Sample records for boron isotope ratios

  1. Stable isotope ratio mass spectrometry of nanogram quantities of boron and sulfur

    NASA Astrophysics Data System (ADS)

    Wieser, Michael Eugene

    1998-09-01

    Instrumentation and analytical techniques were developed to measure isotope abundances from nanograms of sulfur and boron. Sulfur isotope compositions were determined employing continuous flow isotope ratio mass spectroscopy (CF-IRMS) procedures and AsS+ thermal ionization mass spectrometry techniques (AsS+-TIMS). Boron isotope abundances were determined by BO2/sp--TIMS. CF-IRMS measurements realized δ34S values from 10 μg sulfur with precisions of ±0.3/perthous. To extend sulfur isotope measurements to much smaller samples, a TIMS procedure was developed to measure 75As32S+ and 75As34S+ at masses 108 and 109 from 200 ng S on a Finnigan MAT 262 with an ion counter. This is possibly the smallest amount of sulfur which has been successfully analyzed isotopically. The internal precision of 32S/34S ratios measured by AsS+-TIMS was better than ±0.15 percent. δ34S-values calculated relative to the measured 32S/34S value of an IAEA AG2S standard (S-1) agreed with those determined by CF-IRMS to within ±3/perthous. The increasing sensitivity of S-isotope analyses permits hiterto impossible investigations e.g. sulfur in tree rings and ice cores. Boron isotope abundances were measured as BO2/sp- from 50 ng B using an older thermal ionization mass spectrometer which had been extensively upgraded including the addition of computer control electronics, sensitive ion current amplification and fiber optic data bus. The internal precisions of the measured 11B/10B ratios were ±0.15 percent and the precisions of δ11B values calculated relative to the accepted international standard (SRM-951) were ±3/perthous. Two applications of boron isotope abundance variations were initiated (1) ground waters of Northern Alberta and (2) coffee beans in different regions of the world. In the first it was demonstrated that boron isotopes could be used to trace boron released during steam injection of oil sands into the surrounding environment. Data from the second study suggest that boron

  2. A review on the determination of isotope ratios of boron with mass spectrometry.

    PubMed

    Aggarwal, Suresh Kumar; You, Chen-Feng

    2017-07-01

    The present review discusses different mass spectrometric techniques-viz, thermal ionization mass spectrometry (TIMS), inductively coupled plasma mass spectrometry (ICPMS), and secondary ion mass spectrometry (SIMS)-used to determine 11 B/ 10 B isotope ratio, and concentration of boron required for various applications in earth sciences, marine geochemistry, nuclear technology, environmental, and agriculture sciences, etc. The details of the techniques-P-TIMS, which uses Cs 2 BO 2 + , N-TIMS, which uses BO 2 - , and MC-ICPMS, which uses B + ions for bulk analysis or B - and B + ions for in situ micro-analysis with SIMS-are highlighted. The capabilities, advantages, limitations, and problems in each mass spectrometric technique are summarized. The results of international interlaboratory comparison experiments conducted at different times are summarized. The certified isotopic reference materials available for boron are also listed. Recent developments in laser ablation (LA) ICPMS and QQQ-ICPMS for solids analysis and MS/MS analysis, respectively, are included. The different aspects of sample preparation and analytical chemistry of boron are summarized. Finally, the future requirements of boron isotope ratios for future applications are also given. Presently, MC-ICPMS provides the best precision and accuracy (0.2-0.4‰) on isotope ratio measurements, whereas N-TIMS holds the potential to analyze smallest amount of boron, but has the issue of bias (+2‰ to 4‰) which needs further investigations. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 36:499-519, 2017. © 2016 Wiley Periodicals, Inc.

  3. Intra-Shell boron isotope ratios in benthic foraminifera: Implications for paleo-pH reconstructions

    NASA Astrophysics Data System (ADS)

    Rollion-Bard, C.; Erez, J.

    2009-12-01

    The boron isotope composition of marine carbonates is considered to be a seawater pH proxy. Nevertheless, the use of δ11B has some limitations: 1) the knowledge of fractionation factor (α4-3) between the two boron dissolved species (boric acid and borate ion), 2) the δ11B of seawater may have varied with time and 3) the amplitude of the "vital effects" of this proxy. Using secondary ion mass spectrometry (SIMS), we looked at the internal variability in the boron isotope ratio of the shallow water, symbionts bearing foraminiferan Amphistegina lobifera. Specimens were cultured at constant temperature (24±0.1 °C) in seawater with pH ranging between 7.90 and 8.45. We performed 6 to 8 measurements of δ11B in each foraminifera. Intra-shell boron isotopes show large variability with an upper threshold value of pH ~ 9. The ranges of the skeletal calculated pH values in different cultured foraminifera, show strong correlation with the culture pH values and may thus serve as proxy for pH in the past ocean.

  4. Method for separating boron isotopes

    DOEpatents

    Rockwood, Stephen D.

    1978-01-01

    A method of separating boron isotopes .sup.10 B and .sup.11 B by laser-induced selective excitation and photodissociation of BCl.sub.3 molecules containing a particular boron isotope. The photodissociation products react with an appropriate chemical scavenger and the reaction products may readily be separated from undissociated BCl.sub.3, thus effecting the desired separation of the boron isotopes.

  5. Investigating controls on boron isotope ratios in shallow marine carbonates

    NASA Astrophysics Data System (ADS)

    Zhang, Shuang; Henehan, Michael J.; Hull, Pincelli M.; Reid, R. Pamela; Hardisty, Dalton S.; Hood, Ashleigh v. S.; Planavsky, Noah J.

    2017-01-01

    The boron isotope-pH proxy has been widely used to reconstruct past ocean pH values. In both planktic foraminifera and corals, species-specific calibrations are required in order to reconstruct absolute values of pH, due to the prevalence of so-called vital effects - physiological modification of the primary environmental signals by the calcifying organisms. Shallow marine abiotic carbonate (e.g. ooids and cements) could conceivably avoid any such calibration requirement, and therefore provide a potentially useful archive for reconstructions in deep (pre-Cenozoic) time. However, shallow marine abiotic carbonates could also be affected by local shifts in pH caused by microbial photosynthesis and respiration, something that has up to now not been fully tested. In this study, we present boron isotope measurements from shallow modern marine carbonates, from the Bahama Bank and Belize to investigate the potential of using shallow water carbonates as pH archives, and to explore the role of microbial processes in driving nominally 'abiogenic' carbonate deposition. For Bahama bank samples, our boron-based pH estimates derived from a range of carbonate types (i.e. ooids, peloids, hardground cements, carbonate mud, stromatolitic micrite and calcified filament micrite) are higher than the estimated modern mean-annual seawater pH values for this region. Furthermore, the majority (73%) of our marine carbonate-based pH estimates fall out of the range of the estimated pre-industrial seawater pH values for this region. In shallow sediment cores, we did not observe a correlation between measured pore water pH and boron-derived pH estimates, suggesting boron isotope variability is a depositional rather than early diagenetic signal. For Belize reef cements, conversely, the pH estimates are lower than likely in situ seawater pH at the time of cement formation. This study indicates the potential for complications when using shallow marine non-skeletal carbonates as marine pH archives

  6. Short-Term Coral Bleaching Is Not Recorded by Skeletal Boron Isotopes

    PubMed Central

    Schoepf, Verena; McCulloch, Malcolm T.; Warner, Mark E.; Levas, Stephen J.; Matsui, Yohei; Aschaffenburg, Matthew D.; Grottoli, Andréa G.

    2014-01-01

    Coral skeletal boron isotopes have been established as a proxy for seawater pH, yet it remains unclear if and how this proxy is affected by seawater temperature. Specifically, it has never been directly tested whether coral bleaching caused by high water temperatures influences coral boron isotopes. Here we report the results from a controlled bleaching experiment conducted on the Caribbean corals Porites divaricata, Porites astreoides, and Orbicella faveolata. Stable boron (δ11B), carbon (δ13C), oxygen (δ18O) isotopes, Sr/Ca, Mg/Ca, U/Ca, and Ba/Ca ratios, as well as chlorophyll a concentrations and calcification rates were measured on coral skeletal material corresponding to the period during and immediately after the elevated temperature treatment and again after 6 weeks of recovery on the reef. We show that under these conditions, coral bleaching did not affect the boron isotopic signature in any coral species tested, despite significant changes in coral physiology. This contradicts published findings from coral cores, where significant decreases in boron isotopes were interpreted as corresponding to times of known mass bleaching events. In contrast, δ13C and δ18O exhibited major enrichment corresponding to decreases in calcification rates associated with bleaching. Sr/Ca of bleached corals did not consistently record the 1.2°C difference in seawater temperature during the bleaching treatment, or alternatively show a consistent increase due to impaired photosynthesis and calcification. Mg/Ca, U/Ca, and Ba/Ca were affected by coral bleaching in some of the coral species, but the observed patterns could not be satisfactorily explained by temperature dependence or changes in coral physiology. This demonstrates that coral boron isotopes do not record short-term bleaching events, and therefore cannot be used as a proxy for past bleaching events. The robustness of coral boron isotopes to changes in coral physiology, however, suggests that reconstruction of

  7. Short-term coral bleaching is not recorded by skeletal boron isotopes.

    PubMed

    Schoepf, Verena; McCulloch, Malcolm T; Warner, Mark E; Levas, Stephen J; Matsui, Yohei; Aschaffenburg, Matthew D; Grottoli, Andréa G

    2014-01-01

    Coral skeletal boron isotopes have been established as a proxy for seawater pH, yet it remains unclear if and how this proxy is affected by seawater temperature. Specifically, it has never been directly tested whether coral bleaching caused by high water temperatures influences coral boron isotopes. Here we report the results from a controlled bleaching experiment conducted on the Caribbean corals Porites divaricata, Porites astreoides, and Orbicella faveolata. Stable boron (δ11B), carbon (δ13C), oxygen (δ18O) isotopes, Sr/Ca, Mg/Ca, U/Ca, and Ba/Ca ratios, as well as chlorophyll a concentrations and calcification rates were measured on coral skeletal material corresponding to the period during and immediately after the elevated temperature treatment and again after 6 weeks of recovery on the reef. We show that under these conditions, coral bleaching did not affect the boron isotopic signature in any coral species tested, despite significant changes in coral physiology. This contradicts published findings from coral cores, where significant decreases in boron isotopes were interpreted as corresponding to times of known mass bleaching events. In contrast, δ13C and δ18O exhibited major enrichment corresponding to decreases in calcification rates associated with bleaching. Sr/Ca of bleached corals did not consistently record the 1.2°C difference in seawater temperature during the bleaching treatment, or alternatively show a consistent increase due to impaired photosynthesis and calcification. Mg/Ca, U/Ca, and Ba/Ca were affected by coral bleaching in some of the coral species, but the observed patterns could not be satisfactorily explained by temperature dependence or changes in coral physiology. This demonstrates that coral boron isotopes do not record short-term bleaching events, and therefore cannot be used as a proxy for past bleaching events. The robustness of coral boron isotopes to changes in coral physiology, however, suggests that reconstruction of

  8. GUM Analysis for TIMS and SIMS Isotopic Ratios in Graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heasler, Patrick G.; Gerlach, David C.; Cliff, John B.

    2007-04-01

    This report describes GUM calculations for TIMS and SIMS isotopic ratio measurements of reactor graphite samples. These isotopic ratios are used to estimate reactor burn-up, and currently consist of various ratios of U, Pu, and Boron impurities in the graphite samples. The GUM calculation is a propagation of error methodology that assigns uncertainties (in the form of standard error and confidence bound) to the final estimates.

  9. New Carbonate Standard Reference Materials for Boron Isotope Geochemistry

    NASA Astrophysics Data System (ADS)

    Stewart, J.; Christopher, S. J.; Day, R. D.

    2015-12-01

    The isotopic composition of boron (δ11B) in marine carbonates is well established as a proxy for past ocean pH. Yet, before palaeoceanographic interpretation can be made, rigorous assessment of analytical uncertainty of δ11B data is required; particularly in light of recent interlaboratory comparison studies that reported significant measurement disagreement between laboratories [1]. Well characterised boron standard reference materials (SRMs) in a carbonate matrix are needed to assess the accuracy and precision of carbonate δ11B measurements throughout the entire procedural chemistry; from sample cleaning, to ionic separation of boron from the carbonate matrix, and final δ11B measurement by multi-collector inductively coupled plasma mass spectrometry. To date only two carbonate reference materials exist that have been value-assigned by the boron isotope measurement community [2]; JCp-1 (porites coral) and JCt-1 (Giant Clam) [3]. The National Institute of Standards and Technology (NIST) will supplement these existing standards with new solution based inorganic carbonate boron SRMs that replicate typical foraminiferal and coral B/Ca ratios and δ11B values. These new SRMs will not only ensure quality control of full procedural chemistry between laboratories, but have the added benefits of being both in abundant supply and free from any restrictions associated with shipment of biogenic samples derived from protected species. Here we present in-house δ11B measurements of these new boron carbonate SRM solutions. These preliminary data will feed into an interlaboratory comparison study to establish certified values for these new NIST SRMs. 1. Foster, G.L., et al., Chemical Geology, 2013. 358(0): p. 1-14. 2. Gutjahr, M., et al., Boron Isotope Intercomparison Project (BIIP): Development of a new carbonate standard for stable isotopic analyses. Geophysical Research Abstracts, EGU General Assembly 2014, 2014. 16(EGU2014-5028-1). 3. Inoue, M., et al., Geostandards and

  10. Evaluation of Ground-Water and Boron Sources by Use of Boron Stable-Isotope Ratios, Tritium, and Selected Water-Chemistry Constituents near Beverly Shores, Northwestern Indiana, 2004

    USGS Publications Warehouse

    Buszka, Paul M.; Fitzpatrick, John A.; Watson, Lee R.; Kay, Robert T.

    2007-01-01

    Concentrations of boron greater than the U.S. Environmental Protection Agency (USEPA) 900 ?g/L removal action level (RAL) standard were detected in water sampled by the USEPA in 2004 from three domestic wells near Beverly Shores, Indiana. The RAL regulates only human-affected concentrations of a constituent. A lack of well logs and screened depth information precluded identification of whether water from sampled wells, and their boron sources, were from human-affected or natural sources in the surficial aquifer, or associated with a previously defined natural, confined aquifer source of boron from the subtill or basal sand aquifers. A geochemically-based classification of the source of boron in ground water could potentially determine the similarity of boron to known sources or mixtures between known sources, or classify whether the relative age of the ground water predated the potential sources of contamination. The U.S. Geological Survey (USGS), in cooperation with the USEPA, investigated the use of a geochemical method that applied boron stable isotopes, and concentrations of boron, tritium, and other constituents to distinguish between natural and human-affected sources of boron in ground water and thereby determine if the RAL was applicable to the situation. Boron stable-isotope ratios and concentrations of boron in 17 ground-water samples and tritium concentrations in 9 ground-water samples collected in 2004 were used to identify geochemical differences between potential sources of boron in ground water near Beverly Shores, Indiana. Boron and d11B analyses for this investigation were made on unacidified samples to assure consistency of the result with unacidified analyses of d11B values from other investigations. Potential sources of boron included surficial-aquifer water affected by coal-combustion products (CCP) or domestic-wastewater, upward discharge of ground water from confined aquifers, and unaffected water from the surficial aquifer that was distant

  11. Boron isotope fractionation in magma via crustal carbonate dissolution

    NASA Astrophysics Data System (ADS)

    Deegan, Frances M.; Troll, Valentin R.; Whitehouse, Martin J.; Jolis, Ester M.; Freda, Carmela

    2016-08-01

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ11B values down to -41.5‰, reflecting preferential partitioning of 10B into the assimilating melt. Loss of 11B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports 11B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ11B melt values in arc magmas could flag shallow-level additions to the subduction cycle.

  12. Boron isotope fractionation in magma via crustal carbonate dissolution.

    PubMed

    Deegan, Frances M; Troll, Valentin R; Whitehouse, Martin J; Jolis, Ester M; Freda, Carmela

    2016-08-04

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ(11)B values down to -41.5‰, reflecting preferential partitioning of (10)B into the assimilating melt. Loss of (11)B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports (11)B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ(11)B melt values in arc magmas could flag shallow-level additions to the subduction cycle.

  13. Boron isotopic constraints on the source of Hawaiian shield lavas

    NASA Astrophysics Data System (ADS)

    Tanaka, Ryoji; Nakamura, Eizo

    2005-07-01

    Boron isotopic compositions of lavas from three representative Hawaiian shield volcanoes (Kilauea, Mauna Loa, and Koolau) were analyzed by thermal ionization mass spectrometry. The boron isotopic composition of each sample was analyzed twice, once with and once without acid leaching to evaluate the effect of posteruptive boron contamination. Our acid-leaching procedure dissolved glass, olivine, secondary zeolite, and adsorbed boron; this dissolved boron was completely removed from the residue, which was comprised of plagioclase, pyroxenes, and newly formed amorphous silica. We confirmed that an appropriate acid-leaching process can eliminate adsorbed and incorporated boron contamination from all submarine samples without modifying the original 11B/ 10B ratio. On the other hand, when the sample was weathered, i.e., the olivine had an iddingsite rim, 11B/ 10B of the acid-resistant minerals are also modified, thus it is impossible to get the preeruptive 11B/ 10B value from the weathered samples. Through this elimination and evaluation procedure of posteruptive contamination, preeruptive δ 11B values for the shield lavas are -4.5 to -5.4‰ for Koolau ( N = 8), -3.6 to -4.6‰ for Kilauea ( N = 11), and -3.0 to -3.8‰ for Mauna Loa ( N = 6). Historical Kilauea lavas show a systematic temporal trend for B content and Nb/B coupled with other radiogenic isotopic ratios and trace element ratios, at constant δ 11B, indicating little or no assimilation of crustal materials in these lavas. Uncorrelated B content and δ 11B in Koolau and Mauna Loa lavas may also indicate little or no effect of crustal assimilation in these lavas. The source of KEA-component (identical to the so-called Kea end member in Hawaiian lavas) of the Hawaiian source mantle, represented by Kilauea, should be derived from lower part of subducted oceanic crust or refractory peridotite in the recycled subducted slab. The systematic trend from Kilauea to Koolau—decreasing δ 11B coupled with decreasing

  14. Determination of the geographical origin of green coffee by principal component analysis of carbon, nitrogen and boron stable isotope ratios.

    PubMed

    Serra, Francesca; Guillou, Claude G; Reniero, Fabiano; Ballarin, Luciano; Cantagallo, Maria I; Wieser, Michael; Iyer, Sundaram S; Héberger, Károly; Vanhaecke, Frank

    2005-01-01

    In this study we show that the continental origin of coffee can be inferred on the basis of coupling the isotope ratios of several elements determined in green beans. The combination of the isotopic fingerprints of carbon, nitrogen and boron, used as integrated proxies for environmental conditions and agricultural practices, allows discrimination among the three continental areas producing coffee (Africa, Asia and America). In these continents there are countries producing 'specialty coffees', highly rated on the market that are sometimes mislabeled further on along the export-sale chain or mixed with cheaper coffees produced in other regions. By means of principal component analysis we were successful in identifying the continental origin of 88% of the samples analyzed. An intra-continent discrimination has not been possible at this stage of the study, but is planned in future work. Nonetheless, the approach using stable isotope ratios seems quite promising, and future development of this research is also discussed. (c) 2005 John Wiley & Sons, Ltd.

  15. Method of separating boron isotopes

    DOEpatents

    Jensen, R.J.; Thorne, J.M.; Cluff, C.L.

    1981-01-23

    A method of boron isotope enrichment involving the isotope preferential photolysis of (2-chloroethenyl)-dichloroborane as the feed material. The photolysis can readily by achieved with CO/sub 2/ laser radiation and using fluences significantly below those required to dissociate BCl/sub 3/.

  16. Method of separating boron isotopes

    DOEpatents

    Jensen, Reed J.; Thorne, James M.; Cluff, Coran L.; Hayes, John K.

    1984-01-01

    A method of boron isotope enrichment involving the isotope preferential photolysis of (2-chloroethenyl)dichloroborane as the feed material. The photolysis can readily be achieved with CO.sub.2 laser radiation and using fluences significantly below those required to dissociate BCl.sub.3.

  17. Boron isotope fractionation in magma via crustal carbonate dissolution

    PubMed Central

    Deegan, Frances M.; Troll, Valentin R.; Whitehouse, Martin J.; Jolis, Ester M.; Freda, Carmela

    2016-01-01

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ11B values down to −41.5‰, reflecting preferential partitioning of 10B into the assimilating melt. Loss of 11B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports 11B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ11B melt values in arc magmas could flag shallow-level additions to the subduction cycle. PMID:27488228

  18. Isotopic Enrichment of Boron in the Sputtering of Boron Nitride with Xenon Ions

    NASA Technical Reports Server (NTRS)

    Ray, P. K.; Shutthanandan, V.

    1998-01-01

    An experimental study is described to measure the isotopic enrichment of boron. Xenon ions from 100 eV to 1.5 keV were used to sputter a boron nitride target. An ion gun was used to generate the ion beam. The ion current density at the target surface was approximately 30 microA/sq cm. Xenon ions impinged on the target surface at 50 deg angle to the surface normal. Since boron nitride is an insulator, a flood electron gun was used in our experiments to neutralize the positive charge buildup on the target surface. The sputtered secondary ions of boron were detected by a quadrupole mass spectrometer. The spectrometer entrance aperture was located perpendicular to the ion beam direction and 10 mm away from the target surface. The secondary ion flux was observed to be enriched in the heavy isotopes at lower ion energies. The proportion of heavy isotopes in the sputtered secondary ion flux was found to decrease with increasing primary ion energy from 100 to 350 eV. Beyond 350 eV, light isotopes were sputtered preferentially. The light isotope enrichment factor was observed to reach an asymptotic value of 1.27 at 1.5 keV. This trend is similar to that of the isotopic enrichment observed earlier when copper was sputtered with xenon ions in the same energy range.

  19. Pressure-dependent boron isotopic fractionation observed by column chromatography

    NASA Astrophysics Data System (ADS)

    Musashi, M.; Oi, T.; Matsuo, M.; Nomura, M.

    2007-12-01

    Boron isotopic fractionation factor ( S ) between boron taken up in strongly basic anion exchange resin and boron in aqueous solution was determined by breakthrough column chromatography at 5 and 17 MPa at 25°C, using 0.1 mmol/L boric acid solution as feed solution. The S values obtained were 1.018 and 1.012, respectively, which were smaller than the value reported by using the same chromatographic method at atmospheric pressure at 25°C with the boron concentration of 10 mmol/L, but were larger than the values at the same condition with much higher concentration of 100 and 501 mmol/L, indicating that borate-polymerization reducing the isotopic fractionation was negligible. However, calculations based on the theory of isotope distribution between two phases estimated that 21% (5MPa) and 47% (17MPa) of boron taken up in the resin phase was in the three-coordinated B(OH)3-form, instead of in the four-coordinated B(OH)4--form, at high pressures even with the very diluted solution. We discussed this discrepancy by introducing (1) hydration or (2) a partial molar volume difference between isotopic molecules. It was inferred that borate ions were partially dehydrated upon transfer from the solution phase to the resin phase at high pressures, which resulted in smaller S values compared with those at the atmospheric pressure. Alternatively, it was likely that the S value decreased with increasing pressure, because the difference of the partial isotopic molar volumes between 10B(OH)3 and 11B(OH)3 was larger than that between 10B(OH)4- and 11B(OH)4-. If either will be the case, the influence of a pressure upon the isotope effect may not be negligible for boron isotopic exchange equilibrium. This knowledge is crucial for the principle of the boron isotopic pH-metry reconstructing a chemical variation at the paleo-deep oceanic environment where the early life may have been evolved.

  20. Boron isotope fractionation in liquid chromatography with boron-specific resins as column packing material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oi, Takao; Shimazaki, Hiromi; Ishii, Reiko

    1997-07-01

    Boron-specific resins with n-methyl glucamine as the functional group were used as column packing material of liquid chromatography for boron isotope separation. The shapes of chromatograms in reverse breakthrough experiments were heavily dependent on the pH of the eluents, and there existed a pH value at which a chromatogram of the displacement type was realized nearly ideally. The value of the single-stage separation factor for the boron isotopes varied between 1.010 and 1.022, depending on the temperature and the form of the resins. The existence of the three-coordinate boron species in addition to the four-coordinate species in the resin phasemore » is suggested.« less

  1. Isotope engineering of van der Waals interactions in hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Vuong, T. Q. P.; Liu, S.; van der Lee, A.; Cuscó, R.; Artús, L.; Michel, T.; Valvin, P.; Edgar, J. H.; Cassabois, G.; Gil, B.

    2018-02-01

    Hexagonal boron nitride is a model lamellar compound where weak, non-local van der Waals interactions ensure the vertical stacking of two-dimensional honeycomb lattices made of strongly bound boron and nitrogen atoms. We study the isotope engineering of lamellar compounds by synthesizing hexagonal boron nitride crystals with nearly pure boron isotopes (10B and 11B) compared to those with the natural distribution of boron (20 at% 10B and 80 at% 11B). On the one hand, as with standard semiconductors, both the phonon energy and electronic bandgap varied with the boron isotope mass, the latter due to the quantum effect of zero-point renormalization. On the other hand, temperature-dependent experiments focusing on the shear and breathing motions of adjacent layers revealed the specificity of isotope engineering in a layered material, with a modification of the van der Waals interactions upon isotope purification. The electron density distribution is more diffuse between adjacent layers in 10BN than in 11BN crystals. Our results open perspectives in understanding and controlling van der Waals bonding in layered materials.

  2. Isotope engineering of van der Waals interactions in hexagonal boron nitride.

    PubMed

    Vuong, T Q P; Liu, S; Van der Lee, A; Cuscó, R; Artús, L; Michel, T; Valvin, P; Edgar, J H; Cassabois, G; Gil, B

    2018-02-01

    Hexagonal boron nitride is a model lamellar compound where weak, non-local van der Waals interactions ensure the vertical stacking of two-dimensional honeycomb lattices made of strongly bound boron and nitrogen atoms. We study the isotope engineering of lamellar compounds by synthesizing hexagonal boron nitride crystals with nearly pure boron isotopes ( 10 B and 11 B) compared to those with the natural distribution of boron (20 at% 10 B and 80 at% 11 B). On the one hand, as with standard semiconductors, both the phonon energy and electronic bandgap varied with the boron isotope mass, the latter due to the quantum effect of zero-point renormalization. On the other hand, temperature-dependent experiments focusing on the shear and breathing motions of adjacent layers revealed the specificity of isotope engineering in a layered material, with a modification of the van der Waals interactions upon isotope purification. The electron density distribution is more diffuse between adjacent layers in 10 BN than in 11 BN crystals. Our results open perspectives in understanding and controlling van der Waals bonding in layered materials.

  3. Theoretical isotopic fractionation between structural boron in carbonates and aqueous boric acid and borate ion

    NASA Astrophysics Data System (ADS)

    Balan, Etienne; Noireaux, Johanna; Mavromatis, Vasileios; Saldi, Giuseppe D.; Montouillout, Valérie; Blanchard, Marc; Pietrucci, Fabio; Gervais, Christel; Rustad, James R.; Schott, Jacques; Gaillardet, Jérôme

    2018-02-01

    The 11B/10B ratio in calcite and aragonite is an important proxy of oceanic water pH. However, the physico-chemical mechanisms underpinning this approach are still poorly known. In the present study, we theoretically determine the equilibrium isotopic fractionation properties of structural boron species in calcium carbonates, BO33-, BO2(OH)2- and B(OH)4- anions substituted for carbonate groups, as well as those of B(OH)4- and B(OH)3 species in vacuum. Significant variability of equilibrium isotopic fractionation properties is observed among these structural species which is related to their contrasted coordination state, Bsbnd O bond lengths and atomic-scale environment. The isotopic composition of structural boron does not only depend on its coordination number but also on its medium range environment, i.e. farther than its first coordination shell. The isotopic fractionation between aqueous species and their counterparts in vacuum are assessed using previous investigations based on similar quantum-mechanical modeling approaches. At 300 K, the equilibrium isotope composition of structural trigonal species is 7-15‰ lighter than that of aqueous boric acid molecules, whereas substituted tetrahedral borate ions are heavier than their aqueous counterparts by 10-13‰. Although significant uncertainties are known to affect the theoretical prediction of fractionation factors between solids and solutions, the usually assumed lack of isotopic fractionation during borate incorporation in carbonates is challenged by these theoretical results. The present theoretical equilibrium fractionation factors between structural boron and aqueous species differ from those inferred from experiments which may indicate that isotopic equilibrium, unlike chemical equilibrium, was not reached in most experiments. Further research into the isotopic fractionation processes at the interface between calcium carbonates and aqueous solution as well as long duration experiments aimed at

  4. GUM Analysis for SIMS Isotopic Ratios in BEP0 Graphite Qualification Samples, Round 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerlach, David C.; Heasler, Patrick G.; Reid, Bruce D.

    2009-01-01

    This report describes GUM calculations for TIMS and SIMS isotopic ratio measurements of reactor graphite samples. These isotopic ratios are used to estimate reactor burn-up, and currently consist of various ratios of U, Pu, and Boron impurities in the graphite samples. The GUM calculation is a propagation of error methodology that assigns uncertainties (in the form of standard error and confidence bound) to the final estimates.

  5. Development of laser ablation multi-collector inductively coupled plasma mass spectrometry for boron isotopic measurement in marine biocarbonates: new improvements and application to a modern Porites coral.

    PubMed

    Thil, François; Blamart, Dominique; Assailly, Caroline; Lazareth, Claire E; Leblanc, Thierry; Butsher, John; Douville, Eric

    2016-02-15

    Laser Ablation coupled to Multi-Collector Inductively Coupled Plasma Mass Spectrometry (LA-MC-ICPMS) is a powerful tool for the high-precision measurement of the isotopic ratios of many elements in geological samples, with the isotope ratio ((11) B/(10) B) of boron being used as an indicator of the pH of oceanic waters. Most geological samples or standards are polished and ablation occurs on flat surfaces. However, the shape and the irregularities of marine biocarbonates (e.g., corals, foraminifera) can make precise isotopic measurements of boron difficult. Even after polishing, the porosity properties and the presence of holes or micro-fractures affect the signal and the isotopic ratio when ablating the material, especially in raster mode. The effect of porosity and of the crater itself on the (11) B signal and the isotopic ratio acquired by LA-MC-ICPMS in both raster and spot mode was studied. Characterization of the craters was then performed with an optical profilometer to determine their shapes and depths. Surface state effects were examined by analyzing the isotopic fractionation of boron in silicate (NIST-SRM 612 and 610 standards) and in carbonate (corals). Surface irregularities led to a considerable loss of signal when the crater depth exceeded 20 µm. The stability and precision were degraded when ablation occurred in a deep cavity. The effect of laser focusing and of blank correction was also highlighted and our observations indicate that the accuracy of the boron isotopic ratio does not depend on the shape of the surface. After validation of the analytical protocol for boron isotopes, a raster application on a Porites coral, which grew for 18 months in an aquarium after field sampling, was carried out. This original LA-MC-ICPMS study revealed a well-marked boron isotope ratio temporal variability, probably related to growth rate and density changes, irrespective of the pH of the surrounding seawater. Copyright © 2015 John Wiley & Sons, Ltd. Copyright

  6. Boron Isotopes in Modern and Cenozoic Scleractinian Fossil Corals

    NASA Astrophysics Data System (ADS)

    Gothmann, A.; Bender, M. L.; Adkins, J. F.

    2016-12-01

    Recent measurements of boron isotopes in modern coral support the hypothesis that coral biologically up-regulate the pH of the fluid from which they calcify to facilitate skeletal mineralization [1]. While this evidence of biological pH adjustment provides important insight into the mechanism by which coral make their skeletons, it also complicates the use of coral boron isotopes as a paleoseawater pH proxy. We measured boron isotopes in 11 modern and well preserved fossil corals using Secondary Ion Mass Spectrometry to characterize fine-scale ( 30 µm) patterns of δ11B variability. In addition to δ11B, we measured B/Ca, Mg/Ca, Sr/Ca, and Mn/Ca ratios in order to compare isotopes with element/Ca variability and monitor for diagenetic alteration. We find that in different species of modern and well preserved fossil coral, the measured range of δ11B varies from 5 to 15 ‰. Also, while corals of similar geologic age have similar average δ11B compositions, at the scale of our measurements they do not appear to share a consistent pattern of minimum δ11B, maximum δ11B, or range in δ11B. The δ11B of fossil corals increases by 7 ‰ between the Early Cenozoic and today. While the general pattern of coral δ11B change is similar to the pattern found in foraminifera-based δ11B records [e.g., 2], the magnitude of the coral change is approximately 2-3 times as large as changes inferred from foraminifera. Although it is not possible to separate the influence of changing seawater pH and changing δ11Bseawater on fossil coral boron isotope compositions, the record can be explained by a combination of lower seawater pH and lower seawater δ11B during the the Early Cenozoic. Our coral results suggest an Early Cenozoic δ11Bseawater composition that is much lower than inferred from other approaches, and similar to Early Cenozoic δ11Bseawater as inferred from brine inclusions in halite [3]. [1.] McCulloch, M.T., Trotter, J., Montagna, P., Falter, J., Dunbar, R., Freiwald

  7. What's all the stink about BO-? Using negative molecular ions to measure boron isotopes in samples with trace boron

    NASA Astrophysics Data System (ADS)

    Hervig, R. L.; Williams, L. B.

    2011-12-01

    Boron isotope fractionation depends strongly on the coordination of boron in coexisting phases. When boron is tetrahedrally coordinated in one phase and trigonally coordinated in another, equilibrium fractionation can record parameters such as temperature (over a surprisingly wide T for a stable isotope system) or the pH at which phases precipitated from low temperature solutions. The heavy isotope of B is strongly partitioned into fluid phases relative to minerals containing tetrahedrally-coordinated boron and thus B isotope ratios can provide evidence for separation of hydrous fluids from subducted materials and from silicate melts in volcanoes. However, in many cases, the B concentration of relevant solid phases is very low, leading to large errors in the isotope ratio. For example, common analytical protocols for the microanalysis of B on our secondary ion mass spectrometer (SIMS, Cameca 6f) use an O- primary beam, and detection of positive secondary ions at moderate mass resolving power. On samples containing a few ppm B, analyses may require up to ~2 hours to give integrated signals corresponding to errors of +/- 7 per mil (2 sigma). Increases in ion intensity would result from simply increasing the primary current (at the expense of beam diameter) or increasing transmission by reducing mass resolving power (at the expense of including 10BH+ ions on the 11B+ peak). Large magnetic sector SIMS instruments achieve higher transmission at high resolution, but the challenges of obtaining desired precision (+/- 1 permil) remain when boron is present at <2 ppm levels. Another direction to pursue is to find a B-containing ion that is formed more readily than the elemental positive ion. The logical choice is BO-, an ion isoelectronic with F-, and one we would expect to show very high ion yields. However, BO- can be unpleasant to deal with. Isobaric interferences include the toxic species of CN-: various combinations of the two carbon and nitrogen isotopes are silent

  8. Development of particle induced gamma-ray emission methods for nondestructive determination of isotopic composition of boron and its total concentration in natural and enriched samples.

    PubMed

    Chhillar, Sumit; Acharya, Raghunath; Sodaye, Suparna; Pujari, Pradeep K

    2014-11-18

    We report simple particle induced gamma-ray emission (PIGE) methods using a 4 MeV proton beam for simultaneous and nondestructive determination of the isotopic composition of boron ((10)B/(11)B atom ratio) and total boron concentrations in various solid samples with natural isotopic composition and enriched with (10)B. It involves measurement of prompt gamma-rays at 429, 718, and 2125 keV from (10)B(p,αγ)(7)Be, (10)B(p, p'γ)(10)B, and (11)B(p, p'γ)(11)B reactions, respectively. The isotopic composition of boron in natural and enriched samples was determined by comparing peak area ratios corresponding to (10)B and (11)B of samples to natural boric acid standard. An in situ current normalized PIGE method, using F or Al, was standardized for total B concentration determination. The methods were validated by analyzing stoichiometric boron compounds and applied to samples such as boron carbide, boric acid, carborane, and borosilicate glass. Isotopic compositions of boron in the range of 0.247-2.0 corresponding to (10)B in the range of 19.8-67.0 atom % and total B concentrations in the range of 5-78 wt % were determined. It has been demonstrated that PIGE offers a simple and alternate method for total boron as well as isotopic composition determination in boron based solid samples, including neutron absorbers that are important in nuclear technology.

  9. An improved procedure for separation/purification of boron from complex matrices and high-precision measurement of boron isotopes by positive thermal ionization and multicollector inductively coupled plasma mass spectrometry.

    PubMed

    Wei, Hai-Zhen; Jiang, Shao-Yong; Hemming, N Gary; Yang, Jing-Hong; Yang, Tao; Wu, He-Pin; Yang, Tang-Li; Yan, Xiong; Pu, Wei

    2014-06-01

    In order to eliminate boron loss and potential isotopic fractionation during chemical pretreatment of natural samples with complex matrices, a three-column ion-exchange separation/purification procedure has been modified, which ensures more than 98% recovery of boron from each step for a wide range of sample matrices, and is applicable for boron isotope analysis by both TIMS and MC-ICP-MS. The PTIMS-Cs2BO2(+)-static double collection method was developed, ensuring simultaneous collection of (133)Cs2(11)B(16)O2(+)(m/z 309) and (133)Cs2(10)B(16)O2(+) (m/z 308) ions in adjacent H3-H4 Faraday cups with typical zoom optics parameters (Focus Quad: 15 V, Dispersion Quad: -85 V). The external reproducibilities of the measured (11)B/(10)B ratios of the NIST 951 boron standard solutions of 1000 ng, 100 ng and 10 ng of boron by PTIMS method are ±0.06‰, ±0.16‰ and ±0.25‰, respectively, which indicates excellent precision can be achieved for boron isotope measurement at nanogram level boron in natural samples. An on-peak zero blank correction procedure was employed to correct the residual boron signals effect in MC-ICP-MS, which gives consistent δ(11)B values with a mean of 39.66±0.35‰ for seawater in the whole range of boron content from 5 ppb to 200 ppb, ensuring accurate boron isotope analysis in few ppb boron. With the improved protocol, consistent results between TIMS and MC-ICP-MS data were obtained in typical geological materials within a wide span of δ(11)B values ranging from -25‰ to +40‰. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Overview and Brief History of the Boron Isotope Proxy for Past Seawater pH

    NASA Astrophysics Data System (ADS)

    Hoenisch, B.; Hemming, G.

    2007-05-01

    In 1992 Hemming and Hanson (GCA, vol. 56, p. 537-543) showed that a variety of modern marine carbonates revealed a boron isotopic composition close to the isotopic composition of dissolved borate at modern seawater pH, suggesting this was the boron species preferentially adsorbed and incorporated into marine carbonates. With a constant offset between the trigonal and tetrahedrally coordinated boron species and a pH-dependent variation in their fractions, it appeared that this system would be sensitive to pH changes in the natural range of seawater. Accordingly, it was suggested that the boron isotope composition of marine carbonates is a proxy for past seawater pH. Subsequent culture studies with living planktic foraminifers and corals, as well as synthetic precipitation experiments confirmed that the boron isotopic composition follows the isotopic composition of borate across a wide range of seawater pH. In order to use the proxy with confidence, however, all other controls apart from pH need to be thoroughly understood. Recent laboratory and sediment experiments have demonstrated that vital effects and partial shell dissolution have the potential to modify the primary seawater pH signal recorded in the boron isotopic composition of planktic foraminifers. However it has also been shown that careful sample selection allows for avoiding these potential complications. A record of reconstructed surface seawater pH and estimated aqueous PCO2 shows a remarkable match between boron isotope based atmospheric pCO2 estimates and the Vostok ice core CO2 record. This convincingly demonstrates that boron isotopes in planktic foraminifers allow quantitative estimates of atmospheric pCO2 in the past, and confirms that glacial surface ocean pH was ~0.2 units higher compared to interglacial periods. We are going to review and discuss the achievements generated in Gil Hanson's lab over the past 15 years in the light of recent empirical measurements of the boron isotope

  11. Boron Isotopes in Diatoms: a Proxy for pH?

    NASA Astrophysics Data System (ADS)

    Donald, H.; Foster, G. L.; Poulton, A. J.; Moore, C. M.; Swann, G. E. A.; Hendry, K. R.

    2016-12-01

    High latitudes are important regions to consider in terms of ocean acidification, as they are climatically sensitive regions where the greenhouse gas CO2 is exchanged between the ocean and atmosphere. In theory, an improved understanding of these regions could be achieved using the boron isotope palaeo-pH proxy, in which CaCO3-based organisms including foraminifera are traditionally measured. The Southern Ocean is of particular interest in the global carbon cycle, however, foraminifera are scarce in sediments from this region. In contrast, siliceous diatoms are a dominant group of microfossils found within sediments, but as yet, the boron isotope-pH proxy has not been extended to opal. This is the major goal of the current study. Diatoms construct their frustules from biogenic silica by polymerising Si(OH)4, and boron content of these frustules, previously investigated by LA-ICP-MS (Mejía et al. 2013), is around 5-10 ppm. Here, current solution MC-ICP-MS methods used to measure boron isotopes in calcifying organisms have been adapted and developed for use with diatom opal. Preliminary results for sediment diatoms from the onset of major Northern Hemisphere glaciation will be presented (subarctic Northwest Pacific ODP site 882), as well as results for the cultured diatom species Thalassiosira weissflogii grown at varied pCO2. In light of these results, we will speculate on the nature of boron incorporation into diatom opal and its potential as an archive for palaeo-pH reconstructions.

  12. Boron isotopes at the catchment scale, a new potential tool to infer critical zone processes.

    NASA Astrophysics Data System (ADS)

    Gaillardet, J.; Noireaux, J.; Braun, J. J.; Riotte, J.; Louvat, P.; Bouchez, J.; Lemarchand, D.; Muddu, S.; Mohan Kumar, M.; Candaudap, F.

    2017-12-01

    Boron is a mid-mass element that has two isotopes, 10B and 11B. These isotopes are largely fractioned by a number of chemical, biological and physical processes. Boron as a great affinity for clays and is useful for life, making it a double tracer of critical zone processes. This study focuses on the Mule Hole Critical Zone Observatory in South India. This is part of the French Research Infrastructure OZCAR and has benefited from the fruitful Indo-French collaboration (Indo-French Cell for Water Sciences) for more that 15 years. Boron and its isotopes were measured in the different compartment of the CZ in Mule Hole, vegetation, atmosphere, throughfall, soil, soil water, river water and compared to the behavior of other elements. The well constrained hydrology in Mule Hole allowed us to calculate the main fluxes affecting boron in the Critical Zone and came to the first order conclusion that the recycling of boron by vegetation is by far the most important flux within the system, reaching 15-20 times the catchment outlet flux. From an isotopic point of view, the total range of variation is measured between -3 ‰ and 77‰, with a bedrock value at 10‰ in classical delta unit, making boron a well suited tracer for constraining CZ processes. The flux of boron most enriched in heavy boron is the throughfall, showing the importance of biological processes in controlling the boron isotopic composition of the stream. Boron in soils in depleted in the heavy isotope but is enriched in boron compared to the bedrock, a surprising situation that we interpret as the legacy of a previous stage of transient weathering. These results indicate a strong decoupling between the behaviors of boron at the surface of the CZ and at depth.

  13. Coprecipitation and isotopic fractionation of boron in modern biogenic carbonates

    NASA Astrophysics Data System (ADS)

    Vengosh, Avner; Kolodny, Yehoshua; Starinsky, Abraham; Chivas, Allan R.; McCulloch, Malcolm T.

    1991-10-01

    The abundances and isotopic composition of boron in modern, biogenic calcareous skeletons from the Gulf of Elat, Israel, the Great Barrier Reef, Australia, and in deep-sea sediments have been examined by negative thermal-ionization mass spectrometry. The selected species (Foraminifera, Pteropoda, corals, Gastropoda, and Pelecypoda) yield large variations in boron concentration that range from 1 ppm in gastropod shells to 80 ppm in corals. The boron content of the biogenic skeletons is independent of mineralogical composition and is probably related to biological (vital) effects. The δ11B values of the carbonates range from 14.2 to 32.2%. (relative to NBS SRM 951) and overlap with the δ11B values of modern deep-sea carbonate sediments ( δ11B = 8.9 to 26.2%.). The variations of δ11B may be controlled by isotopic exchange of boron species in which 10B is preferentially partitioned into the tetrahedral species, and coprecipitation of different proportions of trigonal and tetrahedral species in the calcium carbonates. Carbonates with low δ11B values (~ 15%.) may indicate preferential incorporation of tetrahedral species, whereas the higher δ11B values (~30%.) may indicate (1) uptake of both boron species assuming equilibrium with seawater (2) preferential incorporation of B(OH) 4- from in situ high-pH internal fluids of organisms that are isolated from seawater. The B content and δ11B values of deep-sea sediments, Foraminifera tests, and corals are used to estimate the global oceanic sink of elemental boron by calcium carbonate deposition. As a result of enrichment of B in corals, a substantially higher biogenic sink of 6.4 ± 0.9 × 10 10 g/yr is calculated for carbonates. This is only slightly lower than the sink for desorbable B in marine sediments (10 × 10 10 g/yr) and approximately half that of altered oceanic crust (14 × 10 10 g/yr). Thus, carbonates are an important sink for B in the oceans being ~20% of the total sinks. The preferential incorporation of

  14. Coprecipitation and isotopic fractionation of boron in modern biogenic carbonates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vengosh, A.; Chivas, A.R.; McCulloch, M.T.

    1991-10-01

    The abundances and isotopic composition of boron in modern, biogenic calcareous skeletons from the Gulf of Elat, Israel, the Great Barrier Reef, Australia, and in deep-sea sediments have been examined by negative thermal-ionization mass spectrometry. The selected species (Foraminifera, Pteropoda, corals, Gastropoda, and Pelecypoda) yield large variations in boron concentration that range from 1 ppm in gastropod shells to 80 ppm in corals. The variations of {delta}{sup 11}B may be controlled by isotopic exchange of boron species in which {sup 10}B is preferentially partitioned into the tetrahedral species, and coprecipitation of different proportions of trigonal and tetrahedral species in themore » calcium carbonates. The B content and {delta}{sup 11}B values of deep-sea sediments, Foraminifera tests, and corals are used to estimate the global oceanic sink of elemental boron by calcium carbonate deposition. As a result of enrichment of B in corals, a substantially higher biogenic sink of 6.4 {plus minus} 0.9 {times} 10{sup 10} g/yr is calculated for carbonates. This is only slightly lower than the sink for desorbable B in marine sediments (10 {times} 10{sup 10} g/yr) and approximately half that of altered oceanic crust (14 {times} 10{sup 10} g/yr). Thus, carbonates are an important sink for B in the oceans being {approximately}20% of the total sinks. The preferential incorporation of {sup 10}B into calcium carbonate results in oceanic {sup 11}B-enrichment, estimated as 1.2 {plus minus} 0.3 {times} 10{sup 12} per mil {center dot} g/yr. The boron-isotope composition of authigenic, well-preserved carbonate skeletons may provide a useful tool to record secular boron-isotope variations in seawater at various times in the geological record.« less

  15. Boron content and isotopic composition of ocean basalts: Geochemical and cosmochemical implications

    NASA Astrophysics Data System (ADS)

    Chaussidon, Marc; Jambon, Albert

    1994-02-01

    Ion microprobe determination of boron content and delta B-11 values has been performed for a set of 40 oceanic basalt glasses (N-MORB, E-MORB, BABB and OIB) whose chemical characteristics (major and trace elements and isotopic ratios) are well documented. Boron contents, determined at +/- 10% relative, range from 0.34 to 0.74 ppm in N-MORB, whereas E-MORB, BABB and OIB extend to higher concentrations (0.5-2.4 ppm). After correction for crystal fractionation, this range is reduced to 0.5-1.3 ppm. N-MORB and E-MORB also exhibit different B/K ratios, 1.0 +/- 0.3 x 10(exp -3) and 0.2 to 1.4 x 10(exp -3) respectively. This can be interpreted as resulting from the incorporation into the upper mantle of a K-rich and B-poor component (e.g., subducted oceanic crust having lost most of its initial boron). Delta B-11 values range between -7.40 +/- 2 and +0.6 +/- 2 per mill, with no significant difference between N-MORB, E-MORB, OIB or BABB. The Hawaiian samples define a strong linear correlation between boron contents, delta B-11 values, MgO and water contents and delta D values. This is interpreted as resulting from assimilation-fractionation processes which occurred within a water-rich oceanic crust, and which produced high delta B-11 values associated with high delta D values. The low level of B-11 enrichment in the upper mantle constraints the amount of boron reinjected by subduction to a maximum of about 2% of the boron present in the subducted slab. This in turn corresponds to a maximum net Boron transfer of about 3 x 10(exp 10) g/a towards the surface reservoirs. Finally, a boron content of 0.25 +/- 0.1 ppm is estimated for the bulk silicate Earth (i.e., primitive mantle), corresponding to a depletion factor relative to C1 chondrites of about 0.15 and suggesting that B was moderately volatile upon terrestrial accretion.

  16. Intra-shell boron isotope ratios in the symbiont-bearing benthic foraminiferan Amphistegina lobifera: Implications for δ 11B vital effects and paleo-pH reconstructions

    NASA Astrophysics Data System (ADS)

    Rollion-Bard, C.; Erez, J.

    2010-03-01

    The boron isotope composition of marine carbonates is considered to be a seawater pH proxy. Nevertheless, the use of δ 11B has some limitations such as the knowledge of the fractionation factor ( α4-3) between boric acid and the borate ion and the amplitude of "vital effects" on this proxy that are not well constrained. Using secondary ion mass spectrometry (SIMS) we have examined the internal variability of the boron isotope ratio in the shallow water, symbionts bearing foraminiferan Amphistegina lobifera. Specimens were cultured at constant temperature (24 ± 0.1 °C) in seawater with pH ranging between 7.90 and 8.45. Intra-shell boron isotopes showed large variability with an upper limit value of ≈30‰. Our results suggest that the fractionation factor α4-3 of 0.97352 ( Klochko et al., 2006) is in better agreement with our experiments and with direct pH measurements in seawater vacuoles associated with the biomineralization process in these foraminifera. Despite the large variability of the skeletal pH values in each cultured specimen, it is possible to link the lowest calculated pH values to the experimental culture pH values while the upper pH limit is slightly below 9. This variability can be interpreted as follows: foraminifera variably increase the pH at the biomineralization site to about 9. This increase above ambient seawater pH leads to a range in δ 11B (Δ 11B) for each seawater pH. This Δ 11B is linearly correlated with the culture seawater pH with a slope of -13.1 per pH unit, and is independent of the fractionation factor α4-3, or the δ 11B sw through time. It may also be independent of the p KB (the dissociation constant of boric acid) value. Therefore, Δ 11B in foraminifera can potentially reconstruct paleo-pH of seawater.

  17. Investigation of Isotopically Tailored Boron in Advanced Fission and Fusion Reactor Systems.

    NASA Astrophysics Data System (ADS)

    Domaszek, Gerald Raymond

    This research examines the use of B^ {11}, in the form of metallic boron and boron carbide, as a moderating and reflecting material. An examination of the neutronic characteristics of the B ^{11} isotope of boron has revealed that B^{11} has neutron scattering and absorption cross sections favorably comparable to those of Be^9 and C^ {12}. Preliminary analysis of the neutronics of B ^{11} were performed by conducting one dimensional transport calculations on an infinite slab of varying thickness. Beryllium is the best of the three materials in reflecting neutrons due primarily to the contribution from (n,2n) reactions. Tailored neutron energy beam transmission experiments were carried out to experimentally verify the predicted neutronic characteristics of B^{11 }. To further examine the neutron moderating and reflecting characteristics of B^{11 }, the energy dependent neutron flux was measured as a function of position in an exponential pile constructed of B_4C isotopically enriched to 98.5 percent B^{11}. After the experimental verification of the neutronic behavior of B^{11}, further design studies were conducted using metallic boron and boron carbide enriched in the B^{11 } isotope. The use of materials isotopically enriched in B^{11} as a liner in the first wall/blanket of a magnetic confinement fusion reactor demonstrated acceptable tritium regeneration in the lithium blanket. Analysis of the effect of contaminant levels of B^{10} showed that B^{10} contents of less than 1 percent in metallic boron produced negligible adverse effects on the tritium breeding. A comparison of the effectiveness of graphite and B^{11}_4C when used as moderators in a reactor fueled with natural uranium has shown that the maximum k_infty for a given fuel rod design is approximately the same for both materials. Approximately half the volume of the moderator is required when B^{11 }_4C is substituted for graphite to obtain essentially the same K_infty . An analysis of the

  18. Boron isotope fractionation during high-pressure dehydration of antigorite serpentinite

    NASA Astrophysics Data System (ADS)

    Harvey, J.; Garrido, C.; Agostini, S.; Padron Navarta, J.; López Sánchez-Vizcaíno, V.; Savov, I. P.; Marchesi, C.

    2011-12-01

    During subduction, antigorite-serpentinite is present in large volumes in both the downgoing slab and the overlying mantle wedge. There is strong evidence to suggest that deserpentinisation reactions are a source for several fluid mobile elements, including boron. The ultramafic rocks of Cerro del Almirez, Betic Cordillera, Spain are the only known outcrops that preserve evidence for the transition between antigorite-serpentinite and chlorite-harzburgite i.e., Almirez antigorite-serpentinite represents an early stage of prograde subduction zone metamorphism overprinting previously hydrated oceanic mantle. The stability of chlorite beyond the antigorite breakdown reaction limits the release of H2O to about 6-7 wt% (in the absence of chlorite up to 12 wt% H2O would be lost), i.e. the reaction at the antigorite-serpentinite / chlorite harzburgite front is a dehydration reaction which may fractionate boron isotopes because of the mineralogical change, because of the loss of fluid over a range of temperatures, or a combination of both. Although the behaviour of boron isotopes under closely controlled experimental conditions with a limited number of variables is reasonably well constrained, the mechanism or combination of mechanisms that fractionate 11B from 10B in natural samples can be complex and difficult to interpret, especially in samples of the sub-arc mantle wedge which is seldom accessible for direct examination. This study investigates the influence of dehydration reactions in the sub-arc region where fluid loss accompanies prograde metamorphism under well constrained pressure and temperature conditions. Initial results suggest that isotopes of boron are strongly fractionated during the dehydration of antigorite-serpentinite with marked differences in δ11B across the antigorite-serpentinite to chlorite-harzburgite isograd. Antigorite-serpentinite has a δ11B of +22.4 (± 0.9) whereas the dehydration reaction product, chlorite-harzburgite, has a δ11B ranging

  19. The boron and lithium isotopic composition of mid-ocean ridge basalts and the mantle

    NASA Astrophysics Data System (ADS)

    Marschall, Horst R.; Wanless, V. Dorsey; Shimizu, Nobumichi; Pogge von Strandmann, Philip A. E.; Elliott, Tim; Monteleone, Brian D.

    2017-06-01

    A global selection of 56 mid-ocean ridge basalt (MORB) glasses were analysed for Li and B abundances and isotopic compositions. Analytical accuracy and precision of analyses constitute an improvement over previously published MORB data and allow a more detailed discussion of the Li and B systematics of the crust-mantle system. Refined estimates for primitive mantle abundances ([ Li ] = 1.39 ± 0.10 μg/g and [ B ] = 0.19 ± 0.02 μg/g) and depleted mantle abundances ([ Li ] = 1.20 ± 0.10 μg/g and [ B ] = 0.077 ± 0.010 μg/g) are presented based on mass balance and on partial melting models that utilise observed element ratios in MORB. Assimilation of seawater (or brine) or seawater-altered material beneath the ridge, identified by high Cl / K , causes significant elevation of MORB δ11 B and variable elevation in δ7 Li . The B isotope ratio is, hence, identified as a reliable indicator of assimilation in MORB and values higher than -6‰ are strongly indicative of shallow contamination of the magma. The global set of samples investigated here were produced at various degrees of partial melting and include depleted and enriched MORB from slow and fast-spreading ridge segments with a range of radiogenic isotope signatures and trace element compositions. Uncontaminated (low- Cl / K) MORB show no significant boron isotope variation at the current level of analytical precision, and hence a homogenous B isotopic composition of δ11 B = - 7.1 ± 0.9 ‰ (mean of six ridge segments; 2SD). Boron isotope fractionation during mantle melting and basalt fractionation likely is small, and this δ11 B value reflects the B isotopic composition of the depleted mantle and the bulk silicate Earth, probably within ±0.4‰. Our sample set shows a mean δ7 Li = + 3.5 ± 1.0 ‰ (mean of five ridge segments; 2SD), excluding high- Cl / K samples. A significant variation of 1.0-1.5‰ exists among various ridge segments and among samples within individual ridge segments, but this

  20. Crystallographic control on the boron isotope paleo-pH proxy

    NASA Astrophysics Data System (ADS)

    Noireaux, J.; Mavromatis, V.; Gaillardet, J.; Schott, J.; Montouillout, V.; Louvat, P.; Rollion-Bard, C.; Neuville, D. R.

    2015-11-01

    When using the boron isotopic composition (δ11B) of marine carbonates as a seawater pH proxy, it is assumed that only the tetrahedral borate ion is incorporated into the growing carbonate crystals and that no boron isotope fractionation occurs during uptake. However, the δ11B of the calcium carbonate from most modern foraminifera shells or corals skeletons is not the same as the δ11B of seawater borate, which depends on pH, an observation commonly attributed to vital effects. In this study, we combined previously published high-field 11B MAS NMR and new δ11B measurements on the same synthetic calcite and aragonite samples precipitated inorganically under controlled environments to avoid vital effects. Our results indicate that the main controlling factors of δ11B are the solution pH and the mineralogy of the precipitated carbonate mineral, whereas the aqueous boron concentration of the solution, CaCO3 precipitation rate and the presence or absence of growth seeds all appear to have negligible influence. In aragonite, the NMR data show that boron coordination is tetrahedral (BO4), in addition, its δ11B is equal to that of aqueous borate, thus confirming the paleo-pH hypothesis. In contrast, both trigonal BO3 and tetrahedral BO4 are present in calcite, and its δ11B values are higher than that of aqueous borate and are less sensitive to solution pH variations compared to δ11B in aragonite. These observations are interpreted in calcite as a reflection of the incorporation of decreasing amounts of boric acid with increasing pH. Moreover, the fraction of BO3 measured by NMR in calcite is higher than that inferred from δ11B which indicates a coordination change from BO4 to BO3 upon boron incorporation in the solid. Overall, this study shows that although the observed differences in δ11B between inorganic and biological aragonite are compatible with a pH increase at calcification sites, the B speciation and isotope composition of biological calcites call for a

  1. Separation of the isotopes of boron by chemical exchange reactions

    DOEpatents

    McCandless, F.P.; Herbst, R.S.

    1995-05-30

    The isotopes of boron, {sup 10}B and {sup 11}B, are separated by means of a gas-liquid chemical exchange reaction involving the isotopic equilibrium between gaseous BF{sub 3} and a liquid BF{sub 3} donor molecular addition complex formed between BF{sub 3} gas and a donor chosen from the group consisting of: nitromethane, acetone, methyl isobutyl ketone, or diisobutyl ketone. 1 Fig.

  2. Separation of the isotopes of boron by chemical exchange reactions

    DOEpatents

    McCandless, Frank P.; Herbst, Ronald S.

    1995-01-01

    The isotopes of boron, .sup.10 B and .sup.11 B, are separated by means of a gas-liquid chemical exchange reaction involving the isotopic equilibrium between gaseous BF.sub.3 and a liquid BF.sub.3 . donor molecular addition complex formed between BF.sub.3 gas and a donor chosen from the group consisting of: nitromethane, acetone, methyl isobutyl ketone, or diisobutyl ketone.

  3. Recycling of subducted crustal components into carbonatite melts revealed by boron isotopes

    NASA Astrophysics Data System (ADS)

    Hulett, Samuel R. W.; Simonetti, Antonio; Rasbury, E. Troy; Hemming, N. Gary

    2016-12-01

    The global boron geochemical cycle is closely linked to recycling of geologic material via subduction processes that have occurred over billions of years of Earth’s history. The origin of carbonatites, unique melts derived from carbon-rich and carbonate-rich regions of the upper mantle, has been linked to a variety of mantle-related processes, including subduction and plume-lithosphere interaction. Here we present boron isotope (δ11B) compositions for carbonatites from locations worldwide that span a wide range of emplacement ages (between ~40 and ~2,600 Ma). Hence, they provide insight into the temporal evolution of their mantle sources for ~2.6 billion years of Earth’s history. Boron isotope values are highly variable and range between -8.6‰ and +5.5‰, with all of the young (<300 Ma) carbonatites characterized by more positive δ11B values (>-4.0‰), whereas most of the older carbonatite samples record lower B isotope values. Given the δ11B value for asthenospheric mantle of -7 +/- 1‰, the B isotope compositions for young carbonatites require the involvement of an enriched (crustal) component. Recycled crustal components may be sampled by carbonatite melts associated with mantle plume activity coincident with major tectonic events, and linked to past episodes of significant subduction associated with supercontinent formation.

  4. Boron isotope evidence for the involvement of non-marine evaporites in the origin of the Broken Hill ore deposits

    USGS Publications Warehouse

    Slack, J.F.; Palmer, M.R.; Stevens, B.P.J.

    1989-01-01

    IDENTIFYING the palaeogeographic setting and mode of origin of stratabound ore deposits can be difficult in high-grade metamorphic terranes, where the effects of metamorphism may obscure the nature of the protoliths. Here we report boron isotope data for tourmalines from the early Proterozoic Broken Hill block, in Australia, which hosts giant lead-zinc-silver sulphide deposits. With one exception the 11B/10B ratios are lower than those for all other tourmalines from massive sulphide deposits and tour-malinites elsewhere in the world. We propose that these low ratios reflect leaching of boron from non-marine evaporitic borates by convecting hydrothermal fluids associated with early Proterozoic continental rifting. A possible modern analogue is the Salton Sea geothermal field in California. ?? 1989 Nature Publishing Group.

  5. Matrix Effects on Boron Containing Materials due to Laser Ablation Molecular Isotopic Spectrometry (LAMIS)

    NASA Astrophysics Data System (ADS)

    Brown, Staci R.; Akpovo, Charlemagne A.; Martinez, Jorge; Ford, Alan; Herbert, Kenley; Johnson, Lewis

    2014-03-01

    Laser Induced Breakdown Spectroscopy (LIBS) is a spectroscopic technique that is used for the qualitative and quantitative analysis of materials in the liquid, solid, or gas phase. LIBS can also be used for the detection of isotopic shifts in atomic and diatomic species via Laser-Ablation Molecular Isotopic Spectroscopy (LAMIS). However, any additional elements that are entrained into the plasma other than the element of interest, can affect the extent of ablation and quality of spectra and hence, potentially obscure or aid in the relative abundance assessment for a given element. To address the importance of matrix effects, the isotopic analysis of boron obtained from boron oxide (BO) emission originating from different boron-containing compounds, such as boron nitride (BN), boric acid (H3BO3) , and borax (Na2B4O710H2O), via LIBS has been performed here. Each of these materials has different physical properties and elemental composition in order to illustrate possible challenges for the LAMIS method. A calibration-free model similar to that for the original LAMIS work is used to determine properties of the plasma as the matrix is changed. DTRA

  6. Quantitative Determination of Isotope Ratios from Experimental Isotopic Distributions

    PubMed Central

    Kaur, Parminder; O’Connor, Peter B.

    2008-01-01

    Isotope variability due to natural processes provides important information for studying a variety of complex natural phenomena from the origins of a particular sample to the traces of biochemical reaction mechanisms. These measurements require high-precision determination of isotope ratios of a particular element involved. Isotope Ratio Mass Spectrometers (IRMS) are widely employed tools for such a high-precision analysis, which have some limitations. This work aims at overcoming the limitations inherent to IRMS by estimating the elemental isotopic abundance from the experimental isotopic distribution. In particular, a computational method has been derived which allows the calculation of 13C/12C ratios from the whole isotopic distributions, given certain caveats, and these calculations are applied to several cases to demonstrate their utility. The limitations of the method in terms of the required number of ions and S/N ratio are discussed. For high-precision estimates of the isotope ratios, this method requires very precise measurement of the experimental isotopic distribution abundances, free from any artifacts introduced by noise, sample heterogeneity, or other experimental sources. PMID:17263354

  7. Thermal conduction mechanisms in isotope-disordered boron nitride and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Savic, Ivana; Mingo, Natalio; Stewart, Derek

    2009-03-01

    We present first principles studies which determine dominant effects limiting the heat conduction in isotope-disordered boron nitride and carbon nanotubes [1]. Using an ab initio atomistic Green's function approach, we demonstrate that localization cannot be observed in the thermal conductivity measurements [1], and that diffusive scattering is the dominant mechanism which reduces the thermal conductivity [2]. We also give concrete predictions of the magnitude of the isotope effect on the thermal conductivities of carbon and boron nitride single-walled nanotubes [2]. We furthermore show that intershell scattering is not the main limiting mechanism for the heat flow through multi-walled boron nitride nanotubes [1], and that heat conduction restricted to a few shells leads to the low thermal conductivities experimentally measured [1]. We consequently successfully compare the results of our calculations [3] with the experimental measurements [1]. [1] C. W. Chang, A. M. Fennimore, A. Afanasiev, D. Okawa, T. Ikuno, H. Garcia, D. Li, A. Majumdar, A. Zettl, Phys. Rev. Lett. 2006, 97, 085901. [2] I. Savic, N. Mingo, D. A. Stewart, Phys. Rev. Lett. 2008, 101, 165502. [3] I. Savic, D. A. Stewart, N. Mingo, to be published.

  8. The shocking development of lithium (and boron) in supernovae

    NASA Technical Reports Server (NTRS)

    Dearborn, David S. P.; Schramm, David N.; Steigman, Gary; Truran, James

    1989-01-01

    It is shown that significant amounts of Li-7 and B-11 are produced in Type 2 supernovae. The synthesis of these rare elements occurs as the supernova shock traverses the base of the hydrogen envelope burning He-3 to masses 7 and 11 via alpha capture. The yields in this process are sufficient to account for the difference in lithium abundance observed between Pop 2 and Pop 1 stars. Since lithium (and boron) would, in this manner, be created in the same stars that produce the bulk of the heavy elements, the lithium abundance even in old Pop 1 stars would be high (as observed). The B-11 production may remedy the long-standing problem of the traditional spallation scenario to account for the observed isotopic ratio of boron. Observational consequences of this mechanism are discussed, including the evolution of lithium and boron isotope ratios in the Galaxy and the possible use of the boron yields to constrain the number of blue progenitor Type 2 supernovae.

  9. Application of 1013 ohm Faraday cup current amplifiers for boron isotopic analyses by solution mode and laser ablation multicollector inductively coupled plasma mass spectrometry.

    PubMed

    Lloyd, Nicholas S; Sadekov, Aleksey Yu; Misra, Sambuddha

    2018-01-15

    Boron isotope ratios (δ 11 B values) are used as a proxy for seawater paleo-pH, amongst several other applications. The analytical precision can be limited by the detection of low intensity ion beams from limited sample amounts. High-gain amplifiers offer improvements in signal/noise ratio and can be used to increase measurement precision and reduce sample amounts. 10 13 ohm amplifier technology has previously been applied to several radiogenic systems, but has thus far not been applied to non-traditional stable isotopes. Here we apply 10 13 ohm amplifier technology for the measurement of boron isotope ratios using solution mode MC-ICP-MS and laser ablation mode (LA-)MC-ICP-MS techniques. Precision is shown for reference materials as well as for low-volume foraminifera samples. The baseline uncertainty for a 0.1 pA 10 B + ion beam is reduced to <0.1 ‰ for a typical measurement period. The external precision is better than 0.2 ‰ (2SD) for δ 11 B measurements for solution samples containing as little as 0.8 ng total boron. For in situ microanalyses with LA-MC-ICP-MS, the external precision of 11 B/ 10 B from an in-house calcite standard was 1 ‰ (2SD) for individual spot analyses, and 0.3 ‰ for the mean of ≥10 replicate spot analyses. 10 13 ohm amplifier technology is demonstrated to offer advantages for the determination of δ 11 B values by both MC-ICP-MS and LA-MC-ICP-MS for small samples of biogenic carbonates, such as foraminifera shells. 10 13 ohm amplifier technology will also be of benefit to other non-traditional stable isotope measurements. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Deglacial Western Equatorial Pacific pCO2 Reconstruction Using Boron Isotopes of Planktonic Foraminiferas

    NASA Astrophysics Data System (ADS)

    Kubota, K.; Yokoyama, Y.; Ishikawa, T.; Sagawa, T.; Ikehara, M.; Yamazaki, T.

    2017-12-01

    During the last deglaciation (ca. 19 - 11 ka), partial pressure of CO2 (pCO2) of the atmosphere increased by 80 μatm. Many paleoceanographers point out that the ocean had played an important role in atmospheric CO2 rise, since the ocean have 60 times larger capacity to store carbon compared to the atmosphere. However, evidence on where carbon was transferred from the ocean to the atmosphere is still lacking, hampering our understanding of global carbon cycles in glacial-interglacial timescales. Boron isotope of skeletons of marine calcifying organisms such as corals and foraminiferas can pin down where CO2 source/sink existed, because boron isotopes of marine calcium carbonates is dependent on seawater pH, from which pCO2 of the past seawater can be reconstructed. In previous studies using the boron isotope teqnique, Martinez-Boti et al. (2015, Nature) and Kubota et al. (2014, Scientific Reports) revealed that central and eastern parts of the equatorial Pacific acted as a CO2 source (i.e., CO2 emission) during the last deglaciation, suggesting the equatorial Pacific's contribution to atmospheric CO2 rise. However, some conflicting results have been confirmed in a marine sediment record from the western part of the equatorial Pacific (Palmer & Pearson, 2003, Science), making the conclusion elusive. In this presentation, we will show new results of Mg/Ca, oxygen isotope, and boron isotope measurements during the last 35 ka on two species of surface dwelling foraminiferas (Globigerinoides ruber and G. sacculifer) which was hand-picked separatedly from a well-dated marine sediment core recovered from the West Caroline Basin (KR05-15 PC01) (Yamazaki et al., 2008, GRL). From the new records, we will discuss how the equatorial Pacific behaved during the last deglaciation and how it related to the global carbon cycles.

  11. Detecting isotopic ratio outliers

    NASA Astrophysics Data System (ADS)

    Bayne, C. K.; Smith, D. H.

    An alternative method is proposed for improving isotopic ratio estimates. This method mathematically models pulse-count data and uses iterative reweighted Poisson regression to estimate model parameters to calculate the isotopic ratios. This computer-oriented approach provides theoretically better methods than conventional techniques to establish error limits and to identify outliers.

  12. Isotopic effects on phonon anharmonicity in layered van der Waals crystals: Isotopically pure hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Cuscó, Ramon; Artús, Luis; Edgar, James H.; Liu, Song; Cassabois, Guillaume; Gil, Bernard

    2018-04-01

    Hexagonal boron nitride (h -BN) is a layered crystal that is attracting a great deal of attention as a promising material for nanophotonic applications. The strong optical anisotropy of this crystal is key to exploit polaritonic modes for manipulating light-matter interactions in 2D materials. h -BN has also great potential for solid-state neutron detection and neutron imaging devices, given the exceptionally high thermal neutron capture cross section of the boron-10 isotope. A good knowledge of phonons in layered crystals is essential for harnessing long-lived phonon-polariton modes for nanophotonic applications and may prove valuable for developing solid-state 10BN neutron detectors with improved device architectures and higher detection efficiencies. Although phonons in graphene and isoelectronic materials with a similar hexagonal layer structure have been studied, the effect of isotopic substitution on the phonons of such lamellar compounds has not been addressed yet. Here we present a Raman scattering study of the in-plane high-energy Raman active mode on isotopically enriched single-crystal h -BN. Phonon frequency and lifetime are measured in the 80-600-K temperature range for 10B-enriched, 11B-enriched, and natural composition high quality crystals. Their temperature dependence is explained in the light of perturbation theory calculations of the phonon self-energy. The effects of crystal anisotropy, isotopic disorder, and anharmonic phonon-decay channels are investigated in detail. The isotopic-induced changes in the phonon density of states are shown to enhance three-phonon anharmonic decay channels in 10B-enriched crystals, opening the possibility of isotope tuning of the anharmonic phonon decay processes.

  13. Raman Scattering by Crystals of Rare-Earth Hexaborides with Different Isotopes of Boron

    NASA Astrophysics Data System (ADS)

    Markov, Yu. F.; Gurin, V. N.; Ponkratov, K. V.

    2018-04-01

    Monocrystals of lanthanum hexaboride LaB6 containing both natural boron and its isotopes 10B and 11B have been produced using the solution-melt method. Polyelement hexaboride rare-earths have been grown and the corresponding ceramics have been synthesized for the first time. All these crystals have been studied by means of various techniques, generally using Raman scattering. The Raman spectra attributed to various spectral lines corresponding to nonanalyzable representations have been obtained and interpreted. Frequencies and half-widths of spectral lines have been obtained, the removal of degeneracy and the development of respective splitting of degenerate oscillations induced by defects, mainly by boron isotope inclusions, have been identified. The influence of defects on the Raman spectra has been determined.

  14. Source of boron in the Palokas gold deposit, northern Finland: evidence from boron isotopes and major element composition of tourmaline

    NASA Astrophysics Data System (ADS)

    Ranta, Jukka-Pekka; Hanski, Eero; Cook, Nick; Lahaye, Yann

    2017-06-01

    The recently discovered Palokas gold deposit is part of the larger Rompas-Rajapalot gold-mineralized system located in the Paleoproterozoic Peräpohja Belt, northern Finland. Tourmaline is an important gangue mineral in the Palokas gold mineralization. It occurs as tourmalinite veins and as tourmaline crystals in sulfide-rich metasomatized gold-bearing rocks. In order to understand the origin of tourmaline in the gold-mineralized rocks, we have investigated the major element chemistry and boron isotope composition of tourmaline from three areas: (1) the Palokas gold mineralization, (2) a pegmatitic tourmaline granite, and (3) the evaporitic Petäjäskoski Formation. Based on textural evidence, tourmaline in gold mineralization is divided into two different types. Type 1 is located within the host rock and is cut by rock-forming anthophyllite crystals. Type 2 occurs in late veins and/or breccia zones consisting of approximately 80% tourmaline and 20% sulfides, commonly adjacent to quartz veins. All the studied tourmaline samples belong to the alkali-group tourmaline and can be classified as dravite and schorl. The δ11B values of the three localities lie in the same range, from 0 to -4‰. Tourmaline from the Au mineralization and from the Petäjäskoski Formation has similar compositional trends. Mg is the major substituent for Al; inferred low Fe3+/Fe2+ ratios and Na values (<0.8 atoms per formula unit (apfu)) of all tourmaline samples suggest that they precipitated from reduced, low-salinity fluids. Based on the similar chemical and boron isotope composition and the Re-Os age of molybdenite related to the tourmaline-sulfide-quartz veins, we propose that the tourmaline-forming process is a result of a single magmatic-hydrothermal event related to the extensive granite magmatism at around 1.79-1.77 Ga. Tourmaline was crystallized throughout the hydrothermal process, which resulted in the paragenetic variation between type 1 and type 2. The close association of

  15. Boron incorporation in the foraminifer Amphistegina lessonii under a decoupled carbonate chemistry

    NASA Astrophysics Data System (ADS)

    Kaczmarek, K.; Langer, G.; Nehrke, G.; Horn, I.; Misra, S.; Janse, M.; Bijma, J.

    2014-12-01

    A number of studies have shown that the boron isotopic composition (δ11B) and the B/Ca ratio of biogenic carbonates (mostly foraminifers) can serve as proxies for two parameters of the ocean's carbonate chemistry, rendering it possible to calculate the entire carbonate system. However, the B incorporation mechanism into marine carbonates is still not fully understood and analyses of field samples show species specific and hydrographic effects on the B proxies complicating their application. Identifying the carbonate system parameter influencing boron incorporation is difficult due to the co-variation of pH, CO32-, and B(OH)4-. To shed light on the question which parameter of the carbonate system is related to the boron incorporation, we performed culture experiments with the benthic symbiont-bearing foraminifer Amphistegina lessonii using a decoupled pH-CO32- chemistry. The determination of the boron isotopic composition and B/Ca ratios was performed simultaneously by means of a new in situ technique combining optical emission spectroscopy and laser ablation MC-ICP-MS. The boron isotopic composition in the tests gets heavier with increasing pH and B/Ca increases with increasing BOH4-/HCO3- of the culture media. The latter indicates that boron uptake of A. lessonii features a competition between B(OH)4- and HCO3-. Furthermore, the simultaneous determination of B/Ca and δ11B on single specimens allows for assessing the relative variability of these parameters. Among different treatments the B/Ca shows an increasing variability with increasing boron concentration in the test whereas the variability in the isotope distribution is constant.

  16. Boron content and sources in Tertiary aquifers in the Sultanate of Oman

    NASA Astrophysics Data System (ADS)

    Moraetis, Daniel; Lamki, Mohamed Al; Muhammad, Dawood; Yaroubi, Saif; Batashi, Hamad Al; Pracejus, Bernhard

    2017-04-01

    The boron (B) content of relatively shallow groundwaters in arid areas is high due to extreme evaporation which precipitates several salts with subsequent boron accumulation originating from rocks dissolution and/or rainwater. In deeper aquifers, where there is no groundwater-surface connection, other sources of boron may affect the water quality. The present study investigates the boron origin observed in 197 wells completed within the units of Umm Er Radhuma (UeR), Rus, Dammam and Fars (from older to younger geological units) which all belong to the Tertiary units of the interior of Oman. The acquired chemical data include major ions (cations and anions), Rare Earth Elements (REE) along with B isotopes (10 and 11) and Sr isotopes (86 and 87). In addition, leaching tests were performed in selected samples to validate the release of B in distilled water. The water samples were grouped based on B concentration of less than 5 mg/l, 5 to 15 mg/l and extreme values of higher than 15 mg/l. The Fars and UeR groundwater samples showed the most extreme boron content (higher than 15 mg/l) yet the former is the shallower and younger unit and the latter is the deeper and older unit. The Fars water of high boron content (higher than 15 mg/l) shows very high content of magnesium and calcium as well as low concentration of Sr. Furthermore, the magnesium and calcium are also high in UeR, while Sr concentration is much higher in UeR compared to Fars. The UeR water with extreme boron content appears in the field of diagenetic water in a diagram of δ11BNIST951 [‰] versus 1/B, along with Sr isotopes ratio and europium (Eu) positive anomaly, while Fars waters appear in a mixing zone of marine water with infiltrated rainwater. The regression analysis of sodium and chloride showed that concentrations of boron up to 10 mg/l can be correlated to halite dissolution in infiltrated rainwater in all units. The laboratory leaching tests verified the rocks capability to release boron up to 7

  17. The Boron Isotopic Composition of Elephant Dung: Inputs to the Global Boron Budget

    NASA Astrophysics Data System (ADS)

    Williams, L. B.; Hervig, R. L.

    2011-12-01

    A survey of boron in kerogen showed isotopically light δ11B values (0 to -50%) that are distinctly different from most mineral and natural water B reservoirs. Diagenesis releases this isotopically light B into pore fluids when hydrocarbons are generated, thus enriching oilfield brines in 10B. This observation suggests that borated biomolecules (BM) are primarily tetrahedral favoring 10B, whereas 11B is preferred in trigonal coordination. Plants, with optimal concentrations up to 100ppm, contribute more B than animal remains to sediment. Elephants are one of the largest herbivores on earth, consuming 200 - 250 kg of plant material/day and producing 50 kg of manure/day. They are inefficient at digestion, thus the manure contains >50% undigested plant material. Dung samples are therefore ideal for studying the δ11B of both the food input and digested output of a significant B supply to sedimentary systems. Horse and rabbit manure were studied for comparison to evaluate B isotope variations in the food supply and potential vital effects on the output. B-content and isotopic composition of dung plant material and digested fractions were measured in the solid state by secondary ion mass spectrometry. The digests were rinsed in 1.8% mannitol, a B-complexing agent, to remove surface adsorbed-B, then air dried and Au-coated for charge compensation. Results showed that the elephant diet contains 3-13 ppm B, with an average δ11B of -20 ± 0.8% (1σ), while rabbit food had 88 ppm B with a δ11B of -50 ± 1.3 %. The digested fraction of the elephant dung contains 4-10ppm B with average δ11B values of -12 ± 1.2%. In comparison, horse manure with 11-21 ppm B has a δ11B of -10.7 ± 0.5% and rabbit manure contains 2-3 ppm B with a δ11B of -8.8 ± 1%. Boron isotope compositions of these manures are indistinguishable (within error). Clearly plant material is a major contributor of isotopically light B to sediments. The herbivores studied fractionate their total B intake in

  18. Boron isotope systematics of tourmaline formation in the Sullivan Pb-Zn-Ag deposit, British Columbia, Canada

    USGS Publications Warehouse

    Jiang, S.-Y.; Palmer, M.R.; Slack, J.F.; Shaw, D.R.

    1999-01-01

    We report here the results of 54 boron isotope analyses of tourmaline associated with the giant Sullivan Pb-Zn-Ag deposit in southeastern British Columbia, Canada. The ??11B values range from -11.1 to -2.9???, which is almost as great as the range found worldwide in tourmalines from 33 massive sulfide deposits and tourmalinites in dominantly clastic metasedimentary terranes. The major control on the overall ??11B values of the Sullivan tourmalinites is the boron source. Potential controls over the large range of the data also include: (1) differences in formation temperatures of the tourmalinites, (2) different stages of tourmaline formation, (3) variations in the proportions of dissolved boron incorporated into the tourmaline (Rayleigh fractionation), (4) seawater entrainment, and (5) post-depositional metamorphism. The boron isotope data at Sullivan are consistent with boron derivation from leaching of footwall clastic sediments. However, the great abundance of tourmaline in the Sullivan deposit suggests that the local clastic sediments were not the sole source of boron, and we argue that non-marine evaporites, buried deep below the orebody, are the most viable source of this additional boron. It is likely that some of the variation in tourmaline ??11B values reflect mixing of boron from these two sources. Comparison of the potential effects of these controls with geologic and other geochemical evidence suggests that major causes for the wide range of ??11B values measured at Sullivan are seawater entrainment and Rayleigh fractionation, although in places, post-depositional alteration and thermal metamorphism were important in determining ??11B values of some of the recrystallized tourmalinites.

  19. Raman scattering method and apparatus for measuring isotope ratios and isotopic abundances

    DOEpatents

    Harney, Robert C.; Bloom, Stewart D.

    1978-01-01

    Raman scattering is used to measure isotope ratios and/or isotopic abundances. A beam of quasi-monochromatic photons is directed onto the sample to be analyzed, and the resulting Raman-scattered photons are detected and counted for each isotopic species of interest. These photon counts are treated mathematically to yield the desired isotope ratios or isotopic abundances.

  20. Synthetic isotope mixtures for the calibration of isotope amount ratio measurements of carbon

    NASA Astrophysics Data System (ADS)

    Russe, K.; Valkiers, S.; Taylor, P. D. P.

    2004-07-01

    Synthetic isotope mixtures for the calibration of carbon isotope amount ratio measurements have been prepared by mixing carbon tetrafluoride highly enriched in 13C with carbon tetrafluoride depleted in 13C. Mixing procedures based on volumetry and gravimetry are described. The mixtures served as primary measurement standards for the calibration of isotope amount ratio measurements of the Isotopic Reference Materials PEF1, NBS22 and USGS24. Thus SI-traceable measurements of absolute carbon isotope amount ratios have been performed for the first time without any hypothesis needed for a correction of oxygen isotope abundances, such as is the case for measurements on carbon dioxide. As a result, "absolute" carbon isotope amount ratios determined via carbon tetrafluoride have smaller uncertainties than those published for carbon dioxide. From the measurements of the Reference Materials concerned, the absolute carbon isotope amount ratio of Vienna Pee Dee Belemnite (VPDB)--the hypothetical material upon which the scale for relative carbon isotope ratio measurements is based--was calculated to be R13(VPDB) = (11 101 +/- 16) × 10-6.

  1. Environmental controls on the boron and strontium isotopic composition of aragonite shell material of cultured Arctica islandica

    NASA Astrophysics Data System (ADS)

    Liu, Y.-W.; Aciego, S. M.; Wanamaker, A. D., Jr.

    2015-06-01

    Ocean acidification, the decrease in ocean pH associated with increasing atmospheric CO2, is likely to impact marine organisms, particularly those that produce carbonate skeletons or shells. Therefore, it is important to investigate how environmental factors (seawater pH, temperature and salinity) influence the chemical compositions in biogenic carbonates. In this study we report the first high-resolution strontium (87Sr / 86Sr and δ88 / 86Sr) and boron (δ11B) isotopic values in the aragonite shell of cultured Arctica islandica (A. islandica). The 87Sr / 86Sr ratios from both tank water and shell samples show ratios nearly identical to the open ocean, which suggests that the shell material reflects ambient ocean chemistry without terrestrial influence. The 84Sr-87Sr double-spike-resolved shell δ88 / 86Sr and Sr concentration data show no resolvable change throughout the culture period and reflect no theoretical kinetic mass fractionation throughout the experiment despite a temperature change of more than 15 °C. The δ11B records from the experiment show at least a 5‰ increase through the 29-week culture season (January 2010-August 2010), with low values from the beginning to week 19 and higher values thereafter. The larger range in δ11B in this experiment compared to predictions based on other carbonate organisms (2-3‰) suggests that a species-specific fractionation factor may be required. A significant correlation between the ΔpH (pHshell - pHsw) and seawater pH (pHsw) was observed (R2 = 0.35), where the pHshell is the calcification pH of the shell calculated from boron isotopic composition. This negative correlation suggests that A. islandica partly regulates the pH of the extrapallial fluid. However, this proposed mechanism only explains approximately 35% of the variance in the δ11B data. Instead, a rapid rise in δ11B of the shell material after week 19, during the summer, suggests that the boron uptake changes when a thermal threshold of > 13 °C is

  2. Stable oxygen and hydrogen isotopes of brines - comparing isotope ratio mass spectrometry and isotope ratio infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Ahrens, Christian; Koeniger, Paul; van Geldern, Robert; Stadler, Susanne

    2013-04-01

    Today's standard analytical methods for high precision stable isotope analysis of fluids are gas-water equilibration and high temperature pyrolysis coupled to isotope ratio mass spectrometers (IRMS). In recent years, relatively new laser-based analytical instruments entered the market that are said to allow high isotope precision data on nearly every media. This optical technique is referred to as isotope ratio infrared spectroscopy (IRIS). The objective of this study is to evaluate the capability of this new instrument type for highly saline solutions and a comparison of the analytical results with traditional IRMS analysis. It has been shown for the equilibration method that the presence of salts influences the measured isotope values depending on the salt concentration (see Lécuyer et al, 2009; Martineau, 2012). This so-called 'isotope salt effect' depends on the salt type and salt concentration. These factors change the activity in the fluid and therefore shift the isotope ratios measured by the equilibration method. Consequently, correction factors have to be applied to these analytical data. Direct conversion techniques like pyrolysis or the new laser instruments allow the measurement of the water molecule from the sample directly and should therefore not suffer from the salt effect, i.e. no corrections of raw values are necessary. However, due to high salt concentrations this might cause technical problems with the analytical hardware and may require labor-intensive sample preparation (e.g. vacuum distillation). This study evaluates the salt isotope effect for the IRMS equilibration technique (Thermo Gasbench II coupled to Delta Plus XP) and the laser-based IRIS instruments with liquid injection (Picarro L2120-i). Synthetic salt solutions (NaCl, KCl, CaCl2, MgCl2, MgSO4, CaSO4) and natural brines collected from the Stassfurt Salt Anticline (Germany; Stadler et al., 2012) were analysed with both techniques. Salt concentrations ranged from seawater salinity

  3. Basic features of boron isotope separation by SILARC method in the two-step iterative static model

    NASA Astrophysics Data System (ADS)

    Lyakhov, K. A.; Lee, H. J.

    2013-05-01

    In this paper we develop a new static model for boron isotope separation by the laser assisted retardation of condensation method (SILARC) on the basis of model proposed by Jeff Eerkens. Our model is thought to be adequate to so-called two-step iterative scheme for isotope separation. This rather simple model helps to understand combined action on boron separation by SILARC method of all important parameters and relations between them. These parameters include carrier gas, molar fraction of BCl3 molecules in carrier gas, laser pulse intensity, gas pulse duration, gas pressure and temperature in reservoir and irradiation cells, optimal irradiation cell and skimmer chamber volumes, and optimal nozzle throughput. A method for finding optimal values of these parameters based on some objective function global minimum search was suggested. It turns out that minimum of this objective function is directly related to the minimum of total energy consumed, and total setup volume. Relations between nozzle throat area, IC volume, laser intensity, number of nozzles, number of vacuum pumps, and required isotope production rate were derived. Two types of industrial scale irradiation cells are compared. The first one has one large throughput slit nozzle, while the second one has numerous small nozzles arranged in parallel arrays for better overlap with laser beam. It is shown that the last one outperforms the former one significantly. It is argued that NO2 is the best carrier gas for boron isotope separation from the point of view of energy efficiency and Ar from the point of view of setup compactness.

  4. Boron incorporation in the foraminifer Amphistegina lessonii under a decoupled carbonate chemistry

    NASA Astrophysics Data System (ADS)

    Kaczmarek, K.; Langer, G.; Nehrke, G.; Horn, I.; Misra, S.; Janse, M.; Bijma, J.

    2015-03-01

    A number of studies have shown that the boron isotopic composition (δ11B) and the B / Ca ratio of biogenic carbonates (mostly foraminifers) can serve as proxies for two parameters of the ocean's carbonate chemistry, rendering it possible to calculate the entire carbonate system. However, the B incorporation mechanism into marine carbonates is still not fully understood and analyses of field samples show species-specific and hydrographic effects on the B proxies complicating their application. Identifying the carbonate system parameter influencing boron incorporation is difficult due to the co-variation of pH, CO32- and B(OH)4-. To shed light on the question which parameter of the carbonate system is related to the boron incorporation, we performed culture experiments with the benthic symbiont-bearing foraminifer Amphistegina lessonii using a decoupled pH-CO32- chemistry. The determination of the δ11B and B / Ca ratios was performed simultaneously by means of a new in situ technique combining optical emission spectroscopy and laser ablation MC-ICP-MS. The boron isotopic composition in the tests gets heavier with increasing pH and B / Ca increases with increasing B(OH)4- / HCO3- of the culture media. The latter indicates that boron uptake of A. lessonii features a competition between B(OH)4- and HCO3-. Furthermore, the simultaneous determination of B / Ca and δ11B on single specimens allows for assessing the relative variability of these parameters. Among different treatments the B / Ca shows an increasing variability with increasing boron concentration in the test whereas the variability in the isotope distribution is constant.

  5. Determination of nitrogen-15 isotope fractionation in tropine: evaluation of extraction protocols for isotope ratio measurement by isotope ratio mass spectrometry.

    PubMed

    Molinié, Roland; Kwiecień, Renata A; Silvestre, Virginie; Robins, Richard J

    2009-12-01

    N-Demethylation of tropine is an important step in the degradation of this compound and related metabolites. With the purpose of understanding the reaction mechanism(s) involved, it is desirable to measure the 15N kinetic isotope effects (KIEs), which can be accessed through the 15N isotope shift (Deltadelta15N) during the reaction. To measure the isotope fractionation in 15N during tropine degradation necessitates the extraction of the residual substrate from dilute aqueous solution without introducing artefactual isotope fractionation. Three protocols have been compared for the extraction and measurement of the 15N/14N ratio of tropine from aqueous medium, involving liquid-liquid phase partitioning or silica-C18 solid-phase extraction. Quantification was by gas chromatography (GC) on the recovered organic phase and delta15N values were obtained by isotope ratio measurement mass spectrometry (irm-MS). Although all the protocols used can provide satisfactory data and both irm-EA-MS and irm-GC-MS can be used to obtain the delta15N values, the most convenient method is liquid-liquid extraction from a reduced aqueous volume combined with irm-GC-MS. The protocols are applied to the measurement of 15N isotope shifts during growth of a Pseudomonas strain that uses tropane alkaloids as sole source of carbon and nitrogen. The accuracy of the determination of the 15N/14N ratio is sufficient to be used for the determination of 15N-KIEs. Copyright 2009 John Wiley & Sons, Ltd.

  6. Finite mixture models for the computation of isotope ratios in mixed isotopic samples

    NASA Astrophysics Data System (ADS)

    Koffler, Daniel; Laaha, Gregor; Leisch, Friedrich; Kappel, Stefanie; Prohaska, Thomas

    2013-04-01

    Finite mixture models have been used for more than 100 years, but have seen a real boost in popularity over the last two decades due to the tremendous increase in available computing power. The areas of application of mixture models range from biology and medicine to physics, economics and marketing. These models can be applied to data where observations originate from various groups and where group affiliations are not known, as is the case for multiple isotope ratios present in mixed isotopic samples. Recently, the potential of finite mixture models for the computation of 235U/238U isotope ratios from transient signals measured in individual (sub-)µm-sized particles by laser ablation - multi-collector - inductively coupled plasma mass spectrometry (LA-MC-ICPMS) was demonstrated by Kappel et al. [1]. The particles, which were deposited on the same substrate, were certified with respect to their isotopic compositions. Here, we focus on the statistical model and its application to isotope data in ecogeochemistry. Commonly applied evaluation approaches for mixed isotopic samples are time-consuming and are dependent on the judgement of the analyst. Thus, isotopic compositions may be overlooked due to the presence of more dominant constituents. Evaluation using finite mixture models can be accomplished unsupervised and automatically. The models try to fit several linear models (regression lines) to subgroups of data taking the respective slope as estimation for the isotope ratio. The finite mixture models are parameterised by: • The number of different ratios. • Number of points belonging to each ratio-group. • The ratios (i.e. slopes) of each group. Fitting of the parameters is done by maximising the log-likelihood function using an iterative expectation-maximisation (EM) algorithm. In each iteration step, groups of size smaller than a control parameter are dropped; thereby the number of different ratios is determined. The analyst only influences some control

  7. Chlorine Isotope Ratios in M Giants and S Stars

    NASA Astrophysics Data System (ADS)

    Maas, Zachary; Pilachowski, C. A.

    2018-01-01

    Chlorine is an odd-Z, light element that has been poorly studied in stars. Recently, the first stellar abundance measurements of the isotopologue 35Cl were made and the 35Cl/37Cl ratio was derived in RZ Ari (Maas et al. 2016). Additional abundance measurements are necessary to understand the Galactic chemical evolution and complex nucleosynthesis of Cl. The Cl isotope ratio in particular is important in distinguishing contributions from different nucleosynthesis sites to the surface abundances of stars. For example, current nucloesynthesis models predict that both isotopes of Cl are produced primarily during core collapse supernovae (CCSNe) with the energy and progenitor mass impacting the isotopic ratio of the ejected material. In addition to CCSNe, 37Cl is formed by the s-process both in massive stars and in AGB stars, and 35Cl may be produced from neutrino spallation. Understanding the formation of the Cl isotopes is also important to studies of the interstellar medium (ISM). A range of Cl isotope ratios mainly between 2 - 3.5 have been measured in star forming regions, in the circumstellar envelopes of evolved stars, and in proto-stellar cores using Cl bearing molecules. Additional measurements of the Cl isotope ratio in nearby stars will test nucleosynthesis models and allow comparisons with the range of isotope ratios observed in the ISM.We build on the results of Maas et al. (2016) by measuring the Cl isotope ratio in six M giants and four S stars using R~50,000 resolution spectra from Phoenix on Gemini South. We find no significant difference between the average Cl isotope ratios in the M stars and S stars and our measurements are consistent with the range of values seen in the ISM. We also find the average Cl ratio to be larger than the predicted isotope ratio of 1.8 for the solar neighborhood. Finally, two S stars, GG Pup and WY Pyx, show anomalously strong HCl features with equivalent widths ~3-5 times larger than the HCl features of other stars of

  8. Towards absolute laser spectroscopic CO2 isotope ratio measurements

    NASA Astrophysics Data System (ADS)

    Anyangwe Nwaboh, Javis; Werhahn, Olav; Ebert, Volker

    2017-04-01

    Knowledge of isotope composition of carbon dioxide (CO2) in the atmosphere is necessary to identify sources and sinks of this key greenhouse gas. In the last years, laser spectroscopic techniques such as cavity ring-down spectroscopy (CRDS) and tunable diode laser absorption spectroscopy (TDLAS) have been shown to perform accurate isotope ratio measurements for CO2 and other gases like water vapour (H2O) [1,2]. Typically, isotope ratios are reported in literature referring to reference materials provided by e.g. the International Atomic Energy Agency (IAEA). However, there could be some benefit if field deployable absolute isotope ratio measurement methods were developed to address issues such as exhausted reference material like the Pee Dee Belemnite (PDB) standard. Absolute isotope ratio measurements would be particularly important for situations where reference materials do not even exist. Here, we present CRDS and TDLAS-based absolute isotope ratios (13C/12C ) in atmospheric CO2. We demonstrate the capabilities of the used methods by measuring CO2 isotope ratios in gas standards. We compare our results to values reported for the isotope certified gas standards. Guide to the expression of uncertainty in measurement (GUM) compliant uncertainty budgets on the CRDS and TDLAS absolute isotope ratio measurements are presented, and traceability is addressed. We outline the current impediments in realizing high accuracy absolute isotope ratio measurements using laser spectroscopic methods, propose solutions and the way forward. Acknowledgement Parts of this work have been carried out within the European Metrology Research Programme (EMRP) ENV52 project-HIGHGAS. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union. References [1] B. Kühnreich, S. Wagner, J. C. Habig,·O. Möhler, H. Saathoff, V. Ebert, Appl. Phys. B 119:177-187 (2015). [2] E. Kerstel, L. Gianfrani, Appl. Phys. B 92, 439-449 (2008).

  9. Precise and accurate isotope ratio measurements by ICP-MS.

    PubMed

    Becker, J S; Dietze, H J

    2000-09-01

    The precise and accurate determination of isotope ratios by inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) is important for quite different application fields (e.g. for isotope ratio measurements of stable isotopes in nature, especially for the investigation of isotope variation in nature or age dating, for determining isotope ratios of radiogenic elements in the nuclear industry, quality assurance of fuel material, for reprocessing plants, nuclear material accounting and radioactive waste control, for tracer experiments using stable isotopes or long-lived radionuclides in biological or medical studies). Thermal ionization mass spectrometry (TIMS), which used to be the dominant analytical technique for precise isotope ratio measurements, is being increasingly replaced for isotope ratio measurements by ICP-MS due to its excellent sensitivity, precision and good accuracy. Instrumental progress in ICP-MS was achieved by the introduction of the collision cell interface in order to dissociate many disturbing argon-based molecular ions, thermalize the ions and neutralize the disturbing argon ions of plasma gas (Ar+). The application of the collision cell in ICP-QMS results in a higher ion transmission, improved sensitivity and better precision of isotope ratio measurements compared to quadrupole ICP-MS without the collision cell [e.g., for 235U/238U approximately 1 (10 microg x L(-1) uranium) 0.07% relative standard deviation (RSD) vs. 0.2% RSD in short-term measurements (n = 5)]. A significant instrumental improvement for ICP-MS is the multicollector device (MC-ICP-MS) in order to obtain a better precision of isotope ratio measurements (with a precision of up to 0.002%, RSD). CE- and HPLC-ICP-MS are used for the separation of isobaric interferences of long-lived radionuclides and stable isotopes by determination of spallation nuclide abundances in an irradiated tantalum target.

  10. Isotopic Ratio, Isotonic Ratio, Isobaric Ratio and Shannon Information Uncertainty

    NASA Astrophysics Data System (ADS)

    Ma, Chun-Wang; Wei, Hui-Ling

    2014-11-01

    The isoscaling and the isobaric yield ratio difference (IBD) probes, both of which are constructed by yield ratio of fragment, provide cancelation of parameters. The information entropy theory is introduced to explain the physical meaning of the isoscaling and IBD probes. The similarity between the isoscaling and IBD results is found, i.e., the information uncertainty determined by the IBD method equals to β - α determined by the isoscaling (α (β) is the parameter fitted from the isotopic (isotonic) yield ratio).

  11. DEVELOPMENT OF ISOTOPICALLY ENRICHED BORON-DOPED ALUMINA DOSIMETER FOR THERMAL NEUTRONS.

    PubMed

    Sato, Fuminobu; Maekawa, Tatsuro; Kariba, Tomoharu; Kusaka, Sachie; Tanaka, Teruya; Murata, Isao

    2017-12-01

    A novel optically stimulated luminescence (OSL) detector containing isotopically enriched boron was developed for thermal neutron dosimetry. Alumina containing isotopically enriched boron (Al2O3:B) was synthesised by the sol-gel method. The Al2O3:B was annealed up to ~1800 K. For X-ray diffractometer (XRD) analysis, the diffraction pattern of the Al2O3:B had reflex peaks corresponding to α-Al2O3. The sensitivity of Al2O3:B to photons was slightly 2% of that of a commercial Al2O3:C. The Al2O3:B detector had satisfactory linearity in X-ray dose measurement. A thermal neutron field was constructed using a 241Am-Be neutron source and graphite blocks. A pair of Al2O3:10B and Al2O3:11B detectors were set in the thermal neutron field. The response of Al2O3:10B was larger than that of Al2O3:11B owing to the 10B(n,α)7Li reactions. The sensitivity of Al2O3:10B to thermal neutrons was estimated to be two orders less than the photon sensitivity. Therefore, the pair of Al2O3:10B and Al2O3:11B detectors were useful for thermal neutron dosimetry. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. How the oxygen isotope ratio of rain water influences the isotope ratio of chicken eggshell carbonate

    NASA Astrophysics Data System (ADS)

    Price, Gregory; Grimes, Stephen

    2015-04-01

    The stable oxygen isotope ratio of chicken eggshell carbonate was analysed from chicken eggs laid under free range, and organic farming regimes from across the UK. The eggshell carbonate oxygen isotope data shows a clear depletion in delta18O distribution from the southwest to the northeast. Although consistently offset by around 1 permil, the same isotopic distribution as that seen in eggshell carbonate is observed in the delta18O ratio of rainfall and groundwater from across the UK. This distribution is related to the Rayleigh distillation of rainfall driven by westerly winds across the UK landmass. The clear relationship observed between eggshell delta18O values and that of rainwater presumably reflects the nature of free range chickens which must be drinking locally derived rainwater and supplementing their diet and water intake with locally derived food. These results suggest that the oxygen isotope value of chicken eggshells can be used as a forensic tool to identify the locality that free range and organic eggs were laid within the UK. Furthermore, if suitable material is preserved in the archaeological and geological record then such a relationship can potentially be used to establish the oxygen isotope value of rainwater from which ancient and / or ancestral birds lived.

  13. Isotope ratio mass spectrometry in nutrition research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luke, A.H.

    Many of the biochemical pathways and processes that form the foundation of modern nutrition research was elucidated using stable isotopes as physiological tracers. Since the discovery of stable isotopes, improvements and innovations in mass spectrometry and chromatography have led to greatly expanded applications. This research project was designed to evaluate gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) as a tool for isotopic tracer studies and to delineate the operational parameters for the analysis of {sup 13}C-labeled cholesterol, leucine and {alpha}-ketoisocaproate. The same isotope ratio mass spectrometer was then used as the base instrument for the ratio mass spectrometer was then usedmore » as the base instrument for the development of two additional inlet systems: a continuous-flow inlet for the analyses of {sup 13}C and {sup 18}O as CO{sub 2} and a filament inlet for on-line combustion and isotopic analysis of non-volatile organic compounds. Each of these three inlets was evaluated and their utility in nutrition research illustrated. GC/C/IRMS was used to analyze cholesterol, leucine and {alpha}-ketoisocaproate with good accuracy, precision and little isotopic memory. For all three compounds the detection limits achieved well surpassed currently used technologies. For compounds that can be well separated by GC, GC/C/IRMS is a valuable analytical tool. The continuous-flow inlet provided good accuracy and precision for measurements of {sup 13}CO{sub 2} from breath tests and {sup 18}O as CO{sub 2} from total energy expenditure tests. Most importantly, the continuous-flow inlet increased sample throughput by at least a factor of three over conventional analytical techniques. The filament inlet provided accurate and precise {sup 13}C ratio measurements of both natural abundance and enriched standards of non-volatile organic compounds of physiological interest.« less

  14. The Carbon Isotope Ratio in Local Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Goto, Miwa; Usuda, Tomonori; Takato, Naruhisa; Masahiko, Hayashi; Sakamoto, Seiichi; Mitchell, George

    We report the carbon isotope ratio in nearby molecular clouds LkHα 101, AFGL 490, and Mon R2 IRS 3. The vibrational transition bands of 12CO ν = 2 ← 0 and 13CO ν = 1 ← 0 were observed with high resolution near-infrared spectroscopy (R = 23,000) to measure the relative abundance of 13CO to 12CO. The isotopic ratios are 12CO/13CO = 1379 (LkHα 101), 8649 (AFGL 490), and 158 (Mon R2 IRS 3), which is twice higher than in the solar neighborhood. The molecular clouds are with high visible extinction (AV = 10 70 mag), well shielded from destructive FUV field. It is questionable that the selective photo-destruction of 13CO plays a major role in biasing isotope ratio. Uncertainty in the Doppler parameters of the unresolved absorption lines, and possible emission filling of fundamental transitions are suspected to account for the high 12CO/13CO ratio. Higher resolution spectroscopy (R ~ 100,000) is the key to go for the accurate measurement of isotope ratio.

  15. Influence of magmatic volatiles on boron isotope compositions in vent fluids from the Eastern Manus Basin, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Wilckens, F. K.; Kasemann, S.; Bach, W.; Reeves, E. P.; Meixner, A.; Seewald, J.

    2016-12-01

    In this study we present boron (B), lithium (Li) and strontium (Sr) concentrations and isotopic composition of submarine hydrothermal fluids collected in 2006 and 2011 from PACMANUS, DESMOS and SuSu Knolls vent fields located in the Eastern Manus Basin [1,2]. Hydrothermal vent fluids within the Eastern Manus Basin range from high-temperature black smoker fluids to low-temperature diffuse fluids and acid-sulfate fluids. In general, the different fluid types show variable water-rock ratios during water-rock interaction and different inputs of magmatic volatiles. End-member black smoker fluids, which have in general high temperatures (mostly higher than 280°C) and pH values higher than 2 (measured at 25°C) are characterized by low δ7Li values (3.9 to 5.9‰) and 87Sr/86Sr ratios (0.704 to 0.705) similar to the values for island arc basalts. These results suggest low water-rock ratios during hydrothermal circulation. B concentrations and isotopic compositions in these fluids range from 1.0 to 2.6μM and 13 to 20‰, respectively. These data match with other vent fluids from island arc settings in the Western Pacific and plot in a B versus δ11B diagram on a two-component mixing line between seawater and island arc basalts [3]. Sr and Li isotopic composition of white smoker and acid-sulfate fluids overlap generally with the isotopic ratios for the black smoker fluids. However, in some fluids Sr isotope ratios are up to 0.709 near seawater composition suggesting higher water-rock ratios during water-rock interaction. B concentrations and isotope ratios in the white smoker and acid-sulfate fluids range from 0.6 to 2.2μM and 9 to 16‰, respectively which are lower compared with the values of black smoker fluids. In addition, these fluids do not fit on the mixing line between seawater and island arc basalt, and define another mixing trend in a B versus δ11B diagram. To explain this contradictory trend, a third mixing endmember is required that shifts B concentrations

  16. Calcium isotope ratios in animal and human bone

    NASA Astrophysics Data System (ADS)

    Reynard, L. M.; Henderson, G. M.; Hedges, R. E. M.

    2010-07-01

    Calcium isotopes in tissues are thought to be influenced by an individual's diet, reflecting parameters such as trophic level and dairy consumption, but this has not been carefully assessed. We report the calcium isotope ratios (δ 44/42Ca) of modern and archaeological animal and human bone ( n = 216). Modern sheep raised at the same location show 0.14 ± 0.08‰ higher δ 44/42Ca in females than in males, which we attribute to lactation by the ewes. In the archaeological bone samples the calcium isotope ratios of the herbivorous fauna vary by location. At a single site, the archaeological fauna do not show a trophic level effect. Humans have lower δ 44/42Ca than the mean site fauna by 0.22 ± 0.22‰, and the humans have a greater δ 44/42Ca range than the animals. No effect of sex or age on the calcium isotope ratios was found, and intra-individual skeletal δ 44/42Ca variability is negligible. We rule out dairy consumption as the main cause of the lower human δ 44/42Ca, based on results from sites pre-dating animal domestication and dairy availability, and suggest instead that individual physiology and calcium intake may be important in determining bone calcium isotope ratios.

  17. Oxygen isotopic ratios of primordial water in carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Fujiya, Wataru

    2018-01-01

    In this work, I estimate the δ18 O and δ17 O values of primordial water in CM chondrites to be 55 ± 13 and 35 ± 9‰, respectively, based on whole-rock O and H data. Also, I found that the O and/or H data of Antarctic meteorites are biased, which is attributed to terrestrial weathering. This characteristic O isotopic ratio of water together with corresponding water abundances in CM chondrites are consistent with the origin of water as ice processed by photochemical reactions at the outer regions of the solar nebula, where mass-independent O isotopic fractionation and water destruction may have occurred. Another possible mechanism to produce the inferred O isotopic ratio of water would be O isotopic fractionation between water vapor and ice, which likely occurred near the condensation front of H2O (snow line) in the solar nebula. The inferred O isotopic ratio of water suggests that carbonate in CM chondrites formed at low temperatures of <150 °C. The O isotopic ratios of primordial water in chondrites other than CM chondrites are not well constrained.

  18. Calibration strategies for the determination of stable carbon absolute isotope ratios in a glycine candidate reference material by elemental analyser-isotope ratio mass spectrometry.

    PubMed

    Dunn, Philip J H; Malinovsky, Dmitry; Goenaga-Infante, Heidi

    2015-04-01

    We report a methodology for the determination of the stable carbon absolute isotope ratio of a glycine candidate reference material with natural carbon isotopic composition using EA-IRMS. For the first time, stable carbon absolute isotope ratios have been reported using continuous flow rather than dual inlet isotope ratio mass spectrometry. Also for the first time, a calibration strategy based on the use of synthetic mixtures gravimetrically prepared from well characterised, highly (13)C-enriched and (13)C-depleted glycines was developed for EA-IRMS calibration and generation of absolute carbon isotope ratio values traceable to the SI through calibration standards of known purity. A second calibration strategy based on converting the more typically determined delta values on the Vienna PeeDee Belemnite (VPDB) scale using literature values for the absolute carbon isotope ratio of VPDB itself was used for comparison. Both calibration approaches provided results consistent with those previously reported for the same natural glycine using MC-ICP-MS; absolute carbon ratios of 10,649 × 10(-6) with an expanded uncertainty (k = 2) of 24 × 10(-6) and 10,646 × 10(-6) with an expanded uncertainty (k = 2) of 88 × 10(-6) were obtained, respectively. The absolute carbon isotope ratio of the VPDB standard was found to be 11,115 × 10(-6) with an expanded uncertainty (k = 2) of 27 × 10(-6), which is in excellent agreement with previously published values.

  19. MIR hollow waveguide (HWG) isotope ratio analyzer for environmental applications

    NASA Astrophysics Data System (ADS)

    Wang, Zhenyou; Zhuang, Yan; Deev, Andrei; Wu, Sheng

    2017-05-01

    An advanced commercial Mid-InfraRed Isotope Ratio (IR2) analyzer was developed in Arrow Grand Technologies based on hollow waveguide (HWG) as the sample tube. The stable carbon isotope ratio, i.e. δ13C, was obtained by measuring the selected CO2 absorption peaks in the MIR. Combined with a GC and a combustor, it has been successfully employed to measure compound specific δ13C isotope ratios in the field. By using both the 1- pass HWG and 5-path HWG, we are able to measure δ13C isotope ratio at a broad CO2 concentration of 300 ppm-37,500 ppm. Here, we demonstrate its applications in environmental studies. The δ13C isotope ratio and concentration of CO2 exhaled by soil samples was measured in real time with the isotope analyzer. The concentration was found to change with the time. We also convert the Dissolved Inorganic Carbon (DIC) into CO2, and then measure the δ13C isotope ratio with an accuracy of better than 0.3 ‰ (1 σ) with a 6 min test time and 1 ml sample usage. Tap water, NaHCO3 solvent, coca, and even beer were tested. Lastly, the 13C isotope ratio of CO2 exhaled by human beings was obtained <10 seconds after simply blowing the exhaled CO2 into a tube with an accuracy of 0.5‰ (1 σ) without sample preconditioning. In summary, a commercial HWG isotope analyzer was demonstrated to be able to perform environmental and health studies with a high accuracy ( 0.3 ‰/Hz1/2 1 σ), fast sampling rate (up to 10 Hz), low sample consumption ( 1 ml), and broad CO2 concentration range (300 ppm-37,500 ppm).

  20. ICP-MS with hexapole collision cell for isotope ratio measurements of Ca, Fe, and Se.

    PubMed

    Boulyga, S F; Becker, J S

    2001-07-01

    To avoid mass interferences on analyte ions caused by argon ions and argon molecular ions via reactions with collision gases, an rf hexapole filled with helium and hydrogen has been used in inductively coupled plasma mass spectrometry (ICP-MS), and its performance has been studied. Up to tenfold improvement in sensitivity was observed for heavy elements (m > 100 u), because of better ion transmission through the hexapole ion guide. A reduction of argon ions Ar+ and the molecular ions of argon ArX+ (X = O, Ar) by up to three orders of magnitude was achieved in a hexapole collision cell of an ICP-MS ("Platform ICP", Micromass, Manchester, UK) as a result of gas-phase reactions with hydrogen when the hexapole bias (HB) was set to 0 V; at an HB of 1.6 V argon, and argon-based ions of masses 40 u, 56 u, and 80 u, were reduced by approximately four, two, and five orders of magnitude, respectively. The signal-to-noise ratio 80Se/ 40Ar2+ was improved by more than five orders of magnitude under optimized experimental conditions. Dependence of mass discrimination on collision-cell properties was studied in the mass range 10 u (boron) to 238 u (uranium). Isotopic analysis of the elements affected by mass-spectrometric interference, Ca, Fe, and Se, was performed using a Meinhard nebulizer and an ultrasonic nebulizer (USN). The measured isotope ratios were comparable with tabulated values from IUPAC. Precision of 0.26%, 0.19%, and 0.12%, respectively, and accuracy of 0.13% 0.25%, and 0.92%, respectively, was achieved for isotope ratios 44Ca/ 40Ca and 56Fe/57Fe in 10 microg L(-1) solution nebulized by means of a USN and for 78Se/80Se in 100 microg L(-1) solution nebulized by means of a Meinhard nebulizer.

  1. Ultralow-loss polaritons in isotopically pure boron nitride

    NASA Astrophysics Data System (ADS)

    Giles, Alexander J.; Dai, Siyuan; Vurgaftman, Igor; Hoffman, Timothy; Liu, Song; Lindsay, Lucas; Ellis, Chase T.; Assefa, Nathanael; Chatzakis, Ioannis; Reinecke, Thomas L.; Tischler, Joseph G.; Fogler, Michael M.; Edgar, J. H.; Basov, D. N.; Caldwell, Joshua D.

    2018-02-01

    Conventional optical components are limited to size scales much larger than the wavelength of light, as changes to the amplitude, phase and polarization of the electromagnetic fields are accrued gradually along an optical path. However, advances in nanophotonics have produced ultrathin, so-called `flat' optical components that beget abrupt changes in these properties over distances significantly shorter than the free-space wavelength. Although high optical losses still plague many approaches, phonon polariton (PhP) materials have demonstrated long lifetimes for sub-diffractional modes in comparison to plasmon-polariton-based nanophotonics. We experimentally observe a threefold improvement in polariton lifetime through isotopic enrichment of hexagonal boron nitride (hBN). Commensurate increases in the polariton propagation length are demonstrated via direct imaging of polaritonic standing waves by means of infrared nano-optics. Our results provide the foundation for a materials-growth-directed approach aimed at realizing the loss control necessary for the development of PhP-based nanophotonic devices.

  2. Do Strontium Isotope Ratios of Animal Bone and Teeth Really Reflect the Isotope Ratios of its birth- and growth-places?

    NASA Astrophysics Data System (ADS)

    Minami, M.; Goto, A.; Suzuki, K.; Kato, T.; Watanabe, K.; Hasegawa, T.

    2007-12-01

    Strontium enters the human body through the food chain as nutrients pass from bedrock through soil and water to plants and animals. Strontium substitutes for calcium in the hydroxyapatite mineral of skeletal tissue, and is stored there. 87Sr/86Sr ratios in an individual's bone and teeth could directly reflect the isotopic ratios found in the plants and animals that she or he consumed, which reflect the isotope ratios found in the soil and bedrock of that geologic region. Therefore, 87Sr/86Sr ratios of human skeletons could be useful tools for assessing human residential mobility in prehistory, and many studies on them have been often made. In this study, to evaluate whether the 87Sr/86Sr ratio of a bone or teeth really reflects the isotopic ratios of its birth and growth places, several bone and teeth samples were measured for 87Sr/86Sr ratios, compared with 87Sr/86Sr ratios of geological samples in their growth-places. Bone and teeth samples were leached with 5% acetic acid. After drying, samples were ashed in a muffle furnace at 825°C for 8h, and then digested in nitric acid, followed by cation exchange chromatography with 2.4M hydrochloric acid. 87Sr/86Sr ratios were measured using a thermal ionization mass Spectrometer (VG Sector 54) or an inductively coupled plasma mass spectrometer (Finnigan ELEMENT2). A modern boar bone collected at Asuke, Toyota City, Aichi prefecture, Japan showed a 87Sr/86Sr of 0.71001±0.00002 (2 σ), while stream sediments in the Asuke area showed around 0.710 (Asahara et al., 2006). The 87Sr/86Sr ratio of a modern black bass bone collected from Lake Biwa, Shiga prefecture, Japan was 0.71215±0.00002, while those of surface water in Lake Biwa was 0.71233±0.00002. The similar 87Sr/86Sr ratios between bone and its provenance geology could indicate that the 87Sr/86Sr ratios of bones reflect the isotopic ratios of the birth- and growth-places. The more results of modern and fossil skeletons will be shown in our presentation.

  3. Isotopic ratios in outbursting comet C/2015 ER61

    NASA Astrophysics Data System (ADS)

    Yang, Bin; Hutsemékers, Damien; Shinnaka, Yoshiharu; Opitom, Cyrielle; Manfroid, Jean; Jehin, Emmanuël; Meech, Karen J.; Hainaut, Olivier R.; Keane, Jacqueline V.; Gillon, Michaël

    2018-02-01

    Isotopic ratios in comets are critical to understanding the origin of cometary material and the physical and chemical conditions in the early solar nebula. Comet C/2015 ER61 (PANSTARRS) underwent an outburst with a total brightness increase of 2 magnitudes on the night of 2017 April 4. The sharp increase in brightness offered a rare opportunity to measure the isotopic ratios of the light elements in the coma of this comet. We obtained two high-resolution spectra of C/2015 ER61 with UVES/VLT on the nights of 2017 April 13 and 17. At the time of our observations, the comet was fading gradually following the outburst. We measured the nitrogen and carbon isotopic ratios from the CN violet (0, 0) band and found that 12C/13C = 100 ± 15, 14N/15N = 130 ± 15. In addition, we determined the 14N/15N ratio from four pairs of NH2 isotopolog lines and measured 14N/15N = 140 ± 28. The measured isotopic ratios of C/2015 ER61 do not deviate significantly from those of other comets.

  4. Steroid isotopic standards for gas chromatography-combustion isotope ratio mass spectrometry (GCC-IRMS).

    PubMed

    Zhang, Ying; Tobias, Herbert J; Brenna, J Thomas

    2009-03-01

    Carbon isotope ratio (CIR) analysis of urinary steroids using gas chromatography-combustion isotope ratio mass spectrometry (GCC-IRMS) is a recognized test to detect illicit doping with synthetic testosterone. There are currently no universally used steroid isotopic standards (SIS). We adapted a protocol to prepare isotopically uniform steroids for use as a calibrant in GCC-IRMS that can be analyzed under the same conditions as used for steroids extracted from urine. Two separate SIS containing a mixture of steroids were created and coded CU/USADA 33-1 and CU/USADA 34-1, containing acetates and native steroids, respectively. CU/USADA 33-1 contains 5alpha-androstan-3beta-ol acetate (5alpha-A-AC), 5alpha-androstan-3alpha-ol-17-one acetate (androsterone acetate, A-AC), 5beta-androstan-3alpha-ol-11, 17-dione acetate (11-ketoetiocholanolone acetate, 11k-AC) and 5alpha-cholestane (Cne). CU/USADA 34-1 contains 5beta-androstan-3alpha-ol-17-one (etiocholanolone, E), 5alpha-androstan-3alpha-ol-17-one (androsterone, A), and 5beta-pregnane-3alpha, 20alpha-diol (5betaP). Each mixture was prepared and dispensed into a set of about 100 ampoules using a protocol carefully designed to minimize isotopic fractionation and contamination. A natural gas reference material, NIST RM 8559, traceable to the international standard Vienna PeeDee Belemnite (VPDB) was used to calibrate the SIS. Absolute delta(13)C(VPDB) and Deltadelta(13)C(VPDB) values from randomly selected ampoules from both SIS indicate uniformity of steroid isotopic composition within measurement reproducibility, SD(delta(13)C)<0.2 per thousand. This procedure for creation of isotopic steroid mixtures results in consistent standards with isotope ratios traceable to the relevant international reference material.

  5. Stable isotope ratios of tap water in the contiguous United States

    NASA Astrophysics Data System (ADS)

    Bowen, Gabriel J.; Ehleringer, James R.; Chesson, Lesley A.; Stange, Erik; Cerling, Thure E.

    2007-03-01

    Understanding links between water consumers and climatological (precipitation) sources is essential for developing strategies to ensure the long-term sustainability of water supplies. In pursing this understanding a need exists for tools to study and monitor complex human-hydrological systems that involve high levels of spatial connectivity and supply problems that are regional, rather than local, in nature. Here we report the first national-level survey of stable isotope ratios in tap water, including spatially and temporally explicit samples from a large number of cities and towns across the contiguous United States. We show that intra-annual ranges of tap water isotope ratios are relatively small (e.g., <10‰ for δ2H) at most sites. In contrast, spatial variation in tap water isotope ratios is very large, spanning ranges of 163‰ for δ2H and 23.6‰ for δ18O. The spatial distribution of tap water isotope ratios at the national level is similar to that of stable isotope ratios of precipitation. At the regional level, however, pervasive differences between tap water and precipitation isotope ratios can be attributed to hydrological factors in the water source to consumer chain. These patterns highlight the potential for monitoring of tap water isotope ratios to contribute to the study of regional water supply stability and provide warning signals for impending water resource changes. We present the first published maps of predicted tap water isotope ratios for the contiguous United States, which will be useful in guiding future research on human-hydrological systems and as a tool for applied forensics and traceability studies.

  6. Effects of acidification on the isotopic ratios of Neotropical otter tooth dentin.

    PubMed

    Carrasco, Thayara S; Botta, Silvina; Machado, Rodrigo; Colares, Elton P; Secchi, Eduardo R

    2018-05-30

    Stable carbon and nitrogen isotope ratios are widely used in ecological studies providing important information on the trophic ecology and habitat use of consumers. However, some factors may lead to isotopic variability, which makes difficult the interpretation of data, such as the presence of inorganic carbon in mineralized tissues. In order to remove the inorganic carbon, acidification is a commonly used treatment. The effects of two methods of acidification were tested: (i) dentin acidification with 10% HCl using the 'drop-by-drop' technique, and (ii) dentin acidification in an 'HCl atmosphere', by exposing the dentin to vaporous 30% hydrochloric acid. Results were compared with untreated subsamples. The stable carbon and nitrogen ratios of untreated and acidified subsamples were measured using an elemental analyzer coupled to an isotope ratio mass spectrometer. The nitrogen isotopic ratios were statistically different between the two acidification treatments, but no significant changes in carbon isotopic ratios were found in acidified and untreated samples. The results indicated that acidification had no effect on carbon isotopic ratios of Neotropical otter tooth dentin, while introducing a source of error in nitrogen isotopic ratios. Therefore, we conclude that acidification is an unnecessary step for C and N stable isotope analysis. Copyright © 2018 John Wiley & Sons, Ltd.

  7. Liquid and gas chromatography coupled to isotope ratio mass spectrometry for the determination of 13C-valine isotopic ratios in complex biological samples.

    PubMed

    Godin, Jean-Philippe; Breuillé, Denis; Obled, Christiane; Papet, Isabelle; Schierbeek, Henk; Hopfgartner, Gérard; Fay, Laurent-Bernard

    2008-10-01

    On-line gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) is commonly used to measure isotopic ratios at natural abundance as well as for tracer studies in nutritional and medical research. However, high-precision (13)C isotopic enrichment can also be measured by liquid chromatography-isotope ratio mass spectrometry (LC-IRMS). Indeed, LC-IRMS can be used, as shown by the new method reported here, to obtain a baseline separation and to measure (13)C isotopic enrichment of underivatised amino acids (Asp, Thr-Ser, Glu, Pro, Gly, Ala, Cys and Val). In case of Val, at natural abundance, the SD(delta(13)C) reported with this method was found to be below 1 per thousand . Another key feature of the new LC-IRMS method reported in this paper is the comparison of the LC-IRMS approach with the conventional GC-C-IRMS determination. To perform this comparative study, isotopic enrichments were measured from underivatised Val and its N(O, S)-ethoxycarbonyl ethyl ester derivative. Between 0.0 and 1.0 molar percent excess (MPE) (delta(13)C= -12.3 to 150.8 per thousand), the calculated root-mean-square (rms) of SD was 0.38 and 0.46 per thousand and the calculated rms of accuracy was 0.023 and 0.005 MPE, respectively, for GC-C-IRMS and LC-IRMS. Both systems measured accurately low isotopic enrichments (0.002 atom percent excess (APE)) with an SD (APE) of 0.0004. To correlate the relative (delta(13)C) and absolute (atom%, APE and MPE) isotopic enrichment of Val measured by the GC-C-IRMS and LC-IRMS devices, mathematical equations showing the slope and intercept of the curves were established and validated with experimental data between 0.0 to 2.3 MPE. Finally, both GC-C-IRMS and LC-IRMS instruments were also used to assess isotopic enrichment of protein-bound (13)C-Val in tibial epiphysis in a tracer study performed in rats. Isotopic enrichments measured by LC-IRMS and GC-C-IRMS were not statistically different (p>0.05). The results of this work indicate that

  8. On Poisson's ratio for metal matrix composite laminates. [aluminum boron composites

    NASA Technical Reports Server (NTRS)

    Herakovich, C. T.; Shuart, M. J.

    1978-01-01

    The definition of Poisson's ratio for nonlinear behavior of metal matrix composite laminates is discussed and experimental results for tensile and compressive loading of five different boron-aluminum laminates are presented. It is shown that there may be considerable difference in the value of Poisson's ratio as defined by a total strain or an incremental strain definition. It is argued that the incremental definition is more appropriate for nonlinear material behavior. Results from a (0) laminate indicate that the incremental definition provides a precursor to failure which is not evident if the total strain definition is used.

  9. Boron Dissolved and Particulate Atmospheric Inputs to a Forest Ecosystem (Northeastern France).

    PubMed

    Roux, Philippe; Turpault, Marie-Pierre; Kirchen, Gil; Redon, Paul-Olivier; Lemarchand, Damien

    2017-12-19

    Boron concentrations and isotopic compositions of atmospheric dust and dissolved depositions were monitored over a two-year period (2012-2013) in the forest ecosystem of Montiers (Northeastern France). This time series allows the determination of the boron atmospheric inputs to this forest ecosystem and contributes to refine our understanding of the sources and processes that control the boron atmospheric cycle. Mean annual dust and dissolved boron atmospheric depositions are comparable in size (13 g·ha -1 ·yr -1 and 16 g·ha -1 ·yr -1 , respectively), which however show significant intra- and interannual variations. Boron isotopes in dust differ from dissolved inputs, with an annual mean value of +1 ‰ and +18 ‰ for, respectively. The notable high boron contents (190-390 μg·g -1 ) of the dust samples are interpreted as resulting from localized spreading of boron-rich fertilizers, thus indicating a significant local impact of regional agricultural activities. Boron isotopes in dissolved depositions show a clear seasonal trend. The absence of correlation with marine cyclic solutes contradicts a control of atmospheric boron by dissolution of seasalts. Instead, the boron data from this study are consistent with a Rayleigh-like evolution of the atmospheric gaseous boron reservoir with possible but limited anthropogenic and/or biogenic contributions.

  10. Magnesium Isotope Ratios in ω Centauri Red Giants

    NASA Astrophysics Data System (ADS)

    Da Costa, G. S.; Norris, John E.; Yong, David

    2013-05-01

    We have used the high-resolution observations obtained at the Anglo-Australian Telescope with Ultra-High Resolution Facility (R ~ 100,000) and at Gemini-S with b-HROS (R ~ 150,000) to determine magnesium isotope ratios for seven ω Cen red giants that cover a range in iron abundance from [Fe/H] = -1.78 to -0.78 dex, and for two red giants in M4 (NGC 6121). The ω Cen stars sample both the "primordial" (i.e., O-rich, Na- and Al-poor) and the "extreme" (O-depleted, Na- and Al-rich) populations in the cluster. The primordial population stars in both ω Cen and M4 show (25Mg, 26Mg)/24Mg isotopic ratios that are consistent with those found for the primordial population in other globular clusters with similar [Fe/H] values. The isotopic ratios for the ω Cen extreme stars are also consistent with those for extreme population stars in other clusters. The results for the extreme population stars studied indicate that the 26Mg/24Mg ratio is highest at intermediate metallicities ([Fe/H] < -1.4 dex), and for the highest [Al/Fe] values. Further, the relative abundance of 26Mg in the extreme population stars is notably higher than that of 25Mg, in contrast to model predictions. The 25Mg/24Mg isotopic ratio in fact does not show any obvious dependence on either [Fe/H] or [Al/Fe] nor, intriguingly, any obvious difference between the primordial and extreme population stars.

  11. Study of the boron levels in serum after implantation of different ratios nano-hexagonal boron nitride-hydroxy apatite in rat femurs.

    PubMed

    Atila, Alptug; Halici, Zekai; Cadirci, Elif; Karakus, Emre; Palabiyik, Saziye Sezin; Ay, Nuran; Bakan, Feray; Yilmaz, Sahin

    2016-01-01

    Boron and its derivatives are effective in bone recovery and osteointegration. However, increasing the boron levels in body liquids may cause toxicity. The aim of our study is to investigate serum boron levels using ICP-MS after implantation of different ratios of nano-hBN-HA composites in rat femurs. All rats were (n=126) divided into five experimental groups (n=24) and one healthy group (6 rats); healthy (Group1), femoral defect + %100 HA (Group2), femoral defect + %2.5 hBN + %97.5 HA (Group3), femoral defect + %5 hBN + %95 HA (Group4), femoral defect + %10 hBN + %90 HA (Group5), femoral defect + %100 hBN (Group6). The femoral defect was created in the distal femur (3mm drill-bit). Each implant group was divided into four different groups (n=24) also 6 rats sacrificed for each groups in one week intervals during four weeks. In our results; at 1, 2, 3, and 4 weeks after implantation near bone tissue, serum levels of boron were evaluated using ICP-MS. We demonstrated that neither short-term nor long-term implantation of hBN-HA composite resulted in statistically increased serum boron levels in experimental groups compared to healthy group. In conclusion, this study investigated the implant material produced form hBN-HA for the first time. Our data suggest that hBN is a new promising target for biomaterial and implant bioengineers. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. System and method for high precision isotope ratio destructive analysis

    DOEpatents

    Bushaw, Bruce A; Anheier, Norman C; Phillips, Jon R

    2013-07-02

    A system and process are disclosed that provide high accuracy and high precision destructive analysis measurements for isotope ratio determination of relative isotope abundance distributions in liquids, solids, and particulate samples. The invention utilizes a collinear probe beam to interrogate a laser ablated plume. This invention provides enhanced single-shot detection sensitivity approaching the femtogram range, and isotope ratios that can be determined at approximately 1% or better precision and accuracy (relative standard deviation).

  13. Detection of counterfeit antiviral drug Heptodin and classification of counterfeits using isotope amount ratio measurements by multicollector inductively coupled plasma mass spectrometry (MC-ICPMS) and isotope ratio mass spectrometry (IRMS).

    PubMed

    Santamaria-Fernandez, Rebeca; Hearn, Ruth; Wolff, Jean-Claude

    2009-06-01

    Isotope ratio mass spectrometry (IRMS) and multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) are highly important techniques that can provide forensic evidence that otherwise would not be available. MC-ICP-MS has proved to be a very powerful tool for measuring high precision and accuracy isotope amount ratios. In this work, the potential of combining isotope amount ratio measurements performed by MC-ICP-MS and IRMS for the detection of counterfeit pharmaceutical tablets has been investigated. An extensive study for the antiviral drug Heptodin has been performed for several isotopic ratios combining MC-ICP-MS and an elemental analyser EA-IRMS for stable isotope amount ratio measurements. The study has been carried out for 139 batches of the antiviral drug and analyses have been performed for C, S, N and Mg isotope ratios. Authenticity ranges have been obtained for each isotopic system and combined to generate a unique multi-isotopic pattern only present in the genuine tablets. Counterfeit tablets have then been identified as those tablets with an isotopic fingerprint outside the genuine isotopic range. The combination of those two techniques has therefore great potential for pharmaceutical counterfeit detection. A much greater power of discrimination is obtained when at least three isotopic systems are combined. The data from these studies could be presented as evidence in court and therefore methods need to be validated to support their credibility. It is also crucial to be able to produce uncertainty values associated to the isotope amount ratio measurements so that significant differences can be identified and the genuineness of a sample can be assessed.

  14. The use of carbon stable isotope ratios in drugs characterization

    NASA Astrophysics Data System (ADS)

    Magdas, D. A.; Cristea, G.; Bot, A.; Mirel, V.

    2013-11-01

    Isotopic Ratio Mass Spectrometry (IRMS) is an effective toll to be used for drug product authentication. The isotopic composition could be used to assist in the differentiation between batches of drugs and assist in the identification of counterfeit materials on the market. Only two factors affect the isotopic ratios in pharmaceutical components: the isotopic composition of the raw materials and the synthetic processes performed upon them. Counterfeiting of pharmaceutical drugs threatens consumer confidence in drug products companies' economical well-being. In this preliminary study, the analyzed samples consist in two types of commercially available analgesics, which were purchases from Romanian pharmacies. Differences in δ13C between batches from -29.7 to -31.6% were observed, demonstrating that this method can be used to differentiate among individual drug batches and subsequently identify counterfeits on the market. On the other hand, carbon isotopic ratios differences among producers were recorded, the variations being between -31.3 to -34.9% for the same type of analgesic, but from different manufactures.

  15. Isotopic ratios D/H and 15N/14N in giant planets

    NASA Astrophysics Data System (ADS)

    Marboeuf, Ulysse; Thiabaud, Amaury; Alibert, Yann; Benz, Willy

    2018-04-01

    The determination of isotopic ratios in planets is important since it allows us to investigate the origins and initial composition of materials. The present work aims to determine the possible range of values for isotopic ratios D/H and 15N/14N in giant planets. The main objective is to provide valuable theoretical assumptions on the isotopic composition of giant planets, their internal structure, and the main reservoirs of species. We use models of ice formation and planet formation that compute the composition of ices and gas accreted in the core and the envelope of planets. Assuming a single initial value for isotopic ratios in volatile species, and disruption of planetesimals in the envelope of gaseous planets, we obtain a wide variety of D/H and 15N/14N ratios in low-mass planets (≤100 Mearth) due to the migration pathway of planets, the accretion time of gas species whose relative abundance evolves with time, and isotope exchanges among species. If giant planets with mass greater than 100 Mearth have solar isotopic ratios such as Jupiter and Saturn due to their higher envelope mass, Neptune-type planets present values ranging between one and three times the solar value. It seems therefore difficult to use isotopic ratios in the envelope of these planets to get information about their formation in the disc. For giant planets, the ratios allow us to constrain the mass fraction of volatile species in the envelope needed to reproduce the observational data by assuming initial values for isotopic ratios in volatile species.

  16. CCQM-K140: carbon stable isotope ratio delta values in honey

    NASA Astrophysics Data System (ADS)

    Dunn, P. J. H.; Goenaga-Infante, H.; Goren, A. C.; Şimşek, A.; Bilsel, M.; Ogrinc, N.; Armishaw, P.; Hai, L.

    2017-01-01

    As there can be small but measureable differences in isotope ratios between different sources of the same element/compound/material, isotope ratio measurements are applied in a number of different fields including archaeology, environmental science, geochemistry, forensic science and ecology. Isotope ratios for the light elements (H, C, N, O and S) are typically reported as δ-values which are isotope ratios expressed relative to an internationally agreed standard (this standard is the zero-point on the scale), although absolute isotope ratios which are traceable to the SI have also been reported. The IAWG has been granted a traceability exception for the use of arbitrary delta scales until SI traceability can be established at the required level of uncertainty but this goal is some years away. While the CCQM IAWG has previously organised several pilot studies on isotope ratio determination (CCQM-P75: Stable isotope delta values in methionine, 2006; CCQM-P105: Sr isotope ratios in wine, 2008; CCQM-K98: Pb isotope ratios in bronze with additional delta values in CCQM-P134, 2011), it has been a number of years since delta values of light elements have been considered and there has been no key comparison (KC). Therefore, the IAWG has included the need for a KC (CCQM-K140) based on an arbitrary delta scale in its program to support ongoing requirements to demonstrate core capabilities as well as specific claims of measurement capability (CMCs) in this area. The performance of all five of the CCQM-K140 participants was very good, illustrating their ability to obtain accurate results for carbon isotope ratios, within the calibration range afforded by internationally agreed reference materials (δ13CVPDB-LSVEC between -47.32 % and +535.3 %) with measurement uncertainties of between 0.08 and 0.28 %. This was despite the fact that no two participants used exactly the same approach in terms of instrumentation or data treatment. Main text To reach the main text of this paper

  17. Selenium isotope ratios as indicators of selenium sources and oxyanion reduction

    USGS Publications Warehouse

    Johnson, T.M.; Herbel, M.J.; Bullen, T.D.; Zawislanski, P.T.

    1999-01-01

    Selenium stable isotope ratio measurements should serve as indicators of sources and biogeochemical transformations of Se. We report measurements of Se isotope fractionation during selenate reduction, selenite sorption, oxidation of reduced Se in soils, and Se volatilization by algae and soil samples. These results, combined with previous work with Se isotopes, indicate that reduction of soluble oxyanions is the dominant cause of Se isotope fractionation. Accordingly, Se isotope ratios should be useful as indicators of oxyanion reduction, which can transform mobile species to forms that are less mobile and less bioavailable. Additional investigations of Se isotope fractionation are needed to confirm this preliminary assessment. We have developed a new method for measurement of natural Se isotope ratio variation which requires less than 500 ng Se per analysis and yields ??0.2??? precision on 80Se/76Se. A double isotope spike technique corrects for isotopic fractionation during sample preparation and mass spectrometry. The small minimum sample size is important, as Se concentrations are often below 1 ppm in solids and 1 ??g/L in fluids. The Se purification process is rapid and compatible with various sample matrices, including acidic rock or sediment digests.

  18. A balloon measurement of the isotopic composition of galactic cosmic ray boron, carbon and nitrogen. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Zumberge, J. F.

    1981-01-01

    The isotopic compositions of galactic cosmic ray boron, carbon, and nitrogen were measured at energies near 300 MeV amu, using a balloon-borne instrument at an atmospheric depth of approximately 5 g/sq cm. The calibrations of the detectors comprising the instrument are described. The saturation properties of the cesium iodide scintillators used for measurement of particle energy are studied in the context of analyzing the data for mass. The achieved rms mass resolution varies from approximately 0.3 amu at boron to approximately 0.5 amu at nitrogen, consistent with a theoretical analysis of the contributing factors. Corrected for detector interactions and the effects of the residual atmosphere the results are B-10/B=0.33 (+0.17, -0.11), C-13/C=0.06 (+0.13, -0.11), and N-15/N=0.42 (+0.19, -0.17). A model of galactic propagation and solar modulation is described. Assuming a cosmic ray source composition of solar-like isotopic abundances, the model predicts abundances near Earth consistent with the measurements.

  19. High Precision Low-blank Lithium Isotope Ratios in Forams.

    NASA Astrophysics Data System (ADS)

    Misra, S.; Froelich, P. N.

    2007-12-01

    We present a high precision (±1‰, 2σ) low blank (<500 fg/ml) method for Li isotope measurements of forams using <2 ng of Li by single collector Quad ICP-MS (Agilent 7500cs). The Li isotope ratio of seawater (δ7Li) recorded in planktonic forams has the potential to constrain the evolution of seawater chemistry and elucidate the factors driving variations of oceanic mass balances linked to the continental and sea floor/hydrothermal silica cycles. In addition a δ7Li record of seawater will complement other long-term recorders of seawater chemistry such as Sr, Os and S isotopes. Li isotope measurements of forams are limited by several factors: low Li concentrations in forams (1-2 ppm), instrument-induced fractionation and mass bias effects, matrix effects, high Li blanks and incomplete recovery of Li during column separation. Modest concentrations of alkali and alkaline earth elements in the matrix result in variable mass bias in measured Li isotope ratios. Even worse, Li strongly fractionates during chromatographic clean-up to remove Na+, Ca2+ and Mg2+, from +100‰ in the leading edge to - 100‰ in the trailing edge of elution peaks (Urey 1938). Consequently, miniscule incomplete recoveries of Li during chromatographic separations can result in large unrecognized isotope fractionation of eluents. Large mass-dependent fractionation caused by a difference of 17% in mass between 6Li and 7Li, makes Li a powerful tracer of geochemical processes, but also promotes large and difficult-to-fix isotope fractionations during laboratory chemical processing. Matrix effects of Na & Ca and of column chromatography on Li isotope ratios were investigated using artificial Li solutions representative of foram compositions (matrix matching). Li/Ca and Li/Na ratios in cleaned forams are 10 μmol/mol and 3 mmol/mol respectively. An ICP-MS tolerance limit of 20 ppb for Na and 20 μM for Ca was established, much higher tolerances than by TIMS. A single step chromatographic method to

  20. High precision isotope ratio measurements of mercury isotopes in cinnabar ores using multi-collector inductively coupled plasma mass spectrometry.

    PubMed

    Hintelmann, Holger; Lu, ShengYong

    2003-06-01

    Variations in Hg isotope ratios in cinnabar ores obtained from different countries were detected by high precision isotope ratio measurements using multi-collector inductively coupled mass spectrometry (MC-ICP-MS). Values of delta198/202Hg varied from 0.0-1.3 percent per thousand relative to a NIST SRM 1641d Hg solution. The typical external uncertainty of the delta values was 0.06 to 0.26 percent per thousand. Hg was introduced into the plasma as elemental Hg after reduction by sodium borohydride. A significant fractionation of lead isotopes was observed during the simultaneous generation of lead hydride, preventing normalization of the Hg isotope ratios using the measured 208/206Pb ratio. Hg ratios were instead corrected employing the simultaneously measured 205/203T1 ratio. Using a 10 ng ml(-1) Hg solution and 10 min of sampling, introducing 60 ng of Hg, the internal precision of the isotope ratio measurements was as low as 14 ppm. Absolute Hg ratios deviated from the representative IUPAC values by approximately 0.2% per u. This observation is explained by the inadequacy of the exponential law to correct for mass bias in MC-ICP-MS measurements. In the absence of a precisely characterized Hg isotope ratio standard, we were not able to determine unambiguously the absolute Hg ratios of the ore samples, highlighting the urgent need for certified standard materials.

  1. MAGNESIUM ISOTOPE RATIOS IN {omega} CENTAURI RED GIANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Da Costa, G. S.; Norris, John E.; Yong, David

    2013-05-20

    We have used the high-resolution observations obtained at the Anglo-Australian Telescope with Ultra-High Resolution Facility (R {approx} 100,000) and at Gemini-S with b-HROS (R {approx} 150,000) to determine magnesium isotope ratios for seven {omega} Cen red giants that cover a range in iron abundance from [Fe/H] = -1.78 to -0.78 dex, and for two red giants in M4 (NGC 6121). The {omega} Cen stars sample both the ''primordial'' (i.e., O-rich, Na- and Al-poor) and the ''extreme'' (O-depleted, Na- and Al-rich) populations in the cluster. The primordial population stars in both {omega} Cen and M4 show ({sup 25}Mg, {sup 26}Mg)/{sup 24}Mgmore » isotopic ratios that are consistent with those found for the primordial population in other globular clusters with similar [Fe/H] values. The isotopic ratios for the {omega} Cen extreme stars are also consistent with those for extreme population stars in other clusters. The results for the extreme population stars studied indicate that the {sup 26}Mg/{sup 24}Mg ratio is highest at intermediate metallicities ([Fe/H] < -1.4 dex), and for the highest [Al/Fe] values. Further, the relative abundance of {sup 26}Mg in the extreme population stars is notably higher than that of {sup 25}Mg, in contrast to model predictions. The {sup 25}Mg/{sup 24}Mg isotopic ratio in fact does not show any obvious dependence on either [Fe/H] or [Al/Fe] nor, intriguingly, any obvious difference between the primordial and extreme population stars.« less

  2. Ultralow-loss polaritons in isotopically pure boron nitride.

    PubMed

    Giles, Alexander J; Dai, Siyuan; Vurgaftman, Igor; Hoffman, Timothy; Liu, Song; Lindsay, Lucas; Ellis, Chase T; Assefa, Nathanael; Chatzakis, Ioannis; Reinecke, Thomas L; Tischler, Joseph G; Fogler, Michael M; Edgar, J H; Basov, D N; Caldwell, Joshua D

    2018-02-01

    Conventional optical components are limited to size scales much larger than the wavelength of light, as changes to the amplitude, phase and polarization of the electromagnetic fields are accrued gradually along an optical path. However, advances in nanophotonics have produced ultrathin, so-called 'flat' optical components that beget abrupt changes in these properties over distances significantly shorter than the free-space wavelength. Although high optical losses still plague many approaches, phonon polariton (PhP) materials have demonstrated long lifetimes for sub-diffractional modes in comparison to plasmon-polariton-based nanophotonics. We experimentally observe a threefold improvement in polariton lifetime through isotopic enrichment of hexagonal boron nitride (hBN). Commensurate increases in the polariton propagation length are demonstrated via direct imaging of polaritonic standing waves by means of infrared nano-optics. Our results provide the foundation for a materials-growth-directed approach aimed at realizing the loss control necessary for the development of PhP-based nanophotonic devices.

  3. Ultralow-loss polaritons in isotopically pure boron nitride

    DOE PAGES

    Giles, Alexander J.; Dai, Siyuan; Vurgaftman, Igor; ...

    2017-12-11

    Conventional optical components are limited to size scales much larger than the wavelength of light, as changes to the amplitude, phase and polarization of the electromagnetic fields are accrued gradually along an optical path. However, advances in nanophotonics have produced ultrathin, so-called ‘flat’ optical components that beget abrupt changes in these properties over distances significantly shorter than the free-space wavelength. Although high optical losses still plague many approaches, phonon polariton (PhP) materials have demonstrated long lifetimes for sub-diffractional modes in comparison to plasmon-polariton-based nanophotonics. We experimentally observe a threefold improvement in polariton lifetime through isotopic enrichment of hexagonal boron nitridemore » (hBN). Commensurate increases in the polariton propagation length are demonstrated via direct imaging of polaritonic standing waves by means of infrared nano-optics. Lastly, our results provide the foundation for a materials-growth-directed approach aimed at realizing the loss control necessary for the development of PhP-based nanophotonic devices.« less

  4. Ultralow-loss polaritons in isotopically pure boron nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giles, Alexander J.; Dai, Siyuan; Vurgaftman, Igor

    Conventional optical components are limited to size scales much larger than the wavelength of light, as changes to the amplitude, phase and polarization of the electromagnetic fields are accrued gradually along an optical path. However, advances in nanophotonics have produced ultrathin, so-called ‘flat’ optical components that beget abrupt changes in these properties over distances significantly shorter than the free-space wavelength. Although high optical losses still plague many approaches, phonon polariton (PhP) materials have demonstrated long lifetimes for sub-diffractional modes in comparison to plasmon-polariton-based nanophotonics. We experimentally observe a threefold improvement in polariton lifetime through isotopic enrichment of hexagonal boron nitridemore » (hBN). Commensurate increases in the polariton propagation length are demonstrated via direct imaging of polaritonic standing waves by means of infrared nano-optics. Lastly, our results provide the foundation for a materials-growth-directed approach aimed at realizing the loss control necessary for the development of PhP-based nanophotonic devices.« less

  5. Measurement of isotope ratio of Ca{sup +} ions in a linear Paul Trap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashimoto, Y.; Minamino, K.; Nagamoto, D.

    2009-03-17

    Measurement of isotope ratios of Calcium is very useful in many fields. So we demonstrated the measurement of isotope ratios of {sup 40}Ca{sup +}(abundance 96.4%) to {sup 44}Ca{sup +}(2.09%) ions in a linear Paul trap with several laser lights tuning to the isotope shifts. And we found that the experimental parameters had large influences on the measurement of the isotope ratios.

  6. Selenium isotope ratios as indicators of selenium sources and oxyanion reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, T.M.; Herbel, M.J.; Bullen, T.D.

    1999-09-01

    Selenium stable isotope ratio measurements should serve as indicators of sources and biogeochemical transformations of Se. The authors report measurements of Se isotope fractionation during selenate reduction, selenite sorption, oxidation of reduced Se in soils, and Se volatilization by algae and soil samples. These results, combined with previous work with Se isotopes, indicate that reduction of soluble oxyanions is the dominant cause of Se isotope fractionation. Accordingly, Se isotope ratios should be useful as indicators of oxyanion reduction, which can transform mobile species to forms that are less mobile and less bioavailable. Additional investigations of Se isotope fractionation are neededmore » to confirm this preliminary assessment. The authors have developed a new method for measurement of natural Se isotope ratio variation which requires less than 500 ng Se per analysis and yields {+-}0.2% precision on {sup 80}Se/{sup 76}Se. A double isotope spike technique corrects for isotopic fractionation during sample preparation and mass spectrometry. The small minimum sample size is important, as Se concentrations are often below 1 ppm in solids and 1 {micro}g/L in fluids. The Se purification process is rapid and compatible with various sample matrices, including acidic rock or sediment digests.« less

  7. The use of carbon stable isotope ratios in drugs characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magdas, D. A., E-mail: gabriela.cristea@itim-cj.ro; Cristea, G., E-mail: gabriela.cristea@itim-cj.ro; Bot, A., E-mail: gabriela.cristea@itim-cj.ro

    Isotopic Ratio Mass Spectrometry (IRMS) is an effective toll to be used for drug product authentication. The isotopic composition could be used to assist in the differentiation between batches of drugs and assist in the identification of counterfeit materials on the market. Only two factors affect the isotopic ratios in pharmaceutical components: the isotopic composition of the raw materials and the synthetic processes performed upon them. Counterfeiting of pharmaceutical drugs threatens consumer confidence in drug products companies' economical well-being. In this preliminary study, the analyzed samples consist in two types of commercially available analgesics, which were purchases from Romanian pharmacies.more » Differences in δ{sup 13}C between batches from −29.7 to −31.6% were observed, demonstrating that this method can be used to differentiate among individual drug batches and subsequently identify counterfeits on the market. On the other hand, carbon isotopic ratios differences among producers were recorded, the variations being between −31.3 to −34.9% for the same type of analgesic, but from different manufactures.« less

  8. Tracing lead pollution sources in abandoned mine areas using stable Pb isotope ratios.

    PubMed

    Yoo, Eun-Jin; Lee, Jung-A; Park, Jae-Seon; Lee, Khanghyun; Lee, Won-Seok; Han, Jin-Seok; Choi, Jong-Woo

    2014-02-01

    This study focused on Pb isotope ratios of sediments in areas around an abandoned mine to determine if the ratios can be used as a source tracer. For pretreatment, sediment samples were dissolved with mixed acids, and a multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS, Nu plasma II) was used to investigate the Pb isotopic composition of the samples. The measured isotope ratios were then corrected for instrumental mass fractionation by measuring the (203)Tl/(205)Tl ratio. Repeated measurements with the NIST SRM 981 reference material showed that the precision of all ratios was below 104 ppm (±2σ) for 50 ng/g. The isotope ratios ((207)Pb/(206)Pb) found were 0.85073 ± 0.0004~0.85373 ± 0.0003 for the main stream, while they were 0.83736 ± 0.0010 for the tributary and 0.84393 ± 0.0002 for the confluence. A binary mixing equation for isotope ratios showed that the contributions of mine lead to neighboring areas were up to 60%. Therefore, Pb isotope ratios can be a good source tracer for areas around abandoned mines.

  9. Boron Isotope Evidence for Shallow Fluid Transfer Across Subduction Zones by Serpentinized Mantle

    NASA Astrophysics Data System (ADS)

    Scambelluri, M.; Tonarini, S.; Agostini, S.; Cannaò, E.

    2012-12-01

    Boron Isotope Evidence for Shallow Fluid Transfer Across Subduction Zones by Serpentinized Mantle M. Scambelluri (1), S. Tonarini (2), S. Agostini (2), E. Cannaò (1) (1) Dipartimento di Scienze della Terra, Ambiente e vita, University of Genova, Italy (2) Istituto di Geoscienze e Georisorse-CNR, Pisa, Italy In subduction zones, fluid-mediated chemical exchange between slabs and mantle dictates volatile and incompatible element cycles and influences arc magmatism. Outstanding issues concern the sources of water for arc magmas and its slab-to-mantle wedge transport. Does it occur by slab dehydration beneath arc fronts, or by hydration of fore-arc mantle and subsequent subduction of the hydrated mantle? So far, the deep slab dehydration hypothesis had strong support, but the hydrated mantle wedge idea is advancing supported by studies of fluid-mobile elements in serpentinized wedge peridotites and their subducted high-pressure (HP) equivalents. Serpentinites are volatile and fluid-mobile element reservoirs for subduction: their dehydration causes large fluid and element flux to the mantle.However, direct evidence for their key role in arc magmatism and identification of dehydration environments has been elusive and boron isotopes can trace the process. Until recently, the altered oceanic crust (AOC) was considered the 11B reservoir for arcs, which largely display positive δ11B. However, shallow slab dehydration transfers 11B to the fore-arc mantle and leaves the residual AOC very depleted in 11B below arcs. Here we present high positive δ11B of HP serpentinized peridotites from Erro Tobbio (Ligurian Alps), recording subduction metamorphism from hydration at low-grade to eclogite-facies dehydration. We show a connection among serpentinite dehydration, release of 11B-rich fluids and arc magmatism. The dataset is completed by B isotope data on other HP Alpine serpentinites from Liguria and Lanzo Massif. In general, the δ11B of these rocks is heavy (16 to + 30 permil

  10. Measurement of isotope ratios on transient signals by MC-ICP-MS.

    PubMed

    Günther-Leopold, Ines; Wernli, Beat; Kopajtic, Zlatko; Günther, Detlef

    2004-01-01

    Precise and accurate isotope ratio measurements are an important task in many applications such as isotope-dilution mass spectrometry, bioavailability studies, or the determination of isotope variations in geological or nuclear samples. The technique of MC-ICP-MS has attracted much attention because it permits the precise measurement of isotope compositions for a wide range of elements combined with excellent detection limits due to high ionisation efficiencies. However, the results are based mainly on measurements using continuous sample introduction. In the present study the determination of isotope ratios on various transient signals with a time duration of 30 to 60 s has been achieved by coupling high-performance liquid chromatography to a multicollector inductively coupled plasma mass spectrometer. In order to investigate the origin of ratio drifts across the transient signals for this hyphenated technique, measurements with the same standard solutions were also carried out using a flow-injection device for sample introduction. As a result of this application it could be concluded that the main source of the bias in the measured isotope ratios is within the ICP-MS instead of fractionation effects on the chromatographic column material. Preliminary studies on short transient signals of gaseous samples (dry plasma) showed a reverse fractionation effect compared with wet plasma conditions (flow injection and HPLC).

  11. The CN/C15N isotopic ratio towards dark clouds

    NASA Astrophysics Data System (ADS)

    Hily-Blant, P.; Pineau des Forêts, G.; Faure, A.; Le Gal, R.; Padovani, M.

    2013-09-01

    Understanding the origin of the composition of solar system cosmomaterials is a central question, not only in the cosmochemistry and astrochemistry fields, and requires various approaches to be combined. Measurements of isotopic ratios in cometary materials provide strong constraints on the content of the protosolar nebula. Their relation with the composition of the parental dark clouds is, however, still very elusive. In this paper, we bring new constraints based on the isotopic composition of nitrogen in dark clouds, with the aim of understanding the chemical processes that are responsible for the observed isotopic ratios. We have observed and detected the fundamental rotational transition of C15N towards two starless dark clouds, L1544 and L1498. We were able to derive the column density ratio of C15N over 13CN towards the same clouds and obtain the CN/C15N isotopic ratios, which were found to be 500 ± 75 for both L1544 and L1498. These values are therefore marginally consistent with the protosolar value of 441. Moreover, this ratio is larger than the isotopic ratio of nitrogen measured in HCN. In addition, we present model calculations of the chemical fractionation of nitrogen in dark clouds, which make it possible to understand how CN can be deprived of 15N and HCN can simultaneously be enriched in heavy nitrogen. The non-fractionation of N2H+, however, remains an open issue, and we propose some chemical way of alleviating the discrepancy between model predictions and the observed ratios. Appendices are available in electronic form at http://www.aanda.orgThe reduced spectra (in FITS format) are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/557/A65

  12. Carbon isotope ratios and isotopic correlations between components in fruit juices

    NASA Astrophysics Data System (ADS)

    Wierzchnicki, Ryszard

    2013-04-01

    Nowadays food products are defined by geographical origin, method of production and by some regulations concerning terms of their authenticity. Important data for confirm the authenticity of product are providing by isotopic methods of food control. The method checks crucial criteria which characterize the authenticity of inspected product. The European Union Regulations clearly show the tendency for application of the isotopic methods for food authenticity control (wine, honey, juice). The aim of the legislation steps is the protection of European market from possibility of the commercial frauds. Method of isotope ratio mass spectrometry is very effective tool for the use distinguishably the food products of various geographical origin. The basic problem for identification of the sample origin is the lack of databases of isotopic composition of components and information about the correlations of the data. The subject of the work was study the isotopic correlations existing between components of fruits. The chemical and instrumental methods of separation: water, sugars, organic acids and pulp from fruit were implemented. IRMS technique was used to measure isotopic composition of samples. The final results for original samples of fruits (apple, strawberry etc.) will be presented and discussed. Acknowledgement: This work was supported by the Polish Ministry of Science and Higher Education under grant NR12-0043-10/2010.

  13. Isotope Ratio Monitoring Gas Chromatography Mass Spectrometry (IRM-GCMS)

    NASA Technical Reports Server (NTRS)

    Freeman, K. H.; Ricci, S. A.; Studley, A.; Hayes, J. M.

    1989-01-01

    On Earth, the C-13 content of organic compounds is depleted by roughly 13 to 23 permil from atmospheric carbon dioxide. This difference is largely due to isotope effects associated with the fixation of inorganic carbon by photosynthetic organisms. If life once existed on Mars, then it is reasonable to expect to observe a similar fractionation. Although the strongly oxidizing conditions on the surface of Mars make preservation of ancient organic material unlikely, carbon-isotope evidence for the existence of life on Mars may still be preserved. Carbon depleted in C-13 could be preserved either in organic compounds within buried sediments, or in carbonate minerals produced by the oxidation of organic material. A technique is introduced for rapid and precise measurement of the C-13 contents of individual organic compounds. A gas chromatograph is coupled to an isotope-ratio mass spectrometer through a combustion interface, enabling on-line isotopic analysis of isolated compounds. The isotope ratios are determined by integration of ion currents over the course of each chromatographic peak. Software incorporates automatic peak determination, corrections for background, and deconvolution of overlapped peaks. Overall performance of the instrument was evaluated by the analysis of a mixture of high purity n-alkanes of know isotopic composition. Isotopic values measured via IRM-GCMS averaged withing 0.55 permil of their conventionally measured values.

  14. The IRHUM (Isotopic Reconstruction of Human Migration) database - bioavailable strontium isotope ratios for geochemical fingerprinting in France

    NASA Astrophysics Data System (ADS)

    Willmes, M.; McMorrow, L.; Kinsley, L.; Armstrong, R.; Aubert, M.; Eggins, S.; Falguères, C.; Maureille, B.; Moffat, I.; Grün, R.

    2013-11-01

    Strontium isotope ratios (87Sr/86Sr) are a key geochemical tracer used in a wide range of fields including archaeology, ecology, food and forensic sciences. These applications are based on the principle that the Sr isotopic ratios of natural materials reflect the sources of strontium available during their formation. A major constraint for current studies is the lack of robust reference maps to evaluate the source of strontium isotope ratios measured in the samples. Here we provide a new dataset of bioavailable Sr isotope ratios for the major geologic units of France, based on plant and soil samples (Pangaea data repository doi:10.1594/PANGAEA.819142). The IRHUM (Isotopic Reconstruction of Human Migration) database is a web platform to access, explore and map our dataset. The database provides the spatial context and metadata for each sample, allowing the user to evaluate the suitability of the sample for their specific study. In addition, it allows users to upload and share their own datasets and data products, which will enhance collaboration across the different research fields. This article describes the sampling and analytical methods used to generate the dataset and how to use and access of the dataset through the IRHUM database. Any interpretation of the isotope dataset is outside the scope of this publication.

  15. Zinc isotope ratio imaging of rat brain thin sections from stable isotope tracer studies by LA-MC-ICP-MS.

    PubMed

    Urgast, Dagmar S; Hill, Sarah; Kwun, In-Sook; Beattie, John H; Goenaga-Infante, Heidi; Feldmann, Jörg

    2012-10-01

    Zinc stable isotope tracers (⁶⁷Zn and ⁷⁰Zn) were injected into rats at two different time points to investigate the feasibility of using tracers to study zinc kinetics at the microscale within distinct tissue features. Laser ablation coupled to multi-collector ICP-MS was used to analyse average isotope ratios in liver thin sections and to generate bio-images showing zinc isotope ratio distribution in brain thin sections. Average isotope ratios of all samples from treated animals were found to be statistically different (P < 0.05) from samples from untreated control animals. Furthermore, differing isotope ratios in physiological features of the brain, namely hippocampus, amygdala, cortex and hypothalamus, were identified. This indicates that these regions differ in their zinc metabolism kinetics. While cortex and hypothalamus contain more tracer two days after injection than 14 days after injection, the opposite is true for hippocampus and amygdala. This study showed that stable isotope tracer experiments can be combined with laser ablation MC-ICP-MS to measure trace element kinetics in tissues at a microscale level.

  16. Biometrics from the carbon isotope ratio analysis of amino acids in human hair.

    PubMed

    Jackson, Glen P; An, Yan; Konstantynova, Kateryna I; Rashaid, Ayat H B

    2015-01-01

    This study compares and contrasts the ability to classify individuals into different grouping factors through either bulk isotope ratio analysis or amino-acid-specific isotope ratio analysis of human hair. Using LC-IRMS, we measured the isotope ratios of 14 amino acids in hair proteins independently, and leucine/isoleucine as a co-eluting pair, to provide 15 variables for classification. Multivariate analysis confirmed that the essential amino acids and non-essential amino acids were mostly independent variables in the classification rules, thereby enabling the separation of dietary factors of isotope intake from intrinsic or phenotypic factors of isotope fractionation. Multivariate analysis revealed at least two potential sources of non-dietary factors influencing the carbon isotope ratio values of the amino acids in human hair: body mass index (BMI) and age. These results provide evidence that compound-specific isotope ratio analysis has the potential to go beyond region-of-origin or geospatial movements of individuals-obtainable through bulk isotope measurements-to the provision of physical and characteristic traits about the individuals, such as age and BMI. Further development and refinement, for example to genetic, metabolic, disease and hormonal factors could ultimately be of great assistance in forensic and clinical casework. Copyright © 2014 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.

  17. Simultaneous stable carbon isotopic analysis of wine glycerol and ethanol by liquid chromatography coupled to isotope ratio mass spectrometry.

    PubMed

    Cabañero, Ana I; Recio, Jose L; Rupérez, Mercedes

    2010-01-27

    A novel procedure was established for the simultaneous characterization of wine glycerol and ethanol (13)C/(12)C isotope ratio, using liquid chromatography/isotope ratio mass spectrometry (LC-IRMS). Several parameters influencing separation of glycerol and ethanol from wine matrix were optimized. Results obtained for 35 Spanish samples exposed no significant differences and very strong correlations (r = 0.99) between the glycerol (13)C/(12)C ratios obtained by an alternative method (gas chromatography/isotope ratio mass spectrometry) and the proposed new methodology, and between the ethanol (13)C/(12)C ratios obtained by the official method (elemental analyzer/isotope ratio mass spectrometry) and the proposed new methodology. The accuracy of the proposed method varied from 0.01 to 0.19 per thousand, and the analytical precision was better than 0.25 per thousand. The new developed LC-IRMS method it is the first isotopic method that allows (13)C/(12)C determination of both analytes in the same run directly from a liquid sample with no previous glycerol or ethanol isolation, overcoming technical difficulties associated with complex sample treatment and improving in terms of simplicity and speed.

  18. Direct uranium isotope ratio analysis of single micrometer-sized glass particles

    PubMed Central

    Kappel, Stefanie; Boulyga, Sergei F.; Prohaska, Thomas

    2012-01-01

    We present the application of nanosecond laser ablation (LA) coupled to a ‘Nu Plasma HR’ multi collector inductively coupled plasma mass spectrometer (MC-ICP-MS) for the direct analysis of U isotope ratios in single, 10–20 μm-sized, U-doped glass particles. Method development included studies with respect to (1) external correction of the measured U isotope ratios in glass particles, (2) the applied laser ablation carrier gas (i.e. Ar versus He) and (3) the accurate determination of lower abundant 236U/238U isotope ratios (i.e. 10−5). In addition, a data processing procedure was developed for evaluation of transient signals, which is of potential use for routine application of the developed method. We demonstrate that the developed method is reliable and well suited for determining U isotope ratios of individual particles. Analyses of twenty-eight S1 glass particles, measured under optimized conditions, yielded average biases of less than 0.6% from the certified values for 234U/238U and 235U/238U ratios. Experimental results obtained for 236U/238U isotope ratios deviated by less than −2.5% from the certified values. Expanded relative total combined standard uncertainties Uc (k = 2) of 2.6%, 1.4% and 5.8% were calculated for 234U/238U, 235U/238U and 236U/238U, respectively. PMID:22595724

  19. Direct uranium isotope ratio analysis of single micrometer-sized glass particles.

    PubMed

    Kappel, Stefanie; Boulyga, Sergei F; Prohaska, Thomas

    2012-11-01

    We present the application of nanosecond laser ablation (LA) coupled to a 'Nu Plasma HR' multi collector inductively coupled plasma mass spectrometer (MC-ICP-MS) for the direct analysis of U isotope ratios in single, 10-20 μm-sized, U-doped glass particles. Method development included studies with respect to (1) external correction of the measured U isotope ratios in glass particles, (2) the applied laser ablation carrier gas (i.e. Ar versus He) and (3) the accurate determination of lower abundant (236)U/(238)U isotope ratios (i.e. 10(-5)). In addition, a data processing procedure was developed for evaluation of transient signals, which is of potential use for routine application of the developed method. We demonstrate that the developed method is reliable and well suited for determining U isotope ratios of individual particles. Analyses of twenty-eight S1 glass particles, measured under optimized conditions, yielded average biases of less than 0.6% from the certified values for (234)U/(238)U and (235)U/(238)U ratios. Experimental results obtained for (236)U/(238)U isotope ratios deviated by less than -2.5% from the certified values. Expanded relative total combined standard uncertainties U(c) (k = 2) of 2.6%, 1.4% and 5.8% were calculated for (234)U/(238)U, (235)U/(238)U and (236)U/(238)U, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Effect of 10B isotope and vacancy defects on the phonon modes of two-dimensional hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Sherajul Islam, Md.; Anindya, Khalid N.; Bhuiyan, Ashraful G.; Tanaka, Satoru; Makino, Takayuki; Hashimoto, Akihiro

    2018-02-01

    We report the details of the effects of the 10B isotope and those of B and N vacancies combined with the isotope on the phonon modes of two-dimensional hexagonal boron nitride (h-BN). The phonon density of states and localization problems are solved using the forced vibrational method, which is suitable for an intricate and disordered system. We observe an upward shift of Raman-active E2g-mode optical phonons (32 cm-1) for a 100% 10B isotope, which matches well with the experiment and simple harmonic oscillator model. However, a downward shift of E2g-mode phonons is observed for B or N vacancies and the combination of the isotope and vacancy-type disordered BN. Strong localized eigenmodes are found for all types of defects, and a typical localization length is on the order of ˜7 nm for naturally occurring BN samples. These results are very important for understanding the heat dissipation and electron transport properties of BN-based nanoelectronics.

  1. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results

    USGS Publications Warehouse

    Coplen, Tyler B.

    2011-01-01

    To minimize confusion in the expression of measurement results of stable isotope and gas-ratio measurements, recommendations based on publications of the Commission on Isotopic Abundances and Atomic Weights of the International Union of Pure and Applied Chemistry (IUPAC) are presented. Whenever feasible, entries are consistent with the Système International d'Unités, the SI (known in English as the International System of Units), and the third edition of the International Vocabulary of Basic and General Terms in Metrology (VIM, 3rd edition). The recommendations presented herein are approved by the Commission on Isotopic Abundances and Atomic Weights and are designed to clarify expression of quantities related to measurement of isotope and gas ratios to ensure that quantity equations instead of numerical value equations are used for quantity definitions. Examples of column headings consistent with quantity calculus (also called the algebra of quantities) and examples of various deprecated usages connected with the terms recommended are presented.

  2. Boron contents and isotopic compositions of hog manure, selected fertilizers, and water in Minnesota

    USGS Publications Warehouse

    Komor, S.C.

    1997-01-01

    Boron-isotope (δ11B) values may be useful as surrogate tracers of contaminants and indicators of water mixing in agricultural settings. This paper characterizes the B contents and isotopic compositions of hog manure and selected fertilizers, and presents δ11B data for ground and surface water from two agricultural areas. Boron concentrations in dry hog manure averaged 61 mg/kg and in commercial fertilizers ranged from below detection limits in some brands of ammonium nitrate and urea to 382 mg/kg in magnesium sulfate. Values of δ11B of untreated hog manure ranged from 7.2 to 11.2o/oo and of N fertilizers were −2.0 to 0.7o/oo. In 22 groundwater samples from a sand-plain aquifer in east-central Minnesota, B concentrations averaged 0.04 mg/L and δ11B values ranged from 2.3 to 41.5o/oo. Groundwater beneath a hog feedlot and a cultivated field where hog manure was applied had B-isotope compositions consistent with the water containing hog-manure leachate. In a 775-km2 watershed with silty-loam soils in southcentral Minnesota: 18 samples of subsurface drainage from corn (Zea mays L.) and soybean (Glycine max L. Merr.) fields had average B concentrations of 0.06 mg/L and δ11B values of 5.3 to 15.1o/oo; 27 stream samples had average B concentrations of 0.05 mg/L and δ11B values of 1.0 to 19.0o/oo; and eight groundwater samples had average B concentrations of 0.09 mg/L and δ11B values of −0.3 to 23.0o/oo. Values of δ11B and B concentrations, when plotted against one another, define a curved mixing trend that suggests subsurface drainage and stream water contain mixtures of B from shallow and deep groundwater.

  3. Changing carbon isotope ratio of atmospheric carbon dioxide: implications for food authentication.

    PubMed

    Peck, William H; Tubman, Stephanie C

    2010-02-24

    Carbon isotopes are often used to detect the addition of foreign sugars to foods. This technique takes advantage of the natural difference in carbon isotope ratio between C(3) and C(4) plants. Many foods are derived from C(3) plants, but the low-cost sweeteners corn and sugar cane are C(4) plants. Most adulteration studies do not take into account the secular shift of the carbon isotope ratio of atmospheric carbon dioxide caused by fossil fuel burning, a shift also seen in plant tissues. As a result statistical tests and threshold values that evaluate authenticity of foods based on carbon isotope ratios may need to be corrected for changing atmospheric isotope values. Literature and new data show that the atmospheric trend in carbon isotopes is seen in a 36-year data set of maple syrup analyses (n = 246), demonstrating that published thresholds for cane or corn sugar adulteration in maple syrup (and other foods) have become progressively more lenient over time.

  4. The IRHUM (Isotopic Reconstruction of Human Migration) database - bioavailable strontium isotope ratios for geochemical fingerprinting in France

    NASA Astrophysics Data System (ADS)

    Willmes, M.; McMorrow, L.; Kinsley, L.; Armstrong, R.; Aubert, M.; Eggins, S.; Falguères, C.; Maureille, B.; Moffat, I.; Grün, R.

    2014-03-01

    Strontium isotope ratios (87Sr / 86Sr) are a key geochemical tracer used in a wide range of fields including archaeology, ecology, food and forensic sciences. These applications are based on the principle that the Sr isotopic ratios of natural materials reflect the sources of strontium available during their formation. A major constraint for current studies is the lack of robust reference maps to evaluate the source of strontium isotope ratios measured in the samples. Here we provide a new data set of bioavailable Sr isotope ratios for the major geologic units of France, based on plant and soil samples (Pangaea data repository doi:10.1594/PANGAEA.819142). The IRHUM (Isotopic Reconstruction of Human Migration) database is a web platform to access, explore and map our data set. The database provides the spatial context and metadata for each sample, allowing the user to evaluate the suitability of the sample for their specific study. In addition, it allows users to upload and share their own data sets and data products, which will enhance collaboration across the different research fields. This article describes the sampling and analytical methods used to generate the data set and how to use and access the data set through the IRHUM database. Any interpretation of the isotope data set is outside the scope of this publication.

  5. A Plant-Based Proxy for the Oxygen Isotope Ratio of Atmospheric Water Vapor

    NASA Astrophysics Data System (ADS)

    Helliker, B.

    2007-12-01

    Atmospheric water vapor is a major component of the global hydrological cycle, but the isotopic balance of vapor is largely unknown. It is shown here that the oxygen isotope ratio of leaf water in the epiphytic Crassulacean acid metabolism (CAM) plant Tillandsia usneoides (Spanish Moss) is controlled by the oxygen isotope ratio of atmospheric water vapor in both field and lab studies. Assuming that the leaf-water isotopic signature (and hence the atmospheric water vapor signature) is recorded in plant organic material, the atmospheric water vapor oxygen isotope ratios for Miami, Florida (USA) were reconstructed for several years from 1878 to 2005 using contemporary and herbarium specimens. T. usneoides ranges from Virginia, USA southwards through the tropics to Argentina, and the CAM epiphytic lifeform is widespread in other species. Therefore, epiphytes may be used to reconstruct the isotope ratio of atmospheric water for spatial scales that span over 60° of latitude and temporal scales that cover the last century of global temperature increase.

  6. Nitrogen isotopic analyses by isotope-ratio-monitoring gas chromatography/mass spectrometry

    NASA Technical Reports Server (NTRS)

    Merritt, D. A.; Hayes, J. M.

    1994-01-01

    Amino acids containing natural-abundance levels of 15N were derivatized and analyzed isotopically using a technique in which individual compounds are separated by gas chromatography, combusted on-line, and the product stream sent directly to an isotope-ratio mass spectrometer. For samples of N2 gas, standard deviations of ratio measurement were better than 0.1% (Units for delta are parts per thousand or per million (%).) for samples larger than 400 pmol and better than 0.5% for samples larger than 25 pmol (0.1% 15N is equivalent to 0.00004 atom % 15N). Results duplicated those of conventional, batchwise analyses to within 0.05%. For combustion of organic compounds yielding CO2/N2 ratios between 14 and 28, in particular for N-acetyl n-propyl derivatives of amino acids, delta values were within 0.25% of results obtained using conventional techniques and standard deviations were better than 0.35%. Pooled data for measurements of all amino acids produced an accuracy and precision of 0.04 and 0.23%, respectively, when 2 nmol of each amino acid was injected on column and 20% of the stream of combustion products was delivered to the mass spectrometer.

  7. Final report of the key comparison CCQM-K98: Pb isotope amount ratios in bronze

    NASA Astrophysics Data System (ADS)

    Vogl, Jochen; Yim, Yong-Hyeon; Lee, Kyoung-Seok; Goenaga-Infante, Heidi; Malinowskiy, Dmitriy; Ren, Tongxiang; Wang, Jun; Vocke, Robert D., Jr.; Murphy, Karen; Nonose, Naoko; Rienitz, Olaf; Noordmann, Janine; Näykki, Teemu; Sara-Aho, Timo; Ari, Betül; Cankur, Oktay

    2014-01-01

    Isotope amount ratios are proving useful in an ever increasing array of applications that range from studies unravelling transport processes, to pinpointing the provenance of specific samples as well as trace element quantification by using isotope dilution mass spectrometry (IDMS). These expanding applications encompass fields as diverse as archaeology, food chemistry, forensic science, geochemistry, medicine and metrology. However, to be effective tools, the isotope ratio data must be reliable and traceable to enable the comparability of measurement results. The importance of traceability and comparability in isotope ratio analysis has already been recognized by the Inorganic Analysis Working Group (IAWG) within the CCQM. While the requirements for isotope ratio accuracy and precision in the case of IDMS are generally quite modest, 'absolute' Pb isotope ratio measurements for geochemical applications as well as forensic provenance studies require Pb isotope ratio measurements of the highest quality. To support present and future CMCs on isotope ratio determinations, a key comparison was urgently needed and therefore initiated at the IAWG meeting in Paris in April 2011. The analytical task within such a comparison was decided to be the measurement of Pb isotope amount ratios in water and bronze. Measuring Pb isotope amount ratios in an aqueous Pb solution tested the ability of analysts to correct for any instrumental effects on the measured ratios, while the measurement of Pb isotope amount ratios in a metal matrix sample provided a real world test of the whole chemical and instrumental procedure. A suitable bronze material with a Pb mass fraction between 10 and 100 mg•kg-1 and a high purity solution of Pb with a mass fraction of approximately 100 mg•kg-1 was available at the pilot laboratory (BAM), both offering a natural-like Pb isotopic composition. The mandatory measurands, the isotope amount ratios n(206Pb)/n(204Pb), n(207Pb)/n(204Pb) and n(208Pb)/n(204Pb

  8. Carbon, Hydrogen, and Oxygen Isotope Ratios of Cellulose from Plants Having Intermediary Photosynthetic Modes 1

    PubMed Central

    Sternberg, Leonel O'Reilly; Deniro, Michael J.; Ting, Irwin P.

    1984-01-01

    Carbon and hydrogen isotope ratios of cellulose nitrate and oxygen isotope ratios of cellulose from species of greenhouse plants having different photosynthetic modes were determined. When hydrogen isotope ratios are plotted against carbon isotope ratios, four clusters of points are discernible, each representing different photosynthetic modes: C3 plants, C4 plants, CAM plants, and C3 plants that can shift to CAM or show the phenomenon referred to as CAM-cycling. The combination of oxygen and carbon isotope ratios does not distinguish among the different photosynthetic modes. Analysis of the carbon and hydrogen isotope ratios of cellulose nitrate should prove useful for screening different photosynthetic modes in field specimens that grew near one another. This method will be particularly useful for detection of plants which show CAM-cycling. PMID:16663360

  9. THE BORON-CURCUMIN COMPLEX IN TRACE BORON DETERMINATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heyes, M.R.; Metcalfe, J.

    1963-01-01

    A simple and robust method for the formation of the complex of boron with curcumin is described. The sensitivity of the method is 6.6 x 10/sup -5/ g/cm/sup 2/. Formation of the complex is believed to be quantitative under the conditions used and some evidence is given for a 1: 3 boron; curcumin ratio. Methods are outlined for the determination of boron in a number of metals, compounds, and organic materials. (auth)

  10. Trends in nitrogen isotope ratios of juvenile winter flounder ...

    EPA Pesticide Factsheets

    Nitrogen isotope ratios (d 15N) in juvenile winter flounder, Pseudopleuronectes americanus, were used to examine changes in nitrogen inputs to several Rhode Island, USA estuarine systems. Fish were collected over two three-year periods with a ten-year interval between sampling periods (2002-2004 and 2012-2014). During that interval numerous changes to nutrient management practices were initiated in the watersheds of these estuarine systems including the upgrade of several major wastewater treatment facilities that discharge to Narragansett Bay, which significantly reduced nitrogen inputs. Following these reductions, the d 15N values of flounder in several of the systems decreased as expected; however, isotope ratios in fish from upper Narragansett Bay significantly increased. We believe that low d 15N values measured in 2002-2004 were related to concentration-dependant fractionation at this location. Increased d 15N values measured between 2012 and 2014 may indicate reduced fractionation or that changes in wastewater treatment processes altered the nitrogen isotopic ratios of the effluents. This manuscript advances the development of methodology to assess the influence of anthropogenic nitrogen in estuarine systems. Juvenile winter flounder were collected from several estuarine systems along the coast of Rhode Island over two three-year periods and nitrogen isotopes were measured in the muscle tissues of the flounder. The results showed that there was a good cor

  11. Geospatial modeling of plant stable isotope ratios - the development of isoscapes

    NASA Astrophysics Data System (ADS)

    West, J. B.; Ehleringer, J. R.; Hurley, J. M.; Cerling, T. E.

    2007-12-01

    Large-scale spatial variation in stable isotope ratios can yield critical insights into the spatio-temporal dynamics of biogeochemical cycles, animal movements, and shifts in climate, as well as anthropogenic activities such as commerce, resource utilization, and forensic investigation. Interpreting these signals requires that we understand and model the variation. We report progress in our development of plant stable isotope ratio landscapes (isoscapes). Our approach utilizes a GIS, gridded datasets, a range of modeling approaches, and spatially distributed observations. We synthesize findings from four studies to illustrate the general utility of the approach, its ability to represent observed spatio-temporal variability in plant stable isotope ratios, and also outline some specific areas of uncertainty. We also address two basic, but critical questions central to our ability to model plant stable isotope ratios using this approach: 1. Do the continuous precipitation isotope ratio grids represent reasonable proxies for plant source water?, and 2. Do continuous climate grids (as is or modified) represent a reasonable proxy for the climate experienced by plants? Plant components modeled include leaf water, grape water (extracted from wine), bulk leaf material ( Cannabis sativa; marijuana), and seed oil ( Ricinus communis; castor bean). Our approaches to modeling the isotope ratios of these components varied from highly sophisticated process models to simple one-step fractionation models to regression approaches. The leaf water isosocapes were produced using steady-state models of enrichment and continuous grids of annual average precipitation isotope ratios and climate. These were compared to other modeling efforts, as well as a relatively sparse, but geographically distributed dataset from the literature. The latitudinal distributions and global averages compared favorably to other modeling efforts and the observational data compared well to model predictions

  12. Bayesian Integration of Isotope Ratio for Geographic Sourcing of Castor Beans

    PubMed Central

    Webb-Robertson, Bobbie-Jo; Kreuzer, Helen; Hart, Garret; Ehleringer, James; West, Jason; Gill, Gary; Duckworth, Douglas

    2012-01-01

    Recent years have seen an increase in the forensic interest associated with the poison ricin, which is extracted from the seeds of the Ricinus communis plant. Both light element (C, N, O, and H) and strontium (Sr) isotope ratios have previously been used to associate organic material with geographic regions of origin. We present a Bayesian integration methodology that can more accurately predict the region of origin for a castor bean than individual models developed independently for light element stable isotopes or Sr isotope ratios. Our results demonstrate a clear improvement in the ability to correctly classify regions based on the integrated model with a class accuracy of 60.9 ± 2.1% versus 55.9 ± 2.1% and 40.2 ± 1.8% for the light element and strontium (Sr) isotope ratios, respectively. In addition, we show graphically the strengths and weaknesses of each dataset in respect to class prediction and how the integration of these datasets strengthens the overall model. PMID:22919270

  13. Precise and traceable carbon isotope ratio measurements by multicollector ICP-MS: what next?

    PubMed

    Santamaria-Fernandez, Rebeca

    2010-06-01

    This article reviews recent developments in the use of multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) to provide high-precision carbon isotope ratio measurements. MC-ICP-MS could become an alternative method to isotope ratio mass spectrometry (IRMS) for rapid carbon isotope ratio determinations in organic compounds and characterisation and certification of isotopic reference materials. In this overview, the advantages, drawbacks and potential of the method for future applications are critically discussed. Furthermore, suggestions for future improvements in terms of precision and sensitivity are made. No doubt, this is an exciting analytical challenge and, as such, hurdles will need to be cleared.

  14. Simulating Stable Isotope Ratios in Plumes of Groundwater Pollutants with BIOSCREEN-AT-ISO.

    PubMed

    Höhener, Patrick; Li, Zhi M; Julien, Maxime; Nun, Pierrick; Robins, Richard J; Remaud, Gérald S

    2017-03-01

    BIOSCREEN is a well-known simple tool for evaluating the transport of dissolved contaminants in groundwater, ideal for rapid screening and teaching. This work extends the BIOSCREEN model for the calculation of stable isotope ratios in contaminants. A three-dimensional exact solution of the reactive transport from a patch source, accounting for fractionation by first-order decay and/or sorption, is used. The results match those from a previously published isotope model but are much simpler to obtain. Two different isotopes may be computed, and dual isotope plots can be viewed. The dual isotope assessment is a rapidly emerging new approach for identifying process mechanisms in aquifers. Furthermore, deviations of isotope ratios at specific reactive positions with respect to "bulk" ratios in the whole compound can be simulated. This model is named BIOSCREEN-AT-ISO and will be downloadable from the journal homepage. © 2016, National Ground Water Association.

  15. Isotopic Ratios of Samarium by TIMS for Nuclear Forensic Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Louis Jean, James; Inglis, Jeremy David

    The isotopic ratio of Nd, Sm, and Gd can provide important information regarding fissile material (nuclear devices, reactors), neutron environment, and device yield. These studies require precise measurement of Sm isotope ratios, by either TIMS or MC-ICP-MS. There has been an increasing trend to measure smaller and smaller quantities of Sm bearing samples. In nuclear forensics 10-100 ng of Sm are needed for precise measurement. To measure sub-ng Sm samples using TIMS for nuclear forensic analysis.

  16. Accuracy of delta 18O isotope ratio measurements on the same sample by continuous-flow isotope-ratio mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    The doubly labeled water method is considered the reference method to measure energy expenditure. Conventional mass spectrometry requires a separate aliquot of the same sample to be prepared and analyzed separately. With continuous-flow isotope-ratio mass spectrometry, the same sample could be analy...

  17. Si-metasomatism in serpentinized peridotite: The effects of talc-alteration on strontium and boron isotopes in abyssal serpentinites from Hole 1268a, ODP Leg 209

    NASA Astrophysics Data System (ADS)

    Harvey, Jason; Savov, Ivan P.; Agostini, Samuele; Cliff, Robert A.; Walshaw, Richard

    2014-02-01

    Ultramafic rocks recovered from Hole 1268a, Ocean Drilling Program Leg 209, to the south of the 15°20‧N Fracture Zone on the Mid-Atlantic ridge have experienced a complex history of melt depletion and subsequent interaction with a series of fluids under varying temperature and pH conditions. After intense melt depletion, varying degrees of serpentinization at 100-200 °C took place, initially under seawater-like pH conditions. Subsequently, interaction with a higher temperature (300-350 °C) fluid with low (4-5) pH and low MgO/SiO2 resulted in the heterogeneous alteration of these serpentinites to talc-bearing ultramafic lithologies. The proximity of the currently active, high temperature Logatchev hydrothermal field, located on the opposite flank of the Mid-Atlantic ridge, suggests that unlike more distal localities sampled during ODP Leg 209, Hole 1268a has experienced Si-metasomatism (i.e. talc-alteration) by a Logatchev-like hydrothermal fluid. Serpentinite strontium isotope ratios were not materially shifted by interaction with the subsequent high-T fluid, despite the likelihood that this fluid had locally interacted with mid-ocean ridge gabbro. 87Sr/86Sr in the ultramafic lithologies of Hole 1268a are close to that of seawater (c.0.709) and even acid leached serpentinites retain 87Sr/86Sr in excess of 0.707, indistinguishable from Logatchev hydrothermal fluid. On the other hand, boron isotope ratios appear to have been shifted from seawater-like values in the serpentinites (δ11B = c.+40‰) to much lighter values in talc-altered serpentinites (δ11B = +9 to +20‰). This is likely a consequence of the effects of changing ambient pH and temperature during the mineralogical transition from serpentine to talc. Heterogeneous boron isotope systematics have consequences for the composition of ultramafic portions of the lithosphere returned to the convecting mantle by subduction. Inhomogeneities in δ11B, [B] and mineralogy introduce significant uncertainties in

  18. Compilation of minimum and maximum isotope ratios of selected elements in naturally occurring terrestrial materials and reagents

    USGS Publications Warehouse

    Coplen, T.B.; Hopple, J.A.; Böhlke, J.K.; Peiser, H.S.; Rieder, S.E.; Krouse, H.R.; Rosman, K.J.R.; Ding, T.; Vocke, R.D.; Revesz, K.M.; Lamberty, A.; Taylor, P.; De Bievre, P.

    2002-01-01

    Documented variations in the isotopic compositions of some chemical elements are responsible for expanded uncertainties in the standard atomic weights published by the Commission on Atomic Weights and Isotopic Abundances of the International Union of Pure and Applied Chemistry. This report summarizes reported variations in the isotopic compositions of 20 elements that are due to physical and chemical fractionation processes (not due to radioactive decay) and their effects on the standard atomic weight uncertainties. For 11 of those elements (hydrogen, lithium, boron, carbon, nitrogen, oxygen, silicon, sulfur, chlorine, copper, and selenium), standard atomic weight uncertainties have been assigned values that are substantially larger than analytical uncertainties because of common isotope abundance variations in materials of natural terrestrial origin. For 2 elements (chromium and thallium), recently reported isotope abundance variations potentially are large enough to result in future expansion of their atomic weight uncertainties. For 7 elements (magnesium, calcium, iron, zinc, molybdenum, palladium, and tellurium), documented isotope-abundance variations in materials of natural terrestrial origin are too small to have a significant effect on their standard atomic weight uncertainties. This compilation indicates the extent to which the atomic weight of an element in a given material may differ from the standard atomic weight of the element. For most elements given above, data are graphically illustrated by a diagram in which the materials are specified in the ordinate and the compositional ranges are plotted along the abscissa in scales of (1) atomic weight, (2) mole fraction of a selected isotope, and (3) delta value of a selected isotope ratio. There are no internationally distributed isotopic reference materials for the elements zinc, selenium, molybdenum, palladium, and tellurium. Preparation of such materials will help to make isotope ratio measurements among

  19. Advances in natural stable isotope ratio analysis of human hair to determine nutritional and metabolic status.

    PubMed

    Petzke, Klaus J; Fuller, Benjamin T; Metges, Cornelia C

    2010-09-01

    We review the literature on the use of stable isotope ratios at natural abundance to reveal information about dietary habits and specific nutrient intakes in human hair protein (keratin) and amino acids. In particular, we examine whether hair isotopic compositions can be used as unbiased biomarkers to provide information about nutritional status, metabolism, and diseases. Although the majority of research on the stable isotope ratio analysis of hair has focused on bulk protein, methods have been recently employed to examine amino acid-specific isotope ratios using gas chromatography or liquid chromatography coupled to an isotope ratio mass spectrometer. The isotopic measurement of amino acids has the potential to answer research questions on amino acid nutrition, metabolism, and disease processes and can contribute to a better understanding of the variations in bulk protein isotope ratio values. First results suggest that stable isotope ratios are promising as unbiased nutritional biomarkers in epidemiological research. However, variations in stable isotope ratios of human hair are also influenced by nutrition-dependent nitrogen balance, and more controlled clinical research is needed to examine these effects in human hair. Stable isotope ratio analysis at natural abundance in human hair protein offers a noninvasive method to reveal information about long-term nutritional exposure to specific nutrients, nutritional habits, and in the diagnostics of diseases leading to nutritional stress and impaired nitrogen balance.

  20. Environmental controls on the boron and strontium isotopic composition of aragonite shell material of cultured Arctica islandica

    NASA Astrophysics Data System (ADS)

    Liu, Y.-W.; Aciego, S. M.; Wanamaker, A. D., Jr.

    2015-02-01

    Ocean acidification, the decrease in ocean pH associated with increasing atmospheric CO2, is likely to impact marine organisms, particularly those that produce carbonate skeletons or shells. Therefore it is important to investigate how environmental factors (seawater pH, temperature and salinity) influence the chemical compositions in biogenic carbonates. In this study we report the first high-resolution strontium (87Sr / 86Sr and δ88 / 86Sr) and boron (δ11B) isotopic values in the aragonite shell of cultured Arctica islandica (A. islandica). The 87Sr / 86Sr ratios from both tank water and shell samples show ratios nearly identical to the open ocean, which suggests that the shell material reflects ambient ocean chemistry without terrestrial influence. The 84Sr-87Sr double spike resolved shell δ 88 / 86Sr and Sr concentration data show no resolvable change throughout the culture period and reflect no theoretical kinetic mass fractionation throughout the experiment despite a temperature change of more than 15 °C. The δ11B records from the experiment show at least a 5‰ increase through the culture season (January 2010-August 2010), with low values from beginning to week 19 and higher values hereafter. The larger range in δ11B in this experiment compared to predictions based on other carbonate organisms (2-3‰) suggests that a species-specific fractionation factor may be required. A relatively strong correlation between the Δ pH (pHshell-pHsw) and seawater pH (pHsw) was observed (R2 = 0.34), which suggests that A. islandica partly regulates the pH of the extrapallial fluid. However, this proposed mechanism only explains approximately 34% of the variance in the δ11B data. Instead, a rapid rise in δ11B after week 19 suggests that the boron uptake of the shell changes when a temperature threshold of 13 °C is reached.

  1. On the cross-sensitivity between water vapor mixing ratio and stable isotope measurements of in-situ analyzers

    NASA Astrophysics Data System (ADS)

    Parkes, Stephen; Wang, Lixin; McCabe, Matthew

    2015-04-01

    In recent years there has been an increasing amount of water vapor stable isotope data collected using in-situ instrumentation. A number of papers have characterized the performance of these in-situ analyzers and suggested methods for calibrating raw measurements. The cross-sensitivity of the isotopic measurements on the mixing ratio has been shown to be a major uncertainty and a variety of techniques have been suggested to characterize this inaccuracy. However, most of these are based on relating isotopic ratios to water vapor mixing ratios from in-situ analyzers when the mixing ratio is varied and the isotopic composition kept constant. An additional correction for the span of the isotopic ratio scale is then applied by measuring different isotopic standards. Here we argue that the water vapor cross-sensitivity arises from different instrument responses (span and offset) of the parent H2O isotope and the heavier isotopes, rather than spectral overlap that could cause a true variation in the isotopic ratio with mixing ratio. This is especially relevant for commercial laser optical instruments where absorption lines are well resolved. Thus, the cross-sensitivity determined using more conventional techniques is dependent on the isotopic ratio of the standard used for the characterization, although errors are expected to be small. Consequently, the cross-sensitivity should be determined by characterizing the span and zero offset of each isotope mixing ratio. In fact, this technique makes the span correction for the isotopic ratio redundant. In this work we model the impact of changes in the span and offset of the heavy and light isotopes and illustrate the impact on the cross-sensitivity of the isotopic ratios on water vapor. This clearly shows the importance of determining the zero offset for the two isotopes. The cross-sensitivity of the isotopic ratios on water vapor is then characterized by determining the instrument response for the individual isotopes for a

  2. Stable Isotope Ratios as Biomarkers of Diet for Health Research

    PubMed Central

    O’Brien, Diane M.

    2016-01-01

    Diet is a leading modifiable risk factor for chronic disease, but it remains difficult to measure accurately due to the error and bias inherent in self-reported methods of diet assessment. Consequently there is a pressing need for more objective biomarkers of diet for use in health research. The stable isotope ratios of light elements are a promising set of candidate biomarkers because they vary naturally and reproducibly among foods, and those variations are captured in molecules and tissues with high fidelity. Recent studies have identified valid isotopic measures of short and long-term sugar intake, meat intake, and fish intake in specific populations. These studies provide a strong foundation for validating stable isotopic biomarkers in the general United States population. Approaches to improve specificity for specific foods are needed, for example, by modeling intake using multiple stable isotope ratios, or by isolating and measuring specific molecules linked to foods of interest. PMID:26048703

  3. Carbon Isotopic Ratios of Amino Acids in Stardust-Returned Samples

    NASA Technical Reports Server (NTRS)

    Elsila, Jamie E.; Glavin, Daniel P.; Dworkin, Jason P.

    2009-01-01

    NASA's Stardust spacecraft returned to Earth samples from comet 81P/Wild 2 in January 2006. Preliminary examinations revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds could not be identified. Here. we present the carbon isotopic ratios of glycine and E-aminocaproic acid (EACH), the two most abundant amino acids observed, in Stardust-returned foil samples measured by gas chromatography-combustion-isotope ratio crass spectrometry coupled with quadrupole mass spectrometry (GC-QMS/IRMS).

  4. Non-chondritic iron isotope ratios in planetary mantles as a result of core formation

    NASA Astrophysics Data System (ADS)

    Elardo, Stephen M.; Shahar, Anat

    2017-02-01

    Information about the materials and conditions involved in planetary formation and differentiation in the early Solar System is recorded in iron isotope ratios. Samples from Earth, the Moon, Mars and the asteroid Vesta reveal significant variations in iron isotope ratios, but the sources of these variations remain uncertain. Here we present experiments that demonstrate that under the conditions of planetary core formation expected for the Moon, Mars and Vesta, iron isotopes fractionate between metal and silicate due to the presence of nickel, and enrich the bodies' mantles in isotopically light iron. However, the effect of nickel diminishes at higher temperatures: under conditions expected for Earth's core formation, we infer little fractionation of iron isotopes. From our experimental results and existing conceptual models of magma ocean crystallization and mantle partial melting, we find that nickel-induced fractionation can explain iron isotope variability found in planetary samples without invoking nebular or accretionary processes. We suggest that near-chondritic iron isotope ratios of basalts from Mars and Vesta, as well as the most primitive lunar basalts, were achieved by melting of isotopically light mantles, whereas the heavy iron isotope ratios of terrestrial ocean floor basalts are the result of melting of near-chondritic Earth mantle.

  5. Decoupled carbonate chemistry controls on the incorporation of boron into Orbulina universa

    NASA Astrophysics Data System (ADS)

    Howes, Ella L.; Kaczmarek, Karina; Raitzsch, Markus; Mewes, Antje; Bijma, Nienke; Horn, Ingo; Misra, Sambuddha; Gattuso, Jean-Pierre; Bijma, Jelle

    2017-01-01

    In order to fully constrain paleo-carbonate systems, proxies for two out of seven parameters, plus temperature and salinity, are required. The boron isotopic composition (δ11B) of planktonic foraminifera shells is a powerful tool for reconstructing changes in past surface ocean pH. As B(OH)4- is substituted into the biogenic calcite lattice in place of CO32-, and both borate and carbonate ions are more abundant at higher pH, it was suggested early on that B / Ca ratios in biogenic calcite may serve as a proxy for [CO32-]. Although several recent studies have shown that a direct connection of B / Ca to carbonate system parameters may be masked by other environmental factors in the field, there is ample evidence for a mechanistic relationship between B / Ca and carbonate system parameters. Here, we focus on investigating the primary relationship to develop a mechanistic understanding of boron uptake. Differentiating between the effects of pH and [CO32-] is problematic, as they co-vary closely in natural systems, so the major control on boron incorporation remains unclear. To deconvolve the effects of pH and [CO32-] and to investigate their impact on the B / Ca ratio and δ11B, we conducted culture experiments with the planktonic foraminifer Orbulina universa in manipulated culture media: constant pH (8.05), but changing [CO32-] (238, 286 and 534 µmol kg-1 CO32-) and at constant [CO32-] (276 ± 19.5 µmol kg-1) and varying pH (7.7, 7.9 and 8.05). Measurements of the isotopic composition of boron and the B / Ca ratio were performed simultaneously using a femtosecond laser ablation system coupled to a MC-ICP-MS (multiple-collector inductively coupled plasma mass spectrometer). Our results show that, as expected, δ11B is controlled by pH but it is also modulated by [CO32-]. On the other hand, the B / Ca ratio is driven by [HCO3-], independently of pH. This suggests that B / Ca ratios in foraminiferal calcite can possibly be used as a second, independent, proxy for

  6. Worldwide isotope ratios of the Fukushima release and early-phase external dose reconstruction

    PubMed Central

    Chaisan, Kittisak; Smith, Jim T.; Bossew, Peter; Kirchner, Gerald; Laptev, Gennady V.

    2013-01-01

    Measurements of radionuclides (RNs) in air made worldwide following the Fukushima accident are quantitatively compared with air and soil measurements made in Japan. Isotopic ratios RN:137Cs of 131I, 132Te, 134,136Cs, are correlated with distance from release. It is shown, for the first time, that both within Japan and globally, ratios RN:137Cs in air were relatively constant for primarily particle associated radionuclides (134,136Cs; 132Te) but that 131I shows much lower local (<80 km) isotope ratios in soils relative to 137Cs. Derived isotope ratios are used to reconstruct external dose rate during the early phase post-accident. Model “blind” tests show more than 95% of predictions within a factor of two of measurements from 15 sites to the north, northwest and west of the power station. It is demonstrated that generic isotope ratios provide a sound basis for reconstruction of early-phase external dose rates in these most contaminated areas. PMID:24018776

  7. Reply to the comment on 'Boron content and isotopic composition of oceanic basalts: Geochemical and cosmochemical implications'

    NASA Astrophysics Data System (ADS)

    Chaussidon, Marc; Jambon, Albert

    1994-12-01

    Chen-Feng You questions some of our interpretations of the B contents and delta B-11 values of oceanic basalts. His comments can be summarized in three points: (1) He emphasizes the importance of sediments as a B carrier, which should be taken into account in any budget calculation. He suggests that our estimated amount of boron subducted into the mantle is incorrect. (2) He quotes unpublished experimental results indicating that sedimentary boron is partly leached from a hemi-pelagic sediment at moderate temperatures (T less than or = 150 C) leaving a B-depleted residue isotopically fractionated to low delta B-11 values. (3) He further argues that Boron abundance and delta B-11 values at both Hawaii and the Halmahera arc could be explained by the incorporation of such fluids (i.e., released during subduction). Although we do think that the type of experiment described by You is effectively lacking at the moment and is of great potential for the understanding of B geochemical cycle, we also think that: (1) the experiments of You are insufficient to elucidate the behavior of B during subduction; and (2) two points of our work were misunderstood. We discuss successively the three points raised by You.

  8. Bayesian Integration of Isotope Ratio for Geographic Sourcing of Castor Beans

    DOE PAGES

    Webb-Robertson, Bobbie-Jo; Kreuzer, Helen; Hart, Garret; ...

    2012-01-01

    Recenmore » t years have seen an increase in the forensic interest associated with the poison ricin, which is extracted from the seeds of the Ricinus communis plant. Both light element (C, N, O, and H) and strontium (Sr) isotope ratios have previously been used to associate organic material with geographic regions of origin. We present a Bayesian integration methodology that can more accurately predict the region of origin for a castor bean than individual models developed independently for light element stable isotopes or Sr isotope ratios. Our results demonstrate a clear improvement in the ability to correctly classify regions based on the integrated model with a class accuracy of 60.9 ± 2.1 % versus 55.9 ± 2.1 % and 40.2 ± 1.8 % for the light element and strontium (Sr) isotope ratios, respectively. In addition, we show graphically the strengths and weaknesses of each dataset in respect to class prediction and how the integration of these datasets strengthens the overall model.« less

  9. Bayesian Integration of Isotope Ratios for Geographic Sourcing of Castor Beans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb-Robertson, Bobbie-Jo M.; Kreuzer, Helen W.; Hart, Garret L.

    Recent years have seen an increase in the forensic interest associated with the poison ricin, which is extracted from the seeds of the Ricinus communis plant. Both light element (C, N, O, and H) and strontium (Sr) isotope ratios have previously been used to associate organic material with geographic regions of origin. We present a Bayesian integration methodology that can more accurately predict the region of origin for a castor bean than individual models developed independently for light element stable isotopes or Sr isotope ratios. Our results demonstrate a clear improvement in the ability to correctly classify regions based onmore » the integrated model with a class accuracy of 6 0 . 9 {+-} 2 . 1 % versus 5 5 . 9 {+-} 2 . 1 % and 4 0 . 2 {+-} 1 . 8 % for the light element and strontium (Sr) isotope ratios, respectively. In addition, we show graphically the strengths and weaknesses of each dataset in respect to class prediction and how the integration of these datasets strengthens the overall model.« less

  10. Bayesian Integration of Isotope Ratio for Geographic Sourcing of Castor Beans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb-Robertson, Bobbie-Jo; Kreuzer, Helen; Hart, Garret

    Recenmore » t years have seen an increase in the forensic interest associated with the poison ricin, which is extracted from the seeds of the Ricinus communis plant. Both light element (C, N, O, and H) and strontium (Sr) isotope ratios have previously been used to associate organic material with geographic regions of origin. We present a Bayesian integration methodology that can more accurately predict the region of origin for a castor bean than individual models developed independently for light element stable isotopes or Sr isotope ratios. Our results demonstrate a clear improvement in the ability to correctly classify regions based on the integrated model with a class accuracy of 60.9 ± 2.1 % versus 55.9 ± 2.1 % and 40.2 ± 1.8 % for the light element and strontium (Sr) isotope ratios, respectively. In addition, we show graphically the strengths and weaknesses of each dataset in respect to class prediction and how the integration of these datasets strengthens the overall model.« less

  11. Silicon isotope amount ratios and molar masses for two silicon isotope reference materials: IRMM-018a and NBS28

    NASA Astrophysics Data System (ADS)

    Valkiers, S.; Ding, T.; Inkret, M.; Ruße, K.; Taylor, P.

    2005-04-01

    A new 2 kg batch of SiO2 crystals, IRMM-018a as well as the existing NBS28 silica sand (or RM 8546, obtained by I. Friedman from U.S. Geological Survey) have been characterised for their "absolute" silicon isotope composition and molar mass. The amount-of-substance measurements needed for that purpose were performed on the IRMM amount comparator (Avogadro II) on samples from these batches, which were converted to gaseous silicon tetra-fluoride (SiF4). The isotope amount ratio measurements were calibrated by means of synthesized isotope amount ratios realized in the form of synthetic Si isotope mixtures, the measurement procedure of which makes them SI-traceable. IRMM-018a is intended to be used as Isotope Reference Material for isotope amount measurements in geochemical and other isotope abundance studies of silicon. It is distributed in samples of about 0.1 mol and will replace IRMM-018 (exhausted).

  12. Effect of gas flow ratio on the microstructure and mechanical properties of boron phosphide films prepared by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Jia, Z. C.; Zhu, J. Q.; Jiang, C. Z.; Shen, W. X.; Han, J. C.; Chen, R. R.

    2011-10-01

    Boron phosphide films were grown on silicon substrate by radio frequency reactive magnetron sputtering using boron target and hydrogen phosphine at different gas flow ratios (PH 3/Ar) at lower temperature. The chemical composition, microstructure and mechanical properties were characterized by X-ray photoelectron spectroscopy, X-ray diffraction, Raman spectrum, FTIR spectrum, surface profilometer and nano-indenter. The results indicate that the atomic ratio (P/B) rises from 1.06 up to 1.52 with the gas flow ratio increasing from 3/50 to 15/50. Simultaneously, the hardness and Young's modulus decrease from 25.4 GPa to 22.5 GPa, and 250.4 GPa to 238.4 GPa, respectively. Microstructure transforms from microcrystalline state to amorphous state along with the gas flow ratio increasing. Furthermore higher gas flow ratio leads to lower stress. The BP film prepared at the gas flow ratio of 3/50 can be contributed with the best properties.

  13. Electron paramagnetic resonance of deep boron in silicon carbide

    NASA Astrophysics Data System (ADS)

    Baranov, P. G.; Mokhov, E. N.

    1996-04-01

    In this article we report the first EPR observation of deep boron centres in silicon carbide. A direct identification of the boron atom involved in the defect centre, considered as deep boron, has been established by the presence of a hyperfine interaction with 0268-1242/11/4/005/img1 and 0268-1242/11/4/005/img2 nuclei in isotope-enriched 6H-SiC:B crystals. Deep boron centres were shown from EPR spectra to have axial symmetry along the hexagonal axis. A correspondence between the EPR spectra and the luminescence, ODMR and DLTS spectra of deep boron centres has been indicated. The structural model for a deep boron centre as a boron - vacancy pair is presented and the evidence for bistable behaviour of deep boron centres is discussed.

  14. The IRHUM database - bioavailable strontium isotope ratios of France for geochemical fingerprinting

    NASA Astrophysics Data System (ADS)

    Willmes, Malte; Moffat, Ian; Grün, Rainer; Armstrong, Richard; Kinsley, Les; McMorrow, Linda

    2013-04-01

    Strontium isotope ratios (87Sr/86Sr) are used as a geochemical tracer in a wide range of fields including archaeology, ecology, soil, food and forensic sciences. These applications are based on the principle that strontium isotopic ratios of materials reflect the geological sources of the strontium, which were available during its formation. Geologic regions with distinct strontium isotope ranges, which depend on their age and composition, can be differentiated. A major constraint for current studies is the lack of robust reference maps to evaluate the strontium isotope ratios measured in the samples. The aim of the IRHUM (isotopic reconstruction of human migration) database is to provide a reference map of bioavailable strontium isotope ratios for continental France. The current dataset contains 400 sample locations covering the major geologic units of the Paris and Aquitaine Basin, the Massif Central, and the Pyrenees. At each site soil and plant samples have been collected to cover the whole range of strontium ratios at a specific location. The database is available online at www.rses.anu.edu.au/research-areas/archaeogeochemistry and contains the bioavailable strontium isotope data as well as major and trace element concentrations for soil and plant samples. Strontium isotopes were analysed using a Neptune multi-collector inductively-coupled plasma mass spectrometer (MC-ICP-MS) and elemental concentrations with a Varian Vista Pro Axial ICP-AES (inductively-coupled plasma atomic emission spectrometer). In addition, IRHUM provides spatial context for each sample, including background geology, field observations and soil descriptions. This metadata allows users to evaluate the suitability of a specific data point for their study. The IRHUM database fills an important gap between high resolution studies from specific sites (e.g. archaeological sites), to the very broad geochemical mapping of Europe. Thus it provides an excellent tool to evaluate the regional context

  15. Serpentinites and Boron Isotope Evidence for Shallow Fluid Transfer Across Subduction Zones

    NASA Astrophysics Data System (ADS)

    Scambelluri, M.; Tonarini, S.

    2012-04-01

    In subduction zones, fluid-mediated chemical exchanges between subducting plates and overlying mantle dictate volatile and incompatible element cycles in earth and influence arc magmatism. One of the outstanding issues is concerned with the sources of water for arc magmas and mechanisms for its slab-to-mantle wedge transport. Does it occur by slab dehydration at depths directly beneath arc front, or by hydration of fore-arc mantle and subsequent subduction of the hydrated mantle? Historically, the deep slab dehydration hypothesis had strong support, but it appears that the hydrated mantle wedge hypothesis is gaining ground. At the center of this hypothesis are studies of fluid-mobile element tracers in volatile-rich mantle wedge peridotites (serpentinites) and their subducted high-pressure equivalents. Serpentinites are key players in volatile and fluid-mobile element cycles in subduction zones. Their dehydration represents the main event for fluid and element flux from slabs to mantle, though direct evidence for this process and identification of dehydration environments have been elusive. Boron isotopes are known markers of fluid-assisted element transfer during subduction and can be the tracers of these processes. Until recently, the altered oceanic crust has been considered the main 11B reservoir for arc magmas, which largely display positive delta11B. However, slab dehydration below fore-arcs transfers 11B to the overlying hydrated mantle and leaves the residual mafic crust very depleted in 11B below sub-arcs. The 11B-rich composition of serpentinites candidate them as the heavy B carriers for subduction. Here we present high positive delta11B of Alpine high-pressure (HP) serpentinites recording subduction metamorphism from hydration at low gades to eclogite-facies dehydration: we show a connection among serpentinite dehydration, release of 11B-rich fluids and arc magmatism. In general, the delta11B of these rocks is heavy (16‰ to + 24‰ delta11B). No B

  16. Stable isotope ratio profiling of testosterone preparations.

    PubMed

    Cawley, Adam; Collins, Michael; Kazlauskas, Rymantas; Handelsman, David J; Heywood, Robert; Longworth, Mitchell; Arenas-Queralt, Andrea

    2010-01-01

    Gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) is the preferred method of confirming the administration of exogenous testosterone by athletes. This relies on synthetic testosterone preparations being depleted in (13) C compared to natural testosterone. There is concern, however, about the existence of synthetic testosterone products that are unexpectedly (13) C-enriched and which may allow athletes to circumvent the current GC-C-IRMS test. Further to the reported studies of legitimate pharmaceutical-grade testosterone products, a detailed analysis of seized materials from border-level seizures was required to obtain intelligence concerning trends in 'black market' testosterone manufacture and distribution. The sample set collected for this study between 2006 and 2009 inclusive provided a δ(13) C range (n = 266) of -22.9‰ to -32.6‰ with mean and median values of -28.4‰ and -28.6‰, respectively. Within this distribution there were 24 samples (9%) confirmed to have δ(13) C values in the range reported for endogenous urinary steroid metabolites (≥ -25.8‰). The benefit of δ(13) C profiling for testosterone preparations was demonstrated by the ability to identify specific seized products that can be target tested for future intelligence purposes. In addition, the potential of stable hydrogen isotope ratio ((2) H/(1) H; δ(2) H) discrimination to complement δ(13) C analysis was investigated. Methodologies for the determination of δ(2) H values by gas chromatography-thermal conversion-isotope ratio mass spectrometry (GC-TC-IRMS) were developed to provide a δ(2) H range (n = 173) of -177‰ to -268‰ with mean and median values of -231‰ and -234‰, respectively. Copyright © 2010 John Wiley & Sons, Ltd.

  17. Seawater calcium isotope ratios across the Eocene-Oligocene transition

    USGS Publications Warehouse

    Griffith, E.M.; Paytan, A.; Eisenhauer, A.; Bullen, T.D.; Thomas, E.

    2011-01-01

    During the Eocene-Oligocene transition (EOT, ca. 34 Ma), Earth's climate cooled significantly from a greenhouse to an icehouse climate, while the calcite (CaCO3) compensation depth (CCD) in the Pacific Ocean increased rapidly. Fluctuations in the CCD could result from various processes that create an imbalance between calcium (Ca) sources to, and sinks from, the ocean (e.g., weathering and CaCO3 deposition), with different effects on the isotopic composition of dissolved Ca in the oceans due to differences in the Ca isotopic composition of various inputs and outputs. We used Ca isotope ratios (??44/40Ca) of coeval pelagic marine barite and bulk carbonate to evaluate changes in the marine Ca cycle across the EOT. We show that the permanent deepening of the CCD was not accompanied by a pronounced change in seawater ??44/40Ca, whereas time intervals in the Neogene with smaller carbonate depositional changes are characterized by seawater ??44/40Ca shifts. This suggests that the response of seawater ??44/40Ca to changes in weathering fluxes and to imbalances in the oceanic alkalinity budget depends on the chemical composition of seawater. A minor and transient fluctuation in the Ca isotope ratio of bulk carbonate may reflect a change in isotopic fractionation associated with CaCO3 precipitation from seawater due to a combination of factors, including changes in temperature and/or in the assemblages of calcifying organisms. ?? 2011 Geological Society of America.

  18. Forensic utility of the carbon isotope ratio of PVC tape backings

    NASA Astrophysics Data System (ADS)

    Stern, L. A.; Thompson, A. H.; Mehltretter, A. H.; McLaskey, V.; Parish, A.; Aranda, R.

    2008-12-01

    Forensic interest in adhesive tapes with PVC-backings (polyvinyl chloride, electrical tapes) derives from their use in construction of improvised explosive devices, drug packaging and in a variety of other illicit activities. Due to the range of physical characteristics and chemical compositions of such tapes, traditional microscopic and chemical analysis of the tape backings and adhesives offer a high degree of discrimination between tapes from different manufacturers and products. To evaluate whether carbon isotope ratios may be able to increase discrimination of electrical tapes, particularly with regards to different tapes of the same product, we assessed the PVC-backings of 87 rolls of black electrical tape for their δ13C values. The adhesive on these tapes was physically removed with hexane, and plasticizers within the PVC tape backings were removed by three-20 minute extractions with chloroform. The δ13C values of the PVC tape backings ranged between -23.8 and -41.5 (‰ V-PDB). The carbon isotopic variation within a product (identical brand and product identification) is significant, based on five products with at least 3 rolls (ranges of 7.4‰ (n=3), 10.0‰ (n=6), 4.2‰ (n=16), 3.8‰ (n=6), and 11.5‰ (n=8), respectively). There was no measurable carbon isotope variation in regards to the following: a) along the length of a roll (4 samples from 1 roll); b) between the center and edge of a strip of tape (1 pair); c) between rolls assumed to be from the same lot of tape (2 pairs); d) between different rolls from the same batch of tape (same product purchased at the same time and place; 5 pairs); and e) between samples of a tape at room temperature, heated to 50° C and 80° C for 1 week. For each sample within the population of 87 tapes, carbon isotopes alone exclude 80 to 100% of the tapes as a potential match, with an average exclusion power of 92.5%, using a window of ± 0.4‰. Carbon isotope variations originate from variations in starting

  19. Isotope Ratios Reveal Trickery in the Produce Aisle

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 2007

    2007-01-01

    A new technique for the proper checking and banning of organic food items is proposed. The analysis of the nitrogen isotope ratio present in the food is found to be a perfect standard for the organic checking of the food products.

  20. Investigation of mass dependence effects for the accurate determination of molybdenum isotope amount ratios by MC-ICP-MS using synthetic isotope mixtures.

    PubMed

    Malinovsky, Dmitry; Dunn, Philip J H; Petrov, Panayot; Goenaga-Infante, Heidi

    2015-01-01

    Methodology for absolute Mo isotope amount ratio measurements by multicollector inductively coupled plasma-mass spectrometry (MC-ICP-MS) using calibration with synthetic isotope mixtures (SIMs) is presented. For the first time, synthetic isotope mixtures prepared from seven commercially available isotopically enriched molybdenum metal powders ((92)Mo, (94)Mo, (95)Mo, (96)Mo, (97)Mo, (98)Mo, and (100)Mo) are used to investigate whether instrumental mass discrimination of Mo isotopes in MC-ICP-MS is consistent with mass-dependent isotope distribution. The parent materials were dissolved and mixed as solutions to obtain mixtures with accurately known isotope amount ratios. The level of elemental impurities in the isotopically enriched molybdenum metal powders was quantified by ICP-MS by using both high-resolution and reaction cell instruments to completely resolve spectral interferences. The Mo isotope amount ratio values with expanded uncertainty (k = 2), determined by MC-ICP-MS for a high-purity Mo rod from Johnson Matthey, were as follows: (92)Mo/(95)Mo = 0.9235(9), (94)Mo/(95)Mo = 0.5785(8), (96)Mo/(95)Mo = 1.0503(9), (97)Mo/(95)Mo = 0.6033(6), (98)Mo/(95)Mo = 1.5291(20), and (100)Mo/(95)Mo = 0.6130(7). A full uncertainty budget for the measurements is presented which shows that the largest contribution to the uncertainty budget comes from correction for elemental impurities (∼51%), followed by the contribution from weighing operations (∼26 %). The atomic weight of molybdenum was calculated to be 95.947(2); the uncertainty in parentheses is expanded uncertainty with the coverage factor of 2. A particular advantage of the developed method is that calibration factors for all six Mo isotope amount ratios, involving the (95)Mo isotope, were experimentally determined. This allows avoiding any assumption on mass-dependent isotope fractions in MC-ICP-MS, inherent to the method of double spike previously used for Mo isotope amount ratio

  1. Locally Grown, Natural Ingredients? The Isotope Ratio Can Reveal a Lot!

    PubMed

    Rossier, Joël S; Maury, Valérie; Pfammatter, Elmar

    2016-01-01

    This communication gives an overview of selected isotope analyses applied to food authenticity assessment. Different isotope ratio detection technologies such as isotope ratio mass spectrometry (IRMS) and cavity ring down spectroscopy (CRDS) are briefly described. It will be explained how δ(18)O of water contained in fruits and vegetables can be used to assess their country of production. It will be explained why asparagus grown in Valais, in the centre of the Alps carries much less heavy water than asparagus grown closer to the sea coast. On the other hand, the use of δ(13)C can reveal whether a product is natural or adulterated. Applications including honey or sparkling wine adulteration detection will be briefly presented.

  2. Laser ablation inductively coupled plasma mass spectrometry for direct isotope ratio measurements on solid samples

    NASA Astrophysics Data System (ADS)

    Pickhardt, Carola; Dietze, Hans-Joachim; Becker, J. Sabine

    2005-04-01

    Isotope ratio measurements have been increasingly used in quite different application fields, e.g., for the investigation of isotope variation in nature, in geoscience (geochemistry and geochronology), in cosmochemistry and planetary science, in environmental science, e.g., in environmental monitoring, or by the application of the isotope dilution technique for quantification purposes using stable or radioactive high-enriched isotope tracers. Due to its high sensitivity, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is today a challenging mass spectrometric technique for the direct determination of precise and accurate isotope ratios in solid samples. In comparison to laser ablation quadrupole ICP-MS (LA-ICP-QMS), laser ablation coupled to a double-focusing sector field ICP-MS (LA-ICP-SFMS) with single ion detection offers a significant improvement of sensitivity at low mass resolution, whereby isotope ratios can be measured with a precision to 0.1% relative standard deviation (R.S.D.). In LA-ICP-SFMS, many disturbing isobaric interferences of analyte and molecular ions can be separated at the required mass resolution (e.g., 40Ar16O+ and 56Fe+ for iron isotope ratio measurements). The precision on isotope ratio measurements was improved by one order of magnitude via the simultaneous detection of mass-separated ion currents of isotopes using multiple ion collectors in LA-ICP-MS (LA-MC-ICP-MS). The paper discusses the state of the art, the challenges and limits in isotope ratio measurements by LA-ICP-MS using different instrumentations at the trace and ultratrace level in different fields of application as in environmental and biological research, geochemistry and geochronology with respect to their precision and accuracy.

  3. A Test of Carbon and Oxygen Stable Isotope Ratio Process Models in Tree Rings.

    NASA Astrophysics Data System (ADS)

    Roden, J. S.; Farquhar, G. D.

    2008-12-01

    Stable isotopes ratios of carbon and oxygen in tree ring cellulose have been used to infer environmental change. Process-based models have been developed to clarify the potential of historic tree ring records for meaningful paleoclimatic reconstructions. However, isotopic variation can be influenced by multiple environmental factors making simplistic interpretations problematic. Recently, the dual isotope approach, where the variation in one stable isotope ratio (e.g. oxygen) is used to constrain the interpretation of variation in another (e.g. carbon), has been shown to have the potential to de-convolute isotopic analysis. However, this approach requires further testing to determine its applicability for paleo-reconstructions using tree-ring time series. We present a study where the information needed to parameterize mechanistic models for both carbon and oxygen stable isotope ratios were collected in controlled environment chambers for two species (Pinus radiata and Eucalyptus globulus). The seedlings were exposed to treatments designed to modify leaf temperature, transpiration rates, stomatal conductance and photosynthetic capacity. Both species were grown for over 100 days under two humidity regimes that differed by 20%. Stomatal conductance was significantly different between species and for seedlings under drought conditions but not between other treatments or humidity regimes. The treatments produced large differences in transpiration rate and photosynthesis. Treatments that effected photosynthetic rates but not stomatal conductance influenced carbon isotope discrimination more than those that influenced primarily conductance. The various treatments produced a range in oxygen isotope ratios of 7 ‰. Process models predicted greater oxygen isotope enrichment in tree ring cellulose than observed. The oxygen isotope ratios of bulk leaf water were reasonably well predicted by current steady-state models. However, the fractional difference between models that

  4. The puzzle of the CNO isotope ratios in asymptotic giant branch carbon stars

    NASA Astrophysics Data System (ADS)

    Abia, C.; Hedrosa, R. P.; Domínguez, I.; Straniero, O.

    2017-03-01

    Context. The abundance ratios of the main isotopes of carbon, nitrogen and oxygen are modified by the CNO-cycle in the stellar interiors. When the different dredge-up events mix the burning material with the envelope, valuable information on the nucleosynthesis and mixing processes can be extracted by measuring these isotope ratios. Aims: Previous determinations of the oxygen isotopic ratios in asymptotic giant branch (AGB) carbon stars were at odds with the existing theoretical predictions. We aim to redetermine the oxygen ratios in these stars using new spectral analysis tools and further develop discussions on the carbon and nitrogen isotopic ratios in order to elucidate this problem. Methods: Oxygen isotopic ratios were derived from spectra in the K-band in a sample of galactic AGB carbon stars of different spectral types and near solar metallicity. Synthetic spectra calculated in local thermodynamic equillibrium (LTE) with spherical carbon-rich atmosphere models and updated molecular line lists were used. The CNO isotope ratios derived in a homogeneous way, were compared with theoretical predictions for low-mass (1.5-3 M⊙) AGB stars computed with the FUNS code assuming extra mixing both during the RGB and AGB phases. Results: For most of the stars the 16O/17O/18O ratios derived are in good agreement with theoretical predictions confirming that, for AGB stars, are established using the values reached after the first dredge-up (FDU) according to the initial stellar mass. This fact, as far as the oxygen isotopic ratios are concerned, leaves little space for the operation of any extra mixing mechanism during the AGB phase. Nevertheless, for a few stars with large 16O/17O/18O, the operation of such a mechanism might be required, although their observed 12C/13C and 14N/15N ratios would be difficult to reconcile within this scenario. Furthermore, J-type stars tend to have lower 16O/17O ratios than the normal carbon stars, as already indicated in previous studies

  5. Classification of nine malathion emulsion samples by using carbon isotope ratios and the ratio of organic solvents.

    PubMed

    Suto, Nana; Kawashima, Hiroto

    2017-01-01

    The compound specific isotope analysis is nowadays an important and powerful tool in geochemical, environmental and forensics field. On November 2013, Aqli Foods Corporation in Japan dealt with complaints about stench from frozen foods produced. Subsequently, very high concentrations of organophosphorus pesticide as malathion, ethylbenzene and xylene were detected in recovered frozen foods. In particular case, we present the method to measure the stable carbon isotope ratio (δ 13 C) of nine malathion emulsion pesticides using gas chromatography/isotope ratio mass spectrometry (GC/IRMS) to identify the source. The δ 13 C values of malathion ranged from -30.6‰ to -29.5‰. Because malathion used in all malathion emulsions sold in Japan is imported from the same overseas company, Cheminova, Denmark. The δ 13 C values of ethylbenzene ranged from -28.2‰ to -20.8‰ and those of m,p-xylene from -28.7‰ to -25.2‰. The differences in the δ 13 C values may be because of the material itself and chemical processing. We also determined the ratio of ethylbenzene to m,p-xylene and finally categorized the nine malathion samples into five groups on the basis of this ratio and the δ 13 C values of ethylbenzene and m,p-xylene. The results of isotopic fractionation during volatilization (refrigerate, room temperature and incubator) was negligible small. Copyright © 2016 The Chartered Society of Forensic Sciences. Published by Elsevier Ireland Ltd. All rights reserved.

  6. Tracing the origin of pollution in French Alpine snow and aerosols using lead isotopic ratios.

    PubMed

    Veysseyre, A M; Bollhöfer, A F; Rosman, K J; Ferrari, C P; Boutron, C F

    2001-11-15

    Fresh snow samples collected at 15 remote locations and aerosols collected at one location in the French Alps between November 1998 and April 1999 have been analyzed for Pb concentration and isotopic composition by thermal ionization mass spectrometry. The snow samples contained 19-1300 pg/g of Pb with isotopic ratios 206Pb/207Pb (208Pb/207Pb) of 1.1279-1.1607 (2.3983-2.4302). Airborne Pb concentrations at one sampling site ranged from 0.42 to 6.0 ng/m3 with isotopic ratios of 1.1321-1.1427 (2.4029-2.4160). Air mass trajectory analysis combined with isotopic compositions of potential source regions did not show discernible evidence of the long-range atmospheric transport of pollutants. Isotopic ratios in the Alpine snow samples and thus the free troposphere were generally higher than airborne Pb isotopic ratios in urban France, which coupled with the relatively high Pb concentrations suggested a regional anthropogenic Pb source, probably Italy but possibly Eastern Europe.

  7. The calibration of the intramolecular nitrogen isotope distribution in nitrous oxide measured by isotope ratio mass spectrometry.

    PubMed

    Westley, Marian B; Popp, Brian N; Rust, Terri M

    2007-01-01

    Two alternative approaches for the calibration of the intramolecular nitrogen isotope distribution in nitrous oxide using isotope ratio mass spectrometry have yielded a difference in the 15N site preference (defined as the difference between the delta15N of the central and end position nitrogen in NNO) of tropospheric N2O of almost 30 per thousand. One approach is based on adding small amounts of labeled 15N2O to the N2O reference gas and tracking the subsequent changes in m/z 30, 31, 44, 45 and 46, and this yields a 15N site preference of 46.3 +/- 1.4 per thousand for tropospheric N2O. The other involves the synthesis of N2O by thermal decomposition of isotopically characterized ammonium nitrate and yields a 15N site preference of 18.7 +/- 2.2 per thousand for tropospheric N2O. Both approaches neglect to fully account for isotope effects associated with the formation of NO+ fragment ions from the different isotopic species of N2O in the ion source of a mass spectrometer. These effects vary with conditions in the ion source and make it impossible to reproduce a calibration based on the addition of isotopically enriched N2O on mass spectrometers with different ion source configurations. These effects have a much smaller impact on the comparison of a laboratory reference gas with N2O synthesized from isotopically characterized ammonium nitrate. This second approach was successfully replicated and leads us to advocate the acceptance of the site preference value 18.7 +/- 2.2 per thousand for tropospheric N2O as the provisional community standard until further independent calibrations are developed and validated. We present a technique for evaluating the isotope effects associated with fragment ion formation and revised equations for converting ion signal ratios into isotopomer ratios. Copyright 2007 John Wiley & Sons, Ltd.

  8. A new isotopic reference material for stable hydrogen and oxygen isotope-ratio measurements of water—USGS50 Lake Kyoga Water

    USGS Publications Warehouse

    Coplen, Tyler B.; Wassenaar, Leonard I; Mukwaya, Christine; Qi, Haiping; Lorenz, Jennifer M.

    2015-01-01

    This isotopic reference material, designated as USGS50, is intended as one of two reference waters for daily normalization of stable hydrogen and oxygen isotopic analysis of water with an isotope-ratio mass spectrometer or a laser absorption spectrometer, of use especially for isotope-hydrology laboratories analyzing freshwater samples from equatorial and tropical regions.

  9. Isotope ratio mass spectrometry coupled to liquid and gas chromatography for wine ethanol characterization.

    PubMed

    Cabañero, Ana I; Recio, Jose L; Rupérez, Mercedes

    2008-10-01

    Two new procedures for wine ethanol 13C/12C isotope ratio determination, using high-performance liquid chromatography and gas chromatography isotope ratio mass spectrometry (HPLC/IRMS and GC/IRMS), have been developed to improve isotopic methods dedicated to the study of wine authenticity. Parameters influencing separation of ethanol from wine matrix such as column, temperature, mobile phase, flow rates and injection mode were investigated. Twenty-three wine samples from various origins were analyzed for validation of the procedures. The analytical precision was better than 0.15 per thousand, and no significant isotopic fractionation was observed employing both separative techniques coupled to IRMS. No significant differences and a very strong correlation (r = 0.99) were observed between the 13C/12C ratios obtained by the official method (elemental analyzer/isotope ratio mass spectrometry) and the proposed new methodology. The potential advantages of the developed methods over the traditional one are speed (reducing time required from hours to minutes) and simplicity. In addition, these are the first isotopic methods that allow 13C/12C determination directly from a liquid sample with no previous ethanol isolation, overcoming technical difficulties associated with sample treatment.

  10. Improved precision and accuracy in quantifying plutonium isotope ratios by RIMS

    DOE PAGES

    Isselhardt, B. H.; Savina, M. R.; Kucher, A.; ...

    2015-09-01

    Resonance ionization mass spectrometry (RIMS) holds the promise of rapid, isobar-free quantification of actinide isotope ratios in as-received materials (i.e. not chemically purified). Recent progress in achieving this potential using two Pu test materials is presented. RIMS measurements were conducted multiple times over a period of two months on two different Pu solutions deposited on metal surfaces. Measurements were bracketed with a Pu isotopic standard, and yielded absolute accuracies of the measured 240Pu/ 239Pu ratios of 0.7% and 0.58%, with precisions (95% confidence intervals) of 1.49% and 0.91%. In conclusion, the minor isotope 238Pu was also quantified despite the presencemore » of a significant quantity of 238U in the samples.« less

  11. Stable δ15N and δ13C isotope ratios in aquatic ecosystems

    PubMed Central

    Wada, Eitaro

    2009-01-01

    In the past 20 years, rapid progress in stable isotope (SI) studies has allowed scientists to observe natural ecosystems from entirely new perspectives. This report addresses the fundamental concepts underlying the use of the SI ratio. The unique characteristics of the SI ratio make it an interdisciplinary parameter that acts as a chemical fingerprint of biogenic substances and provides a key to the world of isotopomers. Variations in SI ratios of biogenic substances depend on the isotopic compositions of reactants, the pathways and kinetic modes of reaction dynamics, and the physicochemical conditions. In fact, every biogenic material has its own isotopic composition, its “dynamic SI fingerprint”, which is governed by its function and position in the material flow. For example, the relative SI ratio in biota is determined by dietary lifestyle, e.g., the modes of drinking, eating, and excreting, and appears highly regular due to the physicochemical differences of isotopomers. Our primary goal here is to elucidate the general principals of isotope partitioning in major biophilic elements in molecules, biogenic materials, and ecosystems (Wada, E. et al., 1995). To this end, the nitrogen and carbon SI distribution ratios (δ15N and δ13C, respectively) are used to examine materials cycling, food web structures, and their variability in various kinds of watershed-including aquatic ecosystems to elucidate an “isotopically ordered world”. PMID:19282646

  12. Experimentally determined sulfur isotope fractionation between metal and silicate and implications for planetary differentiation

    NASA Astrophysics Data System (ADS)

    Labidi, J.; Shahar, A.; Le Losq, C.; Hillgren, V. J.; Mysen, B. O.; Farquhar, J.

    2016-02-01

    The Earth's mantle displays a subchondritic 34S/32S ratio. Sulfur is a moderately siderophile element (i.e. iron-loving), and its partitioning into the Earth's core may have left such a distinctive isotope composition on the terrestrial mantle. In order to constrain the sulfur isotope fractionation occurring during core-mantle differentiation, high-pressure and temperature experiments were conducted with synthetic mixtures of metal and silicate melts. With the purpose to identify the mechanism(s) responsible for the S isotope fractionations, we performed our experiments in different capsules - namely, graphite and boron nitride capsules - and thus at different fO2, with varying major element chemistry of the silicate and metal fractions. The S isotope fractionations Δ34Smetal-silicate of equilibrated metal alloys versus silicate melts is +0.2 ± 0.1‰ in a boron-free and aluminum-poor system quenched at 1-1.5 GPa and 1650 °C. The isotope fractionation increases linearly with increasing boron and aluminum content, up to +1.4 ± 0.2‰, and is observed to be independent of the silicon abundance as well as of the fO2 over ∼3.5 log units of variations explored here. The isotope fractionations are also independent of the graphite or nitride saturation of the metal. Only the melt structural changes associated with aluminum and boron concentration in silicate melts have been observed to affect the strength of sulfur bonding. These results establish that the structure of silicate melts has a direct influence on the S2- average bonding strengths. These results can be interpreted in the context of planetary differentiation. Indeed, the structural environments of silicate evolve strongly with pressure. For example, the aluminum, iron or silicon coordination numbers increase under the effect of pressure. Consequently, based on our observations, the sulfur-bonding environment is likely to be affected. In this scheme, we tentatively hypothesize that S isotope fractionations

  13. Lignin methoxyl hydrogen isotope ratios in a coastal ecosystem

    NASA Astrophysics Data System (ADS)

    Feakins, Sarah J.; Ellsworth, Patricia V.; Sternberg, Leonel da Silveira Lobo

    2013-11-01

    Stable hydrogen isotope ratios of plant lignin methoxyl groups have recently been shown to record the hydrogen isotopic composition of meteoric water. Here we extend this technique towards tracing water source variations across a saltwater to freshwater gradient in a coastal, subtropical forest ecosystem. We measure the hydrogen isotopic composition of xylem water (δDxw) and methoxyl hydrogen (δDmethoxyl) to calculate fractionations for coastal mangrove, buttonwood and hammock tree species in Sugarloaf Key, as well as buttonwoods from Miami, both in Florida, USA. Prior studies of the isotopic composition of cellulose and plant leaf waxes in coastal ecosystems have yielded only a weak correlation to source waters, attributed to leaf water effects. Here we find δDmethoxyl values range from -230‰ to -130‰, across a 40‰ range in δDxw with a regression equation of δDmethoxyl ‰ = 1.8 * δDxw - 178‰ (R2 = 0.48, p < 0.0001, n = 74). This is comparable within error to the earlier published relationship for terrestrial trees which was defined across a much larger 125‰ isotopic range in precipitation. Analytical precision for measurements of δD values of pure CH3I by gas chromatography-pyrolysis-isotope ratio mass spectrometry (GC-P-IRMS) is σ = 6‰ (n = 31), which is considerably better than for CH3I liberated through cleavage with HI from lignin with σ = 18‰ (n = 26). Our results establish that δDmethoxyl can record water sources and salinity incursion in coastal ecosystems, where variations sufficiently exceed method uncertainties (i.e., applications with δD excursions >50‰). For the first time, we also report yields of propyl iodide, which may indicate lignin synthesis of propoxyl groups under salt-stress.

  14. Determination of tin isotope ratios in cassiterite by femtosecond laser ablation multicollector inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Schulze, Marie; Ziegerick, Marco; Horn, Ingo; Weyer, Stefan; Vogt, Carla

    2017-04-01

    In comparison to isotope analysis of dissolved samples femtosecond laser ablation multicollector inductively coupled plasma mass spectrometry (fs-LA-MC-ICP-MS) enables precise isotope ratio analyses consuming much less sample material and with a minimum effort in sample preparation. This is especially important for the investigation of valuable historical objects for which visual traces of sampling are unwanted. The present study provides a basis for tin isotope ratio measurements using LA-MC-ICP-MS technique. For this, in house isotope standards had to be defined. Investigations on interferences and matrix effects illustrate that beside Sb only high Te contents (with values above those to be expected in cassiterite) result in a significant shift of the measured tin isotope ratios. This effect can partly be corrected for using natural isotope abundances. However, a natural isotope fractionation of Te cannot be excluded. Tin beads reduced from cassiterite were analysed by laser ablation and after dissolution. It was shown that tin isotope ratios can be determined accurately by using fs-LA-MC-ICP-MS. Furthermore the homogeneity of tin isotope ratios in cassiterite was proven.

  15. New reference materials for nitrogen-isotope-ratio measurements

    USGS Publications Warehouse

    Böhlke, John Karl; Gwinn, C. J.; Coplen, T. B.

    1993-01-01

    Three new reference materials were manufactured for calibration of relative stable nitrogen-isotope-ratio measurements: USGS25 (ammonium sulfate) d15N' = -30 per mil; USGS26 (ammonium sulfate) d15N' = +54 per mil; USGS32 (potassium nitrate) d15N' = +180 per mil, where d15N', relative to atmospheric nitrogen, is an approximate value subject to change following interlaboratory comparisons. These materials are isotopically homogeneous in aliquots at least as small as 10 µmol N2 (or about 1-2 mg of salt). The new reference materials greatly extend the range of d15N values of internationally distributed standards, and they allow normalization of d15N measurements over almost the full range of known natural isotope variation on Earth. The methods used to produce these materials may be adapted to produce homogeneous local laboratory standards for routine use.

  16. Application of neodymium isotope ratio measurements for the origin assessment of uranium ore concentrates.

    PubMed

    Krajkó, Judit; Varga, Zsolt; Yalcintas, Ezgi; Wallenius, Maria; Mayer, Klaus

    2014-11-01

    A novel procedure has been developed for the measurement of (143)Nd/(144)Nd isotope ratio in various uranium-bearing materials, such as uranium ores and ore concentrates (UOC) in order to evaluate the usefulness and applicability of variations of (143)Nd/(144)Nd isotope ratio for provenance assessment in nuclear forensics. Neodymium was separated and pre-concentrated by extraction chromatography and then the isotope ratios were measured by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). The method was validated by the measurement of standard reference materials (La Jolla, JB-2 and BCR-2) and the applicability of the procedure was demonstrated by the analysis of uranium samples of world-wide origin. The investigated samples show distinct (143)Nd/(144)Nd ratio depending on the ore type, deposit age and Sm/Nd ratio. Together with other characteristics of the material in question, the Nd isotope ratio is a promising signature for nuclear forensics and suggests being indicative of the source material, the uranium ore. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Bayesian Nitrate Source Apportionment to Individual Groundwater Wells in the Central Valley by use of Nitrogen, Oxygen, and Boron Isotopic Tracers

    NASA Astrophysics Data System (ADS)

    Lockhart, K.; Harter, T.; Grote, M.; Young, M. B.; Eppich, G.; Deinhart, A.; Wimpenny, J.; Yin, Q. Z.

    2014-12-01

    Groundwater quality is a concern in alluvial aquifers underlying agricultural areas worldwide, an example of which is the San Joaquin Valley, California. Nitrate from land applied fertilizers or from animal waste can leach to groundwater and contaminate drinking water resources. Dairy manure and synthetic fertilizers are the major sources of nitrate in groundwater in the San Joaquin Valley, however, septic waste can be a major source in some areas. As in other such regions around the world, the rural population in the San Joaquin Valley relies almost exclusively on shallow domestic wells (≤150 m deep), of which many have been affected by nitrate. Consumption of water containing nitrate above the drinking water limit has been linked to major health effects including low blood oxygen in infants and certain cancers. Knowledge of the proportion of each of the three main nitrate sources (manure, synthetic fertilizer, and septic waste) contributing to individual well nitrate can aid future regulatory decisions. Nitrogen, oxygen, and boron isotopes can be used as tracers to differentiate between the three main nitrate sources. Mixing models quantify the proportional contributions of sources to a mixture by using the concentration of conservative tracers within each source as a source signature. Deterministic mixing models are common, but do not allow for variability in the tracer source concentration or overlap of tracer concentrations between sources. Bayesian statistics used in conjunction with mixing models can incorporate variability in the source signature. We developed a Bayesian mixing model on a pilot network of 32 private domestic wells in the San Joaquin Valley for which nitrate as well as nitrogen, oxygen, and boron isotopes were measured. Probability distributions for nitrogen, oxygen, and boron isotope source signatures for manure, fertilizer, and septic waste were compiled from the literature and from a previous groundwater monitoring project on several

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aggarwal, J.K.; Palmer, M.R.

    Boron isotope ratios have been determined in a variety of different geothermal waters from hydrothermal systems across Iceland. Isotope ratios from the high temperature meteoric water recharged systems reflect the isotope ratio of the host rocks without any apparent fractionation. Seawater recharged geothermal systems exhibit more positive {delta}{sup 11}B values than the meteoric water recharged geothermal systems. Water/rock ratios can be assessed from boron isotope ratios in the saline hydrothermal systems. Low temperature hydrothermal systems also exhibit more positive {delta}{sup 11}B than the high temperature systems, indicating fractionation of boron due to adsorption of the lighter isotope onto secondary minerals.more » Fractionation of boron in carbonate deposits may indicate the level of equilibrium attained within the systems.« less

  19. Implications of the Nitrogen Isotope Ratio in Titan's Atmosphere for the Nitrogen Ratio in Ammonia in Comets

    NASA Astrophysics Data System (ADS)

    Mandt, K.; Mousis, O.

    2013-12-01

    The D/H ratio of water measured in solar system bodies has been established as a tool for determining the conditions under which bodies such as comets or icy moons formed. This ratio varies significantly and indicates complex thermal and chemical evolution of the solar nebula during solar system and planetary formation. Nitrogen isotope ratios also vary significantly, and in some but not all cases correlate to D/H ratios, but are poorly understood. Nitrogen in the solar nebula was primarily in the form of atomic and molecular nitrogen. The isotope ratio (14N/15N) of this reservoir is expected to be ~435 based on the ratio measured in Jupiter's atmosphere, because the atmosphere of Jupiter is made up of gas captured from the solar nebula (Owen et al., 2001). The terrestrial atmospheric ratio is 272, which is close to the ratio measured in the Earth's mantle. This may be the primordial ratio for nitrogen delivered to Earth depending on the amount of exchange between the atmosphere and the mantle and any atmospheric fractionation processes that may have influenced the ratio over time. Comets are a possible source of nitrogen in the Earth's atmosphere (Hutsmekers et al., 2009), although chondrites have also been suggested as a source (Marty, 2012). In the case of comets, nitrogen would have been essentially retained in the form of ammonia (Mousis et al., 2012), which is the most abundant form of nitrogen in comets. The nitrogen in Titan's atmosphere is expected to have originated as ammonia hydrates and converted to N2 early in Titan's history (Atreya et al., 1978). The nitrogen ratio in Titan's atmosphere is ~170, which is significantly enriched in the heavy isotope compared to the terrestrial value. We will discuss the evolution of the nitrogen ratio in Titan's atmosphere (Mandt et al., 2009), the limits of the primordial ratio in ammonia, and the implications for this ratio for the isotope ratio in ammonia in comets that should be measured by the ROSINA instrument

  20. Fluid sources and metallogenesis in the Blackbird Co-Cu-Au-Bi-Y-REE district, Idaho, U.S.A.: Insights from major-element and boron isotopic compositions of tourmaline

    USGS Publications Warehouse

    Trumbull, Robert B.; Slack, John F.; Krienitz, M.-S.; Belkin, Harvey E.; Wiedenbeck, M.

    2011-01-01

    Tourmaline is a widespread mineral in the Mesoproterozoic Blackbird Co–Cu–Au–Bi–Y–REE district, Idaho, where it occurs in both mineralized zones and wallrocks. We report here major-element and B-isotope compositions of tourmaline from stratabound sulfide deposits and their metasedimentary wallrocks, from mineralized and barren pipes of tourmaline breccia, from late barren quartz veins, and from Mesoproterozoic granite. The tourmalines are aluminous, intermediate in the schorl–dravite series, with Fe/(Fe + Mg) values of 0.30 to 0.85, and 10 to 50% X-site vacancies. Compositional zoning is prominent only in tourmaline from breccias and quartz veins; crystal rims are enriched in Mg, Ca and Ti, and depleted in Fe and Al relative to cores. The chemical composition of tourmaline does not correlate with the presence or absence of mineralization. The δ11B values fall into two groups. Isotopically light tourmaline (−21.7 to −7.6‰) occurs in unmineralized samples from wallrocks, late quartz veins and Mesoproterozoic granite, whereas heavy tourmaline (−6.9 to +3.2‰) is spatially associated with mineralization (stratabound and breccia-hosted), and is also found in barren breccia. At an inferred temperature of 300°C, boron in the hydrothermal fluid associated with mineralization had δ11B values of −3 to +7‰. The high end of this range indicates a marine source of the boron. A likely scenario involves leaching of boron principally from marine carbonate beds or B-bearing evaporites in Mesoproterozoic strata of the region. The δ11B values of the isotopically light tourmaline in the sulfide deposits are attributed to recrystallization during Cretaceous metamorphism, superimposed on a light boron component derived from footwall siliciclastic sediments (e.g., marine clays) during Mesoproterozoic mineralization, and possibly a minor component of light boron from a magmatic–hydrothermal fluid. The metal association of Bi–Be–Y–REE in the Blackbird

  1. Determination of phenylalanine isotope ratio enrichment by liquid chromatography/time- of-flight mass spectrometry.

    PubMed

    Wu, Zhanpin; Zhang, Xiao-Jun; Cody, Robert B; Wolfe, Robert R

    2004-01-01

    The application of time-of-flight mass spectrometry to isotope ratio measurements has been limited by the relatively low dynamic range of the time-to-digital converter detectors available on commercial LC/ToF-MS systems. Here we report the measurement of phenylalanine isotope ratio enrichment by using a new LC/ToF-MS system with wide dynamic range. Underivatized phenylalanine was injected onto a C18 column directly with 0.1% formic acid/acetonitrile as the mobile phase. The optimal instrument parameters for the time-of-flight mass spectrometer were determined by tuning the instrument with a phenylalanine standard. The accuracy of the isotope enrichment measurement was determined by the injection of standard solutions with known isotope ratios ranging from 0.02% to 9.2%. A plot of the results against the theoretical values gave a linear curve with R2 of 0.9999. The coefficient of variation for the isotope ratio measurement was below 2%. The method is simple, rapid, and accurate and presents an attractive alternative to traditional GC/MS applications.

  2. Comparison of gas chromatography/isotope ratio mass spectrometry and liquid chromatography/isotope ratio mass spectrometry for carbon stable-isotope analysis of carbohydrates.

    PubMed

    Moerdijk-Poortvliet, Tanja C W; Schierbeek, Henk; Houtekamer, Marco; van Engeland, Tom; Derrien, Delphine; Stal, Lucas J; Boschker, Henricus T S

    2015-07-15

    We compared gas chromatography/isotope ratio mass spectrometry (GC/IRMS) and liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) for the measurement of δ(13)C values in carbohydrates. Contrary to GC/IRMS, no derivatisation is needed for LC/IRMS analysis of carbohydrates. Hence, although LC/IRMS is expected to be more accurate and precise, no direct comparison has been reported. GC/IRMS with the aldonitrile penta-acetate (ANPA) derivatisation method was compared with LC/IRMS without derivatisation. A large number of glucose standards and a variety of natural samples were analysed for five neutral carbohydrates at natural abundance as well as at (13)C-enriched levels. Gas chromatography/chemical ionisation mass spectrometry (GC/CIMS) was applied to check for incomplete derivatisation of the carbohydrate, which would impair the accuracy of the GC/IRMS method. The LC/IRMS technique provided excellent precision (±0.08‰ and ±3.1‰ at natural abundance and enrichment levels, respectively) for the glucose standards and this technique proved to be superior to GC/IRMS (±0.62‰ and ±19.8‰ at natural abundance and enrichment levels, respectively). For GC/IRMS measurements the derivatisation correction and the conversion of carbohydrates into CO2 had a considerable effect on the measured δ(13)C values. However, we did not find any significant differences in the accuracy of the two techniques over the full range of natural δ(13)C abundances and (13)C-labelled glucose. The difference in the performance of GC/IRMS and LC/IRMS diminished when the δ(13)C values were measured in natural samples, because the chromatographic performance and background correction became critical factors, particularly for LC/IRMS. The derivatisation of carbohydrates for the GC/IRMS method was complete. Although both LC/IRMS and GC/IRMS are reliable techniques for compound-specific stable carbon isotope analysis of carbohydrates (provided that derivatisation is complete and the

  3. Low-Energy Sputtering Studies of Boron Nitride with Xenon Ions

    NASA Technical Reports Server (NTRS)

    Ray, P. K.; Shutthanandan, V.

    1999-01-01

    Sputtering of boron nitride with xenon ions was investigated using secondary ion (SIMS) and secondary neutral (SNMS) mass spectrometry. The ions generated from the ion gun were incident on the target at an angle of 50' with respect to the surface'normal. The energy of ions ranged from 100 eV to 3 keV. A flood electron gun was used to neutralize the positive charge build-up on the target surface. The intensities of sputtered neutral and charged particles, including single atoms, molecules, and clusters, were measured as a function of ion energy. Positive SIMS spectra were dominated by the two boron isotopes whereas BN- and B- were the two major constituents of the negative SIMS spectra. Nitrogen could be detected only in the SNMS spectra. The intensity-energy curves of the sputtered particles were similar in shape. The knees in P-SIMS and SNMS intensity-energy curves appear at around I keV which is significantly higher that 100 to 200 eV energy range at which knees appear in the sputtering of medium and heavy elements by ions of argon and xenon. This difference in the position of the sputter yield knee between boron nitride and heavier targets is due to the reduced ion energy differences. The isotopic composition of secondary ions of boron were measured by bombarding boron nitride with xenon ions at energies ranging from 100 eV to 1.5 keV using a quadrupole mass spectrometer. An ion gun was used to generate the ion beam. A flood electron gun was used to neutralize the positive charge buildup on the target surface. The secondary ion flux was found to be enriched in heavy isotopes at lower incident ion energies. The heavy isotope enrichment was observed to decrease with increasing primary ion energy. Beyond 350 eV, light isotopes were sputtered preferentially with the enrichment increasing to an asymptotic value of 1.27 at 1.5 keV. The trend is similar to that of the isotopic enrichment observed earlier when copper was sputtered with xenon ions in the same energy

  4. Homogeneous diet of contemporary Japanese inferred from stable isotope ratios of hair

    NASA Astrophysics Data System (ADS)

    Kusaka, Soichiro; Ishimaru, Eriko; Hyodo, Fujio; Gakuhari, Takashi; Yoneda, Minoru; Yumoto, Takakazu; Tayasu, Ichiro

    2016-09-01

    The globalization of food production and distribution has homogenized human dietary patterns irrespective of geography, but it is uncertain how far this homogenization has progressed. This study investigated the carbon and nitrogen isotope ratios in the scalp hair of 1305 contemporary Japanese and found values of -19.4 ± 0.6‰ and 9.4 ± 0.6‰ (mean ± SD), respectively. Within Japan, the inter-regional differences for both isotope ratios was less than 1‰, which indicates low dietary heterogeneity among prefectural divisions. The carbon and nitrogen isotope ratios of the hair showed a significant correlation with the results of questionnaires on self-reported dietary habits. The carbon isotope ratios from Japan were lower than those in samples from the USA but higher than those in samples from Europe. These differences stem from the varying dietary proportions of food products originally derived from C3 and C4 plants. The dietary variation of Japan is as small as those of Europe and USA and smaller than those of some Asian countries. These results indicate that dietary homogeneity has progressed in Japan, which may indicate the influence from the spread of the Western-style diet and food globalization, although dietary heterogeneity among countries is still preserved.

  5. Homogeneous diet of contemporary Japanese inferred from stable isotope ratios of hair.

    PubMed

    Kusaka, Soichiro; Ishimaru, Eriko; Hyodo, Fujio; Gakuhari, Takashi; Yoneda, Minoru; Yumoto, Takakazu; Tayasu, Ichiro

    2016-09-12

    The globalization of food production and distribution has homogenized human dietary patterns irrespective of geography, but it is uncertain how far this homogenization has progressed. This study investigated the carbon and nitrogen isotope ratios in the scalp hair of 1305 contemporary Japanese and found values of -19.4 ± 0.6‰ and 9.4 ± 0.6‰ (mean ± SD), respectively. Within Japan, the inter-regional differences for both isotope ratios was less than 1‰, which indicates low dietary heterogeneity among prefectural divisions. The carbon and nitrogen isotope ratios of the hair showed a significant correlation with the results of questionnaires on self-reported dietary habits. The carbon isotope ratios from Japan were lower than those in samples from the USA but higher than those in samples from Europe. These differences stem from the varying dietary proportions of food products originally derived from C3 and C4 plants. The dietary variation of Japan is as small as those of Europe and USA and smaller than those of some Asian countries. These results indicate that dietary homogeneity has progressed in Japan, which may indicate the influence from the spread of the Western-style diet and food globalization, although dietary heterogeneity among countries is still preserved.

  6. Absolute Isotopic Abundance Ratios and the Accuracy of Δ47 Measurements

    NASA Astrophysics Data System (ADS)

    Daeron, M.; Blamart, D.; Peral, M.; Affek, H. P.

    2016-12-01

    Conversion from raw IRMS data to clumped isotope anomalies in CO2 (Δ47) relies on four external parameters: the (13C/12C) ratio of VPDB, the (17O/16O) and (18O/16O) ratios of VSMOW (or VPDB-CO2), and the slope of the triple oxygen isotope line (λ). Here we investigate the influence that these isotopic parameters exert on measured Δ47 values, using real-world data corresponding to 7 months of measurements; simulations based on randomly generated data; precise comparisons between water-equilibrated CO2 samples and between carbonate standards believed to share quasi-identical Δ47 values; reprocessing of two carbonate calibration data sets with different slopes of Δ47 versus T. Using different sets of isotopic parameters generally produces systematic offsets as large as 0.04 ‰ in final Δ47 values. What's more, even using a single set of isotopic parameters can produce intra- and inter-laboratory discrepancies in final Δ47 values, if some of these parameters are inaccurate. Depending on the isotopic compositions of the standards used for conversion to "absolute" values, these errors should correlate strongly with either δ13C or δ18O, or more weakly with both. Based on measurements of samples expected to display identical Δ47 values, such as 25°C water-equilibrated CO2 with different carbon and oxygen isotope compositions, or high-temperature standards ETH-1 and ETH-2, we conclude that the isotopic parameters used so far in most clumped isotope studies produces large, systematic errors controlled by the relative bulk isotopic compositions of samples and standards, which should be one of the key factors responsible for current inter-laboratory discrepancies. By contrast, the isotopic parameters of Brand et al. [2010] appear to yield accurate Δ47 values regardless of bulk isotopic composition. References:Brand, Assonov and Coplen [2010] http://dx.doi.org/10.1351/PAC-REP-09-01-05

  7. Recent developments in the use of isotope ratio mass spectrometry in sports drug testing.

    PubMed

    Piper, Thomas; Emery, Caroline; Saugy, Martial

    2011-08-01

    According to the annual report of the World Anti-Doping Agency, steroids are the most frequently detected class of doping agents. Detecting the misuse of endogenously occurring steroids, i.e. steroids such as testosterone that are produced naturally by humans, is one of the most challenging issues in doping control analysis. The established thresholds for urinary concentrations or concentration ratios such as the testosterone/epitestosterone quotient are sometimes inconclusive owing to the large biological variation in these parameters.For more than 15 years, doping control laboratories focused on the carbon isotope ratios of endogenous steroids to distinguish between naturally elevated steroid profile parameters and illicit administration of steroids. A variety of different methods has been developed throughout the last decade and the number of different steroids under investigation by isotope ratio mass spectrometry has recently grown considerably. Besides norandrosterone, boldenone was found to occur endogenously in rare cases and the misuse of corticosteroids or epitestosterone can now be detected with the aid of carbon isotope ratios as well. In addition, steroids excreted as sulfoconjugates were investigated, and the first results regarding hydrogen isotope ratios recently became available.All of these will be presented in detail within this review together with some considerations on validation issues and on identification of parameters influencing steroidal isotope ratios in urine.

  8. Portable Cavity Ringdown Spectrometer for Methane Isotope Ratio Measurements

    NASA Astrophysics Data System (ADS)

    Bostrom, G.; Rice, A.; Atkinson, D.

    2008-12-01

    Close to 45% (244 Tg/yr) of the methange (CH4) in the atmosphere is produced in anaerobic soil conditions (wetlands and rice paddies). Under aerobic soil conditions, bacteria oxidize CH4 to produce CO2 and H2O. Both production and oxidation rates depend on soil composition, nutrient loadings, water content, and plant conditions, but these dependencies are not well characterized. Measurements of CH4 isotope ratios can provide a better understanding of CH4 processes in natural and man- made ecosystems. Here we present progress on the development of a field deployable instrument capable of making precision 13CH4/12CH4 and CH3D/ CH4 isotope ratio measurements of CH4. Moving the instrument out of the lab and into the field will significantly improve the spatial and temporal resolution of data and enhance the study of plant-soil-atmosphere CH4 source and sink processes. Our instrument is a Near-IR (1280-1340 nm) tunable diode laser Cavity Ringdown Spectroscopy (CRDS) system. CRDS is a technique in which the laser injects energy into a high finesse cavity by tuning to one of the cavity resonant modes, resulting in a buildup of energy. At some threshold intra-cavity intensity the injection is stopped, and the intensity decays exponentially due to losses such as absorption by molecules. If the laser is tuned to an absorption line of a sample gas, the concentration of the molecule is proportional to the decay constant (according to the Beer-Lambert law)--scanning over a frequency range produces an absorption spectrum. Currently our system has a resolution of 150 MHz scanning over a 30 GHz (0.2 nm) region, allowing us to resolve peaks at pressures of 100 torr. Using combinations of CH4 standard (natural isotopic abundance) and a 99% pure 13CH4 standard, we identified several lines in the CH4 HITRAN Database that we attribute to 13CH4. We use these and 12CH4 lines within the same region to measure 13CH4 concentration, 12CH4 concentration, and the isotope ratio (13C/12C and D

  9. Isotope ratio analysis of individual sub-micrometer plutonium particles with inductively coupled plasma mass spectrometry.

    PubMed

    Esaka, Fumitaka; Magara, Masaaki; Suzuki, Daisuke; Miyamoto, Yutaka; Lee, Chi-Gyu; Kimura, Takaumi

    2010-12-15

    Information on plutonium isotope ratios in individual particles is of great importance for nuclear safeguards, nuclear forensics and so on. Although secondary ion mass spectrometry (SIMS) is successfully utilized for the analysis of individual uranium particles, the isobaric interference of americium-241 to plutonium-241 makes difficult to obtain accurate isotope ratios in individual plutonium particles. In the present work, an analytical technique by a combination of chemical separation and inductively coupled plasma mass spectrometry (ICP-MS) is developed and applied to isotope ratio analysis of individual sub-micrometer plutonium particles. The ICP-MS results for individual plutonium particles prepared from a standard reference material (NBL SRM-947) indicate that the use of a desolvation system for sample introduction improves the precision of isotope ratios. In addition, the accuracy of the (241)Pu/(239)Pu isotope ratio is much improved, owing to the chemical separation of plutonium and americium. In conclusion, the performance of the proposed ICP-MS technique is sufficient for the analysis of individual plutonium particles. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Changes in hydrogen isotope ratios in sequential plumage stages: an implication for the creation of isotope-base maps for tracking migratory birds.

    PubMed

    Duxbury, J M; Holroyd, G L; Muehlenbachs, K

    2003-09-01

    Accurate reference maps are important in the use of stable-isotopes to track the movements of migratory birds. Reference maps created by the analysis of samples collected from young at the nest site are more accurate than simply referring to naturally occurring patterns of hydrogen isotope ratios created by precipitation cycles. Ratios of hydrogen isotopes in the nutrients incorporated early in the development of young birds can be derived from endogenous, maternal sources. Base-maps should be created with the analysis of tissue samples from hatchlings after local the isotopic signature of exogenous nutrients is dominant. Migratory species such as Peregrine Falcons are known to use endogenous sources in the creation of their eggs, therefore knowledge of what plumage stage best represents the local hydrogen ratios would assist in the planning of nest visits. We conducted diet manipulation experiments involving Japanese Quail and Peregrine Falcons to determine the plumage stage when hydrogen isotope ratios were indicative of a switch in their food source. The natal down of both the quail and falcons reflected the diet of breeding adult females. The hydrogen isotope ratios of a new food source were dominant in the juvenile down of the young falcons, although a further shift was detected in the final juvenile plumage. The juvenile plumage is grown during weeks 3-4 after hatch on Peregrine Falcons. Nest visits for the purpose of collecting feathers for isotope-base-map creation should be made around 4 weeks after the presumed hatch of the young falcons.

  11. Evaluation strategies for isotope ratio measurements of single particles by LA-MC-ICPMS.

    PubMed

    Kappel, S; Boulyga, S F; Dorta, L; Günther, D; Hattendorf, B; Koffler, D; Laaha, G; Leisch, F; Prohaska, T

    2013-03-01

    Data evaluation is a crucial step when it comes to the determination of accurate and precise isotope ratios computed from transient signals measured by multi-collector-inductively coupled plasma mass spectrometry (MC-ICPMS) coupled to, for example, laser ablation (LA). In the present study, the applicability of different data evaluation strategies (i.e. 'point-by-point', 'integration' and 'linear regression slope' method) for the computation of (235)U/(238)U isotope ratios measured in single particles by LA-MC-ICPMS was investigated. The analyzed uranium oxide particles (i.e. 9073-01-B, CRM U010 and NUSIMEP-7 test samples), having sizes down to the sub-micrometre range, are certified with respect to their (235)U/(238)U isotopic signature, which enabled evaluation of the applied strategies with respect to precision and accuracy. The different strategies were also compared with respect to their expanded uncertainties. Even though the 'point-by-point' method proved to be superior, the other methods are advantageous, as they take weighted signal intensities into account. For the first time, the use of a 'finite mixture model' is presented for the determination of an unknown number of different U isotopic compositions of single particles present on the same planchet. The model uses an algorithm that determines the number of isotopic signatures by attributing individual data points to computed clusters. The (235)U/(238)U isotope ratios are then determined by means of the slopes of linear regressions estimated for each cluster. The model was successfully applied for the accurate determination of different (235)U/(238)U isotope ratios of particles deposited on the NUSIMEP-7 test samples.

  12. Influences of large-scale convection and moisture source on monthly precipitation isotope ratios observed in Thailand, Southeast Asia

    NASA Astrophysics Data System (ADS)

    Wei, Zhongwang; Lee, Xuhui; Liu, Zhongfang; Seeboonruang, Uma; Koike, Masahiro; Yoshimura, Kei

    2018-04-01

    Many paleoclimatic records in Southeast Asia rely on rainfall isotope ratios as proxies for past hydroclimatic variability. However, the physical processes controlling modern rainfall isotopic behaviors in the region is poorly constrained. Here, we combined isotopic measurements at six sites across Thailand with an isotope-incorporated atmospheric circulation model (IsoGSM) and the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model to investigate the factors that govern the variability of precipitation isotope ratios in this region. Results show that rainfall isotope ratios are both correlated with local rainfall amount and regional outgoing longwave radiation, suggesting that rainfall isotope ratios in this region are controlled not only by local rain amount (amount effect) but also by large-scale convection. As a transition zone between the Indian monsoon and the western North Pacific monsoon, the spatial difference of observed precipitation isotope among different sites are associated with moisture source. These results highlight the importance of regional processes in determining rainfall isotope ratios in the tropics and provide constraints on the interpretation of paleo-precipitation isotope records in the context of regional climate dynamics.

  13. An Alternative Explanation of the Varying Boron-to-carbon Ratio in Galactic Cosmic Rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eichler, David

    2017-06-10

    It is suggested that the decline with energy of the boron-to-carbon abundance ratio in Galactic cosmic rays is due, in part, to a correlation between the maximum energy attainable by shock acceleration in a given region of the Galactic disk and the grammage traversed before escape. In this case the energy dependence of the escape rate from the Galaxy may be less than previously thought and the spectrum of antiprotons becomes easier to understand.

  14. The fractionation factors of stable carbon and hydrogen isotope ratios for VOCs

    NASA Astrophysics Data System (ADS)

    Kawashima, H.

    2014-12-01

    Volatile organic compounds (VOCs) are important precursors of ozone and secondary organic aerosols in the atmosphere, some of which are carcinogenic, teratogenic, or mutagenic. VOCs in ambient air originate from many sources, including vehicle exhausts, gasoline evaporation, solvent use, natural gas emissions, and industrial processes, and undergo intricate chemical reactions in the atmosphere. To develop efficient air pollution remediation strategies, it is important to clearly identify the emission sources and elucidate the reaction mechanisms in the atmosphere. Recently, stable carbon isotope ratios (δ13C) of VOCs in some sources and ambient air have been measured by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). In this study, we measured δ13C and stable hydrogen isotope ratios (δD) of atmospheric VOCs by using the gas chromatography/thermal conversion/isotope ratio mass spectrometry coupled with a thermal desorption instrument (TD-GC/TC/IRMS). The wider δD differences between sources were found in comparison with the δ13C studies. Therefore, determining δD values of VOCs in ambient air is potentially useful in identifying VOC sources and their reactive behavior in the atmosphere. However, to elucidate the sources and behavior of atmospheric VOCs more accurately, isotopic fractionation during atmospheric reaction must be considered. In this study, we determined isotopic fractionation of the δ13C and δD values for the atmospheric some VOCs under irradiation conditions. As the results, δ13C for target all VOCs and δD for most VOCs were increasing after irradiation. But, the δD values for both benzene and toluene tended to decrease as irradiation time increased. We also estimated the fractionation factors for benzene and toluene, 1.27 and 1.05, respectively, which differed from values determined in previous studies. In summary, we were able to identify an inverse isotope effect for the δD values of benzene and toluene

  15. Preliminary results of oxygen isotope ratio measurement with a particle-gamma coincidence method

    NASA Astrophysics Data System (ADS)

    Borysiuk, Maciek; Kristiansson, Per; Ros, Linus; Abdel, Nassem S.; Elfman, Mikael; Nilsson, Charlotta; Pallon, Jan

    2015-04-01

    The possibility to study variations in the oxygen isotopic ratio with photon tagged nuclear reaction analysis (pNRA) is evaluated in the current work. The experiment described in the article was performed at Lund Ion Beam Analysis Facility (LIBAF) with a 2 MeV deuteron beam. Isotopic fractionation of light elements such as carbon, oxygen and nitrogen is the basis of many analytical tools in hydrology, geology, paleobiology and paleogeology. IBA methods provide one possible tool for measurement of isotopic content. During this experimental run we focused on measurement of the oxygen isotopic ratio. The measurement of stable isotopes of oxygen has a number of applications; the particular one driving the current investigation belongs to the field of astrogeology and specifically evaluation of fossil extraterrestrial material. There are three stable isotopes of oxygen: 16O, 17O and 18O. We procured samples highly enriched with all three isotopes. Isotopes 16O and 18O were easily detected in the enriched samples, but no significant signal from 17O was detected in the same samples. The measured yield was too low to detect 18O in a sample with natural abundances of oxygen isotopes, at least in the current experimental setup, but the spectral line from the reaction with 16O was clearly visible.

  16. Evaluation of the 34S/32S ratio of Soufre de Lacq elemental sulfur isotopic reference material by continuous flow isotope-ratio mass spectrometry

    USGS Publications Warehouse

    Qi, H.P.; Coplen, T.B.

    2003-01-01

    Soufre de Lacq elemental sulfur reference material (IAEA-S-4) isotopically is homogeneous in amounts as small as 41 ??g as determined by continuous flow isotope-ratio mass spectrometry. The ??34S value for this reference material is +16.90 ?? 0.12??? (1??) on a scale (Vienna Can??on Diablo troilite, VCDT) where IAEA-S-1 Ag2S is -0.3??? and IAEA-S-2 Ag2S is +22.67???. Published by Elsevier Science B.V.

  17. Optical phonon modes in rhombohedral boron monosulfide under high pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherednichenko, Kirill A.; IMPMC, UPMC Sorbonne Universités, CNRS UMR 7590, 75005 Paris; LSPM–CNRS, Université Paris Nord, 93430 Villetaneuse

    2015-05-14

    Raman spectra of rhombohedral boron monosulfide (r-BS) were measured under pressures up to 34 GPa at room temperature. No pressure-induced structural phase transition was observed, while strong pressure shift of Raman bands towards higher wavenumbers has been revealed. IR spectroscopy as a complementary technique has been used in order to completely describe the phonon modes of r-BS. All experimentally observed bands have been compared with theoretically calculated ones and modes assignment has been performed. r-BS enriched by {sup 10}B isotope was synthesized, and the effect of boron isotopic substitution on Raman spectra was observed and analyzed.

  18. Certification of the Uranium Isotopic Ratios in Nbl Crm 112-A, Uranium Assay Standard (Invited)

    NASA Astrophysics Data System (ADS)

    Mathew, K. J.; Mason, P.; Narayanan, U.

    2010-12-01

    Isotopic reference materials are needed to validate measurement procedures and to calibrate multi-collector ion counting detector systems. New Brunswick Laboratory (NBL) provides a suite of certified isotopic and assay standards for the US and international nuclear safeguards community. NBL Certified Reference Material (CRM) 112-A Uranium Metal Assay Standard with a consensus value of 137.88 for the 238U/235U ratio [National Bureau of Standards -- NBS, currently named National Institute for Standards and Technology, Standard Reference Material (SRM) 960 had been renamed CRM 112-A] is commonly used as a natural uranium isotopic reference material within the earth science community. We have completed the analytical work for characterizing the isotopic composition of NBL CRM 112-A Uranium Assay Standard and NBL CRM 145 (uranyl nitrate solution prepared from CRM 112-A). The 235U/238U isotopic ratios were characterized using the total evaporation (TE) and the modified total evaporation (MTE) methods. The 234U/238U isotope ratios were characterized using a conventional analysis technique and verified using the ratios measured in the MTE analytical technique. The analysis plan for the characterization work was developed such that isotopic ratios that are traceable to NBL CRM U030-A are obtained. NBL is preparing a certificate of Analysis and will issue a certificate for Uranium Assay and Isotopics. The results of the CRM 112-A certification measurements will be discussed. These results will be compared with the average values from Richter et al (2010). A comparison of the precision and accuracy of the measurement methods (TE, MTE and Conventional) employed in the certification will be presented. The uncertainties in the 235U/238U and 234U/238U ratios, calculated according to the Guide to the Expression of Uncertainty in Measurements (GUM) and the dominant contributors to the combined standard uncertainty will be discussed.

  19. Homogeneous diet of contemporary Japanese inferred from stable isotope ratios of hair

    PubMed Central

    Kusaka, Soichiro; Ishimaru, Eriko; Hyodo, Fujio; Gakuhari, Takashi; Yoneda, Minoru; Yumoto, Takakazu; Tayasu, Ichiro

    2016-01-01

    The globalization of food production and distribution has homogenized human dietary patterns irrespective of geography, but it is uncertain how far this homogenization has progressed. This study investigated the carbon and nitrogen isotope ratios in the scalp hair of 1305 contemporary Japanese and found values of −19.4 ± 0.6‰ and 9.4 ± 0.6‰ (mean ± SD), respectively. Within Japan, the inter-regional differences for both isotope ratios was less than 1‰, which indicates low dietary heterogeneity among prefectural divisions. The carbon and nitrogen isotope ratios of the hair showed a significant correlation with the results of questionnaires on self-reported dietary habits. The carbon isotope ratios from Japan were lower than those in samples from the USA but higher than those in samples from Europe. These differences stem from the varying dietary proportions of food products originally derived from C3 and C4 plants. The dietary variation of Japan is as small as those of Europe and USA and smaller than those of some Asian countries. These results indicate that dietary homogeneity has progressed in Japan, which may indicate the influence from the spread of the Western-style diet and food globalization, although dietary heterogeneity among countries is still preserved. PMID:27616586

  20. Boron neutron capture therapy: Moving toward targeted cancer therapy.

    PubMed

    Mirzaei, Hamid Reza; Sahebkar, Amirhossein; Salehi, Rasoul; Nahand, Javid Sadri; Karimi, Ehsan; Jaafari, Mahmoud Reza; Mirzaei, Hamed

    2016-01-01

    Boron neutron capture therapy (BNCT) occurs when a stable isotope, boton-10, is irradiated with low-energy thermal neutrons to yield stripped down helium-4 nuclei and lithium-7 nuclei. It is a binary therapy in the treatment of cancer in which a cytotoxic event is triggered when an atom placed in a cancer cell. Here, we provide an overview on the application of BNCT in cancer therapy as well as current preclinical and clinical evidence on the efficacy of BNCT in the treatment of melanoma, brain tumors, head and neck cancer, and thyroid cancer. Several studies have shown that BNCT is effective in patients who had been treated with a full dose of conventional radiotherapy, because of its selectivity. In addition, BNCT is dependent on the normal/tumor tissue ratio of boron distribution. Increasing evidence has shown that BNCT can be combined with different drug delivery systems to enhance the delivery of boron to cancer cells. The flexibility of BNCT to be used in combination with different tumor-targeting approaches has made this strategy a promising option for cancer therapy. This review aims to provide a state-of-the-art overview of the recent advances in the use of BNCT for targeted therapy of cancer.

  1. THE BORON-CURCUMIN COMPLEX IN THE DETERMINATION OF TRACE AMOUNTS OF BORON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, M.R.; Metcalfe, J.

    1962-12-01

    A simple and robust method is described for the formation of the complex of boron with curcumin. The sensitivity of the method is 8.0 to 8.5 x 10/sup -5/ mu g per sq. cm by Sandell's definition. Formation of the complex is believed to be quartitative under the conditions used, and some evidence is given for a ratio of boron to curcumin of 1 to 3. Methods are outlined for determining boron in some metals, compounds, and organic materials. (auth)

  2. Direct separation of boron from Na- and Ca-rich matrices by sublimation for stable isotope measurement by MC-ICP-MS.

    PubMed

    Wang, Bo-Shian; You, Chen-Feng; Huang, Kuo-Fang; Wu, Shein-Fu; Aggarwal, Suresh Kumar; Chung, Chuan-Hsiung; Lin, Pei-Ying

    2010-09-15

    An improved technique for precise and accurate determination of boron isotopic composition in Na-rich natural waters (groundwater, seawater) and marine biogenic carbonates was developed. This study used a 'micro-sublimation' technique to separate B from natural sample matrices in place of the conventional ion-exchange extraction. By adjusting analyte to appropriate pH, quantitative recovery of boron can be achieved (>98%) and the B procedural blank is limited to <8 pg. An additional mass bias effect in MC-ICP-MS was observed which could not be improved via the standard-sample-standard bracketing or the 'pseudo internal' normalization by Li. Therefore a standard other than NBS SRM 951 was used to monitor plasma condition in order to maintain analytical accuracy. An isotope cross-calibration with results from TIMS shows that the space-charge mass bias on MC-ICP-MS can be successfully corrected using off-line mathematical manipulation. Several reference materials, including the seawater IAPSO and two groundwater standards IAEA-B-2 and IAEA-B-3, were used to validate this approach. We found that the delta(11)B of the reference coral JCp-1 was 24.22+/-0.28 per thousand, corresponding to seawater pH based on the coral delta(11)B-pH function. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  3. USING MUSSEL ISOTOPE RATIOS TO ASSESS ANTHROPOGEN NITROGEN INPUTS TO COASTAL ECOSYSTEMS

    EPA Science Inventory

    The stable nitrogen isotope ratio in ribbed mussel (Geukensia demissus) tissue was investigated as an indicator of the source of nitrogen inputs to coastal salt marshes. Mussels fed a diet of 15N enriched algae in the laboratory showed an increase in tissue nitrogen isotope rati...

  4. Comparisons of multiple isotope systems in the aragonitic shells of cultured Arctica islandica clams

    NASA Astrophysics Data System (ADS)

    Liu, Y. W.; Aciego, S.; Wanamaker, A. D.

    2014-12-01

    Previous work using oxygen and stable carbon isotopes from Arctica islandica shells has shown that this archive can provide information on past seawater temperatures, carbon cycling and ocean circulation. However, relatively less attention has been devoted to other "non-traditional" isotope systems within this proxy archive. In this study, we report the boron (δ11B) and strontium isotopic values (87Sr/86Sr and δ88/86Sr) from A. islandicashells collected and cultured from the Gulf of Maine. The long-lived ocean quahog, A. islandica was collected and cultured in the Gulf of Maine for 8 months. Our high-resolution δ11B records from the experiment show 5-7‰ of increase through the culture, with low values from January to May and higher values after May. The 87Sr/86Sr ratios from both tank water and shell samples suggest that the shell material reflects ambient ocean chemistry without interferences from terrestrial sources. Although It has been suggested that stable Sr isotopic ratios (δ88/86Sr) in biogenic carbonates are influenced by the temperature of the precipitating fluid, our nearly identical δ88/86Sr data do not support this hypothesis despite a 15 °C temperature change during the experiment. Based on the in-situ measurements of culture seawater temperature, salinity and pH, and two commonly used fractionation factors (α3-4) for corals and forams, we predicted the range in shell δ11B values for the experiment. Our boron results are at the extreme ends of the two prediction lines suggesting the potential usage of the bivalve shells as seawater pH indicator. However, the wider range in δ11B in this experiment than the predictions based on other carbonate organisms (only 2 to 3‰) suggests that a species-specific fractionation factor may be required. Recent work from an additional constant temperature experiment (10 and 15 °C) in the Gulf of Maine will allow us to further evaluate temperature influences and potential vital effects on the shell boron

  5. Stable isotope ratio analysis for authentication of lamb meat.

    PubMed

    Piasentier, E; Valusso, R; Camin, F; Versini, G

    2003-07-01

    The effectiveness of the analysis of stable isotope ratios ((13)C/(12)C and (15)N/(14)N) in fractions of lamb meat, measured by isotope ratio mass spectrometry, was evaluated as a method of feeding and geographical origin authentication. Analyses were carried out on meat from 12 lamb types, produced in couples in six European countries (country of origin, CO) and divided in three groups according to the feeding regime during their finishing period: suckled milk only, pasture without any solid supplementation and supplementation containing maize grain (feeding regime, FR). These analyses were made on two samples of longissimus thoracis muscle, taken from the 13th rib section of the left side of two different lambs, randomly chosen between the 120 selected to represent each lamb type. δ(13)C values varied significantly in different meat fractions, the difference being higher in protein than in fat (average difference 5.0‰). However, the pairs δ(13)C values of crude fat and protein were highly correlated (r=0.976) and affected by lamb type in a similar fashion, mainly reflecting animals' feeding regime. Even δ(15)N values of meat protein fraction showed significant differences between lamb types, not dependant on the feeding regime. In fact, lambs fed on similar diets, but in different countries, gave meat with different (15)N relative abundances. These findings provide the possibility of discriminating lamb types within the same feeding regime. Canonical discriminant analysis was carried out to evaluate whether lamb meat from different CO or FR or CO×FR interaction could be mathematically distinguished by its stable isotope ratios. On the basis of CO, the corrected empirical allocation of 79.2% of the initial observations and the corrected cross-validation of two thirds of the individual meat samples was obtained. FR gave better results: 91.7% of the individual meat samples was both correctly allocated and cross-validated, indicating the high potential of

  6. Chlorine isotope effects from isotope ratio mass spectrometry suggest intramolecular C-Cl bond competition in trichloroethene (TCE) reductive dehalogenation.

    PubMed

    Cretnik, Stefan; Bernstein, Anat; Shouakar-Stash, Orfan; Löffler, Frank; Elsner, Martin

    2014-05-20

    Chlorinated ethenes are prevalent groundwater contaminants. To better constrain (bio)chemical reaction mechanisms of reductive dechlorination, the position-specificity of reductive trichloroethene (TCE) dehalogenation was investigated. Selective biotransformation reactions (i) of tetrachloroethene (PCE) to TCE in cultures of Desulfitobacterium sp. strain Viet1; and (ii) of TCE to cis-1,2-dichloroethene (cis-DCE) in cultures of Geobacter lovleyi strain SZ were investigated. Compound-average carbon isotope effects were -19.0‰ ± 0.9‰ (PCE) and -12.2‰ ± 1.0‰ (TCE) (95% confidence intervals). Using instrumental advances in chlorine isotope analysis by continuous flow isotope ratio mass spectrometry, compound-average chorine isotope effects were measured for PCE (-5.0‰ ± 0.1‰) and TCE (-3.6‰ ± 0.2‰). In addition, position-specific kinetic chlorine isotope effects were determined from fits of reactant and product isotope ratios. In PCE biodegradation, primary chlorine isotope effects were substantially larger (by -16.3‰ ± 1.4‰ (standard error)) than secondary. In TCE biodegradation, in contrast, the product cis-DCE reflected an average isotope effect of -2.4‰ ± 0.3‰ and the product chloride an isotope effect of -6.5‰ ± 2.5‰, in the original positions of TCE from which the products were formed (95% confidence intervals). A greater difference would be expected for a position-specific reaction (chloride would exclusively reflect a primary isotope effect). These results therefore suggest that both vicinal chlorine substituents of TCE were reactive (intramolecular competition). This finding puts new constraints on mechanistic scenarios and favours either nucleophilic addition by Co(I) or single electron transfer as reductive dehalogenation mechanisms.

  7. Boron isotopes in brachiopods during the end-Permian mass extinction: constraints on pH evolution and seawater chemistry

    NASA Astrophysics Data System (ADS)

    Jurikova, Hana; Gutjahr, Marcus; Liebetrau, Volker; Brand, Uwe; Posenato, Renato; Garbelli, Claudio; Angiolini, Lucia; Eisenhauer, Anton

    2017-04-01

    The global biogeochemical cycling of carbon is fundamental for life on Earth with the ocean playing a key role as the largest and dynamically evolving CO2 reservoir. The boron isotope composition (commonly expressed in δ11B) of marine calcium carbonate is considered to be one of the most reliable paleo-pH proxies, potentially enabling us to reconstruct past ocean pH changes and understand carbon cycle perturbations along Earth's geological record (e.g. Foster et al., 2008; Clarkson et al., 2015). Brachiopods present an advantageous and largely underutilised archive for Phanerozoic carbon cycle reconstructions considering their high abundance in the geological record and its origin dating back to the early Cambrian. Moreover, their shell made of low-magnesium calcite makes these marine calcifiers more resistant to post-depositional diagenetic alteration of primary chemical signals. We have investigated the δ11B using MC-ICP-MS (Neptune Plus) and B/Ca and other elemental ratios (Mg/Ca, Sr/Ca, Al/Ca, Li/Ca, Ba/Ca, Na/Ca and Fe/Ca) using ICP-MS-Quadrupole (Agilent 7500cx) from the same specimens in pristine brachiopod shells from two sections from northern Italy during the Late Permian. These sections cover the δ13C excursion in excess of ˜4 ‰ (Brand et al., 2012) and are associated with major climate and environmental perturbations that lead to the mass extinction event at the Permian-Triassic boundary. Particular emphasis will be placed on the implications of our new paleo-pH estimates on the seawater chemistry during the Late Permian. Brand, U., Posenato, R., Came, R., Affek, H., Angiolini, L., Azmy, K. and Farabegoli, E.: The end-Permian mass extinction: A rapid volcanic CO2 and CH4-climatic catastrophe, Chemical Geology 323, 121-144, doi:10.1016/j.chemgeo.2012.06.015, 2012. Clarkson, M.O., Kasemann, S.A., Wood, R.A., Lenton, T.M., Daines, S.J., Richoz, S., Ohnemueller, F., Meixner, A., Poulton, S.W. and Tipper, E.T.: Ocean acidification and the Permo

  8. Association between Nitrogen Stable Isotope Ratios in Human Hair and Serum Levels of Leptin.

    PubMed

    Ahn, Song Vogue; Koh, Sang-Baek; Lee, Kwang-Sik; Bong, Yeon-Sik; Park, Jong-Ku

    2017-10-01

    Stable isotope ratios have been reported to be potential biomarkers of dietary intake and nutritional status. High serum levels of leptin, a hormone which regulates energy metabolism and food intake, are associated with insulin resistance and metabolic syndrome. However, little is known about the association between stable isotope ratios and the metabolic risk in humans. We investigated whether the carbon and nitrogen stable isotope ratios in hair are associated with serum leptin levels. Hair samples were collected from 399 healthy adults (233 men and 166 women) aged 40 to 70 years of a community-based cohort in Korea and the bulk stable isotope ratios of carbon (δ 13 C) and nitrogen (δ 15 N) were measured for all hair samples. Serum leptin levels were analyzed by radioimmunoassay. δ 15 N showed positive correlations with serum leptin levels. In multivariate models, increasing δ 15 N were associated with elevated serum leptin levels (defined as ≥ the median values), whereas δ 13 C were not significantly associated with serum leptin levels. The odds ratio (95% confidence interval) per 1‰ increase in δ 15 N for an elevated serum leptin level was 1.58 (1.11-2.26). In participants with high body mass index, δ 15 N showed positive associations with serum leptin levels, whereas these associations were not seen in participants with low body mass index. The nitrogen stable isotopic ratio in hair is positively associated with serum leptin levels. The hair δ 15 N could be used as a clinical marker to estimate metabolic risk.

  9. An interlaboratory study to test instrument performance of hydrogen dual-inlet isotope-ratio mass spectrometers

    USGS Publications Warehouse

    Brand, Willi A.; Coplen, T.B.

    2001-01-01

    An interlaboratory comparison of forty isotope-ratio mass spectrometers of different ages from several vendors has been performed to test 2H/1H performance with hydrogen gases of three different isotopic compositions. The isotope-ratio results (unsufficiently corrected for H3+ contribution to the m/z = 3 collector, uncorrected for valve leakage in the change-over valves, etc.) expressed relative to one of these three gases covered a wide range of values: -630??? to -790??? for the second gas and -368??? to -462??? for the third gas. After normalizing the isotopic abundances of these test gases (linearly adjusting the ?? values so that the gases with the lowest and highest 2H content were identical for all laboratories), the standard deviation of the 40 measurements of the intermediate gas was a remarkably low 0.85???. It is concluded that the use of scaling factors is mandatory for providing accurate internationally comparable isotope-abundance values. Linear scaling for the isotope-ratio scales of gaseous hydrogen mass spectrometers is completely adequate. ?? Springer-Verlag 2001.

  10. Forensic analysis of explosives using isotope ratio mass spectrometry (IRMS)--part 1: instrument validation of the DELTAplusXP IRMS for bulk nitrogen isotope ratio measurements.

    PubMed

    Benson, Sarah J; Lennard, Christopher J; Hill, David M; Maynard, Philip; Roux, Claude

    2010-01-01

    A significant amount of research has been conducted into the use of stable isotopes to assist in determining the origin of various materials. The research conducted in the forensic field shows the potential of isotope ratio mass spectrometry (IRMS) to provide a level of discrimination not achievable utilizing traditional forensic techniques. Despite the research there have been few, if any, publications addressing the validation and measurement uncertainty of the technique for forensic applications. This study, the first in a planned series, presents validation data for the measurement of bulk nitrogen isotope ratios in ammonium nitrate (AN) using the DELTA(plus)XP (Thermo Finnigan) IRMS instrument equipped with a ConFlo III interface and FlashEA 1112 elemental analyzer (EA). Appropriate laboratory standards, analytical methods and correction calculations were developed and evaluated. A validation protocol was developed in line with the guidelines provided by the National Association of Testing Authorities, Australia (NATA). Performance characteristics including: accuracy, precision/repeatability, reproducibility/ruggedness, robustness, linear range, and measurement uncertainty were evaluated for the measurement of nitrogen isotope ratios in AN. AN (99.5%) and ammonium thiocyanate (99.99+%) were determined to be the most suitable laboratory standards and were calibrated against international standards (certified reference materials). All performance characteristics were within an acceptable range when potential uncertainties, including the manufacturer's uncertainty of the technique and standards, were taken into account. The experiments described in this article could be used as a model for validation of other instruments for similar purposes. Later studies in this series will address the more general issue of demonstrating that the IRMS technique is scientifically sound and fit-for-purpose in the forensic explosives analysis field.

  11. Isotopic Ratios in Nitrile Species on Titan using ALMA

    NASA Astrophysics Data System (ADS)

    Molter, Edward; Nixon, Conor; Cordiner, Martin; Serigano, Joseph; Irwin, Patrick; Teanby, Nicholas; Charnley, Steven; Lindeberg, Johan

    2016-06-01

    The atmosphere of Titan is primarily composed of molecular nitrogen (N2, ˜98%) and methane (CH4, ˜2%), but also hosts a myriad of trace organic species. Two of the simplest and most abundant of these are hydrogen cyanide (HCN) and cyanoacetylene (HC3N). The advent of ALMA provides the opportunity to observe rotational transitions in these molecules and their isotopologues with unprecendented sensitivity and spatial resolution. We searched through the ALMA archive for publicly available high-resolution observations of Titan as a flux calibrator source taken between April and July 2014; each integration lasted around 160 seconds. Using spectra of HCN and HC3N isotopologues found in these data, we derive vertical abundance profiles and determine the isotopic ratios 14N/15N and 12C/13C in these molecules. We also report the detection of a new HCN isotopologue on Titan, H13C6 15N, and use a high signal-to-noise spectrum of DCN to determine the D/H ratio in HCN on Titan for the first time. These isotopic ratios are leveraged to constrain the physical and chemical processes occurring in Titan's atmosphere.

  12. Comment on “A critical evaluation of the boron isotope-pH proxy: The accuracy of ancient ocean pH estimates” by M. Pagani, D. Lemarchand, A. Spivack and J. Gaillardet

    NASA Astrophysics Data System (ADS)

    Hönisch, Bärbel; Hemming, N. Gary; Loose, Brice

    2007-03-01

    Pagani et al. [Pagani M., Lemarchand D., Spivack A., and Gaillardet J. (2005). A critical evaluation of the boron isotope-pH proxy: the accuracy of ancient ocean pH estimates. Geochim. Cosmochim. Acta69(4), 953-961] use data from previous boron isotope studies to suggest that the fractionation between boric acid and borate in seawater as well as the history of δ 11B in seawater are poorly understood, thus limiting our ability to capture realistic ocean pH with this proxy. Although we agree with the authors that the long recognized uncertainty in the secular variation of δ 11B seawater imposes a temporal limit on paleo-pH reconstructions, their evaluation of the δ 11B/pH relationship in carbonates is flawed. Potential complications from vital, temperature and dissolution effects reported in that paper are based on studies that are experimentally and/or analytically poorly constrained. Using published validation studies we will demonstrate that many of the problems outlined by Pagani et al. have already been addressed, or are based on misinterpretations of previous work. Most importantly, statistical evaluation suggests empirical data are best described by a fractionation of ˜20‰. Recent paleoreconstructions confirm that the boron isotope proxy can be used with confidence, if sample selection and analyses are done carefully.

  13. The hydrogen isotope ratio in W7-AS during deuterium NBI heating

    NASA Astrophysics Data System (ADS)

    Zebisch, P.; Taglauer, E.; W7-AS Team; NBI Team

    1999-04-01

    With a so-called sniffer probe the fraction of hydrogen during discharges with deuterium NBI heating was studied in the plasma edge of the stellarator W7-AS. As expected, the ratios were significantly lower than in discharges with hydrogen NBI heating but were higher than those in discharges with only ECRH. An examination of the possible reasons for this increase concludes that it is not only partially caused by the direct influence of neutral injection but also depends on the energy content of the plasma determined by the heating power and the confinement time. Of course, the isotope ratio also depends on the starting conditions, i.e. the isotope ratio before the onset of NBI.

  14. Application of stable isotope ratio analysis for biodegradation monitoring in groundwater

    USGS Publications Warehouse

    Hatzinger, Paul B.; Böhlke, John Karl; Sturchio, Neil C.

    2013-01-01

    Stable isotope ratio analysis is increasingly being applied as a tool to detect, understand, and quantify biodegradation of organic and inorganic contaminants in groundwater. An important feature of this approach is that it allows degradative losses of contaminants to be distinguished from those caused by non-destructive processes such as dilution, dispersion, and sorption. Recent advances in analytical techniques, and new approaches for interpreting stable isotope data, have expanded the utility of this method while also exposing complications and ambiguities that must be considered in data interpretations. Isotopic analyses of multiple elements in a compound, and multiple compounds in the environment, are being used to distinguish biodegradative pathways by their characteristic isotope effects. Numerical models of contaminant transport, degradation pathways, and isotopic composition are improving quantitative estimates of in situ contaminant degradation rates under realistic environmental conditions.

  15. Boron isotopic composition of Porites corals over the past 500 years in the South China Sea: Evaluating the potential controlling factors

    NASA Astrophysics Data System (ADS)

    Wang, Tzu-Hao; You, Chen-Feng; Liu, Yi; Chung, Chuan-Hsiung; Liu, Hou-Chun

    2016-04-01

    As the largest marginal sea in the East Asia, the South China Sea is sensitive to the environmental changes both in Asia landmass and western Pacific Ocean. Thus, the cause-consequence feedback systems between the seawater chemistry and environmental change in the South China Sea encompass various interactions and controlling factors on different spatial and temporal scales. Global and regional (e.g., continental sources, and the East Asian monsoon system) factors may have a simultaneous impact on the coral records. However, the representative meanings of coral records in the South China Sea are still poorly understood. Here we present an age-controlled coral boron isotopic (δ11B) record in the Xisha Islands, the northern South China Sea, from AD 1466 to AD 1960. We applied micro-sublimation technique and MC-ICP-MS measurement to provide a low-blank and highly precise δ11B measurement. The δ11B values of the coral specimens varied from 20.8‰ to 26.0‰ which the variation is larger than the observation in the western Pacific Ocean within the same periods. The δ11B data showed a gradual increase during AD 1466-1829 and a relatively sharp decline then until AD 1960. The anthropogenic emission of CO2 may explain the decline of coral-inferred seawater pH over the past 200 years but not for the period of AD 1466-1829. An evaluated correlation was observed between the variation of coral δ11B values and the monsoon-associated upwelling phenomenon, which implies a significant influence of the Asian monsoon system on boron geochemistry in the northern SCS. This study will provide a comprehensive discussion regarding the potential factors controlling the boron isotopic composition in the northern South China Sea over the past 500 years.

  16. Subduction-like fluids in the genesis of Mt. Etna magmas: evidence from boron isotopes and fluid mobile elements

    NASA Astrophysics Data System (ADS)

    Tonarini, Sonia; Armienti, Pietro; D'Orazio, Massimo; Innocenti, Fabrizio

    2001-11-01

    New whole-rock B, Sr, Nd isotope ratios and 87Sr/ 86Sr on clinopyroxenes have been collected to study the enrichment of fluid mobile elements (FMEs) observed in Mt. Etna volcanics. Etna volcano, one of the most active in the world, is located in an extremely complex tectonic context at the boundary between colliding African and European plates. The analytical work focuses on current (1974-1998) and historic (1851-1971) eruptive activity, including some key prehistoric lavas, in order to interpret the secular shift of its geochemical signature to more alkaline compositions. Boron is used as a tool to unravel the role of fluids in the genesis of magmas, revealing far-reaching consequences, beyond the case study of Mt. Etna. Small variations are observed in δ 11B (-3.5 to -8.0‰), 87Sr/ 86Sr (0.70323-0.70370), and 143Nd/ 144Nd (0.51293-0.51287). Moreover, temporal evolution to higher δ 11B and 87Sr/ 86Sr, and to lower 143Nd/ 144Nd, is observed in the current activity, defining a regular trend. Sr isotopic equilibrium between whole-rock and clinopyroxene pairs indicates the successive introduction of three distinct magma types into the Etna plumbing system over time; these are characterized by differing degrees of FME enrichment. In addition, certain lavas exhibit evidence for country rock assimilation, magma-fluid interaction, or magma mixing in the shallow feeding system; at times these processes apparently lowered magmatic δ 11B and/or induced Sr isotopic disequilibrium between whole rock and clinopyroxene. The regular increase of δ 11B values is correlated with Nb/FME and 87Sr/ 86Sr ratios; these correlations are consistent with simple mixing between the mantle source and aqueous fluids derived from nearby Ionian slab. The best fit of Mt. Etna data is obtained using an enriched-MORB mantle source and a fluid phase with δ 11B of about -2‰ and 87Sr/ 86Sr of 0.708. We argue that the slab window generated by differential roll-back of subducting Ionian

  17. Uranium Isotopic Ratio Measurements of U3O8 Reference Materials by Atom Probe Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fahey, Albert J.; Perea, Daniel E.; Bartrand, Jonah AG

    2016-01-01

    We report results of measurements of isotopic ratios obtained with atom probe tomography on U3O8 reference materials certified for their isotopic abundances of uranium. The results show good agreement with the certified values. High backgrounds due to tails from adjacent peaks complicate the measurement of the integrated peak areas as well as the fact that only oxides of uranium appear in the spectrum, the most intense of which is doubly charged. In addition, lack of knowledge of other instrumental parameters, such as the dead time, may bias the results. Isotopic ratio measurements can be performed at the nanometer-scale with themore » expectation of sensible results. The abundance sensitivity and mass resolving power of the mass spectrometer are not sufficient to compete with magnetic-sector instruments but are not far from measurements made by ToF-SIMS of other isotopic systems. The agreement of the major isotope ratios is more than sufficient to distinguish most anthropogenic compositions from natural.« less

  18. Spatial and Temporal Trends in Stable Carbon and Oxygen Isotope Ratios of Juvenile Winter Flounder

    EPA Science Inventory

    Isotopic ratios of fish otoliths have been used in numerous studies as natural tags or markers to aid the study of connectivity among fish populations. We investigated the use of spatial and temporal changes in the stable carbon and oxygen isotope ratios of otoliths to different...

  19. Daily Variation of Isotope Ratios in Mars Atmospheric Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Livengood, Timothy A.; Kostiuk, Theodor; Kolasinski, John R.; Hewagama, Tilak; Henning, Wade G.; Sornig, Manuela; Stangier, Tobias; Krause, Pia; Sonnabend, Guido; Mahaffy, Paul R.

    2014-11-01

    The atmosphere of Mars has been shown by ground based high-resolution infrared spectroscopy and in situ measurements with the Phoenix lander and Mars Science Laboratory Curiosity rover to be enriched in C and O heavy isotopes, consistent with preferential loss of light isotopes in eroding Mars’ primordial atmosphere. The relative abundance of heavy isotopes, combined with contemporary measurements of loss rates to be obtained with MAVEN, will enable estimating the primordial atmospheric inventory on Mars. IR spectroscopy of Mars collected in May 2012 as well as in March and May of 2014 from the NASA IRTF has resolved transitions of all three singly-substituted minor isotopologues of carbon dioxide in addition to the normal isotope, enabling remote measurements of all the carbon and oxygen isotope ratios as a function of latitude, longitude, and time of day. Earlier measurements obtained in October 2007 demonstrated that the relative abundance of O-18 increased linearly with increasing surface temperature over a relatively warm early-afternoon temperature range, but did not extend far enough to inspect the effect of late-afternoon cooling. These results imply that isotopically enriched gas is sequestered overnight when surface temperature is minimum and desorbs through the course of the day as temperature increases. Current spectroscopic constants indicate that the peak isotopic enrichment could be significantly greater than what has been measured in situ, apparently due to sampling the atmosphere at different time of day and surface temperature. The observing runs in 2012 and 2014 measured O-18 enrichment at several local times in both morning and afternoon sectors as well as at the subsolar, equatorial, and anti-subsolar latitudes. The two runs in 2014 have additionally observed O-17 and C-13 transitions in the morning sector, from local dawn to noon. These observations include a limited sampling of measurements over Gale Crater, which can be compared with

  20. Boron and strontium isotope ratios and major/trace elements concentrations in tea leaves at four major tea growing gardens in Taiwan.

    PubMed

    Chang, Cheng-Ta; You, Chen-Feng; Aggarwal, Suresh Kumar; Chung, Chuan-Hsiung; Chao, Hung-Chun; Liu, Hou-Chun

    2016-06-01

    Isotopic compositions of B and Sr in rocks and sediments can be used as tracers for plant provincial sources. This study aims to test whether tea leaf origin can be discriminated using (10)B/(11)B and Sr isotopic composition data, along with concentrations of major/trace elements, in tea specimens collected from major plantation gardens in Taiwan. The tea leaves were digested by microwave and analyzed by multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS). The data showed significant variations in (87)Sr/(86)Sr ratios (from 0.70482 to 0.71462), which reflect changes in soil, groundwater or irrigation conditions. The most radiogenic tea leaves were found at the Taitung garden and the least radiogenic ones were from the Hualien garden. The δ (11)B was found to change appreciably (δ (11)B = 0.38-23.73 ‰) which could be due to fertilizers. The maximum δ (11)B was also observed in tea samples from the Hualien garden. Principal component analysis combining (87)Sr/(86)Sr, δ (11)B and major/trace elements results successfully discriminated different sources of major tea gardens in Taiwan, except the Hualien gardens, and this may be due to rather complicated local geological settings.

  1. Insights into Wilson's Warbler migration from analyses of hydrogen stable-isotope ratios

    Treesearch

    Jeffrey F. Kelly; Viorel Atudorei; Zachary D. Sharp; Deborah M. Finch

    2002-01-01

    Our ability to link the breeding locations of individual passerines to migration stopover sites and wintering locations is limited. Stable isotopes of hydrogen contained in bird feathers have recently shown potential in this regard. We measured hydrogen stable-isotope ratios (deltaD) of feathers from breeding, migrating, and wintering Wilson's Warblers. Analyses...

  2. Trace, Minor Elements, and Stable Isotopes in Montastraea faveolata as an Indicator of Stress

    NASA Astrophysics Data System (ADS)

    Holmes, C. W.; Buster, N. A.; Hudson, J. H.

    2004-12-01

    Coral cores were obtained along the fore reef from Looe Key Reef, Florida Keys, and analyzed for minor and trace elements by laser ablation ICP-MS and stable oxygen and carbon isotopes. Sample locations within the corals were chosen based on the location of annual bands as determined by x-radiographs. The LA-ICP-MS data were obtained along the corallite wall. Boron, magnesium, and phosphorous concentrations can be correlated among the corals analyzed. The highest elemental concentrations and the carbon and oxygen isotopic records in the Looe Key Montastraea faveolata were linked to times of reported bleaching. Boron, a common element in sea water, exists as two species, B(OH)3 below a pH of 8.0 and B(OH)4- above a pH of 8. Hemming and others (1998) determined that boron varied positively with 13C, both being coincident with high-density bands. They proposed that photosynthetic activity of zooxanthellae is the driving process, causing the shift in pH. During periods of stress, energy that would be used for normal coral activity (reproduction and growth) is diverted for tissue repair, food gathering, and waste removal. At extreme stress, these activities are reduced. As a result of decreased zooxanthellate activity, the chemistry at the organic-inorganic boundary may change as follows. 1. The pH rises, increasing the boron levels in the carbonate skeleton. 2. Phosphorous, expelled during normal growth activity, is retained, inhibiting the precipitation of "normal" aragonite. 3. The Mg/Ca ratio changes as calcium is being used preferentially. In the Looe Key Reef corals, boron, magnesium, and phosphorous all were elevated during times of reported bleaching. Within the same time intervals, the δ 13C, which displayed values of between -2 % and -3 % in the "normal" light-density portion of the skeleton, approached a δ 13C of 0 % in the stressed, high-density portion of the skeleton. Thus, the combination of high magnesium, boron, and phosphorous concentrations, coupled

  3. Intrinsic ratios of glucose, fructose, glycerol and ethanol 13C/12C isotopic ratio determined by HPLC-co-IRMS: toward determining constants for wine authentication.

    PubMed

    Guyon, François; Gaillard, Laetitia; Salagoïty, Marie-Hélène; Médina, Bernard

    2011-09-01

    High-performance liquid chromatography linked to isotope ratio mass spectrometry (HPLC-co-IRMS) via a Liquiface© interface has been used to simultaneously determine (13)C isotope ratios of glucose (G), fructose (F), glycerol (Gly) and ethanol (Eth) in sweet and semi-sweet wines. The data has been used the study of wine authenticity. For this purpose, 20 authentic wines from various French production areas and various vintages have been analyzed after dilution in pure water from 20 to 200 times according to sugar content. If the (13)C isotope ratios vary according to the production area and the vintage, it appears that internal ratios of (13)C isotope ratios (R((13)C)) of the four compounds studied can be considered as a constant. Thus, ratios of isotope ratios are found to be 1.00 ± 0.04 and 1.02 ± 0.08 for R((13)C(G/F)) and R((13)C(Gly/Eth)), respectively. Moreover, R((13)C(Eth/Sugar)) is found to be 1.15 ± 0.10 and 1.16 ± 0.08 for R((13)C(Gly/Sugar)). Additions of glucose, fructose and glycerol to a reference wine show a variation of the R((13)C) value for a single product addition as low as 2.5 g/L(-1). Eighteen commercial wines and 17 concentrated musts have been analyzed. Three wine samples are suspicious as the R((13)C) values are out of range indicating a sweetening treatment. Moreover, concentrated must analysis shows that (13)C isotope ratio can be also used directly to determine the authenticity of the matrix.

  4. Novel Apparatus for the Real-Time Quantification of Dissolved Gas Concentrations and Isotope Ratios

    NASA Astrophysics Data System (ADS)

    Gupta, M.; Leen, J.; Baer, D. S.; Owano, T. G.; Liem, J.

    2013-12-01

    Measurements of dissolved gases and their isotopic composition are critical in studying a variety of phenomena, including underwater greenhouse gas generation, air-surface exchange, and pollution migration. These studies typically involve obtaining water samples from streams, lakes, or ocean water and transporting them to a laboratory, where they are degased. The gases obtained are then generally measured using gas chromatography and isotope ratio mass spectrometry for concentrations and isotope ratios, respectively. This conventional, off-line methodology is time consuming, significantly limits the number of the samples that can be measured and thus severely inhibits detailed spatial and temporal mapping of gas concentrations and isotope ratios. In this work, we describe the development of a new membrane-based degassing device that interfaces directly to Los Gatos Research (cavity enhanced laser absorption or Off-Axis ICOS) gas analyzers (cavity enhanced laser absorption or Off-Axis ICOS analyzers) to create an autonomous system that can continuously and quickly measure concentrations and isotope ratios of dissolved gases in real time in the field. By accurately controlling the water flow rate through the membrane degasser, gas pressure on the outside of the membrane, and water pressure on the inside of the membrane, the system is able to generate precise and highly reproducible results. Moreover, by accurately measuring the gas flow rates in and out of the degasser, the gas-phase concentrations (ppm) could be converted into dissolved gas concentrations (nM). We will present detailed laboratory test data that quantifies the linearity, precision, and dynamic range of the system for the concentrations and isotope ratios of dissolved methane, carbon dioxide, and nitrous oxide. By interfacing the degassing device to a novel cavity-enhanced spectrometer (developed by LGR), preliminary data will also be presented for dissolved volatile organics (VOC) and other

  5. Hydrogen and oxygen stable isotope ratios of milk in the United States.

    PubMed

    Chesson, Lesley A; Valenzuela, Luciano O; O'Grady, Shannon P; Cerling, Thure E; Ehleringer, James R

    2010-02-24

    Models of hydrogen and oxygen incorporation in human tissues recognize the impact of geographic location on the isotopic composition of fluid intake, but inputs can include nonlocal beverages, such as milk. Milk and cow drinking water were collected from dairies, and commercially available milk was purchased from supermarkets and fast food restaurants. It was hypothesized that milk water delta(2)H and delta(18)O values record geographic location information. Correlations between milk water isotope ratios and purchase location tap water were significant. However, the amount of variation in milk delta(2)H and delta(18)O values explained by tap water was low, suggesting a single estimation of fluid input isotope ratios may not always be adequate in studies. The delta(2)H and delta(18)O values of paired milk and cow drinking water were related, suggesting potential for geographical origin assignment using stable isotope analysis. As an application example, milk water delta(18)O values were used to predict possible regions of origin for restaurant samples.

  6. On-site isotopic analysis of dissolved inorganic carbon using an isotope ratio infrared spectrometer

    NASA Astrophysics Data System (ADS)

    Stoltmann, Tim; Mandic, Magda; Stöbener, Nils; Wapelhorst, Eric; Aepfler, Rebecca; Hinrichs, Kai-Uwe; Taubner, Heidi; Jost, Hj; Elvert, Marcus

    2016-04-01

    An Isotope Ratio Infrared Spectrometer (IRIS) has been adapted to perform measurements of δ13C of dissolved inorganic carbon (DIC) in marine pore waters. The resulting prototype allowed highly automated analysis of δ13C isotopic ratios and CO2 concentration. We achieved a throughput of up to 70 samples per day with DIC contents as low as 1.7 μmol C. We achieved an internal precision of 0.066 ‰ and an external precision of 0.16 ‰, which is comparable to values given for Isotope Ratio Mass Spectrometers (IRMS). The prototype instrument is field deployable, suitable for shipboard analysis of deep sea core pore waters. However, the validation of the prototype was centered around a field campaign in Eckernförde Bay, NW- Baltic Sea. As a proof of concept, a shallow site within an area of submarine groundwater discharge (SGD) and a site outside this area was investigated. We present profiles of δ13C of DIC over 50 cm exhibiting well understood methane turnover processes (anaerobic oxidation of methane). At the lowest point below the seafloor, microbial reduction of CO2 to CH4 dominates. 12CO2 is reduced preferentially over 13CO2, leading to more positive δ13C values in the remaining DIC pool; in layers closer to the surface, the oxidation of CH4 to CO2 becomes more prominent. Since the CH4 pool is enriched in 12C a shift to more negative δ13C can be observed in the DIC pool. In the upper 15 cm, the pore water DIC mixes with the sea water DIC, increasing δ13C again. Finally, we will present recent developments to further improve performance and future plans for deployments on research cruises.

  7. Tracing contamination sources in soils with Cu and Zn isotopic ratios.

    PubMed

    Fekiacova, Z; Cornu, S; Pichat, S

    2015-06-01

    Copper (Cu) and zinc (Zn) are naturally present and ubiquitous in soils and are important micronutrients. Human activities contribute to the input of these metals to soils in different chemical forms, which can sometimes reach a toxic level for soil organisms and plants. Isotopic signatures could be used to trace sources of anthropogenic Cu and Zn pollution. The aim of this paper is to determine whether it is possible to identify (i) Cu and Zn contamination in soils and their sources, on the basis of their isotopic signatures, and (ii) situations that are a priori favorable or not for tracing Cu and Zn pollution using the isotopic approach. Therefore, we compiled data from the literature on Cu and Zn isotopes in soils, rocks and pollutants and added to this database the results of our own research. As only a few studies have dealt with agricultural contamination, we also studied a soil toposequence from Brittany, France, that experienced spreading of pig slurry for tens of years. In the surface horizons of the natural soils, the δ(65)Cu values vary from -0.15 to 0.44‰ and the δ(66)Zn from -0.03 to 0.43‰. Furthermore, vertical variations along soil profiles range from -0.95 to 0.44‰ for δ(65)Cu and from -0.53 to 0.64‰ for δ(66)Zn values. We concluded that pedogenetic processes can produce isotopic fractionation, yet, it is not always discernible and can be overprinted by an exogenous isotopic signature. Furthermore, some contaminants are enriched in heavy Cu or in light Zn compared to the rock or soil, but no generalization can be made. The anthropogenic inputs can be identified based on stable Cu and Zn isotope ratios if the isotope ratios of the sources are different from those of the soil, which needs to be tested for each individual case. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Toward a simple, repeatable, non-destructive approach to measuring stable-isotope ratios of water within tree stems

    NASA Astrophysics Data System (ADS)

    Raulerson, S.; Volkmann, T.; Pangle, L. A.

    2017-12-01

    Traditional methodologies for measuring ratios of stable isotopes within the xylem water of trees involve destructive coring of the stem. A recent approach involves permanently installed probes within the stem, and an on-site assembly of pumps, switching valves, gas lines, and climate-controlled structure for field deployment of a laser spectrometer. The former method limits the possible temporal resolution of sampling, and sample size, while the latter may not be feasible for many research groups. We present results from initial laboratory efforts towards developing a non-destructive, temporally-resolved technique for measuring stable isotope ratios within the xylem flow of trees. Researchers have used direct liquid-vapor equilibration as a method to measure isotope ratios of the water in soil pores. Typically, this is done by placing soil samples in a fixed container, and allowing the liquid water within the soil to come into isotopic equilibrium with the headspace of the container. Water can also be removed via cryogenic distillation or azeotropic distillation, with the resulting liquid tested for isotope ratios. Alternatively, the isotope ratios of the water vapor can be directly measured using a laser-based water vapor isotope analyzer. Well-established fractionation factors and the isotope ratios in the vapor phase are then used to calculate the isotope ratios in the liquid phase. We propose a setup which would install a single, removable chamber onto a tree, where vapor samples could non-destructively and repeatedly be taken. These vapor samples will be injected into a laser-based isotope analyzer by a recirculating gas conveyance system. A major part of what is presented here is in the procedure of taking vapor samples at 100% relative humidity, appropriately diluting them with completely dry N2 calibration gas, and injecting them into the gas conveyance system without inducing fractionation in the process. This methodology will be helpful in making

  9. A hydrogen gas-water equilibration method produces accurate and precise stable hydrogen isotope ratio measurements in nutrition studies

    USDA-ARS?s Scientific Manuscript database

    Stable hydrogen isotope methodology is used in nutrition studies to measure growth, breast milk intake, and energy requirement. Isotope ratio MS is the best instrumentation to measure the stable hydrogen isotope ratios in physiological fluids. Conventional methods to convert physiological fluids to ...

  10. Study on strontium isotope abundance-ratio measurements by using a 13-MeV proton beam

    NASA Astrophysics Data System (ADS)

    Jeong, Cheol-Ki; Jang, Han; Lee, Goung-Jin

    2016-09-01

    The Rb-Sr dating method is used in dating Paleozoic and Precambrian rocks. This method measures the 87Rb and the 87Sr concentrations by using thermal ionization mass spectrometry (TIMS) [J. Hefne et al., Inter. J. Phys. Sci. 3(1), 28 (2008)]. In addition, it calculates the initial 87Sr/86Sr ratio to increase the reliability of Rb-Sr dating. In this study, the 87Sr/86Sr ratio was measured by using a 13-MeV proton accelerator. Proton kinetic energies are in the range of tens of megaelectronvolts, and protons have large absorption cross-sections for ( p, n) reactions with most substances. After absorbing a proton with such a high kinetic energy, an element is converted into a nuclide with its atomic number increased by one via nuclear transmutation. These nuclides usually have short half-lives and return to the original state through radioactive decay. When a strontium sample is irradiated with protons, nuclear transmutation occurs; thus, the strontium isotope present in the sample changes to a yttrium isotope, which is an activated radioisotope. Based on this, the 87Sr/86Sr ratio was calculated by analyzing the gamma-rays emitted by each yttrium isotope. The KIRAMS-13 cyclotron at the Cyclotron Center of Chosun University, where 13-MeV protons can be extracted, was utilized in our experiment. The 87Sr/86Sr isotope ratio was computed for samples irradiated with these protons, and the result was similar to the isotope ratio for the Standard Reference Material, i.e., 98.2 ± 3.4%. As part of the analysis, proton activation analyses were performed using 13-MeV protons, and the experimental results of this research suggest a possible approach for measuring the strontium-isotope abundance ratio of samples.

  11. Seeking excellence: An evaluation of 235 international laboratories conducting water isotope analyses by isotope-ratio and laser-absorption spectrometry.

    PubMed

    Wassenaar, L I; Terzer-Wassmuth, S; Douence, C; Araguas-Araguas, L; Aggarwal, P K; Coplen, T B

    2018-03-15

    Water stable isotope ratios (δ 2 H and δ 18 O values) are widely used tracers in environmental studies; hence, accurate and precise assays are required for providing sound scientific information. We tested the analytical performance of 235 international laboratories conducting water isotope analyses using dual-inlet and continuous-flow isotope ratio mass spectrometers and laser spectrometers through a water isotope inter-comparison test. Eight test water samples were distributed by the IAEA to international stable isotope laboratories. These consisted of a core set of five samples spanning the common δ-range of natural waters, and three optional samples (highly depleted, enriched, and saline). The fifth core sample contained unrevealed trace methanol to assess analyst vigilance to the impact of organic contamination on water isotopic measurements made by all instrument technologies. For the core and optional samples ~73 % of laboratories gave acceptable results within 0.2 ‰ and 1.5 ‰ of the reference values for δ 18 O and δ 2 H, respectively; ~27 % produced unacceptable results. Top performance for δ 18 O values was dominated by dual-inlet IRMS laboratories; top performance for δ 2 H values was led by laser spectrometer laboratories. Continuous-flow instruments yielded comparatively intermediate results. Trace methanol contamination of water resulted in extreme outlier δ-values for laser instruments, but also affected reactor-based continuous-flow IRMS systems; however, dual-inlet IRMS δ-values were unaffected. Analysis of the laboratory results and their metadata suggested inaccurate or imprecise performance stemmed mainly from skill- and knowledge-based errors including: calculation mistakes, inappropriate or compromised laboratory calibration standards, poorly performing instrumentation, lack of vigilance to contamination, or inattention to unreasonable isotopic outcomes. To counteract common errors, we recommend that laboratories include 1-2 'known

  12. Seeking excellence: An evaluation of 235 international laboratories conducting water isotope analyses by isotope-ratio and laser-absorption spectrometry

    USGS Publications Warehouse

    Wassenaar, L. I.; Terzer-Wassmuth, S.; Douence, C.; Araguas-Araguas, L.; Aggarwal, P. K.; Coplen, Tyler B.

    2018-01-01

    RationaleWater stable isotope ratios (δ2H and δ18O values) are widely used tracers in environmental studies; hence, accurate and precise assays are required for providing sound scientific information. We tested the analytical performance of 235 international laboratories conducting water isotope analyses using dual-inlet and continuous-flow isotope ratio mass spectrometers and laser spectrometers through a water isotope inter-comparison test.MethodsEight test water samples were distributed by the IAEA to international stable isotope laboratories. These consisted of a core set of five samples spanning the common δ-range of natural waters, and three optional samples (highly depleted, enriched, and saline). The fifth core sample contained unrevealed trace methanol to assess analyst vigilance to the impact of organic contamination on water isotopic measurements made by all instrument technologies.ResultsFor the core and optional samples ~73 % of laboratories gave acceptable results within 0.2 ‰ and 1.5 ‰ of the reference values for δ18O and δ2H, respectively; ~27 % produced unacceptable results. Top performance for δ18O values was dominated by dual-inlet IRMS laboratories; top performance for δ2H values was led by laser spectrometer laboratories. Continuous-flow instruments yielded comparatively intermediate results. Trace methanol contamination of water resulted in extreme outlier δ-values for laser instruments, but also affected reactor-based continuous-flow IRMS systems; however, dual-inlet IRMS δ-values were unaffected.ConclusionsAnalysis of the laboratory results and their metadata suggested inaccurate or imprecise performance stemmed mainly from skill- and knowledge-based errors including: calculation mistakes, inappropriate or compromised laboratory calibration standards, poorly performing instrumentation, lack of vigilance to contamination, or inattention to unreasonable isotopic outcomes. To counteract common errors, we recommend that

  13. Examining Changes in Radioxenon Isotope Activity Ratios during Subsurface Transport

    NASA Astrophysics Data System (ADS)

    Annewandter, R.

    2013-12-01

    The Non-Proliferation Experiment (NPE) has demonstrated and modelled the usefulness of barometric pumping induced soil gas sampling during On-Site inspections. Gas transport has been widely studied with different numerical codes. However, gas transport of all radioxenons in the post-detonation regime and their possible fractionation is still neglected in the open literature. Atmospheric concentrations of the radioxenons Xe-135, Xe-133m, Xe-133 and Xe-131m can be used to discriminate between civilian releases (nuclear power plants or medical isotope facilities), and nuclear explosion sources. It is based on the isotopic activity ratio method. Yet it is not clear whether subsurface migration of the radioxenons, with eventual release into the atmosphere, can affect the activity ratios due to fractionation. Fractionation can be caused by different diffusivities due to mass differences between the radioxenons. A previous study showed surface arrival time of a chemically inert gaseous tracer is affected by its diffusivity. They observed detectable amount for SF6 50 days after detonation and 375 days for He-3. They predict 50 and 80 days for Xe-133 and Ar-37 respectively. Cyclical changes in atmospheric pressure can drive subsurface gas transport. This barometric pumping phenomenon causes an oscillatoric flow in upward trending fractures which, combined with diffusion into the porous matrix, leads to a net transport of gaseous components - a ratcheting effect. We use a general purpose reservoir simulator (Complex System Modelling Platform, CSMP++) which has been applied in a range of fields such as deep geothermal systems, three-phase black oil simulations , fracture propagation in fractured, porous media, Navier-Stokes pore-scale modelling among others. It is specifically designed to account for structurally complex geologic situation of fractured, porous media. Parabolic differential equations are solved by a continuous Galerkin finite-element method, hyperbolic

  14. Accelerator-driven boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Edgecock, Rob

    2014-05-01

    Boron Neutron Capture Therapy is a binary treatment for certain types of cancer. It works by loading the cancerous cells with a boron-10 carrying compound. This isotope has a large cross-section for thermal neutrons, the reaction producing a lithium nucleus and alpha particle that kill the cell in which they are produced. Recent studies of the boron carrier compound indicate that the uptake process works best in particularly aggressive cancers. Most studied is glioblastoma multiforme and a trial using a combination of BNCT and X-ray radiotherapy has shown an increase of nearly a factor of two in mean survival over the state of the art. However, the main technical problem with BNCT remains producing a sufficient flux of neutrons for a reasonable treatment duration in a hospital environment. This paper discusses this issue.

  15. Isotope ratio analysis by Orbitrap mass spectrometry

    NASA Astrophysics Data System (ADS)

    Eiler, J. M.; Chimiak, L. M.; Dallas, B.; Griep-Raming, J.; Juchelka, D.; Makarov, A.; Schwieters, J. B.

    2016-12-01

    Several technologies are being developed to examine the intramolecular isotopic structures of molecules (i.e., site-specific and multiple substitution), but various limitations in sample size and type or (for IRMS) resolution have so far prevented the creation of a truly general technique. We will discuss the initial findings of a technique based on Fourier transform mass spectrometry, using the Thermo Scientific Q Exactive GC — an instrument that contains an Orbitrap mass analyzer. Fourier transform mass spectrometry is marked by exceptionally high mass resolutions (the Orbitrap reaches M/ΔM in the range 250,000-1M in the mass range of greatest interest, 50-200 amu). This allows for resolution of a large range of nearly isobaric interferences for isotopologues of volatile and semi-volatile compounds (i.e., involving isotopes of H, C, N, O and S). It also provides potential to solve very challenging mass resolution problems for isotopic analysis of other, heavier elements. Both internal and external experimental reproducibilities of isotope ratio analyses using the Orbitrap typically conform to shot-noise limits down to levels of 0.2 ‰ (1SE), and routinely in the range 0.5-1.0 ‰, with similar accuracy when standardized to concurrently run reference materials. Such measurements can be made without modifications to the ion optics of the Q Exactive GC, but do require specially designed sample introduction devices to permit sample/standard comparison and long integration times. The sensitivity of the Q Exactive GC permits analysis of sub-nanomolar samples and quantification of multiply-substituted species. The site-specific capability of this instrument arises from the fact that mass spectra of molecular analytes commonly contain diverse fragment ion species, each of which samples a specific sub-set of molecular sites. We will present applications of this technique to the biological and abiological chemistry of amino acids, forensic identification of hydrocarbon

  16. Application of major and trace elements as well as boron isotopes for tracing hydrochemical processes: the case of Trifilia coastal karst aquifer, Greece

    NASA Astrophysics Data System (ADS)

    Panagopoulos, G.

    2009-09-01

    The Trifilia karst aquifer presents a complex hydrochemical character due to the intricate geochemical processes that take place in the area. Their discernment was achieved by using the chemical analyses of major, trace elements and boron isotopes. Major ion composition indicates mixing between seawater and freshwater is occurring. Five hydrochemical zones corresponding to five respective groundwater types were distinguished, in which the chemical composition of groundwater is influenced mainly due to the different salinization grade of the aquifer. The relatively increased temperature of the aquifer indicates the presence of hydrothermal waters. Boron isotopes and trace elements indicate that the intruding seawater has been hydrothermally altered, as it is shown by the δ11B depleted signature and the increased concentrations of Li and Sr. Trace elements analyses showed that the groundwater is enriched in various metallic elements, which derive from the solid hydrocarbons (bitumens), contained in the carbonate sediments of the Tripolis zone. The concentration of these trace elements depends on the redox environment. Thus, in reductive conditions As, Mn, Co and NH4 concentrations are high, in oxidized conditions the V, Se, Mo, Tl and U concentration increases while Ni is not redox sensitive and present high concentration in both environments.

  17. Chemical characteristics, including stable-isotope ratios, of surface water and ground water from selected sources in and near East Fork Armells Creek basin, southeastern Montana, 1985

    USGS Publications Warehouse

    Ferreira, R.F.; Lambing, J.H.; Davis, R.E.

    1989-01-01

    Water samples were collected from 29 sites to provide synoptic chemical data, including stable-isotope ratios, for an area of active surface coal mining and to explore the effectiveness of using the data to chemically distinguish water from different aquifers. Surface-water samples were collected from one spring, four sites on East Armells Creek, one site on Stocker Creek, and two fly-ash ponds. Streamflows in East Fork Armells Creek ranged from no flow in several upstream reaches to 2.11 cu ft/sec downstream from Colstrip, Montana. Only one tributary, Stocker Creek, was observed to contribute surface flow in the study area. Groundwater samples were collected from wells completed in Quaternary alluvium or mine spoils, Rosebud overburden, Rosebud coal bed, McKay coal bed, and sub-McKay deposits of the Tongue River Member, Paleocene Fort Union Formation. Dissolved-solids concentrations, in mg/L, were 840 at the spring, 3,100 to 5,000 in the streams, 13,000 to 22,000 in the ash ponds, and 690 to 4 ,100 in the aquifers. With few exceptions, water from the sampled spring, streams, and wells had similar concentrations of major constituents and trace elements and similar stable-isotope ratios. Water from the fly-ash ponds had larger concentrations of dissolved solids, boron, and manganese and were isotopically more enriched in deuterium and oxygen-18 than water from other sources. Water from individual aquifers could not be distinguished by either ion-composition diagrams or statistical cluster analyses. (USGS)

  18. Boron Neutron Capture Therapy - A Literature Review

    PubMed Central

    Nedunchezhian, Kavitaa; Thiruppathy, Manigandan; Thirugnanamurthy, Sarumathi

    2016-01-01

    Boron Neutron Capture Therapy (BNCT) is a radiation science which is emerging as a hopeful tool in treating cancer, by selectively concentrating boron compounds in tumour cells and then subjecting the tumour cells to epithermal neutron beam radiation. BNCT bestows upon the nuclear reaction that occurs when Boron-10, a stable isotope, is irradiated with low-energy thermal neutrons to yield α particles (Helium-4) and recoiling lithium-7 nuclei. A large number of 10 Boron (10B) atoms have to be localized on or within neoplastic cells for BNCT to be effective, and an adequate number of thermal neutrons have to be absorbed by the 10B atoms to maintain a lethal 10B (n, α) lithium-7 reaction. The most exclusive property of BNCT is that it can deposit an immense dose gradient between the tumour cells and normal cells. BNCT integrates the fundamental focusing perception of chemotherapy and the gross anatomical localization proposition of traditional radiotherapy. PMID:28209015

  19. Boron isotope systematics during magma-carbonate interaction: an experimental study from Merapi (Indonesia) and Vesuvius (Italy)

    NASA Astrophysics Data System (ADS)

    Deegan, F. M.; Jolis, E. M.; Troll, V. R.; Freda, C.; Whitehouse, M.

    2011-12-01

    Carbonate assimilation is increasingly recognized as an important process affecting the compositional evolution of magma and its inherent ability to erupt explosively due to release of carbonate-derived CO2 [e.g., 1, 2, 3]. In order to gain insights into this process, we performed short time-scale carbonate dissolution experiments in silicate melt using natural starting materials from Merapi and Vesuvius volcanoes at magmatic pressure and temperature [2, 4]. The experiments enable us to resolve in detail the timescales, textures and chemical features of carbonate assimilation. Three compositionally distinct glass domains have been defined: i) Ca-normal glass, similar in composition to the starting material; ii) Ca-rich, contaminated glass; and iii) a diffusional glass interface between the Ca-normal and Ca-rich glass, characterized by steady interchange between SiO2 and CaO. Here we present new boron isotope data for the experimental products obtained by SIMS. The glasses show distinct and systematic variation in their δ11B (%) values. The contaminated glasses generally show extremely negative δ11B values (down to -41 %) relative to both the uncontaminated experimental glass and fresh arc volcanics (-7 to +7 % [5]). Considering that carbonates have δ11B values of +9 to +26 [6], the data cannot be explained by simple mixing processes between the end-members alone. This implies that the δ11B of the original contaminant was drastically modified before being incorporated into the melt, which can be explained by B isotope fractionation during breakdown and degassing of the carbonate. Our data represents the first B isotope analyses of experimental products of carbonate assimilation. They provide novel and well constrained insights into the behavior of boron upon degassing of carbonate. This, in turn, has implications for both i) late stage contamination and volatile addition to hazardous volcanic systems located over carbonate basement (cf. [7]) and ii) studies of

  20. Simultaneous determination of the quantity and isotopic ratios of uranium in individual micro-particles by isotope dilution thermal ionization mass spectrometry (ID-TIMS).

    PubMed

    Park, Jong-Ho; Choi, Eun-Ju

    2016-11-01

    A method to determine the quantity and isotopic ratios of uranium in individual micro-particles simultaneously by isotope dilution thermal ionization mass spectrometry (ID-TIMS) has been developed. This method consists of sequential sample and spike loading, ID-TIMS for isotopic measurement, and application of a series of mathematical procedures to remove the contribution of uranium in the spike. The homogeneity of evaporation and ionization of uranium content was confirmed by the consistent ratio of n((233)U)/n((238)U) determined by TIMS measurements. Verification of the method was performed using U030 solution droplets and U030 particles. Good agreements of resulting uranium quantity, n((235)U)/n((238)U), and n((236)U)/n((238)U) with the estimated or certified values showed the validity of this newly developed method for particle analysis when simultaneous determination of the quantity and isotopic ratios of uranium is required. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Absolute sulfur isotope amount ratios in two batches of high purity SO2 gas: sulfur isotope reference materials IRMM-2012 and IRMM-2013

    NASA Astrophysics Data System (ADS)

    Valkiers, S.; Ding, T.; Ruße, K.; de Bièvre, P.; Taylor, P. D. P.

    2005-04-01

    SI-traceable ("absolute") values have been obtained for sulfur isotope amount ratios n(33S)/n(32S) and n(34S)/n(32S), in two batches of high purity SO2 gas (IRMM-2012 and IRMM-2013). The SO2 gas was converted at IMR-Beijing to Ag2S, then fluorinated to SF6 gas both at IMR-Beijing and at IRMM-Geel. Yields of different conversion methods exceeded 99%. The sulfur amount-of-substance measurements were performed by gas mass spectrometry on SF5+ ions using "IRMM's amount comparator II". These isotope amount ratios were calibrated by means of gravimetrically prepared synthetic mixtures of highly enriched sulfur isotopes (32S, 33S and 34S) in Ag2S form. The ratio values in the SO2 Secondary Measurement Standard are traceable to the SI system. They can be used in the calibration of field sulfur isotope measurements thus making these metrologically traceable to the SI.

  2. GasBench/isotope ratio mass spectrometry: a carbon isotope approach to detect exogenous CO(2) in sparkling drinks.

    PubMed

    Cabañero, Ana I; San-Hipólito, Tamar; Rupérez, Mercedes

    2007-01-01

    A new procedure for the determination of carbon dioxide (CO(2)) (13)C/(12)C isotope ratios, using direct injection into a GasBench/isotope ratio mass spectrometry (GasBench/IRMS) system, has been developed to improve isotopic methods devoted to the study of the authenticity of sparkling drinks. Thirty-nine commercial sparkling drink samples from various origins were analyzed. Values of delta(13)C(cava) ranged from -20.30 per thousand to -23.63 per thousand, when C3 sugar addition was performed for a second alcoholic fermentation. Values of delta(13)C(water) ranged from -5.59 per thousand to -6.87 per thousand in the case of naturally carbonated water or water fortified with gas from the spring, and delta(13)C(water) ranged from -29.36 per thousand to -42.09 per thousand when industrial CO(2) was added. It has been demonstrated that the addition of C4 sugar to semi-sparkling wine (aguja) and industrial CO(2) addition to sparkling wine (cava) or water can be detected. The new procedure has advantages over existing methods in terms of analysis time and sample treatment. In addition, it is the first isotopic method developed that allows (13)C/(12)C determination directly from a liquid sample without previous CO(2) extraction. No significant isotopic fractionation was observed nor any influence by secondary compounds present in the liquid phase. Copyright (c) 2007 John Wiley & Sons, Ltd.

  3. Hepatoblastoma Biology Using Isotope Ratio Mass Spectrometry: Utility of a Unique Technique for the Analysis of Oncological Specimens.

    PubMed

    Taran, Katarzyna; Frączek, Tomasz; Sitkiewicz, Anna; Sikora-Szubert, Anita; Kobos, Józef; Paneth, Piotr

    2016-07-07

    Hepatoblastoma is the most common primary liver tumor in children. However, it occurs rarely, with an incidence of 0.5-1.5 cases per million children. There is no clear explanation of the relationship between clinicopathologic features, therapy, and outcome in hepatoblastoma cases, so far. One of the most widely accepted prognostic factors in hepatoblastoma is histology of the tumor. The aim of the study was to determine the potential differences in biology of hepatoblastoma histological subtypes at the atomic level using the unique method of isotope ratio mass spectrometry, which is especially valuable in examination of small groups of biological samples. Twenty-four measurements of nitrogen stable isotope ratio, carbon stable isotope ratio and total carbon to nitrogen mass ratio in fetal and embryonal hepatoblastoma tissue were performed using a Sercon 20-22 Continuous Flow Isotope Ratio Mass Spectrometer (CF-IRMS) coupled with a Sercon SL elemental analyzer for simultaneous carbon-nitrogen-sulfur (NCS) analysis. A difference of about 1.781‰ in stable nitrogen isotope 15N/14N ratio was found between examined hepatoblastoma histological subtypes. The prognosis in liver tumors cases in children may be challenging particularly because of the lack of versatile methods of its evaluation. Isotope ratio mass spectrometry allows one to determine the difference between hepatoblastoma histological subtypes and clearly indicates the cases with the best outcome.

  4. New Isotopic Tracers for Shale Gas and Hydraulic Fracturing Fluids

    EPA Pesticide Factsheets

    The combined application of geochemistry, stable isotopes (δ18O, δ2H), strontium isotopes (87Sr/86Sr), boron isotopes (δ11B), and radium isotopes (228Ra/226Ra) provides a unique methodology for tracing and monitoring shale gas and fracking fluids in the environment.

  5. Sulphur isotopic ratios in mosses indicating atmospheric sulphur sources in southern Chinese mountainous areas

    NASA Astrophysics Data System (ADS)

    Xiao, Hua-Yun; Tang, Cong-Guo; Liu, Xue-Yan; Xiao, Hong-Wei; Liu, Cong-Qiang

    2008-10-01

    Many mountainous regions in South China have been confronted with the consequences of acidic deposition, but studies on atmospheric S sources are still very limited. In this study, isotopic ratios in mosses were used to discriminate atmospheric S sources. A continuous increase in S isotopic ratios was observed from the south to the north in mountainous mosses and in accord with the previously reported changing trends in urban mosses, indicating a contribution of local anthropogenic S from urban cities. Based on comparisons of S isotopic ratios in mountainous mosses with those in nearby urban mosses, we found that mountainous mosses had significantly higher 34S contents than urban mosses, especially in West China, reflecting an introduction of 34S-enriched sulphur. In conjunction with cloud water data in the literature, we concluded that 34S-enriched sulphur in northerly air masses contributed much to atmospheric S in southern Chinese mountainous areas.

  6. Insights into Ocean Acidification During the Middle Eocene Climatic Optimum from Boron Isotopes at Southern Ocean Site 738

    NASA Astrophysics Data System (ADS)

    Moebius, I.; Hoenisch, B.; Friedrich, O.

    2015-12-01

    The Middle Eocene Climatic Optimum (MECO) is a ~650-kyr interval of global warming, with a brief ~50 ky long peak warming interval, and an abrupt termination. Deep sea and surface ocean temperature evolution across this interval are fairly well constrained, but thus far we have little understanding of the mechanisms responsible for the gradual warming and rapid recovery. Carbonate mass accumulation rates suggest a shoaling of the carbonate compensation depth, and studies on alkenones indicate increasing atmospheric CO2 levels during the MECO. This suggests an increase in surface ocean CO2, and consequently ocean acidification. However, the severity and timing of the proposed ocean acidification with respect to the onset, peak warming and the termination are currently not well resolved. The boron isotopic composition (δ11B) recorded in planktic foraminifer shells offers an opportunity to infer oceanic pH across this interval. We are working on a boron isotope reconstruction from Southern Ocean IODP site 738 and South Atlantic IODP site 1263, covering 42.0 to 38.5 Ma. These sites are characterized by good carbonate preservation and well-defined age models have been established. Additionally, ecology, nutrient content and bottom-water oxygenation have been shown to change significantly across the event towards a more eutrophic, periodically oxygen-depleted environment supporting different biological communities. We selected the planktic foraminifera species Acarinina spinuloinflata for this study because it is symbiont-bearing, suggesting a near-surface habitat and little vertical migration in the water column, and because of its abundance in the samples. δ11B data will be translated to surface ocean pH and atmospheric pCO2 will be approximated to refine knowledge about the carbon cycle during this time. Parallel analysis of two core sites will help to evaluate the tenacity of the data.

  7. Accurate and precise determination of isotopic ratios by MC-ICP-MS: a review.

    PubMed

    Yang, Lu

    2009-01-01

    For many decades the accurate and precise determination of isotope ratios has remained a very strong interest to many researchers due to its important applications in earth, environmental, biological, archeological, and medical sciences. Traditionally, thermal ionization mass spectrometry (TIMS) has been the technique of choice for achieving the highest accuracy and precision. However, recent developments in multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) have brought a new dimension to this field. In addition to its simple and robust sample introduction, high sample throughput, and high mass resolution, the flat-topped peaks generated by this technique provide for accurate and precise determination of isotope ratios with precision reaching 0.001%, comparable to that achieved with TIMS. These features, in combination with the ability of the ICP source to ionize nearly all elements in the periodic table, have resulted in an increased use of MC-ICP-MS for such measurements in various sample matrices. To determine accurate and precise isotope ratios with MC-ICP-MS, utmost care must be exercised during sample preparation, optimization of the instrument, and mass bias corrections. Unfortunately, there are inconsistencies and errors evident in many MC-ICP-MS publications, including errors in mass bias correction models. This review examines "state-of-the-art" methodologies presented in the literature for achievement of precise and accurate determinations of isotope ratios by MC-ICP-MS. Some general rules for such accurate and precise measurements are suggested, and calculations of combined uncertainty of the data using a few common mass bias correction models are outlined.

  8. Emission ratio and isotopic signatures of molecular hydrogen emissions from tropical biomass burning

    NASA Astrophysics Data System (ADS)

    Haumann, F. A.; Batenburg, A. M.; Pieterse, G.; Gerbig, C.; Krol, M. C.; Röckmann, T.

    2013-09-01

    In this study, we identify a biomass-burning signal in molecular hydrogen (H2) over the Amazonian tropical rainforest. To quantify this signal, we measure the mixing ratios of H2 and several other species as well as the H2 isotopic composition in air samples that were collected in the BARCA (Balanço Atmosférico Regional de Carbono na Amazônia) aircraft campaign during the dry season. We derive a relative H2 emission ratio with respect to carbon monoxide (CO) of 0.31 ± 0.04 ppb ppb-1 and an isotopic source signature of -280 ± 41‰ in the air masses influenced by tropical biomass burning. In order to retrieve a clear source signal that is not influenced by the soil uptake of H2, we exclude samples from the atmospheric boundary layer. This procedure is supported by data from a global chemistry transport model. The ΔH2 / ΔCO emission ratio is significantly lower than some earlier estimates for the tropical rainforest. In addition, our results confirm the lower values of the previously conflicting estimates of the H2 isotopic source signature from biomass burning. These values for the emission ratio and isotopic source signatures of H2 from tropical biomass burning can be used in future bottom-up and top-down approaches aiming to constrain the strength of the biomass-burning source for H2. Hitherto, these two quantities relied only on combustion experiments or on statistical relations, since no direct signal had been obtained from in-situ observations.

  9. Emission ratio and isotopic signatures of molecular hydrogen emissions from tropical biomass burning

    NASA Astrophysics Data System (ADS)

    Haumann, F. A.; Batenburg, A. M.; Pieterse, G.; Gerbig, C.; Krol, M. C.; Röckmann, T.

    2013-04-01

    In this study, we identify a biomass-burning signal in molecular hydrogen (H2) over the Amazonian tropical rainforest. To quantify this signal, we measure the mixing ratios of H2 and several other species as well as the H2 isotopic composition in air samples that were collected in the BARCA (Balanço Atmosférico Regional de Carbono na Amazônia) aircraft campaign during the dry season. We derive a relative H2 emission ratio with respect to carbon monoxide (CO) of 0.31 ± 0.04 ppb/ppb and an isotopic source signature of -280 ± 41‰ in the air masses influenced by tropical biomass burning. In order to retrieve a clear source signal that is not influenced by the soil uptake of H2, we exclude samples from the atmospheric boundary layer. This procedure is supported by data from a global chemistry transport model. The ΔH2/ΔCO emission ratio is significantly lower than some earlier estimates for the tropical rainforest. In addition, our results confirm the lower values of the previously conflicting estimates of the H2 isotopic source signature from biomass burning. These values for the emission ratio and isotopic source signatures of H2 from tropical biomass burning can be used in future bottom-up and top-down approaches aiming to constrain the strength of the biomass-burning source for H2. Hitherto, these two quantities relied only on combustion experiments or on statistical relations, since no direct signal had been obtained from in-situ observations.

  10. The nitrogen isotopic ratio of HC3N towards the L1544 prestellar core

    NASA Astrophysics Data System (ADS)

    Hily-Blant, P.; Faure, A.; Vastel, C.; Magalhaes, V.; Lefloch, B.; Bachiller, R.

    2018-06-01

    The origin of the heavily fractionated reservoir of nitrogen in comets remains an issue in the theory of their formation and hence of the solar system. Whether the fractionated reservoir traced by comets is inherited from the interstellar cloud or is the product of processes taking place in the protostar, or in the protoplanetary disk, remains unclear. So far, observations of nitrogen isotopic ratios in protostars or prestellar cores have not securely identified such a fractionated reservoir owing to the intrinsic difficulty of direct isotopic ratios measurements. In this article, we report the detection of 5 rotational lines of HC3N, including the weaker components of the hyperfine multiplets, and two rotational lines of its 15N isotopologue, towards the L1544 prestellar core. Based on a MCMC/non-LTE multi-line analysis at the hyperfine level, we derive the column densities of HC3N (8.0 ± 0.4 × 1013cm-2) and HC_3^{15}N (2.0 ± 0.4 × 1011cm-2) and derive an isotopic ratio of 400±20(1σ). This value suggests that HC3N is slightly depleted in 15N in L1544 with respect to the elemental 14N/15N ratio of ≈330 in the present-day local interstellar medium. Our study also stresses the need for radiative calculations at the hyperfine level. Finally, the comparison of the derived ratio with those obtained in CN and HCN in the same core seems to favor CN+C2H2 as the dominant formation route to HC3N. However, uncertainties in the isotopic ratios preclude definitive conclusions.

  11. Stable isotope ratios and reforestation potential in Acacia koa populations on Hawai'i

    Treesearch

    Shaneka Lawson; Carrie Pike

    2017-01-01

    Stable carbon and nitrogen isotopes can be influenced by a multitude of factors including elevation, precipitation rate, season, and temperature. This work examined variability in foliar stable carbon (δ13C) and nitrogen (δ15N) isotope ratios of koa (Acacia koa) across 17 sites on Hawai'i Island, delineated by elevation and precipitation...

  12. Study of helium embrittlement in boron doped EUROFER97 steels

    NASA Astrophysics Data System (ADS)

    Gaganidze, E.; Petersen, C.; Aktaa, J.

    2009-04-01

    To simulate helium effects in Reduced Activation Ferritic/Martensitic steels, experimental heats ADS2, ADS3 and ADS4 with the basic composition of EUROFER97 (9%Cr-WVTa) were doped with different contents of natural boron and separated 10B-isotope (0.008-0.112 wt.%) and irradiated in High Flux Reactor (HFR) Petten up to 16.3 dpa at 250-450 °C and in Bor-60 fast reactor in Dimitrovgrad up to 31.8 dpa at 332-338 °C. The embrittlement and hardening are investigated by instrumented Charpy-V tests with subsize specimens. Complete burn-up of 10B isotope under neutron irradiation in HFR Petten led to generation of 84, 432 and 5580 appm He and partial boron-to-helium transformation in Bor-60 led to generation of 9, 46, 880 appm He in ADS2, ADS3 and ADS4 heats, respectively. At low irradiation temperatures Tirr ⩽ 340 °C the boron doped steels show progressive embrittlement with increasing helium amount. Irradiation induced DBTT shift of EUROFER97 based heat doped with 1120 wppm separated 10B isotope could not be quantified due to large embrittlement found in the investigated temperature range. At Tirr ⩽ 340 °C helium induced extra embrittlement is attributed to material hardening induced by helium bubbles and described in terms of phenomenological model.

  13. Stable isotope ratio determination of the origin of vanillin in vanilla extracts and its relationship to vanillin/potassium ratios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, G.E.; Alfonso, F.C.; Figert, D.M.

    A method is described for isolating vanillin from vanilla extract, followed by stable isotope ratio analysis to determine the amount of natural vanillin contained in adulterated vanilla extracts. After the potassium content is determined, the percent Madagascar and/or Java vanilla beans incorporated into the extract may then be approximated from the vanillin/potassium ratio.

  14. Stable Carbon and Nitrogen Isotope Ratios of Sodium and Potassium Cyanide as a Forensic Signature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruzer, Helen W; Horita, Juske; Moran, James J

    2012-01-01

    Sodium and potassium cyanide are highly toxic, produced in large amounts by the chemical industry, and linked to numerous high-profile crimes. The U.S. Centers for Disease Control and Prevention has identified cyanide as one of the most probable agents to be used in a future chemical terrorism event. We investigated whether stable C and N isotopic content of sodium and potassium cyanide could serve as a forensic signature for sample matching, using a collection of 65 cyanide samples. A few of these samples displayed non-homogeneous isotopic content associated with degradation to a carbonate salt and loss of hydrogen cyanide. Mostmore » samples had highly reproducible isotope content. Of these, >95% could be properly matched based on C and N isotope ratios, with a false match rate <3%. These results suggest that stable C and N isotope ratios are a useful forensic signature for matching cyanide samples.« less

  15. Stable carbon and nitrogen isotope ratios of sodium and potassium cyanide as a forensic signature.

    PubMed

    Kreuzer, Helen W; Horita, Juske; Moran, James J; Tomkins, Bruce A; Janszen, Derek B; Carman, April

    2012-01-01

    Sodium and potassium cyanide are highly toxic, produced in large amounts by the chemical industry, and linked to numerous high-profile crimes. The U.S. Centers for Disease Control and Prevention has identified cyanide as one of the most probable agents to be used in a chemical terrorism event. We investigated whether stable C and N isotopic content of sodium and potassium cyanide could serve as a forensic signature for sample matching, using a collection of 65 cyanide samples. Upon analysis, a few of the cyanide samples displayed nonhomogeneous isotopic content associated with degradation to a carbonate salt and loss of hydrogen cyanide. Most samples had highly reproducible isotope content. Of the 65 cyanide samples, >95% could be properly matched based on C and N isotope ratios, with a false match rate <3%. These results suggest that stable C and N isotope ratios are a useful forensic signature for matching cyanide samples. © 2011 American Academy of Forensic Sciences.

  16. How strange was the Strangelove Ocean? New insights from Boron Isotopes.

    NASA Astrophysics Data System (ADS)

    Henehan, M. J.; Ridgwell, A.; Thomas, E.; Zhang, S.; Planavsky, N.; Alegret, L.; Schmidt, D. N.; Rae, J. W. B.; Foster, G. L.; Huber, B. T.; Hull, P. M.

    2016-12-01

    The idea of the `Strangelove Ocean'1 has captured the imagination of palaeoceanographers (and the public) since it was posited to explain the collapse or reverse in surface-deep ocean δ13C gradients after the Cretaceous-Palaeogene (K-Pg) boundary1. It describes a post-extinction ocean where primary productivity was drastically reduced, eliminating the surface-to-deep carbon isotope gradient produced by the biological pump. Survival of benthic foraminifera across the K-Pg (suggesting a persistent supply of organic matter to the deep) is difficult to reconcile with this ideae.g. 2. Geochemical proxies also suggest that severe export productivity reductions were at most regional3. This mismatch between patterns in δ13C and other indicators has thus been interpreted as a signal of changing vital effects in post-extinction pelagic calcifiers, toward lighter δ13C e.g. 2. However, it may be that vital effects in earliest Palaeocene foraminiferal survivors can account for only part of the convergence in δ13C between surface and deep ocean.4 In addition, analysis of carbonate preservation after the K-Pg boundary indicates large-scale carbonate system/ocean pH shifts at this time5, which could have produced secular changes in carbon isotope signals. Here we present new paired benthic and planktic boron isotope measurements that allow us to examine surface to deep ocean pH gradients (which in today's ocean are driven largely by biological activity) across the K-Pg boundary interval and into the early Palaeocene. We then couple these to model simulations to untangle the carbon cycle drivers, both physical and biological, that could have caused these changes in ocean pH gradients. We discuss implications for our understanding of this important interval in Earth history, with reference to the mechanisms of Earth system recovery following mass extinction. References:1. Hsü, K. J. & McKenzie, J. A., 1985. AGU Geophysical Monograph Series 32. doi:10.1029/GM032p0487 2. Alegret

  17. Measurement of delta13C and delta18O Isotopic Ratios of CaCO3 by a Thermoquest Finnigan GasBench II Delta Plus XL Continous Flow Isotope Ratio Mass Spectrometer with Application to Devils Hole Core DH-11 Calcite

    USGS Publications Warehouse

    Revesz, Kinga M.; Landwehr, Jurate Maciunas; Keybl, Jaroslav Edward

    2001-01-01

    A new method was developed to analyze the stable carbon and oxygen isotope ratios of small samples (400?20 ?g) of calcium carbonate. This new method streamlines the classical phosphoric acid - calcium carbonate (H3PO4 - CaCO3) reaction method by making use of a Thermoquest-Finnigan GasBench II preparation device and a Delta Plus XL continuous flow isotope ratio mass spectrometer. To obtain reproducible and accurate results, optimal conditions for the H3PO4 - CaCO3 reaction had to be determined. At the acid-carbonate reaction temperature suggested by the equipment manufacturer, the oxygen isotope ratio results were unsatisfactory (standard deviation () greater than 1.5 per mill), probably because of a secondary reaction. When the acid-carbonate reaction temperature was lowered to 26?C and the reaction time was increased to 24 hours, the precision of the carbon and oxygen isotope ratios for duplicate analyses improved to 0.1 and 0.2 per mill, respectively. The method was tested by analyzing calcite from Devils Hole, Nevada, which was formed by precipitation from ground water onto the walls of a sub-aqueous cavern during the last 500,000 years. Isotope-ratio values previously had been obtained by the classical method for Devils Hole core DH-11. The DH-11 core had been recently re-sampled, and isotope-ratio values were obtained using this new method. The results were comparable to those obtained by the classical method. The consistency of the isotopic results is such that an alignment offset could be identified in the re-sampled core material, a cutting error that was then independently confirmed. The reproducibility of the isotopic values is demonstrated by a correlation of approximately 0.96 for both isotopes, after correcting for an alignment offset. This result indicates that the new method is a viable alternative to the classical method. In particular, the new method requires less sample material permitting finer resolution and allows automation of some processes

  18. A new sniffer probe for the determination of hydrogen isotope ratios in the W7-AS stellarator

    NASA Astrophysics Data System (ADS)

    Zebisch, P.; Taglauer, E.

    1999-07-01

    An improved sniffer probe was constructed for measurements of the hydrogen isotope ratio and impurities in the plasma edge of the W7-AS stellarator. Details of the new design and the probe performance are presented. The new design allows changing the head without breaking the vacuum in the torus. It has a high mechanical stability, effective screening of the magnetic field and high sensitivity. The gas dynamic properties of the probe are analyzed using transmission line calculus, resulting in a rise time of 114 ms for hydrogen. During the 1997 spring measurement campaign, H/D isotope ratio measurements were carried through showing considerable outgassing of the walls during and after the discharge. He glow discharges reduce the isotope ratio drastically. Results from a typical experiment day are presented together with the analytic procedure for determining the isotope ratio in both the plasma edge and in the neutral gas region between the plasma and the vessel walls.

  19. Stable isotope ratios as indicators of trophic status: Uncertainties imposed by geographic effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schell, D.M.

    1995-12-31

    Isotope ratios of carbon and nitrogen are often suggested as indicators to determine trophic status and carbon sources of marine organisms in explaining relative concentrations of pollutants. Whereas this technique is effective with organisms resident in ecosystems having homogeneous primary productivity regimes and uniform isotope ratios in the productivity base, it often is confounded by migratory movements by larger organisms across isotopic gradients. Tissues containing a temporal record such as baleen plates or whiskers show these effects clearly. Bowhead whales in Alaskan waters seasonally move across carbon isotope gradients of 5{per_thousand} in zooplankton and reflect these differences in the keratinmore » of baleen plates and in overall body composition. However, no significant differences in {delta}{sup 15}N are evident regionally in northern Alaskan zooplankton. In contrast, the Southern Ocean is characterized by extreme latitudinal gradients in both {delta}{sup 13}C and {delta}{sup 15}N with the most pronounced effects occurring at the subtropical convergence. Prey taken by marine mammals south of this zone are depleted in both {sup 15}N and {sup 13}C by up to 8{per_thousand}. Data on southern right whales (Eubalaena glacialis), Bryde`s whale (Balaenoptera edenl), pygmy right whales (Caperea marginate) and antarctic fur seal (Arctocephalos gazella) show the effects of migratory movements across the gradient in both carbon and nitrogen isotope ratios. Similar patterns in marine mammal tissues from Australia, South Africa and South America indicate that the observed patterns are circumpolar. Within a given region, trophic effects shift {delta}{sup 15}N values consistent with observed feeding habits.« less

  20. Frontiers of QC Laser spectroscopy for high precision isotope ratio analysis of greenhouse gases

    NASA Astrophysics Data System (ADS)

    Emmenegger, Lukas; Mohn, Joachim; Harris, Eliza; Eyer, Simon; Ibraim, Erkan; Tuzson, Béla

    2016-04-01

    An important milestone for laser spectroscopy was achieved when isotope ratios of greenhouse gases were reported at precision levels that allow addressing research questions in environmental sciences. Real-time data with high temporal resolution at moderate cost and instrument size make the optical approach highly attractive, complementary to the well-established isotope-ratio mass-spectrometry (IRMS) method. Especially appealing, in comparison to IRMS, is the inherent specificity to structural isomers having the same molecular mass. Direct absorption in the MIR in single or dual QCL configuration has proven highly reliable for the sta-ble isotopes of CO2, N2O and CH4. The longest time series of real-time measurements is currently available for δ13C and δ18O in CO2 at the high-alpine station Jung-fraujoch. At this well-equipped site, QCL based direct absorption spectroscopy (QCLAS) measurements are ongoing since 2008 1,2. Applications of QCLAS for N2O and CH4 stable isotopes are considerably more challenging because of the lower atmospheric mixing ratios, especially for the less abundant species, such as N218O and CH3D. For high precision (< 0.1 ‰) measurements in ambient air, QCLAS may be combined with a fully automated preconcentration unit yielding an up to 500 times concentration increase and the capability to separate the target gas from spectral interferants by se-quential desorption 3. Here, we review our recent developments on high precision isotope ratio analysis of greenhouse gases, with special focus on the isotopic species of N2O and CH4. Furthermore, we show environ-mental applications illustrating the highly valuable information that isotope ratios of atmospheric trace gases can carry. For example, the intramolecular distribution of 15N in N2O gives important information on the geochemical cycle of N2O4-6, while the analysis of δ13C and δ D in CH4 may be applied to disentangle microbial, fossil and landfill sources 7. 1 Sturm, P., Tuzson, B

  1. Source indicators of humic substances and proto-kerogen - Stable isotope ratios, elemental compositions and electron spin resonance spectra

    NASA Technical Reports Server (NTRS)

    Stuermer, D. H.; Peters, K. E.; Kaplan, I. R.

    1978-01-01

    Stable isotope ratios of C, N and H, elemental compositions, and electron spin resonance (ESR) data of humic acids and proto-kerogens from twelve widely varying sampling locations are presented. Humic acids and proto-kerogens from algal sources are more aliphatic and higher in N than those from higher plant sources. Oxygen content appears to represent a measure of maturation, even in Recent sediments, and S content may reflect redox conditions in the environment of deposition. The ESR data indicate that the transformation of humic substances to proto-kerogens in Recent sediments is accompanied by an increase in aromatic character. A combination of stable carbon isotope ratio and H/C ratio may be a simple but reliable source indicator which allows differentiation of marine-derived from terrestrially-derived organic matter. The stable nitrogen isotope ratios are useful indicators of nitrogen nutrient source. Deuterium/hydrogen isotope ratios appear to reflect variations in meteoric waters and are not reliable source indicators.

  2. ICP-MS for isotope ratio measurement

    USDA-ARS?s Scientific Manuscript database

    The use of stable isotopes in mineral nutrition research has become a fundamental aspect of conducting this research. A gradual transition has occurred, now virtually complete, from radioactive isotope studies to those using stable isotopes. Although primarily used in human research, mineral stable ...

  3. Carbon isotope ratios of human tooth enamel record the evidence of terrestrial resource consumption during the Jomon period, Japan.

    PubMed

    Kusaka, Soichiro; Uno, Kevin T; Nakano, Takanori; Nakatsukasa, Masato; Cerling, Thure E

    2015-08-17

    Archaeological remains strongly suggest that the Holocene Japanese hunter-gatherers, the Jomon people, utilized terrestrial plants as their primary food source. However, carbon and nitrogen isotope analysis of bone collagen indicates that they primarily exploited marine resources. We hypothesize that this inconsistency stems from the route of protein synthesis and the different proportions of protein-derived carbon in tooth enamel versus bone collagen. Carbon isotope ratios from bone collagen reflect that of dietary protein and may provide a biased signal of diet, whereas isotope ratios from tooth enamel reflect the integrated diet from all macronutrients (carbohydrates, lipids, and proteins). In order to evaluate the differences in inferred diet between the archaeological evidence and bone collagen isotope data, this study investigated carbon isotopes in Jomon tooth enamel from four coastal sites of the Middle to Late-Final Jomon period (5,000-2,300 years BP). Carbon isotope ratios of human teeth are as depleted as coeval terrestrial mammals, suggesting that C 3 plants and terrestrial mammals were major dietary resources for the Jomon people. Dietary dependence on marine resources calculated from enamel was significantly lower than that calculated from bone collagen. The discrepancy in isotopic ratios between enamel and collagen and the nitrogen isotope ratio in collagen shows a negative correlation on individual and population levels, suggesting diets with variable proportions of terrestrial and marine resources. This study highlights the usefulness of coupling tooth enamel and bone collagen in carbon isotopic studies to reconstruct prehistoric human diet. Am J Phys Anthropol, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  4. Stable hydrogen and carbon isotope ratios of extractable hydrocarbons in the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, R. V.; Epstein, S.; Pizzarello, S.; Cronin, J. R.; Yuen, G. U.

    1991-01-01

    A fairly fool-proof method to ensure that the compounds isolated from meteorites are truly part of the meteorites and not an artifact introduced by exposure to the terrestrial environment, storage, or handling is presented. The stable carbon and hydrogen isotope ratios in several of the chemical compounds extracted from the Murchison meteorite were measured. The results obtained by studying the amino acids in this meteorite gave very unusual hydrogen and carbon isotope ratios. The technique was extended to the different classes of hydrocarbons and the hydrocarbons were isolated using a variety of separation techniques. The results and methods used in this investigation are described in this two page paper.

  5. Experimental Evaluation of pH and Temperature Effects on the Adsorption of Boron onto Clay Minerals

    NASA Astrophysics Data System (ADS)

    Hoenisch, B.; Marone, D.; Ruprecht, J.

    2017-12-01

    Modeling the secular evolution of the concentration [B] and isotopic composition (δ11B) of boron in seawater is hampered by limited constraints on the relative sources (i.e. riverine input of weathering products, hydrothermal convection at mid-ocean ridges and fluids expelled from accretionary prisms) and sinks (i.e. alteration of the oceanic crust, adsorption onto clays, and co-precipitation in carbonates) of boron to and from the ocean. Clays remove approximately 28% of total boron from the ocean and quantification of this sink thus represents a major factor for reconstructing the secular evolution of seawater [B] and δ11B over the Cenozoic. However, the relative strength of the clay sink could have been much smaller in the early Cenozoic compared to today, because borate ion as the charged species is preferentially adsorbed onto detrital clays over boric acid, and because the relative abundance of borate in seawater should have been lower under the more acidic conditions of the early Cenozoic. In addition, different clay minerals tend to fractionate boron isotopes differentially, and the relative composition of clay minerals has varied in the past with the dominant climate and weathering patterns on the continents. We have conducted a range of pH (7.5-8.4) and temperature (3-32°C) experiments with four clay minerals (Kaolinite, Illite, Montmorillonite and Chlorite), to build on previously published but limited experimental data. Similar to a previous study and as expected based on the relative abundance of borate ion in seawater, boron adsorption onto these clays increases at higher pH and lower temperatures, but whereas Montmorillonite and Illite absorb similar quantities of boron, Kaolinite is most and Chlorite least efficient in this process. We are now in the process of characterizing the boron isotope fractionation associated with these adsorption experiments.

  6. Review: Current applications and challenges for liquid chromatography coupled to isotope ratio mass spectrometry (LC/IRMS).

    PubMed

    Godin, Jean-Philippe; McCullagh, James S O

    2011-10-30

    High-precision isotope analysis is recognized as an essential research tool in many fields of study. Until recently, continuous flow isotope ratio mass spectrometry (CF-IRMS) was available via an elemental analyzer or a gas chromatography inlet system for compound-specific analysis of light stable isotopes. In 2004, however, an interface that coupled liquid chromatography with IRMS (LC/IRMS) became commercially available for the first time. This brought the capability for new areas of application, in particular enabling compound-specific δ(13)C analysis of non-volatile, aqueous soluble, compounds from complex mixtures. The interface design brought with it several analytical constraints, however, in particular a lack of compatibility with certain types of chromatography as well as limited flow rates and mobile phase compositions. Routine LC/IRMS methods have, however, been established for measuring the δ(13)C isotopic ratios of underivatized individual compounds for application in archeology, nutrition and physiology, geochemistry, hydrology, soil science and food authenticity. Seven years after its introduction, we review the technical advances and constraints, methodological developments and new applications of liquid chromatography coupled to isotope ratio mass spectrometry. Copyright © 2011 John Wiley & Sons, Ltd.

  7. Direct current sputtering of boron from boron/boron mixtures

    DOEpatents

    Timberlake, J.R.; Manos, D.; Nartowitz, E.

    1994-12-13

    A method for coating a substrate with boron by sputtering includes lowering the electrical resistance of a boron-containing rod to allow electrical conduction in the rod; placing the boron-containing rod inside a vacuum chamber containing substrate material to be coated; applying an electrical potential between the boron target material and the vacuum chamber; countering a current avalanche that commences when the conduction heating rate exceeds the cooling rate, and until a steady equilibrium heating current is reached; and, coating the substrate material with boron by sputtering from the boron-containing rod. 2 figures.

  8. A quantitative evaluation of spurious results in the infrared spectroscopic measurement of CO2 isotope ratios

    NASA Astrophysics Data System (ADS)

    Mansfield, C. D.; Rutt, H. N.

    2002-02-01

    The possible generation of spurious results, arising from the application of infrared spectroscopic techniques to the measurement of carbon isotope ratios in breath, due to coincident absorption bands has been re-examined. An earlier investigation, which approached the problem qualitatively, fulfilled its aspirations in providing an unambiguous assurance that 13C16O2/12C16O2 ratios can be confidently measured for isotopic breath tests using instruments based on infrared absorption. Although this conclusion still stands, subsequent quantitative investigation has revealed an important exception that necessitates a strict adherence to sample collection protocol. The results show that concentrations and decay rates of the coincident breath trace compounds acetonitrile and carbon monoxide, found in the breath sample of a heavy smoker, can produce spurious results. Hence, findings from this investigation justify the concern that breath trace compounds present a risk to the accurate measurement of carbon isotope ratios in breath when using broadband, non-dispersive, ground state absorption infrared spectroscopy. It provides recommendations on the length of smoking abstention required to avoid generation of spurious results and also reaffirms, through quantitative argument, the validity of using infrared absorption spectroscopy to measure CO2 isotope ratios in breath.

  9. Determination of the sulfur isotope ratio in carbonyl sulfide using gas chromatography/isotope ratio mass spectrometry on fragment ions 32S+, 33S+, and 34S+.

    PubMed

    Hattori, Shohei; Toyoda, Akari; Toyoda, Sakae; Ishino, Sakiko; Ueno, Yuichiro; Yoshida, Naohiro

    2015-01-06

    Little is known about the sulfur isotopic composition of carbonyl sulfide (OCS), the most abundant atmospheric sulfur species. We present a promising new analytical method for measuring the stable sulfur isotopic compositions (δ(33)S, δ(34)S, and Δ(33)S) of OCS using nanomole level samples. The direct isotopic analytical technique consists of two parts: a concentration line and online gas chromatography-isotope ratio mass spectrometry (GC-IRMS) using fragmentation ions (32)S(+), (33)S(+), and (34)S(+). The current levels of measurement precision for OCS samples greater than 8 nmol are 0.42‰, 0.62‰, and 0.23‰ for δ(33)S, δ(34)S, and Δ(33)S, respectively. These δ and Δ values show a slight dependence on the amount of injected OCS for volumes smaller than 8 nmol. The isotope values obtained from the GC-IRMS method were calibrated against those measured by a conventional SF6 method. We report the first measurement of the sulfur isotopic composition of OCS in air collected at Kawasaki, Kanagawa, Japan. The δ(34)S value obtained for OCS (4.9 ± 0.3‰) was lower than the previous estimate of 11‰. When the δ(34)S value for OCS from the atmospheric sample is postulated as the global signal, this finding, coupled with isotopic fractionation for OCS sink reactions in the stratosphere, explains the reported δ(34)S for background stratospheric sulfate. This suggests that OCS is a potentially important source for background (nonepisodic or nonvolcanic) stratospheric sulfate aerosols.

  10. Precision and long-term stability of clumped-isotope analysis of CO2 using a small-sector isotope ratio mass spectrometer.

    PubMed

    Yoshida, Naohiro; Vasilev, Mikhail; Ghosh, Prosenjit; Abe, Osamu; Yamada, Keita; Morimoto, Maki

    2013-01-15

    The ratio of the measured abundance of (13)C-(18)O bonding CO(2) to its stochastic abundance, prescribed by the δ(13)C and δ(18)O values from a carbonate mineral, is sensitive to its growth temperature. Recently, clumped-isotope thermometry, which uses this ratio, has been adopted as a new tool to elucidate paleotemperatures quantitatively. Clumped isotopes in CO(2) were measured with a small-sector isotope ratio mass spectrometer. CO(2) samples digested from several kinds of calcium carbonates by phosphoric acid at 25 °C were purified using both cryogenic and gas-chromatographic separations, and their isotopic composition (δ(13)C, δ(18)O, Δ(47), Δ(48) and Δ(49) values) were then determined using a dual-inlet Delta XP mass spectrometer. The internal precisions of the single gas Δ(47) measurements were 0.005 and 0.02‰ (1 SE) for the optimum and the routine analytical conditions, respectively, which are comparable with those obtained using a MAT 253 mass spectrometer. The long-term variations in the Δ(47) values for the in-house working standard and the heated CO(2) gases since 2007 were close to the routine, single gas uncertainty while showing seasonal-like periodicities with a decreasing trend. Unlike the MAT 253, the Delta XP did not show any significant relationship between the Δ(47) and δ(47) values. The Delta XP gave results that were approximately as precise as those of the MAT 253 for clumped-isotope analysis. The temporal stability of the Delta XP seemed to be lower, although an advantage of the Delta XP was that no dependency of δ(47) on Δ(47) was found. Copyright © 2012 John Wiley & Sons, Ltd.

  11. Stable carbon isotope ratios in atmospheric methane and some of its sources

    NASA Technical Reports Server (NTRS)

    Tyler, Stanley C.

    1986-01-01

    Ratios of C-13/C-12 have been measured in atmospheric methane and in methane collected from sites and biota that represent potentially large sources of atmospheric methane. These include temperate marshes (about -48 percent to about -54 percent), landfills (about -51 percent to about -55 percent), and the first reported values for any species of termite (-72.8 + or - 3.1 percent for Reticulitermes tibialis and -57.3 + or - 1.6 percent for Zootermopsis angusticollis). Numbers in parentheses are delta C-13 values with respect to PDB (Peedee belemnite) carbonate. Most methane sources reported thus far are depleted in C-13 with respect to atmospheric methane (-47.0 + or - 0.3 percent). Individual sources of methane should have C-13/C-12 ratios characteristic of mechanisms of CH4 formation and consumption prior to release to the atmosphere. The mass-weighted average isotopic composition of all sources should equal the mean C-13 of atmospheric methane, corrected for a kinetic isotope effect in the OH attack of CH4. Assuming the kinetic isotope effect to be small (about -3.0 percent correction to -47.0), as in the literature, the new values given here for termite methane do not help to explain the apparent discrepancy between C-13/C-12 ratios of the known CH4 sources and that of atmospheric CH4.

  12. The chemistry and isotopic composition of waters in the low-enthalpy geothermal system of Cimino-Vico Volcanic District, Italy

    USGS Publications Warehouse

    Battistel, Maria; Hurwitz, Shaul; Evans, William; Barbieri, Maurizio

    2017-01-01

    Geothermal energy exploration is based in part on interpretation of the chemistry, temperature, and discharge rate of thermal springs. Here we present the major element chemistry and the δD, δ18O, 87Sr/86Sr and δ11B isotopic ratio of groundwater from the low-enthalpy geothermal system near the city of Viterbo in the Cimino-Vico volcanic district of west-Central Italy. The geothermal system hosts many thermal springs and gas vents, but the resource is still unexploited. Water chemistry is controlled by mixing between low salinity,HCO3-rich fresh waters (<24.2°C) flowing in shallow volcanic rocks and SO4-rich thermal waters (25.3°C to 62.2°C) ascending from deep, high permeability Mesozoic limestones. The (equivalent) SO4/Cl (0.01–0.02), Na/Cl (2.82–5.83) and B/Cl ratios (0.02–0.38) of thermal waters differs from the ratios in other geothermal systems from Central Italy, probably implying a lack of hydraulic continuity across the region. The δ18O (−6.6‰ to −5.9‰) and δD (−40.60‰ to −36.30‰) isotopic composition of spring water suggest that the recharge area for the geothermal system is the summit region of Mount Cimino. The strontium isotope ratios (87Sr/86Sr) of thermal waters (0.70797–0.70805) are consistent with dissolution of the Mesozoic evaporite-carbonate units that constitute the reservoir, and the ratios of cold fresh waters mainly reflect shallow circulation through the volcanic cover and some minor admixture (<10%) of thermal water as well. The boron isotopic composition (δ11B) of fresh waters (−5.00 and 6.12‰) is similar to that of the volcanic cover, but the δ11B of thermal waters (−8.37‰ to −4.12‰) is a mismatch for the Mesozoic reservoir rocks and instead reflects dissolution of secondary boron minerals during fluid ascent through flysch units that overlie the reservoir. A slow and tortuous ascent enhances extraction of boron but also promotes conductive cooling, partially masking the heat present in the

  13. Stable isotope ratio analysis of different European raspberries, blackberries, blueberries, currants and strawberries.

    PubMed

    Perini, M; Giongo, L; Grisenti, M; Bontempo, L; Camin, F

    2018-01-15

    To date the stable isotope ratios of berries have never been extensively explored. In this work the H, C, N and O isotopic ratios of 190 samples of different soft fruits (strawberries, raspberries, blueberries, blackberries and currants) produced in a northern Italian region and at two sites in Romania and Poland collected over three harvest years are presented and discussed. The different soft fruits showed a typical range for one or more isotopic parameters that can be used to verify the authenticity of the fruit composition declared on the label. The δ 13 C and δ 15 N of pulp and the δ 18 O of juice can be considered effective tools for identifying the different geographical origin of fruit. A significant effect of crop cover on juice δ 18 O and fertilisation practices on pulp δ 15 N was demonstrated and must be considered with attention when evaluating data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. High Acidification Rate of Norwegian Sea Revealed by Boron Isotopes in the Deep-Sea Coral Madrepora Oculata

    NASA Astrophysics Data System (ADS)

    Gonzalez, C.; Douville, E.; Hall-Spencer, J.; Montagna, P.; Louvat, P.; Gaillardet, J.; Frank, N.; Bordier, L.; Juillet-Leclerc, A.

    2012-12-01

    Ocean acidification and global warming due to the increase of anthropogenic CO2 are major threats for marine calcifying organisms, such as deep-sea corals, particularly in high-latitude regions. In order to evaluate the current anthropogenic perturbation and to properly assess the impacts and responses of calcifiers to previous changes in pH it is critical to investigate past changes of the seawater carbonate system. Unfortunately, current instrumental records of oceanic pH are limited, covering only a few decades. Scleractinian coral skeletons record chemical parameters of the seawater in which they grow. However, pH variability over multidecadal timescales remains largely unknown in intermediate and deep seawater masses. Here we present a study that highlights the potential of deep-sea-corals to overcome the lack of long-term pH records and that emphasizes a rapid acidification of high latitude subsurface waters of Norwegian Sea during the past decades. We have reconstructed seawater pH and temperature from a well dated deep-sea coral specimen Madrepora oculata collected alive from Røst reef in Norwegian Sea (67°N, 9°E, 340 m depth). This large branching framework forming coral species grew its skeleton over more than four decades determined using AMS 14C and 210Pb dating (Sabatier et al. 2012). B-isotopes and Li/Mg ratios yield an acidification rate of about -0.0030±0.0008 pH-unit.year-1 and a warming of 0.3°C during the past four decades (1967-2007). Overall our reconstruction technique agrees well with previous pH calculations (Hönisch et al., 2007 vs. Trotter et al., 2011 and McCulloch et al., 2012, i.e. the iterative method), but additional corrections are here applied using stable isotope correlations (O, C, B) to properly address kinetic fractionation of boron isotopes used for pH reconstruction. The resulting pH curve strongly anti-correlates with the annual NAO index, which further strengthens our evidence for the ocean acidification rate

  15. Phenylene bridged boron-nitrogen containing dendrimers.

    PubMed

    Proń, Agnieszka; Baumgarten, Martin; Müllen, Klaus

    2010-10-01

    The synthesis and characterization of novel phenylene bridged boron-nitrogen containing π-conjugated dendrimers N3B6 and N3B3, with peripheral boron atoms and 1,3,5-triaminobenzene moiety as a core, are presented. UV-vis absorption and emission measurements reveal that the optical properties of the resulting compounds can be controlled by changing the donor/acceptor ratio: a 1:1 ratio results in a more efficient charge transfer than the 1:2 ratio. This was proven by the red shift of the emission maxima and the stronger solvatochromic effect in N3B3 compared to N3B6.

  16. Liquid chromatography coupled to isotope ratio mass spectrometry: a new perspective on honey adulteration detection.

    PubMed

    Cabañero, Ana I; Recio, Jose L; Rupérez, Mercedes

    2006-12-27

    A new procedure to determine individual sugar (sucrose, glucose, and fructose) 13C isotope ratios, using liquid chromatography-isotope ratio mass spectrometry (HPLC-IRMS), has been developed to improve isotopic methods devoted to the study of honey authenticity. For this purpose 79 commercial honey samples from various origins were analyzed. Values of delta13Choney ranged from -14.2 to -27.2", and delta13Cprotein ranged from -23.6 to -26.9". A very strong correlation is observed between the individual sugar 13C ratios, which are altered in the event of sugar addition, even at low levels. The use of Deltadelta13C [fruct-glu], Deltadelta13C [fruct-suc], and Deltadelta13C [gluc-suc] systematic differences as an authenticity criterion permits the sugar addition [C3, beet sugar; or C4, cane sugar, cane syrup, isoglucose syrup, and high-fructose corn syrup (HFCS)] to be reliably detected (DL = 1-10%). The new procedure has advantages over existing methods in terms of analysis time and sensitivity. In addition, it is the first isotopic method developed that allows beet sugar addition detection.

  17. Analysis of the site-specific carbon isotope composition of propane by gas source isotope ratio mass spectrometer

    NASA Astrophysics Data System (ADS)

    Piasecki, Alison; Sessions, Alex; Lawson, Michael; Ferreira, A. A.; Neto, E. V. Santos; Eiler, John M.

    2016-09-01

    Site-specific isotope ratio measurements potentially provide valuable information about the formation and degradation of complex molecules-information that is lost in conventional bulk isotopic measurements. Here we discuss the background and possible applications of such measurements, and present a technique for studying the site-specific carbon isotope composition of propane at natural abundance based on mass spectrometric analysis of the intact propane molecule and its fragment ions. We demonstrate the feasibility of this approach through measurements of mixtures of natural propane and propane synthesized with site-specific 13C enrichment, and we document the limits of precision of our technique. We show that mass balance calculations of the bulk δ13C of propane based on our site-specific measurements is generally consistent with independent constraints on bulk δ13C. We further demonstrate the accuracy of the technique, and illustrate one of its simpler applications by documenting the site-specific carbon isotope signature associated with gas phase diffusion of propane, confirming that our measurements conform to the predictions of the kinetic theory of gases. This method can be applied to propane samples of moderate size (tens of micromoles) isolated from natural gases. Thus, it provides a means of studying the site-specific stable isotope systematics of propane at natural isotope abundances on sample sizes that are readily recovered from many natural environments. This method may also serve as a model for future techniques that apply high-resolution mass spectrometry to study the site-specific isotopic distributions of larger organic molecules, with potential applications to biosynthesis, forensics and other geochemical subjects.

  18. Quantifying Uranium Isotope Ratios Using Resonance Ionization Mass Spectrometry: The Influence of Laser Parameters on Relative Ionization Probability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isselhardt, Brett H.

    2011-09-01

    Resonance Ionization Mass Spectrometry (RIMS) has been developed as a method to measure relative uranium isotope abundances. In this approach, RIMS is used as an element-selective ionization process to provide a distinction between uranium atoms and potential isobars without the aid of chemical purification and separation. We explore the laser parameters critical to the ionization process and their effects on the measured isotope ratio. Specifically, the use of broad bandwidth lasers with automated feedback control of wavelength was applied to the measurement of 235U/ 238U ratios to decrease laser-induced isotopic fractionation. By broadening the bandwidth of the first laser inmore » a 3-color, 3-photon ionization process from a bandwidth of 1.8 GHz to about 10 GHz, the variation in sequential relative isotope abundance measurements decreased from >10% to less than 0.5%. This procedure was demonstrated for the direct interrogation of uranium oxide targets with essentially no sample preparation. A rate equation model for predicting the relative ionization probability has been developed to study the effect of variation in laser parameters on the measured isotope ratio. This work demonstrates that RIMS can be used for the robust measurement of uranium isotope ratios.« less

  19. Assessing connectivity of estuarine fishes based on stable isotope ratio analysis

    NASA Astrophysics Data System (ADS)

    Herzka, Sharon Z.

    2005-07-01

    Assessing connectivity is fundamental to understanding the population dynamics of fishes. I propose that isotopic analyses can greatly contribute to studies of connectivity in estuarine fishes due to the high diversity of isotopic signatures found among estuarine habitats and the fact that variations in isotopic composition at the base of a food web are reflected in the tissues of consumers. Isotopic analysis can be used for identifying nursery habitats and estimating their contribution to adult populations. If movement to a new habitat is accompanied by a shift to foods of distinct isotopic composition, recent immigrants and residents can be distinguished based on their isotopic ratios. Movement patterns thus can be reconstructed based on information obtained from individuals. A key consideration is the rate of isotopic turnover, which determines the length of time that an immigrant to a given habitat will be distinguishable from a longtime resident. A literature survey indicated that few studies have measured turnover rates in fishes and that these have focused on larvae and juveniles. These studies reveal that biomass gain is the primary process driving turnover rates, while metabolic turnover is either minimal or undetectable. Using a simple dilution model and biomass-specific growth rates, I estimated that young fishes with fast growth rates will reflect the isotopic composition of a new diet within days or weeks. Older or slower-growing individuals may take years or never fully equilibrate. Future studies should evaluate the factors that influence turnover rates in fishes during various stages of the life cycle and in different tissues, as well as explore the potential for combining stable isotope and otolith microstructure analyses to examine the relationship between demographic parameters, movement and connectivity.

  20. Rate equation model of laser induced bias in uranium isotope ratios measured by resonance ionization mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isselhardt, B. H.; Prussin, S. G.; Savina, M. R.

    2016-01-01

    Resonance Ionization Mass Spectrometry (RIMS) has been developed as a method to measure uranium isotope abundances. In this approach, RIMS is used as an element-selective ionization process between uranium atoms and potential isobars without the aid of chemical purification and separation. The use of broad bandwidth lasers with automated feedback control of wavelength was applied to the measurement of the U-235/U-238 ratio to decrease laser-induced isotopic fractionation. In application, isotope standards are used to identify and correct bias in measured isotope ratios, but understanding laser-induced bias from first-principles can improve the precision and accuracy of experimental measurements. A rate equationmore » model for predicting the relative ionization probability has been developed to study the effect of variations in laser parameters on the measured isotope ratio. The model uses atomic data and empirical descriptions of laser performance to estimate the laser-induced bias expected in experimental measurements of the U-235/U-238 ratio. Empirical corrections are also included to account for ionization processes that are difficult to calculate from first principles with the available atomic data. Development of this model has highlighted several important considerations for properly interpreting experimental results.« less

  1. Rate equation model of laser induced bias in uranium isotope ratios measured by resonance ionization mass spectrometry

    DOE PAGES

    Isselhardt, B. H.; Prussin, S. G.; Savina, M. R.; ...

    2015-12-07

    Resonance Ionization Mass Spectrometry (RIMS) has been developed as a method to measure uranium isotope abundances. In this approach, RIMS is used as an element-selective ionization process between uranium atoms and potential isobars without the aid of chemical purification and separation. The use of broad bandwidth lasers with automated feedback control of wavelength was applied to the measurement of the 235U/238U ratio to decrease laser-induced isotopic fractionation. In application, isotope standards are used to identify and correct bias in measured isotope ratios, but understanding laser-induced bias from first-principles can improve the precision and accuracy of experimental measurements. A rate equationmore » model for predicting the relative ionization probability has been developed to study the effect of variations in laser parameters on the measured isotope ratio. The model uses atomic data and empirical descriptions of laser performance to estimate the laser-induced bias expected in experimental measurements of the 235U/ 238U ratio. Empirical corrections are also included to account for ionization processes that are difficult to calculate from first principles with the available atomic data. As a result, development of this model has highlighted several important considerations for properly interpreting experimental results.« less

  2. USE OF GC-MS/COMBUSTION/IRMS TO IDENTIFY AND DETERMINE THE STABLE CARBON ISOTOPIC RATIO OF INDIVIDUAL LIPIDS

    EPA Science Inventory

    A system that couples a gas chromatograph (GC) via a split to a quadrapole mass spectrometer (MS) and, through a combustion interface, to an isotope ratio mass spectrometer (IRMS) allows the simultaneous detection of electron impact mass spectra and stable carbon isotope ratio an...

  3. Selenium stable isotope ratios in California agricultural drainage water management systems

    USGS Publications Warehouse

    Herbel, M.J.; Johnson, T.M.; Tanji, K.K.; Gao, S.; Bullen, T.D.

    2002-01-01

    Selenium stable isotope ratios are known to shift in predictable ways during various microbial, chemical, and biological processes, and can be used to better understand Se cycling in contaminated environments. In this study we used Se stable isotopes to discern the mechanisms controlling the transformation of oxidized, aqueous forms of Se to reduced, insoluble forms in sediments of Se-affected environments. We measured 80Se/76Se in surface waters, shallow ground waters, evaporites, digested plants and sediments, and sequential extracts from several sites where agricultural drainage water is processed in the San Joaquin Valley of California. Selenium isotope analyses of samples obtained from the Tulare Lake Drainage District flow-through wetland reveal small isotopic contrasts (mean difference 0.7%o) between surface water and reduced Se species in the underlying sediments. Selenium in aquatic macrophytes was very similar isotopically to the NaOH and Na2SO3 sediment extracts designed to recover soluble organic Se and Se(O), respectively. For the integrated on-farm drainage management sites, evaporite salts were slightly (approximately 0.6%o) enriched in the heavier isotope relative to the inferred parent waters, whereas surface soils were slightly (approximately 1.4%o) depleted. Bacterial or chemical reduction of Se(VI) or Se(IV) may be occurring at these sites, but the small isotopic contrasts suggest that other, less isotopically fractionating mechanisms are responsible for accumulation of reduced forms in the sediments. These findings provide evidence that Se assimilation by plants and algae followed by deposition and mineralization is the dominant transformation pathway responsible for accumulation of reduced forms of Se in the wetland sediments.

  4. Boron Isotopic Composition Correlates with Ultra-Structure in a - Sea Coral Lophelia Pertusa: Implications for Biomineralization and - PH

    NASA Astrophysics Data System (ADS)

    Blamart, D.; Rollion-Bard, C.; Meibom, A.; Cuif, J.; Juillet-Leclerc, A.; Dauphin, Y.; Douarin, M.

    2007-12-01

    The geochemistry (stable isotopes and trace elements) of biogenic carbonates has been widely used for more than fifty years to reconstruct past climatic variability. During this time, the studies were mainly based on bulk sampling limiting sometimes the interpretations of the geochemical data as paleoclimatic proxies. Recently, high spatial resolution sampling techniques, such as micro-mill and SIMS, have been employed in the study of C, O and B isotopic compositions and trace elements (Mg, Sr) in the skeletons of a variety of (deep-sea) coral species. These studies have documented dramatic 'vital effects' and uncovered a systematic relationship between skeletal ultra-structure and stable isotopic composition. The formation of skeleton corals follows a universal two-step growth process. At the tips of the skeletal structures, the mineralizing cell layer produces centers of calcification (COC) or, equivalently, Early Mineralization Zone (EMZ). These EMZ are subsequently overgrown by fibrous aragonite(FA) consisting of cyclically added layers. The EMZ are characterized by systematically lighter C and O isotopic compositions compared with the adjacent FA. A number of geochemical models have been proposed, in which this systematic stable isotopic difference between EMZ and FA is ascribed to a biologically induced variation in the pH of a proposed Extra-cytoplasmic Calcifying Fluid (ECF) reservoir. In these models, relatively high pH conditions during the formation of EMZ result in relatively light C and O isotopic compositions compared with FA, which form under generally lower pH conditions. A direct test of such models would be possible if the Boron isotopic composition, which is pH sensitive, of EMZ and FA could be measured. We performed ion microprobe d11B measurements for EMZ and FA in Lophelia pertusa, a deep-sea coral common in the North-East Atlantic Ocean. We observe a systematic difference in B isotopic composition between the EMZ and FA skeleton. In EMZ, the

  5. Isotopic Ratios Measured in the Dust of Comet 67P/Churyumov-Gerasimenko Using Rosetta/COSIMA

    NASA Astrophysics Data System (ADS)

    Paquette, J. A.; Engrand, C.; Hilchenbach, M.; Fray, N.; Stenzel, O.; Merouane, S.

    2017-12-01

    The COSIMA instrument aboard the Rosetta orbiter captured dust from the coma of comet 67P/Churyumov-Gerasimenko on metal targets. The dust was then imaged, and some of it was subjected to Time of Flight Secondary Ion Mass Spectrometry, yielding information on the dust composition. Isotopic ratios for species such as oxygen and sulfur have been measured for a number of COSIMA dust particles and these measurements are presented in this talk. Isotopic ratios for several species have been measured for a number of comets, but with the exception of the Stardust results, these have been measurements in the gas phase. The measurements presented here are from the solid phase, most probably from silicate or carbonaceous material. The isotopic ratios measured in the dust are compared to the measurements in the gas, to values measured in the insoluble organic matter of meteorites, and to the values measured in interplanetary dust particles and Antarctic micrometeorites.

  6. DoE optimization of a mercury isotope ratio determination method for environmental studies.

    PubMed

    Berni, Alex; Baschieri, Carlo; Covelli, Stefano; Emili, Andrea; Marchetti, Andrea; Manzini, Daniela; Berto, Daniela; Rampazzo, Federico

    2016-05-15

    By using the experimental design (DoE) technique, we optimized an analytical method for the determination of mercury isotope ratios by means of cold-vapor multicollector ICP-MS (CV-MC-ICP-MS) to provide absolute Hg isotopic ratio measurements with a suitable internal precision. By running 32 experiments, the influence of mercury and thallium internal standard concentrations, total measuring time and sample flow rate was evaluated. Method was optimized varying Hg concentration between 2 and 20 ng g(-1). The model finds out some correlations within the parameters affect the measurements precision and predicts suitable sample measurement precisions for Hg concentrations from 5 ng g(-1) Hg upwards. The method was successfully applied to samples of Manila clams (Ruditapes philippinarum) coming from the Marano and Grado lagoon (NE Italy), a coastal environment affected by long term mercury contamination mainly due to mining activity. Results show different extents of both mass dependent fractionation (MDF) and mass independent fractionation (MIF) phenomena in clams according to their size and sampling sites in the lagoon. The method is fit for determinations on real samples, allowing for the use of Hg isotopic ratios to study mercury biogeochemical cycles in complex ecosystems. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. VizieR Online Data Catalog: C and O isotopic ratios in Arcturus and Aldebaran (Abia+ 2012)

    NASA Astrophysics Data System (ADS)

    Abia, C.; Palmerini, S.; Busso, M.; Cristallo, S.

    2012-10-01

    CNO abundances, C and O isotopic ratios and equivalent diffusive coefficients (D) are given for the calculated extra-mixing models. For Arcturus we used the electronic version of the Infrared Atlas Spectrum by Hinkle et al. (1995, Cat. J/PASP/107/1042; resolution 0.01cm-1), and for Aldebaran we used a spectrum obtained on February 6, 1980 at the KPNO 4m Coude telescope using a Fourier transform spectrometer, kindly provided by K. Hinkle (resolution 0.016cm-1) The first 2 rows of table4 report the CNO abundances and isotopic ratios resulting from the observations. The other rows give the CNO abundances and isotopic ratios accounted for by the FDU in the three stellar models considered of 1.3Mo, 1.2Mo and 1.08Mo (see the paper for more details). (1 data file).

  8. High-Precision Measurement of 13C/12C Isotopic Ratio Using Gas Chromatography-Combustion-Cavity Ring-Down Spectroscopy

    NASA Astrophysics Data System (ADS)

    Saad, N.; Kuramoto, D. S.; Haase, C.; Crosson, E.; Tan, S.; Zare, R. N.

    2009-12-01

    Light stable isotope analysis, and in particular, compound specific isotopic analysis (CSIA), is a valuable tool to elucidate pathways and provide a better insight into biological, ecological, and geological systems. We present here the results of compound-specific isotopic carbon analysis of short chain hydrocarbons using the world’s first combination of gas chromatography, combustion interface, and cavity ring-down spectroscopy (GC-C-CRDS). Cavity ring-down spectroscopy (CRDS) is a highly sensitive optical spectroscopy, one application of which is to measure the stable isotopic ratios in small molecules. Because it uses a highly reflective optical cavity with many kilometers effective path length, CRDS provides some of the most sensitive and precise optical absorption measurements. Most optical spectroscopy isotopic analysis measures the quantities of each isotopologue independently using their distinct ro-vibrational spectra. The most common isotopes measured with optical spectroscopy are 13C and 12C in carbon dioxide. However, the isotopes of hydrogen, oxygen, and sulfur have also been measured. Unlike isotope ratio mass spectrometry (IRMS), optical spectroscopy can distinguish among isobars, which have essentially identical m/z ratios. The combination of chemical separation, chemical conversion, and CRDS makes a nearly universal tool for isotopic analysis of mixtures. In addition, CRDS can tolerate a variety of compounds mixed with the target. For example, CRDS can measure carbon dioxide and its isotopic 13C/12C ratio in the presence of oxygen. Using the novel GC-C-CRDS system, we injected a 75-microliter mixture of approximately equal quantities of methane, ethane, and propane into a gas chromatograph using helium as carrier gas. The methane, ethane, and propane were separated in time by 100 to 200 seconds after the chromatograph. Oxygen gas was added, and the hydrocarbons were combusted in a catalytic combustor with platinum and nickel, held at 1150oC. The

  9. Electroextraction of boron from boron carbide scrap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Ashish; Anthonysamy, S., E-mail: sas@igcar.gov.in; Ghosh, C.

    2013-10-15

    Studies were carried out to extract elemental boron from boron carbide scrap. The physicochemical nature of boron obtained through this process was examined by characterizing its chemical purity, specific surface area, size distribution of particles and X-ray crystallite size. The microstructural characteristics of the extracted boron powder were analyzed by using scanning electron microscopy and transmission electron microscopy. Raman spectroscopic examination of boron powder was also carried out to determine its crystalline form. Oxygen and carbon were found to be the major impurities in boron. Boron powder of purity ∼ 92 wt. % could be produced by the electroextraction processmore » developed in this study. Optimized method could be used for the recovery of enriched boron ({sup 10}B > 20 at. %) from boron carbide scrap generated during the production of boron carbide. - Highlights: • Recovery of {sup 10}B from nuclear grade boron carbide scrap • Development of process flow sheet • Physicochemical characterization of electroextracted boron • Microscopic examination of electroextracted boron.« less

  10. Calibration and Data Processing in Gas Chromatography Combustion Isotope Ratio Mass Spectrometry

    PubMed Central

    Zhang, Ying; Tobias, Herbert J.; Sacks, Gavin L.; Brenna, J. Thomas

    2013-01-01

    Compound-specific isotope analysis (CSIA) by gas chromatography combustion isotope ratio mass spectrometry (GCC-IRMS) is a powerful technique for the sourcing of substances, such as determination of the geographic or chemical origin of drugs and food adulteration, and it is especially invaluable as a confirmatory tool for detection of the use of synthetic steroids in competitive sport. We review here principles and practices for data processing and calibration of GCC-IRMS data with consideration to anti-doping analyses, with a focus on carbon isotopic analysis (13C/12C). After a brief review of peak definition, the isotopologue signal reduction methods of summation, curve-fitting, and linear regression are described and reviewed. Principles for isotopic calibration are considered in the context of the Δ13C = δ13CM – δ13CE difference measurements required for establishing adverse analytical findings for metabolites relative to endogenous reference compounds. Considerations for the anti-doping analyst are reviewed. PMID:22362612

  11. Atmospheric Trace Gas Abundances and Stable Isotope Ratios via IR-LIF

    NASA Technical Reports Server (NTRS)

    Blake, Geoffrey A.

    2004-01-01

    We propose to develop new technologies with support provided by PIDDP that will enable the in situ measurements of abundances and stable isotope ratios in important radiatively and biogenically active gases such as carbon dioxide, carbon monoxide, water, methane, nitrous oxide, and hydrogen sulfide to very high precision (0.1 per mil or better for the isotopic ratios, for example). Such measurements, impossible at present, could provide pivotal new constraints on the global (bio)geochemical budgets of these critical species, and could also be used to examine the dynamics of atmospheric transport on Mars, Titan, and other solar system bodies. We believe the combination of solid state light sources with imaging of the IR laser induced fluorescence (IR-LIF) via newly available detector arrays will make such in situ measurements possible for the first time. Even under ambient terrestrial conditions, the LIF yield from vibrational excitation of species such as water and carbon dioxide should produce emission measures well in excess of ten billion photons/sec from samples volumes of order 1 c.c. These count rates can, in principle, yield detection limits into the sub-ppt range that are required for the in situ isotopic study of atmospheric trace gases. While promising, such technologies are relatively immature, but developing rapidly, and there are a great many uncertainties regarding their applicability to in situ IR-LIF planetary studies. We therefore feel PIDDP support will be critical to developing these new tools, and propose a three-year program to combine microchip near-IR lasers with low background detection axes and state-of-the-art HgCdTe detectors developed for astronomical spectroscopy to investigate the sensitivity of IR-LIF under realistic planetary conditions, to optimize the optical pumping and filtering schemes for important species, and to apply the spectrometer to the non-destructive measurement of stable isotopes in a variety of test samples. These

  12. Removal of boron (B) from waste liquors.

    PubMed

    Jiang, J Q; Xu, Y; Simon, J; Quill, K; Shettle, K

    2006-01-01

    This paper explores the use of electrocoagulation to remove boron from waste effluent in comparison with alum coagulation. In treating model test wastes, greater boron removals were achieved with electrocoagulation at low doses than conventional alum coagulation when reaction was undertaken for the same conditions (pH 8.5, and initial boron concentration was 500 mg/L). Al electrocoagulation can achieve good boron removal performance (68.3%) at a dose of 2.1 (as molar ratio of Al:B, and for current density of 62.1 A/m2), while alum coagulation can only achieve the maximum boron removal of 56% at a dose of 2.4. Also, Al electrocoagulation can remove 15-20% more boron than alum coagulation for the same dose compared in the treatment of both model test wastes and industry effluent. The estimation of running costs shows that to achieve 75% boron removal from industry waste effluent, i.e. removing 150 g of boron from 1 m3 of effluent, electrocoagulation was 6.2 times cheaper than alum coagulation. The economic advantage of electrocoagulation in the treatment of boron-containing waste effluent is thus significant.

  13. Processing and characterization of boron carbide-hafnium diboride ceramics

    NASA Astrophysics Data System (ADS)

    Brown-Shaklee, Harlan James

    Hafnium diboride based ceramics are promising candidate materials for advanced aerospace and nuclear reactor components. The effectiveness of boron carbide and carbon as HfB2 sintering additives was systematically evaluated. In the first stage of the research, boron carbide and carbon additives were found to improve the densification behavior of milled HfB2 powder in part by removing oxides at the HfB2 surface during processing. Boron carbide additives reduced the hot pressing temperature of HfB2 by 150°C compared to carbon, which reduced the hot pressing temperature by ˜50°C. Reduction of oxide impurities alone could not explain the difference in sintering enhancement, however, and other mechanisms of enhancement were evaluated. Boron carbides throughout the homogeneity range were characterized to understand other mechanisms of sintering enhancement in HfB2. Heavily faulted carbon rich and boron rich boron carbides were synthesized for addition to HfB2. The greatest enhancement to densification was observed in samples containing boron- and carbon-rich compositions whereas B6.5 C provided the least enhancement to densification. It is proposed that carbon rich and boron rich boron carbides create boron and hafnium point defects in HfB2, respectively, which facilitate densification. Evaluation of the thermal conductivity (kth) between room temperature and 2000°C suggested that the stoichiometry of the boron carbide additives did not significantly affect kth of HfB2-BxC composites. The improved sinterability and the high kth (˜110 W/m-K at 300K and ˜90 W/m-K at 1000°C ) of HfB2-BxC ceramics make them excellent candidates for isotopically enriched reactor control materials.

  14. CARBON AND OXYGEN ISOTOPIC RATIOS FOR NEARBY MIRAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinkle, Kenneth H.; Lebzelter, Thomas; Straniero, Oscar, E-mail: khinkle@noao.edu, E-mail: thomas.lebzelter@univie.ac.at, E-mail: straniero@oa-teramo.inaf.it

    2016-07-01

    Carbon and oxygen isotopic ratios are reported for a sample of 46 Mira and SRa-type variable asymptotic giant branch (AGB) stars. Vibration–rotation first and second-overtone CO lines in 1.5–2.5 μ m spectra were measured to derive isotopic ratios for {sup 12}C/{sup 13}C, {sup 16}O/{sup 17}O, and {sup 16}O/{sup 18}O. Comparisons with previous measurements for individual stars and with various samples of evolved stars, as available in the extant literature, are discussed. Models for solar composition AGB stars of different initial masses are used to interpret our results. We find that the majority of M-stars have main sequence masses ≤2 Mmore » {sub ⊙} and have not experienced sizable third dredge-up (TDU) episodes. The progenitors of the four S-type stars in our sample are slightly more massive. Of the six C-stars in the sample three have clear evidence relating their origin to the occurrence of TDU. Comparisons with O-rich presolar grains from AGB stars that lived before the formation of the solar system reveal variations in the interstellar medium chemical composition. The present generation of low-mass AGB stars, as represented by our sample of long period variables (LPVs), shows a large spread of {sup 16}O/{sup 17}O ratios, similar to that of group 1 presolar grains and in agreement with theoretical expectations for the composition of mass 1.2–2 M {sub ⊙} stars after the first dredge-up. In contrast, the {sup 16}O/{sup 18}O ratios of present-day LPVs are definitely smaller than those of group 1 grains. This is most probably a consequence of the the decrease with time of the {sup 16}O/{sup 18}O ratio in the interstellar medium due to the chemical evolution of the Milky Way. One star in our sample has an O composition similar to that of group 2 presolar grains originating in an AGB star undergoing extra-mixing. This may indicate that the extra-mixing process is hampered at high metallicity, or, equivalently, favored at low metallicity. Similarly to

  15. Calibrated sulfur isotope abundance ratios of three IAEA sulfur isotope reference materials and V-CDT with a reassessment of the atomic weight of sulfur

    NASA Astrophysics Data System (ADS)

    Ding, T.; Valkiers, S.; Kipphardt, H.; De Bièvre, P.; Taylor, P. D. P.; Gonfiantini, R.; Krouse, R.

    2001-08-01

    Calibrated values have been obtained for sulfur isotope abundance ratios of sulfur isotope reference materials distributed by the IAEA (Vienna). For the calibration of the measurements, a set of synthetic isotope mixtures were prepared gravimetrically from high purity Ag2S materials enriched in32S, 33S, and 34S. All materials were converted into SF6 gas and subsequently, their sulfur isotope ratios were measured on the SF5+ species using a special gas source mass spectrometer equipped with a molecular flow inlet system (IRMM's Avogadro II amount comparator). Values for the 32S/34S abundance ratios are 22.650 4(20), 22.142 4(20), and 23.393 3(17) for IAEA-S-1, IAEA-S-2, and IAEA-S-3, respectively. The calculated 32S/34S abundance ratio for V-CDT is 22.643 6(20), which is very close to the calibrated ratio obtained by Ding et al. (1999). In this way, the zero point of the VCDT scale is anchored firmly to the international system of units SI. The 32S/33S abundance ratios are 126.942(47), 125.473(55), 129.072(32), and 126.948(47) for IAEA-S-1, IAEA-S-2, IAEA-S-3, and V-CDT, respectively. In this way, the linearity of the V-CDT scale is improved over this range. The values of the sulfur molar mass for IAEA-S-1 and V-CDT were calculated to be 32.063 877(56) and 32.063 911(56), respectively, the values with the smallest combined uncertainty ever reported for the sulfur molar masses (atomic weights).

  16. Controlling the Morphology and Oxidation Resistance of Boron Carbide Synthesized Via Carbothermic Reduction Reaction

    NASA Astrophysics Data System (ADS)

    Ahmed, Yasser M. Z.; El-Sheikh, Said M.; Ewais, Emad M. M.; Abd-Allah, Asmaa A.; Sayed, Said A.

    2017-03-01

    Boron carbide powder was synthesized from boric acid and lactose mixtures via easy procedure. Boric acid and lactose solution mixtures were roasted in stainless steel pot at 280 °C for 24 h. Boron carbide was obtained by heating the roasted samples under flowing of industrial argon gas at 1500 °C for 3 h. The amount of borate ester compound in the roasted samples was highly influenced by the boron/carbon ratio in the starting mixtures and plays a versatile role in the produced boron carbide. The high-purity boron carbide powder was produced with a sample composed of lowest boron/carbon ratio of 1:1 without calcination step. Particle morphology was changed from nano-needles like structure of 8-10 nm size with highest carbon ratio mixture to spherical shape of >150 nm size with lowest one. The oxidation resistance performance of boron carbide is highly dependent on the morphology and grain size of the synthesized powder.

  17. Lead isotope ratios for bullets, forensic evaluation in a Bayesian paradigm.

    PubMed

    Sjåstad, Knut-Endre; Lucy, David; Andersen, Tom

    2016-01-01

    Forensic science is a discipline concerned with collection, examination and evaluation of physical evidence related to criminal cases. The results from the activities of the forensic scientist may ultimately be presented to the court in such a way that the triers of fact understand the implications of the data. Forensic science has been, and still is, driven by development of new technology, and in the last two decades evaluation of evidence based on logical reasoning and Bayesian statistic has reached some level of general acceptance within the forensic community. Tracing of lead fragments of unknown origin to a given source of ammunition is a task that might be of interest for the Court. Use of data from lead isotope ratios analysis interpreted within a Bayesian framework has shown to be suitable method to guide the Court to draw their conclusion for such task. In this work we have used isotopic composition of lead from small arms projectiles (cal. .22) and developed an approach based on Bayesian statistics and likelihood ratio calculation. The likelihood ratio is a single quantity that provides a measure of the value of evidence that can be used in the deliberation of the court. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Isotopic Ratios of Carbon and Oxygen in Titan's CO Using Alma

    NASA Technical Reports Server (NTRS)

    Serigano, Joseph; Nixon, C. A.; Cordiner, M. A.; Irwin, P. G. J.; Teanby, N. A.; Charnley, S. B.; Lindberg, J. E.

    2016-01-01

    We report interferometric observations of carbon monoxide (CO) and its isotopologues in Titan's atmosphere using the Atacama Large Millimeter/submillimeter Array (ALMA). The following transitions were detected: CO (J = 1-0, 2-1, 3-2, 6-5), C-13 O (J = 2-1, 3-2, 6-5), C-18 O (J = 2-1, 3-2), and C-17 O (J = 3-2). Molecular abundances and the vertical atmospheric temperature profile were derived by modeling the observed emission line profiles using NEMESIS, a line-by-line radiative transfer code. We present the first spectroscopic detection of O-17 in the outer solar system with C-17 O detected at greater than 8 sigma confidence. The abundance of CO was determined to be 49.6 +/- 1.8 ppm, assumed to be constant with altitude, with isotopic ratios C-12/C-13 = 89.9 +/- 3.4, O-16/O-18 = 486 +/- 22, and O-16/O-17 = 2917 +/- 359. The measurements of C-12/C-13 and O-16/O-18 ratios are the most precise values obtained in Titan's atmospheric CO to date. Our results are in good agreement with previous studies and suggest no significant deviations from standard terrestrial isotopic ratios.

  19. Determination of compound-specific Hg isotope ratios from transient signals using gas chromatography coupled to multicollector inductively coupled plasma mass spectrometry (MC-ICP/MS).

    PubMed

    Dzurko, Mark; Foucher, Delphine; Hintelmann, Holger

    2009-01-01

    MeHg and inorganic Hg compounds were measured in aqueous media for isotope ratio analysis using aqueous phase derivatization, followed by purge-and-trap preconcentration. Compound-specific isotope ratio measurements were performed by gas chromatography interfaced to MC-ICP/MS. Several methods of calculating isotope ratios were evaluated for their precision and accuracy and compared with conventional continuous flow cold vapor measurements. An apparent fractionation of Hg isotopes was observed during the GC elution process for all isotope pairs, which necessitated integration of signals prior to the isotope ratio calculation. A newly developed average peak ratio method yielded the most accurate isotope ratio in relation to values obtained by a continuous flow technique and the best reproducibility. Compound-specific isotope ratios obtained after GC separation were statistically not different from ratios measured by continuous flow cold vapor measurements. Typical external uncertainties were 0.16 per thousand RSD (n = 8) for the (202)Hg(/198)Hg ratio of MeHg and 0.18 per thousand RSD for the same ratio in inorganic Hg using the optimized operating conditions. Using a newly developed reference standard addition method, the isotopic composition of inorganic Hg and MeHg synthesized from this inorganic Hg was measured in the same run, obtaining a value of delta (202)Hg = -1.49 +/- 0.47 (2SD; n = 10). For optimum performance a minimum mass of 2 ng per Hg species should be introduced onto the column.

  20. Extending the Boundaries of Isotope Ratio MS - Latest Technological Improvements

    NASA Astrophysics Data System (ADS)

    Hilkert, A.

    2016-12-01

    Isotope ratio mass spectrometry has a long history, which started with the analysis of the isotopes of CO2. Over several decades a broad range of IRMS techniques has been derived like multi-collector high resolution ICP-MS, TIMS, noble gas static MS and gas IRMS. These different flavors of IRMS are now building a technology tool box, which allows to derive new applications build on new capabilities by combination of specific features of these sister technologies. In the 90's inductive coupled plasma ionization was added for the high precision analysis of rare elements. In 2000 extended multicollection opened the way into clumped isotopes. In 2008 the concept of a high resolution gas source IRMS was layed out to revolutionize stable gas IRMS recently followed by the combination of this static multicollection mode with fast mass scans of the single collector double focusing high resolution GCMS. Recently new technologies were created, like the mid infrared analyzers (IRIS) based on difference frequency generation lasers, the combination of a collision cell with HR MC ICPMS as well as the use of a high resolution electrostatic ion trap for extended stable isotope analysis on individual compounds. All these building blocks for IRMS address selected requirements of sample preparation, sample introduction, referencing, ionization, mass separation, ion detection or signal amplification. Along these lines new technological improvements and applications will be shown and discussed.

  1. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur

    USGS Publications Warehouse

    McCutchan, J.H.; Lewis, W.M.; Kendall, C.; McGrath, C.C.

    2003-01-01

    Use of stable isotope ratios to trace pathways of organic matter among consumers requires knowledge of the isotopic shift between diet and consumer. Variation in trophic shift among consumers can be substantial. For data from the published literature and supplementary original data (excluding fluid-feeding consumers), the mean isotopic shift for C was +0.5 ?? 0.13??? rather than 0.0???, as commonly assumed. The shift for C was higher for consumers analyzed as muscle (+1.3 ?? 0.30???) than for consumers analyzed whole (+0.3 ?? 0.14???). Among consumers analyzed whole, the trophic shift for C was lower for consumers acidified prior to analysis (-0.2 ?? 0.21???) than for unacidified samples (+0.5 ?? 0.17???). For N, trophic shift was lower for consumers raised on invertebrate diets (+1.4 ?? 0.21???) than for consumers raised on other high-protein diets (+3.3 ?? 0.26???) and was intermediate for consumers raised on plant and algal diets (+2.2 ?? 0.30???). The trophic shift for S differed between high-protein (+2.0 ?? 0.65???) and low-protein diets (-0.5 ?? 0.56???). Thus, methods of analysis and dietary differences can affect trophic shift for consumers; the utility of stable isotope methods can be improved if this information is incorporated into studies of trophic relationships. Although few studies of stable isotope ratios have considered variation in the trophic shift, such variation is important because small errors in estimates of trophic shift can result in large errors in estimates of the contribution of sources to consumers or in estimates of trophic position.

  2. Absolute quantitation of intracellular metabolite concentrations by an isotope ratio-based approach

    PubMed Central

    Bennett, Bryson D; Yuan, Jie; Kimball, Elizabeth H; Rabinowitz, Joshua D

    2009-01-01

    This protocol provides a method for quantitating the intracellular concentrations of endogenous metabolites in cultured cells. The cells are grown in stable isotope-labeled media to near-complete isotopic enrichment and then extracted in organic solvent containing unlabeled internal standards in known concentrations. The ratio of endogenous metabolite to internal standard in the extract is determined using mass spectrometry (MS). The product of this ratio and the unlabeled standard amount equals the amount of endogenous metabolite present in the cells. The cellular concentration of the metabolite can then be calculated on the basis of intracellular volume of the extracted cells. The protocol is exemplified using Escherichia coli and primary human fibroblasts fed uniformly with 13C-labeled carbon sources, with detection of 13C-assimilation by liquid chromatography–tandem MS. It enables absolute quantitation of several dozen metabolites over ~1 week of work. PMID:18714298

  3. Factors controlling precision and accuracy in isotope-ratio-monitoring mass spectrometry

    NASA Technical Reports Server (NTRS)

    Merritt, D. A.; Hayes, J. M.

    1994-01-01

    The performance of systems in which picomole quantities of sample are mixed with a carrier gas and passed through an isotope-ratio mass spectrometer system was examined experimentally and theoretically. Two different mass spectrometers were used, both having electron-impact ion sources and Faraday cup collector systems. One had an accelerating potential of 10kV and accepted 0.2 mL of He/min, producing, under those conditions, a maximum efficiency of 1 CO2 molecular ion collected per 700 molecules introduced. Comparable figures for the second instrument were 3 kV, 0.5 mL of He/min, and 14000 molecules/ion. Signal pathways were adjusted so that response times were <200 ms. Sample-related ion currents appeared as peaks with widths of 3-30 s. Isotope ratios were determined by comparison to signals produced by standard gases. In spite of rapid variations in signals, observed levels of performance were within a factor of 2 of shot-noise limits. For the 10-kV instrument, sample requirements for standard deviations of 0.1 and 0.5% were 45 and 1.7 pmol, respectively. Comparable requirements for the 3-kV instrument were 900 and 36 pmol. Drifts in instrumental characteristics were adequately neutralized when standards were observed at 20-min intervals. For the 10-kV instrument, computed isotopic compositions were independent of sample size and signal strength over the ranges examined. Nonlinearities of <0.04%/V were observed for the 3-kV system. Procedures for observation and subtraction of background ion currents were examined experimentally and theoretically. For sample/ background ratios varying from >10 to 0.3, precision is expected and observed to decrease approximately 2-fold and to depend only weakly on the precision with which background ion currents have been measured.

  4. Performance and limits of liquid chromatography isotope ratio mass spectrometry system for halogenated compounds

    NASA Astrophysics Data System (ADS)

    Gilevska, Tetyana; Gehre, Matthias; Richnow, Hans

    2014-05-01

    Compound Specific Isotope Analysis (CSIA) has been an important step for the assessment of the origin and fate of compounds in environmental science.[1] Biologically or pharmaceutically important compounds often are not amenable for gas chromatographic separation because of high polarity and lacking volatility, thermostability. In 2004 liquid chromatography isotope ratio mass spectrometry (LC-IRMS) became commercially available. LC-IRMS system intent a quantitative conversion of analytes separation into CO2 via wet oxidation with sodium persulfate in the presence of phosphoric acid while analytes are still dissolved in the aqueous liquid phase.[2] The aim of this study is to analyze the oxidation capacity of the interface of the LC-IRMS system and determine which parameters could improve oxidation of compounds which are resistant to persulfate oxidation. Oxidation capacity of the liquid chromatography isotope ratio mass spectrometry system was tested with halogenated acetic acid and a set of aromatic compounds with different substitutes. Acetic acid (AA) was taken as a model compound for complete oxidation and compared to the oxidation of other analytes on a molar basis. Correct values were obtained for di- and mono chlorinated and fluorinated and also for tribrominated acetic acid and for all studied aromatic compounds. Incomplete oxidation for trichloroacetic (TCAA) and trifluoroacetic (TFAA) acid was revealed with lower recovery compared to acetic acid and isotope fractionation leading to depleted carbon isotope composition compared to values obtained with an elementary analyzer connected to an isotope mass spectrometer Several optimization steps were tried in order to improve the oxidation of TCAA and TFAA: (i) increasing the concentration of the oxidizing agent, (ii) variation of flow rate of the oxidizing and acid solution, (iii) variation of flow rate of liquid chromatography pump (iv) addition of a catalyzer. These modifications lead to longer reaction time

  5. Dietary heterogeneity among Western industrialized countries reflected in the stable isotope ratios of human hair.

    PubMed

    Valenzuela, Luciano O; Chesson, Lesley A; Bowen, Gabriel J; Cerling, Thure E; Ehleringer, James R

    2012-01-01

    Although the globalization of food production is often assumed to result in a homogenization of consumption patterns with a convergence towards a Western style diet, the resources used to make global food products may still be locally produced (glocalization). Stable isotope ratios of human hair can quantify the extent to which residents of industrialized nations have converged on a standardized diet or whether there is persistent heterogeneity and glocalization among countries as a result of different dietary patterns and the use of local food products. Here we report isotopic differences among carbon, nitrogen and sulfur isotope ratios of human hair collected in thirteen Western European countries and in the USA. European hair samples had significantly lower δ(13)C values (-22.7 to -18.3‰), and significantly higher δ(15)N (7.8 to 10.3‰) and δ(34)S (4.8 to 8.3‰) values than samples from the USA (δ(13)C: -21.9 to -15.0‰, δ(15)N: 6.7 to 9.9‰, δ(34)S: -1.2 to 9.9‰). Within Europe, we detected differences in hair δ(13)C and δ(34)S values among countries and covariation of isotope ratios with latitude and longitude. This geographic structuring of isotopic data suggests heterogeneity in the food resources used by citizens of industrialized nations and supports the presence of different dietary patterns within Western Europe despite globalization trends. Here we showed the potential of stable isotope analysis as a population-wide tool for dietary screening, particularly as a complement of dietary surveys, that can provide additional information on assimilated macronutrients and independent verification of data obtained by those self-reporting instruments.

  6. Dietary Heterogeneity among Western Industrialized Countries Reflected in the Stable Isotope Ratios of Human Hair

    PubMed Central

    Valenzuela, Luciano O.; Chesson, Lesley A.; Bowen, Gabriel J.; Cerling, Thure E.; Ehleringer, James R.

    2012-01-01

    Although the globalization of food production is often assumed to result in a homogenization of consumption patterns with a convergence towards a Western style diet, the resources used to make global food products may still be locally produced (glocalization). Stable isotope ratios of human hair can quantify the extent to which residents of industrialized nations have converged on a standardized diet or whether there is persistent heterogeneity and glocalization among countries as a result of different dietary patterns and the use of local food products. Here we report isotopic differences among carbon, nitrogen and sulfur isotope ratios of human hair collected in thirteen Western European countries and in the USA. European hair samples had significantly lower δ13C values (−22.7 to −18.3‰), and significantly higher δ15N (7.8 to 10.3‰) and δ34S (4.8 to 8.3‰) values than samples from the USA (δ13C: −21.9 to −15.0‰, δ15N: 6.7 to 9.9‰, δ34S: −1.2 to 9.9‰). Within Europe, we detected differences in hair δ13C and δ34S values among countries and covariation of isotope ratios with latitude and longitude. This geographic structuring of isotopic data suggests heterogeneity in the food resources used by citizens of industrialized nations and supports the presence of different dietary patterns within Western Europe despite globalization trends. Here we showed the potential of stable isotope analysis as a population-wide tool for dietary screening, particularly as a complement of dietary surveys, that can provide additional information on assimilated macronutrients and independent verification of data obtained by those self-reporting instruments. PMID:22479574

  7. Silicon isotope ratio measurements by inductively coupled plasma tandem mass spectrometry for alteration studies of nuclear waste glasses.

    PubMed

    Gourgiotis, Alkiviadis; Ducasse, Thomas; Barker, Evelyne; Jollivet, Patrick; Gin, Stéphane; Bassot, Sylvain; Cazala, Charlotte

    2017-02-15

    High-level, long-lived nuclear waste arising from spent fuel reprocessing is vitrified in silicate glasses for final disposal in deep geologic formations. In order to better understand the mechanisms driving glass dissolution, glass alteration studies, based on silicon isotope ratio monitoring of 29 Si-doped aqueous solutions, were carried out in laboratories. This work explores the capabilities of the new type of quadrupole-based ICP-MS, the Agilent 8800 tandem quadrupole ICP-MS/MS, for accurate silicon isotope ratio determination for alteration studies of nuclear waste glasses. In order to avoid silicon polyatomic interferences, a new analytical method was developed using O 2 as the reaction gas in the Octopole Reaction System (ORS), and silicon isotopes were measured in mass-shift mode. A careful analysis of the potential polyatomic interferences on SiO + and SiO 2 + ion species was performed, and we found that SiO + ion species suffer from important polyatomic interferences coming from the matrix of sample and standard solutions (0.5M HNO 3 ). For SiO 2 + , no interferences were detected, and thus, these ion species were chosen for silicon isotope ratio determination. A number of key settings for accurate isotope ratio analysis like, detector dead time, integration time, number of sweeps, wait time offset, memory blank and instrumental mass fractionation, were considered and optimized. Particular attention was paid to the optimization of abundance sensitivity of the quadrupole mass filter before the ORS. We showed that poor abundance sensitivity leads to a significant shift of the data away from the Exponential Mass Fractionation Law (EMFL) due to the spectral overlaps of silicon isotopes combined with different oxygen isotopes (i.e. 28 Si 16 O 18 O + , 30 Si 16 O 16 O + ). The developed method was validated by measuring a series of reference solutions with different 29 Si enrichment. Isotope ratio trueness, uncertainty and repeatability were found to be <0

  8. Numerical study on determining formation porosity using a boron capture gamma ray technique and MCNP.

    PubMed

    Liu, Juntao; Zhang, Feng; Wang, Xinguang; Han, Fei; Yuan, Zhelong

    2014-12-01

    Formation porosity can be determined using the boron capture gamma ray counting ratio with a near to far detector in a pulsed neutron-gamma element logging tool. The thermal neutron distribution, boron capture gamma spectroscopy and porosity response for formations with different water salinity and wellbore diameter characteristics were simulated using the Monte Carlo method. We found that a boron lining improves the signal-to-noise ratio and that the boron capture gamma ray counting ratio has a higher sensitivity for determining porosity than total capture gamma. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Carbon Isotope Measurements of Experimentally-Derived Hydrothermal Mineral-Catalyzed Organic Products by Pyrolysis-Isotope Ratio Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Socki, Richard A.; Fu, Qi; Niles, Paul B.

    2011-01-01

    We report results of experiments to measure the C isotope composition of mineral catalyzed organic compounds derived from high temperature and high pressure synthesis. These experiments make use of an innovative pyrolysis technique designed to extract and measure C isotopes. To date, our experiments have focused on the pyrolysis and C isotope ratio measurements of low-molecular weight intermediary hydrocarbons (organic acids and alcohols) and serve as a proof of concept for making C and H isotope measurements on more complicated mixtures of solid-phase hydrocarbons and intermediary products produced during high temperature and high pressure synthesis on mineral-catalyzed surfaces. The impetus for this work stems from recently reported observations of methane detected within the Martian atmosphere [1-4], coupled with evidence showing extensive water-rock interaction during Martian history [5-7]. Methane production on Mars could be the result of synthesis by mineral surface-catalyzed reduction of CO2 and/or CO by Fischer-Tropsch Type (FTT) reactions during serpentization reactions [8,9]. Others have conducted experimental studies to show that FTT reactions are plausible mechanisms for low-molecular weight hydrocarbon formation in hydrothermal systems at mid-ocean ridges [10-12]. Further, recent experiments by Fu et al. [13] focus on examining detailed C isotope measurements of hydrocarbons produced by surface-catalyzed mineral reactions. Work described in this paper details the experimental techniques used to measure intermediary organic reaction products (alcohols and organic acids).

  10. Mixing ratio and carbon isotopic composition investigation of atmospheric CO2 in Beijing, China.

    PubMed

    Pang, Jiaping; Wen, Xuefa; Sun, Xiaomin

    2016-01-01

    The stable isotope composition of atmospheric CO2 can be used as a tracer in the study of urban carbon cycles, which are affected by anthropogenic and biogenic CO2 components. Continuous measurements of the mixing ratio and δ(13)C of atmospheric CO2 were conducted in Beijing from Nov. 15, 2012 to Mar. 8, 2014 including two heating seasons and a vegetative season. Both δ(13)C and the isotopic composition of source CO2 (δ(13)CS) were depleted in the heating seasons and enriched in the vegetative season. The diurnal variations in the CO2 mixing ratio and δ(13)C contained two peaks in the heating season, which are due to the effects of morning rush hour traffic. Seasonal and diurnal patterns of the CO2 mixing ratio and δ(13)C were affected by anthropogenic emissions and biogenic activity. Assuming that the primary CO2 sources at night (22:00-04:00) were coal and natural gas combustion during heating seasons I and II, an isotopic mass balance analysis indicated that coal combustion had average contributions of 83.83±14.11% and 86.84±12.27% and that natural gas had average contributions of 16.17±14.11% and 13.16±12.27%, respectively. The δ(13)C of background CO2 in air was the main error source in the isotopic mass balance model. Both the mixing ratio and δ(13)C of atmospheric CO2 had significant linear relationships with the air quality index (AQI) and can be used to indicate local air pollution conditions. Energy structure optimization, for example, reducing coal consumption, will improve the local air conditions in Beijing. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Mixing ratio and carbon isotopic composition investigation of atmospheric CO2 in Beijing, China

    NASA Astrophysics Data System (ADS)

    Pang, J.; Wen, X.; Sun, X.

    2016-12-01

    The stable isotope composition of atmospheric CO2 can be used as a tracer in the study of urban carbon cycles, which are affected by anthropogenic and biogenic CO2 components. Continuous measurements of the mixing ratio and δ13C of atmospheric CO2 were conducted in Beijing from Nov. 15, 2012 to Mar. 8, 2014 including two heating seasons and a vegetative season. Both δ13C and the isotopic composition of source CO2 (δ13CS) were depleted in the heating seasons and enriched in the vegetative season. The diurnal variations in the CO2 mixing ratio and δ13C contained two peaks in the heating season, which are due to the effects of morning rush hour traffic. Seasonal and diurnal patterns of the CO2 mixing ratio and δ13C were affected by anthropogenic emissions and biogenic activity. Assuming that the primary CO2 sources at night (22:00-04:00) were coal and natural gas combustion during heating seasons I and II, an isotopic mass balance analysis indicated that coal combustion had average contributions of 83.83 ± 14.11% and 86.84 ± 12.27% and that natural gas had average contributions of 16.17 ± 14.11% and 13.16 ± 12.27%, respectively. The δ13C of background CO2 in air was the main error source in the isotopic mass balance model. Both the mixing ratio and δ13C of atmospheric CO2 had significant linear relationships with the air quality index (AQI) and can be used to indicate local air pollution conditions. Energy structure optimization, for example, reducing coal consumption, will improve the local air conditions in Beijing.

  12. Novel proxies for reconstructing paleohydrology from ombrotrophic peatlands: biomarker and compound-specific H and C stable isotope ratios

    NASA Astrophysics Data System (ADS)

    Wang, J.; Nichols, J. E.; Huang, Y.

    2008-12-01

    Ombrotrophic peatlands are excellent archives for paleohydrologic information because they are hydrologically isolated from their surroundings. However, quantitative proxies for deciphering peatland archives are lacking. Here, we present development and application of novel organic geochemical methods for quantitative reconstruction of paleohydrology from the ombrotrophic sediments, and comparison of organic geochemical data with conventional paleoecological proxies. Application of these methods to the sediments of several North American and European peatlands has revealed significant changes in the hydroclimate throughout the Holocene. The plant assemblage living at the surface of the peatland is tightly controlled by surface moisture. Under wet conditions, Sphagnum mosses, with no active mechanism for drawing water from below the surface of the peatland, are dominant. During dry conditions, vascular plants are more productive relative to Sphagnum. A ratio of the abundance of two biomarkers representing Sphagnum and vascular plants sensitively records changes in hydrologic balance (Nichols et al., 2006, Org. Geochem. 37, 1505-1513). We have further developed stable isotope models to compute climate parameters from compound-specific H and C isotope ratios of biomarkers to create a more comprehensive climate reconstruction. Vascular plant leaf waxes carry the D/H ratio signature of precipitation that is little affected by evaporation, whereas the Sphagnum biomarker records isotopic ratios of the water at the peatland surface, which is strongly enriched by evaporation. Evaporation amount can be calculated using the differences between D/H ratios of the two types of biomarkers. C isotope ratios of Sphagnum biomarkers can also be used to quantify surface wetness. Methanotrophic bacteria live symbiotically with Sphagnum, providing isotopically light carbon for photosynthesis. These bacteria are more active when the Sphagnum is wet, thus providing more 13C-depleted CO2

  13. Isotopic Ratios of Carbon and Oxygen in Titan’s CO using ALMA

    NASA Astrophysics Data System (ADS)

    Serigano, Joseph; Nixon, C. A.; Cordiner, M. A.; Irwin, P. G. J.; Teanby, N. A.; Charnley, S. B.; Lindberg, J. E.

    2016-04-01

    We report interferometric observations of carbon monoxide (CO) and its isotopologues in Titan’s atmosphere using the Atacama Large Millimeter/submillimeter Array (ALMA). The following transitions were detected: CO (J = 1-0, 2-1, 3-2, 6-5), 13CO (J = 2-1, 3-2, 6-5), C18O (J = 2-1, 3-2), and C17O (J = 3-2). Molecular abundances and the vertical atmospheric temperature profile were derived by modeling the observed emission line profiles using NEMESIS, a line-by-line radiative transfer code. We present the first spectroscopic detection of 17O in the outer solar system with C17O detected at >8σ confidence. The abundance of CO was determined to be 49.6 +/- 1.8 ppm, assumed to be constant with altitude, with isotopic ratios 12C/13C = 89.9 +/- 3.4, 16O/18O = 486 +/- 22, and 16O/17O = 2917 +/- 359. The measurements of 12C/13C and 16O/18O ratios are the most precise values obtained in Titan’s atmospheric CO to date. Our results are in good agreement with previous studies and suggest no significant deviations from standard terrestrial isotopic ratios.

  14. Lead isotope ratios in tree bark pockets: an indicator of past air pollution in the Czech Republic.

    PubMed

    Conkova, M; Kubiznakova, J

    2008-10-15

    Tree bark pockets were collected at four sites in the Czech Republic with differing levels of lead (Pb) pollution. The samples, spanning 1923-2005, were separated from beech (Fagus sylvatica) and spruce (Picea abies). Elevated Pb content (0.1-42.4 microg g(-1)) reflected air pollution in the city of Prague. The lowest Pb content (0.3-2.6 microg g(-1)) was found at the Kosetice EMEP "background pollution" site. Changes in (206)Pb/(207)Pb and (208)Pb/(206)Pb isotope ratios were in agreement with operation times of the Czech main anthropogenic Pb sources. Shortly after the Second World War, the (206)Pb/(207)Pb isotope ratio in bark pockets decreased from 1.17 to 1.14 and the (208)Pb/(206)Pb isotope ratio increased from 2.12 to 2.16. Two dominant emission sources responsible for these changes, lignite and leaded petrol combustion, contributed to the shifts in Pb isotope ratios. Low-radiogenic petrol Pb ((206)Pb/(207)Pb of 1.11) lead to lower (206)Pb/(207)Pb in bark pockets over time. High-radiogenic lignite-derived Pb ((206)Pb/(207)Pb of 1.18 to 1.19) was detected in areas affected by coal combustion rather than by traffic.

  15. Structure and reactivity of boron-ate complexes derived from primary and secondary boronic esters.

    PubMed

    Feeney, Kathryn; Berionni, Guillaume; Mayr, Herbert; Aggarwal, Varinder K

    2015-06-05

    Boron-ate complexes derived from primary and secondary boronic esters and aryllithiums have been isolated, and the kinetics of their reactions with carbenium ions studied. The second-order rate constants have been used to derive nucleophilicity parameters for the boron-ate complexes, revealing that nucleophilicity increased with (i) electron-donating aromatics on boron, (ii) neopentyl glycol over pinacol boronic esters, and (iii) 12-crown-4 ether.

  16. Nitrogen-isotope ratios of nitrate in ground water under fertilized fields, Long Island, New York

    USGS Publications Warehouse

    Flipse, W.J.; Bonner, F.T.

    1985-01-01

    Ground-water samples from two heavily fertilized sites in Suffolk County, New York, were collected through the 1978 growing season and analyzed for nitrate-N concentrations and nitrogen-isotope ratios. Six wells were at a potato farm; six were on a golf course. The purpose of this study was to determine whether the 15N/14N ratios (??15N values) of fertilizer are increased during transit from land surface to ground water to an extent which would preclude use of this ratio to distinguish agricultural from animal sources of nitrate in ground water. Ground water at both sites contained a greater proportion of 15N than the fertilizers being applied. At the potato farm, the average ??15N value of the fertilizers was 0.2???; the average ??15N value of the ground-water nitrate was 6.2???. At the golf course, the average ??15N value of the fertilizers was -5.9???, and that of ground-water nitrate was 6.5???. The higher ??15N values of ground-water nitrate are probably caused by isotopic fractionation during the volatile loss of ammonia from nitrogen applied in reduced forms (NH4+ and organic-N). The ??15N values of most ground-water samples from both areas were less than 10???, the upper limit of the range characteristic of agricultural sources of nitrate; these sources include both fertilizer nitrate and nitrate derived from increased mineralization of soil nitrogen through cultivation. Previous studies have shown that the ??15N values of nitrate derived from human or animal waste generally exceed 10???. The nitrogen-isotope ratios of fertilizer-derived nitrate were not altered to an extent that would make them indistinguishable from animal-waste-derived nitrates in ground water.Ground-water samples from two heavily fertilized sites in Suffolk County, New York, were collected through the 1978 growing season and analyzed for nitrate-N concentrations and nitrogen-isotope ratios. Six wells were at a potato farm; six were on a golf course. The purpose of this study was to

  17. Traceability of different apple varieties by multivariate analysis of isotope ratio mass spectrometry data.

    PubMed

    Mimmo, Tanja; Camin, Federica; Bontempo, Luana; Capici, Calogero; Tagliavini, Massimo; Cesco, Stefano; Scampicchio, Matteo

    2015-11-15

    The awareness of customers of the origin of foods has become an important issue. The growing demand for foods that are healthy, safe and of high quality has increased the need for traceability and clear labelling. Thus, this study investigates the capability of C and N stable isotope ratios to determine the geographical origin of several apple varieties grown in northern Italy. Four apple varieties (Cripps Pink, Gala, Golden Delicious, Granny Smith) have been sampled in orchards located in the Districts of Bolzano, Ferrara, Verona and Udine (northern Italy). Carbon (δ(13) C) and nitrogen (δ(15) N) isotope values of the whole apple fruits and three sub-fractions (peel, pulp and seed) have been determined simultaneously by isotope ratio mass spectrometry. The δ(13) C and δ(15) N values of apples and apple sub-fractions, such as peel, seed and pulp, were significantly affected by the geographical origin and the fruit variety. The four varieties could be distinguished to a certain extent only within each district. A 99% correct identification of the samples according to their origin was, however, achieved by cross validation with the 'leave-one-out' method. This study proves the potential of stable isotopes to discriminate the geographical origin of apples grown in orchards located only a few hundreds of kilometres apart. Stable isotopes were also able to discriminate different apple varieties, although only within small geographical areas. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Carbon and nitrogen isotope ratios of juvenile winter flounder ...

    EPA Pesticide Factsheets

    Stable carbon and nitrogen isotope ratios were measured in the muscle tissues of young-of-the-year (YOY) winter flounder, Pseudopleuronectes americanus, collected from several estuarine systems along the coast of Rhode Island, USA. These systems included three coastal lagoons (Ninigret Pond, Green Hill Pond and Point Judith Pond), an estuarine river (Narrow River) and Narragansett Bay. Results from sampling over a three-year period showed some year-to-year variability for 13C within waterbodies; however, 15N values were not significantly different (P > 0.05) within systems among the three years studied. he 13C trends observed along transects in Narrow River and Narragansett Bay showed isotopically depleted terrestrial signals in the upper reaches of the estuaries and more positive values indicative of marine organic material in the lower regions of these systems. Significant differences (P < 0.05) in 15N were observed among estuarine systems. Fish from the coastal lagoons had the lowest 15N values followed by those from Narrow River and then Narragansett Bay. Some unexpected trends in 15N were observed within Narragansett Bay. The Bay has a strong north-south gradient in nutrient concentrations due to large sewage inputs in the upper Bay which was not reflected in flounder 15N values. As expected, YOY flounder from stations in the lower-Bay had depleted 15N values compared to those from the other locations. However, the 15N ratios o

  19. Caution on the use of liquid nitrogen traps in stable hydrogen isotope-ratio mass spectrometry

    USGS Publications Warehouse

    Coplen, Tyler B.; Qi, Haiping

    2010-01-01

    An anomalous stable hydrogen isotopic fractionation of 4 ‰ in gaseous hydrogen has been correlated with the process of adding liquid nitrogen (LN2) to top off the dewar of a stainless-steel water trap on a gaseous hydrogen-water platinum equilibration system. Although the cause of this isotopic fractionation is unknown, its effect can be mitigated by (1) increasing the capacity of any dewars so that they do not need to be filled during a daily analytic run, (2) interspersing isotopic reference waters among unknowns, and (3) applying a linear drift correction and linear normalization to isotopic results with a program such as Laboratory Information Management System (LIMS) for Light Stable Isotopes. With adoption of the above guidelines, measurement uncertainty can be substantially improved. For example, the long-term (months to years) δ2H reproducibility (1& sigma; standard deviation) of nine local isotopic reference waters analyzed daily improved substantially from about 1‰ to 0.58 ‰. This isotopically fractionating mechanism might affect other isotope-ratio mass spectrometers in which LN2 is used as a moisture trap for gaseous hydrogen

  20. Sensitivity and Uncertainty Analysis of Plutonium and Cesium Isotopes in Modeling of BR3 Reactor Spent Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conant, Andrew; Erickson, Anna; Robel, Martin

    Nuclear forensics has a broad task to characterize recovered nuclear or radiological material and interpret the results of investigation. One approach to isotopic characterization of nuclear material obtained from a reactor is to chemically separate and perform isotopic measurements on the sample and verify the results with modeling of the sample history, for example, operation of a nuclear reactor. The major actinide plutonium and fission product cesium are commonly measured signatures of the fuel history in a reactor core. This study investigates the uncertainty of the plutonium and cesium isotope ratios of a fuel rod discharged from a research pressurizedmore » water reactor when the location of the sample is not known a priori. A sensitivity analysis showed overpredicted values for the 240Pu/ 239Pu ratio toward the axial center of the rod and revealed a lower probability of the rod of interest (ROI) being on the periphery of the assembly. The uncertainty analysis found the relative errors due to only the rod position and boron concentration to be 17% to 36% and 7% to 15% for the 240Pu/ 239Pu and 137Cs/ 135Cs ratios, respectively. Lastly, this study provides a method for uncertainty quantification of isotope concentrations due to the location of the ROI. Similar analyses can be performed to verify future chemical and isotopic analyses.« less

  1. Sensitivity and Uncertainty Analysis of Plutonium and Cesium Isotopes in Modeling of BR3 Reactor Spent Fuel

    DOE PAGES

    Conant, Andrew; Erickson, Anna; Robel, Martin; ...

    2017-02-03

    Nuclear forensics has a broad task to characterize recovered nuclear or radiological material and interpret the results of investigation. One approach to isotopic characterization of nuclear material obtained from a reactor is to chemically separate and perform isotopic measurements on the sample and verify the results with modeling of the sample history, for example, operation of a nuclear reactor. The major actinide plutonium and fission product cesium are commonly measured signatures of the fuel history in a reactor core. This study investigates the uncertainty of the plutonium and cesium isotope ratios of a fuel rod discharged from a research pressurizedmore » water reactor when the location of the sample is not known a priori. A sensitivity analysis showed overpredicted values for the 240Pu/ 239Pu ratio toward the axial center of the rod and revealed a lower probability of the rod of interest (ROI) being on the periphery of the assembly. The uncertainty analysis found the relative errors due to only the rod position and boron concentration to be 17% to 36% and 7% to 15% for the 240Pu/ 239Pu and 137Cs/ 135Cs ratios, respectively. Lastly, this study provides a method for uncertainty quantification of isotope concentrations due to the location of the ROI. Similar analyses can be performed to verify future chemical and isotopic analyses.« less

  2. Measurements of stable isotope ratios in milk samples from a farm placed in the mountains of Transylvania

    NASA Astrophysics Data System (ADS)

    Magdas, D. A.; Cristea, G.; Cordea, D. V.; Bot, A.; Puscas, R.; Radu, S.; Mirel, V.; Mihaiu, M.

    2013-11-01

    Product origin is of great importance for consumers especially because its association in consumer's perception with food quality, freedom from disease or pollution. Stable isotope ratio analysis is a powerful technique in food authenticity and traceability control which has been introduced within the European wine industry to ensure authenticity of wine provenance and to detect adulteration. Isotopic ratios measurements have also been successfully to other food commodities like: fruit juices, honey and dairy foods. The δ18O and δ2H content in milk water reflects the isotope composition of the ground water drunk by animals. Seasonal effects are also very important: in summer, milk water contains higher δ18O and δ2H values due to the fresh plants that are ate by animals. Relative carbon stable isotope abundances in total milk reflect the isotopic composition of the diet fed to the dairy cows. In this study the hydrogen, oxygen and carbon isotopic composition of 15 milk samples coming from a unit placed in the mountains of Transylvania was investigated. The distribution of the obtained isotopic values was than discussed taking into account that all the animals were feed with the same type of forage and consumed water was taken from the same source.

  3. Application of LA-MC-ICP-MS for analysis of Sr isotope ratios in speleothems

    NASA Astrophysics Data System (ADS)

    Weber, Michael; Scholz, Denis; Wassenburg, Jasper A.; Jochum, Klaus Peter; Breitenbach, Sebastian

    2017-04-01

    Speleothems are well established climate archives. In order to reconstruct past climate variability, several geochemical proxies, such as δ13C and δ18O as well as trace elements are available. Since several factors influence each individual proxy, robust interpretation is often hampered. This calls for multi-proxy approaches involving additional isotope systems that can help to delineate the role of different sources of water within the epikarst and changes in soil composition. Sr isotope ratios (87Sr/86Sr) have been shown to provide useful information about water residence time and water mixing in the host rock. Furthermore, Sr isotopes are not fractionated during calcite precipitation, implying that the 87Sr/86Sr ratio of the speleothem provides a direct record of the drip water. While most speleothem studies applying Sr isotopes used the TIMS methodology, LA-MC-ICP-MS has been utilized for several other archives, such as otoliths and teeth. This method provides the advantage of faster data acquisition, higher spatial resolution, larger sample throughput and the absence of chemical treatment prior to analysis. Here we present the first LA-MC-ICP-MS Sr isotope data for speleothems. The analytical uncertainty of our LA-MC-ICP-MS Sr data is in a similar range as for other carbonate materials. The results of different ablation techniques (i.e. line scan and spots) are reproducible within error, implying that the application of this technique on speleothems is possible. In addition, several comparative measurements of different carbonate reference materials (i.e. MACS-3, JCt-1, JCp-1), such as tests with standard bracketing and comparison of the 87Sr/86Sr ratios with nanosecond laser ablation system and a state-of-the-art femtosecond laser ablation system, show the robustness of the method. We applied the method to samples from Morocco (Grotte de Piste) and India (Mawmluh Cave). Our results show only very small changes in the 87Sr/86Sr ratios of both speleothems

  4. Identification of Marchfeld asparagus using Sr isotope ratio measurements by MC-ICP-MS.

    PubMed

    Swoboda, S; Brunner, M; Boulyga, S F; Galler, P; Horacek, M; Prohaska, T

    2008-01-01

    This work focuses on testing and application of Sr isotope signatures for the fast and reliable authentication and traceability of Asparagus officinalis originating from Marchfeld, Austria, using multicollector inductively coupled plasma mass spectrometry after optimised Rb/Sr separation. The major sample pool comprises freeze-dried and microwave-digested asparagus samples from Hungary and Slovakia which are compared with Austrian asparagus originating from the Marchfeld region, which is a protected geographical indication. Additional samples from Peru, The Netherlands and Germany were limited in number and allowed therefore only restricted statistical evaluation. Asparagus samples from Marchfeld were harvested within two subsequent years in order to investigate the annual variation. The results show that the Sr isotope ratio is consistent within these 2 years of investigation. Moreover, the Sr isotope ratio of total Sr in soil was found to be significantly higher than in an NH4NO3 extract, reflecting the mobile (bioavailable) phase. The isotope composition in the latter extract corresponds well to the range found in the asparagus samples in Marchfeld, even though the concentration of Sr in asparagus shows no direct correlation to the concentration of Sr in the mobile phase of the soil. The major question was whether the 'Marchfelder Spargel' can be distinguished from samples from the neighbouring countries of Hungary and Slovakia. According to our findings, they can be clearly (100%) singled out from the Hungarian samples and can be distinguished from the Slovakian asparagus samples with a probability of more than 80%.

  5. Cesium isotope ratios as indicators of nuclear power plant operations.

    PubMed

    Delmore, James E; Snyder, Darin C; Tranter, Troy; Mann, Nick R

    2011-11-01

    There are multiple paths by which radioactive cesium can reach the effluent from reactor operations. The radioactive (135)Cs/(137)Cs ratios are controlled by these paths. In an effort to better understand the origin of this radiation, these (135)Cs/(137)Cs ratios in effluents from three power reactor sites have been measured in offsite samples. These ratios are different from global fallout by up to six fold and as such cannot have a significant component from this source. A cesium ratio for a sample collected outside of the plant boundary provides integration over the operating life of the reactor. A sample collected inside the plant at any given time can be much different from this lifetime ratio. The measured cesium ratios vary significantly for the three reactors and indicate that the multiple paths have widely varying levels of contributions. There are too many ways these isotopes can fractionate to be useful for quantitative evaluations of operating parameters in an offsite sample, although it may be possible to obtain limited qualitative information for an onsite sample. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Variation in strontium isotope ratios of archaeological fauna in the Midwestern United States: a preliminary study

    USGS Publications Warehouse

    Hedman, Kristin M.; Curry, B. Brandon; Johnson, Thomas M.; Fullagar, Paul D.; Emerson, Thomas E.

    2009-01-01

    Strontium isotope values (87Sr/86Sr) in bone and tooth enamel have been used increasingly to identify non-local individuals within prehistoric human populations worldwide. Archaeological research in the Midwestern United States has increasingly highlighted the role of population movement in affecting interregional cultural change. However, the comparatively low level of geologic variation in the Midwestern United States might suggest a corresponding low level of strontium variation, and calls into question the sensitivity of strontium isotopes to identify non-local individuals in this region. Using strontium isotopes of archaeological fauna, we explore the degree of variability in strontium ratios across this region. Our results demonstrate measurable variation in strontium ratios and indicate the potential of strontium analysis for addressing questions of origin and population movement in the Midwestern United States.

  7. Uranium and Calcium Isotope Ratio Measurements using the Modified Total Evaporation Method in TIMS

    NASA Astrophysics Data System (ADS)

    Richter, S.; Kuehn, H.; Berglund, M.; Hennessy, C.

    2010-12-01

    A new version of the "modified total evaporation" (MTE) method for isotopic analysis by multi-collector thermal ionization mass spectrometry (TIMS), with high analytical performance and designed in a more user-friendly and routinely applicable way, is described in detail. It is mainly being used for nuclear safeguards measurements of U and Pu and nuclear metrology, but can readily be applied to other scientific tasks in geochemistry, e.g. for Sr, Nd and Ca, as well. The development of the MTE method was organized in collaboration of several "key nuclear mass spectrometry laboratories", namely the New Brunswick Laboratory (NBL), the Institute for Transuranium Elements (ITU), the Safeguards Analytical Laboratory (now Safeguards Analytical Services, SGAS) of the International Atomic Energy Agency (IAEA) and the Institute for Reference Materials and Measurements (IRMM), with IRMM taking the leading role. The manufacturer of the TRITON TIMS instrument, Thermo Fisher Scientific, integrated this method into the software of the instrument. The development has now reached its goal to become a user-friendly and routinely useable method for uranium isotope ratio measurements with high precision and accuracy. Due to the use of the “total evaporation” (TE) method the measurement of the "major" uranium isotope ratio 235U/238U is routinely being performed with a precision of 0.01% to 0.02%. The use of a (certified) reference material measured under comparable conditions is emphasized to achieve an accuracy at a level of 0.02% - depending on the stated uncertainty of the certified value of the reference material. In contrast to the total evaporation method (TE), in the MTE method the total evaporation sequence is interrupted on a regular basis to allow for correction for background from peak tailing, internal calibration of a secondary electron multiplier (SEM) detector versus the Faraday cups, and ion source re-focusing. Therefore, the most significant improvement using the

  8. Acquisition and processing of data for isotope-ratio-monitoring mass spectrometry

    NASA Technical Reports Server (NTRS)

    Ricci, M. P.; Merritt, D. A.; Freeman, K. H.; Hayes, J. M.

    1994-01-01

    Methods are described for continuous monitoring of signals required for precise analyses of 13C, 18O, and 15N in gas streams containing varying quantities of CO2 and N2. The quantitative resolution (i.e. maximum performance in the absence of random errors) of these methods is adequate for determination of isotope ratios with an uncertainty of one part in 10(5); the precision actually obtained is often better than one part in 10(4). This report describes data-processing operations including definition of beginning and ending points of chromatographic peaks and quantitation of background levels, allowance for effects of chromatographic separation of isotopically substituted species, integration of signals related to specific masses, correction for effects of mass discrimination, recognition of drifts in mass spectrometer performance, and calculation of isotopic delta values. Characteristics of a system allowing off-line revision of parameters used in data reduction are described and an algorithm for identification of background levels in complex chromatograms is outlined. Effects of imperfect chromatographic resolution are demonstrated and discussed and an approach to deconvolution of signals from coeluting substances described.

  9. Nitrogen Isotopic Ratio in Jupiter's Atmosphere from Observations by Composite Infrared Spectrometer (CIRS) on the Cassini Spacecraft

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; LeClair, A.; Owen, T.; Conrath, B. J.; Flasar, F. M.; Kunde, V. G.; Nixon, C. A..; Achterberg, R. K.; Bjoraker, G.; Jennings, D. J.

    2003-01-01

    The Composite Infrared Spectrometer (CIRS) on the Cassini spacecraft made infrared observations of Jupiter's atmosphere during the flyby in December 2000 to January 2001. The unique database in the 600-1400/cm region with 0.53 and 2.8/cm spectral resolutions obtained from the observations permits retrieval of global maps of the thermal structure and composition of Jupiter's atmosphere including the distributions of (14)NH3 and (15)NH3. Analysis of Jupiter's ammonia distributions from three isolated (15)NH3 spectral lines in eight latitudes is presented for evaluation of the nitrogen isotopic ratio. The nitrogen isotopic ratio (14)N/(15)N (or (15)N/(14)N) in Jupiter's atmosphere in this analysis is calculated to be: 448 +/- 62 ((2.23 +/- 0.31) x 10(exp -3)). This value of the ratio determined from CIRS data is found to be in very close agreement with the value previously obtained from the measurements by the Galileo Probe Mass Spectrometer. Some possible mechanisms to account for the variation of Jupiter's observed isotopic ratio relative to various astrophysical environments are discussed.

  10. Mixed-mode chromatography/isotope ratio mass spectrometry.

    PubMed

    McCullagh, James S O

    2010-03-15

    Liquid chromatography coupled to molecular mass spectrometry (LC/MS) has been a standard technique since the early 1970s but liquid chromatography coupled to high-precision isotope ratio mass spectrometry (LC/IRMS) has only been available commercially since 2004. This development has, for the first time, enabled natural abundance and low enrichment delta(13)C measurements to be applied to individual analytes in aqueous mixtures creating new opportunities for IRMS applications, particularly for the isotopic study of biological molecules. A growing number of applications have been published in a range of areas including amino acid metabolism, carbohydrates studies, quantification of cellular and plasma metabolites, dietary tracer and nucleic acid studies. There is strong potential to extend these to new compounds and complex matrices but several challenges face the development of LC/IRMS methods. To achieve accurate isotopic measurements, HPLC separations must provide baseline-resolution between analyte peaks; however, the design of current liquid interfaces places severe restrictions on compatible flow rates and in particular mobile phase compositions. These create a significant challenge on which reports associated with LC/IRMS have not previously focused. Accordingly, this paper will address aspects of chromatography in the context of LC/IRMS, in particular focusing on mixed-mode separations and their benefits in light of these restrictions. It aims to provide an overview of mixed-mode stationary phases and of ways to improve high aqueous separations through manipulation of parameters such as column length, temperature and mobile phase pH. The results of several practical experiments are given using proteogenic amino acids and nucleosides both of which are of noted importance in the LC/IRMS literature. This communication aims to demonstrate that mixed-mode stationary phases provide a flexible approach given the constraints of LC/IRMS interface design and acts as a

  11. Use of Isotope Ratio Determination (13C/12C) to Assess the Production Method of Sparkling Wine.

    PubMed

    Rossier, Joël S; Maury, Valérie; Gaillard, Laetitia; Pfammatter, Elmar

    2016-01-01

    The production of a sparkling wine can be performed with different methods taking from a few weeks to several years, which often justifies a difference in added value for the consumer. This paper presents the use of isotope ratio δ(13)C measurements combined with physico-chemical analyses for the determination of mislabelling of sparkling wines produced by 'ancestral', 'traditional', 'closed tank' or 'gasification' methods. This work shows that the isotope composition of CO(2) compared with that of the corresponding dried residue of wine (DRW) can assess whether carbonate CO(2) in a sparkling wine originates from alcohol fermentation or from artificial gas addition. Isotopic ratios expressed as δ(13)C(CO2) and δ(13)C(DRW) measurements have been obtained for each wine by gasbench isotopic ratio mass spectroscopy and cavity ring down infrared spectroscopy, respectively. When the difference between δ(13)C(CO2) and δ(13)C(DRW) is negative, the presence of artificial CO(2) can be undoubtedly inferred, which would exclude the production methods 'ancestral' or 'traditional' for instance. Other parameters such as alcohol content, sugar and acid distributions are also important to complete the analytical panel to aid fraud tracking.

  12. Enhanced forensic discrimination of pollutants by position-specific isotope analysis using isotope ratio monitoring by (13)C nuclear magnetic resonance spectrometry.

    PubMed

    Julien, Maxime; Nun, Pierrick; Höhener, Patrick; Parinet, Julien; Robins, Richard J; Remaud, Gérald S

    2016-01-15

    In forensic environmental investigations the main issue concerns the inference of the original source of the pollutant for determining the liable party. Isotope measurements in geochemistry, combined with complimentary techniques for contaminant identification, have contributed significantly to source determination at polluted sites. In this work we have determined the intramolecular (13)C profiles of several molecules well-known as pollutants. By giving additional analytical parameters, position-specific isotope analysis performed by isotope ratio monitoring by (13)C nuclear magnetic resonance (irm-(13)C NMR) spectrometry gives new information to help in answering the major question: what is the origin of the detected contaminant? We have shown that isotope profiling of the core of a molecule reveals both the raw materials and the process used in its manufacture. It also can reveal processes occurring between the contamination site 'source' and the sampling site. Thus, irm-(13)C NMR is shown to be a very good complement to compound-specific isotope analysis currently performed by mass spectrometry for assessing polluted sites involving substantial spills of pollutant. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Detection of testosterone administration based on the carbon isotope ratio profiling of endogenous steroids: international reference populations of professional soccer players

    PubMed Central

    Strahm, E; Emery, C; Saugy, M; Dvorak, J; Saudan, C

    2009-01-01

    Background and objectives: The determination of the carbon isotope ratio in androgen metabolites has been previously shown to be a reliable, direct method to detect testosterone misuse in the context of antidoping testing. Here, the variability in the 13C/12C ratios in urinary steroids in a widely heterogeneous cohort of professional soccer players residing in different countries (Argentina, Italy, Japan, South Africa, Switzerland and Uganda) is examined. Methods: Carbon isotope ratios of selected androgens in urine specimens were determined using gas chromatography/combustion/isotope ratio mass spectrometry (GC-C-IRMS). Results: Urinary steroids in Italian and Swiss populations were found to be enriched in 13C relative to other groups, reflecting higher consumption of C3 plants in these two countries. Importantly, detection criteria based on the difference in the carbon isotope ratio of androsterone and pregnanediol for each population were found to be well below the established threshold value for positive cases. Conclusions: The results obtained with the tested diet groups highlight the importance of adapting the criteria if one wishes to increase the sensitivity of exogenous testosterone detection. In addition, confirmatory tests might be rendered more efficient by combining isotope ratio mass spectrometry with refined interpretation criteria for positivity and subject-based profiling of steroids. PMID:19549614

  14. Detection of testosterone administration based on the carbon isotope ratio profiling of endogenous steroids: international reference populations of professional soccer players.

    PubMed

    Strahm, E; Emery, C; Saugy, M; Dvorak, J; Saudan, C

    2009-12-01

    The determination of the carbon isotope ratio in androgen metabolites has been previously shown to be a reliable, direct method to detect testosterone misuse in the context of antidoping testing. Here, the variability in the 13C/12C ratios in urinary steroids in a widely heterogeneous cohort of professional soccer players residing in different countries (Argentina, Italy, Japan, South Africa, Switzerland and Uganda) is examined. Carbon isotope ratios of selected androgens in urine specimens were determined using gas chromatography/combustion/isotope ratio mass spectrometry (GC-C-IRMS). Urinary steroids in Italian and Swiss populations were found to be enriched in 13C relative to other groups, reflecting higher consumption of C3 plants in these two countries. Importantly, detection criteria based on the difference in the carbon isotope ratio of androsterone and pregnanediol for each population were found to be well below the established threshold value for positive cases. The results obtained with the tested diet groups highlight the importance of adapting the criteria if one wishes to increase the sensitivity of exogenous testosterone detection. In addition, confirmatory tests might be rendered more efficient by combining isotope ratio mass spectrometry with refined interpretation criteria for positivity and subject-based profiling of steroids.

  15. Stable carbon isotope ratio of methyl chloride emitted from glasshouse-grown tropical plants and its implication for the global methyl chloride budget

    NASA Astrophysics Data System (ADS)

    Saito, Takuya; Yokouchi, Yoko

    2008-04-01

    Stable carbon isotope ratios of methyl chloride (CH3Cl) were measured in foliar emissions from 14 species of tropical plants growing in a glasshouse. The isotopic ratio of CH3Cl (arithmetic mean: -83.2 +/- 15.2‰) ranged from -56‰ to -114‰ that from dipterocarp trees (-87.4 +/- 12.3‰) was on average more depleted in 13C than that from tree ferns (-61.9 +/- 9.7‰). The isotopic ratio was lower than that of CH3Cl produced by other known sources (e.g., biomass burning and salt marshes), with the exception of that by dead leaves. Using the distinctive isotope ratio of CH3Cl emitted from tropical plants together with previously reported isotopic data of CH3Cl sources and sinks to an isotopic mass balance calculation, global CH3Cl emission by tropical plants was estimated to be approximately 1500-3000 Gg yr-1 with uncertainties of 30-60%, which could account for 30-50% of the global emission.

  16. Caution on the use of liquid nitrogen traps in stable hydrogen isotope-ratio mass spectrometry

    USGS Publications Warehouse

    Coplen, T.B.; Qi, H.

    2010-01-01

    An anomalous stable hydrogen isotopic fractionation of 4 ??? in gaseous hydrogen has been correlated with the process of adding liquid nitrogen (LN2) to top off the dewar of a stainless-steel water trap on a gaseous hydrogen-water platinum equilibration system. Although the cause of this isotopic fractionation is unknown, its effect can be mitigated by (1) increasing the capacity of any dewars so that they do not need to be filled during a daily analytic run, (2) interspersing isotopic reference waters among unknowns, and (3) applying a linear drift correction and linear normalization to isotopic results with a program such as Laboratory Information Management System (LIMS) for Light Stable Isotopes. With adoption of the above guidelines, measurement uncertainty can be substantially improved. For example, the long-term (months to years) ??2H reproducibility (1?? standard deviation) of nine local isotopic reference waters analyzed daily improved substantially from about 1 ??? to 0.58 ???. This isotopically fractionating mechanism might affect other isotope-ratio mass spectrometers in which LN2 is used as a moisture trap for gaseous hydrogen. ?? This article not subject to U.S. Copyright. Published 2010 by the American Chemical Society.

  17. Measurements of stable isotope ratios in milk samples from a farm placed in the mountains of Transylvania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magdas, D. A., E-mail: gabriela.cristea@itim-cj.ro; Cristea, G., E-mail: gabriela.cristea@itim-cj.ro; Bot, A.

    Product origin is of great importance for consumers especially because its association in consumer's perception with food quality, freedom from disease or pollution. Stable isotope ratio analysis is a powerful technique in food authenticity and traceability control which has been introduced within the European wine industry to ensure authenticity of wine provenance and to detect adulteration. Isotopic ratios measurements have also been successfully to other food commodities like: fruit juices, honey and dairy foods. The δ{sup 18}O and δ{sup 2}H content in milk water reflects the isotope composition of the ground water drunk by animals. Seasonal effects are also verymore » important: in summer, milk water contains higher δ{sup 18}O and δ{sup 2}H values due to the fresh plants that are ate by animals. Relative carbon stable isotope abundances in total milk reflect the isotopic composition of the diet fed to the dairy cows. In this study the hydrogen, oxygen and carbon isotopic composition of 15 milk samples coming from a unit placed in the mountains of Transylvania was investigated. The distribution of the obtained isotopic values was than discussed taking into account that all the animals were feed with the same type of forage and consumed water was taken from the same source.« less

  18. Boron isotopic composition of olivine-hosted melt inclusions from Gorgona komatiites, Colombia: New evidence supporting wet komatiite origin

    NASA Astrophysics Data System (ADS)

    Gurenko, Andrey A.; Kamenetsky, Vadim S.

    2011-12-01

    A fundamental question in the genesis of komatiites is whether these rocks originate from partial melting of dry and hot mantle, 400-500 °C hotter than typical sources of MORB and OIB magmas, or if they were produced by hydrous melting of the source at much lower temperatures, similar or only moderately higher than those known today. Gorgona Island, Colombia, is a unique place where Phanerozoic komatiites occur and whose origin is directly connected to the formation of the Caribbean Large Igneous Province. The genesis of Gorgona komatiites remains controversial, mostly because of the uncertain origin of volatile components which they appear to contain. These volatiles could equally result from shallow level magma contamination, melting of a "damp" mantle or fluid-induced partial melting of the source due to devolatilization of the ancient subducting plate. We have analyzed boron isotopes of olivine-hosted melt inclusions from the Gorgona komatiites. These inclusions are characterized by relatively high contents of volatile components and boron (0.2-1.0 wt.% H 2O, 0.05-0.08 wt.% S, 0.02-0.03 wt.% Cl, 0.6-2.0 μg/g B), displaying positive anomalies in the overall depleted, primitive mantle (PM) normalized trace element and REE spectra ([La/Sm] n = 0.16-0.35; [H 2O/Nb] n = 8-44; [Cl/Nb] n = 27-68; [B/Nb] n = 9-30, assuming 300 μg/g H 2O, 8 μg/g Cl and 0.1 μg/g B in PM; Kamenetsky et al., 2010. Composition and temperature of komatiite melts from Gorgona Island constrained from olivine-hosted melt inclusions. Geology 38, 1003-1006). The inclusions range in δ11B values from - 11.5 to + 15.6 ± 2.2‰ (1 SE), forming two distinct trends in a δ11B vs. B-concentration diagram. Direct assimilation of seawater, seawater-derived components, altered oceanic crust or marine sediments by ascending komatiite magma cannot readily account for the volatile contents and B isotope variations. Alternatively, injection of < 3wt.% of a 11B enriched fluid to the mantle source could

  19. Raman effect in icosahedral boron-rich solids

    PubMed Central

    Werheit, Helmut; Filipov, Volodymyr; Kuhlmann, Udo; Schwarz, Ulrich; Armbrüster, Marc; Leithe-Jasper, Andreas; Tanaka, Takaho; Higashi, Iwami; Lundström, Torsten; Gurin, Vladimir N; Korsukova, Maria M

    2010-01-01

    We present Raman spectra of numerous icosahedral boron-rich solids having the structure of α-rhombohedral, β-rhombohedral, α-tetragonal, β-tetragonal, YB66, orthorhombic or amorphous boron. The spectra were newly measured and, in some cases, compared with reported data and discussed. We emphasize the importance of a high signal-to-noise ratio in the Raman spectra for detecting weak effects evoked by the modification of compounds, accommodation of interstitial atoms and other structural defects. Vibrations of the icosahedra, occurring in all the spectra, are interpreted using the description of modes in α-rhombohedral boron by Beckel et al. The Raman spectrum of boron carbide is largely clarified. Relative intra- and inter-icosahedral bonding forces are estimated for the different structural groups and for vanadium-doped β-rhombohedral boron. The validity of Badger's rule is demonstrated for the force constants of inter-icosahedral B–B bonds, whereas the agreement is less satisfactory for the intra-icosahedral B–B bonds. PMID:27877328

  20. Boron nitride nanotube-mediated stimulation modulates F/G-actin ratio and mechanical properties of human dermal fibroblasts

    NASA Astrophysics Data System (ADS)

    Ricotti, Leonardo; das Neves, Ricardo Pires; Ciofani, Gianni; Canale, Claudio; Nitti, Simone; Mattoli, Virgilio; Mazzolai, Barbara; Ferreira, Lino; Menciassi, Arianna

    2014-02-01

    F/G-actin ratio modulation is known to have an important role in many cell functions and in the regulation of specific cell behaviors. Several attempts have been made in the latest decades to finely control actin production and polymerization, in order to promote certain cell responses. In this paper we demonstrate the possibility of modulating F/G-actin ratio and mechanical properties of normal human dermal fibroblasts by using boron nitride nanotubes dispersed in the culture medium and by stimulating them with ultrasound transducers. Increasing concentrations of nanotubes were tested with the cells, without any evidence of cytotoxicity up to 10 μg/ml concentration of nanoparticles. Cells treated with nanoparticles and ultrasound stimulation showed a significantly higher F/G-actin ratio in comparison with the controls, as well as a higher Young's modulus. Assessment of Cdc42 activity revealed that actin nucleation/polymerization pathways, involving Rho GTPases, are probably influenced by nanotube-mediated stimulation, but they do not play a primary role in the significant increase of F/G-actin ratio of treated cells, such effect being mainly due to actin overexpression.

  1. Method of synthesizing enriched decaborane for use in generating boron neutron capture therapy pharmaceuticals

    DOEpatents

    Cowan, Robert L.; Ginosar, Daniel M.; Dunks, Gary B.

    2000-01-01

    A method is described for synthesizing decaborane wherein at least about 90% of the boron atoms in the decaborane are the .sup.10 B isotope, comprising the steps of: (a) reacting boric acid with a C.sub.1 to C.sub.10 alkanol to form a .sup.10 B-alkyl borate wherein at least about 90% of the boron atoms in the boric acid are the .sup.10 B isotope; (b) reducing the .sup.10 B-alkyl borate to form an alkali metal .sup.10 B-borohydride; (c) converting the alkali metal .sup.10 B-borohydride to a .sup.10 B-tetradecahydroundecaborate ion; and (d) converting the .sup.10 B-tetradecahydroundecaborate ion to .sup.10 B-decaborane. Methods of preparing tetradecahydroundecaborate ions and decaborane from alkali metal borohydrides are also described.

  2. Precision Measurement of the Boron to Carbon Flux Ratio in Cosmic Rays from 1.9 GV to 2.6 TV with the Alpha Magnetic Spectrometer on the International Space Station

    NASA Astrophysics Data System (ADS)

    Aguilar, M.; Ali Cavasonza, L.; Ambrosi, G.; Arruda, L.; Attig, N.; Aupetit, S.; Azzarello, P.; Bachlechner, A.; Barao, F.; Barrau, A.; Barrin, L.; Bartoloni, A.; Basara, L.; Başeǧmez-du Pree, S.; Battarbee, M.; Battiston, R.; Becker, U.; Behlmann, M.; Beischer, B.; Berdugo, J.; Bertucci, B.; Bindel, K. F.; Bindi, V.; Boella, G.; de Boer, W.; Bollweg, K.; Bonnivard, V.; Borgia, B.; Boschini, M. J.; Bourquin, M.; Bueno, E. F.; Burger, J.; Cadoux, F.; Cai, X. D.; Capell, M.; Caroff, S.; Casaus, J.; Castellini, G.; Cervelli, F.; Chae, M. J.; Chang, Y. H.; Chen, A. I.; Chen, G. M.; Chen, H. S.; Cheng, L.; Chou, H. Y.; Choumilov, E.; Choutko, V.; Chung, C. H.; Clark, C.; Clavero, R.; Coignet, G.; Consolandi, C.; Contin, A.; Corti, C.; Creus, W.; Crispoltoni, M.; Cui, Z.; Dai, Y. M.; Delgado, C.; Della Torre, S.; Demakov, O.; Demirköz, M. B.; Derome, L.; Di Falco, S.; Dimiccoli, F.; Díaz, C.; von Doetinchem, P.; Dong, F.; Donnini, F.; Duranti, M.; D'Urso, D.; Egorov, A.; Eline, A.; Eronen, T.; Feng, J.; Fiandrini, E.; Finch, E.; Fisher, P.; Formato, V.; Galaktionov, Y.; Gallucci, G.; García, B.; García-López, R. J.; Gargiulo, C.; Gast, H.; Gebauer, I.; Gervasi, M.; Ghelfi, A.; Giovacchini, F.; Goglov, P.; Gómez-Coral, D. M.; Gong, J.; Goy, C.; Grabski, V.; Grandi, D.; Graziani, M.; Guo, K. H.; Haino, S.; Han, K. C.; He, Z. H.; Heil, M.; Hoffman, J.; Hsieh, T. H.; Huang, H.; Huang, Z. C.; Huh, C.; Incagli, M.; Ionica, M.; Jang, W. Y.; Jinchi, H.; Kang, S. C.; Kanishev, K.; Kim, G. N.; Kim, K. S.; Kirn, Th.; Konak, C.; Kounina, O.; Kounine, A.; Koutsenko, V.; Krafczyk, M. S.; La Vacca, G.; Laudi, E.; Laurenti, G.; Lazzizzera, I.; Lebedev, A.; Lee, H. T.; Lee, S. C.; Leluc, C.; Li, H. S.; Li, J. Q.; Li, J. Q.; Li, Q.; Li, T. X.; Li, W.; Li, Y.; Li, Z. H.; Li, Z. Y.; Lim, S.; Lin, C. H.; Lipari, P.; Lippert, T.; Liu, D.; Liu, Hu; Lordello, V. D.; Lu, S. Q.; Lu, Y. S.; Luebelsmeyer, K.; Luo, F.; Luo, J. Z.; Lv, S. S.; Machate, F.; Majka, R.; Mañá, C.; Marín, J.; Martin, T.; Martínez, G.; Masi, N.; Maurin, D.; Menchaca-Rocha, A.; Meng, Q.; Mikuni, V. M.; Mo, D. C.; Morescalchi, L.; Mott, P.; Nelson, T.; Ni, J. Q.; Nikonov, N.; Nozzoli, F.; Oliva, A.; Orcinha, M.; Palmonari, F.; Palomares, C.; Paniccia, M.; Pauluzzi, M.; Pensotti, S.; Pereira, R.; Picot-Clemente, N.; Pilo, F.; Pizzolotto, C.; Plyaskin, V.; Pohl, M.; Poireau, V.; Putze, A.; Quadrani, L.; Qi, X. M.; Qin, X.; Qu, Z. Y.; Räihä, T.; Rancoita, P. G.; Rapin, D.; Ricol, J. S.; Rosier-Lees, S.; Rozhkov, A.; Rozza, D.; Sagdeev, R.; Sandweiss, J.; Saouter, P.; Schael, S.; Schmidt, S. M.; Schulz von Dratzig, A.; Schwering, G.; Seo, E. S.; Shan, B. S.; Shi, J. Y.; Siedenburg, T.; Son, D.; Song, J. W.; Sun, W. H.; Tacconi, M.; Tang, X. W.; Tang, Z. C.; Tao, L.; Tescaro, D.; Ting, Samuel C. C.; Ting, S. M.; Tomassetti, N.; Torsti, J.; Türkoǧlu, C.; Urban, T.; Vagelli, V.; Valente, E.; Vannini, C.; Valtonen, E.; Vázquez Acosta, M.; Vecchi, M.; Velasco, M.; Vialle, J. P.; Vitale, V.; Vitillo, S.; Wang, L. Q.; Wang, N. H.; Wang, Q. L.; Wang, X.; Wang, X. Q.; Wang, Z. X.; Wei, C. C.; Weng, Z. L.; Whitman, K.; Wienkenhöver, J.; Wu, H.; Wu, X.; Xia, X.; Xiong, R. Q.; Xu, W.; Yan, Q.; Yang, J.; Yang, M.; Yang, Y.; Yi, H.; Yu, Y. J.; Yu, Z. Q.; Zeissler, S.; Zhang, C.; Zhang, J.; Zhang, J. H.; Zhang, S. D.; Zhang, S. W.; Zhang, Z.; Zheng, Z. M.; Zhu, Z. Q.; Zhuang, H. L.; Zhukov, V.; Zichichi, A.; Zimmermann, N.; Zuccon, P.; AMS Collaboration

    2016-12-01

    Knowledge of the rigidity dependence of the boron to carbon flux ratio (B/C) is important in understanding the propagation of cosmic rays. The precise measurement of the B /C ratio from 1.9 GV to 2.6 TV, based on 2.3 million boron and 8.3 million carbon nuclei collected by AMS during the first 5 years of operation, is presented. The detailed variation with rigidity of the B /C spectral index is reported for the first time. The B /C ratio does not show any significant structures in contrast to many cosmic ray models that require such structures at high rigidities. Remarkably, above 65 GV, the B /C ratio is well described by a single power law RΔ with index Δ =-0.333 ±0.014 (fit ) ±0.005 (syst ) , in good agreement with the Kolmogorov theory of turbulence which predicts Δ =-1 /3 asymptotically.

  3. Isotope-abundance variations of selected elements (IUPAC technical report)

    USGS Publications Warehouse

    Coplen, T.B.; Böhlke, J.K.; De Bievre, P.; Ding, T.; Holden, N.E.; Hopple, J.A.; Krouse, H.R.; Lamberty, A.; Peiser, H.S.; Revesz, K.; Rieder, S.E.; Rosman, K.J.R.; Roth, E.; Taylor, P.D.P.; Vocke, R.D.; Xiao, Y.K.

    2002-01-01

    Documented variations in the isotopic compositions of some chemical elements are responsible for expanded uncertainties in the standard atomic weights published by the Commission on Atomic Weights and Isotopic Abundances of the International Union of Pure and Applied Chemistry. This report summarizes reported variations in the isotopic compositions of 20 elements that are due to physical and chemical fractionation processes (not due to radioactive decay) and their effects on the standard atomic-weight uncertainties. For 11 of those elements (hydrogen, lithium, boron, carbon, nitrogen, oxygen, silicon, sulfur, chlorine, copper, and selenium), standard atomic-weight uncertainties have been assigned values that are substantially larger than analytical uncertainties because of common isotope-abundance variations in materials of natural terrestrial origin. For 2 elements (chromium and thallium), recently reported isotope-abundance variations potentially are large enough to result in future expansion of their atomic-weight uncertainties. For 7 elements (magnesium, calcium, iron, zinc, molybdenum, palladium, and tellurium), documented isotope variations in materials of natural terrestrial origin are too small to have a significant effect on their standard atomic-weight uncertainties. This compilation indicates the extent to which the atomic weight of an element in a given material may differ from the standard atomic weight of the element. For most elements given above, data are graphically illustrated by a diagram in which the materials are specified in the ordinate and the compositional ranges are plotted along the abscissa in scales of (1) atomic weight, (2) mole fraction of a selected isotope, and (3) delta value of a selected isotope ratio.

  4. Reliable determination of oxygen and hydrogen isotope ratios in atmospheric water vapour adsorbed on 3A molecular sieve.

    PubMed

    Han, Liang-Feng; Gröning, Manfred; Aggarwal, Pradeep; Helliker, Brent R

    2006-01-01

    The isotope ratio of atmospheric water vapour is determined by wide-ranging feedback effects from the isotope ratio of water in biological water pools, soil surface horizons, open water bodies and precipitation. Accurate determination of atmospheric water vapour isotope ratios is important for a broad range of research areas from leaf-scale to global-scale isotope studies. In spite of the importance of stable isotopic measurements of atmospheric water vapour, there is a paucity of published data available, largely because of the requirement for liquid nitrogen or dry ice for quantitative trapping of water vapour. We report results from a non-cryogenic method for quantitatively trapping atmospheric water vapour using 3A molecular sieve, although water is removed from the column using standard cryogenic methods. The molecular sieve column was conditioned with water of a known isotope ratio to 'set' the background signature of the molecular sieve. Two separate prototypes were developed, one for large collection volumes (3 mL) and one for small collection volumes (90 microL). Atmospheric water vapour was adsorbed to the column by pulling air through the column for several days to reach the desired final volume. Water was recovered from the column by baking at 250 degrees C in a dry helium or nitrogen air stream and cryogenically trapped. For the large-volume apparatus, the recovered water differed from water that was simultaneously trapped by liquid nitrogen (the experimental control) by 2.6 per thousand with a standard deviation (SD) of 1.5 per thousand for delta(2)H and by 0.3 per thousand with a SD of 0.2 per thousand for delta(18)O. Water-vapour recovery was not satisfactory for the small volume apparatus. Copyright (c) 2006 John Wiley & Sons, Ltd.

  5. The identification of lead ammunition as a source of lead exposure in First Nations: the use of lead isotope ratios.

    PubMed

    Tsuji, Leonard J S; Wainman, Bruce C; Martin, Ian D; Sutherland, Celine; Weber, Jean-Philippe; Dumas, Pierre; Nieboer, Evert

    2008-04-15

    The use of lead shotshell to hunt water birds has been associated with lead-contamination in game meat. However, evidence illustrating that lead shotshell is a source of lead exposure in subsistence hunting groups cannot be deemed definitive. This study seeks to determine whether lead shotshell constitutes a source of lead exposure using lead isotope ratios. We examined stable lead isotope ratios for lichens, lead shotshell and bullets, and blood from residents of Fort Albany and Kashechewan First Nations, and the City of Hamilton, Ontario, Canada. Data were analyzed using ANOVA and regression analyses. ANOVA of isotope ratios for blood revealed significant differences with respect to location, but not sex. Hamilton differed from both Kashechewan and Fort Albany; however, the First Nations did not differ from each other. ANOVA of the isotope ratios for lead ammunition and lichens revealed no significant differences between lichen groups (north and south) and for the lead ammunition sources (pellets and bullets). A plot of (206)Pb/(204)Pb and (206)Pb/(207)Pb values illustrated that lichens and lead ammunition were distinct groupings and only the 95% confidence ellipse of the First Nations group overlapped that of lead ammunition. In addition, partial correlations between blood-lead levels (adjusted for age) and isotope ratios revealed significant (p<0.05) positive correlations for (206)Pb/(204)Pb and (206)Pb/(207)Pb, and a significant negative correlation for (208)Pb/(206)Pb, as predicted if leaded ammunition were the source of lead exposure. In conclusion, lead ammunition was identified as a source of lead exposure for First Nations people; however, the isotope ratios for lead shotshell pellets and bullets were indistinguishable. Thus, lead-contaminated meat from game harvested with lead bullets may also be contributing to the lead body burden.

  6. Biodistribution of boron after intravenous 4-dihydroxyborylphenylalanine-fructose (BPA-F) infusion in meningioma and schwannoma patients: A feasibility study for boron neutron capture therapy.

    PubMed

    Kulvik, Martti; Kallio, Merja; Laakso, Juha; Vähätalo, Jyrki; Hermans, Raine; Järviluoma, Eija; Paetau, Anders; Rasilainen, Merja; Ruokonen, Inkeri; Seppälä, Matti; Jääskeläinen, Juha

    2015-12-01

    We studied the uptake of boron after 100 mg/kg BPA infusion in three meningioma and five schwannoma patients as a pre-BNCT feasibility study. With average tumour-to-whole blood boron concentrations of 2.5, we discuss why BNCT could, and probably should, be developed to treat severe forms of the studied tumours. However, analysing 72 tumour and 250 blood samples yielded another finding: the plasma-to-whole blood boron concentrations varied with time, suggesting that the assumed constant boron ratio of 1:1 between normal brain tissue and whole blood deserves re-assessment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Chemistry and isotope ratios of sulfur in basalts and volcanic gases at Kilauea volcano, Hawaii

    USGS Publications Warehouse

    Sakai, H.; Casadevall, T.J.; Moore, J.G.

    1982-01-01

    Eighteen basalts and some volcanic gases from the submarine and subaerial parts of Kilauea volcano were analyzed for the concentration and isotope ratios of sulfur. By means of a newly developed technique, sulfide and sulfate sulfur in the basalts were separately but simultaneously determined. The submarine basalt has 700 ?? 100 ppm total sulfur with ??34S??s of 0.7 ?? 0.1 ???. The sulfate/sulfide molar ratio ranges from 0.15 to 0.56 and the fractionation factor between sulfate and sulfide is +7.5 ?? 1.5???. On the other hand, the concentration and ??34S??s values of the total sulfur in the subaerial basalt are reduced to 150 ?? 50 ppm and -0.8 ?? 0.2???, respectively. The sulfate to sulfide ratio and the fractionation factor between them are also smaller, 0.01 to 0.25 and +3.0???, respectively. Chemical and isotopic evidence strongly suggests that sulfate and sulfide in the submarine basalt are in chemical and isotopic equilibria with each other at magmatic conditions. Their relative abundance and the isotope fractionation factors may be used to estimate the f{hook}o2 and temperature of these basalts at the time of their extrusion onto the sea floor. The observed change in sulfur chemistry and isotopic ratios from the submarine to subaerial basalts can be interpreted as degassing of the SO2 from basalt thereby depleting sulfate and 34S in basalt. The volcanic sulfur gases, predominantly SO2, from the 1971 and 1974 fissures in Kilauea Crater have ??34S values of 0.8 to 0.9%., slightly heavier than the total sulfur in the submarine basalts and definitely heavier than the subaerial basalts, in accord with the above model. However, the ??34S value of sulfur gases (largely SO2) from Sulfur Bank is 8.0%., implying a secondary origin of the sulfur. The ??34S values of native sulfur deposits at various sites of Kilauea and Mauna Loa volcanos, sulfate ions of four deep wells and hydrogen sulfide from a geothermal well along the east rift zone are also reported. The high

  8. Stable mercury isotope ratios as tracers for Hg cycling at the inoperative New Idria Hg mine, California

    NASA Astrophysics Data System (ADS)

    Wiederhold, J. G.; Jew, A. D.; Brown, G. E.; Bourdon, B.; Kretzschmar, R.

    2010-12-01

    The seven stable isotopes of Hg are fractionated in the environment as a result of mass-dependent (MDF) and mass-independent (MIF) fractionation processes that can be studied in parallel by analyzing the ratios of even and odd mass Hg isotopes. MDF and MIF Hg isotope signatures of natural samples may provide a new tool to trace sources and transformations in environmental Hg cycling. However, the mechanisms controlling the extent of kinetic and equilibrium Hg isotope fractionations are still only partially understood. Thus, development of this promising tracer requires experimental calibration of relevant fractionation factors as well as assessment of natural variations of Hg isotope ratios under different environmental conditions. The inoperative Hg mine in New Idria (California, USA) represents an ideal case study to explore Hg isotope fractionation during Hg transformation and transport processes. More than a century of Hg mining and on-site thermal refining to obtain elemental Hg until 1972 produced large volumes of contaminated mine wastes which now represent sources of Hg pollution for the surrounding ecosystems. Here, we present Hg isotope data from various materials collected at New Idria using Cold-Vapor-MC-ICPMS with a long-term δ202Hg reproducibility of ±0.1‰ (2SD). Uncalcined mine waste samples were isotopically similar to NIST-3133 and did not exhibit any MIF signatures. In contrast, calcine samples, which represent the residue of the thermal ore processing at 700°C, had significantly heavier δ202Hg values of up to +1.5‰. In addition, we observed small negative MIF anomalies of the odd-mass Hg isotopes in the calcine samples, which could be caused either by nuclear volume fractionation or a magnetic isotope effect during or after the roasting process. The mass-dependent enrichment of heavy Hg isotopes in the calcine materials indicates that light Hg isotopes were preferentially removed during the roasting process, in agreement with a previous

  9. Examining Changes in Radioxenon Isotope Activity Ratios during Subsurface Transport

    NASA Astrophysics Data System (ADS)

    Annewandter, Robert

    2014-05-01

    The Non-Proliferation Experiment (NPE) has demonstrated and modelled the usefulness of barometric pumping induced gas transport and subsequent soil gas sampling during On-Site inspections. Generally, gas transport has been widely studied with different numerical codes. However, gas transport of radioxenons and radioiodines in the post-detonation regime and their possible fractionation is still neglected in the open peer-reviewed literature. Atmospheric concentrations of the radioxenons Xe-135, Xe-133m, Xe-133 and Xe-131m can be used to discriminate between civilian releases (nuclear power plants or medical isotope facilities), and nuclear explosion sources. It is based on the multiple isotopic activity ratio method. Yet it is not clear whether subsurface migration of the radionuclides, with eventual release into the atmosphere, can affect the activity ratios due to fractionation. Fractionation can be caused by different mass diffusivities due to mass differences between the radionuclides. Cyclical changes in atmospheric pressure can drive subsurface gas transport. This barometric pumping phenomenon causes an oscillatoric flow in upward trending fractures or highly conductive faults which, combined with diffusion into the porous matrix, leads to a net transport of gaseous components - a so-called ratcheting effect. We use a general purpose reservoir simulator (Complex System Modelling Platform, CSMP++) which is recognized by the oil industry as leading in Discrete Fracture-Matrix (DFM) simulations. It has been applied in a range of fields such as deep geothermal systems, three-phase black oil simulations, fracture propagation in fractured, porous media, and Navier-Stokes pore-scale modelling among others. It is specifically designed to account for structurally complex geologic situation of fractured, porous media. Parabolic differential equations are solved by a continuous Galerkin finite-element method, hyperbolic differential equations by a complementary finite

  10. Spectral analysis software improves confidence in plant and soil water stable isotope analyses performed by isotope ratio infrared spectroscopy (IRIS).

    PubMed

    West, A G; Goldsmith, G R; Matimati, I; Dawson, T E

    2011-08-30

    Previous studies have demonstrated the potential for large errors to occur when analyzing waters containing organic contaminants using isotope ratio infrared spectroscopy (IRIS). In an attempt to address this problem, IRIS manufacturers now provide post-processing spectral analysis software capable of identifying samples with the types of spectral interference that compromises their stable isotope analysis. Here we report two independent tests of this post-processing spectral analysis software on two IRIS systems, OA-ICOS (Los Gatos Research Inc.) and WS-CRDS (Picarro Inc.). Following a similar methodology to a previous study, we cryogenically extracted plant leaf water and soil water and measured the δ(2)H and δ(18)O values of identical samples by isotope ratio mass spectrometry (IRMS) and IRIS. As an additional test, we analyzed plant stem waters and tap waters by IRMS and IRIS in an independent laboratory. For all tests we assumed that the IRMS value represented the "true" value against which we could compare the stable isotope results from the IRIS methods. Samples showing significant deviations from the IRMS value (>2σ) were considered to be contaminated and representative of spectral interference in the IRIS measurement. Over the two studies, 83% of plant species were considered contaminated on OA-ICOS and 58% on WS-CRDS. Post-analysis, spectra were analyzed using the manufacturer's spectral analysis software, in order to see if the software correctly identified contaminated samples. In our tests the software performed well, identifying all the samples with major errors. However, some false negatives indicate that user evaluation and testing of the software are necessary. Repeat sampling of plants showed considerable variation in the discrepancies between IRIS and IRMS. As such, we recommend that spectral analysis of IRIS data must be incorporated into standard post-processing routines. Furthermore, we suggest that the results from spectral analysis be

  11. Measurement of plutonium isotope ratios in nuclear fuel samples by HPLC-MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Günther-Leopold, I.; Waldis, J. Kobler; Wernli, B.; Kopajtic, Z.

    2005-04-01

    Radioactive isotopes are traditionally quantified by means of radioactivity counting techniques ([alpha], [beta], [gamma]). However, these methods often require extensive matrix separation and sample purification before the identification of specific isotopes and their relative abundance is possible as it is necessary in the frame of post-irradiation examinations on nuclear fuel samples. The technique of multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) is attracting much attention because it permits the precise measurement of the isotope compositions for a wide range of elements combined with excellent limits of detection due to high ionization efficiencies. The present paper describes one of the first applications of an online high-performance liquid chromatographic separation system coupled to a MC-ICP-MS in order to overcome isobaric interferences for the determination of the plutonium isotope composition and concentrations in irradiated nuclear fuels. The described chromatographic separation is sufficient to prevent any isobaric interference between 238Pu present at trace concentrations and 238U present as the main component of the fuel samples. The external reproducibility of the uncorrected plutonium isotope ratios was determined to be between 0.04 and 0.2% (2 s) resulting in a precision in the [per mille sign] range for the isotopic vectors of the irradiated fuel samples.

  12. Ratios of Carbon Isotopes in Microbial Lipids as an Indicator of Substrate Usage

    PubMed Central

    Abraham, Wolf-Rainer; Hesse, Christian; Pelz, Oliver

    1998-01-01

    The occurrence and abundance of microbial fatty acids have been used for the identification of microorganisms in microbial communities. However, these fatty acids can also be used as indicators of substrate usage. For this, a systematic investigation of the discrimination of the stable carbon isotopes by different microorganisms is necessary. We grew 11 strains representing major bacterial and fungal species with four different isotopically defined carbon sources and determined the isotope ratios of fatty acids of different lipid fractions. A comparison of the differences of δ13C values of palmitic acid (C16:0) with the δ13C values of the substrates revealed that the isotope ratio is independent of the growth stage and that most microorganisms showed enrichment of C16:0 with 13C when growing on glycerol. With the exception of Burkholderia gladioli, all microorganism showed depletion of 13C in C16:0 while incorporating the carbons of glucose, and most of them were enriched with 13C from mannose, with the exception of Pseudomonas fluorescens and the Zygomycotina. Usually, the glycolipid fractions are depleted in 13C compared to the phospholipid fractions. The δ13C pattern was not uniform within the different fatty acids of a given microbial species. Generally, tetradecanoic acid (C14:0) was depleted of 13C compared to palmitic acid (C16:0) while octadecanoic acid (C18:0) was enriched. These results are important for the calibration of a new method in which δ13C values of fatty acids from the environment delineate the use of bacterial substrates in an ecosystem. PMID:9797266

  13. Ratios of carbon isotopes in microbial lipids as an indicator of substrate usage.

    PubMed

    Abraham, W R; Hesse, C; Pelz, O

    1998-11-01

    The occurrence and abundance of microbial fatty acids have been used for the identification of microorganisms in microbial communities. However, these fatty acids can also be used as indicators of substrate usage. For this, a systematic investigation of the discrimination of the stable carbon isotopes by different microorganisms is necessary. We grew 11 strains representing major bacterial and fungal species with four different isotopically defined carbon sources and determined the isotope ratios of fatty acids of different lipid fractions. A comparison of the differences of delta13C values of palmitic acid (C16:0) with the delta13C values of the substrates revealed that the isotope ratio is independent of the growth stage and that most microorganisms showed enrichment of C16:0 with 13C when growing on glycerol. With the exception of Burkholderia gladioli, all microorganism showed depletion of 13C in C16:0 while incorporating the carbons of glucose, and most of them were enriched with 13C from mannose, with the exception of Pseudomonas fluorescens and the Zygomycotina. Usually, the glycolipid fractions are depleted in 13C compared to the phospholipid fractions. The delta13C pattern was not uniform within the different fatty acids of a given microbial species. Generally, tetradecanoic acid (C14:0) was depleted of 13C compared to palmitic acid (C16:0) while octadecanoic acid (C18:0) was enriched. These results are important for the calibration of a new method in which delta13C values of fatty acids from the environment delineate the use of bacterial substrates in an ecosystem.

  14. Pb-concentrations and Pb-isotope ratios in soils collected along an east-west transect across the United States

    USGS Publications Warehouse

    Reimann, Clemens; Smith, David B.; Woodruff, Laurel G.; Flem, Belinda

    2011-01-01

    Analytical results for Pb-concentrations and isotopic ratios from ca. 150 samples of soil A horizon and ca. 145 samples of soil C horizon collected along a 4000-km east–west transect across the USA are presented. Lead concentrations along the transect show: (1) generally higher values in the soil A-horizon than the C-horizon (median 21 vs. 16.5 mg/kg), (2) an increase in the median value of the soil A-horizon for central to eastern USA (Missouri to Maryland) when compared to the western USA (California to Kansas) (median 26 vs. 20 mg/kg) and (3) a higher A/C ratio for the central to eastern USA (1.35 vs. 1.14). Lead isotopes show a distinct trend across the USA, with the highest 206Pb/207Pb ratios occurring in the centre (Missouri, median A-horizon: 1.245; C-horizon: 1.251) and the lowest at both coasts (e.g., California, median A-horizon: 1.195; C-horizon: 1.216). The soil C-horizon samples show generally higher 206Pb/207Pb ratios than the A-horizon (median C-horizon: 1.224; A-horizon: 1.219). The 206Pb/207Pb-isotope ratios in the soil A horizon show a correlation with the total feldspar content for the same 2500-km portion of the transect from east-central Colorado to the Atlantic coast that shows steadily increasing precipitation. No such correlation exists in the soil C horizon. The data demonstrate the importance of climate and weathering on both Pb-concentration and 206Pb/207Pb-isotope ratios in soil samples and natural shifts thereof in the soil profile during soil-forming processes.

  15. Dual element ((15)N/(14)N, (13)C/(12)C) isotope analysis of glyphosate and AMPA by derivatization-gas chromatography isotope ratio mass spectrometry (GC/IRMS) combined with LC/IRMS.

    PubMed

    Mogusu, Emmanuel O; Wolbert, J Benjamin; Kujawinski, Dorothea M; Jochmann, Maik A; Elsner, Martin

    2015-07-01

    To assess sources and degradation of the herbicide glyphosate [N-(phosphonomethyl) glycine] and its metabolite AMPA (aminomethylphosphonic acid), concentration measurements are often inconclusive and even (13)C/(12)C analysis alone may give limited information. To advance isotope ratio analysis of an additional element, we present compound-specific (15)N/(14)N analysis of glyphosate and AMPA by a two step derivatization in combination with gas chromatography/isotope ratio mass spectrometry (GC/IRMS). The N-H group was derivatized with isopropyl chloroformate (iso-PCF), and remaining acidic groups were subsequently methylated with trimethylsilyldiazomethane (TMSD). Iso-PCF treatment at pH <10 gave too low (15)N/(14)N ratios indicating an incomplete derivatization; in contrast, too high (15)N/(14)N ratios at pH >10 indicated decomposition of the derivative. At pH 10, and with an excess of iso-PCF by 10-24, greatest yields and accurate (15)N/(14)N ratios were obtained (deviation from elemental analyzer-IRMS: -0.2 ± 0.9% for glyphosate; -0.4 ± 0.7% for AMPA). Limits for accurate δ(15)N analysis of glyphosate and AMPA were 150 and 250 ng injected, respectively. A combination of δ(15)N and δ(13)C analysis by liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) (1) enabled an improved distinction of commercial glyphosate products and (2) showed that glyphosate isotope values during degradation by MnO2 clearly fell outside the commercial product range. This highlights the potential of combined carbon and nitrogen isotopes analysis to trace sources and degradation of glyphosate.

  16. 12C/13C isotopic ratios in red-giant stars of the open cluster NGC 6791

    NASA Astrophysics Data System (ADS)

    Szigeti, László; Mészáros, Szabolcs; Smith, Verne V.; Cunha, Katia; Lagarde, Nadège; Charbonnel, Corinne; García-Hernández, D. A.; Shetrone, Matthew; Pinsonneault, Marc; Allende Prieto, Carlos; Fernández-Trincado, J. G.; Kovács, József; Villanova, Sandro

    2018-03-01

    Carbon isotope ratios, along with carbon and nitrogen abundances, are derived in a sample of 11 red-giant members of one of the most metal-rich clusters in the Milky Way, NGC 6791. The selected red-giants have a mean metallicity and standard deviation of [Fe/H] = +0.39 ± 0.06 (Cunha et al. 2015). We used high-resolution H-band spectra obtained by the SDSS-IV Apache Point Observatory Galactic Evolution Experiment. The advantage of using high-resolution spectra in the H band is that lines of CO are well represented and their line profiles are sensitive to the variation of 12C/13C. Values of the 12C/13C ratio were obtained from a spectrum synthesis analysis. The derived 12C/13C ratios varied between 6.3 and 10.6 in NGC 6791, in agreement with the final isotopic ratios from thermohaline-induced mixing models. The ratios derived here are combined with those obtained for more metal poor red-giants from the literature to examine the correlation between 12C/13C, mass, metallicity, and evolutionary status.

  17. Optimization and application of ICPMS with dynamic reaction cell for precise determination of 44Ca/40Ca isotope ratios.

    PubMed

    Boulyga, Sergei F; Klötzli, Urs; Stingeder, Gerhard; Prohaska, Thomas

    2007-10-15

    An inductively coupled plasma mass spectrometer with dynamic reaction cell (ICP-DRC-MS) was optimized for determining (44)Ca/(40)Ca isotope ratios in aqueous solutions with respect to (i) repeatability, (ii) robustness, and (iii) stability. Ammonia as reaction gas allowed both the removal of (40)Ar+ interference on (40)Ca+ and collisional damping of ion density fluctuations of an ion beam extracted from an ICP. The effect of laboratory conditions as well as ICP-DRC-MS parameters such a nebulizer gas flow rate, rf power, lens potential, dwell time, or DRC parameters on precision and mass bias was studied. Precision (calculated using the "unbiased" or "n - 1" method) of a single isotope ratio measurement of a 60 ng g(-1) calcium solution (analysis time of 6 min) is routinely achievable in the range of 0.03-0.05%, which corresponded to the standard error of the mean value (n = 6) of 0.012-0.020%. These experimentally observed RSDs were close to theoretical precision values given by counting statistics. Accuracy of measured isotope ratios was assessed by comparative measurements of the same samples by ICP-DRC-MS and thermal ionization mass spectrometry (TIMS) by using isotope dilution with a (43)Ca-(48)Ca double spike. The analysis time in both cases was 1 h per analysis (10 blocks, each 6 min). The delta(44)Ca values measured by TIMS and ICP-DRC-MS with double-spike calibration in two samples (Ca ICP standard solution and digested NIST 1486 bone meal) coincided within the obtained precision. Although the applied isotope dilution with (43)Ca-(48)Ca double-spike compensates for time-dependent deviations of mass bias and allows achieving accurate results, this approach makes it necessary to measure an additional isotope pair, reducing the overall analysis time per isotope or increasing the total analysis time. Further development of external calibration by using a bracketing method would allow a wider use of ICP-DRC-MS for routine calcium isotopic measurements, but it

  18. Discrimination of geographical origin of lentils (Lens culinaris Medik.) using isotope ratio mass spectrometry combined with chemometrics.

    PubMed

    Longobardi, F; Casiello, G; Cortese, M; Perini, M; Camin, F; Catucci, L; Agostiano, A

    2015-12-01

    The aim of this study was to predict the geographic origin of lentils by using isotope ratio mass spectrometry (IRMS) in combination with chemometrics. Lentil samples from two origins, i.e. Italy and Canada, were analysed obtaining the stable isotope ratios of δ(13)C, δ(15)N, δ(2)H, δ(18)O, and δ(34)S. A comparison between median values (U-test) highlighted statistically significant differences (p<0.05) for all isotopic parameters between the lentils produced in these two different geographic areas, except for δ(15)N. Applying principal component analysis, grouping of samples was observed on the basis of origin but with overlapping zones; consequently, two supervised discriminant techniques, i.e. partial least squares discriminant analysis and k-nearest neighbours algorithm were used. Both models showed good performances with external prediction abilities of about 93% demonstrating the suitability of the methods developed. Subsequently, isotopic determinations were also performed on the protein and starch fractions and the relevant results are reported. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Determination of carbon isotope ratios for honey samples by means of a liquid chromatography/isotope ratio mass spectrometry system coupled with a post-column pump.

    PubMed

    Kawashima, Hiroto; Suto, Momoka; Suto, Nana

    2018-05-20

    Liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) has been used to authenticate and trace products such as honey, wine, and lemon juice, and compounds such as caffeine and pesticides. However, LC/IRMS has several disadvantages, including the high cost of the CO 2 membrane and blocking by solidified sodium persulfate. Here, we developed an improved system for determining carbon isotope ratios by LC/IRMS. The main improvement was the use of a post-column pump. Using the improved system, we determined δ 13 C values for glucose with high accuracy and precision (0.1‰ and 0.1‰, respectively; n = 3). The glucose, fructose, disaccharide, trisaccharide, and organic acid constituents of the honey samples were analyzed by LC/IRMS. The δ 13 C values for glucose, fructose, disaccharides, trisaccharides, and organic acids ranged from -27.0 to -24.2‰, -26.8 to -24.0‰, -28.8 to -24.0‰, -27.8 to -22.8‰, and -30.6 to -27.4‰, respectively. The analysis time was 1/3-1/2 the times required for analysis by previously reported methods. The column flow rate could be arbitrarily adjusted with the post-column pump. We applied the improved method to 26 commercial honey samples. Our results can be expected to be useful for other researchers who use LC/IRMS. This article is protected by copyright. All rights reserved.

  20. Carbon isotopic analysis of atmospheric methane by isotope-ratio-monitoring gas chromatography-mass spectrometry

    NASA Technical Reports Server (NTRS)

    Merritt, Dawn A.; Hayes, J. M.; Des Marais, David J.

    1995-01-01

    Less than 15 min are required for the determination of delta C(sub PDB)-13 with a precision of 0.2 ppt(1 sigma, single measurement) in 5-mL samples of air containing CH4 at natural levels (1.7 ppm). An analytical system including a sample-introduction unit incorporating a preparative gas chromatograph (GC) column for separation of CH4 from N2, O2, and Ar is described. The 15-min procedure includes time for operation of that system, high-resolution chromatographic separation of the CH4, on-line combustion and purification of the products, and isotopic calibration. Analyses of standards demonstrate that systematic errors are absent and that there is no dependence of observed values of delta on sample size. For samples containing 100 ppm or more CH4, preconcentration is not required and the analysis time is less than 5 min. The system utilizes a commercially available, high-sensitivity isotope-ratio mass spectrometer. For optimal conditions of smaple handling and combustion, performance of the system is within a factor of 2 of the shot-noise limit. The potential exists therefore for analysis of samples as small as 15 pmol CH4 with a standard deviation of less than 1 ppt.

  1. Isotopic Ratios in Titan's Methane: Measurements and Modeling

    NASA Technical Reports Server (NTRS)

    Nixon, C. A.; Temelso, B.; Vinatier, S.; Teanby, N. A.; Bezard, B.; Achterberg, R. K.; Mandt, K. E.; Sherrill, C. D.; Irwin, P. G.; Jennings, D. E.; hide

    2012-01-01

    The existence of methane in Titan's atmosphere (approx. 6% level at the surface) presents a unique enigma, as photochemical models predict that the current inventory will be entirely depleted by photochemistry in a timescale of approx 20 Myr. In this paper, we examine the clues available from isotopic ratios (C-12/C-13 and D/H) in Titan's methane as to the past atmosphere history of this species. We first analyze recent infrared spectra of CH4 collected by the Cassini Composite Infrared Spectrometer, measuring simultaneously for the first time the abundances of all three detected minor isotopologues: (13)CH4, (12)CH3D, and (13)CH3D. From these we compute estimates of C-12/C-13 = 86.5 +/- 8.2 and D/H = (1.59 +/- 0.33) x 10(exp -4) , in agreement with recent results from the Huygens GCMS and Cassini INMS instruments. We also use the transition state theory to estimate the fractionation that occurs in carbon and hydrogen during a critical reaction that plays a key role in the chemical depletion of Titan's methane: CH4 + C2H yields CH3 + C2H2. Using these new measurements and predictions we proceed to model the time evolution of C-12/C-13 and D/H in Titan's methane under several prototypical replenishment scenarios. In our Model 1 (no resupply of CH4), we find that the present-day C-12/C-13 implies that the CH4 entered the atmosphere 60-1600 Myr ago if methane is depleted by chemistry and photolysis alone, but much more recently-most likely less than 10 Myr ago-if hydrodynamic escape is also occurring. On the other hand, if methane has been continuously supplied at the replenishment rate then the isotopic ratios provide no constraints, and likewise for the case where atmospheric methane is increasing, We conclude by discussing how these findings may be combined with other evidence to constrain the overall history of the atmospheric methane.

  2. Forensic analysis of explosives using isotope ratio mass spectrometry (IRMS)--discrimination of ammonium nitrate sources.

    PubMed

    Benson, Sarah J; Lennard, Christopher J; Maynard, Philip; Hill, David M; Andrew, Anita S; Roux, Claude

    2009-06-01

    An evaluation was undertaken to determine if isotope ratio mass spectrometry (IRMS) could assist in the investigation of complex forensic cases by providing a level of discrimination not achievable utilising traditional forensic techniques. The focus of the research was on ammonium nitrate (AN), a common oxidiser used in improvised explosive mixtures. The potential value of IRMS to attribute Australian AN samples to the manufacturing source was demonstrated through the development of a preliminary AN classification scheme based on nitrogen isotopes. Although the discrimination utilising nitrogen isotopes alone was limited and only relevant to samples from the three Australian manufacturers during the evaluated time period, the classification scheme has potential as an investigative aid. Combining oxygen and hydrogen stable isotope values permitted the differentiation of AN prills from three different Australian manufacturers. Samples from five different overseas sources could be differentiated utilising a combination of the nitrogen, oxygen and hydrogen isotope values. Limited differentiation between Australian and overseas prills was achieved for the samples analysed. The comparison of nitrogen isotope values from intact AN prill samples with those from post-blast AN prill residues highlighted that the nitrogen isotopic composition of the prills was not maintained post-blast; hence, limiting the technique to analysis of un-reacted explosive material.

  3. Method for fabricating boron carbide articles

    DOEpatents

    Ardary, Zane L.; Reynolds, Carl D.

    1980-01-01

    The present invention is directed to the fabrication of boron carbide articles having length-to-diameter or width ratios greater than 2 to 1. The process of the present invention is practiced by the steps comprising hot pressing boron carbide powder into article segments or portions in which the segments have a length-to-diameter or width ratio less than 1.5, aligning a plurality of the initially hot-pressed segments in a hot-pressing die with the end surfaces of the segments placed in intimate contact with one another, and then hot pressing the aligned segments into an article of the desired configuration. The resulting article exhibits essentially uniform density throughout the structure with the bonds between the segments being equivalent in hardness, strength, and density to the remainder of the article.

  4. Improvements in Precise and Accurate Isotope Ratio Determination via LA-MC-ICP-MS by Application of an Alternative Data Reduction Protocol

    NASA Astrophysics Data System (ADS)

    Fietzke, J.; Liebetrau, V.; Guenther, D.; Frische, M.; Zumholz, K.; Hansteen, T. H.; Eisenhauer, A.

    2008-12-01

    An alternative approach for the evaluation of isotope ratio data using LA-MC-ICP-MS will be presented. In contrast to previously applied methods it is based on the simultaneous responses of all analyte isotopes of interest and the relevant interferences without performing a conventional background correction. Significant improvements in precision and accuracy can be achieved when applying this new method and will be discussed based on the results of two first methodical applications: a) radiogenic and stable Sr isotopes in carbonates b) stable chlorine isotopes of pyrohydrolytic extracts. In carbonates an external reproducibility of the 87Sr/86Sr ratios of about 19 ppm (RSD) was achieved, an improvement of about a factor of 5. For recent and sub-recent marine carbonates a mean radiogenic strontium isotope ratio 87Sr/86Sr of 0.709170±0.000007 (2SE) was determined, which agrees well with the value of 0.7091741±0.0000024 (2SE) reported for modern sea water [1,2]. Stable chlorine isotope ratios were determined ablating pyrohydrolytic extracts with a reproducibility of about 0.05‰ (RSD). For basaltic reference material JB1a and JB2 chlorine isotope ratios were determined relative to SMOC (standard mean ocean chlorinity) δ37ClJB-1a = (-0.99±0.06) ‰ and δ37ClJB-1a = (-0.60±0.03) ‰ (SD), respectively, in accordance with published data [3]. The described strategies for data reduction are considered to be generally applicable for all isotope ratio measurements using LA-MC-ICP-MS. [1] J.M. McArthur, D. Rio, F. Massari, D. Castradori, T.R. Bailey, M. Thirlwall, S. Houghton, Palaeogeo. Palaeoclim. Palaeoeco., 2006, 242 (126), doi: 10.1016/j.palaeo.2006.06.004 [2] J. Fietzke, V. Liebetrau, D. Guenther, K. Guers, K. Hametner, K. Zumholz, T.H. Hansteen and A. Eisenhauer, J. Anal. At. Spectrom., 2008, 23, 955-961, doi:10.1039/B717706B [3] J. Fietzke, M. Frische, T.H. Hansteen and A. Eisenhauer, J. Anal. At. Spectrom., 2008, 23, 769-772, doi:10.1039/B718597A

  5. O and H Isotope Ratios of Syenite Blocks in the El Abrigo Ignimbrite, Tenerife, Canary Islands: A Hydrothermal Fingerprint for Assimilation

    NASA Astrophysics Data System (ADS)

    Larson, P. B.; Nichols, H. J.; Wolff, J. A.; Marti, J.

    2001-12-01

    As part of an ongoing project investigating assimilation in ocean island magmas, we are measuring stable isotope ratios of hydrothermally altered lithic fragments in phonolitic pyroclastic deposits from Tenerife, Canary Islands. Nepheline syenite blocks occur in the 0.196 Ma El Abrigo ignimbrite of the Diego Hernandez Formation (DHF). The DHF is the most recent of at least three caldera-forming magmatic cycles on Tenerife. The blocks are fragments of evolved plutons that are chemically similar to phonolites but extend to more strongly differentiated compositions. Distinct major and trace element concentrations suggest that the blocks derive from two intrusions, here referred to as A and B. The B syenites have chemical affinities with the El Abrigo phonolite, and some blocks contain small pockets of residual glass, suggesting that the B pluton may have been coeval with the El Abrigo magma. O isotope ratios of the B syenites lie within the range 4.8 to 7.0 per mil. The B samples are mostly fresh, and their higher O isotope ratios are near pristine magmatic values. Lower values occur in rocks with mild hydrothermal mineralogic alteration, and their values reflect limited high-temperature water-rock isotope exchange. O isotope ratios for A blocks are lower (0.1 to 6.3 per mil, most less than 2.0 per mil), and some samples show extensive mineral alteration. Near-ubiquitous alteration among the A samples, distinct major and trace element compositions, and lack of glass show that this syenite was older than, and unrelated to, the El Abrigo magma. Syenite D/H ratios range from -90 to -120 per mil. O vs H isotope relations indicate that an 18O-depleted meteoric water was the most important reservoir for the high-temperature hydrothermal fluid. Assimilation of altered syenite should provide a distinct stable isotope fingerprint that would be inherited by the product magma. DHF phonolites yield O ratios in the range 5.5 to 7.0 per mil, which may be this fingerprint

  6. Oxygen and carbon isotope ratios of hydrothermal minerals from Yellowstone drill cores

    USGS Publications Warehouse

    Sturchio, N.C.; Keith, T.E.C.; Muehlenbachs, K.

    1990-01-01

    Oxygen and carbon isotope ratios were measured for hydrothermal minerals (silica, clay and calcite) from fractures and vugs in altered rhyolite, located between 28 and 129 m below surface (in situ temperatures ranging from 81 to 199??C) in Yellowstone drill holes. The purpose of this study was to investigate the mechanism of formation of these minerals. The ??18O values of the thirty-two analyzed silica samples (quartz, chalcedony, ??-cristobalite, and ??-cristobalite) range from -7.5 to +2.8???. About one third of the silica 7samples have ??18O values that are consistent with isotopic equilibrium with present thermal waters; most of the other silica samples appear to have precipitated from water enriched in 18O (up to 4.7???) relative to present thermal water, assuming precipitation at present in situ temperatures. Available data on fluid-inclusion homogenization temperatures in hydrothermal quartz indicate that silica precipitation occurred mostly at temperatures above those measured during drilling and imply that 15O enrichments in water during silica precipitation were generally larger than those estimated from present conditions. Similarly, clay minerals (celadonite and smectite) have ??18O values higher (by 3.5 to 7.9???) than equilibrium values under present conditions. In contrast, all eight analyzed calcite samples are close to isotopic equilibrium with present thermal waters. The frequent incidence of apparent 18O enrichment in thermal water from which the hydrothermal minerals precipitated may indicate that a higher proportion of strongly 18O-enriched deep hydrothermal fluid once circulated through shallow portions of the Yellowstone system, or that a recurring transient 18O-enrichment effect occurs at shallow depths and is caused either by sudden decompressional boiling or by isotopic exchange at low water/rock ratios in new fractures. The mineralogy and apparent 18O enrichments of hydrothermal fracture-filling minerals are consistent with deposition

  7. Carbon and oxygen isotope ratios of ecosystem respiration along an Oregon conifer transect: preliminary observations based on small-flask sampling.

    PubMed

    Ehleringer, J. R.; Cook, C. S.

    1998-01-01

    Isotope ratio analyses of atmospheric CO(2) at natural abundance have significant potential for contributing to our understanding of photosynthetic and respiration processes in forest ecosystems. Recent advances in isotope ratio mass spectrometry allow for rapid, on-line analysis of small volumes of CO(2) in air, and open new research opportunities at the ecophysiological, whole-organism, and atmospheric levels. Among the immediate applications are the carbon and oxygen isotope ratio analyses of carbon dioxide in atmospheric air. Routine analysis of carbon dioxide in air volumes of approximately 50-300 &mgr;l is accomplished by linking a commercially available, trace gas condenser and gas chromatograph to an isotope ratio mass spectrometer operated in continuous-flow mode. Samples collected in the field are stored in either gas-tight syringes or 100-ml flasks. The small sample volume required makes it possible to subsample the air in flasks for CO(2) and then to sample the remaining air volume for the analysis of the isotopic composition of either methane or nitrous oxide. Reliable delta(13)C and delta(18)O values can be obtained from samples collected and stored for 1-3 days. Longer-term storage, on the order of weeks, is possible for delta(13)C measurements without drift in the isotope ratio signal, and should also be possible for delta(18)O measurements. When linked with an infrared gas analyzer, pump and flask sampling system, it is feasible to sample CO(2) extensively in remote forest locations. The air-sampling system was used to measure the isotope ratios of atmospheric CO(2) and to conduct a regression analysis of the relationship between these two parameters. From the regression, we calculated the delta(13)C of ecosystem respiration of four coniferous ecosystems along a precipitation gradient in central Oregon. The ecosystems along the coast-to-interior Oregon (OTTER) gradient are dominated by spruce-hemlock forests at the wet, coastal sites (> 200 cm

  8. Evaluation strategies and uncertainty calculation of isotope amount ratios measured by MC ICP-MS on the example of Sr.

    PubMed

    Horsky, Monika; Irrgeher, Johanna; Prohaska, Thomas

    2016-01-01

    This paper critically reviews the state-of-the-art of isotope amount ratio measurements by solution-based multi-collector inductively coupled plasma mass spectrometry (MC ICP-MS) and presents guidelines for corresponding data reduction strategies and uncertainty assessments based on the example of n((87)Sr)/n((86)Sr) isotope ratios. This ratio shows variation attributable to natural radiogenic processes and mass-dependent fractionation. The applied calibration strategies can display these differences. In addition, a proper statement of uncertainty of measurement, including all relevant influence quantities, is a metrological prerequisite. A detailed instructive procedure for the calculation of combined uncertainties is presented for Sr isotope amount ratios using three different strategies of correction for instrumental isotopic fractionation (IIF): traditional internal correction, standard-sample bracketing, and a combination of both, using Zr as internal standard. Uncertainties are quantified by means of a Kragten spreadsheet approach, including the consideration of correlations between individual input parameters to the model equation. The resulting uncertainties are compared with uncertainties obtained from the partial derivatives approach and Monte Carlo propagation of distributions. We obtain relative expanded uncertainties (U rel; k = 2) of n((87)Sr)/n((86)Sr) of < 0.03 %, when normalization values are not propagated. A comprehensive propagation, including certified values and the internal normalization ratio in nature, increases relative expanded uncertainties by about factor two and the correction for IIF becomes the major contributor.

  9. Boron

    USDA-ARS?s Scientific Manuscript database

    Boron is an essential micronutrient element required for plant growth. Boron deficiency is wide-spread in crop plants throughout the world especially in coarse-textured soils in humid areas. Boron toxicity can also occur, especially in arid regions under irrigation. Plants respond directly to the...

  10. Delta(13)C, delta(15)N and delta(2)H isotope ratio mass spectrometry of ephedrine and pseudoephedrine: application to methylamphetamine profiling.

    PubMed

    Collins, Michael; Cawley, Adam T; Heagney, Aaron C; Kissane, Luke; Robertson, James; Salouros, Helen

    2009-07-01

    Conventional chemical profiling of methylamphetamine has been used for many years to determine the synthetic route employed and where possible to identify the precursor chemicals used. In this study stable isotope ratio analysis was investigated as a means of determining the origin of the methylamphetamine precursors, ephedrine and pseudoephedrine. Ephedrine and pseudoephedrine may be prepared industrially by several routes. Results are presented for the stable isotope ratios of carbon (delta(13)C), nitrogen (delta(15)N) and hydrogen (delta(2)H) measured in methylamphetamine samples synthesized from ephedrine and pseudoephedrine of known provenance. It is clear from the results that measurement of the delta(13)C, delta(15)N and delta(2)H stable isotope ratios by elemental analyzer/thermal conversion isotope ratio mass spectrometry (EA/TC-IRMS) in high-purity methylamphetamine samples will allow determination of the synthetic source of the ephedrine or pseudoephedrine precursor as being either of a natural, semi-synthetic, or fully synthetic origin. Copyright (c) 2009 Commonwealth of Australia.

  11. An experiment to assess the effects of diatom dissolution on oxygen isotope ratios.

    PubMed

    Smith, Andrew C; Leng, Melanie J; Swann, George E A; Barker, Philip A; Mackay, Anson W; Ryves, David B; Sloane, Hilary J; Chenery, Simon R N; Hems, Mike

    2016-01-30

    Current studies which use the oxygen isotope composition from diatom silica (δ(18) Odiatom ) as a palaeoclimate proxy assume that the δ(18) Odiatom value reflects the isotopic composition of the water in which the diatom formed. However, diatoms dissolve post mortem, preferentially losing less silicified structures in the water column and during/after burial into sediments. The impact of dissolution on δ(18) Odiatom values and potential misinterpretation of the palaeoclimate record are evaluated. Diatom frustules covering a range of ages (6 samples from the Miocene to the Holocene), environments and species were exposed to a weak alkaline solution for 48 days at two temperatures (20 °C and 4 °C), mimicking natural dissolution post mucilage removal. Following treatment, dissolution was assessed using scanning electron microscope images and a qualitative diatom dissolution index. The diatoms were subsequently analysed for their δ(18) O values using step-wise fluorination and isotope ratio mass spectrometry. Variable levels of diatom dissolution were observed between the six samples; in all cases higher temperatures resulted in more frustule degradation. Dissolution was most evident in younger samples, probably as a result of the more porous nature of the silica. The degree of diatom dissolution does not directly equate to changes in the isotope ratios; the δ(18) Odiatom value was, however, lower after dissolution, but in only half the samples was this reduction outside the analytical error (2σ analytical error = 0.46‰). We have shown that dissolution can have a small negative impact on δ(18) Odiatom values, causing reductions of up to 0.59‰ beyond analytical error (0.46‰) at natural environmental temperatures. These findings need to be considered in palaeoenvironmental reconstructions using δ(18) Odiatom values, especially when interpreting variations in these values of <1‰. Copyright © 2015 John Wiley & Sons, Ltd.

  12. In vivo percutaneous absorption of boron as boric acid, borax, and disodium octaborate tetrahydrate in humans: a summary.

    PubMed

    Wester, R C; Hui, X; Maibach, H I; Bell, K; Schell, M J; Northington, D J; Strong, P; Culver, B D

    1998-01-01

    Literature from the first half of this century reports concern for toxicity from topical use of boric acid, but assessment of percutaneous absorption has been impaired by lack of analytical sensitivity. Analytical methods in this study included inductively coupled plasma-mass spectrometry, which now allows quantitation of percutaneous absorption of 10B in 10B-enriched boric acid, borax, and disodium octaborate tetrahydrate (DOT) in biological matrices. This made it possible, in the presence of comparatively large natural dietary boron intakes for the in vivo segment of this study, to quantify the boron passing through skin. Human volunteers were dosed with 10B-enriched boric acid, 5.0%, borax, 5.0%, or disodium octaborate tetrahydrate, 10% in aqueous solutions. Urinalysis, for boron and changes in boron isotope ratios, was used to measure absorption. Boric acid in vivo percutaneous absorption was 0.226 (SD = 0.125) mean percent dose, with flux and permeability constant (Kp) calculated at 0.009 microg/cm2/h and 1.9 x 10(-7) cm/h, respectively. Borax absorption was 0.210 (SD = 0.194) mean percent dose, with flux and Kp calculated at 0.009 microg/cm2/h and 1.8 x 10(-7) cm/h, respectively. DOT absorption was 0.122 (SD = 0.108) mean percent, with flux and Kp calculated at 0.01 microg/cm2/h and 1.0 x 10(-7) cm/h, respectively. Pretreatment with the potential skin irritant 2% sodium lauryl sulfate had no effect on boron skin absorption. These in vivo results show that percutaneous absorption of boron, as boric acid, borax, and disodium octaborate tetrahydrate, through intact human skin is low and is significantly less than the average daily dietary intake. This very low boron skin absorption makes it apparent that, for the borates tested, the use of gloves to prevent systemic uptake is unnecessary. These findings do not apply to abraded or otherwise damaged skin.

  13. Dual temperature effects on oxygen isotopic ratio of shallow-water coral skeleton: Consequences on seasonal and interannual records

    NASA Astrophysics Data System (ADS)

    Juillet-Leclerc, A.; Reynaud, S.

    2009-04-01

    Oxygen isotopic ratio from coral skeleton is regarded for a long time as promising climate archives at seasonal scale. Although in isotopic disequilibrium relative to seawater, it is supposed to obey to the isotope thermometer. Indeed, coral oxygen isotopic records are strongly temperature dependent, but d18O-temperature calibrations derived from different corals are highly variable. The isotope thermometer assumption does not take into account vital effects due to biogenic origin of the mineral. Corals are animals living in symbiosis with algae (zooxanthellae). Interactions between symbiont photosynthesis and coral skeleton carbonation have been abundantly observed but they remain poorly understood and the effects of photosynthesis on coral growth and skeleton oxygen ratio are ignored. Coral cultured under two light conditions enabled to relate metabolic parameters and oxygen isotopic variability with photosynthetic activity. By examining responses provided by each colony they revealed that photosynthesis significantly affected d18O, by an opposite sense compared with the sole temperature influence. Since temperature and light changes are associated during seasonal variations, this complicates the interpretation of seasonal record. Additionally, this complexity is amplified because photosynthetic activity is also directly impacted by temperature variability. Thus, the annual isotopic amplitude due to the "physical" temperature influence is partly compensated through photosynthesis. Similar opposite effect is also shown by extension rate of the cultured colonies. First, we will examine and quantify consequences of photosynthesis on growth rate and oxygen isotopic signature, from cultured corals. Second, we will consider the consequences of this vital effect on data series, at seasonal and interannual time scales.

  14. Zinc isotope ratios of bones and teeth as new dietary indicators: results from a modern food web (Koobi Fora, Kenya)

    NASA Astrophysics Data System (ADS)

    Jaouen, Klervia; Beasley, Melanie; Schoeninger, Margaret; Hublin, Jean-Jacques; Richards, Michael P.

    2016-05-01

    In order to explore the possibilities of using zinc (Zn) stable isotope ratios as dietary indicators, we report here on the measurements of the ratio of stable isotopes of zinc (66Zn/64Zn, expressed here as δ66Zn) in bioapatite (bone and dental enamel) of animals from a modern food web in the Koobi Fora region of the Turkana Basin in Kenya. We demonstrate that δ66Zn values in both bone and enamel allow a clear distinction between carnivores and herbivores from this food web. Differences were also observed between browsers and grazers as well as between carnivores that consumed bone (i.e. hyenas) compared to those that largely consume flesh (i.e. lions). We conclude that Zn isotope ratio measurements of bone and teeth are a new and promising dietary indicator.

  15. Determination of Mo- and Ca-isotope ratios in Ca100MoO4 crystal for AMoRE-I experiment

    NASA Astrophysics Data System (ADS)

    Karki, S.; Aryal, P.; Kim, H. J.; Kim, Y. D.; Park, H. K.

    2018-01-01

    The first phase of the AMoRE (Advanced Mo-based Rare process Experiment) is to search for neutrinoless double-beta decay of 100Mo with calcium molybdate (Ca100MoO4) crystals enriched in 100Mo and depleted in 48Ca using a cryogenic technique at Yangyang underground laboratory in Korea. It is important to know 100Mo- and 48Ca-isotope ratios in Ca100MoO4 crystal to estimate half-life of 100Mo decays and to 2 νββ background from 48Ca. We employed the ICP-MS (Inductive Coupled Plasma Mass Spectrometer) to measure 100Mo- and 48Ca-isotope ratios in Ca100MoO4 crystal. The measured results for 100Mo- and 48Ca-isotope ratios in the crystal are (94 . 6 ± 2 . 8) % and (0 . 00211 ± 0 . 00006) %, respectively, where errors are included both statistical and systematic uncertainties.

  16. Direct current sputtering of boron from boron/coron mixtures

    DOEpatents

    Timberlake, John R.; Manos, Dennis; Nartowitz, Ed

    1994-01-01

    A method for coating a substrate with boron by sputtering includes lowering the electrical resistance of a boron-containing rod to allow electrical conduction in the rod; placing the boron-containing rod inside a vacuum chamber containing substrate material to be coated; applying an electrical potential between the boron target material and the vacuum chamber; countering a current avalanche that commences when the conduction heating rate exceeds the cooling rate, and until a steady equilibrium heating current is reached; and, coating the substrate material with boron by sputtering from the boron-containing rod.

  17. The oxygen isotope partition function ratio of water and the structure of liquid water

    USGS Publications Warehouse

    O'Neil, J.R.; Adami, L.H.

    1969-01-01

    By means of the CO2-equilibration technique, the temperature dependence and absolute values of the oxygen isotope partition function ratio of liquid water have been determined, often at 1?? intervals, from -2 to 85??. A linear relationship between In (Q2/Q1) (H2O) and T-1 was obtained that is explicable in terms of the Bigeleisen-Mayer theory of isotopic fractionation. The data are incompatible with conventional, multicomponent mixture models of water because liquid water behaves isotopically as a singly structured homogeneous substance over the entire temperature range studied. A two-species model of water is proposed in which approximately 30% of the hydrogen bonds in ice are broken on melting at 0?? and in which this per cent of monomer changes by only a small amount over the entire liquid range. Because of the high precision and the fundamental property determined, the isotopic fractionation technique is particularly well suited to the detection of thermal anomalies. No anomalies were observed and those previously reported are ascribed to under-estimates of experimental error.

  18. Isotope-ratio measurements of lead in NIST standard reference materials by multiple-collector inductively coupled plasma mass spectrometry.

    PubMed

    Platzner, I; Ehrlich, S; Halicz, L

    2001-07-01

    The capability of a second-generation Nu Instruments multiple collector inductively coupled plasma mass spectrometer (MC-ICP-MS) has been evaluated for precise and accurate isotope-ratio determinations of lead. Essentially the mass spectrometer is a double-focusing instrument of Nier-Johnson analyzer geometry equipped with a newly designed variable-dispersion ion optical device, enabling the measured ion beams to be focused into a fixed array of Faraday collectors and an ion-counting assembly. NIST SRM Pb 981, 982, and 983 isotopic standards were used. Addition of thallium to the lead standards and subsequent simultaneous measurement of the thallium and lead isotopes enabled correction for mass discrimination, by use of the exponential correction law and 205Tl/203Tl = 2.3875. Six measurements of SRM Pb-982 furnished the results 206Pb/204Pb = 36.7326(68), 207Pb/204Pb = 17.1543(30), 208Pb/204Pb = 36.7249(69), 207Pb/206Pb = 0.46700(1), and 208Pb/206Pb = 0.99979(2); the NIST-certified values were 36.738(37), 17.159(25), 36.744(50), 0.46707(20), and 1.00016(36), respectively. Direct isotope lead analysis in silicates can be performed without any chemical separation. NIST SRM 610 glass was dissolved and introduced into the MC-ICP-MS by means of a micro concentric nebulizer. The ratios observed were in excellent agreement with previously reported data obtained by TIMS and laser ablation MC-ICP-MS, despite the high Ca/Pb concentration ratio (200/1) and the presence of many other elements at levels comparable with that of lead. Approximately 0.2 microg lead are sufficient for isotope analysis with ratio uncertainties between 240 and 530 ppm.

  19. Determination of U isotope ratios in sediments using ICP-QMS after sample cleanup with anion-exchange and extraction chromatography.

    PubMed

    Zheng, Jian; Yamada, Masatoshi

    2006-01-15

    The determination of uranium is important for environmental radioactivity monitoring, which investigates the releases of uranium from nuclear facilities and of naturally occurring radioactive materials by the coal, oil, natural gas, mineral, ore refining and phosphate fertilizer industries, and it is also important for studies on the biogeochemical behavior of uranium in the environment. In this paper, we describe a quadrupole ICP-MS (ICP-QMS)-based analytical procedure for the accurate determination of U isotope ratios ((235)U/(238)U atom ratio and (234)U/(238)U activity ratio) in sediment samples. A two-stage sample cleanup using anion-exchange and TEVA extraction chromatography was employed in order to obtain accurate and precise (234)U/(238)U activity ratios. The factors that affect the accuracy and precision of U isotope ratio analysis, such as detector dead time, abundance sensitivity, dwell time and mass bias were carefully evaluated and corrected. With natural U, a precision lower than 0.5% R.S.D. for (235)U/(238)U atom ratio and lower than 2.0% R.S.D. for (234)U/(238)U activity ratio was obtained with less than 90 ng uranium. The developed analytical method was validated using an ocean sediment reference material and applied to an investigation into the uranium isotopic compositions in a sediment core in a brackish lake in the vicinity of U-related nuclear facilities in Japan.

  20. Stable Carbon and Oxygen Isotope Ratios of Otoliths Differentiate Winter Flounder (Pseudopleuonectes americanus) Habitats

    EPA Science Inventory

    Stable carbon (13C) and oxygen (18O) isotope ratios were measured in otoliths of juvenile winter flounder (Pseudopleuronectes americanus) collected from 18 nursery areas along the coast of Rhode Island, USA. Samples were obtained during June and July of 2002 from locations tha...

  1. Correlation of carbon isotope ratios in the cellulose and wood extractives of Douglas-fir

    EPA Science Inventory

    Cellulose is usually isolated from the other components of plant material for analysis of carbon stable isotope ratios (δ13C). However, many studies have shown a strong correlation between whole-wood and cellulose δ13C values, prompting debate about the necessity of cellulose ext...

  2. Structural and mechanical characterization of boron doped biphasic calcium phosphate produced by wet chemical method and subsequent thermal treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albayrak, Onder, E-mail: albayrakonder@mersin.edu.tr

    In the current study, boron doped biphasic calcium phosphate bioceramics consisting of a mixture of boron doped hydroxyapatite (BHA) and beta tricalcium phosphate (β-TCP) of varying BHA/β-TCP ratios were obtained after sintering stage. The effects of varying boron contents and different sintering temperatures on the BHA/β-TCP ratios and on the sinterability of the final products were investigated. Particle sizes and morphologies of the obtained precipitates were determined using SEM. XRD and FTIR investigation were conducted to detect the boron formation in the structure of HA and quantitative analysis was performed to determine the BHA/β-TCP ratio before and after sintering stage.more » In order to determine the sinterability of the obtained powders, pellets were prepared and sintered; the rates of densification were calculated and obtained results were correlated by SEM images. Also Vickers microhardness values of the sintered samples were determined. The experimental results verified that boron doped hydroxyapatite powders were obtained after sintering stage and the structure consists of a mixture of BHA and β-TCP. As the boron content used in the precipitation stage increases, β-TCP content of the BHA/β-TCP ratio increases but sinterability, density and microhardness deteriorate. As the sintering temperature increases, β-TCP content, density and microhardness of the samples increase and sinterability improves. - Highlights: • This is the first paper about boron doped biphasic calcium phosphate bioceramics. • Boron doping affects the structural and mechanical properties. • BHA/β-TCP ratio can be adjustable with boron content and sintering temperature.« less

  3. Interlaboratory comparison of reference materials for nitrogen-isotope-ratio measurements

    USGS Publications Warehouse

    Böhlke, John Karl; Coplen, Tyler B.

    1995-01-01

    Aliquots of seven different reference materials were distributed for an interlaboratory comparison of stable nitrogen-isotope-ratio measurements. Results from 15 laboratories were compiled and evaluated selectively to yield provisional values of 515N for each material, i, with respect to atmospheric N2 (o1SN,7air). The 515N values reported by the different laboratories are correlated in such a way that some of the major discrepancies may be removed by normalization (/. e., by altering the length of the ô N scale for each laboratory by an amount defined by local measurements of reference materials with extreme values).

  4. Sputtered boron indium oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Stewart, Kevin A.; Gouliouk, Vasily; Keszler, Douglas A.; Wager, John F.

    2017-11-01

    Boron indium oxide (BIO) is studied for thin-film transistor (TFT) channel layer applications. Sputtered BIO thin films exhibit an amorphous phase over a wide range of B2O3/In2O3 ratios and remain amorphous up to 500 °C. The band gap decreases linearly with decreasing boron content, whereas device performance generally improves with decreasing boron content. The best amorphous BIO TFT exhibits a field-effect mobility of 10 cm2 V-1 s-1, turn-on voltage of 2.5 V, and sub-threshold swing of 0.72 V/dec. Decreasing the boron content to 12.5% leads to a polycrystalline phase, but further increases the mobility up to 20-40 cm2 V-1 s-1. TCAD simulation results suggest that the reason for higher performance after increasing the anneal temperature from 200 to 400 °C is due to a lower defect density in the sub-bandgap region of the BIO channel layer.

  5. Detection of boron nitride radicals by emission spectroscopy in a laser-induced plasma

    NASA Astrophysics Data System (ADS)

    Dutouquet, C.; Acquaviva, S.; Hermann, J.

    2001-06-01

    Several vibrational bands of boron nitride radicals have been observed in a plasma produced by pulsed-laser ablation of a boron nitride target in low-pressure nitrogen or argon atmospheres. Using time- and space-resolved emission spectroscopic measurements with a high dynamic range, the most abundant isotopic species B 11N have been detected. The emission bands in the spectral range from 340 to 380 nm belong to the Δυ =-1, 0, +1 sequences of the triplet system (transition A 3Π-X 3Π). For positive identification, the molecular emission bands have been compared with synthetic spectra obtained by computer simulations. Furthermore, B 10N emission bands have been reproduced by computer simulation using molecular constants which have been deduced from the B 11N constants. Nevertheless, the presence of the lower abundant isotopic radical B 10N was not proved due the noise level which masked the low emission intensity of the B 10N band heads.

  6. The Perspectives of the Boron Neutron Capture Therapy-Clinical Applications Research and Development in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Badhrees, I.; Alrumayan, F.; Mahube, F.

    Boron Neutron Capture Therapy (BNCT) is a binary form of experimental radiotherapy which is based on the administration of a drug able to concentrate the isotopes in a tumor cell that later are irradiated with a neutron beam. Even though the first evidence of the success of this treatment dates back many years ago, BNCT showed successful treatment results in malignant melanoma, and Glioblastoma. In order for BNCT to be successful, a sufficient amount of Boron (10B) must be selectively delivered to the tumor cell, and then irradiated by neutrons of sufficient enough. The CS-30 cyclotron at King Faisal Specialist Hospital & Research Center is a positive-ion machine capable of accelerating protons at 26MeV, and other isotopes as well. Although the peak beam intensity from the CS-30 is low, the key to success of using it for the BNCT is by using a high average beam current at low energy. This work is aimed at testing the capability of the CS-30 Cyclotron to produce a low-energy neutron beam to be used to activate the Boron atoms injected into the tumor cell, through simulation of a compatible moderator. We are also planning to measure the overall dosimetry of the energy dose as well as that for the boron in the tumor cell.

  7. A Novel Framework for Quantifying past Methane Recycling by Sphagnum-Methanotroph Symbiosis Using Carbon and Hydrogen Isotope Ratios of Leaf Wax Biomarkers

    NASA Technical Reports Server (NTRS)

    Nichols, Jonathan E.; Isles, Peter D. F.; Peteet, Dorothy M.

    2014-01-01

    The concentration of atmospheric methane is strongly linked to variations in Earth's climate. Currently, we can directly reconstruct the total atmospheric concentration of methane, but not individual terms of the methane cycle. Northern wetlands, dominated by Sphagnum, are an important contributor of atmospheric methane, and we seek to understand the methane cycle in these systems. We present a novel method for quantifying the proportion of carbon Sphagnum assimilates from its methanotrophic symbionts using stable isotope ratios of leaf-wax biomarkers. Carbon isotope ratios of Sphagnum compounds are determined by two competing influences, water content and the isotope ratio of source carbon. We disentangled these effects using a combined hydrogen and carbon isotope approach. We constrained Sphagnum water content using the contrast between the hydrogen isotope ratios of Sphagnum and vascular plant biomarkers. We then used Sphagnum water content to calculate the carbon isotope ratio of Sphagnum's carbon pool. Using a mass balance equation, we calculated the proportion of recycled methane contributed to the Sphagnum carbon pool, 'PRM.' We quantified PRM in peat monoliths from three microhabitats in the Mer Bleue peatland complex. Modern studies have shown that water table depth and vegetation have strong influences on the peatland methane cycle on instrumental time scales. With this new approach, delta C-13 of Sphagnum compounds are now a useful tool for investigating the relationships among hydrology, vegetation, and methanotrophy in Sphagnum peatlands over the time scales of entire peatland sediment records, vital to our understanding of the global carbon cycle through the Late Glacial and Holocene.

  8. Identification of milk origin and process-induced changes in milk by stable isotope ratio mass spectrometry.

    PubMed

    Scampicchio, Matteo; Mimmo, Tanja; Capici, Calogero; Huck, Christian; Innocente, Nadia; Drusch, Stephan; Cesco, Stefano

    2012-11-14

    Stable isotope values were used to develop a new analytical approach enabling the simultaneous identification of milk samples either processed with different heating regimens or from different geographical origins. The samples consisted of raw, pasteurized (HTST), and ultrapasteurized (UHT) milk from different Italian origins. The approach consisted of the analysis of the isotope ratio of δ¹³C and δ¹⁵N for the milk samples and their fractions (fat, casein, and whey). The main finding of this work is that as the heat processing affects the composition of the milk fractions, changes in δ¹³C and δ¹⁵N were also observed. These changes were used as markers to develop pattern recognition maps based on principal component analysis and supervised classification models, such as linear discriminant analysis (LDA), multivariate regression (MLR), principal component regression (PCR), and partial least-squares (PLS). The results give proof of the concept that isotope ratio mass spectroscopy can discriminate simultaneously between milk samples according to their geographical origin and type of processing.

  9. Isotope ratio mass spectrometry as a tool for source inference in forensic science: A critical review.

    PubMed

    Gentile, Natacha; Siegwolf, Rolf T W; Esseiva, Pierre; Doyle, Sean; Zollinger, Kurt; Delémont, Olivier

    2015-06-01

    Isotope ratio mass spectrometry (IRMS) has been used in numerous fields of forensic science in a source inference perspective. This review compiles the studies published on the application of isotope ratio mass spectrometry (IRMS) to the traditional fields of forensic science so far. It completes the review of Benson et al. [1] and synthesises the extent of knowledge already gathered in the following fields: illicit drugs, flammable liquids, human provenancing, microtraces, explosives and other specific materials (packaging tapes, safety matches, plastics, etc.). For each field, a discussion assesses the state of science and highlights the relevance of the information in a forensic context. Through the different discussions which mark out the review, the potential and limitations of IRMS, as well as the needs and challenges of future studies are emphasized. The paper elicits the various dimensions of the source which can be obtained from the isotope information and demonstrates the transversal nature of IRMS as a tool for source inference. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Laboratory investigations of stable carbon and oxygen isotope ratio data enhance monitoring of CO2 underground

    NASA Astrophysics Data System (ADS)

    Barth, Johannes A. C.; Myrttinen, Anssi; Becker, Veith; Nowak, Martin; Mayer, Bernhard

    2014-05-01

    Stable carbon and oxygen isotope data play an important role in monitoring CO2 in the subsurface, for instance during carbon capture and storage (CCS). This includes monitoring of supercritical and gaseous CO2 movement and reactions under reservoir conditions and detection of potential CO2 leakage scenarios. However, in many cases isotope data from field campaigns are either limited due to complex sample retrieval or require verification under controlled boundary conditions. Moreover, experimentally verified isotope fractionation factors are also accurately known only for temperatures and pressures lower than commonly found in CO2 reservoirs (Myrttinen et al., 2012). For this reason, several experimental series were conducted in order to investigate effects of elevated pressures, temperatures and salinities on stable carbon and oxygen isotope changes of CO2 and water. These tests were conducted with a heateable pressure device and with glass or metal gas containers in which CO2 reacted with fluids for time periods of hours to several weeks. The obtained results revealed systematic differences in 13C/12C-distributions between CO2 and the most important dissolved inorganic carbon (DIC) species under reservoir conditions (CO2(aq), H2CO3 and HCO3-). Since direct measurements of the pH, even immediately after sampling, were unreliable due to rapid CO2 de-gassing, one of the key results of this work is that carbon isotope fractionation data between DIC and CO2 may serve to reconstruct in situ pH values. pH values reconstructed with this approach ranged between 5.5 and 7.4 for experiments with 60 bars and up to 120 °C and were on average 1.4 pH units lower than those measured with standard pH electrodes directly after sampling. In addition, pressure and temperature experiments with H2O and CO2 revealed that differences between the oxygen isotope ratios of both phases depended on temperature, water-gas ratios as well as salt contents of the solutions involved. Such

  11. Isotopic ratio analysis of cattle tail hair: A potential tool in building the database for cow milk geographical traceability.

    PubMed

    Behkami, Shima; Zain, Sharifuddin Md; Gholami, Mehrdad; Bakirdere, Sezgin

    2017-02-15

    The potential for the isotopic ratio analysis of cattle tail hair in determining the geographical origin of raw cow milk in Peninsular Malaysia had been investigated in this research using exploratory visualization. A significant positive correlation (p<0.0001) (n=54) was noticed between δ(13)C and δ(15)N in milk with that of hair which indicated that these matrices could be used in tracing the geographical origin of animal produce and tissues, and there is a possibility that hair could be used as a substitute in building the database for the geographical traceability of milk. It was also observed that both hair and milk isotopic ratio correlations exhibited separation between the northern and southern regions. The accuracy of using isotopic ratio in determining geographical discrimination had been clearly demonstrated when several commercial milk samples from the same regions under the study were correctly assigned to the appropriate geographical clusters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Stabel Carbon and Oxygen Isotope Ratios of Otoliths from Juvenile and Adult Winter Flounder

    EPA Science Inventory

    This study was designed to determine if stable carbon (13C) and oxygen (18O) isotope ratios in otoliths could be used to differentiate the locations that serve as important nursery areas for winter flounder along the Rhode Island, USA coastline. In recent years the populations ...

  13. Influence of forest disturbance on stable nitrogen isotope ratios in soil and vegetation profiles

    Treesearch

    Jennifer D. Knoepp; Scott R. Taylor; Lindsay R. Boring; Chelcy F. Miniat

    2015-01-01

    Soil and plant stable nitrogen isotope ratios (15 N) are influenced by atmospheric nitrogen (N) inputs and processes that regulate organic matter (OM) transformation and N cycling. The resulting 15N patterns may be useful for discerning ecosystem differences in N cycling. We studied two ecosystems; longleaf pine wiregrass (...

  14. Temporal trends in nitrogen isotope ratios of winter flounder collected from Rhode Island coastal systems

    EPA Science Inventory

    Nitrogen isotope ratios (15N) were measured in muscle tissue of juvenile winter flounder, Pseudopleuronectes americanus, collected from several estuarine systems along the coast of Rhode Island, USA, including Narragansett Bay, Narrow River and three coastal lagoons. Fish collect...

  15. Freezing and fractionation: effects of preservation on carbon and nitrogen stable isotope ratios of some limnetic organisms.

    PubMed

    Wolf, J Marshall; Johnson, Brett; Silver, Douglas; Pate, William; Christianson, Kyle

    2016-03-15

    Stable isotopes of carbon and nitrogen have become important natural tracers for studying food-web structure and function. Considerable research has demonstrated that chemical preservatives and fixatives shift the isotopic ratios of aquatic organisms. Much less is known about the effects of freezing as a preservation method although this technique is commonly used. We conducted a controlled experiment to test the effects of freezing (-10 °C) and flash freezing (–79 °C) on the carbon and nitrogen isotope ratios of zooplankton (Cladocera), Mysis diluviana and Rainbow Trout (Oncorhynchus mykiss). Subsamples (~0.5 mg) of dried material were analyzed for percentage carbon, percentage nitrogen, and the relative abundance of stable carbon and nitrogen isotopes (δ13C and δ15N values) using a Carlo Erba NC2500 elemental analyzer interfaced to a ThermoFinnigan MAT Delta Plus isotope ratio mass spectrometer. The effects of freezing were taxon-dependent. Freezing had no effect on the isotopic or elemental values of Rainbow Trout muscle. Effects on the δ13C and δ15N values of zooplankton and Mysis were statistically significant but small relative to typical values of trophic fractionation. The treatment-control offsets had larger absolute values for Mysis (δ13C: ≤0.76 ± 0.41‰, δ15N: ≤0.37 ± 0.16‰) than for zooplankton (δ13C: ≤0.12 ± 0.06‰, δ15N: ≤0.30 ± 0.27‰). The effects of freezing were more variable for the δ13C values of Mysis, and more variable for the δ15N values of zooplankton. Generally, both freezing methods reduced the carbon content of zooplankton and Mysis, but freezing had a negative effect on the %N of zooplankton and a positive effect on the %N of Mysis. The species-dependencies and variability of freezing effects on aquatic organisms suggest that more research is needed to understand the mechanisms responsible for freezing-related fractionation before standardized protocols for freezing as a preservation method can be adopted.

  16. High-precision measurement of (186)Os/(188)Os and (187)Os/(188)Os: isobaric oxide corrections with in-run measured oxygen isotope ratios.

    PubMed

    Chu, Zhu-Yin; Li, Chao-Feng; Chen, Zhi; Xu, Jun-Jie; Di, Yan-Kun; Guo, Jing-Hui

    2015-09-01

    We present a novel method for high precision measurement of (186)Os/(188)Os and (187)Os/(188)Os ratios, applying isobaric oxide interference correction based on in-run measurements of oxygen isotopic ratios. For this purpose, we set up a static data collection routine to measure the main Os(16)O3(-) ion beams with Faraday cups connected to conventional 10(11) amplifiers, and (192)Os(16)O2(17)O(-) and (192)Os(16)O2(18)O(-) ion beams with Faraday cups connected to 10(12) amplifiers. Because of the limited number of Faraday cups, we did not measure (184)Os(16)O3(-) and (189)Os(16)O3(-) simultaneously in-run, but the analytical setup had no significant influence on final (186)Os/(188)Os and (187)Os/(188)Os data. By analyzing UMd, DROsS, an in-house Os solution standard, and several rock reference materials, including WPR-1, WMS-1a, and Gpt-5, the in-run measured oxygen isotopic ratios were proven to present accurate Os isotopic data. However, (186)Os/(188)Os and (187)Os/(188)Os data obtained with in-run O isotopic compositions for the solution standards and rock reference materials show minimal improvement in internal and external precision, compared to the conventional oxygen correction method. We concluded that, the small variations of oxygen isotopes during OsO3(-) analytical sessions are probably not the main source of error for high precision Os isotopic analysis. Nevertheless, use of run-specific O isotopic compositions is still a better choice for Os isotopic data reduction and eliminates the requirement of extra measurements of the oxygen isotopic ratios.

  17. Evolution of anisotropy in bcc Fe distorted by interstitial boron

    NASA Astrophysics Data System (ADS)

    Gölden, Dominik; Zhang, Hongbin; Radulov, Iliya; Dirba, Imants; Komissinskiy, Philipp; Hildebrandt, Erwin; Alff, Lambert

    2018-01-01

    The evolution of magnetic anisotropy in bcc Fe as a function of interstitial boron atoms was investigated in thin films grown by molecular beam epitaxy. The thermodynamic nonequilibrium conditions during film growth allowed one to stabilize an interstitial boron content of about 14 at .% accompanied by lattice tetragonalization. The c /a ratio scaled linearly with the boron content up to a maximum value of 1.05 at 300 °C substrate growth temperature, with a room-temperature magnetization of. In contrast to nitrogen interstitials, the magnetic easy axis remained in-plane with an anisotropy of approximately -5.1 ×106erg /cm3 . Density functional theory calculations using the measured lattice parameters confirm this value and show that boron local ordering indeed favors in-plane magnetization. Given the increased temperature stability of boron interstitials as compared to nitrogen interstitials, this study will help to find possible ways to manipulate boron interstitials into a more favorable local order.

  18. Reviews and syntheses: Revisiting the boron systematics of aragonite and their application to coral calcification

    NASA Astrophysics Data System (ADS)

    DeCarlo, Thomas M.; Holcomb, Michael; McCulloch, Malcolm T.

    2018-05-01

    The isotopic and elemental systematics of boron in aragonitic coral skeletons have recently been developed as a proxy for the carbonate chemistry of the coral extracellular calcifying fluid. With knowledge of the boron isotopic fractionation in seawater and the B/Ca partition coefficient (KD) between aragonite and seawater, measurements of coral skeleton δ11B and B/Ca can potentially constrain the full carbonate system. Two sets of abiogenic aragonite precipitation experiments designed to quantify KD have recently made possible the application of this proxy system. However, while different KD formulations have been proposed, there has not yet been a comprehensive analysis that considers both experimental datasets and explores the implications for interpreting coral skeletons. Here, we evaluate four potential KD formulations: three previously presented in the literature and one newly developed. We assess how well each formulation reconstructs the known fluid carbonate chemistry from the abiogenic experiments, and we evaluate the implications for deriving the carbonate chemistry of coral calcifying fluid. Three of the KD formulations performed similarly when applied to abiogenic aragonites precipitated from seawater and to coral skeletons. Critically, we find that some uncertainty remains in understanding the mechanism of boron elemental partitioning between aragonite and seawater, and addressing this question should be a target of additional abiogenic precipitation experiments. Despite this, boron systematics can already be applied to quantify the coral calcifying fluid carbonate system, although uncertainties associated with the proxy system should be carefully considered for each application. Finally, we present a user-friendly computer code that calculates coral calcifying fluid carbonate chemistry, including propagation of uncertainties, given inputs of boron systematics measured in coral skeleton.

  19. Stable Isotope Ratios as a Biomarker on Mars

    NASA Astrophysics Data System (ADS)

    van Zuilen, Mark

    2008-03-01

    As both Earth and Mars have had similar environmental conditions at least for some extended time early in their history (Jakosky and Phillips in Nature 412:237-244, 2001), the intriguing question arises whether life originated and evolved on Mars as it did on Earth (McKay and Stoker in Rev. Geophys. 27:189-214, 1989). Conceivably, early autotrophic life on Mars, like early life on Earth, used irreversible enzymatically enhanced metabolic processes that would have fractionated stable isotopes of the elements C, N, S, and Fe. Several important assumptions are made when such isotope fractionations are used as a biomarker. The purpose of this article is two-fold: (1) to discuss these assumptions for the case of carbon and to summarize new insights in abiologic reactions, and (2) to discuss the use of other stable isotope systems as a potential biomarker. It is concluded that isotopic biomarker studies on Mars will encounter several important obstacles. In the case of carbon isotopes, the most important obstacle is the absence of a contemporary abiologic carbon reservoir (such as carbonate deposits on Earth) to act as isotopic standard. The presence of a contemporary abiologic sulfate reservoir (evaporite deposits) suggests that sulfur isotopes can be used as a potential biomarker for sulfate-reducing bacteria. The best approach for tracing ancient life on Mars will be to combine several biomarker approaches; to search for complexity, and to combine small-scale isotopic variations with chemical, mineralogical, and morphological observations. An example of such a study can be a layer-specific correlation between δ 13C and δ 34S within an ancient Martian evaporite, which morphologically resembles the typical setting of a shallow marine microbial mat.

  20. Precision Measurement of the Boron to Carbon Flux Ratio in Cosmic Rays from 1.9 GV to 2.6 TV with the Alpha Magnetic Spectrometer on the International Space Station.

    PubMed

    Aguilar, M; Ali Cavasonza, L; Ambrosi, G; Arruda, L; Attig, N; Aupetit, S; Azzarello, P; Bachlechner, A; Barao, F; Barrau, A; Barrin, L; Bartoloni, A; Basara, L; Başeğmez-du Pree, S; Battarbee, M; Battiston, R; Becker, U; Behlmann, M; Beischer, B; Berdugo, J; Bertucci, B; Bindel, K F; Bindi, V; Boella, G; de Boer, W; Bollweg, K; Bonnivard, V; Borgia, B; Boschini, M J; Bourquin, M; Bueno, E F; Burger, J; Cadoux, F; Cai, X D; Capell, M; Caroff, S; Casaus, J; Castellini, G; Cervelli, F; Chae, M J; Chang, Y H; Chen, A I; Chen, G M; Chen, H S; Cheng, L; Chou, H Y; Choumilov, E; Choutko, V; Chung, C H; Clark, C; Clavero, R; Coignet, G; Consolandi, C; Contin, A; Corti, C; Creus, W; Crispoltoni, M; Cui, Z; Dai, Y M; Delgado, C; Della Torre, S; Demakov, O; Demirköz, M B; Derome, L; Di Falco, S; Dimiccoli, F; Díaz, C; von Doetinchem, P; Dong, F; Donnini, F; Duranti, M; D'Urso, D; Egorov, A; Eline, A; Eronen, T; Feng, J; Fiandrini, E; Finch, E; Fisher, P; Formato, V; Galaktionov, Y; Gallucci, G; García, B; García-López, R J; Gargiulo, C; Gast, H; Gebauer, I; Gervasi, M; Ghelfi, A; Giovacchini, F; Goglov, P; Gómez-Coral, D M; Gong, J; Goy, C; Grabski, V; Grandi, D; Graziani, M; Guo, K H; Haino, S; Han, K C; He, Z H; Heil, M; Hoffman, J; Hsieh, T H; Huang, H; Huang, Z C; Huh, C; Incagli, M; Ionica, M; Jang, W Y; Jinchi, H; Kang, S C; Kanishev, K; Kim, G N; Kim, K S; Kirn, Th; Konak, C; Kounina, O; Kounine, A; Koutsenko, V; Krafczyk, M S; La Vacca, G; Laudi, E; Laurenti, G; Lazzizzera, I; Lebedev, A; Lee, H T; Lee, S C; Leluc, C; Li, H S; Li, J Q; Li, J Q; Li, Q; Li, T X; Li, W; Li, Y; Li, Z H; Li, Z Y; Lim, S; Lin, C H; Lipari, P; Lippert, T; Liu, D; Liu, Hu; Lordello, V D; Lu, S Q; Lu, Y S; Luebelsmeyer, K; Luo, F; Luo, J Z; Lv, S S; Machate, F; Majka, R; Mañá, C; Marín, J; Martin, T; Martínez, G; Masi, N; Maurin, D; Menchaca-Rocha, A; Meng, Q; Mikuni, V M; Mo, D C; Morescalchi, L; Mott, P; Nelson, T; Ni, J Q; Nikonov, N; Nozzoli, F; Oliva, A; Orcinha, M; Palmonari, F; Palomares, C; Paniccia, M; Pauluzzi, M; Pensotti, S; Pereira, R; Picot-Clemente, N; Pilo, F; Pizzolotto, C; Plyaskin, V; Pohl, M; Poireau, V; Putze, A; Quadrani, L; Qi, X M; Qin, X; Qu, Z Y; Räihä, T; Rancoita, P G; Rapin, D; Ricol, J S; Rosier-Lees, S; Rozhkov, A; Rozza, D; Sagdeev, R; Sandweiss, J; Saouter, P; Schael, S; Schmidt, S M; Schulz von Dratzig, A; Schwering, G; Seo, E S; Shan, B S; Shi, J Y; Siedenburg, T; Son, D; Song, J W; Sun, W H; Tacconi, M; Tang, X W; Tang, Z C; Tao, L; Tescaro, D; Ting, Samuel C C; Ting, S M; Tomassetti, N; Torsti, J; Türkoğlu, C; Urban, T; Vagelli, V; Valente, E; Vannini, C; Valtonen, E; Vázquez Acosta, M; Vecchi, M; Velasco, M; Vialle, J P; Vitale, V; Vitillo, S; Wang, L Q; Wang, N H; Wang, Q L; Wang, X; Wang, X Q; Wang, Z X; Wei, C C; Weng, Z L; Whitman, K; Wienkenhöver, J; Wu, H; Wu, X; Xia, X; Xiong, R Q; Xu, W; Yan, Q; Yang, J; Yang, M; Yang, Y; Yi, H; Yu, Y J; Yu, Z Q; Zeissler, S; Zhang, C; Zhang, J; Zhang, J H; Zhang, S D; Zhang, S W; Zhang, Z; Zheng, Z M; Zhu, Z Q; Zhuang, H L; Zhukov, V; Zichichi, A; Zimmermann, N; Zuccon, P

    2016-12-02

    Knowledge of the rigidity dependence of the boron to carbon flux ratio (B/C) is important in understanding the propagation of cosmic rays. The precise measurement of the B/C ratio from 1.9 GV to 2.6 TV, based on 2.3 million boron and 8.3 million carbon nuclei collected by AMS during the first 5 years of operation, is presented. The detailed variation with rigidity of the B/C spectral index is reported for the first time. The B/C ratio does not show any significant structures in contrast to many cosmic ray models that require such structures at high rigidities. Remarkably, above 65 GV, the B/C ratio is well described by a single power law R^{Δ} with index Δ=-0.333±0.014(fit)±0.005(syst), in good agreement with the Kolmogorov theory of turbulence which predicts Δ=-1/3 asymptotically.

  1. Dietary Boron and Hormone Replacement Therapy as Risk Factors for Lung Cancer in Women

    PubMed Central

    Mahabir, S.; Spitz, M. R.; Barrera, S. L.; Dong, Y. Q.; Eastham, C.; Forman, M. R.

    2012-01-01

    Hormone replacement therapy (HRT) may reduce lung cancer risk. Dietary boron may have actions similar to those of HRT; however, no previous study has reported the associations between dietary boron intake and lung cancer risk or the joint effects of boron intake and HRT use on lung cancer risk. The authors examined the associations between boron intake and the joint effects of boron intake and HRT on lung cancer risk in women. In an ongoing case-control study in Houston, Texas (July 1995 through April 2005, end date for this analysis), 763 women were diagnosed with lung cancer, and 838 were matched healthy controls with data on both diet and HRT. Multiple logistic regression analyses were conducted to assess the associations between dietary boron and HRT with lung cancer risk. After adjustment for potential confounders, the odds ratios for lung cancer with decreasing quartiles of dietary boron intake were 1.0, 1.39 (95% confidence interval (CI): 1.02, 1.90), 1.64 (95% CI: 1.20, 2.24), and 1.95 (95% CI: 1.42, 2.68) mg/day, respectively, for all women (ptrend < 0.0001). In joint-effects analyses, compared with women with high dietary boron intake who used HRT, the odds ratio for lung cancer for low dietary boron intake and no HRT use was 2.07 (95% CI: 1.53, 2.81). Boron intake was inversely associated with lung cancer in women, whereas women who consumed low boron and did not use HRT were at substantial increased odds. PMID:18343880

  2. Trends in Seawater Boron-based Proxies during the Late Paleocene and Early Eocene Associated with Long-term Warming

    NASA Astrophysics Data System (ADS)

    Harper, D. T.; Penman, D. E.; Hoenisch, B.; Zachos, J. C.

    2014-12-01

    Boron isotopes (δ11B) and boron/calcium ratios (B/Ca) in tests of planktic foraminifera are controlled by equilibrium reactions between boron and carbon species in seawater, and thus represent important proxies of past marine carbonate chemistry. Indeed, the recent application of these boron-based proxies to fossil shells of planktic foraminifera from cores spanning the Paleocene-Eocene Thermal Maximum (PETM; 56Ma, an abrupt global warming and ocean acidification event) reveal a decline of ~0.3 in the pH of the mixed-layer [1], an anomaly that is well within the range of estimates based on the observed shoaling of the carbonate compensation depth (CCD) [2, and references therein]. The PETM occurred superimposed on a long-term warming trend that initiated in the Late Paleocene and continued into the Early Eocene (LPEE; 53-59Ma). The magnitude of warming [3] and deepening of the CCD [4] indicate that the LPEE was driven by a rise in pCO2 nearly equivalent to that of the PETM [5]. Here we extend the PETM record of boron-based proxies at IODP Site 1209 across the LPEE, in conjunction with stable carbon and oxygen isotopes in planktic foraminifera, in order to better constrain the long-term changes in pH and carbonate chemistry that accompanied the suggested rise in atmospheric CO2. The 20kyr resolution B/Ca record shows a long-term decline of ~25% during the LPEE, as well as subtle 400kyr cycles associated with eccentricity that mirror those observed in δ13C, and thus might reflect on changes in pH. The lower resolution δ11B record exhibits little change during the Late Paleocene before decreasing step-wise to lower values following the PETM, indicating that either pH in the upper ocean did not change significantly prior to the PETM, despite warming and inferred pCO2 increase, or changes in δ11Bseawater compensated for pH driven changes. As verification of these observations at Site 1209, complementary B/Ca and δ11B records are being generated for Atlantic IODP

  3. Metrology for stable isotope reference materials: 13C/12C and 18O/16O isotope ratio value assignment of pure carbon dioxide gas samples on the Vienna PeeDee Belemnite-CO2 scale using dual-inlet mass spectrometry.

    PubMed

    Srivastava, Abneesh; Michael Verkouteren, R

    2018-07-01

    Isotope ratio measurements have been conducted on a series of isotopically distinct pure CO 2 gas samples using the technique of dual-inlet isotope ratio mass spectrometry (DI-IRMS). The influence of instrumental parameters, data normalization schemes on the metrological traceability and uncertainty of the sample isotope composition have been characterized. Traceability to the Vienna PeeDee Belemnite(VPDB)-CO 2 scale was realized using the pure CO 2 isotope reference materials(IRMs) 8562, 8563, and 8564. The uncertainty analyses include contributions associated with the values of iRMs and the repeatability and reproducibility of our measurements. Our DI-IRMS measurement system is demonstrated to have high long-term stability, approaching a precision of 0.001 parts-per-thousand for the 45/44 and 46/44 ion signal ratios. The single- and two-point normalization bias for the iRMs were found to be within their published standard uncertainty values. The values of 13 C/ 12 C and 18 O/ 16 O isotope ratios are expressed relative to VPDB-CO 2 using the [Formula: see text] and [Formula: see text] notation, respectively, in parts-per-thousand (‰ or per mil). For the samples, value assignments between (-25 to +2) ‰ and (-33 to -1) ‰ with nominal combined standard uncertainties of (0.05, 0.3) ‰ for [Formula: see text] and [Formula: see text], respectively were obtained. These samples are used as laboratory reference to provide anchor points for value assignment of isotope ratios (with VPDB traceability) to pure CO 2 samples. Additionally, they serve as potential parent isotopic source material required for the development of gravimetric based iRMs of CO 2 in CO 2 -free dry air in high pressure gas cylinder packages at desired abundance levels and isotopic composition values. Graphical abstract CO 2 gas isotope ratio metrology.

  4. He isotope ratios in the Nankai Trough and Costa Rica subduction zones - implications for volatile cycling

    NASA Astrophysics Data System (ADS)

    Kastner, M.; Hilton, D. R.; Jenkins, W. J.; Solomon, E. A.; Spivack, A. J.

    2013-12-01

    The noble gas 3He is a clear indicator of primordial volatile flux from the mantle, thus providing important insights on the interaction between Earth's interior and exterior reservoirs. Volatile cycling at ridge-crests and its impact on the evolution of seawater chemistry is rather well known as constrained by the 3He flux, whereas the impact of volatile cycling at subduction zones (SZs) on seawater chemistry is as yet poorly known. Constraining chemical and isotopic cycling at SZs is important for understanding the evolution of the mantle-crust and ocean-atmosphere systems. To gain insights on volatile cycling in SZs, pore fluids were sampled for He concentration and isotopic analyses at two tectonically contrasting SZs, Nankai Trough (offshore Japan, Muroto and Kumano transects), an accretionary SZ, and Costa Rica (Offshore Osa Peninsula), an erosional SZ. Sampling for He was achieved by rapidly subsampling core sediments, cleaning and transferring these samples into Ti squeezers in a glove bag, and storing the squeezed pore fluids in crimped Cu tubes for shore-based He concentration and isotope ratio analyses. At the Nankai Trough SZ there is a remarkable range of He isotopic values. The 3He/4He ratios relative to atmospheric ratio (RA) range from mostly crustal 0.47 RA to 4.30 RA which is ~55% of the MORB value of 8 RA. Whereas at the Costa Rica SZ, offshore Osa Peninsula, the ratios range from 0.86 to 1.14 RA, indicating the dominance of crustal radiogenic 4He that is from U and Th decay. The distribution of the He isotope values at Nankai Trough is most interesting, fluids that contain significant mantle 3He components (3He/4He >1) were sampled along and adjacent to fluid conduits that were identified by several chemical and isotopic data (i.e. Cl, B, and Li), including the presence of thermogenic hydrocarbons. Whereas the fluids dominated by 4He (3He/4He ≤1) were obtained from sediment sections that were between the fluid conduits. At Costa Rica, however

  5. Fukushima Daiichi reactor source term attribution using cesium isotope ratios from contaminated environmental samples

    DOE PAGES

    Snow, Mathew S.; Snyder, Darin C.; Delmore, James E.

    2016-01-18

    Source term attribution of environmental contamination following the Fukushima Daiichi Nuclear Power Plant (FDNPP) disaster is complicated by a large number of possible similar emission source terms (e.g. FDNPP reactor cores 1–3 and spent fuel ponds 1–4). Cesium isotopic analyses can be utilized to discriminate between environmental contamination from different FDNPP source terms and, if samples are sufficiently temporally resolved, potentially provide insights into the extent of reactor core damage at a given time. Rice, soil, mushroom, and soybean samples taken 100–250 km from the FDNPP site were dissolved using microwave digestion. Radiocesium was extracted and purified using two sequentialmore » ammonium molybdophosphate-polyacrylonitrile columns, following which 135Cs/ 137Cs isotope ratios were measured using thermal ionization mass spectrometry (TIMS). Results were compared with data reported previously from locations to the northwest of FDNPP and 30 km to the south of FDNPP. 135Cs/ 137Cs isotope ratios from samples 100–250 km to the southwest of the FDNPP site show a consistent value of 0.376 ± 0.008. 135Cs/ 137Cs versus 134Cs/ 137Cs correlation plots suggest that radiocesium to the southwest is derived from a mixture of FDNPP reactor cores 1, 2, and 3. Conclusions from the cesium isotopic data are in agreement with those derived independently based upon the event chronology combined with meteorological conditions at the time of the disaster. In conclusion, cesium isotopic analyses provide a powerful tool for source term discrimination of environmental radiocesium contamination at the FDNPP site. For higher precision source term attribution and forensic determination of the FDNPP core conditions based upon cesium, analyses of a larger number of samples from locations to the north and south of the FDNPP site (particularly time-resolved air filter samples) are needed. Published in 2016. This article is a U.S. Government work and is in the public

  6. Fukushima Daiichi reactor source term attribution using cesium isotope ratios from contaminated environmental samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snow, Mathew S.; Snyder, Darin C.; Delmore, James E.

    Source term attribution of environmental contamination following the Fukushima Daiichi Nuclear Power Plant (FDNPP) disaster is complicated by a large number of possible similar emission source terms (e.g. FDNPP reactor cores 1–3 and spent fuel ponds 1–4). Cesium isotopic analyses can be utilized to discriminate between environmental contamination from different FDNPP source terms and, if samples are sufficiently temporally resolved, potentially provide insights into the extent of reactor core damage at a given time. Rice, soil, mushroom, and soybean samples taken 100–250 km from the FDNPP site were dissolved using microwave digestion. Radiocesium was extracted and purified using two sequentialmore » ammonium molybdophosphate-polyacrylonitrile columns, following which 135Cs/ 137Cs isotope ratios were measured using thermal ionization mass spectrometry (TIMS). Results were compared with data reported previously from locations to the northwest of FDNPP and 30 km to the south of FDNPP. 135Cs/ 137Cs isotope ratios from samples 100–250 km to the southwest of the FDNPP site show a consistent value of 0.376 ± 0.008. 135Cs/ 137Cs versus 134Cs/ 137Cs correlation plots suggest that radiocesium to the southwest is derived from a mixture of FDNPP reactor cores 1, 2, and 3. Conclusions from the cesium isotopic data are in agreement with those derived independently based upon the event chronology combined with meteorological conditions at the time of the disaster. In conclusion, cesium isotopic analyses provide a powerful tool for source term discrimination of environmental radiocesium contamination at the FDNPP site. For higher precision source term attribution and forensic determination of the FDNPP core conditions based upon cesium, analyses of a larger number of samples from locations to the north and south of the FDNPP site (particularly time-resolved air filter samples) are needed. Published in 2016. This article is a U.S. Government work and is in the public

  7. Fukushima Daiichi reactor source term attribution using cesium isotope ratios from contaminated environmental samples.

    PubMed

    Snow, Mathew S; Snyder, Darin C; Delmore, James E

    2016-02-28

    Source term attribution of environmental contamination following the Fukushima Daiichi Nuclear Power Plant (FDNPP) disaster is complicated by a large number of possible similar emission source terms (e.g. FDNPP reactor cores 1-3 and spent fuel ponds 1-4). Cesium isotopic analyses can be utilized to discriminate between environmental contamination from different FDNPP source terms and, if samples are sufficiently temporally resolved, potentially provide insights into the extent of reactor core damage at a given time. Rice, soil, mushroom, and soybean samples taken 100-250 km from the FDNPP site were dissolved using microwave digestion. Radiocesium was extracted and purified using two sequential ammonium molybdophosphate-polyacrylonitrile columns, following which (135)Cs/(137) Cs isotope ratios were measured using thermal ionization mass spectrometry (TIMS). Results were compared with data reported previously from locations to the northwest of FDNPP and 30 km to the south of FDNPP. (135)Cs/(137)Cs isotope ratios from samples 100-250 km to the southwest of the FDNPP site show a consistent value of 0.376 ± 0.008. (135)Cs/(137)Cs versus (134)Cs/(137)Cs correlation plots suggest that radiocesium to the southwest is derived from a mixture of FDNPP reactor cores 1, 2, and 3. Conclusions from the cesium isotopic data are in agreement with those derived independently based upon the event chronology combined with meteorological conditions at the time of the disaster. Cesium isotopic analyses provide a powerful tool for source term discrimination of environmental radiocesium contamination at the FDNPP site. For higher precision source term attribution and forensic determination of the FDNPP core conditions based upon cesium, analyses of a larger number of samples from locations to the north and south of the FDNPP site (particularly time-resolved air filter samples) are needed. Published in 2016. This article is a U.S. Government work and is in the public domain in the USA.

  8. Application of laser ablation multicollector inductively coupled plasma mass spectrometry for the measurement of calcium and lead isotope ratios in packaging for discriminatory purposes.

    PubMed

    Santamaria-Fernandez, Rebeca; Wolff, Jean-Claude

    2010-07-30

    The potential of high-precision calcium and lead isotope ratio measurements using laser ablation coupled to multicollector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) to aid distinction between four genuine and five counterfeit pharmaceutical packaging samples and further classification of counterfeit packaging samples has been evaluated. We highlight the lack of reference materials for LA-MC-ICP-MS isotope ratio measurements in solids. In this case the problem is minimised by using National Institute of Standards and Technology Standard Reference Material (NIST SRM) 915a calcium carbonate (as solid pellets) and NIST SRM610 glass disc for sample bracketing external standardisation. In addition, a new reference material, NIST SRM915b calcium carbonate, has been characterised in-house for Ca isotope ratios and is used as a reference sample. Significant differences have been found between genuine and counterfeit samples; the method allows detection of counterfeits and aids further classification of packaging samples. Typical expanded uncertainties for measured-corrected Ca isotope ratio values ((43)Ca/(44)Ca and (42)Ca/(44)Ca) were found to be below 0.06% (k = 2, 95% confidence) and below 0.2% for measured-corrected Pb isotope ratios ((207)Pb/(206)Pb and (208)Pb/(206)Pb). This is the first time that Ca isotope ratios have been measured in packaging materials using LA coupled to a multicollector (MC)-ICP-MS instrument. The use of LA-MC-ICP-MS for direct measurement of Ca and Pb isotopic variations in cardboard/ink in packaging has definitive potential to aid counterfeit detection and classification. Copyright 2010 John Wiley & Sons, Ltd.

  9. Profiling of new psychoactive substances (NPS) by using stable isotope ratio mass spectrometry (IRMS): study on the synthetic cannabinoid 5F-PB-22.

    PubMed

    Münster-Müller, S; Scheid, N; Holdermann, T; Schneiders, S; Pütz, M

    2018-05-21

    In this paper results of a pilot study on the profiling of the synthetic cannabinoid receptor agonist 5F-PB-22 (5F-QUPIC, pentylfluoro-1H-indole-3-carboxylic acid-8-quinolinyl ester) via isotope ratio mass spectrometry are presented. It is focused on δ 13 C, δ 15 N and δ 2 H isotope ratios, which are determined using elemental analyser (EA) and high temperature elemental analyser (TC/EA) coupled to an isotope ratio mass spectrometer (IRMS). By means of a sample of pure material of 5F-PB-22 it is shown that the extraction of 5F-PB-22 from herbal material, a rapid clean-up procedure, or preparative column chromatography had no influences on the isotope ratios. Furthermore, 5F-PB-22 was extracted from fourteen different herbal blend samples ("Spice products" from police seizures) and analysed via IRMS, yielding three clusters containing seven, five and two samples, distinguishable through their isotopic composition, respectively. It is assumed that herbal blends in each cluster have been manufactured from individual batches of 5F-PB-22. This article is protected by copyright. All rights reserved.

  10. A new and effective approach to boron removal by using novel boron-specific fungi isolated from boron mining wastewater.

    PubMed

    Taştan, Burcu Ertit; Çakir, Dilara Nur; Dönmez, Gönül

    2016-01-01

    Boron-resistant fungi were isolated from the wastewater of a boron mine in Turkey. Boron removal efficiencies of Penicillium crustosum and Rhodotorula mucilaginosa were detected in different media compositions. Minimal Salt Medium (MSM) and two different waste media containing molasses (WM-1) or whey + molasses (WM-2) were tested to make this process cost effective when scaled up. Both isolates achieved high boron removal yields at the highest boron concentrations tested in MSM and WM-1. The maximum boron removal yield by P. crustosum was 45.68% at 33.95 mg l(-1) initial boron concentration in MSM, and was 38.97% at 42.76 mg l(-1) boron for R. mucilaginosa, which seemed to offer an economically feasible method of removing boron from the effluents.

  11. Boron supercapacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhan, Cheng; Zhang, Pengfei; Dai, Sheng

    Supercapacitors based on the electric double-layer mechanism use porous carbons or graphene as electrodes. To move beyond this paradigm, we propose boron supercapacitors to leverage two-dimensional (2D) boron sheets’ metallicity and low weight. Six 2D boron sheets from both previous theoretical design and experimental growth are chosen as test electrodes. By applying joint density functional theory (JDFT) to the electrode–electrolyte system, we examine how the 2D boron sheets charge up against applied potential. JDFT predicts that these 2D boron sheets exhibit specific capacitance on the order of 400 F/g, about four times that of graphene. As a result, our workmore » suggests that 2D boron sheets are promising electrodes for supercapacitor applications.« less

  12. Boron supercapacitors

    DOE PAGES

    Zhan, Cheng; Zhang, Pengfei; Dai, Sheng; ...

    2016-11-16

    Supercapacitors based on the electric double-layer mechanism use porous carbons or graphene as electrodes. To move beyond this paradigm, we propose boron supercapacitors to leverage two-dimensional (2D) boron sheets’ metallicity and low weight. Six 2D boron sheets from both previous theoretical design and experimental growth are chosen as test electrodes. By applying joint density functional theory (JDFT) to the electrode–electrolyte system, we examine how the 2D boron sheets charge up against applied potential. JDFT predicts that these 2D boron sheets exhibit specific capacitance on the order of 400 F/g, about four times that of graphene. As a result, our workmore » suggests that 2D boron sheets are promising electrodes for supercapacitor applications.« less

  13. Assessment of Non-traditional Isotopic Ratios by Mass Spectrometry for Analysis of Nuclear Activities. Annual Report 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biegalski, Steven R.; Buchholz, Bruce A.

    2011-08-24

    The objective of this work is to identify isotopic ratios suitable for analysis via mass spectrometry that distinguish between commercial nuclear reactor fuel cycles, fuel cycles for weapons grade plutonium, and products from nuclear weapons explosions. Methods will also be determined to distinguish the above from medical and industrial radionuclide sources. Mass spectrometry systems will be identified that are suitable for field measurement of such isotopes in an expedient manner.

  14. In Vivo Boron Uptake Determination for Boron Neutron Capture Synovectomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Binello, Emanuela; Shortkroff, Sonya; Yanch, Jacquelyn C.

    1999-06-06

    Boron neutron capture synovectomy (BNCS) has been proposed as a new application of the boron neutron capture reaction for the treatment of rheumatoid arthritis. In BNCS, a boron compound is injected into the joint space, where it is taken up by the synovium. The joint is then irradiated with neutrons of a desired energy range, inducing the boron neutron capture reaction in boron-loaded cells. Boron uptake by the synovium is an important parameter in the assessment of the potential of BNCS and in the determination of whether to proceed to animal irradiations for the testing of therapeutic efficacy. We presentmore » results from an investigation of boron uptake in vivo by the synovium.« less

  15. Water isotopic ratios from a continuously melted ice core sample

    NASA Astrophysics Data System (ADS)

    Gkinis, V.; Popp, T. J.; Blunier, T.; Bigler, M.; Schüpbach, S.; Johnsen, S. J.

    2011-06-01

    A new technique for on-line high resolution isotopic analysis of liquid water, tailored for ice core studies is presented. We build an interface between an Infra Red Cavity Ring Down Spectrometer (IR-CRDS) and a Continuous Flow Analysis (CFA) system. The system offers the possibility to perform simultaneuous water isotopic analysis of δ18O and δD on a continuous stream of liquid water as generated from a continuously melted ice rod. Injection of sub μl amounts of liquid water is achieved by pumping sample through a fused silica capillary and instantaneously vaporizing it with 100 % efficiency in a home made oven at a temperature of 170 °C. A calibration procedure allows for proper reporting of the data on the VSMOW scale. We apply the necessary corrections based on the assessed performance of the system regarding instrumental drifts and dependance on humidity levels. The melt rates are monitored in order to assign a depth scale to the measured isotopic profiles. Application of spectral methods yields the combined uncertainty of the system at below 0.1 ‰ and 0.5 ‰ for δ18O and δD, respectively. This performance is comparable to that achieved with mass spectrometry. Dispersion of the sample in the transfer lines limits the resolution of the technique. In this work we investigate and assess these dispersion effects. By using an optimal filtering method we show how the measured profiles can be corrected for the smoothing effects resulting from the sample dispersion. Considering the significant advantages the technique offers, i.e. simultaneuous measurement of δ18O and δD, potentially in combination with chemical components that are traditionally measured on CFA systems, notable reduction on analysis time and power consumption, we consider it as an alternative to traditional isotope ratio mass spectrometry with the possibility to be deployed for field ice core studies. We present data acquired in the framework of the NEEM deep ice core drilling project in

  16. Is modern climate variability reflected in compund specific hydrogen isotope ratios of sedimentary biomarkers?

    NASA Astrophysics Data System (ADS)

    Sachse, D.; Radke, J.; Gleixner, G.

    2003-04-01

    Compound specific hydrogen isotope ratios are emerging as a new palaeoclimatic and palaeohydrological proxy. First reconstructions of palaeoclimate using D/H ratios from n-alkanes are available (Andersen et al. 2001, Sauer et al. 2001, Sachse et al. 2003). However, a systematic approach comparing recent sedimentary biomarkers with climate data is still lacking. We are establishing an ecosystem study of small, ground water fed lakes with known limnology. Nearly all lakes are close to a long-term climate-monitoring site (CARBOEUROPE flux tower site, IAEA precipitation monitoring) delivering ecophysiological and climatic data as temperature, precipitation, evapotranspiration etc. Water, primary biomass, plant, soil and sediment were sampled from lakes and the surrounding ecosystem along a climatic and isotopic gradient in meteoric waters from northern Finland (deltaD: -130 permil vs. VSMOW) to southern Italy (deltaD: -30 permil vs. VSMOW, IAEA 2001). Biomarkers were extracted from the samples to test if climatic variability is reflected in their D/H ratios. First results of the factors influencing the hydrogen isotope composition of sedimentary biomarkers and their use as palaeoclimatic and palaeohydrological proxy will be presented. Andersen N, Paul HA, Bernasconi SM, McKenzie JA, Behrens A, Schaeffer P, Albrecht P (2001) Large and rapid climate variability during the Messinian salinity crisis: Evidence from deuterium concentrations of individual biomarkers. Geology 29:799-802 IAEA (2001) GNIP Maps and Animations. International Atomic Energy Agency, Vienna. Accessible at http://isohis.iaea.org Sachse D, Radke J, Gaupp R, Schwark L, Lüniger G, Gleixner G (2003) Reconstruction of palaeohydrological conditions in a lagoon during the 2nd Zechstein cycle through simultaneous use of deltaD values of individual n-alkanes and delta18O and delta13C values of carbonates. International Journal of Earth Sciences, submitted Sauer PE, Eglington TI, Hayes JM, Schimmelman A

  17. Source Attribution of Cyanides Using Anionic Impurity Profiling, Stable Isotope Ratios, Trace Elemental Analysis and Chemometrics.

    PubMed

    Mirjankar, Nikhil S; Fraga, Carlos G; Carman, April J; Moran, James J

    2016-02-02

    Chemical attribution signatures (CAS) for chemical threat agents (CTAs), such as cyanides, are being investigated to provide an evidentiary link between CTAs and specific sources to support criminal investigations and prosecutions. Herein, stocks of KCN and NaCN were analyzed for trace anions by high performance ion chromatography (HPIC), carbon stable isotope ratio (δ(13)C) by isotope ratio mass spectrometry (IRMS), and trace elements by inductively coupled plasma optical emission spectroscopy (ICP-OES). The collected analytical data were evaluated using hierarchical cluster analysis (HCA), Fisher-ratio (F-ratio), interval partial least-squares (iPLS), genetic algorithm-based partial least-squares (GAPLS), partial least-squares discriminant analysis (PLSDA), K nearest neighbors (KNN), and support vector machines discriminant analysis (SVMDA). HCA of anion impurity profiles from multiple cyanide stocks from six reported countries of origin resulted in cyanide samples clustering into three groups, independent of the associated alkali metal (K or Na). The three groups were independently corroborated by HCA of cyanide elemental profiles and corresponded to countries each having one known solid cyanide factory: Czech Republic, Germany, and United States. Carbon stable isotope measurements resulted in two clusters: Germany and United States (the single Czech stock grouped with United States stocks). Classification errors for two validation studies using anion impurity profiles collected over five years on different instruments were as low as zero for KNN and SVMDA, demonstrating the excellent reliability associated with using anion impurities for matching a cyanide sample to its factory using our current cyanide stocks. Variable selection methods reduced errors for those classification methods having errors greater than zero; iPLS-forward selection and F-ratio typically provided the lowest errors. Finally, using anion profiles to classify cyanides to a specific stock

  18. Crystalline boron nitride aerogels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zettl, Alexander K.; Rousseas, Michael; Goldstein, Anna P.

    This disclosure provides methods and materials related to boron nitride aerogels. For example, one aspect relates to a method for making an aerogel comprising boron nitride, comprising: (a) providing boron oxide and an aerogel comprising carbon; (b) heating the boron oxide to melt the boron oxide and heating the aerogel; (c) mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide; and (d) converting at least a portion of the carbon to boron nitride to obtain the aerogel comprising boron nitride. Another aspect relates to a method for making an aerogel comprising boron nitride, comprising heating boron oxidemore » and an aerogel comprising carbon under flow of a nitrogen-containing gas, wherein boron oxide vapor and the nitrogen-containing gas convert at least a portion of the carbon to boron nitride to obtain the aerogel comprising boron nitride.« less

  19. Delta13C and delta18O isotopic composition of CaCO3 measured by continuous flow isotope ratio mass spectrometry: statistical evaluation and verification by application to Devils Hole core DH-11 calcite.

    PubMed

    Révész, Kinga M; Landwehr, Jurate M

    2002-01-01

    A new method was developed to analyze the stable carbon and oxygen isotope ratios of small samples (400 +/- 20 micro g) of calcium carbonate. This new method streamlines the classical phosphoric acid/calcium carbonate (H(3)PO(4)/CaCO(3)) reaction method by making use of a recently available Thermoquest-Finnigan GasBench II preparation device and a Delta Plus XL continuous flow isotope ratio mass spectrometer. Conditions for which the H(3)PO(4)/CaCO(3) reaction produced reproducible and accurate results with minimal error had to be determined. When the acid/carbonate reaction temperature was kept at 26 degrees C and the reaction time was between 24 and 54 h, the precision of the carbon and oxygen isotope ratios for pooled samples from three reference standard materials was isotope-ratio values had previously been obtained by the classical method. Devils Hole core DH-11 recently had been re-cut and re-sampled, and isotope-ratio values were obtained using the new method. The results were comparable with those obtained by the classical method with correlation = +0.96 for both isotope ratios. The consistency of the isotopic results is such that an alignment offset could be identified in the re-sampled core material, and two cutting errors that occurred during re-sampling then were confirmed independently. This result indicates that the new method is a viable alternative to the classical reaction method. In particular, the new method requires less sample material permitting finer

  20. Nicotine, acetanilide and urea multi-level2H-,13C- and15N-abundance reference materials for continuous-flow isotope ratio mass spectrometry

    USGS Publications Warehouse

    Schimmelmann, A.; Albertino, A.; Sauer, P.E.; Qi, H.; Molinie, R.; Mesnard, F.

    2009-01-01

    Accurate determinations of stable isotope ratios require a calibration using at least two reference materials with different isotopic compositions to anchor the isotopic scale and compensate for differences in machine slope. Ideally, the S values of these reference materials should bracket the isotopic range of samples with unknown S values. While the practice of analyzing two isotopically distinct reference materials is common for water (VSMOW-SLAP) and carbonates (NBS 19 and L-SVEC), the lack of widely available organic reference materials with distinct isotopic composition has hindered the practice when analyzing organic materials by elemental analysis/isotope ratio mass spectrometry (EA-IRMS). At present only L-glutamic acids USGS40 and USGS41 satisfy these requirements for ??13C and ??13N, with the limitation that L-glutamic acid is not suitable for analysis by gas chromatography (GC). We describe the development and quality testing of (i) four nicotine laboratory reference materials for on-line (i.e. continuous flow) hydrogen reductive gas chromatography-isotope ratio mass-spectrometry (GC-IRMS), (ii) five nicotines for oxidative C, N gas chromatography-combustion-isotope ratio mass-spectrometry (GC-C-IRMS, or GC-IRMS), and (iii) also three acetanilide and three urea reference materials for on-line oxidative EA-IRMS for C and N. Isotopic off-line calibration against international stable isotope measurement standards at Indiana University adhered to the 'principle of identical treatment'. The new reference materials cover the following isotopic ranges: ??2Hnicotine -162 to -45%o, ??13Cnicotine -30.05 to +7.72%, ?? 15Nnicotine -6.03 to +33.62%; ??15N acetanilide +1-18 to +40.57%; ??13Curea -34.13 to +11.71%, ??15Nurea +0.26 to +40.61% (recommended ?? values refer to calibration with NBS 19, L-SVEC, IAEA-N-1, and IAEA-N-2). Nicotines fill a gap as the first organic nitrogen stable isotope reference materials for GC-IRMS that are available with different ??13N

  1. Uranium Isotope Ratios in Modern and Precambrian Soils

    NASA Astrophysics Data System (ADS)

    DeCorte, B.; Planavsky, N.; Wang, X.; Auerbach, D. J.; Knudsen, A. C.

    2015-12-01

    Uranium isotopes (δ238U values) are an emerging paleoredox proxy that can help to better understand the redox evolution of Earth's surface environment. Recently, uranium isotopes have been used to reconstruct ocean and atmospheric redox conditions (Montoya-Pino et al., 2010; Brennecka et al., 2011; Kendall et al., 2013; Dahl et al., 2014). However, to date, there have not been studies on paleosols, despite that paleosols are, arguably better suited to directly tracking the redox conditions of the atmosphere. Sedimentary δ238U variability requires the formation of the soluble, oxidized form of U, U(VI). The formation of U(VI) is generally thought to require oxygen levels orders of magnitude higher than prebiotic levels. Without significant U mobility, it would have been impossible to develop isotopically distinct pools of uranium in ancient Earth environments. Conversely, an active U redox cycle leads to significant variability in δ238U values. Here we present a temporally and geographically expansive uranium isotope record from paleosols and modern soils to better constrain atmospheric oxygen levels during the Precambrian. Preliminary U isotope measurements of paleosols are unfractionated (relative to igneous rocks), possibly because of limited fractionation during oxidation (e.g., {Wang, 2015 #478}) or insufficient atmospheric oxygen levels to oxidize U(IV)-bearing minerals in the bedrock. Further U isotope measurements of paleosols with comparison to modern soils will resolve this issue.

  2. The 12C/13C Isotopic Ratio in Planetary Nebulae as Deduced from IUE Data

    NASA Astrophysics Data System (ADS)

    Miskey, C. L.; Feibelman, W. A.; Bruhweiler, F. C.

    2000-05-01

    The relative abundances of C, N, and O and the isotopic ratio of 12C/13C represent tracers of nucleosynthesis in intermediate stars with main-sequence masses between 0.6 and 8.0 solar masses in our Galaxy. Determining these abundances and the isotopic 12C/13C ratio in planetary nebulae (PNe) represent perhaps the best means to discern exactly how the ISM is enriched by CNO stellar nucleosynthesis. Walsh et al. (1996) and Clegg et al. (1997), using the Hubble Space Telescope, have derived the isotopic 12C/13C abundance ratio in the galactic carbon-rich PN, NGC 3918, and placed marginal constraints on it for the Magellanic PNe, N2 (SMC) and N122 (LMC). This was done using the well-known 12C 3P-1S (J=1-0 and J=2-0) transitions of C+2 at 1906.68 Angstroms and 1908.77 Angstroms and a J=0-0 transition at 1909.6 Angstroms, which is strictly forbidden in 12C. The finite nuclear spin of 13C (I=1/2) permits a corresponding F=1/2-1/2 electric dipole transition not seen in 12C. Since the 1909.6 Angstroms line is well separated from the other two 12C transitions, it provides an important means of determining 12C/13C in planetary nebulae. We have just completed a search of archival International Ultraviolet Explorer (IUE) high-dispersion spectra of approximately three dozen PNe, and derived 12C/13C ratios of 39 and 23 for the galactic PNe, NGC 2440 and NGC 6302, respectively. These are values much lower than the solar value of 89. In the other objects, the limited S/N of the IUE data indicate 12C/13C ratio upper limits much higher than 50. The implications of these results and their pertinence to stellar evolution are discussed.

  3. In vivo and in vitro effects of boron and boronated compounds.

    PubMed

    Benderdour, M; Bui-Van, T; Dicko, A; Belleville, F

    1998-03-01

    Boron is ubiquitously present in soils and water. Associated with pectin it is essential for vascular plants as a component of cell walls, and it stabilizes cell membranes. It is required for the growth of pollen tubes and is involved in membrane transport, stimulating H(+)-pumping ATPase activity and K+ uptake. However, a high boron concentration in the soils is toxic to plants and some boronated derivatives are used as herbicides. An absolute requirement for boron has not been definitively demonstrated in animals and humans. However, experiments with boron supplementation or deprivation show that boron is involved in calcium and bone metabolism, and its effects are more marked when other nutrients (cholecalciferol, magnesium) are deficient. Boron supplementation increases the serum concentration of 17 beta-estradiol and testosterone but boron excess has toxic effects on reproductive function. Boron may be involved in cerebral function via its effects on the transport across membranes. It affects the synthesis of the extracellular matrix and is beneficial in wound healing. Usual dietary boron consumption in humans is 1-2 mg/day for adults. As boron has been shown to have biological activity, research into the chemistry of boronated compounds has increased. Boronated compounds have been shown to be potent anti-osteoporotic, anti-inflammatory, hypolipemic, anti-coagulant and anti-neoplastic agents both in vitro and in vivo in animals.

  4. Analysis of plutonium isotope ratios including 238Pu/239Pu in individual U-Pu mixed oxide particles by means of a combination of alpha spectrometry and ICP-MS.

    PubMed

    Esaka, Fumitaka; Yasuda, Kenichiro; Suzuki, Daisuke; Miyamoto, Yutaka; Magara, Masaaki

    2017-04-01

    Isotope ratio analysis of individual uranium-plutonium (U-Pu) mixed oxide particles contained within environmental samples taken from nuclear facilities is proving to be increasingly important in the field of nuclear safeguards. However, isobaric interferences, such as 238 U with 238 Pu and 241 Am with 241 Pu, make it difficult to determine plutonium isotope ratios in mass spectrometric measurements. In the present study, the isotope ratios of 238 Pu/ 239 Pu, 240 Pu/ 239 Pu, 241 Pu/ 239 Pu, and 242 Pu/ 239 Pu were measured for individual Pu and U-Pu mixed oxide particles by a combination of alpha spectrometry and inductively coupled plasma mass spectrometry (ICP-MS). As a consequence, we were able to determine the 240 Pu/ 239 Pu, 241 Pu/ 239 Pu, and 242 Pu/ 239 Pu isotope ratios with ICP-MS after particle dissolution and chemical separation of plutonium with UTEVA resins. Furthermore, 238 Pu/ 239 Pu isotope ratios were able to be calculated by using both the 238 Pu/( 239 Pu+ 240 Pu) activity ratios that had been measured through alpha spectrometry and the 240 Pu/ 239 Pu isotope ratios determined through ICP-MS. Therefore, the combined use of alpha spectrometry and ICP-MS is useful in determining plutonium isotope ratios, including 238 Pu/ 239 Pu, in individual U-Pu mixed oxide particles. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Measurement of the D/H, 18O/16O, and 17O/16O Isotope Ratios in Water by Laser Absorption Spectroscopy at 2.73 μm

    PubMed Central

    Wu, Tao; Chen, Weidong; Fertein, Eric; Masselin, Pascal; Gao, Xiaoming; Zhang, Weijun; Wang, Yingjian; Koeth, Johannes; Brückner, Daniela; He, Xingdao

    2014-01-01

    A compact isotope ratio laser spectrometry (IRLS) instrument was developed for simultaneous measurements of the D/H, 18O/16O and 17O/16O isotope ratios in water by laser absorption spectroscopy at 2.73 μm. Special attention is paid to the spectral data processing and implementation of a Kalman adaptive filtering to improve the measurement precision. Reduction of up to 3-fold in standard deviation in isotope ratio determination was obtained by the use of a Fourier filtering to remove undulation structure from spectrum baseline. Application of Kalman filtering enables isotope ratio measurement at 1 s time intervals with a precision (<1‰) better than that obtained by conventional 30 s averaging, while maintaining a fast system response. The implementation of the filter is described in detail and its effects on the accuracy and the precision of the isotope ratio measurements are investigated. PMID:24854363

  6. Interpreting species-specific variation in tree-ring oxygen isotope ratios among three temperate forest trees

    Treesearch

    Xin Song; Kenneth S. Clark; Brent R. Helliker

    2014-01-01

    Although considerable variation has been documented in tree-ring cellulose oxygen isotope ratios (δ18Ocell) among co-occurring species, the underlying causes are unknown. Here, we used a combination of field measurements and modelling to investigate the mechanisms behind variations in late-wood δ

  7. Detrital, metamorphic and metasomatic tourmaline in high-pressure metasediments from Syros (Greece): intra-grain boron isotope patterns determined by secondary-ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Marschall, Horst R.; Altherr, Rainer; Kalt, Angelika; Ludwig, Thomas

    2008-06-01

    The boron isotopic composition of zoned tourmaline in two metasediments from the island of Syros, determined by secondary-ion mass spectrometry (SIMS), reflects the sedimentary and metamorphic record of the rocks. Tourmaline from a silicate-bearing marble contains small (≤20 μm) detrital cores with highly variable δ 11B values (-10.7 to +3.6‰), pointing to a heterogeneous protolith derived from multiple sources. The sedimentary B isotopic record survived the entire metamorphic cycle with peak temperatures of ˜500°C. Prograde to peak metamorphic rims are homogeneous and similar among all analysed grains ( δ 11B ≈ +0.9‰). The varying δ 11B values of detrital cores in the siliceous marble demonstrate that in situ B isotope analysis of tourmaline by SIMS is a potentially powerful tool for provenance studies not only in sediments but also in metasediments. A meta-tuffitic blueschist bears abundant tourmaline with dravitic cores of detrital or authigenic origin ( δ 11B ≈ -3.3‰), and prograde to peak metamorphic overgrowth zones (-1.6‰). Fe-rich rims, formed during influx of B-bearing fluids under retrograde conditions, show strongly increasing δ 11B values (up to +7.7‰) towards the margins of the grains. The δ 11B values of metamorphic tourmaline from Syros, formed in mixed terrigenous-marine sediments, reflect the B signal blended from these two different sources, and was probably not altered by dehydration during subduction.

  8. Genuineness assessment of mandarin essential oils employing gas chromatography-combustion-isotope ratio MS (GC-C-IRMS).

    PubMed

    Schipilliti, Luisa; Tranchida, Peter Quinto; Sciarrone, Danilo; Russo, Marina; Dugo, Paola; Dugo, Giovanni; Mondello, Luigi

    2010-03-01

    Cold-pressed mandarin essential oils are products of great economic importance in many parts of the world and are used in perfumery, as well as in food products. Reconstituted mandarin oils are easy to find on the market; useful information on essential oil authenticity, quality, extraction technique, geographic origin and biogenesis can be attained through high-resolution GC of the volatile fraction, or enantioselective GC, using different chiral stationary phases. Stable isotope ratio analysis has gained considerable interest for the unveiling of citrus oil adulteration, detecting small differences in the isotopic carbon composition and providing plenty of information concerning the discrimination among products of different geographical origin and the adulteration of natural essential oils with synthetic or natural compounds. In the present research, the authenticity of several mandarin essential oils was assessed through the employment of GC hyphenated to isotope ratio MS, conventional GC flame ionization detector, enantioselective GC and HPLC. Commercial mandarin oils and industrial natural (declared as such) mandarin essential oils, characterized by different harvest periods and geographic origins, were subjected to analysis. The results attained were compared with those of genuine cold-pressed Italian mandarin oils, obtained during the 2008-2009 harvest season.

  9. Trends in nitrogen isotope ratios of juvenile winter flounder reflect changing nitrogen inputs to Rhode Island, USA estuarine systems.

    PubMed

    Pruell, Richard J; Taplin, Bryan K; Miller, Kenneth M

    2017-05-15

    Nitrogen isotope ratios (δ 15 N) in juvenile winter flounder, Pseudopleuronectes americanus, were used to examine changes in nitrogen inputs to several Rhode Island, USA estuarine systems. Fish were collected over two three-year periods with a ten-year interval between sampling periods (2002-2004 and 2012-2014). During that interval numerous changes to nutrient management practices were initiated in the watersheds of these estuarine systems including the upgrade of several major wastewater treatment facilities that discharge to Narragansett Bay, which significantly reduced nitrogen inputs. Following these reductions, the δ 15 N values of flounder in several of the systems decreased as expected; however, isotope ratios in fish from upper Narragansett Bay significantly increased. We believe that low δ 15 N values measured in 2002-2004 were related to concentration-dependent fractionation at this location. Increased δ 15 N values measured between 2012 and 2014 may indicate reduced fractionation or that changes in wastewater treatment processes altered the nitrogen isotopic ratios of the effluents. Published by Elsevier Ltd.

  10. Polyatomic interferences on high precision uranium isotope ratio measurements by MC-ICP-MS: Applications to environmental sampling for nuclear safeguards

    DOE PAGES

    Pollington, Anthony D.; Kinman, William S.; Hanson, Susan K.; ...

    2015-09-04

    Modern mass spectrometry and separation techniques have made measurement of major uranium isotope ratios a routine task; however accurate and precise measurement of the minor uranium isotopes remains a challenge as sample size decreases. One particular challenge is the presence of isobaric interferences and their impact on the accuracy of minor isotope 234U and 236U measurements. Furthermore, we present techniques used for routine U isotopic analysis of environmental nuclear safeguards samples and evaluate polyatomic interferences that negatively impact accuracy as well as methods to mitigate their impacts.

  11. Breath carbon stable isotope ratios identify changes in energy balance and substrate utilization in humans

    USDA-ARS?s Scientific Manuscript database

    Rapid detection of shifts in substrate utilization and energy balance would provide a compelling biofeedback tool to enable individuals to lose weight. In a pilot study, we tested whether the natural abundance of exhaled carbon stable isotope ratios (breath d13C values) reflects shifts between negat...

  12. LASER BIOLOGY AND MEDICINE: Laser analysis of the 13C/12C isotope ratio in CO2 in exhaled air

    NASA Astrophysics Data System (ADS)

    Stepanov, E. V.

    2002-11-01

    Tunable diode lasers (TDLs) are applied to the diagnostics of gastroenterological diseases using respiratory tests and preparations enriched with the stable 13C isotope. This method of the analysis of the 13C/12C isotope ratio in CO2 in exhaled air is based on the selective measurement of the resonance absorption at the vibrational — rotational structure of 12CO2 and 13CO2. The CO2 transmission spectra in the region of 4.35 μm were measured with a PbEuSe double-heterostructure TDL. The accuracy of carbon isotope ratio measurements in CO2 of exhaled air performed with the TDL was ~0.5%. The data of clinical tests of the developed laser-based analyser are presented.

  13. Plasma boron and the effects of boron supplementation in males.

    PubMed Central

    Green, N R; Ferrando, A A

    1994-01-01

    Recently, a proliferation of athletic supplements has been marketed touting boron as an ergogenic aid capable of increasing testosterone. The effect of boron supplementation was investigated in male bodybuilders. Ten male bodybuilders (aged 20 to 26) were given a 2.5-mg boron supplement, while nine male bodybuilders (aged 21 to 27) were given a placebo for 7 weeks. Plasma total and free testosterone, plasma boron, lean body mass, and strength measurements were determined on day 1 and day 49 of the study. A microwave digestion procedure followed by inductively coupled argon plasma spectroscopy was used for boron determination. Twelve subjects had boron values at or above the detection limit with median value of 25 ng/ml (16 ng/ml lower quartile and 33 ng/ml upper quartile). Of the ten subjects receiving boron supplements, six had an increase in their plasma boron. Analysis of variance indicated no significant effect of boron supplementation on any of the other dependent variables. Both groups demonstrated significant increases in total testosterone (p < 0.01), lean body mass (p < 0.01), and one repetition maximum (RM) squat (p < 0.001) and one RM bench press (p < 0.01). The findings suggest that 7 weeks of bodybuilding can increase total testosterone, lean body mass, and strength in lesser-trained bodybuilders, but boron supplementation affects these variables not at all. PMID:7889885

  14. Development of a Method to Isolate Glutamic Acid from Foodstuffs for a Precise Determination of Their Stable Carbon Isotope Ratio.

    PubMed

    Kobayashi, Kazuhiro; Tanaka, Masaharu; Yatsukawa, Yoichi; Tanabe, Soichi; Tanaka, Mitsuru; Ohkouchi, Naohiko

    2018-01-01

    Recent growing health awareness is leading to increasingly conscious decisions by consumers regarding the production and traceability of food. Stable isotopic compositions provide useful information for tracing the origin of foodstuffs and processes of food production. Plants exhibit different ratios of stable carbon isotopes (δ 13 C) because they utilized different photosynthetic (carbon fixation) pathways and grow in various environments. The origins of glutamic acid in foodstuffs can be differentiated on the basis of these photosynthetic characteristics. Here, we have developed a method to isolate glutamic acid in foodstuffs for determining the δ 13 C value by elemental analyzer-isotope-ratio mass spectrometry (EA/IRMS) without unintended isotopic fractionation. Briefly, following acid-hydrolysis, samples were defatted and passed through activated carbon and a cation-exchange column. Then, glutamic acid was isolated using preparative HPLC. This method is applicable to measuring, with a low standard deviation, the δ 13 C values of glutamic acid from foodstuffs derived from C3 and C4 plants and marine algae.

  15. Boron nitride composites

    DOEpatents

    Kuntz, Joshua D.; Ellsworth, German F.; Swenson, Fritz J.; Allen, Patrick G.

    2017-02-21

    According to one embodiment, a composite product includes: a matrix material including hexagonal boron nitride and one or more borate binders; and a plurality of cubic boron nitride particles dispersed in the matrix material. According to another embodiment, a composite product includes: a matrix material including hexagonal boron nitride and amorphous boron nitride; and a plurality of cubic boron nitride particles dispersed in the matrix material.

  16. Experimental pressure-temperature phase diagram of boron: resolving the long-standing enigma

    PubMed Central

    Parakhonskiy, Gleb; Dubrovinskaia, Natalia; Bykova, Elena; Wirth, Richard; Dubrovinsky, Leonid

    2011-01-01

    Boron, discovered as an element in 1808 and produced in pure form in 1909, has still remained the last elemental material, having stable natural isotopes, with the ground state crystal phase to be unknown. It has been a subject of long-standing controversy, if α-B or β-B is the thermodynamically stable phase at ambient pressure and temperature. In the present work this enigma has been resolved based on the α-B-to- β-B phase boundary line which we experimentally established in the pressure interval of ∼4 GPa to 8 GPa and linearly extrapolated down to ambient pressure. In a series of high pressure high temperature experiments we synthesised single crystals of the three boron phases (α-B, β-B, and γ-B) and provided evidence of higher thermodynamic stability of α-B. Our work opens a way for reproducible synthesis of α-boron, an optically transparent direct band gap semiconductor with very high hardness, thermal and chemical stability. PMID:22355614

  17. Determination of the Geographical Origin of All Commercial Hake Species by Stable Isotope Ratio (SIR) Analysis.

    PubMed

    Carrera, Mónica; Gallardo, José M

    2017-02-08

    The determination of the geographical origin of food products is relevant to comply with the legal regulations of traceability, to avoid food fraud, and to guarantee food quality and safety to the consumers. For these reasons, stable isotope ratio (SIR) analysis using an isotope ratio mass spectrometry (IRMS) instrument is one of the most useful techniques for evaluating food traceability and authenticity. The present study was aimed to determine, for the first time, the geographical origin for all commercial fish species belonging to the Merlucciidae family using SIR analysis of carbon (δ 13 C) and nitrogen (δ 15 N). The specific results enabled their clear classification according to the FAO (Food and Agriculture Organization of the United Nations) fishing areas, latitude, and geographical origin in the following six different clusters: European, North African, South African, North American, South American, and Australian hake species.

  18. Laser ablation inductively coupled plasma mass spectrometry measurement of isotope ratios in depleted uranium contaminated soils.

    PubMed

    Seltzer, Michael D

    2003-09-01

    Laser ablation of pressed soil pellets was examined as a means of direct sample introduction to enable inductively coupled plasma mass spectrometry (ICP-MS) screening of soils for residual depleted uranium (DU) contamination. Differentiation between depleted uranium, an anthropogenic contaminant, and naturally occurring uranium was accomplished on the basis of measured 235U/238U isotope ratios. The amount of sample preparation required for laser ablation is considerably less than that typically required for aqueous sample introduction. The amount of hazardous laboratory waste generated is diminished accordingly. During the present investigation, 235U/238U isotope ratios measured for field samples were in good agreement with those derived from gamma spectrometry measurements. However, substantial compensation was required to mitigate the effects of impaired pulse counting attributed to sample inhomogeneity and sporadic introduction of uranium analyte into the plasma.

  19. Nitrogen isotope ratio and its evolution on Titan

    NASA Astrophysics Data System (ADS)

    Krasnopolsky, V.

    2017-09-01

    14N/15N ratios in the Sun, Jupiter, comets, and the inner planets indicate that Earth, Venus, and Mars got their nitrogen as N2 gas and NH3 ice in proportion 3 : 1. An alternative explanation is that planetesimals were another reservoir of N with 14N/15N = 270. 14N/15N = 168 in N2 and 60 in HCN on Titan, and the great difference is explained by strong enrichment in 15N by a factor of 8 in predissociation of N2 at 80-100 nm (Liang et al. 2007) and no fractionation in other 12 processes that form N. The calculated 14N/15N = 57 in nitriles, in perfect agreement with the observations. Modeling of nitrogen isotope fractionation by formation of nitriles and sputtering through the history of Titan with the much greater solar EUV and wind in the earlier epochs supports ammonia similar to that in comets as a source of nitrogen on Titan.

  20. Recycling and Mantle Stirring Determined by 142Nd/144Nd Isotopic Ratios

    NASA Astrophysics Data System (ADS)

    Jacobsen, S. B.; Ranen, M. C.

    2004-12-01

    It is now well established that 146Sm was live in the early solar system with an initial uniform 146Sm/144Sm ratio of ~0.008. Harper and Jacobsen (1992) discovered that a sample from Isua (~3.8 Ga old) had a positive 142Nd/144Nd anomaly of 33 ppm when compared to normal terrestrial and chondritic Nd. Furthermore, Jacobsen and Harper (1996) reported results from other Isua as well as Acasta (~4 Ga old) samples. Three other Isua samples had a possible small range (about -15 to +15), while two Acasta samples had no anomalies (normal to within 5 ppm). The presence of 142Nd anomalies at Isua has recently been confirmed by two other groups (Boyet et al. 2003; Caro et al. 2003). The available data demonstrate both the existence of early depleted mantle and that the early mantle was isotopically heterogeneous. As discussed by Jacobsen and Harper (1996), the recycling rate can be determined by tracing the decay of the average 142Nd/144Nd value of the depleted mantle. In addition, by using the 142Nd/144Nd heterogeneity in the depleted mantle through time we can determine the stirring rate of the mantle (Kellogg, Jacobsen and O'Connell, 2002) as a function of time. For this project our goal is to obtain a resolution in 142Nd/144Nd measurements of ~1 ppm. We have thus compared results obtained for the Nd isotope composition and 142Nd enriched standards for three different TIMS instruments: The Finnigan MAT 262 at Harvard, the Isoprobe-T and Finnigan TRITON mass spectrometers in GV Instrument's and Thermo Electron's demo laboratories in Manchester and Bremen, respectively. The Finnigan TRITON was designed in response to a request from the senior author for such an instrument. The results obtained so far demonstrate that all three instruments yield the same 142Nd/144Nd, 143Nd/144Nd and 145Nd/144Nd isotopic ratios to within a few ppm, while 148Nd/144Nd and 150Nd/144Nd ratios agree to within 10-20 ppm, when all ratios are normalized to 146Nd/144Nd using the exponential law. Due to

  1. Stable carbon isotope analyses of nanogram quantities of particulate organic carbon (pollen) with laser ablation nano combustion gas chromatography/isotope ratio mass spectrometry

    PubMed Central

    Sluijs, Appy; Laks, Jelmer J.; Reichart, Gert‐Jan

    2016-01-01

    Rationale Analyses of stable carbon isotope ratios (δ 13C values) of organic and inorganic matter remains have been instrumental for much of our understanding of present and past environmental and biological processes. Until recently, the analytical window of such analyses has been limited to samples containing at least several μg of carbon. Methods Here we present a setup combining laser ablation, nano combustion gas chromatography and isotope ratio mass spectrometry (LA/nC/GC/IRMS). A deep UV (193 nm) laser is used for optimal fragmentation of organic matter with minimum fractionation effects and an exceptionally small ablation chamber and combustion oven are used to reduce the minimum sample mass requirement compared with previous studies. Results Analyses of the international IAEA CH‐7 polyethylene standard show optimal accuracy, and precision better than 0.5‰, when measuring at least 42 ng C. Application to untreated modern Eucalyptus globulus (C3 plant) and Zea mays (C4 plant) pollen grains shows a ~ 16‰ offset between these species. Within each single Z. mays pollen grain, replicate analyses show almost identical δ 13C values. Conclusions Isotopic offsets between individual pollen grains exceed analytical uncertainties, therefore probably reflecting interspecimen variability of ~0.5–0.9‰. These promising results set the stage for investigating both δ 13C values and natural carbon isotopic variability between single specimens of a single population of all kinds of organic particles yielding tens of nanograms of carbon. © 2016 The Authors. Rapid Communications in Mass Spectrometry Published by John Wiley & Sons Ltd. PMID:27766694

  2. Hydrologic and environmental controls on uranium-series and strontium isotope ratios in a natural weathering environment

    NASA Astrophysics Data System (ADS)

    White, A. M.; Ma, L.; Moravec, B. G.; McIntosh, J. C.; Chorover, J.

    2017-12-01

    core samples with depth shows distinct weathering profiles with variable 234U/238U activity and Sr isotope ratios. Comparison of the isotopic composition of cores and groundwaters from similar depths, as well as surface waters in the JRB-CZO will be vital for the characterization of hydrogeologic controls on isotopic composition in this complex terrain.

  3. Selected isotope ratio measurements of light metallic elements (Li, Mg, Ca, and Cu) by multiple collector ICP-MS

    PubMed Central

    Platzner, Thomas I.; Segal, Irina

    2007-01-01

    The unique capabilities of multiple collector inductively coupled mass spectrometry (MC-ICP-MS) for high precision isotope ratio measurements in light elements as Li, Mg, Ca, and Cu are reviewed in this paper. These elements have been intensively studied at the Geological Survey of Israel (GSI) and other laboratories over the past few years, and the methods used to obtain high precision isotope analyses are discussed in detail. The scientific study of isotopic fractionation of these elements is significant for achieving a better understanding of geochemical and biochemical processes in nature and the environment. PMID:17962922

  4. Hot tensile behaviour in silicon-killed boron microalloyed steels

    NASA Astrophysics Data System (ADS)

    Chown, Lesley H.; Cornish, Lesley A.

    2017-10-01

    Low carbon steel for drawing and cold heading applications should have low strength, high ductility and low strain ageing rates. To achieve this, nitrogen must be removed from solid solution, which can be done by low additions of boron. A wire producer had been experiencing occasional problems with severe cracking on silicon-killed, boron steel billets during continuous casting, but the solution was not obvious. Samples from four billets, each from different casts, were removed for analysis and testing. The tested steel compositions were within the specification limits, with boron to nitrogen ratios of 0.40-1.19. Hot ductility testing was performed on a Gleeble 1500 using parameters approximating the capabilities of this particular billet caster. The steel specimens were subjected to in situ melting, then cooled at a rate of 2 C.s-1 to temperatures in the range 750-1250°C, where they were then pulled to failure at a strain rate of 8x10-4 s-1. In this work, it was found that both the boron to nitrogen ratio and the manganese to sulphur ratio influenced the hot ductility and hence the crack susceptibility. Excellent hot ductility was found for B:N ratios above 1.0, which confirmed that the B:N ratio should be above a stoichiometric value of 0.8 to remove all nitrogen from solid solution. TEM analysis showed that coarse BN precipitates nucleated on other precipitates, such as (Fe,Mn)S, which have relatively low melting points, and are detrimental to hot ductility. Low Mn:S ratios of 10 - 12 were shown to promote precipitation of FeS, so a Mn:S > 14 was recommended. A narrower billet surface temperature range for straightening was recommended to prevent transverse surface cracking. Additionally, analysis of industrial casting data showed that the scrap percentage due to transverse cracking increased significantly for Mn:S < 14. An exponential decay relationship between the manganese to sulphur ratio and the average scrap percentage due to transverse cracking was

  5. Nicotine, acetanilide and urea multi-level 2H-, 13C- and 15N-abundance reference materials for continuous-flow isotope ratio mass spectrometry.

    PubMed

    Schimmelmann, Arndt; Albertino, Andrea; Sauer, Peter E; Qi, Haiping; Molinie, Roland; Mesnard, François

    2009-11-01

    Accurate determinations of stable isotope ratios require a calibration using at least two reference materials with different isotopic compositions to anchor the isotopic scale and compensate for differences in machine slope. Ideally, the delta values of these reference materials should bracket the isotopic range of samples with unknown delta values. While the practice of analyzing two isotopically distinct reference materials is common for water (VSMOW-SLAP) and carbonates (NBS 19 and L-SVEC), the lack of widely available organic reference materials with distinct isotopic composition has hindered the practice when analyzing organic materials by elemental analysis/isotope ratio mass spectrometry (EA-IRMS). At present only L-glutamic acids USGS40 and USGS41 satisfy these requirements for delta13C and delta15N, with the limitation that L-glutamic acid is not suitable for analysis by gas chromatography (GC). We describe the development and quality testing of (i) four nicotine laboratory reference materials for on-line (i.e. continuous flow) hydrogen reductive gas chromatography-isotope ratio mass-spectrometry (GC-IRMS), (ii) five nicotines for oxidative C, N gas chromatography-combustion-isotope ratio mass-spectrometry (GC-C-IRMS, or GC-IRMS), and (iii) also three acetanilide and three urea reference materials for on-line oxidative EA-IRMS for C and N. Isotopic off-line calibration against international stable isotope measurement standards at Indiana University adhered to the 'principle of identical treatment'. The new reference materials cover the following isotopic ranges: delta2H(nicotine) -162 to -45 per thousand, delta13C(nicotine) -30.05 to +7.72 per thousand, delta15N(nicotine) -6.03 to +33.62 per thousand; delta15N(acetanilide) +1.18 to +40.57 per thousand; delta13C(urea) -34.13 to +11.71 per thousand, delta15N(urea) +0.26 to +40.61 per thousand (recommended delta values refer to calibration with NBS 19, L-SVEC, IAEA-N-1, and IAEA-N-2). Nicotines fill a gap as

  6. USE OF FATTY ACID STABLE CARBON ISOTOPE RATIO TO INDICATE MICROBIAL CARBON SOURCE IN TROPICAL SOILS

    EPA Science Inventory


    We use measurements of the concentration and stable carbon isotope ratio of individual microbial phospholipid fatty acids (PLFAs) in soils as indicators of live microbial biomass levels, broad microbial community structure, and microbial carbon source. For studies of soil o...

  7. PHOTOCHEMICALLY-INDUCED ALTERATION OF STABLE CARBON ISOTOPE RATIOS (DELTA C-13) IN TERRIGENOUS DISSOLVED ORGANIC CARBON

    EPA Science Inventory

    Exposure of riverine waters to natural sunlight initiated alterations in stable carbon isotope ratios (delta C-13) of the associated dissolved organic carbon (DOC). Water samples were collected from two compositionally distinct coastal river systems in the southeastern United Sta...

  8. Carbon and nitrogen isotope ratios of juvenile winter flounder as indicators of inputs to estuarine systems

    EPA Science Inventory

    Stable carbon and nitrogen isotope ratios were measured in the muscle tissues of young-of-the-year (YOY) winter flounder, Pseudopleuronectes americanus, collected from several estuarine systems along the coast of Rhode Island, USA. These systems included three coastal lagoons (Ni...

  9. Application of sulphur isotope ratios to examine weaning patterns and freshwater fish consumption in Roman Oxfordshire, UK

    NASA Astrophysics Data System (ADS)

    Nehlich, Olaf; Fuller, Benjamin T.; Jay, Mandy; Mora, Alice; Nicholson, Rebecca A.; Smith, Colin I.; Richards, Michael P.

    2011-09-01

    This study investigates the application of sulphur isotope ratios (δ 34S) in combination with carbon (δ 13C) and nitrogen (δ 15N) ratios to understand the influence of environmental sulphur on the isotopic composition of archaeological human and faunal remains from Roman era sites in Oxfordshire, UK. Humans ( n = 83), terrestrial animals ( n = 11), and freshwater fish ( n = 5) were analysed for their isotope values from four locations in the Thames River Valley, and a broad range of δ 34S values were found. The δ 34S values from the terrestrial animals were highly variable (-13.6‰ to +0.5‰), but the δ 34S values of the fish were clustered and 34S-depleted (-20.9‰ to -17.3‰). The results of the faunal remains suggest that riverine sulphur influenced the terrestrial sulphur isotopic signatures. Terrestrial animals were possibly raised on the floodplains of the River Thames, where highly 34S-depleted sulphur influenced the soil. The humans show the largest range of δ 34S values (-18.8‰ to +9.6‰) from any archaeological context to date. No differences in δ 34S values were found between the males (-7.8 ± 6.0‰) and females (-5.3 ± 6.8‰), but the females had a linear correlation ( R2 = 0.71; p < 0.0001) between their δ 15N and δ 34S compositions. These δ 34S results suggest a greater dietary variability for the inhabitants of Roman Oxfordshire than previously thought, with some individuals eating solely terrestrial protein resources and others showing a diet almost exclusively based on freshwater protein such as fish. Such large dietary variability was not visible by analysing only the carbon and nitrogen isotope ratios, and this research represents the largest and most detailed application of δ 34S analysis to examine dietary practices (including breastfeeding and weaning patterns) during the Romano-British Period.

  10. Deciphering the Boron Proxy Records of the Paleocene-Eocene Thermal Maximum

    NASA Astrophysics Data System (ADS)

    Hoenisch, B.; Haynes, L.; Harper, D. T.; Penman, D. E.; Holland, K.; Rosenthal, Y.; Zachos, J. C.

    2016-12-01

    Rapid surface ocean acidification at the PETM has been documented by pronounced decreases in the boron isotope and B/Ca proxies measured in surface dwelling planktic foraminifera (Babila et al., 2016; Penman et al., 2014). However, translating these geochemical signatures to past seawater carbonate chemistry is challenging due to the different-from-modern elemental and isotopic composition of seawater, in addition to the lack of constraints on vital effects in foraminifer species that are now extinct. While the pH decrease can be reasonably quantified from boron isotopes, the application of modern laboratory calibrations to translate the B/Ca signal yields unfeasible estimates, thus raising questions about how well we understand fundamental proxy systematics. Here we present a possible solution to this conundrum from laboratory culture experiments performed under simulated Paleocene seawater conditions, with lower [B] and [Mg], higher [Ca] and across a range of dissolved inorganic carbon and pH. These experiments suggest that raising DIC in addition to acidification amplifies the B/Ca decrease recorded in planktic foraminifera shells, thus providing an opportunity to deconvolve the B/Ca record into pH and DIC signals. Using the boron proxy records in ODP 1209 from Shatsky Rise in the Pacific Ocean as a case study, we will perform a series of sensitivity studies to better constrain the carbon perturbation at the PETM, and the long-term evolution of surface ocean chemistry from the Paleocene into the Eocene. Our results will be compared to LOSCAR model estimates of different carbon input scenarios at the PETM. Babila, T.L., Rosenthal, Y., Wright, J.D. and Miller, K.G. (2016) A continental shelf perspective of ocean acidification and temperature evolution during the Paleocene-Eocene Thermal Maximum. Geology 44, 275-278. Penman, D.E., Hönisch, B., Zeebe, R.E., Thomas, E. and Zachos, J.C. (2014) Rapid and sustained surface ocean acidification during the Paleocene

  11. Boron and silicon: Effects on growth, plasma lipids, urinary cyclic AMP and bone and brain mineral composition of male rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seaborn, C.D.; Nielsen, F.H.

    1994-06-01

    Because boron resembles silicon in its chemical properties, an experiment was performed to determine if excessive dietary boron would affect the response to silicon deprivation and, conversely, if silicon would influence the effects of an excessive intake of boron. Male weanling Sprague-Dawley rats were assigned to groups of 6 or 12 in a two-by-two factorially arranged experiment. Supplemented to a ground corn/casein diet containing 1.2 [mu]g silicon and 3 [mu]g boron per gram were silicon as sodium metasilicate at 0 or 50 [mu]g/g and boron as orthoboric acid at 0 or 500 [mu]g/g diet. At nine weeks, animals fed highmore » dietary boron had significantly decreased final body weights, liver-weight-to-body-weight ratios, urinary cAMP concentrations, plasma triglyceride, cholesterol, glycine, valine, leucine, and lysine concentrations and skull copper, sodium, and manganese concentrations. High dietary boron also significantly increased brain-weight-to-body-weight ratios, magnesium concentrations of femur, brain, and plasma, zinc concentration of femur, and iron concentration of skull. The bone mineral findings suggest that excess dietary boron exerts subtle effects on bone composition. Dietary silicon affected blood urea nitrogen, hematocrit, hemoglobin, and the concentrations of plasma threonine and aspartic acid in animals fed excess boron. Depression of the testes-weight-to-body-weight ratio of animals fed 500 [mu]g boron per gram diet was most marked in animals not fed silicon. Although excessive dietary boron did not markedly enhanced the response of rats to silicon deprivation, dietary silicon affected their response to high dietary boron. Thus, dietary silicon apparently can influence boron toxicity.« less

  12. Observation of Isotope Ratios (δ2H, δ18O, 87Sr/86Sr) of Tap Water in Urban Environments

    NASA Astrophysics Data System (ADS)

    Mancuso, C. J.; Tipple, B. J.; Ehleringer, J. R.

    2014-12-01

    Urban environments are centers for rapidly growing populations. In order to meet the culinary water needs of these areas, municipal water departments use water from multiple locations and/or sources, often piped differentially to different locations within a municipality. This practice creates isotopically distinct locations within an urban area and therefore provides insight to urban water management practices. In our study we selected urban locations in the Salt Lake Valley, UT (SLV) and San Francisco Bay Area, CA (SFB) where we hypothesized geographically distinct water isotopic ratio differences existed. Within the SLV, municipal waters come from the same mountainous region, but are derived from different geologically distinct watersheds. In contrast, SFB waters are derived from regionally distinct water sources. We hypothesized that the isotope ratios of tap waters would differ based upon known municipal sources. To test this, tap water samples were collected throughout the urban regions in SLV and SFB and analyzed for δ2H, δ18O and 87Sr/86Sr isotope ratios. Seasonal collections were also made to assess if isotope ratios differed throughout the year. Within SLV and SFB, different regions were characterized by distinct paired δ18O and 87Sr/86Sr values. These different realms also agreed with known differences in municipal water supplies within the general geographic region. Waters from different cities within Marin County showed isotopic differences, consistent with water derived from different local reservoirs. Seasonal variation was observed in paired δ18O and 87Sr/86Sr values of tap water for some locations within SLV and SFB, indicating management decisions to shift from one water source to another depending on demand and available resources. Our study revealed that the δ18O and 87Sr/86Sr values of tap waters in an urban region can exhibit significant differences despite close spatial proximity if districts differ in their use of local versus

  13. δ13C and δ18O isotopic composition of CaCO3 measured by continuous flow isotope ratio mass spectrometry: statistical evaluation and verification by application to Devils Hole core DH-11 calcite

    USGS Publications Warehouse

    Revesz, Kinga M.; Landwehr, Jurate M.

    2002-01-01

    A new method was developed to analyze the stable carbon and oxygen isotope ratios of small samples (400 ± 20 µg) of calcium carbonate. This new method streamlines the classical phosphoric acid/calcium carbonate (H3PO4/CaCO3) reaction method by making use of a recently available Thermoquest-Finnigan GasBench II preparation device and a Delta Plus XL continuous flow isotope ratio mass spectrometer. Conditions for which the H3PO4/CaCO3 reaction produced reproducible and accurate results with minimal error had to be determined. When the acid/carbonate reaction temperature was kept at 26 °C and the reaction time was between 24 and 54 h, the precision of the carbon and oxygen isotope ratios for pooled samples from three reference standard materials was ≤0.1 and ≤0.2 per mill or ‰, respectively, although later analysis showed that materials from one specific standard required reaction time between 34 and 54 h for δ18O to achieve this level of precision. Aliquot screening methods were shown to further minimize the total error. The accuracy and precision of the new method were analyzed and confirmed by statistical analysis. The utility of the method was verified by analyzing calcite from Devils Hole, Nevada, for which isotope-ratio values had previously been obtained by the classical method. Devils Hole core DH-11 recently had been re-cut and re-sampled, and isotope-ratio values were obtained using the new method. The results were comparable with those obtained by the classical method with correlation = +0.96 for both isotope ratios. The consistency of the isotopic results is such that an alignment offset could be identified in the re-sampled core material, and two cutting errors that occurred during re-sampling then were confirmed independently. This result indicates that the new method is a viable alternative to the classical reaction method. In particular, the new method requires less sample material permitting finer resolution and allows

  14. Validation of chlorine and oxygen isotope ratio analysis to differentiate perchlorate sources and to document perchlorate biodegradation

    USGS Publications Warehouse

    Paul B. Hatzinger,; Böhlke, John Karl; Sturchio, Neil C.; Gu, Baohua

    2013-01-01

    Increased health concerns about perchlorate (ClO4-) during the past decade and subsequent regulatory considerations have generated appreciable interest in source identification. The key objective of the isotopic techniques described in this guidance manual is to provide evidence concerning the origin of ClO4- in soils and groundwater and, more specifically, whether that ClO4- is synthetic or natural. Chlorine and oxygen isotopic analyses of ClO4- provide the primary direct approach whereby different sources of ClO4- can be distinguished from each other. These techniques measure the relative abundances of the stable isotopes of chlorine (37Cl and 35Cl) and oxygen (18O, 17O, and 16O) in ClO4- using isotope-ratio mass spectrometry (IRMS). In addition, the relative abundance of the radioactive chlorine isotope 36Cl is measured using accelerator mass spectrometry (AMS). Taken together, these measurements provide four independent quantities that can be used to distinguish natural and synthetic ClO4- sources, to discriminate different types of natural ClO4-, and to detect ClO4- biodegradation in the environment. Other isotopic, chemical, and geochemical techniques that can be applied in conjunction with isotopic analyses of ClO4- to provide supporting data in forensic studies are also described.

  15. Water isotopic ratios from a continuously melted ice core sample

    NASA Astrophysics Data System (ADS)

    Gkinis, V.; Popp, T. J.; Blunier, T.; Bigler, M.; Schüpbach, S.; Kettner, E.; Johnsen, S. J.

    2011-11-01

    A new technique for on-line high resolution isotopic analysis of liquid water, tailored for ice core studies is presented. We built an interface between a Wavelength Scanned Cavity Ring Down Spectrometer (WS-CRDS) purchased from Picarro Inc. and a Continuous Flow Analysis (CFA) system. The system offers the possibility to perform simultaneuous water isotopic analysis of δ18O and δD on a continuous stream of liquid water as generated from a continuously melted ice rod. Injection of sub μl amounts of liquid water is achieved by pumping sample through a fused silica capillary and instantaneously vaporizing it with 100% efficiency in a~home made oven at a temperature of 170 °C. A calibration procedure allows for proper reporting of the data on the VSMOW-SLAP scale. We apply the necessary corrections based on the assessed performance of the system regarding instrumental drifts and dependance on the water concentration in the optical cavity. The melt rates are monitored in order to assign a depth scale to the measured isotopic profiles. Application of spectral methods yields the combined uncertainty of the system at below 0.1‰ and 0.5‰ for δ18O and δD, respectively. This performance is comparable to that achieved with mass spectrometry. Dispersion of the sample in the transfer lines limits the temporal resolution of the technique. In this work we investigate and assess these dispersion effects. By using an optimal filtering method we show how the measured profiles can be corrected for the smoothing effects resulting from the sample dispersion. Considering the significant advantages the technique offers, i.e. simultaneuous measurement of δ18O and δD, potentially in combination with chemical components that are traditionally measured on CFA systems, notable reduction on analysis time and power consumption, we consider it as an alternative to traditional isotope ratio mass spectrometry with the possibility to be deployed for field ice core studies. We present

  16. Measurement of the isotope ratio of acetic acid in vinegar by HS-SPME-GC-TC/C-IRMS.

    PubMed

    Hattori, Ryota; Yamada, Keita; Shibata, Hiroki; Hirano, Satoshi; Tajima, Osamu; Yoshida, Naohiro

    2010-06-23

    Acetic acid is the main ingredient of vinegar, and the worth of vinegar often depends on the fermentation of raw materials. In this study, we have developed a simple and rapid method for discriminating the fermentation of the raw materials of vinegar by measuring the hydrogen and carbon isotope ratio of acetic acid using head space solid-phase microextraction (HS-SPME) combined with gas chromatography-high temperature conversion or combustion-isotope ratio mass spectrometry (GC-TC/C-IRMS). The measurement of acetic acid in vinegar by this method was possible with repeatabilities (1sigma) of +/-5.0 per thousand for hydrogen and +/-0.4 per thousand for carbon, which are sufficient to discriminate the origin of acetic acid. The fermentation of raw materials of several vinegars was evaluated by this method.

  17. Investigating surface water-well interaction using stable isotope ratios of water

    USGS Publications Warehouse

    Hunt, R.J.; Coplen, T.B.; Haas, N.L.; Saad, D.A.; Borchardt, M. A.

    2005-01-01

    Because surface water can be a source of undesirable water quality in a drinking water well, an understanding of the amount of surface water and its travel time to the well is needed to assess a well's vulnerability. Stable isotope ratios of oxygen in river water at the City of La Crosse, Wisconsin, show peak-to-peak seasonal variation greater than 4??? in 2001 and 2002. This seasonal signal was identified in 7 of 13 city municipal wells, indicating that these 7 wells have appreciable surface water contributions and are potentially vulnerable to contaminants in the surface water. When looking at wells with more than 6 sampling events, a larger variation in ??18O compositions correlated with a larger fraction of surface water, suggesting that samples collected for oxygen isotopic composition over time may be useful for identifying the vulnerability to surface water influence even if a local meteoric water line is not available. A time series of ??18O from one of the municipal wells and from a piezometer located between the river and the municipal well showed that the travel time of flood water to the municipal well was approximately 2 months; non-flood arrival times were on the order of 9 months. Four independent methods were also used to assess time of travel. Three methods (groundwater temperature arrival times at the intermediate piezometer, virus-culture results, and particle tracking using a numerical groundwater-flow model) yielded flood and non-flood travel times of less than 1 year for this site. Age dating of one groundwater sample using 3H-3He methods estimated an age longer than 1 year, but was likely confounded by deviations from piston flow as noted by others. Chlorofluorocarbons and SF6 analyses were not useful at this site due to degradation and contamination, respectively. This work illustrates the utility of stable hydrogen and oxygen isotope ratios of water to determine the contribution and travel time of surface water in groundwater, and

  18. Methods of forming boron nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trowbridge, Tammy L; Wertsching, Alan K; Pinhero, Patrick J

    A method of forming a boron nitride. The method comprises contacting a metal article with a monomeric boron-nitrogen compound and converting the monomeric boron-nitrogen compound to a boron nitride. The boron nitride is formed on the same or a different metal article. The monomeric boron-nitrogen compound is borazine, cycloborazane, trimethylcycloborazane, polyborazylene, B-vinylborazine, poly(B-vinylborazine), or combinations thereof. The monomeric boron-nitrogen compound is polymerized to form the boron nitride by exposure to a temperature greater than approximately 100.degree. C. The boron nitride is amorphous boron nitride, hexagonal boron nitride, rhombohedral boron nitride, turbostratic boron nitride, wurzite boron nitride, combinations thereof, or boronmore » nitride and carbon. A method of conditioning a ballistic weapon and a metal article coated with the monomeric boron-nitrogen compound are also disclosed.« less

  19. Lead isotope ratio measurements as indicators for the source of lead poisoning in Mute swans (Cygnus olor) wintering in Puck Bay (northern Poland).

    PubMed

    Binkowski, Łukasz J; Meissner, Włodzimierz; Trzeciak, Marta; Izevbekhai, Kelvin; Barker, James

    2016-12-01

    Lead (Pb) poisoning is most commonly linked amongst anthropogenically-caused deaths in waterfowl and this is often associated with hunting and fishing activities. However, the exact identification of the source may be difficult with commonly-used techniques. We have studied isotope ratios using Inductively-Coupled Plasma Mass Spectrometry (ICP-MS) to investigate the source of Pb in the blood of Mute swans (n = 49) wintering in northern Poland. We compared the values of isotopic ratios from blood and ammunition pellets available on the Polish market. The mean Pb concentrations found was 0.241 μg/g (w/w) and nearly half of the blood specimens had elevated Pb levels (higher than the cited 0.23 μg/g w/w threshold of poisoning). Only the mean 208/206 Pb isotope ratio was similar in blood and pellet samples. Mean ratios of isotopes 206/204, 206/207 and 208/207 in swans' blood and in pellets differed significantly. Moreover, coefficients of variation were higher in blood samples than in pellets. These discrepancies and significant differences in abundance of 204 Pb and 207 Pb isotopes in both materials indicated that pellets available today on the Polish market were not the source of Pb in the blood of Mute swans wintering in northern Poland. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Boron Nitride Nanotubes

    NASA Technical Reports Server (NTRS)

    Jordan, Kevin (Inventor); Smith, Michael W. (Inventor); Park, Cheol (Inventor)

    2012-01-01

    Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.

  1. Boron nitride nanotubes

    DOEpatents

    Smith, Michael W [Newport News, VA; Jordan, Kevin [Newport News, VA; Park, Cheol [Yorktown, VA

    2012-06-06

    Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.

  2. Effects of acid washing on stable isotope ratios of C and N in penaeid shrimp and seagrass: Implications for food-web studies using multiple stable isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunn, S.E.; Kempster, M.A.; Loneragan, N.R.

    1995-05-01

    We investigated the effects of acid washing on the carbon and nitrogen composition and stable isotope ratios of C and N in shrimp (Metapenaeus spp.) and seagrass (Enhalus acoroides). Acid washing did not affect the mean {delta}{sup 13}C ratios for juvenile Metapenaeus moyebi and resulted in only an ecologically insignificant change (0.3%) in mean {delta}{sup 13}C ratios for larger metapenaeus bennettae. In contrast, acid washing increased the mean {delta}{sup 15}N signatures of shrimp tissue ({approximately}3%) and decreased that of seagrass ({approximately}1.8%) to a degree that may confound the interpretation of food webs. The increase in %C and %N in bothmore » shrimp and seagrass after acid washing suggests that the changes in isotope ratios are due to loss of molecules comparatively low in C and N. Treating samples by acid washing also resulted in an increase in the variation among individuals for both {delta}{sup 15}N and {delta}{sup 13}C, which would lead to a loss of statistical power for testing differences between species, sites, or seasons. 13 refs., 2 figs., 1 tab.« less

  3. Carbon isotope ratios of selected volatiles in Citrus sinensis and in orange-flavoured food.

    PubMed

    Schipilliti, Luisa; Bonaccorsi, Ivana; Cotroneo, Antonella; Dugo, Paola; Mondello, Luigi

    2015-11-01

    Twenty genuine samples of industrially cold-pressed sweet orange essential oils, were analysed by gas chromatography-combustion-isotope ratio mass spectrometry to determine the values of the carbon isotope ratios (δ(13)C(VPDB)) of selected volatiles and assess the corresponding range of authenticity. Successively, four commercial orange-flavoured products were analysed under identical conditions to evaluate the authenticity of the orange flavour. The samples were extracted by solid-phase microextraction under optimised conditions. The evaluation was performed by using an internal standard procedure to neglect the contribution due to the original environment to the isotopic abundance of (13)C. The composition of the volatile fraction of the essential oils and of the flavoured products was determined by gas chromatography coupled to mass spectrometry with linear retention indices, and by gas chromatography with a flame ionisation detector. The δ(13)C(VPDB) values of seven secondary metabolites determined here were successfully used to characterise genuine orange essential oil. These values were used to evaluate the quality of orange-flavoured products, revealing the presence of compounds of different origin, not compatible with the values of genuine orange secondary metabolites. This study provides the range of authenticity of δ(13)C(VPDB) of seven different secondary metabolites in sweet orange genuine essential oil, useful for evaluating the genuineness of orange flavour. In accord with a previous study on different essential oils, the values determined here can be successfully applied for the evaluation of a large number of flavoured food stuffs and correlated with their origins. © 2014 Society of Chemical Industry.

  4. Stable carbon isotope ratios of intact GDGTs indicate heterogeneous sources to marine sediments

    NASA Astrophysics Data System (ADS)

    Pearson, Ann; Hurley, Sarah J.; Walter, Sunita R. Shah; Kusch, Stephanie; Lichtin, Samantha; Zhang, Yi Ge

    2016-05-01

    Thaumarchaeota, the major sources of marine glycerol dibiphytanyl glycerol tetraether lipids (GDGTs), are believed to fix the majority of their carbon directly from dissolved inorganic carbon (DIC). The δ13C values of GDGTs (δ13CGDGT) may be powerful tools for reconstructing variations in the ocean carbon cycle, including paleoproductivity and water mass circulation, if they can be related to values of δ13CDIC. To date, isotope measurements primarily are made on the C40 biphytane skeletons of GDGTs, rather than on complete tetraether structures. This approach erases information revealed by the isotopic heterogeneity of GDGTs within a sample and may impart an isotopic fractionation associated with the ether cleavage. To circumvent these issues, we present δ13C values for GDGTs from twelve recent sediments representing ten continental margin locations. Samples are purified by orthogonal dimensions of HPLC, followed by measurement of δ13C values by Spooling Wire Microcombustion (SWiM)-isotope ratio mass spectrometry (IRMS) with 1σ precision and accuracy of ±0.25‰. Using this approach, we confirm that GDGTs, generally around -19‰, are isotopically ;heavy; compared to other marine lipids. However, measured δ13CGDGT values are inconsistent with predicted values based on the 13C content of DIC in the overlying water column and the previously-published biosynthetic isotope fractionation for a pure culture of an autotrophic marine thaumarchaeon. In some sediments, the isotopic composition of individual GDGTs differs, indicating multiple source inputs. The data appear to confirm that crenarchaeol primarily is a biomarker for Thaumarchaeota, but its δ13C values still cannot be explained solely by autotrophic carbon fixation. Overall the complexity of the results suggests that both organic carbon assimilation (ca. 25% of total carbon) and multiple source(s) of exogenous GDGTs (contributing generally <30% of input to sediments) are necessary to explain the observed

  5. Amphiphilic Polycarbonates from Carborane-Installed Cyclic Carbonates as Potential Agents for Boron Neutron Capture Therapy.

    PubMed

    Xiong, Hejian; Wei, Xing; Zhou, Dongfang; Qi, Yanxin; Xie, Zhigang; Chen, Xuesi; Jing, Xiabin; Huang, Yubin

    2016-09-21

    Carboranes with rich boron content have showed significant applications in the field of boron neutron capture therapy. Biodegradable derivatives of carborane-conjugated polymers with well-defined structure and tunable loading of boron atoms are far less explored. Herein, a new family of amphiphilic carborane-conjugated polycarbonates was synthesized by ring-opening polymerization of a carborane-installed cyclic carbonate monomer. Catalyzed by TBD from a poly(ethylene glycol) macroinitiator, the polymerization proceeded to relatively high conversions (>65%), with low polydispersity in a certain range of molecular weight. The boron content was readily tuned by the feed ratio of the monomer and initiator. The resultant amphiphilic polycarbonates self-assembled in water into spherical nanoparticles of different sizes depending on the hydrophilic-to-hydrophobic ratio. It was demonstrated that larger nanoparticles (PN150) were more easily subjected to protein adsorption and captured by the liver, and smaller nanoparticles (PN50) were more likely to enter cancer cells and accumulate at the tumor site. PN50 with thermal neutron irradiation exhibited the highest therapeutic efficacy in vivo. The new synthetic method utilizing amphiphilic biodegradable boron-enriched polymers is useful for developing more-selective and -effective boron delivery systems for BNCT.

  6. Symbiodinium Clade Affects Coral Skeletal Isotopic Ratio

    NASA Astrophysics Data System (ADS)

    Carilli, J.; Charles, C. D.; Garren, M.; McField, M.; Norris, R. D.

    2011-12-01

    The influence of different physiologies of Symbiodinium dinoflagellate symbiont clades on the skeletal chemistry of associated coral hosts has not previously been investigated. This is an important issue because coral skeletons are routinely used for tropical paleoclimatic reconstructions. We analyzed coral skeletal samples collected simultaneously from neighboring colonies off Belize and found that those harboring different clades of Symbiodinium displayed significantly different skeletal oxygen isotopic compositions. We also found evidence for mean shifts in skeletal oxygen isotopic composition after coral bleaching (the loss and potential exchange of symbionts) in two of four longer coral cores from the Mesoamerican Reef, though all experienced similar climatic conditions. Thus, we suggest that symbiont clade identity leaves a signature in the coral skeletal archive and that this influence must be considered for quantitative environmental reconstruction. In addition, we suggest that the skeletal isotopic signature may be used to identify changes in the dominant symbiont clade that have occurred in the past, to identify how common and widespread this phenomenon is--a potential adaptation to climate change.

  7. New methods for measuring atmospheric heavy noble gas isotope and elemental ratios in ice core samples.

    PubMed

    Bereiter, Bernhard; Kawamura, Kenji; Severinghaus, Jeffrey P

    2018-05-30

    The global ocean constitutes the largest heat buffer in the global climate system, but little is known about its past changes. The isotopic and elemental ratios of heavy noble gases (krypton and xenon), together with argon and nitrogen in trapped air from ice cores, can be used to reconstruct past mean ocean temperatures (MOTs). Here we introduce two successively developed methods to measure these parameters with a sufficient precision to provide new constraints on past changes in MOT. The air from an 800-g ice sample - containing roughly 80 mL STP air - is extracted and processed to be analyzed on two independent dual-inlet isotope ratio mass spectrometers. The primary isotope ratios (δ 15 N, δ 40 Ar and δ 86 Kr values) are obtained with precisions in the range of 1 per meg (0.001‰) per mass unit. The three elemental ratio values δKr/N 2 , δXe/N 2 and δXe/Kr are obtained using sequential (non-simultaneous) peak-jumping, reaching precisions in the range of 0.1-0.3‰. The latest version of the method achieves a 30% to 50% better precision on the elemental ratios and a twofold better sample throughput than the previous one. The method development uncovered an unexpected source of artefactual gas fractionation in a closed system that is caused by adiabatic cooling and warming of gases (termed adiabatic fractionation) - a potential source of measurement artifacts in other methods. The precisions of the three elemental ratios δKr/N 2 , δXe/N 2 and δXe/Kr - which all contain the same MOT information - suggest smaller uncertainties for reconstructed MOTs (±0.3-0.1°C) than previous studies have attained. Due to different sensitivities of the noble gases to changes in MOT, δXe/N 2 provides the best constraints on the MOT under the given precisions followed by δXe/Kr, and δKr/N 2 ; however, using all of them helps to detect methodological artifacts and issues with ice quality. Copyright © 2018 John Wiley & Sons, Ltd.

  8. Method for ultra-trace cesium isotope ratio measurements from environmental samples using thermal ionization mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snow, Mathew S.; Snyder, Darin C.; Mann, Nick R.

    2015-05-01

    135Cs/ 137Cs isotope ratios can provide the age, origin and history of environmental Cs contamination. Relatively high precision 135Cs/ 137Cs isotope ratio measurements from samples containing femtogram quantities of 137Cs are needed to accurately track contamination resuspension and redistribution following environmental 137Cs releases; however, mass spectrometric analyses of environmental samples are limited by the large quantities of ionization inhibitors and isobaric interferences which are present at relatively high concentrations in the environment. We report a new approach for Cs purification from environmental samples. An initial ammonium molybdophosphate-polyacrylonitrile (AMP-PAN) column provides a robust method for extracting Cs under a wide varietymore » of sample matrices and mass loads. Cation exchange separations using a second AMP-PAN column result in more than two orders of magnitude greater Cs/Rb separation factors than commercially available strong cation exchangers. Coupling an AMP-PAN cation exchanging step to a microcation column (AG50W resin) enables consistent 2-4% (2σ) measurement errors for samples containing 3-6,000 fg 137Cs, representing the highest precision 135Cs/ 137Cs ratio measurements currently reported for soil samples at the femtogram level.« less

  9. Ammonia 15N/14N Isotope Ratio in the Jovian Atmosphere

    NASA Technical Reports Server (NTRS)

    Mahaffy, P.R.; Niemann, H. B.; Atreya, S. K.; Wong, M. H.; Owen, T. C; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Data from the Galileo Probe Mass Spectrometer has been used to derive the N-15/N-14 isotope ratio in ammonia at Jupiter. Although the mass spectral interference from the water contribution to 18 amu makes an accurate derivation of the (N-15)H3/(N-14)H3 ratio difficult from measurements of the singly ionized signals at 18 and 17 amu, this interference is not present in the doubly charged 8.5 and 9.0 amu signals from (N-14)H3++ and (N-15)H3++ respectively. Although the count rate from the 9 amu signal is low during the direct sampling of the atmosphere, the ammonia signal was considerably enhanced during the first enrichment cell (EC1) experiment that measured gas sampled between 0.8 and 2.8 bar. Count rates at 9 amu in the EC1 experiment reach 60/second and measure ammonia sampled from 0.88 to 2.8 bar. In the EC1 measurements the 8.5 amu signal is not measured directly, but can be calculated from the ammonia contribution to 17 amu and the ratio of NH3 ions of a double to single charged observed during a high resolution mass scan taken near the end of the descent. The high resolution scan gives this ratio from ammonia sampled much deeper in the atmosphere. These results are described and compared with Infrared Space Observatory-Short Wavelength Spectrometer (ISO-SWS) observations that give this ratio at 400 mbar.

  10. Persistence of El Niño effects on stable isotope ratios in cellulose of Coast Redwood tree-rings

    NASA Astrophysics Data System (ADS)

    Johnstone, J. A.

    2005-12-01

    An anomalously wet El Niño winter in 1998 in Sonoma County, California, USA produced sharp changes in the oxygen and carbon isotope ratios of tree-ring cellulose of Coast Redwood ( Sequoia sempervirens (D.Don) Endl.) which persisted for several years thereafter. High-resolution cellulose sampling reveals a negative shift in both δ18O and δ13C, consistent with greater reliance on winter rain water supplies (rather than summer fog) as well as reduced drought stress due to the anomalous precipitation. The annual cycle of these isotopic ratios is also muted for several years following the 1998 winter. These observations suggest a disproportionate and persistent influence of extreme years in the interannual variability of Coast Redwood hydrology and physiology.

  11. Stable Cu and Zn isotope ratios as tracers of sources and transport of Cu and Zn in contaminated soil

    NASA Astrophysics Data System (ADS)

    Bigalke, Moritz; Weyer, Stefan; Kobza, Jozef; Wilcke, Wolfgang

    2010-12-01

    Copper and Zn metals are produced in large quantities for different applications. During Cu production, large amounts of Cu and Zn can be released to the environment. Therefore, the surroundings of Cu smelters are frequently metal-polluted. We determined Cu and Zn concentrations and Cu and Zn stable isotope ratios (δ 65Cu, δ 66Zn) in three soils at distances of 1.1, 3.8, and 5.3 km from a Slovak Cu smelter and in smelter wastes (slag, sludge, ash) to trace sources and transport of Cu and Zn in soils. Stable isotope ratios were measured by multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) in total digests. Soils were heavily contaminated with concentrations up to 8087 μg g -1 Cu and 2084 μg g -1 Zn in the organic horizons. The δ 65Cu values varied little (-0.12‰ to 0.36‰) in soils and most wastes and therefore no source identification was possible. In soils, Cu became isotopically lighter with increasing depth down to 0.4 m, likely because of equilibrium reactions between dissolved and adsorbed Cu species during transport of smelter-derived Cu through the soil. The δ 66Zn IRMM values were isotopically lighter in ash (-0.41‰) and organic horizons (-0.85‰ to -0.47‰) than in bedrock (-0.28‰) and slag (0.18‰) likely mainly because of kinetic fractionation during evaporation and thus allowed for separation of smelter-Zn from native Zn in soil. In particular in the organic horizons large variations in δ 66Zn values occur, probably caused by biogeochemical fractionation in the soil-plant system. In the mineral horizons, Zn isotopes showed only minor shifts to heavier δ 66Zn values with depth mainly because of the mixing of smelter-derived Zn and native Zn in the soils. In contrast to Cu, Zn isotope fractionation between dissolved and adsorbed species was probably only a minor driver in producing the observed variations in δ 66Zn values. Our results demonstrate that metal stable isotope ratios may serve as tracer of sources

  12. Limits and possibilities in the geolocation of humans using multiple isotope ratios (H, O, N, C) of hair from east coast cities of the USA.

    PubMed

    Reynard, Linda M; Burt, Nicole; Koon, Hannah E C; Tuross, Noreen

    2016-01-01

    We examined multiple natural abundance isotope ratios of human hair to assess biological variability within and between geographic locations and, further, to determine how well these isotope values predict location of origin. Sampling locations feature differing seasonality and mobile populations as a robust test of the method. Serially-sampled hair from Cambridge, MA, USA, shows lower δ(2)H and δ(18)O variability over a one-year time course than model-predicted precipitation isotope ratios, but exhibits considerable differences between individuals. Along a ∼13° north-south transect in the eastern USA (Brookline, MA, 42.3 ° N, College Park, MD, 39.0 ° N, and Gainesville, FL, 29.7 ° N) δ(18)O in human hair shows relatively greater differences and tracks changes in drinking water isotope ratios more sensitively than δ(2)H. Determining the domicile of humans using isotope ratios of hair can be confounded by differing variability in hair δ(18)O and δ(2)H between locations, differential incorporation of H and O into this protein and, in some cases, by tap water δ(18)O and δ(2)H that differ significantly from predicted precipitation values. With these caveats, randomly chosen people in Florida are separated from those in the two more northerly sites on the basis of the natural abundance isotopes of carbon, nitrogen, hydrogen, and oxygen.

  13. Zn/Cd ratios and cadmium isotope evidence for the classification of lead-zinc deposits

    PubMed Central

    Wen, Hanjie; Zhu, Chuanwei; Zhang, Yuxu; Cloquet, Christophe; Fan, Haifeng; Fu, Shaohong

    2016-01-01

    Lead-zinc deposits are often difficult to classify because clear criteria are lacking. In recent years, new tools, such as Cd and Zn isotopes, have been used to better understand the ore-formation processes and to classify Pb-Zn deposits. Herein, we investigate Cd concentrations, Cd isotope systematics and Zn/Cd ratios in sphalerite from nine Pb-Zn deposits divided into high-temperature systems (e.g., porphyry), low-temperature systems (e.g., Mississippi Valley type [MVT]) and exhalative systems (e.g., sedimentary exhalative [SEDEX]). Our results showed little evidence of fractionation in the high-temperature systems. In the low-temperature systems, Cd concentrations were the highest, but were also highly variable, a result consistent with the higher fractionation of Cd at low temperatures. The δ114/110Cd values in low-temperature systems were enriched in heavier isotopes (mean of 0.32 ± 0.31‰). Exhalative systems had the lowest Cd concentrations, with a mean δ114/110Cd value of 0.12 ± 0.50‰. We thus conclude that different ore-formation systems result in different characteristic Cd concentrations and fraction levels and that low-temperature processes lead to the most significant fractionation of Cd. Therefore, Cd distribution and isotopic studies can support better understanding of the geochemistry of ore-formation processes and the classification of Pb-Zn deposits. PMID:27121538

  14. Boron removal from hydraulic fracturing wastewater by aluminum and iron coagulation: Mechanisms and limitations.

    PubMed

    Chorghe, Darpan; Sari, Mutiara Ayu; Chellam, Shankararaman

    2017-12-01

    One promising water management strategy during hydraulic fracturing is treatment and reuse of flowback/produced water. In particular, the saline flowback water contains many of the chemicals employed for fracking, which need to be removed before possible reuse as "frac water." This manuscript targets turbidity along with one of the additives; borate-based cross-linkers used to adjust the rheological characteristics of the frac-fluid. Alum and ferric chloride were evaluated as coagulants for clarification and boron removal from saline flowback water obtained from a well in the Eagle Ford shale. Extremely high dosages (> 9000 mg/L or 333 mM Al and 160 mM Fe) corresponding to Al/B and Fe/B mass ratios of ∼70 and molar ratios of ∼28 and 13 respectively were necessary to remove ∼80% boron. Hence, coagulation does not appear to be feasible for boron removal from high-strength waste streams. X-ray photoelectron spectroscopy revealed BO bonding on surfaces of freshly precipitated Al(OH) 3 (am) and Fe(OH) 3 (am) suggesting boron uptake was predominantly via ligand exchange. Attenuated total reflection-Fourier transform infrared spectroscopy provided direct evidence of inner-sphere boron complexation with surface hydroxyl groups on both amorphous aluminum and iron hydroxides. Only trigonal boron was detected on aluminum flocs since possible presence of tetrahedral boron was masked by severe AlO interferences. Both trigonal and tetrahedral conformation of boron complexes were identified on Fe(OH) 3 surfaces. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The performance of single and multi-collector ICP-MS instruments for fast and reliable 34S/32S isotope ratio measurements†

    PubMed Central

    Pröfrock, Daniel; Irrgeher, Johanna; Prohaska, Thomas

    2016-01-01

    The performance and validation characteristics of different single collector inductively coupled plasma mass spectrometers based on different technical principles (ICP-SFMS, ICP-QMS in reaction and collision modes, and ICP-MS/MS) were evaluated in comparison to the performance of MC ICP-MS for fast and reliable S isotope ratio measurements. The validation included the determination of LOD, BEC, measurement repeatability, within-lab reproducibility and deviation from certified values as well as a study on instrumental isotopic fractionation (IIF) and the calculation of the combined standard measurement uncertainty. Different approaches of correction for IIF applying external intra-elemental IIF correction (aka standard-sample bracketing) using certified S reference materials and internal inter-elemental IIF (aka internal standardization) correction using Si isotope ratios in MC ICP-MS are explained and compared. The resulting combined standard uncertainties of examined ICP-QMS systems were not better than 0.3–0.5% (uc,rel), which is in general insufficient to differentiate natural S isotope variations. Although the performance of the single collector ICP-SFMS is better (single measurement uc,rel = 0.08%), the measurement reproducibility (>0.2%) is the major limit of this system and leaves room for improvement. MC ICP-MS operated in the edge mass resolution mode, applying bracketing for correction of IIF, provided isotope ratio values with the highest quality (relative combined measurement uncertainty: 0.02%; deviation from the certified value: <0.002%). PMID:27812369

  16. The performance of single and multi-collector ICP-MS instruments for fast and reliable 34S/32S isotope ratio measurements.

    PubMed

    Hanousek, Ondrej; Brunner, Marion; Pröfrock, Daniel; Irrgeher, Johanna; Prohaska, Thomas

    2016-11-14

    The performance and validation characteristics of different single collector inductively coupled plasma mass spectrometers based on different technical principles (ICP-SFMS, ICP-QMS in reaction and collision modes, and ICP-MS/MS) were evaluated in comparison to the performance of MC ICP-MS for fast and reliable S isotope ratio measurements. The validation included the determination of LOD, BEC, measurement repeatability, within-lab reproducibility and deviation from certified values as well as a study on instrumental isotopic fractionation (IIF) and the calculation of the combined standard measurement uncertainty. Different approaches of correction for IIF applying external intra-elemental IIF correction (aka standard-sample bracketing) using certified S reference materials and internal inter-elemental IIF (aka internal standardization) correction using Si isotope ratios in MC ICP-MS are explained and compared. The resulting combined standard uncertainties of examined ICP-QMS systems were not better than 0.3-0.5% ( u c,rel ), which is in general insufficient to differentiate natural S isotope variations. Although the performance of the single collector ICP-SFMS is better (single measurement u c,rel = 0.08%), the measurement reproducibility (>0.2%) is the major limit of this system and leaves room for improvement. MC ICP-MS operated in the edge mass resolution mode, applying bracketing for correction of IIF, provided isotope ratio values with the highest quality (relative combined measurement uncertainty: 0.02%; deviation from the certified value: <0.002%).

  17. In-situ measurement of sulfur isotopic ratios in zoned apatite crystals via SIMS: a new tool for interpreting dynamic sulfur behavior in magmas

    NASA Astrophysics Data System (ADS)

    Economos, R. C.; Boehnke, P.; Burgisser, A.

    2017-12-01

    Sulfur is an important element in igneous systems due to its impact on magma redox, its role in the formation of economically valuable ore deposits, and the influence of catastrophic volcanogenic sulfur degassing on global climate. The mobility and geochemical behavior of sulfur in magmas is complex due to its multi-valent (from S2- to S6+) and multi-phase (solid, immiscible liquid, gaseous, dissolved ions) nature. Sulfur behavior is closely linked with the evolution of oxygen fugacity (fO2) in magmas; the record of fO2 evolution is often difficult to extract from rock records, particularly for intrusive systems that undergo cyclical magmatic processes and crystallize to the solidus. We apply a novel method of measuring S isotopic ratios via secondary ion mass spectrometry (SIMS) in zoned apatite crystals that we interpret as a record of open-system magmatic processes. We analyzed the S concentration and isotopic variations preserved in multiple apatite crystals from single hand specimens from the Cadiz Valley Batholith, CA via electron microprobe and ion microprobe at UCLA. A single, isotopically homogeneous crystal of Durango apatite was characterized for absolute isotopic ratio for this study (UCLA-D1). Isotopic variations in single apatite crystals ranged from 0 to 3.8‰ δ34S and total variation within a single hand sample was 6.1‰ δ34S. High S concentration cores yielded high isotopic ratios while low S concentration rims yielded low isotopic ratios. We favor an explanation of a combination of magma mixing and open-system, ascent-driven degassing under moderately reduced conditions: fO2 at or below NNO +1, although the synchronous crystallization of apatite and anhydrite is also a viable scenario. These findings have implications for the coupled S and fO2 evolution of granitic plutons and suggest that in-situ apatite S isotopic measurements could be a powerful new tool for evaluating redox and S systematics in magmatic systems.

  18. Marine vs. local control on seawater Nd-isotope ratios at the northwest coast of Africa during the late Cretaceous-early Eocene

    NASA Astrophysics Data System (ADS)

    Kocsis, L.; Gheerbrant, E.; Mouflih, M.; Cappetta, H.; Ulianov, A.; Chiaradia, M.

    2013-12-01

    At the northwest corner of Africa excellent conditions existed for phosphate formation (i.e., stable upwelling system) during the late Cretaceous-early Eocene. This is probably in relation to stable tectonic evolution of shallow epicontinental basins at a passive continental margin and to their paleogeographic situation between the Atlantic and Tethys marine realms. To better comprehend paleoceanic conditions in this area, radiogenic isotope ratios (87Sr/86Sr and 143Nd/144Nd) and trace element compositions of fossil biogenic apatite are investigated from Maastrichtian to Ypresian shallow marine phosphorite deposits in Morocco (Ouled Abdoun and Ganntour Basins). Rare earth elements (REE) distributions in the fossils are compatible with early diagenetic marine pore fluid represented by negative Ce-anomaly and heavy REE enrichment. An overall shift in Ce-anomaly is apparent with gradually lower values in younger fossils along three distinct assemblages that correspond to Maastrichtian, Danian-Thanetian and Ypresian periods. The temporal change can be interpreted as presence of gradually more oxygenated seawater in the basins. Strontium isotopic ratios of the fossils follow the global Sr-evolution curve. However, the latest Cretaceous and the oldest Paleocene fossils yielded slightly higher ratios than the global ocean, which could reflect minor diagenetic alteration. Neodymium isotopic ratios are quite even along the phosphate series with ɛNd(t) values ranges from -6.8 to -5.8. These values are higher than those reported for average North Atlantic deep water and Tethyan seawater (e.g., Stille et al., 1996; Thomas et al., 2003). For the origin of the stable, high 143Nd/144Nd we propose three main hypotheses: (1) contribution of continental Nd-source, (2) locally controlled deep water Nd-isotope ratios near the coast from where upwelling originated in the area and (3) possible surface marine water contribution from the Pacific across the Atlantic. Stille, P., Steinmann

  19. High-precision optical measurements of 13C/12C isotope ratios in organic compounds at natural abundance

    PubMed Central

    Zare, Richard N.; Kuramoto, Douglas S.; Haase, Christa; Tan, Sze M.; Crosson, Eric R.; Saad, Nabil M. R.

    2009-01-01

    A continuous-flow cavity ring-down spectroscopy (CRDS) system integrating a chromatographic separation technique, a catalytic combustor, and an isotopic 13C/12C optical analyzer is described for the isotopic analysis of a mixture of organic compounds. A demonstration of its potential is made for the geochemically important class of short-chain hydrocarbons. The system proved to be linear over a 3-fold injection volume dynamic range with an average precision of 0.95‰ and 0.67‰ for ethane and propane, respectively. The calibrated accuracy for methane, ethane, and propane is within 3‰ of the values determined using isotope ratio mass spectrometry (IRMS), which is the current method of choice for compound-specific isotope analysis. With anticipated improvements, the low-cost, portable, and easy-to-use CRDS-based instrumental setup is poised to evolve into a credible challenge to the high-cost and complex IRMS-based technique. PMID:19564619

  20. Selective boron delivery to murine tumors by lipophilic species incorporated in the membranes of unilamellar liposomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feakes, D.A.; Shelly, K.; Hawthorne, M.F.

    1995-02-28

    The nido-carborane species K[nido-7-CH{sub 3}(CH{sub 2}){sub 15}-7,8-C{sub 2}B{sub 9}H{sub 11}] has been synthesized for use as an addend for the bilayer membrane of liposomes. Small unilamellar vesicles, composed of distearoylphosphatidylcholine/cholesterol, 1:1, and incorporating K[nido-7-CH{sub 3}(CH{sub 2}){sub 15}-7,8-C{sub 2}B{sub 9}H{sub 11}] in the bilayer, have been investigated in vivo. The time-course biodistribution of boron delivered by these liposomes was determined by inductively coupled plasma-atomic emission spectroscopy analyses after the injection of liposomal suspensions in BALB/c mice bearing EMT6 mammary adenocarcinomas. At the low injected doses normally used ({approx}5-10 mg of boron per kg of body weight), peak tumor boron concentrations ofmore » {approx}35 {mu}g of boron per g of tissue and tumor/blood boron ratios of {approx}8 were achieved. These values are sufficiently high for the successful application of boron neutron capture therapy. The bilayer-embedded boron compound may provide the sole boron source or, alternatively, a concentrated aqueous solution of a hydrophilic boron compound may also be encapsulated within the liposomes to provide a dose enhancement. Thus, the incorporation of both K[nido-7-CH{sub 3}(CH{sub 2}){sub 15}-7,8-C{sub 2}B{sub 9}H{sub 11}] and the hydrophilic species, Na{sub 3}[1-(2{prime}-B{sub 10}H{sub 9})-2-NH{sub 3}B{sub 10}H{sub 8}], within the same liposomes demonstrated significantly enhanced biodistribution characteristics, exemplified by maximum tumor boron concentrations of {approx} 50 {mu}g of boron per g of tissue and tumor/blood boron ratios of {approx} 6. 18 refs., 1 fig.« less

  1. ISOTOPIC RATIOS OF {sup 18}O/{sup 17}O IN THE GALACTIC CENTRAL REGION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, J. S.; Sun, L. L.; Riquelme, D.

    The {sup 18}O/{sup 17}O isotopic ratio of oxygen is a crucial measure of the secular enrichment of the interstellar medium by ejecta from high-mass versus intermediate-mass stars. So far, however, there is a lack of data, particularly from the Galactic center (GC) region. Therefore, we have mapped typical molecular clouds in this region in the J = 1–0 lines of C{sup 18}O and C{sup 17}O with the Delingha 13.7 m telescope (DLH). Complementary pointed observations toward selected positions throughout the GC region were obtained with the IRAM 30 m and Mopra 22 m telescopes. C{sup 18}O/C{sup 17}O abundance ratios reflectingmore » the {sup 18}O/{sup 17}O isotope ratios were obtained from integrated intensity ratios of C{sup 18}O and C{sup 17}O. For the first time, C{sup 18}O/C{sup 17}O abundance ratios are determined for Sgr C (V ∼ −58 km s{sup −1}), Sgr D (V ∼ 80 km s{sup −1}), and the 1.°3 complex (V ∼ 80 km s{sup −1}). Through our mapping observations, abundance ratios are also obtained for Sgr A (∼0 and ∼50 km s{sup −1} component) and Sgr B2 (∼60 km s{sup −1}), which are consistent with the results from previous single-point observations. Our frequency-corrected abundance ratios of the GC clouds range from 2.58 ± 0.07 (Sgr D, V ∼ 80 km s{sup −1}, DLH) to 3.54 ± 0.12 (Sgr A, ∼50 km s{sup −1}). In addition, strong narrow components (line width less than 5 km s{sup −1}) from the foreground clouds are detected toward Sgr D (−18 km s{sup −1}), the 1.°3 complex (−18 km s{sup −1}), and M+5.3−0.3 (22 km s{sup −1}), with a larger abundance ratio around 4.0. Our results show a clear trend of lower C{sup 18}O/C{sup 17}O abundance ratios toward the GC region relative to molecular clouds in the Galactic disk. Furthermore, even inside the GC region, ratios appear not to be uniform. The low GC values are consistent with an inside-out formation scenario for our Galaxy.« less

  2. Chemical and boron isotopic composition of tourmaline from the Mariinsky emerald deposit, Central Urals, Russia

    NASA Astrophysics Data System (ADS)

    Baksheev, Ivan A.; Trumbull, Robert B.; Popov, Mikhail P.; Erokhin, Yuri V.; Kudryavtseva, Olesya E.; Yapaskurt, Vasily O.; Khiller, Vera V.; Vovna, Galina M.; Kiselev, Vladimir I.

    2018-04-01

    Tourmaline is abundant at the Mariinsky schist-hosted emerald deposit in the Central Urals, Russia, both in emerald-bearing phlogopite veins (type 1) and later, emerald-free pockets, lenses, and veinlets cutting the phlogopite veins (type 2). The Ca content in tourmaline is influenced by the host rocks (ultramafic and mafic rocks), associated minerals, and minerals crystallized before tourmaline (amphibole, fluorite, margarite). The Na concentration in tourmaline depends on the presence or absence of paragonite, and the association with micas also strongly influences the contents of Li, Zn, Ni, and Co in tourmaline. Type 1 tourmalines associated with phlogopite are relatively depleted in these elements, whereas type 2 tourmalines associated with margarite or paragonite are enriched. Some differences in isomorphic substitutions along with the trace element composition (Zn, V, Sr, Co, REE) may have value in exploration of emerald-bearing and emerald-free veins in schist-hosted emerald deposits. The δ11B values in tourmaline of all types fall in a narrow total range from -11.3 to -8.4‰. These values, combined with a mineralization temperature of 420-360 °C, yield an estimated δ11B fluid composition of -7.4 to -6.8‰ suggesting a mixed source of boron, likely dominated from the granitic rocks surrounding the emerald belt. The narrow range of B-isotope compositions in tourmaline from throughout the Mariinsky deposit suggests a well-mixed hydrothermal system.

  3. Mg/Ca, Sr/Ca and Ca isotope ratios in benthonic foraminifers related to test structure, mineralogy and environmental controls

    NASA Astrophysics Data System (ADS)

    Gussone, Nikolaus; Filipsson, Helena L.; Kuhnert, Henning

    2016-01-01

    We analysed Mg/Ca, Sr/Ca and Ca isotope ratios of benthonic foraminifers from sediment core tops retrieved during several research cruises in the Atlantic Ocean, in order to improve the understanding of isotope fractionation and element partitioning resulting from biomineralisation processes and changes in ambient conditions. Species include foraminifers secreting tests composed of hyaline low magnesium calcite, porcelaneous high magnesium calcite as well as aragonite. Our results demonstrate systematic isotope fractionation and element partitioning patterns specific for these foraminiferal groups. Calcium isotope fractionation is similar in porcelaneous and hyaline calcite tests and both groups demonstrate the previously described anomaly with enrichment of heavy isotopes around 3-4 °C (Gussone and Filipsson, 2010). Calcium isotope ratios of the aragonitic species Hoeglundina elegans, on the other hand, are about 0.4‰ lighter compared to the calcitic species, which is in general agreement with stronger fractionation in inorganic aragonite compared to calcite. However, the low and strongly variable Sr content suggests additional processes during test formation, and we propose that transmembrane ion transport or a precursor phase to aragonite may be involved. Porcelaneous tests, composed of high Mg calcite, incorporate higher amounts of Sr compared to hyaline low Mg calcite, in agreement with inorganic calcite systematics, but also porcelaneous tests with reduced Mg/Ca show high Sr/Ca. While calcium isotopes, Sr/Ca and Mg/Ca in benthonic foraminifers primarily appear to fractionate and partition with a dominant inorganic control, δ44/40Ca temperature and growth rate dependencies of benthonic foraminifer tests favour a dominant contribution of light Ca by transmembrane transport relative to unfractionated seawater Ca to the calcifying fluid, thus controlling the formation of foraminiferal δ44/40Ca and Sr/Ca proxy signals.

  4. Nitrogen Isotope Ratios of Juvenile Winter Flounder as an Indicator of Anthropogenic Nitrogen Inputs to Estuarine Systems

    EPA Science Inventory

    Nitrogen isotope ratios (15N) were measured in muscle tissue of juvenile winter flounder, Pseudopleuronectes americanus, collected from several estuarine systems (lagoons, river, bay) along the coast of Rhode Island, USA over a three-year period. Significant differences i...

  5. Water isotope ratio (δ2H and δ18O) measurements in atmospheric moisture using an optical feedback cavity enhanced absorption laser spectrometer

    NASA Astrophysics Data System (ADS)

    Iannone, Rosario Q.; Romanini, Daniele; Cattani, Olivier; Meijer, Harro A. J.; Kerstel, Erik R. Th.

    2010-05-01

    Water vapor isotopes represent an innovative and excellent tool for understanding complex mechanisms in the atmospheric water cycle over different time scales, and they can be used for a variety of applications in the fields of paleoclimatology, hydrology, oceanography, and ecology. We use an ultrasensitive near-infrared spectrometer, originally designed for use on airborne platforms in the upper troposphere and lower stratosphere, to measure the water deuterium and oxygen-18 isotope ratios in situ, in ground-level tropospheric moisture, with a high temporal resolution (from 300 s down to less than 1 s). We present some examples of continuous monitoring of near-surface atmospheric moisture, demonstrating that our infrared laser spectrometer could be used successfully to record high-concentration atmospheric water vapor mixing ratios in continuous time series, with a data coverage of ˜90%, interrupted only for daily calibration to two isotope ratio mass spectrometry-calibrated local water standards. The atmospheric data show that the water vapor isotopic composition exhibits a high variability that can be related to weather conditions, especially to changes in relative humidity. Besides, the results suggest that observed spatial and temporal variations of the stable isotope content of atmospheric water vapor are strongly related to water vapor transport in the atmosphere.

  6. Deposition of boron doped DLC films on TiNb and characterization of their mechanical properties and blood compatibility

    PubMed Central

    Liza, Shahira; Hieda, Junko; Akasaka, Hiroki; Ohtake, Naoto; Tsutsumi, Yusuke; Nagai, Akiko; Hanawa, Takao

    2017-01-01

    Abstract Diamond-like carbon (DLC) material is used in blood contacting devices as the surface coating material because of the antithrombogenicity behavior which helps to inhibit platelet adhesion and activation. In this study, DLC films were doped with boron during pulsed plasma chemical vapor deposition (CVD) to improve the blood compatibility. The ratio of boron to carbon (B/C) was varied from 0 to 0.4 in the film by adjusting the flow rate of trimethylboron and acetylene. Tribological tests indicated that boron doping with a low B/C ratio of 0.03 is beneficial for reducing friction (μ = 0.1), lowering hardness and slightly increasing wear rate compared to undoped DLC films. The B/C ratio in the film of 0.03 and 0.4 exhibited highly hydrophilic surface owing to their high wettability and high surface energy. An in vitro platelet adhesion experiment was conducted to compare the blood compatibility of TiNb substrates before and after coating with undoped and boron doped DLC. Films with highly hydrophilic surface enhanced the blood compatibility of TiNb, and the best results were obtained for DLC with the B/C ratio of 0.03. Boron doped DLC films are promising surface coatings for blood contacting devices. PMID:28179961

  7. Concentrations and isotope ratios of mercury in sediments from shelf and continental slope at Campos Basin near Rio de Janeiro, Brazil.

    PubMed

    Araujo, Beatriz Ferreira; Hintelmann, Holger; Dimock, Brian; Almeida, Marcelo Gomes; Rezende, Carlos Eduardo

    2017-07-01

    Mercury (Hg) may originate from both anthropogenic and natural sources. The measurement of spatial and temporal variations of Hg isotope ratios in sediments may enable source identification and tracking of environmental processes. In this study we establish the distribution of mercury concentrations and mercury isotope ratios in surface sediments of three transects along the continental shelf and slope in Campos Basin-RJ-Brazil. The shelf showed on average lower total Hg concentrations (9.2 ± 5.3 ng g -1 ) than the slope (24.6 ± 8.8 ng g -1 ). MMHg average concentrations of shelf 0.15 ± 0.12 ng g -1 and slope 0.13 ± 0.06 ng g -1 were not significantly different. Distinct differences in Hg isotope ratio signatures were observed, suggesting that the two regions were impacted by different sources of Hg. The shelf showed more negative δ 202 Hg and Δ 199 Hg values ranging from -0.59 to -2.19‰ and from -0.76 to 0.08‰, respectively. In contrast, the slope exhibited δ 202 Hg values from -0.29 to -1.82‰ and Δ 199 Hg values from -0.23 to 0.09‰. Mercury found on the shelf, especially along the "D" and "I" transects, is depleted in heavy isotopes resulting in more negative δ 202 Hg compared to the slope. Isotope ratios observed in the "D" and "I" shelf region are similar to Hg ratios commonly associated with plants and vegetation and very comparable to those detected in the estuary and adjoining mangrove forest, which suggests that Hg exported from rivers may be the dominating source of Hg in near coastal regions along the northern part of the shelf. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Distribution of mercury species and mercury isotope ratios in soils and river suspended matter of a mercury mining area.

    PubMed

    Baptista-Salazar, Carluvy; Hintelmann, Holger; Biester, Harald

    2018-04-25

    Mercury (Hg) released by mining activities can be dispersed in the environment, where it is subject to species transformations. Hg isotope ratios have been used to track sources in Hg contaminated areas, although it is unclear to what extent variations in δ-values are attributed to distinct Hg species. Hg was mined as Hg sulphide (cinnabar) in Idrija, Slovenia for centuries. Sediments are loaded with mining-residues (cinnabar and calcine), whereas contaminated soils mainly contain Hg bound to natural organic matter (NOM-Hg) related to atmospheric Hg deposition. Hg released from soils and sediments is transported as suspended matter (SM) in the Idrijca river to the Gulf of Trieste (GT), Italy. We determine Hg isotope ratios in river SM, sediments and soils from the Idrijca-catchment to decipher the Hg isotope ratio variability related to Hg species distribution in different grain-size fractions. δ202Hg values of SM collected from tributaries corresponded to those found in soils ranging from -2.58 to 0.19‰ and from -2.27 to -0.88‰, respectively. Speciation measurements reveal that fine fractions (0.45-20 μm) are dominated by NOM-Hg, while larger fractions contain more cinnabar. More negative δ202Hg values were related to higher proportions of NOM-Hg, which are predominant in soils and SM. Rain events increase SM-loads in the river, mainly due to resuspension of coarse grain-size fractions of bottom sediments bearing larger proportions of cinnabar, which leads to more positive δ202Hg values. The large magnitude of variation in δ202Hg and the smaller magnitude of variation in Δ199Hg (-0.37 to 0.09‰) are likely related to fractionation during ore roasting. Soil samples with high NOM-Hg content show more negative δ202Hg values and larger variation of Δ199Hg. More negative δ202Hg values in GT sediments were rather linked to distant sedimentation of soil derived NOM-Hg than to sedimentation of autochthonous marine material. Heterogeneity in the Idrija ore

  9. Oxygen stable isotope ratios from British oak tree-rings provide a strong and consistent record of past changes in summer rainfall

    NASA Astrophysics Data System (ADS)

    Young, Giles H. F.; Loader, Neil J.; McCarroll, Danny; Bale, Roderick J.; Demmler, Joanne C.; Miles, Daniel; Nayling, Nigel T.; Rinne, Katja T.; Robertson, Iain; Watts, Camilla; Whitney, Matthew

    2015-12-01

    United Kingdom (UK) summers dominated by anti-cyclonic circulation patterns are characterised by clear skies, warm temperatures, low precipitation totals, low air humidity and more enriched oxygen isotope ratios (δ18O) in precipitation. Such conditions usually result in relatively more positive (enriched) oxygen isotope ratios in tree leaf sugars and ultimately in the tree-ring cellulose formed in that year, the converse being true in cooler, wet summers dominated by westerly air flow and cyclonic conditions. There should therefore be a strong link between tree-ring δ18O and the amount of summer precipitation. Stable oxygen isotope ratios from the latewood cellulose of 40 oak trees sampled at eight locations across Great Britain produce a mean δ18O chronology that correlates strongly and significantly with summer indices of total shear vorticity, surface air pressure, and the amount of summer precipitation across the England and Wales region of the United Kingdom. The isotope-based rainfall signal is stronger and much more stable over time than reconstructions based upon oak ring widths. Using recently developed methods that are precise, efficient and highly cost-effective it is possible to measure both carbon (δ13C) and oxygen (δ18O) isotope ratios simultaneously from the same tree-ring cellulose. In our study region, these two measurements from multiple trees can be used to reconstruct summer temperature (δ13C) and summer precipitation (δ18O) with sufficient independence to allow the evolution of these climate parameters to be reconstructed with high levels of confidence. The existence of long, well-replicated oak tree-ring chronologies across the British Isles mean that it should now be possible to reconstruct both summer temperature and precipitation over many centuries and potentially millennia.

  10. An Assessment of the Potential Use of BNNTs for Boron Neutron Capture Therapy.

    PubMed

    Ferreira, Tiago H; Miranda, Marcelo C; Rocha, Zildete; Leal, Alexandre S; Gomes, Dawidson A; Sousa, Edesia M B

    2017-04-12

    Currently, nanostructured compounds have been standing out for their optical, mechanical, and chemical features and for the possibilities of manipulation and regulation of complex biological processes. One of these compounds is boron nitride nanotubes (BNNTs), which are a nanostructured material analog to carbon nanotubes, but formed of nitrogen and boron atoms. BNNTs present high thermal stability along with high chemical inertia. Among biological applications, its biocompatibility, cellular uptake, and functionalization potential can be highlighted, in addition to its eased utilization due to its nanometric size and tumor cell internalization. When it comes to new forms of therapy, we can draw attention to boron neutron capture therapy (BNCT), an experimental radiotherapy characterized by a boron-10 isotope carrier inside the target and a thermal neutron beam focused on it. The activation of the boron-10 atom by a neutron generates a lithium atom, a gamma ray, and an alpha particle, which can be used to destroy tumor tissues. The aim of this work was to use BNNTs as a boron-10 carrier for BNCT and to demonstrate its potential. The nanomaterial was characterized through XRD, FTIR, and SEM. The WST-8 assay was performed to confirm the cell viability of BNNTs. The cells treated with BNNTs were irradiated with the neutron beam of a Triga reactor, and the apoptosis caused by the activation of the BNNTs was measured with a calcein AM/propidium iodide test. The results demonstrate that this nanomaterial is a promising candidate for cancer therapy through BNCT.

  11. Ceramic silicon-boron-carbon fibers from organic silicon-boron-polymers

    NASA Technical Reports Server (NTRS)

    Riccitiello, Salvatore R. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)

    1993-01-01

    Novel high strength ceramic fibers derived from boron, silicon, and carbon organic precursor polymers are discussed. The ceramic fibers are thermally stable up to and beyond 1200 C in air. The method of preparation of the boron-silicon-carbon fibers from a low oxygen content organosilicon boron precursor polymer of the general formula Si(R2)BR(sup 1) includes melt-spinning, crosslinking, and pyrolysis. Specifically, the crosslinked (or cured) precursor organic polymer fibers do not melt or deform during pyrolysis to form the silicon-boron-carbon ceramic fiber. These novel silicon-boron-carbon ceramic fibers are useful in high temperature applications because they retain tensile and other properties up to 1200 C, from 1200 to 1300 C, and in some cases higher than 1300 C.

  12. Isotope ratio mass spectrometry in combination with chemometrics for characterization of geographical origin and agronomic practices of table grape.

    PubMed

    Longobardi, Francesco; Casiello, Grazia; Centonze, Valentina; Catucci, Lucia; Agostiano, Angela

    2017-08-01

    Although table grape is one of the most cultivated and consumed fruits worldwide, no study has been reported on its geographical origin or agronomic practice based on stable isotope ratios. This study aimed to evaluate the usefulness of isotopic ratios (i.e. 2 H/ 1 H, 13 C/ 12 C, 15 N/ 14 N and 18 O/ 16 O) as possible markers to discriminate the agronomic practice (conventional versus organic farming) and provenance of table grape. In order to quantitatively evaluate which of the isotopic variables were more discriminating, a t test was carried out, in light of which only δ 13 C and δ 18 O provided statistically significant differences (P ≤ 0.05) for the discrimination of geographical origin and farming method. Principal component analysis (PCA) showed no good separation of samples differing in geographical area and agronomic practice; thus, for classification purposes, supervised approaches were carried out. In particular, general discriminant analysis (GDA) was used, resulting in prediction abilities of 75.0 and 92.2% for the discrimination of farming method and origin respectively. The present findings suggest that stable isotopes (i.e. δ 18 O, δ 2 H and δ 13 C) combined with chemometrics can be successfully applied to discriminate the provenance of table grape. However, the use of bulk nitrogen isotopes was not effective for farming method discrimination. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  13. Forensic analysis of explosives using isotope ratio mass spectrometry (IRMS)--preliminary study on TATP and PETN.

    PubMed

    Benson, Sarah J; Lennard, Christopher J; Maynard, Philip; Hill, David M; Andrew, Anita S; Roux, Claude

    2009-06-01

    The application of isotopic techniques to investigations requiring the provision of evidence to a Court is limited. The objective of this research was to investigate the application of light stable isotopes and isotope ratio mass spectrometry (IRMS) to solve complex forensic cases by providing a level of discrimination not achievable utilising traditional forensic techniques. Due to the current threat of organic peroxide explosives, such as triacetone triperoxide (TATP), research was undertaken to determine the potential of IRMS to differentiate samples of TATP that had been manufactured utilising different starting materials and/or manufacturing processes. In addition, due to the prevalence of pentaerythritoltetranitrate (PETN) in detonators, detonating cord, and boosters, the potential of the IRMS technique to differentiate PETN samples from different sources was also investigated. Carbon isotope values were measured in fourteen TATP samples, with three definite groups appearing in the initial sample set based on the carbon data alone. Four additional TATP samples (in a second set of samples) were distinguishable utilising the carbon and hydrogen isotopic compositions individually, and also in combination with the oxygen isotope values. The 3D plot of the carbon, oxygen and hydrogen data demonstrated the clear discrimination of the four samples of TATP. The carbon and nitrogen isotope values measured from fifteen PETN samples, allowed samples from different sources to be readily discriminated. This paper demonstrates the successful application of IRMS to the analysis of explosives of forensic interest to assist in discriminating samples from different sources. This research represents a preliminary evaluation of the IRMS technique for the measurement of stable isotope values in TATP and PETN samples, and supports the dedication of resources for a full evaluation of this application in order to achieve Court reportable IRMS results.

  14. USE OF THE COMPOSITION AND STABLE CARBON ISOTOPE RATIO OF MICROBIAL FATTY ACIDS TO STUDY CARBON CYCLING

    EPA Science Inventory

    We use measurements of the concentration and stable carbon isotopic ratio (Gamma 13C) of individual microbial phospholipid fatty acids (PLFAS) in soils and sediments as indicators of live microbial biomass levels and microbial carbon source. For studies of soil organic matter (SO...

  15. USE OF STABLE CARBON ISOTOPE RATIOS OF FATTY ACIDS TO EVALUATE MICROBIAL CARBON SOURCES IN TERRESTRIAL ENVIRONMENTS

    EPA Science Inventory

    We use measurements of the concentration and stable carbon isotopic ratio (D 13C) of individual microbial phospholipid fatty acids (PLFAs) in soils as indicators of live microbial biomass levels and microbial carbon source. We found that intensive sugar cane cultivation leads to ...

  16. Very high precision and accuracy analysis of triple isotopic ratios of water. A critical instrumentation comparison study.

    NASA Astrophysics Data System (ADS)

    Gkinis, Vasileios; Holme, Christian; Morris, Valerie; Thayer, Abigail Grace; Vaughn, Bruce; Kjaer, Helle Astrid; Vallelonga, Paul; Simonsen, Marius; Jensen, Camilla Marie; Svensson, Anders; Maffrezzoli, Niccolo; Vinther, Bo; Dallmayr, Remi

    2017-04-01

    We present a performance comparison study between two state of the art Cavity Ring Down Spectrometers (Picarro L2310-i, L2140-i). The comparison took place during the Continuous Flow Analysis (CFA) campaign for the measurement of the Renland ice core, over a period of three months. Instant and complete vaporisation of the ice core melt stream, as well as of in-house water reference materials is achieved by accurate control of microflows of liquid into a homemade calibration system by following simple principles of the Hagen-Poiseuille law. Both instruments share the same vaporisation unit in a configuration that minimises sample preparation discrepancies between the two analyses. We describe our SMOW-SLAP calibration and measurement protocols for such a CFA application and present quality control metrics acquired during the full period of the campaign on a daily basis. The results indicate an unprecedented performance for all 3 isotopic ratios (δ2H, δ17O, δ18O ) in terms of precision, accuracy and resolution. We also comment on the precision and accuracy of the second order excess parameters of HD16O and H217O over H218O (Dxs, Δ17O ). To our knowledge these are the first reported CFA measurements at this level of precision and accuracy for all three isotopic ratios. Differences on the performance of the two instruments are carefully assessed during the measurement and reported here. Our quality control protocols extend to the area of low water mixing ratios, a regime in which often atmospheric vapour measurements take place and Cavity Ring Down Analysers show a poorer performance due to the lower signal to noise ratios. We address such issues and propose calibration protocols from which water vapour isotopic analyses can benefit from.

  17. Mars Atmospheric Escape Recorded by H, C and O Isotope Ratios in Carbon Dioxide and Water Measured by the Sam Tunable Laser Spectrometer on the Curiosity Rover

    NASA Technical Reports Server (NTRS)

    Webster, C. R.; Mahaffy, P. R.; Leshin, L. A.; Atreya, S. K.; Flesch, G. J.; Stern, J.; Christensen, L. E.; Vasavada, A. R.; Owen, T.; Niles, P. B.; hide

    2013-01-01

    Stable isotope ratios in C, H, N, O and S are powerful indicators of a wide variety of planetary geophysical processes that can identify origin, transport, temperature history, radiation exposure, atmospheric escape, environmental habitability and biological activity [2]. For Mars, measurements to date have indicated enrichment in all the heavier isotopes consistent with atmospheric escape processes, but with uncertainty too high to tie the results with the more precise isotopic ratios achieved from SNC meteoritic analyses. We will present results to date of H, C and O isotope ratios in CO2 and H2O made to high precision (few per mil) using the Tunable Laser Spectrometer (TLS) that is part of the Sample Analysis at Mars (SAM) instrument suite on MSL s Curiosity Rover.

  18. Limitations of the isotopic composition of nitrates as a tracer of their origin

    NASA Astrophysics Data System (ADS)

    Kloppmann, Wolfram; Mayer, Bernhard; Otero, Neus; Sebilo, Mathieu; Gooddy, Daren; Lapworth, Dan; Surridge, Ben; Petelet Giraud, Emmanuelle; Flehoc, Christine; Baran, Nicole

    2017-04-01

    Nitrogen and oxygen isotopes are traditionally considered and frequently used as tracers of nitrate sources in watersheds used for drinking water production. The enrichment of synthetic nitrate-containing fertilizers in 18O due to the contribution of atmospheric oxygen in the production process confers a specific isotopic fingerprint to mineral fertilizers. In spite of the still widespread use on nitrate-containing synthetic fertilizers, their characteristic N and O isotope signatures are rarely unambiguously observed in nitrate-contaminated groundwater. We postulate, in line with Mengis et al. (2001), that fertilizer-derived nitrate is not directly and rapidly transferred to groundwater but rather retained in the soil-plant system as organic N and then mineralized and re-oxidized (termed the mineralization-immobilization turnover, MIT) thereby re-setting the oxygen isotope composition of nitrate and also changing its N isotope ratios. We show examples from watersheds on diverse alluvial/clastic and carbonate aquifers in eastern and northern France where, in spite of the use of mineral fertilizers, evidenced also through other isotopic tracers (boron isotopes), both N and O-isotope ratios are very homogeneous and compatible with nitrification of ammonium where 2/3 of oxygen is derived from soil water and 1/3 from atmospheric O2. These field data are corroborated by lysimeter data from Canada. Even if in areas where ammonium is derived from chemical fertilizers, N values still tend to be lower than in areas where ammonium is derived from manure/sewage, this is clearly a limitation to the dual isotope method (N, O) for nitrate source identification, but has important implications for the nitrogen mobility and residence time in soils amended with synthetic fertilizers (Sebilo et al., 2013). Mengis M., Walther U., Bernasconi S. M., Wehrli B. (2001) Limitations of Using δ18O for the Source Identification of Nitrate in Agricultural Soils. Environmental Science

  19. Determination of depleted uranium in urine via isotope ratio measurements using large-bore direct injection high efficiency nebulizer-inductively coupled plasma mass spectrometry.

    PubMed

    Westphal, Craig S; McLean, John A; Hakspiel, Shelly J; Jackson, William E; McClain, David E; Montaser, Akbar

    2004-09-01

    Inductively coupled plasma mass spectrometry (ICP-MS), coupled with a large-bore direct injection high efficiency nebulizer (LB-DIHEN), was utilized to determine the concentration and isotopic ratio of uranium in 11 samples of synthetic urine spiked with varying concentrations and ratios of uranium isotopes. Total U concentrations and (235)U/(238)U isotopic ratios ranged from 0.1 to 10 microg/L and 0.0011 and 0.00725, respectively. The results are compared with data from other laboratories that used either alpha-spectrometry or quadrupole-based ICP-MS with a conventional nebulizer-spray chamber arrangement. Severe matrix effects due to the high total dissolved solid content of the samples resulted in a 60 to 80% loss of signal intensity, but were compensated for by using (233)U as an internal standard. Accurate results were obtained with LB-DIHEN-ICP-MS, allowing for the positive identification of depleted uranium based on the (235)U/(238)U ratio. Precision for the (235)U/(238)U ratio is typically better than 5% and 15% for ICP-MS and alpha-spectrometry, respectively, determined over the concentrations and ratios investigated in this study, with the LB-DIHEN-ICP-MS system providing the most accurate results. Short-term precision (6 min) for the individual (235)U and (238)U isotopes in synthetic urine is better than 2% (N = 7), compared to approximately 5% for conventional nebulizer-spray chamber arrangements and >10% for alpha-spectrometry. The significance of these measurements is discussed for uranium exposure assessment of Persian Gulf War veterans affected by depleted uranium ammunitions.

  20. Boron nitride converted carbon fiber

    DOEpatents

    Rousseas, Michael; Mickelson, William; Zettl, Alexander K.

    2016-04-05

    This disclosure provides systems, methods, and apparatus related to boron nitride converted carbon fiber. In one aspect, a method may include the operations of providing boron oxide and carbon fiber, heating the boron oxide to melt the boron oxide and heating the carbon fiber, mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide, and converting at least a portion of the carbon fiber to boron nitride.