Science.gov

Sample records for borkumensis sk2 genome

  1. In situ detection of alkB2 gene involved in Alcanivorax borkumensis SK2(T) hydrocarbon biodegradation.

    PubMed

    Matturro, Bruna; Frascadore, Emanuela; Cappello, Simone; Genovese, Mariella; Rossetti, Simona

    2016-09-15

    This study aimed to develop a new assay based on the whole cell hybridization in order to monitor alkane hydroxylase genes (alkB system) of the marine bacterium Alcanivorax borkumensis SK2(T) commonly reported as the predominant microorganism responsible for the biodegradation of n-alkanes which are the major fraction of petroleum hydrocarbons. The assay based on the whole cell hybridization targeting alkB2 gene was successfully developed and calibrated on a pure culture of Alcanivorax borkumensis SK2(T) with a detection efficiency up to 80%. The approach was further successfully validated on hydrocarbon-contaminated seawater and provided cells abundance (6.74E+04alkB2-carryingcellsmL(-1)) higher of about one order of magnitude than those obtained by qPCR (4.96E+03alkB2genecopiesmL(-1)). This study highlights the validity of the assay for the detection at single cell level of key-functional genes involved in the biodegradation of n-alkanes. PMID:27315756

  2. Osmotic Stress Confers Enhanced Cell Integrity to Hydrostatic Pressure but Impairs Growth in Alcanivorax borkumensis SK2.

    PubMed

    Scoma, Alberto; Boon, Nico

    2016-01-01

    Alcanivorax is a hydrocarbonoclastic genus dominating oil spills worldwide. While its presence has been detected in oil-polluted seawaters, marine sediment and salt marshes under ambient pressure, its presence in deep-sea oil-contaminated environments is negligible. Recent laboratory studies highlighted the piezosensitive nature of some Alcanivorax species, whose growth yields are highly impacted by mild hydrostatic pressures (HPs). In the present study, osmotic stress was used as a tool to increase HP resistance in the type strain Alcanivorax borkumensis SK2. Control cultures grown under standard conditions of salinity and osmotic pressure with respect to seawater (35.6 ppt or 1136 mOsm kg(-1), respectively) were compared with cultures subjected to hypo- and hyperosmosis (330 and 1720 mOsm kg(-1), or 18 and 62 ppt in salinity, equivalent to brackish and brine waters, respectively), under atmospheric or increased HP (0.1 and 10 MPa). Osmotic stress had a remarkably positive impact on cell metabolic activity in terms of CO2 production (thus, oil bioremediation) and O2 respiration under hyperosmosis, as acclimation to high salinity enhanced cell activity under 10 MPa by a factor of 10. Both osmotic shocks significantly enhanced cell protection by reducing membrane damage under HP, with cell integrities close to 100% under hyposmosis. The latter was likely due to intracellular water-reclamation as no trace of the piezolyte ectoine was found, contrary to hyperosmosis. Notably, ectoine production was equivalent at 0.1 MPa in hyperosmosis-acclimated cells and at 10 MPa under isosmotic conditions. While stimulating cell metabolism and enhancing cell integrity, osmotic stress had always a negative impact on culture growth and performance. No net growth was observed during 4-days incubation tests, and CO2:O2 ratios and pH values indicated that culture performance in terms of hydrocarbon degradation was lowered by the effects of osmotic stress alone or combined with

  3. Osmotic Stress Confers Enhanced Cell Integrity to Hydrostatic Pressure but Impairs Growth in Alcanivorax borkumensis SK2

    PubMed Central

    Scoma, Alberto; Boon, Nico

    2016-01-01

    Alcanivorax is a hydrocarbonoclastic genus dominating oil spills worldwide. While its presence has been detected in oil-polluted seawaters, marine sediment and salt marshes under ambient pressure, its presence in deep-sea oil-contaminated environments is negligible. Recent laboratory studies highlighted the piezosensitive nature of some Alcanivorax species, whose growth yields are highly impacted by mild hydrostatic pressures (HPs). In the present study, osmotic stress was used as a tool to increase HP resistance in the type strain Alcanivorax borkumensis SK2. Control cultures grown under standard conditions of salinity and osmotic pressure with respect to seawater (35.6 ppt or 1136 mOsm kg-1, respectively) were compared with cultures subjected to hypo- and hyperosmosis (330 and 1720 mOsm kg-1, or 18 and 62 ppt in salinity, equivalent to brackish and brine waters, respectively), under atmospheric or increased HP (0.1 and 10 MPa). Osmotic stress had a remarkably positive impact on cell metabolic activity in terms of CO2 production (thus, oil bioremediation) and O2 respiration under hyperosmosis, as acclimation to high salinity enhanced cell activity under 10 MPa by a factor of 10. Both osmotic shocks significantly enhanced cell protection by reducing membrane damage under HP, with cell integrities close to 100% under hyposmosis. The latter was likely due to intracellular water-reclamation as no trace of the piezolyte ectoine was found, contrary to hyperosmosis. Notably, ectoine production was equivalent at 0.1 MPa in hyperosmosis-acclimated cells and at 10 MPa under isosmotic conditions. While stimulating cell metabolism and enhancing cell integrity, osmotic stress had always a negative impact on culture growth and performance. No net growth was observed during 4-days incubation tests, and CO2:O2 ratios and pH values indicated that culture performance in terms of hydrocarbon degradation was lowered by the effects of osmotic stress alone or combined with increased HP

  4. Analysis of Lipid Export in Hydrocarbonoclastic Bacteria of the Genus Alcanivorax: Identification of Lipid Export-Negative Mutants of Alcanivorax borkumensis SK2 and Alcanivorax jadensis T9▿

    PubMed Central

    Manilla-Pérez, Efraín; Reers, Christina; Baumgart, Meike; Hetzler, Stephan; Reichelt, Rudolf; Malkus, Ursula; Kalscheuer, Rainer; Wältermann, Marc; Steinbüchel, Alexander

    2010-01-01

    Triacylglycerols (TAGs), wax esters (WEs), and polyhydroxyalkanoates (PHAs) are the major hydrophobic compounds synthesized in bacteria and deposited as cytoplasmic inclusion bodies when cells are cultivated under imbalanced growth conditions. The intracellular occurrence of these compounds causes high costs for downstream processing. Alcanivorax species are able to produce extracellular lipids when the cells are cultivated on hexadecane or pyruvate as the sole carbon source. In this study, we developed a screening procedure to isolate lipid export-negative transposon-induced mutants of bacteria of the genus Alcanivorax for identification of genes required for lipid export by employing the dyes Nile red and Solvent Blue 38. Three transposon-induced mutants of A. jadensis and seven of A. borkumensis impaired in lipid secretion were isolated. All isolated mutants were still capable of synthesizing and accumulating these lipids intracellularly and exhibited no growth defect. In the A. jadensis mutants, the transposon insertions were mapped in genes annotated as encoding a putative DNA repair system specific for alkylated DNA (Aj17), a magnesium transporter (Aj7), and a transposase (Aj5). In the A. borkumensis mutants, the insertions were mapped in genes encoding different proteins involved in various transport processes, like genes encoding (i) a heavy metal resistance (CZCA2) in mutant ABO_6/39, (ii) a multidrug efflux (MATE efflux) protein in mutant ABO_25/21, (iii) an alginate lyase (AlgL) in mutants ABO_10/30 and ABO_19/48, (iv) a sodium-dicarboxylate symporter family protein (GltP) in mutant ABO_27/29, (v) an alginate transporter (AlgE) in mutant ABO_26/1, or (vi) a two-component system protein in mutant ABO_27/56. Site-directed MATE, algE, and algL gene disruption mutants, which were constructed in addition, were also unable to export neutral lipids and confirmed the phenotype of the transposon-induced mutants. The putative localization of the different gene

  5. An impaired metabolic response to hydrostatic pressure explains Alcanivorax borkumensis recorded distribution in the deep marine water column

    PubMed Central

    Scoma, Alberto; Barbato, Marta; Borin, Sara; Daffonchio, Daniele; Boon, Nico

    2016-01-01

    Alcanivorax borkumensis is an ubiquitous model organism for hydrocarbonoclastic bacteria, which dominates polluted surface waters. Its negligible presence in oil-contaminated deep waters (as observed during the Deepwater Horizon accident) raises the hypothesis that it may lack adaptive mechanisms to hydrostatic pressure (HP). The type strain SK2 was tested under 0.1, 5 and 10 MPa (corresponding to surface water, 500 and 1000 m depth, respectively). While 5 MPa essentially inactivated SK2, further increase to 10 MPa triggered some resistance mechanism, as indicated by higher total and intact cell numbers. Under 10 MPa, SK2 upregulated the synthetic pathway of the osmolyte ectoine, whose concentration increased from 0.45 to 4.71 fmoles cell−1. Central biosynthetic pathways such as cell replication, glyoxylate and Krebs cycles, amino acids metabolism and fatty acids biosynthesis, but not β-oxidation, were upregulated or unaffected at 10 MPa, although total cell number was remarkably lower with respect to 0.1 MPa. Concomitantly, expression of more than 50% of SK2 genes was downregulated, including genes related to ATP generation, respiration and protein translation. Thus, A. borkumensis lacks proper adaptation to HP but activates resistance mechanisms. These consist in poorly efficient biosynthetic rather than energy-yielding degradation-related pathways, and suggest that HP does represent a major driver for its distribution at deep-sea. PMID:27515484

  6. An impaired metabolic response to hydrostatic pressure explains Alcanivorax borkumensis recorded distribution in the deep marine water column.

    PubMed

    Scoma, Alberto; Barbato, Marta; Borin, Sara; Daffonchio, Daniele; Boon, Nico

    2016-01-01

    Alcanivorax borkumensis is an ubiquitous model organism for hydrocarbonoclastic bacteria, which dominates polluted surface waters. Its negligible presence in oil-contaminated deep waters (as observed during the Deepwater Horizon accident) raises the hypothesis that it may lack adaptive mechanisms to hydrostatic pressure (HP). The type strain SK2 was tested under 0.1, 5 and 10 MPa (corresponding to surface water, 500 and 1000 m depth, respectively). While 5 MPa essentially inactivated SK2, further increase to 10 MPa triggered some resistance mechanism, as indicated by higher total and intact cell numbers. Under 10 MPa, SK2 upregulated the synthetic pathway of the osmolyte ectoine, whose concentration increased from 0.45 to 4.71 fmoles cell(-1). Central biosynthetic pathways such as cell replication, glyoxylate and Krebs cycles, amino acids metabolism and fatty acids biosynthesis, but not β-oxidation, were upregulated or unaffected at 10 MPa, although total cell number was remarkably lower with respect to 0.1 MPa. Concomitantly, expression of more than 50% of SK2 genes was downregulated, including genes related to ATP generation, respiration and protein translation. Thus, A. borkumensis lacks proper adaptation to HP but activates resistance mechanisms. These consist in poorly efficient biosynthetic rather than energy-yielding degradation-related pathways, and suggest that HP does represent a major driver for its distribution at deep-sea. PMID:27515484

  7. Sequencing and molecular dissection of Sk-2 in Neurospora

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Neurospora Spore killer-2 is a selfish meiotic drive element that kills its non-Sk-2 siblings during sexual sporulation. Although the location of Sk-2 has been mapped to a large recombination-suppressed region of chromosome III, the physical length and exact borders of the element have remained unde...

  8. Interaction of Alcanivorax borkumensis with a Surfactant Decorated Oil-Water Interface.

    PubMed

    Bookstaver, Michelle; Bose, Arijit; Tripathi, Anubhav

    2015-06-01

    Alcanivorax borkumensis is a hydrocarbon degrading bacterium linked to oil degradation around oil spill sites. It is known to be a surface bacterium leading to substantial interaction with the oil-water interface. Because of its abundance in oil spill regions, it has great potential to be used actively in oil spill remediation. Dispersants are thought to be important in the creation of oil-in-water emulsions that are meant to aid in the biodegradation process by bacteria. Although it is likely that some sort of dispersant will be used again in the case of another oil spill, to date, no studies have shown the impact of dispersants on the bacteria population. Corexit 9500 was the main dispersant used during the Deepwater Horizon oil spill, but little is known about its effect on the bacteria community. We built an experimental platform to quantitatively measure the transient growth of Alcanivorax borkumensis at the interface of oil and water. To our knowledge, this is the first study of how A. borkumensis interacts with a surfactant decorated oil-water interface. We use COREXIT EC9500A, cetylytrimethylamonium bromide, dioctyl sulfosuccinate sodium salt, l-α-phosphatidylcholine, sodium dodecyl sulfate, and Tween 20 to investigate the impact of dispersants on Alcanivorax borkumensis. We assess the impact of these dispersants on the growth rate, lag time, and maximum concentration of Alcanivorax borkumensis. We show that the charge, structure, and surface activity of these surfactants greatly impact the growth of A. borkumensis. Our results indicated that out of the surfactants tested only Tween 20 assists Acanivorax borkumensis growth. The results of this study will be important in the decision of dispersant use in the future. PMID:25966795

  9. Crystal structure of the Alcanivorax borkumensis YdaH transporter reveals an unusual topology

    NASA Astrophysics Data System (ADS)

    Bolla, Jani Reddy; Su, Chih-Chia; Delmar, Jared A.; Radhakrishnan, Abhijith; Kumar, Nitin; Chou, Tsung-Han; Long, Feng; Rajashankar, Kanagalaghatta R.; Yu, Edward W.

    2015-04-01

    The potential of the folic acid biosynthesis pathway as a target for the development of antibiotics has been clinically validated. However, many pathogens have developed resistance to these antibiotics, prompting a re-evaluation of potential drug targets within the pathway. The ydaH gene of Alcanivorax borkumensis encodes an integral membrane protein of the AbgT family of transporters for which no structural information was available. Here we report the crystal structure of A. borkumensis YdaH, revealing a dimeric molecule with an architecture distinct from other families of transporters. YdaH is a bowl-shaped dimer with a solvent-filled basin extending from the cytoplasm to halfway across the membrane bilayer. Each subunit of the transporter contains nine transmembrane helices and two hairpins that suggest a plausible pathway for substrate transport. Further analyses also suggest that YdaH could act as an antibiotic efflux pump and mediate bacterial resistance to sulfonamide antimetabolite drugs.

  10. Crystal structure of the Alcanivorax borkumensis YdaH transporter reveals an unusual topology

    SciTech Connect

    Bolla, Jani Reddy; Su, Chih-Chia; Delmar, Jared A.; Radhakrishnan, Abhijith; Kumar, Nitin; Chou, Tsung-Han; Long, Feng; Rajashankar, Kanagalaghatta R.; Yu, Edward W.

    2015-04-20

    The potential of the folic acid biosynthesis pathway as a target for the development of antibiotics has been clinically validated. However, many pathogens have developed resistance to these antibiotics, prompting a re-evaluation of potential drug targets within the pathway. The ydaH gene of Alcanivorax borkumensis encodes an integral membrane protein of the AbgT family of transporters for which no structural information was available. Here we report the crystal structure of A. borkumensis YdaH, revealing a dimeric molecule with an architecture distinct from other families of transporters. YdaH is a bowl-shaped dimer with a solvent-filled basin extending from the cytoplasm to halfway across the membrane bilayer. Each subunit of the transporter contains nine transmembrane helices and two hairpins that suggest a plausible pathway for substrate transport. Further analyses also suggest that YdaH could act as an antibiotic efflux pump and mediate bacterial resistance to sulfonamide antimetabolite drugs.

  11. Developmental profile of SK2 channel expression and function in CA1 neurons

    PubMed Central

    Ballesteros-Merino, Carmen; Lin, Mike; Wu, Wendy W.; Ferrandiz-Huertas, Clotilde; Cabañero, María J.; Watanabe, Masahiko; Fukazawa, Yugo; Shigemoto, Ryuichi; Maylie, James; Adelman, John P.; Luján, Rafael

    2012-01-01

    We investigated the temporal and spatial expression of SK2 in the developing mouse hippocampus using molecular and biochemical techniques, quantitative immunogold electron microscopy and electrophysiology. The mRNA encoding SK2 was expressed in the developing and adult hippocampus. Western blotting and immunohistochemistry showed that SK2 protein increased with age. This was accompanied by a shift in subcellular localization. Early in development (P5), SK2 was predominantly localized to the endoplasmic reticulum in the pyramidal cell layer. But by P30 SK2 was almost exclusively expressed in the dendrites and spines. The level of SK2 at the postsynaptic density (PSD) also increased during development. In the adult, SK2 expression on the spine plasma membrane showed a proximal-to-distal gradient. Consistent with this redistribution and gradient of SK2, the selective SK channel blocker apamin increased evoked excitatory postsynaptic potentials (EPSPs) only in CA1 pyramidal neurons from mice older than P15. However, the effect of apamin on EPSPs was not different between synapses in proximal or distal stratum radiatum or stratum lacunosum-moleculare in adult. These results show a developmental increase and gradient in SK2-containing channel surface expression that underlie their influence on neurotransmission, and that may contribute to increased memory acquisition during early development. PMID:22072564

  12. Crystal structure of the Alcanivorax borkumensis YdaH transporter reveals an unusual topology

    DOE PAGESBeta

    Bolla, Jani Reddy; Su, Chih-Chia; Delmar, Jared A.; Radhakrishnan, Abhijith; Kumar, Nitin; Chou, Tsung-Han; Long, Feng; Rajashankar, Kanagalaghatta R.; Yu, Edward W.

    2015-04-20

    The potential of the folic acid biosynthesis pathway as a target for the development of antibiotics has been clinically validated. However, many pathogens have developed resistance to these antibiotics, prompting a re-evaluation of potential drug targets within the pathway. The ydaH gene of Alcanivorax borkumensis encodes an integral membrane protein of the AbgT family of transporters for which no structural information was available. Here we report the crystal structure of A. borkumensis YdaH, revealing a dimeric molecule with an architecture distinct from other families of transporters. YdaH is a bowl-shaped dimer with a solvent-filled basin extending from the cytoplasm tomore » halfway across the membrane bilayer. Each subunit of the transporter contains nine transmembrane helices and two hairpins that suggest a plausible pathway for substrate transport. Further analyses also suggest that YdaH could act as an antibiotic efflux pump and mediate bacterial resistance to sulfonamide antimetabolite drugs.« less

  13. UBE3A Regulates Synaptic Plasticity and Learning and Memory by Controlling SK2 Channel Endocytosis.

    PubMed

    Sun, Jiandong; Zhu, Guoqi; Liu, Yan; Standley, Steve; Ji, Angela; Tunuguntla, Rashmi; Wang, Yubin; Claus, Chad; Luo, Yun; Baudry, Michel; Bi, Xiaoning

    2015-07-21

    Gated solely by activity-induced changes in intracellular calcium, small-conductance potassium channels (SKs) are critical for a variety of functions in the CNS, from learning and memory to rhythmic activity and sleep. While there is a wealth of information on SK2 gating, kinetics, and Ca(2+) sensitivity, little is known regarding the regulation of SK2 subcellular localization. We report here that synaptic SK2 levels are regulated by the E3 ubiquitin ligase UBE3A, whose deficiency results in Angelman syndrome and overexpression in increased risk of autistic spectrum disorder. UBE3A directly ubiquitinates SK2 in the C-terminal domain, which facilitates endocytosis. In UBE3A-deficient mice, increased postsynaptic SK2 levels result in decreased NMDA receptor activation, thereby impairing hippocampal long-term synaptic plasticity. Impairments in both synaptic plasticity and fear conditioning memory in UBE3A-deficient mice are significantly ameliorated by blocking SK2. These results elucidate a mechanism by which UBE3A directly influences cognitive function. PMID:26166566

  14. Localization of SK2 channels relative to excitatory synaptic sites in the mouse developing Purkinje cells

    PubMed Central

    Ballesteros-Merino, Carmen; Martínez-Hernández, José; Aguado, Carolina; Watanabe, Masahiko; Adelman, John P.; Luján, Rafael

    2014-01-01

    Small-conductance, Ca2+-activated K+ (SK) channels regulate neuronal excitability in a variety of ways. To understand their roles in different neuronal subtypes it is important to determine their precise subcellular distribution. Here, we used biochemical, light microscopy immunohistochemical and immunoelectron microscopy techniques, combined with quantitative approaches, to reveal the expression and subcellular localization patterns of SK2 in the developing cerebellum. Using western blots, the SK2 protein showed a progressive increase during postnatal development. At the light microscopic level, SK2 immunoreactivity was very prominent in the developing Purkinje cells (PC), particularly in the molecular layer (ML). Electron microscopy revealed that throughout development SK2 was mostly detected at the extrasynaptic and perisynaptic plasma membrane of dendritic shafts and dendritic spines of PCs. However, there was some localization at axon terminals as well. Quantitative analyses and 3D reconstructions further revealed a progressive developmental change of SK2 on the surface of PCs from dendritic shafts to dendritic spines. Together, these results indicate that SK2 channels undergo dynamic spatial regulation during cerebellar development, and this process is associated with the formation and maturation of excitatory synaptic contacts to PCs. PMID:25565979

  15. Functional Roles of a Ca2+-Activated K+ Channel (SK2) in Atrioventricular Nodes

    PubMed Central

    Zhang, Qian; Timofeyev, Valeriy; Lu, Ling; Li, Ning; Singapuri, Anil; Long, Melissa K.; Bond, Chris T.; Adelman, John P.; Chiamvimonvat, Nipavan

    2013-01-01

    Since the first description of the anatomical atrioventricular nodes (AVN), a large number of studies have provided insights into the heterogeneity of the structure as well as a repertoire of ion channel proteins which govern this complex conduction pathway between the atria and ventricles. These studies have revealed the intricate organization of multiple nodal and nodal-like myocytes contributing to the unique electrophysiology of the AVN in health and diseases. On the other hand, information regarding contribution of specific ion channels to the function of the AVN remains incomplete. We reason that the identification of AVN-specific ion channels may provide a more direct and rationale design of therapeutic target in the control of AVN conduction in atrial flutter/fibrillation, one of the most common arrhythmias seen clinically. In this study, we took advantage of two genetically altered mouse models with over-expression or null mutation of one of the small conductance Ca2+-activated K+ channel isoform, SK2 channel and demonstrated robust phenotypes of AVN dysfunction in these experimental models. Over-expression of SK2 channels results in the shortening of the spontaneous action potentials (APs) of the AVN cells and an increase in the firing frequency. On the other hand, ablation of the SK2 channel results in the opposite effects on the spontaneous APs of the AVN. Furthermore, we directly documented the expression of SK2 channel in mouse AVN using multiple techniques. The new insights may have important implications in providing novel drug targets for the modification of AVN conduction in the treatment of atrial arrhythmias. PMID:18096820

  16. Alternative splice isoforms of small conductance calcium-activated SK2 channels differ in molecular interactions and surface levels

    PubMed Central

    Scholl, Elizabeth Storer; Pirone, Antonella; Cox, Daniel H; Duncan, R Keith; Jacob, Michele H

    2014-01-01

    Small conductance Ca2+-sensitive potassium (SK2) channels are voltage-independent, Ca2+-activated ion channels that conduct potassium cations and thereby modulate the intrinsic excitability and synaptic transmission of neurons and sensory hair cells. In the cochlea, SK2 channels are functionally coupled to the highly Ca2+ permeant α9/10-nicotinic acetylcholine receptors (nAChRs) at olivocochlear postsynaptic sites. SK2 activation leads to outer hair cell hyperpolarization and frequency-selective suppression of afferent sound transmission. These inhibitory responses are essential for normal regulation of sound sensitivity, frequency selectivity, and suppression of background noise. However, little is known about the molecular interactions of these key functional channels. Here we show that SK2 channels co-precipitate with α9/10-nAChRs and with the actin-binding protein α-actinin-1. SK2 alternative splicing, resulting in a 3 amino acid insertion in the intracellular 3′ terminus, modulates these interactions. Further, relative abundance of the SK2 splice variants changes during developmental stages of synapse maturation in both the avian cochlea and the mammalian forebrain. Using heterologous cell expression to separately study the 2 distinct isoforms, we show that the variants differ in protein interactions and surface expression levels, and that Ca2+ and Ca2+-bound calmodulin differentially regulate their protein interactions. Our findings suggest that the SK2 isoforms may be distinctly modulated by activity-induced Ca2+ influx. Alternative splicing of SK2 may serve as a novel mechanism to differentially regulate the maturation and function of olivocochlear and neuronal synapses. PMID:24394769

  17. Functional interactions between the SK2 channel and the nicotinic acetylcholine receptor in enteric neurons of the guinea pig ileum.

    PubMed

    Nakajima, Hidemitsu; Goto, Hiroto; Azuma, Yasu-Taka; Fujita, Akikazu; Takeuchi, Tadayoshi

    2007-12-01

    The neurotransmitter acetylcholine (ACh) plays a critical role in gastrointestinal function. The role of the small conductance Ca2+-activated K+ (SK) channel in ACh release was examined using myenteric plexus preparations of guinea pig ileum. Apamin, an inhibitor of the SK channel, significantly enhanced nicotine-induced ACh release, but neither electrical field stimulation- nor 5-hydroxytryptamine-induced ACh release, suggesting that SK channels might be selectively involved in the regulation of nicotine-induced ACh release. Therefore, we investigated the distribution of SK2 and SK3 subunits and the interaction between SK2 channels and nicotinic ACh receptors (nAChRs) in the guinea pig ileum. The immunoreactivity of SK2 subunits was located in enteric neuronal cells. Furthermore, SK2-immunoreactive cells stained with an antibody for choline acetyltransferase, a marker for cholinergic neurons, and with an antibody for the alpha3/5 subunits of nAChR. In contrast, immunoreactivity of SK3 subunits was not found in enteric neurons. A co-immunoprecipitation assay with Triton X-100-soluble membrane fractions prepared from the ileum revealed an association of the SK2 subunit with the alpha3/5 subunits of nAChR. These results suggest that SK2 channels negatively regulate the excitation of enteric neurons via functional interactions with nAChRs. PMID:17953675

  18. Membrane palmitoylated protein 2 is a synaptic scaffold protein required for synaptic SK2-containing channel function

    PubMed Central

    Kim, Gukhan; Luján, Rafael; Schwenk, Jochen; Kelley, Melissa H; Aguado, Carolina; Watanabe, Masahiko; Fakler, Bernd; Maylie, James; Adelman, John P

    2016-01-01

    Mouse CA1 pyramidal neurons express apamin-sensitive SK2-containing channels in the post-synaptic membrane, positioned close to NMDA-type (N-methyl-D-aspartate) glutamate receptors. Activated by synaptically evoked NMDAR-dependent Ca2+ influx, the synaptic SK2-containing channels modulate excitatory post-synaptic responses and the induction of synaptic plasticity. In addition, their activity- and protein kinase A-dependent trafficking contributes to expression of long-term potentiation (LTP). We have identified a novel synaptic scaffold, MPP2 (membrane palmitoylated protein 2; p55), a member of the membrane-associated guanylate kinase (MAGUK) family that interacts with SK2-containing channels. MPP2 and SK2 co-immunopurified from mouse brain, and co-immunoprecipitated when they were co-expressed in HEK293 cells. MPP2 is highly expressed in the post-synaptic density of dendritic spines on CA1 pyramidal neurons. Knocking down MPP2 expression selectively abolished the SK2-containing channel contribution to synaptic responses and decreased LTP. Thus, MPP2 is a novel synaptic scaffold that is required for proper synaptic localization and function of SK2-containing channels. DOI: http://dx.doi.org/10.7554/eLife.12637.001 PMID:26880549

  19. Application program of CRUST-1 10km continental scientific drilling rig in SK-2 scientific drilling well

    NASA Astrophysics Data System (ADS)

    Sun, Youhong; Gao, Ke; Yu, Ping; Liu, Baochang; Guo, Wei; Ma, Yinlong; Yang, Yang

    2014-05-01

    SK-2 Well is located in DaQing city,where is site of the largest oil field in China,Heilongjiang province, north-east of China.The objective of SK-2 well is to obtain full cores of cretaceous formation in Song Liao basin,and to build the time tunnel of Cretaceous greenhouse climate change,and to clarify the causes,processes and results of the formations of DaQing oil field. This will ensure to achieve our ultimate goals,to test the CRUST-1 drilling rig and improve China's deep scientific drilling technology,to form the scientific drilling technology,method and system with independent intellectual property rights,and to provide technical knowledge and information for China's ten kilometers super-deep scientific drilling technical resources.SK-2 Well is at 6400 meter depth, where the drilling inclination is 90 degree and the continuous coring length is 3535 meter that from 2865 to 6400 meter,the recovery rate of the core is greater or equal to 95 percent with 100 millimeters core diameter and 3.9 degree per 100 meter geothermal gradient.The CRUST-1 rig is designated with special drilling equipment for continental scientific drilling combined to the oil drilling equipment ability with advanced geological drilling technology which is highly automatic and intelligent. CRUST-1 drilling ability is 10000 meter with the maximum hook load 700 tons, the total power is 4610 Kilowatt.CRUST-1 will be integrated with a complete set of automation equipment,including big torque hydraulic top drive,high accuracy automatic drilling rod feeding system, suspended automatic drill string discharge device,hydraulic intelligent iron roughneck,and hydraulic automatic catwalk to fully meet the drilling process requirements of SK-2.Designed with advanced drilling technique for 260 degree in the bottom of SK-2 well and hard rock,including the drilling tools of high temperature hydraulic hammer,high temperature resistance and high strength aluminum drill pipe,high temperature preparation of mud

  20. Direct Host Plasminogen Binding to Bacterial Surface M-protein in Pattern D Strains of Streptococcus pyogenes Is Required for Activation by Its Natural Coinherited SK2b Protein*

    PubMed Central

    Chandrahas, Vishwanatha; Glinton, Kristofor; Liang, Zhong; Donahue, Deborah L.; Ploplis, Victoria A.; Castellino, Francis J.

    2015-01-01

    Streptokinase (SK), secreted by Group A Streptococcus (GAS), is a single-chain ∼47-kDa protein containing three consecutive primary sequence regions that comprise its α, β, and γ modules. Phylogenetic analyses of the variable β-domain sequences from different GAS strains suggest that SKs can be arranged into two clusters, SK1 and SK2, with a subdivision of SK2 into SK2a and SK2b. SK2b is secreted by skin-tropic Pattern D M-protein strains that also express plasminogen (human Pg (hPg)) binding Group A streptococcal M-protein (PAM) as its major cell surface M-protein. SK2a-expressing strains are associated with nasopharynx tropicity, and many of these strains express human fibrinogen (hFg) binding Pattern A-C M-proteins, e.g. M1. PAM interacts with hPg directly, whereas M1 binds to hPg indirectly via M1-bound hFg. Subsequently, SK is secreted by GAS and activates hPg to plasmin (hPm), thus generating a proteolytic surface on GAS that enhances its dissemination. Due to these different modes of hPg/hPm recognition by GAS, full characterizations of the mechanisms of activation of hPg by SK2a and SK2b and their roles in GAS virulence are important topics. To more fully examine these subjects, isogenic chimeric SK- and M-protein-containing GAS strains were generated, and the virulence of these chimeric strains were analyzed in mice. We show that SK and M-protein alterations influenced the virulence of GAS and were associated with the different natures of hPg activation and hPm binding. These studies demonstrate that GAS virulence can be explained by disparate hPg activation by SK2a and SK2b coupled with the coinherited M-proteins of these strains. PMID:26070561

  1. A full genomic characterization of the development of a stable Small Colony Variant cell-type by a clinical Staphylococcus aureus strain.

    PubMed

    Bui, Long M G; Kidd, Stephen P

    2015-12-01

    A key to persistent and recurrent Staphylococcus aureus infections is its ability to adapt to diverse and toxic conditions. This ability includes a switch into a biofilm or to the quasi-dormant Small Colony Variant (SCV). The development and molecular attributes of SCVs have been difficult to study due to their rapid reversion to their parental cell-type. We recently described the unique induction of a matrix-embedded and stable SCV cell-type in a clinical S. aureus strain (WCH-SK2) by growing the cells with limiting conditions for a prolonged timeframe. Here we further study their characteristics. They possessed an increased viability in the presence of antibiotics compared to their non-SCV form. Their stability implied that there had been genetic changes; we therefore determined both the genome sequence of WCH-SK2 and its stable SCV form at a single base resolution, employing Single Molecular Real-Time (SMRT) sequencing that enabled the methylome to also be determined. The genetic features of WCH-SK2 have been identified; the SCCmec type, the pathogenicity and genetic islands and virulence factors. The genetic changes that had occurred in the stable SCV form were identified; most notably being in MgrA, a global regulator, and RsbU, a phosphoserine phosphatase within the regulatory pathway of the sigma factor SigB. There was a shift in the methylomes of the non-SCV and stable SCV forms. We have also shown a similar induction of this cell-type in other S. aureus strains and performed a genetic comparison to these and other S. aureus genomes. We additionally map RNAseq data to the WCH-SK2 genome in a transcriptomic analysis of the parental, SCV and stable SCV cells. The results from this study represent the unique identification of a suite of epigenetic, genetic and transcriptional factors that are implicated in the switch in S. aureus to its persistent SCV form. PMID:26458527

  2. Comparative Genomics of the Ubiquitous, Hydrocarbon-degrading Genus Marinobacter

    NASA Astrophysics Data System (ADS)

    Singer, E.; Webb, E.; Edwards, K. J.

    2012-12-01

    The genus Marinobacter is amongst the most ubiquitous in the global oceans and strains have been isolated from a wide variety of marine environments, including offshore oil-well heads, coastal thermal springs, Antarctic sea water, saline soils and associations with diatoms and dinoflagellates. Many strains have been recognized to be important hydrocarbon degraders in various marine habitats presenting sometimes extreme pH or salinity conditions. Analysis of the genome of M. aquaeolei revealed enormous adaptation versatility with an assortment of strategies for carbon and energy acquisition, sensation, and defense. In an effort to elucidate the ecological and biogeochemical significance of the Marinobacters, seven Marinobacter strains from diverse environments were included in a comparative genomics study. Genomes were screened for metabolic and adaptation potential to elucidate the strategies responsible for the omnipresence of the Marinobacter genus and their remedial action potential in hydrocarbon-polluted waters. The core genome predominantly encodes for key genes involved in hydrocarbon degradation, biofilm-relevant processes, including utilization of external DNA, halotolerance, as well as defense mechanisms against heavy metals, antibiotics, and toxins. All Marinobacter strains were observed to degrade a wide spectrum of hydrocarbon species, including aliphatic, polycyclic aromatic as well as acyclic isoprenoid compounds. Various genes predicted to facilitate hydrocarbon degradation, e.g. alkane 1-monooxygenase, appear to have originated from lateral gene transfer as they are located on gene clusters of 10-20% lower GC-content compared to genome averages and are flanked by transposases. Top ortholog hits are found in other hydrocarbon degrading organisms, e.g. Alcanivorax borkumensis. Strategies for hydrocarbon uptake encoded by various Marinobacter strains include cell surface hydrophobicity adaptation via capsular polysaccharide biosynthesis and attachment

  3. Amphiphilic siderophore production by oil-associating microbes.

    PubMed

    Kem, Michelle P; Zane, Hannah K; Springer, Stephen D; Gauglitz, Julia M; Butler, Alison

    2014-06-01

    The Deepwater Horizon oil spill in 2010 released an unprecedented amount of oil into the ocean waters of the Gulf of Mexico. As a consequence, bioremediation by oil-degrading microbes has been a topic of increased focus. One factor limiting the rate of hydrocarbon degradation by microbial communities is the availability of necessary nutrients, including iron. The siderophores produced from two Vibrio spp. isolated from the Gulf of Mexico following the Deepwater Horizon oil spill, along with the well-studied oil-degrading microbe, Alcanivorax borkumensis SK2, are studied under iron-limiting conditions. Here we report the amphiphilic amphibactin siderophores produced by the oil-associated bacteria, Vibrio sp. S1B, Vibrio sp. S2A and Alcanivorax borkumensis SK2. These findings provide insight into oil-associating microbial iron acquisition. PMID:24663669

  4. Genome walking.

    PubMed

    Shapter, Frances M; Waters, Daniel L E

    2014-01-01

    Genome walking is a method for determining the DNA sequence of unknown genomic regions flanking a region of known DNA sequence. The Genome walking has the potential to capture 6-7 kb of sequence in a single round. Ideal for identifying gene promoter regions where only the coding region. Genome walking also has significant utility for capturing homologous genes in new species when there are areas in the target gene with strong sequence conservation to the characterized species. The increasing use of next-generation sequencing technologies will see the principles of genome walking adapted to in silico methods. However, for smaller projects, PCR-based genome walking will remain an efficient method of characterizing unknown flanking sequence. PMID:24243201

  5. Prophage Genomics

    PubMed Central

    Canchaya, Carlos; Proux, Caroline; Fournous, Ghislain; Bruttin, Anne; Brüssow, Harald

    2003-01-01

    The majority of the bacterial genome sequences deposited in the National Center for Biotechnology Information database contain prophage sequences. Analysis of the prophages suggested that after being integrated into bacterial genomes, they undergo a complex decay process consisting of inactivating point mutations, genome rearrangements, modular exchanges, invasion by further mobile DNA elements, and massive DNA deletion. We review the technical difficulties in defining such altered prophage sequences in bacterial genomes and discuss theoretical frameworks for the phage-bacterium interaction at the genomic level. The published genome sequences from three groups of eubacteria (low- and high-G+C gram-positive bacteria and γ-proteobacteria) were screened for prophage sequences. The prophages from Streptococcus pyogenes served as test case for theoretical predictions of the role of prophages in the evolution of pathogenic bacteria. The genomes from further human, animal, and plant pathogens, as well as commensal and free-living bacteria, were included in the analysis to see whether the same principles of prophage genomics apply for bacteria living in different ecological niches and coming from distinct phylogenetical affinities. The effect of selection pressure on the host bacterium is apparently an important force shaping the prophage genomes in low-G+C gram-positive bacteria and γ-proteobacteria. PMID:12794192

  6. Aquaculture Genomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genomics chapter covers the basics of genome mapping and sequencing and the current status of several relevant species. The chapter briefly describes the development and use of (cDNA, BAC, etc.) libraries for mapping and obtaining specific sequence information. Other topics include comparative ...

  7. Antarctic Genomics

    PubMed Central

    Clarke, Andrew; Cockell, Charles S.; Convey, Peter; Detrich III, H. William; Fraser, Keiron P. P.; Johnston, Ian A.; Methe, Barbara A.; Murray, Alison E.; Peck, Lloyd S.; Römisch, Karin; Rogers, Alex D.

    2004-01-01

    With the development of genomic science and its battery of technologies, polar biology stands on the threshold of a revolution, one that will enable the investigation of important questions of unprecedented scope and with extraordinary depth and precision. The exotic organisms of polar ecosystems are ideal candidates for genomic analysis. Through such analyses, it will be possible to learn not only the novel features that enable polar organisms to survive, and indeed thrive, in their extreme environments, but also fundamental biological principles that are common to most, if not all, organisms. This article aims to review recent developments in Antarctic genomics and to demonstrate the global context of such studies. PMID:18629155

  8. Genomic Testing

    MedlinePlus

    ... Working Group Independent Web site Informing the effective integration of genomics into health practice—Lynch syndrome ACCE Model for Evaluating Genetic Tests Recommendations by the EGAPP Working Group Top of ... ...

  9. Genome databases

    SciTech Connect

    Courteau, J.

    1991-10-11

    Since the Genome Project began several years ago, a plethora of databases have been developed or are in the works. They range from the massive Genome Data Base at Johns Hopkins University, the central repository of all gene mapping information, to small databases focusing on single chromosomes or organisms. Some are publicly available, others are essentially private electronic lab notebooks. Still others limit access to a consortium of researchers working on, say, a single human chromosome. An increasing number incorporate sophisticated search and analytical software, while others operate as little more than data lists. In consultation with numerous experts in the field, a list has been compiled of some key genome-related databases. The list was not limited to map and sequence databases but also included the tools investigators use to interpret and elucidate genetic data, such as protein sequence and protein structure databases. Because a major goal of the Genome Project is to map and sequence the genomes of several experimental animals, including E. coli, yeast, fruit fly, nematode, and mouse, the available databases for those organisms are listed as well. The author also includes several databases that are still under development - including some ambitious efforts that go beyond data compilation to create what are being called electronic research communities, enabling many users, rather than just one or a few curators, to add or edit the data and tag it as raw or confirmed.

  10. Listeria Genomics

    NASA Astrophysics Data System (ADS)

    Cabanes, Didier; Sousa, Sandra; Cossart, Pascale

    The opportunistic intracellular foodborne pathogen Listeria monocytogenes has become a paradigm for the study of host-pathogen interactions and bacterial adaptation to mammalian hosts. Analysis of L. monocytogenes infection has provided considerable insight into how bacteria invade cells, move intracellularly, and disseminate in tissues, as well as tools to address fundamental processes in cell biology. Moreover, the vast amount of knowledge that has been gathered through in-depth comparative genomic analyses and in vivo studies makes L. monocytogenes one of the most well-studied bacterial pathogens. This chapter provides an overview of progress in the exploration of genomic, transcriptomic, and proteomic data in Listeria spp. to understand genome evolution and diversity, as well as physiological aspects of metabolism used by bacteria when growing in diverse environments, in particular in infected hosts.

  11. Genome Informatics

    PubMed Central

    Winslow, Raimond L.; Boguski, Mark S.

    2005-01-01

    This article reviews recent advances in genomics and informatics relevant to cardiovascular research. In particular, we review the status of (1) whole genome sequencing efforts in human, mouse, rat, zebrafish, and dog; (2) the development of data mining and analysis tools; (3) the launching of the National Heart, Lung, and Blood Institute Programs for Genomics Applications and Proteomics Initiative; (4) efforts to characterize the cardiac transcriptome and proteome; and (5) the current status of computational modeling of the cardiac myocyte. In each instance, we provide links to relevant sources of information on the World Wide Web and critical appraisals of the promises and the challenges of an expanding and diverse information landscape. PMID:12750305

  12. Whither genomics?

    PubMed Central

    Murray, Andrew W

    2000-01-01

    The flood of data from genome-wide analysis is transforming biology. We need to develop new, interdisciplinary approaches to convert these data into information about the components and structures of individual biological pathways and to use the resulting information to yield knowledge about general principles that explain the functions and evolution of life. PMID:11104516

  13. Citrus Genomics

    PubMed Central

    Talon, Manuel; Gmitter Jr., Fred G.

    2008-01-01

    Citrus is one of the most widespread fruit crops globally, with great economic and health value. It is among the most difficult plants to improve through traditional breeding approaches. Currently, there is risk of devastation by diseases threatening to limit production and future availability to the human population. As technologies rapidly advance in genomic science, they are quickly adapted to address the biological challenges of the citrus plant system and the world's industries. The historical developments of linkage mapping, markers and breeding, EST projects, physical mapping, an international citrus genome sequencing project, and critical functional analysis are described. Despite the challenges of working with citrus, there has been substantial progress. Citrus researchers engaged in international collaborations provide optimism about future productivity and contributions to the benefit of citrus industries worldwide and to the human population who can rely on future widespread availability of this health-promoting and aesthetically pleasing fruit crop. PMID:18509486

  14. Ancient genomics

    PubMed Central

    Der Sarkissian, Clio; Allentoft, Morten E.; Ávila-Arcos, María C.; Barnett, Ross; Campos, Paula F.; Cappellini, Enrico; Ermini, Luca; Fernández, Ruth; da Fonseca, Rute; Ginolhac, Aurélien; Hansen, Anders J.; Jónsson, Hákon; Korneliussen, Thorfinn; Margaryan, Ashot; Martin, Michael D.; Moreno-Mayar, J. Víctor; Raghavan, Maanasa; Rasmussen, Morten; Velasco, Marcela Sandoval; Schroeder, Hannes; Schubert, Mikkel; Seguin-Orlando, Andaine; Wales, Nathan; Gilbert, M. Thomas P.; Willerslev, Eske; Orlando, Ludovic

    2015-01-01

    The past decade has witnessed a revolution in ancient DNA (aDNA) research. Although the field's focus was previously limited to mitochondrial DNA and a few nuclear markers, whole genome sequences from the deep past can now be retrieved. This breakthrough is tightly connected to the massive sequence throughput of next generation sequencing platforms and the ability to target short and degraded DNA molecules. Many ancient specimens previously unsuitable for DNA analyses because of extensive degradation can now successfully be used as source materials. Additionally, the analytical power obtained by increasing the number of sequence reads to billions effectively means that contamination issues that have haunted aDNA research for decades, particularly in human studies, can now be efficiently and confidently quantified. At present, whole genomes have been sequenced from ancient anatomically modern humans, archaic hominins, ancient pathogens and megafaunal species. Those have revealed important functional and phenotypic information, as well as unexpected adaptation, migration and admixture patterns. As such, the field of aDNA has entered the new era of genomics and has provided valuable information when testing specific hypotheses related to the past. PMID:25487338

  15. Genomic Imprinting

    PubMed Central

    Bajrami, Emirjeta; Spiroski, Mirko

    2016-01-01

    BACKGROUND: Genomic imprinting is the inheritance out of Mendelian borders. Many of inherited diseases and human development violates Mendelian law of inheritance, this way of inheriting is studied by epigenetics. AIM: The aim of this review is to analyze current opinions and options regarding to this way of inheriting. RESULTS: Epigenetics shows that gene expression undergoes changes more complex than modifications in the DNA sequence; it includes the environmental influence on the gametes before conception. Humans inherit two alleles from mother and father, both are functional for the majority of the genes, but sometimes one is turned off or “stamped” and doesn’t show in offspring, that gene is imprinted. Imprinting means that that gene is silenced, and gene from other parent is expressed. The mechanisms for imprinting are still incompletely defined, but they involve epigenetic modifications that are erased and then reset during the creation of eggs and sperm. Genomic imprinting is a process of silencing genes through DNA methylation. The repressed allele is methylated, while the active allele is unmethylated. The most well-known conditions include Prader-Willi syndrome, and Angelman syndrome. Both of these syndromes can be caused by imprinting or other errors involving genes on the long arm of chromosome 15. CONCLUSIONS: Genomic imprinting and other epigenetic mechanisms such as environment is shown that plays role in offspring neurodevelopment and autism spectrum disorder. PMID:27275355

  16. Genomes on ice.

    PubMed

    Parkhill, Julian

    2016-03-01

    This month's Genome Watch discusses the analysis of a Helicobacter pylori genome from the preserved Copper-Age mummy known as the Iceman and how ancient genomes shed light on the history of bacterial pathogens. PMID:26853114

  17. Whole Genome Sequencing

    MedlinePlus

    ... you want to learn. Search form Search Whole Genome Sequencing You are here Home Testing & Services Testing ... the full story, click here . What is whole genome sequencing? Whole genome sequencing is the mapping out ...

  18. Ensembl Genomes 2016: more genomes, more complexity.

    PubMed

    Kersey, Paul Julian; Allen, James E; Armean, Irina; Boddu, Sanjay; Bolt, Bruce J; Carvalho-Silva, Denise; Christensen, Mikkel; Davis, Paul; Falin, Lee J; Grabmueller, Christoph; Humphrey, Jay; Kerhornou, Arnaud; Khobova, Julia; Aranganathan, Naveen K; Langridge, Nicholas; Lowy, Ernesto; McDowall, Mark D; Maheswari, Uma; Nuhn, Michael; Ong, Chuang Kee; Overduin, Bert; Paulini, Michael; Pedro, Helder; Perry, Emily; Spudich, Giulietta; Tapanari, Electra; Walts, Brandon; Williams, Gareth; Tello-Ruiz, Marcela; Stein, Joshua; Wei, Sharon; Ware, Doreen; Bolser, Daniel M; Howe, Kevin L; Kulesha, Eugene; Lawson, Daniel; Maslen, Gareth; Staines, Daniel M

    2016-01-01

    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent set of programmatic and interactive interfaces to a rich range of data including reference sequence, gene models, transcriptional data, genetic variation and comparative analysis. This paper provides an update to the previous publications about the resource, with a focus on recent developments. These include the development of new analyses and views to represent polyploid genomes (of which bread wheat is the primary exemplar); and the continued up-scaling of the resource, which now includes over 23 000 bacterial genomes, 400 fungal genomes and 100 protist genomes, in addition to 55 genomes from invertebrate metazoa and 39 genomes from plants. This dramatic increase in the number of included genomes is one part of a broader effort to automate the integration of archival data (genome sequence, but also associated RNA sequence data and variant calls) within the context of reference genomes and make it available through the Ensembl user interfaces. PMID:26578574

  19. Ensembl genomes 2016: more genomes, more complexity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent...

  20. Ensembl Genomes 2016: more genomes, more complexity

    PubMed Central

    Kersey, Paul Julian; Allen, James E.; Armean, Irina; Boddu, Sanjay; Bolt, Bruce J.; Carvalho-Silva, Denise; Christensen, Mikkel; Davis, Paul; Falin, Lee J.; Grabmueller, Christoph; Humphrey, Jay; Kerhornou, Arnaud; Khobova, Julia; Aranganathan, Naveen K.; Langridge, Nicholas; Lowy, Ernesto; McDowall, Mark D.; Maheswari, Uma; Nuhn, Michael; Ong, Chuang Kee; Overduin, Bert; Paulini, Michael; Pedro, Helder; Perry, Emily; Spudich, Giulietta; Tapanari, Electra; Walts, Brandon; Williams, Gareth; Tello–Ruiz, Marcela; Stein, Joshua; Wei, Sharon; Ware, Doreen; Bolser, Daniel M.; Howe, Kevin L.; Kulesha, Eugene; Lawson, Daniel; Maslen, Gareth; Staines, Daniel M.

    2016-01-01

    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent set of programmatic and interactive interfaces to a rich range of data including reference sequence, gene models, transcriptional data, genetic variation and comparative analysis. This paper provides an update to the previous publications about the resource, with a focus on recent developments. These include the development of new analyses and views to represent polyploid genomes (of which bread wheat is the primary exemplar); and the continued up-scaling of the resource, which now includes over 23 000 bacterial genomes, 400 fungal genomes and 100 protist genomes, in addition to 55 genomes from invertebrate metazoa and 39 genomes from plants. This dramatic increase in the number of included genomes is one part of a broader effort to automate the integration of archival data (genome sequence, but also associated RNA sequence data and variant calls) within the context of reference genomes and make it available through the Ensembl user interfaces. PMID:26578574

  1. Funding Opportunity: Genomic Data Centers

    Cancer.gov

    Funding Opportunity CCG, Funding Opportunity Center for Cancer Genomics, CCG, Center for Cancer Genomics, CCG RFA, Center for cancer genomics rfa, genomic data analysis network, genomic data analysis network centers,

  2. Enabling functional genomics with genome engineering

    PubMed Central

    Hilton, Isaac B.; Gersbach, Charles A.

    2015-01-01

    Advances in genome engineering technologies have made the precise control over genome sequence and regulation possible across a variety of disciplines. These tools can expand our understanding of fundamental biological processes and create new opportunities for therapeutic designs. The rapid evolution of these methods has also catalyzed a new era of genomics that includes multiple approaches to functionally characterize and manipulate the regulation of genomic information. Here, we review the recent advances of the most widely adopted genome engineering platforms and their application to functional genomics. This includes engineered zinc finger proteins, TALEs/TALENs, and the CRISPR/Cas9 system as nucleases for genome editing, transcription factors for epigenome editing, and other emerging applications. We also present current and potential future applications of these tools, as well as their current limitations and areas for future advances. PMID:26430154

  3. Exploring Other Genomes: Bacteria.

    ERIC Educational Resources Information Center

    Flannery, Maura C.

    2001-01-01

    Points out the importance of genomes other than the human genome project and provides information on the identified bacterial genomes Pseudomonas aeuroginosa, Leprosy, Cholera, Meningitis, Tuberculosis, Bubonic Plague, and plant pathogens. Considers the computer's use in genome studies. (Contains 14 references.) (YDS)

  4. Navigating yeast genome maintenance with functional genomics.

    PubMed

    Measday, Vivien; Stirling, Peter C

    2016-03-01

    Maintenance of genome integrity is a fundamental requirement of all organisms. To address this, organisms have evolved extremely faithful modes of replication, DNA repair and chromosome segregation to combat the deleterious effects of an unstable genome. Nonetheless, a small amount of genome instability is the driver of evolutionary change and adaptation, and thus a low level of instability is permitted in populations. While defects in genome maintenance almost invariably reduce fitness in the short term, they can create an environment where beneficial mutations are more likely to occur. The importance of this fact is clearest in the development of human cancer, where genome instability is a well-established enabling characteristic of carcinogenesis. This raises the crucial question: what are the cellular pathways that promote genome maintenance and what are their mechanisms? Work in model organisms, in particular the yeast Saccharomyces cerevisiae, has provided the global foundations of genome maintenance mechanisms in eukaryotes. The development of pioneering genomic tools inS. cerevisiae, such as the systematic creation of mutants in all nonessential and essential genes, has enabled whole-genome approaches to identifying genes with roles in genome maintenance. Here, we review the extensive whole-genome approaches taken in yeast, with an emphasis on functional genomic screens, to understand the genetic basis of genome instability, highlighting a range of genetic and cytological screening modalities. By revealing the biological pathways and processes regulating genome integrity, these analyses contribute to the systems-level map of the yeast cell and inform studies of human disease, especially cancer. PMID:26323482

  5. Genome Maps, a new generation genome browser.

    PubMed

    Medina, Ignacio; Salavert, Francisco; Sanchez, Rubén; de Maria, Alejandro; Alonso, Roberto; Escobar, Pablo; Bleda, Marta; Dopazo, Joaquín

    2013-07-01

    Genome browsers have gained importance as more genomes and related genomic information become available. However, the increase of information brought about by new generation sequencing technologies is, at the same time, causing a subtle but continuous decrease in the efficiency of conventional genome browsers. Here, we present Genome Maps, a genome browser that implements an innovative model of data transfer and management. The program uses highly efficient technologies from the new HTML5 standard, such as scalable vector graphics, that optimize workloads at both server and client sides and ensure future scalability. Thus, data management and representation are entirely carried out by the browser, without the need of any Java Applet, Flash or other plug-in technology installation. Relevant biological data on genes, transcripts, exons, regulatory features, single-nucleotide polymorphisms, karyotype and so forth, are imported from web services and are available as tracks. In addition, several DAS servers are already included in Genome Maps. As a novelty, this web-based genome browser allows the local upload of huge genomic data files (e.g. VCF or BAM) that can be dynamically visualized in real time at the client side, thus facilitating the management of medical data affected by privacy restrictions. Finally, Genome Maps can easily be integrated in any web application by including only a few lines of code. Genome Maps is an open source collaborative initiative available in the GitHub repository (https://github.com/compbio-bigdata-viz/genome-maps). Genome Maps is available at: http://www.genomemaps.org. PMID:23748955

  6. Genome Maps, a new generation genome browser

    PubMed Central

    Medina, Ignacio; Salavert, Francisco; Sanchez, Rubén; de Maria, Alejandro; Alonso, Roberto; Escobar, Pablo; Bleda, Marta; Dopazo, Joaquín

    2013-01-01

    Genome browsers have gained importance as more genomes and related genomic information become available. However, the increase of information brought about by new generation sequencing technologies is, at the same time, causing a subtle but continuous decrease in the efficiency of conventional genome browsers. Here, we present Genome Maps, a genome browser that implements an innovative model of data transfer and management. The program uses highly efficient technologies from the new HTML5 standard, such as scalable vector graphics, that optimize workloads at both server and client sides and ensure future scalability. Thus, data management and representation are entirely carried out by the browser, without the need of any Java Applet, Flash or other plug-in technology installation. Relevant biological data on genes, transcripts, exons, regulatory features, single-nucleotide polymorphisms, karyotype and so forth, are imported from web services and are available as tracks. In addition, several DAS servers are already included in Genome Maps. As a novelty, this web-based genome browser allows the local upload of huge genomic data files (e.g. VCF or BAM) that can be dynamically visualized in real time at the client side, thus facilitating the management of medical data affected by privacy restrictions. Finally, Genome Maps can easily be integrated in any web application by including only a few lines of code. Genome Maps is an open source collaborative initiative available in the GitHub repository (https://github.com/compbio-bigdata-viz/genome-maps). Genome Maps is available at: http://www.genomemaps.org. PMID:23748955

  7. Genomic Encyclopedia of Fungi

    SciTech Connect

    Grigoriev, Igor

    2012-08-10

    Genomes of fungi relevant to energy and environment are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 150 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such parts suggested by comparative genomics and functional analysis in these areas are presented here.

  8. JGI Fungal Genomics Program

    SciTech Connect

    Grigoriev, Igor V.

    2011-03-14

    Genomes of energy and environment fungi are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 50 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such 'parts' suggested by comparative genomics and functional analysis in these areas are presented here

  9. Genomics and Health Impact Update

    MedlinePlus

    ... Genomics in Practice Newborn Screening Pharmacogenomics Reproductive Health Tools and Databases About the Genomics & Health Impact Update The Office of Public Health Genomics provides updated and credible ...

  10. Integrating sequence, evolution and functional genomics in regulatory genomics

    PubMed Central

    Vingron, Martin; Brazma, Alvis; Coulson, Richard; van Helden, Jacques; Manke, Thomas; Palin, Kimmo; Sand, Olivier; Ukkonen, Esko

    2009-01-01

    With genome analysis expanding from the study of genes to the study of gene regulation, 'regulatory genomics' utilizes sequence information, evolution and functional genomics measurements to unravel how regulatory information is encoded in the genome. PMID:19226437

  11. Bioremediation (bioaugmentation/biostimulation) trials of oil polluted seawater: a mesocosm simulation study.

    PubMed

    Hassanshahian, Mehdi; Emtiazi, Giti; Caruso, Gabriella; Cappello, Simone

    2014-04-01

    Bioaugmentation (amendment with selected bacterial strains) and/or biostimulation (nutrients addition and/or air supply) are relatively new fields in environmental microbiology for preventing pollution and cleanup contamination. In this study, the efficiency of application of bioaugmentation/biostimulation treatments, for recovery of crude oil-polluted seawater, was evaluated. Three different series of experiments were performed in a "Mesocosm Facility" (10.000 L). Natural seawater was artificially polluted with crude oil (1000 ppm) and was amended with inorganic nutrients (Mesocosm 1, M1), inorganic nutrient and an inoculum of Alcanivorax borkumensis SK2(T) (Mesocosm 2, M2) and inorganic nutrient and an inoculum of A. borkumensis SK2(T) and Thalassolituus oleivorans MIL-1(T) (Mesocosm 3, M3), respectively. During the experimental period (20 days) bacterial abundance (DAPI count), culturable heterotrophic bacteria (CFU count), MPN, microbial metabolic activity [Biochemical Oxygen Demand and enzymatic activity (leucine aminopeptidase LAP, β-glucosidase BG, alkaline phosphatase AP)] and quali-, quantitative analysis of the composition of total extracted and resolved hydrocarbons and their derivates (TERHCs) were carried out. The microbiological and physiological analysis of marine microbial community found during the three different biostimulation and bioaugmentation assays performed in mesocosms show that the load of crude oil increases total microbial abundance, inhibits the activity of some enzymes such as LAP while stimulates both AP and BG activities. The biodegradation results show that bioaugmentation with A. borkumensis SK2(T) alone is able to produce the highest percentage of degradation (95%) in comparison with the biostimulation treatment (80%) and bioaugmentation using an Alcanivorax-Thalassolituus bacterial consortium (70%). This result highlights the reduced biodegradation capability of the consortium used in this study, suggesting an unfavourable

  12. Genomic Data Commons | Office of Cancer Genomics

    Cancer.gov

    The NCI’s Center for Cancer Genomics launches the Genomic Data Commons (GDC), a unified data sharing platform for the cancer research community. The mission of the GDC is to enable data sharing across the entire cancer research community, to ultimately support precision medicine in oncology.

  13. Harvesting rice's dispensable genome.

    PubMed

    Wing, Rod A

    2015-01-01

    A rapid and cost-effective approach has been developed to harvest and map the dispensable genome, that is, population-level natural sequence variation within a species that is not present in static genome assemblies. PMID:26429765

  14. Libraries for genomic SELEX.

    PubMed Central

    Singer, B S; Shtatland, T; Brown, D; Gold, L

    1997-01-01

    An increasing number of proteins are being identified that regulate gene expression by binding specific nucleic acidsin vivo. A method termed genomic SELEX facilitates the rapid identification of networks of protein-nucleic acid interactions by identifying within the genomic sequences of an organism the highest affinity sites for any protein of the organism. As with its progenitor, SELEX of random-sequence nucleic acids, genomic SELEX involves iterative binding, partitioning, and amplification of nucleic acids. The two methods differ in that the variable region of the nucleic acid library for genomic SELEX is derived from the genome of an organism. We have used a quick and simple method to construct Escherichia coli, Saccharomyces cerevisiae, and human genomic DNA PCR libraries that can be transcribed with T7 RNA polymerase. We present evidence that the libraries contain overlapping inserts starting at most of the positions within the genome, making these libraries suitable for genomic SELEX. PMID:9016629

  15. Genomic Data Commons launches

    Cancer.gov

    The Genomic Data Commons (GDC), a unified data system that promotes sharing of genomic and clinical data between researchers, launched today with a visit from Vice President Joe Biden to the operations center at the University of Chicago.

  16. GENOMICS AND ENVIRONMENTAL RESEARCH

    EPA Science Inventory

    The impact of recently developed and emerging genomics technologies on environmental sciences has significant implications for human and ecological risk assessment issues. The linkage of data generated from genomics, transcriptomics, proteomics, metabalomics, and ecology can be ...

  17. Exploiting the genome

    SciTech Connect

    Block, S.; Cornwall, J.; Dyson, F.; Koonin, S.; Lewis, N.; Schwitters, R.

    1998-09-11

    In 1997, JASON conducted a DOE-sponsored study of the human genome project with special emphasis on the areas of technology, quality assurance and quality control, and informatics. The present study has two aims: first, to update the 1997 Report in light of recent developments in genome sequencing technology, and second, to consider possible roles for the DOE in the ''post-genomic" era, following acquisition of the complete human genome sequence.

  18. COMPARATIVE GENOMICS IN LEGUMES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The legume plant family will soon include three sequenced genomes. The majority of the gene-containing portions of the model legumes Medicago truncatula and Lotus japonicus have been sequenced in clone-by-clone projects, and the sequencing of the soybean genome is underway in a whole-genome shotgun ...

  19. Whole Genome Selection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whole genome selection (WGS) is an approach to using DNA markers that are distributed throughout the entire genome. Genes affecting most economically-important traits are distributed throughout the genome and there are relatively few that have large effects with many more genes with progressively sm...

  20. Genomics and functional genomics with haloarchaea.

    PubMed

    Soppa, J; Baumann, A; Brenneis, M; Dambeck, M; Hering, O; Lange, C

    2008-09-01

    The first haloarchaeal genome was published in 2000 and today five genome sequences are available. Transcriptome and proteome analyses have been established for two and three haloarchaeal species, respectively, and more than 20 studies using these functional genomic approaches have been published in the last two years. These studies gave global overviews of metabolic regulation (aerobic and anaerobic respiration, phototrophy, carbon source usage), stress response (UV, X-rays, transition metals, osmotic and temperature stress), cell cycle-dependent transcript level regulation, and transcript half-lives. The only translatome analysis available for any prokaryotic species revealed that 10 and 20% of all transcripts are translationally regulated in Haloferax volcanii and Halobacterium salinarum, respectively. Very effective methods for the construction of in frame deletion mutants have been established recently for haloarchaea and are intensively used to unravel the biological roles of genes in this group. Bioinformatic analyses include both cross-genome comparisons as well as integration of genomic data with experimental results. The first systems biology approaches have been performed that used experimental data to construct predictive models of gene expression and metabolism, respectively. In this contribution the current status of genomics, functional genomics, and molecular genetics of haloarchaea is summarized and selected examples are discussed. PMID:18493745

  1. Chromium and Genomic Stability

    PubMed Central

    Wise, Sandra S.; Wise, John Pierce

    2014-01-01

    Many metals serve as micronutrients which protect against genomic instability. Chromium is most abundant in its trivalent and hexavalent forms. Trivalent chromium has historically been considered an essential element, though recent data indicate that while it can have pharmacological effects and value, it is not essential. There are no data indicating that trivalent chromium promotes genomic stability and, instead may promote genomic instability. Hexavalent chromium is widely accepted as highly toxic and carcinogenic with no nutritional value. Recent data indicate that it causes genomic instability and also has no role in promoting genomic stability. PMID:22192535

  2. The Genomic Medicine Game.

    PubMed

    Tran, Elvis; de Andrés-Galiana, Enrique J; Benitez, Sonia; Martin-Sanchez, Fernando; Lopez-Campos, Guillermo H

    2016-01-01

    With advancements in genomics technology, health care has been improving and new paradigms of medicine such as genomic medicine have evolved. The education of clinicians, researchers and students to face the challenges posed by these new approaches, however, has been often lagging behind. From this the Genomic Medicine Game, an educational tool, was created for the purpose of conceptualizing the key components of Genomic Medicine. A number of phenotype-genotype associations were found through a literature review, which was used to be a base for the concepts the Genomic Medicine Game would focus on. Built in Java, the game was successfully tested with promising results. PMID:27577486

  3. Microbial genomic taxonomy.

    PubMed

    Thompson, Cristiane C; Chimetto, Luciane; Edwards, Robert A; Swings, Jean; Stackebrandt, Erko; Thompson, Fabiano L

    2013-01-01

    A need for a genomic species definition is emerging from several independent studies worldwide. In this commentary paper, we discuss recent studies on the genomic taxonomy of diverse microbial groups and a unified species definition based on genomics. Accordingly, strains from the same microbial species share >95% Average Amino Acid Identity (AAI) and Average Nucleotide Identity (ANI), >95% identity based on multiple alignment genes, <10 in Karlin genomic signature, and > 70% in silico Genome-to-Genome Hybridization similarity (GGDH). Species of the same genus will form monophyletic groups on the basis of 16S rRNA gene sequences, Multilocus Sequence Analysis (MLSA) and supertree analysis. In addition to the established requirements for species descriptions, we propose that new taxa descriptions should also include at least a draft genome sequence of the type strain in order to obtain a clear outlook on the genomic landscape of the novel microbe. The application of the new genomic species definition put forward here will allow researchers to use genome sequences to define simultaneously coherent phenotypic and genomic groups. PMID:24365132

  4. The Bluejay genome browser.

    PubMed

    Soh, Jung; Gordon, Paul M K; Sensen, Christoph W

    2012-03-01

    The Bluejay genome browser is a stand-alone visualization tool for the multi-scale viewing of annotated genomes and other genomic elements. Bluejay allows users to customize display features to suit their needs, and produces publication-quality graphics. Bluejay provides a multitude of ways to interrelate biological data at the genome scale. Users can load gene expression data into a genome display for expression visualization in context. Multiple genomes can be compared concurrently, including time series expression data, based on Gene Ontology labels. External, context-sensitive biological Web Services are linked to the displayed genomic elements ad hoc for in-depth genomic data analysis and interpretation. Users can mark multiple points of interest in a genome by creating waypoints, and exploit them for easy navigation of single or multiple genomes. Using this comprehensive visual environment, users can study a gene not just in relation to its genome, but also its transcriptome and evolutionary origins. Written in Java, Bluejay is platform-independent and is freely available from http://bluejay.ucalgary.ca. PMID:22389011

  5. Bacterial Genome Instability

    PubMed Central

    Darmon, Elise

    2014-01-01

    SUMMARY Bacterial genomes are remarkably stable from one generation to the next but are plastic on an evolutionary time scale, substantially shaped by horizontal gene transfer, genome rearrangement, and the activities of mobile DNA elements. This implies the existence of a delicate balance between the maintenance of genome stability and the tolerance of genome instability. In this review, we describe the specialized genetic elements and the endogenous processes that contribute to genome instability. We then discuss the consequences of genome instability at the physiological level, where cells have harnessed instability to mediate phase and antigenic variation, and at the evolutionary level, where horizontal gene transfer has played an important role. Indeed, this ability to share DNA sequences has played a major part in the evolution of life on Earth. The evolutionary plasticity of bacterial genomes, coupled with the vast numbers of bacteria on the planet, substantially limits our ability to control disease. PMID:24600039

  6. UCSC genome browser tutorial.

    PubMed

    Zweig, Ann S; Karolchik, Donna; Kuhn, Robert M; Haussler, David; Kent, W James

    2008-08-01

    The University of California Santa Cruz (UCSC) Genome Bioinformatics website consists of a suite of free, open-source, on-line tools that can be used to browse, analyze, and query genomic data. These tools are available to anyone who has an Internet browser and an interest in genomics. The website provides a quick and easy-to-use visual display of genomic data. It places annotation tracks beneath genome coordinate positions, allowing rapid visual correlation of different types of information. Many of the annotation tracks are submitted by scientists worldwide; the others are computed by the UCSC Genome Bioinformatics group from publicly available sequence data. It also allows users to upload and display their own experimental results or annotation sets by creating a custom track. The suite of tools, downloadable data files, and links to documentation and other information can be found at http://genome.ucsc.edu/. PMID:18514479

  7. Variations in genome mass.

    PubMed

    Wachtel, S S; Tiersch, T R

    1993-02-01

    1. Genome size varies considerably among vertebrates, ranging from less than 1 pg to more than 200 pg; the amount of DNA differing among individuals in a population can equal the amount in the entire structural gene complement. 2. Recent technological advances permit evaluation of genome size variation at several levels including sub-chromosomal, chromosomal and cellular. 3. Genome size variation may also be viewed from taxonomic levels, and across evolutionary time frames. 4. As sources of genome size variation are identified and studied, the conundrum of the C-value paradox (lack of correlations among genome size, genomic complexity and phylogenetic status of organisms) may prove to be more apparent than real. 5. For example, the limited and relatively constant genome size of avians may be related to the physiological constraints of flight. PMID:8462275

  8. Genomics of sorghum.

    PubMed

    Paterson, Andrew H

    2008-01-01

    Sorghum (Sorghum bicolor (L.) Moench) is a subject of plant genomics research based on its importance as one of the world's leading cereal crops, a biofuels crop of high and growing importance, a progenitor of one of the world's most noxious weeds, and a botanical model for many tropical grasses with complex genomes. A rich history of genome analysis, culminating in the recent complete sequencing of the genome of a leading inbred, provides a foundation for invigorating progress toward relating sorghum genes to their functions. Further characterization of the genomes other than Saccharinae cereals may shed light on mechanisms, levels, and patterns of evolution of genome size and structure, laying the foundation for further study of sugarcane and other economically important members of the group. PMID:18483564

  9. The tiniest tiny genomes.

    PubMed

    Moran, Nancy A; Bennett, Gordon M

    2014-01-01

    Starting in 2006, surprisingly tiny genomes have been discovered from numerous bacterial symbionts of insect hosts. Despite their size, each retains some genes that enable provisioning of limiting nutrients or other capabilities required by hosts. Genome sequence analyses show that genome reduction is an ongoing process, resulting in a continuum of sizes, with the smallest genome currently known at 112 kilobases. Genome reduction is typical in host-restricted symbionts and pathogens, but the tiniest genomes are restricted to symbionts required by hosts and restricted to specialized host cells, resulting from long coevolution with hosts. Genes are lost in all functional categories, but core genes for central informational processes, including genes encoding ribosomal proteins, are mostly retained, whereas genes underlying production of cell envelope components are especially depleted. Thus, these entities retain cell-like properties but are heavily dependent on coadaptation of hosts, which continuously evolve to support the symbionts upon which they depend. PMID:24995872

  10. Querying genomic databases

    SciTech Connect

    Baehr, A.; Hagstrom, R.; Joerg, D.; Overbeek, R.

    1991-09-01

    A natural-language interface has been developed that retrieves genomic information by using a simple subset of English. The interface spares the biologist from the task of learning database-specific query languages and computer programming. Currently, the interface deals with the E. coli genome. It can, however, be readily extended and shows promise as a means of easy access to other sequenced genomic databases as well.

  11. Genome Aliquoting Revisited

    NASA Astrophysics Data System (ADS)

    Warren, Robert; Sankoff, David

    We prove that the genome aliquoting problem, the problem of finding a recent polyploid ancestor of a genome, with breakpoint distance can be solved in polynomial time. We propose an aliquoting algorithm that is a 2-approximation for the genome aliquoting problem with double cut and join distance, improving upon the previous best solution to this problem, Feijão and Meidanis' 4-approximation algorithm.

  12. Physician Assistant Genomic Competencies.

    PubMed

    Goldgar, Constance; Michaud, Ed; Park, Nguyen; Jenkins, Jean

    2016-09-01

    Genomic discoveries are increasingly being applied to the clinical care of patients. All physician assistants (PAs) need to acquire competency in genomics to provide the best possible care for patients within the scope of their practice. In this article, we present an updated version of PA genomic competencies and learning outcomes in a framework that is consistent with the current medical education guidelines and the collaborative nature of PAs in interprofessional health care teams. PMID:27490287

  13. Filarial and Wolbachia genomics.

    PubMed

    Scott, A L; Ghedin, E; Nutman, T B; McReynolds, L A; Poole, C B; Slatko, B E; Foster, J M

    2012-01-01

    Filarial nematode parasites, the causative agents for a spectrum of acute and chronic diseases including lymphatic filariasis and river blindness, threaten the well-being and livelihood of hundreds of millions of people in the developing regions of the world. The 2007 publication on a draft assembly of the 95-Mb genome of the human filarial parasite Brugia malayi- representing the first helminth parasite genome to be sequenced - has been followed in rapid succession by projects that have resulted in the genome sequencing of six additional filarial species, seven nonfilarial nematode parasites of animals and nearly 30 plant parasitic and free-living species. Parallel to the genomic sequencing, transcriptomic and proteomic projects have facilitated genome annotation, expanded our understanding of stage-associated gene expression and provided a first look at the role of epigenetic regulation of filarial genomes through microRNAs. The expansion in filarial genomics will also provide a significant enrichment in our knowledge of the diversity and variability in the genomes of the endosymbiotic bacterium Wolbachia leading to a better understanding of the genetic principles that govern filarial-Wolbachia mutualism. The goal here is to provide an overview of the trends and advances in filarial and Wolbachia genomics. PMID:22098559

  14. Fungal Genomics Program

    SciTech Connect

    Grigoriev, Igor

    2012-03-12

    The JGI Fungal Genomics Program aims to scale up sequencing and analysis of fungal genomes to explore the diversity of fungi important for energy and the environment, and to promote functional studies on a system level. Combining new sequencing technologies and comparative genomics tools, JGI is now leading the world in fungal genome sequencing and analysis. Over 120 sequenced fungal genomes with analytical tools are available via MycoCosm (www.jgi.doe.gov/fungi), a web-portal for fungal biologists. Our model of interacting with user communities, unique among other sequencing centers, helps organize these communities, improves genome annotation and analysis work, and facilitates new larger-scale genomic projects. This resulted in 20 high-profile papers published in 2011 alone and contributing to the Genomics Encyclopedia of Fungi, which targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts). Our next grand challenges include larger scale exploration of fungal diversity (1000 fungal genomes), developing molecular tools for DOE-relevant model organisms, and analysis of complex systems and metagenomes.

  15. Genomics of Clostridium tetani.

    PubMed

    Brüggemann, Holger; Brzuszkiewicz, Elzbieta; Chapeton-Montes, Diana; Plourde, Lucile; Speck, Denis; Popoff, Michel R

    2015-05-01

    Genomic information about Clostridium tetani, the causative agent of the tetanus disease, is scarce. The genome of strain E88, a strain used in vaccine production, was sequenced about 10 years ago. One additional genome (strain 12124569) has recently been released. Here we report three new genomes of C. tetani and describe major differences among all five C. tetani genomes. They all harbor tetanus-toxin-encoding plasmids that contain highly conserved genes for TeNT (tetanus toxin), TetR (transcriptional regulator of TeNT) and ColT (collagenase), but substantially differ in other plasmid regions. The chromosomes share a large core genome that contains about 85% of all genes of a given chromosome. The non-core chromosome comprises mainly prophage-like genomic regions and genes encoding environmental interaction and defense functions (e.g. surface proteins, restriction-modification systems, toxin-antitoxin systems, CRISPR/Cas systems) and other fitness functions (e.g. transport systems, metabolic activities). This new genome information will help to assess the level of genome plasticity of the species C. tetani and provide the basis for detailed comparative studies. PMID:25638019

  16. Between two fern genomes.

    PubMed

    Sessa, Emily B; Banks, Jo Ann; Barker, Michael S; Der, Joshua P; Duffy, Aaron M; Graham, Sean W; Hasebe, Mitsuyasu; Langdale, Jane; Li, Fay-Wei; Marchant, D Blaine; Pryer, Kathleen M; Rothfels, Carl J; Roux, Stanley J; Salmi, Mari L; Sigel, Erin M; Soltis, Douglas E; Soltis, Pamela S; Stevenson, Dennis W; Wolf, Paul G

    2014-01-01

    Ferns are the only major lineage of vascular plants not represented by a sequenced nuclear genome. This lack of genome sequence information significantly impedes our ability to understand and reconstruct genome evolution not only in ferns, but across all land plants. Azolla and Ceratopteris are ideal and complementary candidates to be the first ferns to have their nuclear genomes sequenced. They differ dramatically in genome size, life history, and habit, and thus represent the immense diversity of extant ferns. Together, this pair of genomes will facilitate myriad large-scale comparative analyses across ferns and all land plants. Here we review the unique biological characteristics of ferns and describe a number of outstanding questions in plant biology that will benefit from the addition of ferns to the set of taxa with sequenced nuclear genomes. We explain why the fern clade is pivotal for understanding genome evolution across land plants, and we provide a rationale for how knowledge of fern genomes will enable progress in research beyond the ferns themselves. PMID:25324969

  17. [Landscape and ecological genomics].

    PubMed

    2013-10-01

    Landscape genomics is the modern version of landscape genetics, a discipline that arose approximately 10 years ago as a combination of population genetics, landscape ecology, and spatial statistics. It studies the effects of environmental variables on gene flow and other microevolutionary processes that determine genetic connectivity and variations in populations. In contrast to population genetics, it operates at the level of individual specimens rather than at the level of population samples. Another important difference between landscape genetics and genomics and population genetics is that, in the former, the analysis of gene flow and local adaptations takes quantitative account of landforms and features of the matrix, i.e., hostile spaces that separate species habitats. Landscape genomics is a part of population ecogenomics, which, along with community genomics, is a major part of ecological genomics. One of the principal purposes of landscape genomics is the identification and differentiation of various genome-wide and locus-specific effects. The approaches and computation tools developed for combined analysis of genomic and landscape variables make it possible to detect adaptation-related genome fragments, which facilitates the planning of conservation efforts and the prediction of species' fate in response to expected changes in the environment. PMID:25508669

  18. [Landscape and ecological genomics].

    PubMed

    Tetushkin, E Ia

    2013-10-01

    Landscape genomics is the modern version of landscape genetics, a discipline that arose approximately 10 years ago as a combination of population genetics, landscape ecology, and spatial statistics. It studies the effects of environmental variables on gene flow and other microevolutionary processes that determine genetic connectivity and variations in populations. In contrast to population genetics, it operates at the level of individual specimens rather than at the level of population samples. Another important difference between landscape genetics and genomics and population genetics is that, in the former, the analysis of gene flow and local adaptations takes quantitative account of landforms and features of the matrix, i.e., hostile spaces that separate species habitats. Landscape genomics is a part of population ecogenomics, which, along with community genomics, is a major part of ecological genomics. One of the principal purposes of landscape genomics is the identification and differentiation of various genome-wide and locus-specific effects. The approaches and computation tools developed for combined analysis of genomic and landscape variables make it possible to detect adaptation-related genome fragments, which facilitates the planning of conservation efforts and the prediction of species' fate in response to expected changes in the environment. PMID:25474890

  19. Between Two Fern Genomes

    PubMed Central

    2014-01-01

    Ferns are the only major lineage of vascular plants not represented by a sequenced nuclear genome. This lack of genome sequence information significantly impedes our ability to understand and reconstruct genome evolution not only in ferns, but across all land plants. Azolla and Ceratopteris are ideal and complementary candidates to be the first ferns to have their nuclear genomes sequenced. They differ dramatically in genome size, life history, and habit, and thus represent the immense diversity of extant ferns. Together, this pair of genomes will facilitate myriad large-scale comparative analyses across ferns and all land plants. Here we review the unique biological characteristics of ferns and describe a number of outstanding questions in plant biology that will benefit from the addition of ferns to the set of taxa with sequenced nuclear genomes. We explain why the fern clade is pivotal for understanding genome evolution across land plants, and we provide a rationale for how knowledge of fern genomes will enable progress in research beyond the ferns themselves. PMID:25324969

  20. Genomics of Disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This edited book represents the 23rd symposium in the Stadler Genetics Symposia series, and the general theme of this conference was "The Genomics of Disease." The 24 national and international speakers were invited to discuss their world-class research into the advances that genomics has made on c...

  1. Genomics for Weed Science

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Numerous genomic-based studies have provided insight to the physiological and evolutionary processes involved in developmental and environmental processes of model plants such as arabidopsis and rice. However, far fewer efforts have been attempted to use genomic resources to study physiological and ...

  2. Unlocking the bovine genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The draft genome sequence of cattle (Bos taurus) has now been analyzed by the Bovine Genome Sequencing and Analysis Consortium and the Bovine HapMap Consortium, which together represent an extensive collaboration involving more than 300 scientists from 25 different countries. ...

  3. Genetics and Genomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Good progress is being made on genetics and genomics of sugar beet, however it is in process and the tools are now being generated and some results are being analyzed. The GABI BeetSeq project released a first draft of the sugar beet genome of KWS2320, a dihaploid (see http://bvseq.molgen.mpg.de/Gen...

  4. Development of Genomic GMACE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of genomics to enhance national genetic evaluation systems of dairy cattle is quickly becoming standard practice. The current MACE procedure used by Interbull may not accommodate these new “genomically-enhanced” national evaluations. An important assumption in MACE may no longer be valid in ...

  5. GENOME OF HORSEPOX VIRUS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Here we present the genomic sequence of horsepox virus (HSPV) isolate MNR-76, an orthopoxvirus (OPV) isolated in 1976 from diseased Mongolian horses. The 212 kbp genome contained 7.5 kbp inverted terminal repeats (ITR) and lacked extensive terminal tandem repetition. HSPV contained 236 ORFs with sim...

  6. Genomic Instability and Cancer

    PubMed Central

    Yao, Yixin; Dai, Wei

    2014-01-01

    Genomic instability is a characteristic of most cancer cells. It is an increased tendency of genome alteration during cell division. Cancer frequently results from damage to multiple genes controlling cell division and tumor suppressors. It is known that genomic integrity is closely monitored by several surveillance mechanisms, DNA damage checkpoint, DNA repair machinery and mitotic checkpoint. A defect in the regulation of any of these mechanisms often results in genomic instability, which predisposes the cell to malignant transformation. Posttranslational modifications of the histone tails are closely associated with regulation of the cell cycle as well as chromatin structure. Nevertheless, DNA methylation status is also related to genomic integrity. We attempt to summarize recent developments in this field and discuss the debate of driving force of tumor initiation and progression. PMID:25541596

  7. Microbial Genomes Multiply

    NASA Technical Reports Server (NTRS)

    Doolittle, Russell F.

    2002-01-01

    The publication of the first complete sequence of a bacterial genome in 1995 was a signal event, underscored by the fact that the article has been cited more than 2,100 times during the intervening seven years. It was a marvelous technical achievement, made possible by automatic DNA-sequencing machines. The feat is the more impressive in that complete genome sequencing has now been adopted in many different laboratories around the world. Four years ago in these columns I examined the situation after a dozen microbial genomes had been completed. Now, with upwards of 60 microbial genome sequences determined and twice that many in progress, it seems reasonable to assess just what is being learned. Are new concepts emerging about how cells work? Have there been practical benefits in the fields of medicine and agriculture? Is it feasible to determine the genomic sequence of every bacterial species on Earth? The answers to these questions maybe Yes, Perhaps, and No, respectively.

  8. Phytozome Comparative Plant Genomics Portal

    SciTech Connect

    Goodstein, David; Batra, Sajeev; Carlson, Joseph; Hayes, Richard; Phillips, Jeremy; Shu, Shengqiang; Schmutz, Jeremy; Rokhsar, Daniel

    2014-09-09

    The Dept. of Energy Joint Genome Institute is a genomics user facility supporting DOE mission science in the areas of Bioenergy, Carbon Cycling, and Biogeochemistry. The Plant Program at the JGI applies genomic, analytical, computational and informatics platforms and methods to: 1. Understand and accelerate the improvement (domestication) of bioenergy crops 2. Characterize and moderate plant response to climate change 3. Use comparative genomics to identify constrained elements and infer gene function 4. Build high quality genomic resource platforms of JGI Plant Flagship genomes for functional and experimental work 5. Expand functional genomic resources for Plant Flagship genomes

  9. Genome size evolution: sizing mammalian genomes.

    PubMed

    Redi, C A; Capanna, E

    2012-01-01

    The study of genome size (GS) and its variation is so fascinating to the scientific community because it constitutes the link between the present-day analytical and molecular studies of the genome and the old trunk of the holistic and synthetic view of the genome. The GS of several taxa vary over a broad range and do not correlate with the complexity of the organisms (the C-value paradox). However, the biology of transposable elements has let us reach a satisfactory view of the molecular mechanisms that give rise to GS variation and novelties, providing a less perplexing view of the significance of the GS (C-enigma). The knowledge of the composition and structure of a genome is a pre-requisite for trying to understand the evolution of the main genome signature: its size. The radiation of mammals provides an approximately 180-million-year test case for theories of how GS evolves. It has been found from data-mining GS databases that GS is a useful cyto-taxonomical instrument at the level of orders/superorders, providing genomic signatures characterizing Monotremata, Marsupialia, Afrotheria, Xenarthra, Laurasiatheria, and Euarchontoglires. A hypothetical ancestral mammalian-like GS of 2.9-3.7 pg has been suggested. This value appears compatible with the average values calculated for the high systematic levels of the extant Monotremata (∼2.97 pg) and Marsupialia (∼4.07 pg), suggesting invasion of mobile DNA elements concurrently with the separation of the older clades of Afrotheria (∼5.5 pg) and Xenarthra (∼4.5 pg) with larger GS, leaving the Euarchontoglires (∼3.4 pg) and Laurasiatheria (∼2.8 pg) genomes with fewer transposable elements. However, the paucity of GS data (546 mammalian species sized from 5,488 living species) for species, genera, and families calls for caution. Considering that mammalian species may be vanished even before they are known, GS data are sorely needed to phenotype the effects brought about by their variation and to validate any

  10. Evolution of genome architecture.

    PubMed

    Koonin, Eugene V

    2009-02-01

    Charles Darwin believed that all traits of organisms have been honed to near perfection by natural selection. The empirical basis underlying Darwin's conclusions consisted of numerous observations made by him and other naturalists on the exquisite adaptations of animals and plants to their natural habitats and on the impressive results of artificial selection. Darwin fully appreciated the importance of heredity but was unaware of the nature and, in fact, the very existence of genomes. A century and a half after the publication of the "Origin", we have the opportunity to draw conclusions from the comparisons of hundreds of genome sequences from all walks of life. These comparisons suggest that the dominant mode of genome evolution is quite different from that of the phenotypic evolution. The genomes of vertebrates, those purported paragons of biological perfection, turned out to be veritable junkyards of selfish genetic elements where only a small fraction of the genetic material is dedicated to encoding biologically relevant information. In sharp contrast, genomes of microbes and viruses are incomparably more compact, with most of the genetic material assigned to distinct biological functions. However, even in these genomes, the specific genome organization (gene order) is poorly conserved. The results of comparative genomics lead to the conclusion that the genome architecture is not a straightforward result of continuous adaptation but rather is determined by the balance between the selection pressure, that is itself dependent on the effective population size and mutation rate, the level of recombination, and the activity of selfish elements. Although genes and, in many cases, multigene regions of genomes possess elaborate architectures that ensure regulation of expression, these arrangements are evolutionarily volatile and typically change substantially even on short evolutionary scales when gene sequences diverge minimally. Thus, the observed genome

  11. The Banana Genome Hub

    PubMed Central

    Droc, Gaëtan; Larivière, Delphine; Guignon, Valentin; Yahiaoui, Nabila; This, Dominique; Garsmeur, Olivier; Dereeper, Alexis; Hamelin, Chantal; Argout, Xavier; Dufayard, Jean-François; Lengelle, Juliette; Baurens, Franc-Christophe; Cenci, Alberto; Pitollat, Bertrand; D’Hont, Angélique; Ruiz, Manuel; Rouard, Mathieu; Bocs, Stéphanie

    2013-01-01

    Banana is one of the world’s favorite fruits and one of the most important crops for developing countries. The banana reference genome sequence (Musa acuminata) was recently released. Given the taxonomic position of Musa, the completed genomic sequence has particular comparative value to provide fresh insights about the evolution of the monocotyledons. The study of the banana genome has been enhanced by a number of tools and resources that allows harnessing its sequence. First, we set up essential tools such as a Community Annotation System, phylogenomics resources and metabolic pathways. Then, to support post-genomic efforts, we improved banana existing systems (e.g. web front end, query builder), we integrated available Musa data into generic systems (e.g. markers and genetic maps, synteny blocks), we have made interoperable with the banana hub, other existing systems containing Musa data (e.g. transcriptomics, rice reference genome, workflow manager) and finally, we generated new results from sequence analyses (e.g. SNP and polymorphism analysis). Several uses cases illustrate how the Banana Genome Hub can be used to study gene families. Overall, with this collaborative effort, we discuss the importance of the interoperability toward data integration between existing information systems. Database URL: http://banana-genome.cirad.fr/ PMID:23707967

  12. Genomic Insights into Bifidobacteria

    PubMed Central

    Lee, Ju-Hoon; O'Sullivan, Daniel J.

    2010-01-01

    Summary: Since the discovery in 1899 of bifidobacteria as numerically dominant microbes in the feces of breast-fed infants, there have been numerous studies addressing their role in modulating gut microflora as well as their other potential health benefits. Because of this, they are frequently incorporated into foods as probiotic cultures. An understanding of their full interactions with intestinal microbes and the host is needed to scientifically validate any health benefits they may afford. Recently, the genome sequences of nine strains representing four species of Bifidobacterium became available. A comparative genome analysis of these genomes reveals a likely efficient capacity to adapt to their habitats, with B. longum subsp. infantis exhibiting more genomic potential to utilize human milk oligosaccharides, consistent with its habitat in the infant gut. Conversely, B. longum subsp. longum exhibits a higher genomic potential for utilization of plant-derived complex carbohydrates and polyols, consistent with its habitat in an adult gut. An intriguing observation is the loss of much of this genome potential when strains are adapted to pure culture environments, as highlighted by the genomes of B. animalis subsp. lactis strains, which exhibit the least potential for a gut habitat and are believed to have evolved from the B. animalis species during adaptation to dairy fermentation environments. PMID:20805404

  13. Ensembl comparative genomics resources

    PubMed Central

    Muffato, Matthieu; Beal, Kathryn; Fitzgerald, Stephen; Gordon, Leo; Pignatelli, Miguel; Vilella, Albert J.; Searle, Stephen M. J.; Amode, Ridwan; Brent, Simon; Spooner, William; Kulesha, Eugene; Yates, Andrew; Flicek, Paul

    2016-01-01

    Evolution provides the unifying framework with which to understand biology. The coherent investigation of genic and genomic data often requires comparative genomics analyses based on whole-genome alignments, sets of homologous genes and other relevant datasets in order to evaluate and answer evolutionary-related questions. However, the complexity and computational requirements of producing such data are substantial: this has led to only a small number of reference resources that are used for most comparative analyses. The Ensembl comparative genomics resources are one such reference set that facilitates comprehensive and reproducible analysis of chordate genome data. Ensembl computes pairwise and multiple whole-genome alignments from which large-scale synteny, per-base conservation scores and constrained elements are obtained. Gene alignments are used to define Ensembl Protein Families, GeneTrees and homologies for both protein-coding and non-coding RNA genes. These resources are updated frequently and have a consistent informatics infrastructure and data presentation across all supported species. Specialized web-based visualizations are also available including synteny displays, collapsible gene tree plots, a gene family locator and different alignment views. The Ensembl comparative genomics infrastructure is extensively reused for the analysis of non-vertebrate species by other projects including Ensembl Genomes and Gramene and much of the information here is relevant to these projects. The consistency of the annotation across species and the focus on vertebrates makes Ensembl an ideal system to perform and support vertebrate comparative genomic analyses. We use robust software and pipelines to produce reference comparative data and make it freely available. Database URL: http://www.ensembl.org. PMID:26896847

  14. Genome instability and aging.

    PubMed

    Vijg, Jan; Suh, Yousin

    2013-01-01

    Genome instability has long been implicated as the main causal factor in aging. Somatic cells are continuously exposed to various sources of DNA damage, from reactive oxygen species to UV radiation to environmental mutagens. To cope with the tens of thousands of chemical lesions introduced into the genome of a typical cell each day, a complex network of genome maintenance systems acts to remove damage and restore the correct base pair sequence. Occasionally, however, repair is erroneous, and such errors, as well as the occasional failure to correctly replicate the genome during cell division, are the basis for mutations and epimutations. There is now ample evidence that mutations accumulate in various organs and tissues of higher animals, including humans, mice, and flies. What is not known, however, is whether the frequency of these random changes is sufficient to cause the phenotypic effects generally associated with aging. The exception is cancer, an age-related disease caused by the accumulation of mutations and epimutations. Here, we first review current concepts regarding the relationship between DNA damage, repair, and mutation, as well as the data regarding genome alterations as a function of age. We then describe a model for how randomly induced DNA sequence and epigenomic variants in the somatic genomes of animals can result in functional decline and disease in old age. Finally, we discuss the genetics of genome instability in relation to longevity to address the importance of alterations in the somatic genome as a causal factor in aging and to underscore the opportunities provided by genetic approaches to develop interventions that attenuate genome instability, reduce disease risk, and increase life span. PMID:23398157

  15. Ensembl comparative genomics resources.

    PubMed

    Herrero, Javier; Muffato, Matthieu; Beal, Kathryn; Fitzgerald, Stephen; Gordon, Leo; Pignatelli, Miguel; Vilella, Albert J; Searle, Stephen M J; Amode, Ridwan; Brent, Simon; Spooner, William; Kulesha, Eugene; Yates, Andrew; Flicek, Paul

    2016-01-01

    Evolution provides the unifying framework with which to understand biology. The coherent investigation of genic and genomic data often requires comparative genomics analyses based on whole-genome alignments, sets of homologous genes and other relevant datasets in order to evaluate and answer evolutionary-related questions. However, the complexity and computational requirements of producing such data are substantial: this has led to only a small number of reference resources that are used for most comparative analyses. The Ensembl comparative genomics resources are one such reference set that facilitates comprehensive and reproducible analysis of chordate genome data. Ensembl computes pairwise and multiple whole-genome alignments from which large-scale synteny, per-base conservation scores and constrained elements are obtained. Gene alignments are used to define Ensembl Protein Families, GeneTrees and homologies for both protein-coding and non-coding RNA genes. These resources are updated frequently and have a consistent informatics infrastructure and data presentation across all supported species. Specialized web-based visualizations are also available including synteny displays, collapsible gene tree plots, a gene family locator and different alignment views. The Ensembl comparative genomics infrastructure is extensively reused for the analysis of non-vertebrate species by other projects including Ensembl Genomes and Gramene and much of the information here is relevant to these projects. The consistency of the annotation across species and the focus on vertebrates makes Ensembl an ideal system to perform and support vertebrate comparative genomic analyses. We use robust software and pipelines to produce reference comparative data and make it freely available. Database URL: http://www.ensembl.org. PMID:26896847

  16. Center for Cancer Genomics | Office of Cancer Genomics

    Cancer.gov

    The Center for Cancer Genomics (CCG) was established to unify the National Cancer Institute's activities in cancer genomics, with the goal of advancing genomics research and translating findings into the clinic to improve the precise diagnosis and treatment of cancers. In addition to promoting genomic sequencing approach

  17. Human Genome Project

    SciTech Connect

    Block, S.; Cornwall, J.; Dally, W.; Dyson, F.; Fortson, N.; Joyce, G.; Kimble, H. J.; Lewis, N.; Max, C.; Prince, T.; Schwitters, R.; Weinberger, P.; Woodin, W. H.

    1998-01-04

    The study reviews Department of Energy supported aspects of the United States Human Genome Project, the joint National Institutes of Health/Department of Energy program to characterize all human genetic material, to discover the set of human genes, and to render them accessible for further biological study. The study concentrates on issues of technology, quality assurance/control, and informatics relevant to current effort on the genome project and needs beyond it. Recommendations are presented on areas of the genome program that are of particular interest to and supported by the Department of Energy.

  18. Genomic taxonomy of vibrios

    PubMed Central

    Thompson, Cristiane C; Vicente, Ana Carolina P; Souza, Rangel C; Vasconcelos, Ana Tereza R; Vesth, Tammi; Alves, Nelson; Ussery, David W; Iida, Tetsuya; Thompson, Fabiano L

    2009-01-01

    Background Vibrio taxonomy has been based on a polyphasic approach. In this study, we retrieve useful taxonomic information (i.e. data that can be used to distinguish different taxonomic levels, such as species and genera) from 32 genome sequences of different vibrio species. We use a variety of tools to explore the taxonomic relationship between the sequenced genomes, including Multilocus Sequence Analysis (MLSA), supertrees, Average Amino Acid Identity (AAI), genomic signatures, and Genome BLAST atlases. Our aim is to analyse the usefulness of these tools for species identification in vibrios. Results We have generated four new genome sequences of three Vibrio species, i.e., V. alginolyticus 40B, V. harveyi-like 1DA3, and V. mimicus strains VM573 and VM603, and present a broad analyses of these genomes along with other sequenced Vibrio species. The genome atlas and pangenome plots provide a tantalizing image of the genomic differences that occur between closely related sister species, e.g. V. cholerae and V. mimicus. The vibrio pangenome contains around 26504 genes. The V. cholerae core genome and pangenome consist of 1520 and 6923 genes, respectively. Pangenomes might allow different strains of V. cholerae to occupy different niches. MLSA and supertree analyses resulted in a similar phylogenetic picture, with a clear distinction of four groups (Vibrio core group, V. cholerae-V. mimicus, Aliivibrio spp., and Photobacterium spp.). A Vibrio species is defined as a group of strains that share > 95% DNA identity in MLSA and supertree analysis, > 96% AAI, ≤ 10 genome signature dissimilarity, and > 61% proteome identity. Strains of the same species and species of the same genus will form monophyletic groups on the basis of MLSA and supertree. Conclusion The combination of different analytical and bioinformatics tools will enable the most accurate species identification through genomic computational analysis. This endeavour will culminate in the birth of the online

  19. Human Genome Program

    SciTech Connect

    Not Available

    1993-01-01

    The DOE Human Genome program has grown tremendously, as shown by the marked increase in the number of genome-funded projects since the last workshop held in 1991. The abstracts in this book describe the genome research of DOE-funded grantees and contractors and invited guests, and all projects are represented at the workshop by posters. The 3-day meeting includes plenary sessions on ethical, legal, and social issues pertaining to the availability of genetic data; sequencing techniques, informatics support; and chromosome and cDNA mapping and sequencing.

  20. What Is a Genome?

    PubMed Central

    Goldman, Aaron David; Landweber, Laura F.

    2016-01-01

    The genome is often described as the information repository of an organism. Whether millions or billions of letters of DNA, its transmission across generations confers the principal medium for inheritance of organismal traits. Several emerging areas of research demonstrate that this definition is an oversimplification. Here, we explore ways in which a deeper understanding of genomic diversity and cell physiology is challenging the concepts of physical permanence attached to the genome as well as its role as the sole information source for an organism. PMID:27442251

  1. Comparative primate genomics: emerging patterns of genome content and dynamics

    PubMed Central

    Rogers, Jeffrey; Gibbs, Richard A.

    2014-01-01

    Preface Advances in genome sequencing technologies have created new opportunities for comparative primate genomics. Genome assemblies have been published for several primates, with analyses of several others underway. Whole genome assemblies for the great apes provide remarkable new information about the evolutionary origins of the human genome and the processes involved. Genomic data for macaques and other nonhuman primates provide valuable insight into genetic similarities and differences among species used as models for disease-related research. This review summarizes current knowledge regarding primate genome content and dynamics and offers a series of goals for the near future. PMID:24709753

  2. Comparative primate genomics: emerging patterns of genome content and dynamics.

    PubMed

    Rogers, Jeffrey; Gibbs, Richard A

    2014-05-01

    Advances in genome sequencing technologies have created new opportunities for comparative primate genomics. Genome assemblies have been published for various primate species, and analyses of several others are underway. Whole-genome assemblies for the great apes provide remarkable new information about the evolutionary origins of the human genome and the processes involved. Genomic data for macaques and other non-human primates offer valuable insights into genetic similarities and differences among species that are used as models for disease-related research. This Review summarizes current knowledge regarding primate genome content and dynamics, and proposes a series of goals for the near future. PMID:24709753

  3. GenomeView: a next-generation genome browser

    PubMed Central

    Abeel, Thomas; Van Parys, Thomas; Saeys, Yvan; Galagan, James; Van de Peer, Yves

    2012-01-01

    Due to ongoing advances in sequencing technologies, billions of nucleotide sequences are now produced on a daily basis. A major challenge is to visualize these data for further downstream analysis. To this end, we present GenomeView, a stand-alone genome browser specifically designed to visualize and manipulate a multitude of genomics data. GenomeView enables users to dynamically browse high volumes of aligned short-read data, with dynamic navigation and semantic zooming, from the whole genome level to the single nucleotide. At the same time, the tool enables visualization of whole genome alignments of dozens of genomes relative to a reference sequence. GenomeView is unique in its capability to interactively handle huge data sets consisting of tens of aligned genomes, thousands of annotation features and millions of mapped short reads both as viewer and editor. GenomeView is freely available as an open source software package. PMID:22102585

  4. Hymenoptera Genome Database: integrating genome annotations in HymenopteraMine

    PubMed Central

    Elsik, Christine G.; Tayal, Aditi; Diesh, Colin M.; Unni, Deepak R.; Emery, Marianne L.; Nguyen, Hung N.; Hagen, Darren E.

    2016-01-01

    We report an update of the Hymenoptera Genome Database (HGD) (http://HymenopteraGenome.org), a model organism database for insect species of the order Hymenoptera (ants, bees and wasps). HGD maintains genomic data for 9 bee species, 10 ant species and 1 wasp, including the versions of genome and annotation data sets published by the genome sequencing consortiums and those provided by NCBI. A new data-mining warehouse, HymenopteraMine, based on the InterMine data warehousing system, integrates the genome data with data from external sources and facilitates cross-species analyses based on orthology. New genome browsers and annotation tools based on JBrowse/WebApollo provide easy genome navigation, and viewing of high throughput sequence data sets and can be used for collaborative genome annotation. All of the genomes and annotation data sets are combined into a single BLAST server that allows users to select and combine sequence data sets to search. PMID:26578564

  5. Hymenoptera Genome Database: integrating genome annotations in HymenopteraMine.

    PubMed

    Elsik, Christine G; Tayal, Aditi; Diesh, Colin M; Unni, Deepak R; Emery, Marianne L; Nguyen, Hung N; Hagen, Darren E

    2016-01-01

    We report an update of the Hymenoptera Genome Database (HGD) (http://HymenopteraGenome.org), a model organism database for insect species of the order Hymenoptera (ants, bees and wasps). HGD maintains genomic data for 9 bee species, 10 ant species and 1 wasp, including the versions of genome and annotation data sets published by the genome sequencing consortiums and those provided by NCBI. A new data-mining warehouse, HymenopteraMine, based on the InterMine data warehousing system, integrates the genome data with data from external sources and facilitates cross-species analyses based on orthology. New genome browsers and annotation tools based on JBrowse/WebApollo provide easy genome navigation, and viewing of high throughput sequence data sets and can be used for collaborative genome annotation. All of the genomes and annotation data sets are combined into a single BLAST server that allows users to select and combine sequence data sets to search. PMID:26578564

  6. Vita Genomics, Inc.

    PubMed

    Shih-Hsin Wu, Lawrence; Su, Chun-Lin; Chen, Ellson

    2007-06-01

    Vita Genomics, Inc., centered in Taiwan and China, aims to be a premier genomics-based biotechnological and biopharmaceutical company in the Asia-Pacific region. The company focuses on conducting pharmacogenomics research, in vitro diagnosis product development and specialty contract research services in both genomics and pharmacogenomics fields. We are now initiating a drug rescue program designed to resurrect drugs that have failed in the previous clinical trials owing to low efficacies. This program applies pharmacogenomics approaches using biomarkers to screen subsets of patients who may respond better or avoid adverse responses to the test drugs. Vita Genomics, Inc. has envisioned itself as an important player in the healthcare industry offering advanced molecular diagnostic products and services, revolutionizing thedrug-development process and providing pharmacogenomic solutions. PMID:17559355

  7. Lophotrochozoan mitochondrial genomes

    SciTech Connect

    Valles, Yvonne; Boore, Jeffrey L.

    2005-10-01

    Progress in both molecular techniques and phylogeneticmethods has challenged many of the interpretations of traditionaltaxonomy. One example is in the recognition of the animal superphylumLophotrochozoa (annelids, mollusks, echiurans, platyhelminthes,brachiopods, and other phyla), although the relationships within thisgroup and the inclusion of some phyla remain uncertain. While much ofthis progress in phylogenetic reconstruction has been based on comparingsingle gene sequences, we are beginning to see the potential of comparinglarge-scale features of genomes, such as the relative order of genes.Even though tremendous progress is being made on the sequencedetermination of whole nuclear genomes, the dataset of choice forgenome-level characters for many animals across a broad taxonomic rangeremains mitochondrial genomes. We review here what is known aboutmitochondrial genomes of the lophotrochozoans and discuss the promisethat this dataset will enable insight into theirrelationships.

  8. Androgen receptor genomic regulation

    PubMed Central

    Jin, Hong-Jian; Kim, Jung

    2013-01-01

    The transcriptional activity of the androgen receptor (AR) is not only critical for the normal development and function of the prostate but also pivotal to the onset and progression of prostate cancer (PCa). The studies of AR transcriptional regulation were previously limited to a handful of AR-target genes. Owing to the development of various high-throughput genomic technologies, significant advances have been made in recent years. Here we discuss the discoveries of genome-wide androgen-regulated genes in PCa cell lines, animal models and tissues using expression microarray and sequencing, the mapping of genomic landscapes of AR using Combining Chromatin Immunoprecipitation (ChIP)-on-chip and ChIP-seq assays, the interplay of transcriptional cofactors in defining AR binding profiles, and the genomic regulation and AR reprogramming in advanced PCa. PMID:25237629

  9. Mouse genome database 2016

    PubMed Central

    Bult, Carol J.; Eppig, Janan T.; Blake, Judith A.; Kadin, James A.; Richardson, Joel E.

    2016-01-01

    The Mouse Genome Database (MGD; http://www.informatics.jax.org) is the primary community model organism database for the laboratory mouse and serves as the source for key biological reference data related to mouse genes, gene functions, phenotypes and disease models with a strong emphasis on the relationship of these data to human biology and disease. As the cost of genome-scale sequencing continues to decrease and new technologies for genome editing become widely adopted, the laboratory mouse is more important than ever as a model system for understanding the biological significance of human genetic variation and for advancing the basic research needed to support the emergence of genome-guided precision medicine. Recent enhancements to MGD include new graphical summaries of biological annotations for mouse genes, support for mobile access to the database, tools to support the annotation and analysis of sets of genes, and expanded support for comparative biology through the expansion of homology data. PMID:26578600

  10. The genomics of adaptation.

    PubMed

    Radwan, Jacek; Babik, Wiesław

    2012-12-22

    The amount and nature of genetic variation available to natural selection affect the rate, course and outcome of evolution. Consequently, the study of the genetic basis of adaptive evolutionary change has occupied biologists for decades, but progress has been hampered by the lack of resolution and the absence of a genome-level perspective. Technological advances in recent years should now allow us to answer many long-standing questions about the nature of adaptation. The data gathered so far are beginning to challenge some widespread views of the way in which natural selection operates at the genomic level. Papers in this Special Feature of Proceedings of the Royal Society B illustrate various aspects of the broad field of adaptation genomics. This introductory article sets up a context and, on the basis of a few selected examples, discusses how genomic data can advance our understanding of the process of adaptation. PMID:23097510

  11. Genomics and vaccine development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic-based approaches are driving fundamental changes in our understanding of microbiology. Comparative analysis of microbial strain is providing new insights into pathogen evolution, virulence mechanisms, and host range specificity. Most importantly, gene discovery and genetic variations can now...

  12. Platyzoan mitochondrial genomes.

    PubMed

    Wey-Fabrizius, Alexandra R; Podsiadlowski, Lars; Herlyn, Holger; Hankeln, Thomas

    2013-11-01

    Platyzoa is a putative lophotrochozoan (spiralian) subtaxon within the protostome clade of Metazoa, comprising a range of biologically diverse, mostly small worm-shaped animals. The monophyly of Platyzoa, the relationships between the putative subgroups Platyhelminthes, Gastrotricha and Gnathifera (the latter comprising at least Gnathostomulida, "Rotifera" and Acanthocephala) as well as some aspects of the internal phylogenies of these subgroups are highly debated. Here we review how complete mitochondrial (mt) genome data contribute to these debates. We highlight special features of the mt genomes and discuss problems in mtDNA phylogenies of the clade. Mitochondrial genome data seem to be insufficient to resolve the position of the platyzoan clade within the Spiralia but can help to address internal phylogenetic questions. The present review includes a tabular survey of all published platyzoan mt genomes. PMID:23274056

  13. Mouse genome database 2016.

    PubMed

    Bult, Carol J; Eppig, Janan T; Blake, Judith A; Kadin, James A; Richardson, Joel E

    2016-01-01

    The Mouse Genome Database (MGD; http://www.informatics.jax.org) is the primary community model organism database for the laboratory mouse and serves as the source for key biological reference data related to mouse genes, gene functions, phenotypes and disease models with a strong emphasis on the relationship of these data to human biology and disease. As the cost of genome-scale sequencing continues to decrease and new technologies for genome editing become widely adopted, the laboratory mouse is more important than ever as a model system for understanding the biological significance of human genetic variation and for advancing the basic research needed to support the emergence of genome-guided precision medicine. Recent enhancements to MGD include new graphical summaries of biological annotations for mouse genes, support for mobile access to the database, tools to support the annotation and analysis of sets of genes, and expanded support for comparative biology through the expansion of homology data. PMID:26578600

  14. The rise of genomics.

    PubMed

    Weissenbach, Jean

    2016-01-01

    A brief history of the development of genomics is provided. Complete sequencing of genomes of uni- and multicellular organisms is based on important progress in sequencing and bioinformatics. Evolution of these methods is ongoing and has triggered an explosion in data production and analysis. Initial analyses focused on the inventory of genes encoding proteins. Completeness and quality of gene prediction remains crucial. Genome analyses profoundly modified our views on evolution, biodiversity and contributed to the detection of new functions, yet to be fully elucidated, such as those fulfilled by non-coding RNAs. Genomics has become the basis for the study of biology and provides the molecular support for a bunch of large-scale studies, the omics. PMID:27263360

  15. Epidemiology & Genomics Research Program

    Cancer.gov

    The Epidemiology and Genomics Research Program, in the National Cancer Institute's Division of Cancer Control and Population Sciences, funds research in human populations to understand the determinants of cancer occurrence and outcomes.

  16. Genomic definition of species

    SciTech Connect

    Crkvenjakov, R.; Drmanac, R.

    1991-07-01

    The subject of this paper is the definition of species based on the assumption that genome is the fundamental level for the origin and maintenance of biological diversity. For this view to be logically consistent it is necessary to assume the existence and operation of the new law which we call genome law. For this reason the genome law is included in the explanation of species phenomenon presented here even if its precise formulation and elaboration are left for the future. The intellectual underpinnings of this definition can be traced to Goldschmidt. We wish to explore some philosophical aspects of the definition of species in terms of the genome. The point of proposing the definition on these grounds is that any real advance in evolutionary theory has to be correct in both its philosophy and its science.

  17. Molluscan Evolutionary Genomics

    SciTech Connect

    Simison, W. Brian; Boore, Jeffrey L.

    2005-12-01

    In the last 20 years there have been dramatic advances in techniques of high-throughput DNA sequencing, most recently accelerated by the Human Genome Project, a program that has determined the three billion base pair code on which we are based. Now this tremendous capability is being directed at other genome targets that are being sampled across the broad range of life. This opens up opportunities as never before for evolutionary and organismal biologists to address questions of both processes and patterns of organismal change. We stand at the dawn of a new 'modern synthesis' period, paralleling that of the early 20th century when the fledgling field of genetics first identified the underlying basis for Darwin's theory. We must now unite the efforts of systematists, paleontologists, mathematicians, computer programmers, molecular biologists, developmental biologists, and others in the pursuit of discovering what genomics can teach us about the diversity of life. Genome-level sampling for mollusks to date has mostly been limited to mitochondrial genomes and it is likely that these will continue to provide the best targets for broad phylogenetic sampling in the near future. However, we are just beginning to see an inroad into complete nuclear genome sequencing, with several mollusks and other eutrochozoans having been selected for work about to begin. Here, we provide an overview of the state of molluscan mitochondrial genomics, highlight a few of the discoveries from this research, outline the promise of broadening this dataset, describe upcoming projects to sequence whole mollusk nuclear genomes, and challenge the community to prepare for making the best use of these data.

  18. Biobanks for Genomics and Genomics for Biobanks

    PubMed Central

    Ducournau, Pascal; Gourraud, Pierre-Antoine; Pontille, David

    2003-01-01

    Biobanks include biological samples and attached databases. Human biobanks occur in research, technological development and medical activities. Population genomics is highly dependent on the availability of large biobanks. Ethical issues must be considered: protecting the rights of those people whose samples or data are in biobanks (information, autonomy, confidentiality, protection of private life), assuring the non-commercial use of human body elements and the optimal use of samples and data. They balance other issues, such as protecting the rights of researchers and companies, allowing long-term use of biobanks while detailed information on future uses is not available. At the level of populations, the traditional form of informed consent is challenged. Other dimensions relate to the rights of a group as such, in addition to individual rights. Conditions of return of results and/or benefit to a population need to be defined. With ‘large-scale biobanking’ a marked trend in genomics, new societal dimensions appear, regarding communication, debate, regulation, societal control and valorization of such large biobanks. Exploring how genomics can help health sector biobanks to become more rationally constituted and exploited is an interesting perspective. For example, evaluating how genomic approaches can help in optimizing haematopoietic stem cell donor registries using new markers and high-throughput techniques to increase immunogenetic variability in such registries is a challenge currently being addressed. Ethical issues in such contexts are important, as not only individual decisions or projects are concerned, but also national policies in the international arena and organization of democratic debate about science, medicine and society. PMID:18629026

  19. How the genome folds

    NASA Astrophysics Data System (ADS)

    Lieberman Aiden, Erez

    2012-02-01

    I describe Hi-C, a novel technology for probing the three-dimensional architecture of whole genomes by coupling proximity-based ligation with massively parallel sequencing. Working with collaborators at the Broad Institute and UMass Medical School, we used Hi-C to construct spatial proximity maps of the human genome at a resolution of 1Mb. These maps confirm the presence of chromosome territories and the spatial proximity of small, gene-rich chromosomes. We identified an additional level of genome organization that is characterized by the spatial segregation of open and closed chromatin to form two genome-wide compartments. At the megabase scale, the chromatin conformation is consistent with a fractal globule, a knot-free conformation that enables maximally dense packing while preserving the ability to easily fold and unfold any genomic locus. The fractal globule is distinct from the more commonly used globular equilibrium model. Our results demonstrate the power of Hi-C to map the dynamic conformations of whole genomes.

  20. Human Genome Annotation

    NASA Astrophysics Data System (ADS)

    Gerstein, Mark

    A central problem for 21st century science is annotating the human genome and making this annotation useful for the interpretation of personal genomes. My talk will focus on annotating the 99% of the genome that does not code for canonical genes, concentrating on intergenic features such as structural variants (SVs), pseudogenes (protein fossils), binding sites, and novel transcribed RNAs (ncRNAs). In particular, I will describe how we identify regulatory sites and variable blocks (SVs) based on processing next-generation sequencing experiments. I will further explain how we cluster together groups of sites to create larger annotations. Next, I will discuss a comprehensive pseudogene identification pipeline, which has enabled us to identify >10K pseudogenes in the genome and analyze their distribution with respect to age, protein family, and chromosomal location. Throughout, I will try to introduce some of the computational algorithms and approaches that are required for genome annotation. Much of this work has been carried out in the framework of the ENCODE, modENCODE, and 1000 genomes projects.

  1. An archaeal genomic signature

    NASA Technical Reports Server (NTRS)

    Graham, D. E.; Overbeek, R.; Olsen, G. J.; Woese, C. R.

    2000-01-01

    Comparisons of complete genome sequences allow the most objective and comprehensive descriptions possible of a lineage's evolution. This communication uses the completed genomes from four major euryarchaeal taxa to define a genomic signature for the Euryarchaeota and, by extension, the Archaea as a whole. The signature is defined in terms of the set of protein-encoding genes found in at least two diverse members of the euryarchaeal taxa that function uniquely within the Archaea; most signature proteins have no recognizable bacterial or eukaryal homologs. By this definition, 351 clusters of signature proteins have been identified. Functions of most proteins in this signature set are currently unknown. At least 70% of the clusters that contain proteins from all the euryarchaeal genomes also have crenarchaeal homologs. This conservative set, which appears refractory to horizontal gene transfer to the Bacteria or the Eukarya, would seem to reflect the significant innovations that were unique and fundamental to the archaeal "design fabric." Genomic protein signature analysis methods may be extended to characterize the evolution of any phylogenetically defined lineage. The complete set of protein clusters for the archaeal genomic signature is presented as supplementary material (see the PNAS web site, www.pnas.org).

  2. Ebolavirus comparative genomics

    DOE PAGESBeta

    Jun, Se-Ran; Leuze, Michael R.; Nookaew, Intawat; Uberbacher, Edward C.; Land, Miriam; Zhang, Qian; Wanchai, Visanu; Chai, Juanjuan; Nielsen, Morten; Trolle, Thomas; et al

    2015-07-14

    The 2014 Ebola outbreak in West Africa is the largest documented for this virus. We examine the dynamics of this genome, comparing more than one hundred currently available ebolavirus genomes to each other and to other viral genomes. Based on oligomer frequency analysis, the family Filoviridae forms a distinct group from all other sequenced viral genomes. All filovirus genomes sequenced to date encode proteins with similar functions and gene order, although there is considerable divergence in sequences between the three genera Ebolavirus, Cuevavirus, and Marburgvirus within the family Filoviridae. Whereas all ebolavirus genomes are quite similar (multiple sequences of themore » same strain are often identical), variation is most common in the intergenic regions and within specific areas of the genes encoding the glycoprotein (GP), nucleoprotein (NP), and polymerase (L). We predict regions that could contain epitope-binding sites, which might be good vaccine targets. In conclusion, this information, combined with glycosylation sites and experimentally determined epitopes, can identify the most promising regions for the development of therapeutic strategies.« less

  3. Barley Genomics: An Overview

    PubMed Central

    Sreenivasulu, Nese; Graner, Andreas; Wobus, Ulrich

    2008-01-01

    Barley (Hordeum vulgare), first domesticated in the Near East, is a well-studied crop in terms of genetics, genomics, and breeding and qualifies as a model plant for Triticeae research. Recent advances made in barley genomics mainly include the following: (i) rapid accumulation of EST sequence data, (ii) growing number of studies on transcriptome, proteome, and metabolome, (iii) new modeling techniques, (iv) availability of genome-wide knockout collections as well as efficient transformation techniques, and (v) the recently started genome sequencing effort. These developments pave the way for a comprehensive functional analysis and understanding of gene expression networks linked to agronomically important traits. Here, we selectively review important technological developments in barley genomics and related fields and discuss the relevance for understanding genotype-phenotype relationships by using approaches such as genetical genomics and association studies. High-throughput genotyping platforms that have recently become available will allow the construction of high-density genetic maps that will further promote marker-assisted selection as well as physical map construction. Systems biology approaches will further enhance our knowledge and largely increase our abilities to design refined breeding strategies on the basis of detailed molecular physiological knowledge. PMID:18382615

  4. A Review on Genomics APIs

    PubMed Central

    Swaminathan, Rajeswari; Huang, Yungui; Moosavinasab, Soheil; Buckley, Ronald; Bartlett, Christopher W.; Lin, Simon M.

    2015-01-01

    The constant improvement and falling prices of whole human genome Next Generation Sequencing (NGS) has resulted in rapid adoption of genomic information at both clinics and research institutions. Considered together, the complexity of genomics data, due to its large volume and diversity along with the need for genomic data sharing, has resulted in the creation of Application Programming Interface (API) for secure, modular, interoperable access to genomic data from different applications, platforms, and even organizations. The Genomics APIs are a set of special protocols that assist software developers in dealing with multiple genomic data sources for building seamless, interoperable applications leading to the advancement of both genomic and clinical research. These APIs help define a standard for retrieval of genomic data from multiple sources as well as to better package genomic information for integration with Electronic Health Records. This review covers three currently available Genomics APIs: a) Google Genomics, b) SMART Genomics, and c) 23andMe. The functionalities, reference implementations (if available) and authentication protocols of each API are reviewed. A comparative analysis of the different features across the three APIs is provided in the Discussion section. Though Genomics APIs are still under active development and have yet to reach widespread adoption, they hold the promise to make building of complicated genomics applications easier with downstream constructive effects on healthcare. PMID:26702340

  5. WheatGenome.info: A Resource for Wheat Genomics Resource.

    PubMed

    Lai, Kaitao

    2016-01-01

    An integrated database with a variety of Web-based systems named WheatGenome.info hosting wheat genome and genomic data has been developed to support wheat research and crop improvement. The resource includes multiple Web-based applications, which are implemented as a variety of Web-based systems. These include a GBrowse2-based wheat genome viewer with BLAST search portal, TAGdb for searching wheat second generation genome sequence data, wheat autoSNPdb, links to wheat genetic maps using CMap and CMap3D, and a wheat genome Wiki to allow interaction between diverse wheat genome sequencing activities. This portal provides links to a variety of wheat genome resources hosted at other research organizations. This integrated database aims to accelerate wheat genome research and is freely accessible via the web interface at http://www.wheatgenome.info/ . PMID:26519407

  6. GenomeVista

    SciTech Connect

    Poliakov, Alexander; Couronne, Olivier

    2002-11-04

    Aligning large vertebrate genomes that are structurally complex poses a variety of problems not encountered on smaller scales. Such genomes are rich in repetitive elements and contain multiple segmental duplications, which increases the difficulty of identifying true orthologous SNA segments in alignments. The sizes of the sequences make many alignment algorithms designed for comparing single proteins extremely inefficient when processing large genomic intervals. We integrated both local and global alignment tools and developed a suite of programs for automatically aligning large vertebrate genomes and identifying conserved non-coding regions in the alignments. Our method uses the BLAT local alignment program to find anchors on the base genome to identify regions of possible homology for a query sequence. These regions are postprocessed to find the best candidates which are then globally aligned using the AVID global alignment program. In the last step conserved non-coding segments are identified using VISTA. Our methods are fast and the resulting alignments exhibit a high degree of sensitivity, covering more than 90% of known coding exons in the human genome. The GenomeVISTA software is a suite of Perl programs that is built on a MySQL database platform. The scheduler gets control data from the database, builds a queve of jobs, and dispatches them to a PC cluster for execution. The main program, running on each node of the cluster, processes individual sequences. A Perl library acts as an interface between the database and the above programs. The use of a separate library allows the programs to function independently of the database schema. The library also improves on the standard Perl MySQL database interfere package by providing auto-reconnect functionality and improved error handling.

  7. GenomeVista

    Energy Science and Technology Software Center (ESTSC)

    2002-11-04

    Aligning large vertebrate genomes that are structurally complex poses a variety of problems not encountered on smaller scales. Such genomes are rich in repetitive elements and contain multiple segmental duplications, which increases the difficulty of identifying true orthologous SNA segments in alignments. The sizes of the sequences make many alignment algorithms designed for comparing single proteins extremely inefficient when processing large genomic intervals. We integrated both local and global alignment tools and developed a suitemore » of programs for automatically aligning large vertebrate genomes and identifying conserved non-coding regions in the alignments. Our method uses the BLAT local alignment program to find anchors on the base genome to identify regions of possible homology for a query sequence. These regions are postprocessed to find the best candidates which are then globally aligned using the AVID global alignment program. In the last step conserved non-coding segments are identified using VISTA. Our methods are fast and the resulting alignments exhibit a high degree of sensitivity, covering more than 90% of known coding exons in the human genome. The GenomeVISTA software is a suite of Perl programs that is built on a MySQL database platform. The scheduler gets control data from the database, builds a queve of jobs, and dispatches them to a PC cluster for execution. The main program, running on each node of the cluster, processes individual sequences. A Perl library acts as an interface between the database and the above programs. The use of a separate library allows the programs to function independently of the database schema. The library also improves on the standard Perl MySQL database interfere package by providing auto-reconnect functionality and improved error handling.« less

  8. Genomes to Proteomes

    SciTech Connect

    Panisko, Ellen A.; Grigoriev, Igor; Daly, Don S.; Webb-Robertson, Bobbie-Jo; Baker, Scott E.

    2009-03-01

    Biologists are awash with genomic sequence data. In large part, this is due to the rapid acceleration in the generation of DNA sequence that occurred as public and private research institutes raced to sequence the human genome. In parallel with the large human genome effort, mostly smaller genomes of other important model organisms were sequenced. Projects following on these initial efforts have made use of technological advances and the DNA sequencing infrastructure that was built for the human and other organism genome projects. As a result, the genome sequences of many organisms are available in high quality draft form. While in many ways this is good news, there are limitations to the biological insights that can be gleaned from DNA sequences alone; genome sequences offer only a bird's eye view of the biological processes endemic to an organism or community. Fortunately, the genome sequences now being produced at such a high rate can serve as the foundation for other global experimental platforms such as proteomics. Proteomic methods offer a snapshot of the proteins present at a point in time for a given biological sample. Current global proteomics methods combine enzymatic digestion, separations, mass spectrometry and database searching for peptide identification. One key aspect of proteomics is the prediction of peptide sequences from mass spectrometry data. Global proteomic analysis uses computational matching of experimental mass spectra with predicted spectra based on databases of gene models that are often generated computationally. Thus, the quality of gene models predicted from a genome sequence is crucial in the generation of high quality peptide identifications. Once peptides are identified they can be assigned to their parent protein. Proteins identified as expressed in a given experiment are most useful when compared to other expressed proteins in a larger biological context or biochemical pathway. In this chapter we will discuss the automatic

  9. Genome position specific priors for genomic prediction

    PubMed Central

    2012-01-01

    Background The accuracy of genomic prediction is highly dependent on the size of the reference population. For small populations, including information from other populations could improve this accuracy. The usual strategy is to pool data from different populations; however, this has not proven as successful as hoped for with distantly related breeds. BayesRS is a novel approach to share information across populations for genomic predictions. The approach allows information to be captured even where the phase of SNP alleles and casuative mutation alleles are reversed across populations, or the actual casuative mutation is different between the populations but affects the same gene. Proportions of a four-distribution mixture for SNP effects in segments of fixed size along the genome are derived from one population and set as location specific prior proportions of distributions of SNP effects for the target population. The model was tested using dairy cattle populations of different breeds: 540 Australian Jersey bulls, 2297 Australian Holstein bulls and 5214 Nordic Holstein bulls. The traits studied were protein-, fat- and milk yield. Genotypic data was Illumina 777K SNPs, real or imputed. Results Results showed an increase in accuracy of up to 3.5% for the Jersey population when using BayesRS with a prior derived from Australian Holstein compared to a model without location specific priors. The increase in accuracy was however lower than was achieved when reference populations were combined to estimate SNP effects, except in the case of fat yield. The small size of the Jersey validation set meant that these improvements in accuracy were not significant using a Hotelling-Williams t-test at the 5% level. An increase in accuracy of 1-2% for all traits was observed in the Australian Holstein population when using a prior derived from the Nordic Holstein population compared to using no prior information. These improvements were significant (P<0.05) using the Hotelling

  10. Berkeley Quantitative Genome Browser

    SciTech Connect

    Hechmer, Aaron

    2008-02-29

    The Berkeley Quantitative Genome Browser provides graphical browsing functionality for genomic data organized, at a minimum, by sequence and position. While supporting the annotation browsing features typical of many other genomic browsers, additional emphasis is placed on viewing and utilizing quantitative data. Data may be read from GFF, SGR, FASTA or any column delimited format. Once the data has been read into the browser's buffer, it may be searched. filtered or subjected to mathematical transformation. The browser also supplies some graphical design manipulation functionality geared towards preparing figures for presentations or publication. A plug-in mechanism enables development outside the core functionality that adds more advanced or esoteric analysis capabilities. BBrowse's development and distribution is open-source and has been built to run on Linux, OSX and MS Windows operating systems.

  11. Genomics, health, and society.

    PubMed

    Chan, Chee Khoon

    2002-01-01

    On June 27, 2001, the World Health Organization conducted hearings in Geneva for a Special Report on Genomics & Health. Initially intended as a document to address the ethical, legal, and social implications of the gathering genomics resolution (ELSI), the terms of reference of the report were significantly modified to give primary emphasis to a scientific and technological assessment of the implications of genomics for human health. The Citizens' Health Initiative, one of two NGOs invited to make submissions at these consultations, suggested that no less important than the scientific and technical assessment was a perspective which gave due attention to the social context and political economy of scientific/technological development and its deployment. The article below touches upon neglected health priorities of poor countries, intellectual property rights and patents, risk management, insurance and discrimination, and predictive (prenatal) testing, reproductive choice, and eugenics. PMID:17208760

  12. Berkeley Quantitative Genome Browser

    Energy Science and Technology Software Center (ESTSC)

    2008-02-29

    The Berkeley Quantitative Genome Browser provides graphical browsing functionality for genomic data organized, at a minimum, by sequence and position. While supporting the annotation browsing features typical of many other genomic browsers, additional emphasis is placed on viewing and utilizing quantitative data. Data may be read from GFF, SGR, FASTA or any column delimited format. Once the data has been read into the browser's buffer, it may be searched. filtered or subjected to mathematical transformation.more » The browser also supplies some graphical design manipulation functionality geared towards preparing figures for presentations or publication. A plug-in mechanism enables development outside the core functionality that adds more advanced or esoteric analysis capabilities. BBrowse's development and distribution is open-source and has been built to run on Linux, OSX and MS Windows operating systems.« less

  13. Genomics for Weed Science

    PubMed Central

    Horvath, David

    2010-01-01

    Numerous genomic-based studies have provided insight to the physiological and evolutionary processes involved in developmental and environmental processes of model plants such as arabidopsis and rice. However, far fewer efforts have been attempted to use genomic resources to study physiological and evolutionary processes of weedy plants. Genomics-based tools such as extensive EST databases and microarrays have been developed for a limited number of weedy species, although application of information and resources developed for model plants and crops are possible and have been exploited. These tools have just begun to provide insights into the response of these weeds to herbivore and pathogen attack, survival of extreme environmental conditions, and interaction with crops. The potential of these tools to illuminate mechanisms controlling the traits that allow weeds to invade novel habitats, survive extreme environments, and that make weeds difficult to eradicate have potential for both improving crops and developing novel methods to control weeds. PMID:20808523

  14. SINGLE CELL GENOME SEQUENCING

    PubMed Central

    Yilmaz, Suzan; Singh, Anup K.

    2011-01-01

    Whole genome amplification and next-generation sequencing of single cells has become a powerful approach for studying uncultivated microorganisms that represent 90–99 % of all environmental microbes. Single cell sequencing enables not only the identification of microbes but also linking of functions to species, a feat not achievable by metagenomic techniques. Moreover, it allows the analysis of low abundance species that may be missed in community-based analyses. It has also proved very useful in complementing metagenomics in the assembly and binning of single genomes. With the advent of drastically cheaper and higher throughput sequencing technologies, it is expected that single cell sequencing will become a standard tool in studying the genome and transcriptome of microbial communities. PMID:22154471

  15. Genomic Southern blot analysis.

    PubMed

    Gebbie, Leigh

    2014-01-01

    This chapter describes a detailed protocol for genomic Southern blot analysis which can be used to detect transgene or endogenous gene sequences in cereal genomes. The protocol follows a standard approach that has been shown to generate high-quality results: size fractionation of genomic DNA; capillary transfer to a nylon membrane; hybridization with a digoxigenin-labelled probe; and detection using a chemiluminescent-based system. High sensitivity and limited background are key to successful Southern blots. The critical steps in this protocol are complete digestion of the right quantity of DNA, careful handling of the membrane to avoid unnecessary background, and optimization of probe concentration and temperatures during the hybridization step. Detailed instructions on how to successfully master these techniques are provided. PMID:24243203

  16. Genomics of Volvocine Algae

    PubMed Central

    Umen, James G.; Olson, Bradley J.S.C.

    2015-01-01

    Volvocine algae are a group of chlorophytes that together comprise a unique model for evolutionary and developmental biology. The species Chlamydomonas reinhardtii and Volvox carteri represent extremes in morphological diversity within the Volvocine clade. Chlamydomonas is unicellular and reflects the ancestral state of the group, while Volvox is multicellular and has evolved numerous innovations including germ-soma differentiation, sexual dimorphism, and complex morphogenetic patterning. The Chlamydomonas genome sequence has shed light on several areas of eukaryotic cell biology, metabolism and evolution, while the Volvox genome sequence has enabled a comparison with Chlamydomonas that reveals some of the underlying changes that enabled its transition to multicellularity, but also underscores the subtlety of this transition. Many of the tools and resources are in place to further develop Volvocine algae as a model for evolutionary genomics. PMID:25883411

  17. Genomic medicine and neurology.

    PubMed

    Vance, Jeffery M; Tekin, Demet

    2011-04-01

    The application of genetics to the understanding of neurology has been highly successful over the past several decades. During the past 10 years, tools were developed to begin genetic investigations into more common disorders such as Alzheimer disease, multiple sclerosis, autism, and Parkinson disease. The era of genomic medicine now has begun and will have an increasing effect on the daily care of common neurologic diseases. Thus it is important for neurologists to have a basic understanding of genomic medicine and how it differs from the traditional clinical genetics of the past. This article provides some basic information about genomic medicine and pharmacogenetics in neurology to help neurologists to begin to adopt these principles into their practice. PMID:22810818

  18. Genomic Imprinting in Mammals

    PubMed Central

    Barlow, Denise P.

    2014-01-01

    Genomic imprinting affects a subset of genes in mammals and results in a monoallelic, parental-specific expression pattern. Most of these genes are located in clusters that are regulated through the use of insulators or long noncoding RNAs (lncRNAs). To distinguish the parental alleles, imprinted genes are epigenetically marked in gametes at imprinting control elements through the use of DNA methylation at the very least. Imprinted gene expression is subsequently conferred through lncRNAs, histone modifications, insulators, and higher-order chromatin structure. Such imprints are maintained after fertilization through these mechanisms despite extensive reprogramming of the mammalian genome. Genomic imprinting is an excellent model for understanding mammalian epigenetic regulation. PMID:24492710

  19. Resequencing rice genomes: an emerging new era of rice genomics.

    PubMed

    Huang, Xuehui; Lu, Tingting; Han, Bin

    2013-04-01

    Rice is a model system for crop genomics studies. Much of the early work on rice genomics focused on analyzing genome-wide genetic variation to further understand rice gene functions in agronomic traits and to generate data and resources for rice research. The advent of next-generation high-throughput DNA sequencing technologies and the completion of high-quality reference genome sequences have enabled the development of sequencing-based genotyping and genome-wide association studies (GWAS) that have significantly advanced rice genetics research. This has led to the emergence of a new era of rice genomics aimed at bridging the knowledge gap between genotype and phenotype in rice. These technologies have also led to pyramid breeding through genomics-assisted selection, which will be useful in breeding elite varieties suitable for sustainable agriculture. Here, we review the recent advances in rice genomics and discuss the future of this line of research. PMID:23295340

  20. Brief Guide to Genomics: DNA, Genes and Genomes

    MedlinePlus

    ... guía de genómica A Brief Guide to Genomics DNA, Genes and Genomes Deoxyribonucleic acid (DNA) is the ... and lead to a disease such as cancer. DNA Sequencing Sequencing simply means determining the exact order ...

  1. Haemonchus contortus: Genome Structure, Organization and Comparative Genomics.

    PubMed

    Laing, R; Martinelli, A; Tracey, A; Holroyd, N; Gilleard, J S; Cotton, J A

    2016-01-01

    One of the first genome sequencing projects for a parasitic nematode was that for Haemonchus contortus. The open access data from the Wellcome Trust Sanger Institute provided a valuable early resource for the research community, particularly for the identification of specific genes and genetic markers. Later, a second sequencing project was initiated by the University of Melbourne, and the two draft genome sequences for H. contortus were published back-to-back in 2013. There is a pressing need for long-range genomic information for genetic mapping, population genetics and functional genomic studies, so we are continuing to improve the Wellcome Trust Sanger Institute assembly to provide a finished reference genome for H. contortus. This review describes this process, compares the H. contortus genome assemblies with draft genomes from other members of the strongylid group and discusses future directions for parasite genomics using the H. contortus model. PMID:27238013

  2. Ebolavirus comparative genomics

    PubMed Central

    Jun, Se-Ran; Leuze, Michael R.; Nookaew, Intawat; Uberbacher, Edward C.; Land, Miriam; Zhang, Qian; Wanchai, Visanu; Chai, Juanjuan; Nielsen, Morten; Trolle, Thomas; Lund, Ole; Buzard, Gregory S.; Pedersen, Thomas D.; Wassenaar, Trudy M.; Ussery, David W.

    2015-01-01

    The 2014 Ebola outbreak in West Africa is the largest documented for this virus. To examine the dynamics of this genome, we compare more than 100 currently available ebolavirus genomes to each other and to other viral genomes. Based on oligomer frequency analysis, the family Filoviridae forms a distinct group from all other sequenced viral genomes. All filovirus genomes sequenced to date encode proteins with similar functions and gene order, although there is considerable divergence in sequences between the three genera Ebolavirus, Cuevavirus and Marburgvirus within the family Filoviridae. Whereas all ebolavirus genomes are quite similar (multiple sequences of the same strain are often identical), variation is most common in the intergenic regions and within specific areas of the genes encoding the glycoprotein (GP), nucleoprotein (NP) and polymerase (L). We predict regions that could contain epitope-binding sites, which might be good vaccine targets. This information, combined with glycosylation sites and experimentally determined epitopes, can identify the most promising regions for the development of therapeutic strategies. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). PMID:26175035

  3. Ebolavirus comparative genomics.

    PubMed

    Jun, Se-Ran; Leuze, Michael R; Nookaew, Intawat; Uberbacher, Edward C; Land, Miriam; Zhang, Qian; Wanchai, Visanu; Chai, Juanjuan; Nielsen, Morten; Trolle, Thomas; Lund, Ole; Buzard, Gregory S; Pedersen, Thomas D; Wassenaar, Trudy M; Ussery, David W

    2015-09-01

    The 2014 Ebola outbreak in West Africa is the largest documented for this virus. To examine the dynamics of this genome, we compare more than 100 currently available ebolavirus genomes to each other and to other viral genomes. Based on oligomer frequency analysis, the family Filoviridae forms a distinct group from all other sequenced viral genomes. All filovirus genomes sequenced to date encode proteins with similar functions and gene order, although there is considerable divergence in sequences between the three genera Ebolavirus, Cuevavirus and Marburgvirus within the family Filoviridae. Whereas all ebolavirus genomes are quite similar (multiple sequences of the same strain are often identical), variation is most common in the intergenic regions and within specific areas of the genes encoding the glycoprotein (GP), nucleoprotein (NP) and polymerase (L). We predict regions that could contain epitope-binding sites, which might be good vaccine targets. This information, combined with glycosylation sites and experimentally determined epitopes, can identify the most promising regions for the development of therapeutic strategies.This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). PMID:26175035

  4. Genome Size and Species Diversification

    PubMed Central

    2010-01-01

    Theoretically, there are reasons to believe that large genome size should favour speciation. Several major factors contributing to genome size, such as duplications and transposable element activity have been proposed to facilitate the formation of new species. However, it is also possible that small genome size promotes speciation. For example, selection for genome reduction may be resolved in different ways in incipient species, leading to incompatibilities. Mutations and chromosomal rearrangements may also be more stably inherited in smaller genomes. Here I review the following lines of empirical evidence bearing on this question: (i) Correlations between genome size and species richness of taxa are often negative. (ii) Fossil evidence in lungfish shows that the accumulation of DNA in the genomes of this group coincided with a reduction in species diversity. (iii) Estimates of speciation interval in mammals correlate positively with genome size. (iv) Genome reductions are inferred at the base of particular species radiations and genome expansions at the base of others. (v) Insect clades that have been increasing in diversity up to the present have smaller genomes than clades that have remained stable or have decreased in diversity. The general pattern emerging from these observations is that higher diversification rates are generally found in small-genome taxa. Since diversification rates are the net effect of speciation and extinction, large genomes may thus either constrain speciation rate, increase extinction rate, or both. I argue that some of the cited examples are unlikely to be explained by extinction alone. PMID:22140283

  5. The cancer genome

    PubMed Central

    Stratton, Michael R.; Campbell, Peter J.; Futreal, P. Andrew

    2010-01-01

    All cancers arise as a result of changes that have occurred in the DNA sequence of the genomes of cancer cells. Over the past quarter of a century much has been learnt about these mutations and the abnormal genes that operate in human cancers. We are now, however, moving into an era in which it will be possible to obtain the complete DNA sequence of large numbers of cancer genomes. These studies will provide us with a detailed and comprehensive perspective on how individual cancers have developed. PMID:19360079

  6. Methanococcus jannaschii genome: revisited

    NASA Technical Reports Server (NTRS)

    Kyrpides, N. C.; Olsen, G. J.; Klenk, H. P.; White, O.; Woese, C. R.

    1996-01-01

    Analysis of genomic sequences is necessarily an ongoing process. Initial gene assignments tend (wisely) to be on the conservative side (Venter, 1996). The analysis of the genome then grows in an iterative fashion as additional data and more sophisticated algorithms are brought to bear on the data. The present report is an emendation of the original gene list of Methanococcus jannaschii (Bult et al., 1996). By using a somewhat more updated database and more relaxed (and operator-intensive) pattern matching methods, we were able to add significantly to, and in a few cases amend, the gene identification table originally published by Bult et al. (1996).

  7. Genomic standards consortium projects.

    PubMed

    Field, Dawn; Sterk, Peter; Kottmann, Renzo; De Smet, J Wim; Amaral-Zettler, Linda; Cochrane, Guy; Cole, James R; Davies, Neil; Dawyndt, Peter; Garrity, George M; Gilbert, Jack A; Glöckner, Frank Oliver; Hirschman, Lynette; Klenk, Hans-Peter; Knight, Rob; Kyrpides, Nikos; Meyer, Folker; Karsch-Mizrachi, Ilene; Morrison, Norman; Robbins, Robert; San Gil, Inigo; Sansone, Susanna; Schriml, Lynn; Tatusova, Tatiana; Ussery, Dave; Yilmaz, Pelin; White, Owen; Wooley, John; Caporaso, Gregory

    2014-06-15

    The Genomic Standards Consortium (GSC) is an open-membership community that was founded in 2005 to work towards the development, implementation and harmonization of standards in the field of genomics. Starting with the defined task of establishing a minimal set of descriptions the GSC has evolved into an active standards-setting body that currently has 18 ongoing projects, with additional projects regularly proposed from within and outside the GSC. Here we describe our recently enacted policy for proposing new activities that are intended to be taken on by the GSC, along with the template for proposing such new activities. PMID:25197446

  8. The Brachypodium genome sequence: a resource for oat genomics research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oat (Avena sativa) is an important cereal crop used as both an animal feed and for human consumption. Genetic and genomic research on oat is hindered because it is hexaploid and possesses a large (13 Gb) genome. Diploid Avena relatives have been employed for genetic and genomic studies, but only mod...

  9. Tick Genomics: The Ixodes genome project and beyond

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ticks and mites (subphylum Chelicerata; subclass Acari) are important pests of animals and plants worldwide. The Ixodes scapularis (black-legged tick) genome sequencing project marks the beginning of the genomics era for the field of acarology. This project is the first to sequence the genome of a...

  10. Multiplexed Fragaria Chloroplast Genome Sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A method to sequence multiple chloroplast genomes that uses the sequencing depth of ultra high throughput sequencing technologies was recently described. Sequencing complete chloroplast genomes can resolve phylogenetic relationships at low taxonomic levels and identify point mutations and indels tha...

  11. The diversity of fungal genome.

    PubMed

    Mohanta, Tapan Kumar; Bae, Hanhong

    2015-01-01

    The genome size of an organism varies from species to species. The C-value paradox enigma is a very complex puzzle with regards to vast diversity in genome sizes in eukaryotes. Here we reported the detailed genomic information of 172 fungal species among different fungal genomes and found that fungal genomes are very diverse in nature. In fungi, the diversity of genomes varies from 8.97 Mb to 177.57 Mb. The average genome sizes of Ascomycota and Basidiomycota fungi are 36.91 and 46.48 Mb respectively. But higher genome size is observed in Oomycota (74.85 Mb) species, a lineage of fungus-like eukaryotic microorganisms. The average coding genes of Oomycota species are almost doubled than that of Acomycota and Basidiomycota fungus. PMID:25866485

  12. Company profile: Complete Genomics Inc.

    PubMed

    Reid, Clifford

    2011-02-01

    Complete Genomics Inc. is a life sciences company that focuses on complete human genome sequencing. It is taking a completely different approach to DNA sequencing than other companies in the industry. Rather than building a general-purpose platform for sequencing all organisms and all applications, it has focused on a single application - complete human genome sequencing. The company's Complete Genomics Analysis Platform (CGA™ Platform) comprises an integrated package of biochemistry, instrumentation and software that sequences human genomes at the highest quality, lowest cost and largest scale available. Complete Genomics offers a turnkey service that enables customers to outsource their human genome sequencing to the company's genome sequencing center in Mountain View, CA, USA. Customers send in their DNA samples, the company does all the library preparation, DNA sequencing, assembly and variant analysis, and customers receive research-ready data that they can use for biological discovery. PMID:21345140

  13. On genomics, kin, and privacy

    PubMed Central

    Telenti, Amalio; Ayday, Erman; Hubaux, Jean Pierre

    2014-01-01

    The storage of greater numbers of exomes or genomes raises the question of loss of privacy for the individual and for families if genomic data are not properly protected. Access to genome data may result from a personal decision to disclose, or from gaps in protection. In either case, revealing genome data has consequences beyond the individual, as it compromises the privacy of family members. Increasing availability of genome data linked or linkable to metadata through online social networks and services adds one additional layer of complexity to the protection of genome privacy.  The field of computer science and information technology offers solutions to secure genomic data so that individuals, medical personnel or researchers can access only the subset of genomic information required for healthcare or dedicated studies. PMID:25254097

  14. National Human Genome Research Institute

    MedlinePlus

    ... for Patient Care Education All About the Human Genome Project Fact Sheets Genetic Education Resources for Teachers ... Education Kit Online Genetics Education Resources Smithsonian NHGRI Genome Exhibition Talking Glossary: English Talking Glossary: Español Issues ...

  15. Importance of anchor genomes for any plant genome project

    PubMed Central

    Messing, Joachim; Llaca, Victor

    1998-01-01

    Progress in agricultural and environmental technologies is hampered by a slower rate of gene discovery in plants than animals. The vast pool of genes in plants, however, will be an important resource for insertion of genes, via biotechnological procedures, into an array of plants, generating unique germ plasms not achievable by conventional breeding. It just became clear that genomes of grasses have evolved in a manner analogous to Lego blocks. Large chromosome segments have been reshuffled and stuffer pieces added between genes. Although some genomes have become very large, the genome with the fewest stuffer pieces, the rice genome, is the Rosetta Stone of all the bigger grass genomes. This means that sequencing the rice genome as anchor genome of the grasses will provide instantaneous access to the same genes in the same relative physical position in other grasses (e.g., corn and wheat), without the need to sequence each of these genomes independently. (i) The sequencing of the entire genome of rice as anchor genome for the grasses will accelerate plant gene discovery in many important crops (e.g., corn, wheat, and rice) by several orders of magnitudes and reduce research and development costs for government and industry at a faster pace. (ii) Costs for sequencing entire genomes have come down significantly. Because of its size, rice is only 12% of the human or the corn genome, and technology improvements by the human genome project are completely transferable, translating in another 50% reduction of the costs. (iii) The physical mapping of the rice genome by a group of Japanese researchers provides a jump start for sequencing the genome and forming an international consortium. Otherwise, other countries would do it alone and own proprietary positions. PMID:9482827

  16. Genomics in Cardiovascular Disease

    PubMed Central

    Roberts, Robert; Marian, A.J.; Dandona, Sonny; Stewart, Alexandre F.R.

    2013-01-01

    A paradigm shift towards biology occurred in the 1990’s subsequently catalyzed by the sequencing of the human genome in 2000. The cost of DNA sequencing has gone from millions to thousands of dollars with sequencing of one’s entire genome costing only $1,000. Rapid DNA sequencing is being embraced for single gene disorders, particularly for sporadic cases and those from small families. Transmission of lethal genes such as associated with Huntington’s disease can, through in-vitro fertilization, avoid passing it on to one’s offspring. DNA sequencing will meet the challenge of elucidating the genetic predisposition for common polygenic diseases, especially in determining the function of the novel common genetic risk variants and identifying the rare variants, which may also partially ascertain the source of the missing heritability. The challenge for DNA sequencing remains great, despite human genome sequences being 99.5% identical, the 3 million single nucleotide polymorphisms (SNPs) responsible for most of the unique features add up to 60 new mutations per person which, for 7 billion people, is 420 billion mutations. It is claimed that DNA sequencing has increased 10,000 fold while information storage and retrieval only 16 fold. The physician and health user will be challenged by the convergence of two major trends, whole genome sequencing and the storage/retrieval and integration of the data. PMID:23524054

  17. Poster: the macaque genome.

    PubMed

    2007-04-13

    The rhesus macaque (Macaca mulatta) facilitates an extraordinary range of biomedical and basic research, and the publication of the genome only makes it a more powerful model for studies of human disease; moreover, the macaque's position relative to humans and chimpanzees affords the opportunity to learn about the processes that have shaped the last 25 million years of primate evolution. To allow users to explore these themes of the macaque genome, Science has created a special interactive version of the poster published in the print edition of the 13 April 2007 issue. The interactive version includes additional text and exploration, as well as embedded video featuring seven scientists discussing the importance of the macaque and its genome sequence in studies of biomedicine and evolution. We have also created an accompanying teaching resource, including a lesson plan aimed at teachers of advanced high school life science students, for exploring what a comparison of the macaque and human genomes can tell us about human biology and evolution. These items are free to all site visitors. PMID:17431172

  18. (Genomic variation in maize)

    SciTech Connect

    Rivin, C.J.

    1991-01-01

    These studies have sought to learn how different DNA sequences and sequence arrangements contribute to genome plasticity in maize. We describe quantitative variation among maize inbred lines for tandemly arrayed and dispersed repeated DNA sequences and gene families, and qualitative variation for sequences homologous to the Mutator family of transposons. The potential of these sequences to undergo unequal crossing over, non-allelic (ectopic) recombination and transposition makes them a source of genome instability. We have found examples of rapid genomic change involving these sequences in Fl hybrids, tissue culture cells and regenerated plants. We describe the repetitive portion of the maize genome as composed primarily of sequences that vary markedly in copy number among different genetic stocks. The most highly variable is the 185 bp repeat associated with the heterochromatic chromosome knobs. Even in lines without visible knobs, there is a considerable quantity of tandemly arrayed repeats. We also found a high degree of variability for the tandemly arrayed 5S and ribosomal DNA repeats. While such variation might be expected as the result of unequal cross-over, we were surprised to find considerable variation among lower copy number, dispersed repeats as well. One highly repeated sequence that showed a complex tandem and dispersed arrangement stood out as showing no detectable variability among the maize lines. In striking contrast to the variability seen between the inbred stocks, individuals within a stock were indistinguishable with regard to their repeated sequence multiplicities.

  19. Better chocolate through genomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Theobroma cacao, the cacao or chocolate tree, is a tropical understory tree whose seeds are used to make chocolate. And like any important crop, cacao is the subject of much research. On September 15, 2010, scientists publicly released a preliminary sequence of the cacao genome--which contains all o...

  20. The Nostoc punctiforme Genome

    SciTech Connect

    John C. Meeks

    2001-12-31

    Nostoc punctiforme is a filamentous cyanobacterium with extensive phenotypic characteristics and a relatively large genome, approaching 10 Mb. The phenotypic characteristics include a photoautotrophic, diazotrophic mode of growth, but N. punctiforme is also facultatively heterotrophic; its vegetative cells have multiple development alternatives, including terminal differentiation into nitrogen-fixing heterocysts and transient differentiation into spore-like akinetes or motile filaments called hormogonia; and N. punctiforme has broad symbiotic competence with fungi and terrestrial plants, including bryophytes, gymnosperms and an angiosperm. The shotgun-sequencing phase of the N. punctiforme strain ATCC 29133 genome has been completed by the Joint Genome Institute. Annotation of an 8.9 Mb database yielded 7432 open reading frames, 45% of which encode proteins with known or probable known function and 29% of which are unique to N. punctiforme. Comparative analysis of the sequence indicates a genome that is highly plastic and in a state of flux, with numerous insertion sequences and multilocus repeats, as well as genes encoding transposases and DNA modification enzymes. The sequence also reveals the presence of genes encoding putative proteins that collectively define almost all characteristics of cyanobacteria as a group. N. punctiforme has an extensive potential to sense and respond to environmental signals as reflected by the presence of more than 400 genes encoding sensor protein kinases, response regulators and other transcriptional factors. The signal transduction systems and any of the large number of unique genes may play essential roles in the cell differentiation and symbiotic interaction properties of N. punctiforme.

  1. The human genome project.

    PubMed Central

    Olson, M V

    1993-01-01

    The Human Genome Project in the United States is now well underway. Its programmatic direction was largely set by a National Research Council report issued in 1988. The broad framework supplied by this report has survived almost unchanged despite an upheaval in the technology of genome analysis. This upheaval has primarily affected physical and genetic mapping, the two dominant activities in the present phase of the project. Advances in mapping techniques have allowed good progress toward the specific goals of the project and are also providing strong corollary benefits throughout biomedical research. Actual DNA sequencing of the genomes of the human and model organisms is still at an early stage. There has been little progress in the intrinsic efficiency of DNA-sequence determination. However, refinements in experimental protocols, instrumentation, and project management have made it practical to acquire sequence data on an enlarged scale. It is also increasingly apparent that DNA-sequence data provide a potent means of relating knowledge gained from the study of model organisms to human biology. There is as yet little indication that the infusion of technology from outside biology into the Human Genome Project has been effectively stimulated. Opportunities in this area remain large, posing substantial technical and policy challenges. PMID:8506271

  2. Genetics, genomics and fertility

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to enhance the sustainability of dairy businesses, new management tools are needed to increase the fertility of dairy cattle. Genomic selection has been successfully used by AI studs to screen potential sires and significantly decrease the generation interval of bulls. Buoyed by the success...

  3. Dairy genomics in application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Implementation of genomic evaluation has caused profound changes in dairy cattle breeding. All young bulls bought by major artificial-insemination organizations now are selected based on these evaluation. Evaluation reliability can reach ~75% for yield traits, which is adequate for marketing semen o...

  4. Genomic selection in plant breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic selection (GS) is a method to predict the genetic value of selection candidates based on the genomic estimated breeding value (GEBV) predicted from high-density markers positioned throughout the genome. Unlike marker-assisted selection, the GEBV is based on all markers including both minor ...

  5. Plant functional genomics

    NASA Astrophysics Data System (ADS)

    Holtorf, Hauke; Guitton, Marie-Christine; Reski, Ralf

    2002-04-01

    Functional genome analysis of plants has entered the high-throughput stage. The complete genome information from key species such as Arabidopsis thaliana and rice is now available and will further boost the application of a range of new technologies to functional plant gene analysis. To broadly assign functions to unknown genes, different fast and multiparallel approaches are currently used and developed. These new technologies are based on known methods but are adapted and improved to accommodate for comprehensive, large-scale gene analysis, i.e. such techniques are novel in the sense that their design allows researchers to analyse many genes at the same time and at an unprecedented pace. Such methods allow analysis of the different constituents of the cell that help to deduce gene function, namely the transcripts, proteins and metabolites. Similarly the phenotypic variations of entire mutant collections can now be analysed in a much faster and more efficient way than before. The different methodologies have developed to form their own fields within the functional genomics technological platform and are termed transcriptomics, proteomics, metabolomics and phenomics. Gene function, however, cannot solely be inferred by using only one such approach. Rather, it is only by bringing together all the information collected by different functional genomic tools that one will be able to unequivocally assign functions to unknown plant genes. This review focuses on current technical developments and their impact on the field of plant functional genomics. The lower plant Physcomitrella is introduced as a new model system for gene function analysis, owing to its high rate of homologous recombination.

  6. Thinking laterally about genomes.

    PubMed

    Ragan, Mark A

    2009-10-01

    Perhaps the most-surprising discovery of the genome era has been the extent to which prokaryotic and many eukaryotic genomes incorporate genetic material from sources other than their parent(s). Lateral genetic transfer (LGT) among bacteria was first observed about 100 years ago, and is now accepted to underlie important phenomena including the spread of antibiotic resistance and ability to degrade xenobiotics. LGT is invoked, perhaps too readily, to explain a breadth of awkward data including compositional heterogeneity of genomes, disagreement among gene-sequence trees, and mismatch between physiology and systematics. At the same time many details of LGT remain unknown or controversial, and some key questions have scarcely been asked. Here I critically review what we think we know about the existence, extent, mechanism and impact of LGT; identify important open questions; and point to research directions that hold particular promise for elucidating the role of LGT in genome evolution. Evidence for LGT in nature is not only inferential but also direct, and potential vectors are ubiquitous. Genetic material can pass between diverse habitats and be significantly altered during residency in viruses, complicating the inference of donors, In prokaryotes about twice as many genes are interrupted by LGT as are transferred intact, and about 5Short protein domains can be privileged units of transfer. Unresolved phylogenetic issues include the correct null hypothesis, and genes as units of analysis. Themes are beginning to emerge regarding the effect of LGT on cellular networks, but I show why generalization is premature. LGT can associate with radical changes in physiology and ecological niche. Better quantitative models of genome evolution are needed, and theoretical frameworks remain to be developed for some observations including chromosome assembly by LGT. PMID:20180279

  7. TUTORIAL ON NETWORK GENOMICS.

    SciTech Connect

    Forst, C.

    2001-01-01

    With the ever-increasing genomic information pouring into the databases researchers start to look for pattern in genomes. Key questions are the identification of function. In the past function was mainly understood to be assigned to a single gene isolated from other cellular components or mechanisms. Sequence comparison fo single genes and their products (proteins) as well as of intergenic space are a consequence of a well established one-gene one-function interpretation. prediction of function solely by sequence similarity searches are powerful techniques that initiated the advent of bioinformatics and computational biology. Seminal work on sequence alignment by Temple Smith and Michael Waterman [33] and sequence searches with the BLAST algorithm by Altschul et al. [2] provide essential methods for sequence based determination of function. Similar outstanding contributions to determination of function have been archived in the area of structure prediction, molecular modeling and molecular dynamics. Techniques covering ab initio and homology modeling up to biophysical interpretation of long-run molecular dynamics simulations are mentioned ehre. With the ever-increasing number of information of different genetic/genomic origin, new aspect are looked for that deviate from the single gene at a time method. Especially with the identification of surprisingly few human genes the emerging perception in the scientific community that the concept of function has to be extended to include other sequence based as well as non-sequenced based information. A schema of determination of function by different concepts is shown in Figure 1. The tutorial is comprised of the following sections: The first two sections discuss the differences between genomic and non-genomic based context information, section three will cover combined methods. Finally, section four lsits web-resources and databases. All presented approaches extensively employ comparative methods.

  8. Genome size evolution in macroparasites.

    PubMed

    Sundberg, Lotta-Riina; Pulkkinen, Katja

    2015-04-01

    Reduction in genome size has been associated not only with a parasitic lifestyle in intracellular microparasites but also in some macroparasitic insects and nematodes. We collected the available data on genome size for flatworms, annelids, nematodes and arthropods, compared those with available data for the phylogenetically closest free-living taxa and found evidence of smaller genome sizes for parasites in six of nine comparisons. Our results suggest that despite great differences in evolutionary history and life cycles, parasitism as a lifestyle promotes convergent genome size reduction in macroparasites. We discuss factors that could be associated with small genome size in parasites which require further exploration in the future. PMID:25724591

  9. Professional medical education and genomics.

    PubMed

    Demmer, Laurie A; Waggoner, Darrel J

    2014-01-01

    Genomic medicine is a relatively new concept that involves using individual patients' genomic results in their clinical care. Genetic technology has advanced swiftly over the past decade, and most providers have been left behind without an understanding of this complex field. To realize its full potential, genomic medicine must be both understood and accepted by the greater medical community. The current state of professional medical education in genomics and genomic medicine is reviewed, including ongoing plans to expand educational efforts for medical students, clinical geneticists, and nongeneticist physicians. PMID:24635717

  10. Evolution of plant genome architecture.

    PubMed

    Wendel, Jonathan F; Jackson, Scott A; Meyers, Blake C; Wing, Rod A

    2016-01-01

    We have witnessed an explosion in our understanding of the evolution and structure of plant genomes in recent years. Here, we highlight three important emergent realizations: (1) that the evolutionary history of all plant genomes contains multiple, cyclical episodes of whole-genome doubling that were followed by myriad fractionation processes; (2) that the vast majority of the variation in genome size reflects the dynamics of proliferation and loss of lineage-specific transposable elements; and (3) that various classes of small RNAs help shape genomic architecture and function. We illustrate ways in which understanding these organism-level and molecular genetic processes can be used for crop plant improvement. PMID:26926526

  11. Rice: The First Crop Genome.

    PubMed

    Jackson, Scott A

    2016-12-01

    Rice was the first sequenced crop genome, paving the way for the sequencing of additional and more complicated crop genomes. The impact that the genome sequence made on rice genetics and breeding research was immediate, as evidence by citations and DNA marker use. The impact on other crop genomes was evident too, particularly for those within the grass family. As we celebrate 10 years since the completion of the rice genome sequence, we look forward to new empowering tool sets that will further revolutionize research in rice genetics and breeding and result in varieties that will continue to feed a growing population. PMID:27003180

  12. Nongenetic functions of the genome.

    PubMed

    Bustin, Michael; Misteli, Tom

    2016-05-01

    The primary function of the genome is to store, propagate, and express the genetic information that gives rise to a cell's architectural and functional machinery. However, the genome is also a major structural component of the cell. Besides its genetic roles, the genome affects cellular functions by nongenetic means through its physical and structural properties, particularly by exerting mechanical forces and by serving as a scaffold for binding of cellular components. Major cellular processes affected by nongenetic functions of the genome include establishment of nuclear structure, signal transduction, mechanoresponses, cell migration, and vision in nocturnal animals. We discuss the concept, mechanisms, and implications of nongenetic functions of the genome. PMID:27151873

  13. Genome of Crocodilepox Virus

    PubMed Central

    Afonso, C. L.; Tulman, E. R.; Delhon, G.; Lu, Z.; Viljoen, G. J.; Wallace, D. B.; Kutish, G. F.; Rock, D. L.

    2006-01-01

    Here, we present the genome sequence, with analysis, of a poxvirus infecting Nile crocodiles (Crocodylus niloticus) (crocodilepox virus; CRV). The genome is 190,054 bp (62% G+C) and predicted to contain 173 genes encoding proteins of 53 to 1,941 amino acids. The central genomic region contains genes conserved and generally colinear with those of other chordopoxviruses (ChPVs). CRV is distinct, as the terminal 33-kbp (left) and 13-kbp (right) genomic regions are largely CRV specific, containing 48 unique genes which lack similarity to other poxvirus genes. Notably, CRV also contains 14 unique genes which disrupt ChPV gene colinearity within the central genomic region, including 7 genes encoding GyrB-like ATPase domains similar to those in cellular type IIA DNA topoisomerases, suggestive of novel ATP-dependent functions. The presence of 10 CRV proteins with similarity to components of cellular multisubunit E3 ubiquitin-protein ligase complexes, including 9 proteins containing F-box motifs and F-box-associated regions and a homologue of cellular anaphase-promoting complex subunit 11 (Apc11), suggests that modification of host ubiquitination pathways may be significant for CRV-host cell interaction. CRV encodes a novel complement of proteins potentially involved in DNA replication, including a NAD+-dependent DNA ligase and a protein with similarity to both vaccinia virus F16L and prokaryotic serine site-specific resolvase-invertases. CRV lacks genes encoding proteins for nucleotide metabolism. CRV shares notable genomic similarities with molluscum contagiosum virus, including genes found only in these two viruses. Phylogenetic analysis indicates that CRV is quite distinct from other ChPVs, representing a new genus within the subfamily Chordopoxvirinae, and it lacks recognizable homologues of most ChPV genes involved in virulence and host range, including those involving interferon response, intracellular signaling, and host immune response modulation. These data reveal

  14. Genome of crocodilepox virus.

    PubMed

    Afonso, C L; Tulman, E R; Delhon, G; Lu, Z; Viljoen, G J; Wallace, D B; Kutish, G F; Rock, D L

    2006-05-01

    Here, we present the genome sequence, with analysis, of a poxvirus infecting Nile crocodiles (Crocodylus niloticus) (crocodilepox virus; CRV). The genome is 190,054 bp (62% G+C) and predicted to contain 173 genes encoding proteins of 53 to 1,941 amino acids. The central genomic region contains genes conserved and generally colinear with those of other chordopoxviruses (ChPVs). CRV is distinct, as the terminal 33-kbp (left) and 13-kbp (right) genomic regions are largely CRV specific, containing 48 unique genes which lack similarity to other poxvirus genes. Notably, CRV also contains 14 unique genes which disrupt ChPV gene colinearity within the central genomic region, including 7 genes encoding GyrB-like ATPase domains similar to those in cellular type IIA DNA topoisomerases, suggestive of novel ATP-dependent functions. The presence of 10 CRV proteins with similarity to components of cellular multisubunit E3 ubiquitin-protein ligase complexes, including 9 proteins containing F-box motifs and F-box-associated regions and a homologue of cellular anaphase-promoting complex subunit 11 (Apc11), suggests that modification of host ubiquitination pathways may be significant for CRV-host cell interaction. CRV encodes a novel complement of proteins potentially involved in DNA replication, including a NAD(+)-dependent DNA ligase and a protein with similarity to both vaccinia virus F16L and prokaryotic serine site-specific resolvase-invertases. CRV lacks genes encoding proteins for nucleotide metabolism. CRV shares notable genomic similarities with molluscum contagiosum virus, including genes found only in these two viruses. Phylogenetic analysis indicates that CRV is quite distinct from other ChPVs, representing a new genus within the subfamily Chordopoxvirinae, and it lacks recognizable homologues of most ChPV genes involved in virulence and host range, including those involving interferon response, intracellular signaling, and host immune response modulation. These data

  15. Evolution of small prokaryotic genomes

    PubMed Central

    Martínez-Cano, David J.; Reyes-Prieto, Mariana; Martínez-Romero, Esperanza; Partida-Martínez, Laila P.; Latorre, Amparo; Moya, Andrés; Delaye, Luis

    2015-01-01

    As revealed by genome sequencing, the biology of prokaryotes with reduced genomes is strikingly diverse. These include free-living prokaryotes with ∼800 genes as well as endosymbiotic bacteria with as few as ∼140 genes. Comparative genomics is revealing the evolutionary mechanisms that led to these small genomes. In the case of free-living prokaryotes, natural selection directly favored genome reduction, while in the case of endosymbiotic prokaryotes neutral processes played a more prominent role. However, new experimental data suggest that selective processes may be at operation as well for endosymbiotic prokaryotes at least during the first stages of genome reduction. Endosymbiotic prokaryotes have evolved diverse strategies for living with reduced gene sets inside a host-defined medium. These include utilization of host-encoded functions (some of them coded by genes acquired by gene transfer from the endosymbiont and/or other bacteria); metabolic complementation between co-symbionts; and forming consortiums with other bacteria within the host. Recent genome sequencing projects of intracellular mutualistic bacteria showed that previously believed universal evolutionary trends like reduced G+C content and conservation of genome synteny are not always present in highly reduced genomes. Finally, the simplified molecular machinery of some of these organisms with small genomes may be used to aid in the design of artificial minimal cells. Here we review recent genomic discoveries of the biology of prokaryotes endowed with small gene sets and discuss the evolutionary mechanisms that have been proposed to explain their peculiar nature. PMID:25610432

  16. Advances in plant chromosome genomics.

    PubMed

    Doležel, Jaroslav; Vrána, Jan; Cápal, Petr; Kubaláková, Marie; Burešová, Veronika; Simková, Hana

    2014-01-01

    Next generation sequencing (NGS) is revolutionizing genomics and is providing novel insights into genome organization, evolution and function. The number of plant genomes targeted for sequencing is rising. For the moment, however, the acquisition of full genome sequences in large genome species remains difficult, largely because the short reads produced by NGS platforms are inadequate to cope with repeat-rich DNA, which forms a large part of these genomes. The problem of sequence redundancy is compounded in polyploids, which dominate the plant kingdom. An approach to overcoming some of these difficulties is to reduce the full nuclear genome to its individual chromosomes using flow-sorting. The DNA acquired in this way has proven to be suitable for many applications, including PCR-based physical mapping, in situ hybridization, forming DNA arrays, the development of DNA markers, the construction of BAC libraries and positional cloning. Coupling chromosome sorting with NGS offers opportunities for the study of genome organization at the single chromosomal level, for comparative analyses between related species and for the validation of whole genome assemblies. Apart from the primary aim of reducing the complexity of the template, taking a chromosome-based approach enables independent teams to work in parallel, each tasked with the analysis of a different chromosome(s). Given that the number of plant species tractable for chromosome sorting is increasing, the likelihood is that chromosome genomics - the marriage of cytology and genomics - will make a significant contribution to the field of plant genetics. PMID:24406816

  17. Informational laws of genome structures

    PubMed Central

    Bonnici, Vincenzo; Manca, Vincenzo

    2016-01-01

    In recent years, the analysis of genomes by means of strings of length k occurring in the genomes, called k-mers, has provided important insights into the basic mechanisms and design principles of genome structures. In the present study, we focus on the proper choice of the value of k for applying information theoretic concepts that express intrinsic aspects of genomes. The value k = lg2(n), where n is the genome length, is determined to be the best choice in the definition of some genomic informational indexes that are studied and computed for seventy genomes. These indexes, which are based on information entropies and on suitable comparisons with random genomes, suggest five informational laws, to which all of the considered genomes obey. Moreover, an informational genome complexity measure is proposed, which is a generalized logistic map that balances entropic and anti-entropic components of genomes and is related to their evolutionary dynamics. Finally, applications to computational synthetic biology are briefly outlined. PMID:27354155

  18. Informational laws of genome structures.

    PubMed

    Bonnici, Vincenzo; Manca, Vincenzo

    2016-01-01

    In recent years, the analysis of genomes by means of strings of length k occurring in the genomes, called k-mers, has provided important insights into the basic mechanisms and design principles of genome structures. In the present study, we focus on the proper choice of the value of k for applying information theoretic concepts that express intrinsic aspects of genomes. The value k = lg2(n), where n is the genome length, is determined to be the best choice in the definition of some genomic informational indexes that are studied and computed for seventy genomes. These indexes, which are based on information entropies and on suitable comparisons with random genomes, suggest five informational laws, to which all of the considered genomes obey. Moreover, an informational genome complexity measure is proposed, which is a generalized logistic map that balances entropic and anti-entropic components of genomes and is related to their evolutionary dynamics. Finally, applications to computational synthetic biology are briefly outlined. PMID:27354155

  19. Informational laws of genome structures

    NASA Astrophysics Data System (ADS)

    Bonnici, Vincenzo; Manca, Vincenzo

    2016-06-01

    In recent years, the analysis of genomes by means of strings of length k occurring in the genomes, called k-mers, has provided important insights into the basic mechanisms and design principles of genome structures. In the present study, we focus on the proper choice of the value of k for applying information theoretic concepts that express intrinsic aspects of genomes. The value k = lg2(n), where n is the genome length, is determined to be the best choice in the definition of some genomic informational indexes that are studied and computed for seventy genomes. These indexes, which are based on information entropies and on suitable comparisons with random genomes, suggest five informational laws, to which all of the considered genomes obey. Moreover, an informational genome complexity measure is proposed, which is a generalized logistic map that balances entropic and anti-entropic components of genomes and is related to their evolutionary dynamics. Finally, applications to computational synthetic biology are briefly outlined.

  20. Comparative genomics of Brassicaceae crops

    PubMed Central

    Sharma, Ashutosh; Li, Xiaonan; Lim, Yong Pyo

    2014-01-01

    The family Brassicaceae is one of the major groups of the plant kingdom and comprises diverse species of great economic, agronomic and scientific importance, including the model plant Arabidopsis. The sequencing of the Arabidopsis genome has revolutionized our knowledge in the field of plant biology and provides a foundation in genomics and comparative biology. Genomic resources have been utilized in Brassica for diversity analyses, construction of genetic maps and identification of agronomic traits. In Brassicaceae, comparative sequence analysis across the species has been utilized to understand genome structure, evolution and the detection of conserved genomic segments. In this review, we focus on the progress made in genetic resource development, genome sequencing and comparative mapping in Brassica and related species. The utilization of genomic resources and next-generation sequencing approaches in improvement of Brassica crops is also discussed. PMID:24987286

  1. Toward genome-enabled mycology.

    PubMed

    Hibbett, David S; Stajich, Jason E; Spatafora, Joseph W

    2013-01-01

    Genome-enabled mycology is a rapidly expanding field that is characterized by the pervasive use of genome-scale data and associated computational tools in all aspects of fungal biology. Genome-enabled mycology is integrative and often requires teams of researchers with diverse skills in organismal mycology, bioinformatics and molecular biology. This issue of Mycologia presents the first complete fungal genomes in the history of the journal, reflecting the ongoing transformation of mycology into a genome-enabled science. Here, we consider the prospects for genome-enabled mycology and the technical and social challenges that will need to be overcome to grow the database of complete fungal genomes and enable all fungal biologists to make use of the new data. PMID:23928422

  2. Comparative genomics of Brassicaceae crops.

    PubMed

    Sharma, Ashutosh; Li, Xiaonan; Lim, Yong Pyo

    2014-05-01

    The family Brassicaceae is one of the major groups of the plant kingdom and comprises diverse species of great economic, agronomic and scientific importance, including the model plant Arabidopsis. The sequencing of the Arabidopsis genome has revolutionized our knowledge in the field of plant biology and provides a foundation in genomics and comparative biology. Genomic resources have been utilized in Brassica for diversity analyses, construction of genetic maps and identification of agronomic traits. In Brassicaceae, comparative sequence analysis across the species has been utilized to understand genome structure, evolution and the detection of conserved genomic segments. In this review, we focus on the progress made in genetic resource development, genome sequencing and comparative mapping in Brassica and related species. The utilization of genomic resources and next-generation sequencing approaches in improvement of Brassica crops is also discussed. PMID:24987286

  3. eGenomics: Cataloguing Our Complete Genome Collection III

    PubMed Central

    Field, Dawn; Garrity, George; Gray, Tanya; Selengut, Jeremy; Sterk, Peter; Thomson, Nick; Tatusova, Tatiana; Cochrane, Guy; Glöckner, Frank Oliver; Kottmann, Renzo; Lister, Allyson L.; Tateno, Yoshio; Vaughan, Robert

    2007-01-01

    This meeting report summarizes the proceedings of the “eGenomics: Cataloguing our Complete Genome Collection III” workshop held September 11–13, 2006, at the National Institute for Environmental eScience (NIEeS), Cambridge, United Kingdom. This 3rd workshop of the Genomic Standards Consortium was divided into two parts. The first half of the three-day workshop was dedicated to reviewing the genomic diversity of our current and future genome and metagenome collection, and exploring linkages to a series of existing projects through formal presentations. The second half was dedicated to strategic discussions. Outcomes of the workshop include a revised “Minimum Information about a Genome Sequence” (MIGS) specification (v1.1), consensus on a variety of features to be added to the Genome Catalogue (GCat), agreement by several researchers to adopt MIGS for imminent genome publications, and an agreement by the EBI and NCBI to input their genome collections into GCat for the purpose of quantifying the amount of optional data already available (e.g., for geographic location coordinates) and working towards a single, global list of all public genomes and metagenomes.

  4. The Genomic Standards Consortium

    PubMed Central

    Field, Dawn; Amaral-Zettler, Linda; Cochrane, Guy; Cole, James R.; Dawyndt, Peter; Garrity, George M.; Gilbert, Jack; Glöckner, Frank Oliver; Hirschman, Lynette; Karsch-Mizrachi, Ilene; Klenk, Hans-Peter; Knight, Rob; Kottmann, Renzo; Kyrpides, Nikos; Meyer, Folker; San Gil, Inigo; Sansone, Susanna-Assunta; Schriml, Lynn M.; Sterk, Peter; Tatusova, Tatiana; Ussery, David W.; White, Owen; Wooley, John

    2011-01-01

    A vast and rich body of information has grown up as a result of the world's enthusiasm for 'omics technologies. Finding ways to describe and make available this information that maximise its usefulness has become a major effort across the 'omics world. At the heart of this effort is the Genomic Standards Consortium (GSC), an open-membership organization that drives community-based standardization activities, Here we provide a short history of the GSC, provide an overview of its range of current activities, and make a call for the scientific community to join forces to improve the quality and quantity of contextual information about our public collections of genomes, metagenomes, and marker gene sequences. PMID:21713030

  5. The dog genome.

    PubMed

    Galibert, F; André, C

    2006-01-01

    Over the last few centuries, several hundred dog breeds have been artificially selected through intense breeding, resulting in the modern dog population having the widest polymorphism spectrum in terms of body shape, behavior and aptitude among mammals. Unfortunately, this diversification has predisposed most breeds to specific diseases of genetic origin. The highly fragmented nature of the dog population offers a great opportunity to track the genes and alleles responsible for these diseases as well as for the various phenotypic traits. This has led to a thorough analysis of the dog genome. Here, we report the main results obtained during the last ten years, culminating in the recent publication of a complete dog genome sequence. PMID:18753768

  6. Big cat genomics.

    PubMed

    O'Brien, Stephen J; Johnson, Warren E

    2005-01-01

    Advances in population and quantitative genomics, aided by the computational algorithms that employ genetic theory and practice, are now being applied to biological questions that surround free-ranging species not traditionally suitable for genetic enquiry. Here we review how applications of molecular genetic tools have been used to describe the natural history, present status, and future disposition of wild cat species. Insight into phylogenetic hierarchy, demographic contractions, geographic population substructure, behavioral ecology, and infectious diseases have revealed strategies for survival and adaptation of these fascinating predators. Conservation, stabilization, and management of the big cats are important areas that derive benefit from the genome resources expanded and applied to highly successful species, imperiled by an expanding human population. PMID:16124868

  7. Mapping the human genome

    SciTech Connect

    Annas, G.C.; Elias, S.

    1992-01-01

    This article is a review of the book Mapping the Human Genome: Using Law and Ethics as Guides, edited by George C. Annas and Sherman Elias. The book is a collection of essays on the subject of using ethics and laws as guides to justify human gene mapping. It addresses specific issues such problems related to eugenics, patents, insurance as well as broad issues such as the societal definitions of normality.

  8. Genomic landscape of liposarcoma

    PubMed Central

    Kanojia, Deepika; Nagata, Yasunobu; Garg, Manoj; Lee, Dhong Hyun; Sato, Aiko; Yoshida, Kenichi; Sato, Yusuke; Sanada, Masashi; Mayakonda, Anand; Bartenhagen, Christoph; Klein, Hans-Ulrich; Doan, Ngan B.; Said, Jonathan W.; Mohith, S.; Gunasekar, Swetha; Shiraishi, Yuichi; Chiba, Kenichi; Tanaka, Hiroko; Miyano, Satoru; Myklebost, Ola; Yang, Henry; Dugas, Martin; Meza-Zepeda, Leonardo A.; Silberman, Allan W.; Forscher, Charles; Tyner, Jeffrey W.; Ogawa, Seishi; Koeffler, H. Phillip

    2015-01-01

    Liposarcoma (LPS) is the most common type of soft tissue sarcoma accounting for 20% of all adult sarcomas. Due to absence of clinically effective treatment options in inoperable situations and resistance to chemotherapeutics, a critical need exists to identify novel therapeutic targets. We analyzed LPS genomic landscape using SNP arrays, whole exome sequencing and targeted exome sequencing to uncover the genomic information for development of specific anti-cancer targets. SNP array analysis indicated known amplified genes (MDM2, CDK4, HMGA2) and important novel genes (UAP1, MIR557, LAMA4, CPM, IGF2, ERBB3, IGF1R). Carboxypeptidase M (CPM), recurrently amplified gene in well-differentiated/de-differentiated LPS was noted as a putative oncogene involved in the EGFR pathway. Notable deletions were found at chromosome 1p (RUNX3, ARID1A), chromosome 11q (ATM, CHEK1) and chromosome 13q14.2 (MIR15A, MIR16-1). Significantly and recurrently mutated genes (false discovery rate < 0.05) included PLEC (27%), MXRA5 (21%), FAT3 (24%), NF1 (20%), MDC1 (10%), TP53 (7%) and CHEK2 (6%). Further, in vitro and in vivo functional studies provided evidence for the tumor suppressor role for Neurofibromin 1 (NF1) gene in different subtypes of LPS. Pathway analysis of recurrent mutations demonstrated signaling through MAPK, JAK-STAT, Wnt, ErbB, axon guidance, apoptosis, DNA damage repair and cell cycle pathways were involved in liposarcomagenesis. Interestingly, we also found mutational and copy number heterogeneity within a primary LPS tumor signifying the importance of multi-region sequencing for cancer-genome guided therapy. In summary, these findings provide insight into the genomic complexity of LPS and highlight potential druggable pathways for targeted therapeutic approach. PMID:26643872

  9. Bioinformatics and genomic medicine.

    PubMed

    Kim, Ju Han

    2002-01-01

    Bioinformatics is a rapidly emerging field of biomedical research. A flood of large-scale genomic and postgenomic data means that many of the challenges in biomedical research are now challenges in computational science. Clinical informatics has long developed methodologies to improve biomedical research and clinical care by integrating experimental and clinical information systems. The informatics revolution in both bioinformatics and clinical informatics will eventually change the current practice of medicine, including diagnostics, therapeutics, and prognostics. Postgenome informatics, powered by high-throughput technologies and genomic-scale databases, is likely to transform our biomedical understanding forever, in much the same way that biochemistry did a generation ago. This paper describes how these technologies will impact biomedical research and clinical care, emphasizing recent advances in biochip-based functional genomics and proteomics. Basic data preprocessing with normalization and filtering, primary pattern analysis, and machine-learning algorithms are discussed. Use of integrative biochip informatics technologies, including multivariate data projection, gene-metabolic pathway mapping, automated biomolecular annotation, text mining of factual and literature databases, and the integrated management of biomolecular databases, are also discussed. PMID:12544491

  10. Exploring genomes for glycosyltransferases.

    PubMed

    Hansen, Sara Fasmer; Bettler, Emmanuel; Rinnan, Asmund; Engelsen, Søren B; Breton, Christelle

    2010-10-01

    Glycosyltransferases are one of the largest and most diverse enzyme groups in Nature. They catalyse the synthesis of glycosidic linkages by the transfer of a sugar residue from a donor to an acceptor substrate. These enzymes have been classified into families on the basis of amino acid sequence similarity that are kept updated in the Carbohydrate Active enZyme database (CAZy, ). The repertoire of glycosyltransferases in genomes is believed to determine the diversity of cellular glycan structures, and current estimates suggest that for most genomes about 1% of the coding regions are glycosyltransferases. However, plants tend to have far more glycosyltransferase genes than any other organism sequenced to date, and this can be explained by the highly complex polysaccharide network that form the cell wall and also by the numerous glycosylated secondary metabolites. In recent years, various bioinformatics strategies have been used to search bacterial and plant genomes for new glycosyltransferase genes. These are based on the use of remote homology detection methods that act at the 1D, 2D, and 3D level. The combined use of methods such as profile Hidden Markov Model (HMM) and fold recognition appears to be appropriate for this class of enzyme. Chemometric tools are also particularly well suited for obtaining an overview of multivariate data and revealing hidden latent information when dealing with large and highly complex datasets. PMID:20556308

  11. Cancer Genome Landscapes

    PubMed Central

    Vogelstein, Bert; Papadopoulos, Nickolas; Velculescu, Victor E.; Zhou, Shibin; Diaz, Luis A.; Kinzler, Kenneth W.

    2013-01-01

    Over the past decade, comprehensive sequencing efforts have revealed the genomic landscapes of common forms of human cancer. For most cancer types, this landscape consists of a small number of “mountains” (genes altered in a high percentage of tumors) and a much larger number of “hills” (genes altered infrequently). To date, these studies have revealed ~140 genes that, when altered by intragenic mutations, can promote or “drive” tumorigenesis. A typical tumor contains two to eight of these “driver gene” mutations; the remaining mutations are passengers that confer no selective growth advantage. Driver genes can be classified into 12 signaling pathways that regulate three core cellular processes: cell fate, cell survival, and genome maintenance. A better understanding of these pathways is one of the most pressing needs in basic cancer research. Even now, however, our knowledge of cancer genomes is sufficient to guide the development of more effective approaches for reducing cancer morbidity and mortality. PMID:23539594

  12. Mapping the human genome

    SciTech Connect

    Cantor, Charles R.

    1989-06-01

    The following pages aim to lay a foundation for understanding the excitement surrounding the ''human genome project,'' as well as to convey a flavor of the ongoing efforts and plans at the Human Genome Center at the Lawrence Berkeley Laboratory. Our own work, of course, is only part of a broad international effort that will dramatically enhance our understanding of human molecular genetics before the end of this century. In this country, the bulk of the effort will be carried out under the auspices of the Department of Energy and the National Institutes of Health, but significant contributions have already been made both by nonprofit private foundations and by private corporation. The respective roles of the DOE and the NIH are being coordinated by an inter-agency committee, the aims of which are to emphasize the strengths of each agency, to facilitate cooperation, and to avoid unnecessary duplication of effort. The NIH, for example, will continue its crucial work in medical genetics and in mapping the genomes of nonhuman species. The DOE, on the other hand, has unique experience in managing large projects, and its national laboratories are repositories of expertise in physics, engineering, and computer science, as well as the life sciences. The tools and techniques the project will ultimately rely on are thus likely to be developed in multidisciplinary efforts at laboratories like LBL. Accordingly, we at LBL take great pride in this enterprise -- an enterprise that will eventually transform our understanding of ourselves.

  13. Translational genomics for plant breeding with the genome sequence explosion.

    PubMed

    Kang, Yang Jae; Lee, Taeyoung; Lee, Jayern; Shim, Sangrea; Jeong, Haneul; Satyawan, Dani; Kim, Moon Young; Lee, Suk-Ha

    2016-04-01

    The use of next-generation sequencers and advanced genotyping technologies has propelled the field of plant genomics in model crops and plants and enhanced the discovery of hidden bridges between genotypes and phenotypes. The newly generated reference sequences of unstudied minor plants can be annotated by the knowledge of model plants via translational genomics approaches. Here, we reviewed the strategies of translational genomics and suggested perspectives on the current databases of genomic resources and the database structures of translated information on the new genome. As a draft picture of phenotypic annotation, translational genomics on newly sequenced plants will provide valuable assistance for breeders and researchers who are interested in genetic studies. PMID:26269219

  14. The fungal genome initiative and lessons learned from genome sequencing.

    PubMed

    Cuomo, Christina A; Birren, Bruce W

    2010-01-01

    The sequence of Saccharomyces cerevisiae enabled systematic genome-wide experimental approaches, demonstrating the power of having the complete genome of an organism. The rapid impact of these methods on research in yeast mobilized an effort to expand genomic resources for other fungi. The "fungal genome initiative" represents an organized genome sequencing effort to promote comparative and evolutionary studies across the fungal kingdom. Through such an approach, scientists can not only better understand specific organisms but also illuminate the shared and unique aspects of fungal biology that underlie the importance of fungi in biomedical research, health, food production, and industry. To date, assembled genomes for over 100 fungi are available in public databases, and many more sequencing projects are underway. Here, we discuss both examples of findings from comparative analysis of fungal sequences, with a specific emphasis on yeast genomes, and on the analytical approaches taken to mine fungal genomes. New sequencing methods are accelerating comparative studies of fungi by reducing the cost and difficulty of sequencing. This has driven more common use of sequencing applications, such as to study genome-wide variation in populations or to deeply profile RNA transcripts. These and further technological innovations will continue to be piloted in yeasts and other fungi, and will expand the applications of sequencing to study fungal biology. PMID:20946837

  15. Genomic Data Commons and Genomic Cloud Pilots - Google Hangout

    Cancer.gov

    Join us for a live, moderated discussion about two NCI efforts to expand access to cancer genomics data: the Genomic Data Commons and Genomic Cloud Pilots. NCI subject matters experts will include Louis M. Staudt, M.D., Ph.D., Director Center for Cancer Genomics, Warren Kibbe, Ph.D., Director, NCI Center for Biomedical Informatics and Information Technology, and moderated by Anthony Kerlavage, Ph.D., Chief, Cancer Informatics Branch, Center for Biomedical Informatics and Information Technology. We welcome your questions before and during the Hangout on Twitter using the hashtag #AskNCI.

  16. The coffee genome hub: a resource for coffee genomes

    PubMed Central

    Dereeper, Alexis; Bocs, Stéphanie; Rouard, Mathieu; Guignon, Valentin; Ravel, Sébastien; Tranchant-Dubreuil, Christine; Poncet, Valérie; Garsmeur, Olivier; Lashermes, Philippe; Droc, Gaëtan

    2015-01-01

    The whole genome sequence of Coffea canephora, the perennial diploid species known as Robusta, has been recently released. In the context of the C. canephora genome sequencing project and to support post-genomics efforts, we developed the Coffee Genome Hub (http://coffee-genome.org/), an integrative genome information system that allows centralized access to genomics and genetics data and analysis tools to facilitate translational and applied research in coffee. We provide the complete genome sequence of C. canephora along with gene structure, gene product information, metabolism, gene families, transcriptomics, syntenic blocks, genetic markers and genetic maps. The hub relies on generic software (e.g. GMOD tools) for easy querying, visualizing and downloading research data. It includes a Genome Browser enhanced by a Community Annotation System, enabling the improvement of automatic gene annotation through an annotation editor. In addition, the hub aims at developing interoperability among other existing South Green tools managing coffee data (phylogenomics resources, SNPs) and/or supporting data analyses with the Galaxy workflow manager. PMID:25392413

  17. The Saccharomyces Genome Database: Exploring Genome Features and Their Annotations.

    PubMed

    Cherry, J Michael

    2015-12-01

    Genomic-scale assays result in data that provide information over the entire genome. Such base pair resolution data cannot be summarized easily except via a graphical viewer. A genome browser is a tool that displays genomic data and experimental results as horizontal tracks. Genome browsers allow searches for a chromosomal coordinate or a feature, such as a gene name, but they do not allow searches by function or upstream binding site. Entry into a genome browser requires that you identify the gene name or chromosomal coordinates for a region of interest. A track provides a representation for genomic results and is displayed as a row of data shown as line segments to indicate regions of the chromosome with a feature. Another type of track presents a graph or wiggle plot that indicates the processed signal intensity computed for a particular experiment or set of experiments. Wiggle plots are typical for genomic assays such as the various next-generation sequencing methods (e.g., chromatin immunoprecipitation [ChIP]-seq or RNA-seq), where it represents a peak of DNA binding, histone modification, or the mapping of an RNA sequence. Here we explore the browser that has been built into the Saccharomyces Genome Database (SGD). PMID:26631126

  18. Flexible genomic islands as drivers of genome evolution.

    PubMed

    Rodriguez-Valera, Francisco; Martin-Cuadrado, Ana-Belen; López-Pérez, Mario

    2016-06-01

    Natural prokaryotic populations are composed of multiple clonal lineages that are different in their core genomes in a range that varies typically between 95 and 100% nucleotide identity. Each clonal lineage also carries a complement of not shared flexible genes that can be very large. The compounded flexible genome provides polyclonal populations with enormous gene diversity that can be used to efficiently exploit resources. This has fundamental repercussions for interpreting individual bacterial genomes. They are better understood as parts rather than the whole. Multiple genomes are required to understand how the population interacts with its biotic and abiotic environment. PMID:27085300

  19. Defining Genome Maintenance Pathways using Functional Genomic Approaches

    PubMed Central

    Bansbach, Carol E.; Cortez, David

    2011-01-01

    Genome maintenance activities including DNA repair, cell division cycle control, and checkpoint signaling pathways preserve genome integrity and prevent disease. Defects in these pathways cause birth defects, neurodegeneration, premature aging, and cancer. Recent technical advances in functional genomic approaches such as expression profiling, proteomics, and RNA interference (RNAi) technologies have rapidly expanded our knowledge of the proteins that work in these pathways. In this review, we examine the use of these high-throughput methodologies in higher eukaryotic organisms for the interrogation of genome maintenance activities. PMID:21787120

  20. Genome Projector: zoomable genome map with multiple views

    PubMed Central

    Arakawa, Kazuharu; Tamaki, Satoshi; Kono, Nobuaki; Kido, Nobuhiro; Ikegami, Keita; Ogawa, Ryu; Tomita, Masaru

    2009-01-01

    Background Molecular biology data exist on diverse scales, from the level of molecules to -omics. At the same time, the data at each scale can be categorised into multiple layers, such as the genome, transcriptome, proteome, metabolome, and biochemical pathways. Due to the highly multi-layer and multi-dimensional nature of biological information, software interfaces for database browsing should provide an intuitive interface that allows for rapid migration across different views and scales. The Zoomable User Interface (ZUI) and tabbed browsing have proven successful for this purpose in other areas, especially to navigate the vast information in the World Wide Web. Results This paper presents Genome Projector, a Web-based gateway for genomics information with a zoomable user interface using Google Maps API, equipped with four seamlessly accessible and searchable views: a circular genome map, a traditional genome map, a biochemical pathways map, and a DNA walk map. The Web application for 320 bacterial genomes is available at . All data and software including the source code, documentations, and development API are freely available under the GNU General Public License. Zoomable maps can be easily created from any image file using the development API, and an online data mapping service for Genome Projector is also available at our Web site. Conclusion Genome Projector is an intuitive Web application for browsing genomics information, implemented with a zoomable user interface and tabbed browsing utilising Google Maps API and Asynchronous JavaScript and XML (AJAX) technology. PMID:19166610

  1. The Anolis Lizard Genome: An Amniote Genome without Isochores?

    PubMed Central

    Costantini, Maria; Greif, Gonzalo; Alvarez-Valin, Fernando; Bernardi, Giorgio

    2016-01-01

    Two articles published 5 years ago concluded that the genome of the lizard Anolis carolinensis is an amniote genome without isochores. This claim was apparently contradicting previous results on the general presence of an isochore organization in all vertebrate genomes tested (including Anolis). In this investigation, we demonstrate that the Anolis genome is indeed heterogeneous in base composition, since its macrochromosomes comprise isochores mainly from the L2 and H1 families (a moderately GC-poor and a moderately GC-rich family, respectively), and since the majority of the sequenced microchromosomes consists of H1 isochores. These families are associated with different features of genome structure, including gene density and compositional correlations (e.g., GC3 vs flanking sequence GC and intron GC), as in the case of mammalian and avian genomes. Moreover, the assembled Anolis chromosomes have an enormous number of gaps, which could be due to sequencing problems in GC-rich regions of the genome. In conclusion, the Anolis genome is no exception to the general rule of an isochore organization in the genomes of vertebrates (and other eukaryotes). PMID:26992416

  2. The coffee genome hub: a resource for coffee genomes.

    PubMed

    Dereeper, Alexis; Bocs, Stéphanie; Rouard, Mathieu; Guignon, Valentin; Ravel, Sébastien; Tranchant-Dubreuil, Christine; Poncet, Valérie; Garsmeur, Olivier; Lashermes, Philippe; Droc, Gaëtan

    2015-01-01

    The whole genome sequence of Coffea canephora, the perennial diploid species known as Robusta, has been recently released. In the context of the C. canephora genome sequencing project and to support post-genomics efforts, we developed the Coffee Genome Hub (http://coffee-genome.org/), an integrative genome information system that allows centralized access to genomics and genetics data and analysis tools to facilitate translational and applied research in coffee. We provide the complete genome sequence of C. canephora along with gene structure, gene product information, metabolism, gene families, transcriptomics, syntenic blocks, genetic markers and genetic maps. The hub relies on generic software (e.g. GMOD tools) for easy querying, visualizing and downloading research data. It includes a Genome Browser enhanced by a Community Annotation System, enabling the improvement of automatic gene annotation through an annotation editor. In addition, the hub aims at developing interoperability among other existing South Green tools managing coffee data (phylogenomics resources, SNPs) and/or supporting data analyses with the Galaxy workflow manager. PMID:25392413

  3. Mosquito genomics: progress and challenges.

    PubMed

    Severson, David W; Behura, Susanta K

    2012-01-01

    The whole-genome sequencing of mosquitoes has facilitated our understanding of fundamental biological processes at their basic molecular levels and holds potential for application to mosquito control and prevention of mosquito-borne disease transmission. Draft genome sequences are available for Anopheles gambiae, Aedes aegypti, and Culex quinquefasciatus. Collectively, these represent the major vectors of African malaria, dengue fever and yellow fever viruses, and lymphatic filariasis, respectively. Rapid advances in genome technologies have revealed detailed information on genome architecture as well as phenotype-specific transcriptomics and proteomics. These resources allow for detailed comparative analyses within and across populations as well as species. Next-generation sequencing technologies will likely promote a proliferation of genome sequences for additional mosquito species as well as for individual insects. Here we review the current status of genome research in mosquitoes and identify potential areas for further investigations. PMID:21942845

  4. Invariants of DNA genomic signals

    NASA Astrophysics Data System (ADS)

    Cristea, Paul Dan A.

    2005-02-01

    For large scale analysis purposes, the conversion of genomic sequences into digital signals opens the possibility to use powerful signal processing methods for handling genomic information. The study of complex genomic signals reveals large scale features, maintained over the scale of whole chromosomes, that would be difficult to find by using only the symbolic representation. Based on genomic signal methods and on statistical techniques, the paper defines parameters of DNA sequences which are invariant to transformations induced by SNPs, splicing or crossover. Re-orienting concatenated coding regions in the same direction, regularities shared by the genomic material in all exons are revealed, pointing towards the hypothesis of a regular ancestral structure from which the current chromosome structures have evolved. This property is not found in non-nuclear genomic material, e.g., plasmids.

  5. The genome of Eucalyptus grandis.

    PubMed

    Myburg, Alexander A; Grattapaglia, Dario; Tuskan, Gerald A; Hellsten, Uffe; Hayes, Richard D; Grimwood, Jane; Jenkins, Jerry; Lindquist, Erika; Tice, Hope; Bauer, Diane; Goodstein, David M; Dubchak, Inna; Poliakov, Alexandre; Mizrachi, Eshchar; Kullan, Anand R K; Hussey, Steven G; Pinard, Desre; van der Merwe, Karen; Singh, Pooja; van Jaarsveld, Ida; Silva-Junior, Orzenil B; Togawa, Roberto C; Pappas, Marilia R; Faria, Danielle A; Sansaloni, Carolina P; Petroli, Cesar D; Yang, Xiaohan; Ranjan, Priya; Tschaplinski, Timothy J; Ye, Chu-Yu; Li, Ting; Sterck, Lieven; Vanneste, Kevin; Murat, Florent; Soler, Marçal; Clemente, Hélène San; Saidi, Naijib; Cassan-Wang, Hua; Dunand, Christophe; Hefer, Charles A; Bornberg-Bauer, Erich; Kersting, Anna R; Vining, Kelly; Amarasinghe, Vindhya; Ranik, Martin; Naithani, Sushma; Elser, Justin; Boyd, Alexander E; Liston, Aaron; Spatafora, Joseph W; Dharmwardhana, Palitha; Raja, Rajani; Sullivan, Christopher; Romanel, Elisson; Alves-Ferreira, Marcio; Külheim, Carsten; Foley, William; Carocha, Victor; Paiva, Jorge; Kudrna, David; Brommonschenkel, Sergio H; Pasquali, Giancarlo; Byrne, Margaret; Rigault, Philippe; Tibbits, Josquin; Spokevicius, Antanas; Jones, Rebecca C; Steane, Dorothy A; Vaillancourt, René E; Potts, Brad M; Joubert, Fourie; Barry, Kerrie; Pappas, Georgios J; Strauss, Steven H; Jaiswal, Pankaj; Grima-Pettenati, Jacqueline; Salse, Jérôme; Van de Peer, Yves; Rokhsar, Daniel S; Schmutz, Jeremy

    2014-06-19

    Eucalypts are the world's most widely planted hardwood trees. Their outstanding diversity, adaptability and growth have made them a global renewable resource of fibre and energy. We sequenced and assembled >94% of the 640-megabase genome of Eucalyptus grandis. Of 36,376 predicted protein-coding genes, 34% occur in tandem duplications, the largest proportion thus far in plant genomes. Eucalyptus also shows the highest diversity of genes for specialized metabolites such as terpenes that act as chemical defence and provide unique pharmaceutical oils. Genome sequencing of the E. grandis sister species E. globulus and a set of inbred E. grandis tree genomes reveals dynamic genome evolution and hotspots of inbreeding depression. The E. grandis genome is the first reference for the eudicot order Myrtales and is placed here sister to the eurosids. This resource expands our understanding of the unique biology of large woody perennials and provides a powerful tool to accelerate comparative biology, breeding and biotechnology. PMID:24919147

  6. Big Data: Astronomical or Genomical?

    PubMed

    Stephens, Zachary D; Lee, Skylar Y; Faghri, Faraz; Campbell, Roy H; Zhai, Chengxiang; Efron, Miles J; Iyer, Ravishankar; Schatz, Michael C; Sinha, Saurabh; Robinson, Gene E

    2015-07-01

    Genomics is a Big Data science and is going to get much bigger, very soon, but it is not known whether the needs of genomics will exceed other Big Data domains. Projecting to the year 2025, we compared genomics with three other major generators of Big Data: astronomy, YouTube, and Twitter. Our estimates show that genomics is a "four-headed beast"--it is either on par with or the most demanding of the domains analyzed here in terms of data acquisition, storage, distribution, and analysis. We discuss aspects of new technologies that will need to be developed to rise up and meet the computational challenges that genomics poses for the near future. Now is the time for concerted, community-wide planning for the "genomical" challenges of the next decade. PMID:26151137

  7. Genomics Nursing Faculty Champion Initiative

    PubMed Central

    Jenkins, Jean; Calzone, Kathleen A.

    2016-01-01

    Nurse faculty are challenged to keep up with the emerging and fast-paced field of genomics and the mandate to prepare the nursing workforce to be able to translate genomic research advances into routine clinical care. Using Faculty Champions and other options, the initiative stimulated curriculum development and promoted genomics curriculum integration. The authors summarize this yearlong initiative for undergraduate and graduate nursing faculty. PMID:24300251

  8. Cactus Graphs for Genome Comparisons

    NASA Astrophysics Data System (ADS)

    Paten, Benedict; Diekhans, Mark; Earl, Dent; St. John, John; Ma, Jian; Suh, Bernard; Haussler, David

    We introduce a data structure, analysis and visualization scheme called a cactus graph for comparing sets of related genomes. Cactus graphs capture some of the advantages of de Bruijn and breakpoint graphs in one unified framework. They naturally decompose the common substructures in a set of related genomes into a hierarchy of chains that can be visualized as multiple alignments and nets that can be visualized in circular genome plots.

  9. Programs | Office of Cancer Genomics

    Cancer.gov

    OCG facilitates cancer genomics research through a series of highly-focused programs. These programs generate and disseminate genomic data for use by the cancer research community. OCG programs also promote advances in technology-based infrastructure and create valuable experimental reagents and tools. OCG programs encourage collaboration by interconnecting with other genomics and cancer projects in order to accelerate translation of findings into the clinic. Below are OCG’s current, completed, and initiated programs:

  10. Genome walking by Klenow polymerase.

    PubMed

    Volpicella, Mariateresa; Leoni, Claudia; Fanizza, Immacolata; Rius, Sebastian; Gallerani, Raffaele; Ceci, Luigi R

    2012-11-15

    Genome walking procedures are all based on a final polymerase chain reaction amplification, regardless of the strategy employed for the synthesis of the substrate molecule. Here we report a modification of an already established genome walking strategy in which a single-strand DNA substrate is obtained by primer extension driven by Klenow polymerase and which results suitable for the direct sequencing of complex eukaryotic genomes. The efficacy of the method is demonstrated by the identification of nucleotide sequences in the case of two gene families (chiA and P1) in the genomes of several maize species. PMID:22922302

  11. Global efforts in structural genomics.

    PubMed

    Stevens, R C; Yokoyama, S; Wilson, I A

    2001-10-01

    A worldwide initiative in structural genomics aims to capitalize on the recent successes of the genome projects. Substantial new investments in structural genomics in the past 2 years indicate the high level of support for these international efforts. Already, enormous progress has been made on high-throughput methodologies and technologies that will speed up macromolecular structure determinations. Recent international meetings have resulted in the formation of an International Structural Genomics Organization to formulate policy and foster cooperation between the public and private efforts. PMID:11588249

  12. Genomic medicine and neurological disease

    PubMed Central

    Boone, Philip M.; Wiszniewski, Wojciech; Lupski, James R.

    2011-01-01

    Genomic medicine” refers to the diagnosis, optimized management, and treatment of disease—as well as screening, counseling, and disease gene identification—in the context of information provided by an individual patient’s personal genome. Genomic medicine, to some extent synonymous with “personalized medicine,” has been made possible by recent advances in genome technologies. Genomic medicine represents a new approach to health care and disease management that attempts to optimize the care of a patient based upon information gleaned from his or her personal genome sequence. In this review, we describe recent progress in genomic medicine as it relates to neurological disease. Many neurological disorders either segregate as Mendelian phenotypes or occur sporadically in association with a new mutation in a single gene. Heritability also contributes to other neurological conditions that appear to exhibit more complex genetics. In addition to discussing current knowledge in this field, we offer suggestions for maximizing the utility of genomic information in clinical practice as the field of genomic medicine unfolds. PMID:21594611

  13. Genomics of Bacillus Species

    NASA Astrophysics Data System (ADS)

    Økstad, Ole Andreas; Kolstø, Anne-Brit

    Members of the genus Bacillus are rod-shaped spore-forming bacteria belonging to the Firmicutes, the low G+C gram-positive bacteria. The Bacillus genus was first described and classified by Ferdinand Cohn in Cohn (1872), and Bacillus subtilis was defined as the type species (Soule, 1932). Several Bacilli may be linked to opportunistic infections. However, pathogenicity among Bacillus spp. is mainly a feature of bacteria belonging to the Bacillus cereus group, including B. cereus, Bacillus anthracis, and Bacillus thuringiensis. Here we review the genomics of B. cereus group bacteria in relation to their roles as etiological agents of two food poisoning syndromes (emetic and diarrhoeal).

  14. The human genome project

    SciTech Connect

    Bell, G.I.

    1991-06-01

    The Human Genome Project will obtain high-resolution genetic and physical maps of each human chromosome and, somewhat later, of the complete nucleotide sequence of the deoxyribonucleic acid (DNA) in a human cell. The talk will begin with an extended introduction to explain the Project to nonbiologists and to show that map construction and sequence determination require extensive computation in order to determine the correct order of the mapped entities and to provide estimates of uncertainty. Computational analysis of the sequence data will become an increasingly important part of the project, and some computational challenges are described. 5 refs.

  15. Human Genome Program Image Gallery (from genomics.energy.gov)

    DOE Data Explorer

    This collection contains approximately 240 images from the genome programs of DOE's Office of Science. The images are divided into galleries related to biofuels research, systems biology, and basic genomics. Each image has a title, a basic citation, and a credit or source. Most of the images are original graphics created by the Genome Management Information System (GMIS). GMIS images are recognizable by their credit line. Permission to use these graphics is not needed, but please credit the U.S. Department of Energy Genome Programs and provide the website http://genomics.energy.gov. Other images were provided by third parties and not created by the U.S. Department of Energy. Users must contact the person listed in the credit line before using those images. The high-resolution images can be downloaded.

  16. A Taste of Algal Genomes from the Joint Genome Institute

    SciTech Connect

    Kuo, Alan; Grigoriev, Igor

    2012-06-17

    Algae play profound roles in aquatic food chains and the carbon cycle, can impose health and economic costs through toxic blooms, provide models for the study of symbiosis, photosynthesis, and eukaryotic evolution, and are candidate sources for bio-fuels; all of these research areas are part of the mission of DOE's Joint Genome Institute (JGI). To date JGI has sequenced, assembled, annotated, and released to the public the genomes of 18 species and strains of algae, sampling almost all of the major clades of photosynthetic eukaryotes. With more algal genomes currently undergoing analysis, JGI continues its commitment to driving forward basic and applied algal science. Among these ongoing projects are the pan-genome of the dominant coccolithophore Emiliania huxleyi, the interrelationships between the 4 genomes in the nucleomorph-containing Bigelowiella natans and Guillardia theta, and the search for symbiosis genes of lichens.

  17. Modifying the Mitochondrial Genome.

    PubMed

    Patananan, Alexander N; Wu, Ting-Hsiang; Chiou, Pei-Yu; Teitell, Michael A

    2016-05-10

    Human mitochondria produce ATP and metabolites to support development and maintain cellular homeostasis. Mitochondria harbor multiple copies of a maternally inherited, non-nuclear genome (mtDNA) that encodes for 13 subunit proteins of the respiratory chain. Mutations in mtDNA occur mainly in the 24 non-coding genes, with specific mutations implicated in early death, neuromuscular and neurodegenerative diseases, cancer, and diabetes. A significant barrier to new insights in mitochondrial biology and clinical applications for mtDNA disorders is our general inability to manipulate the mtDNA sequence. Microinjection, cytoplasmic fusion, nucleic acid import strategies, targeted endonucleases, and newer approaches, which include the transfer of genomic DNA, somatic cell reprogramming, and a photothermal nanoblade, attempt to change the mtDNA sequence in target cells with varying efficiencies and limitations. Here, we discuss the current state of manipulating mammalian mtDNA and provide an outlook for mitochondrial reverse genetics, which could further enable mitochondrial research and therapies for mtDNA diseases. PMID:27166943

  18. Parsing of genomic graffiti

    SciTech Connect

    Tibbetts, C.; Golden, J. III; Torgersen, D.

    1996-12-31

    A focal point of modern biology is investigation of wide varieties of phenomena at the level of molecular genetics. The nucleotide sequences of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) define the ultimate resolution of this reductionist approach to understand the determinants of heritable traits. The structure and function of genes, their composite genomic organization, and their regulated expression have been studied in systems representing every class of organism. Many human diseases or pathogenic syndromes can be directly attributed to inherited defects in either the regulated expression, or the quality of the products of specific genes. Genetic determinants of susceptibility to infectious agents or environmental hazards are amply documented. Mapping and sequencing of the DNA molecules encoding human genes have provided powerful technology for pharmaceutical bioengineering and forensic investigations. From an alternative perspective, we may anticipate that voluminous archives of singular DNA sequences alone will not suffice to define and understand the functional determinants of genome organization, allelic diversity and evolutionary plasticity of living organisms. New insights will accumulate pertaining to human evolutionary origins and relationships of human biology to models based on other mammals. Investigators of population genetics and epidemiology now exploit the technology of molecular genetics to more powerfully probe variation within the human gene pool at the level of DNA sequences. 40 refs., 7 figs., 2 tabs.

  19. Genomic imprinting and cancer.

    PubMed

    Brenton, J D; Viville, S; Surani, M A

    1995-01-01

    Imprinting is vital for normal development, and disruption of imprinting mechanisms on syntenic chromosomes gives very similar phenotypes in mouse and humans. In addition, disruption of normal imprinting provides a plausible explanation for preferential LOH in some embryonal tumours. Moreover, there is evidence that in Wilms' tumour, dysregulation of specific imprinted genes may give rise to the cancer phenotype. Many more questions regarding genomic imprinting need to be answered before the associations described in this review can be properly understood. The most basic issues, such as when and how the imprint is established, can still only be speculated upon. Further study of new imprinted genes and the relationship between their domains and differential replication may show us higher control mechanisms than methylation alone. It remains to be seen if these epigenetic modifications are amenable to therapeutic change in the treatment of inherited syndromes and cancer, or if they can be used to assess individuals at risk of disease. Until then it is probably unwise to speculate on a single unifying theory that explains why a subset of the genome shows such a peculiar non-Mendelian form of inheritance. PMID:8718517

  20. OryzaGenome: Genome Diversity Database of Wild Oryza Species

    PubMed Central

    Ohyanagi, Hajime; Ebata, Toshinobu; Huang, Xuehui; Gong, Hao; Fujita, Masahiro; Mochizuki, Takako; Toyoda, Atsushi; Fujiyama, Asao; Kaminuma, Eli; Nakamura, Yasukazu; Feng, Qi; Wang, Zi-Xuan; Han, Bin; Kurata, Nori

    2016-01-01

    The species in the genus Oryza, encompassing nine genome types and 23 species, are a rich genetic resource and may have applications in deeper genomic analyses aiming to understand the evolution of plant genomes. With the advancement of next-generation sequencing (NGS) technology, a flood of Oryza species reference genomes and genomic variation information has become available in recent years. This genomic information, combined with the comprehensive phenotypic information that we are accumulating in our Oryzabase, can serve as an excellent genotype–phenotype association resource for analyzing rice functional and structural evolution, and the associated diversity of the Oryza genus. Here we integrate our previous and future phenotypic/habitat information and newly determined genotype information into a united repository, named OryzaGenome, providing the variant information with hyperlinks to Oryzabase. The current version of OryzaGenome includes genotype information of 446 O. rufipogon accessions derived by imputation and of 17 accessions derived by imputation-free deep sequencing. Two variant viewers are implemented: SNP Viewer as a conventional genome browser interface and Variant Table as a text-based browser for precise inspection of each variant one by one. Portable VCF (variant call format) file or tab-delimited file download is also available. Following these SNP (single nucleotide polymorphism) data, reference pseudomolecules/scaffolds/contigs and genome-wide variation information for almost all of the closely and distantly related wild Oryza species from the NIG Wild Rice Collection will be available in future releases. All of the resources can be accessed through http://viewer.shigen.info/oryzagenome/. PMID:26578696

  1. All about the Human Genome Project (HGP)

    MedlinePlus

    ... full human sequence All About The Human Genome Project (HGP) The Human Genome Project (HGP) was one of the great feats of ... Organisms A Quarter Century after the Human Genome Project's Launch: Lessons Beyond the Base Pairs October 1, ...

  2. International genomic evaluation methods for dairy cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background Genomic evaluations are rapidly replacing traditional evaluation systems used for dairy cattle selection. Economies of scale in genomics promote cooperation across country borders. Genomic information can be transferred across countries using simple conversion equations, by modifying mult...

  3. Surveying Breast Cancer's Genomic Landscape.

    PubMed

    2016-07-01

    An in-depth analysis has produced the most comprehensive portrait to date of the myriad genomic alterations involved in breast cancer. In sequencing the whole genomes of 560 breast cancers and combining this information with published data from another 772 breast tumors, the research team uncovered several new genes and mutational signatures that potentially influence this disease. PMID:27225883

  4. CROP GENOME DATABASES -- CRITICAL ISSUES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop genome databases, see www.agron.missouri.edu/bioservers.html of the past decade have had designed and implemented (1) models and schema for the genome and related domains; (2) methodologies for input of data by expert biologists and high-throughput projects; and (3) various text, graphical, and...

  5. Cocoa/Cotton Comparative Genomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With genome sequence from two members of the Malvaceae family recently made available, we are exploring syntenic relationships, gene content, and evolutionary trajectories between the cacao and cotton genomes. An assembly of cacao (Theobroma cacao) using Illumina and 454 sequence technology yielded ...

  6. Genomics and Weeds: A Synthesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomics can be used to solve many problems associated with the management of weeds. New target sites for herbicides have been discovered through functional genomic approaches to determine gene function. Modes of action of herbicides can be clarified or discovered by transcriptome analysis. Under...

  7. Plant cytogenetics in genome databases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cytogenetic maps provide an integrated representation of genetic and cytological information that can be used to enhance genome and chromosome research. As genome analysis technologies become more affordable, the density of markers on cytogenetic maps increases, making these resources more useful a...

  8. From genes to genome biology

    SciTech Connect

    Pennisi, E.

    1996-06-21

    This article describes a change in the approach to mapping genomes, from looking at one gene at a time, to other approaches. Strategies include everything from lab techniques to computer programs designed to analyze whole batches of genes at once. Also included is a update on the work on the human genome.

  9. Fueling Future with Algal Genomics

    SciTech Connect

    Grigoriev, Igor

    2012-07-05

    Algae constitute a major component of fundamental eukaryotic diversity, play profound roles in the carbon cycle, and are prominent candidates for biofuel production. The US Department of Energy Joint Genome Institute (JGI) is leading the world in algal genome sequencing (http://jgi.doe.gov/Algae) and contributes of the algal genome projects worldwide (GOLD database, 2012). The sequenced algal genomes offer catalogs of genes, networks, and pathways. The sequenced first of its kind genomes of a haptophyte E.huxleyii, chlorarachniophyte B.natans, and cryptophyte G.theta fill the gaps in the eukaryotic tree of life and carry unique genes and pathways as well as molecular fossils of secondary endosymbiosis. Natural adaptation to conditions critical for industrial production is encoded in algal genomes, for example, growth of A.anophagefferens at very high cell densities during the harmful algae blooms or a global distribution across diverse environments of E.huxleyii, able to live on sparse nutrients due to its expanded pan-genome. Communications and signaling pathways can be derived from simple symbiotic systems like lichens or complex marine algae metagenomes. Collectively these datasets derived from algal genomics contribute to building a comprehensive parts list essential for algal biofuel development.

  10. Genomic Evaluations: Past, Present, Future

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic evaluation has been implemented in dairy cattle causing profound changes in dairy cattle breeding. All young bulls purchased by major AI organizations are selected based on genomic evaluations. The reliability of these evaluations reaches the mid seventies for yield traits and is adequate to...

  11. Functional Genomics Tools for Papaya

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the genome of papaya (Carica papaya L.) sequenced, the study of gene function is becoming an increasing priority. Our research is to develop an RNA-induced gene silencing tool for the study of functional genomics in papaya. We employed agrobacterium leaf infiltration to induce PTGS in '-glucuro...

  12. Quantitative Genomics of Male Reproduction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of the review was to establish the current status of quantitative genomics for male reproduction. Genetic variation exists for male reproduction traits. These traits are expensive and time consuming traits to evaluate through conventional breeding schemes. Genomics is an alternative to...

  13. How Can Genomics Inform Education?

    ERIC Educational Resources Information Center

    Grigorenko, Elena L.

    2007-01-01

    This article offers some thoughts on possible connections between genomics and education. Genomics is already revolutionizing the way medical care is delivered and distributed; it will inevitably affect children's developmental trajectories by introducing more pharmacological and behavioral therapies. Educators should be prepared to understand the…

  14. Mycobacterium avium subsp. paratuberculosis Genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The completion of the MAP K-10 genome sequence has opened the doors to many new avenues of research. In the few years since the publication of the genome sequence, the manuscript describing the completed sequence has been cited in the scientific literature more than 85 times. The public availabili...

  15. Future Health Applications of Genomics

    PubMed Central

    McBride, Colleen M.; Bowen, Deborah; Brody, Lawrence C.; Condit, Celeste M.; Croyle, Robert T.; Gwinn, Marta; Khoury, Muin J.; Koehly, Laura M.; Korf, Bruce R.; Marteau, Theresa M.; McLeroy, Kenneth; Patrick, Kevin; Valente, Thomas W.

    2014-01-01

    Despite the quickening momentum of genomic discovery, the communication, behavioral, and social sciences research needed for translating this discovery into public health applications has lagged behind. The National Human Genome Research Institute held a 2-day workshop in October 2008 convening an interdisciplinary group of scientists to recommend forward-looking priorities for translational research. This research agenda would be designed to redress the top three risk factors (tobacco use, poor diet, and physical inactivity) that contribute to the four major chronic diseases (heart disease, type 2 diabetes, lung disease, and many cancers) and account for half of all deaths worldwide. Three priority research areas were identified: (1) improving the public’s genetic literacy in order to enhance consumer skills; (2) gauging whether genomic information improves risk communication and adoption of healthier behaviors more than current approaches; and (3) exploring whether genomic discovery in concert with emerging technologies can elucidate new behavioral intervention targets. Important crosscutting themes also were identified, including the need to: (1) anticipate directions of genomic discovery; (2) take an agnostic scientific perspective in framing research questions asking whether genomic discovery adds value to other health promotion efforts; and (3) consider multiple levels of influence and systems that contribute to important public health problems. The priorities and themes offer a framework for a variety of stakeholders, including those who develop priorities for research funding, interdisciplinary teams engaged in genomics research, and policymakers grappling with how to use the products born of genomics research to address public health challenges. PMID:20409503

  16. Big Data: Astronomical or Genomical?

    PubMed Central

    Stephens, Zachary D.; Lee, Skylar Y.; Faghri, Faraz; Campbell, Roy H.; Zhai, Chengxiang; Efron, Miles J.; Iyer, Ravishankar; Schatz, Michael C.; Sinha, Saurabh; Robinson, Gene E.

    2015-01-01

    Genomics is a Big Data science and is going to get much bigger, very soon, but it is not known whether the needs of genomics will exceed other Big Data domains. Projecting to the year 2025, we compared genomics with three other major generators of Big Data: astronomy, YouTube, and Twitter. Our estimates show that genomics is a “four-headed beast”—it is either on par with or the most demanding of the domains analyzed here in terms of data acquisition, storage, distribution, and analysis. We discuss aspects of new technologies that will need to be developed to rise up and meet the computational challenges that genomics poses for the near future. Now is the time for concerted, community-wide planning for the “genomical” challenges of the next decade. PMID:26151137

  17. Privacy in the Genomic Era

    PubMed Central

    NAVEED, MUHAMMAD; AYDAY, ERMAN; CLAYTON, ELLEN W.; FELLAY, JACQUES; GUNTER, CARL A.; HUBAUX, JEAN-PIERRE; MALIN, BRADLEY A.; WANG, XIAOFENG

    2015-01-01

    Genome sequencing technology has advanced at a rapid pace and it is now possible to generate highly-detailed genotypes inexpensively. The collection and analysis of such data has the potential to support various applications, including personalized medical services. While the benefits of the genomics revolution are trumpeted by the biomedical community, the increased availability of such data has major implications for personal privacy; notably because the genome has certain essential features, which include (but are not limited to) (i) an association with traits and certain diseases, (ii) identification capability (e.g., forensics), and (iii) revelation of family relationships. Moreover, direct-to-consumer DNA testing increases the likelihood that genome data will be made available in less regulated environments, such as the Internet and for-profit companies. The problem of genome data privacy thus resides at the crossroads of computer science, medicine, and public policy. While the computer scientists have addressed data privacy for various data types, there has been less attention dedicated to genomic data. Thus, the goal of this paper is to provide a systematization of knowledge for the computer science community. In doing so, we address some of the (sometimes erroneous) beliefs of this field and we report on a survey we conducted about genome data privacy with biomedical specialists. Then, after characterizing the genome privacy problem, we review the state-of-the-art regarding privacy attacks on genomic data and strategies for mitigating such attacks, as well as contextualizing these attacks from the perspective of medicine and public policy. This paper concludes with an enumeration of the challenges for genome data privacy and presents a framework to systematize the analysis of threats and the design of countermeasures as the field moves forward. PMID:26640318

  18. Recombination Drives Vertebrate Genome Contraction

    PubMed Central

    Nam, Kiwoong; Ellegren, Hans

    2012-01-01

    Selective and/or neutral processes may govern variation in DNA content and, ultimately, genome size. The observation in several organisms of a negative correlation between recombination rate and intron size could be compatible with a neutral model in which recombination is mutagenic for length changes. We used whole-genome data on small insertions and deletions within transposable elements from chicken and zebra finch to demonstrate clear links between recombination rate and a number of attributes of reduced DNA content. Recombination rate was negatively correlated with the length of introns, transposable elements, and intergenic spacer and with the rate of short insertions. Importantly, it was positively correlated with gene density, the rate of short deletions, the deletion bias, and the net change in sequence length. All these observations point at a pattern of more condensed genome structure in regions of high recombination. Based on the observed rates of small insertions and deletions and assuming that these rates are representative for the whole genome, we estimate that the genome of the most recent common ancestor of birds and lizards has lost nearly 20% of its DNA content up until the present. Expansion of transposable elements can counteract the effect of deletions in an equilibrium mutation model; however, since the activity of transposable elements has been low in the avian lineage, the deletion bias is likely to have had a significant effect on genome size evolution in dinosaurs and birds, contributing to the maintenance of a small genome. We also demonstrate that most of the observed correlations between recombination rate and genome contraction parameters are seen in the human genome, including for segregating indel polymorphisms. Our data are compatible with a neutral model in which recombination drives vertebrate genome size evolution and gives no direct support for a role of natural selection in this process. PMID:22570634

  19. RECORD: Reference-Assisted Genome Assembly for Closely Related Genomes

    PubMed Central

    Buza, Krisztian; Wilczynski, Bartek; Dojer, Norbert

    2015-01-01

    Background. Next-generation sequencing technologies are now producing multiple times the genome size in total reads from a single experiment. This is enough information to reconstruct at least some of the differences between the individual genome studied in the experiment and the reference genome of the species. However, in most typical protocols, this information is disregarded and the reference genome is used. Results. We provide a new approach that allows researchers to reconstruct genomes very closely related to the reference genome (e.g., mutants of the same species) directly from the reads used in the experiment. Our approach applies de novo assembly software to experimental reads and so-called pseudoreads and uses the resulting contigs to generate a modified reference sequence. In this way, it can very quickly, and at no additional sequencing cost, generate new, modified reference sequence that is closer to the actual sequenced genome and has a full coverage. In this paper, we describe our approach and test its implementation called RECORD. We evaluate RECORD on both simulated and real data. We made our software publicly available on sourceforge. Conclusion. Our tests show that on closely related sequences RECORD outperforms more general assisted-assembly software. PMID:26558255

  20. RECORD: Reference-Assisted Genome Assembly for Closely Related Genomes.

    PubMed

    Buza, Krisztian; Wilczynski, Bartek; Dojer, Norbert

    2015-01-01

    Background. Next-generation sequencing technologies are now producing multiple times the genome size in total reads from a single experiment. This is enough information to reconstruct at least some of the differences between the individual genome studied in the experiment and the reference genome of the species. However, in most typical protocols, this information is disregarded and the reference genome is used. Results. We provide a new approach that allows researchers to reconstruct genomes very closely related to the reference genome (e.g., mutants of the same species) directly from the reads used in the experiment. Our approach applies de novo assembly software to experimental reads and so-called pseudoreads and uses the resulting contigs to generate a modified reference sequence. In this way, it can very quickly, and at no additional sequencing cost, generate new, modified reference sequence that is closer to the actual sequenced genome and has a full coverage. In this paper, we describe our approach and test its implementation called RECORD. We evaluate RECORD on both simulated and real data. We made our software publicly available on sourceforge. Conclusion. Our tests show that on closely related sequences RECORD outperforms more general assisted-assembly software. PMID:26558255

  1. A Genome-Wide Landscape of Retrocopies in Primate Genomes

    PubMed Central

    Navarro, Fábio C.P.; Galante, Pedro A.F.

    2015-01-01

    Gene duplication is a key factor contributing to phenotype diversity across and within species. Although the availability of complete genomes has led to the extensive study of genomic duplications, the dynamics and variability of gene duplications mediated by retrotransposition are not well understood. Here, we predict mRNA retrotransposition and use comparative genomics to investigate their origin and variability across primates. Analyzing seven anthropoid primate genomes, we found a similar number of mRNA retrotranspositions (∼7,500 retrocopies) in Catarrhini (Old Word Monkeys, including humans), but a surprising large number of retrocopies (∼10,000) in Platyrrhini (New World Monkeys), which may be a by-product of higher long interspersed nuclear element 1 activity in these genomes. By inferring retrocopy orthology, we dated most of the primate retrocopy origins, and estimated a decrease in the fixation rate in recent primate history, implying a smaller number of species-specific retrocopies. Moreover, using RNA-Seq data, we identified approximately 3,600 expressed retrocopies. As expected, most of these retrocopies are located near or within known genes, present tissue-specific and even species-specific expression patterns, and no expression correlation to their parental genes. Taken together, our results provide further evidence that mRNA retrotransposition is an active mechanism in primate evolution and suggest that retrocopies may not only introduce great genetic variability between lineages but also create a large reservoir of potentially functional new genomic loci in primate genomes. PMID:26224704

  2. A Genome-Wide Landscape of Retrocopies in Primate Genomes.

    PubMed

    Navarro, Fábio C P; Galante, Pedro A F

    2015-08-01

    Gene duplication is a key factor contributing to phenotype diversity across and within species. Although the availability of complete genomes has led to the extensive study of genomic duplications, the dynamics and variability of gene duplications mediated by retrotransposition are not well understood. Here, we predict mRNA retrotransposition and use comparative genomics to investigate their origin and variability across primates. Analyzing seven anthropoid primate genomes, we found a similar number of mRNA retrotranspositions (∼7,500 retrocopies) in Catarrhini (Old Word Monkeys, including humans), but a surprising large number of retrocopies (∼10,000) in Platyrrhini (New World Monkeys), which may be a by-product of higher long interspersed nuclear element 1 activity in these genomes. By inferring retrocopy orthology, we dated most of the primate retrocopy origins, and estimated a decrease in the fixation rate in recent primate history, implying a smaller number of species-specific retrocopies. Moreover, using RNA-Seq data, we identified approximately 3,600 expressed retrocopies. As expected, most of these retrocopies are located near or within known genes, present tissue-specific and even species-specific expression patterns, and no expression correlation to their parental genes. Taken together, our results provide further evidence that mRNA retrotransposition is an active mechanism in primate evolution and suggest that retrocopies may not only introduce great genetic variability between lineages but also create a large reservoir of potentially functional new genomic loci in primate genomes. PMID:26224704

  3. Linking the genomes of nonmodel teleosts through comparative genomics.

    PubMed

    Sarropoulou, E; Nousdili, D; Magoulas, A; Kotoulas, G

    2008-01-01

    Recently the genomes of two more teleost species have been released: the medaka (Oryzias latipes), and the three-spined stickleback (Gasterosteus aculateus). The rapid developments in genomics of fish species paved the way to new and valuable research in comparative genetics and genomics. With the accumulation of information in model species, the genetic and genomic characterization of nonmodel, but economically important species, is now feasible. Furthermore, comparison of low coverage gene maps of aquacultured fish species against fully sequenced fish species will enhance the efficiency of candidate genes identification projected for quantitative trait loci (QTL) scans for traits of commercial interest. This study shows the syntenic relationship between the genomes of six different teleost species, including three fully sequenced model species: Tetraodon nigroviridis, Oryzias latipes, Gasterosteus aculateus, and three marine species of commercial and evolutionary interest: Sparus aurata, Dicentrarchus labrax, Oreochromis spp. All three commercial fish species belong to the order Perciformes, which is the richest in number of species (approximately 10,000) but poor in terms of available genomic information and tools. Syntenic relationships were established by using 800 EST and microsatellites sequences successfully mapped on the RH map of seabream. Comparison to the stickleback genome produced most positive BLAT hits (58%) followed by medaka (32%) and Tetraodon (30%). Thus, stickleback was used as the major stepping stone to compare seabass and tilapia to seabream. In addition to the significance for the aquaculture industry, this approach can encompass important ecological and evolutionary implications. PMID:18297360

  4. Integrated genome browser: visual analytics platform for genomics

    PubMed Central

    Norris, David C.; Loraine, Ann E.

    2016-01-01

    Motivation: Genome browsers that support fast navigation through vast datasets and provide interactive visual analytics functions can help scientists achieve deeper insight into biological systems. Toward this end, we developed Integrated Genome Browser (IGB), a highly configurable, interactive and fast open source desktop genome browser. Results: Here we describe multiple updates to IGB, including all-new capabilities to display and interact with data from high-throughput sequencing experiments. To demonstrate, we describe example visualizations and analyses of datasets from RNA-Seq, ChIP-Seq and bisulfite sequencing experiments. Understanding results from genome-scale experiments requires viewing the data in the context of reference genome annotations and other related datasets. To facilitate this, we enhanced IGB’s ability to consume data from diverse sources, including Galaxy, Distributed Annotation and IGB-specific Quickload servers. To support future visualization needs as new genome-scale assays enter wide use, we transformed the IGB codebase into a modular, extensible platform for developers to create and deploy all-new visualizations of genomic data. Availability and implementation: IGB is open source and is freely available from http://bioviz.org/igb. Contact: aloraine@uncc.edu PMID:27153568

  5. Unlocking hidden genomic sequence

    PubMed Central

    Keith, Jonathan M.; Cochran, Duncan A. E.; Lala, Gita H.; Adams, Peter; Bryant, Darryn; Mitchelson, Keith R.

    2004-01-01

    Despite the success of conventional Sanger sequencing, significant regions of many genomes still present major obstacles to sequencing. Here we propose a novel approach with the potential to alleviate a wide range of sequencing difficulties. The technique involves extracting target DNA sequence from variants generated by introduction of random mutations. The introduction of mutations does not destroy original sequence information, but distributes it amongst multiple variants. Some of these variants lack problematic features of the target and are more amenable to conventional sequencing. The technique has been successfully demonstrated with mutation levels up to an average 18% base substitution and has been used to read previously intractable poly(A), AT-rich and GC-rich motifs. PMID:14973330

  6. Genomics in Neurological Disorders

    PubMed Central

    Han, Guangchun; Sun, Jiya; Wang, Jiajia; Bai, Zhouxian; Song, Fuhai; Lei, Hongxing

    2014-01-01

    Neurological disorders comprise a variety of complex diseases in the central nervous system, which can be roughly classified as neurodegenerative diseases and psychiatric disorders. The basic and translational research of neurological disorders has been hindered by the difficulty in accessing the pathological center (i.e., the brain) in live patients. The rapid advancement of sequencing and array technologies has made it possible to investigate the disease mechanism and biomarkers from a systems perspective. In this review, recent progresses in the discovery of novel risk genes, treatment targets and peripheral biomarkers employing genomic technologies will be discussed. Our major focus will be on two of the most heavily investigated neurological disorders, namely Alzheimer’s disease and autism spectrum disorder. PMID:25108264

  7. Genomics of Atrial Fibrillation.

    PubMed

    Gutierrez, Alejandra; Chung, Mina K

    2016-06-01

    Atrial fibrillation (AF) is a common clinical arrhythmia that appears to be highly heritable, despite representing a complex interplay of several disease processes that generally do not manifest until later in life. In this manuscript, we will review the genetic basis of this complex trait established through studies of familial AF, linkage and candidate gene studies of common AF, genome wide association studies (GWAS) of common AF, and transcriptomic studies of AF. Since AF is associated with a five-fold increase in the risk of stroke, we also review the intersection of common genetic factors associated with both of these conditions. Similarly, we highlight the intersection of common genetic markers associated with some risk factors for AF, such as hypertension and obesity, and AF. Lastly, we describe a paradigm where genetic factors predispose to the risk of AF, but which may require additional stress and trigger factors in older age to allow for the clinical manifestation of AF. PMID:27139902

  8. Genome patent fight erupts

    SciTech Connect

    Roberts, L.

    1991-10-11

    At a Congressional briefing while describing a new project to sequence partially every gene active in the human brain, it was made known that the National Institutes of Health was planning to file patent applications on 1,000 of these sequences a month. The scheme has engendered a firestorm of criticism from genome scientists and project officials alike. The critics argue that these sequences probably can't be patented in the first place - and even if they can, they shouldn't be. The plan would undercut patent protection for those who labor long and hard at the real task of elucidating the function of the proteins encoded by the genes, thereby driving industry away from developing inventions based on that work.

  9. The South Asian Genome

    PubMed Central

    Scott, William R.; Tan, Sian-Tsung; Afzal, Uzma; Afaq, Saima; Loh, Marie; Lehne, Benjamin; O'Reilly, Paul; Gaulton, Kyle J.; Pearson, Richard D.; Li, Xinzhong; Lavery, Anita; Vandrovcova, Jana; Wass, Mark N.; Miller, Kathryn; Sehmi, Joban; Oozageer, Laticia; Kooner, Ishminder K.; Al-Hussaini, Abtehale; Mills, Rebecca; Grewal, Jagvir; Panoulas, Vasileios; Lewin, Alexandra M.; Northwood, Korrinne; Wander, Gurpreet S.; Geoghegan, Frank; Li, Yingrui; Wang, Jun; Aitman, Timothy J.; McCarthy, Mark I.

    2014-01-01

    The genetic sequence variation of people from the Indian subcontinent who comprise one-quarter of the world's population, is not well described. We carried out whole genome sequencing of 168 South Asians, along with whole-exome sequencing of 147 South Asians to provide deeper characterisation of coding regions. We identify 12,962,155 autosomal sequence variants, including 2,946,861 new SNPs and 312,738 novel indels. This catalogue of SNPs and indels amongst South Asians provides the first comprehensive map of genetic variation in this major human population, and reveals evidence for selective pressures on genes involved in skin biology, metabolism, infection and immunity. Our results will accelerate the search for the genetic variants underlying susceptibility to disorders such as type-2 diabetes and cardiovascular disease which are highly prevalent amongst South Asians. PMID:25115870

  10. Plantagora: Modeling Whole Genome Sequencing and Assembly of Plant Genomes

    PubMed Central

    Barthelson, Roger; McFarlin, Adam J.; Rounsley, Steven D.; Young, Sarah

    2011-01-01

    Background Genomics studies are being revolutionized by the next generation sequencing technologies, which have made whole genome sequencing much more accessible to the average researcher. Whole genome sequencing with the new technologies is a developing art that, despite the large volumes of data that can be produced, may still fail to provide a clear and thorough map of a genome. The Plantagora project was conceived to address specifically the gap between having the technical tools for genome sequencing and knowing precisely the best way to use them. Methodology/Principal Findings For Plantagora, a platform was created for generating simulated reads from several different plant genomes of different sizes. The resulting read files mimicked either 454 or Illumina reads, with varying paired end spacing. Thousands of datasets of reads were created, most derived from our primary model genome, rice chromosome one. All reads were assembled with different software assemblers, including Newbler, Abyss, and SOAPdenovo, and the resulting assemblies were evaluated by an extensive battery of metrics chosen for these studies. The metrics included both statistics of the assembly sequences and fidelity-related measures derived by alignment of the assemblies to the original genome source for the reads. The results were presented in a website, which includes a data graphing tool, all created to help the user compare rapidly the feasibility and effectiveness of different sequencing and assembly strategies prior to testing an approach in the lab. Some of our own conclusions regarding the different strategies were also recorded on the website. Conclusions/Significance Plantagora provides a substantial body of information for comparing different approaches to sequencing a plant genome, and some conclusions regarding some of the specific approaches. Plantagora also provides a platform of metrics and tools for studying the process of sequencing and assembly further. PMID:22174807

  11. Microbial Genomics Data from the DOE Joint Genome Institute (JGI)

    DOE Data Explorer

    The JGI makes high-quality genome sequencing data freely available to the greater scientific community through its web portal. Having played a significant role in the federally funded Human Genome Project -- generating the complete sequences of Chromosomes 5, 16, and 19--the JGI has now moved on to contributing in other critical areas of genomics research. While NIH-funded genome sequencing activities continue to emphasize human biomedical targets and applications, the JGI has since shifted its focus to the non-human components of the biosphere, particularly those relevant to the science mission of the Department of Energy. With efficiencies of scale established at the PGF, and capacity now exceeding three billion bases generated on a monthly basis, the JGI has tackled scores of additional genomes. These include more than 60 microbial genomes and many important multicellular organisms and communities of microbes. In partnership with other federal institutions and universities, the JGI is in the process of sequencing a frog (Xenopus tropicalis), a green alga (Chlamydomonas reinhardtii), a diatom (Thalassiosira pseudonana) , the cottonwood tree (Populus trichocarpa), and a host of agriculturally important plants and plant pathogens. Microorganisms, for example those that thrive under extreme conditions such as high acidity, radiation, and metal contamination, are of particular interest to the DOE and JGI. Investigations by JGI and its partners are shedding light on the cellular machinery of microbes and how they can be harnessed to clean up contaminated soil or water, capture carbon from the atmosphere, and produce potentially important sources of energy such as hydrogen and methane. [Excerpt from the JGI page "Who We Are" at http://www.jgi.doe.gov/whoweare/whoweare.html] From the JGI webportal users can view a photo grid of organisims, check assemblies for status, access the Integrated Microbial Genomes (IMG) system to do comparative analysis of publicly available

  12. Insights into conifer giga-genomes.

    PubMed

    De La Torre, Amanda R; Birol, Inanc; Bousquet, Jean; Ingvarsson, Pär K; Jansson, Stefan; Jones, Steven J M; Keeling, Christopher I; MacKay, John; Nilsson, Ove; Ritland, Kermit; Street, Nathaniel; Yanchuk, Alvin; Zerbe, Philipp; Bohlmann, Jörg

    2014-12-01

    Insights from sequenced genomes of major land plant lineages have advanced research in almost every aspect of plant biology. Until recently, however, assembled genome sequences of gymnosperms have been missing from this picture. Conifers of the pine family (Pinaceae) are a group of gymnosperms that dominate large parts of the world's forests. Despite their ecological and economic importance, conifers seemed long out of reach for complete genome sequencing, due in part to their enormous genome size (20-30 Gb) and the highly repetitive nature of their genomes. Technological advances in genome sequencing and assembly enabled the recent publication of three conifer genomes: white spruce (Picea glauca), Norway spruce (Picea abies), and loblolly pine (Pinus taeda). These genome sequences revealed distinctive features compared with other plant genomes and may represent a window into the past of seed plant genomes. This Update highlights recent advances, remaining challenges, and opportunities in light of the publication of the first conifer and gymnosperm genomes. PMID:25349325

  13. Jumbled genomes: missing Apicomplexan synteny.

    PubMed

    DeBarry, Jeremy D; Kissinger, Jessica C

    2011-10-01

    Whole-genome comparisons provide insight into genome evolution by informing on gene repertoires, gene gains/losses, and genome organization. Most of our knowledge about eukaryotic genome evolution is derived from studies of multicellular model organisms. The eukaryotic phylum Apicomplexa contains obligate intracellular protist parasites responsible for a wide range of human and veterinary diseases (e.g., malaria, toxoplasmosis, and theileriosis). We have developed an in silico protein-encoding gene based pipeline to investigate synteny across 12 apicomplexan species from six genera. Genome rearrangement between lineages is extensive. Syntenic regions (conserved gene content and order) are rare between lineages and appear to be totally absent across the phylum, with no group of three genes found on the same chromosome and in the same order within 25 kb up- and downstream of any orthologous genes. Conserved synteny between major lineages is limited to small regions in Plasmodium and Theileria/Babesia species, and within these conserved regions, there are a number of proteins putatively targeted to organelles. The observed overall lack of synteny is surprising considering the divergence times and the apparent absence of transposable elements (TEs) within any of the species examined. TEs are ubiquitous in all other groups of eukaryotes studied to date and have been shown to be involved in genomic rearrangements. It appears that there are different criteria governing genome evolution within the Apicomplexa relative to other well-studied unicellular and multicellular eukaryotes. PMID:21504890

  14. The genome of Eucalyptus grandis

    SciTech Connect

    Myburg, Alexander A.; Grattapaglia, Dario; Tuskan, Gerald A.; Hellsten, Uffe; Hayes, Richard D.; Grimwood, Jane; Jenkins, Jerry; Lindquist, Erika; Tice, Hope; Bauer, Diane; Goodstein, David M.; Dubchak, Inna; Poliakov, Alexandre; Mizrachi, Eshchar; Kullan, Anand R. K.; Hussey, Steven G.; Pinard, Desre; van der Merwe, Karen; Singh, Pooja; van Jaarsveld, Ida; Silva-Junior, Orzenil B.; Togawa, Roberto C.; Pappas, Marilia R.; Faria, Danielle A.; Sansaloni, Carolina P.; Petroli, Cesar D.; Yang, Xiaohan; Ranjan, Priya; Tschaplinski, Timothy J.; Ye, Chu-Yu; Li, Ting; Sterck, Lieven; Vanneste, Kevin; Murat, Florent; Soler, Marçal; Clemente, Hélène San; Saidi, Naijib; Cassan-Wang, Hua; Dunand, Christophe; Hefer, Charles A.; Bornberg-Bauer, Erich; Kersting, Anna R.; Vining, Kelly; Amarasinghe, Vindhya; Ranik, Martin; Naithani, Sushma; Elser, Justin; Boyd, Alexander E.; Liston, Aaron; Spatafora, Joseph W.; Dharmwardhana, Palitha; Raja, Rajani; Sullivan, Christopher; Romanel, Elisson; Alves-Ferreira, Marcio; Külheim, Carsten; Foley, William; Carocha, Victor; Paiva, Jorge; Kudrna, David; Brommonschenkel, Sergio H.; Pasquali, Giancarlo; Byrne, Margaret; Rigault, Philippe; Tibbits, Josquin; Spokevicius, Antanas; Jones, Rebecca C.; Steane, Dorothy A.; Vaillancourt, René E.; Potts, Brad M.; Joubert, Fourie; Barry, Kerrie; Pappas, Georgios J.; Strauss, Steven H.; Jaiswal, Pankaj; Grima-Pettenati, Jacqueline; Salse, Jérôme; Van de Peer, Yves; Rokhsar, Daniel S.; Schmutz, Jeremy

    2014-06-11

    Eucalypts are the world s most widely planted hardwood trees. Their broad adaptability, rich species diversity, fast growth and superior multipurpose wood, have made them a global renewable resource of fiber and energy that mitigates human pressures on natural forests. We sequenced and assembled >94% of the 640 Mbp genome of Eucalyptus grandis into its 11 chromosomes. A set of 36,376 protein coding genes were predicted revealing that 34% occur in tandem duplications, the largest proportion found thus far in any plant genome. Eucalypts also show the highest diversity of genes for plant specialized metabolism that act as chemical defence against biotic agents and provide unique pharmaceutical oils. Resequencing of a set of inbred tree genomes revealed regions of strongly conserved heterozygosity, likely hotspots of inbreeding depression. The resequenced genome of the sister species E. globulus underscored the high inter-specific genome colinearity despite substantial genome size variation in the genus. The genome of E. grandis is the first reference for the early diverging Rosid order Myrtales and is placed here basal to the Eurosids. This resource expands knowledge on the unique biology of large woody perennials and provides a powerful tool to accelerate comparative biology, breeding and biotechnology.

  15. Genomics in the ecological arena.

    PubMed

    Orsini, Luisa; Decaestecker, Ellen; De Meester, Luc; Pfrender, Michael E; Colbourne, John K

    2011-02-23

    This meeting report presents the cutting-edge research that is developing around the waterflea Daphnia, an emerging model system in environmental genomics. Daphnia has been a model species in ecology, toxicology and evolution for many years and is supported by a large community of ecologists, evolutionary biologists and ecotoxicologists. Thanks to new advances in genomics and transciptomics and to the sustained efforts of the Daphnia Genomics Consortium (DGC), Daphnia is also rapidly developing as a model system in environmental genomics. Advances in this emerging field were presented at the DGC 2010, held for the first time in a European University. During the meeting, a plethora of elegant studies were presented on the mechanisms of responses to environmental challenges using recently developed genomic tools. The DGC 2010 is a concrete example of the new trends in ecology and evolution. The times are mature for the application of innovative genomic and transcriptomic tools for studies of environmental genomics in non-model organisms. PMID:20702453

  16. Clinical genomics: from a truly personal genome viewpoint.

    PubMed

    Lupski, James R

    2016-06-01

    The path to Clinical Genomics is punctuated by our understanding of what types of DNA structural and sequence variation contribute to disease, the many technical challenges to detect such variation genome-wide, and the initial struggles to interpret personal genome variation in the context of disease. This review describes one perspective of the development of clinical genomics; whereas the experimental challenges, and hurdles to overcoming them, might be deemed readily apparent, the non-technical issues for clinical implementation may be less obvious. Some of these latter challenges, including: (1) informed consent, (2) privacy, (3) what constitutes potentially pathogenic variation contributing to disease, (4) disease penetrance in populations, and (5) the genetic architecture of disease, and the struggles sometimes faced for solutions, are highlighted using illustrative examples. PMID:27221143

  17. Comparative genomics reveals insights into avian genome evolution and adaptation

    PubMed Central

    Zhang, Guojie; Li, Cai; Li, Qiye; Li, Bo; Larkin, Denis M.; Lee, Chul; Storz, Jay F.; Antunes, Agostinho; Greenwold, Matthew J.; Meredith, Robert W.; Ödeen, Anders; Cui, Jie; Zhou, Qi; Xu, Luohao; Pan, Hailin; Wang, Zongji; Jin, Lijun; Zhang, Pei; Hu, Haofu; Yang, Wei; Hu, Jiang; Xiao, Jin; Yang, Zhikai; Liu, Yang; Xie, Qiaolin; Yu, Hao; Lian, Jinmin; Wen, Ping; Zhang, Fang; Li, Hui; Zeng, Yongli; Xiong, Zijun; Liu, Shiping; Zhou, Long; Huang, Zhiyong; An, Na; Wang, Jie; Zheng, Qiumei; Xiong, Yingqi; Wang, Guangbiao; Wang, Bo; Wang, Jingjing; Fan, Yu; da Fonseca, Rute R.; Alfaro-Núñez, Alonzo; Schubert, Mikkel; Orlando, Ludovic; Mourier, Tobias; Howard, Jason T.; Ganapathy, Ganeshkumar; Pfenning, Andreas; Whitney, Osceola; Rivas, Miriam V.; Hara, Erina; Smith, Julia; Farré, Marta; Narayan, Jitendra; Slavov, Gancho; Romanov, Michael N; Borges, Rui; Machado, João Paulo; Khan, Imran; Springer, Mark S.; Gatesy, John; Hoffmann, Federico G.; Opazo, Juan C.; Håstad, Olle; Sawyer, Roger H.; Kim, Heebal; Kim, Kyu-Won; Kim, Hyeon Jeong; Cho, Seoae; Li, Ning; Huang, Yinhua; Bruford, Michael W.; Zhan, Xiangjiang; Dixon, Andrew; Bertelsen, Mads F.; Derryberry, Elizabeth; Warren, Wesley; Wilson, Richard K; Li, Shengbin; Ray, David A.; Green, Richard E.; O’Brien, Stephen J.; Griffin, Darren; Johnson, Warren E.; Haussler, David; Ryder, Oliver A.; Willerslev, Eske; Graves, Gary R.; Alström, Per; Fjeldså, Jon; Mindell, David P.; Edwards, Scott V.; Braun, Edward L.; Rahbek, Carsten; Burt, David W.; Houde, Peter; Zhang, Yong; Yang, Huanming; Wang, Jian; Jarvis, Erich D.; Gilbert, M. Thomas P.; Wang, Jun

    2015-01-01

    Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits. PMID:25504712

  18. Orthology for comparative genomics in the mouse genome database.

    PubMed

    Dolan, Mary E; Baldarelli, Richard M; Bello, Susan M; Ni, Li; McAndrews, Monica S; Bult, Carol J; Kadin, James A; Richardson, Joel E; Ringwald, Martin; Eppig, Janan T; Blake, Judith A

    2015-08-01

    The mouse genome database (MGD) is the model organism database component of the mouse genome informatics system at The Jackson Laboratory. MGD is the international data resource for the laboratory mouse and facilitates the use of mice in the study of human health and disease. Since its beginnings, MGD has included comparative genomics data with a particular focus on human-mouse orthology, an essential component of the use of mouse as a model organism. Over the past 25 years, novel algorithms and addition of orthologs from other model organisms have enriched comparative genomics in MGD data, extending the use of orthology data to support the laboratory mouse as a model of human biology. Here, we describe current comparative data in MGD and review the history and refinement of orthology representation in this resource. PMID:26223881

  19. Applied genomics: Tools ranging from genomic prediction to bioconservation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This invited presentation will provide an overview of the development of genomic tools in cattle and goats, and how these approaches and methodologies can be adapted for bioconservation of endangered ruminant species....

  20. Genome Modeling System: A Knowledge Management Platform for Genomics

    PubMed Central

    Griffith, Malachi; Griffith, Obi L.; Smith, Scott M.; Ramu, Avinash; Callaway, Matthew B.; Brummett, Anthony M.; Kiwala, Michael J.; Coffman, Adam C.; Regier, Allison A.; Oberkfell, Ben J.; Sanderson, Gabriel E.; Mooney, Thomas P.; Nutter, Nathaniel G.; Belter, Edward A.; Du, Feiyu; Long, Robert L.; Abbott, Travis E.; Ferguson, Ian T.; Morton, David L.; Burnett, Mark M.; Weible, James V.; Peck, Joshua B.; Dukes, Adam; McMichael, Joshua F.; Lolofie, Justin T.; Derickson, Brian R.; Hundal, Jasreet; Skidmore, Zachary L.; Ainscough, Benjamin J.; Dees, Nathan D.; Schierding, William S.; Kandoth, Cyriac; Kim, Kyung H.; Lu, Charles; Harris, Christopher C.; Maher, Nicole; Maher, Christopher A.; Magrini, Vincent J.; Abbott, Benjamin S.; Chen, Ken; Clark, Eric; Das, Indraniel; Fan, Xian; Hawkins, Amy E.; Hepler, Todd G.; Wylie, Todd N.; Leonard, Shawn M.; Schroeder, William E.; Shi, Xiaoqi; Carmichael, Lynn K.; Weil, Matthew R.; Wohlstadter, Richard W.; Stiehr, Gary; McLellan, Michael D.; Pohl, Craig S.; Miller, Christopher A.; Koboldt, Daniel C.; Walker, Jason R.; Eldred, James M.; Larson, David E.; Dooling, David J.; Ding, Li; Mardis, Elaine R.; Wilson, Richard K.

    2015-01-01

    In this work, we present the Genome Modeling System (GMS), an analysis information management system capable of executing automated genome analysis pipelines at a massive scale. The GMS framework provides detailed tracking of samples and data coupled with reliable and repeatable analysis pipelines. The GMS also serves as a platform for bioinformatics development, allowing a large team to collaborate on data analysis, or an individual researcher to leverage the work of others effectively within its data management system. Rather than separating ad-hoc analysis from rigorous, reproducible pipelines, the GMS promotes systematic integration between the two. As a demonstration of the GMS, we performed an integrated analysis of whole genome, exome and transcriptome sequencing data from a breast cancer cell line (HCC1395) and matched lymphoblastoid line (HCC1395BL). These data are available for users to test the software, complete tutorials and develop novel GMS pipeline configurations. The GMS is available at https://github.com/genome/gms. PMID:26158448

  1. Comparative genomics reveals insights into avian genome evolution and adaptation.

    PubMed

    Zhang, Guojie; Li, Cai; Li, Qiye; Li, Bo; Larkin, Denis M; Lee, Chul; Storz, Jay F; Antunes, Agostinho; Greenwold, Matthew J; Meredith, Robert W; Ödeen, Anders; Cui, Jie; Zhou, Qi; Xu, Luohao; Pan, Hailin; Wang, Zongji; Jin, Lijun; Zhang, Pei; Hu, Haofu; Yang, Wei; Hu, Jiang; Xiao, Jin; Yang, Zhikai; Liu, Yang; Xie, Qiaolin; Yu, Hao; Lian, Jinmin; Wen, Ping; Zhang, Fang; Li, Hui; Zeng, Yongli; Xiong, Zijun; Liu, Shiping; Zhou, Long; Huang, Zhiyong; An, Na; Wang, Jie; Zheng, Qiumei; Xiong, Yingqi; Wang, Guangbiao; Wang, Bo; Wang, Jingjing; Fan, Yu; da Fonseca, Rute R; Alfaro-Núñez, Alonzo; Schubert, Mikkel; Orlando, Ludovic; Mourier, Tobias; Howard, Jason T; Ganapathy, Ganeshkumar; Pfenning, Andreas; Whitney, Osceola; Rivas, Miriam V; Hara, Erina; Smith, Julia; Farré, Marta; Narayan, Jitendra; Slavov, Gancho; Romanov, Michael N; Borges, Rui; Machado, João Paulo; Khan, Imran; Springer, Mark S; Gatesy, John; Hoffmann, Federico G; Opazo, Juan C; Håstad, Olle; Sawyer, Roger H; Kim, Heebal; Kim, Kyu-Won; Kim, Hyeon Jeong; Cho, Seoae; Li, Ning; Huang, Yinhua; Bruford, Michael W; Zhan, Xiangjiang; Dixon, Andrew; Bertelsen, Mads F; Derryberry, Elizabeth; Warren, Wesley; Wilson, Richard K; Li, Shengbin; Ray, David A; Green, Richard E; O'Brien, Stephen J; Griffin, Darren; Johnson, Warren E; Haussler, David; Ryder, Oliver A; Willerslev, Eske; Graves, Gary R; Alström, Per; Fjeldså, Jon; Mindell, David P; Edwards, Scott V; Braun, Edward L; Rahbek, Carsten; Burt, David W; Houde, Peter; Zhang, Yong; Yang, Huanming; Wang, Jian; Jarvis, Erich D; Gilbert, M Thomas P; Wang, Jun

    2014-12-12

    Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits. PMID:25504712

  2. Behavior, Brain, and Genome in Genomic Disorders: Finding the Correspondences

    PubMed Central

    Grigorenko, Elena L.; Urban, Alexander E.; Mencl, Einar

    2014-01-01

    Objective Within the last decade or so, there has been an acceleration of research attempting to connect specific genetic lesions to patterns of brain structure and activation. This article comments on observations that have been made based on these recent data and discusses their importance for the field of investigations into developmental disorders. Method In making these observations, we focus on one specific genomic lesion, the well-studied, yet still incompletely understood, 22q11.2 deletion syndrome (22q11.2DS). Results We demonstrate the degree of variability in the phenotype that occurs at both the brain and behavioral levels of genomic disorders, and describe how this variability is, upon close inspection, represented at the genomic level. Conclusion We emphasize the importance of combining genetic/genomic analyses and neuroimaging for research and for future clinical diagnostic purposes, and for the purposes of developing individualized, patient-tailored treatment and remediation approaches. PMID:20814258

  3. In quest of genomic treasure

    PubMed Central

    INOUE, Kimiko; OGURA, Atsuo

    2015-01-01

    It should be emphasized that “129” is not simply a number but is also the designation of a mouse strain that has made a great contribution to modern biological science and technology. Embryonic stem cells derived from 129 mice were essential components of gene-targeting strategies in early research. More recently, 129 mice have provided superior donor genomes for cloning by nuclear transfer. Some factor or factors conferring genomic plasticity must exist in the 129 genome, but these remain unidentified. PMID:26400375

  4. Human genome. 1993 Program report

    SciTech Connect

    Not Available

    1994-03-01

    The purpose of this report is to update the Human Genome 1991-92 Program Report and provide new information on the DOE genome program to researchers, program managers, other government agencies, and the interested public. This FY 1993 supplement includes abstracts of 60 new or renewed projects and listings of 112 continuing and 28 completed projects. These two reports, taken together, present the most complete published view of the DOE Human Genome Program through FY 1993. Research is progressing rapidly toward 15-year goals of mapping and sequencing the DNA of each of the 24 different human chromosomes.

  5. Challenges in Whole-Genome Annotation of Pyrosequenced Eukaryotic Genomes

    SciTech Connect

    Kuo, Alan; Grigoriev, Igor

    2009-04-17

    Pyrosequencing technologies such as 454/Roche and Solexa/Illumina vastly lower the cost of nucleotide sequencing compared to the traditional Sanger method, and thus promise to greatly expand the number of sequenced eukaryotic genomes. However, the new technologies also bring new challenges such as shorter reads and new kinds and higher rates of sequencing errors, which complicate genome assembly and gene prediction. At JGI we are deploying 454 technology for the sequencing and assembly of ever-larger eukaryotic genomes. Here we describe our first whole-genome annotation of a purely 454-sequenced fungal genome that is larger than a yeast (>30 Mbp). The pezizomycotine (filamentous ascomycote) Aspergillus carbonarius belongs to the Aspergillus section Nigri species complex, members of which are significant as platforms for bioenergy and bioindustrial technology, as members of soil microbial communities and players in the global carbon cycle, and as agricultural toxigens. Application of a modified version of the standard JGI Annotation Pipeline has so far predicted ~;;10k genes. ~;;12percent of these preliminary annotations suffer a potential frameshift error, which is somewhat higher than the ~;;9percent rate in the Sanger-sequenced and conventionally assembled and annotated genome of fellow Aspergillus section Nigri member A. niger. Also,>90percent of A. niger genes have potential homologs in the A. carbonarius preliminary annotation. Weconclude, and with further annotation and comparative analysis expect to confirm, that 454 sequencing strategies provide a promising substrate for annotation of modestly sized eukaryotic genomes. We will also present results of annotation of a number of other pyrosequenced fungal genomes of bioenergy interest.

  6. Radiation Induced Genomic Instability

    SciTech Connect

    Morgan, William F.

    2011-03-01

    Radiation induced genomic instability can be observed in the progeny of irradiated cells multiple generations after irradiation of parental cells. The phenotype is well established both in vivo (Morgan 2003) and in vitro (Morgan 2003), and may be critical in radiation carcinogenesis (Little 2000, Huang et al. 2003). Instability can be induced by both the deposition of energy in irradiated cells as well as by signals transmitted by irradiated (targeted) cells to non-irradiated (non-targeted) cells (Kadhim et al. 1992, Lorimore et al. 1998). Thus both targeted and non-targeted cells can pass on the legacy of radiation to their progeny. However the radiation induced events and cellular processes that respond to both targeted and non-targeted radiation effects that lead to the unstable phenotype remain elusive. The cell system we have used to study radiation induced genomic instability utilizes human hamster GM10115 cells. These cells have a single copy of human chromosome 4 in a background of hamster chromosomes. Instability is evaluated in the clonal progeny of irradiated cells and a clone is considered unstable if it contains three or more metaphase sub-populations involving unique rearrangements of the human chromosome (Marder and Morgan 1993). Many of these unstable clones have been maintained in culture for many years and have been extensively characterized. As initially described by Clutton et al., (Clutton et al. 1996) many of our unstable clones exhibit persistently elevated levels of reactive oxygen species (Limoli et al. 2003), which appear to be due dysfunctional mitochondria (Kim et al. 2006, Kim et al. 2006). Interestingly, but perhaps not surprisingly, our unstable clones do not demonstrate a “mutator phenotype” (Limoli et al. 1997), but they do continue to rearrange their genomes for many years. The limiting factor with this system is the target – the human chromosome. While some clones demonstrate amplification of this chromosome and thus lend

  7. Archaic human genomics.

    PubMed

    Disotell, Todd R

    2012-01-01

    For much of the 20th century, the predominant view of human evolutionary history was derived from the fossil record. Homo erectus was seen arising in Africa from an earlier member of the genus and then spreading throughout the Old World and into the Oceania. A regional continuity model of anagenetic change from H. erectus via various intermediate archaic species into the modern humans in each of the regions inhabited by H. erectus was labeled the multiregional model of human evolution (MRE). A contrasting model positing a single origin, in Africa, of anatomically modern H. sapiens with some populations later migrating out of Africa and replacing the local archaic populations throughout the world with complete replacement became known as the recent African origin (RAO) model. Proponents of both models used different interpretations of the fossil record to bolster their views for decades. In the 1980s, molecular genetic techniques began providing evidence from modern human variation that allowed not only the different models of modern human origins to be tested but also the exploration demographic history and the types of selection that different regions of the genome and even specific traits had undergone. The majority of researchers interpreted these data as strongly supporting the RAO model, especially analyses of mitochondrial DNA (mtDNA). Extrapolating backward from modern patterns of variation and using various calibration points and substitution rates, a consensus arose that saw modern humans evolving from an African population around 200,000 years ago. Much later, around 50,000 years ago, a subset of this population migrated out of Africa replacing Neanderthals in Europe and western Asia as well as archaics in eastern Asia and Oceania. mtDNA sequences from more than two-dozen Neanderthals and early modern humans re-enforced this consensus. In 2010, however, the complete draft genomes of Neanderthals and of heretofore unknown hominins from Siberia, called

  8. The Materials Genome Project

    NASA Astrophysics Data System (ADS)

    Aourag, H.

    2008-09-01

    In the past, the search for new and improved materials was characterized mostly by the use of empirical, trial- and-error methods. This picture of materials science has been changing as the knowledge and understanding of fundamental processes governing a material's properties and performance (namely, composition, structure, history, and environment) have increased. In a number of cases, it is now possible to predict a material's properties before it has even been manufactured thus greatly reducing the time spent on testing and development. The objective of modern materials science is to tailor a material (starting with its chemical composition, constituent phases, and microstructure) in order to obtain a desired set of properties suitable for a given application. In the short term, the traditional "empirical" methods for developing new materials will be complemented to a greater degree by theoretical predictions. In some areas, computer simulation is already used by industry to weed out costly or improbable synthesis routes. Can novel materials with optimized properties be designed by computers? Advances in modelling methods at the atomic level coupled with rapid increases in computer capabilities over the last decade have led scientists to answer this question with a resounding "yes'. The ability to design new materials from quantum mechanical principles with computers is currently one of the fastest growing and most exciting areas of theoretical research in the world. The methods allow scientists to evaluate and prescreen new materials "in silico" (in vitro), rather than through time consuming experimentation. The Materials Genome Project is to pursue the theory of large scale modeling as well as powerful methods to construct new materials, with optimized properties. Indeed, it is the intimate synergy between our ability to predict accurately from quantum theory how atoms can be assembled to form new materials and our capacity to synthesize novel materials atom

  9. Sequencing and mapping of the onion genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cost of DNA sequencing continues to decline and, in the near future, it will become reasonable to undertake sequencing of the enormous nuclear genome of onion. We undertook sequencing of expressed and genomic regions of the onion genome to learn about the structure of the onion genome, as well a...

  10. Genomic Aspects of Research Involving Polyploid Plants

    SciTech Connect

    Yang, Xiaohan; Ye, Chuyu; Tschaplinski, Timothy J; Wullschleger, Stan D; Tuskan, Gerald A

    2011-01-01

    Almost all extant plant species have spontaneously doubled their genomes at least once in their evolutionary histories, resulting in polyploidy which provided a rich genomic resource for evolutionary processes. Moreover, superior polyploid clones have been created during the process of crop domestication. Polyploid plants generated by evolutionary processes and/or crop domestication have been the intentional or serendipitous focus of research dealing with the dynamics and consequences of genome evolution. One of the new trends in genomics research is to create synthetic polyploid plants which provide materials for studying the initial genomic changes/responses immediately after polyploid formation. Polyploid plants are also used in functional genomics research to study gene expression in a complex genomic background. In this review, we summarize the recent progress in genomics research involving ancient, young, and synthetic polyploid plants, with a focus on genome size evolution, genomics diversity, genomic rearrangement, genetic and epigenetic changes in duplicated genes, gene discovery, and comparative genomics. Implications on plant sciences including evolution, functional genomics, and plant breeding are presented. It is anticipated that polyploids will be a regular subject of genomics research in the foreseeable future as the rapid advances in DNA sequencing technology create unprecedented opportunities for discovering and monitoring genomic and transcriptomic changes in polyploid plants. The fast accumulation of knowledge on polyploid formation, maintenance, and divergence at whole-genome and subgenome levels will not only help plant biologists understand how plants have evolved and diversified, but also assist plant breeders in designing new strategies for crop improvement.

  11. 2004 Structural, Function and Evolutionary Genomics

    SciTech Connect

    Douglas L. Brutlag Nancy Ryan Gray

    2005-03-23

    This Gordon conference will cover the areas of structural, functional and evolutionary genomics. It will take a systematic approach to genomics, examining the evolution of proteins, protein functional sites, protein-protein interactions, regulatory networks, and metabolic networks. Emphasis will be placed on what we can learn from comparative genomics and entire genomes and proteomes.

  12. Meeting Highlights: Genome Sequencing and Biology 2001

    PubMed Central

    2001-01-01

    We bring you a report from the CSHL Genome Sequencing and Biology Meeting, which has a long and prestigious history. This year there were sessions on large-scale sequencing and analysis, polymorphisms (covering discovery and technologies and mapping and analysis), comparative genomics of mammalian and model organism genomes, functional genomics and bioinformatics. PMID:18628920

  13. Reannotation of Shewanella oneidensis genome.

    PubMed

    Daraselia, N; Dernovoy, D; Tian, Y; Borodovsky, M; Tatusov, R; Tatusova, T

    2003-01-01

    As more and more complete bacterial genome sequences become available, the genome annotation of previously sequenced genomes may become quickly outdated. This is primarily due to the discovery and functional characterization of new genes. We have reannotated the recently published genome of Shewanella oneidensis with the following results: 51 new genes have been identified, and functional annotation has been added to the 97 genes, including 15 new and 82 existing ones with previously unassigned function. The identification of new genes was achieved by predicting the protein coding regions using the HMM-based program GeneMark.hmm. Subsequent comparison of the predicted gene products to the non-redundant protein database using BLAST and the COG (Clusters of Orthologous Groups) database using COGNITOR provided for the functional annotation. PMID:14506846

  14. Do Echinoderm Genomes Measure Up?

    PubMed Central

    Cameron, R. Andrew; Kudtarkar, Parul; Gordon, Susan M.; Worley, Kim C.; Gibbs, Richard A.

    2015-01-01

    Echinoderm genome sequences are a corpus of useful information about a clade of animals that serve as research models in fields ranging from marine ecology to cell and developmental biology. Genomic information from echinoids has contributed to insights into the gene interactions that drive the developmental process at the molecular level. Such insights often rely heavily on genomic information and the kinds of questions that can be asked thus depend on the quality of the sequence information. Here we describe the history of echinoderm genomic sequence assembly and present details about the quality of the data obtained. All of the sequence information discussed here is posted on the echinoderm information web system, Echinobase.org. PMID:25701080

  15. Genomics and equal opportunity ethics.

    PubMed

    Cappelen, A W; Norheim, O F; Tungodden, B

    2008-05-01

    Genomics provides information on genetic susceptibility to diseases and new possibilities for interventions which can fundamentally alter the design of fair health policies. The aim of this paper is to explore implications of genomics from the perspective of equal opportunity ethics. The ideal of equal opportunity requires that individuals are held responsible for some, but not all, factors that affect their health. Informational problems, however, often make it difficult to implement the ideal of equal opportunity in the context of healthcare. In this paper, examples are considered of how new genetic information may affect the way individual responsibility for choice is assigned. It is also argued that genomics may result in relocation of the responsibility cut by providing both new information and new technology. Finally, how genomics may affect healthcare policies and the market for health insurance is discussed. PMID:18448717

  16. Genomic Resources for Cancer Epidemiology

    Cancer.gov

    This page provides links to research resources, complied by the Epidemiology and Genomics Research Program, that may be of interest to genetic epidemiologists conducting cancer research, but is not exhaustive.

  17. Collaborators | Office of Cancer Genomics

    Cancer.gov

    The TARGET initiative is jointly managed within the National Cancer Institute (NCI) by the Office of Cancer Genomics (OCG)Opens in a New Tab and the Cancer Therapy Evaluation Program (CTEP)Opens in a New Tab.

  18. Genomic Datasets for Cancer Research

    Cancer.gov

    A variety of datasets from genome-wide association studies of cancer and other genotype-phenotype studies, including sequencing and molecular diagnostic assays, are available to approved investigators through the Extramural National Cancer Institute Data Access Committee.

  19. Genome Statute and Legislation Database

    MedlinePlus

    ... of page Last Reviewed: February 29, 2016 Get Email Updates Advancing human health through genomics research Privacy Copyright Contact Accessibility Plug-ins Site Map Staff Directory FOIA Share Top

  20. Genomic understanding of glioblastoma expanded

    Cancer.gov

    Glioblastoma multiforme (GBM) was the first cancer type to be systematically studied by TCGA in 2008. In a new, complementary report, TCGA experts examined more than 590 GBM samples--the largest to date utilizing genomic characterization techniques and ne

  1. Mutational dynamics of aroid chloroplast genomes.

    PubMed

    Ahmed, Ibrar; Biggs, Patrick J; Matthews, Peter J; Collins, Lesley J; Hendy, Michael D; Lockhart, Peter J

    2012-01-01

    A characteristic feature of eukaryote and prokaryote genomes is the co-occurrence of nucleotide substitution and insertion/deletion (indel) mutations. Although similar observations have also been made for chloroplast DNA, genome-wide associations have not been reported. We determined the chloroplast genome sequences for two morphotypes of taro (Colocasia esculenta; family Araceae) and compared these with four publicly available aroid chloroplast genomes. Here, we report the extent of genome-wide association between direct and inverted repeats, indels, and substitutions in these aroid chloroplast genomes. We suggest that alternative but not mutually exclusive hypotheses explain the mutational dynamics of chloroplast genome evolution. PMID:23204304

  2. Genomic imprinting and cancer.

    PubMed Central

    Joyce, J A; Schofield, P N

    1998-01-01

    Genomic imprinting is the phenomenon by which individual alleles of certain genes are expressed differentially according to their parent of origin. The alleles appear to be differentially marked during gametogenesis or during the early part of development. This mark is heritable but reversible from generation to generation, implying a stable epigenetic modification. Approximately 25 imprinted genes have been identified to date, and dysregulation of a number of these has been implicated in tumour development. The normal physiological role of many imprinted genes is in the control of cell proliferation and fetal growth, indicating potential mechanisms of action in tumour formation. Both dominant and recessive modes of action have been postulated for the role of imprinted genes in neoplasia, as a result of effective gene dosage alterations by epigenetic modification of the normal pattern of allele specific transcription. The aim of this review is to assess the importance of imprinted genes in generating tumours and to discuss the implications for novel mechanisms of transforming mutation. PMID:9893743

  3. The soft genome

    PubMed Central

    Anava, Sarit; Posner, Rachel; Rechavi, Oded

    2014-01-01

    Caenorhabditis elegans (C. elegans) nematodes transmit small RNAs across generations, a process that enables transgenerational regulation of genes. In contrast to changes to the DNA sequence, transgenerational transmission of small RNA-mediated responses is reversible, and thus enables “soft” or “flexible” inheritance of acquired characteristics. Until very recently only introduction of foreign genetic material (viruses, transposons, transgenes) was shown to directly lead to inheritance of small RNAs. New discoveries however, demonstrate that starvation also triggers inheritance of endogenous small RNAs in C.elegans. Multiple generations of worms inherit starvation-responsive endogenous small RNAs, and starvation also results in heritable extension of the progeny's lifespan. In this Commentary paper we explore the intriguing possibility that large parts of the genome and many additional traits are similarly subjected to heritable small RNA-mediated regulation, and focus on the potential influence of transgenerational RNAi on the worm's physiology. While the universal relevance of this mechanism remains to be discovered, we will examine how the discoveries made in worms already challenge long held dogmas in genetics and evolution. PMID:26430554

  4. Eukaryotic Genomics Data from the DOE Joint Genome Institute (JGI)

    DOE Data Explorer

    The JGI makes high-quality genome sequencing data freely available to the greater scientific community through its web portal. Having played a significant role in the federally funded Human Genome Project -- generating the complete sequences of Chromosomes 5, 16, and 19--the JGI has now moved on to contributing in other critical areas of genomics research. While NIH-funded genome sequencing activities continue to emphasize human biomedical targets and applications, the JGI has since shifted its focus to the non-human components of the biosphere, particularly those relevant to the science mission of the Department of Energy. With efficiencies of scale established at the PGF, and capacity now exceeding three billion bases generated on a monthly basis, the JGI has tackled scores of additional genomes. These include more than 60 microbial genomes and many important multicellular organisms and communities of microbes. In partnership with other federal institutions and universities, the JGI is in the process of sequencing a frog (Xenopus tropicalis), a green alga (Chlamydomonas reinhardtii), a diatom (Thalassiosira pseudonana) , the cottonwood tree (Populus trichocarpa), and a host of agriculturally important plants and plant pathogens. Microorganisms, for example those that thrive under extreme conditions such as high acidity, radiation, and metal contamination, are of particular interest to the DOE and JGI. Investigations by JGI and its partners are shedding light on the cellular machinery of microbes and how they can be harnessed to clean up contaminated soil or water, capture carbon from the atmosphere, and produce potentially important sources of energy such as hydrogen and methane. [Excerpt from the JGI page "Who We Are" at http://www.jgi.doe.gov/whoweare/whoweare.html] From the JGI webportal users can choose Eukaryotic genomes from a photo list, access the JGI FTP directories to download data files, use the Tree of Life navigation tool, or choose a genome and go

  5. Genomic Landscapes of Pancreatic Neoplasia

    PubMed Central

    Wood, Laura D.; Hruban, Ralph H.

    2015-01-01

    Pancreatic cancer is a deadly disease with a dismal prognosis. However, recent advances in sequencing and bioinformatic technology have led to the systematic characterization of the genomes of all major tumor types in the pancreas. This characterization has revealed the unique genomic landscape of each tumor type. This knowledge will pave the way for improved diagnostic and therapeutic approaches to pancreatic tumors that take advantage of the genetic alterations in these neoplasms. PMID:25812653

  6. IS4 family goes genomic

    PubMed Central

    2008-01-01

    Background Insertion sequences (ISs) are small, mobile DNA entities able to expand in prokaryotic genomes and trigger important rearrangements. To understand their role in evolution, accurate IS taxonomy is essential. The IS4 family is composed of ~70 elements and, like some other families, displays extremely elevated levels of internal divergence impeding its classification. The increasing availability of complete genome sequences provides a valuable source for the discovery of additional IS4 elements. In this study, this genomic database was used to update the structural and functional definition of the IS4 family. Results A total of 227 IS4-related sequences were collected among more than 500 sequenced bacterial and archaeal genomes, representing more than a three fold increase of the initial inventory. A clear division into seven coherent subgroups was discovered as well as three emerging families, which displayed distinct structural and functional properties. The IS4 family was sporadically present in 17 % of analyzed genomes, with most of them displaying single or a small number of IS4 elements. Significant expansions were detected only in some pathogens as well as among certain extremophiles, suggesting the probable involvement of some elements in bacterial and archaeal adaptation and/or evolution. Finally, it should be noted that some IS4 subgroups and two emerging families occurred preferentially in specific phyla or exclusively inside a specific genus. Conclusion The present taxonomic update of IS4 and emerging families will facilitate the classification of future elements as they arise from ongoing genome sequencing. Their narrow genomic impact and the existence of both IS-poor and IS-rich thriving prokaryotes suggested that these families, and probably ISs in general, are occasionally used as a tool for genome flexibility and evolution, rather than just representing self sustaining DNA entities. PMID:18215304

  7. Contact | Office of Cancer Genomics

    Cancer.gov

    For more information about the Office of Cancer Genomics, please contact: Office of Cancer Genomics National Cancer Institute 31 Center Drive, 10A07 Bethesda, Maryland 20892-2580 Phone: (301) 451-8027 Fax: (301) 480-4368 Email: ocg@mail.nih.gov *Please note that this site will not function properly in Internet Explorer unless you completely turn off the Compatibility View*

  8. Genome diversity of Shigella boydii.

    PubMed

    Kania, Dane A; Hazen, Tracy H; Hossain, Anowar; Nataro, James P; Rasko, David A

    2016-06-01

    ITALIC! Shigella boydiiis one of the four ITALIC! Shigellaspecies that causes disease worldwide; however, there are few published studies that examine the genomic variation of this species. This study compares genomes of 72 total isolates; 28 ITALIC! S. boydiifrom Bangladesh and The Gambia that were recently isolated as part of the Global Enteric Multicenter Study (GEMS), 14 historical ITALIC! S. boydiigenomes in the public domain and 30 ITALIC! Escherichia coliand ITALIC! Shigellareference genomes that represent the genomic diversity of these pathogens. This comparative analysis of these 72 genomes identified that the ITALIC! S. boydiiisolates separate into three phylogenomic clades, each with specific gene content. Each of the clades contains ITALIC! S. boydiiisolates from geographic and temporally distant sources, indicating that the ITALIC! S. boydiiisolates from the GEMS are representative of ITALIC! S. boydii.This study describes the genome sequences of a collection of novel ITALIC! S. boydiiisolates and provides insight into the diversity of this species in comparison to the ITALIC! E. coliand other ITALIC! Shigellaspecies. PMID:27056949

  9. Shannon Information in Complete Genomes

    NASA Astrophysics Data System (ADS)

    Hsieh, Li-Ching; Chang, Chang-Heng; Lee, Hoong-Chien

    2004-03-01

    Genomes are books of life and necessarily carry a huge amount of information. This study was first motivated by the question: "How much information do complete genomes have?" As an answer we measured a particular type of Shannon information in all prokaryotes and eukaryotes whose complete genomes have been sequenced and are available in publically assessible database. The Shannon information in complete genome sequences follow an extremely simple pattern. With the exception of one eukaryote the Shannon information in all (more than 200) complete sequences belong to a single universality class given by a simple geometric recursion formula. The data are interpreted in terms of models for genome growth and inferred to suggest that the ancestors of present day genomes began to grow, mainly by stochastic, selectively neutral, duplications and short mutations, most likely when they were not more than 300 nt long. This notion of selective neutralism independently corroborates Kimura's neutral theory of evolution which was based on the investigation of polymorphisms of genes.

  10. Genomic expression during human myelopoiesis

    PubMed Central

    Ferrari, Francesco; Bortoluzzi, Stefania; Coppe, Alessandro; Basso, Dario; Bicciato, Silvio; Zini, Roberta; Gemelli, Claudia; Danieli, Gian Antonio; Ferrari, Sergio

    2007-01-01

    Background Human myelopoiesis is an exciting biological model for cellular differentiation since it represents a plastic process where multipotent stem cells gradually limit their differentiation potential, generating different precursor cells which finally evolve into distinct terminally differentiated cells. This study aimed at investigating the genomic expression during myeloid differentiation through a computational approach that integrates gene expression profiles with functional information and genome organization. Results Gene expression data from 24 experiments for 8 different cell types of the human myelopoietic lineage were used to generate an integrated myelopoiesis dataset of 9,425 genes, each reliably associated to a unique genomic position and chromosomal coordinate. Lists of genes constitutively expressed or silent during myelopoiesis and of genes differentially expressed in commitment phase of myelopoiesis were first identified using a classical data analysis procedure. Then, the genomic distribution of myelopoiesis genes was investigated integrating transcriptional and functional characteristics of genes. This approach allowed identifying specific chromosomal regions significantly highly or weakly expressed, and clusters of differentially expressed genes and of transcripts related to specific functional modules. Conclusion The analysis of genomic expression during human myelopoiesis using an integrative computational approach allowed discovering important relationships between genomic position, biological function and expression patterns and highlighting chromatin domains, including genes with coordinated expression and lineage-specific functions. PMID:17683550

  11. Genomic sequencing in clinical trials

    PubMed Central

    2011-01-01

    Human genome sequencing is the process by which the exact order of nucleic acid base pairs in the 24 human chromosomes is determined. Since the completion of the Human Genome Project in 2003, genomic sequencing is rapidly becoming a major part of our translational research efforts to understand and improve human health and disease. This article reviews the current and future directions of clinical research with respect to genomic sequencing, a technology that is just beginning to find its way into clinical trials both nationally and worldwide. We highlight the currently available types of genomic sequencing platforms, outline the advantages and disadvantages of each, and compare first- and next-generation techniques with respect to capabilities, quality, and cost. We describe the current geographical distributions and types of disease conditions in which these technologies are used, and how next-generation sequencing is strategically being incorporated into new and existing studies. Lastly, recent major breakthroughs and the ongoing challenges of using genomic sequencing in clinical research are discussed. PMID:22206293

  12. The dynamic genome of Hydra

    PubMed Central

    Chapman, Jarrod A.; Kirkness, Ewen F.; Simakov, Oleg; Hampson, Steven E.; Mitros, Therese; Weinmaier, Therese; Rattei, Thomas; Balasubramanian, Prakash G.; Borman, Jon; Busam, Dana; Disbennett, Kathryn; Pfannkoch, Cynthia; Sumin, Nadezhda; Sutton, Granger G.; Viswanathan, Lakshmi Devi; Walenz, Brian; Goodstein, David M.; Hellsten, Uffe; Kawashima, Takeshi; Prochnik, Simon E.; Putnam, Nicholas H.; Shu, Shengquiang; Blumberg, Bruce; Dana, Catherine E.; Gee, Lydia; Kibler, Dennis F.; Law, Lee; Lindgens, Dirk; Martinez, Daniel E.; Peng, Jisong; Wigge, Philip A.; Bertulat, Bianca; Guder, Corina; Nakamura, Yukio; Ozbek, Suat; Watanabe, Hiroshi; Khalturin, Konstantin; Hemmrich, Georg; Franke, André; Augustin, René; Fraune, Sebastian; Hayakawa, Eisuke; Hayakawa, Shiho; Hirose, Mamiko; Hwang, Jung Shan; Ikeo, Kazuho; Nishimiya-Fujisawa, Chiemi; Ogura, Atshushi; Takahashi, Toshio; Steinmetz, Patrick R. H.; Zhang, Xiaoming; Aufschnaiter, Roland; Eder, Marie-Kristin; Gorny, Anne-Kathrin; Salvenmoser, Willi; Heimberg, Alysha M.; Wheeler, Benjamin M.; Peterson, Kevin J.; Böttger, Angelika; Tischler, Patrick; Wolf, Alexander; Gojobori, Takashi; Remington, Karin A.; Strausberg, Robert L.; Venter, J. Craig; Technau, Ulrich; Hobmayer, Bert; Bosch, Thomas C. G.; Holstein, Thomas W.; Fujisawa, Toshitaka; Bode, Hans R.; David, Charles N.; Rokhsar, Daniel S.; Steele, Robert E.

    2015-01-01

    The freshwater cnidarian Hydra was first described in 17021 and has been the object of study for 300 years. Experimental studies of Hydra between 1736 and 1744 culminated in the discovery of asexual reproduction of an animal by budding, the first description of regeneration in an animal, and successful transplantation of tissue between animals2. Today, Hydra is an important model for studies of axial patterning3, stem cell biology4 and regeneration5. Here we report the genome of Hydra magnipapillata and compare it to the genomes of the anthozoan Nematostella vectensis6 and other animals. The Hydra genome has been shaped by bursts of transposable element expansion, horizontal gene transfer, trans-splicing, and simplification of gene structure and gene content that parallel simplification of the Hydra life cycle. We also report the sequence of the genome of a novel bacterium stably associated with H. magnipapillata. Comparisons of the Hydra genome to the genomes of other animals shed light on the evolution of epithelia, contractile tissues, developmentally regulated transcription factors, the Spemann–Mangold organizer, pluripotency genes and the neuromuscular junction. PMID:20228792

  13. Comparative genomic analyses in Asparagus.

    PubMed

    Kuhl, Joseph C; Havey, Michael J; Martin, William J; Cheung, Foo; Yuan, Qiaoping; Landherr, Lena; Hu, Yi; Leebens-Mack, James; Town, Christopher D; Sink, Kenneth C

    2005-12-01

    Garden asparagus (Asparagus officinalis L.) belongs to the monocot family Asparagaceae in the order Asparagales. Onion (Allium cepa L.) and Asparagus officinalis are 2 of the most economically important plants of the core Asparagales, a well supported monophyletic group within the Asparagales. Coding regions in onion have lower GC contents than the grasses. We compared the GC content of 3374 unique expressed sequence tags (ESTs) from A. officinalis with Lycoris longituba and onion (both members of the core Asparagales), Acorus americanus (sister to all other monocots), the grasses, and Arabidopsis. Although ESTs in A. officinalis and Acorus had a higher average GC content than Arabidopsis, Lycoris, and onion, all were clearly lower than the grasses. The Asparagaceae have the smallest nuclear genomes among all plants in the core Asparagales, which typically have huge genomes. Within the Asparagaceae, European Asparagus species have approximately twice the nuclear DNA of that of southern African Asparagus species. We cloned and sequenced 20 genomic amplicons from European A. officinalis and the southern African species Asparagus plumosus and observed no clear evidence for a recent genome doubling in A. officinalis relative to A. plumosus. These results indicate that members of the genus Asparagus with smaller genomes may be useful genomic models for plants in the core Asparagales. PMID:16391674

  14. Genomics and marine microbial ecology.

    PubMed

    Pedrós-Alió, Carlos

    2006-09-01

    Genomics has brought about a revolution in all fields of biology. Before the development of microbial ecology in the 1970s, microbes were not even considered in marine ecological studies. Today we know that half of the total primary production of the planet must be credited to microorganisms. This and other discoveries have changed dramatically the perspective and the focus of marine microbial ecology. The application of genomics-based approaches has provided new challenges and has allowed the discovery of novel functions, an appreciation of the great diversity of microorganisms, and the introduction of controversial ideas regarding the concepts of species, genome, and niche. Nevertheless, thorough knowledge of the traditional disciplines of biology is necessary to explore the possibilities arising from these new insights. This work reviews the different genomic techniques that can be applied to marine microbial ecology, including both sequencing of the complete genomes of microorganisms and metagenomics, which, in turn, can be complemented with the study of mRNAs (transcriptomics) and proteins (proteomics). The example of proteorhodopsin illustrates the type of information that can be gained from these approaches. A genomics perspective constitutes a map that will allow microbiologists to focus their research on potentially more productive aspects. PMID:17061209

  15. Comparative genomic hybridization with single cells after whole genome amplification

    SciTech Connect

    Haddad, B.R.; Baldini, A.; Hughes, M.R.

    1994-09-01

    Conventional karyotype analysis is the ideal way to diagnose chromosomal imbalances. However it requires cell culture and chromosome preparation. There are instances where a very small number of cells are available for cytogenetic evaluation and chromosomes cannot be obtained. Comparative genomic hybridization (CGH) is a novel molecular cytogenetic technique that provides information about genetic imbalances affecting the genome. The power of this technique lies in its ability to detect genetic imbalances using total genomic DNA. We have previously demonstrated the feasibility of whole genome amplification from single cells for subsequent analysis of multiple genetic loci by PCR. In this present work, we combine whole genome amplification with CGH to detect chromosomal imbalances from small numbers of cells. Both cytogenetically normal and abnormal cells were individually picked by micromanipulation and subjected to whole genome amplification using random oligonucleotide primers. Amplified test and control DNA were differentially labeled by incorporation of digoxigenin or biotin, mixed together and hybridized to normal male metaphase spreads. Hybridization was detected with two fluorochromes, rhodamine-anti-digoxigenin and FITC -Avidin. Ratio of intensities of the two fluorochromes along the target chromosomes was analyzed using locally developed computer imaging software. Using the combination of whole genome amplification and CGH, we were able to detect different chromosomal aneuploidies from 30, 20, and 10 cells. It can also be applied to the analysis of fetal cells sorted from maternal circulation, or to tumor cells obtained from needle biopsies or from different body fluids and effusions. Finally, its successful application to single cells will have a great impact on preimplantation diagnosis.

  16. Genomics and museum specimens.

    PubMed

    Nachman, Michael W

    2013-12-01

    Nearly 25 years ago, Allan Wilson and colleagues isolated DNA sequences from museum specimens of kangaroo rats (Dipodomys panamintinus) and compared these sequences with those from freshly collected animals (Thomas et al. 1990). The museum specimens had been collected up to 78 years earlier, so the two samples provided a direct temporal comparison of patterns of genetic variation. This was not the first time DNA sequences had been isolated from preserved material, but it was the first time it had been carried out with a population sample. Population geneticists often try to make inferences about the influence of historical processes such as selection, drift, mutation and migration on patterns of genetic variation in the present. The work of Wilson and colleagues was important in part because it suggested a way in which population geneticists could actually study genetic change in natural populations through time, much the same way that experimentalists can do with artificial populations in the laboratory. Indeed, the work of Thomas et al. (1990) spawned dozens of studies in which museum specimens were used to compare historical and present-day genetic diversity (reviewed in Wandeler et al. 2007). All of these studies, however, were limited by the same fundamental problem: old DNA is degraded into short fragments. As a consequence, these studies mostly involved PCR amplification of short templates, usually short stretches of mitochondrial DNA or microsatellites. In this issue, Bi et al. (2013) report a breakthrough that should open the door to studies of genomic variation in museum specimens. They used target enrichment (exon capture) and next-generation (Illumina) sequencing to compare patterns of genetic variation in historic and present-day population samples of alpine chipmunks (Tamias alpinus) (Fig. 1). The historic samples came from specimens collected in 1915, so the temporal span of this comparison is nearly 100 years. PMID:24138088

  17. Brazil: public health genomics.

    PubMed

    Castilla, E E; Luquetti, D V

    2009-01-01

    Brazil represents half of South America and one third of Latin America, having more than 186 million inhabitants. After China and India it is the third largest developing country in the world. The wealth is unequally distributed among the states and among the people. Brazil has a large and complex health care system. A Universal Public Health System (SUS: Sistema SPACEnico de Saúde) covers the medical expenses for 80% of the population. The genetic structure of the population is very complex, including a large proportion of tri- hybrid persons, genetic isolates, and a panmictic large majority. Genetic services are offered at 64 genetic centers, half of them public and free. Nationwide networks are operating for inborn errors of metabolism, oncogenetics, and craniofacial anomalies. The Brazilian Society of Medical Genetics (SBGM) has granted 120 board certifications since 1986, and 7 recognized residences in medical genetics are operating in the country. Three main public health actions promoted by the federal government have been undertaken in the last decade, ultimately aimed at the prevention of birth defects. Since 1999, birth defects are reported for all 3 million annual live births, several vaccination strategies aim at the eradication of rubella, and wheat and maize flours are fortified with folic acid. Currently, the government distributes over 2 million US dollars to finance 14 research projects aimed at providing the basis for the adequate prevention and care of genetics disorders through the SUS. Continuity of this proactive attitude of the government in the area of genomics in public health is desired. PMID:19023184

  18. The mouse genome informatics and the mouse genome database

    SciTech Connect

    Maltais, L.J.; Blackburn, R.E.; Bradt, D.W.

    1994-09-01

    The Mouse Genome Database (MGD) is a centralized, comprehensive database of the mouse genome that includes genetic mapping data, comparative mapping data, gene descriptions, mutant phenotype descriptions, strains and allelic polymorphism data, inbred strain characteristics, physical mapping data, and molecular probes and clones data. Data in MGD are obtained from the published literature and by electronic transfer from laboratories working on large backcross panels of mice. MGD provides tools that enable the user to search the database, retrieve data, generate reports, analyze data, annotate records, and build genetic maps. The Encyclopedia of the Mouse Genome provides a graphic user interface to mouse genome data. It consists of software tools including: LinkMap, a graphic display of genetic linkage maps with the ability to magnify regions of high locus density: CytoMap, a graphic display of cytogenetic maps showing banded chromosomes with cytogenetic locations of genes and chromosomal aberrations; CATS, a catalog searching tool for text retrieval of mouse locus descriptions. These software tools provide access to the following data sets: Chromosome Committee Reports, MIT Genome Center data, GBASE reports, Mouse Locus Catalog (MLC), and Mouse Cytogenetic Mapping Data. The MGD is available to the scientific community through the World Wide Web (WWW) and Gopher. In addition GBASE can be accessed via the Internet.

  19. Genomic repeats, genome plasticity and the dynamics of Mycoplasma evolution

    PubMed Central

    Rocha, Eduardo P. C.; Blanchard, Alain

    2002-01-01

    Mycoplasmas evolved by a drastic reduction in genome size, but their genomes contain numerous repeated sequences with important roles in their evolution. We have established a bioinformatic strategy to detect the major recombination hot-spots in the genomes of Mycoplasma pneumoniae, Mycoplasma genitalium, Ureaplasma urealyticum and Mycoplasma pulmonis. This allowed the identification of large numbers of potentially variable regions, as well as a comparison of the relative recombination potentials of different genomic regions. Different trends are perceptible among mycoplasmas, probably due to different functional and structural constraints. The largest potential for illegitimate recombination in M.pulmonis is found at the vsa locus and its comparison in two different strains reveals numerous changes since divergence. On the other hand, the main M.pneumoniae and M.genitalium adhesins rely on large distant repeats and, hence, homologous recombination for variation. However, the relation between the existence of repeats and antigenic variation is not necessarily straightforward, since repeats of P1 adhesin were found to be anti-correlated with epitopes recognized by patient antibodies. These different strategies have important consequences for the structures of genomes, since large distant repeats correlate well with the major chromosomal rearrangements. Probably to avoid such events, mycoplasmas strongly avoid inverse repeats, in comparison to co-oriented repeats. PMID:11972343

  20. Mapping whole genome shotgun sequence and variant calling in mammalian species without their reference genomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomics research in mammals has produced reference genome sequences that are essential for identifying variation associated with disease. High quality reference genome sequences are now available for humans, model species, and economically important agricultural animals. Comparisons between these s...

  1. GOLD: The Genomes Online Database

    DOE Data Explorer

    Kyrpides, Nikos; Liolios, Dinos; Chen, Amy; Tavernarakis, Nektarios; Hugenholtz, Philip; Markowitz, Victor; Bernal, Alex

    Since its inception in 1997, GOLD has continuously monitored genome sequencing projects worldwide and has provided the community with a unique centralized resource that integrates diverse information related to Archaea, Bacteria, Eukaryotic and more recently Metagenomic sequencing projects. As of September 2007, GOLD recorded 639 completed genome projects. These projects have their complete sequence deposited into the public archival sequence databases such as GenBank EMBL,and DDBJ. From the total of 639 complete and published genome projects as of 9/2007, 527 were bacterial, 47 were archaeal and 65 were eukaryotic. In addition to the complete projects, there were 2158 ongoing sequencing projects. 1328 of those were bacterial, 59 archaeal and 771 eukaryotic projects. Two types of metadata are provided by GOLD: (i) project metadata and (ii) organism/environment metadata. GOLD CARD pages for every project are available from the link of every GOLD_STAMP ID. The information in every one of these pages is organized into three tables: (a) Organism information, (b) Genome project information and (c) External links. [The Genomes On Line Database (GOLD) in 2007: Status of genomic and metagenomic projects and their associated metadata, Konstantinos Liolios, Konstantinos Mavromatis, Nektarios Tavernarakis and Nikos C. Kyrpides, Nucleic Acids Research Advance Access published online on November 2, 2007, Nucleic Acids Research, doi:10.1093/nar/gkm884]

    The basic tables in the GOLD database that can be browsed or searched include the following information:

    • Gold Stamp ID
    • Organism name
    • Domain
    • Links to information sources
    • Size and link to a map, when available
    • Chromosome number, Plas number, and GC content
    • A link for downloading the actual genome data
    • Institution that did the sequencing
    • Funding source
    • Database where information resides
    • Publication status and information

    • GIPSy: Genomic island prediction software.

      PubMed

      Soares, Siomar C; Geyik, Hakan; Ramos, Rommel T J; de Sá, Pablo H C G; Barbosa, Eudes G V; Baumbach, Jan; Figueiredo, Henrique C P; Miyoshi, Anderson; Tauch, Andreas; Silva, Artur; Azevedo, Vasco

      2016-08-20

      Bacteria are highly diverse organisms that are able to adapt to a broad range of environments and hosts due to their high genomic plasticity. Horizontal gene transfer plays a pivotal role in this genome plasticity and in evolution by leaps through the incorporation of large blocks of genome sequences, ordinarily known as genomic islands (GEIs). GEIs may harbor genes encoding virulence, metabolism, antibiotic resistance and symbiosis-related functions, namely pathogenicity islands (PAIs), metabolic islands (MIs), resistance islands (RIs) and symbiotic islands (SIs). Although many software for the prediction of GEIs exist, they only focus on PAI prediction and present other limitations, such as complicated installation and inconvenient user interfaces. Here, we present GIPSy, the genomic island prediction software, a standalone and user-friendly software for the prediction of GEIs, built on our previously developed pathogenicity island prediction software (PIPS). We also present four application cases in which we crosslink data from literature to PAIs, MIs, RIs and SIs predicted by GIPSy. Briefly, GIPSy correctly predicted the following previously described GEIs: 13 PAIs larger than 30kb in Escherichia coli CFT073; 1 MI for Burkholderia pseudomallei K96243, which seems to be a miscellaneous island; 1 RI of Acinetobacter baumannii AYE, named AbaR1; and, 1 SI of Mesorhizobium loti MAFF303099 presenting a mosaic structure. GIPSy is the first life-style-specific genomic island prediction software to perform analyses of PAIs, MIs, RIs and SIs, opening a door for a better understanding of bacterial genome plasticity and the adaptation to new traits. PMID:26376473

    • Genome size: a novel genomic signature in support of Afrotheria.

      PubMed

      Redi, Carlo Alberto; Garagna, Silvia; Zuccotti, Maurizio; Capanna, Ernesto

      2007-04-01

      Molecular phylogenetic analyses suggest an emerging phylogeny for the extant Placentalia (eutherian) that radically departs from morphologically based constructions of the past. Placental mammals are partitioned into four supraordinal clades: Afrotheria, Xenarthra, Laurasiatheria, and Euarchontoglires. Afrotheria form an endemic African clade that includes elephant shrews, golden moles, tenrecs, aardvarks, hyraxes, elephants, dugongs, and manatees. Datamining databases of genome size (GS) shows that till today just one afrotherian GS has been evaluated, that of the aardvark Orycteropus afer. We show that the GSs of six selected representatives across the Afrotheria supraordinal group are among the highest for the extant Placentalia, providing a novel genomic signature of this enigmatic group. The mean GS value of Afrotheria, 5.3 +/- 0.7 pg, is the highest reported for the extant Placentalia. This should assist in planning new genome sequencing initiatives. PMID:17479346

    • Genomics made easier: an introductory tutorial to genome datamining.

      PubMed

      Schattner, Peter

      2009-03-01

      Integrated genome databases--such as the UCSC, Ensembl and NCBI MapViewer databases--and their associated data querying and visualization interfaces (e.g. the genome browsers) have transformed the way that molecular biologists, geneticists and bioinformaticists analyze genomic data. Nevertheless, because of the complexity of these tools, many researchers take advantage of only a fraction of their capabilities. In this tutorial, using examples from medical genetics and alternative splicing, I describe some of the biological questions that can be addressed with these techniques. I also show why doing so typically is more effective than using alternative methods and indicate some of the resources available for learning more about the advanced capabilities of these powerful tools. PMID:19041391

    • Linking genome-scale metabolic modeling and genome annotation

      PubMed Central

      Blais, Edik M.; Chavali, Arvind K.; Papin, Jason A.

      2014-01-01

      Summary Genome-scale metabolic network reconstructions, assembled from annotated genomes, serve as a platform for integrating data from heterogeneous sources and generating hypotheses for further experimental validation. Implementing constraint-based modeling techniques such as Flux Balance Analysis (FBA) on network reconstructions allow for interrogating metabolism at a systems-level, which aids in identifying and rectifying gaps in knowledge. With genome sequences for various organisms from prokaryotes to eukaryotes becoming increasingly available, a significant bottleneck lies in the structural and functional annotation of these sequences. Using topologically-based and biologically-inspired metabolic network refinement, we can better characterize enzymatic functions present in an organism and link annotation of these functions to candidate transcripts, both steps that can be experimentally validated. PMID:23417799

    • Transcriptional Regulation: a Genomic Overview

      PubMed Central

      Riechmann, José Luis

      2002-01-01

      The availability of the Arabidopsis thaliana genome sequence allows a comprehensive analysis of transcriptional regulation in plants using novel genomic approaches and methodologies. Such a genomic view of transcription first necessitates the compilation of lists of elements. Transcription factors are the most numerous of the different types of proteins involved in transcription in eukaryotes, and the Arabidopsis genome codes for more than 1,500 of them, or approximately 6% of its total number of genes. A genome-wide comparison of transcription factors across the three eukaryotic kingdoms reveals the evolutionary generation of diversity in the components of the regulatory machinery of transcription. However, as illustrated by Arabidopsis, transcription in plants follows similar basic principles and logic to those in animals and fungi. A global view and understanding of transcription at a cellular and organismal level requires the characterization of the Arabidopsis transcriptome and promoterome, as well as of the interactome, the localizome, and the phenome of the proteins involved in transcription. PMID:22303220

    • Expanding genomics of mycorrhizal symbiosis

      PubMed Central

      Kuo, Alan; Kohler, Annegret; Martin, Francis M.; Grigoriev, Igor V.

      2014-01-01

      The mycorrhizal symbiosis between soil fungi and plant roots is a ubiquitous mutualism that plays key roles in plant nutrition, soil health, and carbon cycling. The symbiosis evolved repeatedly and independently as multiple morphotypes [e.g., arbuscular mycorrhizae (AM), ectomycorrhizal (ECM)] in multiple fungal clades (e.g., phyla Glomeromycota, Ascomycota, Basidiomycota). The accessibility and cultivability of many mycorrhizal partners make them ideal models for symbiosis studies. Alongside molecular, physiological, and ecological investigations, sequencing led to the first three mycorrhizal fungal genomes, representing two morphotypes and three phyla. The genome of the ECM basidiomycete Laccaria bicolor showed that the mycorrhizal lifestyle can evolve through loss of plant cell wall-degrading enzymes (PCWDEs) and expansion of lineage-specific gene families such as short secreted protein (SSP) effectors. The genome of the ECM ascomycete Tuber melanosporum showed that the ECM type can evolve without expansion of families as in Laccaria, and thus a different set of symbiosis genes. The genome of the AM glomeromycete Rhizophagus irregularis showed that despite enormous phylogenetic distance and morphological difference from the other two fungi, symbiosis can involve similar solutions as symbiosis-induced SSPs and loss of PCWDEs. The three genomes provide a solid base for addressing fundamental questions about the nature and role of a vital mutualism. PMID:25408690

    • Comparative genomics for biodiversity conservation

      PubMed Central

      Grueber, Catherine E.

      2015-01-01

      Genomic approaches are gathering momentum in biology and emerging opportunities lie in the creative use of comparative molecular methods for revealing the processes that influence diversity of wildlife. However, few comparative genomic studies are performed with explicit and specific objectives to aid conservation of wild populations. Here I provide a brief overview of comparative genomic approaches that offer specific benefits to biodiversity conservation. Because conservation examples are few, I draw on research from other areas to demonstrate how comparing genomic data across taxa may be used to inform the characterisation of conservation units and studies of hybridisation, as well as studies that provide conservation outcomes from a better understanding of the drivers of divergence. A comparative approach can also provide valuable insight into the threatening processes that impact rare species, such as emerging diseases and their management in conservation. In addition to these opportunities, I note areas where additional research is warranted. Overall, comparing and contrasting the genomic composition of threatened and other species provide several useful tools for helping to preserve the molecular biodiversity of the global ecosystem. PMID:26106461

    • Manipulating duckweed through genome duplication.

      PubMed

      Vunsh, R; Heinig, U; Malitsky, S; Aharoni, A; Avidov, A; Lerner, A; Edelman, M

      2015-01-01

      Significant inter- and intraspecific genetic variation exists in duckweed, thus the potential for genome plasticity and manipulation is high. Polyploidy is recognised as a major mechanism of adaptation and speciation in plants. We produced several genome-duplicated lines of Landoltia punctata (Spirodela oligorrhiza) from both whole plants and regenerating explants using a colchicine-based cocktail. These lines stably maintained an enlarged frond and root morphology. DNA ploidy levels determined by florescence-activated cell sorting indicated genome duplication. Line A4 was analysed after 75 biomass doublings. Frond area, fresh and dry weights, rhizoid number and length were significantly increased versus wild type, while the growth rate was unchanged. This resulted in accumulation of biomass 17-20% faster in the A4 plants. We sought to determine if specific differences in gene products are found in the genome duplicated lines. Non-targeted ultra performance LC-quadrupole time of flight mass spectrometry was employed to compare some of the lines and the wild type to seek identification of up-regulated metabolites. We putatively identified differential metabolites in Line A65 as caffeoyl hexoses. The combination of directed genome duplication and metabolic profiling might offer a path for producing stable gene expression, leading to altered production of secondary metabolites. PMID:25040392

    • Expanding genomics of mycorrhizal symbiosis

      SciTech Connect

      Kuo, Alan; Kohler, Annegret; Martin, Francis M.; Grigoriev, Igor V.

      2014-11-04

      The mycorrhizal symbiosis between soil fungi and plant roots is a ubiquitous mutualism that plays key roles in plant nutrition, soil health, and carbon cycling. The symbiosis evolved repeatedly and independently as multiple morphotypes [e.g., arbuscular mycorrhizae (AM), ectomycorrhizal (ECM)] in multiple fungal clades (e.g., phyla Glomeromycota, Ascomycota, Basidiomycota). The accessibility and cultivability of many mycorrhizal partners make them ideal models for symbiosis studies. Alongside molecular, physiological, and ecological investigations, sequencing led to the first three mycorrhizal fungal genomes, representing two morphotypes and three phyla. The genome of the ECM basidiomycete Laccaria bicolor showed that the mycorrhizal lifestyle can evolve through loss of plant cell wall-degrading enzymes (PCWDEs) and expansion of lineage-specific gene families such as short secreted protein (SSP) effectors. The genome of the ECM ascomycete Tuber melanosporum showed that the ECM type can evolve without expansion of families as in Laccaria, and thus a different set of symbiosis genes. The genome of the AM glomeromycete Rhizophagus irregularis showed that despite enormous phylogenetic distance and morphological difference from the other two fungi, symbiosis can involve similar solutions as symbiosis-induced SSPs and loss of PCWDEs. The three genomes provide a solid base for addressing fundamental questions about the nature and role of a vital mutualism.

    • Expanding genomics of mycorrhizal symbiosis

      DOE PAGESBeta

      Kuo, Alan; Kohler, Annegret; Martin, Francis M.; Grigoriev, Igor V.

      2014-11-04

      The mycorrhizal symbiosis between soil fungi and plant roots is a ubiquitous mutualism that plays key roles in plant nutrition, soil health, and carbon cycling. The symbiosis evolved repeatedly and independently as multiple morphotypes [e.g., arbuscular mycorrhizae (AM), ectomycorrhizal (ECM)] in multiple fungal clades (e.g., phyla Glomeromycota, Ascomycota, Basidiomycota). The accessibility and cultivability of many mycorrhizal partners make them ideal models for symbiosis studies. Alongside molecular, physiological, and ecological investigations, sequencing led to the first three mycorrhizal fungal genomes, representing two morphotypes and three phyla. The genome of the ECM basidiomycete Laccaria bicolor showed that the mycorrhizal lifestyle can evolvemore » through loss of plant cell wall-degrading enzymes (PCWDEs) and expansion of lineage-specific gene families such as short secreted protein (SSP) effectors. The genome of the ECM ascomycete Tuber melanosporum showed that the ECM type can evolve without expansion of families as in Laccaria, and thus a different set of symbiosis genes. The genome of the AM glomeromycete Rhizophagus irregularis showed that despite enormous phylogenetic distance and morphological difference from the other two fungi, symbiosis can involve similar solutions as symbiosis-induced SSPs and loss of PCWDEs. The three genomes provide a solid base for addressing fundamental questions about the nature and role of a vital mutualism.« less

    • The Fitness of Genomic Order

      NASA Astrophysics Data System (ADS)

      Zhang, Qiucen; Vyawahare, Saurabh; Austin, Robert

      2012-02-01

      Most bacteria have a single circular chromosome that can range in size from 160,000 to 12,200,000 base pairs. Considering the typical gene density, i.e. 1 gene per 1,000 base pairs, both the number of genes and the ways to arrange are huge. Intuitively, the arrangement of genes on the circle is not important if all of them can be replicated. However, there is typically one origin of replication, and when bacteria is attacked by genotoxic stress during replication, the whole replication process can not be finished. As a result, which gene is replicated first, which is second, ..., becomes very important. Experimentally, we found a broad increase of DNA copy number near the origin of replication (OriC) of bacteria E.coli (˜3200 genes) under genotoxic stress. Since the genes near OriC are mostly efflux pump genes, we propose that there is fitness advantage for those rapid stress response genes got replicated first, because they can facilitate the replication of the rest of genome. Similar to bacterial evolution to present genomic order, in the somatic evolution of cancer, genomic shuffling was also frequently observed, especially under genotoxic chemotherapy. Such re-arrangement of genome can be viewed as a journey to optimal point in the rugged fitness landscape of genomic order.

    • Comparative genomics of protoploid Saccharomycetaceae.

      PubMed

      Souciet, Jean-Luc; Dujon, Bernard; Gaillardin, Claude; Johnston, Mark; Baret, Philippe V; Cliften, Paul; Sherman, David J; Weissenbach, Jean; Westhof, Eric; Wincker, Patrick; Jubin, Claire; Poulain, Julie; Barbe, Valérie; Ségurens, Béatrice; Artiguenave, François; Anthouard, Véronique; Vacherie, Benoit; Val, Marie-Eve; Fulton, Robert S; Minx, Patrick; Wilson, Richard; Durrens, Pascal; Jean, Géraldine; Marck, Christian; Martin, Tiphaine; Nikolski, Macha; Rolland, Thomas; Seret, Marie-Line; Casarégola, Serge; Despons, Laurence; Fairhead, Cécile; Fischer, Gilles; Lafontaine, Ingrid; Leh, Véronique; Lemaire, Marc; de Montigny, Jacky; Neuvéglise, Cécile; Thierry, Agnès; Blanc-Lenfle, Isabelle; Bleykasten, Claudine; Diffels, Julie; Fritsch, Emilie; Frangeul, Lionel; Goëffon, Adrien; Jauniaux, Nicolas; Kachouri-Lafond, Rym; Payen, Célia; Potier, Serge; Pribylova, Lenka; Ozanne, Christophe; Richard, Guy-Franck; Sacerdot, Christine; Straub, Marie-Laure; Talla, Emmanuel

      2009-10-01

      Our knowledge of yeast genomes remains largely dominated by the extensive studies on Saccharomyces cerevisiae and the consequences of its ancestral duplication, leaving the evolution of the entire class of hemiascomycetes only partly explored. We concentrate here on five species of Saccharomycetaceae, a large subdivision of hemiascomycetes, that we call "protoploid" because they diverged from the S. cerevisiae lineage prior to its genome duplication. We determined the complete genome sequences of three of these species: Kluyveromyces (Lachancea) thermotolerans and Saccharomyces (Lachancea) kluyveri (two members of the newly described Lachancea clade), and Zygosaccharomyces rouxii. We included in our comparisons the previously available sequences of Kluyveromyces lactis and Ashbya (Eremothecium) gossypii. Despite their broad evolutionary range and significant individual variations in each lineage, the five protoploid Saccharomycetaceae share a core repertoire of approximately 3300 protein families and a high degree of conserved synteny. Synteny blocks were used to define gene orthology and to infer ancestors. Far from representing minimal genomes without redundancy, the five protoploid yeasts contain numerous copies of paralogous genes, either dispersed or in tandem arrays, that, altogether, constitute a third of each genome. Ancient, conserved paralogs as well as novel, lineage-specific paralogs were identified. PMID:19525356

    • Advances in Genome Biology & Technology

      SciTech Connect

      Thomas J. Albert, Jon R. Armstrong, Raymond K. Auerback, W. Brad Barbazuk, et al.

      2007-12-01

      This year's meeting focused on the latest advances in new DNA sequencing technologies and the applications of genomics to disease areas in biology and biomedicine. Daytime plenary sessions highlighted cutting-edge research in areas such as complex genetic diseases, comparative genomics, medical sequencing, massively parallel DNA sequencing, and synthetic biology. Technical approaches being developed and utilized in contemporary genomics research were presented during evening concurrent sessions. Also, as in previous years, poster sessions bridged the morning and afternoon plenary sessions. In addition, for the third year in a row, the Advances in Genome Biology and Technology (AGBT) meeting was preceded by a pre-meeting workshop that aimed to provide an introductory overview for trainees and other meeting attendees. This year, speakers at the workshop focused on next-generation sequencing technologies, including their experiences, findings, and helpful advise for others contemplating using these platforms in their research. Speakers from genome centers and core sequencing facilities were featured and the workshop ended with a roundtable discussion, during which speakers fielded questions from the audience.

    • The genome of Prunus mume

      PubMed Central

      Zhang, Qixiang; Chen, Wenbin; Sun, Lidan; Zhao, Fangying; Huang, Bangqing; Yang, Weiru; Tao, Ye; Wang, Jia; Yuan, Zhiqiong; Fan, Guangyi; Xing, Zhen; Han, Changlei; Pan, Huitang; Zhong, Xiao; Shi, Wenfang; Liang, Xinming; Du, Dongliang; Sun, Fengming; Xu, Zongda; Hao, Ruijie; Lv, Tian; Lv, Yingmin; Zheng, Zequn; Sun, Ming; Luo, Le; Cai, Ming; Gao, Yike; Wang, Junyi; Yin, Ye; Xu, Xun; Cheng, Tangren; Wang, Jun

      2012-01-01

      Prunus mume (mei), which was domesticated in China more than 3,000 years ago as ornamental plant and fruit, is one of the first genomes among Prunus subfamilies of Rosaceae been sequenced. Here, we assemble a 280M genome by combining 101-fold next-generation sequencing and optical mapping data. We further anchor 83.9% of scaffolds to eight chromosomes with genetic map constructed by restriction-site-associated DNA sequencing. Combining P. mume genome with available data, we succeed in reconstructing nine ancestral chromosomes of Rosaceae family, as well as depicting chromosome fusion, fission and duplication history in three major subfamilies. We sequence the transcriptome of various tissues and perform genome-wide analysis to reveal the characteristics of P. mume, including its regulation of early blooming in endodormancy, immune response against bacterial infection and biosynthesis of flower scent. The P. mume genome sequence adds to our understanding of Rosaceae evolution and provides important data for improvement of fruit trees. PMID:23271652

    • Evolutionary engineering by genome shuffling.

      PubMed

      Biot-Pelletier, Damien; Martin, Vincent J J

      2014-05-01

      An upsurge in the bioeconomy drives the need for engineering microorganisms with increasingly complex phenotypes. Gains in productivity of industrial microbes depend on the development of improved strains. Classical strain improvement programmes for the generation, screening and isolation of such mutant strains have existed for several decades. An alternative to traditional strain improvement methods, genome shuffling, allows the directed evolution of whole organisms via recursive recombination at the genome level. This review deals chiefly with the technical aspects of genome shuffling. It first presents the diversity of organisms and phenotypes typically evolved using this technology and then reviews available sources of genetic diversity and recombination methodologies. Analysis of the literature reveals that genome shuffling has so far been restricted to microorganisms, both prokaryotes and eukaryotes, with an overepresentation of antibiotics- and biofuel-producing microbes. Mutagenesis is the main source of genetic diversity, with few studies adopting alternative strategies. Recombination is usually done by protoplast fusion or sexual recombination, again with few exceptions. For both diversity and recombination, prospective methods that have not yet been used are also presented. Finally, the potential of genome shuffling for gaining insight into the genetic basis of complex phenotypes is also discussed. PMID:24595425

    • NCBI prokaryotic genome annotation pipeline.

      PubMed

      Tatusova, Tatiana; DiCuccio, Michael; Badretdin, Azat; Chetvernin, Vyacheslav; Nawrocki, Eric P; Zaslavsky, Leonid; Lomsadze, Alexandre; Pruitt, Kim D; Borodovsky, Mark; Ostell, James

      2016-08-19

      Recent technological advances have opened unprecedented opportunities for large-scale sequencing and analysis of populations of pathogenic species in disease outbreaks, as well as for large-scale diversity studies aimed at expanding our knowledge across the whole domain of prokaryotes. To meet the challenge of timely interpretation of structure, function and meaning of this vast genetic information, a comprehensive approach to automatic genome annotation is critically needed. In collaboration with Georgia Tech, NCBI has developed a new approach to genome annotation that combines alignment based methods with methods of predicting protein-coding and RNA genes and other functional elements directly from sequence. A new gene finding tool, GeneMarkS+, uses the combined evidence of protein and RNA placement by homology as an initial map of annotation to generate and modify ab initio gene predictions across the whole genome. Thus, the new NCBI's Prokaryotic Genome Annotation Pipeline (PGAP) relies more on sequence similarity when confident comparative data are available, while it relies more on statistical predictions in the absence of external evidence. The pipeline provides a framework for generation and analysis of annotation on the full breadth of prokaryotic taxonomy. For additional information on PGAP see https://www.ncbi.nlm.nih.gov/genome/annotation_prok/ and the NCBI Handbook, https://www.ncbi.nlm.nih.gov/books/NBK174280/. PMID:27342282

    • Valorization of lubricant-based wastewater for bacterial neutral lipids production: Growth-linked biosynthesis.

      PubMed

      Da Silva, Pedro D M P; Lima, Filipa; Alves, Maria Madalena; Bijmans, Martijn F M; Pereira, Maria Alcina

      2016-09-15

      Lipids produced by microorganisms are currently of great interest as raw material for either biofuels or oleochemicals production. Significant biosynthesis of neutral lipids, such as triacylglycerol (TAG) and wax esters (WE) are thought to be limited to a few strains. Hydrocarbonoclastic bacteria (HCB), key players in bioremediation of hydrocarbon contaminated ecosystems, are among this group of strains. Hydrocarbon rich wastewaters have been overlooked concerning their potential as raw material for microbial lipids production. In this study, lubricant-based wastewater was fed, as sole carbon source, to two HCB representative wild strains: Alcanivorax borkumensis SK2, and Rhodococcus opacus PD630. Neutral lipid production was observed with both strains cultivated under uncontrolled conditions of pH and dissolved oxygen. A. borkumensis SK2 was further investigated in a pH- and OD-controlled fermenter. Different phases were assessed separately in terms of lipids production and alkanes removal. The maximum TAG production rate occurred during stationary phase (4 mg-TAG/L h). The maximum production rate of WE-like compounds was 15 mg/L h, and was observed during exponential growth phase. Hydrocarbons removal was 97% of the gas chromatography (GC) resolved straight-chain alkanes. The maximum removal rate was observed during exponential growth phase (6 mg-alkanes/L h). This investigation proposes a novel approach for the management of lubricant waste oil, aiming at its conversion into valuable lipids. The feasibility of the concept is demonstrated under low salt (0.3%) and saline (3.3%) conditions, and presents clues for its technological development, since growth associated oil production opens the possibility for establishing continuous fermentation processes. PMID:27244293

    • Human Genome Education Program

      SciTech Connect

      Richard Myers; Lane Conn

      2000-05-01

      The funds from the DOE Human Genome Program, for the project period 2/1/96 through 1/31/98, have provided major support for the curriculum development and field testing efforts for two high school level instructional units: Unit 1, ''Exploring Genetic Conditions: Genes, Culture and Choices''; and Unit 2, ''DNA Snapshots: Peaking at Your DNA''. In the original proposal, they requested DOE support for the partial salary and benefits of a Field Test Coordinator position to: (1) complete the field testing and revision of two high school curriculum units, and (2) initiate the education of teachers using these units. During the project period of this two-year DOE grant, a part-time Field-Test Coordinator was hired (Ms. Geraldine Horsma) and significant progress has been made in both of the original proposal objectives. Field testing for Unit 1 has occurred in over 12 schools (local and non-local sites with diverse student populations). Field testing for Unit 2 has occurred in over 15 schools (local and non-local sites) and will continue in 12-15 schools during the 96-97 school year. For both curricula, field-test sites and site teachers were selected for their interest in genetics education and in hands-on science education. Many of the site teachers had no previous experience with HGEP or the unit under development. Both of these first-year biology curriculum units, which contain genetics, biotechnology, societal, ethical and cultural issues related to HGP, are being implemented in many local and non-local schools (SF Bay Area, Southern California, Nebraska, Hawaii, and Texas) and in programs for teachers. These units will reach over 10,000 students in the SF Bay Area and continues to receive support from local corporate and private philanthropic organizations. Although HGEP unit development is nearing completion for both units, data is still being gathered and analyzed on unit effectiveness and student learning. The final field testing result from this analysis will

    • Genomics and the origin of species.

      PubMed

      Seehausen, Ole; Butlin, Roger K; Keller, Irene; Wagner, Catherine E; Boughman, Janette W; Hohenlohe, Paul A; Peichel, Catherine L; Saetre, Glenn-Peter; Bank, Claudia; Brännström, Ake; Brelsford, Alan; Clarkson, Chris S; Eroukhmanoff, Fabrice; Feder, Jeffrey L; Fischer, Martin C; Foote, Andrew D; Franchini, Paolo; Jiggins, Chris D; Jones, Felicity C; Lindholm, Anna K; Lucek, Kay; Maan, Martine E; Marques, David A; Martin, Simon H; Matthews, Blake; Meier, Joana I; Möst, Markus; Nachman, Michael W; Nonaka, Etsuko; Rennison, Diana J; Schwarzer, Julia; Watson, Eric T; Westram, Anja M; Widmer, Alex

      2014-03-01

      Speciation is a fundamental evolutionary process, the knowledge of which is crucial for understanding the origins of biodiversity. Genomic approaches are an increasingly important aspect of this research field. We review current understanding of genome-wide effects of accumulating reproductive isolation and of genomic properties that influence the process of speciation. Building on this work, we identify emergent trends and gaps in our understanding, propose new approaches to more fully integrate genomics into speciation research, translate speciation theory into hypotheses that are testable using genomic tools and provide an integrative definition of the field of speciation genomics. PMID:24535286

  1. A physical map of the human genome

    SciTech Connect

    McPherson, J.D.; Marra, M.; Hillier, L.; Waterston, R.H.; Chinwalla, A.; Wallis, J.; Sekhon, M.; Wylie, K.; Mardis, E.R.; Wilson, R.K.; Fulton, R.; Kucaba, T.A.; Wagner-McPherson, C.; Barbazuk, W.B.; Gregory, S.G.; Humphray, S.J.; French, L.; Evans, R.S.; Bethel, G.; Whittaker, A.; Holden, J.L.; McCann, O.T.; Dunham, A.; Soderlund, C.; Scott, C.E.; Bentley, D.R.; Schuler, G.; Chen, H.-C.; Jang, W.; Green, E.D.; Idol, J.R.; Maduro, V.V. Braden; Montgomery, K.T.; Lee, E.; Miller, A.; Emerling, S.; Kucherlapati; Gibbs, R.; Scherer, S.; Gorrell, J.H.; Sodergren, E.; Clerc-Blankenburg, K.; Tabor, P.; Naylor, S.; Garcia, D.; de Jong, P.J.; Catanese, J.J.; Nowak, N.; Osoegawa, K.; Qin, S.; Rowen, L.; Madan, A.; Dors, M.; Hood, L.; Trask, B.; Friedman, C.; Massa, H.; Cheung, V.G.; Kirsch, I.R.; Reid, T.; Yonescu, R.; Weissenbach, J.; Bruls, T.; Heilig, R.; Branscomb, E.; Olsen, A.; Doggett, N.; Cheng, J.F.; Hawkins, T.; Myers, R.M.; Shang, J.; Ramirez, L.; Schmutz, J.; Velasquez, O.; Dixon, K.; Stone, N.E.; Cox, D.R.; Haussler, D.; Kent, W.J.; Furey, T.; Rogic, S.; Kennedy, S.; Jones, S.; Rosenthal, A.; Wen, G.; Schilhabel, M.; Gloeckner, G.; Nyakatura, G.; Siebert, R.; Schlegelberger, B.; Korenberg, J.; Chen, X.N.; Fujiyama, A.; Hattori, M.; Toyoda, A.; Yada, T.; Park, H.S.; Sakaki, Y.; Shimizu, N.; Asakawa, S.; Kawasaki, K.; Sasaki, T.; Shintani, A.; Shimizu, A.; Shibuya, K.; Kudoh, J.; Minoshima, S.; Ramser, J.; Seranski, P.; Hoff, C.; Poustka, A.; Reinhardt, R.; Lehrach, H.

    2001-01-01

    The human genome is by far the largest genome to be sequenced, and its size and complexity present many challenges for sequence assembly. The International Human Genome Sequencing Consortium constructed a map of the whole genome to enable the selection of clones for sequencing and for the accurate assembly of the genome sequence. Here we report the construction of the whole-genome bacterial artificial chromosome (BAC) map and its integration with previous landmark maps and information from mapping efforts focused on specific chromosomal regions. We also describe the integration of sequence data with the map.

  2. Decoding the human genome sequence.

    PubMed

    Bentley, D R

    2000-10-01

    The year 2000 is marked by the production of the sequence of the human genome. A 'working draft' of high quality sequence covering 90% of the genome has been determined and a quarter is in finished form, including the first two completed chromosomes. All sequence data from the project is made freely available to the community via the Internet, for further analysis and exploitation. The challenge which lies ahead is to decipher the information. Knowledge of the human genome sequence will enable us to understand how the genetic information determines the development, structure and function of the human body. We will be able to explore how variations within our DNA sequence cause disease, how they affect our interaction with our environment and ultimately to develop new and effective ways to improve human health. PMID:11005789

  3. Multiscale Representation of Genomic Signals

    PubMed Central

    Knijnenburg, Theo A.; Ramsey, Stephen A.; Berman, Benjamin P.; Kennedy, Kathleen A.; Smit, Arian F.A.; Wessels, Lodewyk F.A.; Laird, Peter W.; Aderem, Alan; Shmulevich, Ilya

    2014-01-01

    Genomic information is encoded on a wide range of distance scales, ranging from tens of base pairs to megabases. We developed a multiscale framework to analyze and visualize the information content of genomic signals. Different types of signals, such as GC content or DNA methylation, are characterized by distinct patterns of signal enrichment or depletion across scales spanning several orders of magnitude. These patterns are associated with a variety of genomic annotations, including genes, nuclear lamina associated domains, and repeat elements. By integrating the information across all scales, as compared to using any single scale, we demonstrate improved prediction of gene expression from Polymerase II chromatin immunoprecipitation sequencing (ChIP-seq) measurements and we observed that gene expression differences in colorectal cancer are not most strongly related to gene body methylation, but rather to methylation patterns that extend beyond the single-gene scale. PMID:24727652

  4. Support Values for Genome Phylogenies

    PubMed Central

    Klötzl, Fabian; Haubold, Bernhard

    2016-01-01

    We have recently developed a distance metric for efficiently estimating the number of substitutions per site between unaligned genome sequences. These substitution rates are called “anchor distances” and can be used for phylogeny reconstruction. Most phylogenies come with bootstrap support values, which are computed by resampling with replacement columns of homologous residues from the original alignment. Unfortunately, this method cannot be applied to anchor distances, as they are based on approximate pairwise local alignments rather than the full multiple sequence alignment necessary for the classical bootstrap. We explore two alternatives: pairwise bootstrap and quartet analysis, which we compare to classical bootstrap. With simulated sequences and 53 human primate mitochondrial genomes, pairwise bootstrap gives better results than quartet analysis. However, when applied to 29 E. coli genomes, quartet analysis comes closer to the classical bootstrap. PMID:26959064

  5. Genomics of Escherichia and Shigella

    NASA Astrophysics Data System (ADS)

    Perna, Nicole T.

    The laboratory workhorse Escherichia coli K-12 is among the most intensively studied living organisms on earth, and this single strain serves as the model system behind much of our understanding of prokaryotic molecular biology. Dense genome sequencing and recent insightful comparative analyses are making the species E. coli, as a whole, an emerging system for studying prokaryotic population genetics and the relationship between system-scale, or genome-scale, molecular evolution and complex traits like host range and pathogenic potential. Genomic perspective has revealed a coherent but dynamic species united by intraspecific gene flow via homologous lateral or horizontal transfer and differentiated by content flux mediated by acquisition of DNA segments from interspecies transfers.

  6. How good is our genome?

    PubMed

    Weill, Jean-Claude; Radman, Miroslav

    2004-01-29

    Our genome has evolved to perpetuate itself through the maintenance of the species via an uninterrupted chain of reproductive somas. Accordingly, evolution is not concerned with diseases occurring after the soma's reproductive stage. Following Richard Dawkins, we would like to reassert that we indeed live as disposable somas, slaves of our germline genome, but could soon start rebelling against such slavery. Cancer and its relation to the TP53 gene may offer a paradigmatic example. The observation that the latency period in cancer can be prolonged in mice by increasing the number of TP53 genes in their genome, suggests that sooner or later we will have to address the question of heritable disease avoidance via the manipulation of the human germline. PMID:15065661

  7. Tripartite genome of all species.

    PubMed

    Long, MengPing; Hu, TaoBo

    2016-01-01

    Neutral theory has dominated the molecular evolution field for more than half a century, but it has been severely challenged by the recently emerged Maximum Genetic Diversity (MGD) theory. However, based on our recent work of tripartite human genome architecture, we found that MGD theory may have overlooked the regulatory but variable genomic regions that increase with species complexity. Here we propose a new molecular evolution theory named Increasing Functional Variation (IFV) hypothesis. According to the IFV hypothesis, the genome of all species is divided into three regions that are 'functional and invariable', 'functional and variable' and 'non-functional and variable'. While the 'non-functional and variable' region decreases as species become more complex, the other two regions increase. PMID:27366319

  8. Tripartite genome of all species

    PubMed Central

    2016-01-01

    Neutral theory has dominated the molecular evolution field for more than half a century, but it has been severely challenged by the recently emerged Maximum Genetic Diversity (MGD) theory. However, based on our recent work of tripartite human genome architecture, we found that MGD theory may have overlooked the regulatory but variable genomic regions that increase with species complexity. Here we propose a new molecular evolution theory named Increasing Functional Variation (IFV) hypothesis. According to the IFV hypothesis, the genome of all species is divided into three regions that are ‘functional and invariable’, ‘functional and variable’ and ‘non-functional and variable’. While the ‘non-functional and variable’ region decreases as species become more complex, the other two regions increase. PMID:27366319

  9. Environmental Influences on Genomic Imprinting

    PubMed Central

    Kappil, Maya; Lambertini, Luca; Chen, Jia

    2015-01-01

    Genomic imprinting refers to the epigenetic mechanism that results in the mono-allelic expression of a subset of genes in a parent-of-origin manner. These haploid genes are highly active in the placenta and are functionally implicated in the appropriate development of the fetus. Furthermore, the epigenetic marks regulating imprinted expression patterns are established early in development. These characteristics make genomic imprinting a potentially useful biomarker for environmental insults, especially during the in utero or early development stages, and for health outcomes later in life. Herein, we critically review the current literature regarding environmental influences on imprinted genes and summarize findings that suggest that imprinted loci are sensitive to known teratogenic agents, such as alcohol and tobacco, as well as less established factors with the potential to manipulate the in utero environment, including assisted reproductive technology. Finally, we discuss the potential of genomic imprinting to serve as an environmental sensor during early development. PMID:26029493

  10. Enhancer Identification through Comparative Genomics

    SciTech Connect

    Visel, Axel; Bristow, James; Pennacchio, Len A.

    2006-10-01

    With the availability of genomic sequence from numerousvertebrates, a paradigm shift has occurred in the identification ofdistant-acting gene regulatory elements. In contrast to traditionalgene-centric studies in which investigators randomly scanned genomicfragments that flank genes of interest in functional assays, the modernapproach begins electronically with publicly available comparativesequence datasets that provide investigators with prioritized lists ofputative functional sequences based on their evolutionary conservation.However, although a large number of tools and resources are nowavailable, application of comparative genomic approaches remains far fromtrivial. In particular, it requires users to dynamically consider thespecies and methods for comparison depending on the specific biologicalquestion under investigation. While there is currently no single generalrule to this end, it is clear that when applied appropriately,comparative genomic approaches exponentially increase our power ingenerating biological hypotheses for subsequent experimentaltesting.

  11. Kaposi's Sarcoma Herpesvirus Genome Persistence.

    PubMed

    Juillard, Franceline; Tan, Min; Li, Shijun; Kaye, Kenneth M

    2016-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) has an etiologic role in Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. These diseases are most common in immunocompromised individuals, especially those with AIDS. Similar to all herpesviruses, KSHV infection is lifelong. KSHV infection in tumor cells is primarily latent, with only a small subset of cells undergoing lytic infection. During latency, the KSHV genome persists as a multiple copy, extrachromosomal episome in the nucleus. In order to persist in proliferating tumor cells, the viral genome replicates once per cell cycle and then segregates to daughter cell nuclei. KSHV only expresses several genes during latent infection. Prominent among these genes, is the latency-associated nuclear antigen (LANA). LANA is responsible for KSHV genome persistence and also exerts transcriptional regulatory effects. LANA mediates KSHV DNA replication and in addition, is responsible for segregation of replicated genomes to daughter nuclei. LANA serves as a molecular tether, bridging the viral genome to mitotic chromosomes to ensure that KSHV DNA reaches progeny nuclei. N-terminal LANA attaches to mitotic chromosomes by binding histones H2A/H2B at the surface of the nucleosome. C-terminal LANA binds specific KSHV DNA sequence and also has a role in chromosome attachment. In addition to the essential roles of N- and C-terminal LANA in genome persistence, internal LANA sequence is also critical for efficient episome maintenance. LANA's role as an essential mediator of virus persistence makes it an attractive target for inhibition in order to prevent or treat KSHV infection and disease. PMID:27570517

  12. An Exploration into Fern Genome Space

    PubMed Central

    Wolf, Paul G.; Sessa, Emily B.; Marchant, Daniel Blaine; Li, Fay-Wei; Rothfels, Carl J.; Sigel, Erin M.; Gitzendanner, Matthew A.; Visger, Clayton J.; Banks, Jo Ann; Soltis, Douglas E.; Soltis, Pamela S.; Pryer, Kathleen M.; Der, Joshua P.

    2015-01-01

    Ferns are one of the few remaining major clades of land plants for which a complete genome sequence is lacking. Knowledge of genome space in ferns will enable broad-scale comparative analyses of land plant genes and genomes, provide insights into genome evolution across green plants, and shed light on genetic and genomic features that characterize ferns, such as their high chromosome numbers and large genome sizes. As part of an initial exploration into fern genome space, we used a whole genome shotgun sequencing approach to obtain low-density coverage (∼0.4X to 2X) for six fern species from the Polypodiales (Ceratopteris, Pteridium, Polypodium, Cystopteris), Cyatheales (Plagiogyria), and Gleicheniales (Dipteris). We explore these data to characterize the proportion of the nuclear genome represented by repetitive sequences (including DNA transposons, retrotransposons, ribosomal DNA, and simple repeats) and protein-coding genes, and to extract chloroplast and mitochondrial genome sequences. Such initial sweeps of fern genomes can provide information useful for selecting a promising candidate fern species for whole genome sequencing. We also describe variation of genomic traits across our sample and highlight some differences and similarities in repeat structure between ferns and seed plants. PMID:26311176

  13. An Exploration into Fern Genome Space.

    PubMed

    Wolf, Paul G; Sessa, Emily B; Marchant, Daniel Blaine; Li, Fay-Wei; Rothfels, Carl J; Sigel, Erin M; Gitzendanner, Matthew A; Visger, Clayton J; Banks, Jo Ann; Soltis, Douglas E; Soltis, Pamela S; Pryer, Kathleen M; Der, Joshua P

    2015-09-01

    Ferns are one of the few remaining major clades of land plants for which a complete genome sequence is lacking. Knowledge of genome space in ferns will enable broad-scale comparative analyses of land plant genes and genomes, provide insights into genome evolution across green plants, and shed light on genetic and genomic features that characterize ferns, such as their high chromosome numbers and large genome sizes. As part of an initial exploration into fern genome space, we used a whole genome shotgun sequencing approach to obtain low-density coverage (∼0.4X to 2X) for six fern species from the Polypodiales (Ceratopteris, Pteridium, Polypodium, Cystopteris), Cyatheales (Plagiogyria), and Gleicheniales (Dipteris). We explore these data to characterize the proportion of the nuclear genome represented by repetitive sequences (including DNA transposons, retrotransposons, ribosomal DNA, and simple repeats) and protein-coding genes, and to extract chloroplast and mitochondrial genome sequences. Such initial sweeps of fern genomes can provide information useful for selecting a promising candidate fern species for whole genome sequencing. We also describe variation of genomic traits across our sample and highlight some differences and similarities in repeat structure between ferns and seed plants. PMID:26311176

  14. Fungal genome sequencing: basic biology to biotechnology.

    PubMed

    Sharma, Krishna Kant

    2016-08-01

    The genome sequences provide a first glimpse into the genomic basis of the biological diversity of filamentous fungi and yeast. The genome sequence of the budding yeast, Saccharomyces cerevisiae, with a small genome size, unicellular growth, and rich history of genetic and molecular analyses was a milestone of early genomics in the 1990s. The subsequent completion of fission yeast, Schizosaccharomyces pombe and genetic model, Neurospora crassa initiated a revolution in the genomics of the fungal kingdom. In due course of time, a substantial number of fungal genomes have been sequenced and publicly released, representing the widest sampling of genomes from any eukaryotic kingdom. An ambitious genome-sequencing program provides a wealth of data on metabolic diversity within the fungal kingdom, thereby enhancing research into medical science, agriculture science, ecology, bioremediation, bioenergy, and the biotechnology industry. Fungal genomics have higher potential to positively affect human health, environmental health, and the planet's stored energy. With a significant increase in sequenced fungal genomes, the known diversity of genes encoding organic acids, antibiotics, enzymes, and their pathways has increased exponentially. Currently, over a hundred fungal genome sequences are publicly available; however, no inclusive review has been published. This review is an initiative to address the significance of the fungal genome-sequencing program and provides the road map for basic and applied research. PMID:25721271

  15. Genomic profiling of breast cancer.

    PubMed

    Pandey, Anjita; Singh, Alok Kumar; Maurya, Sanjeev Kumar; Rai, Rajani; Tewari, Mallika; Kumar, Mohan; Shukla, Hari S

    2009-05-01

    Genome study provides significant changes in the advancement of molecular diagnosis and treatment in Breast cancer. Several recent critical advances and high-throughput techniques identified the genomic trouble and dramatically accelerated the pace of research in preventing and curing this malignancy. Tumor-suppressor genes, proto-oncogenes, DNA-repair genes, carcinogen-metabolism genes are critically involved in progression of breast cancer. We reviewed imperative finding in breast genetics, ongoing work to segregate further susceptible genes, and preliminary studies on molecular profiling. PMID:19235775

  16. Genomics screens for metastasis genes

    PubMed Central

    Yan, Jinchun; Huang, Qihong

    2014-01-01

    Metastasis is responsible for most cancer mortality. The process of metastasis is complex, requiring the coordinated expression and fine regulation of many genes in multiple pathways in both the tumor and host tissues. Identification and characterization of the genetic programs that regulate metastasis is critical to understanding the metastatic process and discovering molecular targets for the prevention and treatment of metastasis. Genomic approaches and functional genomic analyses can systemically discover metastasis genes. In this review, we summarize the genetic tools and methods that have been used to identify and characterize the genes that play critical roles in metastasis. PMID:22684367

  17. Genome editing comes of age.

    PubMed

    Kim, Jin-Soo

    2016-09-01

    Genome editing harnesses programmable nucleases to cut and paste genetic information in a targeted manner in living cells and organisms. Here, I review the development of programmable nucleases, including zinc finger nucleases (ZFNs), TAL (transcription-activator-like) effector nucleases (TALENs) and CRISPR (cluster of regularly interspaced palindromic repeats)-Cas9 (CRISPR-associated protein 9) RNA-guided endonucleases (RGENs). I specifically highlight the key advances that set the foundation for the rapid and widespread implementation of CRISPR-Cas9 genome editing approaches that has revolutionized the field. PMID:27490630

  18. Pfizer targets genomics through Pfizergen

    SciTech Connect

    Glaser, V.

    1995-06-01

    Recently, Pfizer (New York) formed Pfizergen to develop and commercialize genomics. For starters, Pfizergen involves investments by Pfizer of more than $115 million - excluding milestone payments and royalties on future products - in four biotech firms. Seeking a strong foothold in genomics, Pfizer is piecing together a multifaceted network of technologies. Through its alliance with Incyte, Pfizer has already accessed gene databases, high-throughput gene sequencing, and transcription analysis. Through Pfizergen, it will access expertise in microbial genetic engineering and combinatorial chemistry, as well as antiviral, antisense, and gene therapy capabilities. Future investments could target firms specializing in such products as positional cloning and bioinformatics.

  19. Translating genomics in cancer care.

    PubMed

    Bombard, Yvonne; Bach, Peter B; Offit, Kenneth

    2013-11-01

    There is increasing enthusiasm for genomics and its promise in advancing personalized medicine. Genomic information has been used to personalize health care for decades, spanning the fields of cardiovascular disease, infectious disease, endocrinology, metabolic medicine, and hematology. However, oncology has often been the first test bed for the clinical translation of genomics for diagnostic, prognostic, and therapeutic applications. Notable hereditary cancer examples include testing for mutations in BRCA1 or BRCA2 in unaffected women to identify those at significantly elevated risk for developing breast and ovarian cancers, and screening patients with newly diagnosed colorectal cancer for mutations in 4 mismatch repair genes to reduce morbidity and mortality in their relatives. Somatic genomic testing is also increasingly used in oncology, with gene expression profiling of breast tumors and EGFR testing to predict treatment response representing commonly used examples. Health technology assessment provides a rigorous means to inform clinical and policy decision-making through systematic assessment of the evidentiary base, along with precepts of clinical effectiveness, cost-effectiveness, and consideration of risks and benefits for health care delivery and society. Although this evaluation is a fundamental step in the translation of any new therapeutic, procedure, or diagnostic test into clinical care, emerging developments may threaten this standard. These include "direct to consumer" genomic risk assessment services and the challenges posed by incidental results generated from next-generation sequencing (NGS) technologies. This article presents a review of the evidentiary standards and knowledge base supporting the translation of key cancer genomic technologies along the continuum of validity, utility, cost-effectiveness, health service impacts, and ethical and societal issues, and offers future research considerations to guide the responsible introduction of

  20. Genomic Signals of Reoriented ORFs

    NASA Astrophysics Data System (ADS)

    Dan Cristea, Paul

    2004-12-01

    Complex representation of nucleotides is used to convert DNA sequences into complex digital genomic signals. The analysis of the cumulated phase and unwrapped phase of DNA genomic signals reveals large-scale features of eukaryote and prokaryote chromosomes that result from statistical regularities of base and base-pair distributions along DNA strands. By reorienting the chromosome coding regions, a "hidden" linear variation of the cumulated phase has been revealed, along with the conspicuous almost linear variation of the unwrapped phase. A model of chromosome longitudinal structure is inferred on these bases.

  1. Structural variations in plant genomes

    PubMed Central

    Edwards, David; Varshney, Rajeev K.

    2014-01-01

    Differences between plant genomes range from single nucleotide polymorphisms to large-scale duplications, deletions and rearrangements. The large polymorphisms are termed structural variants (SVs). SVs have received significant attention in human genetics and were found to be responsible for various chronic diseases. However, little effort has been directed towards understanding the role of SVs in plants. Many recent advances in plant genetics have resulted from improvements in high-resolution technologies for measuring SVs, including microarray-based techniques, and more recently, high-throughput DNA sequencing. In this review we describe recent reports of SV in plants and describe the genomic technologies currently used to measure these SVs. PMID:24907366

  2. Intellectual property issues in genomics.

    PubMed

    Eisenberg, R S

    1996-08-01

    Controversy over intellectual property rights in the results of large-scale cDNA sequencing raises intriguing questions about the roles of the public and private sectors in genomics research, and about who stands to benefit (and who stands to lose) from the private appropriation of genomic information. While the US Patent and Trademark Office has rejected patent applications on cDNA fragments of unknown function from the National Institutes of Health, private firms have pursued three distinct strategies for exploiting unpatented cDNA sequence information: exclusive licensing, non-exclusive licensing and dedication to the public domain. PMID:8987463

  3. [Nutritional genomics: an approach to the genome-environment interaction].

    PubMed

    Xacur-García, Fiona; Castillo-Quan, Jorge I; Hernández-Escalante, Víctor M; Laviada-Molina, Hugo

    2008-11-01

    Nutritional genomics forms part of the genomic sciences and addresses the interaction between genes and the human diet, its influence on metabolism and subsequent susceptibility to develop common diseases. It encompasses both nutrigenomics, which explores the effects of nutrients on the genome, proteome and metabolome; and nutrigenetics, that explores the effects of genetic variations on the diet/disease interaction. A number of mechanisms drive the gene/diet interaction: elements in the diet can act as links for transcription factor receptors and after intermediary concentrations, thereby modifying chromatin and impacting genetic regulation; affect signal pathways, regulating phosphorylation of tyrosine in receptors; decrease signaling through the inositol pathway; and act through epigenetic mechanisms, silencing DNA fragments by methylation of cytosine. The signals generated by polyunsaturated fatty acids are so powerful that they can even bypass insulin mediated lipogenesis, stimulated by carbohydrates. Some fatty acids modify the expression of genes that participate in fatty acid transport by lipoproteins. Nutritional genomics has myriad possible therapeutic and preventive applications: in patients with enzymatic deficiencies; in those with a genetic predisposition to complex diseases such as dyslipidemia, diabetes and cancer; in those that already suffer these diseases; in those with altered mood or memory; during the aging process; in pregnant women; and as a preventive measure in the healthy population. PMID:19301779

  4. Genome editing assessment using CRISPR Genome Analyzer (CRISPR-GA)

    PubMed Central

    Güell, Marc; Yang, Luhan; Church, George M.

    2014-01-01

    Summary: Clustered regularly interspaced short palindromic repeats (CRISPR)-based technologies have revolutionized human genome engineering and opened countless possibilities to basic science, synthetic biology and gene therapy. Albeit the enormous potential of these tools, their performance is far from perfect. It is essential to perform a posterior careful analysis of the gene editing experiment. However, there are no computational tools for genome editing assessment yet, and current experimental tools lack sensitivity and flexibility. We present a platform to assess the quality of a genome editing experiment only with three mouse clicks. The method evaluates next-generation data to quantify and characterize insertions, deletions and homologous recombination. CRISPR Genome Analyzer provides a report for the locus selected, which includes a quantification of the edited site and the analysis of the different alterations detected. The platform maps the reads, estimates and locates insertions and deletions, computes the allele replacement efficiency and provides a report integrating all the information. Availability and implementation: CRISPR-GA Web is available at http://crispr-ga.net. Documentation on CRISPR-GA instructions can be found at http://crispr-ga.net/documentation.html Contact: mguell@genetics.med.harvard.edu PMID:24990609

  5. Cancer Genome Anatomy Project | Office of Cancer Genomics

    Cancer.gov

    The National Cancer Institute (NCI) Cancer Genome Anatomy Project (CGAP) is an online resource designed to provide the research community access to biological tissue characterization data. Request a free copy of the CGAP Website Virtual Tour CD from ocg@mail.nih.gov.

  6. Translational Genomics of Onion: Challenges of an Enormous Nuclear Genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of high throughput DNA sequencing to address important production constraints has been termed “translational genomics”. Classical breeding of onion (Allium cepa) is expensive and slow due to a long generation time and the high costs of crossing with insects. Translational genomics should r...

  7. Cancer Genome Anatomy Project (CGAP) | Office of Cancer Genomics

    Cancer.gov

    CGAP generated a wide range of genomics data on cancerous cells that are accessible through easy-to-use online tools. Researchers, educators, and students can find "in silico" answers to biological questions through the CGAP website. Request a free copy of the CGAP Website Virtual Tour CD from ocg@mail.nih.gov to learn how to navigate the website.

  8. The Human Genome Project, and recent advances in personalized genomics.

    PubMed

    Wilson, Brenda J; Nicholls, Stuart G

    2015-01-01

    The language of "personalized medicine" and "personal genomics" has now entered the common lexicon. The idea of personalized medicine is the integration of genomic risk assessment alongside other clinical investigations. Consistent with this approach, testing is delivered by health care professionals who are not medical geneticists, and where results represent risks, as opposed to clinical diagnosis of disease, to be interpreted alongside the entirety of a patient's health and medical data. In this review we consider the evidence concerning the application of such personalized genomics within the context of population screening, and potential implications that arise from this. We highlight two general approaches which illustrate potential uses of genomic information in screening. The first is a narrowly targeted approach in which genetic profiling is linked with standard population-based screening for diseases; the second is a broader targeting of variants associated with multiple single gene disorders, performed opportunistically on patients being investigated for unrelated conditions. In doing so we consider the organization and evaluation of tests and services, the challenge of interpretation with less targeted testing, professional confidence, barriers in practice, and education needs. We conclude by discussing several issues pertinent to health policy, namely: avoiding the conflation of genetics with biological determinism, resisting the "technological imperative", due consideration of the organization of screening services, the need for professional education, as well as informed decision making and public understanding. PMID:25733939

  9. Advancing Eucalyptus Genomics: Cytogenomics Reveals Conservation of Eucalyptus Genomes.

    PubMed

    Ribeiro, Teresa; Barrela, Ricardo M; Bergès, Hélène; Marques, Cristina; Loureiro, João; Morais-Cecílio, Leonor; Paiva, Jorge A P

    2016-01-01

    The genus Eucalyptus encloses several species with high ecological and economic value, being the subgenus Symphyomyrtus one of the most important. Species such as E. grandis and E. globulus are well characterized at the molecular level but knowledge regarding genome and chromosome organization is very scarce. Here we characterized and compared the karyotypes of three economically important species, E. grandis, E. globulus, and E. calmadulensis, and three with ecological relevance, E. pulverulenta, E. cornuta, and E. occidentalis, through an integrative approach including genome size estimation, fluorochrome banding, rDNA FISH, and BAC landing comprising genes involved in lignin biosynthesis. All karyotypes show a high degree of conservation with pericentromeric 35S and 5S rDNA loci in the first and third pairs, respectively. GC-rich heterochromatin was restricted to the 35S rDNA locus while the AT-rich heterochromatin pattern was species-specific. The slight differences in karyotype formulas and distribution of AT-rich heterochromatin, along with genome sizes estimations, support the idea of Eucalyptus genome evolution by local expansions of heterochromatin clusters. The unusual co-localization of both rDNA with AT-rich heterochromatin was attributed mainly to the presence of silent transposable elements in those loci. The cinnamoyl CoA reductase gene (CCR1) previously assessed to linkage group 10 (LG10) was clearly localized distally at the long arm of chromosome 9 establishing an unexpected correlation between the cytogenetic chromosome 9 and the LG10. Our work is novel and contributes to the understanding of Eucalyptus genome organization which is essential to develop successful advanced breeding strategies for this genus. PMID:27148332

  10. Advancing Eucalyptus Genomics: Cytogenomics Reveals Conservation of Eucalyptus Genomes

    PubMed Central

    Ribeiro, Teresa; Barrela, Ricardo M.; Bergès, Hélène; Marques, Cristina; Loureiro, João; Morais-Cecílio, Leonor; Paiva, Jorge A. P.

    2016-01-01

    The genus Eucalyptus encloses several species with high ecological and economic value, being the subgenus Symphyomyrtus one of the most important. Species such as E. grandis and E. globulus are well characterized at the molecular level but knowledge regarding genome and chromosome organization is very scarce. Here we characterized and compared the karyotypes of three economically important species, E. grandis, E. globulus, and E. calmadulensis, and three with ecological relevance, E. pulverulenta, E. cornuta, and E. occidentalis, through an integrative approach including genome size estimation, fluorochrome banding, rDNA FISH, and BAC landing comprising genes involved in lignin biosynthesis. All karyotypes show a high degree of conservation with pericentromeric 35S and 5S rDNA loci in the first and third pairs, respectively. GC-rich heterochromatin was restricted to the 35S rDNA locus while the AT-rich heterochromatin pattern was species-specific. The slight differences in karyotype formulas and distribution of AT-rich heterochromatin, along with genome sizes estimations, support the idea of Eucalyptus genome evolution by local expansions of heterochromatin clusters. The unusual co-localization of both rDNA with AT-rich heterochromatin was attributed mainly to the presence of silent transposable elements in those loci. The cinnamoyl CoA reductase gene (CCR1) previously assessed to linkage group 10 (LG10) was clearly localized distally at the long arm of chromosome 9 establishing an unexpected correlation between the cytogenetic chromosome 9 and the LG10. Our work is novel and contributes to the understanding of Eucalyptus genome organization which is essential to develop successful advanced breeding strategies for this genus. PMID:27148332

  11. Joint Genome Institute's Automation Approach and History

    SciTech Connect

    Roberts, Simon

    2006-07-05

    Department of Energy/Joint Genome Institute (DOE/JGI) collaborates with DOE national laboratories and community users, to advance genome science in support of the DOE missions of clean bio-energy, carbon cycling, and bioremediation.

  12. Hapsembler: An Assembler for Highly Polymorphic Genomes

    NASA Astrophysics Data System (ADS)

    Donmez, Nilgun; Brudno, Michael

    As whole genome sequencing has become a routine biological experiment, algorithms for assembly of whole genome shotgun data has become a topic of extensive research, with a plethora of off-the-shelf methods that can reconstruct the genomes of many organisms. Simultaneously, several recently sequenced genomes exhibit very high polymorphism rates. For these organisms genome assembly remains a challenge as most assemblers are unable to handle highly divergent haplotypes in a single individual. In this paper we describe Hapsembler, an assembler for highly polymorphic genomes, which makes use of paired reads. Our experiments show that Hapsembler produces accurate and contiguous assemblies of highly polymorphic genomes, while performing on par with the leading tools on haploid genomes. Hapsembler is available for download at http://compbio.cs.toronto.edu/hapsembler.

  13. Preparation of genomic DNA from bacteria.

    PubMed

    Andreou, Lefkothea-Vasiliki

    2013-01-01

    The purpose of this protocol is the isolation of bulk cellular DNA from bacteria (alternatively see Preparation of genomic DNA from Saccharomyces cerevisiae or Isolation of Genomic DNA from Mammalian Cells protocols). PMID:24011042

  14. GenomicDataCommonsNewsNote

    Cancer.gov

    NCI is establishing the Genomic Data Commons to store, analyze and distribute cancer genomics data generated by NCI and other research organizations. The GDC will provide an interactive system for researchers to access data, with the goal of advancing the

  15. Strategies and tools for whole genome alignments

    SciTech Connect

    Couronne, Olivier; Poliakov, Alexander; Bray, Nicolas; Ishkhanov,Tigran; Ryaboy, Dmitriy; Rubin, Edward; Pachter, Lior; Dubchak, Inna

    2002-11-25

    The availability of the assembled mouse genome makespossible, for the first time, an alignment and comparison of two largevertebrate genomes. We have investigated different strategies ofalignment for the subsequent analysis of conservation of genomes that areeffective for different quality assemblies. These strategies were appliedto the comparison of the working draft of the human genome with the MouseGenome Sequencing Consortium assembly, as well as other intermediatemouse assemblies. Our methods are fast and the resulting alignmentsexhibit a high degree of sensitivity, covering more than 90 percent ofknown coding exons in the human genome. We have obtained such coveragewhile preserving specificity. With a view towards the end user, we havedeveloped a suite of tools and websites for automatically aligning, andsubsequently browsing and working with whole genome comparisons. Wedescribe the use of these tools to identify conserved non-coding regionsbetween the human and mouse genomes, some of which have not beenidentified by other methods.

  16. Application of Microbial Genomics to Improve Aquatic Animal Health

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genome sequencing and comparative genome analysis have greatly increased our understanding of microorganism gene content, pathogenesis, taxonomy, and evolution. Currently, there are over three hundred completed, publicly-available microbial genomes. To date, no genome of an aquatic animal pathogen...

  17. Interpreting Mammalian Evolution using Fugu Genome Comparisons

    SciTech Connect

    Stubbs, L; Ovcharenko, I; Loots, G G

    2004-04-02

    Comparative sequence analysis of the human and the pufferfish Fugu rubripes (fugu) genomes has revealed several novel functional coding and noncoding regions in the human genome. In particular, the fugu genome has been extremely valuable for identifying transcriptional regulatory elements in human loci harboring unusually high levels of evolutionary conservation to rodent genomes. In such regions, the large evolutionary distance between human and fishes provides an additional filter through which functional noncoding elements can be detected with high efficiency.

  18. Searching and Indexing Genomic Databases via Kernelization

    PubMed Central

    Gagie, Travis; Puglisi, Simon J.

    2015-01-01

    The rapid advance of DNA sequencing technologies has yielded databases of thousands of genomes. To search and index these databases effectively, it is important that we take advantage of the similarity between those genomes. Several authors have recently suggested searching or indexing only one reference genome and the parts of the other genomes where they differ. In this paper, we survey the 20-year history of this idea and discuss its relation to kernelization in parameterized complexity. PMID:25710001

  19. Evolution, language and analogy in functional genomics

    NASA Technical Reports Server (NTRS)

    Benner, S. A.; Gaucher, E. A.

    2001-01-01

    Almost a century ago, Wittgenstein pointed out that theory in science is intricately connected to language. This connection is not a frequent topic in the genomics literature. But a case can be made that functional genomics is today hindered by the paradoxes that Wittgenstein identified. If this is true, until these paradoxes are recognized and addressed, functional genomics will continue to be limited in its ability to extrapolate information from genomic sequences.

  20. Hemichordate genomes and deuterostome origins.

    PubMed

    Simakov, Oleg; Kawashima, Takeshi; Marlétaz, Ferdinand; Jenkins, Jerry; Koyanagi, Ryo; Mitros, Therese; Hisata, Kanako; Bredeson, Jessen; Shoguchi, Eiichi; Gyoja, Fuki; Yue, Jia-Xing; Chen, Yi-Chih; Freeman, Robert M; Sasaki, Akane; Hikosaka-Katayama, Tomoe; Sato, Atsuko; Fujie, Manabu; Baughman, Kenneth W; Levine, Judith; Gonzalez, Paul; Cameron, Christopher; Fritzenwanker, Jens H; Pani, Ariel M; Goto, Hiroki; Kanda, Miyuki; Arakaki, Nana; Yamasaki, Shinichi; Qu, Jiaxin; Cree, Andrew; Ding, Yan; Dinh, Huyen H; Dugan, Shannon; Holder, Michael; Jhangiani, Shalini N; Kovar, Christie L; Lee, Sandra L; Lewis, Lora R; Morton, Donna; Nazareth, Lynne V; Okwuonu, Geoffrey; Santibanez, Jireh; Chen, Rui; Richards, Stephen; Muzny, Donna M; Gillis, Andrew; Peshkin, Leonid; Wu, Michael; Humphreys, Tom; Su, Yi-Hsien; Putnam, Nicholas H; Schmutz, Jeremy; Fujiyama, Asao; Yu, Jr-Kai; Tagawa, Kunifumi; Worley, Kim C; Gibbs, Richard A; Kirschner, Marc W; Lowe, Christopher J; Satoh, Noriyuki; Rokhsar, Daniel S; Gerhart, John

    2015-11-26

    Acorn worms, also known as enteropneust (literally, 'gut-breathing') hemichordates, are marine invertebrates that share features with echinoderms and chordates. Together, these three phyla comprise the deuterostomes. Here we report the draft genome sequences of two acorn worms, Saccoglossus kowalevskii and Ptychodera flava. By comparing them with diverse bilaterian genomes, we identify shared traits that were probably inherited from the last common deuterostome ancestor, and then explore evolutionary trajectories leading from this ancestor to hemichordates, echinoderms and chordates. The hemichordate genomes exhibit extensive conserved synteny with amphioxus and other bilaterians, and deeply conserved non-coding sequences that are candidates for conserved gene-regulatory elements. Notably, hemichordates possess a deuterostome-specific genomic cluster of four ordered transcription factor genes, the expression of which is associated with the development of pharyngeal 'gill' slits, the foremost morphological innovation of early deuterostomes, and is probably central to their filter-feeding lifestyle. Comparative analysis reveals numerous deuterostome-specific gene novelties, including genes found in deuterostomes and marine microbes, but not other animals. The putative functions of these genes can be linked to physiological, metabolic and developmental specializations of the filter-feeding ancestor. PMID:26580012

  1. Fraud strikes top genome lab

    SciTech Connect

    Marshall, E.

    1996-11-08

    Francis Collins, head of NIH`s Human Genome Project has informed colleagues that a junior researcher in his lab facke data in five papers co-authored by Collins. This article describes the whole scenario, how it was discovered, and what the reprocussions are.

  2. Mating programs including genomic relationships

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Computer mating programs have helped breeders minimize pedigree inbreeding and avoid recessive defects by mating animals with parents that have fewer common ancestors. With genomic selection, breed associations, AI organizations, and on-farm software providers could use new programs to minimize geno...

  3. Evolutionary genomics of animal personality.

    PubMed

    van Oers, Kees; Mueller, Jakob C

    2010-12-27

    Research on animal personality can be approached from both a phenotypic and a genetic perspective. While using a phenotypic approach one can measure present selection on personality traits and their combinations. However, this approach cannot reconstruct the historical trajectory that was taken by evolution. Therefore, it is essential for our understanding of the causes and consequences of personality diversity to link phenotypic variation in personality traits with polymorphisms in genomic regions that code for this trait variation. Identifying genes or genome regions that underlie personality traits will open exciting possibilities to study natural selection at the molecular level, gene-gene and gene-environment interactions, pleiotropic effects and how gene expression shapes personality phenotypes. In this paper, we will discuss how genome information revealed by already established approaches and some more recent techniques such as high-throughput sequencing of genomic regions in a large number of individuals can be used to infer micro-evolutionary processes, historical selection and finally the maintenance of personality trait variation. We will do this by reviewing recent advances in molecular genetics of animal personality, but will also use advanced human personality studies as case studies of how molecular information may be used in animal personality research in the near future. PMID:21078651

  4. Fungal genome resources at NCBI.

    PubMed

    Robbertse, B; Tatusova, T

    2011-09-01

    The National Center for Biotechnology Information (NCBI) is well known for the nucleotide sequence archive, GenBank and sequence analysis tool BLAST. However, NCBI integrates many types of biomolecular data from variety of sources and makes it available to the scientific community as interactive web resources as well as organized releases of bulk data. These tools are available to explore and compare fungal genomes. Searching all databases with Fungi [organism] at http://www.ncbi.nlm.nih.gov/ is the quickest way to find resources of interest with fungal entries. Some tools though are resources specific and can be indirectly accessed from a particular database in the Entrez system. These include graphical viewers and comparative analysis tools such as TaxPlot, TaxMap and UniGene DDD (found via UniGene Homepage). Gene and BioProject pages also serve as portals to external data such as community annotation websites, BioGrid and UniProt. There are many different ways of accessing genomic data at NCBI. Depending on the focus and goal of research projects or the level of interest, a user would select a particular route for accessing genomic databases and resources. This review article describes methods of accessing fungal genome data and provides examples that illustrate the use of analysis tools. PMID:22737589

  5. Dynamics of an Aging Genome.

    PubMed

    Telenti, Amalio; Perkins, Brad A; Venter, J Craig

    2016-06-14

    The genetic mechanisms mediating longevity and maximum lifespan of the human species are likely different than those explaining differences in life expectancy and healthspan across individuals. Both of these perspectives are important and can be separated and explored using genomic data. PMID:27304490

  6. Hemichordate genomes and deuterostome origins

    PubMed Central

    Simakov, Oleg; Kawashima, Takeshi; Marlétaz, Ferdinand; Jenkins, Jerry; Koyanagi, Ryo; Mitros, Therese; Hisata, Kanako; Bredeson, Jessen; Shoguchi, Eiichi; Gyoja, Fuki; Yue, Jia-Xing; Chen, Yi-Chih; Freeman, Robert M.; Sasaki, Akane; Hikosaka-Katayama, Tomoe; Sato, Atsuko; Fujie, Manabu; Baughman, Kenneth W.; Levine, Judith; Gonzalez, Paul; Cameron, Christopher; Fritzenwanker, Jens H.; Pani, Ariel M.; Goto, Hiroki; Kanda, Miyuki; Arakaki, Nana; Yamasaki, Shinichi; Qu, Jiaxin; Cree, Andrew; Ding, Yan; Dinh, Huyen H.; Dugan, Shannon; Holder, Michael; Jhangiani, Shalini N.; Kovar, Christie L.; Lee, Sandra L.; Lewis, Lora R.; Morton, Donna; Nazareth, Lynne V.; Okwuonu, Geoffrey; Santibanez, Jireh; Chen, Rui; Richards, Stephen; Muzny, Donna M.; Gillis, Andrew; Peshkin, Leonid; Wu, Michael; Humphreys, Tom; Su, Yi-Hsien; Putnam, Nicholas H.; Schmutz, Jeremy; Fujiyama, Asao; Yu, Jr-Kai; Tagawa, Kunifumi; Worley, Kim C.; Gibbs, Richard A.; Kirschner, Marc W.; Lowe, Christopher J.; Satoh, Noriyuki; Rokhsar, Daniel S.; Gerhart, John

    2015-01-01

    Acorn worms, also known as enteropneust (literally, ‘gut-breathing’) hemichordates, are marine invertebrates that share features with echinoderms and chordates. Together, these three phyla comprise the deuterostomes. Here we report the draft genome sequences of two acorn worms, Saccoglossus kowalevskii and Ptychodera flava. By comparing them with diverse bilaterian genomes, we identify shared traits that were probably inherited from the last common deuterostome ancestor, and then explore evolutionary trajectories leading from this ancestor to hemichordates, echinoderms and chordates. The hemichordate genomes exhibit extensive conserved synteny with amphioxus and other bilaterians, and deeply conserved non-coding sequences that are candidates for conserved gene-regulatory elements. Notably, hemichordates possess a deuterostome-specific genomic cluster of four ordered transcription factor genes, the expression of which is associated with the development of pharyngeal ‘gill’ slits, the foremost morphological innovation of early deuterostomes, and is probably central to their filter-feeding lifestyle. Comparative analysis reveals numerous deuterostome-specific gene novelties, including genes found in deuterostomes and marine microbes, but not other animals. The putative functions of these genes can be linked to physiological, metabolic and developmental specializations of the filter-feeding ancestor. PMID:26580012

  7. Maize Genetics and Genomics Database

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 2007 report for MaizeGDB lists the new hires who will focus on curation/outreach and the genome sequence, respectively. Currently all sequence in the database comes from a PlantGDB pipeline and is presented with deep links to external resources such as PlantGDB, Dana Farber, GenBank, the Arizona...

  8. Genome Sequence of Mycobacteriophage Cabrinians

    PubMed Central

    Chudoff, Dylan; Conboy, Andrew; Conboy, Danielle; Atoulelou, Mireille; Hasan, Sakina; Martinez, Alexandria; Mastrando, Jessica; Roy, Renoy; Schmidt, Robert; Sheed, Kabreeze; Smith, Jewel; Sperratore, Morgan; Struga, Rexhina; Starr, Katelyn; Suppi, Regina; Uguru, Ugo; Terry, Katrina; Villafuerte, Rosendo; Yuan, Vanessa

    2016-01-01

    Mycobacteriophage Cabrinians is a newly isolated phage capable of infecting both Mycobacterium phlei and Mycobacterium smegmatis and was recovered from a soil sample in New York City, NY. Cabrinians has a genome length of 56,669 bp, encodes 101 predicted proteins, and is a member of mycobacteriophages in cluster F. PMID:26847904

  9. Genome Sequence of Mycobacteriophage Cabrinians.

    PubMed

    Chudoff, Dylan; Conboy, Andrew; Conboy, Danielle; Atoulelou, Mireille; Hasan, Sakina; Martinez, Alexandria; Mastrando, Jessica; Roy, Renoy; Schmidt, Robert; Sheed, Kabreeze; Smith, Jewel; Sperratore, Morgan; Struga, Rexhina; Starr, Katelyn; Suppi, Regina; Uguru, Ugo; Terry, Katrina; Villafuerte, Rosendo; Yuan, Vanessa; Dunbar, David

    2016-01-01

    Mycobacteriophage Cabrinians is a newly isolated phage capable of infecting both Mycobacterium phlei and Mycobacterium smegmatis and was recovered from a soil sample in New York City, NY. Cabrinians has a genome length of 56,669 bp, encodes 101 predicted proteins, and is a member of mycobacteriophages in cluster F. PMID:26847904

  10. Lipid biochemists salute the genome.

    PubMed

    Wallis, James G; Browse, John

    2010-03-01

    The biochemistry of plant metabolic pathways has been studied for many generations; nevertheless, numerous new enzymes and metabolic products have been discovered in the last 5-10 years. More importantly, many intriguing questions remain in all areas of metabolism. In this review, we consider these issues with respect to several pathways of lipid metabolism and the contributions made by the Arabidopsis genome sequence and the tools that it has spawned. These tools have allowed identification of enzymes and transporters required for the mobilization of seed storage lipids, as well as transporters that facilitate movement of lipids from the endoplasmic reticulum to the chloroplast in green leaf cells. Genomic tools were important in recognition of novel components of the cutin and suberin polymers that form water-impermeable barriers in plants. The waxes that also contribute to these barriers are exported from cells of the epidermis by transporters that are now being identified. Biochemical and genetic knowledge from yeast and animals has permitted successful homology-based searches of the Arabidopsis genome for genes encoding enzymes involved in the elongation of fatty acids and the synthesis of sphingolipids. Knowledge of the genome has identified novel enzymes for the biosynthesis of the seed storage lipid, triacylglycerol, and provided a refined understanding of how the pathways of fatty acid and triacylglycerol synthesis are integrated into overall carbon metabolism in developing seeds. PMID:20409280

  11. Genome instability, cancer and aging

    PubMed Central

    Maslov, Alexander Y.; Vijg, Jan

    2015-01-01

    DNA damage-driven genome instability underlies the diversity of life forms generated by the evolutionary process but is detrimental to the somatic cells of individual organisms. The cellular response to DNA damage can be roughly divided in two parts. First, when damage is severe, programmed cell death may occur or, alternatively, temporary or permanent cell cycle arrest. This protects against cancer but can have negative effects on the long term, e.g., by depleting stem cell reservoirs. Second, damage can be repaired through one or more of the many sophisticated genome maintenance pathways. However, erroneous DNA repair and incomplete restoration of chromatin after damage is resolved, produce mutations and epimutations, respectively, both of which have been shown to accumulate with age. An increased burden of mutations and/or epimutations in aged tissues increases cancer risk and adversely affects gene transcriptional regulation, leading to progressive decline in organ function. Cellular degeneration and uncontrolled cell proliferation are both major hallmarks of aging. Despite the fact that one seems to exclude the other, they both may be driven by a common mechanism. Here, we review age related changes in the mammalian genome and their possible functional consequences, with special emphasis on genome instability in stem/progenitor cells. PMID:19344750

  12. Ecological Genomics of Marine Picocyanobacteria†

    PubMed Central

    Scanlan, D. J.; Ostrowski, M.; Mazard, S.; Dufresne, A.; Garczarek, L.; Hess, W. R.; Post, A. F.; Hagemann, M.; Paulsen, I.; Partensky, F.

    2009-01-01

    Summary: Marine picocyanobacteria of the genera Prochlorococcus and Synechococcus numerically dominate the picophytoplankton of the world ocean, making a key contribution to global primary production. Prochlorococcus was isolated around 20 years ago and is probably the most abundant photosynthetic organism on Earth. The genus comprises specific ecotypes which are phylogenetically distinct and differ markedly in their photophysiology, allowing growth over a broad range of light and nutrient conditions within the 45°N to 40°S latitudinal belt that they occupy. Synechococcus and Prochlorococcus are closely related, together forming a discrete picophytoplankton clade, but are distinguishable by their possession of dissimilar light-harvesting apparatuses and differences in cell size and elemental composition. Synechococcus strains have a ubiquitous oceanic distribution compared to that of Prochlorococcus strains and are characterized by phylogenetically discrete lineages with a wide range of pigmentation. In this review, we put our current knowledge of marine picocyanobacterial genomics into an environmental context and present previously unpublished genomic information arising from extensive genomic comparisons in order to provide insights into the adaptations of these marine microbes to their environment and how they are reflected at the genomic level. PMID:19487728

  13. The zebrafish genome editing toolkit.

    PubMed

    Ata, H; Clark, K J; Ekker, S C

    2016-01-01

    Zebrafish (Danio rerio) is a unique model organism at the functional intersection between a high fecundity and conserved vertebrate physiology while being amenable to a multitude of genome editing techniques. The genome engineering field has experienced an unprecedented rate of growth in the recent years since the introduction of designer endonucleases, such as zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats-Cas9 systems. With the ever-evolving toolset available to the scientific community, the important question one should ask is not simply how to make a mutant line, but rather how best to do so. For this purpose, understanding the toolset is just one end of the equation; understanding how DNA is repaired once double-strand breaks are induced by designer endonucleases, as well as understanding proper fish handling and line maintenance techniques, are also essential to rapidly edit the zebrafish genome. This chapter is outlined to provide a bird's-eye view on each of these three components. The goal of this chapter is to facilitate the adoption of the zebrafish as a model to study human genetic disease and to rapidly analyze the function of the vertebrate genome. PMID:27443924

  14. Recent advance in carrot genomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years there has been an effort towards the development of genomic resources in carrot. The number of available sequences for carrot in public databases has increased recently. This has allowed the design of SSRs markers, COS markers and a high-throughput SNP assay for genotyping. Additiona...

  15. GOBASE: an organelle genome database

    PubMed Central

    O’Brien, Emmet A.; Zhang, Yue; Wang, Eric; Marie, Veronique; Badejoko, Wole; Lang, B. Franz; Burger, Gertraud

    2009-01-01

    The organelle genome database GOBASE, now in its 21st release (June 2008), contains all published mitochondrion-encoded sequences (∼913 000) and chloroplast-encoded sequences (∼250 000) from a wide range of eukaryotic taxa. For all sequences, information on related genes, exons, introns, gene products and taxonomy is available, as well as selected genome maps and RNA secondary structures. Recent major enhancements to database functionality include: (i) addition of an interface for RNA editing data, with substitutions, insertions and deletions displayed using multiple alignments; (ii) addition of medically relevant information, such as haplotypes, SNPs and associated disease states, to human mitochondrial sequence data; (iii) addition of fully reannotated genome sequences for Escherichia coli and Nostoc sp., for reference and comparison; and (iv) a number of interface enhancements, such as the availability of both genomic and gene-coding sequence downloads, and a more sophisticated literature reference search functionality with links to PubMed where available. Future projects include the transfer of GOBASE features to NCBI/GenBank, allowing long-term preservation of accumulated expert information. The GOBASE database can be found at http://gobase.bcm.umontreal.ca/. Queries about custom and large-scale data retrievals should be addressed to gobase@bch.umontreal.ca. PMID:18953030

  16. The genome of a songbird

    PubMed Central

    Warren, Wesley C.; Clayton, David F.; Ellegren, Hans; Arnold, Arthur P.; Hillier, LaDeana W.; Künstner, Axel; Searle, Steve; White, Simon; Vilella, Albert J.; Fairley, Susan; Heger, Andreas; Kong, Lesheng; Ponting, Chris P.; Jarvis, Erich D.; Mello, Claudio V.; Minx, Pat; Lovell, Peter; Velho, Tarciso A. F.; Ferris, Margaret; Balakrishnan, Christopher N.; Sinha, Saurabh; Blatti, Charles; London, Sarah E.; Li, Yun; Lin, Ya-Chi; George, Julia; Sweedler, Jonathan; Southey, Bruce; Gunaratne, Preethi; Watson, Michael; Nam, Kiwoong; Backström, Niclas; Smeds, Linnea; Nabholz, Benoit; Itoh, Yuichiro; Whitney, Osceola; Pfenning, Andreas R.; Howard, Jason; Völker, Martin; Skinner, Bejamin M.; Griffin, Darren K.; Ye, Liang; McLaren, William M.; Flicek, Paul; Quesada, Victor; Velasco, Gloria; Lopez-Otin, Carlos; Puente, Xose S.; Olender, Tsviya; Lancet, Doron; Smit, Arian F. A.; Hubley, Robert; Konkel, Miriam K.; Walker, Jerilyn A.; Batzer, Mark A.; Gu, Wanjun; Pollock, David D.; Chen, Lin; Cheng, Ze; Eichler, Evan E.; Stapley, Jessica; Slate, Jon; Ekblom, Robert; Birkhead, Tim; Burke, Terry; Burt, David; Scharff, Constance; Adam, Iris; Richard, Hugues; Sultan, Marc; Soldatov, Alexey; Lehrach, Hans; Edwards, Scott V.; Yang, Shiaw-Pyng; Li, XiaoChing; Graves, Tina; Fulton, Lucinda; Nelson, Joanne; Chinwalla, Asif; Hou, Shunfeng; Mardis, Elaine R.; Wilson, Richard K.

    2010-01-01

    The zebra finch is an important model organism in several fields1,2 with unique relevance to human neuroscience3,4. Like other songbirds, the zebra finch communicates through learned vocalizations, an ability otherwise documented only in humans and a few other animals and lacking in the chicken5—the only bird with a sequenced genome until now6. Here we present a structural, functional and comparative analysis of the genome sequence of the zebra finch (Taeniopygia guttata), which is a songbird belonging to the large avian order Passeriformes7. We find that the overall structures of the genomes are similar in zebra finch and chicken, but they differ in many intrachromosomal rearrangements, lineage-specific gene family expansions, the number of long-terminal-repeat-based retrotransposons, and mechanisms of sex chromosome dosage compensation. We show that song behaviour engages gene regulatory networks in the zebra finch brain, altering the expression of long non-coding RNAs, microRNAs, transcription factors and their targets. We also show evidence for rapid molecular evolution in the songbird lineage of genes that are regulated during song experience. These results indicate an active involvement of the genome in neural processes underlying vocal communication and identify potential genetic substrates for the evolution and regulation of this behaviour. PMID:20360741

  17. Enhancer Identification through Comparative Genomics

    PubMed Central

    Visel, Axel; Bristow, James; Pennacchio, Len A.

    2007-01-01

    With the availability of genomic sequence from numerous vertebrates, a paradigm shift has occurred in the identification of distant-acting gene regulatory elements. In contrast to traditional gene-centric studies in which investigators randomly scanned genomic fragments that flank genes of interest in functional assays, the modern approach begins electronically with publicly available comparative sequence datasets that provide investigators with prioritized lists of putative functional sequences based on their evolutionary conservation. However, although a large number of tools and resources are now available, application of comparative genomic approaches remains far from trivial. In particular, it requires users to dynamically consider the species and methods for comparison depending on the specific biological question under investigation. While there is currently no single general rule to this end, it is clear that when applied appropriately, comparative genomic approaches exponentially increase our power in generating biological hypotheses for subsequent experimental testing. It is anticipated that cardiac-related genes and the identification of their distant-acting transcriptional enhancers are particularly poised to benefit from these modern capabilities. PMID:17276707

  18. New genomes clarify mimicry evolution.

    PubMed

    Mallet, James

    2015-04-01

    For over 100 years, it has been known that polymorphic mimicry is often switched by simple mendelian factors, yet the physical nature of these loci had escaped characterization. Now, the genome sequences of two swallowtail butterfly (Papilio) species have enabled the precise identification of a locus underlying mimicry, adding to unprecedented recent discoveries in mimicry genetics. PMID:25814305

  19. New Genomic Resources for Orchardgrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the initial requirements of utilizing genomic approaches in plant improvement is the availability of DNA sequence information. Toward the goal of generating sequence information for forage and pasture grasses, we are developing an EST library from orchardgrass, or cocksfoot (Dactylis glomera...

  20. Advent of genomics in blueberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blueberry is a high value crop with recognized nutritional characteristics that has led to an increase in consumer demand over the last several years. With its increasing agricultural and commercial importance, genetic and genomic tools have recently become available for use in characterizing its ge...

  1. Genome Sequence of Spizellomyces punctatus

    PubMed Central

    Russ, Carsten; Lang, B. Franz; Chen, Zehua; Gujja, Sharvari; Shea, Terrance; Zeng, Qiandong; Young, Sarah; Nusbaum, Chad

    2016-01-01

    Spizellomyces punctatus is a basally branching chytrid fungus that is found in the Chytridiomycota phylum. Spizellomyces species are common in soil and of importance in terrestrial ecosystems. Here, we report the genome sequence of S. punctatus, which will facilitate the study of this group of early diverging fungi. PMID:27540072

  2. A genome befitting a monarch.

    PubMed

    Stensmyr, Marcus C; Hansson, Bill S

    2011-11-23

    The monarch butterfly is famous for its annual fall migration from eastern North America to central Mexico, but it has also been an important model for studies in long-distance migration. Now, Zhan et al. present the genome of the monarch, opening up the detailed characterization of the butterfly's navigational system and unique social life. PMID:22118454

  3. Microbial Genomics of Aquaculture Pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infectious diseases cause substantial economic loss in aquaculture and are a factor limiting production of many species. Given increasing seafood demand worldwide, there is an escalating need for research to identify solutions to fish health problems. With the advent of pathogen and host-genome sequ...

  4. Genomic Selection for Crop Improvement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of marker-assisted selection (MAS) has stagnated for the improvement of quantitative traits. Experimental designs for the detection of loci affecting these traits impede their application, and the statistical methods used are ill-suited to the traits’ polygenic nature. Genomic selection (GS)...

  5. Rosaceae: Taxonomy, Economic Importance, Genomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter presents an introduction for the book Genetics and Genomics of the Rosaceae. It reviews the origins of the Rose family, Rosaceae. Theories of the origin of this plant family are given. The first descriptions by Michel Adanson and Antoine Laurent de Jussieu in the 1700s, controversial t...

  6. The potato psyllid genome project

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potato psyllid (Bactericera cockerelli) is a Hemipteran pest of solanaceous plants and limits potato and tomato production by the transmission of Candidatus Liberibacter solanacearum. Genomic information on the potato psyllid is limited but is vital in developing appropriate management strategi...

  7. The 1000 bull genome project

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To meet growing global demands for high value protein from milk and meat, rates of genetic gain in domestic cattle must be accelerated. At the same time, animal health and welfare must be considered. The 1000 bull genomes project supports these goals by providing annotated sequence variants and ge...

  8. Comparative genomics: methods and applications

    NASA Astrophysics Data System (ADS)

    Haubold, Bernhard; Wiehe, Thomas

    2004-09-01

    Interpreting the functional content of a given genomic sequence is one of the central challenges of biology today. Perhaps the most promising approach to this problem is based on the comparative method of classic biology in the modern guise of sequence comparison. For instance, protein-coding regions tend to be conserved between species. Hence, a simple method for distinguishing a functional exon from the chance absence of stop codons is to investigate its homologue from closely related species. Predicting regulatory elements is even more difficult than exon prediction, but again, comparisons pinpointing conserved sequence motifs upstream of translation start sites are helping to unravel gene regulatory networks. In addition to interspecific studies, intraspecific sequence comparison yields insights into the evolutionary forces that have acted on a species in the past. Of particular interest here is the identification of selection events such as selective sweeps. Both intra- and interspecific sequence comparisons are based on a variety of computational methods, including alignment, phylogenetic reconstruction, and coalescent theory. This article surveys the biology and the central computational ideas applied in recent comparative genomics projects. We argue that the most fruitful method of understanding the functional content of genomes is to study them in the context of related genomic sequences. In particular, such a study may reveal selection, a fundamental pointer to biological relevance.

  9. Repetitive DNA in eukaryotic genomes.

    PubMed

    Biscotti, Maria Assunta; Olmo, Ettore; Heslop-Harrison, J S Pat

    2015-09-01

    Repetitive DNA--sequence motifs repeated hundreds or thousands of times in the genome--makes up the major proportion of all the nuclear DNA in most eukaryotic genomes. However, the significance of repetitive DNA in the genome is not completely understood, and it has been considered to have both structural and functional roles, or perhaps even no essential role. High-throughput DNA sequencing reveals huge numbers of repetitive sequences. Most bioinformatic studies focus on low-copy DNA including genes, and hence, the analyses collapse repeats in assemblies presenting only one or a few copies, often masking out and ignoring them in both DNA and RNA read data. Chromosomal studies are proving vital to examine the distribution and evolution of sequences because of the challenges of analysis of sequence data. Many questions are open about the origin, evolutionary mode and functions that repetitive sequences might have in the genome. Some, the satellite DNAs, are present in long arrays of similar motifs at a small number of sites, while others, particularly the transposable elements (DNA transposons and retrotranposons), are dispersed over regions of the genome; in both cases, sequence motifs may be located at relatively specific chromosome domains such as centromeres or subtelomeric regions. Here, we overview a range of works involving detailed characterization of the nature of all types of repetitive sequences, in particular their organization, abundance, chromosome localization, variation in sequence within and between chromosomes, and, importantly, the investigation of their transcription or expression activity. Comparison of the nature and locations of sequences between more, and less, related species is providing extensive information about their evolution and amplification. Some repetitive sequences are extremely well conserved between species, while others are among the most variable, defining differences between even closely relative species. These data suggest

  10. The Genome of Fowlpox Virus

    PubMed Central

    Afonso, C. L.; Tulman, E. R.; Lu, Z.; Zsak, L.; Kutish, G. F.; Rock, D. L.

    2000-01-01

    Here we present the genomic sequence, with analysis, of a pathogenic fowlpox virus (FPV). The 288-kbp FPV genome consists of a central coding region bounded by identical 9.5-kbp inverted terminal repeats and contains 260 open reading frames, of which 101 exhibit similarity to genes of known function. Comparison of the FPV genome with those of other chordopoxviruses (ChPVs) revealed 65 conserved gene homologues, encoding proteins involved in transcription and mRNA biogenesis, nucleotide metabolism, DNA replication and repair, protein processing, and virion structure. Comparison of the FPV genome with those of other ChPVs revealed extensive genome colinearity which is interrupted in FPV by a translocation and a major inversion, the presence of multiple and in some cases large gene families, and novel cellular homologues. Large numbers of cellular homologues together with 10 multigene families largely account for the marked size difference between the FPV genome (260 to 309 kbp) and other known ChPV genomes (178 to 191 kbp). Predicted proteins with putative functions involving immune evasion included eight natural killer cell receptors, four CC chemokines, three G-protein-coupled receptors, two β nerve growth factors, transforming growth factor β, interleukin-18-binding protein, semaphorin, and five serine proteinase inhibitors (serpins). Other potential FPV host range proteins included homologues of those involved in apoptosis (e.g., Bcl-2 protein), cell growth (e.g., epidermal growth factor domain protein), tissue tropism (e.g., ankyrin repeat-containing gene family, N1R/p28 gene family, and a T10 homologue), and avian host range (e.g., a protein present in both fowl adenovirus and Marek's disease virus). The presence of homologues of genes encoding proteins involved in steroid biogenesis (e.g., hydroxysteroid dehydrogenase), antioxidant functions (e.g., glutathione peroxidase), vesicle trafficking (e.g., two α-type soluble NSF attachment proteins), and other

  11. THE PHYLOGENY AND GENOME OF TRICHINELLA SPECIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2004, funding was received by Washington University’s Genome Sequencing Center through NHGRI, to completely sequence several nematode genomes as part of a holistic effort to advance our understanding of the human genome. Trichinella spiralis was among this group because of its strategic ...

  12. Sequencing crop genomes: approaches and applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant genome sequencing methodology parrallels the sequencing of the human genome. The first projects were slow and very expensive. BAC by BAC approaches were utilized first and whole-genome shotgun sequencing rapidly replaced that approach. So called 'next generation' technologies such as short rea...

  13. Accounting for discovery bias in genomic EPD

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomics has contributed substantially to genetic improvement of beef cattle. The implementation is through computation of genomically enhanced expected progeny differences (GE-EPD), which are predictions of genetic merit of individual animals based on genomic information, pedigree, and data on the ...

  14. Value of a newly sequenced bacterial genome.

    PubMed

    Barbosa, Eudes Gv; Aburjaile, Flavia F; Ramos, Rommel Tj; Carneiro, Adriana R; Le Loir, Yves; Baumbach, Jan; Miyoshi, Anderson; Silva, Artur; Azevedo, Vasco

    2014-05-26

    Next-generation sequencing (NGS) technologies have made high-throughput sequencing available to medium- and small-size laboratories, culminating in a tidal wave of genomic information. The quantity of sequenced bacterial genomes has not only brought excitement to the field of genomics but also heightened expectations that NGS would boost antibacterial discovery and vaccine development. Although many possible drug and vaccine targets have been discovered, the success rate of genome-based analysis has remained below expectations. Furthermore, NGS has had consequences for genome quality, resulting in an exponential increase in draft (partial data) genome deposits in public databases. If no further interests are expressed for a particular bacterial genome, it is more likely that the sequencing of its genome will be limited to a draft stage, and the painstaking tasks of completing the sequencing of its genome and annotation will not be undertaken. It is important to know what is lost when we settle for a draft genome and to determine the "scientific value" of a newly sequenced genome. This review addresses the expected impact of newly sequenced genomes on antibacterial discovery and vaccinology. Also, it discusses the factors that could be leading to the increase in the number of draft deposits and the consequent loss of relevant biological information. PMID:24921006

  15. Realizing the promise of parasite genomics.

    PubMed

    Wasmuth, James D

    2014-07-01

    Genomes and genomics are now part of the popular imagination and culture. Understanding what these massively long strings of As, Gs, Cs, and Ts actually mean is a challenge that has been taken up by many working on parasites. Our understanding of parasite biology and future treatment strategies has been significantly improved because of these genomes. PMID:24981572

  16. Speciation: Genomic Archipelagos in a Crater Lake.

    PubMed

    Ronco, Fabrizia; Salzburger, Walter

    2016-03-01

    The opening stages of speciation remain poorly understood, especially from a genomic perspective. The genomes of newly discovered crater-lake cichlid fish shed light on the early phases of diversification and suggest that selection acts on multiple genomic regions. PMID:26954438

  17. Genetics, Genomics and Breeding in Soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The soybean (Glycine max) genome sequencing project began as an interagency project with the DOE’s Joint Genome Institute providing the production sequencing throughput with the NSF and USDA funded groups providing genomic resources and soybean expertise to the project (Jackson et al, 2006). The go...

  18. Draft Genome Sequences of Fungus Aspergillus calidoustus.

    PubMed

    Horn, Fabian; Linde, Jörg; Mattern, Derek J; Walther, Grit; Guthke, Reinhard; Scherlach, Kirstin; Martin, Karin; Brakhage, Axel A; Petzke, Lutz; Valiante, Vito

    2016-01-01

    Here, we report the draft genome sequence of Aspergillus calidoustus (strain SF006504). The functional annotation of A. calidoustus predicts a relatively large number of secondary metabolite gene clusters. The presented genome sequence builds the basis for further genome mining. PMID:26966204

  19. The role of genomics in citrus improvement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic science is revolutionizing biology and is the result of a convergence of advances in computer science with advances in genetics, molecular biology, and chemistry. To illustrate a typical genomic approach, the basic genomic concept of "association" is explained and illustrated using the wide...

  20. Poultry Genome Sequences: Progress and Outstanding Challenges

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The first build of the chicken genome sequence appeared in March 2004 – the first genome sequence of any animal agriculture species. That sequence was done primarily by whole genome shotgun Sanger sequencing, along with the use of an extensive BAC contig-based physical map to assemble the sequence ...

  1. THE PHYLOGENY AND GENOME OF TRICHINELLA SPECIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2004, funding was received by Washington University’s Genome Sequencing Center through NHGRI, to completely sequence several nematode genomes as part of a holistic effort to advance our understanding of the human genome. Trichinella spiralis was among this group because of its strategic ...

  2. Draft Genome Sequences of Fungus Aspergillus calidoustus

    PubMed Central

    Horn, Fabian; Linde, Jörg; Mattern, Derek J.; Walther, Grit; Guthke, Reinhard; Scherlach, Kirstin; Martin, Karin; Brakhage, Axel A.; Petzke, Lutz

    2016-01-01

    Here, we report the draft genome sequence of Aspergillus calidoustus (strain SF006504). The functional annotation of A. calidoustus predicts a relatively large number of secondary metabolite gene clusters. The presented genome sequence builds the basis for further genome mining. PMID:26966204

  3. Overcoming Barriers to Progress in Exercise Genomics

    PubMed Central

    Bouchard, Claude

    2011-01-01

    This commentary focuses on the issues of statistical power, the usefulness of hypothesis-free approaches such as in genome-wide association explorations, the necessity of expanding the research beyond common DNA variants, the advantage of combining transcriptomics with genomics, and the complexities inherent to the search for links between genotype and phenotype in exercise genomics research. PMID:21697717

  4. BEYOND GENOMICS REVOLUTION: EMERGENCE OF AGRICULTURAL BIOTECHNOLOGY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Today, one of the most exciting scientific fields of research is genetics. In view of rapid progress in genome science and its potential applications, genomic biology is expected to be the foremost science of the 21st century. The Human Genome Project (HGP) which began in 1990 in the United States a...

  5. Hemipteran genomics and psyllid gene expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the best tools current available is the application of genomics to insect pest problems. Genomics provides rapid elucidation of the genetic basis of insect biology. Research efforts on psyllid genomics, while still in its infancy, is providing information which will aid strategies to suppress...

  6. Comparative Genome Analysis in the Integrated Microbial Genomes(IMG) System

    SciTech Connect

    Kyrpides, Nikos C.; Markowitz, Victor M.

    2006-03-01

    Comparative genome analysis is critical for the effectiveexploration of a rapidly growing number of complete and draft sequencesfor microbial genomes. The Integrated Microbial Genomes (IMG) system(img.jgi.doe.gov) has been developed as a community resource thatprovides support for comparative analysis of microbial genomes in anintegrated context. IMG allows users to navigate the multidimensionalmicrobial genome data space and focus their analysis on a subset ofgenes, genomes, and functions of interest. IMG provides graphicalviewers, summaries and occurrence profile tools for comparing genes,pathways and functions (terms) across specific genomes. Genes can befurther examined using gene neighborhoods and compared with sequencealignment tools.

  7. The Genomic HyperBrowser: an analysis web server for genome-scale data

    PubMed Central

    Sandve, Geir K.; Gundersen, Sveinung; Johansen, Morten; Glad, Ingrid K.; Gunathasan, Krishanthi; Holden, Lars; Holden, Marit; Liestøl, Knut; Nygård, Ståle; Nygaard, Vegard; Paulsen, Jonas; Rydbeck, Halfdan; Trengereid, Kai; Clancy, Trevor; Drabløs, Finn; Ferkingstad, Egil; Kalaš, Matúš; Lien, Tonje; Rye, Morten B.; Frigessi, Arnoldo; Hovig, Eivind

    2013-01-01

    The immense increase in availability of genomic scale datasets, such as those provided by the ENCODE and Roadmap Epigenomics projects, presents unprecedented opportunities for individual researchers to pose novel falsifiable biological questions. With this opportunity, however, researchers are faced with the challenge of how to best analyze and interpret their genome-scale datasets. A powerful way of representing genome-scale data is as feature-specific coordinates relative to reference genome assemblies, i.e. as genomic tracks. The Genomic HyperBrowser (http://hyperbrowser.uio.no) is an open-ended web server for the analysis of genomic track data. Through the provision of several highly customizable components for processing and statistical analysis of genomic tracks, the HyperBrowser opens for a range of genomic investigations, related to, e.g., gene regulation, disease association or epigenetic modifications of the genome. PMID:23632163

  8. Comparative Genomics of Carp Herpesviruses

    PubMed Central

    Kurobe, Tomofumi; Gatherer, Derek; Cunningham, Charles; Korf, Ian; Fukuda, Hideo; Hedrick, Ronald P.; Waltzek, Thomas B.

    2013-01-01

    Three alloherpesviruses are known to cause disease in cyprinid fish: cyprinid herpesviruses 1 and 3 (CyHV1 and CyHV3) in common carp and koi and cyprinid herpesvirus 2 (CyHV2) in goldfish. We have determined the genome sequences of CyHV1 and CyHV2 and compared them with the published CyHV3 sequence. The CyHV1 and CyHV2 genomes are 291,144 and 290,304 bp, respectively, in size, and thus the CyHV3 genome, at 295,146 bp, remains the largest recorded among the herpesviruses. Each of the three genomes consists of a unique region flanked at each terminus by a sizeable direct repeat. The CyHV1, CyHV2, and CyHV3 genomes are predicted to contain 137, 150, and 155 unique, functional protein-coding genes, respectively, of which six, four, and eight, respectively, are duplicated in the terminal repeat. The three viruses share 120 orthologous genes in a largely colinear arrangement, of which up to 55 are also conserved in the other member of the genus Cyprinivirus, anguillid herpesvirus 1. Twelve genes are conserved convincingly in all sequenced alloherpesviruses, and two others are conserved marginally. The reference CyHV3 strain has been reported to contain five fragmented genes that are presumably nonfunctional. The CyHV2 strain has two fragmented genes, and the CyHV1 strain has none. CyHV1, CyHV2, and CyHV3 have five, six, and five families of paralogous genes, respectively. One family unique to CyHV1 is related to cellular JUNB, which encodes a transcription factor involved in oncogenesis. To our knowledge, this is the first time that JUNB-related sequences have been reported in a herpesvirus. PMID:23269803

  9. Comparative genomics of carp herpesviruses.

    PubMed

    Davison, Andrew J; Kurobe, Tomofumi; Gatherer, Derek; Cunningham, Charles; Korf, Ian; Fukuda, Hideo; Hedrick, Ronald P; Waltzek, Thomas B

    2013-03-01

    Three alloherpesviruses are known to cause disease in cyprinid fish: cyprinid herpesviruses 1 and 3 (CyHV1 and CyHV3) in common carp and koi and cyprinid herpesvirus 2 (CyHV2) in goldfish. We have determined the genome sequences of CyHV1 and CyHV2 and compared them with the published CyHV3 sequence. The CyHV1 and CyHV2 genomes are 291,144 and 290,304 bp, respectively, in size, and thus the CyHV3 genome, at 295,146 bp, remains the largest recorded among the herpesviruses. Each of the three genomes consists of a unique region flanked at each terminus by a sizeable direct repeat. The CyHV1, CyHV2, and CyHV3 genomes are predicted to contain 137, 150, and 155 unique, functional protein-coding genes, respectively, of which six, four, and eight, respectively, are duplicated in the terminal repeat. The three viruses share 120 orthologous genes in a largely colinear arrangement, of which up to 55 are also conserved in the other member of the genus Cyprinivirus, anguillid herpesvirus 1. Twelve genes are conserved convincingly in all sequenced alloherpesviruses, and two others are conserved marginally. The reference CyHV3 strain has been reported to contain five fragmented genes that are presumably nonfunctional. The CyHV2 strain has two fragmented genes, and the CyHV1 strain has none. CyHV1, CyHV2, and CyHV3 have five, six, and five families of paralogous genes, respectively. One family unique to CyHV1 is related to cellular JUNB, which encodes a transcription factor involved in oncogenesis. To our knowledge, this is the first time that JUNB-related sequences have been reported in a herpesvirus. PMID:23269803

  10. Genomic Avenue to Avian Colisepticemia

    PubMed Central

    Huja, Sagi; Oren, Yaara; Trost, Eva; Brzuszkiewicz, Elzbieta; Biran, Dvora; Blom, Jochen; Goesmann, Alexander; Gottschalk, Gerhard; Hacker, Jörg

    2015-01-01

    ABSTRACT Here we present an extensive genomic and genetic analysis of Escherichia coli strains of serotype O78 that represent the major cause of avian colisepticemia, an invasive infection caused by avian pathogenic Escherichia coli (APEC) strains. It is associated with high mortality and morbidity, resulting in significant economic consequences for the poultry industry. To understand the genetic basis of the virulence of avian septicemic E. coli, we sequenced the entire genome of a clinical isolate of serotype O78—O78:H19 ST88 isolate 789 (O78-9)—and compared it with three publicly available APEC O78 sequences and one complete genome of APEC serotype O1 strain. Although there was a large variability in genome content between the APEC strains, several genes were conserved, which are potentially critical for colisepticemia. Some of these genes are present in multiple copies per genome or code for gene products with overlapping function, signifying their importance. A systematic deletion of each of these virulence-related genes identified three systems that are conserved in all septicemic strains examined and are critical for serum survival, a prerequisite for septicemia. These are the plasmid-encoded protein, the defective ETT2 (E. coli type 3 secretion system 2) type 3 secretion system ETT2sepsis, and iron uptake systems. Strain O78-9 is the only APEC O78 strain that also carried the regulon coding for yersiniabactin, the iron binding system of the Yersinia high-pathogenicity island. Interestingly, this system is the only one that cannot be complemented by other iron uptake systems under iron limitation and in serum. PMID:25587010

  11. Personal genomes in progress: from the Human Genome Project to the Personal Genome Project

    PubMed Central

    Lunshof (Co-first author), Jeantine E.; Bobe (Co-first author), Jason; Aach, John; Angrist, Misha; V. Thakuria, Joseph; Vorhaus, Daniel B.; R. Hoehe (Co-last author), Margret; Church (Co-last author), George M.

    2010-01-01

    The cost of a diploid human genome sequence has dropped from about $70M to $2000 since 2007- even as the standards for redundancy have increased from 7x to 40x in order to improve call rates. Coupled with the low return on investment for common single-nucleotide polymorphisms, this has caused a significant rise in interest in correlating genome sequences with comprehensive environmental and trait data (GET). The cost of electronic health records, imaging, and microbial, immunological, and behavioral data are also dropping quickly. Sharing such integrated GET datasets and their interpretations with a diversity of researchers and research subjects highlights the need for informed-consent models capable of addressing novel privacy and other issues, as well as for flexible data-sharing resources that make materials and data available with minimum restrictions on use. This article examines the Personal Genome Project's effort to develop a GET database as a public genomics resource broadly accessible to both researchers and research participants, while pursuing the highest standards in research ethics. PMID:20373666

  12. Genome evolution in maize: from genomes back to genes.

    PubMed

    Schnable, James C

    2015-01-01

    Maize occupies dual roles as both (a) one of the big-three grain species (along with rice and wheat) responsible for providing more than half of the calories consumed around the world, and (b) a model system for plant genetics and cytogenetics dating back to the origin of the field of genetics in the early twentieth century. The long history of genetic investigation in this species combined with modern genomic and quantitative genetic data has provided particular insight into the characteristics of genes linked to phenotypes and how these genes differ from many other sequences in plant genomes that are not easily distinguishable based on molecular data alone. These recent results suggest that the number of genes in plants that make significant contributions to phenotype may be lower than the number of genes defined by current molecular criteria, and also indicate that syntenic conservation has been underemphasized as a marker for gene function. PMID:25494463

  13. Complete mitochondrial genome of Drosophila albomicans.

    PubMed

    Kang, Xiongbin; Luo, Xiao; Zhang, Zhi; Zhang, Zhen; Yang, Junqing; Bi, Guiqi

    2016-09-01

    Drosophila albomicans has been widely used as an important animal model for chromosome evolution. In this study, the mitochondrial genome sequence of this species is determined and described for the first time. The mitochondrial genome (15 849 bp) encompasses two rRNA, 22 tRNA, and 13 protein-coding genes. Genome content and structure are similar to those reported from other Drosophila mitochondrial genomes. Phylogeny analysis indicates that D. albomicans have a closer genetic relationship with Drosophil aincompta and Drosophil alittoralis. This mitochondrial genome is potentially important for studying molecular evolution and conservation genetics in Drosophila genus. PMID:26358579

  14. Small RNAs as Guardians of the Genome

    PubMed Central

    Malone, Colin D.; Hannon, Gregory J.

    2009-01-01

    Transposons populate the landscape of all eukaryotic genomes. Often considered purely genomic parasites, transposons can also benefit their hosts, playing roles in gene regulation and in genome organization and evolution. Peaceful coexistence with mobile elements depends upon adaptive control mechanisms, since unchecked transposon activity can impact long-term fitness and acutely reduce the fertility of progeny. Here, we review the conserved roles played by small RNAs in the adaptation of eukaryotes to coexist with their genomic colonists. An understanding of transposon-defense pathways has uncovered recurring themes in the mechanisms by which genomes distinguish “self” from “non-self” and selectively silence the latter. PMID:19239887

  15. The ecoresponsive genome of Daphnia pulex

    SciTech Connect

    Colbourne, John K.; Pfrender, Michael E.; Gilbert, Donald; Thomas, W. Kelley; Tucker, Abraham; Oakley, Todd H.; Tokishita, Shinichi; Aerts, Andrea; Arnold, Georg J.; Basu, Malay Kumar; Bauer, Darren J.; Caceres, Carla E.; Carmel, Liran; Casola, Claudio; Choi, Jeong-Hyeon; Detter, John C.; Dong, Qunfeng; Dusheyko, Serge; Eads, Brian D.; Frohlich, Thomas; Geiler-Samerotte, Kerry A.; Gerlach, Daniel; Hatcher, Phil; Jogdeo, Sanjuro; Krijgsveld, Jeroen; Kriventseva, Evgenia V; Kültz, Dietmar; Laforsch, Christian; Lindquist, Erika; Lopez, Jacqueline; Manak, Robert; Muller, Jean; Pangilinan, Jasmyn; Patwardhan, Rupali P.; Pitluck, Samuel; Pritham, Ellen J.; Rechtsteiner, Andreas; Rho, Mina; Rogozin, Igor B.; Sakarya, Onur; Salamov, Asaf; Schaack, Sarah; Shapiro, Harris; Shiga, Yasuhiro; Skalitzky, Courtney; Smith, Zachary; Souvorov, Alexander; Sung, Way; Tang, Zuojian; Tsuchiya, Dai; Tu, Hank; Vos, Harmjan; Wang, Mei; Wolf, Yuri I.; Yamagata, Hideo; Yamada, Takuji; Ye, Yuzhen; Shaw, Joseph R.; Andrews, Justen; Crease, Teresa J.; Tang, Haixu; Lucas, Susan M.; Robertson, Hugh M.; Bork, Peer; Koonin, Eugene V.; Zdobnov, Evgeny M.; Grigoriev, Igor V.; Lynch, Michael; Boore, Jeffrey L.

    2011-02-04

    This document provides supporting material related to the sequencing of the ecoresponsive genome of Daphnia pulex. This material includes information on materials and methods and supporting text, as well as supplemental figures, tables, and references. The coverage of materials and methods addresses genome sequence, assembly, and mapping to chromosomes, gene inventory, attributes of a compact genome, the origin and preservation of Daphnia pulex genes, implications of Daphnia's genome structure, evolutionary diversification of duplicated genes, functional significance of expanded gene families, and ecoresponsive genes. Supporting text covers chromosome studies, gene homology among Daphnia genomes, micro-RNA and transposable elements and the 46 Daphnia pulex opsins. 36 figures, 50 tables, 183 references.

  16. [Research proceedings on primate comparative genomics].

    PubMed

    Liao, Cheng-Hong; Su, Bing

    2012-02-01

    With the accomplishment of genome sequencing of human, chimpanzee and other primates, there has been a great amount of primate genome information accumulated. Primate comparative genomics has become a new research field at current genome era. In this article, we reviewed recent progress in phylogeny, genome structure and gene expression of human and nonhuman primates, and we elaborated the major biological differences among human, chimpanzee and other non-human primate species, which is informative in revealing the mechanism of human evolution. PMID:22345018

  17. Genomes, Populations and Diseases: Ethnic Genomics and Personalized Medicine

    PubMed Central

    Stepanov, V.A.

    2010-01-01

    This review discusses the progress of ethnic genetics, the genetics of common diseases, and the concepts of personalized medicine. We show the relationship between the structure of genetic diversity in human populations and the varying frequencies of Mendelian and multifactor diseases. We also examine the population basis of pharmacogenetics and evaluate the effectiveness of pharmacotherapy, along with a review of new achievements and prospects in personalized genomics. PMID:22649660

  18. The Human Genome Project, and recent advances in personalized genomics

    PubMed Central

    Wilson, Brenda J; Nicholls, Stuart G

    2015-01-01

    The language of “personalized medicine” and “personal genomics” has now entered the common lexicon. The idea of personalized medicine is the integration of genomic risk assessment alongside other clinical investigations. Consistent with this approach, testing is delivered by health care professionals who are not medical geneticists, and where results represent risks, as opposed to clinical diagnosis of disease, to be interpreted alongside the entirety of a patient’s health and medical data. In this review we consider the evidence concerning the application of such personalized genomics within the context of population screening, and potential implications that arise from this. We highlight two general approaches which illustrate potential uses of genomic information in screening. The first is a narrowly targeted approach in which genetic profiling is linked with standard population-based screening for diseases; the second is a broader targeting of variants associated with multiple single gene disorders, performed opportunistically on patients being investigated for unrelated conditions. In doing so we consider the organization and evaluation of tests and services, the challenge of interpretation with less targeted testing, professional confidence, barriers in practice, and education needs. We conclude by discussing several issues pertinent to health policy, namely: avoiding the conflation of genetics with biological determinism, resisting the “technological imperative”, due consideration of the organization of screening services, the need for professional education, as well as informed decision making and public understanding. PMID:25733939

  19. Genome size variation in the genus Avena.

    PubMed

    Yan, Honghai; Martin, Sara L; Bekele, Wubishet A; Latta, Robert G; Diederichsen, Axel; Peng, Yuanying; Tinker, Nicholas A

    2016-03-01

    Genome size is an indicator of evolutionary distance and a metric for genome characterization. Here, we report accurate estimates of genome size in 99 accessions from 26 species of Avena. We demonstrate that the average genome size of C genome diploid species (2C = 10.26 pg) is 15% larger than that of A genome species (2C = 8.95 pg), and that this difference likely accounts for a progression of size among tetraploid species, where AB < AC < CC (average 2C = 16.76, 18.60, and 21.78 pg, respectively). All accessions from three hexaploid species with the ACD genome configuration had similar genome sizes (average 2C = 25.74 pg). Genome size was mostly consistent within species and in general agreement with current information about evolutionary distance among species. Results also suggest that most of the polyploid species in Avena have experienced genome downsizing in relation to their diploid progenitors. Genome size measurements could provide additional quality control for species identification in germplasm collections, especially in cases where diploid and polyploid species have similar morphology. PMID:26881940

  20. The UCSC Archaeal Genome Browser: 2012 update.

    PubMed

    Chan, Patricia P; Holmes, Andrew D; Smith, Andrew M; Tran, Danny; Lowe, Todd M

    2012-01-01

    The UCSC Archaeal Genome Browser (http://archaea.ucsc.edu) offers a graphical web-based resource for exploration and discovery within archaeal and other selected microbial genomes. By bringing together existing gene annotations, gene expression data, multiple-genome alignments, pre-computed sequence comparisons and other specialized analysis tracks, the genome browser is a powerful aggregator of varied genomic information. The genome browser environment maintains the current look-and-feel of the vertebrate UCSC Genome Browser, but also integrates archaeal and bacterial-specific tracks with a few graphic display enhancements. The browser currently contains 115 archaeal genomes, plus 31 genomes of viruses known to infect archaea. Some of the recently developed or enhanced tracks visualize data from published high-throughput RNA-sequencing studies, the NCBI Conserved Domain Database, sequences from pre-genome sequencing studies, predicted gene boundaries from three different protein gene prediction algorithms, tRNAscan-SE gene predictions with RNA secondary structures and CRISPR locus predictions. We have also developed a companion resource, the Archaeal COG Browser, to provide better search and display of arCOG gene function classifications, including their phylogenetic distribution among available archaeal genomes. PMID:22080555

  1. Fungal Genomics for Energy and Environment

    SciTech Connect

    Grigoriev, Igor V.

    2013-03-11

    Genomes of fungi relevant to energy and environment are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). One of its projects, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts) by means of genome sequencing and analysis. New chapters of the Encyclopedia can be opened with user proposals to the JGI Community Sequencing Program (CSP). Another JGI project, the 1000 fungal genomes, explores fungal diversity on genome level at scale and is open for users to nominate new species for sequencing. Over 200 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such parts suggested by comparative genomics and functional analysis in these areas are presented here.

  2. TARGETED CAPTURE IN EVOLUTIONARY AND ECOLOGICAL GENOMICS

    PubMed Central

    Jones, Matthew R.; Good, Jeffrey M.

    2016-01-01

    The rapid expansion of next-generation sequencing has yielded a powerful array of tools to address fundamental biological questions at a scale that was inconceivable just a few years ago. Various genome partitioning strategies to sequence select subsets of the genome have emerged as powerful alternatives to whole genome sequencing in ecological and evolutionary genomic studies. High throughput targeted capture is one such strategy that involves the parallel enrichment of pre-selected genomic regions of interest. The growing use of targeted capture demonstrates its potential power to address a range of research questions, yet these approaches have yet to expand broadly across labs focused on evolutionary and ecological genomics. In part, the use of targeted capture has been hindered by the logistics of capture design and implementation in species without established reference genomes. Here we aim to 1) increase the accessibility of targeted capture to researchers working in non-model taxa by discussing capture methods that circumvent the need of a reference genome, 2) highlight the evolutionary and ecological applications where this approach is emerging as a powerful sequencing strategy, and 3) discuss the future of targeted capture and other genome partitioning approaches in light of the increasing accessibility of whole genome sequencing. Given the practical advantages and increasing feasibility of high-throughput targeted capture, we anticipate an ongoing expansion of capture-based approaches in evolutionary and ecological research, synergistic with an expansion of whole genome sequencing. PMID:26137993

  3. Genome Improvement at JGI-HAGSC

    SciTech Connect

    Grimwood, Jane; Schmutz, Jeremy J.; Myers, Richard M.

    2012-03-03

    Since the completion of the sequencing of the human genome, the Joint Genome Institute (JGI) has rapidly expanded its scientific goals in several DOE mission-relevant areas. At the JGI-HAGSC, we have kept pace with this rapid expansion of projects with our focus on assessing, assembling, improving and finishing eukaryotic whole genome shotgun (WGS) projects for which the shotgun sequence is generated at the Production Genomic Facility (JGI-PGF). We follow this by combining the draft WGS with genomic resources generated at JGI-HAGSC or in collaborator laboratories (including BAC end sequences, genetic maps and FLcDNA sequences) to produce an improved draft sequence. For eukaryotic genomes important to the DOE mission, we then add further information from directed experiments to produce reference genomic sequences that are publicly available for any scientific researcher. Also, we have continued our program for producing BAC-based finished sequence, both for adding information to JGI genome projects and for small BAC-based sequencing projects proposed through any of the JGI sequencing programs. We have now built our computational expertise in WGS assembly and analysis and have moved eukaryotic genome assembly from the JGI-PGF to JGI-HAGSC. We have concentrated our assembly development work on large plant genomes and complex fungal and algal genomes.

  4. Insights into Conifer Giga-Genomes1

    PubMed Central

    De La Torre, Amanda R.; Birol, Inanc; Bousquet, Jean; Ingvarsson, Pär K.; Jansson, Stefan; Jones, Steven J.M.; Keeling, Christopher I.; MacKay, John; Nilsson, Ove; Ritland, Kermit; Street, Nathaniel; Yanchuk, Alvin; Zerbe, Philipp; Bohlmann, Jörg

    2014-01-01

    Insights from sequenced genomes of major land plant lineages have advanced research in almost every aspect of plant biology. Until recently, however, assembled genome sequences of gymnosperms have been missing from this picture. Conifers of the pine family (Pinaceae) are a group of gymnosperms that dominate large parts of the world’s forests. Despite their ecological and economic importance, conifers seemed long out of reach for complete genome sequencing, due in part to their enormous genome size (20–30 Gb) and the highly repetitive nature of their genomes. Technological advances in genome sequencing and assembly enabled the recent publication of three conifer genomes: white spruce (Picea glauca), Norway spruce (Picea abies), and loblolly pine (Pinus taeda). These genome sequences revealed distinctive features compared with other plant genomes and may represent a window into the past of seed plant genomes. This Update highlights recent advances, remaining challenges, and opportunities in light of the publication of the first conifer and gymnosperm genomes. PMID:25349325

  5. Sequencing Intractable DNA to Close Microbial Genomes

    SciTech Connect

    Hurt, Jr., Richard Ashley; Brown, Steven D; Podar, Mircea; Palumbo, Anthony Vito; Elias, Dwayne A

    2012-01-01

    Advancement in high throughput DNA sequencing technologies has supported a rapid proliferation of microbial genome sequencing projects, providing the genetic blueprint for for in-depth studies. Oftentimes, difficult to sequence regions in microbial genomes are ruled intractable resulting in a growing number of genomes with sequence gaps deposited in databases. A procedure was developed to sequence such difficult regions in the non-contiguous finished Desulfovibrio desulfuricans ND132 genome (6 intractable gaps) and the Desulfovibrio africanus genome (1 intractable gap). The polynucleotides surrounding each gap formed GC rich secondary structures making the regions refractory to amplification and sequencing. Strand-displacing DNA polymerases used in concert with a novel ramped PCR extension cycle supported amplification and closure of all gap regions in both genomes. These developed procedures support accurate gene annotation, and provide a step-wise method that reduces the effort required for genome finishing.

  6. Corrected sequence of the wheat plastid genome.

    PubMed

    Bahieldin, Ahmed; Al-Kordy, Magdy A; Shokry, Ahmed M; Gadalla, Nour O; Al-Hejin, Ahmed M M; Sabir, Jamal S M; Hassan, Sabah M; Al-Ahmadi, Ahlam A; Schwarz, Erika N; Eissa, Hala F; El-Domyati, Fotouh M; Jansen, Robert K

    2014-09-01

    Wheat is the most important cereal in the world in terms of acreage and productivity. We sequenced and assembled the plastid genome of one Egyptian wheat cultivar using next-generation sequence data. The size of the plastid genome is 133,873 bp, which is 672 bp smaller than the published plastid genome of "Chinese Spring" cultivar, due mainly to the presence of three sequences from the rice plastid genome. The difference in size between the previously published wheat plastid genome and the sequence reported here is due to contamination of the published genome with rice plastid DNA, most of which is present in three sequences of 332, 131 and 131 bp. The corrected plastid genome of wheat has been submitted to GenBank (accession number KJ592713) and can be used in future comparisons. PMID:25242688

  7. Insights from Human/Mouse genome comparisons

    SciTech Connect

    Pennacchio, Len A.

    2003-03-30

    Large-scale public genomic sequencing efforts have provided a wealth of vertebrate sequence data poised to provide insights into mammalian biology. These include deep genomic sequence coverage of human, mouse, rat, zebrafish, and two pufferfish (Fugu rubripes and Tetraodon nigroviridis) (Aparicio et al. 2002; Lander et al. 2001; Venter et al. 2001; Waterston et al. 2002). In addition, a high-priority has been placed on determining the genomic sequence of chimpanzee, dog, cow, frog, and chicken (Boguski 2002). While only recently available, whole genome sequence data have provided the unique opportunity to globally compare complete genome contents. Furthermore, the shared evolutionary ancestry of vertebrate species has allowed the development of comparative genomic approaches to identify ancient conserved sequences with functionality. Accordingly, this review focuses on the initial comparison of available mammalian genomes and describes various insights derived from such analysis.

  8. REEF: searching REgionally Enriched Features in genomes

    PubMed Central

    Coppe, Alessandro; Danieli, Gian Antonio; Bortoluzzi, Stefania

    2006-01-01

    Background In Eukaryotic genomes, different features including genes are not uniformly distributed. The integration of annotation information and genomic position of functional DNA elements in the Eukaryotic genomes opened the way to test novel hypotheses of higher order genome organization and regulation of expression. Results REEF is a new tool, aimed at identifying genomic regions enriched in specific features, such as a class or group of genes homogeneous for expression and/or functional characteristics. The method for the calculation of local feature enrichment uses test statistic based on the Hypergeometric Distribution applied genome-wide by using a sliding window approach and adopting the False Discovery Rate for controlling multiplicity. REEF software, source code and documentation are freely available at . Conclusion REEF can aid to shed light on the role of organization of specific genomic regions in the determination of their functional role. PMID:17042935

  9. The UCSC Genome Browser database: 2016 update.

    PubMed

    Speir, Matthew L; Zweig, Ann S; Rosenbloom, Kate R; Raney, Brian J; Paten, Benedict; Nejad, Parisa; Lee, Brian T; Learned, Katrina; Karolchik, Donna; Hinrichs, Angie S; Heitner, Steve; Harte, Rachel A; Haeussler, Maximilian; Guruvadoo, Luvina; Fujita, Pauline A; Eisenhart, Christopher; Diekhans, Mark; Clawson, Hiram; Casper, Jonathan; Barber, Galt P; Haussler, David; Kuhn, Robert M; Kent, W James

    2016-01-01

    For the past 15 years, the UCSC Genome Browser (http://genome.ucsc.edu/) has served the international research community by offering an integrated platform for viewing and analyzing information from a large database of genome assemblies and their associated annotations. The UCSC Genome Browser has been under continuous development since its inception with new data sets and software features added frequently. Some release highlights of this year include new and updated genome browsers for various assemblies, including bonobo and zebrafish; new gene annotation sets; improvements to track and assembly hub support; and a new interactive tool, the "Data Integrator", for intersecting data from multiple tracks. We have greatly expanded the data sets available on the most recent human assembly, hg38/GRCh38, to include updated gene prediction sets from GENCODE, more phenotype- and disease-associated variants from ClinVar and ClinGen, more genomic regulatory data, and a new multiple genome alignment. PMID:26590259

  10. The UCSC Genome Browser database: 2016 update

    PubMed Central

    Speir, Matthew L.; Zweig, Ann S.; Rosenbloom, Kate R.; Raney, Brian J.; Paten, Benedict; Nejad, Parisa; Lee, Brian T.; Learned, Katrina; Karolchik, Donna; Hinrichs, Angie S.; Heitner, Steve; Harte, Rachel A.; Haeussler, Maximilian; Guruvadoo, Luvina; Fujita, Pauline A.; Eisenhart, Christopher; Diekhans, Mark; Clawson, Hiram; Casper, Jonathan; Barber, Galt P.; Haussler, David; Kuhn, Robert M.; Kent, W. James

    2016-01-01

    For the past 15 years, the UCSC Genome Browser (http://genome.ucsc.edu/) has served the international research community by offering an integrated platform for viewing and analyzing information from a large database of genome assemblies and their associated annotations. The UCSC Genome Browser has been under continuous development since its inception with new data sets and software features added frequently. Some release highlights of this year include new and updated genome browsers for various assemblies, including bonobo and zebrafish; new gene annotation sets; improvements to track and assembly hub support; and a new interactive tool, the “Data Integrator”, for intersecting data from multiple tracks. We have greatly expanded the data sets available on the most recent human assembly, hg38/GRCh38, to include updated gene prediction sets from GENCODE, more phenotype- and disease-associated variants from ClinVar and ClinGen, more genomic regulatory data, and a new multiple genome alignment. PMID:26590259

  11. Annotating Large Genomes With Exact Word Matches

    PubMed Central

    Healy, John; Thomas, Elizabeth E.; Schwartz, Jacob T.; Wigler, Michael

    2003-01-01

    We have developed a tool for rapidly determining the number of exact matches of any word within large, internally repetitive genomes or sets of genomes. Thus we can readily annotate any sequence, including the entire human genome, with the counts of its constituent words. We create a Burrows-Wheeler transform of the genome, which together with auxiliary data structures facilitating counting, can reside in about one gigabyte of RAM. Our original interest was motivated by oligonucleotide probe design, and we describe a general protocol for defining unique hybridization probes. But our method also has applications for the analysis of genome structure and assembly. We demonstrate the identification of chromosome-specific repeats, and outline a general procedure for finding undiscovered repeats. We also illustrate the changing contents of the human genome assemblies by comparing the annotations built from different genome freezes. PMID:12975312

  12. One Bacterial Cell, One Complete Genome

    SciTech Connect

    Woyke, Tanja; Tighe, Damon; Mavrommatis, Konstantinos; Clum, Alicia; Copeland, Alex; Schackwitz, Wendy; Lapidus, Alla; Wu, Dongying; McCutcheon, John P.; McDonald, Bradon R.; Moran, Nancy A.; Bristow, James; Cheng, Jan-Fang

    2010-04-26

    While the bulk of the finished microbial genomes sequenced to date are derived from cultured bacterial and archaeal representatives, the vast majority of microorganisms elude current culturing attempts, severely limiting the ability to recover complete or even partial genomes from these environmental species. Single cell genomics is a novel culture-independent approach, which enables access to the genetic material of an individual cell. No single cell genome has to our knowledge been closed and finished to date. Here we report the completed genome from an uncultured single cell of Candidatus Sulcia muelleri DMIN. Digital PCR on single symbiont cells isolated from the bacteriome of the green sharpshooter Draeculacephala minerva bacteriome allowed us to assess that this bacteria is polyploid with genome copies ranging from approximately 200?900 per cell, making it a most suitable target for single cell finishing efforts. For single cell shotgun sequencing, an individual Sulcia cell was isolated and whole genome amplified by multiple displacement amplification (MDA). Sanger-based finishing methods allowed us to close the genome. To verify the correctness of our single cell genome and exclude MDA-derived artifacts, we independently shotgun sequenced and assembled the Sulcia genome from pooled bacteriomes using a metagenomic approach, yielding a nearly identical genome. Four variations we detected appear to be genuine biological differences between the two samples. Comparison of the single cell genome with bacteriome metagenomic sequence data detected two single nucleotide polymorphisms (SNPs), indicating extremely low genetic diversity within a Sulcia population. This study demonstrates the power of single cell genomics to generate a complete, high quality, non-composite reference genome within an environmental sample, which can be used for population genetic analyzes.

  13. How retrotransposons shape genome regulation.

    PubMed

    Mita, Paolo; Boeke, Jef D

    2016-04-01

    Retrotransposons are mutagenic units able to move within the genome. Despite many defenses deployed by the host to suppress potentially harmful activities of retrotransposons, these genetic units have found ways to meld with normal cellular functions through processes of exaptation and domestication. The same host mechanisms targeting transposon mobility allow for expansion and rewiring of gene regulatory networks on an evolutionary time scale. Recent works demonstrating retrotransposon activity during development, cell differentiation and neurogenesis shed new light on unexpected activities of transposable elements. Moreover, new technological advances illuminated subtler nuances of the complex relationship between retrotransposons and the host genome, clarifying the role of retroelements in evolution, development and impact on human disease. PMID:26855260

  14. 10. international mouse genome conference

    SciTech Connect

    Meisler, M.H.

    1996-12-31

    Ten years after hosting the First International Mammalian Genome Conference in Paris in 1986, Dr. Jean-Louis Guenet presided over the Tenth Conference at the Pasteur Institute, October 7--10, 1996. The 1986 conference was a satellite to the Human Gene Mapping Workshop and had approximately 50 attendees. The 1996 meeting was attended by 300 scientists from around the world. In the interim, the number of mapped loci in the mouse increased from 1,000 to over 20,000. This report contains a listing of the program and its participants, and two articles that review the meeting and the role of the laboratory mouse in the Human Genome project. More than 200 papers were presented at the conference covering the following topics: International mouse chromosome committee meetings; Mutant generation and identification; Physical and genetic maps; New technology and resources; Chromatin structure and gene regulation; Rate and hamster genetic maps; Informatics and databases; and Quantitative trait analysis.

  15. Genomic determinants of cancer immunotherapy.

    PubMed

    Miao, Diana; Van Allen, Eliezer M

    2016-08-01

    Cancer immunotherapies - including therapeutic vaccines, adoptive cell transfer, oncolytic viruses, and immune checkpoint blockade - yield durable responses in many cancer types, but understanding of predictors of response is incomplete. Genomic characterization of human cancers has already contributed to the success of targeted therapies; in cancer immunotherapy, identification of tumor-specific antigens through whole-exome sequencing may be key to designing individualized, highly immunogenic therapeutic vaccines. Additionally, pre-treatment tumor mutational and gene expression signatures can predict which patients are most likely to benefit from cancer immunotherapy. Continued work in harnessing genomic, transcriptomic, and immunological data from clinical cohorts of immunotherapy-treated patients will bring the promises of precision medicine to immuno-oncology. PMID:27254251

  16. Unmet Challenges of Structural Genomics

    PubMed Central

    Chruszcz, Maksymilian; Domagalski, Marcin; Osinski, Tomasz; Wlodawer, Alexander; Minor, Wladek

    2010-01-01

    Summary Structural genomics (SG) programs have developed during the last decade many novel methodologies for faster and more accurate structure determination. These new tools and approaches led to determination of thousands of protein structures. The generation of enormous amounts of experimental data resulted in significant improvements in the understanding of many biological processes at molecular levels. However, the amount of data collected so far is so large that traditional analysis methods are limiting the rate of extraction of biological and biochemical information from 3-D models. This situation has prompted us to review the challenges that remain unmet by structural genomics, as well as the areas in which the potential impact of SG could exceed what has been achieved so far. PMID:20810277

  17. Adaptation, aging, and genomic information

    PubMed Central

    Rose, Michael R.

    2009-01-01

    Aging is not simply an accumulation of damage or inappropriate higher-order signaling, though it does secondarily involve both of these subsidiary mechanisms. Rather, aging occurs because of the extensive absence of adaptive genomic information required for survival to, and function at, later adult ages, due to the declining forces of natural selection during adult life. This absence of information then secondarily leads to misallocations and damage at every level of biological organization. But the primary problem is a failure of adaptation at later ages. Contemporary proposals concerning means by which human aging can be ended or cured which are based on simple signaling or damage theories will thus reliably fail. Strategies based on reverse-engineering age-extended adaptation using experimental evolution and genomics offer the prospect of systematically greater success. PMID:20157529

  18. Clinical Interpretation of Genomic Variations.

    PubMed

    Sayitoğlu, Müge

    2016-09-01

    Novel high-throughput sequencing technologies generate large-scale genomic data and are used extensively for disease mapping of monogenic and/or complex disorders, personalized treatment, and pharmacogenomics. Next-generation sequencing is rapidly becoming routine tool for diagnosis and molecular monitoring of patients to evaluate therapeutic efficiency. The next-generation sequencing platforms generate huge amounts of genetic variation data and it remains a challenge to interpret the variations that are identified. Such data interpretation needs close collaboration among bioinformaticians, clinicians, and geneticists. There are several problems that must be addressed, such as the generation of new algorithms for mapping and annotation, harmonization of the terminology, correct use of nomenclature, reference genomes for different populations, rare disease variant databases, and clinical reports. PMID:27507302

  19. Structural Genomics of Protein Phosphatases

    SciTech Connect

    Almo,S.; Bonanno, J.; Sauder, J.; Emtage, S.; Dilorenzo, T.; Malashkevich, V.; Wasserman, S.; Swaminathan, S.; Eswaramoorthy, S.; et al

    2007-01-01

    The New York SGX Research Center for Structural Genomics (NYSGXRC) of the NIGMS Protein Structure Initiative (PSI) has applied its high-throughput X-ray crystallographic structure determination platform to systematic studies of all human protein phosphatases and protein phosphatases from biomedically-relevant pathogens. To date, the NYSGXRC has determined structures of 21 distinct protein phosphatases: 14 from human, 2 from mouse, 2 from the pathogen Toxoplasma gondii, 1 from Trypanosoma brucei, the parasite responsible for African sleeping sickness, and 2 from the principal mosquito vector of malaria in Africa, Anopheles gambiae. These structures provide insights into both normal and pathophysiologic processes, including transcriptional regulation, regulation of major signaling pathways, neural development, and type 1 diabetes. In conjunction with the contributions of other international structural genomics consortia, these efforts promise to provide an unprecedented database and materials repository for structure-guided experimental and computational discovery of inhibitors for all classes of protein phosphatases.

  20. Upstream – News in Genomics

    PubMed Central

    2002-01-01

    In recent months a bumper crop of genomes has been completed, including the fission yeast (Schizosaccharomyces pombe) and rice (Oryza sativa). Two large-scale studies of Saccharomyces cerevisiae protein complexes provided a picture of the eukaryotic proteome as a network of complexes. Amongst the other stories of interest was a demonstration that proteomic analysis of blood samples can be used to detect ovarian cancer, perhaps even as early as stage I. PMID:18628853

  1. Glossary | Office of Cancer Genomics

    Cancer.gov

    A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z     B Bioinformatics The use of computing tools to manage and analyze genomic and molecular biological data.

  2. Microbial genomes: Blueprints for life

    SciTech Connect

    Relman, David A.; Strauss, Evelyn

    2000-12-31

    Complete microbial genome sequences hold the promise of profound new insights into microbial pathogenesis, evolution, diagnostics, and therapeutics. From these insights will come a new foundation for understanding the evolution of single-celled life, as well as the evolution of more complex life forms. This report is an in-depth analysis of scientific issues that provides recommendations and will be widely disseminated to the scientific community, federal agencies, industry and the public.

  3. Host Genomics in Infectious Diseases

    PubMed Central

    2013-01-01

    Understanding mechanisms by which genetic variants predispose to complications of infectious diseases can lead to important benefits including the development of biomarkers to prioritize vaccination or prophylactic therapy. Family studies, candidate genes in animal models, and the absence of well-defined risks where the complications are rare all can point to genetic predisposition. The most common approach to assessing genetic risk is to conduct an association study, which is a case control study using either a candidate gene approach or a genome wide approach. Although candidate gene variants may focus on potentially causal variants, because other variants across the genome are not tested these studies frequently cannot be replicated. Genome wide association studies need a sizable sample and usually do not identify causal variants but variants which may be in linkage disequilibrium to the actual causal variant. There are many pitfalls that can lead to bias in such studies, including misclassification of cases and controls, use of improper phenotypes, and genotyping errors. These studies have been limited to common genes and rare variants may not be detected. As the use of next generation sequencing becomes more common, it can be anticipated that more variants will be confirmed. The purpose of this review article is to address the issue of genomics in infectious diseases with an emphasis on the host. Although there are a plentitude of studies that focus on the molecular characteristics of pathogens, there are far fewer studies that address the role of human genetics in the predisposition to infection or more commonly its complications. This paper will review both the approaches used to study host genetics in humans and the pitfalls associated with some of these methods. The focus will be on human disease and therefore discussion of the use of animal models will be limited to those where there are genes that have been replicated in humans. The paper will focus on

  4. Human genome protein function database.

    PubMed Central

    Sorenson, D. K.

    1991-01-01

    A database which focuses on the normal functions of the currently-known protein products of the Human Genome was constructed. Information is stored as text, figures, tables, and diagrams. The program contains built-in functions to modify, update, categorize, hypertext, search, create reports, and establish links to other databases. The semi-automated categorization feature of the database program was used to classify these proteins in terms of biomedical functions. PMID:1807638

  5. The Small Nuclear Genomes of Selaginella Are Associated with a Low Rate of Genome Size Evolution

    PubMed Central

    Baniaga, Anthony E.; Arrigo, Nils; Barker, Michael S.

    2016-01-01

    The haploid nuclear genome size (1C DNA) of vascular land plants varies over several orders of magnitude. Much of this observed diversity in genome size is due to the proliferation and deletion of transposable elements. To date, all vascular land plant lineages with extremely small nuclear genomes represent recently derived states, having ancestors with much larger genome sizes. The Selaginellaceae represent an ancient lineage with extremely small genomes. It is unclear how small nuclear genomes evolved in Selaginella. We compared the rates of nuclear genome size evolution in Selaginella and major vascular plant clades in a comparative phylogenetic framework. For the analyses, we collected 29 new flow cytometry estimates of haploid genome size in Selaginella to augment publicly available data. Selaginella possess some of the smallest known haploid nuclear genome sizes, as well as the lowest rate of genome size evolution observed across all vascular land plants included in our analyses. Additionally, our analyses provide strong support for a history of haploid nuclear genome size stasis in Selaginella. Our results indicate that Selaginella, similar to other early diverging lineages of vascular land plants, has relatively low rates of genome size evolution. Further, our analyses highlight that a rapid transition to a small genome size is only one route to an extremely small genome. PMID:27189987

  6. The Small Nuclear Genomes of Selaginella Are Associated with a Low Rate of Genome Size Evolution.

    PubMed

    Baniaga, Anthony E; Arrigo, Nils; Barker, Michael S

    2016-01-01

    The haploid nuclear genome size (1C DNA) of vascular land plants varies over several orders of magnitude. Much of this observed diversity in genome size is due to the proliferation and deletion of transposable elements. To date, all vascular land plant lineages with extremely small nuclear genomes represent recently derived states, having ancestors with much larger genome sizes. The Selaginellaceae represent an ancient lineage with extremely small genomes. It is unclear how small nuclear genomes evolved in Selaginella We compared the rates of nuclear genome size evolution in Selaginella and major vascular plant clades in a comparative phylogenetic framework. For the analyses, we collected 29 new flow cytometry estimates of haploid genome size in Selaginella to augment publicly available data. Selaginella possess some of the smallest known haploid nuclear genome sizes, as well as the lowest rate of genome size evolution observed across all vascular land plants included in our analyses. Additionally, our analyses provide strong support for a history of haploid nuclear genome size stasis in Selaginella Our results indicate that Selaginella, similar to other early diverging lineages of vascular land plants, has relatively low rates of genome size evolution. Further, our analyses highlight that a rapid transition to a small genome size is only one route to an extremely small genome. PMID:27189987

  7. Radiation-induced genomic instability

    NASA Technical Reports Server (NTRS)

    Kronenberg, A.

    1994-01-01

    Quantitative assessment of the heritable somatic effects of ionizing radiation exposures has relied upon the assumption that radiation-induced lesions were 'fixed' in the DNA prior to the first postirradiation mitosis. Lesion conversion was thought to occur during the initial round of DNA replication or as a consequence of error-prone enzymatic processing of lesions. The standard experimental protocols for the assessment of a variety of radiation-induced endpoints (cell death, specific locus mutations, neoplastic transformation and chromosome aberrations) evaluate these various endpoints at a single snapshot in time. In contrast with the aforementioned approaches, some studies have specifically assessed radiation effects as a function of time following exposure. Evidence has accumulated in support of the hypothesis that radiation exposure induces a persistent destabilization of the genome. This instability has been observed as a delayed expression of lethal mutations, as an enhanced rate of accumulation of non-lethal heritable alterations, and as a progressive intraclonal chromosomal heterogeneity. The genetic controls and biochemical mechanisms underlying radiation-induced genomic instability have not yet been delineated. The aim is to integrate the accumulated evidence that suggests that radiation exposure has a persistent effect on the stability of the mammalian genome.

  8. The Human Genomic Melting Map

    PubMed Central

    Liu, Fang; Tøstesen, Eivind; Sundet, Jostein K; Jenssen, Tor-Kristian; Bock, Christoph; Jerstad, Geir Ivar; Thilly, William G; Hovig, Eivind

    2007-01-01

    In a living cell, the antiparallel double-stranded helix of DNA is a dynamically changing structure. The structure relates to interactions between and within the DNA strands, and the array of other macromolecules that constitutes functional chromatin. It is only through its changing conformations that DNA can organize and structure a large number of cellular functions. In particular, DNA must locally uncoil, or melt, and become single-stranded for DNA replication, repair, recombination, and transcription to occur. It has previously been shown that this melting occurs cooperatively, whereby several base pairs act in concert to generate melting bubbles, and in this way constitute a domain that behaves as a unit with respect to local DNA single-strandedness. We have applied a melting map calculation to the complete human genome, which provides information about the propensities of forming local bubbles determined from the whole sequence, and present a first report on its basic features, the extent of cooperativity, and correlations to various physical and biological features of the human genome. Globally, the melting map covaries very strongly with GC content. Most importantly, however, cooperativity of DNA denaturation causes this correlation to be weaker at resolutions fewer than 500 bps. This is also the resolution level at which most structural and biological processes occur, signifying the importance of the informational content inherent in the genomic melting map. The human DNA melting map may be further explored at http://meltmap.uio.no. PMID:17511513

  9. Multiple models for Rosaceae genomics.

    PubMed

    Shulaev, Vladimir; Korban, Schuyler S; Sosinski, Bryon; Abbott, Albert G; Aldwinckle, Herb S; Folta, Kevin M; Iezzoni, Amy; Main, Dorrie; Arús, Pere; Dandekar, Abhaya M; Lewers, Kim; Brown, Susan K; Davis, Thomas M; Gardiner, Susan E; Potter, Daniel; Veilleux, Richard E

    2008-07-01

    The plant family Rosaceae consists of over 100 genera and 3,000 species that include many important fruit, nut, ornamental, and wood crops. Members of this family provide high-value nutritional foods and contribute desirable aesthetic and industrial products. Most rosaceous crops have been enhanced by human intervention through sexual hybridization, asexual propagation, and genetic improvement since ancient times, 4,000 to 5,000 B.C. Modern breeding programs have contributed to the selection and release of numerous cultivars having significant economic impact on the U.S. and world markets. In recent years, the Rosaceae community, both in the United States and internationally, has benefited from newfound organization and collaboration that have hastened progress in developing genetic and genomic resources for representative crops such as apple (Malus spp.), peach (Prunus spp.), and strawberry (Fragaria spp.). These resources, including expressed sequence tags, bacterial artificial chromosome libraries, physical and genetic maps, and molecular markers, combined with genetic transformation protocols and bioinformatics tools, have rendered various rosaceous crops highly amenable to comparative and functional genomics studies. This report serves as a synopsis of the resources and initiatives of the Rosaceae community, recent developments in Rosaceae genomics, and plans to apply newly accumulated knowledge and resources toward breeding and crop improvement. PMID:18487361

  10. Group normalization for genomic data.

    PubMed

    Ghandi, Mahmoud; Beer, Michael A

    2012-01-01

    Data normalization is a crucial preliminary step in analyzing genomic datasets. The goal of normalization is to remove global variation to make readings across different experiments comparable. In addition, most genomic loci have non-uniform sensitivity to any given assay because of variation in local sequence properties. In microarray experiments, this non-uniform sensitivity is due to different DNA hybridization and cross-hybridization efficiencies, known as the probe effect. In this paper we introduce a new scheme, called Group Normalization (GN), to remove both global and local biases in one integrated step, whereby we determine the normalized probe signal by finding a set of reference probes with similar responses. Compared to conventional normalization methods such as Quantile normalization and physically motivated probe effect models, our proposed method is general in the sense that it does not require the assumption that the underlying signal distribution be identical for the treatment and control, and is flexible enough to correct for nonlinear and higher order probe effects. The Group Normalization algorithm is computationally efficient and easy to implement. We also describe a variant of the Group Normalization algorithm, called Cross Normalization, which efficiently amplifies biologically relevant differences between any two genomic datasets. PMID:22912661

  11. Genome Sequence of Canine Herpesvirus

    PubMed Central

    Papageorgiou, Konstantinos V.; Suárez, Nicolás M.; Wilkie, Gavin S.; McDonald, Michael; Graham, Elizabeth M.; Davison, Andrew J.

    2016-01-01

    Canine herpesvirus is a widespread alphaherpesvirus that causes a fatal haemorrhagic disease of neonatal puppies. We have used high-throughput methods to determine the genome sequences of three viral strains (0194, V777 and V1154) isolated in the United Kingdom between 1985 and 2000. The sequences are very closely related to each other. The canine herpesvirus genome is estimated to be 125 kbp in size and consists of a unique long sequence (97.5 kbp) and a unique short sequence (7.7 kbp) that are each flanked by terminal and internal inverted repeats (38 bp and 10.0 kbp, respectively). The overall nucleotide composition is 31.6% G+C, which is the lowest among the completely sequenced alphaherpesviruses. The genome contains 76 open reading frames predicted to encode functional proteins, all of which have counterparts in other alphaherpesviruses. The availability of the sequences will facilitate future research on the diagnosis and treatment of canine herpesvirus-associated disease. PMID:27213534

  12. Genomic Classification of Cutaneous Melanoma.

    PubMed

    2015-06-18

    We describe the landscape of genomic alterations in cutaneous melanomas through DNA, RNA, and protein-based analysis of 333 primary and/or metastatic melanomas from 331 patients. We establish a framework for genomic classification into one of four subtypes based on the pattern of the most prevalent significantly mutated genes: mutant BRAF, mutant RAS, mutant NF1, and Triple-WT (wild-type). Integrative analysis reveals enrichment of KIT mutations and focal amplifications and complex structural rearrangements as a feature of the Triple-WT subtype. We found no significant outcome correlation with genomic classification, but samples assigned a transcriptomic subclass enriched for immune gene expression associated with lymphocyte infiltrate on pathology review and high LCK protein expression, a T cell marker, were associated with improved patient survival. This clinicopathological and multi-dimensional analysis suggests that the prognosis of melanoma patients with regional metastases is influenced by tumor stroma immunobiology, offering insights to further personalize therapeutic decision-making. PMID:26091043

  13. Comparative genomic hybridization: an overview.

    PubMed Central

    Houldsworth, J.; Chaganti, R. S.

    1994-01-01

    Comparative genomic hybridization (CGH) is a newly described molecular-cytogenetic assay that globally assays for chromosomal gains and losses in a genomic complement. In this assay, normal human metaphase chromosomes are competitively hybridized with two differentially labeled genomic DNAs (test and reference), which upon fluorescence microscopy, reveal the chromosomal locations of copy number changes in DNA sequences between the two complements. Application of CGH to DNAs extracted from fresh frozen specimens and cell lines of various tumor types has revealed a number of recurring chromosomal gains and losses that were undetected by traditional cytogenetic analysis. Few previously known sites were found to be in higher copy number, or lost by CGH, while many novel amplified regions were identified. These regions warrant further molecular genetic studies aimed at isolating the perturbed genes. Since CGH can also be performed on DNA extracted from formalin-fixed paraffin-embedded archived tumor specimens with few modifications, gains and losses of genetic material can be determined for specimens that would otherwise be unanalyzable. Prospective and retrospective application of CGH to tumor specimens would permit correlative studies to be performed, possibly identifying diagnostic and prognostic indicators of disease. CGH may also have a future role in detection and identification of chromosomal abnormalities in prenatal diagnosis and in dysmorphic anomalies. Images Figure 1 Figure 2 PMID:7992829

  14. Comparative Reannotation of 21 Aspergillus Genomes

    SciTech Connect

    Salamov, Asaf; Riley, Robert; Kuo, Alan; Grigoriev, Igor

    2013-03-08

    We used comparative gene modeling to reannotate 21 Aspergillus genomes. Initial automatic annotation of individual genomes may contain some errors of different nature, e.g. missing genes, incorrect exon-intron structures, 'chimeras', which fuse 2 or more real genes or alternatively splitting some real genes into 2 or more models. The main premise behind the comparative modeling approach is that for closely related genomes most orthologous families have the same conserved gene structure. The algorithm maps all gene models predicted in each individual Aspergillus genome to the other genomes and, for each locus, selects from potentially many competing models, the one which most closely resembles the orthologous genes from other genomes. This procedure is iterated until no further change in gene models is observed. For Aspergillus genomes we predicted in total 4503 new gene models ( ~;;2percent per genome), supported by comparative analysis, additionally correcting ~;;18percent of old gene models. This resulted in a total of 4065 more genes with annotated PFAM domains (~;;3percent increase per genome). Analysis of a few genomes with EST/transcriptomics data shows that the new annotation sets also have a higher number of EST-supported splice sites at exon-intron boundaries.

  15. Fueling the Future with Fungal Genomes

    SciTech Connect

    Grigoriev, Igor V.

    2014-10-27

    Genomes of fungi relevant to energy and environment are in focus of the JGI Fungal Genomic Program. One of its projects, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts and pathogens) and biorefinery processes (cellulose degradation and sugar fermentation) by means of genome sequencing and analysis. New chapters of the Encyclopedia can be opened with user proposals to the JGI Community Science Program (CSP). Another JGI project, the 1000 fungal genomes, explores fungal diversity on genome level at scale and is open for users to nominate new species for sequencing. Over 400 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics will lead to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such ‘parts’ suggested by comparative genomics and functional analysis in these areas are presented here.

  16. Unleashing the Genome of Brassica Rapa

    PubMed Central

    Tang, Haibao; Lyons, Eric

    2012-01-01

    The completion and release of the Brassica rapa genome is of great benefit to researchers of the Brassicas, Arabidopsis, and genome evolution. While its lineage is closely related to the model organism Arabidopsis thaliana, the Brassicas experienced a whole genome triplication subsequent to their divergence. This event contemporaneously created three copies of its ancestral genome, which had diploidized through the process of homeologous gene loss known as fractionation. By the fractionation of homeologous gene content and genetic regulatory binding sites, Brassica’s genome is well placed to use comparative genomic techniques to identify syntenic regions, homeologous gene duplications, and putative regulatory sequences. Here, we use the comparative genomics platform CoGe to perform several different genomic analyses with which to study structural changes of its genome and dynamics of various genetic elements. Starting with whole genome comparisons, the Brassica paleohexaploidy is characterized, syntenic regions with A. thaliana are identified, and the TOC1 gene in the circadian rhythm pathway from A. thaliana is used to find duplicated orthologs in B. rapa. These TOC1 genes are further analyzed to identify conserved non-coding sequences that contain cis-acting regulatory elements and promoter sequences previously implicated in circadian rhythmicity. Each “cookbook style” analysis includes a step-by-step walk-through with links to CoGe to quickly reproduce each step of the analytical process. PMID:22866056

  17. Genomics in the light of evolutionary transitions.

    PubMed

    Durand, Pierre M; Michod, Richard E

    2010-06-01

    Molecular biology has entrenched the gene as the basic hereditary unit and genomes are often considered little more than collections of genes. However, new concepts and genomic data have emerged, which suggest that the genome has a unique place in the hierarchy of life. Despite this, a framework for the genome as a major evolutionary transition has not been fully developed. Instead, genome origin and evolution are frequently considered as a series of neutral or nonadaptive events. In this article, we argue for a Darwinian multilevel selection interpretation for the origin of the genome. We base our arguments on the multilevel selection theory of hypercycles of cooperative interacting genes and predictions that gene-level trade-offs in viability and reproduction can help drive evolutionary transitions. We consider genomic data involving mobile genetic elements as a test case of our view. A new concept of the genome as a discrete evolutionary unit emerges and the gene-genome juncture is positioned as a major evolutionary transition in individuality. This framework offers a fresh perspective on the origin of macromolecular life and sets the scene for a new, emerging line of inquiry--the evolutionary ecology of the genome. PMID:19930450

  18. Human Genome Sequencing in Health and Disease

    PubMed Central

    Gonzaga-Jauregui, Claudia; Lupski, James R.; Gibbs, Richard A.

    2013-01-01

    Following the “finished,” euchromatic, haploid human reference genome sequence, the rapid development of novel, faster, and cheaper sequencing technologies is making possible the era of personalized human genomics. Personal diploid human genome sequences have been generated, and each has contributed to our better understanding of variation in the human genome. We have consequently begun to appreciate the vastness of individual genetic variation from single nucleotide to structural variants. Translation of genome-scale variation into medically useful information is, however, in its infancy. This review summarizes the initial steps undertaken in clinical implementation of personal genome information, and describes the application of whole-genome and exome sequencing to identify the cause of genetic diseases and to suggest adjuvant therapies. Better analysis tools and a deeper understanding of the biology of our genome are necessary in order to decipher, interpret, and optimize clinical utility of what the variation in the human genome can teach us. Personal genome sequencing may eventually become an instrument of common medical practice, providing information that assists in the formulation of a differential diagnosis. We outline herein some of the remaining challenges. PMID:22248320

  19. The power of paired genomes.

    PubMed

    Gerardo, Nicole M; Wilson, Alex C C

    2011-05-01

    Species interactions are fundamental to ecology. Classic studies of competition, predation, parasitism and mutualism between macroscopic organisms have provided a foundation for the discipline, but many of the most important and intimate ecological interactions are microscopic in scale. These microscopic interactions include those occurring between eukaryotic hosts and their microbial symbionts. Such symbioses, ubiquitous in nature, provide experimental challenges because the partners often cannot live outside the symbiosis. With respect to the symbionts, this precludes utilizing classical microbiological and genetic techniques that require in vitro cultivation. Genomics, however, has rapidly changed the study of symbioses. In this issue of Molecular Ecology, MacDonald et al. (2011), coupling symbiont whole-genome sequencing, experimental studies and metabolic modelling, provide novel insights into one of the best-studied symbioses, that between aphids and their obligate, nutrient-provisioning, intracellular bacteria, Buchnera aphidicola (Fig. 1). MacDonald and colleagues assessed variation in the ability of aphid–Buchnera pairs to thrive on artificial diets missing different amino acids. As shown previously (e.g. Wilkinson & Douglas 2003), aphid–Buchnera pairs can differ in their requirements for external sources of essential amino acids. Such phenotypic variation could result from differences in Buchnera’s amino acid biosynthetic capabilities or in the ability of aphids to interact with their symbionts. Whole-genome sequencing of the Buchnera genomes from four aphid lines with alternate nutritional phenotypes revealed that the environmental nutrients required by the aphid–Buchnera pairs could not be explained by sequence variation in the symbionts. Instead, a novel metabolic modelling approach suggested that much of the variation in nutritional phenotype could be explained by host variation in the capacity to provide necessary nutrient precursors to their

  20. Tracing Lifestyle Adaptation in Prokaryotic Genomes

    PubMed Central

    Altermann, Eric

    2012-01-01

    Lifestyle adaptation of microbes due to changes in their ecological niches or acquisition of new environments is a major driving force for genetic changes in their respective genomes. Moving into more specialized niches often results in the acquisition of new gene sets via horizontal gene transfer to utilize previously unavailable metabolites, while genetic ballast is shed by gene loss and/or gene inactivation. In some cases, larger genome rearrangements can be observed, such as the incorporation of whole genetic islands, providing a range of new phenotypic capabilities. Until recently these changes could not be comprehensively followed and identified due to the lack of complete microbial genome sequences. The advent of high-throughput DNA sequencing has dramatically changed the scientific landscape and today microbial genomes have become increasingly abundant. Currently, more than 2,900 genomes are published and more than 11,000 genome projects are listed in the Genomes Online Database‡. Although this wealth of information provides many new opportunities to assess microbial functionality, it also creates a new array of challenges when a comparison between multiple microbial genomes is required. Here, functional genome distribution (FGD) is introduced, analyzing the diversity between microbes based on their predicted ORFeome. FGD is therefore a comparative genomics approach, emphasizing the assessments of gene complements. To further facilitate the comparison between two or more genomes, degrees of amino-acid similarities between ORFeomes can be visualized in the Artemis comparison tool, graphically depicting small and large scale genome rearrangements, insertion and deletion events, and levels of similarity between individual open reading frames. FGD provides a new tool for comparative microbial genomics and the interpretation of differences in the genetic makeup of bacteria. PMID:22363326

  1. Tracing lifestyle adaptation in prokaryotic genomes.

    PubMed

    Altermann, Eric

    2012-01-01

    Lifestyle adaptation of microbes due to changes in their ecological niches or acquisition of new environments is a major driving force for genetic changes in their respective genomes. Moving into more specialized niches often results in the acquisition of new gene sets via horizontal gene transfer to utilize previously unavailable metabolites, while genetic ballast is shed by gene loss and/or gene inactivation. In some cases, larger genome rearrangements can be observed, such as the incorporation of whole genetic islands, providing a range of new phenotypic capabilities. Until recently these changes could not be comprehensively followed and identified due to the lack of complete microbial genome sequences. The advent of high-throughput DNA sequencing has dramatically changed the scientific landscape and today microbial genomes have become increasingly abundant. Currently, more than 2,900 genomes are published and more than 11,000 genome projects are listed in the Genomes Online Database. Although this wealth of information provides many new opportunities to assess microbial functionality, it also creates a new array of challenges when a comparison between multiple microbial genomes is required. Here, functional genome distribution (FGD) is introduced, analyzing the diversity between microbes based on their predicted ORFeome. FGD is therefore a comparative genomics approach, emphasizing the assessments of gene complements. To further facilitate the comparison between two or more genomes, degrees of amino-acid similarities between ORFeomes can be visualized in the Artemis comparison tool, graphically depicting small and large scale genome rearrangements, insertion and deletion events, and levels of similarity between individual open reading frames. FGD provides a new tool for comparative microbial genomics and the interpretation of differences in the genetic makeup of bacteria. PMID:22363326

  2. Genome plasticity and systems evolution in Streptomyces

    PubMed Central

    2012-01-01

    Background Streptomycetes are filamentous soil-dwelling bacteria. They are best known as the producers of a great variety of natural products such as antibiotics, antifungals, antiparasitics, and anticancer agents and the decomposers of organic substances for carbon recycling. They are also model organisms for the studies of gene regulatory networks, morphological differentiation, and stress response. The availability of sets of genomes from closely related Streptomyces strains makes it possible to assess the mechanisms underlying genome plasticity and systems adaptation. Results We present the results of a comprehensive analysis of the genomes of five Streptomyces species with distinct phenotypes. These streptomycetes have a pan-genome comprised of 17,362 orthologous families which includes 3,096 components in the core genome, 5,066 components in the dispensable genome, and 9,200 components that are uniquely present in only one species. The core genome makes up about 33%-45% of each genome repertoire. It contains important genes for Streptomyces biology including those involved in gene regulation, secretion, secondary metabolism and morphological differentiation. Abundant duplicate genes have been identified, with 4%-11% of the whole genomes composed of lineage-specific expansions (LSEs), suggesting that frequent gene duplication or lateral gene transfer events play a role in shaping the genome diversification within this genus. Two patterns of expansion, single gene expansion and chromosome block expansion are observed, representing different scales of duplication. Conclusions Our results provide a catalog of genome components and their potential functional roles in gene regulatory networks and metabolic networks. The core genome components reveal the minimum requirement for streptomycetes to sustain a successful lifecycle in the soil environment, reflecting the effects of both genome evolution and environmental stress acting upon the expressed phenotypes. A

  3. Ten years of bacterial genome sequencing: comparative-genomics-based discoveries.

    PubMed

    Binnewies, Tim T; Motro, Yair; Hallin, Peter F; Lund, Ole; Dunn, David; La, Tom; Hampson, David J; Bellgard, Matthew; Wassenaar, Trudy M; Ussery, David W

    2006-07-01

    It has been more than 10 years since the first bacterial genome sequence was published. Hundreds of bacterial genome sequences are now available for comparative genomics, and searching a given protein against more than a thousand genomes will soon be possible. The subject of this review will address a relatively straightforward question: "What have we learned from this vast amount of new genomic data?" Perhaps one of the most important lessons has been that genetic diversity, at the level of large-scale variation amongst even genomes of the same species, is far greater than was thought. The classical textbook view of evolution relying on the relatively slow accumulation of mutational events at the level of individual bases scattered throughout the genome has changed. One of the most obvious conclusions from examining the sequences from several hundred bacterial genomes is the enormous amount of diversity--even in different genomes from the same bacterial species. This diversity is generated by a variety of mechanisms, including mobile genetic elements and bacteriophages. An examination of the 20 Escherichia coli genomes sequenced so far dramatically illustrates this, with the genome size ranging from 4.6 to 5.5 Mbp; much of the variation appears to be of phage origin. This review also addresses mobile genetic elements, including pathogenicity islands and the structure of transposable elements. There are at least 20 different methods available to compare bacterial genomes. Metagenomics offers the chance to study genomic sequences found in ecosystems, including genomes of species that are difficult to culture. It has become clear that a genome sequence represents more than just a collection of gene sequences for an organism and that information concerning the environment and growth conditions for the organism are important for interpretation of the genomic data. The newly proposed Minimal Information about a Genome Sequence standard has been developed to obtain this

  4. GenColors-based comparative genome databases for small eukaryotic genomes

    PubMed Central

    Felder, Marius; Romualdi, Alessandro; Petzold, Andreas; Platzer, Matthias; Sühnel, Jürgen; Glöckner, Gernot

    2013-01-01

    Many sequence data repositories can give a quick and easily accessible overview on genomes and their annotations. Less widespread is the possibility to compare related genomes with each other in a common database environment. We have previously described the GenColors database system (http://gencolors.fli-leibniz.de) and its applications to a number of bacterial genomes such as Borrelia, Legionella, Leptospira and Treponema. This system has an emphasis on genome comparison. It combines data from related genomes and provides the user with an extensive set of visualization and analysis tools. Eukaryote genomes are normally larger than prokaryote genomes and thus pose additional challenges for such a system. We have, therefore, adapted GenColors to also handle larger datasets of small eukaryotic genomes and to display eukaryotic gene structures. Further recent developments include whole genome views, genome list options and, for bacterial genome browsers, the display of horizontal gene transfer predictions. Two new GenColors-based databases for two fungal species (http://fgb.fli-leibniz.de) and for four social amoebas (http://sacgb.fli-leibniz.de) were set up. Both new resources open up a single entry point for related genomes for the amoebozoa and fungal research communities and other interested users. Comparative genomics approaches are greatly facilitated by these resources. PMID:23193285

  5. PGSB/MIPS Plant Genome Information Resources and Concepts for the Analysis of Complex Grass Genomes.

    PubMed

    Spannagl, Manuel; Bader, Kai; Pfeifer, Matthias; Nussbaumer, Thomas; Mayer, Klaus F X

    2016-01-01

    PGSB (Plant Genome and Systems Biology; formerly MIPS-Munich Institute for Protein Sequences) has been involved in developing, implementing and maintaining plant genome databases for more than a decade. Genome databases and analysis resources have focused on individual genomes and aim to provide flexible and maintainable datasets for model plant genomes as a backbone against which experimental data, e.g., from high-throughput functional genomics, can be organized and analyzed. In addition, genomes from both model and crop plants form a scaffold for comparative genomics, assisted by specialized tools such as the CrowsNest viewer to explore conserved gene order (synteny) between related species on macro- and micro-levels.The genomes of many economically important Triticeae plants such as wheat, barley, and rye present a great challenge for sequence assembly and bioinformatic analysis due to their enormous complexity and large genome size. Novel concepts and strategies have been developed to deal with these difficulties and have been applied to the genomes of wheat, barley, rye, and other cereals. This includes the GenomeZipper concept, reference-guided exome assembly, and "chromosome genomics" based on flow cytometry sorted chromosomes. PMID:26519405

  6. The Genomic Scrapheap Challenge; Extracting Relevant Data from Unmapped Whole Genome Sequencing Reads, Including Strain Specific Genomic Segments, in Rats

    PubMed Central

    van der Weide, Robin H.; Simonis, Marieke; Hermsen, Roel; Toonen, Pim; Cuppen, Edwin; de Ligt, Joep

    2016-01-01

    Unmapped next-generation sequencing reads are typically ignored while they contain biologically relevant information. We systematically analyzed unmapped reads from whole genome sequencing of 33 inbred rat strains. High quality reads were selected and enriched for biologically relevant sequences; similarity-based analysis revealed clustering similar to previously reported phylogenetic trees. Our results demonstrate that on average 20% of all unmapped reads harbor sequences that can be used to improve reference genomes and generate hypotheses on potential genotype-phenotype relationships. Analysis pipelines would benefit from incorporating the described methods and reference genomes would benefit from inclusion of the genomic segments obtained through these efforts. PMID:27501045

  7. Genome Digging: Insight into the Mitochondrial Genome of Homo

    PubMed Central

    Ovchinnikov, Igor V.; Kholina, Olga I.

    2010-01-01

    Background A fraction of the Neanderthal mitochondrial genome sequence has a similarity with a 5,839-bp nuclear DNA sequence of mitochondrial origin (numt) on the human chromosome 1. This fact has never been interpreted. Although this phenomenon may be attributed to contamination and mosaic assembly of Neanderthal mtDNA from short sequencing reads, we explain the mysterious similarity by integration of this numt (mtAncestor-1) into the nuclear genome of the common ancestor of Neanderthals and modern humans not long before their reproductive split. Principal Findings Exploiting bioinformatics, we uncovered an additional numt (mtAncestor-2) with a high similarity to the Neanderthal mtDNA and indicated that both numts represent almost identical replicas of the mtDNA sequences ancestral to the mitochondrial genomes of Neanderthals and modern humans. In the proteins, encoded by mtDNA, the majority of amino acids distinguishing chimpanzees from humans and Neanderthals were acquired by the ancestral hominins. The overall rate of nonsynonymous evolution in Neanderthal mitochondrial protein-coding genes is not higher than in other lineages. The model incorporating the ancestral hominin mtDNA sequences estimates the average divergence age of the mtDNAs of Neanderthals and modern humans to be 450,000–485,000 years. The mtAncestor-1 and mtAncestor-2 sequences were incorporated into the nuclear genome approximately 620,000 years and 2,885,000 years ago, respectively. Conclusions This study provides the first insight into the evolution of the mitochondrial DNA in hominins ancestral to Neanderthals and humans. We hypothesize that mtAncestor-1 and mtAncestor-2 are likely to be molecular fossils of the mtDNAs of Homo heidelbergensis and a stem Homo lineage. The dN/dS dynamics suggests that the effective population size of extinct hominins was low. However, the hominin lineage ancestral to humans, Neanderthals and H. heidelbergensis, had a larger effective population size and

  8. Examination of Prokaryotic Multipartite Genome Evolution through Experimental Genome Reduction

    PubMed Central

    diCenzo, George C.; MacLean, Allyson M.; Milunovic, Branislava; Golding, G. Brian; Finan, Turlough M.

    2014-01-01

    Many bacteria carry two or more chromosome-like replicons. This occurs in pathogens such as Vibrio cholerea and Brucella abortis as well as in many N2-fixing plant symbionts including all isolates of the alfalfa root-nodule bacteria Sinorhizobium meliloti. Understanding the evolution and role of this multipartite genome organization will provide significant insight into these important organisms; yet this knowledge remains incomplete, in part, because technical challenges of large-scale genome manipulations have limited experimental analyses. The distinct evolutionary histories and characteristics of the three replicons that constitute the S. meliloti genome (the chromosome (3.65 Mb), pSymA megaplasmid (1.35 Mb), and pSymB chromid (1.68 Mb)) makes this a good model to examine this topic. We transferred essential genes from pSymB into the chromosome, and constructed strains that lack pSymB as well as both pSymA and pSymB. This is the largest reduction (45.4%, 3.04 megabases, 2866 genes) of a prokaryotic genome to date and the first removal of an essential chromid. Strikingly, strains lacking pSymA and pSymB (ΔpSymAB) lost the ability to utilize 55 of 74 carbon sources and various sources of nitrogen, phosphorous and sulfur, yet the ΔpSymAB strain grew well in minimal salts media and in sterile soil. This suggests that the core chromosome is sufficient for growth in a bulk soil environment and that the pSymA and pSymB replicons carry genes with more specialized functions such as growth in the rhizosphere and interaction with the plant. These experimental data support a generalized evolutionary model, in which non-chromosomal replicons primarily carry genes with more specialized functions. These large secondary replicons increase the organism's niche range, which offsets their metabolic burden on the cell (e.g. pSymA). Subsequent co-evolution with the chromosome then leads to the formation of a chromid through the acquisition of functions core to all niches (e.g. p

  9. Genome sequence of Coxiella burnetii strain Namibia

    PubMed Central

    2014-01-01

    We present the whole genome sequence and annotation of the Coxiella burnetii strain Namibia. This strain was isolated from an aborting goat in 1991 in Windhoek, Namibia. The plasmid type QpRS was confirmed in our work. Further genomic typing placed the strain into a unique genomic group. The genome sequence is 2,101,438 bp long and contains 1,979 protein-coding and 51 RNA genes, including one rRNA operon. To overcome the poor yield from cell culture systems, an additional DNA enrichment with whole genome amplification (WGA) methods was applied. We describe a bioinformatics pipeline for improved genome assembly including several filters with a special focus on WGA characteristics. PMID:25593636

  10. Integrative Genomics of Chronic Obstructive Pulmonary Disease

    PubMed Central

    Hobbs, Brian D.; Hersh, Craig P.

    2014-01-01

    Chronic obstructive pulmonary disease (COPD) is a complex disease with both environmental and genetic determinants, the most important of which is cigarette smoking. There is marked heterogeneity in the development of COPD among persons with similar cigarette smoking histories, which is likely partially explained by genetic variation. Genomic approaches such as genomewide association studies and gene expression studies have been used to discover genes and molecular pathways involved in COPD pathogenesis; however, these “first generation” omics studies have limitations. Integrative genomic studies are emerging which can combine genomic datasets to further examine the molecular underpinnings of COPD. Future research in COPD genetics will likely use network-based approaches to integrate multiple genomic data types in order to model the complex molecular interactions involved in COPD pathogenesis. This article reviews the genomic research to date and offers a vision for the future of integrative genomic research in COPD. PMID:25078622

  11. BrucellaBase: Genome information resource.

    PubMed

    Sankarasubramanian, Jagadesan; Vishnu, Udayakumar S; Khader, L K M Abdul; Sridhar, Jayavel; Gunasekaran, Paramasamy; Rajendhran, Jeyaprakash

    2016-09-01

    Brucella sp. causes a major zoonotic disease, brucellosis. Brucella belongs to the family Brucellaceae under the order Rhizobiales of Alphaproteobacteria. We present BrucellaBase, a web-based platform, providing features of a genome database together with unique analysis tools. We have developed a web version of the multilocus sequence typing (MLST) (Whatmore et al., 2007) and phylogenetic analysis of Brucella spp. BrucellaBase currently contains genome data of 510 Brucella strains along with the user interfaces for BLAST, VFDB, CARD, pairwise genome alignment and MLST typing. Availability of these tools will enable the researchers interested in Brucella to get meaningful information from Brucella genome sequences. BrucellaBase will regularly be updated with new genome sequences, new features along with improvements in genome annotations. BrucellaBase is available online at http://www.dbtbrucellosis.in/brucellabase.html or http://59.99.226.203/brucellabase/homepage.html. PMID:27164438

  12. Assessing inhomogeneities in bacterial long genomic sequences

    SciTech Connect

    Karlin, S.

    1997-12-01

    Several complete prokaryotic and eukaryotic genomes are already at hand (S. cerevisiae, H. influenzae, M. genitalium, M. jannaschii, Synechocystis, sp.) and many are forthcoming (e.g., E. coli, H, pylori, C. elegans). The comparative analysis of genomes generally strives to identify genes and characterize function/structure relationships inferred mostly via amino acid sequence comparisons. We describe concisely methods for comparing genomes (or long contigs) emphasizing sequence features other than gene comparisons. These center on the following measures of genomic organization and sequence heterogeneity: (i) compositional biases of short oligonucleotides; (ii) dinucleotide relative abundance distances within and between genomes; (iii) rare and frequent word (oligonucleotide) determinations and their distributional properties; (iv) r-scan statistics assessing clustering, overdispersion, or excessive evenness of various marker arrays; and (v) characterizations of repeat structures in the genome. 20 refs., 3 figs.

  13. JGI Genomic Single-cell Assembly Workflow

    SciTech Connect

    Trong, S.

    2011-09-16

    JIGSAW is a software package disigned to quality control and assemble genomic DNA sequences from single-cell bacterial and archaeal genomes. Amplification of singel-cell genomes using multiple displacement amplification technology presents challenges that magnify the amount of contaminants in the sample and produce non uniform depth of sequence coverage. these factors pose problems whan assembling the genomic data using currently availible short read assembles. The software addresses these problems by removing contaminants and normalizing the sequence read coverage prior to assemble. A hybrid assembly approach using two different open source genome assembly tools is then applied to piece together the DNA fragments. Additional reporting of QC metrics for the input sample and the genome assembly is provided for further analysis.

  14. On the Epistemological Crisis in Genomics

    PubMed Central

    Dougherty, Edward R

    2008-01-01

    There is an epistemological crisis in genomics. At issue is what constitutes scientific knowledge in genomic science, or systems biology in general. Does this crisis require a new perspective on knowledge heretofore absent from science or is it merely a matter of interpreting new scientific developments in an existing epistemological framework? This paper discusses the manner in which the experimental method, as developed and understood over recent centuries, leads naturally to a scientific epistemology grounded in an experimental-mathematical duality. It places genomics into this epistemological framework and examines the current situation in genomics. Meaning and the constitution of scientific knowledge are key concerns for genomics, and the nature of the epistemological crisis in genomics depends on how these are understood. PMID:19440447

  15. Human Contamination in Public Genome Assemblies.

    PubMed

    Kryukov, Kirill; Imanishi, Tadashi

    2016-01-01

    Contamination in genome assembly can lead to wrong or confusing results when using such genome as reference in sequence comparison. Although bacterial contamination is well known, the problem of human-originated contamination received little attention. In this study we surveyed 45,735 available genome assemblies for evidence of human contamination. We used lineage specificity to distinguish between contamination and conservation. We found that 154 genome assemblies contain fragments that with high confidence originate as contamination from human DNA. Majority of contaminating human sequences were present in the reference human genome assembly for over a decade. We recommend that existing contaminated genomes should be revised to remove contaminated sequence, and that new assemblies should be thoroughly checked for presence of human DNA before submitting them to public databases. PMID:27611326

  16. [Infectious diseases in the genomic era].

    PubMed

    Moreno Switt, Andrea I; Toledo, Viviana

    2015-10-01

    Next generation sequencing (NGS) technologies have arrived, changing research and infectious disease research into a new era, the "genomic era". Currently, the developed world is introducing NGS in a number of applications, including clinical diagnostics, epidemiology, and microbiology. In developing countries NGS is being progressively introduced. Technologies currently available allow to sequence the whole genome of bacterial and viral strains for an approximate cost of $100 USD, which is highly cost savings compared to old-technologies for genome sequencing. Here we review recent publication of whole genome sequencing used for, (i) tracking of foodborne outbreaks, with emphasis in Salmonella and Listeria monocytogenes, (ii) building genomic databases for Governments, (iii) investigating nosocomial infections, and (iv) clinical diagnosis. The genomic era is here to stay and researchers should use these "massive databases" generated by this technology to decrease infectious diseases and thus improve health of humans and animals. PMID:26633116

  17. Multiscale modeling of three-dimensional genome

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Wolynes, Peter

    The genome, the blueprint of life, contains nearly all the information needed to build and maintain an entire organism. A comprehensive understanding of the genome is of paramount interest to human health and will advance progress in many areas, including life sciences, medicine, and biotechnology. The overarching goal of my research is to understand the structure-dynamics-function relationships of the human genome. In this talk, I will be presenting our efforts in moving towards that goal, with a particular emphasis on studying the three-dimensional organization, the structure of the genome with multi-scale approaches. Specifically, I will discuss the reconstruction of genome structures at both interphase and metaphase by making use of data from chromosome conformation capture experiments. Computationally modeling of chromatin fiber at atomistic level from first principles will also be presented as our effort for studying the genome structure from bottom up.

  18. Open chromatin reveals the functional maize genome

    PubMed Central

    Rodgers-Melnick, Eli; Vera, Daniel L.; Bass, Hank W.

    2016-01-01

    Cellular processes mediated through nuclear DNA must contend with chromatin. Chromatin structural assays can efficiently integrate information across diverse regulatory elements, revealing the functional noncoding genome. In this study, we use a differential nuclease sensitivity assay based on micrococcal nuclease (MNase) digestion to discover open chromatin regions in the maize genome. We find that maize MNase-hypersensitive (MNase HS) regions localize around active genes and within recombination hotspots, focusing biased gene conversion at their flanks. Although MNase HS regions map to less than 1% of the genome, they consistently explain a remarkably large amount (∼40%) of heritable phenotypic variance in diverse complex traits. MNase HS regions are therefore on par with coding sequences as annotations that demarcate the functional parts of the maize genome. These results imply that less than 3% of the maize genome (coding and MNase HS regions) may give rise to the overwhelming majority of phenotypic variation, greatly narrowing the scope of the functional genome. PMID:27185945

  19. The Saccharomyces Genome Database Variant Viewer.

    PubMed

    Sheppard, Travis K; Hitz, Benjamin C; Engel, Stacia R; Song, Giltae; Balakrishnan, Rama; Binkley, Gail; Costanzo, Maria C; Dalusag, Kyla S; Demeter, Janos; Hellerstedt, Sage T; Karra, Kalpana; Nash, Robert S; Paskov, Kelley M; Skrzypek, Marek S; Weng, Shuai; Wong, Edith D; Cherry, J Michael

    2016-01-01

    The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org) is the authoritative community resource for the Saccharomyces cerevisiae reference genome sequence and its annotation. In recent years, we have moved toward increased representation of sequence variation and allelic differences within S. cerevisiae. The publication of numerous additional genomes has motivated the creation of new tools for their annotation and analysis. Here we present the Variant Viewer: a dynamic open-source web application for the visualization of genomic and proteomic differences. Multiple sequence alignments have been constructed across high quality genome sequences from 11 different S. cerevisiae strains and stored in the SGD. The alignments and summaries are encoded in JSON and used to create a two-tiered dynamic view of the budding yeast pan-genome, available at http://www.yeastgenome.org/variant-viewer. PMID:26578556

  20. Open chromatin reveals the functional maize genome.

    PubMed

    Rodgers-Melnick, Eli; Vera, Daniel L; Bass, Hank W; Buckler, Edward S

    2016-05-31

    Cellular processes mediated through nuclear DNA must contend with chromatin. Chromatin structural assays can efficiently integrate information across diverse regulatory elements, revealing the functional noncoding genome. In this study, we use a differential nuclease sensitivity assay based on micrococcal nuclease (MNase) digestion to discover open chromatin regions in the maize genome. We find that maize MNase-hypersensitive (MNase HS) regions localize around active genes and within recombination hotspots, focusing biased gene conversion at their flanks. Although MNase HS regions map to less than 1% of the genome, they consistently explain a remarkably large amount (∼40%) of heritable phenotypic variance in diverse complex traits. MNase HS regions are therefore on par with coding sequences as annotations that demarcate the functional parts of the maize genome. These results imply that less than 3% of the maize genome (coding and MNase HS regions) may give rise to the overwhelming majority of phenotypic variation, greatly narrowing the scope of the functional genome. PMID:27185945

  1. Patient privacy in the genomic era.

    PubMed

    Raisaro, Jean Louis; Ayday, Erman; Hubaux, Jean-Pierre

    2014-05-01

    According to many scientists and clinicians, genomics is taking on a key role in the field of medicine. Impressive advances in genome sequencing have opened the way to a variety of revolutionary applications in modern healthcare. In particular, the increasing understanding of the human genome, and of its relation to diseases and response to treatments brings promise of improvements in better preventive and personalized medicine. However, this progress raises important privacy and ethical concerns that need to be addressed. Indeed, each genome is the ultimate identifier of its owner and, due to its nature, it contains highly personal and privacy-sensitive data. In this article, after summarizing recent advances in genomics, we discuss some important privacy issues associated with human genomic information and methods put in place to address them. PMID:24800770

  2. Draft genome of the kiwifruit Actinidia chinensis

    PubMed Central

    Huang, Shengxiong; Ding, Jian; Deng, Dejing; Tang, Wei; Sun, Honghe; Liu, Dongyuan; Zhang, Lei; Niu, Xiangli; Zhang, Xia; Meng, Meng; Yu, Jinde; Liu, Jia; Han, Yi; Shi, Wei; Zhang, Danfeng; Cao, Shuqing; Wei, Zhaojun; Cui, Yongliang; Xia, Yanhua; Zeng, Huaping; Bao, Kan; Lin, Lin; Min, Ya; Zhang, Hua; Miao, Min; Tang, Xiaofeng; Zhu, Yunye; Sui, Yuan; Li, Guangwei; Sun, Hanju; Yue, Junyang; Sun, Jiaqi; Liu, Fangfang; Zhou, Liangqiang; Lei, Lin; Zheng, Xiaoqin; Liu, Ming; Huang, Long; Song, Jun; Xu, Chunhua; Li, Jiewei; Ye, Kaiyu; Zhong, Silin; Lu, Bao-Rong; He, Guanghua; Xiao, Fangming; Wang, Hui-Li; Zheng, Hongkun; Fei, Zhangjun; Liu, Yongsheng

    2013-01-01

    The kiwifruit (Actinidia chinensis) is an economically and nutritionally important fruit crop with remarkably high vitamin C content. Here we report the draft genome sequence of a heterozygous kiwifruit, assembled from ~140-fold next-generation sequencing data. The assembled genome has a total length of 616.1 Mb and contains 39,040 genes. Comparative genomic analysis reveals that the kiwifruit has undergone an ancient hexaploidization event (γ) shared by core eudicots and two more recent whole-genome duplication events. Both recent duplication events occurred after the divergence of kiwifruit from tomato and potato and have contributed to the neofunctionalization of genes involved in regulating important kiwifruit characteristics, such as fruit vitamin C, flavonoid and carotenoid metabolism. As the first sequenced species in the Ericales, the kiwifruit genome sequence provides a valuable resource not only for biological discovery and crop improvement but also for evolutionary and comparative genomics analysis, particularly in the asterid lineage. PMID:24136039

  3. Engineering Delivery Vehicles for Genome Editing.

    PubMed

    Nelson, Christopher E; Gersbach, Charles A

    2016-06-01

    The field of genome engineering has created new possibilities for gene therapy, including improved animal models of disease, engineered cell therapies, and in vivo gene repair. The most significant challenge for the clinical translation of genome engineering is the development of safe and effective delivery vehicles. A large body of work has applied genome engineering to genetic modification in vitro, and clinical trials have begun using cells modified by genome editing. Now, promising preclinical work is beginning to apply these tools in vivo. This article summarizes the development of genome engineering platforms, including meganucleases, zinc finger nucleases, TALENs, and CRISPR/Cas9, and their flexibility for precise genetic modifications. The prospects for the development of safe and effective viral and nonviral delivery vehicles for genome editing are reviewed, and promising advances in particular therapeutic applications are discussed. PMID:27146557

  4. Farm animal genomics and informatics: an update

    PubMed Central

    Fadiel, Ahmed; Anidi, Ifeanyi; Eichenbaum, Kenneth D.

    2005-01-01

    Farm animal genomics is of interest to a wide audience of researchers because of the utility derived from understanding how genomics and proteomics function in various organisms. Applications such as xenotransplantation, increased livestock productivity, bioengineering new materials, products and even fabrics are several reasons for thriving farm animal genome activity. Currently mined in rapidly growing data warehouses, completed genomes of chicken, fish and cows are available but are largely stored in decentralized data repositories. In this paper, we provide an informatics primer on farm animal bioinformatics and genome project resources which drive attention to the most recent advances in the field. We hope to provide individuals in biotechnology and in the farming industry with information on resources and updates concerning farm animal genome projects. PMID:16275782

  5. The genome as a developmental organ

    PubMed Central

    Lamm, Ehud

    2014-01-01

    This paper applies the conceptual toolkit of Evolutionary Developmental Biology (evo-devo) to the evolution of the genome and the role of the genome in organism development. This challenges both the Modern Evolutionary Synthesis, the dominant view in evolutionary theory for much of the 20th century, and the typically unreflective analysis of heredity by evo-devo. First, the history of the marginalization of applying system-thinking to the genome is described. Next, the suggested framework is presented. Finally, its application to the evolution of genome modularity, the evolution of induced mutations, the junk DNA versus ENCODE debate, the role of drift in genome evolution, and the relationship between genome dynamics and symbiosis with microorganisms are briefly discussed. PMID:24882813

  6. Phytopathogen emergence in the genomics era.

    PubMed

    Thynne, Elisha; McDonald, Megan C; Solomon, Peter S

    2015-04-01

    Phytopathogens are a global threat to plant agriculture and biodiversity. The genomics era has lead to an exponential rise in comparative gene and genome studies of both economically significant and insignificant microorganisms. In this review we highlight some recent comparisons and discuss how they identify shared genes or genomic regions associated with host virulence. The two major mechanisms of rapid genome adaptation - horizontal gene transfer and hybridisation - are reviewed and we consider how intra-specific pan-genome sequences encode alternative host specificity. We also discuss the power that access to expansive gene databases provides in aiding the study of phytopathogen emergence. These databases can rapidly enable the identification of an unknown pathogen and its origin, as well as genomic adaptations required for emergence. PMID:25682011

  7. How The Genome Got a Life Span

    PubMed Central

    Lappé, Martine; Landecker, Hannah

    2015-01-01

    In the space of little more than a decade, ideas of the human genome have shifted significantly, with the emergence of the notion that the genome an individual changes with development, age, disease, environmental inputs, and time. This paper examines the emergence of the genome with a life span, one that experiences drift, instability and mutability, and a host of other temporal changes. We argue that developments in chromatin biology have provided the basis for this genomic embodiment of experience and exposure. We analyze how time has come to matter for the genome through chromatin, providing analysis of examples in which the human life course is being explored as a set of material changes to chromatin. A genome with a lifespan aligns the molecular and the experiential in new ways, shifting ideas of life stages, their interrelation, and the temporality of health and disease. PMID:26213491

  8. Conservation genomics of threatened animal species.

    PubMed

    Steiner, Cynthia C; Putnam, Andrea S; Hoeck, Paquita E A; Ryder, Oliver A

    2013-01-01

    The genomics era has opened up exciting possibilities in the field of conservation biology by enabling genomic analyses of threatened species that previously were limited to model organisms. Next-generation sequencing (NGS) and the collection of genome-wide data allow for more robust studies of the demographic history of populations and adaptive variation associated with fitness and local adaptation. Genomic analyses can also advance management efforts for threatened wild and captive populations by identifying loci contributing to inbreeding depression and disease susceptibility, and predicting fitness consequences of introgression. However, the development of genomic tools in wild species still carries multiple challenges, particularly those associated with computational and sampling constraints. This review provides an overview of the most significant applications of NGS and the implications and limitations of genomic studies in conservation. PMID:25387020

  9. Divergence and Shannon Information in Genomes

    NASA Astrophysics Data System (ADS)

    Chen, Hong-Da; Chang, Chang-Heng; Hsieh, Li-Ching; Lee, Hoong-Chien

    2005-05-01

    Shannon information (SI) and its special case, divergence, are defined for a DNA sequence in terms of probabilities of chemical words in the sequence and are computed for a set of complete genomes highly diverse in length and composition. We find the following: SI (but not divergence) is inversely proportional to sequence length for a random sequence but is length independent for genomes; the genomic SI is always greater and, for shorter words and longer sequences, hundreds to thousands times greater than the SI in a random sequence whose length and composition match those of the genome; genomic SIs appear to have word-length dependent universal values. The universality is inferred to be an evolution footprint of a universal mode for genome growth.

  10. The UCSC Cancer Genomics Browser: update 2015.

    PubMed

    Goldman, Mary; Craft, Brian; Swatloski, Teresa; Cline, Melissa; Morozova, Olena; Diekhans, Mark; Haussler, David; Zhu, Jingchun

    2015-01-01

    The UCSC Cancer Genomics Browser (https://genome-cancer.ucsc.edu/) is a web-based application that integrates relevant data, analysis and visualization, allowing users to easily discover and share their research observations. Users can explore the relationship between genomic alterations and phenotypes by visualizing various -omic data alongside clinical and phenotypic features, such as age, subtype classifications and genomic biomarkers. The Cancer Genomics Browser currently hosts 575 public datasets from genome-wide analyses of over 227,000 samples, including datasets from TCGA, CCLE, Connectivity Map and TARGET. Users can download and upload clinical data, generate Kaplan-Meier plots dynamically, export data directly to Galaxy for analysis, plus generate URL bookmarks of specific views of the data to share with others. PMID:25392408

  11. The UCSC Cancer Genomics Browser: update 2015

    PubMed Central

    Goldman, Mary; Craft, Brian; Swatloski, Teresa; Cline, Melissa; Morozova, Olena; Diekhans, Mark; Haussler, David; Zhu, Jingchun

    2015-01-01

    The UCSC Cancer Genomics Browser (https://genome-cancer.ucsc.edu/) is a web-based application that integrates relevant data, analysis and visualization, allowing users to easily discover and share their research observations. Users can explore the relationship between genomic alterations and phenotypes by visualizing various -omic data alongside clinical and phenotypic features, such as age, subtype classifications and genomic biomarkers. The Cancer Genomics Browser currently hosts 575 public datasets from genome-wide analyses of over 227 000 samples, including datasets from TCGA, CCLE, Connectivity Map and TARGET. Users can download and upload clinical data, generate Kaplan–Meier plots dynamically, export data directly to Galaxy for analysis, plus generate URL bookmarks of specific views of the data to share with others. PMID:25392408

  12. JGI Genomic Single-cell Assembly Workflow

    Energy Science and Technology Software Center (ESTSC)

    2011-09-16

    JIGSAW is a software package disigned to quality control and assemble genomic DNA sequences from single-cell bacterial and archaeal genomes. Amplification of singel-cell genomes using multiple displacement amplification technology presents challenges that magnify the amount of contaminants in the sample and produce non uniform depth of sequence coverage. these factors pose problems whan assembling the genomic data using currently availible short read assembles. The software addresses these problems by removing contaminants and normalizing the sequencemore » read coverage prior to assemble. A hybrid assembly approach using two different open source genome assembly tools is then applied to piece together the DNA fragments. Additional reporting of QC metrics for the input sample and the genome assembly is provided for further analysis.« less

  13. Using Sex to Cure the Genome

    PubMed Central

    Rocha, Eduardo P. C.

    2016-01-01

    The diversification of prokaryotes is accelerated by their ability to acquire DNA from other genomes. However, the underlying processes also facilitate genome infection by costly mobile genetic elements. The discovery that cells can uptake DNA by natural transformation was instrumental to the birth of molecular biology nearly a century ago. Surprisingly, a new study shows that this mechanism could efficiently cure the genome of mobile elements acquired through previous sexual exchanges. PMID:26987049

  14. The life cycle of a genome project: perspectives and guidelines inspired by insect genome projects.

    PubMed

    Papanicolaou, Alexie

    2016-01-01

    Many research programs on non-model species biology have been empowered by genomics. In turn, genomics is underpinned by a reference sequence and ancillary information created by so-called "genome projects". The most reliable genome projects are the ones created as part of an active research program and designed to address specific questions but their life extends past publication. In this opinion paper I outline four key insights that have facilitated maintaining genomic communities: the key role of computational capability, the iterative process of building genomic resources, the value of community participation and the importance of manual curation. Taken together, these ideas can and do ensure the longevity of genome projects and the growing non-model species community can use them to focus a discussion with regards to its future genomic infrastructure. PMID:27006757

  15. The life cycle of a genome project: perspectives and guidelines inspired by insect genome projects

    PubMed Central

    Papanicolaou, Alexie

    2016-01-01

    Many research programs on non-model species biology have been empowered by genomics. In turn, genomics is underpinned by a reference sequence and ancillary information created by so-called “genome projects”. The most reliable genome projects are the ones created as part of an active research program and designed to address specific questions but their life extends past publication. In this opinion paper I outline four key insights that have facilitated maintaining genomic communities: the key role of computational capability, the iterative process of building genomic resources, the value of community participation and the importance of manual curation. Taken together, these ideas can and do ensure the longevity of genome projects and the growing non-model species community can use them to focus a discussion with regards to its future genomic infrastructure. PMID:27006757

  16. Keynote Presentation: Genome Beat (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    ScienceCinema

    Zimmer, Carl [New York Times

    2013-01-22

    Carl Zimmer, a reporter for the New York Times, speaks on "The Genome Beat," the opening keynote presentation at the JGI User 7th Annual Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, Calif

  17. Keynote Presentation: Genome Beat (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    SciTech Connect

    Zimmer, Carl

    2012-03-20

    Carl Zimmer, a reporter for the New York Times, speaks on "The Genome Beat," the opening keynote presentation at the JGI User 7th Annual Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, Calif

  18. The genome portal of the Department of Energy Joint Genome Institute: 2014 updates

    SciTech Connect

    Nordberg, Henrik; Cantor, Michael; Dusheyko, Serge; Hua, Susan; Poliakov, Alexander; Shabalov, Igor; Smirnova, Tatyana; Grigoriev, Igor V.; Dubchak, Inna

    2013-11-12

    The U.S. Department of Energy (DOE) Joint Genome Institute (JGI), a national user facility, serves the diverse scientific community by providing integrated high-throughput sequencing and computational analysis to enable system-based scientific approaches in support of DOE missions related to clean energy generation and environmental characterization. The JGI Genome Portal (http://genome.jgi.doe.gov) provides unified access to all JGI genomic databases and analytical tools. The JGI maintains extensive data management systems and specialized analytical capabilities to manage and interpret complex genomic data. A user can search, download and explore multiple data sets available for all DOE JGI sequencing projects including their status, assemblies and annotations of sequenced genomes. In this paper, we describe major updates of the Genome Portal in the past 2 years with a specific emphasis on efficient handling of the rapidly growing amount of diverse genomic data accumulated in JGI.

  19. Functional genomics of tomato in a post-genome-sequencing phase

    PubMed Central

    Aoki, Koh; Ogata, Yoshiyuki; Igarashi, Kaori; Yano, Kentaro; Nagasaki, Hideki; Kaminuma, Eli; Toyoda, Atsushi

    2013-01-01

    Completion of tomato genome sequencing project has broad impacts on genetic and genomic studies of tomato and Solanaceae plants. The reference genome sequence derived from Solanum lycopersicum cv ‘Heinz 1706’ serves as the firm basis for sequencing-based approaches to tomato genomics. In this article, we first present a brief summary of the genome sequencing project and a summary of the reference genome sequence. We then focus on recent progress in transcriptome sequencing and small RNA sequencing and show how the reference genome sequence makes these analyses more comprehensive than before. We discuss the potential of in-depth analysis that is based on DNA methylome sequencing and transcription start-site detection. Finally, we describe the current status of efforts to resequence S. lycopersicum cultivars to demonstrate how resequencing can allow the use of intraspecific genomic diversity for detailed phenotyping and breeding. PMID:23641177

  20. The Architecture of a Scrambled Genome Reveals Massive Levels of Genomic Rearrangement during Development

    PubMed Central

    Chen, Xiao; Bracht, John R.; Goldman, Aaron David; Dolzhenko, Egor; Clay, Derek M.; Swart, Estienne C.; Perlman, David H.; Doak, Thomas G.; Stuart, Andrew; Amemiya, Chris T.; Sebra, Robert P.; Landweber, Laura F.

    2014-01-01

    SUMMARY Programmed DNA rearrangements in the single-celled eukaryote Oxytricha trifallax completely rewire its germline into a somatic nucleus during development. This elaborate, RNA-mediated pathway eliminates noncoding DNA sequences that interrupt gene loci and reorganizes the remaining fragments by inversions and permutations to produce functional genes. Here, we report the Oxytricha germline genome and compare it to the somatic genome to present a global view of its massive scale of genome rearrangements. The remarkably encrypted genome architecture contains >3,500 scrambled genes, as well as >800 predicted germline-limited genes expressed, and some posttranslationally modified, during genome rearrangements. Gene segments for different somatic loci often interweave with each other. Single gene segments can contribute to multiple, distinct somatic loci. Terminal precursor segments from neighboring somatic loci map extremely close to each other, often overlapping. This genome assembly provides a draft of a scrambled genome and a powerful model for studies of genome rearrangement. PMID:25171416