Science.gov

Sample records for boron isotope ratios

  1. Stable isotope ratio mass spectrometry of nanogram quantities of boron and sulfur

    NASA Astrophysics Data System (ADS)

    Wieser, Michael Eugene

    1998-09-01

    Instrumentation and analytical techniques were developed to measure isotope abundances from nanograms of sulfur and boron. Sulfur isotope compositions were determined employing continuous flow isotope ratio mass spectroscopy (CF-IRMS) procedures and AsS+ thermal ionization mass spectrometry techniques (AsS+-TIMS). Boron isotope abundances were determined by BO2/sp--TIMS. CF-IRMS measurements realized δ34S values from 10 μg sulfur with precisions of ±0.3/perthous. To extend sulfur isotope measurements to much smaller samples, a TIMS procedure was developed to measure 75As32S+ and 75As34S+ at masses 108 and 109 from 200 ng S on a Finnigan MAT 262 with an ion counter. This is possibly the smallest amount of sulfur which has been successfully analyzed isotopically. The internal precision of 32S/34S ratios measured by AsS+-TIMS was better than ±0.15 percent. δ34S-values calculated relative to the measured 32S/34S value of an IAEA AG2S standard (S-1) agreed with those determined by CF-IRMS to within ±3/perthous. The increasing sensitivity of S-isotope analyses permits hiterto impossible investigations e.g. sulfur in tree rings and ice cores. Boron isotope abundances were measured as BO2/sp- from 50 ng B using an older thermal ionization mass spectrometer which had been extensively upgraded including the addition of computer control electronics, sensitive ion current amplification and fiber optic data bus. The internal precisions of the measured 11B/10B ratios were ±0.15 percent and the precisions of δ11B values calculated relative to the accepted international standard (SRM-951) were ±3/perthous. Two applications of boron isotope abundance variations were initiated (1) ground waters of Northern Alberta and (2) coffee beans in different regions of the world. In the first it was demonstrated that boron isotopes could be used to trace boron released during steam injection of oil sands into the surrounding environment. Data from the second study suggest that boron

  2. Estimation of boron isotope ratios using high resolution continuum source atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Wiltsche, Helmar; Prattes, Karl; Zischka, Michael; Knapp, Günter

    2009-04-01

    In the production of 10B enriched steels, the production-recycling process needs to be closely monitored for inadvertent mix-up of materials with different B isotope levels. A quick and simple method for the estimation of boron isotope ratios in high alloyed steels using high resolution continuum source flame AAS (HR-CS-FAAS) was developed. On the 208.9 nm B line the wavelength of the peak absorption of 10B and 11B differs by 2.5 pm. The wavelength of the peak absorption of boron was determined by fitting a Gauss function through spectra simultaneously recorded by HR-CS-FAAS. It was shown that a linear correlation between the wavelength of the peak absorption and the isotope ratio exists and that this correlation is independent of the total boron concentration. Internal spectroscopic standards were used to compensate for monochromator drift and monochromator resolution changes. Accuracy and precision of the analyzed samples were thereby increased by a factor of up to 1.3. Three steel reference materials and one boric acid CRM, each certified for the boron isotope ratio were used to validate the procedure.

  3. Wich Parameter of the Carbonate System Influences the Boron Isotopic Composition and the Boron Calcium Ratio in Foraminiferal Tests?

    NASA Astrophysics Data System (ADS)

    Kaczmarek, K.; Nehrke, G.; Horn, I.; Langer, G.; Misra, S.; Bijma, J.

    2013-12-01

    We performed culture experiments with the benthic symbiont bearing foraminifer Amphistegina lessonii in order to determine which parameter of the marine carbonate system influences the boron isotopic composition (δ11B) and the boron calcium ratio (B/Ca) in the test. A. lessonii grew for two months in treatments of culture media with decoupled pH-carbonate chemistry. We measured δ11B and B/Ca simultaneously on single tests using a recently new developed mass spectrometric technique. Our results show a clear pH dependence on δ11B. The B/Ca in the shell show a positive correlation with aqueous B(OH)4-/HCO3-.

  4. Intra-Shell boron isotope ratios in benthic foraminifera: Implications for paleo-pH reconstructions

    NASA Astrophysics Data System (ADS)

    Rollion-Bard, C.; Erez, J.

    2009-12-01

    The boron isotope composition of marine carbonates is considered to be a seawater pH proxy. Nevertheless, the use of δ11B has some limitations: 1) the knowledge of fractionation factor (α4-3) between the two boron dissolved species (boric acid and borate ion), 2) the δ11B of seawater may have varied with time and 3) the amplitude of the "vital effects" of this proxy. Using secondary ion mass spectrometry (SIMS), we looked at the internal variability in the boron isotope ratio of the shallow water, symbionts bearing foraminiferan Amphistegina lobifera. Specimens were cultured at constant temperature (24±0.1 °C) in seawater with pH ranging between 7.90 and 8.45. We performed 6 to 8 measurements of δ11B in each foraminifera. Intra-shell boron isotopes show large variability with an upper threshold value of pH ~ 9. The ranges of the skeletal calculated pH values in different cultured foraminifera, show strong correlation with the culture pH values and may thus serve as proxy for pH in the past ocean.

  5. Determination of boron isotope ratios and rare earth elements by ETC-ICP-MS

    SciTech Connect

    Richner, P.; Wanner, B.

    1994-12-31

    Matrix modifiers play an important role in ETV-ICP-MS as they do in GF-AAS. In ETV-ICP-MS matrix modifiers, which are used as carriers for the analyte from the furnace to the ICP, enhance both sensitivity and reproducibility. Furthermore, matrix modifiers can be used to bring the element investigated into a specific compound with certain properties. The graphite furnace plays the role of a chemical reactor. In GF-AAS volatile elements are transformed into refractory compounds in order to prevent loss during the ashing stage of the temperature program. In ETV-ICP-MS, refractory elements can be transformed into volatile compounds with the help of matrix modifiers. Both B and the REE`s are known to form refractory compounds such as carbides and oxides which make them difficult to analyze by GF-AAS. However, halides of both B and the REE`s have boiling points below 2000{degrees}C. If these compounds are formed within the furnace the analyte elements can then be effectively transported into the ICP where they will be consequentially atomized and ionized. The technique will be applied to the determination of boron isotope ratios in a tracer study of the boron metabolism in vegetables, using NH4F as a matrix modifier, and the determination of REE`s in geological samples, with CHF{sub 3} as matrix modifier.

  6. Boron abundances and isotopic ratios of olivine grains on Itokawa returned by the Hayabusa spacecraft

    NASA Astrophysics Data System (ADS)

    Fujiya, Wataru; Hoppe, Peter; Ott, Ulrich

    2016-07-01

    We report the B abundances and isotopic ratios of two olivine grains from the S-type asteroid Itokawa sampled by the Hayabusa spacecraft. Olivine grains from the Dar al Gani (DaG) 989 LL6 chondrite were used as a reference. Since we analyzed polished thin sections in both cases, we expect the contribution from the solar wind B (rich in 10B) to be minimal because the solar wind was implanted only within very thin layers of the grain surface. The Itokawa and DaG 989 olivine grains have homogeneous B abundances (~400 ppb) and 11B/10B ratios compatible with the terrestrial standard and bulk chondrites. The observed homogeneous B abundances and isotopic ratios of the Itokawa olivine grains are likely the result of thermal metamorphism which occurred in the parent asteroid of Itokawa, which had a similar composition as LL chondrites. The chondritic B isotopic ratios of the Itokawa samples suggest that they contain little cosmogenic B (from cosmic-ray spallation reactions) rich in 10B. This observation is consistent with the short cosmic-ray exposure ages of Itokawa samples inferred from the small concentrations of cosmogenic 21Ne. If other Itokawa samples have little cosmogenic B as well, the enrichment in 10B found previously on the surface of another Itokawa particle (as opposed to the bulk grain study here) may be attributed to implanted solar wind B.

  7. Boron abundances and isotopic ratios of olivine grains on Itokawa returned by the Hayabusa spacecraft

    NASA Astrophysics Data System (ADS)

    Fujiya, Wataru; Hoppe, Peter; Ott, Ulrich

    2016-09-01

    We report the B abundances and isotopic ratios of two olivine grains from the S-type asteroid Itokawa sampled by the Hayabusa spacecraft. Olivine grains from the Dar al Gani (DaG) 989 LL6 chondrite were used as a reference. Since we analyzed polished thin sections in both cases, we expect the contribution from the solar wind B (rich in 10B) to be minimal because the solar wind was implanted only within very thin layers of the grain surface. The Itokawa and DaG 989 olivine grains have homogeneous B abundances (~400 ppb) and 11B/10B ratios compatible with the terrestrial standard and bulk chondrites. The observed homogeneous B abundances and isotopic ratios of the Itokawa olivine grains are likely the result of thermal metamorphism which occurred in the parent asteroid of Itokawa, which had a similar composition as LL chondrites. The chondritic B isotopic ratios of the Itokawa samples suggest that they contain little cosmogenic B (from cosmic-ray spallation reactions) rich in 10B. This observation is consistent with the short cosmic-ray exposure ages of Itokawa samples inferred from the small concentrations of cosmogenic 21Ne. If other Itokawa samples have little cosmogenic B as well, the enrichment in 10B found previously on the surface of another Itokawa particle (as opposed to the bulk grain study here) may be attributed to implanted solar wind B.

  8. Method for separating boron isotopes

    DOEpatents

    Rockwood, Stephen D.

    1978-01-01

    A method of separating boron isotopes .sup.10 B and .sup.11 B by laser-induced selective excitation and photodissociation of BCl.sub.3 molecules containing a particular boron isotope. The photodissociation products react with an appropriate chemical scavenger and the reaction products may readily be separated from undissociated BCl.sub.3, thus effecting the desired separation of the boron isotopes.

  9. Boron isotopic compositions of some boron minerals

    NASA Astrophysics Data System (ADS)

    Oi, Takao; Nomura, Masao; Musashi, Masaaki; Ossaka, Tomoko; Okamoto, Makoto; Kakihana, Hidetake

    1989-12-01

    Boron minerals that have different structural formulae but are supposed to have the same geologic origin have been collected and analyzed for the 11B /10B isotopic ratio. It has been reconfirmed that minerals of marine origin have higher 11B /10B ratios than those of nonmarine origin. It has been found that the sequence of decreasing 11B /10B values among the minerals with the same geologic origin is; borax, tincal, kernite (Na borates) > ulexite ( Na/Ca borate) > colemanite, iyoite, meyerhofferite (Ca borates). This sequence is explainable on the basis of the difference in crystal structure among the minerals. That is, minerals with higher BO 3/BO 4 ratios, (the ratio of the number of the BO 3 triangle units to the number of the BO 4 tetrahedron units in the structural formula of a mineral) have higher 11B /10B ratios.

  10. Boron-isotope geochemistry. Doctoral thesis

    SciTech Connect

    Spivack, A.J.

    1986-01-01

    An investigation of the major aspects of the boron-isotope geochemical cycle was carried out. Particular emphasis was directed at developing a reproducible, high-precision method for the determination of boron isotope ratios in geologic materials and determining the processes that influence the boron-isotope composition of seawater. A method for the determination of the isotopic composition of boron by thermal ionization mass spectrometry of Cs/sub 2/B/sub 4/O/sub 7/ is described. Samples analyzed for boron content and isotopic composition included: seawater, unaltered mid-ocean ridge basalts (MORB), altered MORB (dredge and core samples), serpentinized periodotites, marine sediments, marine sedimentary pore waters, hydrothermally altered sediments, oceanic hydrothermal solutions, rainwater, river water and suspended sediments, island arc volcanics and a soil profile.

  11. Boron isotopic compositions of some boron minerals

    SciTech Connect

    Oi, Takao; Musashi, Masaaki; Ossaka, Tomoko; Kakihana, Hidetake ); Nomura, Masao; Okamoto, Makoto )

    1989-12-01

    Boron minerals that have different structural formulae but are supposed to have the same geologic origin have been collected and analyzed for the {sup 11}B/{sup 10}B isotopic ratio. It has been reconfirmed that minerals of marine origin have higher {sup 11}B/{sup 10}B ratios than those of nonmarine origin. It has been found that the sequence of decreasing {sup 11}B/{sup 10}B values among the minerals with the same geologic origin is; borax, tincal, kernite (Na borates) > ulexite (Na/Ca borate) > colemanite, iyoite, meyerhofferite (Ca borates). This sequence is explainable on the basis of the difference in crystal structure among the minerals. That is, minerals with high BO{sub 3}/BO{sub 4} ratios, (the ratio of the number of the BO{sub 3} triangle units to the number of the BO{sub 4} tetrahedron units in the structural formula of a mineral) have higher {sup 11}B/{sup 10}B ratios.

  12. The Role of Boron-Chloride and Noble Gas Isotope Ratios in TVZ Geothermal Systems

    SciTech Connect

    Hulston, J.R.

    1995-01-01

    The model of the geothermal system in which deep circulating groundwater containing noble gases, at air saturated water concentrations, mixes with hot fluids of mantle origin at depth, is extended to include the effect of interaction of the ascending fluid with both solid and gaseous phases of basement (or other) rocks en route to the surface. It is demonstrated that this interaction is responsible for most of the CO{sub 2} in the Taupo Volcanic Zone (TVZ) geothermal systems. It is proposed that the modeling of this interaction might be accomplished by techniques similar to those used for the understanding of the oxygen isotope shift found in geothermal systems. The water rock interaction experiments of Ellis and Mahon (1964, 1967) provides some data on the kinetic rates for B and Cl dissolution from rocks likely to be encountered in the geothermal system, but further information on the behavior of B may be needed. If these problems can be overcome this modeling technique has promise for the estimation of the recharge of geothermal systems and hence the sustainability of these systems.

  13. Method of separating boron isotopes

    DOEpatents

    Jensen, R.J.; Thorne, J.M.; Cluff, C.L.

    1981-01-23

    A method of boron isotope enrichment involving the isotope preferential photolysis of (2-chloroethenyl)-dichloroborane as the feed material. The photolysis can readily by achieved with CO/sub 2/ laser radiation and using fluences significantly below those required to dissociate BCl/sub 3/.

  14. Method of separating boron isotopes

    DOEpatents

    Jensen, Reed J.; Thorne, James M.; Cluff, Coran L.; Hayes, John K.

    1984-01-01

    A method of boron isotope enrichment involving the isotope preferential photolysis of (2-chloroethenyl)dichloroborane as the feed material. The photolysis can readily be achieved with CO.sub.2 laser radiation and using fluences significantly below those required to dissociate BCl.sub.3.

  15. Evaluation of Ground-Water and Boron Sources by Use of Boron Stable-Isotope Ratios, Tritium, and Selected Water-Chemistry Constituents near Beverly Shores, Northwestern Indiana, 2004

    USGS Publications Warehouse

    Buszka, Paul M.; Fitzpatrick, John A.; Watson, Lee R.; Kay, Robert T.

    2007-01-01

    Concentrations of boron greater than the U.S. Environmental Protection Agency (USEPA) 900 ?g/L removal action level (RAL) standard were detected in water sampled by the USEPA in 2004 from three domestic wells near Beverly Shores, Indiana. The RAL regulates only human-affected concentrations of a constituent. A lack of well logs and screened depth information precluded identification of whether water from sampled wells, and their boron sources, were from human-affected or natural sources in the surficial aquifer, or associated with a previously defined natural, confined aquifer source of boron from the subtill or basal sand aquifers. A geochemically-based classification of the source of boron in ground water could potentially determine the similarity of boron to known sources or mixtures between known sources, or classify whether the relative age of the ground water predated the potential sources of contamination. The U.S. Geological Survey (USGS), in cooperation with the USEPA, investigated the use of a geochemical method that applied boron stable isotopes, and concentrations of boron, tritium, and other constituents to distinguish between natural and human-affected sources of boron in ground water and thereby determine if the RAL was applicable to the situation. Boron stable-isotope ratios and concentrations of boron in 17 ground-water samples and tritium concentrations in 9 ground-water samples collected in 2004 were used to identify geochemical differences between potential sources of boron in ground water near Beverly Shores, Indiana. Boron and d11B analyses for this investigation were made on unacidified samples to assure consistency of the result with unacidified analyses of d11B values from other investigations. Potential sources of boron included surficial-aquifer water affected by coal-combustion products (CCP) or domestic-wastewater, upward discharge of ground water from confined aquifers, and unaffected water from the surficial aquifer that was distant

  16. Fractionation of Boron Isotopes in Icelandic Hydrothermal Systems

    SciTech Connect

    Aggarwal, J.K.; Palmer, M.R.

    1995-01-01

    Boron isotope ratios have been determined in a variety of different geothermal waters from hydrothermal systems across Iceland. Isotope ratios from the high temperature meteoric water recharged systems reflect the isotope ratio of the host rocks without any apparent fractionation. Seawater recharged geothermal systems exhibit more positive {delta}{sup 11}B values than the meteoric water recharged geothermal systems. Water/rock ratios can be assessed from boron isotope ratios in the saline hydrothermal systems. Low temperature hydrothermal systems also exhibit more positive {delta}{sup 11}B than the high temperature systems, indicating fractionation of boron due to adsorption of the lighter isotope onto secondary minerals. Fractionation of boron in carbonate deposits may indicate the level of equilibrium attained within the systems.

  17. Detecting isotopic ratio outliers

    SciTech Connect

    Bayne, C.K.; Smith, D.H.

    1985-01-01

    An alternative method is proposed for improving isotopic ratio estimates. This method mathematically models pulse-count data and uses iterative reweighted Poisson regression to estimate model parameters to calculate the isotopic ratios. This computer-oriented approach provides theoretically better methods than conventional techniques to establish error limits and to identify outliers. 6 refs., 3 figs., 3 tabs.

  18. Intra-shell boron isotope ratios in the symbiont-bearing benthic foraminiferan Amphistegina lobifera: Implications for δ 11B vital effects and paleo-pH reconstructions

    NASA Astrophysics Data System (ADS)

    Rollion-Bard, C.; Erez, J.

    2010-03-01

    The boron isotope composition of marine carbonates is considered to be a seawater pH proxy. Nevertheless, the use of δ 11B has some limitations such as the knowledge of the fractionation factor ( α4-3) between boric acid and the borate ion and the amplitude of "vital effects" on this proxy that are not well constrained. Using secondary ion mass spectrometry (SIMS) we have examined the internal variability of the boron isotope ratio in the shallow water, symbionts bearing foraminiferan Amphistegina lobifera. Specimens were cultured at constant temperature (24 ± 0.1 °C) in seawater with pH ranging between 7.90 and 8.45. Intra-shell boron isotopes showed large variability with an upper limit value of ≈30‰. Our results suggest that the fractionation factor α4-3 of 0.97352 ( Klochko et al., 2006) is in better agreement with our experiments and with direct pH measurements in seawater vacuoles associated with the biomineralization process in these foraminifera. Despite the large variability of the skeletal pH values in each cultured specimen, it is possible to link the lowest calculated pH values to the experimental culture pH values while the upper pH limit is slightly below 9. This variability can be interpreted as follows: foraminifera variably increase the pH at the biomineralization site to about 9. This increase above ambient seawater pH leads to a range in δ 11B (Δ 11B) for each seawater pH. This Δ 11B is linearly correlated with the culture seawater pH with a slope of -13.1 per pH unit, and is independent of the fractionation factor α4-3, or the δ 11B sw through time. It may also be independent of the p KB (the dissociation constant of boric acid) value. Therefore, Δ 11B in foraminifera can potentially reconstruct paleo-pH of seawater.

  19. Separation and Analysis of Boron Isotope in High Plant by Thermal Ionization Mass Spectrometry

    PubMed Central

    Xu, Qingcai; Dong, Yuliang; Zhu, Huayu; Sun, Aide

    2015-01-01

    Knowledge of boron and its isotope in plants is useful to better understand the transposition and translocation of boron within plant, the geochemical behavior in the interface between soil and plant, and the biogeochemical cycle of boron. It is critical to develop a useful method to separate boron from the plant for the geochemical application of boron and its isotope. A method was developed for the extraction of boron in plant sample, whose isotope was determined by thermal ionization mass spectrometry. The results indicated that this method of dry ashing coupled with two-step ion-exchange chromatography is powerful for the separation of boron in plant sample with large amounts of organic matters completely. The ratios of boron isotope composition in those plant tissue samples ranged from −19.45‰ to +28.13‰ (total range: 47.58‰) with a mean value of 2.61 ± 11.76‰ SD. The stem and root isotopic compositions were lower than those in flower and leaf. The molecular mechanism of boron isotope may be responsible for the observed variation of boron isotopic composition and are considered as a useful tool for the better understanding of boron cycling process in the environment and for the signature of living systems. PMID:26819618

  20. Separation and Analysis of Boron Isotope in High Plant by Thermal Ionization Mass Spectrometry.

    PubMed

    Xu, Qingcai; Dong, Yuliang; Zhu, Huayu; Sun, Aide

    2015-01-01

    Knowledge of boron and its isotope in plants is useful to better understand the transposition and translocation of boron within plant, the geochemical behavior in the interface between soil and plant, and the biogeochemical cycle of boron. It is critical to develop a useful method to separate boron from the plant for the geochemical application of boron and its isotope. A method was developed for the extraction of boron in plant sample, whose isotope was determined by thermal ionization mass spectrometry. The results indicated that this method of dry ashing coupled with two-step ion-exchange chromatography is powerful for the separation of boron in plant sample with large amounts of organic matters completely. The ratios of boron isotope composition in those plant tissue samples ranged from -19.45‰ to +28.13‰ (total range: 47.58‰) with a mean value of 2.61 ± 11.76‰ SD. The stem and root isotopic compositions were lower than those in flower and leaf. The molecular mechanism of boron isotope may be responsible for the observed variation of boron isotopic composition and are considered as a useful tool for the better understanding of boron cycling process in the environment and for the signature of living systems. PMID:26819618

  1. Rapid mass-spectrometric determination of boron isotopic distribution in boron carbide.

    PubMed

    Rein, J E; Abernathey, R M

    1972-07-01

    Boron isotopic ratios are measured in boron carbide by thermionic ionization mass spectrometry with no prior chemical separation. A powder blend of boron carbide and sodium hydroxide is prepared, a small portion is transferred to a tantalum filament, the filament is heated to produce sodium borate, and the filament is transferred to the mass spectrometer where the(11)B/(10)B ratio is measured, using the Na(2)BO(2)(+) ion. Variables investigated for their effect on preferential volatilization of (10)B include the sodium hydroxide-boron carbide ratio and the temperature and duration of filament heating. A series of boron carbide pellets containing natural boron, of the type proposed for the control rods of the Fast Flux Test Facility reactor, were analysed with an apparently unbiased result of 4.0560 for the (11)B/(10)B ratio (standard deviation 0.0087). The pellets contained over 3% metal impurities typically found in this material. Time of analysis is 45 min per sample, with one analyst. PMID:18961131

  2. New Carbonate Standard Reference Materials for Boron Isotope Geochemistry

    NASA Astrophysics Data System (ADS)

    Stewart, J.; Christopher, S. J.; Day, R. D.

    2015-12-01

    The isotopic composition of boron (δ11B) in marine carbonates is well established as a proxy for past ocean pH. Yet, before palaeoceanographic interpretation can be made, rigorous assessment of analytical uncertainty of δ11B data is required; particularly in light of recent interlaboratory comparison studies that reported significant measurement disagreement between laboratories [1]. Well characterised boron standard reference materials (SRMs) in a carbonate matrix are needed to assess the accuracy and precision of carbonate δ11B measurements throughout the entire procedural chemistry; from sample cleaning, to ionic separation of boron from the carbonate matrix, and final δ11B measurement by multi-collector inductively coupled plasma mass spectrometry. To date only two carbonate reference materials exist that have been value-assigned by the boron isotope measurement community [2]; JCp-1 (porites coral) and JCt-1 (Giant Clam) [3]. The National Institute of Standards and Technology (NIST) will supplement these existing standards with new solution based inorganic carbonate boron SRMs that replicate typical foraminiferal and coral B/Ca ratios and δ11B values. These new SRMs will not only ensure quality control of full procedural chemistry between laboratories, but have the added benefits of being both in abundant supply and free from any restrictions associated with shipment of biogenic samples derived from protected species. Here we present in-house δ11B measurements of these new boron carbonate SRM solutions. These preliminary data will feed into an interlaboratory comparison study to establish certified values for these new NIST SRMs. 1. Foster, G.L., et al., Chemical Geology, 2013. 358(0): p. 1-14. 2. Gutjahr, M., et al., Boron Isotope Intercomparison Project (BIIP): Development of a new carbonate standard for stable isotopic analyses. Geophysical Research Abstracts, EGU General Assembly 2014, 2014. 16(EGU2014-5028-1). 3. Inoue, M., et al., Geostandards and

  3. Isotopic composition of cosmic-ray boron and nitrogen

    NASA Technical Reports Server (NTRS)

    Krombel, K. E.; Wiedenbeck, M. E.

    1988-01-01

    New measurements of the cosmic-ray boron and nitrogen isotopes at earth and of the elemental abundances of boron, carbon, nitrogen, and oxygen are presented. A region of mutually allowed values for the cosmic-ray nitrogen source ratios is determined, and the cosmic-ray escape mean free path is determined as a function of energy using a leaky box model for cosmic-ray propagation in the Galaxy. Relative to O-16, a N-15 source abundance consistent with solar system composition and a N-14 source abundance which is a factor of about three underabundant relative to the solar value are found.

  4. GUM Analysis for TIMS and SIMS Isotopic Ratios in Graphite

    SciTech Connect

    Heasler, Patrick G.; Gerlach, David C.; Cliff, John B.; Petersen, Steven L.

    2007-04-01

    This report describes GUM calculations for TIMS and SIMS isotopic ratio measurements of reactor graphite samples. These isotopic ratios are used to estimate reactor burn-up, and currently consist of various ratios of U, Pu, and Boron impurities in the graphite samples. The GUM calculation is a propagation of error methodology that assigns uncertainties (in the form of standard error and confidence bound) to the final estimates.

  5. Experimental determination of boron isotope fractionation in seawater

    NASA Astrophysics Data System (ADS)

    Klochko, K.; Kaufman, A. J.; Yao, W.; Byrne, R. H.; Tossell, J. A.

    2005-12-01

    The boron isotopic composition of marine carbonates is believed to be a useful tracer of seawater pH, which may then be used to reconstruct atmospheric pCO2 through time. Use of this proxy requires an intimate understanding of chemical kinetics and thermodynamic isotope exchange reactions between the two dominant boron-bearing species in seawater: boric acid B(OH)3 and borate ion B(OH)4-, which is preferentially incorporated into the carbonate lattice. However, due to our inability to quantitatively isolate these species from seawater, the magnitude of boron isotope fractionation at different temperatures and salinities has not previously been empirically measured. All paleo-pH studies have relied on the boron isotope equilibrium constant (11-10Kb = 1.0194 at 25°C) estimated theoretically in 1977 by Kakihana and colleagues. Here we present results of empirical determination of the boron isotope equilibrium constant at different temperatures and ionic strengths. The determinations are based on titration of isotopically labeled solutions, containing either 10B(OH)3 or 11B(OH)3, with NaOH. The pH of the titrated solutions is precisely measured using thymol blue indicator absorbance ratios. Differences in solution pH or, equivalently, borate/boric acid pK values between the isotopically substituted solutions, provides the desired equilibrium constant for the reaction: 10B(OH)3 + 11B(OH)4- <=> 11B(OH)3 + 10B(OH)4-. We have performed experiments to assess the influence of the temperature (25 and 40°C), ionic strength (0.05 and 0.7 molar) and medium composition (pure water, 0.6 M KCl, and synthetic seawater) on the isotopic equilibrium constant. Within experimental uncertainty maximum of ±0.002 (1σ), our results show only a weak dependence of the equilibrium constant on the above factors. The boron isotope equilibrium constant in seawater (S = 35) was determined to be 1.0269 ± 0.0013 at 25°C (1σ, n=6), which is in poor agreement with the theoretical basis for all

  6. Boron isotope fractionation in magma via crustal carbonate dissolution.

    PubMed

    Deegan, Frances M; Troll, Valentin R; Whitehouse, Martin J; Jolis, Ester M; Freda, Carmela

    2016-01-01

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ(11)B values down to -41.5‰, reflecting preferential partitioning of (10)B into the assimilating melt. Loss of (11)B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports (11)B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ(11)B melt values in arc magmas could flag shallow-level additions to the subduction cycle. PMID:27488228

  7. Boron isotope fractionation in magma via crustal carbonate dissolution

    PubMed Central

    Deegan, Frances M.; Troll, Valentin R.; Whitehouse, Martin J.; Jolis, Ester M.; Freda, Carmela

    2016-01-01

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ11B values down to −41.5‰, reflecting preferential partitioning of 10B into the assimilating melt. Loss of 11B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports 11B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ11B melt values in arc magmas could flag shallow-level additions to the subduction cycle. PMID:27488228

  8. Boron isotope fractionation in magma via crustal carbonate dissolution

    NASA Astrophysics Data System (ADS)

    Deegan, Frances M.; Troll, Valentin R.; Whitehouse, Martin J.; Jolis, Ester M.; Freda, Carmela

    2016-08-01

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ11B values down to ‑41.5‰, reflecting preferential partitioning of 10B into the assimilating melt. Loss of 11B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports 11B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ11B melt values in arc magmas could flag shallow-level additions to the subduction cycle.

  9. Boron and strontium isotope ratios and major/trace elements concentrations in tea leaves at four major tea growing gardens in Taiwan.

    PubMed

    Chang, Cheng-Ta; You, Chen-Feng; Aggarwal, Suresh Kumar; Chung, Chuan-Hsiung; Chao, Hung-Chun; Liu, Hou-Chun

    2016-06-01

    Isotopic compositions of B and Sr in rocks and sediments can be used as tracers for plant provincial sources. This study aims to test whether tea leaf origin can be discriminated using (10)B/(11)B and Sr isotopic composition data, along with concentrations of major/trace elements, in tea specimens collected from major plantation gardens in Taiwan. The tea leaves were digested by microwave and analyzed by multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS). The data showed significant variations in (87)Sr/(86)Sr ratios (from 0.70482 to 0.71462), which reflect changes in soil, groundwater or irrigation conditions. The most radiogenic tea leaves were found at the Taitung garden and the least radiogenic ones were from the Hualien garden. The δ (11)B was found to change appreciably (δ (11)B = 0.38-23.73 ‰) which could be due to fertilizers. The maximum δ (11)B was also observed in tea samples from the Hualien garden. Principal component analysis combining (87)Sr/(86)Sr, δ (11)B and major/trace elements results successfully discriminated different sources of major tea gardens in Taiwan, except the Hualien gardens, and this may be due to rather complicated local geological settings. PMID:26254888

  10. Boron isotopic constraints on the source of Hawaiian shield lavas

    NASA Astrophysics Data System (ADS)

    Tanaka, Ryoji; Nakamura, Eizo

    2005-07-01

    Boron isotopic compositions of lavas from three representative Hawaiian shield volcanoes (Kilauea, Mauna Loa, and Koolau) were analyzed by thermal ionization mass spectrometry. The boron isotopic composition of each sample was analyzed twice, once with and once without acid leaching to evaluate the effect of posteruptive boron contamination. Our acid-leaching procedure dissolved glass, olivine, secondary zeolite, and adsorbed boron; this dissolved boron was completely removed from the residue, which was comprised of plagioclase, pyroxenes, and newly formed amorphous silica. We confirmed that an appropriate acid-leaching process can eliminate adsorbed and incorporated boron contamination from all submarine samples without modifying the original 11B/ 10B ratio. On the other hand, when the sample was weathered, i.e., the olivine had an iddingsite rim, 11B/ 10B of the acid-resistant minerals are also modified, thus it is impossible to get the preeruptive 11B/ 10B value from the weathered samples. Through this elimination and evaluation procedure of posteruptive contamination, preeruptive δ 11B values for the shield lavas are -4.5 to -5.4‰ for Koolau ( N = 8), -3.6 to -4.6‰ for Kilauea ( N = 11), and -3.0 to -3.8‰ for Mauna Loa ( N = 6). Historical Kilauea lavas show a systematic temporal trend for B content and Nb/B coupled with other radiogenic isotopic ratios and trace element ratios, at constant δ 11B, indicating little or no assimilation of crustal materials in these lavas. Uncorrelated B content and δ 11B in Koolau and Mauna Loa lavas may also indicate little or no effect of crustal assimilation in these lavas. The source of KEA-component (identical to the so-called Kea end member in Hawaiian lavas) of the Hawaiian source mantle, represented by Kilauea, should be derived from lower part of subducted oceanic crust or refractory peridotite in the recycled subducted slab. The systematic trend from Kilauea to Koolau—decreasing δ 11B coupled with decreasing

  11. Isotopic Ratio, Isotonic Ratio, Isobaric Ratio and Shannon Information Uncertainty

    NASA Astrophysics Data System (ADS)

    Ma, Chun-Wang; Wei, Hui-Ling

    2014-11-01

    The isoscaling and the isobaric yield ratio difference (IBD) probes, both of which are constructed by yield ratio of fragment, provide cancelation of parameters. The information entropy theory is introduced to explain the physical meaning of the isoscaling and IBD probes. The similarity between the isoscaling and IBD results is found, i.e., the information uncertainty determined by the IBD method equals to β - α determined by the isoscaling (α (β) is the parameter fitted from the isotopic (isotonic) yield ratio).

  12. Isotopic ratios in planetary atmospheres.

    PubMed

    de Bergh, C

    1995-03-01

    Recent progress on measurements of isotopic ratios in planetary or satellite atmospheres include measurements of the D/H ratio in the methane of Uranus, Neptune and Titan and in the water of Mars and Venus. Implications of these measurements on our understanding of the formation and evolution of the planets and satellite are discussed. Our current knowledge of the carbon, nitrogen and oxygen isotopic ratios in the atmospheres of these planets, as well as on Jupiter and Saturn, is also reviewed. We finally show what progress can be expected in the very near future due to some new ground-based instrumentation particularly well suited to such studies, and to forthcoming space missions. PMID:11539257

  13. The boron isotope geochemistry of the Kirka borate deposit, western Turkey

    NASA Astrophysics Data System (ADS)

    Palmer, M. R.; Helvaci, C.

    1995-09-01

    We have measured the boron isotope composition of seventeen samples of borate minerals (colemanite, ulexite, and borax) and the 87Sr/ 86Sr ratio in thirteen borate samples from the Kirka borate deposit in western Anatolia, Turkey. These Neogene deposits were formed by evaporation of playa lakes fed by geothermal springs. The δ 11B values range from -14.9% o in colemanite to -1.6% o in borax. To a first approximation the relative differences in the δ 11B values of the borate minerals are consistent with their basic boron atomic configuration, but the magnitude of the boron isotope fractionation between the three minerals precludes their simultaneous precipitation from a brine with the same boron isotope composition and pH. Rather the data are consistent with precipitation of colemanite from a brine with lower pH than that required for ulexite precipitation, which in turn requires a lower pH than is needed for borax precipitation. The boron isotope data also suggest that the borate minerals did not maintain boron isotopic equilibrium with the brine after they precipitated. Rayleigh fractionation models indicate that during borax precipitation the δ 11B value of the brine was slightly heavier than during precipitation of ulexite and colemanite.

  14. Outside the pH box: Boron isotopes in synthetic calcite precipitated under varying solution chemistry

    NASA Astrophysics Data System (ADS)

    Farmer, J. R.; Uchikawa, J.; Penman, D. E.; Hoenisch, B.; Zeebe, R. E.

    2015-12-01

    Boron isotopic measurements (δ11B) in marine carbonates are a powerful tool for reconstructing past ocean carbon chemistry and the carbon cycle. Boron systematics in marine carbonates are rooted in the equilibrium dissociation of dissolved boron in seawater, but existing evidence from biogenic carbonates (corals, planktic and benthic foraminifers) suggests somewhat variable controls on boron concentration and δ11B. Synthetic precipitation experiments provide an opportunity to study boron systematics without biological interference, and recent studies (e.g., Uchikawa et al., 2015, GCA v150, 171-191) suggest that boron incorporation (measured as B/Ca ratios) into synthetic carbonates varies both with the elemental composition of experimental seawater and precipitation rate. Here we extend the geochemical characterization of synthetic calcite by investigating the influences of changing solution chemistry (pH, [Ca2+], [DIC] and [B]) and precipitation rate on their boron isotopic composition. Our results will be evaluated in the context of carbonate precipitation rates, modes of boron incorporation, and changing seawater chemistry through geologic time.

  15. A reconnaissance of the boron isotopic composition of tourmaline

    SciTech Connect

    Swihart, G.H.; Moore, P.B. )

    1989-04-01

    A preliminary investigation of the boron isotopic composition of tourmaline from some boron-rich associations has been made. The results for tourmaline from metasedimentary paragneisses (n = 12) range from {delta}{sup 11}B = {minus}22 to +22 per mil. These data mainly fall between the boron isotopic compositions of normal marine sediments with {delta}{sup 11}B = {minus}2 to +5 per mil and seawater with {delta}{sup 11}B = +39.5 per mil. Tourmaline samples from granitic pegmatites (n = 6), on the other hand, range from {delta}{sup 11}B = {minus}12 to {minus}5 per mil. The data provide a rudimentary indication of the range of boron isotopic variation in tourmaline, some of the processes leading to this range, and some possible geochemical tracer applications.

  16. Utilization of intrinsic boron isotopes as co-migrating tracers for identifying potential nitrate contamination sources

    SciTech Connect

    Leenhouts, J.M.; Bassett, R.L.; Maddock, T. III

    1998-03-01

    The stable isotopes of the conservative element boron, {sup 11}B and {sup 10}B, have been employed as co-migrating isotopic tracers to trace potential sources of nitrate observed in ground water pumped from a large capacity 0.167 m{sup 3}/s irrigation well in the Avra Valley of southeastern Arizona. The isotopic ratios provided an identifying signature for two nitrogen carrying source waters: municipal waste water and agricultural return flow. Additional chemical parameters were also examined to corroborate the isotopic indications. Boron isotopes provided a superior delineation of mixing processes in the system compared to the general inorganic chemical parameters. Findings of this investigation indicate that the water pumped by the study well at the beginning of the 1993 irrigation season was composed of a mixture of approximately 25% municipal waste water and 75% background ground water. As the irrigation season progressed, an increasing proportion of water was contributed by irrigation return flow from neighboring agricultural fields.

  17. Boron isotopic composition of tourmaline from massive sulfide deposits and tourmalinites

    USGS Publications Warehouse

    Palmer, M.R.; Slack, J.F.

    1989-01-01

    Boron isotope ratios (11B/10B) have been measured on 60 tourmaline separates from over 40 massive sulfide deposits and tourmalinites from a variety of geologic and tectonic settings. The coverage of these localities is global (5 continents) and includes the giant ore bodies at Kidd Creek and Sullivan (Canada), Broken Hill (Australia), and Ducktown (USA). Overall, the tourmalines display a wide range in ??11B values from -22.8 to +18.3??? Possible controls over the boron isotopic composition of the tourmalines include: 1) composition of the boron source, 2) regional metamorphism, 3) water/rock ratios, 4) seawater entrainment, 5) temperature of formation, and 6) secular variations in seawater ??11B. The most significant control appears to be the composition of the boron source, particularly the nature of footwall lithologies; variations in water/ rock ratios and seawater entrainment are of secondary importance. The boron isotope values seem especially sensitive to the presence of evaporites (marine and non-marine) and carbonates in source rocks to the massive sulfide deposits and tourmalinites. ?? 1989 Springer-Verlag.

  18. Isotopic Enrichment of Boron in the Sputtering of Boron Nitride with Xenon Ions

    NASA Technical Reports Server (NTRS)

    Ray, P. K.; Shutthanandan, V.

    1998-01-01

    An experimental study is described to measure the isotopic enrichment of boron. Xenon ions from 100 eV to 1.5 keV were used to sputter a boron nitride target. An ion gun was used to generate the ion beam. The ion current density at the target surface was approximately 30 microA/sq cm. Xenon ions impinged on the target surface at 50 deg angle to the surface normal. Since boron nitride is an insulator, a flood electron gun was used in our experiments to neutralize the positive charge buildup on the target surface. The sputtered secondary ions of boron were detected by a quadrupole mass spectrometer. The spectrometer entrance aperture was located perpendicular to the ion beam direction and 10 mm away from the target surface. The secondary ion flux was observed to be enriched in the heavy isotopes at lower ion energies. The proportion of heavy isotopes in the sputtered secondary ion flux was found to decrease with increasing primary ion energy from 100 to 350 eV. Beyond 350 eV, light isotopes were sputtered preferentially. The light isotope enrichment factor was observed to reach an asymptotic value of 1.27 at 1.5 keV. This trend is similar to that of the isotopic enrichment observed earlier when copper was sputtered with xenon ions in the same energy range.

  19. Short-term coral bleaching is not recorded by skeletal boron isotopes.

    PubMed

    Schoepf, Verena; McCulloch, Malcolm T; Warner, Mark E; Levas, Stephen J; Matsui, Yohei; Aschaffenburg, Matthew D; Grottoli, Andréa G

    2014-01-01

    Coral skeletal boron isotopes have been established as a proxy for seawater pH, yet it remains unclear if and how this proxy is affected by seawater temperature. Specifically, it has never been directly tested whether coral bleaching caused by high water temperatures influences coral boron isotopes. Here we report the results from a controlled bleaching experiment conducted on the Caribbean corals Porites divaricata, Porites astreoides, and Orbicella faveolata. Stable boron (δ11B), carbon (δ13C), oxygen (δ18O) isotopes, Sr/Ca, Mg/Ca, U/Ca, and Ba/Ca ratios, as well as chlorophyll a concentrations and calcification rates were measured on coral skeletal material corresponding to the period during and immediately after the elevated temperature treatment and again after 6 weeks of recovery on the reef. We show that under these conditions, coral bleaching did not affect the boron isotopic signature in any coral species tested, despite significant changes in coral physiology. This contradicts published findings from coral cores, where significant decreases in boron isotopes were interpreted as corresponding to times of known mass bleaching events. In contrast, δ13C and δ18O exhibited major enrichment corresponding to decreases in calcification rates associated with bleaching. Sr/Ca of bleached corals did not consistently record the 1.2°C difference in seawater temperature during the bleaching treatment, or alternatively show a consistent increase due to impaired photosynthesis and calcification. Mg/Ca, U/Ca, and Ba/Ca were affected by coral bleaching in some of the coral species, but the observed patterns could not be satisfactorily explained by temperature dependence or changes in coral physiology. This demonstrates that coral boron isotopes do not record short-term bleaching events, and therefore cannot be used as a proxy for past bleaching events. The robustness of coral boron isotopes to changes in coral physiology, however, suggests that reconstruction of

  20. Short-Term Coral Bleaching Is Not Recorded by Skeletal Boron Isotopes

    PubMed Central

    Schoepf, Verena; McCulloch, Malcolm T.; Warner, Mark E.; Levas, Stephen J.; Matsui, Yohei; Aschaffenburg, Matthew D.; Grottoli, Andréa G.

    2014-01-01

    Coral skeletal boron isotopes have been established as a proxy for seawater pH, yet it remains unclear if and how this proxy is affected by seawater temperature. Specifically, it has never been directly tested whether coral bleaching caused by high water temperatures influences coral boron isotopes. Here we report the results from a controlled bleaching experiment conducted on the Caribbean corals Porites divaricata, Porites astreoides, and Orbicella faveolata. Stable boron (δ11B), carbon (δ13C), oxygen (δ18O) isotopes, Sr/Ca, Mg/Ca, U/Ca, and Ba/Ca ratios, as well as chlorophyll a concentrations and calcification rates were measured on coral skeletal material corresponding to the period during and immediately after the elevated temperature treatment and again after 6 weeks of recovery on the reef. We show that under these conditions, coral bleaching did not affect the boron isotopic signature in any coral species tested, despite significant changes in coral physiology. This contradicts published findings from coral cores, where significant decreases in boron isotopes were interpreted as corresponding to times of known mass bleaching events. In contrast, δ13C and δ18O exhibited major enrichment corresponding to decreases in calcification rates associated with bleaching. Sr/Ca of bleached corals did not consistently record the 1.2°C difference in seawater temperature during the bleaching treatment, or alternatively show a consistent increase due to impaired photosynthesis and calcification. Mg/Ca, U/Ca, and Ba/Ca were affected by coral bleaching in some of the coral species, but the observed patterns could not be satisfactorily explained by temperature dependence or changes in coral physiology. This demonstrates that coral boron isotopes do not record short-term bleaching events, and therefore cannot be used as a proxy for past bleaching events. The robustness of coral boron isotopes to changes in coral physiology, however, suggests that reconstruction of

  1. Pressure-dependent boron isotopic fractionation observed by column chromatography

    NASA Astrophysics Data System (ADS)

    Musashi, M.; Oi, T.; Matsuo, M.; Nomura, M.

    2007-12-01

    Boron isotopic fractionation factor ( S ) between boron taken up in strongly basic anion exchange resin and boron in aqueous solution was determined by breakthrough column chromatography at 5 and 17 MPa at 25°C, using 0.1 mmol/L boric acid solution as feed solution. The S values obtained were 1.018 and 1.012, respectively, which were smaller than the value reported by using the same chromatographic method at atmospheric pressure at 25°C with the boron concentration of 10 mmol/L, but were larger than the values at the same condition with much higher concentration of 100 and 501 mmol/L, indicating that borate-polymerization reducing the isotopic fractionation was negligible. However, calculations based on the theory of isotope distribution between two phases estimated that 21% (5MPa) and 47% (17MPa) of boron taken up in the resin phase was in the three-coordinated B(OH)3-form, instead of in the four-coordinated B(OH)4--form, at high pressures even with the very diluted solution. We discussed this discrepancy by introducing (1) hydration or (2) a partial molar volume difference between isotopic molecules. It was inferred that borate ions were partially dehydrated upon transfer from the solution phase to the resin phase at high pressures, which resulted in smaller S values compared with those at the atmospheric pressure. Alternatively, it was likely that the S value decreased with increasing pressure, because the difference of the partial isotopic molar volumes between 10B(OH)3 and 11B(OH)3 was larger than that between 10B(OH)4- and 11B(OH)4-. If either will be the case, the influence of a pressure upon the isotope effect may not be negligible for boron isotopic exchange equilibrium. This knowledge is crucial for the principle of the boron isotopic pH-metry reconstructing a chemical variation at the paleo-deep oceanic environment where the early life may have been evolved.

  2. Separation of the isotopes of boron by chemical exchange reactions

    DOEpatents

    McCandless, F.P.; Herbst, R.S.

    1995-05-30

    The isotopes of boron, {sup 10}B and {sup 11}B, are separated by means of a gas-liquid chemical exchange reaction involving the isotopic equilibrium between gaseous BF{sub 3} and a liquid BF{sub 3} donor molecular addition complex formed between BF{sub 3} gas and a donor chosen from the group consisting of: nitromethane, acetone, methyl isobutyl ketone, or diisobutyl ketone. 1 Fig.

  3. Separation of the isotopes of boron by chemical exchange reactions

    DOEpatents

    McCandless, Frank P.; Herbst, Ronald S.

    1995-01-01

    The isotopes of boron, .sup.10 B and .sup.11 B, are separated by means of a gas-liquid chemical exchange reaction involving the isotopic equilibrium between gaseous BF.sub.3 and a liquid BF.sub.3 . donor molecular addition complex formed between BF.sub.3 gas and a donor chosen from the group consisting of: nitromethane, acetone, methyl isobutyl ketone, or diisobutyl ketone.

  4. Reconstructing Ocean pH with Boron Isotopes in Foraminifera

    NASA Astrophysics Data System (ADS)

    Foster, Gavin L.; Rae, James W. B.

    2016-06-01

    In order to better understand the effect of CO2 on the Earth system in the future, geologists may look to CO2-induced environmental change in Earth's past. Here we describe how CO2 can be reconstructed using the boron isotopic composition (δ11B) of marine calcium carbonate. We review the chemical principles that underlie the proxy, summarize the available calibration data, and detail how boron isotopes can be used to estimate ocean pH and ultimately atmospheric CO2 in the past. δ11B in a variety of marine carbonates shows a coherent relationship with seawater pH, in broad agreement with simple models for this proxy. Offsets between measured and predicted δ11B may in part be explained by physiological influences, though the exact mechanisms of boron incorporation into carbonate remain unknown. Despite these uncertainties, we demonstrate that δ11B may provide crucial constraints on past ocean acidification and atmospheric CO2.

  5. Coprecipitation and isotopic fractionation of boron in modern biogenic carbonates

    SciTech Connect

    Vengosh, A. Hebrew Univ., Jerusalem ); Chivas, A.R.; McCulloch, M.T. ); Kolodny, Y.; Starinsky, A. )

    1991-10-01

    The abundances and isotopic composition of boron in modern, biogenic calcareous skeletons from the Gulf of Elat, Israel, the Great Barrier Reef, Australia, and in deep-sea sediments have been examined by negative thermal-ionization mass spectrometry. The selected species (Foraminifera, Pteropoda, corals, Gastropoda, and Pelecypoda) yield large variations in boron concentration that range from 1 ppm in gastropod shells to 80 ppm in corals. The variations of {delta}{sup 11}B may be controlled by isotopic exchange of boron species in which {sup 10}B is preferentially partitioned into the tetrahedral species, and coprecipitation of different proportions of trigonal and tetrahedral species in the calcium carbonates. The B content and {delta}{sup 11}B values of deep-sea sediments, Foraminifera tests, and corals are used to estimate the global oceanic sink of elemental boron by calcium carbonate deposition. As a result of enrichment of B in corals, a substantially higher biogenic sink of 6.4 {plus minus} 0.9 {times} 10{sup 10} g/yr is calculated for carbonates. This is only slightly lower than the sink for desorbable B in marine sediments (10 {times} 10{sup 10} g/yr) and approximately half that of altered oceanic crust (14 {times} 10{sup 10} g/yr). Thus, carbonates are an important sink for B in the oceans being {approximately}20% of the total sinks. The preferential incorporation of {sup 10}B into calcium carbonate results in oceanic {sup 11}B-enrichment, estimated as 1.2 {plus minus} 0.3 {times} 10{sup 12} per mil {center dot} g/yr. The boron-isotope composition of authigenic, well-preserved carbonate skeletons may provide a useful tool to record secular boron-isotope variations in seawater at various times in the geological record.

  6. Quantitative Determination of Isotope Ratios from Experimental Isotopic Distributions

    PubMed Central

    Kaur, Parminder; O’Connor, Peter B.

    2008-01-01

    Isotope variability due to natural processes provides important information for studying a variety of complex natural phenomena from the origins of a particular sample to the traces of biochemical reaction mechanisms. These measurements require high-precision determination of isotope ratios of a particular element involved. Isotope Ratio Mass Spectrometers (IRMS) are widely employed tools for such a high-precision analysis, which have some limitations. This work aims at overcoming the limitations inherent to IRMS by estimating the elemental isotopic abundance from the experimental isotopic distribution. In particular, a computational method has been derived which allows the calculation of 13C/12C ratios from the whole isotopic distributions, given certain caveats, and these calculations are applied to several cases to demonstrate their utility. The limitations of the method in terms of the required number of ions and S/N ratio are discussed. For high-precision estimates of the isotope ratios, this method requires very precise measurement of the experimental isotopic distribution abundances, free from any artifacts introduced by noise, sample heterogeneity, or other experimental sources. PMID:17263354

  7. Boron isotopes at the Shale Hills Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Gaillardet, J.; Noireaux, J.; Sullivan, P. L.; Steinhoefel, G.; Louvat, P.; Brantley, S. L.

    2015-12-01

    The Shale Hills Critical Zone Observatory is a Northern Appalachian catchment site where a series of geochemical tracers have been applied in order to build a multi-isotope integrative model (referred to as "CZ-tope"). The catchment is small (8ha) and relief is about 30 m. It receives about 107 cm of precipitation per year. Mean annual temperature is 10°C. Shales Hills observatory has a relatively simple lithology consisting of organic-poor shales rich in illite and relatively infrequent interbedded carbonates and sandstones. Vegetation consists mainly of deciduous trees. Soil thickness ranges from 0.3 m at the ridgetop to 3 m in the valley floor. Following the CZ-tope concept, boron isotopes were analysed in the main geochemical reservoirs of the SH catchment (stream, vegetation, soil pore waters, solid phases, groundwaters). Measurements were conducted using MC-ICPMS and a direct injection system after a chemical procedure aiming at isolating boron from geological matrix. Results are expressed as δ11B. Error bars are better than 0.5‰ Boron isotopes in Shale Hills catchment show a large range of variation. While bedrock values are within a narrow range around -5‰, stream waters range between 10‰ and 15‰, and exhibit temporal variations. This very strong 11B enrichment is also observed in the vegetation, groundwater and rainwater reservoirs but with a much larger range of variation. The input of 11B-enriched water by precipitation is contributing to the B budget at the catchment outlet but cannot explain all the 11B enrichment with respect to parent bedrock. The solid phases collected along two different soil profiles and as suspended sediments in the stream are close to the bedrock value or slightly 10B-enriched. The most important conclusion from boron isotope investigation at Shale Hills CZO is that a simple mass budget is not able to reconcile the strong 11B-enrichment measured in the water phases and vegetation with the isotopic signature of the

  8. Development of particle induced gamma-ray emission methods for nondestructive determination of isotopic composition of boron and its total concentration in natural and enriched samples.

    PubMed

    Chhillar, Sumit; Acharya, Raghunath; Sodaye, Suparna; Pujari, Pradeep K

    2014-11-18

    We report simple particle induced gamma-ray emission (PIGE) methods using a 4 MeV proton beam for simultaneous and nondestructive determination of the isotopic composition of boron ((10)B/(11)B atom ratio) and total boron concentrations in various solid samples with natural isotopic composition and enriched with (10)B. It involves measurement of prompt gamma-rays at 429, 718, and 2125 keV from (10)B(p,αγ)(7)Be, (10)B(p, p'γ)(10)B, and (11)B(p, p'γ)(11)B reactions, respectively. The isotopic composition of boron in natural and enriched samples was determined by comparing peak area ratios corresponding to (10)B and (11)B of samples to natural boric acid standard. An in situ current normalized PIGE method, using F or Al, was standardized for total B concentration determination. The methods were validated by analyzing stoichiometric boron compounds and applied to samples such as boron carbide, boric acid, carborane, and borosilicate glass. Isotopic compositions of boron in the range of 0.247-2.0 corresponding to (10)B in the range of 19.8-67.0 atom % and total B concentrations in the range of 5-78 wt % were determined. It has been demonstrated that PIGE offers a simple and alternate method for total boron as well as isotopic composition determination in boron based solid samples, including neutron absorbers that are important in nuclear technology. PMID:25312472

  9. Boron and strontium isotopic characterization of coal combustion residuals: validation of new environmental tracers.

    PubMed

    Ruhl, Laura S; Dwyer, Gary S; Hsu-Kim, Heileen; Hower, James C; Vengosh, Avner

    2014-12-16

    In the U.S., coal fired power plants produce over 136 million tons of coal combustion residuals (CCRs) annually. CCRs are enriched in toxic elements, and their leachates can have significant impacts on water quality. Here we report the boron and strontium isotopic ratios of leaching experiments on CCRs from a variety of coal sources (Appalachian, Illinois, and Powder River Basins). CCR leachates had a mostly negative δ(11)B, ranging from -17.6 to +6.3‰, and (87)Sr/(86)Sr ranging from 0.70975 to 0.71251. Additionally, we utilized these isotopic ratios for tracing CCR contaminants in different environments: (1) the 2008 Tennessee Valley Authority (TVA) coal ash spill affected waters; (2) CCR effluents from power plants in Tennessee and North Carolina; (3) lakes and rivers affected by CCR effluents in North Carolina; and (4) porewater extracted from sediments in lakes affected by CCRs. The boron isotopes measured in these environments had a distinctive negative δ(11)B signature relative to background waters. In contrast (87)Sr/(86)Sr ratios in CCRs were not always exclusively different from background, limiting their use as a CCR tracer. This investigation demonstrates the validity of the combined geochemical and isotopic approach as a unique and practical identification method for delineating and evaluating the environmental impact of CCRs. PMID:25417938

  10. What's all the stink about BO-? Using negative molecular ions to measure boron isotopes in samples with trace boron

    NASA Astrophysics Data System (ADS)

    Hervig, R. L.; Williams, L. B.

    2011-12-01

    Boron isotope fractionation depends strongly on the coordination of boron in coexisting phases. When boron is tetrahedrally coordinated in one phase and trigonally coordinated in another, equilibrium fractionation can record parameters such as temperature (over a surprisingly wide T for a stable isotope system) or the pH at which phases precipitated from low temperature solutions. The heavy isotope of B is strongly partitioned into fluid phases relative to minerals containing tetrahedrally-coordinated boron and thus B isotope ratios can provide evidence for separation of hydrous fluids from subducted materials and from silicate melts in volcanoes. However, in many cases, the B concentration of relevant solid phases is very low, leading to large errors in the isotope ratio. For example, common analytical protocols for the microanalysis of B on our secondary ion mass spectrometer (SIMS, Cameca 6f) use an O- primary beam, and detection of positive secondary ions at moderate mass resolving power. On samples containing a few ppm B, analyses may require up to ~2 hours to give integrated signals corresponding to errors of +/- 7 per mil (2 sigma). Increases in ion intensity would result from simply increasing the primary current (at the expense of beam diameter) or increasing transmission by reducing mass resolving power (at the expense of including 10BH+ ions on the 11B+ peak). Large magnetic sector SIMS instruments achieve higher transmission at high resolution, but the challenges of obtaining desired precision (+/- 1 permil) remain when boron is present at <2 ppm levels. Another direction to pursue is to find a B-containing ion that is formed more readily than the elemental positive ion. The logical choice is BO-, an ion isoelectronic with F-, and one we would expect to show very high ion yields. However, BO- can be unpleasant to deal with. Isobaric interferences include the toxic species of CN-: various combinations of the two carbon and nitrogen isotopes are silent

  11. The boron isotope geochemistry of the neogene borate deposits of western Turkey

    NASA Astrophysics Data System (ADS)

    Palmer, M. R.; Helvaci, C.

    1997-08-01

    We have analyzed the boron isotope composition of 80 borate minerals (major minerals: borax, colemanite, and ulexite; minor minerals: veatchite-A, tunellite, kernite, terrugite, probertite, meyer-hofferite, inderite, inyoite, hydroboracite, howlite, and pandermite) from the main deposits (Kirka, Bigadiç, and Emet) and two smaller deposits (Kestelek and Sultançayir) in the western Turkish borate deposits. Forty-three samples were also analysed for their Sr isotope composition. The data span a wide range in δ11B values from -1.6%o to -25.3%o. The δ 11B values of the main borate minerals are largely controlled by their mineralogy and the pH of the brines from which they precipitated. An inverse correlation between the average δ 11B and 87Sr/86Sr ratios of colemanite in the different deposits suggests there is some variation in the sources of boron and Sr to the deposits. Emet has the highest contribution from aluminosilicates and Kirka the highest contribution from Eocene carbonates, with Bigadiç occupying an intermediate position. The δ11B values of the minor borate minerals distinguish between those which are primary precipitates from the original brines (or formed from primary borates without boron loss from the system) and those which formed from alteration of preexisting borate minerals with substantial loss of boron from the system.

  12. The CN isotopic ratios in comets

    NASA Astrophysics Data System (ADS)

    Manfroid, J.; Jehin, E.; Hutsemékers, D.; Cochran, A.; Zucconi, J.-M.; Arpigny, C.; Schulz, R.; Stüwe, J. A.; Ilyin, I.

    2009-08-01

    Our aim is to determine the isotopic ratios 12C/13C and 14N/15N in a variety of comets and link these measurements to the formation and evolution of the solar system. The 12C/13C and 14N/15N isotopic ratios are measured for the CN radical by means of high-resolution optical spectra of the R branch of the B-X (0, 0) violet band. 23 comets from different dynamical classes have been observed, sometimes at various heliocentric and nucleocentric distances, in order to estimate possible variations of the isotopic ratios in parent molecules. The 12C/13C and 14N/15N isotopic ratios in CN are remarkably constant (average values of, respectively, 91.0 ± 3.6 and 147.8 ± 5.7) within our measurement errors, for all comets whatever their origin or heliocentric distance. While the carbon isotopic ratio does agree with the terrestrial value (89), the nitrogen ratio is a factor of two lower than the terrestrial value (272), indicating a fractionation in the early solar system, or in the protosolar nebula, common to all the comets of our sample. This points towards a common origin of the comets independently of their birthplaces, and a relationship between HCN and CN. Appendices and Table [see full textsee full textsee full text] are only available in electronic form at http://www.aanda.org Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programmes ID 268.C-5570, 270.C-5043, 073.C-0525, 274.C-5015 and 075.C-0355(A).

  13. Boron and strontium isotope compositions of groundwater from the La Paz arid coastal aquifer, Baja California Sur, Mexico

    NASA Astrophysics Data System (ADS)

    Mahlknecht, Jürgen; Rosner, Martin; Meixner, Anette

    2016-04-01

    In groundwater studies boron and strontium isotopic compositions can be used to identify natural and anthropogenic sources as well as processes related to groundwater recharge, flow and mixing. The La Paz arid costal aquifer in Baja California Sur, Mexico, is the most important source of drinking and irrigation water for La Paz area and suffers from anthropogenic contamination and intensive exploitation of the aquifer causing seawater intrusion and general groundwater abatement. The relatively un-radiogenic 87Sr/86Sr isotope ratios of the La Paz groundwater range in a narrow field between 0.7054 and 0.7062. In contrast to strontium the boron isotope composition displays a large variability between +27 and +55 permil d11B. The relatively low 87Sr/86Sr ratios of the La Paz groundwater highlight a significant contribution of strontium derived from local terrestrial sediments and igneous rocks with known 87Sr/86Sr ratios between 0.705 and 0.7035. The large variability of d11B values indicate that multiple sources and processes determine the boron isotope composition of La Paz groundwater. Rainwater (high d11B), seawater (~+40 permil) due to seawater intrusions, wastewater (low to medium d11B) and boron derived from the local geology (low to medium d11B) explain most of the observed groundwater d11B variability. However, d11B values higher than modern seawater point to significant boron isotope fractionation by preferential absorption of 10B onto clay minerals during the evolution of some groundwater samples. Due to low boron concentrations in rainwater a significant contribution of 11B-rich rainwater (>+40 permil) on the La Paz groundwater is unlikely.

  14. Behavior of Boron and Boron Isotopes During Uptake by Atriplex canescens: Desert Plants as Samplers of Boron from Soils and Groundwater

    NASA Astrophysics Data System (ADS)

    Leenhouts, J. M.; Bassett, R. L.; Maddock, T.

    2002-12-01

    This research was conducted to determine if B isotope ratios (11B/10B) in plant tissue provide an isotopic "fingerprint" of imbibed groundwater and soil moisture. In essence, this work sought to ascertain whether plants can function as in situ samplers for B as an environmental isotope. Because very little is known about the transport and isotopic fractionation of B in plants, this study was designed to reveal any isotopic fractionation that might occur during root uptake and vascular transport by a specific arid-adapted species. The relation between the B isotope ratios sequestered in the leaves of Atriplex canescens and the growth conditions of the plant were investigated using a semihydroponic greenhouse experiment. Nutrient B concentration and solution pH were selected as experimental variables as these parameters span large ranges in nature. In addition, the transition of plant-available B species from neutrally charged to anionic as a function of pH provides a mechanism through which pH-dependent B isotope fractionation may occur. The experimental setup was a randomized factorial block design in which the plants were provided six different nutrient solutions with pH values that ranged from 7.5 to 9.5 and B concentrations that ranged from 0.1 mg/L to 10.0 mg/L. Boron concentration in the plant's leaf and stem samples followed expected patterns, with the highest B amount in the leaves of the plants fed the nutrient solution with 10.0 mg/L B. The stem samples of plants fed 0.1 mg/L B contained the least B. The ratio of B in plants fed 10.0 mg/L vs. 0.1 mg/L B was far less than the 100:1 ratio of B in the nutrients, which implies that a component of uptake is actively controlled by the plant. Negative thermal ionization mass spectrometry was used to analyze the minute amounts of B extracted from the plant tissue digests. Statistical tests indicated that no significant isotopic fractionation occurred during uptake at any treatment pH level. The results indicate

  15. Feasibility of Isotopic Measurements: Graphite Isotopic Ratio Method

    SciTech Connect

    Wood, Thomas W.; Gerlach, David C.; Reid, Bruce D.; Morgan, W. C.

    2001-04-30

    This report addresses the feasibility of the laboratory measurements of isotopic ratios for selected trace constituents in irradiated nuclear-grade graphite, based on the results of a proof-of-principal experiment completed at Pacific Northwest National Laboratory (PNNL) in 1994. The estimation of graphite fluence through measurement of isotopic ratio changes in the impurity elements in the nuclear-grade graphite is referred to as the Graphite Isotope Ratio Method (GIRM). Combined with reactor core and fuel information, GIRM measurements can be employed to estimate cumulative materials production in graphite moderated reactors. This report documents the laboratory procedures and results from the initial measurements of irradiated graphite samples. The irradiated graphite samples were obtained from the C Reactor (one of several production reactors at Hanford) and from the French G-2 Reactor located at Marcoule. Analysis of the irradiated graphite samples indicated that replicable measurements of isotope ratios could be obtained from the fluence sensitive elements of Ti, Ca, Sr, and Ba. While these impurity elements are present in the nuclear-grade graphite in very low concentrations, measurement precision was typically on the order of a few tenths of a percent to just over 1 percent. Replicability of the measurements was also very good with measured values differing by less than 0.5 percent. The overall results of this initial proof-of-principal experiment are sufficiently encouraging that a demonstration of GIRM on a reactor scale basis is planned for FY-95.

  16. Isotope Ratios of Cellulose from Plants Having Different Photosynthetic Pathways

    PubMed Central

    Sternberg, Leonel O.; Deniro, Michael J.; Johnson, Hyrum B.

    1984-01-01

    Hydrogen and carbon isotope ratios of cellulose nitrate and oxygen isotope ratios of cellulose from C3, C4, and Crassulacean acid metabolism (CAM) plants were determined for plants growing within a small area in Val Verde County, Texas. Plants having CAM had distinctly higher deuterium/hydrogen (D/H) ratios than plants having C3 and C4 metabolism. When hydrogen isotope ratios are plotted against carbon isotope ratios, each photosynthetic mode separates into a distinct cluster of points. C4 plants had many D/H ratios similar to those of C3 plants, so that hydrogen isotope ratios cannot be used to distinguish between these two photosynthetic modes. Portulaca mundula, which may have a modified photosynthetic mode between C4 and CAM, had a hydrogen isotope ratio between those of the C4 and CAM plants. When oxygen isotope ratios are plotted against carbon isotope ratios, no distinct clustering of the C4 and CAM plants occurs. Thus, oxygen isotope ratios are not useful in distinguishing between these metabolic modes. A plot of hydrogen isotope ratios versus oxygen isotope ratios for this sample set shows considerable overlap between oxygen isotope ratios of the different photosynthetic modes without a concomitant overlap in the hydrogen isotope ratios of CAM and the other two photosynthetic modes. This observation is consistent with the hypothesis that higher D/H ratios in CAM plants relative to C3 and C4 plants are due to isotopic fractionations occurring during biochemical reactions. PMID:16663460

  17. Isotopic ratio measurements with ICP-MS

    SciTech Connect

    Russ, G.P. III; Bazan, J.M.

    1986-06-03

    An inductively-coupled-plasma source mass spectrometer (ICP-MS) has been used to measure the isotopic composition of U, Pb, Os, and B standards. Particular emphasis has been placed on uranium because of its nuclear and environmental interest and because of the availability of a well-characterized set of standards with a wide range of isotopic compositions. The precision and accuracy obtainable in isotope ratio measurements by ICP-MS depend on many factors including background, interferences, dead time, mass fractionation (bias), abundance sensitivity, and counting statistics. Which, if any, of these factors controls accuracy and precision depends on the type of sample being analyzed and the characteristics of the mass spectrometer. These issues are discussed in detail.

  18. Measuring Isotope Ratios Across the Solar System

    NASA Technical Reports Server (NTRS)

    Webster, Chris R.; Mahaffy, Paul R.

    2012-01-01

    Stable isotope ratios in C, H, N, O and S are powerful indicators of a wide variety of planetary geophysical processes that can identify origin, transport, temperature history, radiation exposure, atmospheric escape, environmental habitability and biology [1]. For the Allan Hills 84001 meteorite, for example, the (sup 1)(sup 3)C/(sup 1)(sup 2)C ratio identifies it as a Mars (SNC) meteorite; the ??K/??Ar ratio tells us the last time the rock cooled to solid, namely 4 Gya; isotope ratios in (sup 3)He, (sup 2)(sup 1)Ne and (sup 3)?Ar show it was in space (cosmic ray exposure) for 10-20 million years; (sup 1)?C dating that it sat in Antarctica for 13,000 years before discovery; and clumped isotope analysis of (sup 1)?O(sup 1)(sup 3)C(sup 1)?O in its carbonate that it was formed at 18+/-4 ?C in a near-surface aqueous environment [2]. Solar System Formation

  19. Tracing recycled volatiles in a heterogeneous mantle with boron isotopes

    NASA Astrophysics Data System (ADS)

    Walowski, Kristina; Kirstein, Linda; de Hoog, Cees-Jan; Elliot, Tim; Savov, Ivan; Devey, Colin

    2016-04-01

    Recycling of oceanic lithosphere drives the chemical evolution of the Earth's mantle supplying both solids and volatiles to the Earth's interior. Yet, how subducted material influences mantle composition remains unclear. A perfect tracer for slab recycling should be only fractionated at the Earth's surface, have a strong influence on mantle compositions but be resistant to perturbations en route back to the surface. Current understanding suggests that boron concentrations linked to B isotope determinations fulfil all these requirements and should be an excellent tracer of heterogeneity in the deep mantle. Here, we present the trace element, volatile and the B isotope composition of basaltic glasses and melt inclusions in olivine from distinct end-member ocean island basalts (OIB) to track the fate of recycled lithosphere and ultimately document how recycling contributes to mantle heterogeneity. The chosen samples represent the different end member OIB compositions and include: EMI (Pitcairn), EMII (MacDonald), HIMU (St. Helena), and FOZO (Cape Verde & Reunion). The data is derived from both submarine and subaerial deposits, with B isotope determination of both basaltic glass and melt inclusions from each locality. Preliminary results suggest OIB have B isotopic compositions that overlap the MORB array (-7.5‰±0.7; Marschall et al., 2015) but extend to both lighter and heavier values. These results suggest that B isotopes will be useful for resolving mantle source heterogeneity at different ocean islands and contribute to our understanding of the volatile budget of the deep mantle.

  20. Uranium isotope ratio measurements in field settings

    SciTech Connect

    Shaw, R.W.; Barshick, C.M.; Young, J.P.; Ramsey, J.M.

    1997-06-01

    The authors have developed a technique for uranium isotope ratio measurements of powder samples in field settings. Such a method will be invaluable for environmental studies, radioactive waste operations, and decommissioning and decontamination operations. Immediate field data can help guide an ongoing sampling campaign. The measurement encompasses glow discharge sputtering from pressed sample hollow cathodes, high resolution laser spectroscopy using conveniently tunable diode lasers, and optogalvanic detection. At 10% {sup 235}U enrichment and above, the measurement precision for {sup 235}U/({sup 235}U+{sup 238}U) isotope ratios was {+-}3%; it declined to {+-}15% for 0.3% (i.e., depleted) samples. A prototype instrument was constructed and is described.

  1. Oxygen Isotope Ratios in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Brittain, Sean; Najita, Joan; Carr, John; Doppmann, Greg

    2009-08-01

    Meteorites provide important clues about the environment from which our solar system formed. Their mineralogical and isotopic composition provides important insight into the thermal, chemical and dynamical history of the protoplanetary disk. One of the most intriguing discoveries to come from the study of meteorites is the depletion of the ^18O/^16O and ^17O/^16O ratios in the oldest components of meteorites relative to Earth. These measurements suggest that the gas from which the sun condensed was more ^16O-rich than the material from which planets formed. The leading explanation for this isotopic anomaly is the selective dissociation of CO in the outer protoplanetary disk or envelope. The basic premise is that the freed ^17,18O atoms in the outer disk formed water that then enriched the ^17,18O abundance in rocky material. Thus, bodies that formed later (such as planets) were increasingly enriched in ^17,18O. To test this scenario, we will probe the efficiency of selective dissociation of CO in nearby protoplanetary disk systems. We will measure the isotopic ratio of C^17O/C^18O/C^16O by acquiring high-resolution absorption spectra of ro-vibrational CO lines from edge-on disks and envelopes.

  2. Structure and superconductivity of isotope-enriched boron-doped diamond

    SciTech Connect

    Thompson, Joe D; Ekimov, E A; Sidorov, V A; Zoteev, A; Lebed, Y; Stishov, S M

    2008-01-01

    Superconducting boron-doped diamond samples were synthesized with isotopes of {sup 10}B, {sup 11}B, {sup 13}C and {sup 12}C. We claim the presence of a carbon isotope effect on the superconducting transition temperature, which supports the 'diamond-carbon'-related nature of superconductivity and the importance of the electron-phonon interaction as the mechanism of superconductivity in diamond. Isotope substitution permits us to relate almost all bands in the Raman spectra of heavily boron-doped diamond to the vibrations of carbon atoms. The 500 cm{sup 01} Raman band shifts with either carbon or boron isotope substitution and may be associated with vibrations of paired or clustered boron. The absence of a superconducting transition (down to 1.6 K) in diamonds synthesized in the Co-C-B system at 1900 K correlates with the small boron concentration deduced from lattice parameters.

  3. Boron isotopes in Archean cherts: investigating early Earth marine conditions

    NASA Astrophysics Data System (ADS)

    Lemarchand, D.; Jeambrun, M.; van Bergen, M. J.; van Cappellen, P.

    2009-12-01

    The Archean Eon was a period of intense modifications of the Earth surface environment that led to the emergence of life in the early ocean. Therefore, the chemistry of Archean seawater and its relationship to that of the solid Earth, through oceanic and continental crust alteration, remain a matter of great interest and debate. Here, we present new boron (B) isotopes data in well-characterized cherts (ca. 3.5 Ga) from the Pilbara Craton, in order to provide new constraints on their depositional environments. Boron isotopes offer a potentially powerful tool for investigating seawater/rock interactions. The modern differences between B isotopes in seawater, continental crust and oceanic crust greatly facilitate the identification of B sources, while mineral precipitation processes are also accompanied by large isotopic fractionations. We analyzed B concentrations and δ11B in 12 subsamples from two types of stratiform chert; one type (C-chert) is interpreted as resulting from direct precipitation of a seawater-hydrothermal fluid mixture, the second type (S-chert) as resulting from silicification of detritic sediment precursors (Van den Boorn et al., 2007). The C-cherts subsamples show relative large ranges of δ11B values (from -3 to +16 ‰) and B concentrations (0.4-20 ppm). The cm scale variations argue against significant post depositional alteration and thus support the hypothesis that the primary signature is preserved. The similarity of our results with B isotopes in modern cherts suggests that Archean seawater conditions during chert deposition were rather close to those in the modern ocean, at least with respect to B isotopes. In particular, the marine B isotopic budget was likely comparable to the present one. If this is correct, the B isotopes data imply that Archean seawater pH was neutral to slightly basic (pH ≈ 7-9). The S-chert subsamples show remarkably constant δ11B values (≈ -20 ‰) despite a wide range of B concentrations (3-120 ppm). These

  4. Final Report on Isotope Ratio Techniques for Light Water Reactors

    SciTech Connect

    Gerlach, David C.; Gesh, Christopher J.; Hurley, David E.; Mitchell, Mark R.; Meriwether, George H.; Reid, Bruce D.

    2009-07-01

    The Isotope Ratio Method (IRM) is a technique for estimating the energy or plutonium production in a fission reactor by measuring isotope ratios in non-fuel reactor components. The isotope ratios in these components can then be directly related to the cumulative energy production with standard reactor modeling methods.

  5. Raman scattering method and apparatus for measuring isotope ratios and isotopic abundances

    DOEpatents

    Harney, Robert C.; Bloom, Stewart D.

    1978-01-01

    Raman scattering is used to measure isotope ratios and/or isotopic abundances. A beam of quasi-monochromatic photons is directed onto the sample to be analyzed, and the resulting Raman-scattered photons are detected and counted for each isotopic species of interest. These photon counts are treated mathematically to yield the desired isotope ratios or isotopic abundances.

  6. Boron Isotope Intercomparison Project (BIIP): Development of a new carbonate standard for stable isotopic analyses

    NASA Astrophysics Data System (ADS)

    Gutjahr, Marcus; Bordier, Louise; Douville, Eric; Farmer, Jesse; Foster, Gavin L.; Hathorne, Ed; Hönisch, Bärbel; Lemarchand, Damien; Louvat, Pascale; McCulloch, Malcolm; Noireaux, Johanna; Pallavicini, Nicola; Rodushkin, Ilia; Roux, Philippe; Stewart, Joseph; Thil, François; You, Chen-Feng

    2014-05-01

    Boron consists of only of two isotopes with a relatively large mass difference (~10 %). It is also volatile in acidic media and prone to contamination during analytical treatment. Nevertheless, an increasing number of isotope laboratories are successfully using boron isotope compositions (expressed in δ11B) in marine biogenic carbonates to reconstruct seawater pH. Recent interlaboratory comparison efforts [1] highlighted the existence of a relatively high level of disagreement between laboratories when measuring such material, so in order to further strengthen the validity of this carbonate system proxy, appropriate reference materials need to be urgently characterised. We describe here the latest results of the Boron Isotope Intercomparison Project (BIIP) where we aim to characterise the boron isotopic composition of two marine carbonates: Japanese Geological Survey carbonate standard materials JCp-1 (coral porites) [2] and JCt-1 (Giant Clam) [3]. This boron isotope interlaboratory comparison study has two aims: (i) to assess to what extent chemical pre-treatment, aimed at removing organic material, can influence the resulting carbonate δ11B; (ii) to determine the isotopic composition of the two reference materials with a number of analytical techniques to provide the community with reference δ11B values for JCp-1 and JCt-1 and to further explore any differences related to analytical technique. In total eight isotope laboratories participated, of which one determined δ11B via negative thermal ionisation mass spectrometry (NTIMS) and seven used multi collector inductively coupled plasma mass spectrometry (MC-ICPMS). For the latter several different introduction systems and chemical purification methods were used. Overall the results are strikingly consistent between the participating labs. The oxidation of organic material slightly lowered the median δ11B by ~0.1 ‰ for both JCp-1 and JCt-1, while the mean δ11B of all labs for both standards was lowered by 0

  7. Temperature measurements from oxygen isotope ratios of fish otoliths.

    PubMed

    Devereux, I

    1967-03-31

    Measurements have shown that the temperature of a fish's habitat can be deduced from the Oxygen isotope ratio of its otoliths (ear bones). Isotope ratios Obtained from fossil otoliths indicate a water temperature which agrees wiht that found by isotope measurements on associated benthonic foraminifera. PMID:6020293

  8. How the oxygen isotope ratio of rain water influences the isotope ratio of chicken eggshell carbonate

    NASA Astrophysics Data System (ADS)

    Price, Gregory; Grimes, Stephen

    2015-04-01

    The stable oxygen isotope ratio of chicken eggshell carbonate was analysed from chicken eggs laid under free range, and organic farming regimes from across the UK. The eggshell carbonate oxygen isotope data shows a clear depletion in delta18O distribution from the southwest to the northeast. Although consistently offset by around 1 permil, the same isotopic distribution as that seen in eggshell carbonate is observed in the delta18O ratio of rainfall and groundwater from across the UK. This distribution is related to the Rayleigh distillation of rainfall driven by westerly winds across the UK landmass. The clear relationship observed between eggshell delta18O values and that of rainwater presumably reflects the nature of free range chickens which must be drinking locally derived rainwater and supplementing their diet and water intake with locally derived food. These results suggest that the oxygen isotope value of chicken eggshells can be used as a forensic tool to identify the locality that free range and organic eggs were laid within the UK. Furthermore, if suitable material is preserved in the archaeological and geological record then such a relationship can potentially be used to establish the oxygen isotope value of rainwater from which ancient and / or ancestral birds lived.

  9. The Boron Isotopic Composition of Elephant Dung: Inputs to the Global Boron Budget

    NASA Astrophysics Data System (ADS)

    Williams, L. B.; Hervig, R. L.

    2011-12-01

    A survey of boron in kerogen showed isotopically light δ11B values (0 to -50%) that are distinctly different from most mineral and natural water B reservoirs. Diagenesis releases this isotopically light B into pore fluids when hydrocarbons are generated, thus enriching oilfield brines in 10B. This observation suggests that borated biomolecules (BM) are primarily tetrahedral favoring 10B, whereas 11B is preferred in trigonal coordination. Plants, with optimal concentrations up to 100ppm, contribute more B than animal remains to sediment. Elephants are one of the largest herbivores on earth, consuming 200 - 250 kg of plant material/day and producing 50 kg of manure/day. They are inefficient at digestion, thus the manure contains >50% undigested plant material. Dung samples are therefore ideal for studying the δ11B of both the food input and digested output of a significant B supply to sedimentary systems. Horse and rabbit manure were studied for comparison to evaluate B isotope variations in the food supply and potential vital effects on the output. B-content and isotopic composition of dung plant material and digested fractions were measured in the solid state by secondary ion mass spectrometry. The digests were rinsed in 1.8% mannitol, a B-complexing agent, to remove surface adsorbed-B, then air dried and Au-coated for charge compensation. Results showed that the elephant diet contains 3-13 ppm B, with an average δ11B of -20 ± 0.8% (1σ), while rabbit food had 88 ppm B with a δ11B of -50 ± 1.3 %. The digested fraction of the elephant dung contains 4-10ppm B with average δ11B values of -12 ± 1.2%. In comparison, horse manure with 11-21 ppm B has a δ11B of -10.7 ± 0.5% and rabbit manure contains 2-3 ppm B with a δ11B of -8.8 ± 1%. Boron isotope compositions of these manures are indistinguishable (within error). Clearly plant material is a major contributor of isotopically light B to sediments. The herbivores studied fractionate their total B intake in

  10. Laser spectroscopic measurement of helium isotope ratios.

    SciTech Connect

    Wang, L.-B.; Mueller, P.; Holt, R. J.; Lu, Z.-T.; O'Connor, T. P.; Sano, Y.; Sturchio, N.; Univ. of Illinois; Univ. of Tokyo; Univ. of Illinois at Chicago

    2003-06-13

    A sensitive laser spectroscopic method has been applied to the quantitative determination of the isotope ratio of helium at the level of {sup 3}He/{sup 4}He = 10{sup -7}--10{sup -5}. The resonant absorption of 1083 nm laser light by the metastable {sup 3}He atoms in a discharge cell was measured with the frequency modulation saturation spectroscopy technique while the abundance of {sup 4}He was measured by a direct absorption technique. The results on three different samples extracted from the atmosphere and commercial helium gas were in good agreement with values obtained with mass spectrometry. The achieved 3{sigma} detection limit of {sup 3}He in helium is 4 x 10{sup -9}. This demonstration required a 200 {mu}L STP sample of He. The sensitivity can be further improved, and the required sample size reduced, by several orders of magnitude with the addition of cavity enhanced spectroscopy.

  11. Boron isotopic fractionation related to boron sorption on humic acid and the structure of surface complexes formed

    NASA Astrophysics Data System (ADS)

    Lemarchand, Emmanuel; Schott, Jacques; Gaillardet, Jérôme

    2005-07-01

    Boron isotopic fractionation during adsorption onto Ca-flocculated Aldrich humic acid (HA) has been investigated experimentally as a function of solution pH at 25°C and I = 0.15 M. Boron aqueous concentration and isotopic composition were determined by Cs 2BO 2+ Positive Thermal Ionization Mass Spectrometry analysis, while the structure of B surface complexes on HA was characterized using 11B Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR). Significant B sorption on HA was observed at 6 < pH < 12 with a maximum value of Kd, the partition coefficient between adsorbed and aqueous boron, equal to 40 at pH = 9.5-10. Combined 11B MAS NMR analysis and FITEQL modeling of B sorption on HA showed that this element forms tetrahedrally coordinated five- or six-membered ring chelates, most likely 1,2-diol and 1,3-diol complexes at alkaline pH (8 < pH < 11) and dicarboxylic complexes at near neutral conditions (6 < pH < 9). Results of this study demonstrate for the first time that boron sorption on HA induces a strong pH-dependent isotope fractionation—with 11B depleted at the surface of HA—that reaches a maximum at 5 < pH < 9 (α = 0.975, Δ = -25‰) and decreases sharply at pH >9. The measured isotope fractionation cannot be modeled assuming that the isotopic composition of the sorbed borate species is identical to that of B(OH) 4- species in the parent solution. It is shown that the extent of isotopic fractionation depends not only on B aqueous speciation but also on the distribution and structure of the borate surface complexes formed. In agreement with energetic constrains, calculation of the isotope fractionation factors between aqueous boric acid and boron surface complexes suggests that the formation of the strained six-membered ring 1,3-diol complex yields a much higher fractionation (α BL P1-III = 0.954-0.960, Δ = -41/-47‰) than that of the very stable five-membered ring 1,2-diol (α BL P2-III = 0.983, Δ = -18‰). The results of this study open

  12. Neoproterozoic ice ages, boron isotopes, and ocean acidification

    NASA Astrophysics Data System (ADS)

    Kasemann, S. A.; Prave, A. R.; Fallick, A. E.; Hawkesworth, C. J.; Hoffmann, K.

    2010-12-01

    The Neoproterozoic Earth underwent at least two severe glaciations, each extending to low palaeomagnetic latitudes and punctuating warmer climates. In concert with the environmental changes, the rocks display large amplitude fluctuations in their stable isotopic composition. These fluctuations are stratigraphically systematic, occur in many sections worldwide and are interpreted as being globally significant1. Thus, the Neoproterozoic carbonates provide a unique geological and isotopic archive to improve our understanding of major non-anthropogenically influenced changes in Earth System behaviour. The two widespread older and younger Cryogenian glacial deposits (commonly referred to as the Sturtian and Marinoan, respectively) in Namibia are directly overlain by cap carbonates deposited under inferred periods of high atmospheric carbon dioxide concentrations. Oceanic uptake of carbon dioxide decreases ocean pH and here we present a record of Cryogenian inter-glacial ocean pH, based on boron isotopes in marine carbonates. Our data document characteristically different B isotope profiles of the two Cryogenian carbonate transects that are consistent with the presence of two panglacial climate states, but indicate that each had its own distinct environmental conditions. The Marinoan interglacial δ11B profiles are systematic and remarkably consistent, and they vary by up to 11‰. This yields a relative pH variation of up to 1.5 pH units, and implies a pH of 8.5 at the onset of cap carbonate deposition, followed by a decrease in pH to ~7 and then a return to pH ~8 for the upper part of the section. The transient ocean acidification excursion and the alkaline pH condition near the start and termination of the inferred greenhouse state suggests a rapid draw-down of CO2 initiated at the start of the deglaciation and supports inferences of a thick, global sea-ice shield with minimal air-sea gas exchange during glaciation. In contrast, largely constant B isotope values for

  13. Authentication of bell peppers using boron and strontium isotope compositions

    NASA Astrophysics Data System (ADS)

    Rosner, Martin; Pritzkow, Wolfgang; Vogl, Jochen; Voerkelius, Susanne

    2010-05-01

    The wrong declaration of food in terms of geographical origin and production method is a major problem for the individual consumer and public regulatory authorities. The authentication of food matrices using H-C-N-O-S isotopic compositions is already well established. However, specific questions require additional isotopic systems, which are more diagonstic for the source reservoires involved or production methods used. Here we present B and Sr isotopic compositions of bell peppers from Europe (Germany, Austria, Netherlands, Spain) and Israel to verfiy their origin. The bell peppers' B isotopic compositions between different locations are highly variable (d11BNISTSRM951 -8 to +35 ‰), whereas the 87Sr/86Sr ratios are all close to modern seawater Sr isotopic composition of about 0.7092 (0.7078 to 0.7107), but still can reliably be distinguished. Distinct isotopically heavy and light B isotopic fingerprints are obtained for bell peppers from Israel and the Netherlands. Samples from Germany, Austria, and Spain display overlapping d11B values between 0 and +12 ‰. Bell peppers from Israel show high d11B values (+28 to +35 ‰) combined with 87Sr/86Sr ratios slightly more unradiogenic than modern seawater (ca 0.7079). Bell peppers from the Netherlands, however, show low d11B values (-8 ‰) combinded with 87Sr/86Sr ratios of modern seawater (approx. 0.7085). Mainly based on diagnostic B isotopic compositions bell peppers from Israel and the Netherlands can be related to a specific geographical growing environment (Israel) or production method (Netherlands). The isotope fingerprints of bell peppers from the Netherlands are consistent with growing conditions in greenhouses typical for the Netherlands vegetable farming. Using optimized production methods crops in greenhouses were supplied with nutritients by liquid fertilizers on artificial substrates. As most fertilizers derive from non-marine salt deposits, fertilization typically imprints invariant d11B values close

  14. Alternative Filament Loading Solution for Accurate Analysis of Boron Isotopes by Negative Thermal Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Dwyer, G. S.; Vengosh, A.

    2008-12-01

    The negative thermal ionization mass spectrometry technique has become the major tool for investigating boron isotopes in the environment. The high sensitivity of BO2- ionization enables measurements of ng levels of boron. However, B isotope measurement by this technique suffers from two fundamental problems (1) fractionation induced by selective ionization of B isotopes in the mass spectrometer; and (2) CNO- interference on mass 42 that is often present in some load solutions (such as B-free seawater processed through ion-exchange resin). Here we report a potentially improved methodology using an alternative filament loading solution with a recently-installed Thermo Scientific TRITON thermal ionization mass spectrometer. Our initial results suggest that this solution -- prepared by combining high-purity single- element standard solutions of Ca, Mg, Na, and K in proportions similar to those in seawater in a 5% HCl matrix -- may offer significant improvement over some other commonly used load solutions. Total loading blank is around 15pg as determined by isotope dilution (NIST952). Replicate analyses of NIST SRM951 and modern seawater thus far have yielded 11B/10B ratios of 4.0057 (±0.0008, n=14) and 4.1645 (±0.0017, n=7; δ11B=39.6 permil), respectively. Replicate analyses of samples and SRM951 yield an average standard deviation (1 σ) of approximately 0.001 (0.25 permil). Fractionation during analysis (60-90 minutes) has thus far typically been less than 0.002 (0.5 permil). The load solution delivers ionization efficiency similar to directly-loaded seawater and has negligible signal at mass 26 (CN-), a proxy for the common interfering molecular ion (CNO-) on mass 42. Standards and samples loaded with the solution behave fairly predictably during filament heating and analysis, thus allowing for the possibility of fully automated data collection.

  15. ICP-MS for isotope ratio measurement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of stable isotopes in mineral nutrition research has become a fundamental aspect of conducting this research. A gradual transition has occurred, now virtually complete, from radioactive isotope studies to those using stable isotopes. Although primarily used in human research, mineral stable ...

  16. Glacial-interglacial Changes in Ocean Carbon Chemistry constrained by Boron Isotopes, Trace Elements, and Modelling

    NASA Astrophysics Data System (ADS)

    Rae, J. W. B.; Adkins, J. F.; Foreman, A. D.; Charles, C.

    2014-12-01

    Deep ocean carbon storage and release is commonly invoked to explain glacial-interglacial CO2 cycles, but records of the carbonate chemistry of the glacial ocean have, until recently, been scarce. Here we present new boron isotope (δ11B) and trace metal data from benthic foraminifera from a suite of 15 cores from the South Atlantic from depths ranging from 1500 to 4000 m. These records show distinct changes in the water column depth structure of these tracers between the last glacial maximum (LGM) and late Holocene. Comparison of these paired trace element and isotope ratios reveals new insights to the shared and individual controls on tracers including Li/Ca, Sr/Ca, U/Ca, Mg/Li and δ11B. We further examine these data using a recently developed tracer fields modelling approach (Lund et al. 2011). This has previously been applied to δ18O data to investigate changes in circulation at the LGM. Here we extend this method to non-conservative isotopic and trace elemental tracers, allowing us to constrain the roles of circulation, the biological pump of organic carbon and CaCO3, and carbonate compensation, in setting deep ocean carbon storage at the LGM. Lund, D. C., J. F. Adkins, and R. Ferrari (2011), Abyssal Atlantic circulation during the Last Glacial Maximum: Constraining the ratio between transport and vertical mixing, Paleoceanography, 26, PA1213, doi:10.1029/2010PA001938.

  17. The boron isotope systematics of the Yellowstone National Park (Wyoming) hydrothermal system: A reconnaissance

    SciTech Connect

    Palmer, M.R. ); Sturchio, N.C. )

    1990-10-01

    Boron concentrations and isotope compositions have been measured in fourteen hot spring waters, two drill hole waters, an unaltered rhyolite flow, and hydrothermally altered rhyolite from the geothermal system in Yellowstone National Park, Wyoming. The samples are representative of the major thermal areas within the park and span the range of fluid types. For the fluids, the B concentrations range from 0.043-2.69 mM/kg, and the {delta}{sup 11}B values range from {minus}9.3 to +4.4{per thousand}. There is no relationship between the dissolved B concentrations or isotope compositions with the concentration of any major element (other than Cl) or physical property. Each basin is characterized by a restricted range in B/Cl ratios and {delta}{sup 11}B values. Hot spring waters from the Norris Basin, Upper Geyser Basin, Calcite Springs, and Clearwater have {delta}{sup 11}B values close to that of unaltered rhyolite ({minus}5.2{per thousand}) and are interpreted to have derived their B from this source. Waters from Mammoth Hot Springs, Sheepeater, and Rainbow Springs have lower {delta}{sup 11}B values close to {minus}8{per thousand}. These lower values may reflect leaching of B from sedimentary rocks outside the Yellowstone caldera, but they are similar to the {delta}{sup 11}B value of hydrothermally altered rhyolite ({minus}9.7{per thousand}). Hence, the light boron isotope compositions recorded in these hot spring waters may reflect leaching of previously deposited hydrothermal minerals. Cooler springs along the Yellowstone River just outside the park boundary have lower B concentrations and higher {delta}{sup 11}B values that may reflect mixing with shallow meteoric water.

  18. Boron

    MedlinePlus

    Boron is a mineral that is found in food and the environment. People take boron supplements as medicine. Boron is used for building ... to affect the way the body handles other minerals such as magnesium and phosphorus. It also seems ...

  19. Use of Sulphur and Boron Isotopes to Identify Natural Gas Processing Emissions Sources

    NASA Astrophysics Data System (ADS)

    Bradley, C. E.; Norman, A.; Wieser, M. E.

    2003-12-01

    Natural gas processing results in the emission of large amounts of gaseous pollutants as a result of planned and / or emergency flaring, sulphur incineration, and in the course of normal operation. Since many gas plants often contribute to the same air shed, it is not possible to conclusively determine the sources, amounts, and characteristics of pollution from a particular processing facility using traditional methods. However, sulphur isotopes have proven useful in the apportionment of sources of atmospheric sulphate (Norman et al., 1999), and boron isotopes have been shown to be of use in tracing coal contamination through groundwater (Davidson and Bassett, 1993). In this study, both sulphur and boron isotopes have been measured at source, receptor, and control sites, and, if emissions prove to be sufficiently distinct isotopically, they will be used to identify and apportion emissions downwind. Sulphur is present in natural gas as hydrogen sulphide (H2S), which is combusted to sulphur dioxide (SO2) prior to its release to the atmosphere, while boron is present both in hydrocarbon deposits as well as in any water used in the process. Little is known about the isotopic abundance variations of boron in hydrocarbon reservoirs, but Krouse (1991) has shown that the sulphur isotope composition of H2S in reservoirs varies according to both the concentration and the method of formation of H2S. As a result, gas plants processing gas from different reservoirs are expected to produce emissions with unique isotopic compositions. Samples were collected using a high-volume air sampler placed directly downwind of several gas plants, as well as at a receptor site and a control site. Aerosol sulphate and boron were collected on quartz fibre filters, while SO2 was collected on potassium hydroxide-impregnated cellulose filters. Solid sulphur samples were taken from those plants that process sulphur in order to compare the isotopic composition with atmospheric measurements. A

  20. Boron isotope evidence for the involvement of non-marine evaporites in the origin of the Broken Hill ore deposits

    USGS Publications Warehouse

    Slack, J.F.; Palmer, M.R.; Stevens, B.P.J.

    1989-01-01

    IDENTIFYING the palaeogeographic setting and mode of origin of stratabound ore deposits can be difficult in high-grade metamorphic terranes, where the effects of metamorphism may obscure the nature of the protoliths. Here we report boron isotope data for tourmalines from the early Proterozoic Broken Hill block, in Australia, which hosts giant lead-zinc-silver sulphide deposits. With one exception the 11B/10B ratios are lower than those for all other tourmalines from massive sulphide deposits and tour-malinites elsewhere in the world. We propose that these low ratios reflect leaching of boron from non-marine evaporitic borates by convecting hydrothermal fluids associated with early Proterozoic continental rifting. A possible modern analogue is the Salton Sea geothermal field in California. ?? 1989 Nature Publishing Group.

  1. System and method for high precision isotope ratio destructive analysis

    DOEpatents

    Bushaw, Bruce A; Anheier, Norman C; Phillips, Jon R

    2013-07-02

    A system and process are disclosed that provide high accuracy and high precision destructive analysis measurements for isotope ratio determination of relative isotope abundance distributions in liquids, solids, and particulate samples. The invention utilizes a collinear probe beam to interrogate a laser ablated plume. This invention provides enhanced single-shot detection sensitivity approaching the femtogram range, and isotope ratios that can be determined at approximately 1% or better precision and accuracy (relative standard deviation).

  2. Boron's Isotopes Help Trace Water in New Zealand

    NASA Astrophysics Data System (ADS)

    Slade, A.; Whitehead, B.

    2010-12-01

    Using boron isotopic composition (δ11B) values from different bodies of water (surface and ground) in New Zealand to trace the water as it moves through a portion of the hydrologic system. This research focuses on two major rivers, the Tarawera and the Rangitaiki, as they cross the Rangitaiki plains in the Bay of Plenty region of the North Island. The Tarawera River is 59 km (37 miles) long, from the mouth of Lake Tarawera, west of the Rangitaiki plains, to the ocean outlet. The lower reaches (42 km or 26 miles) of the 155 km (94 miles) Rangitaiki River travels a similar course across the plains south of, and running parallel to, the Tarawera River. Geothermal activity, plantation forests, municipal activities, wood processing industries, a pulp and paper mill, and agricultural practices all contribute to the chemical makeup of the Tarawera River. The two main industries that influence the lower reaches of the Rangitaiki River, after the dam at Lake Matahina, are a dairy milk processing plant and farming, both dairy and horticultural. Currently, more data has been collected on the Tarawera River because of the greater number of influences on it. The results of this research have revealed distinctly different δ11B signatures for the two rivers. In addition, along the Tarawera River there are significant differences in the δ11B values between the sampling sites that appear to correlate well with different inputs into the river. The added benefit of the spatial representation of the δ11B data, obtained from all the sampling sites on the Rangitaiki plains, aids in visualizing how this information can help trace the water in the hydrologic system of this area.

  3. Stable oxygen and hydrogen isotopes of brines - comparing isotope ratio mass spectrometry and isotope ratio infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Ahrens, Christian; Koeniger, Paul; van Geldern, Robert; Stadler, Susanne

    2013-04-01

    Today's standard analytical methods for high precision stable isotope analysis of fluids are gas-water equilibration and high temperature pyrolysis coupled to isotope ratio mass spectrometers (IRMS). In recent years, relatively new laser-based analytical instruments entered the market that are said to allow high isotope precision data on nearly every media. This optical technique is referred to as isotope ratio infrared spectroscopy (IRIS). The objective of this study is to evaluate the capability of this new instrument type for highly saline solutions and a comparison of the analytical results with traditional IRMS analysis. It has been shown for the equilibration method that the presence of salts influences the measured isotope values depending on the salt concentration (see Lécuyer et al, 2009; Martineau, 2012). This so-called 'isotope salt effect' depends on the salt type and salt concentration. These factors change the activity in the fluid and therefore shift the isotope ratios measured by the equilibration method. Consequently, correction factors have to be applied to these analytical data. Direct conversion techniques like pyrolysis or the new laser instruments allow the measurement of the water molecule from the sample directly and should therefore not suffer from the salt effect, i.e. no corrections of raw values are necessary. However, due to high salt concentrations this might cause technical problems with the analytical hardware and may require labor-intensive sample preparation (e.g. vacuum distillation). This study evaluates the salt isotope effect for the IRMS equilibration technique (Thermo Gasbench II coupled to Delta Plus XP) and the laser-based IRIS instruments with liquid injection (Picarro L2120-i). Synthetic salt solutions (NaCl, KCl, CaCl2, MgCl2, MgSO4, CaSO4) and natural brines collected from the Stassfurt Salt Anticline (Germany; Stadler et al., 2012) were analysed with both techniques. Salt concentrations ranged from seawater salinity

  4. Possible roles of pH, temperature, and partial dissolution in determining boron concentration and isotopic composition in planktonic foraminifera

    USGS Publications Warehouse

    Wara, M.W.; Delaney, M.L.; Bullen, T.D.; Ravelo, A.C.

    2003-01-01

    We present the first continuous records from 0 to 5 Ma (in 0.333 m.y. integrated time steps) of paired boron/calcium (B/Ca) ratios and boron isotopes (??11B) in the planktonic foraminifera Globogerinoides sacculifer (without sacc) from a site in the western equatorial Pacific Ocean (Ocean Drilling Program Site 806). These measurements, the first made in conjunction with calcification temperature (magnesium/calcium ratios) and average shell mass measurements, indicate that pH is not the sole environmental variable controlling B in planktonic foraminiferal calcite. Our data are consistent with calcification temperature exerting a primary control on B concentration and isotopic composition in planktonic foraminifera. If so, calcification temperature must be taken into account if pH for past oceans and atmospheric pCO2 are to be estimated from B isotope measurements in foraminiferal calcite. Doing so will substantially increase the uncertainty of PH estimates. Although this work was designed as a temporal study, its results define new aspects of calibrating the ??11B paleo-pH tracer. Copyright 2003 by the American Geophysical Union.

  5. Possible roles of pH, temperature, and partial dissolution in determining boron concentration and isotopic composition in planktonic foraminifera

    NASA Astrophysics Data System (ADS)

    Wara, M. W.; Delaney, M. L.; Bullen, T. D.; Ravelo, A. C.

    2003-12-01

    We present the first continuous records from 0 to 5 Ma (in 0.333 m.y. integrated time steps) of paired boron/calcium (B/Ca) ratios and boron isotopes (δ11B) in the planktonic foraminifera Globogerinoides sacculifer (without sacc) from a site in the western equatorial Pacific Ocean (Ocean Drilling Program Site 806). These measurements, the first made in conjunction with calcification temperature (magnesium/calcium ratios) and average shell mass measurements, indicate that pH is not the sole environmental variable controlling B in planktonic foraminiferal calcite. Our data are consistent with calcification temperature exerting a primary control on B concentration and isotopic composition in planktonic foraminifera. If so, calcification temperature must be taken into account if pH for past oceans and atmospheric pCO2 are to be estimated from B isotope measurements in foraminiferal calcite. Doing so will substantially increase the uncertainty of pH estimates. Although this work was designed as a temporal study, its results define new aspects of calibrating the δ11B paleo-pH tracer.

  6. Boron Isotopes Analyses of Carbonates, Phosphates and Silicates by Laser Ablation MC-ICP-MS: the Influence of Sample Matrix

    NASA Astrophysics Data System (ADS)

    Gerdes, A.

    2013-12-01

    Methods for in-situ analyses of boron isotopes by laser ablation MC-ICP-MS, although presented by 3 labs over the last years, are still not routinely applied despite of the growing interest in B isotopes, e.g. in palaeoclimate research. This study evaluates the ability to analyse boron isotopes by laser ablation at levels down to 0.2 ppm in biogenic carbonates as well as in various minerals (e.g., calcit, garnet, cpx, apatite, hematite, quartz, diamond ...) and natural and synthetic glass (NIST, USGS, and MPI-DING). Mounted and polished samples were ablated in a two-volume Helix cell using a RESOlution 193nm Excimer laser coupled to a Thermo-Finnigan Neptune (No. 1, build in 2000). Due to high sensitivity isotope signals were detected using Faraday collectors (1011 Ohm resistors). Analyses were performed as static spots over 25s with diameters of 235 to 7 μm depending on boron concentration, which yield typical 11B signals of about 0.04 (≤ 1ppm; e.g., cherts) to >0.6 V (3wt.%; tourmaline). Therefore, sample amount consumed during analyses range from 1 nanogram to 10 microgram with total analysed B content in the range of 5 to 1000 picogram. For correction of drift and mass fractionation soda-lime glass NIST-612 or NIST-610 were analysed every 30min. The applied method yields for various materials a typical analytical precision and reproducibility (1σ) of the 11B/10B of about 0.5‰ or better at boron concentration of more than 2 ppm. The effect of various parameters such as gas background, surface contamination, cross contamination, spot size, laser energy, and depth drilling will be discussed briefly. However, crucial for in-situ analyse is the evaluation of the accuracy and the influence of the sample matrix on it. Approaches to test this are still hampered by the lack of well-characterized low-B (e.g. <20ppm) reference materiel of different sample matrix. Nevertheless, in contrast to previous studies an effect of sample matrix on the boron isotope ratio was

  7. THE ATOMIC WEIGHTS COMMISSION AND ISOTOPIC ABUNDANCE RATIO DETERMINATIONS.

    SciTech Connect

    HOLDEN, N.E.

    2005-08-07

    Following Thomson's discovery of stable isotopes in non-radioactive chemical elements, the derivation of atomic weight values from mass spectrometric measurements of isotopic abundance ratios moved very slowly. Forty years later, only 3 1/2 % of the recommended values were based on mass spectrometric measurements and only 38% in the first half century. It might be noted that two chemical elements (tellurium and mercury) are still based on chemical measurements, where the atomic weight value calculated from the relative isotopic abundance measurement either agrees with the value from the chemical measurement or the atomic weight value calculated from the relative isotopic abundance measurement falls within the uncertainty of the chemical measurement of the atomic weight. Of the 19 chemical elements, whose atomic weight is based on non-corrected relative isotopic abundance measurements, five of these are two isotope systems (indium, iridium, lanthanum, lutetium and tantalum) and one is a three-isotope system (oxygen).

  8. Isotope yield ratios of fragments from heavy-ion reactions

    SciTech Connect

    Deak, F.; Kiss, A. ); Seres, Z. ); Galonsky, A.; Heilbronn, L. )

    1991-05-01

    Isotope yield ratios produced in collisions of 35 MeV/nucleon {sup 14}N with targets of C, Ni, Ag, and Ho have an exponential dependence on total neutron-to-proton ratio. A statistical multifragmentation model including particle emission from excited fragments predicted such behavior for yield ratios measured earlier at the higher energy of 84 MeV/nucleon.

  9. Symbiodinium Clade Affects Coral Skeletal Isotopic Ratio

    NASA Astrophysics Data System (ADS)

    Carilli, J.; Charles, C. D.; Garren, M.; McField, M.; Norris, R. D.

    2011-12-01

    The influence of different physiologies of Symbiodinium dinoflagellate symbiont clades on the skeletal chemistry of associated coral hosts has not previously been investigated. This is an important issue because coral skeletons are routinely used for tropical paleoclimatic reconstructions. We analyzed coral skeletal samples collected simultaneously from neighboring colonies off Belize and found that those harboring different clades of Symbiodinium displayed significantly different skeletal oxygen isotopic compositions. We also found evidence for mean shifts in skeletal oxygen isotopic composition after coral bleaching (the loss and potential exchange of symbionts) in two of four longer coral cores from the Mesoamerican Reef, though all experienced similar climatic conditions. Thus, we suggest that symbiont clade identity leaves a signature in the coral skeletal archive and that this influence must be considered for quantitative environmental reconstruction. In addition, we suggest that the skeletal isotopic signature may be used to identify changes in the dominant symbiont clade that have occurred in the past, to identify how common and widespread this phenomenon is--a potential adaptation to climate change.

  10. Combination of carbon isotope ratio with hydrogen isotope ratio determinations in sports drug testing.

    PubMed

    Piper, Thomas; Emery, Caroline; Thomas, Andreas; Saugy, Martial; Thevis, Mario

    2013-06-01

    Carbon isotope ratio (CIR) analysis has been routinely and successfully applied to doping control analysis for many years to uncover the misuse of endogenous steroids such as testosterone. Over the years, several challenges and limitations of this approach became apparent, e.g., the influence of inadequate chromatographic separation on CIR values or the emergence of steroid preparations comprising identical CIRs as endogenous steroids. While the latter has been addressed recently by the implementation of hydrogen isotope ratios (HIR), an improved sample preparation for CIR avoiding co-eluting compounds is presented herein together with newly established reference values of those endogenous steroids being relevant for doping controls. From the fraction of glucuronidated steroids 5β-pregnane-3α,20α-diol, 5α-androst-16-en-3α-ol, 3α-Hydroxy-5β-androstane-11,17-dione, 3α-hydroxy-5α-androstan-17-one (ANDRO), 3α-hydroxy-5β-androstan-17-one (ETIO), 3β-hydroxy-androst-5-en-17-one (DHEA), 5α- and 5β-androstane-3α,17β-diol (5aDIOL and 5bDIOL), 17β-hydroxy-androst-4-en-3-one and 17α-hydroxy-androst-4-en-3-one were included. In addition, sulfate conjugates of ANDRO, ETIO, DHEA, 3β-hydroxy-5α-androstan-17-one plus 17α- and androst-5-ene-3β,17β-diol were considered and analyzed after acidic solvolysis. The results obtained for the reference population encompassing n = 67 males and females confirmed earlier findings regarding factors influencing endogenous CIR. Variations in sample preparation influenced CIR measurements especially for 5aDIOL and 5bDIOL, the most valuable steroidal analytes for the detection of testosterone misuse. Earlier investigations on the HIR of the same reference population enabled the evaluation of combined measurements of CIR and HIR and its usefulness regarding both steroid metabolism studies and doping control analysis. The combination of both stable isotopes would allow for lower reference limits providing the same statistical

  11. Boron isotopes as pH proxy: A new look at boron speciation in deep-sea corals using 11B MAS NMR and EELS

    NASA Astrophysics Data System (ADS)

    Rollion-Bard, Claire; Blamart, Dominique; Trebosc, Julien; Tricot, Grégory; Mussi, Alexandre; Cuif, Jean-Pierre

    2011-02-01

    Dissolved boron in modern seawater occurs in the form of two species, trigonal boric acid B(OH) 3 and tetrahedral borate ion B(OH)4-. One of the key assumption in the use of boron isotopic compositions of carbonates as pH proxy is that only borate ions, B(OH)4-, are incorporated into the carbonate. Here, we investigate the speciation of boron in deep-sea coral microstructures ( Lophelia pertusa specimen) by using high field magic angle spinning nuclear magnetic resonance ( 11B MAS NMR) and electron energy-loss spectroscopy (EELS). We observe both boron coordination species, but in different proportions depending on the coral microstructure, i.e. centres of calcification versus fibres. These results suggest that careful sampling is necessary before performing boron isotopic measurements in deep-sea corals. By combining the proportions of B(OH) 3 and B(OH)4- determined by NMR and our previous ion microprobe boron isotope measurements, we propose a new equation for the relation between seawater pH and boron isotopic composition in deep-sea corals.

  12. Temperature Dependence of Isotope Ratios in Tree Rings

    PubMed Central

    Libby, L. M.; Pandolfi, L. J.

    1974-01-01

    The stable isotope ratios of carbon, oxygen, and hydrogen have been measured for a German oak in wood samples of roughly three years each, for the years 1712-1954 A.D., and correlated with the existing weather records from England, Basel, and Geneva to evaluate the empirical temperature coefficients. Isotope ratios in a second official oak, measured for the years 1530-1800 A.D., show the cold temperatures of the Little Ice Age interspersed with warm intervals. PMID:16592163

  13. Boron

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Boron is an essential micronutrient element required for plant growth. Boron deficiency is wide-spread in crop plants throughout the world especially in coarse-textured soils in humid areas. Boron toxicity can also occur, especially in arid regions under irrigation. Plants respond directly to the...

  14. Oxygen isotope ratios in eclogites from kimberlites.

    PubMed

    Garlick, G D; Macgregor, I D; Vogel, D E

    1971-06-01

    The oxygen isotope compositions (delta(18)O) of eclogitic xenoliths from the Roberts Victor kimberlite range from 2 to 8 per mil relative to SMOW (standard mean ocean water). This surprising variation appears to be due to fractional crystallization: the eclogites rich in oxygen-18 represent early crystal accumulates; the eclogites poor in oxygen-18 represent residual liquids. Crystal-melt partitioning probably exceeded 3 per mil and is interpreted to be pressure-dependent. Anomalous enrichment of oxygen-18 in cumulate eclogites relative to ultramafic xenoliths suggests that crystal-melt partitioning increased after melt-formation but prior to crystallization. PMID:17798552

  15. Microstructure and tensile properties of neutron irradiated Cu and Cu sbnd 5Ni containing isotopically controlled boron

    NASA Astrophysics Data System (ADS)

    Muroga, T.; Watanabe, H.; Yoshida, N.; Kurishita, H.; Hamilton, M. L.

    1995-08-01

    Cu and Cu sbnd 5Ni dopwe with either natural boron (20% 10B) or isotopically enriched boron (91% 10B) were irradiated in FFTF/MOTA at 646 K to 6.3 dpa and 683 K to 4.9 dpa. The He/dpa ratio varied from 0.1 to 224. The dependence of irradiation-induced microstructures and mechanical properties (yield stress change and uniform elongation) on the helium level was examined. In pure Cu, the void size distribution changed from unimodal to bimodal with the increase of He/dpa ratio. The swelling peak occured at a He/dpa ratio of 5 to 10. In Cu sbnd 5Ni, the swelling rapidly decreased with He/dpa ratio. The yield stress change was well correlated with microstructural-based calculations describing contributions to hardening by voids and dislocations. Cavity formation and growth at grain boundaries resulted in enhanced grain boundary fracture and significant loss of elongation in the case of high He/dpa ratio. This effect, however, was small at fusion-relevant He/dpa ratio.

  16. The atomic weight and isotopic composition of boron and their variation in nature

    SciTech Connect

    Holden, N.E.

    1993-08-01

    The boron isotopic composition and atomic weight value and their variation in nature are reviewed. Questions are raised about the previously recommended value and the uncertainty for the atomic weight. The problem of what constitutes an acceptable range for normal material and what should then be considered geologically exceptional is discussed. Recent measurements make some previous decisions in need of re-evaluation.

  17. Direct path integral estimators for isotope fractionation ratios

    SciTech Connect

    Cheng, Bingqing; Ceriotti, Michele

    2014-12-28

    Fractionation of isotopes among distinct molecules or phases is a quantum effect which is often exploited to obtain insights on reaction mechanisms, biochemical, geochemical, and atmospheric phenomena. Accurate evaluation of isotope ratios in atomistic simulations is challenging, because one needs to perform a thermodynamic integration with respect to the isotope mass, along with time-consuming path integral calculations. By re-formulating the problem as a particle exchange in the ring polymer partition function, we derive new estimators giving direct access to the differential partitioning of isotopes, which can simplify the calculations by avoiding thermodynamic integration. We demonstrate the efficiency of these estimators by applying them to investigate the isotope fractionation ratios in the gas-phase Zundel cation, and in a few simple hydrocarbons.

  18. Plutonium isotope ratio variations in North America

    SciTech Connect

    Steiner, Robert E; La Mont, Stephen P; Eisele, William F; Fresquez, Philip R; Mc Naughton, Michael; Whicker, Jeffrey J

    2010-12-14

    Historically, approximately 12,000 TBq of plutonium was distributed throughout the global biosphere by thermo nuclear weapons testing. The resultant global plutonium fallout is a complex mixture whose {sup 240}Pu/{sup 239}Pu atom ratio is a function of the design and yield of the devices tested. The average {sup 240}Pu/{sup 239}Pu atom ratio in global fallout is 0.176 + 014. However, the {sup 240}Pu/{sup 239}Pu atom ratio at any location may differ significantly from 0.176. Plutonium has also been released by discharges and accidents associated with the commercial and weapons related nuclear industries. At many locations contributions from this plutonium significantly alters the {sup 240}Pu/{sup 239}Pu atom ratios from those observed in global fallout. We have measured the {sup 240}Pu/{sup 239}Pu atom ratios in environmental samples collected from many locations in North America. This presentation will summarize the analytical results from these measurements. Special emphasis will be placed on interpretation of the significance of the {sup 240}Pu/{sup 239}Pu atom ratios measured in environmental samples collected in the Arctic and in the western portions of the United States.

  19. The boron isotopic composition of geothermal waters and crater lakes from Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Purnomo, B. J.; Pichler, T.; You, C. F.

    2014-12-01

    The presences of two different types of geothermal systems, volcanic-hosted and fault-hosted, and two different types of acid crater lakes, acid sulfate and acid chloride, on Java, Indonesia presented the opportunity to investigate boron isotope systematic in such contrasting systems. Fault-hosted hot springs and the acid chloride crater lakes had light δ11B (-2.4 to +0.49 ‰), similar to geothermal brines. Meanwhile, the δ11B values of volcanic-hosted hot springs ranged from -0.7 to +12.8 ‰ and acid-sulfate crater lakes ranged from +5.5 to +34.8 ‰, which were heavier than the geothermal vapor phase (δ11B= +3.8 ‰). The absence of magmatic gases and the fast ascent of the fault-hosted thermal waters inhibited B isotope fractionation, thus their original light δ11B signature from the reservoir was maintained. In contrast, in volcanic-hosted geothermal systems magmatic degassing produced a more reactive geothermal water, which combined with the relatively longer ascent produced heavy δ11B signatures. The light δ11B signature of acid chloride crater lakes was produced by rock dissolution, also indicated by its B/Cl ratios, which were similar to those of andesitic rocks. The continuous H2S, SO2 and HCl gases supply favors rock dissolution in the acid chloride crater lakes and thus little to no B isotope fractionation was observed. In contrast, condensation of the geothermal vapor phase combined with evaporation and B adsorption onto clay minerals caused a δ11B enrichment in the acid sulfate crater lakes. The very heavy δ11B value of +34.8 ‰ in the acid sulfate crater lake of Kawah Sikidang likely involved some reaction with sedimentary rocks in the subsurface.

  20. Synthetic isotope mixtures for the calibration of isotope amount ratio measurements of carbon

    NASA Astrophysics Data System (ADS)

    Russe, K.; Valkiers, S.; Taylor, P. D. P.

    2004-07-01

    Synthetic isotope mixtures for the calibration of carbon isotope amount ratio measurements have been prepared by mixing carbon tetrafluoride highly enriched in 13C with carbon tetrafluoride depleted in 13C. Mixing procedures based on volumetry and gravimetry are described. The mixtures served as primary measurement standards for the calibration of isotope amount ratio measurements of the Isotopic Reference Materials PEF1, NBS22 and USGS24. Thus SI-traceable measurements of absolute carbon isotope amount ratios have been performed for the first time without any hypothesis needed for a correction of oxygen isotope abundances, such as is the case for measurements on carbon dioxide. As a result, "absolute" carbon isotope amount ratios determined via carbon tetrafluoride have smaller uncertainties than those published for carbon dioxide. From the measurements of the Reference Materials concerned, the absolute carbon isotope amount ratio of Vienna Pee Dee Belemnite (VPDB)--the hypothetical material upon which the scale for relative carbon isotope ratio measurements is based--was calculated to be R13(VPDB) = (11 101 +/- 16) × 10-6.

  1. Evaluating chlorine isotope effects from isotope ratios and mass spectra of polychlorinated molecules.

    PubMed

    Elsner, Martin; Hunkeler, Daniel

    2008-06-15

    Compound-specific chlorine isotope analysis receives much interest to assess the fate of chlorinated hydrocarbons in contaminated environments. This paper provides a theoretical basis to calculate isotope ratios and quantify isotope fractionation from ion-current ratios of molecular- and fragment-ion multiplets. Because both (35)Cl and (37)Cl are of high abundance, polychlorinated hydrocarbons consist of molecules containing different numbers of (37)Cl denoted as isotopologues. We show that, during reactions, the changes in isotopologue ratios are proportional to changes in the isotope ratio assuming a nonselective isotope distribution in the initial compound. This proportionality extents even to fragments formed in the ion source of a mass spectrometer such as C 2Cl 2 (double dechlorinated fragment of perchloroethylene, PCE). Fractionation factors and kinetic isotope effects (KIE) may, therefore, be evaluated from isotope, isotopologue or even fragment ratios according to conventional simple equations. The proportionality is exact with symmetric molecules such as dichloroethylene (DCE) and PCE, whereas it is approximately true with molecules containing nonreactive positions such as trichloroethylene (TCE). If in the latter case isotope ratios are derived from dechlorinated fragments, e.g., C 2HCl 2, it is important that fragmentation in the ion source affect all molecular positions alike, as otherwise isotopic changes in reactive positions may be underrepresented. PMID:18484745

  2. H-isotope retention and thermal/ion-induced release in boronized films

    SciTech Connect

    Walsh, D.S. ); Doyle, B.L.; Wampler, W.R.; Hays, A.K. )

    1990-01-01

    Over the past decade, it has been clearly demonstrated that the composition of the very near surface ({approximately}100nm) of plasma-interactive components plays a determinant role in most processes which occur in the plasma-edge of Tokamaks. Two very successful techniques to effect control of the plasma-wall interaction are (1) in-situ deposition of amorphous carbon or boron-carbon films and (2) the use of He/C conditioning discharges or He glow discharge cleaning to modify the near surface of bulk graphite components. We have deposited boronized layers into Si using plasma-assisted CVD and sputter deposition. The PCVD deposition conditions were as close as possible to those used in TFTR, and some films deposited in TFTR have also been studied. Using these two deposition techniques, B{sub x}CH{sub y} films have been produced with x varying from 1/2 -- 4, and y from {approximately}1 (sputtered) to {approximately}3 (PCVD). Most films also contained significant amounts of 0. Thermal and ion-induced release of H-isotopes from BC films is qualitatively similar to that measured for graphite. Implanted H saturates in these films at a H/host atom ratio of 0.7 which is considerably higher than that of graphite({approximately}0.4). As-deposited PCVD films are already saturated with H, while sputtered films are not. Sputtered BC films therefore possess an inherent H-pumping capability which could prove to be extremely beneficial to TFTR. 16 refs., 5 figs., 1 tab.

  3. Evidence of Northeastern Atlantic Ocean Acidification Recorded by Boron Isotopes on Deep-sea Coral Madrepora oculata

    NASA Astrophysics Data System (ADS)

    Gonzalez-Roubaud, C.; Douville, E.; Bordier, L.; Louvat, P.; Gaillardet, J.; Hall-Spencer, J. M.; Juillet-Leclerc, A.

    2011-12-01

    Ocean acidification is caused by the rising levels of CO2 in the atmosphere since the industrial era. Seawater pH has already decreased 0.1 units in surface waters and will continue to drop as atmospheric CO2 levels increase. Assessing the pH variability during the last decades is essential as survival of calcifying organisms strongly depends on seawater pH. Several studies have shown the potential of boron isotopic composition in tropical corals for reconstructing for sea-surface paleo-pH at low latitudes. For highest latitudes and deeper waters (50-4500 m), cold-water corals are interesting and unique as natural archives not only because they live between 4°C and 12°C under strong currents, recording the parameters of sub-surface or intermediate currents, but also because they build their aragonite skeleton without the photosynthesis process. In order to assess if the seawater acidification has already reached the North Atlantic Ocean at high latitudes, pH reconstruction has been performed on a deep-sea coral Madrepora oculata sample from Rost Reef (67°N, 9°E, 350 m of depth). Boron isotopes have been measured on the Neptune Multi-Collector Inductively Coupled Plasma Mass Spectrometer (MCICP-MS) with direct injection system (d-DIHEN). External reproducibility obtained here for seawater reference NASS-2 was 0.1%. The model age estimates its life-span to 40±3 years (2σ) and the Li/Mg ratio estimates a relative constant seawater temperature during the whole period of growth of the coral (7.0±0.5°C). A drop tendency is observed on boron isotopes, reflecting a potential decrease of seawater pH of approximately 0.06±0.02 pH units during the last 40 years, depending on the isotopic fractionation coefficient employed for calculations. Similarly, seawater acidification rate is 0.0012±0.00015 pH units per year. pH and temperature reconstructions revealed an influence of thermohaline circulation and surface winds on the skeleton geochemistry. Supplementary

  4. LITERATURE SURVEY ON ISOTOPIC ABUNDANCE RATIO MEASUREMENTS - 2001-2005

    SciTech Connect

    HOLDEN, N.E.

    2005-08-13

    Along with my usual weekly review of the published literature for new nuclear data, I also search for new candidates for best measurements of isotopic abundances from a single source. Most of the published articles, that I previously had found in the Research Library at the Brookhaven Lab, have already been sent to the members of the Atomic Weights Commission, by either Michael Berglund or Thomas Walczyk. In the last few days, I checked the published literature for any other articles in the areas of natural variations in isotopic abundance ratios, measurements of isotopic abundance ratios on samples of extra-terrestrial material and isotopic abundance ratio measurements performed using ICPMS instruments. Hopefully this information will be of interest to members of the Commission, the sub-committee on isotopic abundance measurements (SIAM), members of the former sub-committee on natural isotopic fractionation (SNIF), the sub-committee on extra-terrestrial isotope ratios (SETIR), the RTCE Task Group and the Guidelines Task Group, who are dealing with ICPMS and TIMS comparisons. In the following report, I categorize the publications in one of four areas. Measurements performed using either positive or negative ions with Thermal Ionization Mass Spectrometer, TIMS, instruments; measurements performed on Inductively Coupled Plasma Mass Spectrometer, ICPMS, instruments; measurements of natural variations of the isotopic abundance ratios; and finally measurements on extra-terrestrial samples with instrumentation of either type. There is overlap in these areas. I selected out variations and ET results first and then categorized the rest of the papers by TIMS and ICPMS.

  5. Matrix Effects on Boron Containing Materials due to Laser Ablation Molecular Isotopic Spectrometry (LAMIS)

    NASA Astrophysics Data System (ADS)

    Brown, Staci R.; Akpovo, Charlemagne A.; Martinez, Jorge; Ford, Alan; Herbert, Kenley; Johnson, Lewis

    2014-03-01

    Laser Induced Breakdown Spectroscopy (LIBS) is a spectroscopic technique that is used for the qualitative and quantitative analysis of materials in the liquid, solid, or gas phase. LIBS can also be used for the detection of isotopic shifts in atomic and diatomic species via Laser-Ablation Molecular Isotopic Spectroscopy (LAMIS). However, any additional elements that are entrained into the plasma other than the element of interest, can affect the extent of ablation and quality of spectra and hence, potentially obscure or aid in the relative abundance assessment for a given element. To address the importance of matrix effects, the isotopic analysis of boron obtained from boron oxide (BO) emission originating from different boron-containing compounds, such as boron nitride (BN), boric acid (H3BO3) , and borax (Na2B4O710H2O), via LIBS has been performed here. Each of these materials has different physical properties and elemental composition in order to illustrate possible challenges for the LAMIS method. A calibration-free model similar to that for the original LAMIS work is used to determine properties of the plasma as the matrix is changed. DTRA

  6. Ca Isotopic Ratios in Igneous Rocks: Some Preliminary Results

    NASA Astrophysics Data System (ADS)

    Huang, S.; Farkas, J.; Jacobsen, S. B.

    2009-12-01

    Calcium (Ca) is the 5th most abundant element on the Earth, and it is an important geochemical and cosmochemical tracer. It has six isotopes and only H and He have a larger percentage mass difference (Δm/m) between the heaviest and the lightest isotopes. Systematic Ca isotopic studies have mostly focused on low-temperature geochemical processes, and most Ca isotopic analyses have been applied on modern and ancient marine carbonates and sulphates, documenting large and systematic isotopic variations, which were used to infer the chemical evolution of seawater. Detailed work on igneous rocks is very limited. Here we show two examples of how stable Ca isotopic ratios can be a useful geochemical tool in understanding igneous processes. Ca isotopic fractionation between coexisting clinopyroxene and orthopyroxene from mantle peridotites: We report Ca isotopic ratios on co-existing clino- and ortho-pyroxenes from Kilbourne Hole and San Carlos mantle peridotites. The 44Ca/40Ca in orthopyroxenes is ~0.5 per mil heavier than that in co-existing clinopyroxenes. Combined with published Ca isotopic data on low-temperature Ca-bearing minerals (calcite, aragonite and barite), we show that the fractionation of Ca isotopes between Ca-bearing minerals (at both low-temperature and high-temperature) is primarily controlled by the strength of Ca-O bond in the minerals. The mineral with shorter (i.e., stronger) Ca-O bond yields heavier Ca isotopic ratio. Using our measured 44Ca/40Ca in mantle pyroxenes and the relative proportions of major Ca-bearing minerals in the upper mantle, the estimated 44Ca/40Ca of the upper mantle is 1.1 per mil heavier relative to the NIST 915a, ~0.1 to 0.2 per mil higher than basalts. Ca isotopic variation in Hawaiian shield lavas: Large geochemical and isotopic variations have been observed in lavas forming the large tholeiitic shields of Hawaiian volcanoes, with lavas from the surface of the Koolau volcano (Makapuu-stage) defining one compositional and

  7. Stable Isotope Ratios and the Forensic Analysis of Microorganisms

    SciTech Connect

    Kreuzer-Martin, Helen W.; Jarman, Kristin H.

    2007-06-01

    In the aftermath of the anthrax letters of 2001, researchers have been exploring various analytical signatures for the purpose of characterizing the production environment of microorganisms. One such signature is stable isotope ratios, which in heterotrophs are a function of nutrient and water sources. Here we discuss the use of stable isotope ratios in microbe forensics, using as a database the carbon, nitrogen, oxygen and hydrogen stable isotope ratios of 247 separate cultures of B. subtilis 6051 spores produced on a total of 32 different culture media. In the context of using stable isotope ratios as a signature for sample matching, we present an analysis of variation between individual samples, between cultures produced in tandem, and between cultures produced in the same medium but at different times. Additionally, we correlate the stable isotope ratios of carbon, nitrogen, oxygen, and hydrogen for growth medium nutrients or water with those of spores and show examples of how these relationships can be used to exclude nutrient or water samples as possible growth substrates for specific cultures.

  8. Isotope ratio mass spectrometry - history and terminology in brief.

    PubMed

    Flenker, Ulrich

    2012-12-01

    The history of isotope ratio mass spectrometry (IRMS) is briefly described. It is shown that the fundamental design of isotope ratio mass spectrometers has not changed since the 1940s. The basic findings concerning the natural variation of isotope abundances even date back to the 1930s. Recent improvements in the methodology mainly concern online coupling and analytical peripherals. The nature of isotopic scales necessitates a specific terminology which is unfamiliar to many analysts. However, corresponding guidelines exist that should be adopted by the anti-doping community. Currently, steroids represent the only group of compounds routinely analyzed by IRMS in doping-control. Suggestions are made in respect to a harmonized terminology concerning the nature and origins of steroids. PMID:22972693

  9. Stable Isotope Ratios as Biomarkers of Diet for Health Research

    PubMed Central

    O’Brien, Diane M.

    2016-01-01

    Diet is a leading modifiable risk factor for chronic disease, but it remains difficult to measure accurately due to the error and bias inherent in self-reported methods of diet assessment. Consequently there is a pressing need for more objective biomarkers of diet for use in health research. The stable isotope ratios of light elements are a promising set of candidate biomarkers because they vary naturally and reproducibly among foods, and those variations are captured in molecules and tissues with high fidelity. Recent studies have identified valid isotopic measures of short and long-term sugar intake, meat intake, and fish intake in specific populations. These studies provide a strong foundation for validating stable isotopic biomarkers in the general United States population. Approaches to improve specificity for specific foods are needed, for example, by modeling intake using multiple stable isotope ratios, or by isolating and measuring specific molecules linked to foods of interest. PMID:26048703

  10. Column chromatographic boron isotope separation at 5 and 17 MPa with diluted boric acid solution.

    PubMed

    Musashi, Masaaki; Oi, Takao; Matsuo, Motoyuki; Nomura, Masao

    2008-08-01

    Boron isotopic fractionation factor (S) between boron taken up in strongly basic anion exchange resin and boron in aqueous solution was determined by breakthrough column chromatography at 5 and 17 MPa at 25 degrees C, using 0.1 mM boric acid solution as feed solution. The S values obtained were 1.018 and 1.012, respectively, which were smaller than the value reported by using the same chromatographic method at the atmospheric pressure at 25 degrees C with the boron concentration of 10mM, but were larger than the values under the same condition with much higher concentration of 100 and 501 mM. Calculations based on the theory of isotope distribution between two phases estimated that 21% (5 MPa) and 47% (17 MPa) of boron taken up in the resin phase was in the three-coordinated B(OH)(3)-form, instead of in the four-coordinated B(OH)(4)-form, at high pressures even with a very diluted boric acid solution. We discussed the present results by introducing (1) hydration and (2) a partial molar volume difference between isotopic molecules. Borate may have been partially dehydrated upon transfer from the solution phase to the resin phase at high pressures, which resulted in smaller S values compared with those at the atmospheric pressure. Instead, it may be possible that the difference in the isotopic partial molar volume difference between B(OH)(3) and B(OH)(4)(-) caused the S value to decrease with increasing pressure. PMID:18585727

  11. Comparison of CF4 and SF6 based plasmas for ECR etching of isotopically enriched 10Boron films

    SciTech Connect

    Voss, L F; Reinhardt, C E; Graff, R T; Conway, A M; Nikolic, R J; Deo, N; Cheung, C L

    2009-02-23

    Isotopically enriched {sup 10}boron films have been successfully etched in an ECR etching tool using CF{sub 4} and SF{sub 6} based plasmas. Comparisons between the two are made with regards to etch rate, selectivity to the underlying Si device structure, and morphology of the {sup 10}boron post-etching. The present film etching development is expected to be critical for the fabrication of next generation thermal neutron solid state detectors based on {sup 10}boron.

  12. Isotope Ratio Monitoring Gas Chromatography Mass Spectrometry (IRM-GCMS)

    NASA Technical Reports Server (NTRS)

    Freeman, K. H.; Ricci, S. A.; Studley, A.; Hayes, J. M.

    1989-01-01

    On Earth, the C-13 content of organic compounds is depleted by roughly 13 to 23 permil from atmospheric carbon dioxide. This difference is largely due to isotope effects associated with the fixation of inorganic carbon by photosynthetic organisms. If life once existed on Mars, then it is reasonable to expect to observe a similar fractionation. Although the strongly oxidizing conditions on the surface of Mars make preservation of ancient organic material unlikely, carbon-isotope evidence for the existence of life on Mars may still be preserved. Carbon depleted in C-13 could be preserved either in organic compounds within buried sediments, or in carbonate minerals produced by the oxidation of organic material. A technique is introduced for rapid and precise measurement of the C-13 contents of individual organic compounds. A gas chromatograph is coupled to an isotope-ratio mass spectrometer through a combustion interface, enabling on-line isotopic analysis of isolated compounds. The isotope ratios are determined by integration of ion currents over the course of each chromatographic peak. Software incorporates automatic peak determination, corrections for background, and deconvolution of overlapped peaks. Overall performance of the instrument was evaluated by the analysis of a mixture of high purity n-alkanes of know isotopic composition. Isotopic values measured via IRM-GCMS averaged withing 0.55 permil of their conventionally measured values.

  13. High Resolution Double-Focusing Isotope Ratio Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Radke, J.; Deerberg, M.; Hilkert, A.; Schlüter, H.-J.; Schwieters, J.

    2012-04-01

    In recent years isotope ratio mass spectrometry has extended to the capability of quantifying very small isotope signatures related with low abundances and simultaneously detecting molecular masses such as isotopomers and isotopologues containing clumped isotopes. Some of those applications are limited by molecular interferences like different gas molecules with the same nominal mass, e.g. Ar/O2, adducts of the same molecule or of different molecules, and very small isotope abundances. The Thermo Scientific MAT 253 ULTRA is the next generation of high precision gas isotope ratio mass spectrometry, which combines a 10 KV gas ionization source (Thermo Scientific MAT 253) with a double focusing multi-collector mass analyzer (Thermo Scientific Neptune) and reduces those limitations by measuring isotope ratios on a larger dynamic range with high precision. Small ion beam requirements and high sensitivity are achieved by signal-to-noise improvements through enhanced ion beam amplification in faraday cups and ion counters. Interfering backgrounds, e.g. interfering isotopologues or isobaric ions of contaminants, are dramatically decreased by a dynamic range increase combined with high evacuation leading to undisturbed ion transmission through the double-focusing analyser. Furthermore, automated gain calibration for mathematical baseline corrections, switchable detector arrays, ion source control, analyser focusing and full data export is controlled under Isodat data control. New reference/sample strategies are under investigation besides incorporation of the continuous-flow technique and its versatile inlet devices. We are presenting first results and applications of the MAT 253 Ultra.

  14. Radioactive halos and ion microprobe measurement of Pb isotope ratios

    NASA Technical Reports Server (NTRS)

    Gentry, R. V.

    1974-01-01

    This investigation was to obtain, if possible, the Pb isotope ratios of both lunar and meteoritic troilite grains by utilizing ion microprobe techniques. Such direct in situ measurement of Pb isotope ratios would eliminate contamination problems inherent in wet chemistry separation procedures, and conceivably determine whether lunar troilite grains were of meteoritic origin. For comparison purposes two samples of meteoritic troilite were selected (one from Canyon Diablo) for analysis along with two very small lunar troilite grains (approximately 50-100 microns). It was concluded that the ion microprobe as presently operating, does not permit the in situ measurement of Pb isotope ratios in lunar or meteoritic troilite. On the basis of these experiments no conclusions could be drawn as to the origin of the lunar troilite grains.

  15. Calcium isotope ratios in animal and human bone

    NASA Astrophysics Data System (ADS)

    Reynard, L. M.; Henderson, G. M.; Hedges, R. E. M.

    2010-07-01

    Calcium isotopes in tissues are thought to be influenced by an individual's diet, reflecting parameters such as trophic level and dairy consumption, but this has not been carefully assessed. We report the calcium isotope ratios (δ 44/42Ca) of modern and archaeological animal and human bone ( n = 216). Modern sheep raised at the same location show 0.14 ± 0.08‰ higher δ 44/42Ca in females than in males, which we attribute to lactation by the ewes. In the archaeological bone samples the calcium isotope ratios of the herbivorous fauna vary by location. At a single site, the archaeological fauna do not show a trophic level effect. Humans have lower δ 44/42Ca than the mean site fauna by 0.22 ± 0.22‰, and the humans have a greater δ 44/42Ca range than the animals. No effect of sex or age on the calcium isotope ratios was found, and intra-individual skeletal δ 44/42Ca variability is negligible. We rule out dairy consumption as the main cause of the lower human δ 44/42Ca, based on results from sites pre-dating animal domestication and dairy availability, and suggest instead that individual physiology and calcium intake may be important in determining bone calcium isotope ratios.

  16. Oxygen isotopic ratios toward molecular clouds in the Galactic disk

    NASA Astrophysics Data System (ADS)

    Li, Hai-Kun; Zhang, Jiang-Shui; Liu, Zhi-Wei; Lu, Deng-Rong; Wang, Min; Wang, Jin

    2016-03-01

    We present our observations of the J = 1 - 0 rotation transitions in molecular isotopes C18O and C17O toward a sample of molecular clouds with different galactocentric distances, using the Delingha 13.7m (DLH 13.7 m) telescope, administered by Purple Mountain Observatory, and its 9-beam SIS receiver. Complementary observations toward several sources with large galactocentric distance are obtained with the IRAM 30m and Mopra 22m telescopes. C18O/C17O abundance ratios reflecting the 18O/17O isotope ratios are obtained from integrated intensity ratios of C18O and C17O. We derived the ratio value for 13 sources covering a galactocentric distance range of 3kpc to 16kpc. In combination with our mapping results that provide a ratio value of 3.01±0.14 in the Galactic center region, it shows that the abundance ratio tends to increase with galactocentric distance, i.e., it supports a radial gradient along the Galactic disk for the abundance ratio. This is consistent with the inside-out formation scenario of our Galaxy. However, our results may suffer from small samples with large galactocentric distance. Combining our data with multi-transition lines of C18O and C17O will be helpful for constraining opacities and abundances and further confirming the Galactic radial gradient shown by the isotope ratio 18O/17O.

  17. Carbon isotope ratio analysis of steroids by high-temperature liquid chromatography-isotope ratio mass spectrometry.

    PubMed

    Zhang, Lijun; Thevis, Mario; Piper, Thomas; Jochmann, Maik A; Wolbert, J Benjamin; Kujawinski, Dorothea M; Wiese, Steffen; Teutenberg, Thorsten; Schmidt, Torsten C

    2014-03-01

    Generally, compound-specific isotope analysis of steroids is carried out by gas chromatography combined with isotope ratio mass spectrometry. Thus, a derivatization of the steroids prior to the measurement is compulsory, and a correction of the isotopic data is often necessary. To overcome this limitation, we present a new approach of high-temperature liquid chromatography coupled with photodiode array detection and isotope ratio mass spectrometry (HT-LC/PDA/IRMS) for the carbon isotope ratio analysis of unconjugated steroids. A steroid mixture containing 19-norandrosterone, testosterone, epitestosterone, androsterone, and 5β-pregnane-3α,17α,20α-triol was fully separated on a C4 column under high-temperature elution with water as the sole eluent. The accuracy for isotope analysis (±0.5 ‰) was around 20 μg g(-1) for testosterone, epitestosterone (79 ng steroid absolute on column), and 30 μg g(-1) for 19-norandrosterone, androsterone, and 5β-pregnane-3α,17α,20α-triol (119 ng steroid absolute on column). The applicability of the method was tested by measuring a pharmaceutical gel containing testosterone. With this work, the scope of LC/IRMS applications has been extended to nonpolar compounds. PMID:24491121

  18. Analytical techniques in biomedical stable isotope applications: (isotope ratio) mass spectrometry or infrared spectrometry?

    PubMed

    Stellaard, Frans; Elzinga, Henk

    2005-12-01

    An overview is presented of biomedical applications of stable isotopes in general, but mainly focused on the activities of the Center for Liver, Digestive and Metabolic Diseases of the University Medical Center Groningen. The aims of metabolic studies in the areas of glucose, fat, cholesterol and protein metabolism are briefly explained, as well as the principle of breath testing and the techniques to study body composition and energy expenditure. Much attention is paid to the analytical considerations based upon metabolite concentrations, sample size restrictions, the availability of stable isotope labelled substrates and dose requirements in relation to compound-specific isotope analysis. The instrumental advantages and limitations of the generally used techniques gas chromatography/reaction/isotope ratio mass spectrometry and gas chromatography/mass spectrometry are described as well as the novelties of the recently commercialised liquid chromatography/combustion/isotope ratio mass spectrometry. The present use and future perspective of infrared (IR) spectrometry for clinical and biomedical stable isotope applications are reviewed. In this respect, the analytical demands on IR spectrometry are discussed to enable replacement of isotope ratio mass spectrometry by IR spectrometry, in particular, for the purpose of compound-specific isotope ratio analysis in biological matrices. PMID:16543190

  19. Heavy element stable isotope ratios: analytical approaches and applications.

    PubMed

    Tanimizu, Masaharu; Sohrin, Yoshiki; Hirata, Takafumi

    2013-03-01

    Continuous developments in inorganic mass spectrometry techniques, including a combination of an inductively coupled plasma ion source and a magnetic sector-based mass spectrometer equipped with a multiple-collector array, have revolutionized the precision of isotope ratio measurements, and applications of inorganic mass spectrometry for biochemistry, geochemistry, and marine chemistry are beginning to appear on the horizon. Series of pioneering studies have revealed that natural stable isotope fractionations of many elements heavier than S (e.g., Fe, Cu, Zn, Sr, Ce, Nd, Mo, Cd, W, Tl, and U) are common on Earth, and it had been widely recognized that most physicochemical reactions or biochemical processes induce mass-dependent isotope fractionation. The variations in isotope ratios of the heavy elements can provide new insights into past and present biochemical and geochemical processes. To achieve this, the analytical community is actively solving problems such as spectral interference, mass discrimination drift, chemical separation and purification, and reduction of the contamination of analytes. This article describes data calibration and standardization protocols to allow interlaboratory comparisons or to maintain traceability of data, and basic principles of isotope fractionation in nature, together with high-selectivity and high-yield chemical separation and purification techniques for stable isotope studies. PMID:23397089

  20. The use of carbon stable isotope ratios in drugs characterization

    NASA Astrophysics Data System (ADS)

    Magdas, D. A.; Cristea, G.; Bot, A.; Mirel, V.

    2013-11-01

    Isotopic Ratio Mass Spectrometry (IRMS) is an effective toll to be used for drug product authentication. The isotopic composition could be used to assist in the differentiation between batches of drugs and assist in the identification of counterfeit materials on the market. Only two factors affect the isotopic ratios in pharmaceutical components: the isotopic composition of the raw materials and the synthetic processes performed upon them. Counterfeiting of pharmaceutical drugs threatens consumer confidence in drug products companies' economical well-being. In this preliminary study, the analyzed samples consist in two types of commercially available analgesics, which were purchases from Romanian pharmacies. Differences in δ13C between batches from -29.7 to -31.6% were observed, demonstrating that this method can be used to differentiate among individual drug batches and subsequently identify counterfeits on the market. On the other hand, carbon isotopic ratios differences among producers were recorded, the variations being between -31.3 to -34.9% for the same type of analgesic, but from different manufactures.

  1. The use of carbon stable isotope ratios in drugs characterization

    SciTech Connect

    Magdas, D. A. Cristea, G. Bot, A. Mirel, V.

    2013-11-13

    Isotopic Ratio Mass Spectrometry (IRMS) is an effective toll to be used for drug product authentication. The isotopic composition could be used to assist in the differentiation between batches of drugs and assist in the identification of counterfeit materials on the market. Only two factors affect the isotopic ratios in pharmaceutical components: the isotopic composition of the raw materials and the synthetic processes performed upon them. Counterfeiting of pharmaceutical drugs threatens consumer confidence in drug products companies' economical well-being. In this preliminary study, the analyzed samples consist in two types of commercially available analgesics, which were purchases from Romanian pharmacies. Differences in δ{sup 13}C between batches from −29.7 to −31.6% were observed, demonstrating that this method can be used to differentiate among individual drug batches and subsequently identify counterfeits on the market. On the other hand, carbon isotopic ratios differences among producers were recorded, the variations being between −31.3 to −34.9% for the same type of analgesic, but from different manufactures.

  2. Boron occurrence in halite and boron isotope geochemistry of halite in the Qarhan Salt Lake, western China

    NASA Astrophysics Data System (ADS)

    Fan, QiShun; Ma, YunQi; Cheng, HuaiDe; Wei, HaiCheng; Yuan, Qin; Qin, ZhanJie; Shan, FaShou

    2015-06-01

    Previous studies have investigated boron (B) isotope composition of salt lake brines in the Qaidam Basin, western China. However, the research on B isotope geochemistry of halite from a sediment core in a typical sedimentary basin has been very limited. In this study, a 102-m-long drill core (ISL1A) was recovered from Qarhan Salt Lake in eastern Qaidam Basin. Forty-three halite samples from upper 44.0 m in ISL1A were collected and analyzed for chemical compositions (K+, Na+, Ca2 +, Mg2 +, Cl-, SO42 -, Sr2 + and B3 +) and B isotopes in order to investigate their relationships, and B isotope fractionation between halite and brines in the Qarhan Salt Lake. The results show that: (1) more B3 + and Mg2 + values in halite are low concentrations and more concentrated, and low B3 + concentrations have a strong correlation with low Mg2 + in halite, which imply that they might be the same source; (2) low Mg2 + values in halite from ISL1A have a similar trend with mMg2 + (molarity) of fluid inclusion brines from two sediment cores (east to ISL1A about 50 km) in the study area, suggesting that low B3 + and Mg2 + concentrations should derive from fluid inclusions in halite based on X-ray diffraction results in ISL1A that no borate and small amount of magnesium salts were deposited; (3) δ11B values of halite in ISL1A range from - 0.35 to + 5.84‰, which are in the range of those of river water and brines (- 1.0 to + 9.6‰), and almost overlapped with those of brines (+ 2.9 to + 7.5‰) in the Qarhan Salt Lake. These results suggest that no or minor B isotope fractionation between halite and brine occurred.

  3. Nucleosynthesis in AGB Stars Traced by Oxygen Isotopic Ratios

    NASA Astrophysics Data System (ADS)

    De Nutte, R.; Decin, L.; Olofsson, H.; de Koter, A.; Lombaert, R.; Milam, S.; Ramstedt, S.

    2015-08-01

    Isotopic ratios are by far the best diagnostic tracers of the stellar origin of elements, as they are very sensitive to the precise conditions in the nuclear burning regions. They allow us to give direct constraints on stellar evolution models and on the progenitor mass. However, up to now different isotopic ratios have been well constrained for only a handful of Asymptotic Giant Branch (AGB) stars. We present new data on isotopologue lines of a well-selected sample of AGB stars, covering the three spectral classes of C-, S- and M-type stars. We report on the first efforts made in determining accurate isotopologue fractions, focusing on oxygen isotopes which are a crucial tracer of the poorly constrained extra mixing processes in stellar atmospheres.

  4. Isotope Ratios Reveal Trickery in the Produce Aisle

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 2007

    2007-01-01

    A new technique for the proper checking and banning of organic food items is proposed. The analysis of the nitrogen isotope ratio present in the food is found to be a perfect standard for the organic checking of the food products.

  5. Effects of seawater-pH and biomineralization on the boron isotopic composition of deep-sea bamboo corals

    NASA Astrophysics Data System (ADS)

    Farmer, Jesse R.; Hönisch, Bärbel; Robinson, Laura F.; Hill, Tessa M.

    2015-04-01

    The ocean is currently absorbing excess carbon from anthropogenic emissions, leading to reduced seawater-pH (termed 'ocean acidification'). Instrumental records of ocean acidification are unavailable from well-ventilated areas of the deep ocean, necessitating proxy records to improve spatio-temporal understanding on the rate and magnitude of deep ocean acidification. Here we investigate boron, carbon, and oxygen isotopes on live-collected deep-sea bamboo corals (genus Keratoisis) from a pHtot range of 7.5-8.1. These analyses are used to explore the potential for using bamboo coral skeletons as archives of past deep-sea pH and to trace anthropogenic acidification in the subsurface North Atlantic Ocean (850-2000 m water depth). Boron isotope ratios of the most recently secreted calcite of bamboo coral skeletons are close to the calculated isotopic composition of borate anion in seawater (δ11Bborate) for North Atlantic corals, and 1-2‰ higher than δ11Bborate for Pacific corals. Within individual coral skeletons, carbon and oxygen isotopes correlate positively and linearly, a feature associated with vital effects during coral calcification. δ11B variability of 0.5-2‰ is observed within single specimens, which exceeds the expected anthropogenic trend in modern North Atlantic corals. δ11B values are generally elevated in Pacific corals relative to δ11Bborate, which may reflect pH-driven physiological processes aiding coral calcification in environments unfavorable for calcite precipitation. Elevated δ11B values are also observed proximal to the central axis in multiple Atlantic and Pacific specimens, relative to δ11Bborate, which might reflect ontogenetic variability in calcification rates. Although the observed boron isotope variability is too large to resolve the present anthropogenic ocean acidification signal at the studied depths in the North Atlantic (∼0.03-0.07 pH units), pH changes ⩾0.1 units might still be reconstructed using δ11B measurements in

  6. Indirect Measurements for (p,{alpha}) Reactions Involving Boron Isotopes

    SciTech Connect

    Lamia, L.; Spitaleri, C.; Romano, S.; Cherubini, S.; Crucilla, V.; Gulino, M.; La Cognata, M.; Pizzone, R. G.; Puglia, S. M. R.; Sergi, M. L.; Tudisco, S.; Tumino, A.; Carlin, N.; Szanto, M. G. del; Liguori Neto, R.; Moura, M. M. de; Munhoz, M. G.; Souza, F. A.; Suaide, A. A. P.; Szanto, E.

    2008-04-06

    Light elements lithium, beryllium and boron (LiBeB) were used in the last years as 'possible probe' for a deeper understanding of some extra-mixing phenomena occurring in young Main-Sequence stars. They are mainly destroyed by (p,{alpha}) reactions and cross section measurements for such channels are then needed. The Trojan Horse Method (THM) allows one to extract the astrophysical S(E)-factor without the experience of tunneling through the Coulomb barrier. In this work a resume of the recent results about the {sup 11}B(p,{alpha}{sub 0}){sup 8}Be and {sup 10}B(p,{alpha}){sup 7}Be reactions is shown.

  7. Seawater calcium isotope ratios across the Eocene-Oligocene transition

    USGS Publications Warehouse

    Griffith, E.M.; Paytan, A.; Eisenhauer, A.; Bullen, T.D.; Thomas, E.

    2011-01-01

    During the Eocene-Oligocene transition (EOT, ca. 34 Ma), Earth's climate cooled significantly from a greenhouse to an icehouse climate, while the calcite (CaCO3) compensation depth (CCD) in the Pacific Ocean increased rapidly. Fluctuations in the CCD could result from various processes that create an imbalance between calcium (Ca) sources to, and sinks from, the ocean (e.g., weathering and CaCO3 deposition), with different effects on the isotopic composition of dissolved Ca in the oceans due to differences in the Ca isotopic composition of various inputs and outputs. We used Ca isotope ratios (??44/40Ca) of coeval pelagic marine barite and bulk carbonate to evaluate changes in the marine Ca cycle across the EOT. We show that the permanent deepening of the CCD was not accompanied by a pronounced change in seawater ??44/40Ca, whereas time intervals in the Neogene with smaller carbonate depositional changes are characterized by seawater ??44/40Ca shifts. This suggests that the response of seawater ??44/40Ca to changes in weathering fluxes and to imbalances in the oceanic alkalinity budget depends on the chemical composition of seawater. A minor and transient fluctuation in the Ca isotope ratio of bulk carbonate may reflect a change in isotopic fractionation associated with CaCO3 precipitation from seawater due to a combination of factors, including changes in temperature and/or in the assemblages of calcifying organisms. ?? 2011 Geological Society of America.

  8. Boron isotope composition of geothermal fluids and borate minerals from salar deposits (central Andes/NW Argentina)

    NASA Astrophysics Data System (ADS)

    Kasemann, Simone A.; Meixner, Anette; Erzinger, Jörg; Viramonte, José G.; Alonso, Ricardo N.; Franz, Gerhard

    2004-06-01

    We have measured the boron concentration and isotope composition of regionally expansive borate deposits and geothermal fluids from the Cenozoic geothermal system of the Argentine Puna Plateau in the central Andes. The borate minerals borax, colemanite, hydroboracite, inderite, inyoite, kernite, teruggite, tincalconite, and ulexite span a wide range of δ11B values from -29.5 to -0.3‰, whereas fluids cover a range from -18.3 to 0.7‰. The data from recent coexisting borate minerals and fluids allow for the calculation of the isotope composition of the ancient mineralizing fluids and thus for the constraint of the isotope composition of the source rocks sampled by the fluids. The boron isotope composition of ancient mineralizing fluids appears uniform throughout the section of precipitates at a given locality and similar to values obtained from recent thermal fluids. These findings support models that suggest uniform and stable climatic, magmatic, and tectonic conditions during the past 8 million years in this part of the central Andes. Boron in fluids is derived from different sources, depending on the drainage system and local country rocks. One significant boron source is the Paleozoic basement, which has a whole-rock isotopic composition of δ11B=-8.9±2.2‰ (1 SD); another important boron contribution comes from Neogene-Pleistocene ignimbrites ( δ11B=-3.8±2.8‰, 1 SD). Cenozoic andesites and Mesozoic limestones ( δ11B≤+8‰) provide a potential third boron source.

  9. On Poisson's ratio for metal matrix composite laminates. [aluminum boron composites

    NASA Technical Reports Server (NTRS)

    Herakovich, C. T.; Shuart, M. J.

    1978-01-01

    The definition of Poisson's ratio for nonlinear behavior of metal matrix composite laminates is discussed and experimental results for tensile and compressive loading of five different boron-aluminum laminates are presented. It is shown that there may be considerable difference in the value of Poisson's ratio as defined by a total strain or an incremental strain definition. It is argued that the incremental definition is more appropriate for nonlinear material behavior. Results from a (0) laminate indicate that the incremental definition provides a precursor to failure which is not evident if the total strain definition is used.

  10. A Time-Measurement System Based on Isotopic Ratios.

    SciTech Connect

    Vo, Duc T.; Karpius, P. J.; MacArthur, D. W.; Thron, J. L.

    2007-01-01

    A time-measurement system can be built based on the ratio of gamma-ray peak intensities from two radioactive isotopes. The ideal system would use a parent isotope with a short half-life decaying to a long half-life daughter. The activities of the parent-daughter isotopes would be measured using a gamma-ray detector system. The time can then be determined from the ratio of the activities. The best-known candidate for such a system is the {sup 241}Pu-{sup 241}Am parent-daughter pair. However, this {sup 241}Pu-{sup 241}Am system would require a high-purity germanium detector system and sophisticated software to separate and distinguish between the many gamma-ray peaks produced by the decays of the two isotopes. An alternate system would use two different isotopes, again one with a short half-life and one with a half-life that is long relative to the other. The pair of isotopes {sup 210}Pb and {sup 241}Am (with half-lives of 22 and 432 years, respectively) appears suitable for such a system. This time-measurement system operates by measuring the change in the ratio of the 47-keV peak of {sup 210}Pb to the 60-keV peak of {sup 241}Am. For the system to work reasonably well, the resolution of the detector would need to be such that the two gamma-ray peaks are well separated so that their peak areas can be accurately determined using a simple region-of-interest (ROI) method. A variety of detectors were tested to find a suitable system for this application. The results of these tests are presented here.

  11. NUSIMEP-7: uranium isotope amount ratios in uranium particles.

    PubMed

    Truyens, J; Stefaniak, E A; Aregbe, Y

    2013-11-01

    The Institute for Reference Materials and Measurements (IRMM) has extensive experience in the development of isotopic reference materials and the organization of interlaboratory comparisons (ILC) for nuclear measurements in compliance with the respective international guidelines (ISO Guide 34:2009 and ISO/IEC 17043:2010). The IRMM Nuclear Signatures Interlaboratory Measurement Evaluation Program (NUSIMEP) is an external quality control program with the objective of providing materials for measurements of trace amounts of nuclear materials in environmental matrices. Measurements of the isotopic ratios of the elements uranium and plutonium in small amounts, typical of those found in environmental samples, are required for nuclear safeguards and security, for the control of environmental contamination and for the detection of nuclear proliferation. The measurement results of participants in NUSIMEP are evaluated according to international guidelines in comparison to independent external certified reference values with demonstrated metrological traceability and uncertainty. NUSIMEP-7 focused on measurements of uranium isotope amount ratios in uranium particles aiming to support European Safeguards Directorate General for Energy (DG ENER), the International Atomic Energy Agency's (IAEA) network of analytical laboratories for environmental sampling (NWAL) and laboratories in the field of particle analysis. Each participant was provided two certified test samples: one with single and one with double isotopic enrichment. These NUSIMEP test samples were prepared by controlled hydrolysis of certified uranium hexafluoride in a specially designed aerosol deposition chamber at IRMM. Laboratories participating in NUSIMEP-7 received the test samples of uranium particles on two graphite disks with undisclosed isotopic ratio values n((234)U)/n((238)U), n((235)U)/n((238)U) and n((236)U)/n((238)U). The uranium isotope ratios had to be measured using their routine analytical

  12. Finite mixture models for the computation of isotope ratios in mixed isotopic samples

    NASA Astrophysics Data System (ADS)

    Koffler, Daniel; Laaha, Gregor; Leisch, Friedrich; Kappel, Stefanie; Prohaska, Thomas

    2013-04-01

    Finite mixture models have been used for more than 100 years, but have seen a real boost in popularity over the last two decades due to the tremendous increase in available computing power. The areas of application of mixture models range from biology and medicine to physics, economics and marketing. These models can be applied to data where observations originate from various groups and where group affiliations are not known, as is the case for multiple isotope ratios present in mixed isotopic samples. Recently, the potential of finite mixture models for the computation of 235U/238U isotope ratios from transient signals measured in individual (sub-)µm-sized particles by laser ablation - multi-collector - inductively coupled plasma mass spectrometry (LA-MC-ICPMS) was demonstrated by Kappel et al. [1]. The particles, which were deposited on the same substrate, were certified with respect to their isotopic compositions. Here, we focus on the statistical model and its application to isotope data in ecogeochemistry. Commonly applied evaluation approaches for mixed isotopic samples are time-consuming and are dependent on the judgement of the analyst. Thus, isotopic compositions may be overlooked due to the presence of more dominant constituents. Evaluation using finite mixture models can be accomplished unsupervised and automatically. The models try to fit several linear models (regression lines) to subgroups of data taking the respective slope as estimation for the isotope ratio. The finite mixture models are parameterised by: • The number of different ratios. • Number of points belonging to each ratio-group. • The ratios (i.e. slopes) of each group. Fitting of the parameters is done by maximising the log-likelihood function using an iterative expectation-maximisation (EM) algorithm. In each iteration step, groups of size smaller than a control parameter are dropped; thereby the number of different ratios is determined. The analyst only influences some control

  13. Boron Isotope Constraints on Fluid-Rock Interactions in the Shallow Megathrust at the Japan Trench

    NASA Astrophysics Data System (ADS)

    Ishikawa, T.; Matsuoka, J.; Kameda, J.; Sample, J. C.; Mori, J. J.; Chester, F. M.

    2014-12-01

    IODP Expedition 343 (JFAST) drilled three holes through the plate boundary near the Japan Trench to investigate the cause of very large fault slip during the 2011 Tohoku-Oki earthquake. Interstitial fluids and rocks within and around the plate-boundary fault were recovered from Hole C0019E. Chemical characteristics of these fluids and rocks provide useful information for understanding fluid-related processes that occurred in the shallow megathrust fault zone at the Japan Trench. In this paper, we report concentrations and isotope ratios of boron determined for JFAST fluids and rocks, as well as for sediments from DSDP site 436, which is a nearby input site. Depth profiles of B content and B isotope ratio (δ11B value) for the interstitial fluids show a clear minimum and a maximum, respectively, around the plate boundary fault. Fluids from the vicinity of the fault are characterized by lower B content and higher δ11B value compared with seawater. The B contents and δ11B values of the plate-boundary fault rocks are indistinguishable from those of smectite-rich sediments from DPDP site 436, which is consistent with observations for other trace element compositions. In the systems composed of seawater-like fluid and sediment, both B concentrations and δ11B values in the fluid and solid phases are temperature-sensitive, and higher temperatures result in higher B and lower δ11B in the fluid phase and lower B and lower δ11B in the solid phase. Actually, interstitial fluids from ODP site 808 (Nankai Trough) showed a clear increase and a decrease of B and δ11B, respectively, with increasing depth at temperatures higher than 50 deg. C (You et al., 1995). The ODP site 808 rocks also showed distinct decreases of B and δ11B at the depths with temperatures higher than 100 deg. C (You et al., 1995). The observed B and δ11B characteristics of the JFAST fluids and rocks thus indicate that fluids and rocks within and around the plate-boundary fault have no clear record for

  14. MAGNESIUM ISOTOPE RATIOS IN {omega} CENTAURI RED GIANTS

    SciTech Connect

    Da Costa, G. S.; Norris, John E.; Yong, David

    2013-05-20

    We have used the high-resolution observations obtained at the Anglo-Australian Telescope with Ultra-High Resolution Facility (R {approx} 100,000) and at Gemini-S with b-HROS (R {approx} 150,000) to determine magnesium isotope ratios for seven {omega} Cen red giants that cover a range in iron abundance from [Fe/H] = -1.78 to -0.78 dex, and for two red giants in M4 (NGC 6121). The {omega} Cen stars sample both the ''primordial'' (i.e., O-rich, Na- and Al-poor) and the ''extreme'' (O-depleted, Na- and Al-rich) populations in the cluster. The primordial population stars in both {omega} Cen and M4 show ({sup 25}Mg, {sup 26}Mg)/{sup 24}Mg isotopic ratios that are consistent with those found for the primordial population in other globular clusters with similar [Fe/H] values. The isotopic ratios for the {omega} Cen extreme stars are also consistent with those for extreme population stars in other clusters. The results for the extreme population stars studied indicate that the {sup 26}Mg/{sup 24}Mg ratio is highest at intermediate metallicities ([Fe/H] < -1.4 dex), and for the highest [Al/Fe] values. Further, the relative abundance of {sup 26}Mg in the extreme population stars is notably higher than that of {sup 25}Mg, in contrast to model predictions. The {sup 25}Mg/{sup 24}Mg isotopic ratio in fact does not show any obvious dependence on either [Fe/H] or [Al/Fe] nor, intriguingly, any obvious difference between the primordial and extreme population stars.

  15. Lignin methoxyl hydrogen isotope ratios in a coastal ecosystem

    NASA Astrophysics Data System (ADS)

    Feakins, Sarah J.; Ellsworth, Patricia V.; Sternberg, Leonel da Silveira Lobo

    2013-11-01

    Stable hydrogen isotope ratios of plant lignin methoxyl groups have recently been shown to record the hydrogen isotopic composition of meteoric water. Here we extend this technique towards tracing water source variations across a saltwater to freshwater gradient in a coastal, subtropical forest ecosystem. We measure the hydrogen isotopic composition of xylem water (δDxw) and methoxyl hydrogen (δDmethoxyl) to calculate fractionations for coastal mangrove, buttonwood and hammock tree species in Sugarloaf Key, as well as buttonwoods from Miami, both in Florida, USA. Prior studies of the isotopic composition of cellulose and plant leaf waxes in coastal ecosystems have yielded only a weak correlation to source waters, attributed to leaf water effects. Here we find δDmethoxyl values range from -230‰ to -130‰, across a 40‰ range in δDxw with a regression equation of δDmethoxyl ‰ = 1.8 * δDxw - 178‰ (R2 = 0.48, p < 0.0001, n = 74). This is comparable within error to the earlier published relationship for terrestrial trees which was defined across a much larger 125‰ isotopic range in precipitation. Analytical precision for measurements of δD values of pure CH3I by gas chromatography-pyrolysis-isotope ratio mass spectrometry (GC-P-IRMS) is σ = 6‰ (n = 31), which is considerably better than for CH3I liberated through cleavage with HI from lignin with σ = 18‰ (n = 26). Our results establish that δDmethoxyl can record water sources and salinity incursion in coastal ecosystems, where variations sufficiently exceed method uncertainties (i.e., applications with δD excursions >50‰). For the first time, we also report yields of propyl iodide, which may indicate lignin synthesis of propoxyl groups under salt-stress.

  16. Crystallographic control on the boron isotope paleo-pH proxy

    NASA Astrophysics Data System (ADS)

    Noireaux, J.; Mavromatis, V.; Gaillardet, J.; Schott, J.; Montouillout, V.; Louvat, P.; Rollion-Bard, C.; Neuville, D. R.

    2015-11-01

    When using the boron isotopic composition (δ11B) of marine carbonates as a seawater pH proxy, it is assumed that only the tetrahedral borate ion is incorporated into the growing carbonate crystals and that no boron isotope fractionation occurs during uptake. However, the δ11B of the calcium carbonate from most modern foraminifera shells or corals skeletons is not the same as the δ11B of seawater borate, which depends on pH, an observation commonly attributed to vital effects. In this study, we combined previously published high-field 11B MAS NMR and new δ11B measurements on the same synthetic calcite and aragonite samples precipitated inorganically under controlled environments to avoid vital effects. Our results indicate that the main controlling factors of δ11B are the solution pH and the mineralogy of the precipitated carbonate mineral, whereas the aqueous boron concentration of the solution, CaCO3 precipitation rate and the presence or absence of growth seeds all appear to have negligible influence. In aragonite, the NMR data show that boron coordination is tetrahedral (BO4), in addition, its δ11B is equal to that of aqueous borate, thus confirming the paleo-pH hypothesis. In contrast, both trigonal BO3 and tetrahedral BO4 are present in calcite, and its δ11B values are higher than that of aqueous borate and are less sensitive to solution pH variations compared to δ11B in aragonite. These observations are interpreted in calcite as a reflection of the incorporation of decreasing amounts of boric acid with increasing pH. Moreover, the fraction of BO3 measured by NMR in calcite is higher than that inferred from δ11B which indicates a coordination change from BO4 to BO3 upon boron incorporation in the solid. Overall, this study shows that although the observed differences in δ11B between inorganic and biological aragonite are compatible with a pH increase at calcification sites, the B speciation and isotope composition of biological calcites call for a

  17. Utilizing Isotopic Uranium Ratios in Groundwater Evaluations at FUSRAP Sites

    SciTech Connect

    Frederick, W.T.; Keil, K.G.; Rhodes, M.C.; Peterson, J.M.; MacDonell, M.M.

    2007-07-01

    The U.S. Army Corps of Engineers Buffalo District is evaluating environmental radioactive contamination at several Formerly Utilized Sites Remedial Action Program (FUSRAP) sites throughout New York, Pennsylvania, Ohio, and Indiana. The investigations follow the process defined in the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). Groundwater data from the Niagara Falls Storage Site (NFSS) in Lewiston, New York were evaluated for isotopic uranium ratios, specifically uranium-234 versus uranium-238 (U- 234 and U-238, respectively), and the results were presented at Waste Management 2006. Since uranium naturally occurs in all groundwater, it can be difficult to distinguish where low-concentration impacts from past releases differ from the high end of a site-specific natural background range. In natural groundwater, the ratio of U-234 to U-238 exceeds 1 (unity) due to the alpha particle recoil effect, in which U-234 is preferentially mobilized to groundwater from adjacent rock or soil. This process is very slow and may take hundreds to thousands of years before a measurable increase is seen in the natural isotopic ratio. If site releases are the source of uranium being measured in groundwater, the U-234 to U-238 ratio is commonly closer to 1, which normally reflects FUSRAP-related, uranium-contaminated wastes and soils. This lower ratio occurs because not enough residence time has elapsed since the 1940's and 1950's for the alpha particle recoil effect to have significantly altered the contamination-derived ratio. An evaluation of NFSS-specific and regional groundwater data indicate that an isotopic ratio of 1.2 has been identified as a signature value to help distinguish natural groundwater, which may have a broad background range, from zones impacted by past releases. (authors)

  18. D/H isotope ratios in the global hydrologic cycle

    NASA Astrophysics Data System (ADS)

    Good, Stephen P.; Noone, David; Kurita, Naoyuki; Benetti, Marion; Bowen, Gabriel J.

    2015-06-01

    Deuterium to hydrogen (D/H) ratios in Earth's hydrologic cycle have long served as important tracers of climate processes, yet the global HDO budget remains poorly constrained because of uncertainties in the isotopic compositions of continental evapotranspiration and runoff. Here bias-corrected satellite retrievals of HDO and H2O concentrations from the Tropospheric Emissions Spectrometer are used to estimate the marine atmospheric surface layer HDO vapor pressure deficit, from which we calculate the global flux-weighted average oceanic evaporation isotopic composition as -37.6‰. Using these estimates, combined with D/H ratios in precipitation, global mass balance suggests H isotope compositions for global runoff and terrestrial evapotranspiration of -77.3‰ and -40.0‰, respectively. By resolving the HDO budget, we establish an accurate global baseline for geochemically enabled Earth system models, demonstrate patterns in entrainment of moisture into the marine surface layer, and determine the isotopic composition of continental fluxes critical for global ecohydrologic investigations.

  19. Accurate and Precise Zinc Isotope Ratio Measurements in Urban Aerosols

    NASA Astrophysics Data System (ADS)

    Weiss, D.; Gioia, S. M. C. L.; Coles, B.; Arnold, T.; Babinski, M.

    2009-04-01

    We developed an analytical method and constrained procedural boundary conditions that enable accurate and precise Zn isotope ratio measurements in urban aerosols. We also demonstrate the potential of this new isotope system for air pollutant source tracing. The procedural blank is around 5 ng and significantly lower than published methods due to a tailored ion chromatographic separation. Accurate mass bias correction using external correction with Cu is limited to Zn sample content of approximately 50 ng due to the combined effect of blank contribution of Cu and Zn from the ion exchange procedure and the need to maintain a Cu/Zn ratio of approximately 1. Mass bias is corrected for by applying the common analyte internal standardization method approach. Comparison with other mass bias correction methods demonstrates the accuracy of the method. The average precision of δ66Zn determinations in aerosols is around 0.05 per mil per atomic mass unit. The method was tested on aerosols collected in Sao Paulo City, Brazil. The measurements reveal significant variations in δ66Zn ranging between -0.96 and -0.37 per mil in coarse and between -1.04 and 0.02 per mil in fine particular matter. This variability suggests that Zn isotopic compositions distinguish atmospheric sources. The isotopic light signature suggests traffic as the main source.

  20. Position-specific measurement of oxygen isotope ratios in cellulose: Isotopic exchange during heterotrophic cellulose synthesis

    NASA Astrophysics Data System (ADS)

    Waterhouse, John S.; Cheng, Shuying; Juchelka, Dieter; Loader, Neil J.; McCarroll, Danny; Switsur, V. Roy; Gautam, Lata

    2013-07-01

    We describe the first reported method for the measurement of oxygen isotope ratios at each position in the glucose units of the cellulose molecule. The overall process comprises a series of synthetic organic sequences, by which α-cellulose is hydrolysed to glucose, and oxygen atoms at specific positions in the glucose molecule are removed in samples of benzoic acid for measurement of δ18O. Values of δ18O at specific positions in cellulose are calculated from these δ18O values and the overall δ18O value of the cellulose. We apply the method to determine the degree to which oxygen atoms at each position undergo isotopic exchange with water during heterotrophic cellulose synthesis, such as occurs in the cambium of trees. To do this we extract α-cellulose from wheat seedlings germinated in the dark in aqueous media of differing oxygen isotope ratios. Results indicate that oxygen atoms at positions 5 and 6 (O-5 and O-6 respectively) undergo around 80% exchange with medium water, O-3 undergoes around 50% exchange, and O-2 and O-4 do not undergo isotopic exchange. The results have important implications for extracting palaeoclimatic records from oxygen isotope time series obtained from tree ring cellulose. As O-5 and O-6 undergo significant exchange with medium water during heterotrophic cellulose synthesis, oxygen isotopes at these positions in tree ring cellulose should carry a predominantly trunk (source) water signal. On the other hand, O-2 and O-4 should retain the isotopic signature of leaf water in tree ring cellulose. Our method therefore potentially enables the separate reconstruction of past temperature and humidity data from oxygen isotope ratios of tree ring cellulose - something that has hitherto not been possible. The measured degrees of isotopic exchange are to some extent unexpected and cannot be fully explained using current biochemical mechanisms, suggesting that knowledge of these processes is incomplete.

  1. Thermal conduction mechanisms in isotope-disordered boron nitride and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Savic, Ivana; Mingo, Natalio; Stewart, Derek

    2009-03-01

    We present first principles studies which determine dominant effects limiting the heat conduction in isotope-disordered boron nitride and carbon nanotubes [1]. Using an ab initio atomistic Green's function approach, we demonstrate that localization cannot be observed in the thermal conductivity measurements [1], and that diffusive scattering is the dominant mechanism which reduces the thermal conductivity [2]. We also give concrete predictions of the magnitude of the isotope effect on the thermal conductivities of carbon and boron nitride single-walled nanotubes [2]. We furthermore show that intershell scattering is not the main limiting mechanism for the heat flow through multi-walled boron nitride nanotubes [1], and that heat conduction restricted to a few shells leads to the low thermal conductivities experimentally measured [1]. We consequently successfully compare the results of our calculations [3] with the experimental measurements [1]. [1] C. W. Chang, A. M. Fennimore, A. Afanasiev, D. Okawa, T. Ikuno, H. Garcia, D. Li, A. Majumdar, A. Zettl, Phys. Rev. Lett. 2006, 97, 085901. [2] I. Savic, N. Mingo, D. A. Stewart, Phys. Rev. Lett. 2008, 101, 165502. [3] I. Savic, D. A. Stewart, N. Mingo, to be published.

  2. Development of a Micropyrolyzer for Enhanced Isotope Ratio Measurement

    SciTech Connect

    Hu, Jianli; Dagle, Robert A.; Johnson, Bradley R.; Kreuzer, Helen W.; Gaspar, Daniel J.; Roberts, Benjamin Q.; Alexander, M. L.

    2008-11-19

    This paper presents design, fabrication and testing of a micro scale reactor for the pyrolysis of organic compounds. The reactor system described here is suitable for use in enhanced isotope ratio measurement in a continuous flow mode. A characteristic of such a system is it can be utilized to pyrolyze organic compounds with sample size 20-50 times smaller than conventional. Results have shown that organic compounds, such as 1-butanol, ethanol, and ethanol amine, can be fully decomposed to desired products CO and H2, at temperature of 1200oC, which is 200oC lower than conventionally reported. Undesired products methane and CO2 are eliminated in the pyrolysis process. The proof-of-concept experimental results clearly demonstrate that the micro pyrolyzer can be readily integrated with isotope ratio mass spectrometer (IRMS) to differentiate between different sources of the same materials.

  3. Boron isotope variations in geothermal systems on Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Purnomo, Budi Joko; Pichler, Thomas; You, Chen-Feng

    2016-02-01

    This paper presents δ11B data for hot springs, hot acid crater lakes, geothermal brines and a steam vent from Java, Indonesia. The processes that produce a large range of the δ11B values were investigated, including the possible input of seawater as well as the contrast δ11B compositions of acid sulfate and acid chloride crater lakes. The δ11B values of hot springs ranged from - 2.4 to + 28.7‰ and acid crater lakes ranged from + 0.6 to + 34.9‰. The δ11B and Cl/B values in waters from the Parangtritis and Krakal geothermal systems confirmed seawater input. The δ11B values of acid sulfate crater lakes ranged from + 5.5 to + 34.9‰ and were higher than the δ11B of + 0.6‰ of the acid chloride crater lake. The heavier δ11B in the acid sulfate crater lakes was caused by a combination of vapor phase addition and further enrichment due to evaporation and B adsorption onto clay minerals. In contrast, the light δ11B of the acid chloride crater lake was a result of acid water-rocks interaction. The correlations of δ11B composition with δ18O and δ2H indicated that the B isotope corresponded to their groundwater mixing sources, but not for J21 (Segaran) and J48 (Cikundul) that underwent 11B isotope enrichment by B adsorption into minerals.

  4. Boron isotopes in deep-sea bamboo corals: pH, vital effects and environmental factors

    NASA Astrophysics Data System (ADS)

    Farmer, J. R.; Hoenisch, B.; Hill, T. M.; LaVigne, M.; Robinson, L. F.

    2011-12-01

    Deep-sea corals are an intriguing archive for reconstructing deep-ocean environmental conditions, in particular with regard to anthropogenic climate change and ocean acidification. However, previous research in deep-sea aragonitic scleractinian corals observed heterogeneity in their geochemical composition that greatly exceeded the magnitude of variability expected from environmental conditions. Here we investigate the boron isotopic composition (δ11B) and B/Ca ratios of the calcitic gorgonian bamboo coral Keratoisis sp. (family Isididae) as potential indicators of seawater-pH at depth. Initial results from a specimen collected alive on Little Joe Seamount, CA (2136m depth) show that the δ11B of surface calcite is within the expected range of aqueous borate-δ11B, based on seawater pH, temperature, pressure and salinity. A radial cross section through an ~5 cm thick internode reveals largely homogeneous δ11B. However, in the centermost 0.5 cm of calcite growth adjacent to the axial core of the coral, a ~2% increase in δ11B corresponds with disequilibrium depletions in δ13C and δ18O, consistent with hypotheses for different growth modes of central calcite perhaps as a result of active calcite deposition along the axial core. Aside from this central region, the geochemical homogeneity and good agreement between coral surface δ11B and seawater borate δ11B suggests that bamboo corals may record deep-ocean carbon chemistry and thus pH. The cosmopolitan distribution of Keratoisis sp. in both living and fossil deep-sea coral communities thus potentially presents the opportunity to reconstruct recent and Holocene deep-water pH at high resolution.

  5. Daily Variation of Isotope Ratios in Mars Atmospheric Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Livengood, Timothy A.; Kostiuk, Theodor; Kolasinski, John R.; Hewagama, Tilak; Henning, Wade G.; Sornig, Manuela; Stangier, Tobias; Krause, Pia; Sonnabend, Guido; Mahaffy, Paul R.

    2014-11-01

    The atmosphere of Mars has been shown by ground based high-resolution infrared spectroscopy and in situ measurements with the Phoenix lander and Mars Science Laboratory Curiosity rover to be enriched in C and O heavy isotopes, consistent with preferential loss of light isotopes in eroding Mars’ primordial atmosphere. The relative abundance of heavy isotopes, combined with contemporary measurements of loss rates to be obtained with MAVEN, will enable estimating the primordial atmospheric inventory on Mars. IR spectroscopy of Mars collected in May 2012 as well as in March and May of 2014 from the NASA IRTF has resolved transitions of all three singly-substituted minor isotopologues of carbon dioxide in addition to the normal isotope, enabling remote measurements of all the carbon and oxygen isotope ratios as a function of latitude, longitude, and time of day. Earlier measurements obtained in October 2007 demonstrated that the relative abundance of O-18 increased linearly with increasing surface temperature over a relatively warm early-afternoon temperature range, but did not extend far enough to inspect the effect of late-afternoon cooling. These results imply that isotopically enriched gas is sequestered overnight when surface temperature is minimum and desorbs through the course of the day as temperature increases. Current spectroscopic constants indicate that the peak isotopic enrichment could be significantly greater than what has been measured in situ, apparently due to sampling the atmosphere at different time of day and surface temperature. The observing runs in 2012 and 2014 measured O-18 enrichment at several local times in both morning and afternoon sectors as well as at the subsolar, equatorial, and anti-subsolar latitudes. The two runs in 2014 have additionally observed O-17 and C-13 transitions in the morning sector, from local dawn to noon. These observations include a limited sampling of measurements over Gale Crater, which can be compared with

  6. Laser annealing of neutron irradiated boron-10 isotope doped diamond

    SciTech Connect

    Jagannadham, K.; Butler, J. E.

    2011-01-01

    10B isotope doped p-type diamond epilayer grown by chemical vapor deposition on (110) oriented type IIa diamond single crystal substrate was subjected to neutron transmutation at a fluence of 2.4 9 1020 thermal and 2.4 9 1020 fast neutrons. After neutron irradiation, the epilayer and the diamond substrate were laser annealed using Nd YAG laser irradiation with wave length, 266 nm and energy, 150 mJ per pulse. The neutron irradiated diamond epilayer and the substrate were characterized before and after laser annealing using different techniques. The characterization techniques include optical microscopy, secondary ion mass spectrometry, X-ray diffraction, Raman, photoluminescence and Fourier Transform Infrared spectroscopy, and electrical sheet conductance measurement. The results indicate that the structure of the irradiation induced amorphous epilayer changes to disordered graphite upon laser annealing. The irradiated substrate retains the (110) crystalline structure with neutron irradiation induced defects.

  7. Calibration of the boron isotope proxy in the planktonic foraminifera Globigerinoides ruber for use in palaeo-CO2 reconstruction

    NASA Astrophysics Data System (ADS)

    Henehan, Michael J.; Rae, James W. B.; Foster, Gavin L.; Erez, Jonathan; Prentice, Katherine C.; Kucera, Michal; Bostock, Helen C.; Martínez-Botí, Miguel A.; Milton, J. Andy; Wilson, Paul A.; Marshall, Brittney J.; Elliott, Tim

    2013-02-01

    The boron isotope-pH proxy, applied to mixed-layer planktic foraminifera, has great potential for estimating past CO2 levels, which in turn is crucial to advance our understanding of how this greenhouse gas influences Earth's climate. Previous culture experiments have shown that, although the boron isotopic compositions of various planktic foraminifera are pH dependent, they do not agree with the aqueous geochemical basis of the proxy. Here we outline the results of culture experiments on Globigerinoides ruber (white) across a range of pH (∼7.5-8.2) and analysed via multicollector inductively-coupled plasma mass spectrometry (MC-ICPMS), and compare these data to core-top and sediment-trap samples to derive a robust new species-specific boron isotope-pH calibration. Consistent with earlier culture studies, we show a reduced pH dependency of the boron isotopic composition of symbiont-bearing planktonic foraminifera compared to borate ion in seawater. We also present evidence for a size fraction effect in the δ11B of G. ruber. Finally, we reconstruct atmospheric CO2 concentrations over the last deglacial using our new calibration at two equatorial sites, ODP Site 999A and Site GeoB1523-1. These data provide further grounding for the application of the boron isotope-pH proxy in reconstructions of past atmospheric CO2 levels.

  8. Measurement of Absolute Carbon Isotope Ratios: Mechanisms and Implications

    NASA Astrophysics Data System (ADS)

    Vogel, J. S.; Giacomo, J. A.; Dueker, S. R.

    2012-12-01

    An accelerator mass spectrometer (AMS) produced absolute isotope ratio measurements for 14C/13C as tested against >500 samples of NIST SRM-4990-C (OxII 14C standard) to an accuracy of 2.2±0.6‰ over a period of one year with measurements made to 1% counting statistics. The spectrometer is not maximized for 13C/12C, but measured ∂13C to 0.4±0.1‰ accuracy, with known methods for improvement. An AMS produces elemental anions from a sputter ion source and includes a charge-changing collision in a gas cell to isolate the rare 14C from the common isotopes and molecular isobars. Both these physical processes have been modeled to determine the parameters providing such absolute measures. Neutral resonant ionization in a cesium plasma produces mass-independent ionization, while velocity dependent charge-state distributions in gas collisions produce relative ion beam intensities that are linear in mass at specific collision energies. The mechanisms are not specific to carbon isotopes, but stand alone absolute IRMS (AIR-MS) instruments have not yet been made. Aside from the obvious applications in metrology, AIR-MS is particularly valuable in coupled separatory MS because no internal or external standards are required. Sample definition processes can be compared, even if no exact standard reference sample exists. Isotope dilution measurements do not require standards matching the dilution end-points and can be made over an extended, even extrapolated, range.

  9. Exploring antimony isotope ratio variations for provenancing purposes

    NASA Astrophysics Data System (ADS)

    Lobo, L.; Degryse, P.; Vanhaecke, F.

    2012-04-01

    Production sites and trade routes of Roman glass have received much attention over the past decade. It is assumed that raw glass was produced in primary workshops near the raw material sources used, to be transported to secondary glass houses. Colourless glass was a particularly prestigious material in this process, difficult to make. It has been looked at from the perspective of the provenance of its sand and flux, but rarely from the perspective of the origin of the decolourizing material. In effect, for the production of early Roman colourless glass, antimony was used, deliberately added under the form of Sb-bearing minerals. Isotopic analysis of Sb ores could help identify the origin of the decolorizing agent present in Roman glasses and, consequently, to reconstruct how such material was traded and transported, and how this can be integrated in the network of primary and secondary glass producers. In this work, variations in the isotopic composition of Sb in different ore sources (stibnites) are explored using multi-collector ICP - mass spectrometry. A new method is proposed, where Sb is directly analysed for its isotopic composition using MC-ICP-MS after chromatographic isolation of the target element from a sample digest. The isotopic composition of the selected materials shows variations up to 6 ?-units relative to an antimony standard solution. Indium was used as internal standard for correction for instrumental mass discrimination and an external precision for the 123Sb/121Sb ratio of 0.01% RSD was obtained

  10. TOWARD A UNIQUE NITROGEN ISOTOPIC RATIO IN COMETARY ICES

    SciTech Connect

    Rousselot, Philippe; Cordier, Daniel; Mousis, Olivier; Pirali, Olivier; Vervloet, Michel; Martin-Drumel, Marie-Aline; Gruet, Sébastien; Jehin, Emmanuël; Hutsemékers, Damien; Manfroid, Jean; Arpigny, Claude; Decock, Alice

    2014-01-10

    Determination of the nitrogen isotopic ratios in different bodies of the solar system provides important information regarding the solar system's origin. We unambiguously identified emission lines in comets due to the {sup 15}NH{sub 2} radical produced by the photodissociation of {sup 15}NH{sub 3}. Analysis of our data has permitted us to measure the {sup 14}N/{sup 15}N isotopic ratio in comets for a molecule carrying the amine (-NH) functional group. This ratio, within the error, appears similar to that measured in comets in the HCN molecule and the CN radical, and lower than the protosolar value, suggesting that N{sub 2} and NH{sub 3} result from the separation of nitrogen into two distinct reservoirs in the solar nebula. This ratio also appears similar to that measured in Titan's atmospheric N{sub 2}, supporting the hypothesis that, if the latter is representative of its primordial value in NH{sub 3}, these bodies were assembled from building blocks sharing a common formation location.

  11. Detailed Distribution of the Helium Isotope Ratios in Northeastern Japan

    NASA Astrophysics Data System (ADS)

    Horiguchi, K.; Ueki, S.; Sano, Y.; Takahata, N.; Hasegawa, A.

    2007-12-01

    The geographical distribution of helium isotope ratios (3He/4He ratios) is characterized by high values of 4 to 8RA (where RA is the atmospheric 3He/4He ratio of 1.39×10-6) along the volcanic front and in the back-arc region at Tohoku district, northeastern Japan. In contrast forearc region shows low values less than 1RA. On the other hand, there is no clear contrast of the 3He/4He ratios except at the central region (e.g., Sano and Wakita, 1985). We perform the helium isotope ratio analysis in northeastern Japan, and around the source region of the Niigataken Chuetsu-oki Earthquake in 2007 (M6.8) where 3He/4He ratios data were reported. We have collected 41 samples of gases from hot springs, mineral springs, and deep wells, distributing mainly in the forearc region at Tohoku district. In addition, we also collected 19 samples of gases from hot springs, volcanoes and natural gas fields around the source region of the Niigataken Chuetsu-oki Earthquake in 2007. We measured 3He/4He ratios by noble gas mass spectrometers (Helix and VG5400) of Ocean Research Institute (ORI), the University of Tokyo. The 4He/20Ne were measured by a quadruple mass spectrometer to evaluate air contamination in the samples. δ13C (CO2) values were measured by using a mass spectrometer (DELTA plus XP) of ORI. Main features of our results for Tohoku region are as follows: 1) The 3He/4He ratios in the forearc region are less than 1RA. 2) The 3He/4He ratios vary along the volcanic front. In Miyagi prefecture [38-39N], the ratios range from 2 to 5 RA. On the other hand, the ratios are less than 1RA in and around the southern boundary of Iwate and Akita prefectures [39-39.5N]. The distribution of 3He/4He ratios in Niigata plans to be discussed by comparing with the well-studied seismotectonics and the structure of the crust and upper mantle.

  12. Combining boron isotopes and carbamazepine to monitor artificial recharge (southern Mediterranean)

    NASA Astrophysics Data System (ADS)

    Cary, Lise; Guerrot, Catherine; Casanova, Joël

    2014-05-01

    The groundwater resources of coastal areas are highly vulnerable, being located either in complex hydrogeological structures or in local shallow aquifers where water stress and salt water intrusion occur under the multiple constraints governed by increasing anthropogenic pressures and climatic conditions. Yet, recent integrated water resource planning often relies on alternative water supplies. In order to limit seawater intrusion in an agricultural overexploited watershed and to ensure water availability, managed aquifer recharge with treated wastewater was settled in the Korba aquifer on the east coast of Tunisia. Water quality monitoring was implemented in order to determine the different system components and to trace the effectiveness of the artificial recharge. Groundwater samples taken from recharge control piezometers and surrounding farm wells were analyzed for their chemical contents, for their boron isotopes, a proven tracer of groundwater salinization and domestic sewage, and their carbamazepine content, an anti-epileptic known to pass through wastewater treatment and so recognized as a pertinent tracer of wastewater contamination. The aquifer system is constituted by the superficial and shallow Plio-Quaternary formations and by the deeper Miocene units which constitute its basement. Marine Pliocene sediments display interbedded sandstone-sand-marl topped with variably clayey sandstone. Quaternary deposits are mainly made of fossiliferous carbonated sandstones. The system equilibrium was permanently disturbed by the different temporal dynamics of continuous processes such as cation exchange, and by threshold processes linked to oxidation-reductive conditions. The boron isotopic compositions of groundwaters displayed a significant variability (10 - 45 ) and significantly shifted back-and-forth due to mixing with end-members of various origins. Under the variable contribution of meteoric recharge, the Plio-Quaternary groundwater was subject to seawater

  13. Isotope shifts in beryllium-, boron-, carbon-, and nitrogen-like ions from relativistic configuration interaction calculations

    SciTech Connect

    Nazé, C.; Verdebout, S.; Godefroid, M.

    2014-09-15

    Energy levels, normal and specific mass shift parameters as well as electronic densities at the nucleus are reported for numerous states along the beryllium, boron, carbon, and nitrogen isoelectronic sequences. Combined with nuclear data, these electronic parameters can be used to determine values of level and transition isotope shifts. The calculation of the electronic parameters is done using first-order perturbation theory with relativistic configuration interaction wavefunctions that account for valence, core–valence, and core–core correlation effects as zero-order functions. Results are compared with experimental and other theoretical values, when available.

  14. Utilizing Isotopic Uranium Ratios in Groundwater Evaluations at NFSS

    SciTech Connect

    Rhodes, M.C.; Keil, K.G.; Frederick, W.T.; Papura, T.R.; Leithner, J.S.; Peterson, J.M.; MacDonell, M.M.

    2006-07-01

    The U.S. Army Corps of Engineers (USACE) Buffalo District is currently evaluating environmental contamination at the Niagara Falls Storage Site (NFSS) under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) as part of its Formerly Utilized Sites Remedial Action Program (FUSRAP). The NFSS is located in the Town of Lewiston in western New York and has been used to store uranium-contaminated materials since 1944. Most of the radioactive materials are currently contained in an on-site structure, but past contamination remains in soil and groundwater. As a naturally occurring radionuclide, uranium is present in all groundwater. Because contamination levels at the site are quite low, it can be difficult to distinguish zones that have been impacted by the past releases from those at the high end of the natural background range. The differences in the isotopic ratio of uranium-234 (U-234) to uranium-238 (U-238) between natural groundwater systems and affected areas are being used in an innovative way to better define the nature and extent of groundwater contamination at NFSS. In natural groundwater, the ratio of U-234 to U-238 exceeds 1 due to the alpha particle recoil effect, in which U-234 is preferentially mobilized to groundwater from adjacent rock or soil. This process is very slow, and it can be hundreds to thousands of years before a measurable impact is seen in the isotopic ratio. Thus, as a result of the recoil effect, the ratio of U-234 to U-238 will be higher in natural groundwater than in contaminated groundwater. This means that if site releases were the source of the uranium being measured in groundwater at NFSS, the ratio of U-234 to U-238 would be expected to be very close to 1 (the same ratio that exists in wastes and soil at the site), because not enough time has elapsed for the alpha particle recoil effect to have significantly altered that ratio. From an evaluation of site and regional groundwater data, an isotopic ratio

  15. Protein stable isotope fingerprinting: multidimensional protein chromatography coupled to stable isotope-ratio mass spectrometry.

    PubMed

    Mohr, Wiebke; Tang, Tiantian; Sattin, Sarah R; Bovee, Roderick J; Pearson, Ann

    2014-09-01

    Protein stable isotope fingerprinting (P-SIF) is a method to measure the carbon isotope ratios of whole proteins separated from complex mixtures, including cultures and environmental samples. The goal of P-SIF is to expose the links between taxonomic identity and metabolic function in microbial ecosystems. To accomplish this, two dimensions of chromatography are used in sequence to resolve a sample containing ca. 5-10 mg of mixed proteins into 960 fractions. Each fraction then is split in two aliquots: The first is digested with trypsin for peptide sequencing, while the second has its ratio of (13)C/(12)C (value of δ(13)C) measured in triplicate using an isotope-ratio mass spectrometer interfaced with a spooling wire microcombustion device. Data from cultured species show that bacteria have a narrow distribution of protein δ(13)C values within individual taxa (±0.7-1.2‰, 1σ). This is moderately larger than the mean precision of the triplicate isotope measurements (±0.5‰, 1σ) and may reflect heterogeneous distribution of (13)C among the amino acids. When cells from different species are mixed together prior to protein extraction and separation, the results can predict accurately (to within ±1σ) the δ(13)C values of the original taxa. The number of data points required for this endmember prediction is ≥20/taxon, yielding a theoretical resolution of ca. 10 taxonomic units/sample. Such resolution should be useful to determine the overall trophic breadth of mixed microbial ecosystems. Although we utilize P-SIF to measure natural isotope ratios, it also could be combined with experiments that incorporate stable isotope labeling. PMID:25121924

  16. Ab initio prediction of equilibrium boron isotope fractionation between minerals and aqueous fluids at high P and T

    NASA Astrophysics Data System (ADS)

    Kowalski, Piotr M.; Wunder, Bernd; Jahn, Sandro

    2013-01-01

    Over the last decade experimental studies have shown a large B isotope fractionation between materials carrying boron incorporated in trigonally and tetrahedrally coordinated sites, but the mechanisms responsible for producing the observed isotopic signatures are poorly known. In order to understand the boron isotope fractionation processes and to obtain a better interpretation of the experimental data and isotopic signatures observed in natural samples, we use first principles calculations based on density functional theory in conjunction with ab initio molecular dynamics and a new pseudofrequency analysis method to investigate the B isotope fractionation between B-bearing minerals (such as tourmaline and micas) and aqueous fluids containing HBO and HBO4- species. We confirm the experimental finding that the isotope fractionation is mainly driven by the coordination of the fractionating boron atoms and have found in addition that the strength of the produced isotopic signature is strongly correlated with the Bsbnd O bond length. We also demonstrate the ability of our computational scheme to predict the isotopic signatures of fluids at extreme pressures by showing the consistency of computed pressure-dependent β factors with the measured pressure shifts of the Bsbnd O vibrational frequencies of HBO and HBO4- in aqueous fluid. The comparison of the predicted with measured fractionation factors between boromuscovite and neutral fluid confirms the existence of the admixture of tetrahedral boron species in neutral fluid at high P and T found experimentally, which also explains the inconsistency between the various measurements on the tourmaline-mica system reported in the literature. Our investigation shows that the calculated equilibrium isotope fractionation factors have an accuracy comparable to the experiments and give unique and valuable insight into the processes governing the isotope fractionation mechanisms on the atomic scale.

  17. Cesium Isotope Ratios as Indicators of Nuclear Power Plant Operations

    SciTech Connect

    Darin Snyder; James Delmore; Troy Tranter; Nick Mann; Michael Abbott; John Olson

    2011-11-01

    There are multiple paths by which radioactive cesium can reach the effluent from reactor operations. The radioactive 135Cs/137Cs ratios are controlled by these paths. In an effort to better understand the origin of this radiation, these 135Cs/137Cs ratios in effluents from three power reactor sites have been measured in offsite samples. These ratios are different from global fallout by up to six fold and as such cannot have a significant component from this source. A cesium ratio for a sample collected outside of the plant boundary provides integration over the operating life of the reactor. A sample collected inside the plant at any given time can be much different from this lifetime ratio. The measured cesium ratios vary significantly for the three reactors and indicate that the multiple paths have widely varying levels of contributions. There are too many ways these isotopes can fractionate to be useful for quantitative evaluations of operating parameters in an offsite sample, although it may be possible to obtain limited qualitative information for an onsite sample.

  18. Cesium isotope ratios as indicators of nuclear power plant operations.

    PubMed

    Delmore, James E; Snyder, Darin C; Tranter, Troy; Mann, Nick R

    2011-11-01

    There are multiple paths by which radioactive cesium can reach the effluent from reactor operations. The radioactive (135)Cs/(137)Cs ratios are controlled by these paths. In an effort to better understand the origin of this radiation, these (135)Cs/(137)Cs ratios in effluents from three power reactor sites have been measured in offsite samples. These ratios are different from global fallout by up to six fold and as such cannot have a significant component from this source. A cesium ratio for a sample collected outside of the plant boundary provides integration over the operating life of the reactor. A sample collected inside the plant at any given time can be much different from this lifetime ratio. The measured cesium ratios vary significantly for the three reactors and indicate that the multiple paths have widely varying levels of contributions. There are too many ways these isotopes can fractionate to be useful for quantitative evaluations of operating parameters in an offsite sample, although it may be possible to obtain limited qualitative information for an onsite sample. PMID:21816522

  19. Potential uses of lead isotope ratios in gunshot cases.

    PubMed

    Keisch, B; Callahan, R C

    1978-05-01

    The determination of lead isotope ratios in 14 bullets, and in material taken from 9 hand swabs and 5 primers shows that there are potentially valuable forensic uses for such a method. While a more complete study is required, this method could possibly be used to prove (or disprove) relatiohships between bullets and manufacturers, weapons, or persons firing the weapons. Sample size requirements (1 microgram or less) are such that damaged or fragmented bullets, or minute particles therefrom, may be used for the required analyses. An experiment showed that gunshot residue from a test-fired weapon was detectable even after washing the hands. PMID:649545

  20. Carbon isotope ratios and isotopic correlations between components in fruit juices

    NASA Astrophysics Data System (ADS)

    Wierzchnicki, Ryszard

    2013-04-01

    Nowadays food products are defined by geographical origin, method of production and by some regulations concerning terms of their authenticity. Important data for confirm the authenticity of product are providing by isotopic methods of food control. The method checks crucial criteria which characterize the authenticity of inspected product. The European Union Regulations clearly show the tendency for application of the isotopic methods for food authenticity control (wine, honey, juice). The aim of the legislation steps is the protection of European market from possibility of the commercial frauds. Method of isotope ratio mass spectrometry is very effective tool for the use distinguishably the food products of various geographical origin. The basic problem for identification of the sample origin is the lack of databases of isotopic composition of components and information about the correlations of the data. The subject of the work was study the isotopic correlations existing between components of fruits. The chemical and instrumental methods of separation: water, sugars, organic acids and pulp from fruit were implemented. IRMS technique was used to measure isotopic composition of samples. The final results for original samples of fruits (apple, strawberry etc.) will be presented and discussed. Acknowledgement: This work was supported by the Polish Ministry of Science and Higher Education under grant NR12-0043-10/2010.

  1. Direct measurement of the boron isotope fractionation factor: Reducing the uncertainty in reconstructing ocean paleo-pH

    NASA Astrophysics Data System (ADS)

    Nir, Oded; Vengosh, Avner; Harkness, Jennifer S.; Dwyer, Gary S.; Lahav, Ori

    2015-03-01

    The boron isotopic composition of calcium carbonate skeletons is a promising proxy method for reconstructing paleo-ocean pH and atmospheric CO2 from the geological record. Although the boron isotope methodology has been used extensively over the past two decades to determine ancient ocean-pH, the actual value of the boron isotope fractionation factor (εB) between the two main dissolved boron species, 11B(OH)3 and 10B(OH)-4, has remained uncertain. Initially, εB values were theoretically computed from vibrational frequencies of boron species, resulting in a value of ∼ 19 ‰. Later, spectrophotometric pH measurements on artificial seawater suggested a higher value of ∼ 27 ‰. A few independent theoretical models also pointed to a higher εB value. Here we provide, for the first time, an independent empirical fractionation factor (εB = 26.0 ± 1.0 ‰ ; 25 °C), determined by direct measurements of B(OH)3 in seawater and other solutions. Boric acid was isolated by preferential passage through a reverse osmosis membrane under controlled pH conditions. We further demonstrate that applying the Pitzer ion-interaction approach, combined with ion-pairing calculations, results in a more accurate determination of species distribution in aquatic solutions of different chemical composition, relative to the traditional two-species boron-system approach. We show that using the revised approach reduces both the error in simulating ancient atmospheric CO2 (by up to 21%) and the overall uncertainty of applying boron isotopes for paleo-pH reconstruction. Combined, this revised methodology lays the foundation for a more accurate determination of ocean paleo-pH through time.

  2. Isotopic Ratio Outlier Analysis Global Metabolomics of Caenorhabditis elegans

    PubMed Central

    Szewc, Mark A.; Garrett, Timothy; Menger, Robert F.; Yost, Richard A.; Beecher, Chris; Edison, Arthur S.

    2014-01-01

    We demonstrate the global metabolic analysis of Caenorhabditis elegans stress responses using a mass spectrometry-based technique called Isotopic Ratio Outlier Analysis (IROA). In an IROA protocol, control and experimental samples are isotopically labeled with 95% and 5% 13C, and the two sample populations are mixed together for uniform extraction, sample preparation, and LC-MS analysis. This labeling strategy provides several advantages over conventional approaches: 1) compounds arising from biosynthesis are easily distinguished from artifacts, 2) errors from sample extraction and preparation are minimized because the control and experiment are combined into a single sample, 3) measurement of both the molecular weight and the exact number of carbon atoms in each molecule provides extremely accurate molecular formulae, and 4) relative concentrations of all metabolites are easily determined. A heat shock perturbation was conducted on C. elegans to demonstrate this approach. We identified many compounds that significantly changed upon heat shock, including several from the purine metabolism pathway, which we use to demonstrate the approach. The metabolomic response information by IROA may be interpreted in the context of a wealth of genetic and proteomic information available for C. elegans. Furthermore, the IROA protocol can be applied to any organism that can be isotopically labeled, making it a powerful new tool in a global metabolomics pipeline. PMID:24274725

  3. Crystallization kinetics of rhyolitic melts using oxygen isotope ratios

    NASA Astrophysics Data System (ADS)

    Befus, Kenneth S.

    2016-01-01

    Crystals provide the means to understand igneous systems, but natural constraints on crystallization kinetics are rare because thermal conditions and crystallization timescales are typically unknown. Oxygen isotope ratios in quartz and alkali feldspar crystals in spherulites provide a natural record of the temperature interval of crystallization and crystal growth rates in rhyolitic melts. Oxygen isotope compositions in both phases change progressively with position from the spherulite core to rim. Quartz δ18O increases from 5.0 ± 0.3‰ in the core to 5.6 ± 0.3‰ at the rims, whereas alkali feldspar decreases from 3.7 ± 0.4‰ in the core to 2.7 ± 0.9‰ at the rims. Fractionation therefore increases from 1.3 ± 0.7‰ in the cores to 2.9 ± 1.1‰ at the rims. Oxygen isotope thermometry tracks crystallization temperature with position. Spherulites nucleate at 578 ± 160°C and continue to grow until 301 ± 88°C. The in situ analyses demonstrate that spherulites self-contain a record of their thermal history and that of the host lava.

  4. Isotope ratio monitoring of small molecules and macromolecules by liquid chromatography coupled to isotope ratio mass spectrometry.

    PubMed

    Godin, Jean-Philippe; Hau, Jörg; Fay, Laurent-Bernard; Hopfgartner, Gérard

    2005-01-01

    In the field of isotope ratio mass spectrometry, the introduction of an interface allowing the connection of liquid chromatography (LC) and isotope ratio mass spectrometry (IRMS) has opened a range of new perspectives. The LC interface is based on a chemical oxidation, producing CO2 from organic molecules. While first results were obtained from the analysis of low molecular weight compounds, the application of compound-specific isotope analysis by irm-LC/MS to other molecules, in particular biomolecules, is presented here. The influence of the LC flow rate on the CO2 signal and on the observed delta13C values is demonstrated. The limits of quantification for angiotensin III and for leucine were 100 and 38 pmol, respectively, with a standard deviation of the delta13C values better than 0.4 per thousand. Also, accuracy and precision of delta13C values for elemental analyser-IRMS and flow injection analysis-IRMS (FIA-LC/MS) were compared. For compounds with molecular weights ranging from 131 to 66,390 Da, precision was better than 0.3 per thousand, and accuracy varied from 0.1 to 0.7 per thousand. In a second part of the work, a two-dimensional (2D)-LC method for the separation of 15 underivatised amino acids is demonstrated; the precision of delta13C values for several amino acids by irm-LC/MS was better than 0.3 per thousand at natural abundance. For labelled mixtures, the coefficient of variation was between 1% at 0.07 atom % excess (APE) for threonine and alanine, and around 10% at 0.03 APE for valine and phenylalanine. The application of irm-LC/MS to the determination of the isotopic enrichment of 13C-threonine in an extract of rat colon mucosa demonstrated a precision of 0.5 per thousand, or 0.001 atom %. PMID:16124031

  5. Oxygen-18 Carbon Dioxide Isotope Ratio in Mars Atmosphere

    NASA Astrophysics Data System (ADS)

    Kostiuk, T.; Livengood, T. A.; Hewagama, T.; Smith, R.; Fast, K. E.; Annen, J.; Sonnabend, G.; Sornig, M.

    2012-09-01

    The determination of isotopic ratios on Mars is important to the study of atmospheric evolution [1]. The relative abundance of isotopes of CO2 provides insight into the loss of Mars' primordial atmosphere. Isotopic ratios also provide markers in the study of geochemistry of Mars meteorites and future returned samples formed in equilibrium with ambient atmosphere, and are probes of biogenic and abiotic chemistry, which differ in isotope fractionation. Due to its lesser gravity and relatively thin residual atmosphere, Mars' atmosphere should be enriched in heavy isotopes [1]. However Viking [2] results indicated an Earth-like singly substituted oxygen-18 CO2 isotopic ratio, 18OCO/OCO, with δ18O = 0±50‰ relative to Vienna Standard Mean Ocean Water (VSMOW). By comparison, isotopic ratios in Earth atmospheric CO2 are not uniquely defined due to seasonal and biotic variability, but have a range 0-41‰ relative to VSMOW [3, 4]. Phoenix lander TEGA [3] measurements found a modest enrichment of δ18O = 31.0±5.7‰. Only the Viking and Phoenix landers have carried a mass spectrometer to Mars, so far, until the arrival of Mars Science Laboratory in August 2012. Using ground-based spectroscopic techniques Krasnopolsky et al. [5] also found modest enrichment δ18O = 18±18‰. We present results from fully resolved spectroscopic measurements near 10.6 μm of both the normal and singly substituted oxygen- 18 CO2 lines, taken with the Goddard Space Flight Center Heterodyne Instrument for Planetary Winds And Composition (HIPWAC) at the NASA Infrared Telescope Facility on Mauna Kea, Hawaii. Measurements with spectral resolving power λ/Δλ=107 were obtained in October 2007 with an instantaneous field-of-view on the planet of ~1 arcsec, at the locations shown in Fig. 1 as open squares. The solid and broken line tracks show Mars SPICAM measurements of ozone corresponding to ozone measurements also obtained with HIPWAC and shown as hatched and solid regions [6]. Figure 1

  6. Carbon isotope ratios and impurities in diamonds from Southern Africa

    NASA Astrophysics Data System (ADS)

    Kidane, Abiel; Koch-Müller, Monika; Morales, Luiz; Wiedenbeck, Michael; De Wit, Maarten

    2015-04-01

    We are investigating the sources of diamonds from southern Africa by studying both their carbon isotopic composition and chemical impurities. Our samples include macro-sized diamonds from River Ranch kimberlite in Zimbabwe and the Helam and Klipspringer kimberlitic deposits from South Africa, as well as micro-sized diamonds from Klipspringer and Premier kimberlites in South Africa. We have characterized the samples for their structurally bounded nitrogen, hydrogen and platelets defect using a Fourier Transmission Infrared Spectroscopy (FTIR). Using the DiaMap routine, open source software (Howell et al., 2012), IR spectra were deconvulated and quantified for their nitrogen (A, B and D components) and hydrogen contents. High to moderate nitrogen concentrations (1810 to 400 µg/g; 400 to 50 µg/g respectively) were found in diamonds from Klipspringer and Helam. Moderate to low (<50 µg/g) nitrogen concentrations were observed in diamonds from Premier and River Ranch. Type II diamonds, i.e. diamonds with no N impurities, which are presumed to have been derived from ultramafic sources, are found in the River Ranch deposit. The macro- and micro-size diamonds from the Klipspringer deposit display similar nitrogen defects, with higher nitrogen concentration and more frequent D components found in the macro-size diamonds. One of the first steps towards reliable carbon isotope studies is the development of calibration materials for SIMS carbon isotopic analyses. We have investigated candidate materials both from a polycrystalline synthetic diamond sheet and two natural gem quality diamonds from Juina (Brazil). Electron-based images of the synthetic diamond sheet, obtained using GFZ Potsdam's dual beam FIB instrument, show many diamond grains with diameters greater than 35 µm. SIMS testing of the isotopic homogeneity of the back and front sides of the synthetic sheets reveal similar 13C/12C ratio within a RSD of <1 ‰ . SIMS isotopic analyses of the two natural diamond RMs

  7. Investigating Carbonate System Perturbations across the Cretaceous-Palaeogene Transition using Boron Isotopes in Planktonic Foraminifera.

    NASA Astrophysics Data System (ADS)

    Henehan, M. J.; Hull, P. M.; Planavsky, N. J.; Huber, B. T.; Thomas, E.

    2014-12-01

    The interval spanning the latest Maastrichtian to the early Palaeocene has great potential in helping to elucidate the stabilising mechanisms on the Earth's carbonate system on both long and very short geological timescales, from the geologically-instantaneous production of sulphate-rich aerosols and nitrogen oxides from the K-Pg bolide impact to the relatively more gradual degassing from Deccan volcanism in the latest Maastrichtian. The extent to which ocean pH (and atmospheric CO2 concentrations) changed in response to these contrasting acidification pressures, and the timescales of their recovery, may provide unique insight into the efficiency of the Earth's oceans in buffering greenhouse gas increases (through carbonate dissolution, weathering-derived alkalinity flux, and biological carbon cycling). The boron isotope palaeo-pH proxy in planktic foraminifera is well suited to such investigations, but its application over this interval has been problematic, not least due to a scarcity of sample material and a near-complete turnover of planktonic foraminiferal species across the K-Pg boundary. To attempt to circumvent these issues, we investigate the biological influences on boron isotope signals in Maastrichtian and Danian planktonic foraminifera, with the goal of producing more accurate palaeo-pH reconstructions. With these findings in mind, we present preliminary constraints on ocean pH and carbonate system dynamics across this critical interval of geological time.

  8. Modern and Pleistocene boron isotope composition of the benthic foraminifer Cibicidoides wuellerstorfi

    NASA Astrophysics Data System (ADS)

    Hönisch, Bärbel; Bickert, Torsten; Hemming, N. Gary

    2008-07-01

    Here we present the first species-specific study of boron isotopes in the epibenthic foraminifer species Cibicidoides wuellerstorfi. Coretop samples from a water depth profile from 1000 to 4500 m on the northern flank of the Walvis Ridge are 4.4‰ lower than the values expected, based on calculations of the δ11B borate of ambient seawater. Similar values for this foraminifer species are presented from ODP site 668B at the Sierra Leone Rise, in the equatorial Atlantic. The consistency between data of the same species suggests the offsets are primary, rather than diagenetic. Glacial C. wuellerstorfi from ODP 668B and Walvis Ridge have boron isotope compositions only slightly different to interglacial samples, that is no larger than + 0.10 pH units, or + 23 µmol kg - 1 in [CO 32-] above the reconstructed glacial lysocline, and - 0.07 pH units, or - 14 µmol kg - 1 in [CO 32-] below. We use these results to suggest that glacial deep water pH in the Atlantic was similar to interglacial pH. The new data resolve the inconsistency between the previously reported high bottom water pH and the lack of significant carbonate preservation of the glacial deep ocean.

  9. Last Glacial Maximum and deglacial abyssal seawater oxygen isotopic ratios

    NASA Astrophysics Data System (ADS)

    Wunsch, Carl

    2016-06-01

    An earlier analysis of pore-water salinity (chlorinity) in two deep-sea cores, using terminal constraint methods of control theory, concluded that although a salinity amplification in the abyss was possible during the LGM, it was not required by the data. Here the same methodology is applied to δ18Ow in the upper 100 m of four deep-sea cores. An ice volume amplification to the isotopic ratio is, again, consistent with the data but not required by it. In particular, results are very sensitive, with conventional diffusion values, to the assumed initial conditions at -100 ky and a long list of noise (uncertainty) assumptions. If the calcite values of δ18O are fully reliable, then published enriched values of the ratio in seawater are necessary to preclude sub-freezing temperatures, but the seawater δ18O in pore fluids does not independently require the conclusion.

  10. Theoretical uncertainties in extracting cosmic-ray diffusion parameters: the boron-to-carbon ratio

    NASA Astrophysics Data System (ADS)

    Genolini, Yoann

    2016-05-01

    PAMELA and, more recently, AMS-02, are ushering us into a new era of greatly reduced statistical uncertainties in experimental measurements of cosmic ray fluxes. In particular, new determinations of traditional diagnostic tools such as the boron to carbon ratio (B/C) are expected to significantly reduce errors on cosmic-ray diffusion parameters, with important implications for astroparticle physics, ranging from inferring primary source spectra to indirect dark matter searches. It is timely to stress, however, that the conclusions inferred crucially depend on the framework in which the data are interpreted as well as on some nuclear input parameters. We aim at assessing the theoretical uncertainties affecting the outcome, with models as simple as possible while still retaining the key dependences. We compare different semi-analytical, two-zone model descriptions of cosmic ray transport in the Galaxy: infinite slab(lD), cylindrical symmetry (2D) with homogeneous sources, cylindrical symmetry (2D) with inhomogeneous source distribution. We tested for the effect of a primary source contamination in the boron flux by parametrically altering its flux. We also tested for nuclear cross-section uncertainties.

  11. Improving the Sensitivity of Uranium Isotope Ratio Measurements

    NASA Astrophysics Data System (ADS)

    Friedrich, J.; Snow, J.

    2003-12-01

    Accurate and precise measurements of natural and anthropogenic 235/238 U isotope ratios are important for a range of investigations where the amount of sample is extremely restricted and/or the analyte is only present in ultra-trace quantities. Examples include biological, cosmochemical, environmental, geological, and radiological studies. We have developed and validated a novel method using our Nu Instruments Nu Plasma Multi Collector Inductively Coupled Plasma Mass Spectrometer (MC-ICPMS) and a 233U, 236U mixed double spike for the measurement of 235U/238U ratios. Our multi-dynamic technique employs the installed quadrupole zoom optics and fixed positioning of the ion counting detectors such that rather than the commonly used mass dispersion of 1 or 2, we utilize a mass dispersion of 1.5. Using this configuration, we can simultaneously monitor the 235U and 238U ion beams in the first cycle followed by a second cycle that simultaneously monitors the 233U and 236U beams. This innovative approach allows us to correct for the considerable, but consistent, instrumental mass fractionation and ion-counter amplification bias within each sequence. Since we were hesitant to use a U500 (235U, 238U equal atom) solution for spike calibration because of possible enriched U laboratory and instrumentation contamination, we used a U960 (terrestrial 235U/238U) solution for isotopic calibration of the spike. This standardization corrected for the small amounts of 235U and 238U in the spike solution by using a U960 standard solution. With a mean intraday 2-sigma precision of 1.5 permil and an overall 2-sigma precision of 2.25 permil using individual sample sizes of 350 pg (8.8 x10 E11 atoms), we are confident our technique will be useful for identifying U isotopic anomalies present in many sample types.

  12. Oxygen-18 Carbon Dioxide Isotope Ratio in Mars Atmosphere

    NASA Astrophysics Data System (ADS)

    Kostiuk, T.; Livengood, T. A.; Hewagama, T.; Smith, R.; Fast, K. E.; Annen, J.; Sonnabend, G.; Sornig, M.

    2012-09-01

    The determination of isotopic ratios on Mars is important to the study of atmospheric evolution [1]. The relative abundance of isotopes of CO2 provides insight into the loss of Mars' primordial atmosphere. Isotopic ratios also provide markers in the study of geochemistry of Mars meteorites and future returned samples formed in equilibrium with ambient atmosphere, and are probes of biogenic and abiotic chemistry, which differ in isotope fractionation. Due to its lesser gravity and relatively thin residual atmosphere, Mars' atmosphere should be enriched in heavy isotopes [1]. However Viking [2] results indicated an Earth-like singly substituted oxygen-18 CO2 isotopic ratio, 18OCO/OCO, with δ18O = 0±50‰ relative to Vienna Standard Mean Ocean Water (VSMOW). By comparison, isotopic ratios in Earth atmospheric CO2 are not uniquely defined due to seasonal and biotic variability, but have a range 0-41‰ relative to VSMOW [3, 4]. Phoenix lander TEGA [3] measurements found a modest enrichment of δ18O = 31.0±5.7‰. Only the Viking and Phoenix landers have carried a mass spectrometer to Mars, so far, until the arrival of Mars Science Laboratory in August 2012. Using ground-based spectroscopic techniques Krasnopolsky et al. [5] also found modest enrichment δ18O = 18±18‰. We present results from fully resolved spectroscopic measurements near 10.6 μm of both the normal and singly substituted oxygen- 18 CO2 lines, taken with the Goddard Space Flight Center Heterodyne Instrument for Planetary Winds And Composition (HIPWAC) at the NASA Infrared Telescope Facility on Mauna Kea, Hawaii. Measurements with spectral resolving power λ/Δλ=107 were obtained in October 2007 with an instantaneous field-of-view on the planet of ~1 arcsec, at the locations shown in Fig. 1 as open squares. The solid and broken line tracks show Mars SPICAM measurements of ozone corresponding to ozone measurements also obtained with HIPWAC and shown as hatched and solid regions [6]. Figure 1

  13. Examining Changes in Radioxenon Isotope Activity Ratios during Subsurface Transport

    NASA Astrophysics Data System (ADS)

    Annewandter, R.

    2013-12-01

    The Non-Proliferation Experiment (NPE) has demonstrated and modelled the usefulness of barometric pumping induced soil gas sampling during On-Site inspections. Gas transport has been widely studied with different numerical codes. However, gas transport of all radioxenons in the post-detonation regime and their possible fractionation is still neglected in the open literature. Atmospheric concentrations of the radioxenons Xe-135, Xe-133m, Xe-133 and Xe-131m can be used to discriminate between civilian releases (nuclear power plants or medical isotope facilities), and nuclear explosion sources. It is based on the isotopic activity ratio method. Yet it is not clear whether subsurface migration of the radioxenons, with eventual release into the atmosphere, can affect the activity ratios due to fractionation. Fractionation can be caused by different diffusivities due to mass differences between the radioxenons. A previous study showed surface arrival time of a chemically inert gaseous tracer is affected by its diffusivity. They observed detectable amount for SF6 50 days after detonation and 375 days for He-3. They predict 50 and 80 days for Xe-133 and Ar-37 respectively. Cyclical changes in atmospheric pressure can drive subsurface gas transport. This barometric pumping phenomenon causes an oscillatoric flow in upward trending fractures which, combined with diffusion into the porous matrix, leads to a net transport of gaseous components - a ratcheting effect. We use a general purpose reservoir simulator (Complex System Modelling Platform, CSMP++) which has been applied in a range of fields such as deep geothermal systems, three-phase black oil simulations , fracture propagation in fractured, porous media, Navier-Stokes pore-scale modelling among others. It is specifically designed to account for structurally complex geologic situation of fractured, porous media. Parabolic differential equations are solved by a continuous Galerkin finite-element method, hyperbolic

  14. Understanding radioxenon isotopical ratios originating from radiopharmaceutical facilities

    NASA Astrophysics Data System (ADS)

    Saey, P. R. J.; Ringbom, A.; Bowyer, T. W.; Becker, A.; de Geer, L.-E.; Nikkinen, M.; Payne, R. F.

    2009-04-01

    It was recently shown that radiopharmaceutical facilities (RPF) are major contributors to the general background of 133Xe and other xenon isotopes both in the northern and southern hemisphere. To distinguish a nuclear explosion signal from releases from civil nuclear facilities, not only the activity concentrations but also the ratios of the four different CTBT relevant radioxenon isotopes (131mXe, 133mXe, 133Xe and 135Xe) have to be well understood. First measurements taken recently in and around two of the world's largest RPF's: NTP at Pelindaba, South Africa and IRE at Fleurus, Belgium have been presented. At both sites, also stack samples were taken in close cooperation with the facility operators. The radioxenon in Belgium could be classified in four classes: the normal European background (133Xe activity between 0 - 5 mBq/m3) on one hand and then the samples where all four isotopes were detected with 133mXe/131mXe > 1. In northern South Africa the Pelindaba RPF is in practice the sole source of radioxenon. It generated a background of 133Xe at the measurement site some 230 km to the west of the RPF of 0 - 5 mBq/m3. In the cases where the air from the Pelindaba facility reached the measurement site directly and in a short time period, the 133Xe was higher, also 135Xe was present and in some samples 133mXe as well. The ratios of the activity concentrations of 135Xe/133Xe vs. 133mXe/131mXe (Multiple Isotope Ratio Plot - MIRC) have been analysed. For both facilities, the possible theoretical ratio's for different scenarios were calculated with the information available and compared with the measurements. It was found that there is an excess of 131mXe present in the European samples compared to theoretical calculations. A similar excess has also been seen in samples measured in northern America. In South Africa, neither the environmental samples nor the stack ones contained 131mXe at measurable levels. This can probably be explained by different processes and

  15. Sulfur isotopic ratio of DMS and DMSP from Lake Kinneret

    NASA Astrophysics Data System (ADS)

    Sela-Adler, Michal; Said-Ahmad, Ward; Eckert, Werner; Kamyshny, Alexey; Sivan, Orit; Amrani, Alon

    2014-05-01

    Volatile Organic sulfur compounds (VOSC) such as dimethylsulfide (DMS) are an important source of biogenic sulfur to the atmosphere. The main precursor of DMS is dimethylsulfoniopropionate (DMSP), a common osmolyte in marine algae. Atmospheric release of VOS compounds contributes to the formation of sulfate aerosols. The latter are of global importance due to their role as cloud-condensation nuclei. VOSC are abundant in terrestrial environments as well and may be involved in important biogeochemical cycles. In lake sediments, another mechanism for the formation of DMS by H2S methylation may be important. The 34S/32S ratio (d34S values) of DMSP of marine surface water around the globe is very homogeneous ranging between +18.9 o to +20.3 o and the fractionation between DMSP and DMS is < +1 o (Amrani et al. 2013). The δ34S values of DMS and other VOSC in sediments should be 34S depleted, similar to its H2S precursor (Oduro et al., 2011). Our goal was to quantify the benthic DMS and DMSP emissions from the sediments of warm monomictic Lake Kinneret relative to their formation by surface water algae by using sulfur isotope ratios. Water column samples and sediment samples from Lake Kinneret were purged and trap in order to extract the VOSC and then introduced to a GC/MC-ICPMS for isotopic measurements (Amrani et al. 2013). The δ34S of DMSP in the water and sediment columns of Lake Kinneret a mesotrophic monomictic lake were measured. Our preliminary results show δ34S values for DMSP ranged between +10.3 o and +13.4 o in the water column. The sulfate δ34S values ranged between +12.6 o to +14.9 o. δ34S -DMSP in the sediment column showed similar values between +9.4 o and +13.0 o, indicating a similar sulfur source. Similar δ34S values obtain for other VOSC such as ethanethiol that contributes significantly to the VOSC of Lake Kinneret sediments. Amrani, A., W. Said-Ahmad,Y. Shaked, and R. P. Kiene. 2013. Sulfur isotopes homogeneity of oceanic DMSP and DMS. PNAS 110

  16. Using Oxygen Isotopes in Fish Scale Apatite to Reconstruct Past Temperatures and Water Isotope Ratios

    NASA Astrophysics Data System (ADS)

    Lambert, T. D.; Paytan, A.

    2009-12-01

    Oxygen isotope ratios (δ18O) of apatite phosphate in fish bones and teeth vary according to the temperature and δ18O of water during formation. Since isotope ratios in apatite are often well preserved over geologic timescales, fish bones and teeth have been used to determine past environmental conditions. Fish scales offer several advantages over bones and teeth: they are relatively common in certain sedimentary basins, and they are more easily identified to species level. Analysis of paired bone and scale samples will be presented. The data indicate that fish scale apatite similarly records environmental conditions during growth. Thus δ18O of apatite phosphate in fish scales may provide useful paleoecological information and also indicate past environmental conditions.

  17. Boron isotope systematics of tourmaline formation in the Sullivan Pb-Zn-Ag deposit, British Columbia, Canada

    USGS Publications Warehouse

    Jiang, S.-Y.; Palmer, M.R.; Slack, J.F.; Shaw, D.R.

    1999-01-01

    We report here the results of 54 boron isotope analyses of tourmaline associated with the giant Sullivan Pb-Zn-Ag deposit in southeastern British Columbia, Canada. The ??11B values range from -11.1 to -2.9???, which is almost as great as the range found worldwide in tourmalines from 33 massive sulfide deposits and tourmalinites in dominantly clastic metasedimentary terranes. The major control on the overall ??11B values of the Sullivan tourmalinites is the boron source. Potential controls over the large range of the data also include: (1) differences in formation temperatures of the tourmalinites, (2) different stages of tourmaline formation, (3) variations in the proportions of dissolved boron incorporated into the tourmaline (Rayleigh fractionation), (4) seawater entrainment, and (5) post-depositional metamorphism. The boron isotope data at Sullivan are consistent with boron derivation from leaching of footwall clastic sediments. However, the great abundance of tourmaline in the Sullivan deposit suggests that the local clastic sediments were not the sole source of boron, and we argue that non-marine evaporites, buried deep below the orebody, are the most viable source of this additional boron. It is likely that some of the variation in tourmaline ??11B values reflect mixing of boron from these two sources. Comparison of the potential effects of these controls with geologic and other geochemical evidence suggests that major causes for the wide range of ??11B values measured at Sullivan are seawater entrainment and Rayleigh fractionation, although in places, post-depositional alteration and thermal metamorphism were important in determining ??11B values of some of the recrystallized tourmalinites.

  18. Stable isotope methods: The effect of gut contents on isotopic ratios of zooplankton

    NASA Astrophysics Data System (ADS)

    Hill, J. M.; McQuaid, C. D.

    2011-05-01

    In the past decade there has been an increased awareness of the potential for methodological bias resulting from multiple pre-analytical procedures in foodweb interpretations based on stable isotope techniques. In the case of small organisms, this includes the effect of gut contents on whole body signatures. Although gut contents may not reflect actual assimilation, their carbon and nitrogen values will be isotopically lighter than after the same material has been assimilated. The potential skewing of isotopic ratios in whole organism samples is especially important for aquatic environments as many studies involve trophic relationships among small zooplankton. This is particularly important in pelagic waters, where herbivorous zooplankton comprise small taxa. Hence this study investigated the effect of gut contents on the δ13C and δ15N ratios of three size classes of zooplankton (1.0-2.0, 2.0-4.0 and >4.0 mm) collected using bongo net tows in the tropical waters of the south-west Indian Ocean. Animals were collected at night, when they were likely to be feeding, sieved into size classes and separated into genera. We focused on Euphausia spp which dominated zooplankton biomass. Three treatment types were processed: bulk animals, bulk animals without guts and tail muscle from each size class at 10 bongo stations. The δ15N ratios were influenced by zooplankton size class, presumably reflecting ontogenetic changes in diet. ANOVA post hoc results and correlations in δ15N signatures among treatments suggest that gut contents may not affect overall nitrogen signatures of Euphausia spp., but that δ13C signatures may be significantly altered by their presence. Carbon interpretations however, were complicated by potential effects of variation in chitin, lipids and metabolism among tissues and the possibility of opportunistic omnivory. Consequently we advocate gut evacuation before sacrifice in euphausiids if specific tissue dissection is impractical and recommend

  19. Examining Changes in Radioxenon Isotope Activity Ratios during Subsurface Transport

    NASA Astrophysics Data System (ADS)

    Annewandter, Robert

    2014-05-01

    The Non-Proliferation Experiment (NPE) has demonstrated and modelled the usefulness of barometric pumping induced gas transport and subsequent soil gas sampling during On-Site inspections. Generally, gas transport has been widely studied with different numerical codes. However, gas transport of radioxenons and radioiodines in the post-detonation regime and their possible fractionation is still neglected in the open peer-reviewed literature. Atmospheric concentrations of the radioxenons Xe-135, Xe-133m, Xe-133 and Xe-131m can be used to discriminate between civilian releases (nuclear power plants or medical isotope facilities), and nuclear explosion sources. It is based on the multiple isotopic activity ratio method. Yet it is not clear whether subsurface migration of the radionuclides, with eventual release into the atmosphere, can affect the activity ratios due to fractionation. Fractionation can be caused by different mass diffusivities due to mass differences between the radionuclides. Cyclical changes in atmospheric pressure can drive subsurface gas transport. This barometric pumping phenomenon causes an oscillatoric flow in upward trending fractures or highly conductive faults which, combined with diffusion into the porous matrix, leads to a net transport of gaseous components - a so-called ratcheting effect. We use a general purpose reservoir simulator (Complex System Modelling Platform, CSMP++) which is recognized by the oil industry as leading in Discrete Fracture-Matrix (DFM) simulations. It has been applied in a range of fields such as deep geothermal systems, three-phase black oil simulations, fracture propagation in fractured, porous media, and Navier-Stokes pore-scale modelling among others. It is specifically designed to account for structurally complex geologic situation of fractured, porous media. Parabolic differential equations are solved by a continuous Galerkin finite-element method, hyperbolic differential equations by a complementary finite

  20. Carbon and Oxygen Isotopic Ratios for Nearby Miras

    NASA Astrophysics Data System (ADS)

    Hinkle, Kenneth H.; Lebzelter, Thomas; Straniero, Oscar

    2016-07-01

    Carbon and oxygen isotopic ratios are reported for a sample of 46 Mira and SRa-type variable asymptotic giant branch (AGB) stars. Vibration–rotation first and second-overtone CO lines in 1.5–2.5 μm spectra were measured to derive isotopic ratios for 12C/13C, 16O/17O, and 16O/18O. Comparisons with previous measurements for individual stars and with various samples of evolved stars, as available in the extant literature, are discussed. Models for solar composition AGB stars of different initial masses are used to interpret our results. We find that the majority of M-stars have main sequence masses ≤2 M ⊙ and have not experienced sizable third dredge-up (TDU) episodes. The progenitors of the four S-type stars in our sample are slightly more massive. Of the six C-stars in the sample three have clear evidence relating their origin to the occurrence of TDU. Comparisons with O-rich presolar grains from AGB stars that lived before the formation of the solar system reveal variations in the interstellar medium chemical composition. The present generation of low-mass AGB stars, as represented by our sample of long period variables (LPVs), shows a large spread of 16O/17O ratios, similar to that of group 1 presolar grains and in agreement with theoretical expectations for the composition of mass 1.2–2 M ⊙ stars after the first dredge-up. In contrast, the 16O/18O ratios of present-day LPVs are definitely smaller than those of group 1 grains. This is most probably a consequence of the the decrease with time of the 16O/18O ratio in the interstellar medium due to the chemical evolution of the Milky Way. One star in our sample has an O composition similar to that of group 2 presolar grains originating in an AGB star undergoing extra-mixing. This may indicate that the extra-mixing process is hampered at high metallicity, or, equivalently, favored at low metallicity. Similarly to O-rich grains, no star in our sample shows evidence of hot bottom burning, which is expected

  1. Nitrogen isotopic ratios in fecal pellets produced by marine zooplankton

    SciTech Connect

    Altabet, M.A. ); Small, L.F. )

    1990-01-01

    At each site and in every season studied, zooplankton in the upper ocean produced fecal pellets that were 1.3% lower in {delta}{sup 15}N than their body tissue but 2.2% higher than their apparent food source. {sup 14}N-containing molecules are evidently preferentially assimilated in zooplankton intestinal tracts, though other isotopic effects must account for the enrichment in {sup 15}N of these organisms relative to their food. These results also show zooplankton to be important modifiers of nitrogen isotopic ratios for marine particulate matter. {delta}{sup 15}N values for sinking particles and fecal pellets are similar, supporting the perspective that macrozooplankton are important factors in producing and processing particles that sink into the ocean's interior and sediments. In contrast, the relationship in {delta}{sup 15}N between fecal pellets and suspended particles in the euphotic zone is more variable. It appears that zooplankton select food particles of varying {delta}{sup 15}N from the suspended particle pool. These results suggest that both zooplankton feeding behavior and their digestive chemistry are important in determining the composition of sinking particulate matter in the ocean with respect to the suspended particle source in the euphotic zone.

  2. A New Multi Collector Isotope Ratio Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Appelhans, A. D.; Olson, J. E.; Ward, M. B.; Dahl, D. A.

    2007-12-01

    With the goal of improving the sensitivity of isotope ratio measurements, particularly for actinides, a new magnetic sector mass spectrometer that utilizes up to seven full-sized discrete dynode electron multipliers operating simultaneously has been designed, constructed and is in the early stages of testing. The design is based on a newly developed ion dispersion lens that enables the mass dispersed individual isotope beams to be separated by 35 mm; this allows a full-sized discrete dynode pulse counting multiplier to be used for each beam. The ion dispersion lens (US patents 6,297,501 and pending) is a two element electrostatic 90 degree sector device that causes the beam-to-beam dispersion to increase faster than the intra-beam dispersion. Each of the multipliers is housed in an isolated case and is equipped with a deflector/condenser lens at the entrance to optimize pulse generation. The instrument includes a 9-sample filament cartridge mounted on a micro-manipulator X-Y stage that enables adjustment of the filament position with 10 micron resolution within the ion lens. Initial testing has shown that the instrument is performing as predicted by the ion optics model of the design.

  3. Water isotopic ratios from a continuously melted ice core sample

    NASA Astrophysics Data System (ADS)

    Gkinis, V.; Popp, T. J.; Blunier, T.; Bigler, M.; Schüpbach, S.; Kettner, E.; Johnsen, S. J.

    2011-11-01

    A new technique for on-line high resolution isotopic analysis of liquid water, tailored for ice core studies is presented. We built an interface between a Wavelength Scanned Cavity Ring Down Spectrometer (WS-CRDS) purchased from Picarro Inc. and a Continuous Flow Analysis (CFA) system. The system offers the possibility to perform simultaneuous water isotopic analysis of δ18O and δD on a continuous stream of liquid water as generated from a continuously melted ice rod. Injection of sub μl amounts of liquid water is achieved by pumping sample through a fused silica capillary and instantaneously vaporizing it with 100% efficiency in a~home made oven at a temperature of 170 °C. A calibration procedure allows for proper reporting of the data on the VSMOW-SLAP scale. We apply the necessary corrections based on the assessed performance of the system regarding instrumental drifts and dependance on the water concentration in the optical cavity. The melt rates are monitored in order to assign a depth scale to the measured isotopic profiles. Application of spectral methods yields the combined uncertainty of the system at below 0.1‰ and 0.5‰ for δ18O and δD, respectively. This performance is comparable to that achieved with mass spectrometry. Dispersion of the sample in the transfer lines limits the temporal resolution of the technique. In this work we investigate and assess these dispersion effects. By using an optimal filtering method we show how the measured profiles can be corrected for the smoothing effects resulting from the sample dispersion. Considering the significant advantages the technique offers, i.e. simultaneuous measurement of δ18O and δD, potentially in combination with chemical components that are traditionally measured on CFA systems, notable reduction on analysis time and power consumption, we consider it as an alternative to traditional isotope ratio mass spectrometry with the possibility to be deployed for field ice core studies. We present

  4. Enhanced thermal conductivity and isotope effect in single-layer hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Lindsay, L.; Broido, D. A.

    2011-10-01

    The thermal conductivity, κ, of single layers of hexagonal boron nitride (h-BN), as well as that of bulk h-BN have been calculated utilizing an exact numerical solution of the phonon Boltzmann transport equation. The stronger phonon-phonon scattering in h-BN is revealed as the cause for its lower κ compared with graphite. A reduction in such scattering in the single layer arising mainly from a symmetry-based selection rule leads to a substantial increase in κ, with calculated room temperature values of more than 600 Wm-1K-1. Isotopic enrichment further increases κ, with the calculated enhancement exhibiting a peak with temperature, whose magnitude shows a dramatic sensitivity to crystallite size.

  5. Boron Isotopic Composition Variation During Early-Bajocian δ13Cmin Positive Excursion

    NASA Astrophysics Data System (ADS)

    Paris, G.; Gaillardet, J.; Bartolini, A.; Donnadieu, Y.; Beaumont, V.

    2008-12-01

    Early Bajocian is a period of sea level rise and platform drowning during the mid-Jurassic greenhouse world. This period is geochemically characterized by a positive excursion of inorganic δ13C signal as recorded in Western Thetys sections. This signal, concomitant with an increased biosiliceous sedimentation, is meant to reflect both a eutrophication event and a carbonate production crisis (Bartolini et al. 1996 ; Bartolini and Cecca 1999). High atmospheric CO2 level is assumed for this period, linked with the birth of the Pacific Plate and a faster sea-floor spreading (Bartolini and Larson 2001). Opening of the Liguro- Piemontese ocean may have led to rearrangement of oceanic current circulation patterns. These global conditions, potentially leading to oceanic eutrophication and carbonate saturation state modification, have been suggested as a trigger for Early-Bajocian events. Atmospheric CO2, carbon cycle and seawater pH are connected through the seawater carbonate system and boron isotopes in carbonates are a paleopH proxy. Geochemical analyses including δ11B were performed on bajocian carbonates from Terminilletto section, Italy, one of the rare carbonate section spanning this period. A new extraction process combined with a new direct injection method for MC-ICP-MS (d-DIHEN) helped to improve analyses reproducibilty (Louvat et al. in prep). The results show clearly a variation of the isotopic signal. This variation can be explained by a rise of seawater pH, occuring just before the carbonate production crisis and connected to the eutrophication. Modelisation will thus be performed to reproduce pH variation and reconstitute carbon cycle perturbation at this time. Bartolini A., Baumgartner P. O., and Hunziker J. (1996) Middle and Late Jurassic carbon stable-isotope stratigraphy and radiolarite sedimentation of the Umbria- Marche Basin (Central Italy). Eclogae geol. Helv. 89(2), 811-844. Bartolini A. and Cecca F. (1999) 20 My hiatus in the Jurassic of Umbria

  6. Theoretical uncertainties in extracting cosmic-ray diffusion parameters: the boron-to-carbon ratio

    NASA Astrophysics Data System (ADS)

    Genolini, Y.; Putze, A.; Salati, P.; Serpico, P. D.

    2015-08-01

    Context. PAMELA and, more recently, AMS-02, are ushering us into a new era of greatly reduced statistical uncertainties in experimental measurements of cosmic-ray fluxes. In particular, new determinations of traditional diagnostic tools such as the boron-to-carbon ratio (B/C) are expected to significantly reduce errors on cosmic-ray diffusion parameters, with important implications for astroparticle physics, ranging from inferring primary source spectra to indirect dark matter searches. Aims: It is timely to stress, however, that the conclusions obtained crucially depend on the framework in which the data are interpreted as well as on some nuclear input parameters. We aim at assessing the theoretical uncertainties affecting the outcome, with models as simple as possible while still retaining the key dependencies. Methods: We compared different semi-analytical, two-zone model descriptions of cosmic-ray transport in the Galaxy: infinite slab(1D), cylindrical symmetry (2D) with homogeneous sources, cylindrical symmetry (2D) with inhomogeneous source distribution. We tested for the effect of a primary source contamination in the boron flux by parametrically altering its flux. We also tested for nuclear cross-section uncertainties. All hypotheses were compared by χ2 minimisation techniques to preliminary results from AMS-02. Results: We find that the main theoretical bias on the determination of the diffusion coefficient index δ (up to a factor two) is represented by the assumption that no injection of boron takes place at the source. The next most important uncertainty is represented by cross-section uncertainties, which reach ± 20% in δ. As a comparison, nuclear uncertainties are more important than the shift in the best-fit when introducing a convective wind of velocity ≲30 km s-1, with respect to a pure diffusive baseline model. Perhaps surprisingly, homogeneous 1D vs. 2D performances are similar in determining diffusion parameters. An inhomogeneous source

  7. Predicting the Hydrogen Isotope Ratios of Leaf Waxes Across Landscapes

    NASA Astrophysics Data System (ADS)

    Tipple, B. J.; Berke, M. A.; Hambach, B.; Ehleringer, J. R.

    2014-12-01

    Leaf wax n-alkanes 2H/1H ratios are widely used as a proxy of paleoprecipitation in climate reconstruction. While the broad nature of the relationships between n-alkane δ2H values and climate are appreciated on geologic scales, the quantitative details of what this proxy is reflecting remain ambiguous on plant and ecosystem levels. Areas of uncertainty on these smaller scales of importance to geologic interpretations are both the biosynthetic fractionation and the leaf-growth interval that is recorded by the isotope signal. To clarify these details, we designed a series of experiments in which modern plants were grown under controlled and monitored conditions. To determine the biosynthetic fractionation, we analyzed n-alkanes from plant grown hydroponically on isotopically distinct waters and under contrasting and controlled humidities. We observed δ2H values of n-alkane were linearly related to growth water δ2H values, but with slope differences associated with humidity. These findings suggested leaf water were central controls on δ2H values of n-alkane and support a relatively constant biosynthetic fractionation factor between leaf water and n-alkanes. To determine the interval that the leaf wax isotope signal reflects, we studied a species naturally growing on water with a constant δ2H value. Here we found the δ2H values of n-alkanes recorded only a two-week period during leaf flush and did not vary thereafter. These data indicated the δ2H values of n-alkanes record conditions early in the season, rather than integrating over the entire growing season. Using these data, we are beginning to develop geospatial predictions of the δ2H values of n-alkane across landscapes for given climate conditions, plant phenologies, and ecosystems. These emerging modeling tools may be used to assess modern ecosystem dynamics, to estimate weathering of leaf waxes to geologic repositories, and to define and test paleoclimate reconstructions from the δ2H values of n-alkanes.

  8. Boron Isotope Evidence for Shallow Fluid Transfer Across Subduction Zones by Serpentinized Mantle

    NASA Astrophysics Data System (ADS)

    Scambelluri, M.; Tonarini, S.; Agostini, S.; Cannaò, E.

    2012-12-01

    Boron Isotope Evidence for Shallow Fluid Transfer Across Subduction Zones by Serpentinized Mantle M. Scambelluri (1), S. Tonarini (2), S. Agostini (2), E. Cannaò (1) (1) Dipartimento di Scienze della Terra, Ambiente e vita, University of Genova, Italy (2) Istituto di Geoscienze e Georisorse-CNR, Pisa, Italy In subduction zones, fluid-mediated chemical exchange between slabs and mantle dictates volatile and incompatible element cycles and influences arc magmatism. Outstanding issues concern the sources of water for arc magmas and its slab-to-mantle wedge transport. Does it occur by slab dehydration beneath arc fronts, or by hydration of fore-arc mantle and subsequent subduction of the hydrated mantle? So far, the deep slab dehydration hypothesis had strong support, but the hydrated mantle wedge idea is advancing supported by studies of fluid-mobile elements in serpentinized wedge peridotites and their subducted high-pressure (HP) equivalents. Serpentinites are volatile and fluid-mobile element reservoirs for subduction: their dehydration causes large fluid and element flux to the mantle.However, direct evidence for their key role in arc magmatism and identification of dehydration environments has been elusive and boron isotopes can trace the process. Until recently, the altered oceanic crust (AOC) was considered the 11B reservoir for arcs, which largely display positive δ11B. However, shallow slab dehydration transfers 11B to the fore-arc mantle and leaves the residual AOC very depleted in 11B below arcs. Here we present high positive δ11B of HP serpentinized peridotites from Erro Tobbio (Ligurian Alps), recording subduction metamorphism from hydration at low-grade to eclogite-facies dehydration. We show a connection among serpentinite dehydration, release of 11B-rich fluids and arc magmatism. The dataset is completed by B isotope data on other HP Alpine serpentinites from Liguria and Lanzo Massif. In general, the δ11B of these rocks is heavy (16 to + 30 permil

  9. Carbon, Hydrogen, and Oxygen Isotope Ratios of Cellulose from Plants Having Intermediary Photosynthetic Modes 1

    PubMed Central

    Sternberg, Leonel O'Reilly; Deniro, Michael J.; Ting, Irwin P.

    1984-01-01

    Carbon and hydrogen isotope ratios of cellulose nitrate and oxygen isotope ratios of cellulose from species of greenhouse plants having different photosynthetic modes were determined. When hydrogen isotope ratios are plotted against carbon isotope ratios, four clusters of points are discernible, each representing different photosynthetic modes: C3 plants, C4 plants, CAM plants, and C3 plants that can shift to CAM or show the phenomenon referred to as CAM-cycling. The combination of oxygen and carbon isotope ratios does not distinguish among the different photosynthetic modes. Analysis of the carbon and hydrogen isotope ratios of cellulose nitrate should prove useful for screening different photosynthetic modes in field specimens that grew near one another. This method will be particularly useful for detection of plants which show CAM-cycling. PMID:16663360

  10. Titan's Carbon Isotopic Ratio: A Clue To Atmospheric Evolution?

    NASA Astrophysics Data System (ADS)

    Nixon, C. A.; Jennings, D. E.; Romani, P. N.; Jolly, A.; Teanby, N. A.; Irwin, P. G.; Bézard, B.; Vinatier, S.; Coustenis, A.; Flasar, F. M.

    2009-12-01

    In this presentation we describe the latest results to come from Cassini CIRS and ground-based telescopic measurements of Titan's 12C/13C ratio in atmospheric molecules, focusing on hydrocarbons. Previously, the Huygens GCMS instrument measured 12CH4/13CH4 to be 82±1 (Niemann et al., Nature, 438, 779-784, 2005), substantially and significantly lower than the VPDB inorganic Earth standard of 89.4. It is also at odds with measurements for the giant planets. Cassini CIRS infrared spectra have confirmed this enhancement in 13CH4, but also revealed that the ratio in ethane, the major photochemical product of methane photolysis, does not appear enhanced (90±7) (Nixon et al.. Icarus, 195, 778-791, 2008) and is compatible with the terrestrial and combined giant planet value (88±7, Sada et al., Ap. J., 472, p. 903-907, 1996). Recently-published results from spectroscopy using the McMath-Pierce telescope at Kitt Pitt (Jennings et al., JCP, 2009, in press) have confirmed this deviation between methane and ethane, and an explanation has been proposed. This invokes a kinetic isotope effect (KIE) in the abstraction of methane by ethynyl, a major ethane formation pathway, to preferentially partition 12C into ethane and leave an enhancement in atmospheric 13CH4 relative to the incoming flux from the reservoir. Modeling shows that a steady-state solution exists where the 12C/13C methane is decreased from the reservoir value by exactly the KIE factor (the ratio of 12CH4 to 13CH4 abstraction reaction rates): which is plausibly around 1.08, very close to the observed amount. However, a second solution exists in which we are observing Titan about ~1 methane lifetime after a major injection of methane into the atmosphere which is rapidly being eliminated. Updated measurements by Cassini CIRS of both the methane and ethane 12C/13C ratios will be presented, along with progress in interpreting this ratio. In addition, we summarize the 12C/13C measurements by CIRS in multiple other Titan

  11. Nitrogen isotopic analyses by isotope-ratio-monitoring gas chromatography/mass spectrometry

    NASA Technical Reports Server (NTRS)

    Merritt, D. A.; Hayes, J. M.

    1994-01-01

    Amino acids containing natural-abundance levels of 15N were derivatized and analyzed isotopically using a technique in which individual compounds are separated by gas chromatography, combusted on-line, and the product stream sent directly to an isotope-ratio mass spectrometer. For samples of N2 gas, standard deviations of ratio measurement were better than 0.1% (Units for delta are parts per thousand or per million (%).) for samples larger than 400 pmol and better than 0.5% for samples larger than 25 pmol (0.1% 15N is equivalent to 0.00004 atom % 15N). Results duplicated those of conventional, batchwise analyses to within 0.05%. For combustion of organic compounds yielding CO2/N2 ratios between 14 and 28, in particular for N-acetyl n-propyl derivatives of amino acids, delta values were within 0.25% of results obtained using conventional techniques and standard deviations were better than 0.35%. Pooled data for measurements of all amino acids produced an accuracy and precision of 0.04 and 0.23%, respectively, when 2 nmol of each amino acid was injected on column and 20% of the stream of combustion products was delivered to the mass spectrometer.

  12. Detailed assessment of isotope ratio infrared spectroscopy and isotope ratio mass spectrometry for the stable isotope analysis of plant and soil waters.

    PubMed

    Zhao, Liangju; Xiao, Honglang; Zhou, Jian; Wang, Lixin; Cheng, Guodong; Zhou, Maoxian; Yin, Li; McCabe, Matthew F

    2011-10-30

    As an alternative to isotope ratio mass spectrometry (IRMS), the isotope ratio infrared spectroscopy (IRIS) approach has the advantage of low cost, continuous measurement and the capacity for field-based application for the analysis of the stable isotopes of water. Recent studies have indicated that there are potential issues of organic contamination of the spectral signal in the IRIS method, resulting in incorrect results for leaf samples. To gain a more thorough understanding of the effects of sample type (e.g., leaf, root, stem and soil), sample species, sampling time and climatic condition (dry vs. wet) on water isotope estimates using IRIS, we collected soil samples and plant components from a number of major species at a fine temporal resolution (every 2 h for 24-48 h) across three locations with different climatic conditions in the Heihe River Basin, China. The hydrogen and oxygen isotopic compositions of the extracted water from these samples were measured using both an IRMS and an IRIS instrument. The results show that the mean discrepancies between the IRMS and IRIS approaches for δ(18) O and δD, respectively, were: -5.6‰ and -75.7‰ for leaf water; -4.0‰ and -23.3‰ for stem water; -3.4‰ and -28.2‰ for root water; -0.5‰ and -6.7‰ for xylem water; -0.06‰ and -0.3‰ for xylem flow; and -0.1‰ and 0.3‰ for soil water. The order of the discrepancy was: leaf > stem ≈ root > xylem > xylem flow ≈ soil. In general, species of the same functional types (e.g., woody vs. herbaceous) within similar habitats showed similar deviations. For different functional types, the differences were large. Sampling at nighttime did not remove the observed deviations. PMID:21953962

  13. Detailed assessment of isotope ratio infrared spectroscopy and isotope ratio mass spectrometry for the stable isotope analysis of plant and soil waters

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Xiao, H.; Zhou, J.; Wang, L.; Cheng, G.; Zhou, M.; Yin, L.; McCabe, M. F.

    2011-12-01

    As an alternative to isotope ratio mass spectrometry (IRMS) the isotope ratio infrared spectroscopy (IRIS) approach has the advantage of low cost, continuous measurement and capacity for field based application for the analysis of stable water isotopes. Recent studies have indicated that there are potential issues of organic contamination of the spectral signal in the IRIS method, resulting in errant readings for leaf samples. To gain a more thorough understanding of the effects of sample type (e.g., leaf, root, stem and soil), sample species, sampling time and climatic condition (dry vs. wet) on water isotope estimates using IRIS, we collected soil samples and plant components from a number of major species at a fine temporal resolution (every two hours for 24-48 hours) across three locations with different climatic conditions in the Heihe River Basin, China. The hydrogen and oxygen isotopic composition of the extracted water from these samples was measured using both an IRMS and IRIS instrument. Results show that the mean discrepancy between the IRMS and IRIS approach, for δ18O and δD respectively, was: -5.6% and -75.7% for leaf water; -4.0% and -23.3% for stem water; -3.4% and -28.2% for root water; -6.7% and -0.5% for xylem water; -0.06% and -0.3% for xylem flow; and -0.1% and 0.3% for soil water. The order of the discrepancy followed: leaf > stem ≈ root > xylem > xylem flow ≈ soil. In general, species of the same functional types (e.g., woody vs. herbaceous) within similar habitats showed similar deviations. For different functional types, the differences were large. Sampling during the nighttime did not remove the observed deviations.

  14. On-site isotopic analysis of dissolved inorganic carbon using an isotope ratio infrared spectrometer

    NASA Astrophysics Data System (ADS)

    Stoltmann, Tim; Mandic, Magda; Stöbener, Nils; Wapelhorst, Eric; Aepfler, Rebecca; Hinrichs, Kai-Uwe; Taubner, Heidi; Jost, Hj; Elvert, Marcus

    2016-04-01

    An Isotope Ratio Infrared Spectrometer (IRIS) has been adapted to perform measurements of δ13C of dissolved inorganic carbon (DIC) in marine pore waters. The resulting prototype allowed highly automated analysis of δ13C isotopic ratios and CO2 concentration. We achieved a throughput of up to 70 samples per day with DIC contents as low as 1.7 μmol C. We achieved an internal precision of 0.066 ‰ and an external precision of 0.16 ‰, which is comparable to values given for Isotope Ratio Mass Spectrometers (IRMS). The prototype instrument is field deployable, suitable for shipboard analysis of deep sea core pore waters. However, the validation of the prototype was centered around a field campaign in Eckernförde Bay, NW- Baltic Sea. As a proof of concept, a shallow site within an area of submarine groundwater discharge (SGD) and a site outside this area was investigated. We present profiles of δ13C of DIC over 50 cm exhibiting well understood methane turnover processes (anaerobic oxidation of methane). At the lowest point below the seafloor, microbial reduction of CO2 to CH4 dominates. 12CO2 is reduced preferentially over 13CO2, leading to more positive δ13C values in the remaining DIC pool; in layers closer to the surface, the oxidation of CH4 to CO2 becomes more prominent. Since the CH4 pool is enriched in 12C a shift to more negative δ13C can be observed in the DIC pool. In the upper 15 cm, the pore water DIC mixes with the sea water DIC, increasing δ13C again. Finally, we will present recent developments to further improve performance and future plans for deployments on research cruises.

  15. ISOTOPIC RATIOS IN TITAN's METHANE: MEASUREMENTS AND MODELING

    SciTech Connect

    Nixon, C. A.; Achterberg, R. K.; Temelso, B.; Vinatier, S.; Bezard, B.; Coustenis, A.; Teanby, N. A.; Mandt, K. E.; Sherrill, C. D.; Irwin, P. G. J.; Jennings, D. E.; Romani, P. N.; Flasar, F. M.

    2012-04-20

    The existence of methane in Titan's atmosphere ({approx}6% level at the surface) presents a unique enigma, as photochemical models predict that the current inventory will be entirely depleted by photochemistry in a timescale of {approx}20 Myr. In this paper, we examine the clues available from isotopic ratios ({sup 12}C/{sup 13}C and D/H) in Titan's methane as to the past atmosphere history of this species. We first analyze recent infrared spectra of CH{sub 4} collected by the Cassini Composite Infrared Spectrometer, measuring simultaneously for the first time the abundances of all three detected minor isotopologues: {sup 13}CH{sub 4}, {sup 12}CH{sub 3}D, and {sup 13}CH{sub 3}D. From these we compute estimates of {sup 12}C/{sup 13}C = 86.5 {+-} 8.2 and D/H = (1.59 {+-} 0.33) Multiplication-Sign 10{sup -4}, in agreement with recent results from the Huygens GCMS and Cassini INMS instruments. We also use the transition state theory to estimate the fractionation that occurs in carbon and hydrogen during a critical reaction that plays a key role in the chemical depletion of Titan's methane: CH{sub 4} + C{sub 2}H {yields} CH{sub 3} + C{sub 2}H{sub 2}. Using these new measurements and predictions we proceed to model the time evolution of {sup 12}C/{sup 13}C and D/H in Titan's methane under several prototypical replenishment scenarios. In our Model 1 (no resupply of CH{sub 4}), we find that the present-day {sup 12}C/{sup 13}C implies that the CH{sub 4} entered the atmosphere 60-1600 Myr ago if methane is depleted by chemistry and photolysis alone, but much more recently-most likely less than 10 Myr ago-if hydrodynamic escape is also occurring. On the other hand, if methane has been continuously supplied at the replenishment rate then the isotopic ratios provide no constraints, and likewise for the case where atmospheric methane is increasing. We conclude by discussing how these findings may be combined with other evidence to constrain the overall history of the atmospheric

  16. Isotopic Ratios in Titan's Methane: Measurements and Modeling

    NASA Technical Reports Server (NTRS)

    Nixon, C. A.; Temelso, B.; Vinatier, S.; Teanby, N. A.; Bezard, B.; Achterberg, R. K.; Mandt, K. E.; Sherrill, C. D.; Irwin, P. G.; Jennings, D. E.; Romani, P. N.; Coustenis, A.; Flasar, F. M.

    2012-01-01

    The existence of methane in Titan's atmosphere (approx. 6% level at the surface) presents a unique enigma, as photochemical models predict that the current inventory will be entirely depleted by photochemistry in a timescale of approx 20 Myr. In this paper, we examine the clues available from isotopic ratios (C-12/C-13 and D/H) in Titan's methane as to the past atmosphere history of this species. We first analyze recent infrared spectra of CH4 collected by the Cassini Composite Infrared Spectrometer, measuring simultaneously for the first time the abundances of all three detected minor isotopologues: (13)CH4, (12)CH3D, and (13)CH3D. From these we compute estimates of C-12/C-13 = 86.5 +/- 8.2 and D/H = (1.59 +/- 0.33) x 10(exp -4) , in agreement with recent results from the Huygens GCMS and Cassini INMS instruments. We also use the transition state theory to estimate the fractionation that occurs in carbon and hydrogen during a critical reaction that plays a key role in the chemical depletion of Titan's methane: CH4 + C2H yields CH3 + C2H2. Using these new measurements and predictions we proceed to model the time evolution of C-12/C-13 and D/H in Titan's methane under several prototypical replenishment scenarios. In our Model 1 (no resupply of CH4), we find that the present-day C-12/C-13 implies that the CH4 entered the atmosphere 60-1600 Myr ago if methane is depleted by chemistry and photolysis alone, but much more recently-most likely less than 10 Myr ago-if hydrodynamic escape is also occurring. On the other hand, if methane has been continuously supplied at the replenishment rate then the isotopic ratios provide no constraints, and likewise for the case where atmospheric methane is increasing, We conclude by discussing how these findings may be combined with other evidence to constrain the overall history of the atmospheric methane.

  17. Enhanced thermal conductivity and isotope effect in single-layer hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Broido, David; Lindsay, Lucas

    2012-02-01

    We have calculated the lattice thermal conductivity, k, of both naturally occurring and isotopically enriched single layers of hexagonal boron nitride (h-BN) as well as bulk h-BN using an exact numerical solution of the Boltzmann transport equation for phonons [1]. Good agreement is obtained with measured bulk h-BN data [2], and the stronger phonon-phonon scattering identified in these systems explains why their k values are significantly lower than those in graphene and graphite. A reduction in such scattering in the single layer arising mainly from a symmetry-based selection rule leads to a substantial increase in k, with calculated room temperature values of more than 600 W/m-K. Additional enhancement is obtained from isotopic enrichment, which exhibits a strong peak as a function of temperature, with magnitude growing rapidly with crystallite size. [1] L. Lindsay and D. A. Broido, Phys. Rev. B 84, 155421 (2011). [2] E. K. Sichel, R. E. Miller, M. S. Abrahams, and C. J. Buiocchi, Phys. Rev. B 13, 4607 (1976).

  18. A new method for calibrating a boron isotope paleo-pH proxy using massive Porites corals

    NASA Astrophysics Data System (ADS)

    Kubota, Kaoru; Yokoyama, Yusuke; Ishikawa, Tsuyoshi; Suzuki, Atsushi

    2015-09-01

    The boron isotope ratio (δ11B) of marine biogenic carbonates can reconstruct pH and pCO2 of seawater, and potentially CO2 concentration in the atmosphere. To date, δ11B-pHSW calibration has been proposed via culturing experiments, where calcifying organisms are cultured under artificially acidified seawater. However, in scleractinian corals, reconstructed pH values using culture-based calibrations do not agree well with actual observations of seawater CO2 chemistry. Thus, another approach is needed to establish a more reliable calibration method. In this study, we established field-based calibrations for Chichijima and Tahiti, both located in subtropical gyres where surface seawater is close to CO2 equilibrium. We suggest a new approach to calibration of δ11B-pH in which the long-term δ11B variation of massive Porites corals is compared with the decreasing pH trend (i.e., ocean acidification) that has occurred since the Industrial Revolution. This calibration will offer a new avenue for studying seawater CO2 chemistry using coral δ11B in diverse settings, such as upwelling regions, coral reefs, and coastal areas.

  19. Boron contents and isotopic compositions of hog manure, selected fertilizers, and water in Minnesota

    USGS Publications Warehouse

    Komor, S.C.

    1997-01-01

    Boron-isotope (δ11B) values may be useful as surrogate tracers of contaminants and indicators of water mixing in agricultural settings. This paper characterizes the B contents and isotopic compositions of hog manure and selected fertilizers, and presents δ11B data for ground and surface water from two agricultural areas. Boron concentrations in dry hog manure averaged 61 mg/kg and in commercial fertilizers ranged from below detection limits in some brands of ammonium nitrate and urea to 382 mg/kg in magnesium sulfate. Values of δ11B of untreated hog manure ranged from 7.2 to 11.2o/oo and of N fertilizers were −2.0 to 0.7o/oo. In 22 groundwater samples from a sand-plain aquifer in east-central Minnesota, B concentrations averaged 0.04 mg/L and δ11B values ranged from 2.3 to 41.5o/oo. Groundwater beneath a hog feedlot and a cultivated field where hog manure was applied had B-isotope compositions consistent with the water containing hog-manure leachate. In a 775-km2 watershed with silty-loam soils in southcentral Minnesota: 18 samples of subsurface drainage from corn (Zea mays L.) and soybean (Glycine max L. Merr.) fields had average B concentrations of 0.06 mg/L and δ11B values of 5.3 to 15.1o/oo; 27 stream samples had average B concentrations of 0.05 mg/L and δ11B values of 1.0 to 19.0o/oo; and eight groundwater samples had average B concentrations of 0.09 mg/L and δ11B values of −0.3 to 23.0o/oo. Values of δ11B and B concentrations, when plotted against one another, define a curved mixing trend that suggests subsurface drainage and stream water contain mixtures of B from shallow and deep groundwater.

  20. Effects of carbonate leaching on foraminifer stable isotopes ratios

    NASA Astrophysics Data System (ADS)

    Obrochta, S.; Yokoyama, Y.; Sakai, S.; Ishimura, T.

    2011-12-01

    Stable carbon and oxygen isotope ratios were measured on 125 individual epifaunal and infaunal benthic foraminifers from two discrete Holocene intervals in a shallow-water sediment core (~ 450 m) from the Timor Sea. Methane seeps are common in the area, resulting in significant precipitation of secondary calcite that is confirmed by SEM photomicrographs and has likely resulted in inconsistent downcore results. To assess the degree of removal of contaminants, individual Uvigerina peregrina were subjected to varying degrees of pretreatment prior to analysis. All foraminifers received standard cleaning with ethanol and brief sonication. A subset were further cleaned and sonicated in a dilute HCl solution (~ 0.003 M). Foraminifer tests were photographed using both reflected light and scanning electron microscopes during the course of treatment to monitor the changing degree of contaminant removal as increasingly aggressive cleaning methods were employed. Visible contamination remained on individuals not subjected to HCl treatment. The leached individuals exhibit a lower overall relative standard deviation and consistent results within morphotype groups. Based on these results, a 2% value is expected to be typical of the Holocene, though further downcore analyses are pending restoration of equipment adversely effected by the Eastern Japan 3/11 earthquake.

  1. Areal Distribution of the Oxygen-Isotope Ratio in Greenland

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Giovinetto, Mario B.

    1997-01-01

    Mean values of the oxygen-isotope ratio relative to standard mean ocean water reported for 46 sites on the Greenland ice sheet are compiled together with data on mean annual surface temperature, latitude, 6180 elevation, and mean annual shortest distance to the open ocean denoted by the 10% sea-ice concentration boundary. Stepwise regression analyses, with 6180 as the dependent variable, define two robust models. In the forward mode at the 99.9% confidence level, only temperature enters the model. In the backward mode at the 95% confidence level, only temperature, latitude, and distance to the open ocean remain in the model. Inversions of the models on the basis of 160 gridpoint locations 100 km apart in the area delimited by the surface equilibrium line produce four contoured distributions of 6"0. Two distributions are based on the bivariate model and two on the multivariate model. The second distribution for each model is obtained substituting mean annual surface-temperature values obtained from the Nimbus-7 Temperature Humidity Infrared Radiometer (THIR) database. All four distributions are considered valid, and differences between them are evaluated using contoured anomaly maps. It is suggested that the inversion of the multivariate model using THIR data provides the more reliable pattern for studies of atmospheric advection or for the derivation of ice-flow adjustments for 6180 series obtained from deep-core or ablation-zone sites.

  2. Discrepancies between isotope ratio infrared spectroscopy and isotope ratio mass spectrometry for the stable isotope analysis of plant and soil waters.

    PubMed

    West, Adam G; Goldsmith, Gregory R; Brooks, Paul D; Dawson, Todd E

    2010-07-30

    The use of isotope ratio infrared spectroscopy (IRIS) for the stable hydrogen and oxygen isotope analysis of water is increasing. While IRIS has many advantages over traditional isotope ratio mass spectrometry (IRMS), it may also be prone to errors that do not impact upon IRMS analyses. Of particular concern is the potential for contaminants in the water sample to interfere with the spectroscopy, thus leading to erroneous stable isotope data. Water extracted from plant and soil samples may often contain organic contaminants. The extent to which contaminants may interfere with IRIS and thus impact upon data quality is presently unknown. We tested the performance of IRIS relative to IRMS for water extracted from 11 plant species and one organic soil horizon. IRIS deviated considerably from IRMS for over half of the samples tested, with deviations as large as 46 per thousand (delta(2)H) and 15.4 per thousand (delta(18)O) being measured. This effect was reduced somewhat by using activated charcoal to remove organics from the water; however, deviations as large as 35 per thousand (delta(2)H) and 11.8 per thousand (delta(18)O) were still measured for these cleaned samples. Interestingly, the use of activated charcoal to clean water samples had less effect than previously thought for IRMS analyses. Our data show that extreme caution is required when using IRIS to analyse water samples that may contain organic contaminants. We suggest that the development of new cleaning techniques for removing organic contaminants together with instrument-based software to flag potentially problematic samples are necessary to ensure accurate plant and soil water analyses using IRIS. PMID:20552579

  3. Environmental controls on stable isotope ratios in New Zealand Podocarpaceae: Implications for palaeoclimate reconstruction

    NASA Astrophysics Data System (ADS)

    Brett, Marianne J.; Baldini, James U. L.; Gröcke, Darren R.

    2014-09-01

    Stable isotope ratios of various proxies are widely used for palaeoclimate reconstruction, and it is often assumed that isotope ratios reflect vegetation abundance or type. However, very little research exists on the isotopic equilibration of extant biomes under variable environmental conditions. In this study, carbon and oxygen isotope ratios from leaves of various Podocarpaceae genera, endemic to New Zealand, are linked to environmental parameters from the Land Environments New Zealand model. The dominant influence on stable isotope ratios within the majority of Podocarpaceae studied here is vapour pressure deficit (VPD). A simple latitudinal trend does not exist, and neither temperature nor rainfall (decoupled from VPD) controls the stable isotope ratios. The results suggest that modern spatial heterogeneity in VPD affects the stable isotope values of vegetation, and that historic VPD variability would change the stable isotope ratios of Podocarpaceae without necessitating a change in vegetation type, density, or productivity. This represents an alternative model for temporal isotope change within geochemical proxies and reinforces the need for increased stable isotopic research in modern plant ecosystems to better understand modern, and eventually palaeoclimatic processes affecting the terrestrial biosphere.

  4. A study of galactic cosmic ray propagation models based on the isotopic composition of the elements lithium, beryllium and boron

    NASA Technical Reports Server (NTRS)

    Hinshaw, G. F.; Wiedenbeck, M. E.; Greiner, D. E.

    1982-01-01

    A good test for a cosmic ray propagation model is its ability to predict the abundances of the light secondary nuclei lithium, beryllium, and boron. By using measured isotopic abundances of lithium, beryllium, and boron, Garcia-Munoz et al. (1979) were able to place limits on three important parameters of a leaky box propagation model. The considered parameters include the source spectral parameter, the leakage mean free path, and the characteristic adiabatic energy loss due to solar modulation. The present investigation is concerned with a critical evaluation of the information which can be deduced about these parameters from isotopic composition alone, taking into account the effects of uncertainties in the spallation cross section data.

  5. Alternative Methodology for Boron Isotopic Analysis of CaCO3 by Negative Thermal Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Dwyer, G. S.; Vengosh, A.

    2012-12-01

    Negative thermal ionization mass spectrometry (NTIMS) has been a common tool for investigating boron isotopes in CaCO3 and other environmental samples, the high sensitivity of BO2- ionization enabling measurements of ng levels of boron. However, B isotope measurement by this technique suffers from a number of problems, including: (1) fractionation induced by selective ionization of B isotopes in the mass spectrometer; (2) CNO- interference on mass 42 ([10BO2]-) that may be present in some filament load solutions (such as B-free seawater processed through ion-exchange resin), and (3) potential matrix effects due to widely differing chemistry of samples and standards. Here we examine a potentially improved NTIMS methodology that incudes removal of sample-related calcium (and other cations) by ion exchange and uses an alternative filament loading solution prepared from high-purity single-element solutions of Ca, Mg, Na, and K. Initial results suggest that this new method may offer significant improvement over the more traditional NTIMS approach in which digested CaCO3 samples are directly loaded onto filaments in B-free seawater. Replicate analyses of standards and samples yield a typical standard deviation of approximately 0.3‰ δ11B and boron isotopic compositions comparable to reported or consensus values. Fractionation during analysis has thus far typically been less than 0.5‰ δ11B. The method delivers boron ionization efficiency similar to directly-loaded seawater, and negligible signal at mass 26 (CN-), a proxy for the possible interfering molecular CNO- ion. Standards and samples behave similarly and predictably during filament heating and analysis, thus allowing for fully automated data acquisition, which in turn may increase sample throughput and reduce potential analytical inconsistencies associated with operator-controlled heating and analysis.

  6. Compilation of minimum and maximum isotope ratios of selected elements in naturally occurring terrestrial materials and reagents

    USGS Publications Warehouse

    Coplen, T.B.; Hopple, J.A.; Böhlke, J.K.; Peiser, H.S.; Rieder, S.E.; Krouse, H.R.; Rosman, K.J.R.; Ding, T.; Vocke, R.D., Jr.; Revesz, K.M.; Lamberty, A.; Taylor, P.; De Bievre, P.

    2002-01-01

    Documented variations in the isotopic compositions of some chemical elements are responsible for expanded uncertainties in the standard atomic weights published by the Commission on Atomic Weights and Isotopic Abundances of the International Union of Pure and Applied Chemistry. This report summarizes reported variations in the isotopic compositions of 20 elements that are due to physical and chemical fractionation processes (not due to radioactive decay) and their effects on the standard atomic weight uncertainties. For 11 of those elements (hydrogen, lithium, boron, carbon, nitrogen, oxygen, silicon, sulfur, chlorine, copper, and selenium), standard atomic weight uncertainties have been assigned values that are substantially larger than analytical uncertainties because of common isotope abundance variations in materials of natural terrestrial origin. For 2 elements (chromium and thallium), recently reported isotope abundance variations potentially are large enough to result in future expansion of their atomic weight uncertainties. For 7 elements (magnesium, calcium, iron, zinc, molybdenum, palladium, and tellurium), documented isotope-abundance variations in materials of natural terrestrial origin are too small to have a significant effect on their standard atomic weight uncertainties. This compilation indicates the extent to which the atomic weight of an element in a given material may differ from the standard atomic weight of the element. For most elements given above, data are graphically illustrated by a diagram in which the materials are specified in the ordinate and the compositional ranges are plotted along the abscissa in scales of (1) atomic weight, (2) mole fraction of a selected isotope, and (3) delta value of a selected isotope ratio. There are no internationally distributed isotopic reference materials for the elements zinc, selenium, molybdenum, palladium, and tellurium. Preparation of such materials will help to make isotope ratio measurements among

  7. Stable isotope ratio determination of the origin of vanillin in vanilla extracts and its relationship to vanillin/potassium ratios

    SciTech Connect

    Martin, G.E.; Alfonso, F.C.; Figert, D.M.; Burggraff, J.M.

    1981-09-01

    A method is described for isolating vanillin from vanilla extract, followed by stable isotope ratio analysis to determine the amount of natural vanillin contained in adulterated vanilla extracts. After the potassium content is determined, the percent Madagascar and/or Java vanilla beans incorporated into the extract may then be approximated from the vanillin/potassium ratio.

  8. Dynamical and Microphysical Controls on Subtropical Water Vapor Isotope Ratios: Using New Spectroscopic Measurements to Link Isotopic and Climatic Variability

    NASA Astrophysics Data System (ADS)

    Raudzens Bailey, A.; Nusbaumer, J. M.; Sato, P.; Noone, D. C.

    2014-12-01

    Water vapor isotope ratios are critical in shaping the isotopic composition of paleo-proxies used to interpret past climate. Indeed, previous research suggests speleothems are sensitive to water vapor transport, and experiments currently underway are evaluating the role of Greenlandic vapor in setting the isotopic record of the ice sheet. The recent and rapid spread of commercial vapor isotopic analyzers—based on cavity-enhanced near-infrared laser absorption spectroscopy—is creating unparalleled opportunities to elucidate which climatic factors control the vapor isotopic composition globally. This presentation describes both an exciting application of this new technology and relevant limitations imposed by measurement uncertainties associated with long-term field deployments. Using three years of continuous water vapor isotope ratio observations from Hawaii's Mauna Loa Observatory—one of the longest records of its kind—we evaluate the influence of large-scale dynamics and cloud microphysical processes in establishing the isotopic composition of water vapor during strong convective activity. Despite the fact that vapor isotope ratios tend to decrease with latitude, greater enrichment in Mauna Loa vapor is associated with a westward retraction of the jet stream, which funnels Asiatic outflow southward, while greater depletion is associated with southwesterly low-level flow. Differences in precipitation efficiency—which are verified by differences in aerosol concentration and total scattering—cause this apparent discrepancy. These results suggest local cloud and precipitation processes are more influential than airmass origin in setting the isotope ratios observed during these strong convective events. The length of the Mauna Loa record, meanwhile, presents a unique opportunity to evaluate long-term stability of biases associated with laser-based isotopic analyzers and to discuss calibration strategies best suited for monitoring programs designed to

  9. Spatial and Temporal Trends in Stable Carbon and Oxygen Isotope Ratios of Juvenile Winter Flounder

    EPA Science Inventory

    Isotopic ratios of fish otoliths have been used in numerous studies as natural tags or markers to aid the study of connectivity among fish populations. We investigated the use of spatial and temporal changes in the stable carbon and oxygen isotope ratios of otoliths to different...

  10. Processes for the "vital effect" of Porites corals as revealed by microanalysis of oxygen, carbon and boron isotopic compositions

    NASA Astrophysics Data System (ADS)

    Rollion-Bard, C.; Chaussidon, M.; France-Lanord, C.

    2003-04-01

    Since the discovery by Knutson et al. (1972) of annual banding in massive corals, they have intensively been used to provide paleoclimate reconstructions. The oxygen isotopic composition (18O) of coral aragonite skeletons is a function of sea surface temperature (SST) and salinity (SSS) through the 18O of the seawater in which the carbonate precipitates and pH of the calcifying fluid. Carbon cycle in hermatypic corals is relatively complex because of the interaction between symbiotic algae (zooxanthellae) and coral (Goreau, 19777). Coral 13C seems to be under influence of the ratio between algae photosynthesis and algae and coral respiration (Swart, 1983). The carbonate deposited by some foraminifera and scleractinian corals is depleted 13C and 18O relative to isotope equilibrium with ambient seawater. This deviation of the biogenic carbonate - water fractionation from the inorganic fractionation is called the "vital effect" (Urey et al., 1951). Different explanations for the vital effect are proposed: (1) McConnaughey (1989) attributes the coral disequilibria to kinetic effects. (2) Spero et al. (1997) and Zeebe (1999) consider that the carbonate depletion in 18O is due to [CO32-] or pH variations. The carbon isotopic disequilibrium would be due, in this case, to 13C depleted metabolic DIC incorporation coming from the respiration. The micrometer scale analysis by ion microprobe of B, C and O isotopic compositions can allow to better understand responsible process(es) of the vital effect and the existence of a great diversity in 18O - SST calibrations for differents colonies of the same species. These analyses show that 11B and 18O of coral skeleton have a great variability at micrometer scale (10 and 12 , respectively), whereas 13C have no so important variations and that all the values are in the range of 13C measured by "classical" method (acid digestion and mass spectrometry). Thus the in

  11. Liquid and gas chromatography coupled to isotope ratio mass spectrometry for the determination of 13C-valine isotopic ratios in complex biological samples.

    PubMed

    Godin, Jean-Philippe; Breuillé, Denis; Obled, Christiane; Papet, Isabelle; Schierbeek, Henk; Hopfgartner, Gérard; Fay, Laurent-Bernard

    2008-10-01

    On-line gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) is commonly used to measure isotopic ratios at natural abundance as well as for tracer studies in nutritional and medical research. However, high-precision (13)C isotopic enrichment can also be measured by liquid chromatography-isotope ratio mass spectrometry (LC-IRMS). Indeed, LC-IRMS can be used, as shown by the new method reported here, to obtain a baseline separation and to measure (13)C isotopic enrichment of underivatised amino acids (Asp, Thr-Ser, Glu, Pro, Gly, Ala, Cys and Val). In case of Val, at natural abundance, the SD(delta(13)C) reported with this method was found to be below 1 per thousand . Another key feature of the new LC-IRMS method reported in this paper is the comparison of the LC-IRMS approach with the conventional GC-C-IRMS determination. To perform this comparative study, isotopic enrichments were measured from underivatised Val and its N(O, S)-ethoxycarbonyl ethyl ester derivative. Between 0.0 and 1.0 molar percent excess (MPE) (delta(13)C= -12.3 to 150.8 per thousand), the calculated root-mean-square (rms) of SD was 0.38 and 0.46 per thousand and the calculated rms of accuracy was 0.023 and 0.005 MPE, respectively, for GC-C-IRMS and LC-IRMS. Both systems measured accurately low isotopic enrichments (0.002 atom percent excess (APE)) with an SD (APE) of 0.0004. To correlate the relative (delta(13)C) and absolute (atom%, APE and MPE) isotopic enrichment of Val measured by the GC-C-IRMS and LC-IRMS devices, mathematical equations showing the slope and intercept of the curves were established and validated with experimental data between 0.0 to 2.3 MPE. Finally, both GC-C-IRMS and LC-IRMS instruments were also used to assess isotopic enrichment of protein-bound (13)C-Val in tibial epiphysis in a tracer study performed in rats. Isotopic enrichments measured by LC-IRMS and GC-C-IRMS were not statistically different (p>0.05). The results of this work indicate that

  12. Boron isotopic composition of fumarolic condensates from some volcanoes in Japanese island arcs

    NASA Astrophysics Data System (ADS)

    Nomura, Masao; Kanzaki, Tadao; Ozawa, Takejiro; Okamoto, Makoto; Kakihana, Hidetake

    1982-11-01

    Boron samples from 40 fumarolic condensates from volcanoes in the Ryukyu arc (Satsuma Iwo-jima and Shiratori Iwo-yama) and the North-east Japan arc (Usu-shinzan, Showa-shinzan, Esan and Issaikyo-yama) all have 11B /10B ratios close to 4.07. Higher values, from 4.09 to 4.13, were only observed in condensates from volcanoes in the southernmost end of the North-east Japan arc (Nasu-dake), the northern part of the Izu-Bonin arc (Hakone), and the North Mariana arc (Ogasawara Iwo-jima). These higher values suggest geological interaction of the magmas with sea-water enriched in 11B.

  13. Forensic Applications of Light-Element Stable Isotope Ratios of Ricinus communis Seeds and Ricin Preparations

    SciTech Connect

    Kreuzer, Helen W.; West, Jason B.; Ehleringer, James

    2013-01-01

    Seeds of the castor plant Ricinus communis, also known as castor beans, are of forensic interest because they are the source of the poison ricin. We have tested whether stable isotope ratios of castor seeds and ricin prepared by various methods can be used as a forensic signature. We collected over 300 castor seed samples from locations around the world and measured the C, N, O, and H stable isotope ratios of the whole seeds, oil, and three types of ricin preparations. Our results demonstrate that N isotope ratios can be used to correlate ricin prepared by any of these methods to source seeds. Further, stable isotope ratios distinguished >99% of crude and purified ricin protein samples in pair-wise comparison tests. Stable isotope ratios therefore constitute a valuable forensic signature for ricin preparations.

  14. Carbon isotopic analysis of atmospheric methane by isotope-ratio-monitoring gas chromatography-mass spectrometry

    NASA Technical Reports Server (NTRS)

    Merritt, Dawn A.; Hayes, J. M.; Des Marais, David J.

    1995-01-01

    Less than 15 min are required for the determination of delta C(sub PDB)-13 with a precision of 0.2 ppt(1 sigma, single measurement) in 5-mL samples of air containing CH4 at natural levels (1.7 ppm). An analytical system including a sample-introduction unit incorporating a preparative gas chromatograph (GC) column for separation of CH4 from N2, O2, and Ar is described. The 15-min procedure includes time for operation of that system, high-resolution chromatographic separation of the CH4, on-line combustion and purification of the products, and isotopic calibration. Analyses of standards demonstrate that systematic errors are absent and that there is no dependence of observed values of delta on sample size. For samples containing 100 ppm or more CH4, preconcentration is not required and the analysis time is less than 5 min. The system utilizes a commercially available, high-sensitivity isotope-ratio mass spectrometer. For optimal conditions of smaple handling and combustion, performance of the system is within a factor of 2 of the shot-noise limit. The potential exists therefore for analysis of samples as small as 15 pmol CH4 with a standard deviation of less than 1 ppt.

  15. Boron content and isotopic composition of tektites and impact glasses: Constraints on source regions

    NASA Astrophysics Data System (ADS)

    Chaussidon, Marc; Koeberl, Christian

    1995-02-01

    Abundances of Li, Be, and B, as well as boron isotopic compositions, were determined in twenty-seven tektite and impact glass samples, using an ion microprobe. Samples included tektites from the Australasian, North American, and Ivory Coast strewn fields, and Aouelloul and Darwin impact glasses. Variations of B abundance and isotopic composition in a flanged australite were also studied. δ 11B variations of only a few permil were found within the australite flange. The isotopic composition shows no correlation with the B contents or with the distance from the rim of the flange. The mean δ 11B value for the flanged australite is very similar to that of Muong-Nong type tektites (-1.9 ± 1.9‰). Thus, vapor fractionation has been unimportant during tektite formation. This is supported by the observation that B contents and the δ 11B values of the different samples from the Australasian tektite strewn field are not correlated with each other. Most tektites show a rather limited range of δ 11B values (-9.3 ± 1.5 to +2.7 ± 1.5%o), which is small compared to the range observed for common terrestrial rocks (-30 to +40‰). The B abundance and isotopic data can be used to place constraints on the tektite source rocks. Australasian tektites have high B and Li abundances; only clay-rich sediments, such as pelagic and neritic sediments, as well as river and deltaic sediments have B contents (up to 100 ppm) and δ 11B values that are in agreement with the range shown by Australasian tektites (-4.9 to + 1.4‰). 10Be and RbSr data indicate continental crustal source rocks and exclude pelagic and neritic sediments. However, deltaic sediments, e.g., from the Mekong river, which are of continental crustal origin, agree with 10Be, RbSr, and B data, and support a possible source locality close to the coast of SE Indochina in the South China Sea. On the other hand, one bediasite sample has a very high δ 11B value of +15.1 ± 2.1‰, requiring the presence of marine

  16. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results

    USGS Publications Warehouse

    Coplen, Tyler B.

    2011-01-01

    To minimize confusion in the expression of measurement results of stable isotope and gas-ratio measurements, recommendations based on publications of the Commission on Isotopic Abundances and Atomic Weights of the International Union of Pure and Applied Chemistry (IUPAC) are presented. Whenever feasible, entries are consistent with the Système International d'Unités, the SI (known in English as the International System of Units), and the third edition of the International Vocabulary of Basic and General Terms in Metrology (VIM, 3rd edition). The recommendations presented herein are approved by the Commission on Isotopic Abundances and Atomic Weights and are designed to clarify expression of quantities related to measurement of isotope and gas ratios to ensure that quantity equations instead of numerical value equations are used for quantity definitions. Examples of column headings consistent with quantity calculus (also called the algebra of quantities) and examples of various deprecated usages connected with the terms recommended are presented.

  17. Equations for Lipid Normalization of Carbon Stable Isotope Ratios in Aquatic Bird Eggs

    PubMed Central

    Elliott, Kyle H.; Davis, Mikaela; Elliott, John E.

    2014-01-01

    Stable isotope ratios are biogeochemical tracers that can be used to determine the source of nutrients and contaminants in avian eggs. However, the interpretation of stable carbon ratios in lipid-rich eggs is complicated because 13C is depleted in lipids. Variation in 13C abundance can therefore be obscured by variation in percent lipids. Past attempts to establish an algebraic equation to correct carbon isotope ratios for lipid content in eggs have been unsuccessful, possibly because they relied partly on data from coastal or migratory species that may obtain egg lipids from different habitats than egg protein. We measured carbon, nitrogen and sulphur stable isotope ratios in 175 eggs from eight species of aquatic birds. Carbon, nitrogen and sulphur isotopes were enriched in lipid-extracted egg samples compared with non extracted egg samples. A logarithmic equation using the C∶N ratio and carbon isotope ratio from the non extracted egg tissue calculated 90% of the lipid-extracted carbon isotope ratios within ±0.5‰. Calculating separate equations for eggs laid by species in different habitats (pelagic, offshore and terrestrial-influenced) improved the fit. A logarithmic equation, rather than a linear equation as often used for muscle, was necessary to accurately correct for lipid content because the relatively high lipid content of eggs compared with muscle meant that a linear relationship did not accurately approximate the relationship between percent lipids and the C∶N ratio. Because lipid extraction alters sulphur and nitrogen isotope ratios (and cannot be corrected algebraically), we suggest that isotopic measurement on bulk tissue followed by algebraic lipid normalization of carbon stable isotope ratio is often a good solution for homogenated eggs, at least when it is not possible to complete separate chemical analyses for each isotope. PMID:24465384

  18. Uranium Isotope Ratios in Modern and Precambrian Soils

    NASA Astrophysics Data System (ADS)

    DeCorte, B.; Planavsky, N.; Wang, X.; Auerbach, D. J.; Knudsen, A. C.

    2015-12-01

    Uranium isotopes (δ238U values) are an emerging paleoredox proxy that can help to better understand the redox evolution of Earth's surface environment. Recently, uranium isotopes have been used to reconstruct ocean and atmospheric redox conditions (Montoya-Pino et al., 2010; Brennecka et al., 2011; Kendall et al., 2013; Dahl et al., 2014). However, to date, there have not been studies on paleosols, despite that paleosols are, arguably better suited to directly tracking the redox conditions of the atmosphere. Sedimentary δ238U variability requires the formation of the soluble, oxidized form of U, U(VI). The formation of U(VI) is generally thought to require oxygen levels orders of magnitude higher than prebiotic levels. Without significant U mobility, it would have been impossible to develop isotopically distinct pools of uranium in ancient Earth environments. Conversely, an active U redox cycle leads to significant variability in δ238U values. Here we present a temporally and geographically expansive uranium isotope record from paleosols and modern soils to better constrain atmospheric oxygen levels during the Precambrian. Preliminary U isotope measurements of paleosols are unfractionated (relative to igneous rocks), possibly because of limited fractionation during oxidation (e.g., {Wang, 2015 #478}) or insufficient atmospheric oxygen levels to oxidize U(IV)-bearing minerals in the bedrock. Further U isotope measurements of paleosols with comparison to modern soils will resolve this issue.

  19. Reducing and correcting for contamination of ecosystem water stable isotopes measured by isotope ratio infrared spectroscopy.

    PubMed

    Schmidt, Markus; Maseyk, Kadmiel; Lett, Céline; Biron, Philippe; Richard, Patricia; Bariac, Thierry; Seibt, Ulli

    2012-01-30

    Concern exists about the suitability of laser spectroscopic instruments for the measurement of the (18)O/(16)O and (2)H/(1)H values of liquid samples other than pure water. It is possible to derive erroneous isotope values due to optical interference by certain organic compounds, including some commonly present in ecosystem-derived samples such as leaf or soil waters. Here we investigated the reliability of wavelength-scanned cavity ring-down spectroscopy (CRDS) (18)O/(16)O and (2)H/(1)H measurements from a range of ecosystem-derived waters, through comparison with isotope ratio mass spectrometry (IRMS). We tested the residual of the spectral fit S(r) calculated by the CRDS instrument as a means to quantify the difference between the CRDS and IRMS δ-values. There was very good overall agreement between the CRDS and IRMS values for both isotopes, but differences of up to 2.3‰ (δ(18)O values) and 23‰ (δ(2)H values) were observed in leaf water extracts from Citrus limon and Alnus cordata. The S(r) statistic successfully detected contaminated samples. Treatment of Citrus leaf water with activated charcoal reduced, but did not eliminate, δ(2)H(CRDS) - δ(2)H(IRMS) linearly for the tested range of 0-20% charcoal. The effect of distillation temperature on the degree of contamination was large, particularly for δ(2)H values but variable, resulting in positive, negative or no correlation with distillation temperature. S(r) and δ(CRDS) - δ(IRMS) were highly correlated, in particular for δ(2)H values, across the range of samples that we tested, indicating the potential to use this relationship to correct the δ-values of contaminated plant water extracts. We also examined the sensitivity of the CRDS system to changes in the temperature of its operating environment. We found that temperature changes ≥4 °C for δ(18)O values and ≥10 °C for δ(2)H values resulted in errors larger than the CRDS precision for the respective isotopes and advise the use of such

  20. High Acidification Rate of Norwegian Sea Revealed by Boron Isotopes in the Deep-Sea Coral Madrepora Oculata

    NASA Astrophysics Data System (ADS)

    Gonzalez, C.; Douville, E.; Hall-Spencer, J.; Montagna, P.; Louvat, P.; Gaillardet, J.; Frank, N.; Bordier, L.; Juillet-Leclerc, A.

    2012-12-01

    Ocean acidification and global warming due to the increase of anthropogenic CO2 are major threats for marine calcifying organisms, such as deep-sea corals, particularly in high-latitude regions. In order to evaluate the current anthropogenic perturbation and to properly assess the impacts and responses of calcifiers to previous changes in pH it is critical to investigate past changes of the seawater carbonate system. Unfortunately, current instrumental records of oceanic pH are limited, covering only a few decades. Scleractinian coral skeletons record chemical parameters of the seawater in which they grow. However, pH variability over multidecadal timescales remains largely unknown in intermediate and deep seawater masses. Here we present a study that highlights the potential of deep-sea-corals to overcome the lack of long-term pH records and that emphasizes a rapid acidification of high latitude subsurface waters of Norwegian Sea during the past decades. We have reconstructed seawater pH and temperature from a well dated deep-sea coral specimen Madrepora oculata collected alive from Røst reef in Norwegian Sea (67°N, 9°E, 340 m depth). This large branching framework forming coral species grew its skeleton over more than four decades determined using AMS 14C and 210Pb dating (Sabatier et al. 2012). B-isotopes and Li/Mg ratios yield an acidification rate of about -0.0030±0.0008 pH-unit.year-1 and a warming of 0.3°C during the past four decades (1967-2007). Overall our reconstruction technique agrees well with previous pH calculations (Hönisch et al., 2007 vs. Trotter et al., 2011 and McCulloch et al., 2012, i.e. the iterative method), but additional corrections are here applied using stable isotope correlations (O, C, B) to properly address kinetic fractionation of boron isotopes used for pH reconstruction. The resulting pH curve strongly anti-correlates with the annual NAO index, which further strengthens our evidence for the ocean acidification rate

  1. Boron isotopes in tourmaline from the ca. 3.7-3.8 Ga Isua supracrustal belt, Greenland: Sources for boron in Eoarchean continental crust and seawater

    NASA Astrophysics Data System (ADS)

    Grew, Edward S.; Dymek, Robert F.; De Hoog, Jan C. M.; Harley, Simon L.; Boak, Jeremy; Hazen, Robert M.; Yates, Martin G.

    2015-08-01

    Boron is highly concentrated in Earth's crust relative to primitive mantle. However, when present-day crustal concentrations were achieved remains debatable. It has been proposed that seawater boron δ11B was lower than at present, consistent with a model relating increase in sea-water δ11B to the proportion of B extracted from Earth's mantle into the oceans and crust. Our in situ ion microprobe analyses of tourmaline in 17 samples from the Eoarchean Isua supracrustal belt, Southwest Greenland, gave the following average δ11B with uncertainties ranging from ±0.4 to ±1.9‰: δ11B = -7.1 to -11.5‰ in amphibolite; δ11B = -10.5 to -25.3‰ in mica schist; δ11B = -19.2‰ in metachert (one sample), and δ11B = -21.9‰ in metaconglomerate (one sample). Tourmaline is largely schorl-dravite, rarely uvite-feruvite, and shows color and compositional zoning. δ11B varies from grain to grain in most samples; grains in a kyanite-staurolite schist are isotopically zoned, possibly because the rims incorporated B released by muscovite breakdown. The patterns in color-zoned tourmaline grains in our samples are not consistent with detrital origin of the cores, which rules out the possibility of there being tourmaline detritus from pre-existing continental crust in the studied samples. The tourmaline-bearing rocks are found in both the ca. 3700 Ma northern and ca. 3800 Ma southern terranes in the Isua supracrustal belt. Following an approach suggested by Chaussidon and Appel, we estimated Eoarchean seawater δ11B by calculating back from δ11B of tourmaline in metasedimentary rocks using fractionation of boron isotopes between clays and muscovite, tourmaline and aqueous fluid. This calculation gave an estimated δ11B ≈ +14 ± 15‰ for Eoarchean seawater, 25‰ lower than present-day seawater (δ11B = +39.5‰). For comparison, an estimate obtained simply by direct comparison of δ11B for Eoarchean and Phanerozoic tourmaline presumed to have crystallized in similar

  2. Self- and dopant diffusion in extrinsic boron doped isotopically controlled silicon multilayer structures

    SciTech Connect

    Sharp, Ian D.; Bracht, Hartmut A.; Silvestri, Hughes H.; Nicols, Samuel P.; Beeman, Jeffrey W.; Hansen, John L.; Nylandsted Larsen, Arne; Haller, Eugene E.

    2002-04-01

    Isotopically controlled silicon multilayer structures were used to measure the enhancement of self- and dopant diffusion in extrinsic boron doped silicon. {sup 30}Si was used as a tracer through a multilayer structure of alternating natural Si and enriched {sup 28}Si layers. Low energy, high resolution secondary ion mass spectrometry (SIMS) allowed for simultaneous measurement of self- and dopant diffusion profiles of samples annealed at temperatures between 850 C and 1100 C. A specially designed ion- implanted amorphous Si surface layer was used as a dopant source to suppress excess defects in the multilayer structure, thereby eliminating transient enhanced diffusion (TED) behavior. Self- and dopant diffusion coefficients, diffusion mechanisms, and native defect charge states were determined from computer-aided modeling, based on differential equations describing the diffusion processes. We present a quantitative description of B diffusion enhanced self-diffusion in silicon and conclude that the diffusion of both B and Si is mainly mediated by neutral and singly positively charged self-interstitials under p-type doping. No significant contribution of vacancies to either B or Si diffusion is observed.

  3. Tracing the strength of the southwest monsoon using boron isotopes in the eastern Arabian Sea

    NASA Astrophysics Data System (ADS)

    Naik, Sushant S.; Divakar Naidu, P.; Foster, Gavin L.; Martínez-Botí, Miguel A.

    2015-03-01

    Here we present the first boron isotope-based pCO2sw (pCO2 of seawater) reconstruction from the eastern Arabian Sea using the planktic foraminifera species Globigerinoides ruber. Our results from sediment core AAS9/21 show that pCO2sw varied between ~160 and 300 µatm during the last 23 kyr. The ΔpCO2, the sea-air pCO2 difference, is relatively small during the last glacial maximum and becomes more negative toward the Holocene, with the exception of a significant excess during the last deglaciation centered on the Bølling-Ållerød. Throughout the record, ΔpCO2 is predominantly negative, probably as a result of enhanced biological productivity (and higher nutrient and carbon utilization) during the southwest monsoon. A reduction in ΔpCO2 during the last glacial maximum is therefore consistent with a reduction in the strength of this monsoon system.

  4. Development and validation of a single collector ICPMS procedure to determine boron isotopeic compositions of water and food samples

    NASA Astrophysics Data System (ADS)

    Vogl, Jochen; Rosner, Martin; Pritzkow, Wolfgang

    2010-05-01

    Authenticity and provenance studies as well as issues in environmental- and geo-sciences are hot topics in nowadays isotope research. Elements being known for their natural isotopic variation, such as lead and strontium, are being used to assign the provenance of artefacts, food and other products. A recent study revealed the potential of boron (B) isotopes for delivering information on the provenance of crop plants. To offer alternative analytical instrumentations beside the classical TIMS procedures a single collector ICPMS procedure for B isotope analyses has been developed and validated. This procedure should enable more B isotope studies, as single collector ICPMS intruments are more widepread in the relevant laboratories compared to TIMS. The developed procedures for the determination of B isotopic compositions use a magnetic sector ICPMS and consist of one low resolution (LR) and one medium resolution (MR) procedure. The absolute standard deviation for the δ11B determination in three independently measured samples lies between 0.2 and 0.8 ‰ for the LR and between 0.3 and 1.5 ‰ for the MR. The expanded uncertainties with a coverage factor of k=2 range between 1.4 and 1.6 ‰ for the LR and between 2.9 and 3.2 ‰ for the MR. The trueness, expressed as average deviation from the reference values, is less than 1.1 ‰ for LR and 0.8 ‰ for MR. To test the practicability of the procedure the matrix tolerance has been investigated. Using a measurement solution containing 100 µg/kg boron a matrix of 2 mg/kg of alkaline and earth alkaline elements was found as a limit for stable instrumental mass discrimination. Thus a highly efficient matrix separation is required, similar to TIMS. The developed procedure is well suited for the for B isotope studies of various matrices and especially the LR procedure offers relatively small uncertainties combined with high sample throughput.

  5. Secondary ionization mass spectrometric analysis of impurity element isotope ratios in nuclear reactor materials

    NASA Astrophysics Data System (ADS)

    Gerlach, D. C.; Cliff, J. B.; Hurley, D. E.; Reid, B. D.; Little, W. W.; Meriwether, G. H.; Wickham, A. J.; Simmons, T. A.

    2006-07-01

    During reactor operations and fuel burn up, some isotopic abundances change due to nuclear reactions and provide sensitive indicators of neutron fluence and fuel burnup. Secondary ion mass spectrometry (SIMS) analysis has been used to measure isotope ratios of selected impurity elements in irradiated nuclear reactor graphite. Direct SIMS measurements were made in graphite samples, following shaping and surface cleaning. Models predicting local fuel burnup based on isotopic measurements of B and Li isotopes by SIMS agreed well with U and Pu isotopic measurements obtained by thermal ionization mass spectrometry (TIMS).

  6. LITHIUM-BERYLLIUM-BORON ISOTOPIC COMPOSITIONS IN METEORITIC HIBONITE: IMPLICATIONS FOR ORIGIN OF {sup 10}Be AND EARLY SOLAR SYSTEM IRRADIATION

    SciTech Connect

    Liu, Ming-Chang; Nittler, Larry R.; Alexander, Conel M. O'D.; Lee, Typhoon

    2010-08-10

    NanoSIMS isotopic measurements of Li, Be, and B in individual hibonite grains extracted from the Murchison meteorite revealed that {sup 10}B excesses correlate with the {sup 9}Be/{sup 11}B ratios in {sup 26}Al-free PLAty hibonite Crystals. From these data, an initial {sup 10}Be/{sup 9}Be = (5.5 {+-} 1.6) x 10{sup -4} (2{sigma}) and {sup 10}B/{sup 11}B = 0.2508 {+-} 0.0015 can be inferred. On the other hand, chondritic boron isotopic compositions were found in {sup 26}Al-bearing Spinel-HIBonite spherules, most likely due to contamination with normal boron. No {sup 7}Li excesses due to {sup 7}Be decay were observed. When combined with previously reported data, the new data yield the best defined {sup 10}Be/{sup 9}Be = (5.3 {+-} 1.0) x 10{sup -4} (2{sigma}) and {sup 10}B/{sup 11}B = 0.2513 {+-} 0.0012 for PLACs. A comparison of this value and the best constrained {sup 10}Be/{sup 9}Be = (8.8 {+-} 0.6) x 10{sup -4} in CV Ca-Al-rich inclusions supports a heterogeneous distribution of {sup 10}Be and its protosolar irradiation origin. We consider two possible irradiation scenarios that could potentially lead to the observed Li-Be-B isotopic compositions in PLACs. Although in situ irradiation of solids with hibonite chemistry seems to provide the simplest explanation, more high quality data will be needed for quantitatively constraining the irradiation history.

  7. Simultaneous stable carbon isotopic analysis of wine glycerol and ethanol by liquid chromatography coupled to isotope ratio mass spectrometry.

    PubMed

    Cabañero, Ana I; Recio, Jose L; Rupérez, Mercedes

    2010-01-27

    A novel procedure was established for the simultaneous characterization of wine glycerol and ethanol (13)C/(12)C isotope ratio, using liquid chromatography/isotope ratio mass spectrometry (LC-IRMS). Several parameters influencing separation of glycerol and ethanol from wine matrix were optimized. Results obtained for 35 Spanish samples exposed no significant differences and very strong correlations (r = 0.99) between the glycerol (13)C/(12)C ratios obtained by an alternative method (gas chromatography/isotope ratio mass spectrometry) and the proposed new methodology, and between the ethanol (13)C/(12)C ratios obtained by the official method (elemental analyzer/isotope ratio mass spectrometry) and the proposed new methodology. The accuracy of the proposed method varied from 0.01 to 0.19 per thousand, and the analytical precision was better than 0.25 per thousand. The new developed LC-IRMS method it is the first isotopic method that allows (13)C/(12)C determination of both analytes in the same run directly from a liquid sample with no previous glycerol or ethanol isolation, overcoming technical difficulties associated with complex sample treatment and improving in terms of simplicity and speed. PMID:20025274

  8. The isotope systematics of a juvenile intraplate volcano: Pb, Nd, and Sr isotope ratios of basalts from Loihi Seamount, Hawaii

    USGS Publications Warehouse

    Staudigel, H.; Zindler, A.; Hart, S.R.; Leslie, T.; Chen, C.-Y.; Clague, D.

    1984-01-01

    Sr, Nd, and Pb isotope ratios for a representative suite of 15 basanites, alkali basalts, transitional basalts and tholeiites from Loihi Seamount, Hawaii, display unusually large variations for a single volcano, but lie within known ranges for Hawaiian basalts. Nd isotope ratios in alkali basalts show the largest relative variation (0.51291-0.51305), and include the nearly constant tholeiite value ( ??? 0.51297). Pb isotope ratios show similarly large ranges for tholeiites and alkali basalts and continue Tatsumoto's [31] "Loa" trend towards higher 206Pb 204Pb ratios, resulting in a substantial overlap with the "Kea" trend. 206Pb 204Pb ratios for Loihi and other volcanoes along the Loa and Kea trends [31] are observed to correlate with the age of the underlying lithosphere suggesting lithosphere involvement in the formation of Hawaiian tholeiites. Loihi lavas display no correlation of Nd, Sr, or Pb isotope ratios with major element compositions or eruptive age, in contrast with observations of some other Hawaiian volcanoes [38]. Isotope data for Loihi, as well as average values for Hawaiian volcanoes, are not adequately explained by previously proposed two-end-member models; new models for the origin and the development of Hawaiian volcanoes must include mixing of at least three geochemically distinct source regions and allow for the involvement of heterogeneous oceanic lithosphere. ?? 1984.

  9. BOREAS TE-5 Tree Ring and Carbon Isotope Ratio Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Ehleriinger, Jim; Brooks, J. Renee; Flanagan, Larry

    2000-01-01

    The BOREAS TE-5 team collected several data sets to investigate the vegetation-atmosphere CO2 and H2O exchange processes. These data include tree ring widths and cellulose carbon isotope data from coniferous trees collected at the BOREAS NSA and SSA in 1993 and 1994 by the BOREAS TE-5 team. Ring width data are provided for both Picea mariana and Pinus banksiana. The carbon isotope data are provided only for Pinus banksiana. The data are provided in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  10. The IRHUM (Isotopic Reconstruction of Human Migration) database - bioavailable strontium isotope ratios for geochemical fingerprinting in France

    NASA Astrophysics Data System (ADS)

    Willmes, M.; McMorrow, L.; Kinsley, L.; Armstrong, R.; Aubert, M.; Eggins, S.; Falguères, C.; Maureille, B.; Moffat, I.; Grün, R.

    2013-11-01

    Strontium isotope ratios (87Sr/86Sr) are a key geochemical tracer used in a wide range of fields including archaeology, ecology, food and forensic sciences. These applications are based on the principle that the Sr isotopic ratios of natural materials reflect the sources of strontium available during their formation. A major constraint for current studies is the lack of robust reference maps to evaluate the source of strontium isotope ratios measured in the samples. Here we provide a new dataset of bioavailable Sr isotope ratios for the major geologic units of France, based on plant and soil samples (Pangaea data repository doi:10.1594/PANGAEA.819142). The IRHUM (Isotopic Reconstruction of Human Migration) database is a web platform to access, explore and map our dataset. The database provides the spatial context and metadata for each sample, allowing the user to evaluate the suitability of the sample for their specific study. In addition, it allows users to upload and share their own datasets and data products, which will enhance collaboration across the different research fields. This article describes the sampling and analytical methods used to generate the dataset and how to use and access of the dataset through the IRHUM database. Any interpretation of the isotope dataset is outside the scope of this publication.

  11. The IRHUM (Isotopic Reconstruction of Human Migration) database - bioavailable strontium isotope ratios for geochemical fingerprinting in France

    NASA Astrophysics Data System (ADS)

    Willmes, M.; McMorrow, L.; Kinsley, L.; Armstrong, R.; Aubert, M.; Eggins, S.; Falguères, C.; Maureille, B.; Moffat, I.; Grün, R.

    2014-03-01

    Strontium isotope ratios (87Sr / 86Sr) are a key geochemical tracer used in a wide range of fields including archaeology, ecology, food and forensic sciences. These applications are based on the principle that the Sr isotopic ratios of natural materials reflect the sources of strontium available during their formation. A major constraint for current studies is the lack of robust reference maps to evaluate the source of strontium isotope ratios measured in the samples. Here we provide a new data set of bioavailable Sr isotope ratios for the major geologic units of France, based on plant and soil samples (Pangaea data repository doi:10.1594/PANGAEA.819142). The IRHUM (Isotopic Reconstruction of Human Migration) database is a web platform to access, explore and map our data set. The database provides the spatial context and metadata for each sample, allowing the user to evaluate the suitability of the sample for their specific study. In addition, it allows users to upload and share their own data sets and data products, which will enhance collaboration across the different research fields. This article describes the sampling and analytical methods used to generate the data set and how to use and access the data set through the IRHUM database. Any interpretation of the isotope data set is outside the scope of this publication.

  12. Improved isotope ratio measurement performance in liquid chromatography/isotope ratio mass spectrometry by removing excess oxygen.

    PubMed

    Hettmann, Elena; Brand, Willi A; Gleixner, Gerd

    2007-01-01

    A low dead volume oxygen scrubbing system was introduced in a commercially available liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) interface to enhance the analytical capability of the system. In the LC/IRMS interface carbon from organic samples is converted into CO(2) inside the mobile phase by wet chemical oxidation using peroxodisulfate (Na(2)S(2)O(8)). After passing the hot reaction zone, surplus oxygen (O(2)) remains dissolved in the liquid phase. Both CO(2) and O(2) diffuse through a transfer membrane into the helium carrier and are transferred to the mass spectrometer. The presence of O(2) in the ion source may have detrimental effects on measurement accuracy and precision as well as on filament lifetime. As a remedy, a new on-line O(2)-removing device has been incorporated into the system. The new O(2) scrubber consists of two parallel hot copper reduction reactors (0.8 mm i.d., active length 120 mm) and a switch-over valve between them. One reactor is regenerated using He/H(2) while the other is actively scavenging O(2) from the gas stream. The capacity of each reduction reactor, expressed as usage time, is between 40 and 50 min. This is sufficient for a single LC run for sugars and organic acids. A further increase of the reduction capacity is accompanied by a peak broadening of about 100%. After switching to a freshly reduced reactor the oxygen background and the delta(13)C values of the reference gas need up to 500 s to stabilize. For repeated injections the delta(13)C values of sucrose remain constant (+/-0.1 per thousand) for about 3000 s. The long-term stability for measurements of sucrose was 0.11 per thousand without the reduction oven and improved slightly to 0.08 per thousand with the reduction oven. The filament lifetime improved by more than 600%, thereby improving the long-term system stability and analytical efficiency. In addition the costs per analysis were reduced considerably. PMID:18041012

  13. In-Vivo Zinc Metabolism by Isotope Ratio Mass Spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this chapter is to highlight some of the methodological and technical issues surrounding the in vivo use of stable isotopes and to provide examples of how such studies have advanced our knowledge of human zinc metabolism. The advantages and disadvantages of the currently available in...

  14. Strontium isotope ratios and the origin of anorthosites

    SciTech Connect

    Vinogradov, V.I.

    1986-01-01

    Anorthosites are rocks consisting almost completely of calcic plagioclase, usually from andesine to labradorite. They are not widespread, and until recently were of no economic interest. However, with the advance of the new global tectonics, which has excited considerable interest in the structure and composition of upper-mantle rocks, interest in the anorthosites has grown. This has particularly been the case since the discovery of anorthosites on the moon, where they appear to be more widespread than on the earth. Data have recently been obtained on the strontium isotope compositions of anorthosite intrusions in the Dzhugdzhur-Stanovoy zone and in the rocks surrounding them, which have revealed some unexpected features. The paper describes the geological features of anorthosites, initial concepts on strontium isotope geochemistry, strontium isotope compositions of this region, and discusses some genetic consequences from the isotope data. Although the data of this study are insufficient to determine the origin of anorthosites, the data indicate several points which should be considered in following studies. 11 references, 1 figure.

  15. Stable carbon isotope ratios of toluene in the boundary layer and the lower free troposphere

    NASA Astrophysics Data System (ADS)

    Wintel, J.; Hösen, E.; Koppmann, R.; Krebsbach, M.; Hofzumahaus, A.; Rohrer, F.

    2013-11-01

    During the field campaign ZEPTER-2 in autumn 2008 whole air samples were collected on board a Zeppelin NT airship in the planetary boundary layer (PBL) and the lower free troposphere (LFT) over south-west Germany using the ZEppelin Based Isotope Sampler (ZEBIS). These samples were analysed with respect to volatile organic compound (VOC) mixing ratios and stable carbon isotope ratios using a gas chromatograph combustion isotope ratio mass spectrometer (GC-C-IRMS). In this study we present results for toluene, one of the major anthropogenic pollutants, which emphasise the viability of isotope ratio measurements in VOC for atmospheric research, especially to study VOC sources or to track both dynamical and chemical processes. In situ measurements of CO mixing ratios on board the Zeppelin NT were used to allocate the air samples either to the PBL or the LFT. In the PBL we observed rather fresh emissions mixing into the background air. We estimated a toluene source isotope ratio of δ13C = -28.2 ± 0.5‰. Samples from the PBL and the LFT were clearly distinguishable by means of their mixing ratio and isotope ratio signatures. Using the concept of the effective kinetic isotope effect, we were able to separate the effects of dilution processes and photochemical degradation in the free troposphere. We calculated the photochemical age of toluene in the atmosphere in two different ways using isotope ratios and mixing ratios. The results differ strongly in the PBL, probably due to mixing processes, but are compatible with each other in the LFT. Here, they correlate with a slope of 0.90±0.31.

  16. Stable carbon isotope ratios of rock varnish organic matter: a new paleoenvironmental indicator.

    PubMed

    Dorn, R I; Deniro, M J

    1985-03-22

    Stable carbon isotope ratios of organic matter in rock varnishes of Holocene age from western North America and the Middle East show a strong association with the environment. This isotopic variability reflects the abundance of plants with different photosynthetic pathways in adjacent vegetation. Analyses of different layers of varnish on late Pleistocene desert landforms indicate that the carbon isotopic composition of varnish organic matter is a paleoenvironmental indicator. PMID:17777781

  17. Chlorine isotope effects from isotope ratio mass spectrometry suggest intramolecular C-Cl bond competition in trichloroethene (TCE) reductive dehalogenation.

    PubMed

    Cretnik, Stefan; Bernstein, Anat; Shouakar-Stash, Orfan; Löffler, Frank; Elsner, Martin

    2014-01-01

    Chlorinated ethenes are prevalent groundwater contaminants. To better constrain (bio)chemical reaction mechanisms of reductive dechlorination, the position-specificity of reductive trichloroethene (TCE) dehalogenation was investigated. Selective biotransformation reactions (i) of tetrachloroethene (PCE) to TCE in cultures of Desulfitobacterium sp. strain Viet1; and (ii) of TCE to cis-1,2-dichloroethene (cis-DCE) in cultures of Geobacter lovleyi strain SZ were investigated. Compound-average carbon isotope effects were -19.0‰ ± 0.9‰ (PCE) and -12.2‰ ± 1.0‰ (TCE) (95% confidence intervals). Using instrumental advances in chlorine isotope analysis by continuous flow isotope ratio mass spectrometry, compound-average chorine isotope effects were measured for PCE (-5.0‰ ± 0.1‰) and TCE (-3.6‰ ± 0.2‰). In addition, position-specific kinetic chlorine isotope effects were determined from fits of reactant and product isotope ratios. In PCE biodegradation, primary chlorine isotope effects were substantially larger (by -16.3‰ ± 1.4‰ (standard error)) than secondary. In TCE biodegradation, in contrast, the product cis-DCE reflected an average isotope effect of -2.4‰ ± 0.3‰ and the product chloride an isotope effect of -6.5‰ ± 2.5‰, in the original positions of TCE from which the products were formed (95% confidence intervals). A greater difference would be expected for a position-specific reaction (chloride would exclusively reflect a primary isotope effect). These results therefore suggest that both vicinal chlorine substituents of TCE were reactive (intramolecular competition). This finding puts new constraints on mechanistic scenarios and favours either nucleophilic addition by Co(I) or single electron transfer as reductive dehalogenation mechanisms. PMID:24853618

  18. Multi-collector Isotope Ratio Mass Spectrometer -- Operational Performance Report

    SciTech Connect

    Appelhans, Anthony D; Olson, John E; Watrous, Matthew G; Ward, Michael B.; Dahl, David A.

    2010-12-01

    This report describes the operational testing of a new magnetic sector mass spectrometer that utilizes seven full-sized discrete dynode electron multipliers operating simultaneously. The instrument includes a newly developed ion dispersion lens that enables the mass dispersed individual isotope beams to be separated sufficiently to allow a full-sized discrete dynode pulse counting multiplier to be used to measure each isotope beam. The performance of the instrument was measured using SRM 996 (244Pu spike) at loadings of 2.4 and 12 fg on resin beads and with SRM 4350B Columbia River Sediment samples. The measured limit of detection (3s) for 240Pu was 3.4 attograms for SRM 996. The limit of quantitation (LOQ), defined as 10 s, was 11.2 attograms. The measured concentration of 239Pu in the CRS standard was 152 ± 6 fg/g.

  19. High Spatial Resolution Isotope Ratio Imaging and 3D Reconstruction of Presolar SiC Grains

    NASA Astrophysics Data System (ADS)

    Lyon, I. C.; Henkel, T.; Clarke, A.

    2015-07-01

    Presolar SiC grains have been analysed with a new NanoSIMS for isotope ratio measurements of C, N and Si. High spatial resolution imaging suggests that nitrogen isotope heterogeneity within the grains may lead to anomalous results in the literature.

  20. Influence of isotopic re-equilibration on speleothem and fluid inclusion isotope ratios after primary calcite precipitation

    NASA Astrophysics Data System (ADS)

    Kluge, Tobias; Haderlein, Astrid; Weißbach, Therese

    2016-04-01

    Oxygen isotope ratios in speleothems (notably stalagmites) have been used since decades to successfully infer paleotemperatures and deduce paleo-environmental information. In addition, recent technical developments allow to increasingly use fluid inclusions as an archive for drip-water and together with the surrounding calcite as paleothermometer. A basic requirement for isotope data interpretation is the complete knowledge of the fractionation between calcite and fluid. Most laboratory and in-situ cave experiments focus on calcite growth and the isotope fractionation between calcite and feed solution. Potential isotope exchange and re-equilibration processes after the initial deposition have mostly been neglected. However, experiments of Oelkers et al. (2015) showed that the isotope exchange between minerals and fluid can proceed rapidly (within days), even at chemical equilibrium. In hydrous Mg carbonates a similar process of continuous isotope exchange between carbonate and fluid was observed after the carbonate precipitation was completed (Mavromatis et al., 2015). These observations suggest that the isotope ratios of speleothem calcite may be affected by this continuous exchange, likely driving the isotope composition continuously towards equilibrium at the respective cave conditions. In addition, fluid inclusions are suspected to be sensitive to an isotope exchange with the surrounding carbonate highlighting the need to precisely understand and quantify this effect. We assessed the oxygen isotope exchange between calcite and solution at chemical equilibrium conditions with theoretical estimates and laboratory experiments over an intermediate time scale (hours-weeks). A large isotope gradient (~20 ‰)) between solution and calcite was prepared in the experiment to investigate the dynamics of this re-equilibration process. We used a theoretical model based on a Rayleigh fractionation approach and the direct comparison with the experiment to determine

  1. Reconstruction of pH and partial pressure of carbon dioxide during the Mesozoic era period using boron and oxygen isotopic compositions of fresh ammonoids & nautiloids

    NASA Astrophysics Data System (ADS)

    Kawahata, Hodaka; Fukushima, Ayaka; Moriya, Kazuyori; Ishikawa, Tsuyoshi; Suzuki, Atsushi; Tanabe, Kazushige

    2013-04-01

    The increase of partial pressure of carbon dioxide (pCO2) in the atmosphere induces global warming and ocean acidification at the modern condition. The reconstruction of pCO2 during the geological time is required together with proxy calibration by laboratory experiments to predict the future environments. Boron isotopic ratio is an excellent proxy for pH and the relevant partial pressure of carbon dioxide in the seawater (PCO2). This study is the first to quantify pH dependence of delta 11B of the ammonoids and nautiloids mainly in the Cretaceous and in Jurassic (70-162 Ma), which are expected to be much warmer due to higher PCO2. However, no reliable reconstruction data using foraminiferal delta 11B before Cenozoic era has been reported. We used the very fresh aragonite shells of ammonoids and nautiloids by big advantages. Since aragonite changes into secondary calcite by diagenesis, it is easy and effective to identify the degree of alteration at each sample by measuring calcite/aragonite ratio. Also we carefully conducted the assessment of secondary alteration from three perspectives: 1) Determination of calcite/aragonite ratio by X-ray diffraction (XRD), 2) Observation of microstructures of the nacreous layers by scanning electron microscope (SEM), and 3) Measurement of trace element contents and stable isotope ratios. We conducted high precision boron isotope analysis of biogenic carbonates with +/- 0.1 per mil reproducibility by adopting positive thermal ionization mass spectrometry (P-TIMS) methods. Also we analyzed delta 18O to estimate paleo-temperature, at which biogenic aragonite was formed. Combination of delta 11B and delta 18O of biogenic aragonite in 80 Ma and 86 Ma revealed that deeper dwellers showed lower delta 11B values, which corresponded to lower pH. This feature is consistent with those observed in the modern vertical water column. The respective shallow water temperature was 19.7 and 19.1 centigrade. Based on these results, the

  2. Stable carbon isotope ratios of toluene in the boundary layer and the lower free troposphere

    NASA Astrophysics Data System (ADS)

    Wintel, J.; Hösen, E.; Koppmann, R.; Krebsbach, M.

    2013-04-01

    Measurements of stable carbon isotope ratios in VOC are a powerful tool to identify sources or to track both dynamical and chemical processes. During the field campaign ZEPTER-2 in autumn 2008 whole air samples were collected on board a Zeppelin NT airship in the planetary boundary layer and the lower free troposphere over south-west Germany. These samples were analysed with respect to VOC mixing ratios and stable carbon isotope ratios using a gas chromatograph combustion isotope ratio mass spectrometer. In this study we present the results for toluene, one of the major anthropogenic pollutants. In the boundary layer we observed rather fresh emissions mixing into the background and derived a toluene source isotope ratio of δ13C = -28.2 ± 0.5 ‰. Using the concept of the effective kinetic isotope effect, we were able to separate the effects of dilution processes and photochemical degradation in the free troposphere. We estimated the photochemical age of toluene in the atmosphere in two different ways (using isotope ratios and mixing ratios, respectively). The results differ strongly in the planetary boundary layer, probably due to mixing processes, but are compatible with each other in the free troposphere.

  3. Stable carbon isotope ratios of ambient secondary organic aerosols in Toronto

    NASA Astrophysics Data System (ADS)

    Saccon, M.; Kornilova, A.; Huang, L.; Moukhtar, S.; Rudolph, J.

    2015-06-01

    A method to quantify concentrations and stable carbon isotope ratios of secondary organic aerosols (SOA) has been applied to study atmospheric nitrophenols in Toronto, Canada. The sampling of five nitrophenols, all primarily formed from the photo-oxidation of aromatic volatile organic compounds (VOC), in the gas phase and particulate matter (PM) together and PM alone was conducted. Since all of the target compounds are secondary products, their concentrations in the atmosphere are in the low ng m-3 range and consequently a large volume of air (> 1000 m3) is needed to analyze samples for stable carbon isotope ratios, resulting in sampling periods of typically 24 h. While this extended sampling period increases the representativeness of average values, it at the same time reduces possibilities to identify meteorological conditions or atmospheric pollution levels determining nitrophenol concentrations and isotope ratios. Average measured carbon isotope ratios of the different nitrophenols are between -34 and -33‰, which is well within the range predicted by mass balance calculations. However, the observed carbon isotope ratios cover a range of nearly 9‰, and approximately 20% of the isotope ratios of the products have isotope ratios lower than predicted from the kinetic isotope effect of the first step of the reaction mechanism and the isotope ratio of the precursor. This can be explained by isotope fractionation during reaction steps following the initial reaction of the precursor VOCs with the OH radical. Limited evidence for local production of nitrophenols is observed since sampling was done in the Toronto area, an urban centre with significant anthropogenic emission sources. Strong evidence for significant local formation of nitrophenols is only found for samples collected in summer. On average, the difference in carbon isotope ratios between nitrophenols in the particle phase and in the gas phase is insignificant, but for a limited number of observations in

  4. Stable carbon isotope ratios of ambient secondary organic aerosols in Toronto

    NASA Astrophysics Data System (ADS)

    Saccon, M.; Kornilova, A.; Huang, L.; Moukhtar, S.; Rudolph, J.

    2015-09-01

    A method to quantify concentrations and stable carbon isotope ratios of secondary organic aerosols has been applied to study atmospheric nitrophenols in Toronto, Canada. The sampling of five nitrophenols, all with substantial secondary formation from the photooxidation of aromatic volatile organic compounds (VOCs), was conducted in the gas phase and particulate matter (PM) together and in PM alone. Their concentrations in the atmosphere are in the low ng m-3 range and, consequently, a large volume of air (> 1000 m3) is needed to analyze samples for stable carbon isotope ratios, resulting in sampling periods of typically 24 h. While this extended sampling period increases the representativeness of average values, it at the same time reduces possibilities to identify meteorological conditions or atmospheric pollution levels determining nitrophenol concentrations and isotope ratios. Average measured carbon isotope ratios of the different nitrophenols are between -34 and -33 ‰, which is well within the range predicted by mass balance. However, the observed carbon isotope ratios cover a range of nearly 9 ‰ and approximately 20 % of the isotope ratios of the products have isotope ratios lower than predicted from the kinetic isotope effect of the first step of the reaction mechanism and the isotope ratio of the precursor. This can be explained by isotope fractionation during reaction steps following the initial reaction of the precursor VOCs with the OH radical. Limited evidence for local production of nitrophenols is observed since sampling was done in the Toronto area, an urban center with significant anthropogenic emission sources. Strong evidence for significant local formation of nitrophenols is only found for samples collected in summer. On average, the difference in carbon isotope ratios between nitrophenols in the particle phase and in the gas phase is insignificant, but for a limited number of observations in summer, a substantial difference is observed. This

  5. Boron isotope evidence for oceanic carbon dioxide leakage during the last deglaciation.

    PubMed

    Martínez-Botí, M A; Marino, G; Foster, G L; Ziveri, P; Henehan, M J; Rae, J W B; Mortyn, P G; Vance, D

    2015-02-12

    Atmospheric CO2 fluctuations over glacial-interglacial cycles remain a major challenge to our understanding of the carbon cycle and the climate system. Leading hypotheses put forward to explain glacial-interglacial atmospheric CO2 variations invoke changes in deep-ocean carbon storage, probably modulated by processes in the Southern Ocean, where much of the deep ocean is ventilated. A central aspect of such models is that, during deglaciations, an isolated glacial deep-ocean carbon reservoir is reconnected with the atmosphere, driving the atmospheric CO2 rise observed in ice-core records. However, direct documentation of changes in surface ocean carbon content and the associated transfer of carbon to the atmosphere during deglaciations has been hindered by the lack of proxy reconstructions that unambiguously reflect the oceanic carbonate system. Radiocarbon activity tracks changes in ocean ventilation, but not in ocean carbon content, whereas proxies that record increased deglacial upwelling do not constrain the proportion of upwelled carbon that is degassed relative to that which is taken up by the biological pump. Here we apply the boron isotope pH proxy in planktic foraminifera to two sediment cores from the sub-Antarctic Atlantic and the eastern equatorial Pacific as a more direct tracer of oceanic CO2 outgassing. We show that surface waters at both locations, which partly derive from deep water upwelled in the Southern Ocean, became a significant source of carbon to the atmosphere during the last deglaciation, when the concentration of atmospheric CO2 was increasing. This oceanic CO2 outgassing supports the view that the ventilation of a deep-ocean carbon reservoir in the Southern Ocean had a key role in the deglacial CO2 rise, although our results allow for the possibility that processes operating in other regions may also have been important for the glacial-interglacial ocean-atmosphere exchange of carbon. PMID:25673416

  6. Temporal trends in nitrogen isotope ratios of winter flounder collected from Rhode Island coastal systems

    EPA Science Inventory

    Nitrogen isotope ratios (15N) were measured in muscle tissue of juvenile winter flounder, Pseudopleuronectes americanus, collected from several estuarine systems along the coast of Rhode Island, USA, including Narragansett Bay, Narrow River and three coastal lagoons. Fish collect...

  7. Accuracy of delta 18O isotope ratio measurements on the same sample by continuous-flow isotope-ratio mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The doubly labeled water method is considered the reference method to measure energy expenditure. Conventional mass spectrometry requires a separate aliquot of the same sample to be prepared and analyzed separately. With continuous-flow isotope-ratio mass spectrometry, the same sample could be analy...

  8. Quantum statistical thermodynamics of hot finite nuclear systems: Temperatures and isotopic yield ratios

    SciTech Connect

    Majka, Z.; Staszel, P.; Cibor, J.; Natowitz, J.B.; Hagel, K.; Li, J.; Mdeiwayeh, N.; Wada, R.; Zhao, Y.

    1997-06-01

    We investigate the importance of the quantum statistics and deexcitation of primary fragments on the isotope yield ratio temperature determination. A phenomenological formula is presented which allows derivation of the temperature of the decaying nuclear system at the freeze-out time from the measured double yield ratios of two isotope pairs. This prescription is applied to the recent ALADIN and EOS Collaboration data. {copyright} {ital 1997} {ital The American Physical Society}

  9. Stable isotope ratios of tap water in the contiguous United States

    NASA Astrophysics Data System (ADS)

    Bowen, Gabriel J.; Ehleringer, James R.; Chesson, Lesley A.; Stange, Erik; Cerling, Thure E.

    2007-03-01

    Understanding links between water consumers and climatological (precipitation) sources is essential for developing strategies to ensure the long-term sustainability of water supplies. In pursing this understanding a need exists for tools to study and monitor complex human-hydrological systems that involve high levels of spatial connectivity and supply problems that are regional, rather than local, in nature. Here we report the first national-level survey of stable isotope ratios in tap water, including spatially and temporally explicit samples from a large number of cities and towns across the contiguous United States. We show that intra-annual ranges of tap water isotope ratios are relatively small (e.g., <10‰ for δ2H) at most sites. In contrast, spatial variation in tap water isotope ratios is very large, spanning ranges of 163‰ for δ2H and 23.6‰ for δ18O. The spatial distribution of tap water isotope ratios at the national level is similar to that of stable isotope ratios of precipitation. At the regional level, however, pervasive differences between tap water and precipitation isotope ratios can be attributed to hydrological factors in the water source to consumer chain. These patterns highlight the potential for monitoring of tap water isotope ratios to contribute to the study of regional water supply stability and provide warning signals for impending water resource changes. We present the first published maps of predicted tap water isotope ratios for the contiguous United States, which will be useful in guiding future research on human-hydrological systems and as a tool for applied forensics and traceability studies.

  10. Isotope ratios of uranium using high resolution inductively coupled plasma-mass spectrometry (ICP-MS)

    SciTech Connect

    Hearn, R.; Wildner, H.

    1998-12-31

    Actinide element isotope ratios have been determined in environmental samples using high resolution ICP-MS with ultrasonic nebulization. Precisions as low as 0.1% RSD have been achieved using various methods of acquisition. The methodology has been used for environmental monitoring of uranium isotope ratios as an indicator of nuclear activity. Also, it has been applied to calcite dating studies as a measure of past geochemical disturbances.