boreholes which may often be cased with carbon steel. Quantification of the effect of such steel casing on the induced field is the most significant limitation of the technique. Recent data acquired at a site in Richmond, California quantify the effect of steel casing on induction measurements and demonstrate this effect to be separable. This unique site contains adjacent steel and plastic wells in which frequency soundings demonstrate low spectrum (1.0 - 50 Hz) measurements an effective means of isolating the casing response from, the formation response. It is also shown that the steel casing effect on the induction coil is highly localized, and limited to less than 0.30 meters above and below the coil.

  6. Head assembly for multiposition borehole extensometer

    SciTech Connect

    Frank, D.N.

    1983-05-10

    A head assembly for a borehole extensometer and an improved extensometer for measuring subsurface subsidence. A plurality of inflatable anchors provide discrete measurement points. A metering rod is fixed to each of the anchors which are displaced when subsidence occurs, thereby translating the attached rod. The head assembly includes a sprocket wheel rotatably mounted on a standpipe and engaged by a chain which is connected at one end to the metering rod and at the other end to a counterweight. A second sprocket wheel connected to the standpipe also engages the chain and drives a connected potentiometer. The head assembly converts the linear displacement of the metering rod to the rotary motion of the second sprocket wheel, which is measured by the potentiometer, producing a continuous electrical output.

  7. Head assembly for multiposition borehole extensometer

    SciTech Connect

    Frank, D.N.

    1981-06-09

    A head assembly for a borehole extensometer and an improved extensometer for measuring subsurface subsidence. A plurality of inflatable anchors provide discrete measurement points. A metering rod is fixed to each of the anchors which are displaced when subsidence occurs, thereby translating the attached rod. The head assembly includes a sprocket wheel rotatably mounted on a standpipe and engaged by a chain which is connected at one end to the metering rod and at the other end to a counterweight. A second sprocket wheel connected to the standpipe also engages the chain and drives a connected potentiometer. The head assembly converts the linear displacement of the metering rod to the rotary motion of the second sprocket wheel, which is measured by the potentiometer, producing a continuous electrical output.

  8. Corrosion tests in the Marchwood geothermal borehole

    NASA Astrophysics Data System (ADS)

    Lawrence, P. F.

    1982-03-01

    Corrosion tests in the high salinity brine produced during a production test at the Marchwood borehole. These tests were intended to obtain preliminary information on the corrosion of a range of metals and alloys most likely to be used for downhole service, heat exchangers and associated equipment, if hot water from this aquifer is used to provide a long-term energy source. Specimens of appropriate candidate materials were exposed to flowing brine in the surface pipework and also downhole at a depth of 663 m. The brine was pumped to the surface by a multi-stage electric submersible pump. The downhole specimens, which were installed with the pump, were exposed for a period of 83 days. The surface specimens were exposed during the well production test for 33.3 days. The product brine was around three times sea water concentration, at a temperature of 72 C and pH 6.2.

  9. Borehole plugging materials development program, report 2

    SciTech Connect

    Gulick, C.W. Jr.; Boa, J.A. Jr.; Walley, D.M.; Buck, A.D.

    1980-02-01

    The data for 2 yr of grout mixtures durability studies developed for the borehole plugging program of the Nuclear Waste Isolation Pilot Plant (WIPP) are reported. In addition, data for 1 yr of durability studies of grout mixture field samples used to plug the ERDA No. 10 exploratory drill hole near the WIPP site are included. The grout samples and the data do not show any evidence of deterioration during the durability studies that include exposure to brine at both ambient and elevated temperatures. The data include strength, compressional wave velocity, dynamic modulus, expansion, weight change, porosity, permeability, bond strength, chemical analysis of cements, and petrographic examinations. The work was performed at the Concrete Division of the Structures Laboratory of the US Army Engineer Waterways Experiments Station (WES), Vicksburg, Mississippi. The work is continuing at WES.

  10. Development of a hydraulic borehole seismic source

    SciTech Connect

    Cutler, R.P.

    1998-04-01

    This report describes a 5 year, $10 million Sandia/Industry project to develop an advanced borehole seismic source for use in oil and gas exploration and production. The development Team included Sandia, Chevron, Amoco, Conoco, Exxon, Raytheon, Pelton, and GRI. The seismic source that was developed is a vertically oriented, axial point force, swept frequency, clamped, reaction-mass vibrator design. It was based on an early Chevron prototype, but the new tool incorporates a number of improvements which make it far superior to the original prototype. The system consists of surface control electronics, a special heavy duty fiber optic wireline and draw works, a cablehead, hydraulic motor/pump module, electronics module, clamp, and axial vibrator module. The tool has a peak output of 7,000 lbs force and a useful frequency range of 5 to 800 Hz. It can operate in fluid filled wells with 5.5-inch or larger casing to depths of 20,000 ft and operating temperatures of 170 C. The tool includes fiber optic telemetry, force and phase control, provisions to add seismic receiver arrays below the source for single well imaging, and provisions for adding other vibrator modules to the tool in the future. The project yielded four important deliverables: a complete advanced borehole seismic source system with all associated field equipment; field demonstration surveys funded by industry showing the utility of the system; industrial sources for all of the hardware; and a new service company set up by their industrial partner to provide commercial surveys.

  11. Development of a magnetostrictive borehole seismic source

    SciTech Connect

    Cutler, R.P.; Sleefe, G.E.; Keefe, R.G.

    1997-04-01

    A magnetostrictive borehole seismic source was developed for use in high resolution crosswell surveys in environmental applications. The source is a clamped, vertical-shear, swept frequency, reaction-mass shaker design consisting of a spring pre-loaded magnetostrictive rod with permanent magnet bias, drive coils to induce an alternating magnetic field, and an integral tungsten reaction mass. The actuator was tested extensively in the laboratory. It was then incorporated into an easily deployable clamped downhole tool capable of operating on a standard 7 conductor wireline in borehole environments to 10,000{degrees} deep and 100{degrees}C. It can be used in either PVC or steel cased wells and the wells can be dry or fluid filled. It has a usable frequency spectrum of {approx} 150 to 2000 Hz. The finished tool was successfully demonstrated in a crosswell test at a shallow environmental site at Hanford, Washington. The source transmitted signals with a S/N ratio of 10-15 dB from 150-720 Hz between wells spaced 239 feet apart in unconsolidated gravel. The source was also tested successfully in rock at an oil field test site, transmitting signals with a S/N ratio of 5-15 dB over the full sweep spectrum from 150-2000 Hz between wells spaced 282 feet apart. And it was used successfully on an 11,000{degrees} wireline at a depth of 4550{degrees}. Recommendations for follow-on work include improvements to the clamp, incorporation of a higher sample rate force feedback controller, and increases in the force output of the tool.

  12. Impact of maximum borehole depths on inverted temperature histories in borehole paleoclimatology

    NASA Astrophysics Data System (ADS)

    Beltrami, H.; Smerdon, J. E.; Matharoo, G. S.; Nickerson, N.

    2011-02-01

    A quantitative assessment is presented for the impact of the maximum depth of a temperature-depth profile on the estimate of the climatic transient and the resultant ground surface temperature (GST) reconstruction used in borehole paleoclimatology. The depth of the profile is important because the downwelling climatic signal must be separated from the quasi-steady state thermal regime established by the energy in the Earth's interior. This component of the signal is estimated as a linear increase in temperature with depth from the lower section of a borehole temperature profile, which is assumed to be unperturbed by recent changes in climate at the surface. The validity of this assumption is dependent on both the subsurface thermophysical properties and the character of the downwelling climatic signal. Such uncertainties can significantly impact the determination of the quasi-steady state thermal regime, and consequently the magnitude of the temperature anomaly interpreted as a climatic signal. The quantitative effects and uncertainties that arise from the analysis of temperature-depth profiles of different depths are presented. Results demonstrate that widely different GST histories can be derived from a single temperature profile truncated at different depths. Borehole temperature measurements approaching 500-600 m depths are shown to provide the most robust GST reconstructions spanning 500 to 1000 ybp. It is further shown that the bias introduced by a temperature profile of depths shallower than 500-600 m remains even if the time span of the reconstruction target is shortened.

  13. Impact of maximum borehole depths on inverted temperature histories in borehole paleoclimatology

    NASA Astrophysics Data System (ADS)

    Beltrami, H.; Smerdon, J. E.; Matharoo, G. S.; Nickerson, N.

    2011-07-01

    A quantitative assessment is presented for the impact of the maximum depth of a temperature-depth profile on the estimate of the climatic transient and the resultant ground surface temperature (GST) reconstruction used in borehole paleoclimatology. The depth of the profile is important because the downwelling climatic signal must be separated from the quasi-steady state thermal regime established by the energy in the Earth's interior. This component of the signal is estimated as a linear increase in temperature with depth from the lower section of a borehole temperature profile, which is assumed to be unperturbed by recent changes in climate at the surface. The validity of this assumption is dependent on both the subsurface thermophysical properties and the character of the downwelling climatic signal. Such uncertainties can significantly impact the determination of the quasi-steady state thermal regime, and consequently the magnitude of the temperature anomaly interpreted as a climatic signal. The quantitative effects and uncertainties that arise from the analysis of temperature-depth profiles of different depths are presented. Results demonstrate that widely different GST histories can be derived from a single temperature profile truncated at different depths. Borehole temperature measurements approaching 500-600 m depths are shown to provide the most robust GST reconstructions spanning 500 to 1000 yr BP. It is further shown that the bias introduced by a temperature profile of depths shallower than 500-600 m remains even if the time span of the reconstruction target is shortened.

  14. Geomechanical Engineering Concepts Applied to Deep Borehole Disposal Wells

    NASA Astrophysics Data System (ADS)

    Herrick, C. G.; Haimson, B. C.; Lee, M.

    2015-12-01

    Deep borehole disposal (DBD) of certain defense-generated radioactive waste forms is being considered by the US Department of Energy (DOE) as an alternative to mined repositories. The 17 inch diameter vertical boreholes are planned to be drilled in crystalline basement rock. As part of an initial field test program, the DOE will drill a demonstration borehole, to be used to test equipment for handling and emplacing prototype nonradioactive waste containers, and a second smaller diameter borehole, to be used for site characterization. Both boreholes will be drilled to a depth of 5 km. Construction of such boreholes is expected to be complex because of their overall length, large diameter, and anticipated downhole conditions of high temperatures, pore pressures, and stress regimes. It is believed that successful development of DBD boreholes can only be accomplished if geologic and tectonic conditions are characterized and drill activities are designed based on that understanding. Our study focuses primarily on using the in situ state of stress to mitigate borehole wall failure, whether tensile or compressive. The measured stresses, or their constrained estimates, will include pore pressure, the vertical stress, the horizontal stresses and orientations, and thermally induced stresses. Pore pressure will be measured directly or indirectly. Horizontal stresses will be estimated from hydraulic fracturing tests, leak off tests, and breakout characteristics. Understanding the site stress condition along with the rock's strength characteristics will aid in the optimization of mud weight and casing design required to control borehole wall failure and other drilling problems.Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2015-6552A

  15. Borehole time domain reflectometry in layered sandstone: Impact of measurement technique on vadose zone process identification

    NASA Astrophysics Data System (ADS)

    Jared West, L.; Truss, Steven W.

    2006-03-01

    The hydraulic behaviour of the vadose zone of a layered sandstone aquifer has been investigated using borehole-based Time Domain Reflectometry (TDR). Both a commercially available portable packer TDR system (TRIME-B3L Borehole Packer Probe) and specially designed borehole-emplaced TDR probes were used to monitor seasonal fluctuations in water content in the vadose zone of a layered sandstone over 1 year under natural rainfall loading. The data show that the vadose zone contains seasonal perched water tables that form when downward percolating water reaches layers of fine grained sandstone and siltstone and causes local saturation. The formation of perched water tables is likely to lead to lateral flow bypassing the less permeable, finer layers. This contrasts with behaviour inferred from previous studies of the same aquifer that used borehole radar and resistivity, which suggested its vadose zone behaviour was characterized by uniform downwards migration of wetting fronts. To investigate the impact of measurement technique on observed response, the TDR data reported here were used to produce simulated zero offset profile (ZOP) borehole radar responses. This simulation confirmed the limited ability of ZOP borehole radar to detect key vadose zone processes, because the phenomenon of critical refraction minimizes the sensitivity of the results to high water content layers. The ability of the resistivity method to detect perched water table responses is also limited, because of the relatively large sampling volume of the technique. The study illustrates that inappropriate technique selection results in hydrological process mis-identification, with serious consequences for the usefulness of data in hydrological modeling.

  16. Sampling and Analysis Plan - Waste Treatment Plant Seismic Boreholes Project

    SciTech Connect

    Reidel, Steve P.

    2006-05-26

    This sampling and analysis plan (SAP) describes planned data collection activities for four entry boreholes through the sediment overlying the basalt, up to three new deep rotary boreholes through the basalt and sedimentary interbeds, and one corehole through the basalt and sedimentary interbeds at the Waste Treatment Plant (WTP) site. The SAP will be used in concert with the quality assurance plan for the project to guide the procedure development and data collection activities needed to support borehole drilling, geophysical measurements, and sampling. This SAP identifies the American Society of Testing Materials standards, Hanford Site procedures, and other guidance to be followed for data collection activities.

  17. BoreholeAR: A mobile tablet application for effective borehole database visualization using an augmented reality technology

    NASA Astrophysics Data System (ADS)

    Lee, Sangho; Suh, Jangwon; Park, Hyeong-Dong

    2015-03-01

    Boring logs are widely used in geological field studies since the data describes various attributes of underground and surface environments. However, it is difficult to manage multiple boring logs in the field as the conventional management and visualization methods are not suitable for integrating and combining large data sets. We developed an iPad application to enable its user to search the boring log rapidly and visualize them using the augmented reality (AR) technique. For the development of the application, a standard borehole database appropriate for a mobile-based borehole database management system was designed. The application consists of three modules: an AR module, a map module, and a database module. The AR module superimposes borehole data on camera imagery as viewed by the user and provides intuitive visualization of borehole locations. The map module shows the locations of corresponding borehole data on a 2D map with additional map layers. The database module provides data management functions for large borehole databases for other modules. Field survey was also carried out using more than 100,000 borehole data.

  18. Geophysical borehole logging in the unsaturated zone, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Schimschal, Ulrich; Nelson, Philip H.

    1991-01-01

    Borehole geophysical logging for site characterization in the volcanic rocks at the proposed nuclear waste repository at Yucca Mountain, Nevada, requires data collection under rather unusual conditions. Logging tools must operate in rugose, dry holes above the water table in the unsaturated zone. Not all logging tools will operate in this environment, therefore; careful consideration must be given to selection and calibration. A sample suite of logs is presented that demonstrates correlation of geological formations from borehole to borehole, the definition of zones of altered mineralogy, and the quantitative estimates of rock properties. We show the results of an exploratory calculation of porosity and water saturation based upon density and epithermal neutron logs. Comparison of the results with a few core samples is encouraging, particularly because the logs can provide continuous data in boreholes where core samples are not available.

  19. Canister, sealing method and composition for sealing a borehole

    DOEpatents

    Brown, Donald W.; Wagh, Arun S.

    2003-05-13

    Canister, sealing method and composition for sealing a borehole. The canister includes a container with slurry inside the container, one or more slurry exits at one end of the container, a pump at the other end of the container, and a piston inside that pushes the slurry though the slurry exit(s), out of the container, and into a borehole. An inflatable packer outside the container provides stabilization in the borehole. A borehole sealing material is made by combining an oxide or hydroxide and a phosphate with water to form a slurry which then sets to form a high strength, minimally porous material which binds well to itself, underground formations, steel and ceramics.

  20. SURFACE AND BOREHOLE ELECTROMAGNETIC IMAGING OF CONDUCTING CONTAMINANT PLUMES

    EPA Science Inventory

    Electromagnetic induction tomography is a promising new tool for imaging electrical conductivity variations in the earth. The EM source field is produced by induction coil (magnetic dipole) transmitters deployed at the surface or in boreholes. Vertical and horizontal component ma...

  1. Method and apparatus for suppressing waves in a borehole

    DOEpatents

    West, Phillip B.

    2005-10-04

    Methods and apparatus for suppression of wave energy within a fluid-filled borehole using a low pressure acoustic barrier. In one embodiment, a flexible diaphragm type device is configured as an open bottomed tubular structure for disposition in a borehole to be filled with a gas to create a barrier to wave energy, including tube waves. In another embodiment, an expandable umbrella type device is used to define a chamber in which a gas is disposed. In yet another embodiment, a reverse acting bladder type device is suspended in the borehole. Due to its reverse acting properties, the bladder expands when internal pressure is reduced, and the reverse acting bladder device extends across the borehole to provide a low pressure wave energy barrier.

  2. Methods for use in detecting seismic waves in a borehole

    DOEpatents

    West, Phillip B.; Fincke, James R.; Reed, Teddy R.

    2007-02-20

    The invention provides methods and apparatus for detecting seismic waves propagating through a subterranean formation surrounding a borehole. In a first embodiment, a sensor module uses the rotation of bogey wheels to extend and retract a sensor package for selective contact and magnetic coupling to casing lining the borehole. In a second embodiment, a sensor module is magnetically coupled to the casing wall during its travel and dragged therealong while maintaining contact therewith. In a third embodiment, a sensor module is interfaced with the borehole environment to detect seismic waves using coupling through liquid in the borehole. Two or more of the above embodiments may be combined within a single sensor array to provide a resulting seismic survey combining the optimum of the outputs of each embodiment into a single data set.

  3. Data Qualification Report: Borehole Straigraphic Contacts

    SciTech Connect

    R.W. Clayton; C. Lum

    2000-04-18

    The data set considered here is the borehole stratigraphic contacts data (DTN: M09811MWDGFM03.000) used as input to the Geologic Framework Model. A Technical Assessment method used to evaluate these data with a two-fold approach: (1) comparison to the geophysical logs on which the contacts were, in part, based; and (2) evaluation of the data by mapping individual units using the entire data set. Qualification of the geophysical logs is being performed in a separate activity. A representative subset of the contacts data was chosen based on importance of the contact and representativeness of that contact in the total data set. An acceptance window was established for each contact based on the needs of the data users. Data determined to be within the acceptance window were determined to be adequate for their intended use in three-dimensional spatial modeling and were recommended to be Qualified. These methods were chosen to provide a two-pronged evaluation that examines both the origin and results of the data. The result of this evaluation is a recommendation to qualify all contacts. No data were found to lie outside the pre-determined acceptance window. Where no geophysical logs are available, data were evaluated in relation to surrounding data and by impact assessment. These data are also recommended to be qualified. The stratigraphic contact data contained in this report (Attachment VII; DTN: M00004QGFMPICK.000) are intended to replace the source data, which will remain unqualified.

  4. Application of Borehole SIP Technique to Sulfide Mineral Exploration

    NASA Astrophysics Data System (ADS)

    Kim, Changryol; Park, Mi Kyung; Park, Samgyu; Sung, Nak Hoon; Shin, Seung Wook

    2016-04-01

    In the study, SIP (Spectral Induced Polarization) well logging probe system was developed to rapidly locate the metal ore bodies with sulfide minerals in the boreholes. The newly developed SIP logging probe employed the non-polarizable electrodes, consisting of zinc chloride (ZnCl2), sodium chloride (NaCl), gypsum (CaSO4·2H2O), and water (H2O), instead of existing copper electrodes, leading to eliminating the EM coupling effect in the IP surveys as much as possible. In addition, the SIP logging system is designed to make measurements down to maximum 500 meters in depth in the boreholes. The SIP well logging was conducted to examine the applicability of the SIP probe system to the boreholes at the ore mine in Jecheon area, Korea. The boreholes used in the SIP logging are known to have penetrated the metal ore bodies with sulfide minerals from the drilling investigations. The ore mine of the study area is the scarn deposits surrounded by the limestone or lime-silicate rocks in Ordovician period. The results of the SIP well logging have shown that the borehole segments with limestone or lime-silicate rocks yielded the insignificant SIP responses while the borehole segments with sulfide minerals (e.g. pyrite) provided the significant phase shifts of the SIP responses. The borehole segments penetrating the metal ore body, so-called cupola, have shown very high response of the phase shift, due to the high contents of the sulfide mineral pyrite. The phase shifts of the SIP response could be used to estimate the grade of the ore bodies since the higher contents of the sulfide minerals, the higher magnitudes of the phase shifts in the SIP responses. It is, therefore, believed that the borehole SIP technique can be applied to investigate the metal ore bodies with sulfide minerals, and that could be used to estimate the ore grades as a supplementary tool in the future.

  5. Bond strength of cementitious borehole plugs in welded tuff

    SciTech Connect

    Akgun, H.; Daemen, J.J.K.

    1991-02-01

    Axial loads on plugs or seals in an underground repository due to gas, water pressures and temperature changes induced subsequent to waste and plug emplacement lead to shear stresses at the plug/rock contact. Therefore, the bond between the plug and rock is a critical element for the design and effectiveness of plugs in boreholes, shafts or tunnels. This study includes a systematic investigation of the bond strength of cementitious borehole plugs in welded tuff. Analytical and numerical analysis of borehole plug-rock stress transfer mechanics is performed. The interface strength and deformation are studied as a function of Young`s modulus ratio of plug and rock, plug length and rock cylinder outside-to-inside radius ratio. The tensile stresses in and near an axially loaded plug are analyzed. The frictional interface strength of an axially loaded borehole plug, the effect of axial stress and lateral external stress, and thermal effects are also analyzed. Implications for plug design are discussed. The main conclusion is a strong recommendation to design friction plugs in shafts, drifts, tunnels or boreholes with a minimum length to diameter ratio of four. Such a geometrical design will reduce tensile stresses in the plug and in the host rock to a level which should minimize the risk of long-term deterioration caused by excessive tensile stresses. Push-out tests have been used to determine the bond strength by applying an axial load to cement plugs emplaced in boreholes in welded tuff cylinders. A total of 130 push-out tests have been performed as a function of borehole size, plug length, temperature, and degree of saturation of the host tuff. The use of four different borehole radii enables evaluation of size effects. 119 refs., 42 figs., 20 tabs.

  6. Observations of joint persistence and connectivity across boreholes

    SciTech Connect

    Thapa, B.B.; Karasaki, K.

    1996-01-01

    Observations of joint persistence and connectivity are made by comparison of digital borehole wall images of fractures, fluid conductivity logs and hydraulic injections test results. The fractures were found to be generally impersistent across vertical boreholes about 8 m apart. Many hydraulic connections were found in the same volume of rock. Direct connections through single fractures seem to be rare and connectivity appears to be controlled by fracture networks, even over small volumes.

  7. Optical instruments for a combined seismic and geodetic borehole observatory

    NASA Astrophysics Data System (ADS)

    Zumberge, Mark; Agnew, Duncan; Berger, Jonathan; Hatfield, William; Wyatt, Frank

    2016-04-01

    Optical interferometry offers displacement sensing with the unusual combination of high sensitivity, linearity, and wide dynamic range, and it can be adapted to high temperature environments. We have applied interferometric technology to inertial seismic instruments and to optical fibers for strain measurements. When combining these methods into a single borehole package the result is a system that provides three components of observatory quality seismic recordings, two components of tilt, gravity, and vertical strain. The borehole package is entirely passive with the need for only optical fibers to connect the sensor sonde with surface electronics. One of the sensors in the system is an optical fiber strainmeter, which consists of an optical fiber cable elastically stretched between two borehole anchor points separated by 100 m or more. The fiber's length is recorded optically, enabling sub-nanostrain detection of crustal deformations. A second sensor system uses laser interferometry to record the displacements of inertial mechanical suspensions - spring-mass for the vertical component and pendulums for the horizontal components - housed in a borehole sonde. The combined system is able to measure vertical and horizontal ground velocities, gravity, and tilt with sensitivities that compare favorably with any existing borehole system over time scales from 10 Hz to many days; because the downhole components are entirely passive, the instrument will have a long lifetime and could be made usable at high downhole temperatures. The simplicity and longevity of the metal and glass borehole sonde make it suitable for permanent cementation into a borehole to achieve good coupling and stability. Several versions of the borehole inertial system have been deployed on land with excellent results, and a number of our optical fiber strainmeters have been deployed - both onshore and offshore. The combined system is currently under development.

  8. Thermobaric calculation of a steam-thermal borehole

    NASA Astrophysics Data System (ADS)

    Alishaev, M. G.; Azizov, G. A.

    2011-07-01

    A procedure is proposed for carrying out an approximate analytical calculation of pressure and temperature along a vertical borehole for thermal water with a temperature of 150-320°C taking into account its phase transition into steam. It is shown that both a single-phase flow mode for water and a two-phase flow mode for a mixture of water and steam can appear in the borehole under certain conditions.

  9. Deformation Monitoring by Borehole Geodetic Strainmeter in Turkey

    NASA Astrophysics Data System (ADS)

    Ozener, Haluk; Aktug, Bahadir; Karabulut, Hayrullah; Ergintav, Semih; Dogru, Asli; Yilmaz, Onur; Mencin, David; Mattioli, Glen; Johnson, Wade; Gottlieb, Mike; Van Boskirik, Liz

    2015-04-01

    This project is aimed to study three-dimensional strain field resulting from deformation through North Anatolian Fault System (NAFS) in Marmara Region, Turkey. Within this project, two borehole observatories consisting of borehole strainmeters, borehole seismometers, tiltmeters, and pore pressure sensors have been deployed in Istanbul. These installations have been supported by Istanbul Development Agency (ISTKA) (financially) and UNAVCO (technically). Istanbul, located near the most active parts of the North Anatolian Fault, has been monitored by different observing techniques such as seismic networks and continuous/survey-mode GPS networks for decades. Borehole strainmeters are very sensitive to deformation in the range of less than a month and can capture signals with superior precision at local spatial scales. In this project, it will be possible to determine the movements precisely which can not be monitored with available measurement systems in the middle and the eastern part of Marmara Sea through NAFS. Our long term objective is to build a borehole monitoring system in the region. By integrating various data obtained from borehole observatories, we expect to get a better understanding of dynamics in the western NAF. In this presentation, we introduce data and ongoing analysis obtained with strainmeters.

  10. Borehole sampling of fracture populations - compensating for borehole sampling bias in crystalline bedrock aquifers, Mirror Lake, Grafton County, New Hampshire

    USGS Publications Warehouse

    McDonald, G.D.; Paillet, Frederick L.; Barton, C.C.; Johnson, C.D.

    1997-01-01

    The clustering of orientations of hydraulically conductive fractures in bedrock at the Mirror Lake, New Hampshire fractured rock study site was investigated by comparing the orientations of fracture populations in two subvertical borehole arrays with those mapped on four adjacent subvertical roadcuts. In the boreholes and the roadcuts, the orientation of fracture populations appears very similar after borehole data are compensated for undersampling of steeply dipping fractures. Compensated borehole and pavement fracture data indicate a northeast-striking population of fractures with varying dips concentrated near that of the local foliation in the adjacent rock. The data show no correlation between fracture density (fractures/linear meter) and distance from lithologic contacts in both the boreholes and the roadcuts. The population of water-producing borehole fractures is too small (28 out of 610 fractures) to yield meaningful orientation comparisons. However, the orientation of large aperture fractures (which contains all the producing fractures) contains two or three subsidiary clusters in orientation frequency that are not evident in stereographic projections of the entire population containing all aperture sizes. Further, these subsidiary orientation clusters do not coincide with the dominant (subhorizontal and subvertical) regional fracture orientations.

  11. The Plate Boundary Observatory Borehole Seismic Network

    NASA Astrophysics Data System (ADS)

    Hasting, M.; Eakins, J.; Anderson, G.; Hodgkinson, K.; Johnson, W.; Mencin, D.; Smith, S.; Jackson, M.; Prescott, W.

    2006-12-01

    As part of the NSF-funded EarthScope Plate Boundary Observatory, UNAVCO will install and operate 103 borehole seismic stations throughout the western United States. These stations continuously record three- component seismic data at 100 samples per second, using Geo-Space HS-1-LT 2-HZ geophones in a sonde developed by SONDI and Consultants (Duke University). Each seismic package is connected to an uphole Quanterra Q330 data logger and Marmot external buffer, from which UNAVCO retrieves data in real time. UNAVCO uses the Antelope software suite from Boulder Real-Time Technologies (BRTT) for all data collection and transfer, metadata generation and distribution, and monitoring of the network. The first stations were installed in summer 2005, with 19 stations installed by September 2006, and a total of 28 stations expected by December 2006. In a prime example of cooperation between the PBO and USArray components of EarthScope, the USArray Array Network Facility (ANF), operated by UC San Diego, handled data flow and network monitoring for the PBO seismic stations in the initial stages of network operations. We thank the ANF staff for their gracious assistance over the last several months. Data flow in real time from the remote stations to the UNAVCO Boulder Network Operations Center, from which UNAVCO provides station command and control; verification and distribution of metadata; and basic quality control for all data. From Boulder, data flow in real time to the IRIS DMC for final quality checks, archiving, and distribution. Historic data are available from June 2005 to the present, and are updated in real time with typical latencies of less than ten seconds. As of 1 September 2006, the PBO seismic network had returned 60 GB of raw data. Please visit http://pboweb.unavco.org for additional information on the PBO seismic network.

  12. The electrical resistivity method in cased boreholes

    SciTech Connect

    Schenkel, C.J.

    1991-05-01

    The use of downhole current sources in resistivity mapping can greatly enhance the detection and delineation of subsurface features. The purpose of this work is to examine the resistivity method for current sources in wells cased with steel. The resistivity method in cased boreholes with downhole current sources is investigated using the integral equation (IE) technique. The casing and other bodies are characterized as conductivity inhomogeneities in a half-space. For sources located along the casing axis, an axially symmetric Green's function is used to formulate the surface potential and electric field (E-field) volume integral equations. The situations involving off-axis current sources and three-dimensional (3-D) bodies is formulated using the surface potential IE method. The solution of the 3-D Green's function is presented in cylindrical and Cartesian coordinate systems. The methods of moments is used to solve the Fredholm integral equation of the second kind for the response due to the casing and other bodies. The numerical analysis revealed that the current in the casing can be approximated by its vertical component except near the source and the axial symmetric approximation of the casing is valid even for the 3-D problem. The E-field volume IE method is an effective and efficient technique to simulate the response of the casing in a half-space, whereas the surface potential approach is computationally better when multiple bodies are involved. Analyzing several configurations of the current source indicated that the casing response is influenced by four characteristic factors: conduction length, current source depth,casing depth, and casing length. 85 refs., 133 figs., 11 tabs.

  13. Methane Emissions from Abandoned Boreholes in South Eastern Australia

    NASA Astrophysics Data System (ADS)

    Day, S. J.; Fry, R.; Dell'Amico, M.; Williams, D.; Halliburton, B.; Element, A.

    2015-12-01

    The Surat Basin in south-eastern Queensland is one of Australia's main coal bed methane production areas. It has also been subject to coal exploration over many years and consequently there are thousands of abandoned exploration boreholes throughout the region. Here, we present some results of field measurements aimed at locating leaking legacy exploration boreholes in the Surat Basin and to quantify their emission rates. We also discuss emission measurements made on abandoned CBM wells in Queensland and NSW that have been decommissioned according to modern practices. Leaking boreholes were located using a Picarro 2301 CH4 analyser mounted in a vehicle that was driven through gas fields in the Surat Basin. Where surface emissions were indicated by elevated ambient CH4 levels, the emission rate was measured using soil flux chambers at each site. For comparison, soil gas flux measurements were also made on natural surfaces and agricultural land throughout the study areas. Ten borehole sources were located during the surveys, yielding emission rates from less than 0.1 kg CH4 day-1 to more than 100 kg CH4 day-1. A number of other known exploration borehole sites were examined which had no detectable CH4 emissions. Plugged and abandoned CBM wells showed no CH4 emissions except in two cases where emission rates of about 0.07 g CH4 day-1 were detected, which were comparable to natural wetland CH4 emissions. Preliminary results suggest that modern decommissioning practices appear to be effective in preventing CH4 leakage from CBM abandoned wells. However, legacy coal exploration boreholes may represent a significant source of CH4 in the Surat Basin, although the proportion of these holes leaking CH4 is yet to be determined. Moreover, it is not yet clear if emissions from boreholes are affected by changes in groundwater induced by water extraction associated with gas production and agriculture. This is an area requiring further research.

  14. Experimental Investigation of Near-Borehole Crack Plugging with Bentonite

    NASA Astrophysics Data System (ADS)

    Upadhyay, R. A.; Islam, M. N.; Bunger, A.

    2015-12-01

    The success of the disposal of nuclear waste in a deep borehole (DBH) is determined by the integrity of the components of the borehole plug. Bentonite clay has been proposed as a key plugging material, and its effectiveness depends upon its penetration into near-borehole cracks associated with the drilling process. Here we present research aimed at understanding and maximizing the ability of clay materials to plug near-borehole cracks. A device was constructed such that the borehole is represented by a cylindrical chamber, and a near-borehole crack is represented by a slot adjacent to the center chamber. The experiments consist of placing bentonite clay pellets into the center chamber and filling the entire cavity with distilled water so that the pellets hydrate and swell, intruding into the slot because the cell prohibits swelling in the vertical direction along the borehole. Results indicate that the bentonite clay pellets do not fully plug the slot. We propose a model where the penetration is limited by (1) the free swelling potential intrinsic to the system comprised of the bentonite pellets and the hydrating fluid and (2) resisting shear force along the walls of the slot. Narrow slots have a smaller volume for the clay to fill than wider slots, but wider slots present less resistive force to clay intrusion. These two limiting factors work against each other, leading to a non-monotonic relationship between slot width and intrusion length. Further experimental results indicate that the free swelling potential of bentonite clay pellets depends on pellet diameter, "container" geometry, and solution salinity. Smaller diameter pellets possess more relative volumetric expansion than larger diameter pellets. The relative expansion of the clay also appears to decrease with the container size, which we understand to be due to the increased resistive force provided by the container walls. Increasing the salinity of the solution leads to a dramatic decrease in the clay

  15. Geology of the Waste Treatment Plant Seismic Boreholes

    SciTech Connect

    Barnett, D. BRENT; Bjornstad, Bruce N.; Fecht, Karl R.; Lanigan, David C.; Reidel, Steve; Rust, Colleen F.

    2007-02-28

    In 2006, DOE-ORP initiated the Seismic Boreholes Project (SBP) to emplace boreholes at the Waste Treatment Plant (WTP) site in order to obtain direct Vs measurements and other physical property measurements in Columbia River basalt and interbedded sediments of the Ellensburg Formation. The goal was to reduce the uncertainty in the response spectra and seismic design basis, and potentially recover design margin for the WTP. The characterization effort within the deep boreholes included 1) downhole measurements of the velocity properties of the suprabasalt, basalt, and sedimentary interbed sequences, 2) downhole measurements of the density of the subsurface basalt and sediments, and 3) confirmation of the geometry of the contact between the various basalt and interbedded sediments through examination of retrieved core from the corehole and data collected through geophysical logging of each borehole. This report describes the results of the geologic studies from three mud-rotary boreholes and one cored borehole at the WTP. All four boreholes penetrated the entire Saddle Mountains Basalt and the upper part of the Wanapum Basalt where thick sedimentary interbeds occur between the lava flows. The basalt flows penetrated in Saddle Mountains Basalt included the Umatilla Member, Esquatzel Member, Pomona Member and the Elephant Mountain Member. The underlying Priest Rapids Member of the Wanapum Basalt was also penetrated. The Ellensburg Formation sediments consist of the Mabton Interbed, the Cold Creek Interbed, the Selah Interbed and the Rattlesnake Ridge Interbed; the Byron Interbed occurs between two flows of the Priest Rapids Member. The Mabton Interbed marks the contact between the Wanapum and Saddle Mountains Basalts. The thicknesses of the basalts and interbedded sediments were within expected limits. However, a small reverse fault was found in the Pomona Member flow top. This fault has three periods of movement and less than 15 feet of repeated section. Most of the

  16. Three-component borehole wall-locking seismic detector

    DOEpatents

    Owen, Thomas E.

    1994-01-01

    A seismic detector for boreholes is described that has an accelerometer sensor block for sensing vibrations in geologic formations of the earth. The density of the seismic detector is approximately matched to the density of the formations in which the detector is utilized. A simple compass is used to orient the seismic detector. A large surface area shoe having a radius approximately equal to the radius of the borehole in which the seismic detector is located may be pushed against the side of the borehole by actuating cylinders contained in the seismic detector. Hydraulic drive of the cylinders is provided external to the detector. By using the large surface area wall-locking shoe, force holding the seismic detector in place is distributed over a larger area of the borehole wall thereby eliminating concentrated stresses. Borehole wall-locking forces up to ten times the weight of the seismic detector can be applied thereby ensuring maximum detection frequency response up to 2,000 hertz using accelerometer sensors in a triaxial array within the seismic detector.

  17. Uemachi flexure zone investigated by borehole database and numeical simulation

    NASA Astrophysics Data System (ADS)

    Inoue, N.; Kitada, N.; Takemura, K.

    2014-12-01

    The Uemachi fault zone extending north and south, locates in the center of the Osaka City, in Japan. The Uemachi fault is a blind reverse fault and forms the flexure zone. The effects of the Uemachi flexure zone are considered in constructing of lifelines and buildings. In this region, the geomorphological survey is difficult because of the regression of transgression. Many organizations have carried out investigations of fault structures. Various surveys have been conducted, such as seismic reflection survey in and around Osaka. Many borehole data for construction conformations have been collected and the geotechnical borehole database has been constructed. The investigation with several geological borehole data provides the subsurface geological information to the geotechnical borehole database. Various numerical simulations have been carried out to investigate the growth of a blind reverse fault in unconsolidated sediments. The displacement of the basement was given in two ways. One is based on the fault movement, such as dislocation model, the other is a movement of basement block of hanging wall. The Drucker-Prager and elastic model were used for the sediment and basement, respectively. The simulation with low and high angle fault movements, show the good agree with the actual distribution of the marine clay inferred from borehole data in the northern and southern Uemachi fault flexure zone, respectively. This research is partly funded by the Comprehensive Research on the Uemachi Fault Zone (from FY2010 to FY2012) by The Ministry of Education, Culture, Sports, Science and Technology (MEXT).

  18. Deep Borehole Field Test Requirements and Controlled Assumptions.

    SciTech Connect

    Hardin, Ernest

    2015-07-01

    This document presents design requirements and controlled assumptions intended for use in the engineering development and testing of: 1) prototype packages for radioactive waste disposal in deep boreholes; 2) a waste package surface handling system; and 3) a subsurface system for emplacing and retrieving packages in deep boreholes. Engineering development and testing is being performed as part of the Deep Borehole Field Test (DBFT; SNL 2014a). This document presents parallel sets of requirements for a waste disposal system and for the DBFT, showing the close relationship. In addition to design, it will also inform planning for drilling, construction, and scientific characterization activities for the DBFT. The information presented here follows typical preparations for engineering design. It includes functional and operating requirements for handling and emplacement/retrieval equipment, waste package design and emplacement requirements, borehole construction requirements, sealing requirements, and performance criteria. Assumptions are included where they could impact engineering design. Design solutions are avoided in the requirements discussion. Deep Borehole Field Test Requirements and Controlled Assumptions July 21, 2015 iv ACKNOWLEDGEMENTS This set of requirements and assumptions has benefited greatly from reviews by Gordon Appel, Geoff Freeze, Kris Kuhlman, Bob MacKinnon, Steve Pye, David Sassani, Dave Sevougian, and Jiann Su.

  19. Electrical resistivity borehole measurements: application to an urban tunnel site

    NASA Astrophysics Data System (ADS)

    Denis, A.; Marache, A.; Obellianne, T.; Breysse, D.

    2002-06-01

    This paper shows how it is possible to use wells drilled during geotechnical pre-investigation of a tunneling site to obtain a 2-D image of the resistivity close to a tunnel boring machine. An experimental apparatus is presented which makes it possible to perform single and borehole-to-borehole electrical measurements independent of the geological and hydrogeological context, which can be activated at any moment during the building of the tunnel. This apparatus is first demonstrated through its use on a test site. Numerical simulations and data inversion are used to analyse the experimental results. Finally, electrical resistivity tomography and single-borehole measurements on a tunneling site are presented. Experimental results show the viability of the apparatus and the efficiency of the inverse algorithm, and also highlight the limitations of the electrical resistivity tomography as a tool for geotechnical investigation in urban areas.

  20. Deep borehole disposal of high-level radioactive waste.

    SciTech Connect

    Stein, Joshua S.; Freeze, Geoffrey A.; Brady, Patrick Vane; Swift, Peter N.; Rechard, Robert Paul; Arnold, Bill Walter; Kanney, Joseph F.; Bauer, Stephen J.

    2009-07-01

    Preliminary evaluation of deep borehole disposal of high-level radioactive waste and spent nuclear fuel indicates the potential for excellent long-term safety performance at costs competitive with mined repositories. Significant fluid flow through basement rock is prevented, in part, by low permeabilities, poorly connected transport pathways, and overburden self-sealing. Deep fluids also resist vertical movement because they are density stratified. Thermal hydrologic calculations estimate the thermal pulse from emplaced waste to be small (less than 20 C at 10 meters from the borehole, for less than a few hundred years), and to result in maximum total vertical fluid movement of {approx}100 m. Reducing conditions will sharply limit solubilities of most dose-critical radionuclides at depth, and high ionic strengths of deep fluids will prevent colloidal transport. For the bounding analysis of this report, waste is envisioned to be emplaced as fuel assemblies stacked inside drill casing that are lowered, and emplaced using off-the-shelf oilfield and geothermal drilling techniques, into the lower 1-2 km portion of a vertical borehole {approx}45 cm in diameter and 3-5 km deep, followed by borehole sealing. Deep borehole disposal of radioactive waste in the United States would require modifications to the Nuclear Waste Policy Act and to applicable regulatory standards for long-term performance set by the US Environmental Protection Agency (40 CFR part 191) and US Nuclear Regulatory Commission (10 CFR part 60). The performance analysis described here is based on the assumption that long-term standards for deep borehole disposal would be identical in the key regards to those prescribed for existing repositories (40 CFR part 197 and 10 CFR part 63).

  1. Handling and Emplacement Options for Deep Borehole Disposal Conceptual Design.

    SciTech Connect

    Cochran, John R.; Hardin, Ernest

    2015-07-01

    This report presents conceptual design information for a system to handle and emplace packages containing radioactive waste, in boreholes 16,400 ft deep or possibly deeper. Its intended use is for a design selection study that compares the costs and risks associated with two emplacement methods: drill-string and wireline emplacement. The deep borehole disposal (DBD) concept calls for siting a borehole (or array of boreholes) that penetrate crystalline basement rock to a depth below surface of about 16,400 ft (5 km). Waste packages would be emplaced in the lower 6,560 ft (2 km) of the borehole, with sealing of appropriate portions of the upper 9,840 ft (3 km). A deep borehole field test (DBFT) is planned to test and refine the DBD concept. The DBFT is a scientific and engineering experiment, conducted at full-scale, in-situ, without radioactive waste. Waste handling operations are conceptualized to begin with the onsite receipt of a purpose-built Type B shipping cask, that contains a waste package. Emplacement operations begin when the cask is upended over the borehole, locked to a receiving flange or collar. The scope of emplacement includes activities to lower waste packages to total depth, and to retrieve them back to the surface when necessary for any reason. This report describes three concepts for the handling and emplacement of the waste packages: 1) a concept proposed by Woodward-Clyde Consultants in 1983; 2) an updated version of the 1983 concept developed for the DBFT; and 3) a new concept in which individual waste packages would be lowered to depth using a wireline. The systems described here could be adapted to different waste forms, but for design of waste packaging, handling, and emplacement systems the reference waste forms are DOE-owned high- level waste including Cs/Sr capsules and bulk granular HLW from fuel processing. Handling and Emplacement Options for Deep Borehole Disposal Conceptual Design July 23, 2015 iv ACKNOWLEDGEMENTS This report has

  2. Reclamation report, Basalt Waste Isolation Project, boreholes 1990

    SciTech Connect

    Brandt, C.A.; Rickard, W.H. Jr.; Cadoret, N.A.

    1991-01-01

    The restoration of areas disturbed activities of the Basalt Waste Isolation Project (BWIP) has been undertaken by the US Department of Energy (DOE) in fulfillment of obligations and commitments made under the National Environmental Policy Act and the Nuclear Waste Policy Act. This restoration program comprises three separate projects: borehole reclamation, Near Surface Test Facility reclamation, and Exploratory Shaft Facility reclamation. Detailed descriptions of these reclamation projects may be found in a number of previous reports. This report describes the second phase of the reclamation program for the BWIP boreholes and analyzes its success relative to the reclamation objective. 6 refs., 14 figs., 13 tabs.

  3. Hydrogeologic Characterization of Fractured Crystalline Bedrock on the Southern Part of Manhattan, New York, Using Advanced Borehole Geophysical Methods

    NASA Astrophysics Data System (ADS)

    Stumm, F.; Chu, A.; Joesten, P. K.; Lane, J. W.

    2007-12-01

    ABSTRACT. Advanced borehole-geophysical methods were used to assess the hydrogeology of fractured crystalline bedrock in 31 of 64 boreholes on the southern part of Manhattan Island, N.Y. The majority of boreholes penetrated gneiss, schist, and other crystalline bedrock, and had an average depth of 591 ft (180 m) below land surface (BLS). In this study we use a combination of advanced and conventional borehole geophysical logs, and hydraulic measurements to characterize the fractured-rock ground-water flow system in southern Manhattan, N.Y. Borehole-geophysical logs collected in this study included natural gamma, single-point-resistance (SPR), short-normal resistivity (R), mechanical and acoustic caliper, magnetic susceptibility, borehole-fluid temperature and resistivity, specific conductance (SpC), dissolved oxygen (DO), pH, redox, heat-pulse flowmeter (at eight selected boreholes), borehole deviation, acoustic and optical televiewer (ATV and OTV), and directional borehole radar (at 23 selected boreholes). A new geophysical probe that collects multiple fluid parameters, included fluid- temperature, SpC, DO, pH, and redox logs; these were used to help delineate transmissive fractures in the boreholes. All boreholes penetrated moderately fractured bedrock that contained medium and large fractures. A total of 208 large fractures were delineated in the 31 boreholes logged with the OTV. Stereonet analysis of the large fractures indicates most are part of a subhorizontal population cluster with a mean orientation of N43 degrees E, 07 degrees SE and a smaller secondary population cluster dipping toward the northwest. A total of 53 faults were delineated with two major population clusters--one with a mean orientation of N12 degrees W, 66 degrees W and the other with a mean orientation of N11 degrees W, 70 degrees E. Foliation was fairly consistent throughout the study area with dip azimuths ranging from northwest to southwest and dip angles ranging from 30 to 70 degrees

  4. Geohydrologic assessment of fractured crystalline bedrock on the southern part of Manhattan, New York, through the use of advanced borehole geophysical methods

    USGS Publications Warehouse

    Stumm, F.; Chu, A.; Joesten, P.K.; Lane, J.W., Jr.

    2007-01-01

    Advanced borehole-geophysical methods were used to assess the geohydrology of fractured crystalline bedrock in 31 of 64 boreholes on the southern part of Manhattan Island, NY in preparation of the construction of a new water tunnel. The study area is located in a highly urbanized part of New York City. The boreholes penetrated gneiss, schist, and other crystalline bedrock that has an overall southwest-to northwest-dipping foliation. Most of the fractures intersected are nearly horizontal or have moderate- to high-angle northwest or eastward dip azimuths. Heat-pulse flowmeter logs obtained under nonpumping (ambient) and pumping conditions, together with other geophysical logs, delineated transmissive fracture zones in each borehole. Water-level and flowmeter data suggest the fractured-rock ground-water-flow system is interconnected. The 60 MHz directional borehole-radar logs delineated the location and orientation of several radar reflectors that did not intersect the projection of the borehole. A total of 53 faults intersected by the boreholes have mean orientation populations of N12??W, 66??W and N11??W, 70??E. A total of 77 transmissive fractures delineated using the heat-pulse flowmeter have mean orientations of N11??E, 14??SE (majority) and N23??E, 57??NW (minority). The transmissivity of the bedrock boreholes ranged from 0.7 to 870 feet squared (ft2) per day (0.07 to 81 metres squared (m2) per day). ?? 2007 Nanjing Institute of Geophysical Prospecting.

  5. Geophysical survey for proposed borehole 199-K-107A, 100-K Area

    SciTech Connect

    Mitchell, T.H.

    1994-11-30

    The objective of the survey was to locate subsurface obstructions that may affect the drilling of proposed borehole, 199-K-107A, located about 100 ft northwest of the 105 KW Building, 100-K Area. Based upon the results of the survey, possible drill sites within the zone, with the least likelihood of encountering identified obstructions, were identified. The ground-penetrating radar (GPR) system used for this work utilized a 300-megahertz antenna to transmit the electromagnetic (EM) energy into the ground. The transmitted energy is reflected back to a receiving antenna where variations in the return signal are recorded. Common reflectors include natural geologic conditions such as bedding, cementation, moisture, and clay, or man-made objects such as pipes, barrels, foundations, and buried wires. Several isolated anomalies, at various depths, are observed in the data. Additionally, two areas that appear disturbed, with perplexing character, are plotted. Because of the uncertain nature of these two areas, they were avoided when recommending a borehole location. Initially, the proposed borehole was staked at N130/E122. The new proposed borehole location is N139/E176. This location appears free of anomalies and is over 10 ft from interpreted linear anomalies/pipe-like features.

  6. Pressure-induced brine migration into an open borehole in a salt repository

    SciTech Connect

    Hwang, Y.; Chambre, P.L.; Lee, W.W.L.; Pigford, T.H.

    1987-06-01

    This report provides some solutions to models that predict the brine accumulation in an open borehole. In this model, brine flow rates are controlled by pressure differences between the salt and the borehole. (TEM)

  7. TRENDS IN BOREHOLE GEOPHYSICS FOR MINERAL EXPLORATION: ASSAYING AND REMOTE DETECTION.

    USGS Publications Warehouse

    Daniels, Jeffrey J.

    1985-01-01

    Several borehole geophysical techniques have been developed in recent years. Assaying technique development has been concentrated on nuclear methods, with some progress being made on using electrical and magnetic properties for mineral identification. Adaptation of conventional surface geophysical techniques to the borehole for locating near-misses of mineralized zones has led to the development of borehole resistivity, electromagnetic (EM), gravity and magnetic methods to the borehole environment. This paper discusses some of the applications and pitfalls of these new techniques.

  8. Methods for enhancing the efficiency of creating a borehole using high power laser systems

    DOEpatents

    Zediker, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Koblick, Yeshaya; Moxley, Joel F.

    2014-06-24

    Methods for utilizing 10 kW or more laser energy transmitted deep into the earth with the suppression of associated nonlinear phenomena to enhance the formation of Boreholes. Methods for the laser operations to reduce the critical path for forming a borehole in the earth. These methods can deliver high power laser energy down a deep borehole, while maintaining the high power to perform operations in such boreholes deep within the earth.

  9. Method and system for advancement of a borehole using a high power laser

    SciTech Connect

    Moxley, Joel F.; Land, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Zediker, Mark S.

    2014-09-09

    There is provided a system, apparatus and methods for the laser drilling of a borehole in the earth. There is further provided with in the systems a means for delivering high power laser energy down a deep borehole, while maintaining the high power to advance such boreholes deep into the earth and at highly efficient advancement rates, a laser bottom hole assembly, and fluid directing techniques and assemblies for removing the displaced material from the borehole.

  10. Calibration facilities for borehole and surface environmental radiation measurements

    SciTech Connect

    Stromswold, D.C.

    1994-04-01

    Measuring radiation from contaminated soil and buildings is important in the cleanup of land areas and facilities. It provides the means for quantifying the amount of contamination and assessing the success of efforts to restore areas to acceptable conditions for public use. Instruments that measure in situ radiation from natural or radiochemically-contaminated earth formations must be calibrated in appropriate facilities to provide quantitative assessments of concentrations of radionuclides. For instruments that are inserted into boreholes, these calibration facilities are typically special models having holes for probe insertion and having sufficient size to appear radiometrically ``infinite`` in extent. The US Department of Energy (DOE) has such models at Hanford, Washington, and Grand Junction, Colorado. They are concrete cylinders having a central borehole and containing known, enhanced amounts of K, U, and Th for spectral gamma-ray measurements. Additional models contain U for calibrating neutron probes for fissile materials and total-count gamma-ray probes. Models for calibrating neutron probes for moisture measurements in unsaturated formations exist for steel-cased boreholes at Hanford and for uncased boreholes at the DOE`s Nevada Test Site. Large surface pads are available at Grand Junction for portable, vehicle-mounted, or airplane-mounted spectral gamma-ray detectors.

  11. Borehole televiewer for fracture detection and cement evaluation

    SciTech Connect

    Rambow, F.H.K.; Clerke, E.A.

    1991-02-12

    This patent describes a method for acoustically logging a borehole in the earth to detect anomalies in the earth formation beyond the wall of the borehole. It comprises generating a plurality of narrow beam acoustic pulses with a rotating transducer at a first location in the borehole, wherein the complete circumference of the borehole at the first location is scanned by the pulses; receiving at the first location the reflected responses of the acoustic pulses and producing a first electrical signal; receiving at a second location vertically spaced from the first location the reflected responses of the acoustic pulses with a single element annular thin film omnidirectional receiver and producing a second electrical signal; recording the first and second electrical signals to provide a visual display of the elapsed time between the generating of the acoustic pulses and the occurrence of reflection events from the anomalies in the first and second electrical signals; and analyzing the display to locate the position of the anomalies.

  12. DEVELOPMENT AND APPLICATION OF BOREHOLE FLOWMETERS FOR ENVIRONMENTAL ASSESSMENT

    EPA Science Inventory

    In order to understand the origin of contaminant plumes and infer their future migration, one requires a knowledge of the hydraulic conductivity (K) distribution. n many aquifers, the borehole flowmeter offers the most direct technique available for developing a log of hydraulic ...

  13. Deep Borehole Disposal Remediation Costs for Off-Normal Outcomes

    SciTech Connect

    Finger, John T.; Cochran, John R.; Hardin, Ernest

    2015-08-17

    This memo describes rough-order-of-magnitude (ROM) cost estimates for a set of off-normal (accident) scenarios, as defined for two waste package emplacement method options for deep borehole disposal: drill-string and wireline. It summarizes the different scenarios and the assumptions made for each, with respect to fishing, decontamination, remediation, etc.

  14. Development of a mobile borehole investigation software using augmented reality

    NASA Astrophysics Data System (ADS)

    Son, J.; Lee, S.; Oh, M.; Yun, D. E.; Kim, S.; Park, H. D.

    2015-12-01

    Augmented reality (AR) is one of the most developing technologies in smartphone and IT areas. While various applications have been developed using the AR, there are a few geological applications which adopt its advantages. In this study, a smartphone application to manage boreholes using AR has been developed. The application is consisted of three major modules, an AR module, a map module and a data management module. The AR module calculates the orientation of the device and displays nearby boreholes distributed in three dimensions using the orientation. This module shows the boreholes in a transparent layer on a live camera screen so the user can find and understand the overall characteristics of the underground geology. The map module displays the boreholes on a 2D map to show their distribution and the location of the user. The database module uses SQLite library which has proper characteristics for mobile platforms, and Binary XML is adopted to enable containing additional customized data. The application is able to provide underground information in an intuitive and refined forms and to decrease time and general equipment required for geological field investigations.

  15. Application of linear inverse theory to borehole gravity data

    SciTech Connect

    Burkhard, N.R.

    1991-09-01

    Traditional borehole gravity interpretations are based upon an earth model which assumes horizontal, laterally infinite, uniformly thick, and constant density layers. I apply discrete stabilized linear inverse theory to determine the density distribution directly from borehole gravity observations that have been corrected for drift, tide, and terrain. The stabilization is the result of including a priori data about the free-air gradient and the density structure in the inversion process. The discrete generalized linear inverse approach enables one to solve for a density distribution using all of the borehole gravity data. Moreover, the data need not be free-air corrected. An important feature of the approach is that density estimates are not required to be density averages between adjacent borehole gravity observations as in the traditional method. This approach further permits the explicit incorporation of independent density information from gamma-gamma logging tools or laboratory core measurements. Finally, explicit linear constraints upon the density and/or free-air gradient can also be handled. The non-uniqueness of the density structure determined by the inversion process is represented in a resolution matrix. 12 refs., 11 figs.

  16. A study of sonic logging in a cased borehole

    SciTech Connect

    Chang, S.; Everhart, A.

    1982-09-01

    A study was undertaken to investigate the feasibility of sonic logging in a cased borehole. Results were obtained from a scaled-model laboratory experiment and from computer simulations. The waveforms from the computer model indicate that sonic logging can be successful in bonded and unbonded cased holes. A slowness-time semblance signal processing technique is used to obtain wave velocities from waveforms.

  17. A study of sonic logging in a cased borehole

    SciTech Connect

    Chang, S.K.; Everhart, A.H.

    1983-09-01

    A study was undertaken to investigate the feasibility of sonic logging in a cased borehole. Results were obtained from a scale-model laboratory experiment and from computer simulations. The waveforms from the computer model indicate that sonic logging can be successful in bonded and unbonded cased holes. A slowness/timesemblance signal-processing technique is used to obtain wave velocities from waveforms.

  18. Intrinsic germanium detector used in borehole sonde for uranium exploration

    USGS Publications Warehouse

    Senftle, F.E.; Moxham, R.M.; Tanner, A.B.; Boynton, G.R.; Philbin, P.W.; Baicker, J.A.

    1976-01-01

    A borehole sonde (~1.7 m long; 7.3 cm diameter) using a 200 mm2 planar intrinsic germanium detector, mounted in a cryostat cooled by removable canisters of frozen propane, has been constructed and tested. The sonde is especially useful in measuring X- and low-energy gamma-ray spectra (40–400 keV). Laboratory tests in an artificial borehole facility indicate its potential for in-situ uranium analyses in boreholes irrespective of the state of equilibrium in the uranium series. Both natural gamma-ray and neutron-activation gamma-ray spectra have been measured with the sonde. Although the neutron-activation technique yields greater sensitivity, improvements being made in the resolution and efficiency of intrinsic germanium detectors suggest that it will soon be possible to use a similar sonde in the passive mode for measurement of uranium in a borehole down to about 0.1% with acceptable accuracy. Using a similar detector and neutron activation, the sonde can be used to measure uranium down to 0.01%.

  19. Conversion of borehole Stoneley waves to channel waves in coal

    SciTech Connect

    Johnson, P.A.; Albright, J.N.

    1987-01-01

    Evidence for the mode conversion of borehole Stoneley waves to stratigraphically guided channel waves was discovered in data from a crosswell acoustic experiment conducted between wells penetrating thin coal strata located near Rifle, Colorado. Traveltime moveout observations show that borehole Stoneley waves, excited by a transmitter positioned at substantial distances in one well above and below a coal stratum at 2025 m depth, underwent partial conversion to a channel wave propagating away from the well through the coal. In an adjacent well the channel wave was detected at receiver locations within the coal, and borehole Stoneley waves, arising from a second partial conversion of channel waves, were detected at locations above and below the coal. The observed channel wave is inferred to be the third-higher Rayleigh mode based on comparison of the measured group velocity with theoretically derived dispersion curves. The identification of the mode conversion between borehole and stratigraphically guided waves is significant because coal penetrated by multiple wells may be detected without placing an acoustic transmitter or receiver within the waveguide. 13 refs., 6 figs., 1 tab.

  20. 30 CFR 75.388 - Boreholes in advance of mining.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Boreholes in advance of mining. 75.388 Section 75.388 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY... and the mine workings; (3) The concentrations of methane, oxygen, carbon monoxide, and carbon...

  1. 30 CFR 75.388 - Boreholes in advance of mining.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Boreholes in advance of mining. 75.388 Section 75.388 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY... and the mine workings; (3) The concentrations of methane, oxygen, carbon monoxide, and carbon...

  2. 30 CFR 75.388 - Boreholes in advance of mining.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Boreholes in advance of mining. 75.388 Section 75.388 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY... and the mine workings; (3) The concentrations of methane, oxygen, carbon monoxide, and carbon...

  3. Borehole logging method for fracture detection and evaluation

    SciTech Connect

    Hornby, B.E.; Johnson, D.L

    1989-05-16

    A method is describe for locating a fracture in a subsurface earth formation traversed by a borehole, the method using an acoustic source and at lest one acoustic detector traversing the borehole at a plurality of depths, the fracture positioned outside the direct path from the acoustic source to the at least acoustic detector, the method consists of the steps of: generating a first signal from the acoustic source, the first signal representative of Stoneley wave propagating in the borehole, receiving the first signal at the at least one detector, the first signal representative of Stoneley waves propagating in the borehole from the acoustic source to the at least one detector, receiving a second signal at the at least one detector, the second signal representative of reflections of the Stoneley wave, the reflections arising from an interaction of the Stoneyle waves and the fracture; and combining the first and second received signals to derive a fracture signal indicative of a characteristic of the fracture.

  4. Electrical resistance tomography using steel cased boreholes as electrodes

    DOEpatents

    Daily, W.D.; Ramirez, A.L.

    1999-06-22

    An electrical resistance tomography method is described which uses steel cased boreholes as electrodes. The method enables mapping the electrical resistivity distribution in the subsurface from measurements of electrical potential caused by electrical currents injected into an array of electrodes in the subsurface. By use of current injection and potential measurement electrodes to generate data about the subsurface resistivity distribution, which data is then used in an inverse calculation, a model of the electrical resistivity distribution can be obtained. The inverse model may be constrained by independent data to better define an inverse solution. The method utilizes pairs of electrically conductive (steel) borehole casings as current injection electrodes and as potential measurement electrodes. The greater the number of steel cased boreholes in an array, the greater the amount of data is obtained. The steel cased boreholes may be utilized for either current injection or potential measurement electrodes. The subsurface model produced by this method can be 2 or 3 dimensional in resistivity depending on the detail desired in the calculated resistivity distribution and the amount of data to constrain the models. 2 figs.

  5. Electrical resistance tomography using steel cased boreholes as electrodes

    DOEpatents

    Daily, William D.; Ramirez, Abelardo L.

    1999-01-01

    An electrical resistance tomography method using steel cased boreholes as electrodes. The method enables mapping the electrical resistivity distribution in the subsurface from measurements of electrical potential caused by electrical currents injected into an array of electrodes in the subsurface. By use of current injection and potential measurement electrodes to generate data about the subsurface resistivity distribution, which data is then used in an inverse calculation, a model of the electrical resistivity distribution can be obtained. The inverse model may be constrained by independent data to better define an inverse solution. The method utilizes pairs of electrically conductive (steel) borehole casings as current injection electrodes and as potential measurement electrodes. The greater the number of steel cased boreholes in an array, the greater the amount of data is obtained. The steel cased boreholes may be utilized for either current injection or potential measurement electrodes. The subsurface model produced by this method can be 2 or 3 dimensional in resistivity depending on the detail desired in the calculated resistivity distribution and the amount of data to constain the models.

  6. Sampling and Analysis Plan Waste Treatment Plant Seismic Boreholes Project.

    SciTech Connect

    Brouns, Thomas M.

    2007-07-15

    This sampling and analysis plan (SAP) describes planned data collection activities for four entry boreholes through the sediment overlying the Saddle Mountains Basalt, up to three new deep rotary boreholes through the Saddle Mountains Basalt and sedimentary interbeds, and one corehole through the Saddle Mountains Basalt and sedimentary interbeds at the Waste Treatment Plant (WTP) site. The SAP will be used in concert with the quality assurance plan for the project to guide the procedure development and data collection activities needed to support borehole drilling, geophysical measurements, and sampling. This SAP identifies the American Society of Testing Materials standards, Hanford Site procedures, and other guidance to be followed for data collection activities. Revision 3 incorporates all interim change notices (ICN) that were issued to Revision 2 prior to completion of sampling and analysis activities for the WTP Seismic Boreholes Project. This revision also incorporates changes to the exact number of samples submitted for dynamic testing as directed by the U.S. Army Corps of Engineers. Revision 3 represents the final version of the SAP.

  7. Zero-Offset VSP in the COSC-1 borehole

    NASA Astrophysics Data System (ADS)

    Krauß, Felix; Simon, Helge; Giese, Rüdiger; Buske, Stefan; Hedin, Peter; Juhlin, Christopher; Lorenz, Henning

    2015-04-01

    As support for the COSC drilling project (Collisional Orogeny in the Scandinavian Caledonides), an extensive seismic survey took place during September and October 2014 in and around the newly drilled borehole COSC-1. The main aim of the COSC project is to better understand orogenic processes in past and recently active mountain belts. For this an approx. 2.5 km deep borehole, with nearly 100% core recovery, was drilled in the Scandinavian Caledonides, close to the town of Åre in western Jämtland/Sweden. The seismic survey consisted of a high resolution zero-offset VSP (vertical seismic profiling) and a multi-azimuthal walkaway VSP experiment with receivers at the surface and in the borehole. For the zero-offset VSP (ZVSP) a hydraulic hammer source (VIBSIST 3000) was used and activated over a period of 20 seconds as a sequence of impacts with increasing hit frequency. For each source point, 25 seconds of data were recorded. The wavefield was recorded in the borehole by 15 three-component receivers using a Sercel Slimwave geophone chain with an inter-tool spacing of 10 meters. The ZVSP was designed to result in a geophone spacing of 2 meters over the whole borehole length. The source was about 30 meters away from the borehole and thus, provides a poor geometry to rotate 3C-data in greater depths. For this reason, a check shot position was defined in about 1.9 km distance to the borehole. With this offset shots, it is possible to rotate the components of the 3C receivers and to concentrate the S-wave energy on one component and thus, increase the signal-to-noise ratio of S-wave events. This offset source point was activated periodically for certain depth positions of the geophone chain. The stacked ZVSP-data show a high signal-to-noise ratio and good data quality. Frequencies up to 150 Hz were recorded. On the vertical component, clear direct P-wave arrivals are visible. Several P-wave reflections occur below 1600 meters depth. After rotating the components

  8. Horizontal stress anisotropy determined from acoustic full waveforms in borehole

    NASA Astrophysics Data System (ADS)

    Rousseau, A.

    2003-04-01

    Drilling inside competent formations, such as crystalline rocks, hard carbonated rocks or sandstones, involves stable stress modifications around the hole. For vertical boreholes, these modifications depend essentially on the horizontal state of stress, particularly on its anisotropy. They may significantly spread up to more than 0.5 meter from the hole. As the usual frequencies of the borehole acoustic waveforms are about 20 KHz, these modified stress areas should be taken into account in order to interpret the records of the body waves, because their corresponding wavelengths range between 0.25 m for P waves and 0.175 m for S waves. The observation of the borehole acoustic body waves which propagate inside gneisses and metabasites (KTB borehole in Bavaria), granites (boreholes of Soultz-sous-forest in Alsace, and those in Vendée), and compact sandstones and dolomites (Balazuc1 borehole in the South of France), allows us to determine two or sometimes three successive arrivals of P and S waves, although the formations are homogeneous and there is no reflector, such as a fracture. The hypothesis that the double P and S waves may be the result of the reflection of the body waves inside the stress modified areas is consistent with the calculated sizes of the paths of the supposed reflected waves. The theory of borehole rock mechanics does not predict sharp changes in the sizes of these areas as overburdened pressure increases ; but the values of the supposed sizes of the modified areas are, as a function of depth, scattered above and steady below the depth where the overburdened pressure appears equal to the maximum horizontal stress. The squeezing of micro-cracks by pressure is assumed to homogenise formation rheology, and therefore, only the steady values may be considered as representative. Matching the calculated steady values with the possible models of stress deformation can be managed from the horizontal stress anisotropy values, but the solutions are not

  9. Geology of the Waste Treatment Plant Seismic Boreholes

    SciTech Connect

    Barnett, D. Brent; Fecht, Karl R.; Reidel, Stephen P.; Bjornstad, Bruce N.; Lanigan, David C.; Rust, Colleen F.

    2007-05-11

    In 2006, the U.S. Department of Energy initiated the Seismic Boreholes Project (SBP) to emplace boreholes at the Waste Treatment Plant (WTP) site in order to obtain direct shear wave velocity (Vs) measurements and other physical property measurements in Columbia River basalt and interbedded sediments of the Ellensburg Formation. The goal was to reduce the uncertainty in the response spectra and seismic design basis, and potentially recover design margin for the WTP. The characterization effort within the deep boreholes included 1) downhole measurements of the velocity properties of the suprabasalt, basalt, and sedimentary interbed sequences, 2) downhole measurements of the density of the subsurface basalt and sediments, and 3) geologic studies to confirm the geometry of the contact between the various basalt and interbedded sediments through examination of retrieved core from the core hole and data collected through geophysical logging of each borehole. This report describes the results of the geologic studies from three mud-rotary boreholes and one cored borehole at the WTP. All four boreholes penetrated the entire Saddle Mountains Basalt and the upper part of the Wanapum Basalt where thick sedimentary interbeds occur between the lava flows. The basalt flows penetrated in Saddle Mountains Basalt included the Umatilla Member, Esquatzel Member, Pomona Member, and the Elephant Mountain Member. The underlying Priest Rapids Member of the Wanapum Basalt also was penetrated. The Ellensburg Formation sediments consist of the Mabton Interbed, the Cold Creek Interbed, the Selah Interbed, and the Rattlesnake Ridge Interbed; the Byron Interbed occurs between two flows of the Priest Rapids Member. The Mabton Interbed marks the contact between the Wanapum and Saddle Mountains Basalts. The thicknesses of the basalts and interbedded sediments were within expected limits. However, a small reverse fault was found in the Pomona Member flow top. This fault has three periods of

  10. Methods and apparatus for removal and control of material in laser drilling of a borehole

    DOEpatents

    Rinzler, Charles C; Zediker, Mark S; Faircloth, Brian O; Moxley, Joel F

    2014-01-28

    The removal of material from the path of a high power laser beam during down hole laser operations including drilling of a borehole and removal of displaced laser effected borehole material from the borehole during laser operations. In particular, paths, dynamics and parameters of fluid flows for use in conjunction with a laser bottom hole assembly.

  11. 30 CFR 57.22241 - Advance face boreholes (I-C mines).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Advance face boreholes (I-C mines). 57.22241... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22241 Advance face boreholes (I-C mines). (a) Boreholes shall be drilled at least 25 feet in advance of a face whenever the work place...

  12. 30 CFR 57.22241 - Advance face boreholes (I-C mines).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Advance face boreholes (I-C mines). 57.22241... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22241 Advance face boreholes (I-C mines). (a) Boreholes shall be drilled at least 25 feet in advance of a face whenever the work place...

  13. Borehole climatology: a discussion based on contributions from climate modeling

    NASA Astrophysics Data System (ADS)

    González-Rouco, J. F.; Beltrami, H.; Zorita, E.; Stevens, M. B.

    2008-01-01

    Progress in understanding climate variability through the last millennium leans on simulation and reconstruction efforts. Exercises blending both approaches present a great potential for answering questions relevant both for the simulation and reconstruction of past climate, and depend on the specific peculiarities of proxies and methods involved in climate reconstructions, as well as on the realism and limitations of model simulations. This paper explores research specifically related to paleoclimate modeling and borehole climatology as a branch of climate reconstruction that has contributed significantly to our knowledge of the low frequency climate evolution during the last five centuries. The text flows around three main issues that group most of the interaction between model and geothermal efforts: the use of models as a validation tool for borehole climate reconstructions; comparison of geothermal information and model simulations as a means of either model validation or inference about past climate; and implications of the degree of realism on simulating subsurface climate on estimations of future climate change. The use of multi-centennial simulations as a surrogate reality for past climate suggests that within the simplified reality of climate models, methods and assumptions in borehole reconstructions deliver a consistent picture of past climate evolution at long time scales. Comparison of model simulations and borehole profiles indicate that borehole temperatures are responding to past external forcing and that more realism in the development of the soil model components in climate models is desirable. Such an improved degree of realism is important for the simulation of subsurface climate and air-ground interaction; results indicate it could also be crucial for simulating the adequate energy balance within climate change scenario experiments.

  14. Borehole climatology: a discussion based on contributions from climate modeling

    NASA Astrophysics Data System (ADS)

    González-Rouco, J. F.; Beltrami, H.; Zorita, E.; Stevens, M. B.

    2009-03-01

    Progress in understanding climate variability through the last millennium leans on simulation and reconstruction efforts. Exercises blending both approaches present a great potential for answering questions relevant both for the simulation and reconstruction of past climate, and depend on the specific peculiarities of proxies and methods involved in climate reconstructions, as well as on the realism and limitations of model simulations. This paper explores research specifically related to paleoclimate modeling and borehole climatology as a branch of climate reconstruction that has contributed significantly to our knowledge of the low frequency climate evolution during the last five centuries. The text flows around three main issues that group most of the interaction between model and geothermal efforts: the use of models as a validation tool for borehole climate reconstructions; comparison of geothermal information and model simulations as a means of either model validation or inference about past climate; and implications of the degree of realism on simulating subsurface climate on estimations of future climate change. The use of multi-centennial simulations as a surrogate reality for past climate suggests that within the simplified reality of climate models, methods and assumptions in borehole reconstructions deliver a consistent picture of past climate evolution at long time scales. Comparison of model simulations and borehole profiles indicate that borehole temperatures are responding to past external forcing and that more realism in the development of the soil model components in climate models is desirable. Such an improved degree of realism is important for the simulation of subsurface climate and air-ground interaction; results indicate it could also be crucial for simulating the adequate energy balance within climate change scenario experiments.

  15. Site Characterization for a Deep Borehole Field Test

    NASA Astrophysics Data System (ADS)

    Kuhlman, K. L.; Hardin, E. L.; Freeze, G. A.; Sassani, D.; Brady, P. V.

    2015-12-01

    The US Department of Energy Office of Nuclear Energy is at the beginning of 5-year Deep Borehole Field Test (DBFT) to investigate the feasibility of constructing and characterizing two boreholes in crystalline basement rock to a depth of 5 km (16,400 ft). The concept of deep borehole disposal for radioactive waste has some advantages over mined repositories, including incremental construction and loading, the enhanced natural barriers provided by deep continental crystalline basement, and reduced site characterization. Site characterization efforts need to determine an eligible site that does not have the following disqualifying characteristics: greater than 2 km to crystalline basement, upward vertical fluid potential gradients, presence of economically exploitable natural resources, presence of high permeability connection to the shallow subsurface, and significant probability of future seismic or volcanic activity. Site characterization activities for the DBFT will include geomechanical (i.e., rock in situ stress state, and fluid pressure), geological (i.e., rock and fracture infill lithology), hydrological (i.e., quantity of fluid, fluid convection properties, and solute transport mechanisms), and geochemical (i.e., rock-water interaction and natural tracers) aspects. Both direct (i.e., sampling and in situ testing) and indirect (i.e., borehole geophysical) methods are planned for efficient and effective characterization of these site aspects and physical processes. Borehole-based characterization will be used to determine the variability of system state (i.e., stress, pressure, temperature, and chemistry) with depth, and interpretation of material and system parameters relevant to numerical site simulation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE

  16. Optimization of Deep Borehole Systems for HLW Disposal

    SciTech Connect

    Driscoll, Michael; Baglietto, Emilio; Buongiorno, Jacopo; Lester, Richard; Brady, Patrick; Arnold, B. W.

    2015-09-09

    This is the final report on a project to update and improve the conceptual design of deep boreholes for high level nuclear waste disposal. The effort was concentrated on application to intact US legacy LWR fuel assemblies, but conducted in a way in which straightforward extension to other waste forms, host rock types and countries was preserved. The reference fuel design version consists of a vertical borehole drilled into granitic bedrock, with the uppermost kilometer serving as a caprock zone containing a diverse and redundant series of plugs. There follows a one to two kilometer waste canister emplacement zone having a hole diameter of approximately 40-50 cm. Individual holes are spaced 200-300 m apart to form a repository field. The choice of verticality and the use of a graphite based mud as filler between the waste canisters and the borehole wall liner was strongly influenced by the expectation that retrievability would continue to be emphasized in US and worldwide repository regulatory criteria. An advanced version was scoped out using zinc alloy cast in place to fill void space inside a disposal canister and its encapsulated fuel assembly. This excludes water and greatly improves both crush resistance and thermal conductivity. However the simpler option of using a sand fill was found adequate and is recommended for near-term use. Thermal-hydraulic modeling of the low permeability and porosity host rock and its small (≤ 1%) saline water content showed that vertical convection induced by the waste’s decay heat should not transport nuclides from the emplacement zone up to the biosphere atop the caprock. First order economic analysis indicated that borehole repositories should be cost-competitive with shallower mined repositories. It is concluded that proceeding with plans to drill a demonstration borehole to confirm expectations, and to carry out priority experiments, such as retention and replenishment of in-hole water is in order.

  17. The Subglacial Access and Fast Ice Research Experiment (SAFIRE): 2. Preliminary outcomes from hot-water drilling and borehole instrumentation on Store Glacier, West Greenland

    NASA Astrophysics Data System (ADS)

    Doyle, Samuel; Hubbard, Bryn; Christoffersen, Poul; Young, Tun Jan; Hofstede, Coen; Todd, Joe; Bougamont, Marion; Hubbard, Alun

    2015-04-01

    As part of the SAFIRE research programme, pressurised hot water was used to drill four 603-616 m-long boreholes to the bed of the Greenland Ice Sheet at a site located 30 km from the calving front of marine-terminating Store Glacier (70° N, ~1000 m elevation). Despite the boreholes freezing within hours, 4 wired sensor strings were successfully deployed in three of the boreholes. These included a thermistor string to obtain the englacial temperature profile installed in the same borehole as a string of tilt sensors to measure borehole deformation, and two sets of water pressure, electrical conductivity and turbidity sensors installed just above the bed in separate, adjacent boreholes. The boreholes made a strong hydrological connection to the bed during drilling, draining rapidly to ~80 m below the ice surface. The connection of subsequent boreholes was observed as a perturbation in water pressure and temperature recorded in neighbouring boreholes, indicating an effective hydrological sub- or en-glacial connection between them. The short (week long) records obtained from these sensors in summer 2014 tentatively reveal (i) water pressure varying diurnally close to overburden albeit of a small magnitude (~0.3 m H2O), (ii) a minimum extrapolated englacial temperature of -21° C, (iii) and thermistors in the lowest 10 m of the borehole recorded temperatures above the pressure melting point indicating the presence of water. Data loggers were left running and longer records should become available in the near future. Differential drilling and instrument installation depths together with observations of discrete, diurnal turbidity events provisionally suggest the presence of sediment at the bed. These preliminary borehole observations will be complemented by GPS measurements of ice motion, meteorological data, and seismic and radar surveys to be undertaken over the next two years.

  18. Borehole prototype for seismic high-resolution exploration

    NASA Astrophysics Data System (ADS)

    Giese, Rüdiger; Jaksch, Katrin; Krauß, Felix; Krüger, Kay; Groh, Marco; Jurczyk, Andreas

    2014-05-01

    Target reservoirs for the exploitation of hydrocarbons or hot water for geothermal energy supply can comprise small layered structures, for instance thin layers or faults. The resolution of 2D and 3D surface seismic methods is often not sufficient to determine and locate these structures. Borehole seismic methods like vertical seismic profiling (VSP) and seismic while drilling (SWD) use either receivers or sources within the borehole. Thus, the distance to the target horizon is reduced and higher resolution images of the geological structures can be achieved. Even these methods are limited in their resolution capabilities with increasing target depth. To localize structures more accuracy methods with higher resolution in the range of meters are necessary. The project SPWD -- Seismic Prediction While Drilling aims at s the development of a borehole prototype which combines seismic sources and receivers in one device to improve the seismic resolution. Within SPWD such a prototype has been designed, manufactured and tested. The SPWD-wireline prototype is divided into three main parts. The upper section comprises the electronic unit. The middle section includes the upper receiver, the upper clamping unit as well as the source unit and the lower clamping unit. The lower section consists of the lower receiver unit and the hydraulic unit. The total length of the prototype is nearly seven meters and its weight is about 750 kg. For focusing the seismic waves in predefined directions of the borehole axis the method of phased array is used. The source unit is equipped with four magnetostrictive vibrators. Each can be controlled independently to get a common wave front in the desired direction of exploration. Source signal frequencies up to 5000 Hz are used, which allows resolutions up to one meter. In May and September 2013 field tests with the SPWD-wireline prototype have been carried out at the KTB Deep Crustal Lab in Windischeschenbach (Bavaria). The aim was to proof the

  19. Laboratory investigation of borehole breakouts and Multi-step failure model

    NASA Astrophysics Data System (ADS)

    Ruan, Xiao-Ping; Mao, Ji-Zheng; Cui, Zhan-Tao

    1993-05-01

    Based on our experiment of borehole breakouts with a group of sandstone samples described in this paper, a multi-step failure model of borehole breakouts are proposed to quantitatively explain the relationship between the section shape of borehole breakouts and the state of crustal stress. In this model the borehole spalling is not only related to the state of stress at a single point but also the state of stress on its neighboring area. The comparison between the experimental results of borehole breakouts and the calculation results shows a good agreement.

  20. Borehole Measurements of Interfacial and Co-seismic Seismoelectric Effects

    NASA Astrophysics Data System (ADS)

    Butler, K. E.; Dupuis, J. C.; Kepic, A. W.; Harris, B. D.

    2006-12-01

    We have recently carried out a series of seismoelectric field experiments employing various hammer seismic sources on surface and a multi-electrode `eel' lowered into slotted PVC-cased boreholes penetrating porous sediments. Deploying grounded dipole receivers in boreholes has a number of advantages over surface-based measurements. Ambient noise levels are reduced because earth currents from power lines and other sources tend to flow horizontally, especially near the surface. The earth also provides natural shielding from higher frequency spherics and radio frequency interference while the water-filled borehole significantly decreases the electrode contact impedance which in turn reduces Johnson noise and increases resilience to capacitively- coupled noise sources. From a phenomenological point of view, the potential for measuring seismoelectric conversions from various geological or pore fluid contacts at depth can be assessed by lowering antennas directly through those interfaces. Furthermore, co-seismic seismoelectric signals that are normally considered to be noise in surface measurements are of interest for well logging in the borehole environment. At Fredericton, Canada, broadband co-seismic effects, having a dominant frequency of 350-400 Hz were measured at quarter meter intervals in a borehole penetrating glacial sediments including tills, sands, and a silt/clay aquitard. Observed signal strengths of a few microvolts/m were found to be consistent with the predictions of a simplified theoretical model for the co-seismic effect expected to accompany the regular `fast' P-wave. In Australia we have carried out similar vertical profiling experiments in hydrogeological monitoring boreholes that pass through predominantly sandy sediments containing fresh to saline water near Ayr, QLD and Perth, WA. While co-seismic effects are generally seen to accompany P-wave and other seismic arrivals, the most interesting result has been the observation, at three sites, of

  1. PARTICLE DISPLACEMENTS ON THE WALL OF A BOREHOLE FROM INCIDENT PLANE WAVES.

    USGS Publications Warehouse

    Lee, M.W.

    1987-01-01

    Particle displacements from incident plane waves at the wall of a fluid-filled borehole are formulated by applying the seismic reciprocity theorem to far-field displacement fields. Such displacement fields are due to point forces acting on a fluid-filled borehole under the assumption of long wavelengths. The displacement fields are analyzed to examine the effect of the borehole on seismic wave propagation, particularly for vertical seismic profiling (VSP) measurements. When the shortest wavelength of interest is approximately 25 times longer than the borehole's diameter, the scattered displacements are proportional to the first power of incident frequency and borehole diameter. When the shortest wavelength of interest is about 40 times longer than the borehole's diameter, borehole effects on VSP measurements using a wall-locking geophone are negligible.

  2. Deriving historical total solar irradiance from lunar borehole temperatures

    NASA Astrophysics Data System (ADS)

    Miyahara, Hiroko; Wen, Guoyong; Cahalan, Robert F.; Ohmura, Atsumu

    2008-01-01

    We study the feasibility of deriving historical TSI (Total Solar Irradiance) from lunar borehole temperatures. As the Moon lacks Earth's dynamic features, lunar borehole temperatures are primarily driven by solar forcing. Using Apollo observed lunar regolith properties, we computed present-day lunar regolith temperature profiles for lunar tropical, mid-latitude, and polar regions for two scenarios of solar forcing reconstructed by Lean (2000) and Wang et al. (2005). Results show that these scenarios can be distinguished by small but potentially detectable differences in temperature, on the order of 0.01 K and larger depending on latitude, within ~10 m depth of the Moon's surface. Our results provide a physical basis and guidelines for reconstructing historical TSI from data obtainable in future lunar exploration.

  3. Borehole observations of continuous strain and fluid pressure: Chapter 9

    USGS Publications Warehouse

    Roeloffs, Evelyn A.; Linde, A.T.

    2007-01-01

    Strain is expansion, contraction, or distortion of the volcanic edifice and surrounding crust. As a result of magma movement, volcanoes may undergo enormous strain prior to and during eruption. Global Positioning System (GPS) observations can in principle be used to determine strain by taking the difference between two nearby observations and dividing by the distance between them. Two GPS stations 1 km apart, each providing displacement information accurate to the nearest millimeter, could detect strain as small as 2 mm km-1, or 2 × 10-6. It is possible, however, to measure strains at least three orders of magnitude smaller using borehole strainmeters. In fact, it is even possible to measure strains as small as 10-8 using observations of groundwater levels in boreholes.

  4. Deep Borehole Emplacement Mode Hazard Analysis Revision 0

    SciTech Connect

    Sevougian, S. David

    2015-08-07

    This letter report outlines a methodology and provides resource information for the Deep Borehole Emplacement Mode Hazard Analysis (DBEMHA). The main purpose is identify the accident hazards and accident event sequences associated with the two emplacement mode options (wireline or drillstring), to outline a methodology for computing accident probabilities and frequencies, and to point to available databases on the nature and frequency of accidents typically associated with standard borehole drilling and nuclear handling operations. Risk mitigation and prevention measures, which have been incorporated into the two emplacement designs (see Cochran and Hardin 2015), are also discussed. A key intent of this report is to provide background information to brief subject matter experts involved in the Emplacement Mode Design Study. [Note: Revision 0 of this report is concentrated more on the wireline emplacement mode. It is expected that Revision 1 will contain further development of the preliminary fault and event trees for the drill string emplacement mode.

  5. Coseismic Offsets on PBO Borehole Strainmeters: Real, or Spurious?

    NASA Astrophysics Data System (ADS)

    Barbour, A. J.; Agnew, D. C.

    2010-12-01

    We have observed coseismic strain offsets during many significant earthquakes, at all locations in the 74-instrument PBO borehole strainmeter (BSM) network. The M7.2 El Mayor-Cucapah earthquake of April 4, 2010 induced the largest offsets thus far, on BSMs located within the San Jacinto fault zone - the "Anza cluster". Here we present analyses of trends in the observed offsets for the Anza cluster, as well as inspection of their inferred borehole lithology. We find that offsets rarely agree with elastic dislocation theory in magnitude and sign, and speculate that they are controlled more by localized geologic constraints than by triggered fault slip, as has been suggested in previous studies (e.g. Linde and Johnson, 1989).

  6. The influence of wellbore inflow on electromagnetic borehole flowmeter measurements.

    PubMed

    Clemo, Tom; Barrash, Warren; Reboulet, Edward C; Johnson, Timothy C; Leven, Carsten

    2009-01-01

    This paper describes a combined field, laboratory, and numerical study of electromagnetic borehole flowmeter measurements acquired without the use of a packer or skirt to block bypass flow around the flowmeter. The most significant finding is that inflow through the wellbore screen changes the ratio of flow through the flowmeter to wellbore flow. Experiments reveal up to a factor of two differences in this ratio for conditions with and without inflow through the wellbore screen. Standard practice is to assume the ratio is constant. A numerical model has been developed to simulate the effect of inflow on the flowmeter. The model is formulated using momentum conservation within the borehole and around the flowmeter. The model is embedded in the MODFLOW-2000 ground water flow code. PMID:19341370

  7. Performance of a Borehole XRF Spectrometer for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Kelliher, Warren C.; Carlberg, Ingrid A.; Elam, W. T.; WIllard-Schmoe, Ella

    2007-01-01

    We have designed and constructed a borehole XRF Spectrometer (XRFS) as part of the Mars Subsurface Access program. It will be used to determine the composition of the Mars regolith at various depths by insertion into a pre-drilled borehole. The primary performance metrics for the instrument are the lower limits of detection over a wide range of the periodic table. Power consumption during data collection was also measured. The prototype instrument is complete and preliminary testing has been performed. Terrestrial soil Standard Reference Materials were used as the test samples. Detection limits were about 10 weight parts-per-million for most elements, with light elements being higher, up to 1.4 weight percent for magnesium. Power consumption (excluding ground support components) was 12 watts.

  8. New UK in-situ stress orientation for northern England and controls on borehole wall deformation identified using borehole imaging

    NASA Astrophysics Data System (ADS)

    Kingdon, Andrew; Fellgett, Mark W.; Waters, Colin N.

    2016-04-01

    The nascent development of a UK shale gas industry has highlighted the inadequacies of previous in-situ stress mapping which is fundamental to the efficacy and safety of potential fracturing operations. The limited number of stress inversions from earthquake focal plane mechanisms and overcoring measurements of in-situ stress in prospective areas increases the need for an up-to-date stress map. Borehole breakout results from 36 wells with newly interpreted borehole imaging data are presented. Across northern England these demonstrate a consistent maximum horizontal stress orientation (SHmax) orientation of 150.9° and circular standard deviation of 13.1°. These form a new and quality assured evidence base for both industry and its regulators. Widespread use of high-resolution borehole imaging tools has facilitated investigation of micro-scale relationships between stress and lithology, facilitating identification of breakouts as short as 25 cm. This is significantly shorter than those identified by older dual-caliper logging (typically 1-10+ m). Higher wall coverage (90%+ using the highest resolution tools) and decreasing pixel size (down to 4mm vertically by 2° of circumference) also facilitates identification of otherwise undetectable sub-centimetre width Drilling Induced Tensile Fractures (DIFs). Examination of borehole imaging from wells in North Yorkshire within the Carboniferous Pennine Coal Measures Group has showed that even though the stress field is uniform, complex micro-stress relationships exist. Different stress field indicators (SFI) are significantly affected by geology with differing failure responses from adjacent lithologies, highlighted by borehole imaging on sub-metre scales. Core-log-borehole imaging integration over intervals where both breakouts and DIFs have been identified allows accurate depth matching and thus allows a synthesis of failure for differing lithology and micro-structures under common in-situ conditions. Understanding these

  9. Research on One Borehole Hydraulic Coal Mining System

    NASA Astrophysics Data System (ADS)

    XIA, Bairu; ZENG, Xiping; MAO, Zhixin

    The Borehole Hydraulic Coal Mining System (BHCMS) causes fragmentation of coal seams and removes coal slump through a drilled hole using high-pressure water jet. Then the mixture of coal and water as slurry are driven out of the borehole by hydraulic or air-lifting method, and are separated at the surface. This paper presents a case study of hydraulic borehole coal mining. The three key techniques of the BHCMS, namely, hydraulic lift of jet pump, air lift, and water jet disintegration are discussed and analyzed in this paper based on theoretical analysis and field experiments. Some useful findings have been obtained: (1) The design of jet pump, air lift system, and water jet has to be integrated appropriately in order to improve mining efficiency and coal recovery rate, and to decrease energy consumption. The design of hydraulic lift jet pump must meet the requirement of the minimum floating speed of coal particles. The optimization of nondimensional parameters and prevention of cavitation have to be considered in the design; (2) With regard to selecting the nozzle types of jet pump, center nozzle or annular nozzle can be selected according to the size of the removed particles; (3) Through air-lift and back pressure, the water head can be decreased to improve the lift capacity of jet pump and decrease the power loss. The air lift has great limitation if it is used solely to extract coal, but if it is employed in conjunction with jet pump, the lift capacity of jet pump can be increased greatly; (4) With water jets, the air lift can improve the fragmentation radius and capacity. The main factors that affect the effect of water jet are the submergible status of jet, jet pressure, and flowrate. The ideal jet of the monitor in the borehole hydraulic coal-mining system is a nonsubmergible free jet. Through air lift, the nonsubmergible free jet can be set up in the mining hole.

  10. Enhancement of Network Performance through Integration of Borehole Stations

    NASA Astrophysics Data System (ADS)

    Korger, Edith; Plenkers, Katrin; Clinton, John; Kraft, Toni; Diehl, Tobias; Husen, Stephan; Schnellmann, Michael

    2014-05-01

    In order to improve the detection and characterisation of weak seismic events across northern Switzerland/southern Germany, the Swiss Digital Seismic Network has installed 10 new seismic stations during 2012 and 2013. The newly densified network was funded within a 10-year project by NAGRA and is expected to monitor seismicity with a magnitude of completeness Mc (ML) below 1.3 and provide high quality locations for all these events. The goal of this project is the monitoring of areas surrounding potential nuclear waste repositories, in order to gain a thorough understanding of the seismotectonic processes and consequent evaluation of the seimsic hazard in the region. Northern Switzerland lies in a molasse basin and is densely populated. Therefore it is a major challenge in this region to find stations with noise characteristics low enough to meet the monitoring requirements. The new stations include three borehole sites equipped with 1 Hz Lennartz LE3D-BH velocity sensors (depths between 120 and 160 m), which are at critical locations for the new network but at areas where the ambient noise at the surface is too high for convential surface stations. At each borehole, a strong motion seismometer is also installed at the surface. Through placing the seismometers at depth, the ambient noise level is significantly lowered - which means detection of smaller local and larger regional events is enhanced. We present here a comparison of the performance of each of the three borehole stations, reflecting on the improvement in noise compared to surface installations at these sites, as well as with other conventional surface stations within the network. We also demonstrate the benefits in the operation network performance, in terms of earthquakes detected and located, which arise from installing borehole stations with lower background noise.

  11. 24 CHANNEL GEOPHONE ARRAY FOR HORIZONTAL OR VERTICAL BOREHOLES

    SciTech Connect

    Erik C. Westman

    2002-07-01

    This report describes the technical progress on a project to design and construct a multi-channel geophone array that improves tomographic imaging capabilities in both surface and underground mines. Especially important in the design of the array is sensor placement. One issue related to sensor placement is addressed in this report: the method of emplacing the array in a long, horizontal borehole. Improved imaging capabilities will produce energy, environmental, and economic benefits by increasing exploration accuracy and reducing operating costs.

  12. Shear wave transducer for stress measurements in boreholes

    DOEpatents

    Mao, Nai-Hsien

    1987-01-01

    A technique and apparatus for estimating in situ stresses by measuring stress-induced velocity anisotropy around a borehole. Two sets each of radially and tangentially polarized transducers are placed inside the hole with displacement directions either parallel or perpendicular to the principal stress directions. With this configuration, relative travel times are measured by both a pulsed phase-locked loop technique and a cross correlation of digitized waveforms. The biaxial velocity data is used to back-calculate the applied stress.

  13. Non-contact infrared temperature measurements in dry permafrost boreholes

    NASA Astrophysics Data System (ADS)

    Junker, Ralf; Grigoriev, Mikhail N.; Kaul, Norbert

    2008-04-01

    While planning the COAST Expedition to the Siberian Laptev Sea in 2005, the question of how to make a short equilibrium temperature measurement in a dry borehole arose. As a result, an infrared borehole tool was developed and used in three dry boreholes (up to 60.2 m deep) in the coastal transition zone from terrestrial to sub-sea permafrost near Mamontovy Klyk in the western Laptev Sea. A depth versus temperature profile was acquired with equilibration times of 50 × 10-3 s at each depth interval. Comparison with a common resistor string revealed an offset due to limitations of accuracy of the infrared technique and the influence of the probe's massive steel housing. Therefore it was necessary to calibrate the infrared sensor with a high precision temperature logger in each borehole. The results of the temperature measurements show a highly dynamic transition zone with temperature gradients up to -0.092°C/m and heat flow of -218 mW/m. A period of submergence of only 600 years the drilled sub-sea permafrost is approaching the overlying seawater temperature at -1.61°C with a temperature gradient of 0.021°C/m and heat flow of 49 mW/m. Further offshore, 11 km from the coastline, a temperature gradient of 0.006°C/m and heat flow of 14 mW/m occur. Thus the sub-sea permafrost in the Mamontovy Klyk region has reached a critical temperature for the presence of interstitial ice. The aim of this article is to give a brief feasibility study of infrared downhole temperature measurements and to present experiences and results of its successful application.

  14. Comparison of climate model simulated and observed borehole temperature profiles

    NASA Astrophysics Data System (ADS)

    Gonzalez-Rouco, J. F.; Stevens, M. B.; Beltrami, H.; Goosse, H.; Rath, V.; Zorita, E.; Smerdon, J.

    2009-04-01

    Advances in understanding climate variability through the last millennium lean on simulation and reconstruction efforts. Progress in the integration of both approaches can potentially provide new means of assessing confidence on model projections of future climate change, of constraining the range of climate sensitivity and/or attributing past changes found in proxy evidence to external forcing. This work addresses specifically possible strategies for comparison of paleoclimate model simulations and the information recorded in borehole temperature profiles (BTPs). First efforts have allowed to design means of comparison of model simulated and observed BTPs in the context of the climate of the last millennium. This can be done by diffusing the simulated temperatures into the ground in order to produce synthetic BTPs that can be in turn assigned to collocated, real BTPs. Results suggest that there is sensitivity of borehole temperatures at large and regional scales to changes in external forcing over the last centuries. The comparison between borehole climate reconstructions and model simulations may also be subjected to non negligible uncertainties produced by the influence of past glacial and Holocene changes. While the thermal climate influence of the last deglaciation can be found well below 1000 m depth, such type of changes can potentially exert an influence on our understanding of subsurface climate in the top ca. 500 m. This issue is illustrated in control and externally forced climate simulations of the last millennium with the ECHO-G and LOVECLIM models, respectively.

  15. A fast inversion method for interpreting borehole electromagnetic data

    NASA Astrophysics Data System (ADS)

    Kim, H. J.; Lee, K. H.; Wilt, M.

    2003-05-01

    A fast and stable inversion scheme has been developed using the localized nonlinear (LN) approximation to analyze electromagnetic fields obtained in a borehole. The medium is assumed to be cylindrically symmetric about the borehole, and to maintain the symmetry a vertical magnetic dipole is used as a source. The efficiency and robustness of an inversion scheme is very much dependent on the proper use of Lagrange multiplier, which is often provided manually to achieve a desired convergence. We utilize an automatic Lagrange multiplier selection scheme, which enhances the utility of the inversion scheme in handling field data. In this selection scheme, the integral equation (IE) method is quite attractive in speed because Green's functions, the most time consuming part in IE methods, are repeatedly re-usable throughout the selection procedure. The inversion scheme using the LN approximation has been tested to show its stability and efficiency using synthetic and field data. The inverted result from the field data is successfully compared with induction logging data measured in the same borehole.

  16. Experimental measurements of seismoelectric signals in borehole models

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Hu, Hengshan; Guan, Wei

    2015-12-01

    An experimental system is built for the electrokinetic measurements with a small scaled seismoelectric detector and a high resolution digitizer (1 MS s-1, 22 bits). The acoustic and seismoelectric experiments are carried out in different borehole models at the high frequency of 90 kHz in the laboratory. All the localized seismoelectric signals that accompany compressional wave, shear wave and Stoneley wave are first clearly observed with a monopole source in sandstone boreholes that are saturated by tap water. The amplitudes of these signals are measured in the range of 1-120 μV, which is useful for designing the seismoelectric logging instruments. Then the amplitude ratio of electric signal to acoustic pressure (REP) for each of the three waves is calculated and compared with the theoretical simulations. Based on the experimental data, we find that seismoelectric logging signals as well as REP become stronger at the more permeable borehole model. We also find that seismoelectric logging signals are more sensitive to permeability and porosity compared with acoustic logging signals. Therefore, this study verifies the feasibility of seismoelectric well logging, and further indicates that the seismoelectric logging technique might be a preferable method to estimate formation parameters in the field measurements.

  17. Chemical energy system for a borehole seismic source. [Final report

    SciTech Connect

    Engelke, R.; Hedges, R.O.

    1996-03-01

    We describe a detonation system that will be useful in the seismological examination of geological structures. The explosive component of this system is produced by the mixing of two liquids; these liquids are classified as non-explosive materials by the Department of Transportation. This detonation system could be employed in a borehole tool in which many explosions are made to occur at various points in the borehole. The explosive for each explosion would be mixed within the tool immediately prior to its being fired. Such an arrangement ensures that no humans are ever in proximity to explosives. Initiation of the explosive mixture is achieved with an electrical slapper detonator whose specific parameters are described; this electrical initiation system does not contain any explosive. The complete electrical/mechanical/explosive system is shown to be able to perform correctly at temperatures {le}120{degrees}C and at depths in a water-filled borehole of {le} 4600 ft (i.e., at pressures of {le}2000 psig).

  18. Brine resistance of window materials for a Borehole Televiewer tool

    SciTech Connect

    Arnold, C. Jr.

    1982-02-01

    The Borehole Televiewer is a data logging tool that was developed to inspect boreholes and evaluate geological formations. Window failures were observed after the manufacturer of the tool replaced the elastomeric windows with windows made from polyimide (Vespel), a plastic material noted for its high thermal stability. In this work, it was demonstrated that while Vespel was quite stable thermally at 250/sup 0/C in an inert environment (argon), stress cracking occurred in the presence of brine at these temperatures over a period of 2 to 3 hours. Somewhat longer exposures to brine (24 hours) at 260/sup 0/C and 20.7 MPa resulted in extensive chemical reversion of polyimides. Acids and amines were detected by infrared analysis. In contrast, the mechanical and chemical properties of Teflon (poly(tetrafluorethylene)) were unaffected after exposure to brine under the same conditions. On the basis of these results, it was recommended that acoustic windows for the Borehole Televiewer be made of Teflon. It was also recommended that the configuration of the window be modified to allow for the tendency of Teflon to flow under stress.

  19. Hydraulic conductivity explored by factor analysis of borehole geophysical data

    NASA Astrophysics Data System (ADS)

    Szabó, Norbert Péter

    2015-08-01

    A multivariate statistical method is presented for providing hydrogeological information on groundwater formations. Factor analysis is applied to borehole logs in Hungary and the USA to estimate the vertical distribution of hydraulic conductivity of rocks intersected by the borehole. Earlier studies showed a strong correlation between a statistical variable extracted by factor analysis and shale volume in primary porosity rocks. Hydraulic conductivity as a related quantity can be derived directly by factor analysis. In the first step, electric and nuclear logs are transformed into factor logs, which are then correlated to hydraulic properties of aquifers. It is shown that a factor explaining the major part of variance of the measured variables is inversely proportional to hydraulic conductivity. By revealing the regression relation between the above quantities, an estimate for hydraulic conductivity can be given along the entire length of the borehole. Synthetic modeling experiments and field cases demonstrate the feasibility of the method, which can be applied both in primary and secondary porosity aquifers. The results of factor analysis show consistence with those of the Kozeny-Carman method and hydraulic aquifer tests. The application of the statistical analysis of well logs together with independent ground geophysical and hydrogeological methods serves a more efficient exploration of groundwater resources.

  20. Near surface characterisation of a limestone site using borehole and surface geophysics.

    NASA Astrophysics Data System (ADS)

    Sénéchal, G.; Hollender, F.; Rousset, D.

    2003-04-01

    The paper deals with the analysis of the respective performances and the optimization of geophysical methods used for the non-destructive imagery of rocks, from the surface to a depth of approximately 100 m. Different techniques, carried out from the surface or from boreholes, have been tested on the \\char`&{uml;}Médecin Hill\\char`&{uml;} (Centre d'Etude de Cadarache - 13108 St. Paul lez Durance - France). This test site consists in a low fractured limestone, crossed by several faults characterized by a near-vertical dip. The site was previously investigated by numerous other characterization methods (boreholes, surface geology, structural analysis, well logging, etc.): a well known structural 3D model is available. Each tested geophysical method is based on the determination of different physical parameters (elastic parameters, density, electrical resistivity, dielectric permittivity, etc.). In terms of resolution and depth of investigation, every geophysical method has its own drawbacks and advantages. High resolution seismic focuses between 20 and some hundred of meters of depth with a metric to decametric vertical resolution. GPR has a decimetric resolution but electromagnetic waves are strongly attenuated after a few meters of propagation. DC resistivity is a potential method so, resolution dramatically decreases with depth of investigation. The acquisition pattern of this last study leads to a depth of investigation around 15 m and a resolution of one to several meters. Several surface acquisitions have been performed within a 400 m line along which seven boreholes are located. From the high resolution reflection seismic data, we calculated a depth migrated section which displays the main interfaces affected by some near vertical faults. These results are compared to seismic data obtained from a borehole survey interpreted with the help of log data. A radar borehole survey, using tomographic and reflection pattern surveys provided improved information but

  1. Characterization of magnetized ore bodies based on three-component borehole magnetic and directional borehole seismic measurements

    NASA Astrophysics Data System (ADS)

    Virgil, Christopher; Neuhaus, Martin; Hördt, Andreas; Giese, Rüdiger; Krüger, Kay; Jurczyk, Andreas; Juhlin, Christopher; Juhojuntti, Niklas

    2016-04-01

    In the last decades magnetic prospecting using total field data was used with great success for localization and characterization of ferromagnetic ore bodies. Especially borehole magnetic measurements reveal important constraints on the extent and depth of potential mining targets. However, due to the inherent ambiguity of the interpretation of magnetic data, the resulting models of the distribution of magnetized material, such as iron ore bodies, are not entirely reliable. Variations in derived parameters like volume and estimated ore content of the expected body have significant impact on the economic efficiency of a planned mine. An important improvement is the introduction of three-component borehole magnetic sondes. Modern tools comprise orientation modules which allow the continuous determination of the tool's heading regardless of the well inclination and independent of the magnetic field. Using the heading information the recorded three-component magnetic data can be transferred from the internal tool's frame to the geographic reference frame. The vector information yields a more detailed and reliable description of the ore bodies compared to total field or horizontal and vertical field data. Nevertheless complementary information to constrain the model is still advisable. The most important supplementary information for the interpretation of magnetic data is the knowledge of the structural environment of the target regions. By discriminating dissimilar rock units, a geometrical starting model can be derived, constraining the magnetic interpretation and leading to a more robust estimation of the rock magnetizations distribution. The most common approach to reveal the lithological setting rests upon seismic measurements. However, for deep drilling targets surface seismic and VSP lack the required spatial resolution of 10s of meters. A better resolution is achieved by using directed sources and receivers inside the borehole. Here we present the application of

  2. Third Party Borehole Seismic Experiments During the Ocean Drilling Program

    NASA Astrophysics Data System (ADS)

    Swift, S. A.; Stephen, R. A.; Hoskins, H.; Bolmer, T.

    2003-12-01

    Third party borehole seismic experiments on the Ocean Drilling Program began with an oblique seismic experiment on Leg 102 at Site 418 in the Western Atlantic. Upper ocean crust here is characterized by a normal seismic layer 2 vertical velocity gradient, lateral velocity variations, azimuthal anisotropy, and azimuth dependent scattering. A normal incidence VSP was run on Leg 118 in the gabbro sequence at Hole 735B on the Southwest Indian Ridge. The vertical seismic velocity inferred from arrival times is similar to that observed horizontally by refraction in ocean layer 3, but attenuation is anomalously high, which prompted the hypothesis that the gabbro cored may not actually represent the bulk of Layer 3 material. The VSP data acquired at Hole 504B in the eastern equatorial Pacific on Legs 111 and 148 helped to constrain the P and S velocity structure at the site and showed that upper layer 3 at this site, at a depth of over 2 km into the crust, consisted of the lower portion of the sheeted dikes rather than gabbro. Both offset and normal incidence VSPs were run on Leg 164 to study the seismic velocity structure of gas hydrates on the Blake Ridge. A new innovation on ODP was the deployment of broadband seismometers in boreholes. Whereas the conventional VSPs and offset VSPs mentioned above operate in the frequency range from 1 to 100Hz, broadband seismometers are used in earthquake seismology and operate in the range from 0.001 to 10Hz. The first broadband seismometer test was carried out from the drill ship on Leg 128 in the Japan Sea. Subsequently 4 permanent broadband borehole seismic observatories were installed in the Western Pacific and Japan Trench on Legs 186, 191 and 195. The ODP era also saw the development of systems for re-entering boreholes from conventional research vessels after the drill ship left the site. Borehole seismic experiments and installations that used this wireline re-entry technology were carried out in DSDP Holes 534 (Blake

  3. Anisotropy-induced coupling in borehole acoustic modes

    NASA Astrophysics Data System (ADS)

    Norris, Andrew N.; Sinha, Bikash K.

    1996-07-01

    The guided wave modes of a circular borehole in a weakly anisotropic formation are composed of linear superpositions of the associated modes for an isotropic formation. At moderate frequencies the major modes of concern are the quasi-Stoneley and quasi-flexural modes. These guided modes in anisotropic formations can be estimated from a perturbation analysis in terms of the unperturbed solutions for an isotropic formation. When the formation anisotropy is of monoclinic or lower symmetry, the normal and shear stresses become functions of both normal and shear strains through some additional anisotropic constants that are not present in materials with orthorhombic or higher symmetry. These additional elastic constants cause a coupling between the Stoneley and flexural modes. Under these circumstances, an on-axis monopole or dipole source excites both modes. Coupling coefficients account for the excitation of quasi-flexural motion by a monopole source, and of the quasi-Stoneley mode by a dipole. A transversely isotropic (TI) formation with its symmetry axis obliquely inclined with the borehole exhibits monoclinic symmetry in its rotated constants referred to the borehole axis. The monoclinic symmetry of the surrounding formation in such cases causes a coupling between the Stoneley and flexural modes. Computational results show that a borehole inclined at an angle of 60° from the symmetry axis of Austin chalk, a slow TI medium, exhibits coupling between the Stoneley and qSV-polarized flexural mode acceleration amplitudes of the order of 20 dB or less in the frequency range of interest. A similar obliquely inclined borehole in Bakken shale, a fast TI formation, exhibits a far weaker coupling between the Stoneley and qSV-polarized flexural modes. The stronger coupling in the case of Austin chalk is a result of relatively large anisotropic constants together with close proximity of the Stoneley and qSV-polarized flexural dispersions. On the other hand, weaker coupling in

  4. Monitoring engineered remediation with borehole radar

    USGS Publications Warehouse

    Lane, J.W., Jr.; Day-Lewis, F. D.; Joesten, P.K.

    2007-01-01

    The success of engineered remediation is predicated on correct emplacement of either amendments (e.g., vegetable-oil emulsion, lactate, molasses, etc.) or permeable reactive barriers (e.g., vegetable oil, zero-valent iron, etc.) to enhance microbial or geochemical breakdown of contaminants and treat contaminants. Currently, site managers have limited tools to provide information about the distribution of injected materials; the existence of gaps or holes in barriers; and breakdown or transformation of injected materials over time. ?? 2007 Society of Exploration Geophysicists.

  5. Method and apparatus for coupling seismic sensors to a borehole wall

    DOEpatents

    West, Phillip B.

    2005-03-15

    A method and apparatus suitable for coupling seismic or other downhole sensors to a borehole wall in high temperature and pressure environments. In one embodiment, one or more metal bellows mounted to a sensor module are inflated to clamp the sensor module within the borehole and couple an associated seismic sensor to a borehole wall. Once the sensing operation is complete, the bellows are deflated and the sensor module is unclamped by deflation of the metal bellows. In a further embodiment, a magnetic drive pump in a pump module is used to supply fluid pressure for inflating the metal bellows using borehole fluid or fluid from a reservoir. The pump includes a magnetic drive motor configured with a rotor assembly to be exposed to borehole fluid pressure including a rotatable armature for driving an impeller and an associated coil under control of electronics isolated from borehole pressure.

  6. Method of correlating a core sample with its original position in a borehole

    SciTech Connect

    Vinegar, H. J.; Wellington, S. L.

    1985-09-24

    A method of correlating a core sample with its original position in a borehole. The borehole is logged to determine the bulk density of the formation surrounding the borehole. The core sample is scanned with a computerized axial tomographic scanner (CAT) to determine the attenuation coefficients at a plurality of points in a plurality of cross sections along the core sample. The bulk density log is then compared with the attenuation coefficients to determine the position to which the core sample correlates in the borehole. Alternatively, the borehole can be logged to determine the photoelectric absorption of the formation surrounding the borehole, and this log can be compared with data derived from scanning the core sample with a CAT at two different energy levels.

  7. A strategy to seal exploratory boreholes in unsaturated tuff; Yucca Mountain Site Characterization Project

    SciTech Connect

    Fernandez, J.A.; Case, J.B.; Givens, C.A.; Carney, B.C.

    1994-04-01

    This report presents a strategy for sealing exploratory boreholes associated with the Yucca Mountain Site Characterization Project. Over 500 existing and proposed boreholes have been considered in the development of this strategy, ranging from shallow (penetrating into alluvium only) to deep (penetrating into the groundwater table). Among the comprehensive list of recommendations are the following: Those boreholes within the potential repository boundary and penetrating through the potential repository horizon are the most significant boreholes from a performance standpoint and should be sealed. Shallow boreholes are comparatively insignificant and require only nominal sealing. The primary areas in which to place seals are away from high-temperature zones at a distance from the potential repository horizon in the Paintbrush nonwelded tuff and the upper portion of the Topopah Spring Member and in the tuffaceous beds of the Calico Hills Unit. Seals should be placed prior to waste emplacement. Performance goals for borehole seals both above and below the potential repository are proposed. Detailed construction information on the boreholes that could be used for future design specifications is provided along with a description of the environmental setting, i.e., the geology, hydrology, and the in situ and thermal stress states. A borehole classification scheme based on the condition of the borehole wall in different tuffaceous units is also proposed. In addition, calculations are presented to assess the significance of the boreholes acting as preferential pathways for the release of radionuclides. Design calculations are presented to answer the concerns of when, where, and how to seal. As part of the strategy development, available technologies to seal exploratory boreholes (including casing removal, borehole wall reconditioning, and seal emplacement) are reviewed.

  8. Borehole Geophysical Logging Program: Incorporating New and Existing Techniques in Hydrologic Studies

    USGS Publications Warehouse

    Wacker, Michael A.; Cunningham, Kevin J.

    2008-01-01

    The borehole geophysical logging program at the U.S. Geological Survey (USGS)-Florida Integrated Science Center (FISC) provides subsurface information needed to resolve geologic, hydrologic, and environmental issues in Florida. The program includes the acquisition, processing, display, interpretation, and archiving of borehole geophysical logs. The borehole geophysical logging program is a critical component of many FISC investigations, including hydrogeologic framework studies, aquifer flow-zone characterization, and freshwater-saltwater interface delineation.

  9. Challenges and opportunities for fractured rock imaging using 3D cross-borehole electrical resistivity

    SciTech Connect

    Robinson, Judith; Johnson, Timothy C.; Slater, Lee D.

    2015-02-02

    There is an increasing need to characterize discrete fractures away from boreholes to better define fracture distributions and monitor solute transport. We performed a 3D evaluation of static and time-lapse cross-borehole electrical resistivity tomography (ERT) data sets from a limestone quarry in which flow and transport are controlled by a bedding-plane feature. Ten boreholes were discretized using an unstructured tetrahedral mesh, and 2D panel measurements were inverted for a 3D distribution of conductivity. We evaluated the benefits of 3D versus 2.5D inversion of ERT data in fractured rock while including the use of borehole regularization disconnects (BRDs) and borehole conductivity constraints. High-conductivity halos (inversion artifacts) surrounding boreholes were removed in static images when BRDs and borehole conductivity constraints were implemented. Furthermore, applying these constraints focused transient changes in conductivity resulting from solute transport on the bedding plane, providing a more physically reasonable model for conductivity changes associated with solute transport at this fractured rock site. Assuming bedding-plane continuity between fractures identified in borehole televiewer data, we discretized a planar region between six boreholes and applied a fracture regularization disconnect (FRD). Although the FRD appropriately focused conductivity changes on the bedding plane, the conductivity distribution within the discretized fracture was nonunique and dependent on the starting homogeneous model conductivity. Synthetic studies performed to better explain field observations showed that inaccurate electrode locations in boreholes resulted in low-conductivity halos surrounding borehole locations. These synthetic studies also showed that the recovery of the true conductivity within an FRD depended on the conductivity contrast between the host rock and fractures. Our findings revealed that the potential exists to improve imaging of fractured

  10. Condensed listing of surface boreholes at the Waste Isolation Pilot Plant Project through 31 December 1995

    SciTech Connect

    Hill, L.R.; Aguilar, R.; Mercer, J.W.; Newman, G.

    1997-01-01

    This report contains a condensed listing of Waste Isolation Pilot Plant (WIPP) project surface boreholes drilled for the purpose of site selection and characterization through 31 December 1995. The US Department of Energy (DOE) sponsored the drilling activities, which were conducted primarily by Sandia National Laboratories. The listing provides physical attributes such as location (township, range, section, and state-plane coordinates), elevation, and total borehole depth, as well as the purpose for the borehole, drilling dates, and information about extracted cores. The report also presents the hole status (plugged, testing, monitoring, etc.) and includes salient findings and references. Maps with borehole locations and times-of-drilling charts are included.