Science.gov

Sample records for boron nitride single

  1. Single step synthesis of nanostructured boron nitride for boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Singh, Bikramjeet; Singh, Paviter; Kumar, Manjeet; Thakur, Anup; Kumar, Akshay

    2015-05-01

    Nanostructured Boron Nitride (BN) has been successfully synthesized by carbo-thermic reduction of Boric Acid (H3BO3). This method is a relatively low temperature synthesis route and it can be used for large scale production of nanostructured BN. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential thermal analyzer (DTA). XRD analysis confirmed the formation of single phase nanostructured Boron Nitride. SEM analysis showed that the particles are spherical in shape. DTA analysis showed that the phase is stable upto 900 °C and the material can be used for high temperature applications as well boron neutron capture therapy (BNCT).

  2. Growth of single-layer boron nitride dome-shaped nanostructures catalysed by iron clusters.

    PubMed

    Torre, A La; Åhlgren, E H; Fay, M W; Ben Romdhane, F; Skowron, S T; Parmenter, C; Davies, A J; Jouhannaud, J; Pourroy, G; Khlobystov, A N; Brown, P D; Besley, E; Banhart, F

    2016-08-11

    We report on the growth and formation of single-layer boron nitride dome-shaped nanostructures mediated by small iron clusters located on flakes of hexagonal boron nitride. The nanostructures were synthesized in situ at high temperature inside a transmission electron microscope while the e-beam was blanked. The formation process, typically originating at defective step-edges on the boron nitride support, was investigated using a combination of transmission electron microscopy, electron energy loss spectroscopy and computational modelling. Computational modelling showed that the domes exhibit a nanotube-like structure with flat circular caps and that their stability was comparable to that of a single boron nitride layer. PMID:27486917

  3. Single step synthesis of nanostructured boron nitride for boron neutron capture therapy

    SciTech Connect

    Singh, Bikramjeet; Singh, Paviter; Kumar, Akshay; Kumar, Manjeet; Thakur, Anup

    2015-05-15

    Nanostructured Boron Nitride (BN) has been successfully synthesized by carbo-thermic reduction of Boric Acid (H{sub 3}BO{sub 3}). This method is a relatively low temperature synthesis route and it can be used for large scale production of nanostructured BN. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential thermal analyzer (DTA). XRD analysis confirmed the formation of single phase nanostructured Boron Nitride. SEM analysis showed that the particles are spherical in shape. DTA analysis showed that the phase is stable upto 900 °C and the material can be used for high temperature applications as well boron neutron capture therapy (BNCT)

  4. Wafer-Scale and Wrinkle-Free Epitaxial Growth of Single-Orientated Multilayer Hexagonal Boron Nitride on Sapphire.

    PubMed

    Jang, A-Rang; Hong, Seokmo; Hyun, Chohee; Yoon, Seong In; Kim, Gwangwoo; Jeong, Hu Young; Shin, Tae Joo; Park, Sung O; Wong, Kester; Kwak, Sang Kyu; Park, Noejung; Yu, Kwangnam; Choi, Eunjip; Mishchenko, Artem; Withers, Freddie; Novoselov, Kostya S; Lim, Hyunseob; Shin, Hyeon Suk

    2016-05-11

    Large-scale growth of high-quality hexagonal boron nitride has been a challenge in two-dimensional-material-based electronics. Herein, we present wafer-scale and wrinkle-free epitaxial growth of multilayer hexagonal boron nitride on a sapphire substrate by using high-temperature and low-pressure chemical vapor deposition. Microscopic and spectroscopic investigations and theoretical calculations reveal that synthesized hexagonal boron nitride has a single rotational orientation with AA' stacking order. A facile method for transferring hexagonal boron nitride onto other target substrates was developed, which provides the opportunity for using hexagonal boron nitride as a substrate in practical electronic circuits. A graphene field effect transistor fabricated on our hexagonal boron nitride sheets shows clear quantum oscillation and highly improved carrier mobility because the ultraflatness of the hexagonal boron nitride surface can reduce the substrate-induced degradation of the carrier mobility of two-dimensional materials. PMID:27120101

  5. Methods of forming boron nitride

    SciTech Connect

    Trowbridge, Tammy L; Wertsching, Alan K; Pinhero, Patrick J; Crandall, David L

    2015-03-03

    A method of forming a boron nitride. The method comprises contacting a metal article with a monomeric boron-nitrogen compound and converting the monomeric boron-nitrogen compound to a boron nitride. The boron nitride is formed on the same or a different metal article. The monomeric boron-nitrogen compound is borazine, cycloborazane, trimethylcycloborazane, polyborazylene, B-vinylborazine, poly(B-vinylborazine), or combinations thereof. The monomeric boron-nitrogen compound is polymerized to form the boron nitride by exposure to a temperature greater than approximately 100.degree. C. The boron nitride is amorphous boron nitride, hexagonal boron nitride, rhombohedral boron nitride, turbostratic boron nitride, wurzite boron nitride, combinations thereof, or boron nitride and carbon. A method of conditioning a ballistic weapon and a metal article coated with the monomeric boron-nitrogen compound are also disclosed.

  6. Boron nitride nanotubes

    DOEpatents

    Smith, Michael W.; Jordan, Kevin; Park, Cheol

    2012-06-06

    Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.

  7. Boron Nitride Nanotubes

    NASA Technical Reports Server (NTRS)

    Smith, Michael W. (Inventor); Jordan, Kevin (Inventor); Park, Cheol (Inventor)

    2012-01-01

    Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.

  8. Efficient FEM simulation of static and free vibration behavior of single walled boron nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Giannopoulos, Georgios I.; Kontoni, Denise-Penelope N.; Georgantzinos, Stylianos K.

    2016-08-01

    This paper describes the static and free vibration behavior of single walled boron nitride nanotubes using a structural mechanics based finite element method. First, depending on the type of nanotube under investigation, its three dimensional nanostructure is developed according to the well-known corresponding positions of boron and nitride atoms as well as boron nitride bonds. Then, appropriate point masses are assigned to the atomic positions of the developed space frame. Next, these point masses are suitably interconnected with two-noded, linear, spring-like, finite elements. In order to simulate effectively the interactions observed between boron and nitride atoms within the nanotube, appropriate potential energy functions are introduced for these finite elements. In this manner, various atomistic models for both armchair and zigzag nanotubes with different aspect ratios are numerically analyzed and their effective elastic modulus as well as their natural frequencies and corresponding mode shapes are obtained. Regarding the free vibration analysis, the computed results reveal bending, breathing and axial modes of vibration depending on the nanotube size and chirality as well as the applied boundary support conditions. The longitudinal stiffness of the boron nitride nanotubes is found also sensitive to their geometric characteristics.

  9. Thermal transport across graphene and single layer hexagonal boron nitride

    SciTech Connect

    Zhang, Jingchao E-mail: yyue@whu.edu.cn; Hong, Yang; Yue, Yanan E-mail: yyue@whu.edu.cn

    2015-04-07

    As the dimensions of nanocircuits and nanoelectronics shrink, thermal energies are being generated in more confined spaces, making it extremely important and urgent to explore for efficient heat dissipation pathways. In this work, the phonon energy transport across graphene and hexagonal boron-nitride (h-BN) interface is studied using classic molecular dynamics simulations. Effects of temperature, interatomic bond strength, heat flux direction, and functionalization on interfacial thermal transport are investigated. It is found out that by hydrogenating graphene in the hybrid structure, the interfacial thermal resistance (R) between graphene and h-BN can be reduced by 76.3%, indicating an effective approach to manipulate the interfacial thermal transport. Improved in-plane/out-of-plane phonon couplings and broadened phonon channels are observed in the hydrogenated graphene system by analyzing its phonon power spectra. The reported R results monotonically decrease with temperature and interatomic bond strengths. No thermal rectification phenomenon is observed in this interfacial thermal transport. Results reported in this work give the fundamental knowledge on graphene and h-BN thermal transport and provide rational guidelines for next generation thermal interface material designs.

  10. DNA translocation through single-layer boron nitride nanopores.

    PubMed

    Gu, Zonglin; Zhang, Yuanzhao; Luan, Binquan; Zhou, Ruhong

    2016-01-21

    Ultra-thin nanopores have become promising biological sensors because of their outstanding signal-to-noise ratio and spatial resolution. Here, we show that boron nitride (BN), which is a new two-dimensional (2D) material similar to graphene, could be utilized for making a nanopore with an atomic thickness. Using an all-atom molecular dynamics simulation, we investigated the dynamics of DNA translocation through the BN nanopore. The results of our simulations demonstrated that it is possible to detect different double-stranded DNA (dsDNA) sequences from the recording of ionic currents through the pore during the DNA translocation. Surprisingly, opposite to results for a graphene nanopore, we found the calculated blockage current for poly(A-T)40 in a BN nanopore to be less than that for poly(G-C)40. Also in contrast with the case of graphene nanopores, dsDNA models moved smoothly and in an unimpeded manner through the BN nanopores in the simulations, suggesting a potential advantage for using BN nanopores to design stall-free sequencing devices. BN nanopores, which display several properties (such as being hydrophilic and non-metallic) that are superior to those of graphene, are thus expected to find applications in the next generation of high-speed and low-cost biological sensors. PMID:26537824

  11. Boron nitride composites

    DOEpatents

    Kuntz, Joshua D.; Ellsworth, German F.; Swenson, Fritz J.; Allen, Patrick G.

    2016-02-16

    According to one embodiment, a composite product includes hexagonal boron nitride (hBN), and a plurality of cubic boron nitride (cBN) particles, wherein the plurality of cBN particles are dispersed in a matrix of the hBN. According to another embodiment, a composite product includes a plurality of cBN particles, and one or more borate-containing binders.

  12. Synthesis, Properties, and Applications Of Boron Nitride

    NASA Technical Reports Server (NTRS)

    Pouch, John J.; Alterovitz, Samuel A.

    1993-01-01

    Report describes synthesis, properties, and applications of boron nitride. Especially in thin-film form. Boron nitride films useful as masks in x-ray lithography; as layers for passivation of high-speed microelectronic circuits; insulating films; hard, wear-resistant, protective films for optical components; lubricants; and radiation detectors. Present status of single-crystal growth of boron nitride indicates promising candidate for use in high-temperature semiconductor electronics.

  13. Boron nitride housing cools transistors

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Boron nitride ceramic heat sink cools transistors in r-f transmitter and receiver circuits. Heat dissipated by the transistor is conducted by the boron nitride housing to the metal chassis on which it is mounted.

  14. Boron nitride converted carbon fiber

    DOEpatents

    Rousseas, Michael; Mickelson, William; Zettl, Alexander K.

    2016-04-05

    This disclosure provides systems, methods, and apparatus related to boron nitride converted carbon fiber. In one aspect, a method may include the operations of providing boron oxide and carbon fiber, heating the boron oxide to melt the boron oxide and heating the carbon fiber, mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide, and converting at least a portion of the carbon fiber to boron nitride.

  15. Effects of deformation on band-edge luminescence of hexagonal boron nitride single crystals

    NASA Astrophysics Data System (ADS)

    Watanabe, Kenji; Taniguchi, Takashi; Kuroda, Takashi; Kanda, Hisao

    2006-10-01

    The authors observed a drastic change in exciton-related luminescence in deformed hexagonal boron nitride single crystals. High quality single crystals that showed a free exciton luminescence band at 215nm were used as a starting material. They were pinched between aluminum plates and pressed with the tips of the first two fingers. The pressed crystals dominantly showed band-edge luminescence at the 227 instead of the 215nm band. The authors attribute this 227nm band to bound exciton luminescence caused by the stacking disorder produced by the mechanical deformation.

  16. Structure of boron nitride nanotubes

    SciTech Connect

    Buranova, Yu. S. Kulnitskiy, B. A.; Perezhogin, I. A.; Blank, V. D.

    2015-01-15

    The crystallographic structure of boron nitride nanotubes has been investigated. Various defects that may arise during nanotube synthesis are revealed by electron microscopy. Nanotubes with different numbers of walls and different diameters are modeled by molecular dynamics methods. Structural features of single-wall nanotubes are demonstrated. The causes of certain defects in multiwall nanotubes are indicated.

  17. Method of manufacture of atomically thin boron nitride

    DOEpatents

    Zettl, Alexander K

    2013-08-06

    The present invention provides a method of fabricating at least one single layer hexagonal boron nitride (h-BN). In an exemplary embodiment, the method includes (1) suspending at least one multilayer boron nitride across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure. The present invention also provides a method of fabricating single layer hexagonal boron nitride. In an exemplary embodiment, the method includes (1) providing multilayer boron nitride suspended across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure.

  18. Characterization of bulk hexagonal boron nitride single crystals grown by the metal flux technique

    NASA Astrophysics Data System (ADS)

    Edgar, J. H.; Hoffman, T. B.; Clubine, B.; Currie, M.; Du, X. Z.; Lin, J. Y.; Jiang, H. X.

    2014-10-01

    The optical and physical properties of hexagonal boron nitride single crystals grown from a molten metal solution are reported. The hBN crystals were grown by precipitation from a nickel-chromium flux with a boron nitride source, by slowly cooling from 1500 °C at 2-4 °C/h under a nitrogen flow at atmospheric pressure. The hBN crystals formed on the surface of the flux with an apparent crystal size up to 1-2 mm in diameter. Individual grains were as large as 100-200 μm across. Typically, the flakes removed from the metal were 6-20 μm thick. Optical absorption measurements suggest a bandgap of 5.8 eV by neglecting the binding energy of excitons in hBN. The highest energy photoluminescence peak was at 5.75 eV at room temperature. The hBN crystals typically had a pit density of 5×106 cm-2 after etching in a molten eutectic mixture of potassium hydroxide and sodium hydroxide. The quality of these crystals suggests they are suitable as substrates for two dimensional materials such as graphene and gallium nitride based devices.

  19. Robust Multicolor Single Photon Emission from Point Defects in Hexagonal Boron Nitride.

    PubMed

    Tran, Toan Trong; Elbadawi, Christopher; Totonjian, Daniel; Lobo, Charlene J; Grosso, Gabriele; Moon, Hyowon; Englund, Dirk R; Ford, Michael J; Aharonovich, Igor; Toth, Milos

    2016-08-23

    Hexagonal boron nitride (hBN) is an emerging two-dimensional material for quantum photonics owing to its large bandgap and hyperbolic properties. Here we report two approaches for engineering quantum emitters in hBN multilayers using either electron beam irradiation or annealing and characterize their photophysical properties. The defects exhibit a broad range of multicolor room-temperature single photon emissions across the visible and the near-infrared spectral ranges, narrow line widths of sub-10 nm at room temperature, and a short excited-state lifetime, and high brightness. We show that the emitters can be categorized into two general groups, but most likely possess similar crystallographic structure. Remarkably, the emitters are extremely robust and withstand aggressive annealing treatments in oxidizing and reducing environments. Our results constitute a step toward deterministic engineering of single emitters in 2D materials and hold great promise for the use of defects in boron nitride as sources for quantum information processing and nanophotonics. PMID:27399936

  20. Tunable and Sizable Band Gap of Single Layer Graphene Sandwiched between Hexagonal Boron Nitride

    NASA Astrophysics Data System (ADS)

    Zheng, Jiaxin; Qu, Heruge; Liu, Qihang; Qin, Rui; Zhou, Jing; Yu, Dapeng; Gao, Zhengxiang; Lu, Jing; Luo, Guangfu; Nagase, Shigeru; Mei, Wai-Ning

    2012-02-01

    It is a big challenge to open a tunable and sizable band gap of single layer graphene without big loss in structural integrity and carrier mobility. By using density functional theory calculations, we show that the band gap of single layer graphene can be opened to 0.16 (without electrical field) and 0.34 eV (with a strong electrical field) when sandwiched between two hexagonal boron nitride single layers in a proper way. The zero-field band gaps are increased by about 50% when many-body effects are included. Ab initio quantum transport simulation of a dual-gated FET out of such a sandwich structure further confirms an electrical field-enhanced transport gap. The tunable and sizeable band gap and structural integrity render this sandwich structure a promising candidate for high-performance single layer graphene field effect transistors.

  1. Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube.

    PubMed

    Siria, Alessandro; Poncharal, Philippe; Biance, Anne-Laure; Fulcrand, Rémy; Blase, Xavier; Purcell, Stephen T; Bocquet, Lydéric

    2013-02-28

    New models of fluid transport are expected to emerge from the confinement of liquids at the nanoscale, with potential applications in ultrafiltration, desalination and energy conversion. Nevertheless, advancing our fundamental understanding of fluid transport on the smallest scales requires mass and ion dynamics to be ultimately characterized across an individual channel to avoid averaging over many pores. A major challenge for nanofluidics thus lies in building distinct and well-controlled nanochannels, amenable to the systematic exploration of their properties. Here we describe the fabrication and use of a hierarchical nanofluidic device made of a boron nitride nanotube that pierces an ultrathin membrane and connects two fluid reservoirs. Such a transmembrane geometry allows the detailed study of fluidic transport through a single nanotube under diverse forces, including electric fields, pressure drops and chemical gradients. Using this device, we discover very large, osmotically induced electric currents generated by salinity gradients, exceeding by two orders of magnitude their pressure-driven counterpart. We show that this result originates in the anomalously high surface charge carried by the nanotube's internal surface in water at large pH, which we independently quantify in conductance measurements. The nano-assembly route using nanostructures as building blocks opens the way to studying fluid, ionic and molecule transport on the nanoscale, and may lead to biomimetic functionalities. Our results furthermore suggest that boron nitride nanotubes could be used as membranes for osmotic power harvesting under salinity gradients. PMID:23446417

  2. Variations in Crystalline Structures and Electrical Properties of Single Crystalline Boron Nitride Nanosheets

    PubMed Central

    Aldalbahi, Ali; Zhou, Andrew Feng; Feng, Peter

    2015-01-01

    We report the studies of (1) the basic mechanism underlying the formation of defect-free, single crystalline boron nitride nanosheets (BNNSs) synthesized using pulsed laser plasma deposition (PLPD) technique, (2) the variation in the crystalline structure at the edges of the hexagonal boron nitride (h-BN) nanosheets, and (3) the basic electrical properties related to the BNNSs tunneling effect and electrical breakdown voltage. The nanoscale morphologies of BNNSs are characterized using scanning electron microscope (SEM) and high-resolution transmission electron microscope (HRTEM). The results show that each sample consisted of a number of transparent BNNSs that partially overlapped one another. Varying the deposition duration yielded different thicknesses of sample but did not affect the morphology, structure, and thickness of individual BNNSs pieces. Analysis of the SEM and HRTEM data revealed changes in the spatial period of the B3–N3 hexagonal structures and the interlayer distance at the edge of the BNNSs, which occurred due to the limited number of atomic layers and was confirmed further by x-ray diffraction (XRD) study. The experimental results clearly indicate that the values of the electrical conductivities of the super-thin BNNSs and the effect of temperature relied strongly on the direction of observation. PMID:26563901

  3. Variations in Crystalline Structures and Electrical Properties of Single Crystalline Boron Nitride Nanosheets.

    PubMed

    Aldalbahi, Ali; Zhou, Andrew Feng; Feng, Peter

    2015-01-01

    We report the studies of (1) the basic mechanism underlying the formation of defect-free, single crystalline boron nitride nanosheets (BNNSs) synthesized using pulsed laser plasma deposition (PLPD) technique, (2) the variation in the crystalline structure at the edges of the hexagonal boron nitride (h-BN) nanosheets, and (3) the basic electrical properties related to the BNNSs tunneling effect and electrical breakdown voltage. The nanoscale morphologies of BNNSs are characterized using scanning electron microscope (SEM) and high-resolution transmission electron microscope (HRTEM). The results show that each sample consisted of a number of transparent BNNSs that partially overlapped one another. Varying the deposition duration yielded different thicknesses of sample but did not affect the morphology, structure, and thickness of individual BNNSs pieces. Analysis of the SEM and HRTEM data revealed changes in the spatial period of the B3-N3 hexagonal structures and the interlayer distance at the edge of the BNNSs, which occurred due to the limited number of atomic layers and was confirmed further by x-ray diffraction (XRD) study. The experimental results clearly indicate that the values of the electrical conductivities of the super-thin BNNSs and the effect of temperature relied strongly on the direction of observation. PMID:26563901

  4. Engineering radial deformations in single-walled carbon and boron nitride nanotubes using ultrathin nanomembranes.

    PubMed

    Zheng, Meng; Zou, Lian-Feng; Wang, Howard; Park, Cheol; Ke, Changhong

    2012-02-28

    Radial deformations of carbon and boron-nitride nanotubes are of great importance to their respective electronic properties and applications. In this paper, we present a simple and practical approach of engineering radial deformations in single-walled carbon and boron-nitride nanotubes (SWCNTs and SW-BNNTs) through covering individual nanotubes lying on flat substrates with subnanometer-thick monolayer graphene oxide (GO) nanomembranes. The GO membrane conforms to and transversely compresses the underlying nanotube as a result of its adhesion binding interaction with the substrate. Our atomic force microscopy (AFM) imaging measurements reveal that the engineered net radial deformations of both types of tubes increase with the tube diameter and are more for SW-BNNTs compared with SWCNTs of the same tube diameter. Our results capture the net cross-section height reductions of up to 44.1% for SW-BNNTs and up to 29.7% for SWCNTs. Our work clearly demonstrates the effectiveness of our proposed approach for engineering and controlling the radial deformation in one-dimensional tubular nanostructures and opens a promising route for mechanical tuning of their electronic properties for novel nanoelectronics applications. PMID:22280493

  5. Very long single- and few-walled boron nitride nanotubes via the pressurized vapor/condenser method

    SciTech Connect

    Michael W. Smith; Jordan, Kevin C.; Park, Cheol; Kim, Jae-Woo; Lillehei, Peter T.; Crooks, Roy; Harrison, Joycelyn S.

    2009-11-01

    Boron nitride nanotubes (BNNTs) are desired for their exceptional mechanical, electronic, thermal, structural, textural, optical, and quantum properties. A new method for producing long, small-diameter, single- and few-walled, boron nitride nanotubes (BNNTs) in macroscopic quantities is reported. The pressurized vapor/condenser (PVC) method produces, without catalysts, highly crystalline, very long, small-diameter, BNNTs. Palm-sized, cotton-like masses of BNNT raw material were grown by this technique and spun directly into centimeters-long yarn. Nanotube lengths were observed to be 100 times that of those grown by the most closely related method. Self-assembly and growth models for these long BNNTs are discussed.

  6. Enhanced thermal conductivity and isotope effect in single-layer hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Lindsay, L.; Broido, D. A.

    2011-10-01

    The thermal conductivity, κ, of single layers of hexagonal boron nitride (h-BN), as well as that of bulk h-BN have been calculated utilizing an exact numerical solution of the phonon Boltzmann transport equation. The stronger phonon-phonon scattering in h-BN is revealed as the cause for its lower κ compared with graphite. A reduction in such scattering in the single layer arising mainly from a symmetry-based selection rule leads to a substantial increase in κ, with calculated room temperature values of more than 600 Wm-1K-1. Isotopic enrichment further increases κ, with the calculated enhancement exhibiting a peak with temperature, whose magnitude shows a dramatic sensitivity to crystallite size.

  7. Epitaxial growth of a single-domain hexagonal boron nitride monolayer.

    PubMed

    Orlando, Fabrizio; Lacovig, Paolo; Omiciuolo, Luca; Apostol, Nicoleta G; Larciprete, Rosanna; Baraldi, Alessandro; Lizzit, Silvano

    2014-12-23

    We investigate the structure of epitaxially grown hexagonal boron nitride (h-BN) on Ir(111) by chemical vapor deposition of borazine. Using photoelectron diffraction spectroscopy, we unambiguously show that a single-domain h-BN monolayer can be synthesized by a cyclic dose of high-purity borazine onto the metal substrate at room temperature followed by annealing at T=1270 K, this method giving rise to a diffraction pattern with 3-fold symmetry. In contrast, high-temperature borazine deposition (T=1070 K) results in a h-BN monolayer formed by domains with opposite orientation and characterized by a 6-fold symmetric diffraction pattern. We identify the thermal energy and the binding energy difference between fcc and hcp seeds as key parameters in controlling the alignment of the growing h-BN clusters during the first stage of the growth, and we further propose structural models for the h-BN monolayer on the Ir(111) surface. PMID:25389799

  8. Theoretical studies of urea adsorption on single wall boron-nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Chermahini, Alireza Najafi; Teimouri, Abbas; Farrokhpour, Hossein

    2014-11-01

    Surface modification of a boron nitride nanotube (BNNT) with urea molecule was investigated in terms of its energetic, geometric, and electronic properties using B3LYP and PW91 density functionals. In this investigation, various armchair (n,n) nanotubes, where n = 5, 6, 7 have been used. Two different interaction modes, including interaction with outer layer and inner layer of tube were studied. The results indicated that the adsorption of single urea molecule in all of its configurations is observed to be exothermic and physical in nature. Interestingly, the adsorption energy for the most stable configuration of urea was observed when the molecule located inside of the nanotube. Besides, the adsorption of urea on BNNTs changes the conductivity of nanotube.

  9. Tubular Shape Fullerenes Inside Single Wall Boron Nitride Nanotubes: A Theoretical Simulation.

    PubMed

    Ma, Fengxian; Yao, Zhen; Yao, Mingguang; Liu, Ran; Cui, Tian; Liu, Bingbing

    2016-06-01

    The orientations of fullerene molecules filled in nanotubes have important influence on the electronic properties of the formed peapods and their transformations such as polymerization under certain conditions. Here we present a investigation on the preferable orientations of tubular C70, C80 and C90 fullerenes confined inside single-walled boron nitride nanotubes (SWBNNTs) by calculating the van der Waals energy between the encapsulated molecule and the hosting nanotube. The minimum entering radius and the energetically favorable radius for encapsulating C70, C80 and C90 have been determined by the reaction energy calculation. We also show that the three studied molecules filled in SWBNNTs exhibit a transition from lying (five-fold axis) orientation to tilted orientation and then to standing orientation (two-fold axis) with increasing the tube radius. The preferable orientations of the encapsulated fullerenes are irrelevant on the tube chirality, but are dependent on the radius. PMID:27427630

  10. Chirality dependent elastic properties of single-walled boron nitride nanotubes under uniaxial and torsional loading

    SciTech Connect

    Anoop Krishnan, N. M. Ghosh, Debraj

    2014-02-14

    The elastic behavior of single-walled boron nitride nanotubes is studied under axial and torsional loading. Molecular dynamics simulation is carried out with a tersoff potential for modeling the interatomic interactions. Different chiral configurations with similar diameter are considered to study the effect of chirality on the elastic and shear moduli. Furthermore, the effects of tube length on elastic modulus are also studied by considering different aspects ratios. It is observed that both elastic and shear moduli depend upon the chirality of a nanotube. For aspect ratios less than 15, the elastic modulus reduces monotonically with an increase in the chiral angle. For chiral nanotubes, the torsional response shows a dependence on the direction of loading. The difference between the shear moduli against and along the chiral twist directions is maximum for chiral angle of 15°, and zero for zigzag (0°) and armchair (30°) configurations.

  11. Heteroepitaxial Growth of Single-Walled Carbon Nanotubes from Boron Nitride

    PubMed Central

    Tang, Dai-Ming; Zhang, Li-Li; Liu, Chang; Yin, Li-Chang; Hou, Peng-Xiang; Jiang, Hua; Zhu, Zhen; Li, Feng; Liu, Bilu; Kauppinen, Esko I.; Cheng, Hui-Ming

    2012-01-01

    The growth of single-walled carbon nanotubes (SWCNTs) with predefined structure is of great importance for both fundamental research and their practical applications. Traditionally, SWCNTs are grown from a metal catalyst with a vapor-liquid-solid mechanism, where the catalyst is in liquid state with fluctuating structures, and it is intrinsically unfavorable for the structure control of SWCNTs. Here we report the heteroepitaxial growth of SWCNTs from a platelet boron nitride nanofiber (BNNF), which is composed of stacked (002) planes and is stable at high temperatures. SWCNTs are found to grow epitaxially from the open (002) edges of the BNNFs, and the diameters of the SWCNTs are multiples of the BN (002) interplanar distance. In situ transmission electron microscopy observations coupled with first principles calculations reveal that the growth of SWCNTs from the BNNFs follows a vapor-solid-solid mechanism. Our work opens opportunities for the control over the structure of SWCNTs by hetero-crystallographic epitaxy. PMID:23240076

  12. Functionalized boron nitride nanotubes

    DOEpatents

    Sainsbury, Toby; Ikuno, Takashi; Zettl, Alexander K

    2014-04-22

    A plasma treatment has been used to modify the surface of BNNTs. In one example, the surface of the BNNT has been modified using ammonia plasma to include amine functional groups. Amine functionalization allows BNNTs to be soluble in chloroform, which had not been possible previously. Further functionalization of amine-functionalized BNNTs with thiol-terminated organic molecules has also been demonstrated. Gold nanoparticles have been self-assembled at the surface of both amine- and thiol-functionalized boron nitride Nanotubes (BNNTs) in solution. This approach constitutes a basis for the preparation of highly functionalized BNNTs and for their utilization as nanoscale templates for assembly and integration with other nanoscale materials.

  13. Enhanced thermal conductivity and isotope effect in single-layer hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Broido, David; Lindsay, Lucas

    2012-02-01

    We have calculated the lattice thermal conductivity, k, of both naturally occurring and isotopically enriched single layers of hexagonal boron nitride (h-BN) as well as bulk h-BN using an exact numerical solution of the Boltzmann transport equation for phonons [1]. Good agreement is obtained with measured bulk h-BN data [2], and the stronger phonon-phonon scattering identified in these systems explains why their k values are significantly lower than those in graphene and graphite. A reduction in such scattering in the single layer arising mainly from a symmetry-based selection rule leads to a substantial increase in k, with calculated room temperature values of more than 600 W/m-K. Additional enhancement is obtained from isotopic enrichment, which exhibits a strong peak as a function of temperature, with magnitude growing rapidly with crystallite size. [1] L. Lindsay and D. A. Broido, Phys. Rev. B 84, 155421 (2011). [2] E. K. Sichel, R. E. Miller, M. S. Abrahams, and C. J. Buiocchi, Phys. Rev. B 13, 4607 (1976).

  14. Single Crystalline Film of Hexagonal Boron Nitride Atomic Monolayer by Controlling Nucleation Seeds and Domains

    PubMed Central

    Wu, Qinke; Park, Ji-Hoon; Park, Sangwoo; Jung, Seong Jun; Suh, Hwansoo; Park, Noejung; Wongwiriyapan, Winadda; Lee, Sungjoo; Lee, Young Hee; Song, Young Jae

    2015-01-01

    A monolayer hexagonal boron nitride (h-BN) film with controllable domain morphology and domain size (varying from less than 1 μm to more than 100 μm) with uniform crystalline orientation was successfully synthesized by chemical vapor deposition (CVD). The key for this extremely large single crystalline domain size of a h-BN monolayer is a decrease in the density of nucleation seeds by increasing the hydrogen gas flow during the h-BN growth. Moreover, the well-defined shape of h-BN flakes can be selectively grown by controlling Cu-annealing time under argon atmosphere prior to h-BN growth, which provides the h-BN shape varies in triangular, trapezoidal, hexagonal and complex shapes. The uniform crystalline orientation of h-BN from different nucleation seeds can be easily confirmed by polarized optical microscopy (POM) with a liquid crystal coating. Furthermore, seamlessly merged h-BN flakes without structural domain boundaries were evidence by a selective hydrogen etching after a full coverage of a h-BN film was achieved. This seamless large-area and atomic monolayer of single crystalline h-BN film can offer as an ideal and practical template of graphene-based devices or alternative two-dimensional materials for industrial applications with scalability. PMID:26537788

  15. Single Crystalline Film of Hexagonal Boron Nitride Atomic Monolayer by Controlling Nucleation Seeds and Domains

    NASA Astrophysics Data System (ADS)

    Wu, Qinke; Park, Ji-Hoon; Park, Sangwoo; Jung, Seong Jun; Suh, Hwansoo; Park, Noejung; Wongwiriyapan, Winadda; Lee, Sungjoo; Lee, Young Hee; Song, Young Jae

    2015-11-01

    A monolayer hexagonal boron nitride (h-BN) film with controllable domain morphology and domain size (varying from less than 1 μm to more than 100 μm) with uniform crystalline orientation was successfully synthesized by chemical vapor deposition (CVD). The key for this extremely large single crystalline domain size of a h-BN monolayer is a decrease in the density of nucleation seeds by increasing the hydrogen gas flow during the h-BN growth. Moreover, the well-defined shape of h-BN flakes can be selectively grown by controlling Cu-annealing time under argon atmosphere prior to h-BN growth, which provides the h-BN shape varies in triangular, trapezoidal, hexagonal and complex shapes. The uniform crystalline orientation of h-BN from different nucleation seeds can be easily confirmed by polarized optical microscopy (POM) with a liquid crystal coating. Furthermore, seamlessly merged h-BN flakes without structural domain boundaries were evidence by a selective hydrogen etching after a full coverage of a h-BN film was achieved. This seamless large-area and atomic monolayer of single crystalline h-BN film can offer as an ideal and practical template of graphene-based devices or alternative two-dimensional materials for industrial applications with scalability.

  16. Synthesis of large single-crystal hexagonal boron nitride grains on Cu-Ni alloy.

    PubMed

    Lu, Guangyuan; Wu, Tianru; Yuan, Qinghong; Wang, Huishan; Wang, Haomin; Ding, Feng; Xie, Xiaoming; Jiang, Mianheng

    2015-01-01

    Hexagonal boron nitride (h-BN) has attracted significant attention because of its superior properties as well as its potential as an ideal dielectric layer for graphene-based devices. The h-BN films obtained via chemical vapour deposition in earlier reports are always polycrystalline with small grains because of high nucleation density on substrates. Here we report the successful synthesis of large single-crystal h-BN grains on rational designed Cu-Ni alloy foils. It is found that the nucleation density can be greatly reduced to 60 per mm(2) by optimizing Ni ratio in substrates. The strategy enables the growth of single-crystal h-BN grains up to 7,500 μm(2), approximately two orders larger than that in previous reports. This work not only provides valuable information for understanding h-BN nucleation and growth mechanisms, but also gives an effective alternative to exfoliated h-BN as a high-quality dielectric layer for large-scale nanoelectronic applications. PMID:25606802

  17. Synthesis of large single-crystal hexagonal boron nitride grains on Cu-Ni alloy

    NASA Astrophysics Data System (ADS)

    Lu, Guangyuan; Wu, Tianru; Yuan, Qinghong; Wang, Huishan; Wang, Haomin; Ding, Feng; Xie, Xiaoming; Jiang, Mianheng

    2015-01-01

    Hexagonal boron nitride (h-BN) has attracted significant attention because of its superior properties as well as its potential as an ideal dielectric layer for graphene-based devices. The h-BN films obtained via chemical vapour deposition in earlier reports are always polycrystalline with small grains because of high nucleation density on substrates. Here we report the successful synthesis of large single-crystal h-BN grains on rational designed Cu-Ni alloy foils. It is found that the nucleation density can be greatly reduced to 60 per mm2 by optimizing Ni ratio in substrates. The strategy enables the growth of single-crystal h-BN grains up to 7,500 μm2, approximately two orders larger than that in previous reports. This work not only provides valuable information for understanding h-BN nucleation and growth mechanisms, but also gives an effective alternative to exfoliated h-BN as a high-quality dielectric layer for large-scale nanoelectronic applications.

  18. The excitonic effects in single and double-walled boron nitride nanotubes

    SciTech Connect

    Wang, Shudong; Li, Yunhai; Wang, Jinlan; Yip, Joanne

    2014-06-28

    The electronic structures and excitonic optical properties of single- and double-walled armchair boron nitride nanotubes (BNNTs) [e.g., (5,5) and (10,10), and (5,5)@(10,10)] are investigated within many-body Green's function and Bethe-Salpeter equation formalism. The first absorption peak of the double-walled nanotube has almost no shift compared with the single-walled (5,5) tube due to the strong optical transition in the double-walled tube that occurs within the inner (5,5) one. Dark and semi-dark excitonic states are detected in the lower energy region, stemming from the charge transfer between inner and outer tubes in the double-walled structure. Most interestingly, the charge transfer makes the electron and the hole reside in different tubes. Moreover, the excited electrons in the double-walled BNNT are able to transfer from the outer tube to the inner one, opposite to that which has been observed in double-walled carbon nanotubes.

  19. Single Crystalline Film of Hexagonal Boron Nitride Atomic Monolayer by Controlling Nucleation Seeds and Domains.

    PubMed

    Wu, Qinke; Park, Ji-Hoon; Park, Sangwoo; Jung, Seong Jun; Suh, Hwansoo; Park, Noejung; Wongwiriyapan, Winadda; Lee, Sungjoo; Lee, Young Hee; Song, Young Jae

    2015-01-01

    A monolayer hexagonal boron nitride (h-BN) film with controllable domain morphology and domain size (varying from less than 1 μm to more than 100 μm) with uniform crystalline orientation was successfully synthesized by chemical vapor deposition (CVD). The key for this extremely large single crystalline domain size of a h-BN monolayer is a decrease in the density of nucleation seeds by increasing the hydrogen gas flow during the h-BN growth. Moreover, the well-defined shape of h-BN flakes can be selectively grown by controlling Cu-annealing time under argon atmosphere prior to h-BN growth, which provides the h-BN shape varies in triangular, trapezoidal, hexagonal and complex shapes. The uniform crystalline orientation of h-BN from different nucleation seeds can be easily confirmed by polarized optical microscopy (POM) with a liquid crystal coating. Furthermore, seamlessly merged h-BN flakes without structural domain boundaries were evidence by a selective hydrogen etching after a full coverage of a h-BN film was achieved. This seamless large-area and atomic monolayer of single crystalline h-BN film can offer as an ideal and practical template of graphene-based devices or alternative two-dimensional materials for industrial applications with scalability. PMID:26537788

  20. Preparation of a boron nitride single layer on a polycrystalline Rh surface

    NASA Astrophysics Data System (ADS)

    Kiss, János; Révész, Károly; Klivényi, Gábor; Solymosi, Frigyes

    2013-01-01

    The segregation of boron and its reactivity toward nitric oxide have been investigated by means of high-resolution Auger spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), and thermal desorption spectroscopy (TDS). The segregation of boron from a Rh foil started from 700 K. Its presence altered the surface behaviors of Rh; the uptake of NO increased by about 30-37%. Whereas the dissociation of NO was about 3-10% on a clean, boron-free surface, the extent of dissociation (at saturation) at highest boron level was almost 98%. This feature strongly suggest a direct interaction between NO and boron on the surface. The presence of boron greatly stabilized the adsorbed nitrogen and oxygen formed in NO dissociation. Boron oxide (BO, B2O2) sublimated from the surface below 1000 K. Clean, single BN layer formed on the surface close to a monolayer regime, presumable in nanomash structure.

  1. Ring state for single transition metal atoms on boron nitride on Rh(111).

    PubMed

    Natterer, Fabian Donat; Patthey, François; Brune, Harald

    2012-08-10

    The low-temperature adsorption of isolated transition metal adatoms (Mn, Co, and Fe) onto hexagonal boron nitride monolayers on Rh(111) creates a bistable adsorption complex. The first state considerably weakens the hexagonal boron nitride- (h-BN-) substrate bond for 60 BN unit cells, leading to a highly symmetric ring in STM images, while the second state is imaged as a conventional adatom and leaves the BN-substrate interaction intact. We demonstrate reversible switching between the two states and, thus, controlled pinning and unpinning of the h-BN layer from the metal substrate. I(z) and d lnI/dz curves are used to reveal the BN deformation in the ring state. PMID:23006283

  2. Silane-catalysed fast growth of large single-crystalline graphene on hexagonal boron nitride

    PubMed Central

    Tang, Shujie; Wang, Haomin; Wang, Hui Shan; Sun, Qiujuan; Zhang, Xiuyun; Cong, Chunxiao; Xie, Hong; Liu, Xiaoyu; Zhou, Xiaohao; Huang, Fuqiang; Chen, Xiaoshuang; Yu, Ting; Ding, Feng; Xie, Xiaoming; Jiang, Mianheng

    2015-01-01

    The direct growth of high-quality, large single-crystalline domains of graphene on a dielectric substrate is of vital importance for applications in electronics and optoelectronics. Traditionally, graphene domains grown on dielectrics are typically only ~1 μm with a growth rate of ~1 nm min−1 or less, the main reason is the lack of a catalyst. Here we show that silane, serving as a gaseous catalyst, is able to boost the graphene growth rate to ~1 μm min−1, thereby promoting graphene domains up to 20 μm in size to be synthesized via chemical vapour deposition (CVD) on hexagonal boron nitride (h-BN). Hall measurements show that the mobility of the sample reaches 20,000 cm2 V−1 s−1 at room temperature, which is among the best for CVD-grown graphene. Combining the advantages of both catalytic CVD and the ultra-flat dielectric substrate, gaseous catalyst-assisted CVD paves the way for synthesizing high-quality graphene for device applications while avoiding the transfer process. PMID:25757864

  3. Silane-catalysed fast growth of large single-crystalline graphene on hexagonal boron nitride.

    PubMed

    Tang, Shujie; Wang, Haomin; Wang, Hui Shan; Sun, Qiujuan; Zhang, Xiuyun; Cong, Chunxiao; Xie, Hong; Liu, Xiaoyu; Zhou, Xiaohao; Huang, Fuqiang; Chen, Xiaoshuang; Yu, Ting; Ding, Feng; Xie, Xiaoming; Jiang, Mianheng

    2015-01-01

    The direct growth of high-quality, large single-crystalline domains of graphene on a dielectric substrate is of vital importance for applications in electronics and optoelectronics. Traditionally, graphene domains grown on dielectrics are typically only ~1 μm with a growth rate of ~1 nm min(-1) or less, the main reason is the lack of a catalyst. Here we show that silane, serving as a gaseous catalyst, is able to boost the graphene growth rate to ~1 μm min(-1), thereby promoting graphene domains up to 20 μm in size to be synthesized via chemical vapour deposition (CVD) on hexagonal boron nitride (h-BN). Hall measurements show that the mobility of the sample reaches 20,000 cm(2) V(-1) s(-1) at room temperature, which is among the best for CVD-grown graphene. Combining the advantages of both catalytic CVD and the ultra-flat dielectric substrate, gaseous catalyst-assisted CVD paves the way for synthesizing high-quality graphene for device applications while avoiding the transfer process. PMID:25757864

  4. Synthesis of aligned symmetrical multifaceted monolayer hexagonal boron nitride single crystals on resolidified copper

    NASA Astrophysics Data System (ADS)

    Tay, Roland Yingjie; Park, Hyo Ju; Ryu, Gyeong Hee; Tan, Dunlin; Tsang, Siu Hon; Li, Hongling; Liu, Wenwen; Teo, Edwin Hang Tong; Lee, Zonghoon; Lifshitz, Yeshayahu; Ruoff, Rodney S.

    2016-01-01

    Atomically smooth hexagonal boron nitride (h-BN) films are considered as a nearly ideal dielectric interface for two-dimensional (2D) heterostructure devices. Reported mono- to few-layer 2D h-BN films, however, are mostly small grain-sized, polycrystalline and randomly oriented. Here we report the growth of centimetre-sized atomically thin h-BN films composed of aligned domains on resolidified Cu. The films consist of monolayer single crystalline triangular and hexagonal domains with size of up to ~10 μm. The domains converge to symmetrical multifaceted shapes such as ``butterfly'' and ``6-apex-star'' and exhibit ~75% grain alignment for over millimetre distances as verified through transmission electron microscopy. Scanning electron microscopy images reveal that these domains are aligned for over centimetre distances. Defect lines are generated along the grain boundaries of mirroring h-BN domains due to the two different polarities (BN and NB) and edges with the same termination. The observed triangular domains with truncated edges and alternatively hexagonal domains are in accordance with Wulff shapes that have minimum edge energy. This work provides an extensive study on the aligned growth of h-BN single crystals over large distances and highlights the obstacles that are needed to be overcome for a 2D material with a binary configuration.Atomically smooth hexagonal boron nitride (h-BN) films are considered as a nearly ideal dielectric interface for two-dimensional (2D) heterostructure devices. Reported mono- to few-layer 2D h-BN films, however, are mostly small grain-sized, polycrystalline and randomly oriented. Here we report the growth of centimetre-sized atomically thin h-BN films composed of aligned domains on resolidified Cu. The films consist of monolayer single crystalline triangular and hexagonal domains with size of up to ~10 μm. The domains converge to symmetrical multifaceted shapes such as ``butterfly'' and ``6-apex-star'' and exhibit ~75% grain

  5. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Absorption Related to Electrochromism in Cubic Boron Nitride Single Crystals

    NASA Astrophysics Data System (ADS)

    Ren, Ce; Chen, Zhan-Guo; Jia, Gang; Liu, Xiu-Huan; Zhao, Jian-Xun; Wang, Shuang

    2009-06-01

    A unusual electrochromism is observed in amber cubic boron nitride (cBN) single crystals when breakdown possibly related to impurities and defects occurs. The electrochromism induces an abrupt increase in the absorption coefficient of the cBN crystals within the visible and infrared region. The change of the absorption coefficient of cBN crystal can be increased linearly by raising the current after the electrochromism occurs, whereas it is irrelevant to the polarization of the incident light. The absorption related to the electrochromism in the cBN single crystal has potential applications in designing and manufacturing electro-optical modulators, optical switches, and other optoelectric devices.

  6. Compressible elastomeric aerogels of hexagonal boron nitride and single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Joo Jeong, Yeon; Islam, Mohammad F.

    2015-07-01

    Lightweight porous ceramic materials that can recover their shapes after mechanical deformation have numerous applications. However, these types of materials tend to be highly fragile and often crack when compressed. Here, we report on the fabrication and characterization of highly porous, freestanding composites of hexagonal boron nitride (h-BN) and single-walled carbon nanotubes (SWCNTs) of density 13-15 mg mL-1, which corresponds to a volume fraction of 0.009, that were mechanically robust and recovered their original shape even after uniaxially compressing them by more than 50%. We made these porous elastomeric composites using a solution based assembly process that involved first shaping SWCNTs into porous networks of density ~7 mg mL-1 (volume fraction ~0.005) followed by coatings of SWCNT networks with 6-8 mg mL-1 of h-BN (volume fraction ~0.003-0.004). The h-BN coating strengthened the underlying SWCNT networks, likely via reinforcement of the nodes between the SWCNTs, resulting in an increase in Young's modulus by ~100% compared to that of SWCNT networks alone. Surprisingly, SWCNT networks, which were initially highly fragile, became elastomeric after h-BN coating, even though porous structures solely from h-BN are very brittle. Our fabrication approach preserves the morphology of the underlying networks, allowing for fabrication of various shapes and sizes of porous composites of h-BN and SWCNTs. Finally, our fabrication scheme is robust and facile for the preparation of porous composites of diverse ceramic materials and SWCNTs using the appropriate ceramic-precursor.Lightweight porous ceramic materials that can recover their shapes after mechanical deformation have numerous applications. However, these types of materials tend to be highly fragile and often crack when compressed. Here, we report on the fabrication and characterization of highly porous, freestanding composites of hexagonal boron nitride (h-BN) and single-walled carbon nanotubes (SWCNTs) of

  7. Can trans-polyacetylene be formed on single-walled carbon-doped boron nitride nanotubes?

    PubMed

    Chen, Ying; Wang, Hong-xia; Zhao, Jing-xiang; Cai, Qing-hai; Wang, Xiao-guang; Wang, Xuan-zhang

    2012-07-01

    Recently, the grafting of polymer chains onto nanotubes has attracted increasing attention as it can potentially be used to enhance the solubility of nanotubes and in the development of novel nanotube-based devices. In this article, based on density functional theory (DFT) calculations, we report the formation of trans-polyacetylene on single-walled carbon-doped boron nitride nanotubes (BNNTs) through their adsorption of a series of C(2)H(2) molecules. The results show that, rather than through [2 + 2] cycloaddition, an individualmolecule would preferentially attach to a carbon-doped BNNT via "carbon attack" (i.e., a carbon in the C(2)H(2) attacks a site on the BNNT). The adsorption energy gradually decreases with increasing tube diameter. The free radical of the carbon-doped BNNT is almost completely transferred to the carbon atom at the end of the adsorbed C(2)H(2) molecule. When another C(2)H(2) molecule approaches the carbon-doped BNNT, it is most energetically favorable for this C(2)H(2) molecule to be adsorbed at the end of the previously adsorbed C(2)H(2) molecule, and so on with extra C(2)H(2) molecules, leading to the formation of polyacetylene on the nanotube. The spin of the whole system is always localized at the tip of the polyacetylene formed, which initiates the adsorption of the incoming species. The present results imply that carbon-doped BNNT is an effective "metal-free" initiator for the formation of polyacetylene. PMID:22271098

  8. Electroluminescence of cubic boron nitride single crystal flakes with color-zoning

    NASA Astrophysics Data System (ADS)

    Liu, Xiuhuan; Wang, Shuang; Chen, Zhanguo; Jia, Gang; Bian, Tianliang; Hou, Lixin; Wang, Qi; Liu, Nian

    2015-04-01

    The current-voltage (I-V) characteristics and phenomena of electroluminescence of cubic boron nitride (cBN) single crystal flakes with color-zoning under extremely non-uniform electric fields (ENUEFs) induced by needle-plate electrodes were observed. When a cBN flake with sizes of 0.3×0.3×0.1 mm3 was tightly fixed between the tungsten needle and brass plate electrodes in the atmosphere, the I-V relationship exhibited nonlinearity, and peculiar phenomena of electroluminescence with bright blue-violet light appeared at the bias voltage in a range of 700-1200 V. The current-controlled differential negative resistance was synchronously observed. The electroluminescent phenomena were somewhat different for cases of the needle electrode respectively contacting to the amber and transparent zones. The electroluminescent radiations of cBN flakes biased at voltages with a range of 600-1550 V were also investigated in vacuum. In a vacuum chamber, the green emitting phosphor spread around the cBN flake might be excited by the vacuum ultraviolet (VUV) emission from the cBN crystal, and the green fluorescence was observed by naked eyes. The VUV radiation spectrum with a peak wavelength of 149 nm was measured. In the atmosphere, the blue-violet light emission may be the gas discharge resulted from the air ionization induced by the VUV emission from the cBN crystal under the ENUEF, and the ENUEF subsequently keeps the air discharging. The VUV emission from the cBN crystal under the ENUEF can be caused by the original interband transition and the subsequent intraband transfer for electrons, and the final electron-hole direct recombination.

  9. Compressible elastomeric aerogels of hexagonal boron nitride and single-walled carbon nanotubes.

    PubMed

    Jeong, Yeon Joo; Islam, Mohammad F

    2015-08-14

    Lightweight porous ceramic materials that can recover their shapes after mechanical deformation have numerous applications. However, these types of materials tend to be highly fragile and often crack when compressed. Here, we report on the fabrication and characterization of highly porous, freestanding composites of hexagonal boron nitride (h-BN) and single-walled carbon nanotubes (SWCNTs) of density 13-15 mg mL(-1), which corresponds to a volume fraction of 0.009, that were mechanically robust and recovered their original shape even after uniaxially compressing them by more than 50%. We made these porous elastomeric composites using a solution based assembly process that involved first shaping SWCNTs into porous networks of density ∼7 mg mL(-1) (volume fraction ∼0.005) followed by coatings of SWCNT networks with 6-8 mg mL(-1) of h-BN (volume fraction ∼0.003-0.004). The h-BN coating strengthened the underlying SWCNT networks, likely via reinforcement of the nodes between the SWCNTs, resulting in an increase in Young's modulus by ∼100% compared to that of SWCNT networks alone. Surprisingly, SWCNT networks, which were initially highly fragile, became elastomeric after h-BN coating, even though porous structures solely from h-BN are very brittle. Our fabrication approach preserves the morphology of the underlying networks, allowing for fabrication of various shapes and sizes of porous composites of h-BN and SWCNTs. Finally, our fabrication scheme is robust and facile for the preparation of porous composites of diverse ceramic materials and SWCNTs using the appropriate ceramic-precursor. PMID:26161911

  10. Quantum Emission from Defects in Single-Crystalline Hexagonal Boron Nitride

    NASA Astrophysics Data System (ADS)

    Tran, Toan Trong; Zachreson, Cameron; Berhane, Amanuel Michael; Bray, Kerem; Sandstrom, Russell Guy; Li, Lu Hua; Taniguchi, Takashi; Watanabe, Kenji; Aharonovich, Igor; Toth, Milos

    2016-03-01

    Bulk hexagonal boron nitride (hBN) is a highly nonlinear natural hyperbolic material that attracts major attention in modern nanophotonics applications. However, studies of its optical properties in the visible part of the spectrum and quantum emitters hosted by bulk hBN have not been reported to date. In this work, we study the emission properties of hBN crystals in the red spectral range using sub-band-gap optical excitation. Quantum emission from defects is observed at room temperature and characterized in detail. Our results advance the use of hBN in quantum nanophotonics technologies and enhance our fundamental understanding of its optical properties.

  11. High quality single atomic layer deposition of hexagonal boron nitride on single crystalline Rh(111) four-inch wafers

    SciTech Connect

    Hemmi, A.; Bernard, C.; Cun, H.; Roth, S.; Klöckner, M.; Kälin, T.; Osterwalder, J.; Greber, T.; Weinl, M.; Gsell, S.; Schreck, M.

    2014-03-15

    The setup of an apparatus for chemical vapor deposition (CVD) of hexagonal boron nitride (h-BN) and its characterization on four-inch wafers in ultra high vacuum (UHV) environment is reported. It provides well-controlled preparation conditions, such as oxygen and argon plasma assisted cleaning and high temperature annealing. In situ characterization of a wafer is accomplished with target current spectroscopy. A piezo motor driven x-y stage allows measurements with a step size of 1 nm on the complete wafer. To benchmark the system performance, we investigated the growth of single layer h-BN on epitaxial Rh(111) thin films. A thorough analysis of the wafer was performed after cutting in atmosphere by low energy electron diffraction, scanning tunneling microscopy, and ultraviolet and X-ray photoelectron spectroscopies. The apparatus is located in a clean room environment and delivers high quality single layers of h-BN and thus grants access to large area UHV processed surfaces, which had been hitherto restricted to expensive, small area single crystal substrates. The facility is versatile enough for customization to other UHV-CVD processes, e.g., graphene on four-inch wafers.

  12. High quality single atomic layer deposition of hexagonal boron nitride on single crystalline Rh(111) four-inch wafers.

    PubMed

    Hemmi, A; Bernard, C; Cun, H; Roth, S; Klöckner, M; Kälin, T; Weinl, M; Gsell, S; Schreck, M; Osterwalder, J; Greber, T

    2014-03-01

    The setup of an apparatus for chemical vapor deposition (CVD) of hexagonal boron nitride (h-BN) and its characterization on four-inch wafers in ultra high vacuum (UHV) environment is reported. It provides well-controlled preparation conditions, such as oxygen and argon plasma assisted cleaning and high temperature annealing. In situ characterization of a wafer is accomplished with target current spectroscopy. A piezo motor driven x-y stage allows measurements with a step size of 1 nm on the complete wafer. To benchmark the system performance, we investigated the growth of single layer h-BN on epitaxial Rh(111) thin films. A thorough analysis of the wafer was performed after cutting in atmosphere by low energy electron diffraction, scanning tunneling microscopy, and ultraviolet and X-ray photoelectron spectroscopies. The apparatus is located in a clean room environment and delivers high quality single layers of h-BN and thus grants access to large area UHV processed surfaces, which had been hitherto restricted to expensive, small area single crystal substrates. The facility is versatile enough for customization to other UHV-CVD processes, e.g., graphene on four-inch wafers. PMID:24689614

  13. Very long single- and few-walled boron nitride nanotubes via the pressurized vapor/condenser method

    NASA Astrophysics Data System (ADS)

    Smith, Michael W.; Jordan, Kevin C.; Park, Cheol; Kim, Jae-Woo; Lillehei, Peter T.; Crooks, Roy; Harrison, Joycelyn S.

    2009-12-01

    A new method for producing long, small-diameter, single- and few-walled, boron nitride nanotubes (BNNTs) in macroscopic quantities is reported. The pressurized vapor/condenser (PVC) method produces, without catalysts, highly crystalline, very long, small-diameter, BNNTs. Palm-sized, cotton-like masses of BNNT raw material were grown by this technique and spun directly into centimeters-long yarn. Nanotube lengths were observed to be 100 times that of those grown by the most closely related method. Self-assembly and growth models for these long BNNTs are discussed.

  14. Very Long Single and Few-Walled Boron Nitride Nanotubes via the Pressurized Vapor/Condenser Method

    NASA Technical Reports Server (NTRS)

    Smith, Michael W.; Jordan, Kevin C.; Park, Cheol; Kim, Jae-Woo; Lillehei, Peter T.; Crooks, Roy; Harrison, Joycelyn S.

    2009-01-01

    A new method for producing long, small diameter, single and few-walled, boron nitride nanotubes (BNNTs) in macroscopic quantities is reported. The pressurized vapor/condenser (PVC) method produces, without catalysts, highly crystalline, very long, small diameter, BNNTs. Palm-sized, cotton-like masses of BNNT raw material were grown by this technique and spun directly into centimeters-long yarn. Nanotube lengths were observed to be 100 times that of those grown by the most closely related method. Self-assembly and growth models for these long BNNTs are discussed.

  15. Synthesis of aluminium nitride/boron nitride composite materials

    SciTech Connect

    Xiao, T.D. . Polymer Science Program and Dept. of Chemistry); Gonsalves, K.E. . Polymer Science Program and Dept. of Chemistry Univ. of Connecticut, Storrs, CT . Dept. of Chemistry); Strutt, P.R. . Dept. of Metallurgy)

    1993-04-01

    Aluminum nitride/boron nitride composite was synthesized by using boric acid, urea, and aluminum chloride (or aluminum lactate) as the starting compounds. The starting materials were dissolved in water and mixed homogeneously. Ammonolysis of this aqueous solution resulted in the formation of a precomposite gel, which converted into the aluminum nitride/boron nitride composite on further heat treatment. Characterization of both the precomposite and the composite powders included powder X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. Analysis of the composite revealed that the aluminum nitride phase had a hexagonal structure, and the boron nitride phase a turbostratic structure.

  16. Process for making boron nitride using sodium cyanide and boron

    DOEpatents

    Bamberger, Carlos E.

    1990-02-06

    This a very simple process for making boron nitride by mixing sodium cyanide and boron phosphate and heating the mixture in an inert atmosphere until a reaction takes place. The product is a white powder of boron nitride that can be used in applications that require compounds that are stable at high temperatures and that exhibit high electrical resistance.

  17. Process for making boron nitride using sodium cyanide and boron

    DOEpatents

    Bamberger, Carlos E.

    1990-01-01

    This a very simple process for making boron nitride by mixing sodium cyanide and boron phosphate and heating the mixture in an inert atmosphere until a reaction takes place. The product is a white powder of boron nitride that can be used in applications that require compounds that are stable at high temperatures and that exhibit high electrical resistance.

  18. CO oxidation catalyzed by the single Co atom embedded hexagonal boron nitride nanosheet: a DFT-D study.

    PubMed

    Lu, Zhansheng; Lv, Peng; Liang, Yanli; Ma, Dongwei; Zhang, Yi; Zhang, Wenjin; Yang, Xinwei; Yang, Zongxian

    2016-08-21

    A single metal atom stabilized on two dimensional materials (such as graphene and h-BN) exhibits extraordinary activity in the oxidation of CO. The oxidation of CO by molecular O2 on a single cobalt atom embedded in a hexagonal boron nitride monolayer (h-BN) is investigated using first-principles calculations with dispersion-correction. It is found that the single Co atom prefers to reside in a boron vacancy and possesses great stability. There are three mechanisms for CO oxidation: the traditional Eley-Rideal (ER) and Langmuir-Hinshelwood (LH) mechanisms and the termolecular Eley-Rideal (TER) mechanism proposed recently. Given the relatively small reaction barriers of the rate-limiting steps for the ER, LH and TER mechanisms (0.59, 0.55 and 0.41 eV, respectively), all three mechanisms are able to occur at low temperature. The current study may provide useful clues to develop low cost single atom catalysts. PMID:27436673

  19. Nucleation Control for Large, Single Crystalline Domains of Monolayer Hexagonal Boron Nitride via Si-Doped Fe Catalysts

    PubMed Central

    2015-01-01

    The scalable chemical vapor deposition of monolayer hexagonal boron nitride (h-BN) single crystals, with lateral dimensions of ∼0.3 mm, and of continuous h-BN monolayer films with large domain sizes (>25 μm) is demonstrated via an admixture of Si to Fe catalyst films. A simple thin-film Fe/SiO2/Si catalyst system is used to show that controlled Si diffusion into the Fe catalyst allows exclusive nucleation of monolayer h-BN with very low nucleation densities upon exposure to undiluted borazine. Our systematic in situ and ex situ characterization of this catalyst system establishes a basis for further rational catalyst design for compound 2D materials. PMID:25664483

  20. Growth of large single-crystalline two-dimensional boron nitride hexagons on electropolished copper.

    PubMed

    Tay, Roland Yingjie; Griep, Mark H; Mallick, Govind; Tsang, Siu Hon; Singh, Ram Sevak; Tumlin, Travis; Teo, Edwin Hang Tong; Karna, Shashi P

    2014-02-12

    Hexagonal-boron nitride (h-BN) or "white graphene" has many outstanding properties including high thermal conductivity, high mechanical strength, chemical inertness, and high electrical resistance, which open up a wide range of applications such as thermal interface material, protective coatings, and dielectric in nanoelectronics that easily exceed the current advertised benefits pertaining to the graphene-based applications. The development of h-BN films using chemical vapor deposition (CVD) has thus far led into nucleation of triangular or asymmetric diamond shapes on different metallic surfaces. Additionally, the average size of the triangular domains has remained relatively small (∼ 0.5 μm(2)) leading to a large number of grain boundaries and defects. While the morphology of Cu surfaces for CVD-grown graphene may have impacts on the nucleation density, domain sizes, thickness, and uniformity, the effects of the decreased roughness of Cu surface to develop h-BN films are unknown. Here, we report the growth and characterization of novel large area h-BN hexagons using highly electropolished Cu substrate under atmospheric pressure CVD conditions. We found that the nucleation density of h-BN is significantly reduced while domain sizes increase. In this study, the largest hexagonal-shape h-BN domain observed is 35 μm(2), which is an order of magnitude larger than a typical triangular domain. As the domains coalesce to form a continuous film, the larger grain size offers a more pristine and smoother film with lesser grain boundaries induced defects. PMID:24447201

  1. Ab initio studies of vacancies in (8,0) and (8,8) Single-walled carbon and boron nitride nanotubes.

    PubMed

    Mashapa, M G; Chetty, N; Ray, S Sinha

    2012-09-01

    A systematic study of vacancies in single-walled carbon nanotubes and boron nitride nanotubes was carried out. First principles calculations within the framework of density functional theory using the CASTEP code are used to optimize fully the geometries of the systems. The generalized gradient approximation is used for the exchange-correlation functional. We find that the pristine single-walled carbon nanotubes have lower heats of formation compared with the boron nitride nanotubes, consistent with other findings. The zig-zag (8,0) carbon nnaotube has a slightly lower (-3.32 eV) heat of formation compared to the armchair (8,8) configuration (-3.25 eV). Comparison of the heats of formation of the vacancy systems is made and we draw conclusions about the relative stability of these defects. The heats of formation and atomic relaxations of the vacancies are explained as resulting from the tendency of the affected ions to recover the lost electronic coordination. For the boron nitride nanotube, we find that the vacancies on the nitrogen and boron site, namely V(N), and V(B), are respectively the more stable vacancies in the B- and N-rich environments. The electronic structure of the single vacancies also depends on the nanotube chirality. PMID:23035429

  2. Method of synthesizing cubic system boron nitride

    SciTech Connect

    Yuzu, S.; Sumiya, H.; Degawa, J.

    1987-10-13

    A method is described for synthetically growing cubic system boron nitride crystals by using boron nitride sources, solvents for dissolving the boron nitride sources, and seed crystals under conditions of ultra-high pressure and high temperature for maintaining the cubic system boron nitride stable. The method comprises the following steps: preparing a synthesizing vessel having at least two chambers, arrayed in order in the synthesizing vessel so as to be heated according to a temperature gradient; placing the solvents having different eutectic temperatures in each chamber with respect to the boron nitride sources according to the temperature gradient; placing the boron nitride source in contact with a portion of each of the solvents heated at a relatively higher temperature and placing at least a seed crystal in a portion of each of the solvents heated at a relatively lower temperature; and growing at least one cubic system boron nitride crystal in each of the solvents in the chambers by heating the synthesizing vessel for establishing the temperature gradient while maintaining conditions of ultra-high pressure and high temperature.

  3. Boron Nitride Nanoribbons: Synthesis and Future Directions

    NASA Astrophysics Data System (ADS)

    Gibb, Ashley; Erikson, Kris; Sinitskii, Alex; Rousseas, Michael; Alem, Nasim; Tour, James; Zettl, Alex

    2012-02-01

    Boron Nitride Nanoribbons (BNNR) have been theorized to have many interesting electrical and magnetic properties and edge states, but these characteristics have not been experimentally verified due to challenges in synthesis and purification. We have produced BNNRs by longitudinally splitting boron nitride nanotubes (BNNT) using potassium vapor as an intercalant. Due to the strong interactions between boron nitride sheets, separation of nanoribbons from their parent tubes is challenging. We have used various solvent systems to assist with separation of the ribbons with the goal of probing their properties.

  4. Effective Control of the Charge and Magnetic States of Transition-Metal Atoms on Single-Layer Boron Nitride

    SciTech Connect

    Huang, B.; Xiang, H. J.; Yu, J. J.; Wei, S. H.

    2012-05-18

    Developing approaches to effectively control the charge and magnetic states is critical to the use of magnetic nanostructures in quantum information devices but is still challenging. Here we suggest that the magnetic and charge states of transition-metal (TM) doped single-layer boron-nitride (SLBN) systems can be easily controlled by the (internal) defect engineering and (external) electric fields (E{sub ext}). The relative positions and symmetries of the in-gap levels induced by defect engineering and the TM d-orbital energy levels effectively determine the charge states and magnetic properties of the TM/SLBN system. Remarkably, the application of an E{sub ext} can easily control the size of the crystal field splitting of the TM d orbitals and thus, leading to the spin crossover in TM/SLBN, which could be used as E{sub ext}-driven nonvolatile memory devices. Our conclusion obtained from TM/SLBN is valid generally in other TM adsorbed layered semiconductors.

  5. Wear resistance of boron nitride coated metal

    NASA Astrophysics Data System (ADS)

    Andoh, Yasunori; Nishiyama, Satoshi; Sakai, Shigeki; Ogata, Kiyoshi; Fujimoto, Fuminori

    1993-06-01

    The wear resistance of boron nitride films was studied. The films of 1 μm thickness were prepared on the surface of a cutting tool by simultaneous nitrogen ion irradiation and vapor depositon of boron; the Vickers hardness of the films was between 3000 and 5000 kg/mm 2. The test was performed by the cutting of steel. On the tool deposited directly, the wear of the surface is large and this could not be improved greatly. However, the tools prepared after nitridation of the surface layer by ion implantation and the one with another nitride layer in the interface showed decreasing wear, and the wear of the tool with an interlayer of silicon nitride could be decreased to about 15%. As a result, it became clear that boron nitride could be effectively used as a highly hard film by the optimization of the interface between the film and the matrix.

  6. Density functional investigation of CO adsorption on Ni-doped single-walled armchair (5,5) boron nitride nanotubes.

    PubMed

    Tontapha, Sarawut; Ruangpornvisuti, Vithaya; Wanno, Banchob

    2013-01-01

    The adsorption of CO onto Ni-doped boron nitride nanotubes (BNNTs) was investigated using density functional theory at the B3LYP/LanL2DZ level of theory. The structures of the Ni-doped BNNTs and their CO-adsorbed configurations were obtained. It was found that the strength of adsorption of CO onto Ni-doped perfect BNNTs is higher than that on defective BNNTs. The electronic properties of all of the adsorption configurations of CO on Ni-doped BNNTs are reported. PMID:22864627

  7. Quantum emission from hexagonal boron nitride monolayers.

    PubMed

    Tran, Toan Trong; Bray, Kerem; Ford, Michael J; Toth, Milos; Aharonovich, Igor

    2016-01-01

    Artificial atomic systems in solids are widely considered the leading physical system for a variety of quantum technologies, including quantum communications, computing and metrology. To date, however, room-temperature quantum emitters have only been observed in wide-bandgap semiconductors such as diamond and silicon carbide, nanocrystal quantum dots, and most recently in carbon nanotubes. Single-photon emission from two-dimensional materials has been reported, but only at cryogenic temperatures. Here, we demonstrate room-temperature, polarized and ultrabright single-photon emission from a colour centre in two-dimensional hexagonal boron nitride. Density functional theory calculations indicate that vacancy-related defects are a probable source of the emission. Our results demonstrate the unprecedented potential of van der Waals crystals for large-scale nanophotonics and quantum information processing. PMID:26501751

  8. Quantum emission from hexagonal boron nitride monolayers

    NASA Astrophysics Data System (ADS)

    Tran, Toan Trong; Bray, Kerem; Ford, Michael J.; Toth, Milos; Aharonovich, Igor

    2016-01-01

    Artificial atomic systems in solids are widely considered the leading physical system for a variety of quantum technologies, including quantum communications, computing and metrology. To date, however, room-temperature quantum emitters have only been observed in wide-bandgap semiconductors such as diamond and silicon carbide, nanocrystal quantum dots, and most recently in carbon nanotubes. Single-photon emission from two-dimensional materials has been reported, but only at cryogenic temperatures. Here, we demonstrate room-temperature, polarized and ultrabright single-photon emission from a colour centre in two-dimensional hexagonal boron nitride. Density functional theory calculations indicate that vacancy-related defects are a probable source of the emission. Our results demonstrate the unprecedented potential of van der Waals crystals for large-scale nanophotonics and quantum information processing.

  9. Boron nitride nanotubes and nanosheets.

    PubMed

    Golberg, Dmitri; Bando, Yoshio; Huang, Yang; Terao, Takeshi; Mitome, Masanori; Tang, Chengchun; Zhi, Chunyi

    2010-06-22

    Hexagonal boron nitride (h-BN) is a layered material with a graphite-like structure in which planar networks of BN hexagons are regularly stacked. As the structural analogue of a carbon nanotube (CNT), a BN nanotube (BNNT) was first predicted in 1994; since then, it has become one of the most intriguing non-carbon nanotubes. Compared with metallic or semiconducting CNTs, a BNNT is an electrical insulator with a band gap of ca. 5 eV, basically independent of tube geometry. In addition, BNNTs possess a high chemical stability, excellent mechanical properties, and high thermal conductivity. The same advantages are likely applicable to a graphene analogue-a monatomic layer of a hexagonal BN. Such unique properties make BN nanotubes and nanosheets a promising nanomaterial in a variety of potential fields such as optoelectronic nanodevices, functional composites, hydrogen accumulators, electrically insulating substrates perfectly matching the CNT, and graphene lattices. This review gives an introduction to the rich BN nanotube/nanosheet field, including the latest achievements in the synthesis, structural analyses, and property evaluations, and presents the purpose and significance of this direction in the light of the general nanotube/nanosheet developments. PMID:20462272

  10. X-ray diffraction investigation of ultrafine boron nitride powders

    SciTech Connect

    Gurov, S.V.; Chukalin, V.I.; Rezchikova, T.V.; Torbov, V.J.; Troitskii, V.N.

    1986-01-01

    This paper presents an x-ray diffraction analysis of ultrafine boron nitride powders of different mean particle sizes. Diffraction spectra of the ultrafine boron nitride powders were obtained using a DRON-1 apparatus. The experimental facts are indicative of a turbostratic character of deformation of the hexagonal lattice of ultrafinely divided boron nitride.

  11. A platform for large-scale graphene electronics--CVD growth of single-layer graphene on CVD-grown hexagonal boron nitride.

    PubMed

    Wang, Min; Jang, Sung Kyu; Jang, Won-Jun; Kim, Minwoo; Park, Seong-Yong; Kim, Sang-Woo; Kahng, Se-Jong; Choi, Jae-Young; Ruoff, Rodney S; Song, Young Jae; Lee, Sungjoo

    2013-05-21

    Direct chemical vapor deposition (CVD) growth of single-layer graphene on CVD-grown hexagonal boron nitride (h-BN) film can suggest a large-scale and high-quality graphene/h-BN film hybrid structure with a defect-free interface. This sequentially grown graphene/h-BN film shows better electronic properties than that of graphene/SiO2 or graphene transferred on h-BN film, and suggests a new promising template for graphene device fabrication. PMID:23576235

  12. Homogeneous dispersion of gallium nitride nanoparticles in a boron nitride matrix by nitridation with urea.

    PubMed

    Kusunose, Takafumi; Sekino, Tohru; Ando, Yoichi

    2010-07-01

    A Gallium Nitride (GaN) dispersed boron nitride (BN) nanocomposite powder was synthesized by heating a mixture of gallium nitrate, boric acid, and urea in a hydrogen atmosphere. Before heat treatment, crystalline phases of urea, boric acid, and gallium nitrate were recognized, but an amorphous material was produced by heat treatment at 400 degrees C, and then was transformed into GaN and turbostratic BN (t-BN) by further heat treatment at 800 degrees C. TEM obsevations of this composite powder revealed that single nanosized GaN particles were homogeneously dispersed in a BN matrix. Homogeneous dispersion of GaN nanoparticles was thought to be attained by simultaneously nitriding gallium nitrate and boric acid to GaN and BN with urea. PMID:21128417

  13. Quantum emission from hexagonal boron nitride monolayers

    NASA Astrophysics Data System (ADS)

    Aharonovich, Igor; Tran, Toantrong; Bray, Kerem; Ford, Michael J.; Toth, Milos; MTEE Collaboration

    Artificial atomic systems in solids are widely considered the leading physical system for a variety of quantum technologies, including quantum communications, computing and metrology. To date, however, room-temperature quantum emitters have only been observed in wide-bandgap semiconductors such as diamond and silicon carbide, nanocrystal quantum dots, and most recently in carbon nanotubes. Here, we demonstrate room-temperature, polarized single-photon emission from a colour centre in two-dimensional hexagonal boron nitride. The emitters emit at the red and the near infrared spectral range and exhibit narrowband ultra bright emission (~full width at half maximum of below 10 nm with more than three million counts/s). Density functional theory calculations indicate that vacancy-related defects are a probable source of the emission. Our results demonstrate the unprecedented potential of van der Waals crystals for large-scale nanophotonics and quantum information processing.

  14. Boron nitride nanotubes for spintronics.

    PubMed

    Dhungana, Kamal B; Pati, Ranjit

    2014-01-01

    With the end of Moore's law in sight, researchers are in search of an alternative approach to manipulate information. Spintronics or spin-based electronics, which uses the spin state of electrons to store, process and communicate information, offers exciting opportunities to sustain the current growth in the information industry. For example, the discovery of the giant magneto resistance (GMR) effect, which provides the foundation behind modern high density data storage devices, is an important success story of spintronics; GMR-based sensors have wide applications, ranging from automotive industry to biology. In recent years, with the tremendous progress in nanotechnology, spintronics has crossed the boundary of conventional, all metallic, solid state multi-layered structures to reach a new frontier, where nanostructures provide a pathway for the spin-carriers. Different materials such as organic and inorganic nanostructures are explored for possible applications in spintronics. In this short review, we focus on the boron nitride nanotube (BNNT), which has recently been explored for possible applications in spintronics. Unlike many organic materials, BNNTs offer higher thermal stability and higher resistance to oxidation. It has been reported that the metal-free fluorinated BNNT exhibits long range ferromagnetic spin ordering, which is stable at a temperature much higher than room temperature. Due to their large band gap, BNNTs are also explored as a tunnel magneto resistance device. In addition, the F-BNNT has recently been predicted as an ideal spin-filter. The purpose of this review is to highlight these recent progresses so that a concerted effort by both experimentalists and theorists can be carried out in the future to realize the true potential of BNNT-based spintronics. PMID:25248070

  15. Boron Nitride Nanotubes for Spintronics

    PubMed Central

    Dhungana, Kamal B.; Pati, Ranjit

    2014-01-01

    With the end of Moore's law in sight, researchers are in search of an alternative approach to manipulate information. Spintronics or spin-based electronics, which uses the spin state of electrons to store, process and communicate information, offers exciting opportunities to sustain the current growth in the information industry. For example, the discovery of the giant magneto resistance (GMR) effect, which provides the foundation behind modern high density data storage devices, is an important success story of spintronics; GMR-based sensors have wide applications, ranging from automotive industry to biology. In recent years, with the tremendous progress in nanotechnology, spintronics has crossed the boundary of conventional, all metallic, solid state multi-layered structures to reach a new frontier, where nanostructures provide a pathway for the spin-carriers. Different materials such as organic and inorganic nanostructures are explored for possible applications in spintronics. In this short review, we focus on the boron nitride nanotube (BNNT), which has recently been explored for possible applications in spintronics. Unlike many organic materials, BNNTs offer higher thermal stability and higher resistance to oxidation. It has been reported that the metal-free fluorinated BNNT exhibits long range ferromagnetic spin ordering, which is stable at a temperature much higher than room temperature. Due to their large band gap, BNNTs are also explored as a tunnel magneto resistance device. In addition, the F-BNNT has recently been predicted as an ideal spin-filter. The purpose of this review is to highlight these recent progresses so that a concerted effort by both experimentalists and theorists can be carried out in the future to realize the true potential of BNNT-based spintronics. PMID:25248070

  16. Hot filament cvd of boron nitride films

    SciTech Connect

    Rye, R.R.

    1992-01-07

    This patent describes a method for coating a substrate with a boron nitride film. It comprises: providing a substrate and a hot filament in a gas chamber; and introducing a borazine gas into the gas chamber so as to heat the borazine gas with the hot filament and deposit the boron nitride film on the substrate, wherein the hot filament is heated to a temperature of from about 1000[degrees] to 1800[degrees] C and the substrate is maintained at a temperature of from 100[degrees]C to 400[degrees]C.

  17. Intervalley scattering in hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Cassabois, G.; Valvin, P.; Gil, B.

    2016-01-01

    We report photoluminescence experiments bringing the evidence for intervalley scattering in bulk hexagonal boron nitride. From a quantitative analysis of the defect-related emission band, we demonstrate that transverse optical phonons at the K point of the Brillouin zone assist inter-K valley scattering, which becomes observable because stacking faults in bulk hexagonal boron nitride provide a density of final electronic states. Time-resolved experiments highlight the different recombination dynamics of the phonon replicas implying either virtual excitonic states or real electronic states in the structural defects.

  18. Low pressure growth of cubic boron nitride films

    NASA Technical Reports Server (NTRS)

    Ong, Tiong P. (Inventor); Shing, Yuh-Han (Inventor)

    1997-01-01

    A method for forming thin films of cubic boron nitride on substrates at low pressures and temperatures. A substrate is first coated with polycrystalline diamond to provide a uniform surface upon which cubic boron nitride can be deposited by chemical vapor deposition. The cubic boron nitride film is useful as a substitute for diamond coatings for a variety of applications in which diamond is not suitable. any tetragonal or hexagonal boron nitride. The cubic boron nitride produced in accordance with the preceding example is particularly well-suited for use as a coating for ultra hard tool bits and abrasives, especially those intended to use in cutting or otherwise fabricating iron.

  19. Thermal transport in low-dimensional systems: the case of Graphene and single layer Boron Nitride

    NASA Astrophysics Data System (ADS)

    Pereira, Luiz Felipe; Donadio, Davide

    2013-03-01

    Low-dimensional systems present unusual transport properties in comparison to bulk materials. In contrast with the three-dimensional case, in one- and two-dimensions heat transport models predict a divergence of the thermal conductivity with system size. In reality, in a low-dimensional system the mean-free-path of heat carriers (phonons) becomes comparable to the micrometer size of experimental samples. Recent developments in nanostructure fabrication allow a direct comparison between theory and experiments for such low-dimensional systems. We perform extensive molecular dynamics simulations of heat transport in graphene and single layer BN, in order to clarify the behavior of the thermal conductivity in realistic low-dimensional systems. In particular, we address the influence of system size on the simulation results. Equilibrium molecular dynamics predicts a convergence of the thermal conductivity with system size, even for systems with less than one hundred nanometers and thousands of atoms. Meanwhile, large scale non-equilibrium molecular dynamics shows a divergence of the thermal conductivity with system size up to the micrometer scale. We analyse the discrepancy between methods in terms of perturbations in phonon populations induced by the non-equilibrium regime.

  20. Prediction of chirality- and size-dependent elastic properties of single-walled boron nitride nanotubes based on an accurate molecular mechanics model

    NASA Astrophysics Data System (ADS)

    Ansari, R.; Mirnezhad, M.; Sahmani, S.

    2015-04-01

    Molecular mechanics theory has been widely used to investigate the mechanical properties of nanostructures analytically. However, there is a limited number of research in which molecular mechanics model is utilized to predict the elastic properties of boron nitride nanotubes (BNNTs). In the current study, the mechanical properties of chiral single-walled BNNTs are predicted analytically based on an accurate molecular mechanics model. For this purpose, based upon the density functional theory (DFT) within the framework of the generalized gradient approximation (GGA), the exchange correlation of Perdew-Burke-Ernzerhof is adopted to evaluate force constants used in the molecular mechanics model. Afterwards, based on the principle of molecular mechanics, explicit expressions are given to calculate surface Young's modulus and Poisson's ratio of the single-walled BNNTs for different values of tube diameter and types of chirality. Moreover, the values of surface Young's modulus, Poisson's ratio and bending stiffness of boron nitride sheets are obtained via the DFT as byproducts. The results predicted by the present model are in reasonable agreement with those reported by other models in the literature.

  1. Intrinsic ferromagnetism in hexagonal boron nitride nanosheets

    SciTech Connect

    Si, M. S.; Gao, Daqiang E-mail: xueds@lzu.edu.cn; Yang, Dezheng; Peng, Yong; Zhang, Z. Y.; Xue, Desheng E-mail: xueds@lzu.edu.cn; Liu, Yushen; Deng, Xiaohui; Zhang, G. P.

    2014-05-28

    Understanding the mechanism of ferromagnetism in hexagonal boron nitride nanosheets, which possess only s and p electrons in comparison with normal ferromagnets based on localized d or f electrons, is a current challenge. In this work, we report an experimental finding that the ferromagnetic coupling is an intrinsic property of hexagonal boron nitride nanosheets, which has never been reported before. Moreover, we further confirm it from ab initio calculations. We show that the measured ferromagnetism should be attributed to the localized π states at edges, where the electron-electron interaction plays the role in this ferromagnetic ordering. More importantly, we demonstrate such edge-induced ferromagnetism causes a high Curie temperature well above room temperature. Our systematical work, including experimental measurements and theoretical confirmation, proves that such unusual room temperature ferromagnetism in hexagonal boron nitride nanosheets is edge-dependent, similar to widely reported graphene-based materials. It is believed that this work will open new perspectives for hexagonal boron nitride spintronic devices.

  2. Boron nitride solid state neutron detector

    DOEpatents

    Doty, F. Patrick

    2004-04-27

    The present invention describes an apparatus useful for detecting neutrons, and particularly for detecting thermal neutrons, while remaining insensitive to gamma radiation. Neutrons are detected by direct measurement of current pulses produced by an interaction of the neutrons with hexagonal pyrolytic boron nitride.

  3. Boron Nitride Nanotubes for Engineering Applications

    NASA Technical Reports Server (NTRS)

    Hurst, Janet; Hull, David; Gorican, Daniel

    2005-01-01

    Boron nitride nanotubes (BNNT) are of significant interest to the scientific and technical communities for many of the same reasons that carbon nanotubes (CNT) have attracted wide attention. Both materials have potentially unique and important properties for structural and electronic applications. However of even more consequence than their similarities may be the complementary differences between carbon and boron nitride nanotubes While BNNT possess a very high modulus similar to CNT, they also possess superior chemical and thermal stability. Additionally, BNNT have more uniform electronic properties, with a uniform band gap of 5.5 eV while CNT vary from semi-conductive to highly conductive behavior. Boron nitride nanotubes have been synthesized both in the literature and at NASA Glenn Research Center, by a variety of methods such as chemical vapor deposition, arc discharge and reactive milling. Consistent large scale production of a reliable product has proven difficult. Progress in the reproducible synthesis of 1-2 gram sized batches of boron nitride nanotubes will be discussed as well as potential uses for this unique material.

  4. Boron Nitride Nanotubes-Reinforced Glass Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam; Hurst, Janet B.; Choi, Sung R.

    2005-01-01

    Boron nitride nanotubes of significant lengths were synthesized by reaction of boron with nitrogen. Barium calcium aluminosilicate glass composites reinforced with 4 weight percent of BN nanotubes were fabricated by hot pressing. Ambient-temperature flexure strength and fracture toughness of the glass-BN nanotube composites were determined. The strength and fracture toughness of the composite were higher by as much as 90 and 35 percent, respectively, than those of the unreinforced glass. Microscopic examination of the composite fracture surfaces showed pullout of the BN nanotubes. The preliminary results on the processing and improvement in mechanical properties of BN nanotube reinforced glass matrix composites are being reported here for the first time.

  5. Reactive sputter deposition of boron nitride

    SciTech Connect

    Jankowski, A.F.; Hayes, J.P.; McKernan, M.A.; Makowiecki, D.M.

    1995-10-01

    The preparation of fully dense, boron targets for use in planar magnetron sources has lead to the synthesis of Boron Nitride (BN) films by reactive rf sputtering. The deposition parameters of gas pressure, flow and composition are varied along with substrate temperature and applied bias. The films are characterized for composition using Auger electron spectroscopy, for chemical bonding using Raman spectroscopy and for crystalline structure using transmission electron microscopy. The deposition conditions are established which lead to the growth of crystalline BN phases. In particular, the growth of an adherent cubic BN coating requires 400--500 C substrate heating and an applied {minus}300 V dc bias.

  6. Synthesis of boron nitride nanotubes by boron ink annealing.

    PubMed

    Li, Lu Hua; Chen, Ying; Glushenkov, Alexey M

    2010-03-12

    Ball-milling and annealing is one effective method for the mass production of boron nitride nanotubes (BNNTs). We report that the method has been modified to a boron (B) ink annealing method. In this new process, the nanosize ball-milled B particles are mixed with metal nitrate in ethanol to form an ink-like solution, and then the ink is annealed in nitrogen-containing gas to form nanotubes. The new method greatly enhances the yield of BNNTs, giving a higher density of nanotubes. These improvements are caused by the addition of metal nitrate and ethanol, both of which can strongly boost the nitriding reaction, as revealed by thermogravimetric analysis. The size and structure of BNNTs can be controlled by varying the annealing conditions. This high-yield production of BNNTs in large quantities enables the large-scale application of BNNTs. PMID:20154372

  7. Low-loss binder for hot pressing boron nitride

    DOEpatents

    Maya, Leon

    1991-01-01

    Borazine derivatives used as low-loss binders and precursors for making ceramic boron nitride structures. The derivative forms the same composition as the boron nitride starting material, thereby filling the voids with the same boron nitride material upon forming and hot pressing. The derivatives have a further advantage of being low in carbon thus resulting in less volatile byproduct that can result in bubble formation during pressing.

  8. Oxidation of boron nitride in an arc heated jet.

    NASA Technical Reports Server (NTRS)

    Buckley, J. D.

    1971-01-01

    Two grades of hot pressed boron nitride and a boron nitride composite were subjected to oxidation tests in a 2.5 megawatt atmospheric arc jet. The results showed that fabrication and/or composition influenced thermal shock and oxidation resistance. Changes in surface structure and recession due to oxidation suggest correlation with specimen composition. The boron nitride composite reacted with the oxygen in the hot subsonic airstream to produce a glassy coating on the hot face surface.

  9. Boron nitride encapsulated graphene infrared emitters

    NASA Astrophysics Data System (ADS)

    Barnard, H. R.; Zossimova, E.; Mahlmeister, N. H.; Lawton, L. M.; Luxmoore, I. J.; Nash, G. R.

    2016-03-01

    The spatial and spectral characteristics of mid-infrared thermal emission from devices containing a large area multilayer graphene layer, encapsulated using hexagonal boron nitride, have been investigated. The devices were run continuously in air for over 1000 h, with the emission spectrum covering the absorption bands of many important gases. An approximate solution to the heat equation was used to simulate the measured emission profile across the devices yielding an estimated value of the characteristic length, which defines the exponential rise/fall of the temperature profile across the device, of 40 μm. This is much larger than values obtained in smaller exfoliated graphene devices and reflects the device geometry, and the increase in lateral heat conduction within the devices due to the multilayer graphene and boron nitride layers.

  10. Method for forming monolayer graphene-boron nitride heterostructures

    DOEpatents

    Sutter, Peter Werner; Sutter, Eli Anguelova

    2016-08-09

    A method for fabricating monolayer graphene-boron nitride heterostructures in a single atomically thin membrane that limits intermixing at boundaries between graphene and h-BN, so as to achieve atomically sharp interfaces between these materials. In one embodiment, the method comprises exposing a ruthenium substrate to ethylene, exposing the ruthenium substrate to oxygen after exposure to ethylene and exposing the ruthenium substrate to borazine after exposure to oxygen.

  11. Amorphous Carbon-Boron Nitride Nanotube Hybrids

    NASA Technical Reports Server (NTRS)

    Kim, Jae Woo (Inventor); Siochi, Emilie J. (Inventor); Wise, Kristopher E. (Inventor); Lin, Yi (Inventor); Connell, John (Inventor)

    2016-01-01

    A method for joining or repairing boron nitride nanotubes (BNNTs). In joining BNNTs, the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures. In repairing BNNTs, the damaged site of the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures at the damage site.

  12. Thermal conductivity of nanostructured boron nitride materials.

    PubMed

    Tang, Chengchun; Bando, Yoshio; Liu, Changhong; Fan, Shoushan; Zhang, Jun; Ding, Xiaoxia; Golberg, Dmitri

    2006-06-01

    We have measured the thermal conductivity of bulky pellets made of various boron nitride (BN)-based nanomaterials, including spherical nanoparticles, perfectly structured, bamboo-like nanotubes, and collapsed nanotubes. The thermal conductivity strongly depends on the morphology of the BN nanomaterials, especially on the surface structure. Spherical BN particles have the lowest thermal conductivity while the collapsed BN nanotubes possess the best thermoconductive properties. A model was proposed to explain the experimental observations based on the heat percolation passage considerations. PMID:16722739

  13. Anomalous thermal conductivity of monolayer boron nitride

    NASA Astrophysics Data System (ADS)

    Tabarraei, Alireza; Wang, Xiaonan

    2016-05-01

    In this paper, we use nonequilibrium molecular dynamics modeling to investigate the thermal properties of monolayer hexagonal boron nitride nanoribbons under uniaxial strain along their longitudinal axis. Our simulations predict that hexagonal boron nitride shows an anomalous thermal response to the applied uniaxial strain. Contrary to three dimensional materials, under uniaxial stretching, the thermal conductivity of boron nitride nanoribbons first increases rather than decreasing until it reaches its peak value and then starts decreasing. Under compressive strain, the thermal conductivity of monolayer boron nitride ribbons monolithically reduces rather than increasing. We use phonon spectrum and dispersion curves to investigate the mechanism responsible for the unexpected behavior. Our molecular dynamics modeling and density functional theory results show that application of longitudinal tensile strain leads to the reduction of the group velocities of longitudinal and transverse acoustic modes. Such a phonon softening mechanism acts to reduce the thermal conductivity of the nanoribbons. On the other hand, a significant increase in the group velocity (stiffening) of the flexural acoustic modes is observed, which counteracts the phonon softening effects of the longitudinal and transverse modes. The total thermal conductivity of the ribbons is a result of competition between these two mechanisms. At low tensile strain, the stiffening mechanism overcomes the softening mechanism which leads to an increase in the thermal conductivity. At higher tensile strain, the softening mechanism supersedes the stiffening and the thermal conductivity slightly reduces. Our simulations show that the decrease in the thermal conductivity under compressive strain is attributed to the formation of buckling defects which reduces the phonon mean free path.

  14. Hydrogen adsorption capacities of multi-walled boron nitride nanotubes and nanotube arrays: a grand canonical Monte Carlo study.

    PubMed

    Ahadi, Zohreh; Shadman, Muhammad; Yeganegi, Saeed; Asgari, Farid

    2012-07-01

    Hydrogen adsorption in multi-walled boron nitride nanotubes and their arrays was studied using grand canonical Monte Carlo simulation. The results show that hydrogen storage increases with tube diameter and the distance between the tubes in multi-walled boron nitride nanotube arrays. Also, triple-walled boron nitride nanotubes present the lowest level of hydrogen physisorption, double-walled boron nitride nanotubes adsorb hydrogen better when the diameter of the inner tube diameter is sufficiently large, and single-walled boron nitride nanotubes adsorb hydrogen well when the tube diameter is small enough. Boron nitride nanotube arrays adsorb hydrogen, but the percentage of adsorbed hydrogen (by weight) in boron nitride nanotube arrays is rather similar to that found in multi-walled boron nitride nanotubes. Also, when the Langmuir and Langmuir-Freundlich equations were fitted to the simulated data, it was found that multi-layer adsorptivity occurs more prominently as the number of walls and the tube diameter increase. However, in single-walled boron nitride nanotubes with a small diameter, the dominant mechanism is monolayer adsorptivity. PMID:22160758

  15. Methane storage in homogeneous armchair open-ended single-walled boron nitride nanotube triangular arrays: a grand canonical Monte Carlo simulation study.

    PubMed

    Mahdizadeh, Sayyed Jalil; Tayyari, Sayyed Faramarz

    2012-06-01

    The physisorption of methane in homogeneous armchair open-ended SWBNNT triangular arrays was evaluated using grand canonical ensemble Monte Carlo simulation for tubes 11.08, 13.85, 16.62, and 19.41 Å [(8,8), (10,10), (12,12), and (14,14), respectively] in diameter, at temperatures of 273, 298, 323, and 373 K, and at fugacities of 0.5-9.0 Mpa. The intermolecular forces were modeled using the Lennard-Jones potential model. The absolute, excess, and delivery adsorption isotherms of methane were calculated for the various boron nitride nanotube arrays. The specific surface areas and the isosteric heats of adsorption, Q(st), were also studied, different isotherm models were fitted to the simulated adsorption data, and the model parameters were correlated. According to the results, it is possible to reach 108% and 140% of the US Department of Energy's target for CH(4) storage (180 v/v at 298 K and 35 bar) using the SWBNNT array with nanotubes 16.62 and 19.41 Å in diameter, respectively, as adsorbent. The results show that for a van der Waals gap of 3.4 Å, there is no interstitial adsorption except for arrays containing nanotubes with diameters of >15.8 Å. Multilayer adsorption starts to occur in arrays containing nanotubes with diameters of >16.62 Å, and the minimum pressure required for multilayer adsorption is 1.0 MPa. A brief comparison of the methane adsorption capacities of single-walled carbon and boron nitride nanotube arrays was also performed. PMID:22102208

  16. Boron nitride coatings and materials for use in aggressive environments

    SciTech Connect

    Besmann, T.M.; Lee, W.Y.; Young, J.P.; Xiao, H.

    1997-12-31

    Boron nitride coatings and structures have demonstrated significant resistance to many corrosive environments. These coatings may have application in the protection of sensors needed for measuring a variety of properties such as temperature and chemistry. In addition, boron nitride materials may offer advantages as structural materials in high temperature materials processing. In this study, BN is assessed for use in aluminum smelting.

  17. Safety Assessment of Boron Nitride as Used in Cosmetics.

    PubMed

    Fiume, Monice M; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2015-01-01

    The Cosmetic Ingredient Review Expert Panel (Panel) assessed the safety of boron nitride which functions in cosmetics as a slip modifier (ie, it has a lubricating effect). Boron nitride is an inorganic compound with a crystalline form that can be hexagonal, spherical, or cubic; the hexagonal form is presumed to be used in cosmetics. The highest reported concentration of use of boron nitride is 25% in eye shadow formulations. Although boron nitride nanotubes are produced, boron nitride is not listed as a nanomaterial used in cosmetic formulations. The Panel reviewed available chemistry, animal data, and clinical data and concluded that this ingredient is safe in the present practices of use and concentration in cosmetic formulations. PMID:26684796

  18. Microplasma Processed Ultrathin Boron Nitride Nanosheets for Polymer Nanocomposites with Enhanced Thermal Transport Performance.

    PubMed

    Zhang, Ri-Chao; Sun, Dan; Lu, Ai; Askari, Sadegh; Macias-Montero, Manuel; Joseph, Paul; Dixon, Dorian; Ostrikov, Kostya; Maguire, Paul; Mariotti, Davide

    2016-06-01

    This Research Article reports on the enhancement of the thermal transport properties of nanocomposite materials containing hexagonal boron nitride in poly(vinyl alcohol) through room-temperature atmospheric pressure direct-current microplasma processing. Results show that the microplasma treatment leads to exfoliation of the hexagonal boron nitride in isopropyl alcohol, reducing the number of stacks from >30 to a few or single layers. The thermal diffusivity of the resulting nanocomposites reaches 8.5 mm(2) s(-1), 50 times greater than blank poly(vinyl alcohol) and twice that of nanocomposites containing nonplasma treated boron nitride nanosheets. From TEM analysis, we observe much less aggregation of the nanosheets after plasma processing along with indications of an amorphous carbon interfacial layer, which may contribute to stable dispersion of boron nitride nanosheets in the resulting plasma treated colloids. PMID:27153343

  19. Boron Nitride Nanotube: Synthesis and Applications

    NASA Technical Reports Server (NTRS)

    Tiano, Amanda L.; Park, Cheol; Lee, Joseph W.; Luong, Hoa H.; Gibbons, Luke J.; Chu, Sang-Hyon; Applin, Samantha I.; Gnoffo, Peter; Lowther, Sharon; Kim, Hyun Jung; Danehy, Paul M.; Inman, Jennifer A.; Jones, Stephen B.; Kang, Jin Ho; Sauti, Godfrey; Thibeault, Sheila A.; Yamakov, Vesselin; Wise, Kristopher E.; Su, Ji; Fay, Catharine C.

    2014-01-01

    Scientists have predicted that carbon's immediate neighbors on the periodic chart, boron and nitrogen, may also form perfect nanotubes, since the advent of carbon nanotubes (CNTs) in 1991. First proposed then synthesized by researchers at UC Berkeley in the mid 1990's, the boron nitride nanotube (BNNT) has proven very difficult to make until now. Herein we provide an update on a catalyst-free method for synthesizing highly crystalline, small diameter BNNTs with a high aspect ratio using a high power laser under a high pressure and high temperature environment first discovered jointly by NASA/NIA JSA. Progress in purification methods, dispersion studies, BNNT mat and composite formation, and modeling and diagnostics will also be presented. The white BNNTs offer extraordinary properties including neutron radiation shielding, piezoelectricity, thermal oxidative stability (> 800 C in air), mechanical strength, and toughness. The characteristics of the novel BNNTs and BNNT polymer composites and their potential applications are discussed.

  20. Ballistic thermoelectric properties in boron nitride nanoribbons

    NASA Astrophysics Data System (ADS)

    Xie, Zhong-Xiang; Tang, Li-Ming; Pan, Chang-Ning; Chen, Qiao; Chen, Ke-Qiu

    2013-10-01

    Ballistic thermoelectric properties (TPs) in boron nitride nanoribbons (BNNRs) are studied using the nonequilibrium Green's function atomistic simulation of electron and phonon transport. A comparative analysis for TPs between BNNRs and graphene nanoribbons (GNRs) is made. Results show that the TPs of BNNRs are better than those of GNRs stemming from the higher power factor and smaller thermal conductance of BNNRs. With increasing the ribbon width, the maximum value of ZT (ZTmax) of BNNRs exhibits a transformation from the monotonic decrease to nonlinear increase. We also show that the lattice defect can enhance the ZTmax of these nanoribbons strongly depending on its positions and the edge shape.

  1. Recent advancements in boron nitride nanotubes.

    PubMed

    Wang, Jiesheng; Lee, Chee Huei; Yap, Yoke Khin

    2010-10-01

    This article provides a concise review of the recent research advancements in boron nitride nanotubes (BNNTs) with a comprehensive list of references. As the motivation of the field, we first summarize some of the attractive properties and potential applications of BNNTs. Then, latest discoveries on the properties, applications, and synthesis of BNNTs are discussed. In particular, we focus on low-temperature and patterned growth, and mass production of BNNTs, since these are the major challenges that have hindered investigation of the properties and application of BNNTs for the past decade. Finally, perspectives of future research on BNNTs are discussed. PMID:20842308

  2. Wettability of Pyrolytic Boron Nitride by Aluminum

    NASA Technical Reports Server (NTRS)

    Chiaramonte, Francis P.; Rosenthal, Bruce N.

    1991-01-01

    The wetting of pyrolytic boron nitride by molten 99.9999 percent pure aluminum was investigated by using the sessile drop method in a vacuum operating at approximately 660 micro-Pa at temperatures ranging from 700 to 1000 C. The equilibrium contact angle decreased with an increase in temperature. For temperatures at 900 C or less, the equilibrium contact angle was greater than 90 deg. At 1000 C a nonwetting-to-wetting transition occurred and the contact angle stabilized at 49 deg.

  3. Method for exfoliation of hexagonal boron nitride

    NASA Technical Reports Server (NTRS)

    Lin, Yi (Inventor); Connell, John W. (Inventor)

    2012-01-01

    A new method is disclosed for the exfoliation of hexagonal boron nitride into mono- and few-layered nanosheets (or nanoplatelets, nanomesh, nanoribbons). The method does not necessarily require high temperature or vacuum, but uses commercially available h-BN powders (or those derived from these materials, bulk crystals) and only requires wet chemical processing. The method is facile, cost efficient, and scalable. The resultant exfoliated h-BN is dispersible in an organic solvent or water thus amenable for solution processing for unique microelectronic or composite applications.

  4. Boron nitride zigzag nanoribbons: optimal thermoelectric systems.

    PubMed

    Zberecki, K; Swirkowicz, R; Barnaś, J

    2015-09-14

    Conventional and spin related thermoelectric effects in zigzag boron nitride nanoribbons are studied theoretically within the Density Functional Theory (DFT) approach. Nanoribbons with edges passivated with hydrogen, as well as those with bare edges are analyzed. It is shown that one spin channel in the nanoribbons of 0HB-0HN and 2HB-1HN types becomes nonconductive slightly above the Fermi level, and therefore such nanoribbons reveal remarkable spin related thermoelectric phenomena and are promising materials for thermoelectric nanodevices. Thermoelectricity in BN nanoribbons of other types is less efficient and therefore these materials are less interesting for applications. PMID:26250512

  5. Magnesium doping of boron nitride nanotubes

    DOEpatents

    Legg, Robert; Jordan, Kevin

    2015-06-16

    A method to fabricate boron nitride nanotubes incorporating magnesium diboride in their structure. In a first embodiment, magnesium wire is introduced into a reaction feed bundle during a BNNT fabrication process. In a second embodiment, magnesium in powder form is mixed into a nitrogen gas flow during the BNNT fabrication process. MgB.sub.2 yarn may be used for superconducting applications and, in that capacity, has considerably less susceptibility to stress and has considerably better thermal conductivity than these conventional materials when compared to both conventional low and high temperature superconducting materials.

  6. Boron nitride nanomaterials for thermal management applications.

    PubMed

    Meziani, Mohammed J; Song, Wei-Li; Wang, Ping; Lu, Fushen; Hou, Zhiling; Anderson, Ankoma; Maimaiti, Halidan; Sun, Ya-Ping

    2015-05-18

    Hexagonal boron nitride nanosheets (BNNs) are analogous to their two-dimensional carbon counterparts in many materials properties, in particular, ultrahigh thermal conductivity, but also offer some unique attributes, including being electrically insulating, high thermal stability, chemical and oxidation resistance, low color, and high mechanical strength. Significant recent advances in the production of BNNs, understanding of their properties, and the development of polymeric nanocomposites with BNNs for thermally conductive yet electrically insulating materials and systems are highlighted herein. Major opportunities and challenges for further studies in this rapidly advancing field are also discussed. PMID:25652360

  7. Stability analysis of zigzag boron nitride nanoribbons

    SciTech Connect

    Rai, Hari Mohan Late, Ravikiran; Saxena, Shailendra K.; Kumar, Rajesh; Sagdeo, Pankaj R.; Jaiswal, Neeraj K.; Srivastava, Pankaj

    2015-05-15

    We have explored the structural stability of bare and hydrogenated zigzag boron nitride nanoribbons (ZBNNRs). In order to investigate the structural stability, we calculate the cohesive energy for bare, one-edge and both edges H-terminated ZBNNRs with different widths. It is found that the ZBNNRs with width Nz=8 are energetically more favorable than the lower-width counterparts (Nz<8). Bare ZBNNRs have been found energetically most stable as compared to the edge terminated ribbons. Our analysis reveals that the structural stability is a function of ribbon-width and it is not affected significantly by the type of edge-passivation (one-edge or both-edges)

  8. Apparatus for the production of boron nitride nanotubes

    DOEpatents

    Smith, Michael W; Jordan, Kevin

    2014-06-17

    An apparatus for the large scale production of boron nitride nanotubes comprising; a pressure chamber containing; a continuously fed boron containing target; a source of thermal energy preferably a focused laser beam; a cooled condenser; a source of pressurized nitrogen gas; and a mechanism for extracting boron nitride nanotubes that are condensed on or in the area of the cooled condenser from the pressure chamber.

  9. Vertical transport in graphene-hexagonal boron nitride heterostructure devices

    PubMed Central

    Bruzzone, Samantha; Logoteta, Demetrio; Fiori, Gianluca; Iannaccone, Giuseppe

    2015-01-01

    Research in graphene-based electronics is recently focusing on devices based on vertical heterostructures of two-dimensional materials. Here we use density functional theory and multiscale simulations to investigate the tunneling properties of single- and double-barrier structures with graphene and few-layer hexagonal boron nitride (h-BN) or hexagonal boron carbon nitride (h-BC2N). We find that tunneling through a single barrier exhibit a weak dependence on energy. We also show that in double barriers separated by a graphene layer we do not observe resonant tunneling, but a significant increase of the tunneling probability with respect to a single barrier of thickness equal to the sum of the two barriers. This is due to the fact that the graphene layer acts as an effective phase randomizer, suppressing resonant tunneling and effectively letting a double-barrier structure behave as two single-barriers in series. Finally, we use multiscale simulations to reproduce a current-voltage characteristics resembling that of a resonant tunneling diode, that has been experimentally observed in single barrier structure. The peak current is obtained when there is perfect matching between the densities of states of the cathode and anode graphene regions. PMID:26415656

  10. Vertical transport in graphene-hexagonal boron nitride heterostructure devices.

    PubMed

    Bruzzone, Samantha; Logoteta, Demetrio; Fiori, Gianluca; Iannaccone, Giuseppe

    2015-01-01

    Research in graphene-based electronics is recently focusing on devices based on vertical heterostructures of two-dimensional materials. Here we use density functional theory and multiscale simulations to investigate the tunneling properties of single- and double-barrier structures with graphene and few-layer hexagonal boron nitride (h-BN) or hexagonal boron carbon nitride (h-BC2N). We find that tunneling through a single barrier exhibit a weak dependence on energy. We also show that in double barriers separated by a graphene layer we do not observe resonant tunneling, but a significant increase of the tunneling probability with respect to a single barrier of thickness equal to the sum of the two barriers. This is due to the fact that the graphene layer acts as an effective phase randomizer, suppressing resonant tunneling and effectively letting a double-barrier structure behave as two single-barriers in series. Finally, we use multiscale simulations to reproduce a current-voltage characteristics resembling that of a resonant tunneling diode, that has been experimentally observed in single barrier structure. The peak current is obtained when there is perfect matching between the densities of states of the cathode and anode graphene regions. PMID:26415656

  11. Vertical transport in graphene-hexagonal boron nitride heterostructure devices

    NASA Astrophysics Data System (ADS)

    Bruzzone, Samantha; Logoteta, Demetrio; Fiori, Gianluca; Iannaccone, Giuseppe

    2015-09-01

    Research in graphene-based electronics is recently focusing on devices based on vertical heterostructures of two-dimensional materials. Here we use density functional theory and multiscale simulations to investigate the tunneling properties of single- and double-barrier structures with graphene and few-layer hexagonal boron nitride (h-BN) or hexagonal boron carbon nitride (h-BC2N). We find that tunneling through a single barrier exhibit a weak dependence on energy. We also show that in double barriers separated by a graphene layer we do not observe resonant tunneling, but a significant increase of the tunneling probability with respect to a single barrier of thickness equal to the sum of the two barriers. This is due to the fact that the graphene layer acts as an effective phase randomizer, suppressing resonant tunneling and effectively letting a double-barrier structure behave as two single-barriers in series. Finally, we use multiscale simulations to reproduce a current-voltage characteristics resembling that of a resonant tunneling diode, that has been experimentally observed in single barrier structure. The peak current is obtained when there is perfect matching between the densities of states of the cathode and anode graphene regions.

  12. Pulsed laser deposition of single layer, hexagonal boron nitride (white graphene, h-BN) on fiber-oriented Ag(111)/SrTiO3(001)

    NASA Astrophysics Data System (ADS)

    Velázquez, Daniel; Seibert, Rachel; Man, Hamdi; Spentzouris, Linda; Terry, Jeff

    2016-03-01

    We report on the growth of 1-10 ML films of hexagonal boron nitride (h-BN), also known as white graphene, on fiber-oriented Ag buffer films on SrTiO3(001) by pulsed laser deposition. The Ag buffer films of 40 nm thickness were used as substitutes for expensive single crystal metallic substrates. In-situ, reflection high-energy electron diffraction was used to monitor the surface structure of the Ag films and to observe the formation of the characteristic h-BN diffraction pattern. Further evidence of the growth of h-BN was provided by attenuated total reflectance spectroscopy, which showed the characteristic h-BN peaks at ˜780 cm-1 and 1367.4 cm-1. Ex-situ photoelectron spectroscopy showed that the surface of the h-BN films is stoichiometric. The physical structure of the films was confirmed by scanning electron microscopy. The h-BN films grew as large, sub-millimeter sheets with nano- and micro-sheets scattered on the surface. The h-BN sheets can be exfoliated by the micromechanical adhesive tape method. Spectral analysis was performed by energy dispersive spectroscopy in order to identify the h-BN sheets after exfoliation. The use of thin film Ag allows for reduced use of Ag and makes it possible to adjust the surface morphology of the thin film prior to h-BN growth.

  13. High Temperature Oxidation of Boron Nitride. Part 1; Monolithic Boron Nitride

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan; Farmer, Serene; Moore, Arthur; Sayir, Haluk

    1997-01-01

    High temperature oxidation of monolithic boron nitride (BN) is examined. Hot pressed BN and both low and high density CVD BN were studied. It is shown that oxidation rates are quite sensitive to microstructural factors such as orientation, porosity, and degree of crystallinity. In addition small amounts of water vapor lead to volatilization of the B2O3 oxide as H(x)B(y)O(z). For these reasons, very different oxidation kinetics were observed for each type of BN.

  14. Boron nitride as a substrate for H2 monolayer studies

    NASA Astrophysics Data System (ADS)

    Evans, M. D.; Patel, N.; Sullivan, N. S.

    1992-11-01

    We report measurements of the adsorption isotherms of helium and methane on boron nitride. The suitability of using BN as a substrate for studying the two-dimensional, orientational ordering of quantum quadrupoles on a triangular lattice is also discussed.

  15. Fabrication of Boron Nitride Nanosheets by Exfoliation.

    PubMed

    Wang, Zifeng; Tang, Zijie; Xue, Qi; Huang, Yan; Huang, Yang; Zhu, Minshen; Pei, Zengxia; Li, Hongfei; Jiang, Hongbo; Fu, Chenxi; Zhi, Chunyi

    2016-06-01

    Nanomaterials with layered structures, with their intriguing properties, are of great research interest nowadays. As one of the primary two-dimensional nanomaterials, the hexagonal boron nitride nanosheet (BNNS, also called white graphene), which is an analogue of graphene, possesses various attractive properties, such as high intrinsic thermal conductivity, excellent chemical and thermal stability, and electrical insulation properties. After being discovered, it has been one of the most intensively studied two-dimensional non-carbon nanomaterials and has been applied in a wide range of applications. To support the exploration of applications of BNNSs, exfoliation, as one of the most promising approaches to realize large-scale production of BNNSs, has been intensively investigated. In this review, methods to yield BNNSs by exfoliation will be summarized and compared with other potential fabrication methods of BNNSs. In addition, the future prospects of the exfoliation of h-BN will also be discussed. PMID:27062213

  16. Intercalation of hexagonal boron nitride with potassium

    SciTech Connect

    Doll, G.L.; Speck, J.S.; Dresselhaus, G.; Dresselhaus, M.S. ); Nakamura, K.; Tanuma, S.

    1989-09-15

    We have performed photoluminescence, photoexcitation, and transmission electron microscopy measurements on boron nitride films grown by chemical vapor deposition and later reacted with potassium. After reaction, the potassium atoms were found to intercalate the BN host and to form a (2{times}2){ital R}0{degree} in-plane structure which is commensurate with the pristine BN lattice. Optical transitions with {similar to}2.7 eV onsets were found to occur within the {similar to}5-eV BN band gap and have been interpreted as {Gamma}-point transitions between the K(4{ital s}) band and the BN(2{ital p}) bands. The absence of an appreciable shift in the {ital E}{sub 2{ital g}{sub 2}} phonon frequency of the pristine and reacted films suggests that the charge transfer between the K and BN bands is very small.

  17. Rebar Graphene from Functionalized Boron Nitride Nanotubes

    PubMed Central

    2015-01-01

    The synthesis of rebar graphene on Cu substrates is described using functionalized boron nitride nanotubes (BNNTs) that were annealed or subjected to chemical vapor deposition (CVD) growth of graphene. Characterization shows that the BNNTs partially unzip and form a reinforcing bar (rebar) network within the graphene layer that enhances the mechanical strength through covalent bonds. The rebar graphene is transferrable to other substrates without polymer assistance. The optical transmittance and conductivity of the hybrid rebar graphene film was tested, and a field effect transistor was fabricated to explore its electrical properties. This method of synthesizing 2D hybrid graphene/BN structures should enable the hybridization of various 1D nanotube and 2D layered structures with enhanced mechanical properties. PMID:25486451

  18. Hexagonal boron nitride and water interaction parameters

    NASA Astrophysics Data System (ADS)

    Wu, Yanbin; Wagner, Lucas K.; Aluru, Narayana R.

    2016-04-01

    The study of hexagonal boron nitride (hBN) in microfluidic and nanofluidic applications at the atomic level requires accurate force field parameters to describe the water-hBN interaction. In this work, we begin with benchmark quality first principles quantum Monte Carlo calculations on the interaction energy between water and hBN, which are used to validate random phase approximation (RPA) calculations. We then proceed with RPA to derive force field parameters, which are used to simulate water contact angle on bulk hBN, attaining a value within the experimental uncertainties. This paper demonstrates that end-to-end multiscale modeling, starting at detailed many-body quantum mechanics and ending with macroscopic properties, with the approximations controlled along the way, is feasible for these systems.

  19. Hexagonal boron nitride and water interaction parameters.

    PubMed

    Wu, Yanbin; Wagner, Lucas K; Aluru, Narayana R

    2016-04-28

    The study of hexagonal boron nitride (hBN) in microfluidic and nanofluidic applications at the atomic level requires accurate force field parameters to describe the water-hBN interaction. In this work, we begin with benchmark quality first principles quantum Monte Carlo calculations on the interaction energy between water and hBN, which are used to validate random phase approximation (RPA) calculations. We then proceed with RPA to derive force field parameters, which are used to simulate water contact angle on bulk hBN, attaining a value within the experimental uncertainties. This paper demonstrates that end-to-end multiscale modeling, starting at detailed many-body quantum mechanics and ending with macroscopic properties, with the approximations controlled along the way, is feasible for these systems. PMID:27131542

  20. Rebar graphene from functionalized boron nitride nanotubes.

    PubMed

    Li, Yilun; Peng, Zhiwei; Larios, Eduardo; Wang, Gunuk; Lin, Jian; Yan, Zheng; Ruiz-Zepeda, Francisco; José-Yacamán, Miguel; Tour, James M

    2015-01-27

    The synthesis of rebar graphene on Cu substrates is described using functionalized boron nitride nanotubes (BNNTs) that were annealed or subjected to chemical vapor deposition (CVD) growth of graphene. Characterization shows that the BNNTs partially unzip and form a reinforcing bar (rebar) network within the graphene layer that enhances the mechanical strength through covalent bonds. The rebar graphene is transferrable to other substrates without polymer assistance. The optical transmittance and conductivity of the hybrid rebar graphene film was tested, and a field effect transistor was fabricated to explore its electrical properties. This method of synthesizing 2D hybrid graphene/BN structures should enable the hybridization of various 1D nanotube and 2D layered structures with enhanced mechanical properties. PMID:25486451

  1. Spherical boron nitride particles and method for preparing them

    DOEpatents

    Phillips, Jonathan; Gleiman, Seth S.; Chen, Chun-Ku

    2003-11-25

    Spherical and polyhedral particles of boron nitride and method of preparing them. Spherical and polyhedral particles of boron nitride are produced from precursor particles of hexagonal phase boron nitride suspended in an aerosol gas. The aerosol is directed to a microwave plasma torch. The torch generates plasma at atmospheric pressure that includes nitrogen atoms. The presence of nitrogen atoms is critical in allowing boron nitride to melt at atmospheric pressure while avoiding or at least minimizing decomposition. The plasma includes a plasma hot zone, which is a portion of the plasma that has a temperature sufficiently high to melt hexagonal phase boron nitride. In the hot zone, the precursor particles melt to form molten particles that acquire spherical and polyhedral shapes. These molten particles exit the hot zone, cool, and solidify to form solid particles of boron nitride with spherical and polyhedral shapes. The molten particles can also collide and join to form larger molten particles that lead to larger spherical and polyhedral particles.

  2. Excellent electrical conductivity of the exfoliated and fluorinated hexagonal boron nitride nanosheets

    PubMed Central

    2013-01-01

    The insulator characteristic of hexagonal boron nitride limits its applications in microelectronics. In this paper, the fluorinated hexagonal boron nitride nanosheets were prepared by doping fluorine into the boron nitride nanosheets exfoliated from the bulk boron nitride in isopropanol via a facile chemical solution method with fluoboric acid; interestingly, these boron nitride nanosheets demonstrate a typical semiconductor characteristic which were studied on a new scanning tunneling microscope-transmission electron microscope holder. Since this property changes from an insulator to a semiconductor of the boron nitride, these nanosheets will be able to extend their applications in designing and fabricating electronic nanodevices. PMID:23347409

  3. Excellent electrical conductivity of the exfoliated and fluorinated hexagonal boron nitride nanosheets

    NASA Astrophysics Data System (ADS)

    Xue, Yafang; Liu, Qian; He, Guanjie; Xu, Kaibing; Jiang, Lin; Hu, Xianghua; Hu, Junqing

    2013-01-01

    The insulator characteristic of hexagonal boron nitride limits its applications in microelectronics. In this paper, the fluorinated hexagonal boron nitride nanosheets were prepared by doping fluorine into the boron nitride nanosheets exfoliated from the bulk boron nitride in isopropanol via a facile chemical solution method with fluoboric acid; interestingly, these boron nitride nanosheets demonstrate a typical semiconductor characteristic which were studied on a new scanning tunneling microscope-transmission electron microscope holder. Since this property changes from an insulator to a semiconductor of the boron nitride, these nanosheets will be able to extend their applications in designing and fabricating electronic nanodevices.

  4. Characterization and manipulation of individual defects in insulating hexagonal boron nitride using scanning tunnelling microscopy

    NASA Astrophysics Data System (ADS)

    Wong, Dillon; Velasco, Jairo; Ju, Long; Lee, Juwon; Kahn, Salman; Tsai, Hsin-Zon; Germany, Chad; Taniguchi, Takashi; Watanabe, Kenji; Zettl, Alex; Wang, Feng; Crommie, Michael F.

    2015-11-01

    Defects play a key role in determining the properties and technological applications of nanoscale materials and, because they tend to be highly localized, characterizing them at the single-defect level is of particular importance. Scanning tunnelling microscopy has long been used to image the electronic structure of individual point defects in conductors, semiconductors and ultrathin films, but such single-defect electronic characterization remains an elusive goal for intrinsic bulk insulators. Here, we show that individual native defects in an intrinsic bulk hexagonal boron nitride insulator can be characterized and manipulated using a scanning tunnelling microscope. This would typically be impossible due to the lack of a conducting drain path for electrical current. We overcome this problem by using a graphene/boron nitride heterostructure, which exploits the atomically thin nature of graphene to allow the visualization of defect phenomena in the underlying bulk boron nitride. We observe three different defect structures that we attribute to defects within the bulk insulating boron nitride. Using scanning tunnelling spectroscopy we obtain charge and energy-level information for these boron nitride defect structures. We also show that it is possible to manipulate the defects through voltage pulses applied to the scanning tunnelling microscope tip.

  5. BORON NITRIDE CAPACITORS FOR ADVANCED POWER ELECTRONIC DEVICES

    SciTech Connect

    N. Badi; D. Starikov; C. Boney; A. Bensaoula; D. Johnstone

    2010-11-01

    This project fabricates long-life boron nitride/boron oxynitride thin film -based capacitors for advanced SiC power electronics with a broad operating temperature range using a physical vapor deposition (PVD) technique. The use of vapor deposition provides for precise control and quality material formation.

  6. Boron nitride: Composition, optical properties and mechanical behavior

    NASA Technical Reports Server (NTRS)

    Pouch, John J.; Alterovitz, Samuel A.; Miyoshi, Kazuhisa; Warner, Joseph D.

    1987-01-01

    A low energy ion beam deposition technique was used to grow boron nitride films on quartz, germanium, silicon, gallium arsenide, and indium phosphate. The film structure was amorphous with evidence of a hexagonal phase. The peak boron concentration was 82 at %. The carbon and oxygen impurities were in the 5 to 8 at % range. Boron-nitrogen and boron-boron bonds were revealed by X-ray photoelectron spectroscopy. The index of refraction varied from 1.65 to 1.67 for films deposited on III-V compound semiconductors. The coefficient of friction for boron nitride in sliding contact with diamond was less than 0.1. The substrate was silicon.

  7. The different adsorption mechanism of methane molecule onto a boron nitride and a graphene flakes

    SciTech Connect

    Seyed-Talebi, Seyedeh Mozhgan; Neek-Amal, M.

    2014-10-21

    Graphene and single layer hexagonal boron-nitride are two newly discovered 2D materials with wonderful physical properties. Using density functional theory, we study the adsorption mechanism of a methane molecule over a hexagonal flake of single layer hexagonal boron-nitride (h-BN) and compare the results with those of graphene. We found that independent of the used functional in our ab-initio calculations, the adsorption energy in the h-BN flake is larger than that for graphene. Despite of the adsorption energy profile of methane over a graphene flake, we show that there is a long range behavior beyond minimum energy in the adsorption energy of methane over h-BN flake. This result reveals the higher sensitivity of h-BN sheet to the adsorption of a typical closed shell molecule with respect to graphene. The latter gives insight in the recent experiments of graphene over hexagonal boron nitride.

  8. The different adsorption mechanism of methane molecule onto a boron nitride and a graphene flakes

    NASA Astrophysics Data System (ADS)

    Seyed-Talebi, Seyedeh Mozhgan; Neek-Amal, M.

    2014-10-01

    Graphene and single layer hexagonal boron-nitride are two newly discovered 2D materials with wonderful physical properties. Using density functional theory, we study the adsorption mechanism of a methane molecule over a hexagonal flake of single layer hexagonal boron-nitride (h-BN) and compare the results with those of graphene. We found that independent of the used functional in our ab-initio calculations, the adsorption energy in the h-BN flake is larger than that for graphene. Despite of the adsorption energy profile of methane over a graphene flake, we show that there is a long range behavior beyond minimum energy in the adsorption energy of methane over h-BN flake. This result reveals the higher sensitivity of h-BN sheet to the adsorption of a typical closed shell molecule with respect to graphene. The latter gives insight in the recent experiments of graphene over hexagonal boron nitride.

  9. Process for producing wurtzitic or cubic boron nitride

    DOEpatents

    Holt, J.B.; Kingman, D.D.; Bianchini, G.M.

    1992-04-28

    Disclosed is a process for producing wurtzitic or cubic boron nitride comprising the steps of: [A] preparing an intimate mixture of powdered boron oxide, a powdered metal selected from the group consisting of magnesium or aluminum, and a powdered metal azide; [B] igniting the mixture and bringing it to a temperature at which self-sustaining combustion occurs; [C] shocking the mixture at the end of the combustion thereof with a high pressure wave, thereby forming as a reaction product, wurtzitic or cubic boron nitride and occluded metal oxide; and, optionally [D] removing the occluded metal oxide from the reaction product. Also disclosed are reaction products made by the process described.

  10. Process for producing wurtzitic or cubic boron nitride

    DOEpatents

    Holt, J. Birch; Kingman, deceased, Donald D.; Bianchini, Gregory M.

    1992-01-01

    Disclosed is a process for producing wurtzitic or cubic boron nitride comprising the steps of: [A] preparing an intimate mixture of powdered boron oxide, a powdered metal selected from the group consisting of magnesium or aluminum, and a powdered metal azide; [B] igniting the mixture and bringing it to a temperature at which self-sustaining combustion occurs; [C] shocking the mixture at the end of the combustion thereof with a high pressure wave, thereby forming as a reaction product, wurtzitic or cubic boron nitride and occluded metal oxide; and, optionally [D] removing the occluded metal oxide from the reaction product. Also disclosed are reaction products made by the process described.

  11. Structure, Mechanics and Synthesis of Nanoscale Carbon and Boron Nitride

    NASA Astrophysics Data System (ADS)

    Rinaldo, Steven G.

    This thesis is divided into two parts. In Part I, we examine the properties of thin sheets of carbon and boron nitride. We begin with an introduction to the theory of elastic sheets, where the stretching and bending modes are considered in detail. The coupling between stretching and bending modes is thought to play a crucial role in the thermodynamic stability of atomically-thin 2D sheets such as graphene. In Chapter 2, we begin by looking at the fabrication of suspended, atomically thin sheets of graphene. We then study their mechanical resonances which are read via an optical transduction technique. The frequency of the resonators was found to depend on their temperature, as was their quality factor. We conclude by offering some interpretations of the data in terms of the stretching and bending modes of graphene. In Chapter 3, we look briefly at the fabrication of thin sheets of carbon and boron nitride nanotubes. We examine the structure of the sheets using transmission and scanning electron microscopy (TEM and SEM, respectively). We then show a technique by which one can make sheets suspended over a trench with adjustable supports. Finally, DC measurements of the resistivity of the sheets in the temperature range 600 -- 1400 C are presented. In Chapter 4, we study the folding of few-layer graphene oxide, graphene and boron nitride into 3D aerogel monoliths. The properties of graphene oxide are first considered, after which the structure of graphene and boron nitride aerogels is examined using TEM and SEM. Some models for their structure are proposed. In Part II, we look at synthesis techniques for boron nitride (BN). In Chapter 5, we study the conversion of carbon structures of boron nitride via the application of carbothermal reduction of boron oxide followed by nitridation. We apply the conversion to a wide variety of morphologies, including aerogels, carbon fibers and nanotubes, and highly oriented pyrolytic graphite. In the latter chapters, we look at the

  12. A comparative study of the thermal interface materials with graphene and boron nitride fillers

    NASA Astrophysics Data System (ADS)

    Kargar, F.; Salgado, R.; Legedza, S.; Renteria, J.; Balandin, A. A.

    2014-09-01

    We report the results of an experimental study that compares the performance of graphene and boron nitride flakes as fillers in the thermal interface materials. The thickness of both fillers varied from a single atomic plane to about a hundred. The measurements have been conducted using a standard TIM tester. Our results show that the addition of a small fraction of graphene (f=4 wt%) to a commercial thermal interface material increases the resulting apparent thermal conductivity substantially stronger than the addition of boron nitride. The obtained data suggest that graphene and fewlayer graphene flakes couple better to the matrix materials than the boron nitride fillers. A combination of both fillers can be used to increase the thermal conductivity while controlling the electrical conduction.

  13. Growth of cubic boron nitride on diamond particles by microwave plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Saitoh, H.; Yarbrough, W. A.

    1991-06-01

    The nucleation and growth of cubic boron nitride (c-BN) onto diamond powder using solid NaBH4 in low pressure gas mixtures of NH3 and H2 by microwave plasma enhanced chemical vapor deposition has been studied. Boron nitride was deposited on submicron diamond seed crystals scattered on (100) silicon single crystal wafers and evidence was found for the formation of the cubic phase. Diamond powder surfaces appear to preferentially nucleate c-BN. In addition, it was found that the ratio of c-BN to turbostratic structure boron nitride (t-BN) deposited increases with decreasing NH3 concentration in H2. It is suggested that this may be due to an increased etching rate for t-BN by atomic hydrogen whose partial pressure may vary with NH3 concentration.

  14. Investigation of tensile response and thermal conductivity of boron-nitride nanosheets using molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Mortazavi, Bohayra; Rémond, Yves

    2012-06-01

    In this paper, we employed classical molecular dynamics simulations using the Tersoff potential for the evaluation of thermal conductivity and tensile response of single-layer boron-nitride sheets (SBNS). By carrying out uniaxial tension simulations, the elastic moduli of SBNS structures are predicted to be close to those of boron-nitride nanotubes in a range between 0.8 and 0.85 TPa for different chirality directions. Performing non-equilibrium molecular dynamics simulations, the thermal conductivity of SBNS is predicted to be around 80 W/m-K, which is shown to be independent of chirality directions.

  15. Submicron cubic boron nitride as hard as diamond

    SciTech Connect

    Liu, Guoduan; Kou, Zili E-mail: yanxz@hpstar.ac.cn; Lei, Li; Peng, Fang; Wang, Qiming; Wang, Kaixue; Wang, Pei; Li, Liang; Li, Yong; Wang, Yonghua; Yan, Xiaozhi E-mail: yanxz@hpstar.ac.cn; Li, Wentao; Bi, Yan; Leng, Yang; He, Duanwei

    2015-03-23

    Here, we report the sintering of aggregated submicron cubic boron nitride (sm-cBN) at a pressure of 8 GPa. The sintered cBN compacts exhibit hardness values comparable to that of single crystal diamond, fracture toughness about 5-fold that of cBN single crystal, in combination with a high oxidization temperature. Thus, another way has been demonstrated to improve the mechanical properties of cBN besides reducing the grain size to nano scale. In contrast to other ultrahard compacts with similar hardness, the sm-cBN aggregates are better placed for potential industrial application, as their relative low pressure manufacturing perhaps be easier and cheaper.

  16. Transverse electric surface mode in atomically thin Boron-Nitride.

    PubMed

    Merano, Michele

    2016-06-01

    The spatial confinement and the propagation length of surface waves in a single-layer two-dimensional atomic crystal are analyzed in terms of its surface susceptibility and its surface conductivity. Based on the values of these macroscopic parameters, extracted from experimental observations, it is confirmed that graphene supports a transverse magnetic nonradiating surface mode in the ultraviolet spectral region while a single-layer hexagonal Boron-Nitride is predicted to support a transverse electric nonradiating surface mode in the visible spectrum. This last mode, at a vacuum wavelength of 633 nm, has a spatial confinement of 15 μm and an intensity-propagation distance greater than 2 cm. PMID:27244441

  17. Thickness-dependent bending modulus of hexagonal boron nitride nanosheets

    NASA Astrophysics Data System (ADS)

    Li, Chun; Bando, Yoshio; Zhi, Chunyi; Huang, Yang; Golberg, Dmitri

    2009-09-01

    Bending modulus of exfoliation-made single-crystalline hexagonal boron nitride nanosheets (BNNSs) with thicknesses of 25-300 nm and sizes of 1.2-3.0 µm were measured using three-point bending tests in an atomic force microscope. BNNSs suspended on an SiO2 trench were clamped by a metal film via microfabrication based on electron beam lithography. Calculated by the plate theory of a doubly clamped plate under a concentrated load, the bending modulus of BNNSs was found to increase with the decrease of sheet thickness and approach the theoretical C33 value of a hexagonal BN single crystal in thinner sheets (thickness<50 nm). The thickness-dependent bending modulus was suggested to be due to the layer distribution of stacking faults which were also thought to be responsible for the layer-by-layer BNNS exfoliation.

  18. Structural properties of hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Ooi, N.; Rajan, V.; Gottlieb, J.; Catherine, Y.; Adams, J. B.

    2006-04-01

    The electronic and structural properties of hexagonal boron nitride (BN) were studied using density functional theory calculations. Three different approximations for the exchange—correlation energy (the local density and two forms of the generalized gradient)—were used to calculate properties such as the bulk modulus, cohesive energy and lattice constants to determine their relative predictive abilities for this system. In general, calculations using the local density approximation produced properties slightly closer to experimental values than calculations with either generalized gradient approximations. Different stackings, or arrangements of one basal plane with respect to another, were examined to determine the equilibrium stacking(s) and it was found that the different stackings have similar cohesive energies and bulk moduli. Energy versus volume curves were calculated for each stacking using two different methods to determine their relative efficacy. Bulk moduli values obtained assuming no pressure dependence were closer to experimental values than those obtained from three common equations of state. Comparisons between the cohesive energies of hexagonal BN and cubic BN show that the cubic phase is more stable. The pressure/volume dependence of the band structure was studied for several different stackings and all showed similar behaviour, specifically a 3-4.5 eV band gap that was nearly independent of pressure in the -500 to +500 kb regime. These calculated results of the pressure/volume dependence of the band structure are the first reports for this system.

  19. Boron nitride as a selective gas adsorbent

    SciTech Connect

    Janik, J.F.; Ackerman, W.C.; Paine, R.T.; Hua, D.W.; Maskara, A.; Smith, D.M. )

    1994-02-01

    A series of eight porous boron nitride materials with nitrogen/BET surface areas of 437-712 m[sup 2]/g have been produced using polymeric precursors varied by systematic synthesis modifications. All samples exhibit type I isotherms indicating that a majority of the porosity occurs in pores with radius less than 1.0 nm. Carbon dioxide adsorption at 273 K was analyzed using the Dubinin-Radushkevich (D-R) and Dubinin-Astakov (D-A) equations. Significant differences between BET/N[sub 2] and D-R/CO[sub 2] surface areas are observed. Adsorption of carbon dioxide and methane is measured at 273 K over the pressure range of 0-800 Torr, and significant differences in adsorption selectivity are observed. Although all eight samples have similar BET surface areas, the carbon dioxide uptake at 273 K and 800 Torr varies from 9.5 to 125 cm[sup 3]/g. Differences in the chemical and physical structure of the samples are probed with Fourier transform IR, X-ray diffraction, and small angle X-ray scattering measurements. CH[sub 4]/CO[sub 2] selectivity correlates with both the radius of gyration obtained from SAXS and the D-A coefficient from CO[sub 2] adsorption. 16 refs., 9 figs., 1 tab.

  20. Porous Boron Nitride with Tunable Pore Size.

    PubMed

    Dai, Jun; Wu, Xiaojun; Yang, Jinlong; Zeng, Xiao Cheng

    2014-01-16

    On the basis of a global structural search and first-principles calculations, we predict two types of porous boron-nitride (BN) networks that can be built up with zigzag BN nanoribbons (BNNRs). The BNNRs are either directly connected with puckered B (N) atoms at the edge (type I) or connected with sp(3)-bonded BN chains (type II). Besides mechanical stability, these materials are predicted to be thermally stable at 1000 K. The porous BN materials entail large surface areas, ranging from 2800 to 4800 m(2)/g. In particular, type-II BN material with relatively large pores is highly favorable for hydrogen storage because the computed hydrogen adsorption energy (-0.18 eV) is very close to the optimal adsorption energy (-0.15 eV) suggested for reversible hydrogen storage at room temperature. Moreover, the type-II materials are semiconductors with width-dependent direct bandgaps, rendering the type-II BN materials promising not only for hydrogen storage but also for optoelectronic and photonic applications. PMID:26270717

  1. Graphene nanoribbons epitaxy on boron nitride

    NASA Astrophysics Data System (ADS)

    Lu, Xiaobo; Yang, Wei; Wang, Shuopei; Wu, Shuang; Chen, Peng; Zhang, Jing; Zhao, Jing; Meng, Jianling; Xie, Guibai; Wang, Duoming; Wang, Guole; Zhang, Ting Ting; Watanabe, Kenji; Taniguchi, Takashi; Yang, Rong; Shi, Dongxia; Zhang, Guangyu

    2016-03-01

    In this letter, we report a pilot study on epitaxy of monolayer graphene nanoribbons (GNRs) on hexagonal boron nitride (h-BN). We found that GNRs grow preferentially from the atomic steps of h-BN, forming in-plane heterostructures. GNRs with well-defined widths ranging from ˜15 nm to ˜150 nm can be obtained reliably. As-grown GNRs on h-BN have high quality with a carrier mobility of ˜20 000 cm2 V-1 s-1 for ˜100-nm-wide GNRs at a temperature of 1.7 K. Besides, a moiré pattern induced quasi-one-dimensional superlattice with a periodicity of ˜15 nm for GNR/h-BN was also observed, indicating zero crystallographic twisting angle between GNRs and h-BN substrate. The superlattice induced band structure modification is confirmed by our transport results. These epitaxial GNRs/h-BN with clean surfaces/interfaces and tailored widths provide an ideal platform for high-performance GNR devices.

  2. Oxidation of Boron Nitride in Composites

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.

    1998-01-01

    Boron nitride (BN) is a prime candidate for fiber coatings in silicon carbide (SiC) fiber-reinforced SiC matrix composites. The properties of BN allow the fiber to impart beneficial composite properties to the matrix, even at elevated temperatures. The problem with BN is that it is readily attacked by oxygen. Although BN is an internal component of the composite, a matrix crack or pore can create a path for hot oxygen to attack the BN. This type of attack is not well understood. A variety of phenomena have been observed. These include borosilicate glass formation, volatilization of the BN, and under some conditions, preservation of the BN. In this study at the NASA Lewis Research Center, a series of BN materials and BN-containing model composites were methodically examined to understand the various issues dealing with the oxidation of BN in composites. Initial studies were done with a series of monolithic BN materials prepared by hot pressing and chemical vapor deposition (CVD). From these studies, we found that BN showed a strong orientation effect in oxidation and was extremely sensitive to the presence of water vapor in the environment. In addition, CVD material deposited at a high temperature showed much better oxidation behavior than CVD material deposited at a lower temperature.

  3. Hyperbolic phonon polaritons in hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Dai, Siyuan

    2015-03-01

    Uniaxial materials whose axial and tangential permittivities have opposite signs are referred to as indefinite or hyperbolic media. While hyperbolic responses are normally achieved with metamaterials, hexagonal boron nitride (hBN) naturally possesses this property due to the anisotropic phonons in the mid-infrared. Using scattering-type scanning near-field optical microscopy, we studied polaritonic phenomena in hBN. We performed infrared nano-imaging of highly confined and low-loss hyperbolic phonon polaritons in hBN. The polariton wavelength was shown to be governed by the hBN thickness according to a linear law persisting down to few atomic layers [Science, 343, 1125-1129 (2014)]. Additionally, we carried out the modification of hyperbolic response in heterostructures comprised of a mononlayer graphene deposited on hBN. Electrostatic gating of the top graphene layer allows for the modification of wavelength and intensity of hyperbolic phonon polaritons in bulk hBN. The physics of the modification originates from the plasmon-phonon coupling in the hyperbolic medium. Furthermore, we demonstrated the ``hyperlens'' for subdiffractional imaging and focusing using a slab of hBN.

  4. Fluorescent Defects in Hexagonal Boron Nitride

    NASA Astrophysics Data System (ADS)

    Exarhos, Annemarie L.; Oser, Kameron; Hopper, David A.; Grote, Richard R.; Bassett, Lee C.

    Mono- and few-layer hexagonal boron nitride (h-BN) can host defects whose electronic states lie deep within the bandgap, similar to the nitrogen-vacancy color center in bulk diamond. Here, we study defect creation in h-BN through irradiation and thermal annealing. We employ confocal photoluminescence (PL) imaging and spectroscopy under various excitation energies on both supported and suspended h-BN to identify and characterize the emission of isolated defect centers. Polarization- and temperature-dependent measurements of the observed PL are used to map out the electronic structure of the defects, enabling optical control of fluorescent defects in h-BN. This knowledge, coupled with the spatial confinement to 2D and the unique electrical, optical, and mechanical properties of h-BN, will enable the use of these defects for quantum sensing and other applications in quantum information processing. Work supported by the ARO (W911NF-15-1-0589) and NSF MRSEC (DMR-1120901).

  5. Boron Nitride Nanostructures: Fabrication, Functionalization and Applications.

    PubMed

    Yin, Jun; Li, Jidong; Hang, Yang; Yu, Jin; Tai, Guoan; Li, Xuemei; Zhang, Zhuhua; Guo, Wanlin

    2016-06-01

    Boron nitride (BN) structures are featured by their excellent thermal and chemical stability and unique electronic and optical properties. However, the lack of controlled synthesis of quality samples and the electrically insulating property largely prevent realizing the full potential of BN nanostructures. A comprehensive overview of the current status of the synthesis of two-dimensional hexagonal BN sheets, three dimensional porous hexagonal BN materials and BN-involved heterostructures is provided, highlighting the advantages of different synthetic methods. In addition, structural characterization, functionalizations and prospective applications of hexagonal BN sheets are intensively discussed. One-dimensional BN nanoribbons and nanotubes are then discussed in terms of structure, fabrication and functionality. In particular, the existing routes in pursuit of tunable electronic and magnetic properties in various BN structures are surveyed, calling upon synergetic experimental and theoretical efforts to address the challenges for pioneering the applications of BN into functional devices. Finally, the progress in BN superstructures and novel B/N nanostructures is also briefly introduced. PMID:27073174

  6. Photoresponse in Graphene Boron Nitride Vertical Heterostructures

    NASA Astrophysics Data System (ADS)

    Andersen, Trond; Ma, Qiong; Lui, Chun-Hung; Nair, Nityan; Gabor, Nathaniel; Young, Andrea; Fang, Wenjing; Watanabe, Kenji; Taniguchi, Takashi; Kong, Jing; Gedik, Nuh; Jarillo-Herrero, Pablo

    2015-03-01

    Combining two-dimensional materials into vertical heterostructures reveals diverse, intriguing phenomena and provides a novel way of engineering materials with desired electronic properties. Placing graphene on hexagonal boron nitride (hBN) has given particularly interesting results, including enhanced mobility, opening of a band gap, and highly controllable photo-induced doping. We explore the photoresponse of vertical graphene-hBN-graphene heterostructures in a high electronic temperature regime where thermionic emission dominates. Near the charge neutral point, we observe a pronounced conductance peak, which we attribute to a cooling bottleneck that appears at low carrier density, thus suggesting hot carrier enhanced thermionic emission. To further investigate the mechanism by which current is generated, we conduct two-pulse correlation measurements and study the temporal dynamics of the system. We observe a positive correlation, implying that the hot carriers thermalize before crossing the hBN barrier. Finally, we propose an advanced, modified two-temperature model, which allows for numerical simulations that are consistent with our measurements.

  7. Electronic correlations of cubic boron nitride

    NASA Astrophysics Data System (ADS)

    Ganduglia-Pirovano, M. V.; Stollhoff, G.

    1991-08-01

    We have calculated total and binding energies of zinc-blende-structure boron nitride. Starting from a self-consistent-field ground-state calculation within a finite basis of Gaussian orbitals centered at the different atoms, the electron correlations were treated by applying the local ansatz. The electronic correlations are predominantly short ranged, as was also found for its isostructural compound, diamond. Of specific importance are correlations on the atomic scale. Electrons correlate strongly at the nitrogen atoms. The correlation strength within the B-N bonds and the reduction of the total-atomic-charge fluctuations is discussed in detail. For an agreement between calculated and experimental binding energies, additional basis functions on interstitial sites turned out to be necessary. Without them, correlations in the interstitial regions are too poorly covered. Such an effect should be relevant for all future calculations on open-structure materials. The final results for the binding energy compare well with calculations made within the local-density approximation.

  8. Boron coating on boron nitride coated nuclear fuels by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Durmazuçar, Hasan H.; Gündüz, Güngör

    2000-12-01

    Uranium dioxide-only and uranium dioxide-gadolinium oxide (5% and 10%) ceramic nuclear fuel pellets which were already coated with boron nitride were coated with thin boron layer by chemical vapor deposition to increase the burn-up efficiency of the fuel during reactor operation. Coating was accomplished from the reaction of boron trichloride with hydrogen at 1250 K in a tube furnace, and then sintering at 1400 and 1525 K. The deposited boron was identified by infrared spectrum. The morphology of the coating was studied by using scanning electron microscope. The plate, grainy and string (fiber)-like boron structures were observed.

  9. Elastic constants of cubic and wurtzite boron nitrides

    NASA Astrophysics Data System (ADS)

    Nagakubo, A.; Ogi, H.; Sumiya, H.; Kusakabe, K.; Hirao, M.

    2013-06-01

    We synthesized pure polycrystalline cubic boron nitride (cBN) and wurtzite boron nitride (wBN) by the direct conversion method from hexagonal boron nitride, and measured their longitudinal-wave elastic constants CL between 20 and 300 K using picosecond ultrasound spectroscopy. Their room-temperature values are 945 ± 3 GPa and 930 ± 18 GPa for cBN and wBN, respectively. The shear modulus G of cBN was also determined by combining resonance ultrasound spectroscopy and micromechanics calculation as G = 410 GPa. We performed ab-initio calculations and confirmed that the generalized gradient approximation potential fails to yield correct elastic constants, which indicated the necessity of a hybrid-functional method.

  10. Hexagonal boron nitride hollow capsules with collapsed surfaces: Chemical vapor deposition with single-source precursor ammonium fluoroborate

    NASA Astrophysics Data System (ADS)

    Xiaopeng, Li; Jun, Zhang; Chao, Yu; Xiaoxi, Liu; Saleem, Abbas; Jie, Li; Yanming, Xue; Chengchun, Tang

    2016-07-01

    SBA-15 (mesoporous SiO2) is used to stabilize and transfer F‑ in the NH4BF4 CVD reaction for the first time, and a large-scale crystalline h-BN phase can be prepared. We successfully fabricate hollow h-BN capsules with collapsed surfaces in our designed NH4BF4 CVD system. Optimum temperature conditions are obtained, and a detailed formation mechanism is further proposed. The successful SBA-15-assisted NH4BF4 CVD route is of importance and enriches the engineering technology in the h-BN single-source CVD reaction. Project supported by the National Natural Science Foundation of China (Grant Nos. 51332005, 51372066, 51172060, 51202055, and 21103056).

  11. Mechanical strength of boron nitride nanotube-polymer interfaces

    SciTech Connect

    Chen, Xiaoming; Ke, Changhong E-mail: cke@binghamton.edu; Zhang, Liuyang; Wang, Xianqiao E-mail: cke@binghamton.edu; Park, Cheol; Fay, Catharine C.

    2015-12-21

    We investigate the mechanical strength of boron nitride nanotube (BNNT) polymer interfaces by using in situ electron microscopy nanomechanical single-tube pull-out techniques. The nanomechanical measurements show that the shear strengths of BNNT-epoxy and BNNT-poly(methyl methacrylate) interfaces reach 323 and 219 MPa, respectively. Molecular dynamics simulations reveal that the superior load transfer capacity of BNNT-polymer interfaces is ascribed to both the strong van der Waals interactions and Coulomb interactions on BNNT-polymer interfaces. The findings of the extraordinary mechanical strength of BNNT-polymer interfaces suggest that BNNTs are excellent reinforcing nanofiller materials for light-weight and high-strength polymer nanocomposites.

  12. Nanocrystalline-graphene-tailored hexagonal boron nitride thin films.

    PubMed

    Lee, Kang Hyuck; Shin, Hyeon-Jin; Kumar, Brijesh; Kim, Han Sol; Lee, Jinyeong; Bhatia, Ravi; Kim, Sang-Hyeob; Lee, In-Yeal; Lee, Hyo Sug; Kim, Gil-Ho; Yoo, Ji-Beom; Choi, Jae-Young; Kim, Sang-Woo

    2014-10-20

    Unintentionally formed nanocrystalline graphene (nc-G) can act as a useful seed for the large-area synthesis of a hexagonal boron nitride (h-BN) thin film with an atomically flat surface that is comparable to that of exfoliated single-crystal h-BN. A wafer-scale dielectric h-BN thin film was successfully synthesized on a bare sapphire substrate by assistance of nc-G, which prevented structural deformations in a chemical vapor deposition process. The growth mechanism of this nc-G-tailored h-BN thin film was systematically analyzed. This approach provides a novel method for preparing high-quality two-dimensional materials on a large surface. PMID:25204810

  13. Hexagonal-boron nitride substrates for electroburnt graphene nanojunctions

    NASA Astrophysics Data System (ADS)

    Sadeghi, Hatef; Sangtarash, Sara; Lambert, Colin

    2016-08-01

    We examine the effect of a hexagonal boron nitride (hBN) substrate on electron transport through graphene nanojunctions just before gap formation. Junctions in vacuum and on hBN are formed using classical molecular dynamics to create initial structures, followed by relaxation using density functional theory. We find that the hBN only slightly reduces the current through the junctions at low biases. Furthermore due to quantum interference at the last moments of breaking, the current though a single carbon filament spanning the gap is found to be higher than the current through two filaments spanning the gap in parallel. This feature is present both in the presence of absence of hBN.

  14. Theory of thermal transport in multilayer hexagonal boron nitride and nanotubes

    NASA Astrophysics Data System (ADS)

    Lindsay, L.; Broido, D. A.

    2012-01-01

    We present a theory for the lattice thermal conductivity κL of single-walled boron nitride nanotubes (BNNTs) and multilayer hexagonal boron nitride (MLBN), which is based on an exact numerical solution of the phonon Boltzmann equation. Coupling between layers in MLBN and nanotube curvature in BNNTs each break a phonon scattering selection rule found in single-layer hexagonal boron nitride (SLBN), which reduces κL in these systems. We show that out-of-plane flexural phonons in MLBN and out-of-tube phonons in BNNTs provide large contributions to κL, qualitatively similar to multilayer graphene (MLG) and single-walled carbon nanotubes (SWCNTs). However, we find that the κL's in BNNTs and MLBN are considerably smaller compared to similar SWCNTs and MLG structures because of stronger anharmonic phonon scattering in the former. A large and strongly temperature-dependent isotope effect is found reflecting the interplay between anharmonic and isotope scattering phonons. Finally, we also demonstrate convergence of BNNTs into SLBN for large-diameter nanotubes and MLBN to bulk hexagonal boron nitride within a few layers.

  15. Formation of cubic boron-nitride by the reactive sputter deposition of boron

    SciTech Connect

    Jankowski, A.F.; Hayes, J.P.; Makowiecki, D.W.; McKeman, M.A.

    1997-03-01

    Boron-nitride films are synthesized by RF magnetron sputtering boron targets where the deposition parameters of gas pressure, flow and composition are varied along with substrate temperature and applied bias. The films are analyzed using Auger electron spectroscopy, transmission electron microscopy, nanoindentation, Raman spectroscopy and x-ray absorption spectroscopy. These techniques provide characterization of film composition, crystalline structure, hardness and chemical bonding, respectively. Reactive, rf-sputtering process parameters are established which lead to the growth of crystalline BN phases. The deposition of stable and adherent boron nitride coatings consisting of the cubic phase requires 400 `C substrate heating and the application of a 300 V negative bias.

  16. Optoelectronic properties of hexagonal boron nitride epilayers

    NASA Astrophysics Data System (ADS)

    Cao, X. K.; Majety, S.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2013-01-01

    This paper summarizes recent progress primarily achieved in authors' laboratory on synthesizing hexagonal boron nitride (hBN) epilayers by metal organic chemical vapor deposition (MCVD) and studies of their structural and optoelectronic properties. The structural and optical properties of hBN epilayers have been characterized by x-ray diffraction (XRD) and photoluminescence (PL) studies and compared to the better understood wurtzite AIN epilayers with a comparable energy bandgap. These MOCVD grown hBN epilayers exhibit highly efficient band-edge PL emission lines centered at around 5.5 eVat room temperature. The band-edge emission of hBN is two orders of magnitude higher than that of high quality AlN epilayers. Polarization-resolved PL spectroscopy revealed that hEN epilayers are predominantly a surface emission material, in which the band-edge emission with electric field perpendicular to the c-axis (Eemi⊥c) is about 1.7 times stronger than the component along the c-axis (Eemillc). This is in contrast to AIN, in which the band­ edge emission is known to be polarized along the c-axis, (Eemillc). Based on the graphene optical absorption concept, the estimated band-edge absorption coefficient of hBN is about 7x105 cm-1, which is more than 3 times higher than the value for AlN (~2x105 cm-1 . The hBN epilayer based photodetectors exhibit a sharp cut-off wavelength around 230 nm, which coincides with the band-edge PL emission peak and virtually no responses in the long wavelengths. The dielectric strength of hBN epilayers exceeds that of AlN and is greater than 4.5 MV/cm based on the measured result for an hBN epilayer released from the host sapphire substrate.

  17. Inter-layer potential for hexagonal boron nitride

    SciTech Connect

    Leven, Itai; Hod, Oded; Azuri, Ido; Kronik, Leeor

    2014-03-14

    A new interlayer force-field for layered hexagonal boron nitride (h-BN) based structures is presented. The force-field contains three terms representing the interlayer attraction due to dispersive interactions, repulsion due to anisotropic overlaps of electron clouds, and monopolar electrostatic interactions. With appropriate parameterization, the potential is able to simultaneously capture well the binding and lateral sliding energies of planar h-BN based dimer systems as well as the interlayer telescoping and rotation of double walled boron-nitride nanotubes of different crystallographic orientations. The new potential thus allows for the accurate and efficient modeling and simulation of large-scale h-BN based layered structures.

  18. Communication: Water on hexagonal boron nitride from diffusion Monte Carlo

    NASA Astrophysics Data System (ADS)

    Al-Hamdani, Yasmine S.; Ma, Ming; Alfè, Dario; von Lilienfeld, O. Anatole; Michaelides, Angelos

    2015-05-01

    Despite a recent flurry of experimental and simulation studies, an accurate estimate of the interaction strength of water molecules with hexagonal boron nitride is lacking. Here, we report quantum Monte Carlo results for the adsorption of a water monomer on a periodic hexagonal boron nitride sheet, which yield a water monomer interaction energy of -84 ± 5 meV. We use the results to evaluate the performance of several widely used density functional theory (DFT) exchange correlation functionals and find that they all deviate substantially. Differences in interaction energies between different adsorption sites are however better reproduced by DFT.

  19. The dynamics behavior of Rh nanoclusters on boron nitride sheet.

    PubMed

    Wang, Yao-Chun; Lu, Jian-Ming; Jul, Shin-Pon; Chen, Hui-Lung; Chen, Hsin-Tsung; Lin, Jenn-Sen; Hsieh, Jin-Yuan; Yang, Hsi-Wen; Huang, Li-Fan

    2013-02-01

    The configurations and corresponding adsorption energies of Rh(n) (n = 4-13) nanoclusters on the boron nitride sheet are investigated by density functional theory (DFT). We use the force-matching method (FMM) to modify parameters of Morse and Tersoff potential functions. To elucidate the dynamical behaviors of Rh nanoclusters on the boron nitride sheet, molecular dynamics (MD) is applied with modified Morse potential function parameter. Finally, the square displacement (SD) is utilized the dynamics behavior of different size Rh nanoclusters at different temperatures. PMID:23646614

  20. Communication: Water on hexagonal boron nitride from diffusion Monte Carlo

    SciTech Connect

    Al-Hamdani, Yasmine S.; Ma, Ming; Michaelides, Angelos; Alfè, Dario; Lilienfeld, O. Anatole von

    2015-05-14

    Despite a recent flurry of experimental and simulation studies, an accurate estimate of the interaction strength of water molecules with hexagonal boron nitride is lacking. Here, we report quantum Monte Carlo results for the adsorption of a water monomer on a periodic hexagonal boron nitride sheet, which yield a water monomer interaction energy of −84 ± 5 meV. We use the results to evaluate the performance of several widely used density functional theory (DFT) exchange correlation functionals and find that they all deviate substantially. Differences in interaction energies between different adsorption sites are however better reproduced by DFT.

  1. Communication: Water on hexagonal boron nitride from diffusion Monte Carlo.

    PubMed

    Al-Hamdani, Yasmine S; Ma, Ming; Alfè, Dario; von Lilienfeld, O Anatole; Michaelides, Angelos

    2015-05-14

    Despite a recent flurry of experimental and simulation studies, an accurate estimate of the interaction strength of water molecules with hexagonal boron nitride is lacking. Here, we report quantum Monte Carlo results for the adsorption of a water monomer on a periodic hexagonal boron nitride sheet, which yield a water monomer interaction energy of -84 ± 5 meV. We use the results to evaluate the performance of several widely used density functional theory (DFT) exchange correlation functionals and find that they all deviate substantially. Differences in interaction energies between different adsorption sites are however better reproduced by DFT. PMID:25978876

  2. Anisotropic Nanomechanics of Boron Nitride Nanotubes: Nanostructured "Skin" Effect

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Menon, Madhu; Cho, KyeongJae

    2000-01-01

    The stiffness and plasticity of boron nitride nanotubes are investigated using generalized tight-binding molecular dynamics and ab-initio total energy methods. Due to boron-nitride BN bond buckling effects, compressed zigzag BN nanotubes are found to undergo novel anisotropic strain release followed by anisotropic plastic buckling. The strain is preferentially released towards N atoms in the rotated BN bonds. The tubes buckle anisotropically towards only one end when uniaxially compressed from both. A "skin-effect" model of smart nanocomposite materials is proposed which will localize the structural damage towards the 'skin' or surface side of the material.

  3. Inter-layer potential for hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Leven, Itai; Azuri, Ido; Kronik, Leeor; Hod, Oded

    2014-03-01

    A new interlayer force-field for layered hexagonal boron nitride (h-BN) based structures is presented. The force-field contains three terms representing the interlayer attraction due to dispersive interactions, repulsion due to anisotropic overlaps of electron clouds, and monopolar electrostatic interactions. With appropriate parameterization, the potential is able to simultaneously capture well the binding and lateral sliding energies of planar h-BN based dimer systems as well as the interlayer telescoping and rotation of double walled boron-nitride nanotubes of different crystallographic orientations. The new potential thus allows for the accurate and efficient modeling and simulation of large-scale h-BN based layered structures.

  4. Synthesis of Boron Nitride Nanotubes for Engineering Applications

    NASA Technical Reports Server (NTRS)

    Hurst, Janet; Hull, David; Gorican, Dan

    2005-01-01

    Boron Nitride nanotubes (BNNT) are of interest to the scientific and technical communities for many of the same reasons that carbon nanotubes (CNT) have attracted large amounts of attention. Both materials have potentially unique and significant properties which may have important structural and electronic applications in the future. However of even more interest than their similarities may be the differences between carbon and boron nanotubes. Whilt boron nitride nanotubes possess a very high modulus similaar to CNT, they are also more chemically and thermally inert. Additionally BNNT possess more uniform electronic properties, having a uniform band gap of approximately 5.5 eV while CNT vary from semi-conductin to conductor behavior. Boron Nitride nanotubes have been synthesized by a variety of methods such as chemical vapor deposition, arc discharge and reactive milling. Consistently producing a reliable product has proven difficult. Progress in synthesis of 1-2 gram sized batches of Boron Nitride nanotubes will be discussed as well as potential uses for this unique material.

  5. Microstructure of boron nitride coated on nuclear fuels by plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Durmazuçar, Hasan H.; Gündüz, Güngör; Toker, Canan

    1998-08-01

    Three nuclear fuels, pure urania, 5% and 10% gadolinia containing fuels were coated with boron nitride to improve nuclear and physical properties. Coating was done by plasma enhanced chemical vapor deposition technique by using boron trichloride and ammonia. The specimens were examined under a scanning electron microscope. Boron nitride formed a grainy structure on all fuels. Gadolinia decreased the grain size of boron nitride. The fractal dimensions of fragmentation and of area-perimeter relation were determined.

  6. Synthesis and radiation response of BCON: a graphene oxide and hexagonal boron nitride hybrid

    NASA Astrophysics Data System (ADS)

    Bhimanapati, Ganesh R.; Wetherington, Maxwell; Mahabir, Shawn; Robinson, Joshua A.

    2016-06-01

    Since graphene, there has been a focus on several two-dimensional material systems (e.g. boron nitride, borocarbon nitride (BCN), transition-metal dichalcogenides) that provide an even wider array of unique chemistries and properties to explore future applications. Specifically, tailoring graphene/boron nitride heterostructures—which can theoretically retain the character of a single-atom thick sheet, withstand large physical strains, are easily functionalized, and have entirely different optical and mechanical properties compared to graphene—can provide the foundation for entirely new research avenues. In recent years, it has been shown that because of the similar crystal structure, carbon, boron, and nitrogen can co-exist as atomic sheets in a layered structure. We have developed a facile method of integrating boron nitride (hBN) and graphene oxide (GO) via chemical exfoliation which we refer to as BCON. The study of the stability of this material at different pH conditions indicates a stable and a uniform solution is achievable at pH 4–8. X-Ray Photoelectron Spectroscopy helped to identify the new bonds which indicated the formation of BCON linkage. Further, an in situ XPS technique was used to understand the chemical changes while exposing it to ionization radiation specially focusing on the C/O ratio. It was observed that even with a very low energy source, this material is highly sensitive to ionizing radiation, such as neutron, alpha and beta particles.

  7. Topological phase transition in hexagonal boron-nitride bilayers modulated by gate voltage

    NASA Astrophysics Data System (ADS)

    Jin, Guojun; Zhai, Xuechao

    2013-03-01

    We study the gate-voltage modulated electronic properties of hexagonal boron-nitride bilayers with two different stacking structures in the presence of intrinsic and Rashba spin-orbit interactions. Our analytical results show that there are striking cooperation effects arising from the spin-orbit interactions and the interlayer bias voltage. For realizing topological phase transition, in contrast to a gated graphene bilayer for increasing its energy gap, the energy gap of a boron-nitride bilayer is significantly reduced by an applied gate voltage. For the AA stacking-bilayer which has the inversion symmetry, a strong topological phase is found, and there is an interesting reentrant behavior from a normal phase to a topological phase and then to a normal phase again, characterized by the topological index. Therefore, the gate voltage modulated AA-boron nitride bilayer can be taken as a newcomer of the topological insulator family. For the AB stacking-bilayer which is lack of the inversion symmetry, it is always topologically trivial, but exhibits an unusual quantum Hall phase with four degenerate low-energy states localized at a single edge. It is suggested that these theoretical findings could be verified experimentally in the transport properties of boron-nitride bylayers. This research was supported by the NSFC (Nos. 60876065, 11074108), PAPD, and NBRPC (Nos. 2009CB929504, 2011CB922102).

  8. Quantifying the Solubility of Boron Nitride Nanotubes and Sheets with Static Light Scattering and Refractometry

    SciTech Connect

    Mutz, M; Eastwood, Eric Allen; Dadmun, Mark D

    2013-01-01

    The dissolution of nanoparticles, particularly those containing boron, is an important area of interest for polymer nanocomposite formation and material development. In this work, the solubility of boron nitride nanotubes (BNNT), functionalized boron nitride nanotubes (FBNNT), and boron nitride sheets (BNZG) is quantified in toluene and THF with static light scattering, refractometry, UV vis spectroscopy, and physical observations. UV vis spectroscopy provides a method to determine the concentration and solubility limits of the solutions tested. Using light scattering, the second virial coefficient, A2, is determined and used to calculate , the solute solvent interaction parameter. The Hildebrand solubility parameter, , is then extracted from this data using the Hildebrand Scatchard Solution Theory. A list of potential good solvents based on the estimated value is provided for each nanoparticle. Single-walled carbon nanotubes (SWNTs) and prepolymers (EN4 and EN8) used to synthesize polyurethanes were also tested, because the published and molar attraction constants of these materials provided a selfconsistent check. The dn/dc of SWNTs and boron-containing particles was measured for the first time in this work. A solvent screen for BN-ZG provides additional information that supports the obtained and . Three systems were found to have values below 0.5 and were thermodynamically soluble: BNNT in THF, EN8 in THF, and EN8 in toluene.

  9. First-principles calculations of half-metallic ferromagnetism in zigzag boron-nitride nanoribbons jointed with a single Fe-chain

    NASA Astrophysics Data System (ADS)

    Kaiwu, Luo; Lingling, Wang; Quan, Li; Tong, Chen; Liang, Xu

    2015-08-01

    First-principles calculations have been used to research the electronic structure and magnetic properties of zigzag boron nitride nanoribbons (ZBNNRs) terminated/jointed by armchair dimer-Fe chains (respectively called Fe-terminated ZBNNRs and Fe-jointed ZBNNRs). The Fe-terminated ZBNNRs is a semiconductor for different ribbon widths, and the Fe-jointed ZBNNRs become half-metallic regardless of the ribbon width. The magnetism of both structures mainly stems from the Fe atoms. It is found that the self-metallicity of the Fe-jointed ZBNNRs results from the strong interaction between the 3d orbitals of Fe atoms and the 2p orbitals of N atoms. The stability of the Fe-jointed ZBNNRs under room temperature has been confirmed by molecular dynamics simulation. This kind of half-metal property means a selectivity for the two different electrons, it can be applied to spintronics devices. Other transition-metal jointed ZBNNRs are also studied, which can be metals, half-metals or semiconductors with different ground states. Project supported by the National Natural Science Foundation of China (Nos. 61176116, 11074069), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120161130003).

  10. A study on various fabrication routes for preparing multilayered cubic boron nitride films and sp(3)-like boron nitride films

    NASA Astrophysics Data System (ADS)

    Wong, Sing Fai

    Cubic boron nitride (cBN) has a sp3-bonded structure which leads to excellent mechanical properties. Though cBN-rich films have been successfully fabricated by many techniques, the adhesion of the films is still unsatisfactory due to the high stresses. The maximum sustainable thickness of cBN-rich films with good adhesion is widely reported to be around 200 nm, so many practical applications of cBN coatings are hindered. In this study, we designed a series of deposition schemes in a logical sequence, in order to explore whether stress can be released, or other structural forms of BN with potential applications can be made, and to gain more fundamental understanding on the growth mechanisms of various phases observed in the films. Various fabrication processes were employed according to the following sequence: (1) A single-step process. It was showed that the maximum tolerable thickness of the cBN-rich films prepared by our system (183nm) was compatible with the result in literatures (200nm). (2) A multilayered deposition process. A thick sp2-bonded boron nitride (sP2-BN) buffer layer which was relatively deformable was added, and hence some stresses were released so as to allow a 643nm-thick, 87vol.% cBN-rich layer with acceptable adhesion to grow on top. (3) An advanced multilayer process with subsequent annealing process. A zirconium layer was pre-deposited to remove the soft buffer layer after postannealing. The interface could be strengthened as the zirconium-boride/nitride was formed. (4) Ion assist deposition at unheated condition. Composite BN films containing sp3 nanoclusters embedded in a sp2-BN matrix were fabricated. The IR technique was not sensitive enough to detect spa nanoclusters, but their presence was verified by the results of other measurements. In particular, the sp3 content can be over 30vo1.%, with a hardness 20GPa. The influences of the assist beam energy and substrate temperature on the generation of the sp3 nanoclusters were investigated

  11. Nanohardness and chemical bonding of Boron Nitride films

    SciTech Connect

    Jankowski, A F

    1998-07-08

    Boron-nitride (BN) films are deposited by the reactive sputter deposition of fully dense, boron targets utilizing a planar magnetron source and an argon-nitrogen working gas mixture. Near-edge x-ray absorption fine structure analysis reveals distinguishing features of chemical bonding within the boron is photoabsorption cross-section. The hardness of the BN film surface is measured using nanoindentation. The sputter deposition conditions as well as the post-deposition treatments of annealing and nitrogen-ion implantation effect the chemical bonding and the film hardness. A model is proposed to quantify the film hardness using the relative peak intensities of the p*-resonances to the boron 1s spectra.

  12. Stability characteristics and structural properties of single- and double-walled boron-nitride nanotubes under physical adsorption of Flavin mononucleotide (FMN) in aqueous environment using molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Ansari, R.; Ajori, S.; Ameri, A.

    2016-03-01

    The non-cytotoxic properties of Boron-nitride nanotubes (BNNTs) and the ability of stable interaction with biomolecules make them so promising for biological applications. In this research, molecular dynamics (MD) simulations are performed to investigate the structural properties and stability characteristics of single- and double-walled BNNTs under physical adsorption of Flavin mononucleotide (FMN) in vacuum and aqueous environments. According to the simulation results, gyration radius increases by rising the weight percentage of FMN. Also, the results demonstrate that critical buckling force of functionalized BNNTs increases in vacuum. Moreover, it is observed that by increasing the weight percentage of FMN, critical force of functionalized BNNTs rises. By contrast, critical strain reduces by functionalization of BNNTs in vacuum. Considering the aqueous environment, it is observed that gyration radius and critical buckling force of functionalized BNNTs increase more considerably than those of functionalized BNNTs in vacuum, whereas the critical strains approximately remain unchanged.

  13. Amorphous boron nitride at high pressure

    NASA Astrophysics Data System (ADS)

    Durandurdu, Murat

    2016-06-01

    The pressure-induced phase transformation in hexagonal boron nitrite and amorphous boron nitrite is studied using ab initio molecular dynamics simulations. The hexagonal-to-wurtzite phase transformation is successfully reproduced in the simulation with a transformation mechanism similar to one suggested in experiment. Amorphous boron nitrite, on the other hand, gradually transforms to a high-density amorphous phase with the application of pressure. This phase transformation is irreversible because a densified amorphous state having both sp3 and sp2 bonds is recovered upon pressure release. The high-density amorphous state mainly consists of sp3 bonds and its local structure is quite similar to recently proposed intermediate boron nitrite phases, in particular tetragonal structure (P42/mnm), rather than the known the wurtzite or cubic boron nitrite due to the existence of four membered rings and edge sharing connectivity. On the basis of this finding we propose that amorphous boron nitrite might be best candidate as a starting structure to synthesize the intermediate phase(s) at high pressure and temperature (probably below 800 °C) conditions.

  14. Electron knock-on damage in hexagonal boron nitride monolayers

    NASA Astrophysics Data System (ADS)

    Kotakoski, J.; Jin, C. H.; Lehtinen, O.; Suenaga, K.; Krasheninnikov, A. V.

    2010-09-01

    We combine first-principles molecular-dynamics simulations with high-resolution transmission electron microscopy experiments to draw a detailed microscopic picture of irradiation effects in hexagonal boron nitride ( h -BN) monolayers. We determine the displacement threshold energies for boron and nitrogen atoms in h -BN, which differ significantly from the tight-binding estimates found in the literature and remove ambiguity from the interpretation of the experimental results. We further develop a kinetic Monte Carlo model which allows to extend the simulations to macroscopic time scales and make a direct comparison between theory and experiments. Our results provide a comprehensive picture of the response of h -BN nanostructures to electron irradiation.

  15. Theoretical studies of native defects in cubic boron nitride

    SciTech Connect

    Piquini, P.; Mota, R.; Schmidt, T.M.; Fazzio, A.

    1997-08-01

    We have studied the electronic and structural properties of native defects in cubic boron nitride (nitrogen vacancy, boron antisite, and oxygen substitutional) using all-electron first-principles total-energy calculations. We find that all defects introduce a deep state above the middle-energy gap. These defects present a C{sub 3v}-local symmetry. In the case of nitrogen vacancy the possibility of the F-center formation is discussed. {copyright} {ital 1997} {ital The American Physical Society}

  16. In situ synthesis of a large area boron nitride/graphene monolayer/boron nitride film by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Wu, Qinke; Jang, Sung Kyu; Park, Sangwoo; Jung, Seong Jun; Suh, Hwansoo; Lee, Young Hee; Lee, Sungjoo; Song, Young Jae

    2015-04-01

    We describe the successful in situ chemical vapor deposition synthesis of a graphene-based heterostructure in which a graphene monolayer is protected by top and bottom boron nitride films. The boron nitride film/graphene monolayer/boron nitride film (BGB) was found to be a mechanically robust and chemically inert heterostructure, from which the deleterious effects of mechanical transfer processes and unwanted chemical doping under air exposure were eliminated. The chemical compositions of each film layer were monitored ex situ using UV-visible absorption spectroscopy and X-ray photoelectron spectroscopy, and the crystalline structures were confirmed using transmission electron microscopy and selected-area electron diffraction measurements. The performance of the devices fabricated using the BGB film was monitored over six months and did not display large changes in the mobility or the Dirac point, unlike the conventional graphene devices prepared on a SiO2 substrate. The in situ-grown BGB film properties suggest a novel approach to the fabrication of commercial-grade graphene-based electronic devices.We describe the successful in situ chemical vapor deposition synthesis of a graphene-based heterostructure in which a graphene monolayer is protected by top and bottom boron nitride films. The boron nitride film/graphene monolayer/boron nitride film (BGB) was found to be a mechanically robust and chemically inert heterostructure, from which the deleterious effects of mechanical transfer processes and unwanted chemical doping under air exposure were eliminated. The chemical compositions of each film layer were monitored ex situ using UV-visible absorption spectroscopy and X-ray photoelectron spectroscopy, and the crystalline structures were confirmed using transmission electron microscopy and selected-area electron diffraction measurements. The performance of the devices fabricated using the BGB film was monitored over six months and did not display large changes in the

  17. Efficient Boron Nitride Nanotube Formation via Combined Laser-Gas Flow Levitation

    NASA Technical Reports Server (NTRS)

    Whitney, R. Roy (Inventor); Jordan, Kevin (Inventor); Smith, Michael W. (Inventor)

    2014-01-01

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B(sub x)C(sub y)N(sub z) The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B(sub x)C(sub y)N(sub z).

  18. Efficient boron nitride nanotube formation via combined laser-gas flow levitation

    DOEpatents

    Whitney, R. Roy; Jordan, Kevin; Smith, Michael

    2014-03-18

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z.

  19. Interaction of Boron Nitride Nanosheets with Model Cell Membranes.

    PubMed

    Hilder, Tamsyn A; Gaston, Nicola

    2016-06-01

    Boron nitride nanomaterials have attracted attention for biomedical applications, due to their improved biocompatibility when compared with carbon nanomaterials. Recently, graphene and graphene oxide nanosheets have been shown, both experimentally and computationally, to destructively extract phospholipids from Escherichia coli. Boron nitride nanosheets (BNNSs) have exciting potential biological and environmental applications, for example the ability to remove oil from water. These applications are likely to increase the exposure of prokaryotes and eukaryotes to BNNSs. Yet, despite their promise, the interaction between BNNSs and cell membranes has not yet been investigated. Here, all-atom molecular dynamics simulations were used to demonstrate that BNNSs are spontaneously attracted to the polar headgroups of the lipid bilayer. The BNNSs do not passively cross the lipid bilayer, most likely due to the large forces experienced by the BNNSs. This study provides insight into the interaction of BNNSs with cell membranes and may aid our understanding of their improved biocompatibility. PMID:26934705

  20. Hexagonal boron nitride is an indirect bandgap semiconductor

    NASA Astrophysics Data System (ADS)

    Cassabois, G.; Valvin, P.; Gil, B.

    2016-04-01

    Hexagonal boron nitride is a wide bandgap semiconductor with very high thermal and chemical stability that is used in devices operating under extreme conditions. The growth of high-purity crystals has recently revealed the potential of this material for deep ultraviolet emission, with intense emission around 215 nm. In the last few years, hexagonal boron nitride has been attracting even more attention with the emergence of two-dimensional atomic crystals and van der Waals heterostructures, initiated with the discovery of graphene. Despite this growing interest and a seemingly simple structure, the basic questions of the bandgap nature and value are still controversial. Here, we resolve this long-debated issue by demonstrating evidence for an indirect bandgap at 5.955 eV by means of optical spectroscopy. We demonstrate the existence of phonon-assisted optical transitions and we measure an exciton binding energy of about 130 meV by two-photon spectroscopy.

  1. Research of nanocomposite structure of boron nitride at proton radiation

    NASA Astrophysics Data System (ADS)

    Borodin, Y. V.; Ermolaev, D. S.; Pak, V.; Zhang, K.

    2016-02-01

    Using roentgen diffraction and electron microscopy, the influence of nanosecond irradiation by ion beams of high energy on forming of self-organized nanoblocks in near surface's layers of boron nitride (BN) has been studied. It was shown that low temperature transitions from hexagonal to wrutz boron nitrides is associated with changes of shape and sizes of self-organized particles consisting the nanoblocks. We have calculated the parameters of nanoblocks using the meanings of interplane distances and properties of subreflexes orders. The collective shifting deformations of layers in nanoblocks provides phase transition under the screen and forming the set of nanotubes with escaping of five order axes of symmetry. It has been realized that pentagons and stars arranged in points of entrance of five order axis of symmetry are associated with peculiarity of self-organization of the spiral-cyclic structures.

  2. Tunable band gap of boron nitride interfaces under uniaxial pressure

    NASA Astrophysics Data System (ADS)

    Moraes, Elizane E.; Manhabosco, Taíse M.; de Oliveira, Alan B.; Batista, Ronaldo J. C.

    2012-11-01

    In this work we show, by means of a density functional theory formalism, that the interaction between hydrogen terminated boron nitride surfaces gives rise to a metallic interface with free carriers of opposite sign at each surface. A band gap can be induced by decreasing the surface separation. The size of the band gap changes continuously from zero up to 4.4 eV with decreasing separation, which is understood in terms of the interaction between surface states. Due to the high thermal conductivity of cubic boron nitride and the coupling between band gap and applied pressure, such tunable band gap interfaces may be used in highly stable electronic and electromechanical devices. In addition, the spatial separation of charge carriers at the interface may lead to photovoltaic applications.

  3. Tunable Band Gap of Boron Nitride Interfaces under Uniaxial Pressure

    NASA Astrophysics Data System (ADS)

    Moraes, Elizane; Manhabosco, Taise; de Oliveira, Alan; Batista, Ronaldo

    2013-03-01

    In this work we show, by means of a density functional theory formalism, that the interaction between hydrogen terminated boron nitride surfaces gives rise to a metallic interface with free carries of opposite sign at each surface. A band gap can be induced by decreasing the surface separation. The size of the band gap changes continuously from zero up to 4.4 eV with decreasing separation, which is understood in terms of the interaction between surface states.Due to the high thermal conductivity of cubic boron nitride and the coupling between band gap and applied pressure, such tunable band gap interfaces may be used in high stable electronic and electromechanical devices. In addition, the spacial separation of charge carries at the interface may lead to photovoltaic applications. The authors thank tha brazilian agencies Fapemig, CNPq and Capes

  4. Electrically dependent bandgaps in graphene on hexagonal boron nitride

    SciTech Connect

    Kaplan, D. Swaminathan, V.; Recine, G.

    2014-03-31

    We present first-principles calculations on the bandgap of graphene on a layer of hexagonal boron nitride in three different stacking configurations. Relative stability of the configurations is identified and bandgap tunability is demonstrated through the application of an external, perpendicularly applied electric field. We carefully examine the bandgap's sensitivity to both magnitude of the applied field as well as separation between the graphene and hexagonal boron nitride layers. Features of the band structure are examined and configuration-dependent relationships between the field and bandgap are revealed and elucidated through the atom-projected density of states. These findings suggest the potential for opening and modulating a bandgap in graphene as high as several hundred meV.

  5. Surface Brillouin scattering of cubic boron nitride films

    NASA Astrophysics Data System (ADS)

    Zinin, P.; Manghnani, M. H.; Zhang, X.; Feldermann, H.; Ronning, C.; Hofsäss, H.

    2002-04-01

    Surface Brillouin scattering has been used to determine the elastic properties of thin hard submicron cubic boron nitride (cBN) films grown on silicon by mass selected ion beam deposition. The elastic properties of the films have been determined by fitting experimental data to theoretical dispersion curves. A Green's function method was used to predict Brillouin scattering spectra of the acoustic excitation at the free surface. Our results demonstrate that the effect of the thin hexagonal boron nitride interlayer located between cBN film and the Si substrate on the velocity of the surface acoustic wave does not exceed 2% for a thin (16 nm) film and is negligible for cBN films thicker than 100 nm. The elastic properties of the cBN films are not softer than those of bulk cBN.

  6. The structure and dynamics of boron nitride nanoscrolls.

    PubMed

    Perim, Eric; Galvao, Douglas S

    2009-08-19

    Carbon nanoscrolls (CNSs) are structures formed by rolling up graphene layers into a scroll-like shape. CNNs have been experimentally produced by different groups. Boron nitride nanoscrolls (BNNSs) are similar structures using boron nitride instead of graphene layers. In this paper we report molecular mechanics and molecular dynamics results for the structural and dynamical aspects of BNNS formation. Similarly to CNS, BNNS formation is dominated by two major energy contributions, the increase in the elastic energy and the energetic gain due to van der Waals interactions of the overlapping surface of the rolled layers. The armchair scrolls are the most stable configuration while zigzag scrolls are metastable structures which can be thermally converted to armchairs. Chiral scrolls are unstable and tend to evolve into zigzag or armchair configurations depending on their initial geometries. The possible experimental routes to produce BNNSs are also addressed. PMID:19636089

  7. The structure and dynamics of boron nitride nanoscrolls

    NASA Astrophysics Data System (ADS)

    Perim, Eric; Galvao, Douglas S.

    2009-08-01

    Carbon nanoscrolls (CNSs) are structures formed by rolling up graphene layers into a scroll-like shape. CNNs have been experimentally produced by different groups. Boron nitride nanoscrolls (BNNSs) are similar structures using boron nitride instead of graphene layers. In this paper we report molecular mechanics and molecular dynamics results for the structural and dynamical aspects of BNNS formation. Similarly to CNS, BNNS formation is dominated by two major energy contributions, the increase in the elastic energy and the energetic gain due to van der Waals interactions of the overlapping surface of the rolled layers. The armchair scrolls are the most stable configuration while zigzag scrolls are metastable structures which can be thermally converted to armchairs. Chiral scrolls are unstable and tend to evolve into zigzag or armchair configurations depending on their initial geometries. The possible experimental routes to produce BNNSs are also addressed.

  8. Origin of band gaps in graphene on hexagonal boron nitride

    PubMed Central

    Jung, Jeil; DaSilva, Ashley M.; MacDonald, Allan H.; Adam, Shaffique

    2015-01-01

    Recent progress in preparing well-controlled two-dimensional van der Waals heterojunctions has opened up a new frontier in materials physics. Here we address the intriguing energy gaps that are sometimes observed when a graphene sheet is placed on a hexagonal boron nitride substrate, demonstrating that they are produced by an interesting interplay between structural and electronic properties, including electronic many-body exchange interactions. Our theory is able to explain the observed gap behaviour by accounting first for the structural relaxation of graphene’s carbon atoms when placed on a boron nitride substrate, and then for the influence of the substrate on low-energy π-electrons located at relaxed carbon atom sites. The methods we employ can be applied to many other van der Waals heterojunctions. PMID:25695638

  9. A new interlayer potential for hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Akıner, Tolga; Mason, Jeremy K.; Ertürk, Hakan

    2016-09-01

    A new interlayer potential is developed for interlayer interactions of hexagonal boron nitride sheets, and its performance is compared with other potentials in the literature using molecular dynamics simulations. The proposed potential contains Coulombic and Lennard-Jones 6–12 terms, and is calibrated with recent experimental data including the hexagonal boron nitride interlayer distance and elastic constants. The potentials are evaluated by comparing the experimental and simulated values of interlayer distance, density, elastic constants, and thermal conductivity using non-equilibrium molecular dynamics. The proposed potential is found to be in reasonable agreement with experiments, and improves on earlier potentials in several respects. Simulated thermal conductivity values as a function of the number of layers and of temperature suggest that the proposed LJ 6–12 potential has the ability to predict some phonon behaviour during heat transport in the out-of-plane direction.

  10. A new interlayer potential for hexagonal boron nitride.

    PubMed

    Akıner, Tolga; Mason, Jeremy K; Ertürk, Hakan

    2016-09-28

    A new interlayer potential is developed for interlayer interactions of hexagonal boron nitride sheets, and its performance is compared with other potentials in the literature using molecular dynamics simulations. The proposed potential contains Coulombic and Lennard-Jones 6-12 terms, and is calibrated with recent experimental data including the hexagonal boron nitride interlayer distance and elastic constants. The potentials are evaluated by comparing the experimental and simulated values of interlayer distance, density, elastic constants, and thermal conductivity using non-equilibrium molecular dynamics. The proposed potential is found to be in reasonable agreement with experiments, and improves on earlier potentials in several respects. Simulated thermal conductivity values as a function of the number of layers and of temperature suggest that the proposed LJ 6-12 potential has the ability to predict some phonon behaviour during heat transport in the out-of-plane direction. PMID:27452331

  11. Optical Spectroscopy of Two Dimensional Graphene and Boron Nitride

    NASA Astrophysics Data System (ADS)

    Ju, Long

    This dissertation describes the use of optical spectroscopy in studying the physical properties of two dimensional nano materials like graphene and hexagonal boron nitride. Compared to bulk materials, atomically thin two dimensional materials have a unique character that is the strong dependence of physical properties on external control. Both electronic band structure and chemical potential can be tuned in situ by electric field-which is a powerful knob in experiment. Therefore the optical study at atomic thickness scale can greatly benefit from modern micro-fabrication technique and electric control of the material properties. As will be shown in this dissertation, such control of both gemometric and physical properties enables new possibilities of optical spectroscopic measurement as well as opto-electronic studies. Other experimental techniques like electric transport and scanning tunneling microscopy and spectroscopy are also combined with optical spectroscopy to reveal the physics that is beyond the reach of each individual technique. There are three major themes in the dissertation. The first one is focused on the study of plasmon excitation of Dirac electrons in monolayer graphene. Unlike plasmons in ordinary two dimensional electron gas, plasmons of 2D electrons as in graphene obey unusual scaling laws. We fabricate graphene micro-ribbon arrays with photolithography technique and use optical absorption spectroscopy to study its absorption spectrum. The experimental result demonstrates the extraordinarily strong light-plasmon coupling and its novel dependence on both charge doping and geometric dimensions. This work provides a first glance at the fundamental properties of graphene plasmons and forms the basis of an emerging subfield of graphene research and applications such as graphene terahertz metamaterials. The second part describes the opto-electronic response of heterostructures composed of graphene and hexagonal boron nitride. We found that there is

  12. Fractional Hofstadter States in Graphene on Hexagonal Boron Nitride

    NASA Astrophysics Data System (ADS)

    DaSilva, Ashley M.; Jung, Jeil; MacDonald, Allan H.

    2016-07-01

    In fractionally filled Landau levels there is only a small energy difference between broken translational symmetry electron-crystal states and exotic correlated quantum fluid states. We show that the spatially periodic substrate interaction associated with the long period moiré patterns present in graphene on nearly aligned hexagonal boron nitride tilts this close competition in favor of the former, explaining surprising recent experimental findings.

  13. Study the gas sensing properties of boron nitride nanosheets

    SciTech Connect

    Sajjad, Muhammad; Feng, Peter

    2014-01-01

    Graphical abstract: - Highlights: • We synthesized boron nitride nanosheets (BNNSs) on silicon substrate. • We analyzed gas sensing properties of BNNSs-based gas-sensor device. • CH{sub 4} gas is used to measure gas-sensing properties of the device. • Quick response and recovery time of the device is recorded. • BNNSs showed excellent sensitivity to the working gas. - Abstract: In the present communication, we report on the synthesis of boron nitride nanosheets (BNNSs) and study of their gas sensing properties. BNNSs are synthesized by irradiating pyrolytic hexagonal boron nitride (h-BN) target using CO{sub 2} laser pulses. High resolution transmission electron microscopic measurements (HRTEM) revealed 2-dientional honeycomb crystal lattice structure of BNNSs. HRTEM, electron diffraction, XRD and Raman scattering measurements clearly identified h-BN. Gas sensing properties of synthesized BNNSs were analyzed with prototype gas sensor using methane as working gas. A systematic response curve of the sensor is recorded in each cycle of gas “in” and “out”; suggesting excellent sensitivity and high performance of BNNSs-based gas-sensor.

  14. Tribological properties of boron nitride synthesized by ion beam deposition

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.; Spalvins, T.

    1985-01-01

    The adhesion and friction behavior of boron nitride films on 440 C bearing stainless steel substrates was examined. The thin films containing the boron nitride were synthesized using an ion beam extracted from a borazine plasma. Sliding friction experiments were conducted with BN in sliding contact with itself and various transition metals. It is indicated that the surfaces of atomically cleaned BN coating film contain a small amount of oxides and carbides, in addition to boron nitride. The coefficients of friction for the BN in contact with metals are related to the relative chemical activity of the metals. The more active the metal, the higher is the coefficient of friction. The adsorption of oxygen on clean metal and BN increases the shear strength of the metal - BN contact and increases the friction. The friction for BN-BN contact is a function of the shear strength of the elastic contacts. Clean BN surfaces exhibit relatively strong interfacial adhesion and high friction. The presence of adsorbates such as adventitious carbon contaminants on the BN surfaces reduces the shear strength of the contact area. In contrast, chemically adsorbed oxygen enhances the shear strength of the BN-BN contact and increases the friction.

  15. Ab initio study of boron nitride lines on graphene

    NASA Astrophysics Data System (ADS)

    Mata-Carrizal, Berenice; Sanginés-Mendoza, Raúl; Martinez, Edgar

    2013-03-01

    Graphene has unusual electronic properties which make it a promising material for electronic devices. Neverthless, the absence of a band gap sets limitations on its practical applications. Thus, it is crucial to find methods to create and tune the band gap of systems based on graphene. In this way, we explore the modulation of the electronic properties of graphene through doping with boron nitride lines. In particular, we studied the electronic structure of graphene sheets doped with boron nitride lines armchair and zigzag type. The calculations were performed using the pseudopotential LCAO method with a Generalized Gradient Approximation (GGA) for the exchange-correlation energy functional. We found that both doping lines type induce a bandgap and that the energy gap increases as the length of doping lines increases. Accordingly to our DFT calculations, we found that the energy gap on graphene doped with armchair and zigzag lines is due to a two different mechanisms to drain charge from pi- to sigma- orbitals. Thus, we found that doping graphene with boron nitride lines is a useful way to induce and modulate the bandgap on graphene. This research was supported by Consejo Nacional de Ciencia y Tecnología (Conacyt) under Grant No. 133022.

  16. Radial elasticity of multi-walled boron nitride nanotubes

    SciTech Connect

    Michael W. Smith, Cheol Park, Meng Zheng, Changhong Ke ,In-Tae Bae, Kevin Jordan

    2012-02-01

    We investigated the radial mechanical properties of multi-walled boron nitride nanotubes (MW-BNNTs) using atomic force microscopy. The employed MW-BNNTs were synthesized using pressurized vapor/condenser (PVC) methods and were dispersed in aqueous solution using ultrasonication methods with the aid of ionic surfactants. Our nanomechanical measurements reveal the elastic deformational behaviors of individual BNNTs with two to four tube walls in their transverse directions. Their effective radial elastic moduli were obtained through interpreting their measured radial deformation profiles using Hertzian contact mechanics models. Our results capture the dependences of the effective radial moduli of MW-BNNTs on both the tube outer diameter and the number of tube layers. The effective radial moduli of double-walled BNNTs are found to be several-fold higher than those of single-walled BNNTs within the same diameter range. Our work contributes directly to a complete understanding of the fundamental structural and mechanical properties of BNNTs and the pursuits of their novel structural and electronics applications.

  17. Spin transport in fully hexagonal boron nitride encapsulated graphene

    NASA Astrophysics Data System (ADS)

    Gurram, M.; Omar, S.; Zihlmann, S.; Makk, P.; Schönenberger, C.; van Wees, B. J.

    2016-03-01

    We study fully hexagonal boron nitride (hBN) encapsulated graphene spin valve devices at room temperature. The device consists of a graphene channel encapsulated between two crystalline hBN flakes: thick-hBN flake as a bottom gate dielectric substrate which masks the charge impurities from SiO2/Si substrate and single-layer thin-hBN flake as a tunnel barrier. Full encapsulation prevents the graphene from coming in contact with any polymer/chemical during the lithography and thus gives homogeneous charge and spin transport properties across different regions of the encapsulated graphene. Further, even with the multiple electrodes in-between the injection and the detection electrodes which are in conductivity mismatch regime, we observe spin transport over 12.5 -μ m -long distance under the thin-hBN encapsulated graphene channel, demonstrating the clean interface and the pinhole-free nature of the thin hBN as an efficient tunnel barrier.

  18. Multifunctional Electroactive Nanocomposites Based on Piezoelectric Boron Nitride Nanotubes.

    PubMed

    Kang, Jin Ho; Sauti, Godfrey; Park, Cheol; Yamakov, Vesselin I; Wise, Kristopher E; Lowther, Sharon E; Fay, Catharine C; Thibeault, Sheila A; Bryant, Robert G

    2015-12-22

    Space exploration missions require sensors and devices capable of stable operation in harsh environments such as those that include high thermal fluctuation, atomic oxygen, and high-energy ionizing radiation. However, conventional or state-of-the-art electroactive materials like lead zirconate titanate, poly(vinylidene fluoride), and carbon nanotube (CNT)-doped polyimides have limitations on use in those extreme applications. Theoretical studies have shown that boron nitride nanotubes (BNNTs) have strength-to-weight ratios comparable to those of CNTs, excellent high-temperature stability (to 800 °C in air), large electroactive characteristics, and excellent neutron radiation shielding capability. In this study, we demonstrated the experimental electroactive characteristics of BNNTs in novel multifunctional electroactive nanocomposites. Upon application of an external electric field, the 2 wt % BNNT/polyimide composite was found to exhibit electroactive strain composed of a superposition of linear piezoelectric and nonlinear electrostrictive components. When the BNNTs were aligned by stretching the 2 wt % BNNT/polyimide composite, electroactive characteristics increased by about 460% compared to the nonstretched sample. An all-nanotube actuator consisting of a BNNT buckypaper layer between two single-walled carbon nanotube buckypaper electrode layers was found to have much larger electroactive properties. The additional neutron radiation shielding properties and ultraviolet/visible/near-infrared optical properties of the BNNT composites make them excellent candidates for use in the extreme environments of space missions. PMID:26529472

  19. DNA Translocation through Hydrophilic Nanopore in Hexagonal Boron Nitride

    NASA Astrophysics Data System (ADS)

    Zhou, Zhi; Hu, Ying; Wang, Hao; Xu, Zhi; Wang, Wenlong; Bai, Xuedong; Shan, Xinyan; Lu, Xinghua

    2013-11-01

    Ultra-thin solid-state nanopore with good wetting property is strongly desired to achieve high spatial resolution for DNA sequencing applications. Atomic thick hexagonal boron nitride (h-BN) layer provides a promising two-dimensional material for fabricating solid-state nanopores. Due to its good oxidation resistance, the hydrophilicity of h-BN nanopore device can be significantly improved by UV-Ozone treatment. The contact angle of a KCl-TE droplet on h-BN layer can be reduced from 57° to 26° after the treatment. Abundant DNA translocation events have been observed in such devices, and strong DNA-nanopore interaction has been revealed in pores smaller than 10 nm in diameter. The 1/f noise level is closely related to the area of suspended h-BN layer, and it is significantly reduced in smaller supporting window. The demonstrated performance in h-BN nanopore paves the way towards base discrimination in a single DNA molecule.

  20. Multifunctional Electroactive Nanocomposites Based on Piezoelectric Boron Nitride Nanotubes

    NASA Technical Reports Server (NTRS)

    Kang, Jin Ho; Sauti, Godfrey; Park, Cheol; Yamakov, Vesselin I.; Wise, Kristopher E.; Lowther, Sharon E.; Fay, Catharine C.; Thibeault, Sheila A.; Bryant, Robert G.

    2015-01-01

    Space exploration missions require sensors and devices capable of stable operation in harsh environments such as those that include high thermal fluctuation, atomic oxygen, and high-energy ionizing radiation. However, conventional or state-of-the-art electroactive materials like lead zirconate titanate, poly(vinylidene fluoride), and carbon nanotube (CNT)-doped polyimides have limitations on use in those extreme applications. Theoretical studies have shown that boron nitride nanotubes (BNNTs) have strength-to-weight ratios comparable to those of CNTs, excellent high-temperature stability (to 800 C in air), large electroactive characteristics, and excellent neutron radiation shielding capability. In this study, we demonstrated the experimental electroactive characteristics of BNNTs in novel multifunctional electroactive nanocomposites. Upon application of an external electric field, the 2 wt % BNNT/polyimide composite was found to exhibit electroactive strain composed of a superposition of linear piezoelectric and nonlinear electrostrictive components. When the BNNTs were aligned by stretching the 2 wt % BNNT/polyimide composite, electroactive characteristics increased by about 460% compared to the nonstretched sample. An all-nanotube actuator consisting of a BNNT buckypaper layer between two single-walled carbon nanotube buck-paper electrode layers was found to have much larger electroactive properties. The additional neutron radiation shielding properties and ultraviolet/visible/near-infrared optical properties of the BNNT composites make them excellent candidates for use in the extreme environments of space missions. utilizing the unique characteristics of BNNTs.

  1. Quantum study of boron nitride nanotubes functionalized with anticancer molecules.

    PubMed

    Duverger, Eric; Gharbi, Tijani; Delabrousse, Eric; Picaud, Fabien

    2014-09-14

    Full DFT-D2 calculations were carried out to study the interactions between single wall (10,10) boron nitride nanotubes (BNNTs) and different molecules, such as azomethine (C2H5N) and an anticancer agent (Pt(IV) complex) linked to an amino-derivative chain. The geometry of the (10,10) BNNT-azomethine and the BNNT-amino derivative system was optimised by considering different molecular configurations on the inner and outer surfaces of the nanotube. Simulation results showed that the most stable physisorption state for both molecules was located inside the nanotube in a parallel configuration. We showed also that the molecular chemisorption was possible only when the azomethine was present above two adjacent B and N atoms of a hexagon. The attachment of an azomethine plus a subsequent drug did not perturb the cycloaddition process. Moreover, all theoretical results showed that the therapeutic agent complex was not affected when it was attached onto BNNTs. PMID:25070038

  2. Orientational relationship between cubic boron nitride and hexagonal boron nitride in a thin film synthesized by ion plating

    NASA Astrophysics Data System (ADS)

    Zhou, Wei-Lie; Ikuhara, Yuichi; Suzuki, Tetsuya

    1995-12-01

    Cubic boron nitride (c-BN) thin films synthesized by the ion-plating method were examined by high-resolution electron microscopy. It was found that the {0002} planes of hexagonal boron nitride (h-BN) at the boundaries of c-BN grains preferred to nucleate almost parallel to {111} planes of c-BN. Cross-sectional observation in the initial stage of growth showed that the c-BN can grow on top of the prismatic planes and the {0001} basal planes of h-BN, keeping the parallelism of the (111)c-BN to (0001)h-BN. A few degrees deviation (˜4°) between h-BN {0002} planes and c-BN {111} planes was frequently found in the film. The nucleation mechanism of c-BN was discussed analogous to that of diamond on graphite.

  3. Encapsulation of cisplatin as an anti-cancer drug into boron-nitride and carbon nanotubes: Molecular simulation and free energy calculation.

    PubMed

    Roosta, Sara; Hashemianzadeh, Seyed Majid; Ketabi, Sepideh

    2016-10-01

    Encapsulation of cisplatin anticancer drug into the single walled (10, 0) carbon nanotube and (10, 0) boron-nitride nanotube was investigated by quantum mechanical calculations and Monte Carlo Simulation in aqueous solution. Solvation free energies and complexation free energies of the cisplatin@ carbon nanotube and cisplatin@ boron-nitride nanotube complexes was determined as well as radial distribution functions of entitled compounds. Solvation free energies of cisplatin@ carbon nanotube and cisplatin@ boron-nitride nanotube were -4.128kcalmol(-1) and -2457.124kcalmol(-1) respectively. The results showed that cisplatin@ boron-nitride nanotube was more soluble species in water. In addition electrostatic contribution of the interaction of boron- nitride nanotube complex and solvent was -281.937kcalmol(-1) which really more than Van der Waals and so the electrostatic interactions play a distinctive role in the solvation free energies of boron- nitride nanotube compounds. On the other hand electrostatic part of the interaction of carbon nanotube complex and solvent were almost the same as Van der Waals contribution. Complexation free energies were also computed to study the stability of related structures and the free energies were negative (-374.082 and -245.766kcalmol(-1)) which confirmed encapsulation of drug into abovementioned nanotubes. However, boron-nitride nanotubes were more appropriate for encapsulation due to their larger solubility in aqueous solution. PMID:27287103

  4. Phase transformations of nano-sized cubic boron nitride to white graphene and white graphite

    SciTech Connect

    Dang, Hongli; Liu, Yingdi; Xue, Wenhua; Anderson, Ryan S.; Sewell, Cody R.; Xue, Sha; Crunkleton, Daniel W.; Shen, Yaogen; Wang, Sanwu

    2014-03-03

    We report quantum-mechanical investigations that predict the formation of white graphene and nano-sized white graphite from the first-order phase transformations of nano-sized boron nitride thin-films. The phase transformations from the nano-sized diamond-like structure, when the thickness d > 1.4 nm, to the energetically more stable nano-sized white graphite involve low activation energies of less than 1.0 eV. On the other hand, the diamond-like structure transforms spontaneously to white graphite when d ≤ 1.4 nm. In particular, the two-dimensional structure with single-layer boron nitride, the so-called white graphene, could be formed as a result of such transformation.

  5. Phonon-Assisted Resonant Tunneling of Electrons in Graphene-Boron Nitride Transistors.

    PubMed

    Vdovin, E E; Mishchenko, A; Greenaway, M T; Zhu, M J; Ghazaryan, D; Misra, A; Cao, Y; Morozov, S V; Makarovsky, O; Fromhold, T M; Patanè, A; Slotman, G J; Katsnelson, M I; Geim, A K; Novoselov, K S; Eaves, L

    2016-05-01

    We observe a series of sharp resonant features in the differential conductance of graphene-hexagonal boron nitride-graphene tunnel transistors over a wide range of bias voltages between 10 and 200 mV. We attribute them to electron tunneling assisted by the emission of phonons of well-defined energy. The bias voltages at which they occur are insensitive to the applied gate voltage and hence independent of the carrier densities in the graphene electrodes, so plasmonic effects can be ruled out. The phonon energies corresponding to the resonances are compared with the lattice dispersion curves of graphene-boron nitride heterostructures and are close to peaks in the single phonon density of states. PMID:27203338

  6. Phonon-Assisted Resonant Tunneling of Electrons in Graphene-Boron Nitride Transistors

    NASA Astrophysics Data System (ADS)

    Vdovin, E. E.; Mishchenko, A.; Greenaway, M. T.; Zhu, M. J.; Ghazaryan, D.; Misra, A.; Cao, Y.; Morozov, S. V.; Makarovsky, O.; Fromhold, T. M.; Patanè, A.; Slotman, G. J.; Katsnelson, M. I.; Geim, A. K.; Novoselov, K. S.; Eaves, L.

    2016-05-01

    We observe a series of sharp resonant features in the differential conductance of graphene-hexagonal boron nitride-graphene tunnel transistors over a wide range of bias voltages between 10 and 200 mV. We attribute them to electron tunneling assisted by the emission of phonons of well-defined energy. The bias voltages at which they occur are insensitive to the applied gate voltage and hence independent of the carrier densities in the graphene electrodes, so plasmonic effects can be ruled out. The phonon energies corresponding to the resonances are compared with the lattice dispersion curves of graphene-boron nitride heterostructures and are close to peaks in the single phonon density of states.

  7. Second-harmonic generation in boron nitride nanotubes adsorbed with molecular hydrogen

    NASA Astrophysics Data System (ADS)

    Vazquez-Nava, Raul; Salazar-Aparicio, Ramses; Arzate, Norberto; Mendoza, Bernardo

    2014-03-01

    We present ab initio calculations for second harmonic response of single wall zigzag pristine and with molecular hydrogen adsorption boron nitride nanotubes. These calculations were performed with density functional theory within the local-density approximation (LDA) and the application of the GW approximation to calculate the band gap GW correction. A length-guage formalism for calculating the nonlinear optical response with the correct implementation of the scissor correction was used to obtain the nonlinear susceptibility χ (2)(- 2 ω ω , ω) of zigzag BN nanotubes. We found that contrary to that reported in the literature, the (5,0) and (9,0) boron nitride nannotubes have a non vanishing SHG response. We also found that SHG is not a suitable thecnique to monitor the physisorption of H2 molecules on the external surface of BN nanotubes. This work was partially supported by CONACYT-México, grants 153930.

  8. van der Waals bilayer energetics: Generalized stacking-fault energy of graphene, boron nitride, and graphene/boron nitride bilayers

    NASA Astrophysics Data System (ADS)

    Zhou, Songsong; Han, Jian; Dai, Shuyang; Sun, Jianwei; Srolovitz, David J.

    2015-10-01

    The structure, thermodynamics, and band gaps in graphene/graphene, boron nitride/boron nitride, and graphene/boron nitride bilayers are determined using several different corrections to first-principles approaches to account for the dispersion interactions. While the density functional dispersion correction, van der Waals density functional, meta-generalized gradient approximation, and adiabatic fluctuation-dissipation theorem methods (ACFDT-RPA) all lead to qualitatively similar predictions, the best accuracy is obtained through the application of the computationally expensive ACFDT-RPA method. We present an accurate ACFDT-RPA-based method to determine bilayer structure, generalized stacking-fault energy (GSFE), and band gaps as a function of the relative translation states of the two layers. The GSFE data clearly identify all of the stable and metastable bilayer translations as well as the barriers between them. This is key for predicting the sliding, formation, and adhesion energies for homo- and hetero-bilayers, as well as for the determination of defects in such multilayer van der Waals systems. These, in turn, provide an accurate approach for determining and manipulating the spatial variation of electronic structure.

  9. Applicability of carbon and boron nitride nanotubes as biosensors: Effect of biomolecular adsorption on the transport properties of carbon and boron nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Zhong, Xiaoliang; Mukhopadhyay, Saikat; Gowtham, S.; Pandey, Ravindra; Karna, Shashi P.

    2013-04-01

    The effect of molecular adsorption on the transport properties of single walled carbon and boron nitride nanotubes (CNTs and BNNTs) is investigated using density functional theory and non-equilibrium Green's function methods. The calculated I-V characteristics predict noticeable changes in the conductivity of semiconducting BNNTs due to physisorption of nucleic acid base molecules. Specifically, guanine which binds to the side wall of BNNT significantly enhances its conductivity by introducing conduction channels near the Fermi energy of the bioconjugated system. For metallic CNTs, a large background current masks relatively small changes in current due to the biomolecular adsorption. The results therefore suggest the suitability of BNNTs for biosensing applications.

  10. Fabrication of translucent boron nitride dispersed polycrystalline silicon nitride ceramics

    NASA Astrophysics Data System (ADS)

    Joshi, B.; Fu, Z.; Niihara, K.; Lee, S. W.

    2011-03-01

    Optical transparency was achieved at infrared region and overall translucent silicon nitride was fabricated using hot press sintering (HPS). The increase in h-BN content decreased the optical transparency. Microstructral observations shows that the optical, mechanical and tribological properties of BN dispersed polycrystalline Si3N4 ceramics were affected by the density, α:β-phase ratio and content of h-BN in sintered ceramics. The hot pressed samples were prepared from the mixture of α-Si3N4, AlN, MgO and h-BN at 1850°C. The composite contained from 0.25 to 2 mass % BN powder with sintering aids (9% AlN + 3% MgO). Maximum transmittance of 57% was achieved for 0.25 mass % BN doped Si3N4 ceramics. Fracture toughness was increased and wear volume and friction coefficient were decreased with increase in BN content.

  11. High Temperature Characteristic in Electrical Breakdown and Electrical Conduction of Epoxy/Boron-nitride Composite

    NASA Astrophysics Data System (ADS)

    Takenaka, Yutaka; Kurimoto, Muneaki; Murakami, Yoshinobu; Nagao, Masayuki

    The power module for the electrical vehicle needs electrical insulation material with high thermal conductivity. Recently, the epoxy insulating material filled with boron-nitride particles (epoxy/boron-nitride composite) is focused as an effective solution. However, the insulation performance of epoxy/boron-nitride composite was not investigated enough especially at the high temperature in which the power module was used, i.e. more than 100°C. In this paper, we investigated high temperature characteristics in electrical breakdown and conduction current of epoxy/boron-nitride composite. Breakdown test under the application of DC lamp voltage and impulse voltage clarified that the epoxy/boron-nitride composite had the constant breakdown strength even in the high temperature. Comparison of the epoxy/boron-nitride composite with previous material, which was epoxy/alumina composite, indicated that the breakdown voltage of the epoxy/boron-nitride composite in the high temperature was found to be higher than that of epoxy/alumina composite under the same thermal-transfer quantity among them. Furthermore, conduction current measurement of epoxy/boron-nitride composite in the high temperature suggested the possibility of the ionic conduction mechanism.

  12. Salt rejection and water transport through boron nitride nanotubes.

    PubMed

    Hilder, Tamsyn A; Gordon, Daniel; Chung, Shin-Ho

    2009-10-01

    Nanotube-based water-purification devices have the potential to transform the field of desalination and demineralization through their ability to remove salts and heavy metals without significantly affecting the fast flow of water molecules. Boron nitride nanotubes have shown superior water flow properties compared to carbon nanotubes, and are thus expected to provide a more efficient water purification device. Using molecular dynamics simulations it is shown that a (5, 5) boron nitride nanotube embedded in a silicon nitride membrane can, in principle, obtain 100% salt rejection at concentrations as high as 1 M owing to a high energy barrier while still allowing water molecules to flow at a rate as high as 10.7 water molecules per nanosecond (or 0.9268 L m(-2) h(-1)). Furthermore, ions continue to be rejected under the influence of high hydrostatic pressures up to 612 MPa. When the nanotube radius is increased to 4.14 A the tube becomes cation-selective, and at 5.52 A the tube becomes anion-selective. PMID:19582727

  13. Structure and local chemical properties of boron-terminated tetravacancies in hexagonal boron nitride.

    PubMed

    Cretu, Ovidiu; Lin, Yung-Chang; Koshino, Masanori; Tizei, Luiz H G; Liu, Zheng; Suenaga, Kazutomo

    2015-02-20

    Imaging and spectroscopy performed in a low-voltage scanning transmission electron microscope are used to characterize the structure and chemical properties of boron-terminated tetravacancies in hexagonal boron nitride. We confirm earlier theoretical predictions about the structure of these defects and identify new features in the electron energy-loss spectra of B atoms using high resolution chemical maps, highlighting differences between these areas and pristine sample regions. We correlate our experimental data with calculations which help explain our observations. PMID:25763963

  14. Nanoparticles and nanoballoons of amorphous boron coated with crystalline boron nitride

    NASA Astrophysics Data System (ADS)

    Komatsu, Shojiro; Shimizu, Yoshiki; Moriyoshi, Yusuke; Okada, Katsuyuki; Mitomo, Mamoru

    2001-07-01

    Solid- and hollow-cored nanoparticles of amorphous boron coated with crystalline boron nitride (BN) have been synthesized by pulsed-laser vaporization of BN, where the laser plume was controlled with a modulated plasma jet. The hollow particles (nanoballoons) were coated with BN both on the interior and exterior surfaces. The solid particles ranged from a few to 40 nm in their size. The typical diameter of the hollow particles and their wall thickness were about 200 and 30 nm, respectively. The nanoballoons were obtained only when the plasma modulation was synchronized with the ArF excimer-laser pulses.

  15. Thermal conduction mechanisms in isotope-disordered boron nitride and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Savic, Ivana; Mingo, Natalio; Stewart, Derek

    2009-03-01

    We present first principles studies which determine dominant effects limiting the heat conduction in isotope-disordered boron nitride and carbon nanotubes [1]. Using an ab initio atomistic Green's function approach, we demonstrate that localization cannot be observed in the thermal conductivity measurements [1], and that diffusive scattering is the dominant mechanism which reduces the thermal conductivity [2]. We also give concrete predictions of the magnitude of the isotope effect on the thermal conductivities of carbon and boron nitride single-walled nanotubes [2]. We furthermore show that intershell scattering is not the main limiting mechanism for the heat flow through multi-walled boron nitride nanotubes [1], and that heat conduction restricted to a few shells leads to the low thermal conductivities experimentally measured [1]. We consequently successfully compare the results of our calculations [3] with the experimental measurements [1]. [1] C. W. Chang, A. M. Fennimore, A. Afanasiev, D. Okawa, T. Ikuno, H. Garcia, D. Li, A. Majumdar, A. Zettl, Phys. Rev. Lett. 2006, 97, 085901. [2] I. Savic, N. Mingo, D. A. Stewart, Phys. Rev. Lett. 2008, 101, 165502. [3] I. Savic, D. A. Stewart, N. Mingo, to be published.

  16. Consolidation of cubic and hexagonal boron nitride composites

    SciTech Connect

    Du Frane, W. L.; Cervantes, O.; Ellsworth, G. F.; Kuntz, J. D.

    2015-12-08

    When we Consolidate cubic boron nitride (cBN) it typically requires either a matrix of metal bearing materials that are undesirable for certain applications, or very high pressures within the cBN phase stability field that are prohibitive to manufacturing size and cost. We present new methodology for consolidating high stiffness cBN composites within a hexagonal boron nitride (hBN) matrix (15–25 vol%) with the aid of a binder phase (0–6 vol%) at moderate pressures (0.5–1.0 GPa) and temperatures (900–1300 °C). The composites are demonstrated to be highly tailorable with a range of compositions and resulting physical/mechanical properties. Ultrasonic measurements indicate that in some cases these composites have elastic mechanical properties that exceed those of the highest strength steel alloys. Moreover, two methods were identified to prevent phase transformation of the metastable cBN phase into hBN during consolidation: 1. removal of hydrocarbons, and 2. increased cBN particle size. Lithium tetraborate worked better as a binder than boron oxide, aiding consolidation without enhancing cBN to hBN phase transformation kinetics. These powder mixtures consolidated within error of their full theoretical mass densities at 1 GPa, and had only slightly lower densities at 0.5 GPa. This shows potential for consolidation of these composites into larger parts, in a variety of shapes, at even lower pressures using more conventional manufacturing methods, such as hot-pressing.

  17. Ultrathin high-temperature oxidation-resistant coatings of hexagonal boron nitride.

    PubMed

    Liu, Zheng; Gong, Yongji; Zhou, Wu; Ma, Lulu; Yu, Jingjiang; Idrobo, Juan Carlos; Jung, Jeil; MacDonald, Allan H; Vajtai, Robert; Lou, Jun; Ajayan, Pulickel M

    2013-01-01

    Hexagonal boron nitride is a two-dimensional layered material that can be stable at 1,500 °C in air and will not react with most chemicals. Here we demonstrate large-scale, ultrathin, oxidation-resistant coatings of high-quality hexagonal boron nitride layers with controlled thicknesses from double layers to bulk. We show that such ultrathin hexagonal boron nitride films are impervious to oxygen diffusion even at high temperatures and can serve as high-performance oxidation-resistant coatings for nickel up to 1,100 °C in oxidizing atmospheres. Furthermore, graphene layers coated with a few hexagonal boron nitride layers are also protected at similarly high temperatures. These hexagonal boron nitride atomic layer coatings, which can be synthesized via scalable chemical vapour deposition method down to only two layers, could be the thinnest coating ever shown to withstand such extreme environments and find applications as chemically stable high-temperature coatings. PMID:24092019

  18. Ultrathin high-temperature oxidation-resistant coatings of hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Liu, Zheng; Gong, Yongji; Zhou, Wu; Ma, Lulu; Yu, Jingjiang; Idrobo, Juan Carlos; Jung, Jeil; MacDonald, Allan H.; Vajtai, Robert; Lou, Jun; Ajayan, Pulickel M.

    2013-10-01

    Hexagonal boron nitride is a two-dimensional layered material that can be stable at 1,500 °C in air and will not react with most chemicals. Here we demonstrate large-scale, ultrathin, oxidation-resistant coatings of high-quality hexagonal boron nitride layers with controlled thicknesses from double layers to bulk. We show that such ultrathin hexagonal boron nitride films are impervious to oxygen diffusion even at high temperatures and can serve as high-performance oxidation-resistant coatings for nickel up to 1,100 °C in oxidizing atmospheres. Furthermore, graphene layers coated with a few hexagonal boron nitride layers are also protected at similarly high temperatures. These hexagonal boron nitride atomic layer coatings, which can be synthesized via scalable chemical vapour deposition method down to only two layers, could be the thinnest coating ever shown to withstand such extreme environments and find applications as chemically stable high-temperature coatings.

  19. Neutron detection using boron gallium nitride semiconductor material

    SciTech Connect

    Atsumi, Katsuhiro; Inoue, Yoku; Nakano, Takayuki; Mimura, Hidenori; Aoki, Toru

    2014-03-01

    In this study, we developed a new neutron-detection device using a boron gallium nitride (BGaN) semiconductor in which the B atom acts as a neutron converter. BGaN and gallium nitride (GaN) samples were grown by metal organic vapor phase epitaxy, and their radiation detection properties were evaluated. GaN exhibited good sensitivity to α-rays but poor sensitivity to γ-rays. Moreover, we confirmed that electrons were generated in the depletion layer under neutron irradiation. This resulted in a neutron-detection signal after α-rays were generated by the capture of neutrons by the B atoms. These results prove that BGaN is useful as a neutron-detecting semiconductor material.

  20. Facile synthesis of boron nitride nanotubes and improved electrical conductivity.

    PubMed

    Chen, Yongjun; Luo, Lijie; Zhou, Longchang; Mo, Libin; Tong, Zhangfa

    2010-02-01

    A layer of catalyst film on substrate is usually required during the vapor-liquid-solid (VLS) growth of one-dimensional (1D) nanomaterials. In this work, however, a novel approach for synthesizing high-purity bamboo-like boron nitride (BN) nanotubes directly on commercial stainless steel foils was demonstrated. Synthesis was realized by heating boron and zinc oxide (ZnO) powders at 1200 degrees C under a mixture gas flow of nitrogen and hydrogen. The stainless steel foils played an additional role of catalyst besides the substrate during the VLS growth of the nanotubes. In addition, the electrical conductivity of the BN nanotubes was efficiently improved in a simple way by coating with Au and Pd nanoparticles. The decorated BN nanotubes may find potential applications in catalysts, sensors and nanoelectronics. PMID:20352730

  1. Preparation of superhydrophobic nanodiamond and cubic boron nitride films

    SciTech Connect

    Zhou, Y. B.; Liu, W. M.; Wang, P. F.; Yang, Y.; Ye, Q.; He, B.; Pan, X. J.; Zhang, W. J.; Bello, I.; Lee, S. T.; Zou, Y. S.

    2010-09-27

    Superhydrophobic surfaces were achieved on the hardest and the second hardest materials, diamond and cubic boron nitride (cBN) films. Various surface nanostructures of nanocrystalline diamond (ND) and cBN films were constructed by carrying out bias-assisted reactive ion etching in hydrogen/argon plasmas; and it is shown that surface nanostructuring may enhance dramatically the hydrophobicity of ND and cBN films. Together with surface fluorination, superhydrophobic ND and cBN surfaces with a contact angle greater than 150 deg. and a sliding angle smaller than 10 deg. were demonstrated. The origin of hydrophobicity enhancement is discussed based on the Cassie model.

  2. Boron nitride nanosheets as oxygen-atom corrosion protective coatings

    SciTech Connect

    Yi, Min; Shen, Zhigang; Zhao, Xiaohu; Liang, Shuaishuai; Liu, Lei

    2014-04-07

    The research of two-dimensional nanomaterials for anticorrosion applications is just recently burgeoning. Herein, we demonstrate the boron nitride nanosheets (BNNSs) coatings for protecting polymer from oxygen-atom corrosion. High-quality BNNSs, which are produced by an effective fluid dynamics method with multiple exfoliation mechanisms, can be assembled into coatings with controlled thickness by vacuum filtration. After exposed in atom oxygen, the naked polymer is severely corroded with remarkable mass loss, while the BNNSs-coated polymer remains intact. Barrier and bonding effects of the BNNSs are responsible for the coating's protective performance. These preliminary yet reproducible results pave a way for resisting oxygen-atom corrosion.

  3. Superior thermal conductivity in suspended bilayer hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Wang, Chengru; Guo, Jie; Dong, Lan; Aiyiti, Adili; Xu, Xiangfan; Li, Baowen

    2016-05-01

    We reported the basal-plane thermal conductivity in exfoliated bilayer hexagonal boron nitride h-BN that was measured using suspended prepatterned microstructures. The h-BN sample suitable for thermal measurements was fabricated by dry-transfer method, whose sample quality, due to less polymer residues on surfaces, is believed to be superior to that of PMMA-mediated samples. The measured room temperature thermal conductivity is around 484 Wm‑1K‑1(+141 Wm‑1K‑1/ ‑24 Wm‑1K‑1) which exceeds that in bulk h-BN, providing experimental observation of the thickness-dependent thermal conductivity in suspended few-layer h-BN.

  4. NMR Studies of 3He Films on Boron Nitride

    NASA Astrophysics Data System (ADS)

    Tang, Y.; Sullivan, N. S.

    2014-12-01

    We report the results of NMR studies of the dynamics of 3He adsorbed on hexagonal boron nitride. These studies can identify the phase transitions of the 2D films as a function of temperature. A thermally activated temperature dependence is observed for 2.6 < T < 8 K compared to a linear temperature dependence for 0.7 < T < 2.6 K. This linear dependence is consistent with that expected for thermal diffusion in a fluid for coverages of 0.4 - 0.6 of a monolayer.

  5. Synthesis of Extended Atomically Perfect Zigzag Graphene - Boron Nitride Interfaces

    PubMed Central

    Drost, Robert; Kezilebieke, Shawulienu; M. Ervasti, Mikko; Hämäläinen, Sampsa K.; Schulz, Fabian; Harju, Ari; Liljeroth, Peter

    2015-01-01

    The combination of several materials into heterostructures is a powerful method for controlling material properties. The integration of graphene (G) with hexagonal boron nitride (BN) in particular has been heralded as a way to engineer the graphene band structure and implement spin- and valleytronics in 2D materials. Despite recent efforts, fabrication methods for well-defined G-BN structures on a large scale are still lacking. We report on a new method for producing atomically well-defined G-BN structures on an unprecedented length scale by exploiting the interaction of G and BN edges with a Ni(111) surface as well as each other. PMID:26584674

  6. Aqueous compatible boron nitride nanosheets for high-performance hydrogels

    NASA Astrophysics Data System (ADS)

    Hu, Xiaozhen; Liu, Jiahui; He, Qiuju; Meng, Yuan; Cao, Liu; Sun, Ya-Ping; Chen, Jijie; Lu, Fushen

    2016-02-01

    Hexagonal boron nitride nanosheets (BNNSs) possess ultimate thermal and chemical stabilities and mechanical strengths. However, the unmodified BNNSs are hydrophobic and insoluble in water, which hinders their use in many technological areas requiring aqueous compatibility. In this work, h-BN was treated with molten citric acid to produce aqueous dispersible boron nitride sheets (ca-BNNSs). The resultant ca-BNNSs were used to fabricate ca-BNNS/polyacrylamide (i.e., BNNS2.5/PAAm) nanocomposite hydrogels, targeting high water retentivity and flexibility. The BNNS2.5/PAAm hydrogel (initially swollen in water) largely remained swollen (water content ~94 wt%) even after one-year storage under ambient conditions. Importantly, the swollen BNNS2.5/PAAm hydrogel (water content ~95 wt%) was highly flexible. Its elongation and compressive strength exceeded 10 000% and 8 MPa at 97% strain, respectively. Moreover, the aforementioned hydrogel recovered upon the removal of compression force, without obvious damage. The substantially improved water retentivity and flexibility revealed that BNNSs can serve as a promising new platform in the development of high-performance hydrogels.Hexagonal boron nitride nanosheets (BNNSs) possess ultimate thermal and chemical stabilities and mechanical strengths. However, the unmodified BNNSs are hydrophobic and insoluble in water, which hinders their use in many technological areas requiring aqueous compatibility. In this work, h-BN was treated with molten citric acid to produce aqueous dispersible boron nitride sheets (ca-BNNSs). The resultant ca-BNNSs were used to fabricate ca-BNNS/polyacrylamide (i.e., BNNS2.5/PAAm) nanocomposite hydrogels, targeting high water retentivity and flexibility. The BNNS2.5/PAAm hydrogel (initially swollen in water) largely remained swollen (water content ~94 wt%) even after one-year storage under ambient conditions. Importantly, the swollen BNNS2.5/PAAm hydrogel (water content ~95 wt%) was highly flexible. Its

  7. Excellent oxidation endurance of boron nitride nanotube field electron emitters

    SciTech Connect

    Song, Yenan; Song, Yoon-Ho; Milne, William I.; Jin Lee, Cheol

    2014-04-21

    Boron nitride nanotubes (BNNTs) are considered as a promising cold electron emission material owing to their negative electron affinity. BNNT field emitters show excellent oxidation endurance after high temperature thermal annealing of 600 °C in air ambient. There is no damage to the BNNTs after thermal annealing at a temperature of 600 °C and also no degradation of field emission properties. The thermally annealed BNNTs exhibit a high maximum emission current density of 8.39 mA/cm{sup 2} and show very robust emission stability. The BNNTs can be a promising emitter material for field emission devices under harsh oxygen environments.

  8. Boron Nitride Surface Activity as Route to Composite Dielectric Films.

    PubMed

    Cui, Zhenhua; Cao, Zhen; Ma, Rui; Dobrynin, Andrey V; Adamson, Douglas H

    2015-08-12

    The propensity of boron nitride sheets to stack creates obstacles for their application as multifunctional materials despite their unique thermal, mechanical, and electrical properties. To address this challenge, we use a combination of molecular dynamics simulations and experimental techniques to demonstrate surfactant-like properties of BN sheets at the interface between immiscible solvents. The spreading of two-dimensional BN sheets at a high-energy oil/water interface lowers the free energy of the system, creating films of overlapping BN sheets that are more thermodynamically favorable than stacked sheets. Coating such films onto polymers results in composite materials with exceptional barrier and dielectric properties. PMID:26214048

  9. Field emission characteristics from graphene on hexagonal boron nitride

    SciTech Connect

    Yamada, Takatoshi; Masuzawa, Tomoaki; Ebisudani, Taishi; Okano, Ken; Taniguchi, Takashi

    2014-06-02

    An attempt has been made to utilize uniquely high electron mobility of graphene on hexagonal boron nitride (h-BN) to electron emitter. The field emission property of graphene/h-BN/Si structure has shown enhanced threshold voltage and emission current, both of which are key to develop novel vacuum nanoelectronics devices. The field emission property was discussed along with the electronic structure of graphene investigated by Fowler-Nordheim plot and ultraviolet photoelectron spectroscopy. The result suggested that transferring graphene on h-BN modified its work function, which changed field emission mechanism. Our report opens up a possibility of graphene-based vacuum nanoelectronics devices with tuned work function.

  10. Synthesis of boron nitride nanotubes and their applications

    PubMed Central

    Kalay, Saban; Yilmaz, Zehra; Sen, Ozlem; Emanet, Melis; Kazanc, Emine

    2015-01-01

    Summary Boron nitride nanotubes (BNNTs) have been increasingly investigated for use in a wide range of applications due to their unique physicochemical properties including high hydrophobicity, heat and electrical insulation, resistance to oxidation, and hydrogen storage capacity. They are also valued for their possible medical and biomedical applications including drug delivery, use in biomaterials, and neutron capture therapy. In this review, BNNT synthesis methods and the surface modification strategies are first discussed, and then their toxicity and application studies are summarized. Finally, a perspective for the future use of these novel materials is discussed. PMID:25671154

  11. Cellulose nanofibrils (CNF) filled boron nitride (BN) nanocomposites

    NASA Astrophysics Data System (ADS)

    Sulaiman, Hanisah Syed; Hua, Chia Chin; Zakaria, Sarani

    2015-09-01

    In this study, nanocomposite using cellulose nanofibrils filled with different percentage of boron nitride (CNF-BN) were prepared. The objective of this research is to study the effect of different percentage of BN to the thermal conductivity of the nanocomposite produced. The CNF-BN nanocomposite were characterization by FT-IR, SEM and thermal conductivity. The FT-IR analysis of the CNF-BN nanocomposite shows all the characteristic peaks of cellulose and BN present in all samples. The dispersion of BN in CNF were seen through SEM analysis. The effect of different loading percentage of BN to the thermal conductivity of the nanocomposite were also investigated.

  12. Cellulose nanofibrils (CNF) filled boron nitride (BN) nanocomposites

    SciTech Connect

    Sulaiman, Hanisah Syed; Hua, Chia Chin; Zakaria, Sarani

    2015-09-25

    In this study, nanocomposite using cellulose nanofibrils filled with different percentage of boron nitride (CNF-BN) were prepared. The objective of this research is to study the effect of different percentage of BN to the thermal conductivity of the nanocomposite produced. The CNF-BN nanocomposite were characterization by FT-IR, SEM and thermal conductivity. The FT-IR analysis of the CNF-BN nanocomposite shows all the characteristic peaks of cellulose and BN present in all samples. The dispersion of BN in CNF were seen through SEM analysis. The effect of different loading percentage of BN to the thermal conductivity of the nanocomposite were also investigated.

  13. Local environment of silicon in cubic boron nitride

    SciTech Connect

    Murata, Hidenobu Taniguchi, Takashi; Hishita, Shunichi; Yamamoto, Tomoyuki; Oba, Fumiyasu; Tanaka, Isao

    2013-12-21

    Si-doped cubic boron nitride (c-BN) is synthesized at high pressure and high temperature, and the local environment of Si is investigated using X-ray absorption near edge structure (XANES) and first-principles calculations. Si-K XANES indicates that Si in c-BN is surrounded by four nitrogen atoms. According to first-principles calculations, the model for substitutional Si at the B site well reproduces experimental Si-K XANES, and it is energetically more favorable than substitutional Si at the N site. Both the present experimental and theoretical results indicate that Si in c-BN prefers the B site to the N site.

  14. Carbon nanotube quantum dots on hexagonal boron nitride

    SciTech Connect

    Baumgartner, A. Abulizi, G.; Gramich, J.; Schönenberger, C.; Watanabe, K.; Taniguchi, T.

    2014-07-14

    We report the fabrication details and low-temperature characteristics of carbon nanotube (CNT) quantum dots on flakes of hexagonal boron nitride (hBN) as substrate. We demonstrate that CNTs can be grown on hBN by standard chemical vapor deposition and that standard scanning electron microscopy imaging and lithography can be employed to fabricate nanoelectronic structures when using optimized parameters. This proof of concept paves the way to more complex devices on hBN, with more predictable and reproducible characteristics and electronic stability.

  15. Hot filament CVD of boron nitride films

    DOEpatents

    Rye, Robert R.

    1992-01-01

    Using a hot filament (.apprxeq.1400.degree. C.) to activate borazine (B.sub.3 N.sub.3 H.sub.6) molecules for subsequent reaction with a direct line-of-sight substrate, transparent boron ntiride films as thick as 25,000 angstroms are grown for a substrate temperature as low as 100.degree. C. The minimum temperature is determined by radiative heating from the adjacent hot filament. The low temperature BN films show no indication of crystallinity with X-ray diffraction (XRD). X-ray photoelectron spectra (XPS) show the films to have a B:N ratio of 0.97:1 with no other XPS detectable impurities above the 0.5% level. Both Raman and infrared (IR) spectroscopy are characteristic of h-BN with small amounts of hydrogen detected as N-H and B-H bands in the IR spectrum. An important feature of this method is the separation and localization of the thermal activation step at the hot filament from the surface reaction and film growth steps at the substrate surface. This allows both higher temperature thermal activation and lower temperature film growth.

  16. Isotopic Enrichment of Boron in the Sputtering of Boron Nitride with Xenon Ions

    NASA Technical Reports Server (NTRS)

    Ray, P. K.; Shutthanandan, V.

    1998-01-01

    An experimental study is described to measure the isotopic enrichment of boron. Xenon ions from 100 eV to 1.5 keV were used to sputter a boron nitride target. An ion gun was used to generate the ion beam. The ion current density at the target surface was approximately 30 microA/sq cm. Xenon ions impinged on the target surface at 50 deg angle to the surface normal. Since boron nitride is an insulator, a flood electron gun was used in our experiments to neutralize the positive charge buildup on the target surface. The sputtered secondary ions of boron were detected by a quadrupole mass spectrometer. The spectrometer entrance aperture was located perpendicular to the ion beam direction and 10 mm away from the target surface. The secondary ion flux was observed to be enriched in the heavy isotopes at lower ion energies. The proportion of heavy isotopes in the sputtered secondary ion flux was found to decrease with increasing primary ion energy from 100 to 350 eV. Beyond 350 eV, light isotopes were sputtered preferentially. The light isotope enrichment factor was observed to reach an asymptotic value of 1.27 at 1.5 keV. This trend is similar to that of the isotopic enrichment observed earlier when copper was sputtered with xenon ions in the same energy range.

  17. Fabrication and characterization of hexagonal boron nitride powder by spray drying and calcining-nitriding technology

    SciTech Connect

    Shi Xiaoliang Wang Sheng; Yang Hua; Duan Xinglong; Dong Xuebin

    2008-09-15

    Hexagonal boron nitride (hBN) powder was fabricated prepared by the spray drying and calcining-nitriding technology. The effects of nitrided temperature on the phases, morphology and particle size distribution of hBN powder, were investigated. The synthesized powders were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), Fourier transformed infrared spectrum, ultraviolet-visible (UV-vis) spectrum and photoluminescence (PL) spectrum. UV-vis spectrum revealed that the product had one obvious band gap (4.7 eV) and PL spectrum showed that it had a visible emission at 457 nm ({lambda}{sub ex}=230 nm). FESEM image indicated that the particle size of the synthesized hBN was mainly in the range of 0.5-1.5 {mu}m in diameter, and 50-150 nm in thickness. The high-energy ball-milling process following 900 deg. C calcining process was very helpful to obtain fully crystallized hBN at lower temperature. - Graphical abstract: hBN powder was fabricated prepared by spray drying and calcining-nitriding technology. The results indicated that spray drying and calcining-nitriding technology assisted with high-energy ball-milling process following calcined process was a hopeful way to manufacture hBN powder with high crystallinity in industrial scale.

  18. Dimensional Crossover of Thermal Transport in Hybrid Boron Nitride Nanostructures.

    PubMed

    Sakhavand, Navid; Shahsavari, Rouzbeh

    2015-08-26

    Although boron nitride nanotubes (BNNT) and hexagonal-BN (hBN) are superb one-dimensional (1D) and 2D thermal conductors respectively, bringing this quality into 3D remains elusive. Here, we focus on pillared boron nitride (PBN) as a class of 3D BN allotropes and demonstrate how the junctions, pillar length and pillar distance control phonon scattering in PBN and impart tailorable thermal conductivity in 3D. Using reverse nonequilibrium molecular dynamics simulations, our results indicate that although a clear phonon scattering at the junctions accounts for the lower thermal conductivity of PBN compared to its parent BNNT and hBN allotropes, it acts as an effective design tool and provides 3D thermo-mutable features that are absent in the parent structures. Propelled by the junction spacing, while one geometrical parameter, e.g., pillar length, controls the thermal transport along the out-of-plane direction of PBN, the other parameter, e.g., pillar distance, dictates the gross cross-sectional area, which is key for design of 3D thermal management systems. Furthermore, the junctions have a more pronounced effect in creating a Kapitza effect in the out-of-plane direction, due to the change in dimensionality of the phonon transport. This work is the first report on thermo-mutable properties of hybrid BN allotropes and can potentially impact thermal management of other hybrid 3D BN architectures. PMID:26158661

  19. Growth and Characterization of Graphene-Boron Nitride Heterostructures

    NASA Astrophysics Data System (ADS)

    Sutter, Peter

    2012-02-01

    Graphene has been used to explore the fascinating properties of two-dimensional sp^2 carbon, and shows great promise for applications. Heterostructures of graphene (G) and hexagonal boron nitride (h-BN) have the potential for extended functionality, e.g., providing high carrier mobilities in graphene devices supported on h-BN and giving rise to emergent electronic behavior near in-plane G/h-BN junctions. While significant progress has been made recently in separate graphene and boron nitride growth on transition metals, the controlled synthesis of high-quality G/h-BN heterostructures poses new challenges. We discuss the fundamental growth mechanisms underlying the synthesis of G/h-BN heterostructures, studied by a combination of in-situ surface microscopy methods. Real-time low-energy electron microscopy (LEEM) provides a mesoscale view of the nucleation and growth of h-BN in the presence of graphene, and vice-versa. LEEM imaging together with diffraction and angle resolved photoemission spectroscopy (micro-ARPES) gives insight into the interaction between graphene and h-BN. Scanning tunneling microscopy has been used to probe intermixing and the atomic-scale structure of interfacial boundaries. Combining real-time and atomic-resolution imaging, we identify successful approaches for achieving atomically sharp G/h-BN junctions.

  20. Tuning thermoelectric properties of graphene/boron nitride heterostructures

    NASA Astrophysics Data System (ADS)

    Algharagholy, Laith A.; Al-Galiby, Qusiy; Marhoon, Haider A.; Sadeghi, Hatef; Abduljalil, Hayder M.; Lambert, Colin J.

    2015-11-01

    Using density functional theory combined with a Green’s function scattering approach, we examine the thermoelectric properties of hetero-nanoribbons formed from alternating lengths of graphene and boron nitride. In such structures, the boron nitride acts as a tunnel barrier, which weakly couples states in the graphene, to form mini-bands. In un-doped nanoribbons, the mini bands are symmetrically positioned relative to the Fermi energy and do not enhance thermoelectric performance significantly. In contrast, when the ribbons are doped by electron donating or electron accepting adsorbates, the thermopower S and electronic figure of merit are enhanced and either positive or negative thermopowers can be obtained. In the most favourable case, doping with the electron donor tetrathiafulvalene increases the room-temperature thermopower to -284 μv K-1 and doping by the electron acceptor tetracyanoethylene increases S to 210 μv K-1. After including both electron and phonon contributions to the thermal conductance, figures of merit ZT up to of order 0.9 are obtained.

  1. Toward Edge-Defined Holey Boron Nitride Nanosheets

    NASA Technical Reports Server (NTRS)

    Lin, Yi; Liao, Yunlong; Chen, Zhongfan; Connell, John W.

    2015-01-01

    "Holey" two-dimensional (2D) nanosheets with well-defined holy morphology and edge chemistry are highly desirable for applications such as energy storage, catalysis, sensing, transistors, and molecular transport/separation. For example, holey grapheme is currently under extensive investigation for energy storage applications because of the improvement in ion transport due to through the thickness pathways provided by the holes. Without the holes, the 2D materials have significant limitations for such applications in which efficient ion transport is important. As part of an effort to apply this approach to other 2D nanomaterials, a method to etch geometrically defined pits or holes on the basal plane surface of hexagonal boron nitride (h-BN) nanosheets has been developed. The etching, conducted via heating in ambient air using metal nanoparticles as catalysts, was facile, controllable, and scalable. Starting h-BN layered crystals were etched and subsequently exfoliated into boron nitride nanosheets (BNNSs). The as-etched and exfoliated h-BN nanosheets possessed defined pit and hole shapes that were comprised of regulated nanostructures at the edges. The current finding are the first step toward the bulk preparation of holey BNNSs with defined holes and edges.

  2. Chemical Sharpening, Shortening, and Unzipping of Boron Nitride Nanotubes

    NASA Technical Reports Server (NTRS)

    Liao, Yunlong; Chen, Zhongfang; Connell, John W.; Fay, Catharine C.; Park, Cheol; Kim, Jae-Woo; Lin, Yi

    2014-01-01

    Boron nitride nanotubes (BNNTs), the one-dimensional member of the boron nitride nanostructure family, are generally accepted to be highly inert to oxidative treatments and can only be covalently modifi ed by highly reactive species. Conversely, it is discovered that the BNNTs can be chemically dispersed and their morphology modifi ed by a relatively mild method: simply sonicating the nanotubes in aqueous ammonia solution. The dispersed nanotubes are significantly corroded, with end-caps removed, tips sharpened, and walls thinned. The sonication treatment in aqueous ammonia solution also removes amorphous BN impurities and shortened BNNTs, resembling various oxidative treatments of carbon nanotubes. Importantly, the majority of BNNTs are at least partially longitudinally cut, or "unzipped". Entangled and freestanding BN nanoribbons (BNNRs), resulting from the unzipping, are found to be approximately 5-20 nm in width and up to a few hundred nanometers in length. This is the fi rst chemical method to obtain BNNRs from BNNT unzipping. This method is not derived from known carbon nanotube unzipping strategies, but is unique to BNNTs because the use of aqueous ammonia solutions specifi cally targets the B-N bond network. This study may pave the way for convenient processing of BNNTs, previously thought to be highly inert, toward controlling their dispersion, purity, lengths, and electronic properties.

  3. Purification of boron nitride nanotubes via polymer wrapping

    SciTech Connect

    Choi, Jin-Hyuk; Kim, Jaewoo; Seo, Duckbong; Seo, Young-Soo

    2013-03-15

    Highlights: ► Surface modification of boron nitride nanotubes using polymeric materials. ► Surface-modified BNNT was purified with a simple dilution-centrifugation step. ► Surface-modified BNNT can be directly used for polymer composite fabrication ► Degree of purification was analyzed by Raman spectroscopy. - Abstract: Boron nitride nanotubes (BNNT) synthesized by a ball milling-annealing were surface-modified using three different types of polymeric materials. Those materials were chosen depending on future applications especially in polymer nanocomposite fabrications. We found that the surface-modified BNNT can be purified with a simple dilution-centrifugation step, which would be suitable for large-scale purification. Degree of purification was monitored by means of the center peak position and FWHM of E{sub 2g} mode of BNNT in Raman spectra. As the purification of BNNT develops, the peak position was up-shifted while FWHM of the peak was narrowed.

  4. Tuning thermoelectric properties of graphene/boron nitride heterostructures.

    PubMed

    Algharagholy, Laith A; Al-Galiby, Qusiy; Marhoon, Haider A; Sadeghi, Hatef; Abduljalil, Hayder M; Lambert, Colin J

    2015-11-27

    Using density functional theory combined with a Green's function scattering approach, we examine the thermoelectric properties of hetero-nanoribbons formed from alternating lengths of graphene and boron nitride. In such structures, the boron nitride acts as a tunnel barrier, which weakly couples states in the graphene, to form mini-bands. In un-doped nanoribbons, the mini bands are symmetrically positioned relative to the Fermi energy and do not enhance thermoelectric performance significantly. In contrast, when the ribbons are doped by electron donating or electron accepting adsorbates, the thermopower S and electronic figure of merit are enhanced and either positive or negative thermopowers can be obtained. In the most favourable case, doping with the electron donor tetrathiafulvalene increases the room-temperature thermopower to -284 μv K(-1) and doping by the electron acceptor tetracyanoethylene increases S to 210 μv K(-1). After including both electron and phonon contributions to the thermal conductance, figures of merit ZT up to of order 0.9 are obtained. PMID:26528629

  5. Facile preparation and multifunctional applications of boron nitride quantum dots

    NASA Astrophysics Data System (ADS)

    Lei, Zhouyue; Xu, Shengjie; Wan, Jiaxun; Wu, Peiyi

    2015-11-01

    Boron nitride quantum dots are obtained by a facile sonication-solvothermal technique. They are proven to be promising fluorescent bioimaging probes for bioimaging with remarkably low cytotoxicity and easily integrated into high-performance proton exchange membranes. This work will probably trigger research interest in BN and its new applications in a variety of fields.Boron nitride quantum dots are obtained by a facile sonication-solvothermal technique. They are proven to be promising fluorescent bioimaging probes for bioimaging with remarkably low cytotoxicity and easily integrated into high-performance proton exchange membranes. This work will probably trigger research interest in BN and its new applications in a variety of fields. Electronic supplementary information (ESI) available: AFM images of BN nanosheets, TEM, HRTEM and AFM images of BN QDs prepared in DMSO, digital photographs of DMF, DMSO, DMF with the addition of BN raw materials and DMSO with the addition of BN raw materials, UV-vis and FTIR spectra of the BN QDs, cell viability of the BN QDs, a summary of cell viabilities of different fluorescent QDs, digital photographs and CLSM images of the as-prepared PEMs, TGA and DSC curves of the PEMs, and AFM images of the PEMs. See DOI: 10.1039/c5nr05960g

  6. Shockwave Processing of Composite Boron and Titanium Nitride Powders

    NASA Astrophysics Data System (ADS)

    Beason, Matthew T.; Gunduz, I. Emre; Mukasyan, Alexander S.; Son, Steven F.

    2015-06-01

    Shockwave processing of powders has been shown to initiate reactions between condensed phase reactants. It has been observed that these reactions can occur at very short timescales, resulting in chemical reactions occurring at a high pressure state. These reactions have the potential to produce metastable phases. Kinetic limitations prevent gaseous reactants from being used in this type of synthesis reaction. To overcome this limitation, a solid source of gaseous reactants must be used. An example of this type of reaction is the nitrogen exchange reaction (e.g. B + TiN, B + Si3N4 etc.). In these reactions nitrogen is ``carried'' by a material that can be then reduced by the second reactant. This work explores the possibility of using nitrogen exchange reactions to synthesize the cubic phase of boron nitride (c-BN) through shockwave processing of ball milled mixtures of boron and titanium nitride. The heating from the passage of the shock wave (pore collapse, plastic work, etc.) combined with thermochemical energy from the reaction may provide a means to synthesize c-BN. This material is based upon work supported by the Department of Energy, National Nuclear Security Administration, under Award Number(s) DE-NA0002377. National Defense Science & Engineering Graduate Fellowship (NDSEG), 32 CFR 168a.

  7. Band gap effects of hexagonal boron nitride using oxygen plasma

    SciTech Connect

    Sevak Singh, Ram; Leong Chow, Wai; Yingjie Tay, Roland; Hon Tsang, Siu; Mallick, Govind; Tong Teo, Edwin Hang

    2014-04-21

    Tuning of band gap of hexagonal boron nitride (h-BN) has been a challenging problem due to its inherent chemical stability and inertness. In this work, we report the changes in band gaps in a few layers of chemical vapor deposition processed as-grown h-BN using a simple oxygen plasma treatment. Optical absorption spectra show a trend of band gap narrowing monotonically from 6 eV of pristine h-BN to 4.31 eV when exposed to oxygen plasma for 12 s. The narrowing of band gap causes the reduction in electrical resistance by ∼100 fold. The x-ray photoelectron spectroscopy results of plasma treated hexagonal boron nitride surface show the predominant doping of oxygen for the nitrogen vacancy. Energy sub-band formations inside the band gap of h-BN, due to the incorporation of oxygen dopants, cause a red shift in absorption edge corresponding to the band gap narrowing.

  8. Electronic structure of carbon-boron nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Sanginés-Mendoza, Raúl; Martinez, Edgar

    2013-03-01

    Structures of carbon and boron nitride nanotubes (CNTs, BNNTs) are quite similar, conversely, electronic properties are radically different from each other. Carbon nanotubes, whose electronic properties can be either metallic or semiconducting depending on their chiral structure, boron nitride nanotubes are always semiconductors with bandgaps over 4 eV. We have looked to hybrid systems, to predict a new kind of nanostructures with novel electronic properties. In this way, we explore the electronic properties of C-BN nanotubes. In particular, we studied the electronic structure of armchair C-BN nanotubes. The calculations were performed using the pseudopotential LCAO method with a Generalized Gradient Approximation for the exchange-correlation energy functional. The band structure of most of these systems have semiconductor character with an indirect gap smaller than its analogous BNNTs. In addition, the most prominent feature of these systems is the existence of flat bands both at the valence band top and at the conduction band minimum. Such flat bands results in sharp and narrow peaks on the total density of states. The behavior of these flat bands mainly indicates that electrons are largely localized. Thus, a detailed analysis on the electronic band structure shows that hybridization between those orbitals on the interfaces is responsible to exhibit localization effects on the hybrid systems.This research was supported by Conacyt under Grant No. 133022.

  9. Boron Nitride Nanotubes Synthesized by Pressurized Reactive Milling Process

    NASA Technical Reports Server (NTRS)

    Hurst, Janet B.

    2004-01-01

    Nanotubes, because of their very high strength, are attractive as reinforcement materials for ceramic matrix composites (CMCs). Recently there has been considerable interest in developing and applying carbon nanotubes for both electronic and structural applications. Although carbon nanotubes can be used to reinforce composites, they oxidize at high temperatures and, therefore, may not be suitable for ceramic composites. Boron nitride, because it has a higher oxidation resistance than carbon, could be a potential reinforcement material for ceramic composites. Although boron nitride nanotubes (BNnT) are known to be structurally similar to carbon nanotubes, they have not undergone the same extensive scrutiny that carbon nanotubes have experienced in recent years. This has been due to the difficulty in synthesizing this material rather than lack of interest in the material. We expect that BNnTs will maintain the high strength of carbon nanotubes while offering superior performance for the high-temperature and/or corrosive applications of interest to NASA. At the NASA Glenn Research of preparing BN-nTs were investigated and compared. These include the arc jet process, the reactive milling process, and chemical vapor deposition. The most successful was a pressurized reactive milling process that synthesizes BN-nTs of reasonable quantities.

  10. Silver Nanoparticle-Deposited Boron Nitride Nanosheets as Fillers for Polymeric Composites with High Thermal Conductivity

    PubMed Central

    Wang, Fangfang; Zeng, Xiaoliang; Yao, Yimin; Sun, Rong; Xu, Jianbin; Wong, Ching-Ping

    2016-01-01

    Polymer composites with high thermal conductivity have recently attracted much attention, along with the rapid development of the electronic devices toward higher speed and performance. However, a common method to enhance polymer thermal conductivity through an addition of high thermally conductive fillers usually cannot provide an expected value, especially for composites requiring electrical insulation. Here, we show that polymeric composites with silver nanoparticle-deposited boron nitride nanosheets as fillers could effectively enhance the thermal conductivity of polymer, thanks to the bridging connections of silver nanoparticles among boron nitride nanosheets. The thermal conductivity of the composite is significantly increased from 1.63 W/m-K for the composite filled with the silver nanoparticle-deposited boron nitride nanosheets to 3.06 W/m-K at the boron nitride nanosheets loading of 25.1 vol %. In addition, the electrically insulating properties of the composite are well preserved. Fitting the measured thermal conductivity of epoxy composite with one physical model indicates that the composite with silver nanoparticle-deposited boron nitride nanosheets outperforms the one with boron nitride nanosheets, owning to the lower thermal contact resistance among boron nitride nanosheets’ interfaces. The finding sheds new light on enhancement of thermal conductivity of the polymeric composites which concurrently require the electrical insulation. PMID:26783258

  11. Silver Nanoparticle-Deposited Boron Nitride Nanosheets as Fillers for Polymeric Composites with High Thermal Conductivity.

    PubMed

    Wang, Fangfang; Zeng, Xiaoliang; Yao, Yimin; Sun, Rong; Xu, Jianbin; Wong, Ching-Ping

    2016-01-01

    Polymer composites with high thermal conductivity have recently attracted much attention, along with the rapid development of the electronic devices toward higher speed and performance. However, a common method to enhance polymer thermal conductivity through an addition of high thermally conductive fillers usually cannot provide an expected value, especially for composites requiring electrical insulation. Here, we show that polymeric composites with silver nanoparticle-deposited boron nitride nanosheets as fillers could effectively enhance the thermal conductivity of polymer, thanks to the bridging connections of silver nanoparticles among boron nitride nanosheets. The thermal conductivity of the composite is significantly increased from 1.63 W/m-K for the composite filled with the silver nanoparticle-deposited boron nitride nanosheets to 3.06 W/m-K at the boron nitride nanosheets loading of 25.1 vol %. In addition, the electrically insulating properties of the composite are well preserved. Fitting the measured thermal conductivity of epoxy composite with one physical model indicates that the composite with silver nanoparticle-deposited boron nitride nanosheets outperforms the one with boron nitride nanosheets, owning to the lower thermal contact resistance among boron nitride nanosheets' interfaces. The finding sheds new light on enhancement of thermal conductivity of the polymeric composites which concurrently require the electrical insulation. PMID:26783258

  12. Silver Nanoparticle-Deposited Boron Nitride Nanosheets as Fillers for Polymeric Composites with High Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Wang, Fangfang; Zeng, Xiaoliang; Yao, Yimin; Sun, Rong; Xu, Jianbin; Wong, Ching-Ping

    2016-01-01

    Polymer composites with high thermal conductivity have recently attracted much attention, along with the rapid development of the electronic devices toward higher speed and performance. However, a common method to enhance polymer thermal conductivity through an addition of high thermally conductive fillers usually cannot provide an expected value, especially for composites requiring electrical insulation. Here, we show that polymeric composites with silver nanoparticle-deposited boron nitride nanosheets as fillers could effectively enhance the thermal conductivity of polymer, thanks to the bridging connections of silver nanoparticles among boron nitride nanosheets. The thermal conductivity of the composite is significantly increased from 1.63 W/m-K for the composite filled with the silver nanoparticle-deposited boron nitride nanosheets to 3.06 W/m-K at the boron nitride nanosheets loading of 25.1 vol %. In addition, the electrically insulating properties of the composite are well preserved. Fitting the measured thermal conductivity of epoxy composite with one physical model indicates that the composite with silver nanoparticle-deposited boron nitride nanosheets outperforms the one with boron nitride nanosheets, owning to the lower thermal contact resistance among boron nitride nanosheets’ interfaces. The finding sheds new light on enhancement of thermal conductivity of the polymeric composites which concurrently require the electrical insulation.

  13. Consolidation of cubic and hexagonal boron nitride composites

    DOE PAGESBeta

    Du Frane, W. L.; Cervantes, O.; Ellsworth, G. F.; Kuntz, J. D.

    2015-12-08

    When we Consolidate cubic boron nitride (cBN) it typically requires either a matrix of metal bearing materials that are undesirable for certain applications, or very high pressures within the cBN phase stability field that are prohibitive to manufacturing size and cost. We present new methodology for consolidating high stiffness cBN composites within a hexagonal boron nitride (hBN) matrix (15–25 vol%) with the aid of a binder phase (0–6 vol%) at moderate pressures (0.5–1.0 GPa) and temperatures (900–1300 °C). The composites are demonstrated to be highly tailorable with a range of compositions and resulting physical/mechanical properties. Ultrasonic measurements indicate that inmore » some cases these composites have elastic mechanical properties that exceed those of the highest strength steel alloys. Moreover, two methods were identified to prevent phase transformation of the metastable cBN phase into hBN during consolidation: 1. removal of hydrocarbons, and 2. increased cBN particle size. Lithium tetraborate worked better as a binder than boron oxide, aiding consolidation without enhancing cBN to hBN phase transformation kinetics. These powder mixtures consolidated within error of their full theoretical mass densities at 1 GPa, and had only slightly lower densities at 0.5 GPa. This shows potential for consolidation of these composites into larger parts, in a variety of shapes, at even lower pressures using more conventional manufacturing methods, such as hot-pressing.« less

  14. Growth of atomically thin hexagonal boron nitride films by diffusion through a metal film and precipitation

    NASA Astrophysics Data System (ADS)

    Suzuki, Satoru; Molto Pallares, Roger; Hibino, Hiroki

    2012-09-01

    Atomically thin hexagonal boron nitride films were grown on both the top and bottom surfaces of a polycrystalline Co or Ni film by annealing a Co (Ni)/amorphous boron nitride/SiO2 structure in vacuum. This method of growing hexagonal boron nitride is much simpler than other methods, such as thermal chemical vapour deposition. B and N atoms diffuse through the metal film, although N is almost completely insoluble in both Co and Ni, and precipitation occurs at the topmost surface. The mass transport is considered to be caused by grain boundary diffusion.

  15. Nanoscale Bending of Multilayered Boron Nitride and Graphene Ribbons: Experiment and Objective Molecular Dynamics Calculations

    NASA Astrophysics Data System (ADS)

    Nikiforov, Ilia; Tang, Dai-Ming; Wei, Xianlong; Dumitricǎ, Traian; Golberg, Dmitri

    2012-07-01

    By combining experiments performed on nanoribbons in situ within a high-resolution TEM with objective molecular dynamics simulations, we reveal common mechanisms in the bending response of few-layer-thick hexagonal boron nitride and graphene nanoribbons. Both materials are observed forming localized kinks in the fully reversible bending experiments. Microscopic simulations and theoretical analysis indicate platelike bending behavior prior to kinking, in spite of the possibility of interlayer sliding, and give the critical curvature for the kinking onset. This behavior is distinct from the rippling and kinking of multi- and single-wall nanotubes under bending. Our findings have implications for future study of nanoscale layered materials, including nanomechanical device design.

  16. Charge carrier transport properties in layer structured hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Doan, T. C.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2014-10-01

    Due to its large in-plane thermal conductivity, high temperature and chemical stability, large energy band gap (˜ 6.4 eV), hexagonal boron nitride (hBN) has emerged as an important material for applications in deep ultraviolet photonic devices. Among the members of the III-nitride material system, hBN is the least studied and understood. The study of the electrical transport properties of hBN is of utmost importance with a view to realizing practical device applications. Wafer-scale hBN epilayers have been successfully synthesized by metal organic chemical deposition and their electrical transport properties have been probed by variable temperature Hall effect measurements. The results demonstrate that undoped hBN is a semiconductor exhibiting weak p-type at high temperatures (> 700 °K). The measured acceptor energy level is about 0.68 eV above the valence band. In contrast to the electrical transport properties of traditional III-nitride wide bandgap semiconductors, the temperature dependence of the hole mobility in hBN can be described by the form of μ ∝ (T/T0)-α with α = 3.02, satisfying the two-dimensional (2D) carrier transport limit dominated by the polar optical phonon scattering. This behavior is a direct consequence of the fact that hBN is a layer structured material. The optical phonon energy deduced from the temperature dependence of the hole mobility is ħω = 192 meV (or 1546 cm-1), which is consistent with values previously obtained using other techniques. The present results extend our understanding of the charge carrier transport properties beyond the traditional III-nitride semiconductors.

  17. Beryllium decorated armchair boron nitride nanoribbon: A new planar tetracoordinate nitride containing system with enhanced conductivity

    NASA Astrophysics Data System (ADS)

    Xiao, Bo; Yu, Xuefang; Hu, Hong; Ding, Yihong

    2014-07-01

    In this Letter, a new kind of planar tetracoordinate nitride (ptN) structure is obtained via Be-decorated armchair boron nitride nanoribbon (aBNNR). The high stability of such a ptN system is confirmed by both global minimization and molecular dynamical simulation at 1500 K. The results suggest that this Be-decorated aBNNR will be a thermally stable material. The electronic property of aBNNR is significantly increased after the addition of Be atoms to the edges and the band gap decreases as the width of the ribbon decreases. Our Letter posits a new and potentially stable and useful BNNR and augments the literature on ptN.

  18. Secret of formulating a selective etching or cleaning solution for boron nitride (BN) thin film

    NASA Astrophysics Data System (ADS)

    Hui, Wing C.

    2004-04-01

    Boron nitride thin film has a very unique characteristic of extremely high chemical inertness. Thus, it is a better hard mask than silicon nitride for aggressive etching solutions, such as the isotropic HF/HNO3/CH3COOH (or HNA) etchant for silicon. However, because of its high chemical inertness, it is also difficult to remove it. Plasma etching with Freon gases can etch the boron nitride film, but it is unselective to silicon, silicon dioxide or silicon nitride. Cleaning up the boron nitride film with plasma etching will usually leave a damaged or foggy surface. A special wet chemical solution has been developed for etching or cleaning boron nitride film selectively. It can etch boron nitride, but not the coatings or substrates of silicon, silicon nitride and silicon dioxide. It is a very strong oxidizing agent consisting of concentrated sulfuric acid (H2SO4) and hydrogen peroxide (H2O2), but different from the common Piranha Etch. It may be even more interesting to understand the logic or secret behind of how to formulate a new selective etching solution. Various chemical and chemical engineering aspects were considered carefully in our development process. These included creating the right electrochemical potential for the etchant, ensuring large differences in chemical kinetics to make the reactions selective, providing proper mass transfer for removing the by products, etc.

  19. Nitrogen implantation effects on the chemical bonding and hardness of boron and boron nitride coatings

    SciTech Connect

    Anders, S; Felter, T; Hayes, J; Jankowski, A F; Patterson, R; Poker, D; Stamler, T

    1999-02-08

    Boron nitride (BN) coatings are deposited by the reactive sputtering of fully dense, boron (B) targets utilizing an argon-nitrogen (Ar-N{sub 2}) reactive gas mixture. Near-edge x-ray absorption fine structure analysis reveals features of chemical bonding in the B 1s photoabsorption spectrum. Hardness is measured at the film surface using nanoindentation. The BN coatings prepared at low, sputter gas pressure with substrate heating are found to have bonding characteristic of a defected hexagonal phase. The coatings are subjected to post-deposition nitrogen (N{sup +} and N{sub 2}{sup +}) implantation at different energies and current densities. The changes in film hardness attributed to the implantation can be correlated to changes observed in the B 1s NEXAFS spectra.

  20. Fabrication and characterization of aluminum nitride/boron nitride nanocomposites by carbothermal reduction and nitridation of aluminum borate powders.

    PubMed

    Kusunose, Takafumi; Sakayanagi, Nobuaki; Sekino, Tohru; Ando, Yoichi

    2008-11-01

    In order to fabricate aluminum nitride/boron nitride (AIN/BN) nanocomposites by pressureless sintering, the present study investigated the synthesis of AIN-BN nanocomposite powders by carbothermal reduction and nitridation of aluminum borate powders. Homogeneous mixtures of alumina (Al2O3), boric acid (H3BO3), and carbon powder were used to synthesize AIN/BN nanocomposite powders containing 10 and 20 vol% BN. Aluminum borate was produced by reacting Al2O3 and B2O3 above 800 degrees C, and AIN and turbostratic BN (t-BN) were produced by reacting aluminum borate with carbon powder and nitrogen gas at 1500 degrees C. Carbothermal reduction followed by nitridation yielded an AIN/BN nanocomposite powder composed of nanosized AIN and t-BN. By pressureless sintering nanocomposite AIN/BN powders containing 5 wt% Y22O3, AIN/BN nanocomposites were obtained without compromising the high thermal conductivity and high hardness. PMID:19198315

  1. Ambient carbon dioxide capture by boron-rich boron nitride nanotube.

    PubMed

    Choi, Heechol; Park, Young Choon; Kim, Yong-Hyun; Lee, Yoon Sup

    2011-02-23

    Carbon dioxides (CO(2)) emitted from large-scale coal-fired power stations or industrial manufacturing plants have to be properly captured to minimize environmental side effects. From results of ab initio calculations using plane waves [PAW-PBE] and localized atomic orbitals [ONIOM(wB97X-D/6-31G*:AM1)], we report strong CO(2) adsorption on boron antisite (B(N)) in boron-rich boron nitride nanotube (BNNT). We have identified two adsorption states: (1) A linear CO(2) molecule is physically adsorbed on the B(N), showing electron donation from the CO(2) lone-pair states to the B(N) double-acceptor state, and (2) the physisorbed CO(2) undergoes a carboxylate-like structural distortion and C═O π-bond breaking due to electron back-donation from B(N) to CO(2). The CO(2) chemisorption energy on B(N) is almost independent of tube diameter and, more importantly, higher than the standard free energy of gaseous CO(2) at room temperature. This implies that boron-rich BNNT could capture CO(2) effectively at ambient conditions. PMID:21287992

  2. Method of enhancing the wettability of boron nitride for use as an electrochemical cell separator

    DOEpatents

    McCoy, L.R.

    1981-01-23

    A felt or other fabric of boron nitride suitable for use as an interelectrode separator within an electrochemical cell is wetted with a solution containing a thermally decomposable organic salt of an alkaline earth metal. An aqueous solution of magnesium acetate is the preferred solution for this purpose. After wetting the boron nitride, the solution is dried by heating at a sufficiently low temperature to prevent rapid boiling and the creation of voids within the separator. The dried material is then calcined at an elevated temperature in excess of 400/sup 0/C to provide a coating of an oxide of magnesium on the surface of the boron nitride fibers. A fabric or felt of boron nitride treated in this manner is easily wetted by molten electrolytic salts, such as the alkali metal halides or alkaline earth metal halides, that are used in high temperature, secondary electrochemical cells.

  3. Method of enhancing the wettability of boron nitride for use as an electrochemical cell separator

    DOEpatents

    McCoy, Lowell R.

    1982-01-01

    A felt or other fabric of boron nitride suitable for use as an interelecte separator within an electrochemical cell is wetted with a solution containing a thermally decomposable organic salt of an alkaline earth metal. An aqueous solution of magnesium acetate is the preferred solution for this purpose. After wetting the boron nitride, the solution is dried by heating at a sufficiently low temperature to prevent rapid boiling and the creation of voids within the separator. The dried material is then calcined at an elevated temperature in excess of 400.degree. C. to provide a coating of an oxide of magnesium on the surface of the boron nitride fibers. A fabric or felt of boron nitride treated in this manner is easily wetted by molten electrolytic salts, such as the alkali metal halides or alkaline earth metal halides, that are used in high temperature, secondary electrochemical cells.

  4. Boron nitride nanowires synthesis via a simple chemical vapor deposition at 1200 °C

    SciTech Connect

    Ahmad, Pervaiz; Khandaker, Mayeen Uddin; Amin, Yusoff Mohd; Khan, Ziaul Raza

    2015-04-24

    A very simple chemical vapor deposition technique is used to synthesize high quality boron nitride nanowires at 1200 °C within a short growth duration of 30 min. FESEM micrograph shows that the as-synthesized boron nitride nanowires have a clear wire like morphology with diameter in the range of ∼20 to 150 nm. HR-TEM confirmed the wire-like structure of boron nitride nanowires, whereas XPS and Raman spectroscopy are used to find out the elemental composition and phase of the synthesized material. The synthesized boron nitride nanowires have potential applications as a sensing element in solid state neutron detector, neutron capture therapy and microelectronic devices with uniform electronic properties.

  5. Boron nitride nanowires synthesis via a simple chemical vapor deposition at 1200 °C

    NASA Astrophysics Data System (ADS)

    Ahmad, Pervaiz; Khandaker, Mayeen Uddin; Amin, Yusoff Mohd; Khan, Ziaul Raza

    2015-04-01

    A very simple chemical vapor deposition technique is used to synthesize high quality boron nitride nanowires at 1200 ˚C within a short growth duration of 30 min. FESEM micrograph shows that the as-synthesized boron nitride nanowires have a clear wire like morphology with diameter in the range of ˜20 to 150 nm. HR-TEM confirmed the wire-like structure of boron nitride nanowires, whereas XPS and Raman spectroscopy are used to find out the elemental composition and phase of the synthesized material. The synthesized boron nitride nanowires have potential applications as a sensing element in solid state neutron detector, neutron capture therapy and microelectronic devices with uniform electronic properties.

  6. Elastic deformation of helical-conical boron nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Xu, F. F.; Bando, Y.; Golberg, D.; Ma, R. Z.; Li, Y. B.; Tang, C. C.

    2003-08-01

    Boron nitride nanotubes with hollow conical-helix geometry have exhibited striking flexibility and elasticity comparable to metals. During an electron-beam induced deformation at room temperature, the nanotubes can be bent by a maximum angle as high as 180° and then retrieve the starting morphology without any evidence of structural failure. The outstanding low-temperature elasticity in this nano-material is interpreted by a theoretical model, displaying deformation processes dominated by slide of filaments along with changes in apex angles stepwise. The specific tubular geometry is believed to take advantages of both high stiffness and extraordinary flexibility of BN filaments, and easiness of interlayer slide in graphitic structure, hence leading to high resistance to fracture.

  7. Shock induced polymorphic transition in quartz, carbon, and boron nitride

    NASA Technical Reports Server (NTRS)

    Tan, Hua; Ahrens, Thomas J.

    1990-01-01

    The model proposed by Ahrens (1988) to explain the mechanism of the polymorphism in silicates is revised, and the revised model is applied to the quartz/stishovite, graphite/diamond, and graphite-boron nitride (g-BN) phase transformations. In this model, a key assumption is that transformation to a high-density amorphous or possibly liquid phase which rapidly crystallized to the high-pressure phase is triggered by the high temperatures in the shear band and upon crossing the metastable extension of a melting curve. Good agreement between the calcualted results and published data is obtained. The present theory predicts the standard entropy for cubic BN to be 0.4-0.5 J/g K.

  8. Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications.

    PubMed

    Weng, Qunhong; Wang, Xuebin; Wang, Xi; Bando, Yoshio; Golberg, Dmitri

    2016-07-11

    Functionalization is an important way to breed new properties and applications for a material. This review presents an overview of the progresses in functionalized hexagonal boron nitride (h-BN) nanomaterials. It begins with an introduction of h-BN structural features, physical and chemical properties, followed by an emphasis on the developments of BN functionalization strategies and its emerging properties/applications, and ends with the research perspectives. Different functionalization methods, including physical and chemical routes, are comprehensively described toward fabrication of various BN derivatives, hetero- and porous structures, etc. Novel properties of functionalized BN materials, such as high water solubility, excellent biocompatibility, tunable surface affinities, good processibility, adjustable band gaps, etc., have guaranteed wide applications in biomedical, electronic, composite, environmental and "green" energy-related fields. PMID:27173728

  9. Dirac cones in transition metal doped boron nitride

    SciTech Connect

    Feng, Min; Cao, Xuewei; Shao, Bin; Zuo, Xu

    2015-05-07

    The transition metal (TM) doped zinc blende boron nitride (c-BN) is studied by using the first principle calculation. TM atoms fill in the interstitials in c-BN and form two-dimensional honeycomb lattice. The generalized gradient approximation and projector augmented wave method are used. The calculated density of states and band structures show that d electrons of TM atoms form impurity bands in the gap of c-BN. When the TM-BN system is in ferromagnetic or non-magnetic state, Dirac cones emerge at the K point in Brillouin zone. When TM is Ti and Co, the Dirac cones are spin polarized and very close to the Fermi level, which makes them promising candidates of Dirac half-metal [H. Ishizuka and Y. Motome, Phys. Rev. Lett. 109, 237207 (2012)]. While TM is Ni and Cu, the system is non-magnetic and Dirac cones located above the Fermi level.

  10. Chlorine sensing properties of zigzag boron nitride nanoribbons

    NASA Astrophysics Data System (ADS)

    Srivastava, Pankaj; Jaiswal, Neeraj K.; Tripathi, Gagan Kant

    2014-05-01

    The density functional theory based first-principles calculations have been employed to explore the chlorine sensing properties of zigzag boron nitride nanoribbons (ZBNNR). The sensing was investigated by calculating electronic structures and current-voltage (I-V) behavior. Three different possibilities were considered for the chlorine adsorption on ZBNNR and the findings were compared with bare ribbons. It is revealed that presence of chlorine has a profound effect on the electronic and transport properties of ZBNNR. Bare ZBNNR are half-metallic in nature whereas chlorine adsorption turns them semiconducting irrespective of adsorption site. Further, the negative differential resistance has been observed in bare ribbons which disappear upon the chlorine adsorption. Enhanced sensing capability is predicted when chlorine is attached at the N edge or at both the edges of the ZBNNR.

  11. Photoresponsive memory device based on Graphene/Boron Nitride heterostructure

    NASA Astrophysics Data System (ADS)

    Kahn, Salman; Velasco, Jairo, Jr.; Ju, Long; Wong, Dillon; Lee, Juwon; Tsai, Hsin Zon; Taniguchi, Takashi; Watanabe, Kenji; Zettl, Alex; Wang, Feng; Crommie, Michael

    2015-03-01

    Recent technological advancements have allowed the stacking of two dimensional layered material in order to create van der Waals heterostructures (VDH), enabling the design of novel properties by exploiting the proximal interaction between layers with different electronic properties. We report the creation of an optoelectronic memory device using a Graphene/Boron Nitride (hBN) heterostructure. Using the photo-induced doping phenomenon, we are able to spatially ``write'' a doping profile on graphene and ``read'' the profile through electrical transport and local probe techniques. We then utilize defect engineering to enhance the optoelectronic response of graphene and explore the effect of defects in hBN. Our work introduces a simple device architecture to create an optoelectronic memory device and contributes towards understanding the proximal effects of hBN on Graphene.

  12. First-principles modeling hydrogenation of bilayered boron nitride

    NASA Astrophysics Data System (ADS)

    Jing, Wang; Peng, Zhang; Xiang-Mei, Duan

    2016-05-01

    We have investigated the structural and electronic characteristics of hydrogenated boron-nitride bilayer (H–BNBN–H) using first-principles calculations. The results show that hydrogenation can significantly reduce the energy gap of the BN–BN into the visible-light region. Interestingly, the electric field induced by the interface dipoles helps to promote the formation of well-separated electron–hole pairs, as demonstrated by the charge distribution of the VBM and CBM. Moreover, the applied bias voltage on the vertical direction of the bilayer could modulate the band gap, resulting in transition from semiconductor to metal. We conclude that H–BNBN–H could improve the solar energy conversion efficiency, which may provide a new way for tuning the electronic devices to meet different environments and demands. Project supported by the National Natural Science Foundation of China (Grant No. 11574167).

  13. Controlling the Bandgap of Boron Nitride Nanotubes with Carbon Doping

    NASA Astrophysics Data System (ADS)

    Mousavi, Hamze; Bagheri, Mehran

    2015-08-01

    This study explores the effects of doping by carbon (C) atoms on electronic properties of (10,10) and (16,0) boron nitride (BN) nanotubes (NTs). We exploit the random tight-binding model with Green's function technique and coherent potential approximation to show that the C dopant causes a decrease in the bandgap of the BN NTs, and their matching Van Hove singularities (VHS) in the density of states (DOS) are broadened. When the impurity concentration is large enough, the form of the DOS of the BN NTs becomes similar to that of metallic (10,10) and semiconducting (16,0) C NTs and their VHS get sharpened. This work might provide opportunities for creating new optoelectronic devices based on BN honeycomb nanosystems.

  14. Octahedral boron nitride fullerenes formed by electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Golberg, D.; Bando, Y.; Stéphan, O.; Kurashima, K.

    1998-10-01

    Here we report on the formation of fullerenes with a reduced number of layers (typically ⩽3) in boron nitride (BN) which was subjected to in situ electron irradiation at 20 and 490 °C in a high resolution 300 kV transmission electron microscope (HRTEM). The BN fullerenes exhibited B/N stoichiometry of ˜1 as confirmed by electron energy loss spectroscopy using a 1 nm electron probe. The fullerene HRTEM images revealed rectangle-like shapes when viewed in specific projections, unlike the quasispherical carbon fullerene morphology. The octahedral BN fullerene model [O. Stéphan, Y. Bando, A. Loiseau, F. Willaime, N. Shramchenko, T. Tamiya, and T. Sato, Appl. Phys. A 67, 107 (1998)] is verified by the BN fullerene observations at different viewing angles.

  15. Structure of Boron Nitride Nanotubes: Tube Closing Vs. Chirality

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Menon, Madhu

    1998-01-01

    The structure of boron nitride nanotubes is investigated using a generalized tight-binding molecular dynamics method. It is shown that dynamic relaxation results in a wavelike or "rippled" surface in which the B atoms rotate inward and the N atoms move outward, reminiscent of the surface relaxation of the III-V semiconductors. More importantly, the three different morphologies of the tube closing with flat, conical and amorphous ends, as observed in experiments, are shown to be directly related to the tube chiralities. The abundance of flat end tubes observed in experiments is, thus, shown to be an indication of the greater stability of "zig-zag" BN tubes over the "arm-chair" tubes under experimental conditions.

  16. Structural analysis of Li-intercalated hexagonal boron nitride

    SciTech Connect

    Sumiyoshi, A.; Hyodo, H.; Kimura, K.

    2012-03-15

    A structural investigation of Li-intercalated hexagonal boron nitride (Li-h-BNIC) was performed by synchrotron powder X-ray diffraction analysis and transmission electron microscopy. The host BN framework of Li-h-BNIC was expanded by Li-intercalation. The intralayer B-N bond length was increased by 2.48(1)% and the interlayer distance was expanded by 12.86(1)%. No superlattice structure of intercalated Li was observed. - Graphical abstract: XRD pattern fitting of the sample and schematic view of host h-BN lattice. Highlights: Black-Right-Pointing-Pointer Li-intercalated h-BN was investigated by synchrotron radiation powder XRD. Black-Right-Pointing-Pointer Lattice parameter of host h-BN lattice was increased by intercalation. Black-Right-Pointing-Pointer Increase ratio of B-N bond length was considerably larger than those of Li GICs.

  17. Microstructural characterization of commercial hot-pressed boron nitride

    SciTech Connect

    Steele, J.H.; Engel, R. )

    1988-09-01

    Microstructural characterization of commercially hot-pressed boron nitride (BN) using SEM and mercury porosimetry are described. Commercial material consits of varying amounts of B{sub 2}O{sub 3} (2% to 9%) and fine porosity (2% to 7%) within a bonded three-dimensional network of BN particles. The platelike BN particle morphology, which forms an aggregate by bonding along particle edges, is displayed. A layered structure present within individual BN particles is shown to consist of fine porous layers (<30 nm in thickness), which separate BN regions (100 to 200 nm in thickness) in the plane of the platelets. Size and dispersion of the pores and the continuous B{sub 2}O{sub 3} phase are estimated with mercury porosimetry and with SEM after leaching and filling with a liquid bismuth-tin (Bi-Sn) alloy.

  18. Electron tunneling through ultrathin boron nitride crystalline barriers.

    PubMed

    Britnell, Liam; Gorbachev, Roman V; Jalil, Rashid; Belle, Branson D; Schedin, Fred; Katsnelson, Mikhail I; Eaves, Laurence; Morozov, Sergey V; Mayorov, Alexander S; Peres, Nuno M R; Neto, Antonio H Castro; Leist, Jon; Geim, Andre K; Ponomarenko, Leonid A; Novoselov, Kostya S

    2012-03-14

    We investigate the electronic properties of ultrathin hexagonal boron nitride (h-BN) crystalline layers with different conducting materials (graphite, graphene, and gold) on either side of the barrier layer. The tunnel current depends exponentially on the number of h-BN atomic layers, down to a monolayer thickness. Conductive atomic force microscopy scans across h-BN terraces of different thickness reveal a high level of uniformity in the tunnel current. Our results demonstrate that atomically thin h-BN acts as a defect-free dielectric with a high breakdown field. It offers great potential for applications in tunnel devices and in field-effect transistors with a high carrier density in the conducting channel. PMID:22380756

  19. Piezoelectricity in planar boron nitride via a geometric phase

    NASA Astrophysics Data System (ADS)

    Droth, Matthias; Burkard, Guido; Pereira, Vitor M.

    2016-08-01

    Due to their low surface mass density, two-dimensional materials with a strong piezoelectric response are interesting for nanoelectromechanical systems with high force sensitivity. Unlike graphene, the two sublattices in a monolayer of hexagonal boron nitride (hBN) are occupied by different elements, which breaks inversion symmetry and allows for piezoelectricity. This has been confirmed with density functional theory calculations of the piezoelectric constant of hBN. Here, we formulate an entirely analytical derivation of the electronic contribution to the piezoelectric response in this system based on the concepts of strain-induced pseudomagnetic vector potential and the modern theory of polarization that relates the polar moment to the Berry curvature. Our findings agree with the symmetry restrictions expected for the hBN lattice and reproduce well the magnitude of the piezoelectric effect previously obtained ab initio.

  20. High thermal conductivity of hexagonal boron nitride laminates

    NASA Astrophysics Data System (ADS)

    Zheng, Jin-Cheng; Zhang, Liang; Kretinin, A. V.; Morozov, S. V.; Wang, Yi Bo; Wang, Tun; Li, Xiaojun; Ren, Fei; Zhang, Jingyu; Lu, Ching-Yu; Chen, Jia-Cing; Lu, Miao; Wang, Hui-Qiong; Geim, A. K.; Novoselov, K. S.

    2016-03-01

    Two-dimensional materials are characterised by a number of unique physical properties which can potentially make them useful to a wide diversity of applications. In particular, the large thermal conductivity of graphene and hexagonal boron nitride (hBN) has already been acknowledged and these materials have been suggested as novel core materials for thermal management in electronics. However, it was not clear if mass produced flakes of hBN would allow one to achieve an industrially-relevant value of thermal conductivity. Here we demonstrate that laminates of hBN exhibit thermal conductivity of up to 20 W/m·K, which is significantly larger than that currently used in thermal management. We also show that the thermal conductivity of laminates increases with the increasing volumetric mass density, which creates a way of fine tuning its thermal properties.

  1. Modelling heat conduction in polycrystalline hexagonal boron-nitride films

    NASA Astrophysics Data System (ADS)

    Mortazavi, Bohayra; Pereira, Luiz Felipe C.; Jiang, Jin-Wu; Rabczuk, Timon

    2015-08-01

    We conducted extensive molecular dynamics simulations to investigate the thermal conductivity of polycrystalline hexagonal boron-nitride (h-BN) films. To this aim, we constructed large atomistic models of polycrystalline h-BN sheets with random and uniform grain configuration. By performing equilibrium molecular dynamics (EMD) simulations, we investigated the influence of the average grain size on the thermal conductivity of polycrystalline h-BN films at various temperatures. Using the EMD results, we constructed finite element models of polycrystalline h-BN sheets to probe the thermal conductivity of samples with larger grain sizes. Our multiscale investigations not only provide a general viewpoint regarding the heat conduction in h-BN films but also propose that polycrystalline h-BN sheets present high thermal conductivity comparable to monocrystalline sheets.

  2. Phonon wave interference in graphene and boron nitride superlattice

    NASA Astrophysics Data System (ADS)

    Chen, Xue-Kun; Xie, Zhong-Xiang; Zhou, Wu-Xing; Tang, Li-Ming; Chen, Ke-Qiu

    2016-07-01

    The thermal transport properties of the graphene and boron nitride superlattice (CBNSL) are investigated via nonequilibrium molecular dynamics simulations. The simulation results show that a minimum lattice thermal conductivity can be achieved by changing the period length of the superlattice. Additionally, it is found that the period length at the minimum shifts to lower values at higher temperatures, and that the depth of the minimum increases with decreasing temperature. In particular, at 200 K, the thermal conductivities of CBNSLs with certain specific period lengths are nearly equal to the corresponding values at 300 K. A detailed analysis of the phonon spectra shows that this anomalous thermal conductivity behavior is a result of strong phonon wave interference. These observations indicate a promising strategy for manipulation of thermal transport in superlattices.

  3. Thermal conductivity of vertically aligned boron nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Essedik Belkerk, Boubakeur; Achour, Amine; Zhang, Dongyan; Sahli, Salah; Djouadi, M.-Abdou; Khin Yap, Yoke

    2016-07-01

    For the first time, we report the thermal conductivity of vertically aligned boron nitride nanotube (BNNT) films produced by catalytic chemical vapor deposition. High-quality BNNTs were synthesized at 1200 °C on fused silica substrates precoated with Pt thin-film thermometers. The thermal conductivity of the BNNTs was measured at room temperature by using a pulsed photothermal technique. The apparent thermal conductivity of the BNNT coatings increased from 55 to 170 W m‑1 K‑1 when the thickness increased from 10 to 28 µm, while the thermal conductivity attained a value as high as 2400 W m‑1 K‑1. These results suggested that BNNTs, which are highly thermally conductive, but electrically insulating, are promising materials with unique properties.

  4. Modelling heat conduction in polycrystalline hexagonal boron-nitride films.

    PubMed

    Mortazavi, Bohayra; Pereira, Luiz Felipe C; Jiang, Jin-Wu; Rabczuk, Timon

    2015-01-01

    We conducted extensive molecular dynamics simulations to investigate the thermal conductivity of polycrystalline hexagonal boron-nitride (h-BN) films. To this aim, we constructed large atomistic models of polycrystalline h-BN sheets with random and uniform grain configuration. By performing equilibrium molecular dynamics (EMD) simulations, we investigated the influence of the average grain size on the thermal conductivity of polycrystalline h-BN films at various temperatures. Using the EMD results, we constructed finite element models of polycrystalline h-BN sheets to probe the thermal conductivity of samples with larger grain sizes. Our multiscale investigations not only provide a general viewpoint regarding the heat conduction in h-BN films but also propose that polycrystalline h-BN sheets present high thermal conductivity comparable to monocrystalline sheets. PMID:26286820

  5. Modelling heat conduction in polycrystalline hexagonal boron-nitride films

    PubMed Central

    Mortazavi, Bohayra; Pereira, Luiz Felipe C.; Jiang, Jin-Wu; Rabczuk, Timon

    2015-01-01

    We conducted extensive molecular dynamics simulations to investigate the thermal conductivity of polycrystalline hexagonal boron-nitride (h-BN) films. To this aim, we constructed large atomistic models of polycrystalline h-BN sheets with random and uniform grain configuration. By performing equilibrium molecular dynamics (EMD) simulations, we investigated the influence of the average grain size on the thermal conductivity of polycrystalline h-BN films at various temperatures. Using the EMD results, we constructed finite element models of polycrystalline h-BN sheets to probe the thermal conductivity of samples with larger grain sizes. Our multiscale investigations not only provide a general viewpoint regarding the heat conduction in h-BN films but also propose that polycrystalline h-BN sheets present high thermal conductivity comparable to monocrystalline sheets. PMID:26286820

  6. Boron nitride as two dimensional dielectric: Reliability and dielectric breakdown

    NASA Astrophysics Data System (ADS)

    Ji, Yanfeng; Pan, Chengbin; Zhang, Meiyun; Long, Shibing; Lian, Xiaojuan; Miao, Feng; Hui, Fei; Shi, Yuanyuan; Larcher, Luca; Wu, Ernest; Lanza, Mario

    2016-01-01

    Boron Nitride (BN) is a two dimensional insulator with excellent chemical, thermal, mechanical, and optical properties, which make it especially attractive for logic device applications. Nevertheless, its insulating properties and reliability as a dielectric material have never been analyzed in-depth. Here, we present the first thorough characterization of BN as dielectric film using nanoscale and device level experiments complementing with theoretical study. Our results reveal that BN is extremely stable against voltage stress, and it does not show the reliability problems related to conventional dielectrics like HfO2, such as charge trapping and detrapping, stress induced leakage current, and untimely dielectric breakdown. Moreover, we observe a unique layer-by-layer dielectric breakdown, both at the nanoscale and device level. These findings may be of interest for many materials scientists and could open a new pathway towards two dimensional logic device applications.

  7. Etched graphene quantum dots on hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Engels, S.; Epping, A.; Volk, C.; Korte, S.; Voigtländer, B.; Watanabe, K.; Taniguchi, T.; Trellenkamp, S.; Stampfer, C.

    2013-08-01

    We report on the fabrication and characterization of etched graphene quantum dots (QDs) on hexagonal boron nitride (hBN) and SiO2 with different island diameters. We perform a statistical analysis of Coulomb peak spacings over a wide energy range. For graphene QDs on hBN, the standard deviation of the normalized peak spacing distribution decreases with increasing QD diameter, whereas for QDs on SiO2 no diameter dependency is observed. In addition, QDs on hBN are more stable under the influence of perpendicular magnetic fields up to 9 T. Both results indicate a substantially reduced substrate induced disorder potential in graphene QDs on hBN.

  8. Biaxial compressive strain engineering in graphene/boron nitride heterostructures.

    PubMed

    Pan, Wei; Xiao, Jianliang; Zhu, Junwei; Yu, Chenxi; Zhang, Gang; Ni, Zhenhua; Watanabe, K; Taniguchi, T; Shi, Yi; Wang, Xinran

    2012-01-01

    Strain engineered graphene has been predicted to show many interesting physics and device applications. Here we study biaxial compressive strain in graphene/hexagonal boron nitride heterostructures after thermal cycling to high temperatures likely due to their thermal expansion coefficient mismatch. The appearance of sub-micron self-supporting bubbles indicates that the strain is spatially inhomogeneous. Finite element modeling suggests that the strain is concentrated on the edges with regular nano-scale wrinkles, which could be a playground for strain engineering in graphene. Raman spectroscopy and mapping is employed to quantitatively probe the magnitude and distribution of strain. From the temperature-dependent shifts of Raman G and 2D peaks, we estimate the TEC of graphene from room temperature to above 1000K for the first time. PMID:23189242

  9. Superior thermal conductivity in suspended bilayer hexagonal boron nitride

    PubMed Central

    Wang, Chengru; Guo, Jie; Dong, Lan; Aiyiti, Adili; Xu, Xiangfan; Li, Baowen

    2016-01-01

    We reported the basal-plane thermal conductivity in exfoliated bilayer hexagonal boron nitride h-BN that was measured using suspended prepatterned microstructures. The h-BN sample suitable for thermal measurements was fabricated by dry-transfer method, whose sample quality, due to less polymer residues on surfaces, is believed to be superior to that of PMMA-mediated samples. The measured room temperature thermal conductivity is around 484 Wm−1K−1(+141 Wm−1K−1/ −24 Wm−1K−1) which exceeds that in bulk h-BN, providing experimental observation of the thickness-dependent thermal conductivity in suspended few-layer h-BN. PMID:27142571

  10. Ultratough single crystal boron-doped diamond

    DOEpatents

    Hemley, Russell J [Carnegie Inst. for Science, Washington, DC ; Mao, Ho-Kwang [Carnegie Inst. for Science, Washington, DC ; Yan, Chih-Shiue [Carnegie Inst. for Science, Washington, DC ; Liang, Qi [Carnegie Inst. for Science, Washington, DC

    2015-05-05

    The invention relates to a single crystal boron doped CVD diamond that has a toughness of at least about 22 MPa m.sup.1/2. The invention further relates to a method of manufacturing single crystal boron doped CVD diamond. The growth rate of the diamond can be from about 20-100 .mu.m/h.

  11. Reduced stability of copper interconnects due to wrinkles and steps on hexagonal boron nitride substrates

    NASA Astrophysics Data System (ADS)

    Gao, Jian; Chow, Philippe K.; Thomas, Abhay V.; Lu, Toh-Ming; Borca-Tasciuc, Theodorian; Koratkar, Nikhil

    2014-09-01

    There is great scientific and technological interest in the use of chemical-vapor-deposition grown hexagonal boron nitride dielectric substrates for microelectronics applications. This interest stems from its superior heat spreading capability compared to silicon dioxide as well as the lack of surface dangling bonds or charge traps in hexagonal boron nitride which results in superior performance for graphene based electronics devices. However, surface heterogeneities, such as wrinkles or steps, are ubiquitous in such devices due to the fabrication and processing of chemical vapor deposition grown hexagonal boron nitride. In this study, we characterize the effect of such surface heterogeneities on the stability of copper interconnects used in microelectronics devices. Based on the theoretical thermo-physical properties of the constituent thin film layers, our simulations predict that copper interconnects deposited on hexagonal boron nitride can withstand ˜1.9 times more power than on a silicon dioxide substrate, due to its superior in-plane thermal conductivity. However, our electrical measurements reveal that copper wires melt and fail at consistently lower current densities on hexagonal boron nitride than on silicon dioxide. This was verified by testing in air as well as under vacuum. Scanning electron microscopy and atomic force microscopy characterization of the hexagonal boron nitride surface indicates that this contradictory result is due to nanoscale surface non-uniformities (i.e., wrinkles and steps) which are omnipresent in chemical-vapor-deposition grown and transferred hexagonal boron nitride films. Our results highlight the critical need for improved processing methods before large-scale microelectronics applications of chemical vapor deposition grown hexagonal boron nitride can be realized.

  12. Inexpensive Method for Coating the Interior of Silica Growth Ampoules with Pyrolytic Boron Nitride

    NASA Technical Reports Server (NTRS)

    Wang, Jianbin; Regel, Liya L.; Wilcox, William R.

    2003-01-01

    An inexpensive method was developed for coating the interior of silica ampoules with hexagonal boron nitride. An aqueous solution of boric acid was used to coat the ampoule prior to drying in a vacuum at 200 C. This coating was converted to transparent boron nitride by heating in ammonia at 1000 C. Coated ampoules were used to achieve detached solidification of indium antimonide on earth.

  13. Energetics, barriers and vibrational spectra of partially and fully hydrogenated hexagonal boron nitride.

    PubMed

    Kroes, J M H; Fasolino, A; Katsnelson, M I

    2016-07-28

    We study hydrogen chemisorption at full coverage and low concentrations on hexagonal boron nitride (h-BN). Chemisorption trends reveal the complex nature of hydrogenation. Barriers for diffusion are found to be significantly altered by the presence of additional H atoms. Moreover, the presence of a Stone-Wales defect may dramatically enhance the bond strength of H to the h-BN surface. These findings provide new insights to understand and characterize hydrogenated boron nitride. PMID:27374816

  14. Effects of ultraviolet radiation on lattice imperfections in pyrolytic boron nitride.

    NASA Technical Reports Server (NTRS)

    Buckley, J. D.; Cooley, J. A.

    1971-01-01

    Pyrolitic boron nitride was exposed to 310 equivalent sun hours of ultraviolet radiation in a space environment simulator with the objective to evaluate its applicability as a pigment for a thermal control coating and to identify radiation damage using X-ray diffraction techniques. Lattice parameter comparisons show a definite increase in lattice imperfections in the crystal structure resulting from the ultraviolet irradiation. This sensitivity to radiation damage makes pyrolitic boron nitride unsuitable as a pigment for thermal control coating.

  15. Crystalline structure of boron nitride produced by the carbothermic method

    SciTech Connect

    Pikalov, S.N.; Germanskii, A.M.

    1987-10-01

    The use of graphite boron nitride (GBN) for the synthesis of superhard BN modification presents specific requirements for a degree of perfection of its crystalline structure. In this study the effect of technical parameters of the carbothermic process on the crystalline structure on GBN was investigated. The starting mixture, consisting of chemically pure boric acid and technical carbon P-803, was dehydrated in a muffle furnace at a temperature in excess of 1000/sup 0/K. The obtained sintered mass was ground in a ball mill and was nitrided in a Tamman laboratory furnace in a stream of nitrogen purified from oxygen and moisture. x-Ray-diffraction investigations of the synthesized GBN were done on DRON-3 diffractometer with CuK/sub ..cap alpha../ emission. One of the more important characteristics of the GBN structure perfection was the degree of its three-dimensional orderliness P/sub 3/ determined by the relationship of the number of layers in the Bragg scattering region (BSR), directed as a rule relatively close, to the adjacent total number of layers in the BSR.

  16. Transport properties of ultrathin black phosphorus on hexagonal boron nitride

    SciTech Connect

    Doganov, Rostislav A.; Özyilmaz, Barbaros; Koenig, Steven P.; Yeo, Yuting; Watanabe, Kenji; Taniguchi, Takashi

    2015-02-23

    Ultrathin black phosphorus, or phosphorene, is a two-dimensional material that allows both high carrier mobility and large on/off ratios. Similar to other atomic crystals, like graphene or layered transition metal dichalcogenides, the transport behavior of few-layer black phosphorus is expected to be affected by the underlying substrate. The properties of black phosphorus have so far been studied on the widely utilized SiO{sub 2} substrate. Here, we characterize few-layer black phosphorus field effect transistors on hexagonal boron nitride—an atomically smooth and charge trap-free substrate. We measure the temperature dependence of the field effect mobility for both holes and electrons and explain the observed behavior in terms of charged impurity limited transport. We find that in-situ vacuum annealing at 400 K removes the p-doping of few-layer black phosphorus on both boron nitride and SiO{sub 2} substrates and reduces the hysteresis at room temperature.

  17. Two-dimensional boron nitride structures functionalization: first principles studies.

    PubMed

    Ponce-Pérez, R; Cocoletzi, Gregorio H; Takeuchi, Noboru

    2016-09-01

    Density functional theory calculations have been performed to investigate two-dimensional hexagonal boron nitride (2D hBN) structures functionalization with organic molecules. 2x2, 4x4 and 6x6 periodic 2D hBN layers have been considered to interact with acetylene. To deal with the exchange-correlation energy the generalized gradient approximation (GGA) is invoked. The electron-ion interaction is treated with the pseudopotential method. The GGA with the Perdew-Burke-Ernzerhoff (PBE) functionals together with van der Waals interactions are considered to deal with the composed systems. To investigate the functionalization two main configurations have been explored; in one case the molecule interacts with the boron atom and in the other with the nitrogen atom. Results of the adsorption energies indicate chemisorption in both cases. The total density of states (DOS) displays an energy gap in both cases. The projected DOS indicate that the B-p and N-p orbitals are those that make the most important contribution in the valence band and the H-s and C-p orbitals provide an important contribution in the conduction band to the DOS. Provided that the interactions of the acetylene with the 2D layer modify the structural and electronic properties of the hBN the possibility of structural functionalization using organic molecules may be concluded. PMID:27566317

  18. Covalent Functionalization of Boron Nitride Nanotubes via Reduction Chemistry.

    PubMed

    Shin, Homin; Guan, Jingwen; Zgierski, Marek Z; Kim, Keun Su; Kingston, Christopher T; Simard, Benoit

    2015-12-22

    Boron nitride nanotubes (BNNTs) exhibit a range of properties that hold great potential for many fields of science and technology; however, they have inherently low chemical reactivity, making functionalization for specific applications difficult. Here we propose that covalent functionalization of BNNTs via reduction chemistry could be a highly promising and viable strategy. Through density functional theory calculations of the electron affinity of BNNTs and their binding energies with various radicals, we reveal that their chemical reactivity can be significantly enhanced via reducing the nanotubes (i.e., negatively charging). For example, a 5.5-fold enhancement in reactivity of reduced BNNTs toward NH2 radicals was predicted relative to their neutral counterparts. The localization characteristics of the BNNT π electron system lead the excess electrons to fill the empty p orbitals of boron sites, which promote covalent bond formation with an unpaired electron from a radical molecule. In support of our theoretical findings, we also experimentally investigated the covalent alkylation of BNNTs via reduction chemistry using 1-bromohexane. The thermogravimetric measurements showed a considerable weight loss (12-14%) only for samples alkylated using reduced BNNTs, suggesting their significantly improved reactivity over neutral BNNTs. This finding will provide an insight in developing an effective route to chemical functionalization of BNNTs. PMID:26580970

  19. Immunosuppressive agent leflunomide: a SWNTs-immobilized dihydroortate dehydrogenase inhibitory effect and computational study of its adsorption properties on zigzag single walled (6,0) carbon and boron nitride nanotubes as controlled drug delivery devices.

    PubMed

    Raissi, Heidar; Mollania, Fariba

    2014-06-01

    Leflunomide [HWA 486 or RS-34821, 5-methyl-N-(4trifluoromethylphenyl)-4-isoxazole carboximide] is an immunosuppressive agent effective in the treatment of rheumatoid arthritis. Dihydroortate dehydrogenase (DHODH, EC 1.3.3.1) immobilization on the nanotubes was carried out and biochemical characterization of free and immobilized enzyme was determined. In comparison with free enzyme, the immobilized DHODH showed improved stability and reusability for investigation of inhibition pattern of drugs such as leflunomide. The experimental data showed that, DHODH was inhibited by the active metabolite of leflunomide (RS-61980) with a Ki and KI of 0.82 and 0.06 mM, respectively. Results exhibited mixed-type inhibition kinetics towards dihydroorotate as a substrate in the free and immobilized enzyme. Furthermore, the behavior of anticancer drug leflunomide adsorbed on the external surface of zigzag single walled (6,0) carbon and boron nitride nanotubes (SWCNT and SWBNNT) was studied by means of DFT calculations at the B3LYP/6-31G(*) level of theory. The larger adsorption energies and charges transfer showed that the adsorption of leflunomide onto SWBNNT is more stable than that the adsorption of leflunomide onto SWCNT. Frontier molecular orbitals (HOMO and LUMO) suggest that adsorption of leflunomide onto SWBNNT behave as charge transfer compounds with leflunomide as an electron donor and SWBNNT as an electron acceptor. Thus, nanotubes (NTs) have been proposed and actively explored as multipurpose innovative carriers for drug delivery and diagnostic application. The AIM theory has been also applied to analyze the properties of the bond critical points: their electron densities and their laplacians. Also, the natural bond orbital (NBO) calculations were performed to derive natural atomic orbital occupancies, and partial charges of the interacting atoms in the equilibrium tube-molecule distance. PMID:24566615

  20. Single gallium nitride nanowire lasers.

    PubMed

    Johnson, Justin C; Choi, Heon-Jin; Knutsen, Kelly P; Schaller, Richard D; Yang, Peidong; Saykally, Richard J

    2002-10-01

    There is much current interest in the optical properties of semiconductor nanowires, because the cylindrical geometry and strong two-dimensional confinement of electrons, holes and photons make them particularly attractive as potential building blocks for nanoscale electronics and optoelectronic devices, including lasersand nonlinear optical frequency converters. Gallium nitride (GaN) is a wide-bandgap semiconductor of much practical interest, because it is widely used in electrically pumped ultraviolet-blue light-emitting diodes, lasers and photodetectors. Recent progress in microfabrication techniques has allowed stimulated emission to be observed from a variety of GaN microstructures and films. Here we report the observation of ultraviolet-blue laser action in single monocrystalline GaN nanowires, using both near-field and far-field optical microscopy to characterize the waveguide mode structure and spectral properties of the radiation at room temperature. The optical microscope images reveal radiation patterns that correlate with axial Fabry-Perot modes (Q approximately 10(3)) observed in the laser spectrum, which result from the cylindrical cavity geometry of the monocrystalline nanowires. A redshift that is strongly dependent on pump power (45 meV microJ x cm(-2)) supports the idea that the electron-hole plasma mechanism is primarily responsible for the gain at room temperature. This study is a considerable advance towards the realization of electron-injected, nanowire-based ultraviolet-blue coherent light sources. PMID:12618824

  1. Convert Graphene Sheets to Boron Nitride and Boron Nitride-carbon Sheets via a Carbon-substitution Reaction

    SciTech Connect

    W Han; H Yu; Z Liu

    2011-12-31

    Here we discuss our synthesis of highly crystalline pure boron nitride (BN) and BN-carbon (BN-C) sheets by using graphene sheets as templates via a carbon-substitution reaction. Typically, these sheets are several micrometers wide and have a few layers. The composition ratios of BN-C sheets can be controlled by the post-treatment (remove carbon by oxidation) temperature. We also observed pure BN and BN-C nanoribbons. We characterized the BN-C sheets via Raman spectroscopy and density functional theory calculations. The results reveal that BN-C sheets with an armchair C-BN chain, and embedded C2 or C6 units in BN-dominated regions energetically are the most favorable.

  2. Convert Graphene Sheets to Boron Nitride and Boron Nitride-Carbon Sheets via a Carbon-Substitution-Reaction

    SciTech Connect

    Han, W.; Yu, H.-G.; Liu. Z.

    2011-05-16

    Here we discuss our synthesis of highly crystalline pure boron nitride (BN) and BN-carbon (BN-C) sheets by using graphene sheets as templates via a carbon-substitution reaction. Typically, these sheets are several micrometers wide and have a few layers. The composition ratios of BN-C sheets can be controlled by the post-treatment (remove carbon by oxidation) temperature. We also observed pure BN and BN-C nanoribbons. We characterized the BN-C sheets via Raman spectroscopy and density functional theory calculations. The results reveal that BN-C sheets with an armchair C-BN chain, and embedded C{sub 2} or C{sub 6} units in BN-dominated regions energetically are the most favorable.

  3. Fabrication and characterization of hexagonal boron nitride powder by spray drying and calcining nitriding technology

    NASA Astrophysics Data System (ADS)

    Shi, Xiaoliang; Wang, Sheng; Yang, Hua; Duan, Xinglong; Dong, Xuebin

    2008-09-01

    Hexagonal boron nitride (hBN) powder was fabricated prepared by the spray drying and calcining-nitriding technology. The effects of nitrided temperature on the phases, morphology and particle size distribution of hBN powder, were investigated. The synthesized powders were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), Fourier transformed infrared spectrum, ultraviolet-visible (UV-vis) spectrum and photoluminescence (PL) spectrum. UV-vis spectrum revealed that the product had one obvious band gap (4.7 eV) and PL spectrum showed that it had a visible emission at 457 nm ( λex=230 nm). FESEM image indicated that the particle size of the synthesized hBN was mainly in the range of 0.5-1.5 μm in diameter, and 50-150 nm in thickness. The high-energy ball-milling process following 900 °C calcining process was very helpful to obtain fully crystallized hBN at lower temperature.

  4. Method of chemical vapor deposition of boron nitride using polymeric cyanoborane

    DOEpatents

    Maya, L.

    1994-06-14

    Polymeric cyanoborane is volatilized, decomposed by thermal or microwave plasma energy, and deposited on a substrate as an amorphous film containing boron, nitrogen and carbon. Residual carbon present in the film is removed by ammonia treatment at an increased temperature, producing an adherent, essentially stoichiometric boron nitride film. 11 figs.

  5. Method of chemical vapor deposition of boron nitride using polymeric cyanoborane

    DOEpatents

    Maya, Leon

    1994-01-01

    Polymeric cyanoborane is volatilized, decomposed by thermal or microwave plasma energy, and deposited on a substrate as an amorphous film containing boron, nitrogen and carbon. Residual carbon present in the film is removed by ammonia treatment at an increased temperature, producing an adherent, essentially stoichiometric boron nitride film.

  6. Low-Energy Sputtering Studies of Boron Nitride with Xenon Ions

    NASA Technical Reports Server (NTRS)

    Ray, P. K.; Shutthanandan, V.

    1999-01-01

    Sputtering of boron nitride with xenon ions was investigated using secondary ion (SIMS) and secondary neutral (SNMS) mass spectrometry. The ions generated from the ion gun were incident on the target at an angle of 50' with respect to the surface'normal. The energy of ions ranged from 100 eV to 3 keV. A flood electron gun was used to neutralize the positive charge build-up on the target surface. The intensities of sputtered neutral and charged particles, including single atoms, molecules, and clusters, were measured as a function of ion energy. Positive SIMS spectra were dominated by the two boron isotopes whereas BN- and B- were the two major constituents of the negative SIMS spectra. Nitrogen could be detected only in the SNMS spectra. The intensity-energy curves of the sputtered particles were similar in shape. The knees in P-SIMS and SNMS intensity-energy curves appear at around I keV which is significantly higher that 100 to 200 eV energy range at which knees appear in the sputtering of medium and heavy elements by ions of argon and xenon. This difference in the position of the sputter yield knee between boron nitride and heavier targets is due to the reduced ion energy differences. The isotopic composition of secondary ions of boron were measured by bombarding boron nitride with xenon ions at energies ranging from 100 eV to 1.5 keV using a quadrupole mass spectrometer. An ion gun was used to generate the ion beam. A flood electron gun was used to neutralize the positive charge buildup on the target surface. The secondary ion flux was found to be enriched in heavy isotopes at lower incident ion energies. The heavy isotope enrichment was observed to decrease with increasing primary ion energy. Beyond 350 eV, light isotopes were sputtered preferentially with the enrichment increasing to an asymptotic value of 1.27 at 1.5 keV. The trend is similar to that of the isotopic enrichment observed earlier when copper was sputtered with xenon ions in the same energy

  7. Integrated Rig for the Production of Boron Nitride Nanotubes via the Pressurized Vapor-Condenser Method

    NASA Technical Reports Server (NTRS)

    Smith, Michael W. (Inventor); Jordan, Kevin C. (Inventor)

    2014-01-01

    An integrated production apparatus for production of boron nitride nanotubes via the pressure vapor-condenser method. The apparatus comprises: a pressurized reaction chamber containing a continuously fed boron containing target having a boron target tip, a source of pressurized nitrogen and a moving belt condenser apparatus; a hutch chamber proximate the pressurized reaction chamber containing a target feed system and a laser beam and optics.

  8. Integrated rig for the production of boron nitride nanotubes via the pressurized vapor-condenser method

    DOEpatents

    Smith, Michael W; Jordan, Kevin C

    2014-03-25

    An integrated production apparatus for production of boron nitride nanotubes via the pressure vapor-condenser method. The apparatus comprises: a pressurized reaction chamber containing a continuously fed boron containing target having a boron target tip, a source of pressurized nitrogen and a moving belt condenser apparatus; a hutch chamber proximate the pressurized reaction chamber containing a target feed system and a laser beam and optics.

  9. Phonon characteristics and photoluminescence of bamboo structured silicon-doped boron nitride multiwall nanotubes

    NASA Astrophysics Data System (ADS)

    Xu, Shifeng; Fan, Yi; Luo, Jingsong; Zhang, Ligong; Wang, Wenquan; Yao, Bin; An, Linan

    2007-01-01

    Bamboo structured silicon-doped boron nitride multiwall nanotubes are synthesized via catalyst-assisted pyrolysis of a boron-containing polymeric precursor. The nanotubes are characterized using transmission electron microscopy, x-ray diffraction, Raman, and Fourier-transformed infrared spectroscope. The results suggest that the Si dopants cause significant changes in the structure and phonon characteristics of the nanotubes as compared to pure boron nitride nanotubes. A broad photoluminescence band ranging between 500 and 800nm is observed from the nanotubes, which is attributed to Si dopants. Study on temperature dependence of emission intensity suggests that the thermal activation energy of the nonradiative recombination process is 35meV.

  10. Superior thermal conductivity of polymer nanocomposites by using graphene and boron nitride as fillers

    NASA Astrophysics Data System (ADS)

    Liem, H.; Choy, H. S.

    2013-06-01

    We report a significant enhancement of thermal conductivity in polymer nanocomposites with graphene and boron nitride as fillers. Strong variations in the Raman spectra for different single-layer graphene flakes are related to the measured thermal conductivity in polymer nanocomposites. In the absence of doping, variations in the Raman parameters are most common, suggesting the presence of excess charges in the samples. Graphene has a Raman D-peak that indicates structural disorder is present, causing the large variations in Raman G peaks. Using this type of graphene and boron nitride for preparing the polymer nanocomposites, the thermal conductivities of the polymer nanocomposites are measured to be in the range of 6.2-9.5 W/mK. The absence of Raman D peaks suggests that structural defects are infinitesimal and the graphene is pristine. Polymer nanocomposites filled with graphene without a D-peak exhibit thermal conductivities as high as ˜21.6 W/mK. As a thermal management material, thermal imaging shows that the polymer nanocomposite can effectively lower the surface mounted LED temperature by 21.1 °C. The existence of Raman D peaks can be used to distinguish two different types of graphenes, establishing the primary prerequisite for achieving a higher thermal conductivity.

  11. Physisorption vs. chemisorption of probe molecules on boron nitride nanomaterials: the effect of surface curvature.

    PubMed

    Rimola, Albert; Sodupe, Mariona

    2013-08-21

    The adsorption of H2O, NH3 and HCOOH as polar probe molecules and C6H6 and CH4 as non-polar ones on a series of zig-zag (n,0) single-walled boron nitride nanotubes (BNNTs) and on a boron-nitride mono-layer (BNML) has been studied by means of B3LYP-D* periodic calculations. Computed electrostatic potential maps for the pristine BN nanomaterials indicate that the smaller the radius, the larger the polar character. Polar molecules are found to be strongly chemisorbed on small radius BNNTs by means of dative interactions between electron donor atoms of the molecules and B atoms of the BNNTs, H-bonding, as well as dispersive forces. Remarkably, for HCOOH interacting with the (4,0) BNNT, this dative interaction is accompanied by a proton transfer to the nanotube. The corresponding computed adsorption energies decrease sharply with increasing tube radius, gradually approaching the values for physisorption on the BNML. Adsorption of non-polar molecules, mainly dictated by π-stacking (C6H6) and CH-π (CH4) dispersion interactions, is found to be energetically more favorable when physisorbed on large radius BNNTs, the most stable adducts being formed on the BNML. PMID:23824299

  12. Dielectric response of carbon and boron nitride nanotubes from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Kozinsky, Boris; Marzari, Nicola

    2007-03-01

    We present a complete characterization of the dielectric response of isolated single- and multi-wall carbon (CNT) and boron-nitride nanotubes (BNNT) using first-principles calculations and density-functional theory. The longitudinal polarizability of a nanotube is sensitive to the band gap and its radius, and in multi-wall nanotubes and bundles it is trivially given by the sum of the polarizabilities of the constituent tubes. The transverse polarizability of both types of nanotubes is insensitive to band gap and chirality and depends only on the radius. However, the transverse response and screening properties of BNNTs are qualitatively different from those of metallic and semiconducting CNTs. The fundamental differences in electronic properties of the two materials are inherited from the corresponding two-dimensional sheets - graphene and boron-nitride. The screening of the external field in CNTs is stronger than in BNNTs and has a different radius dependence. The transverse response in BNNTs is found to be that of an insulator, while in CNTs it is intermediate between metallic and semiconducting. Our results have practical implications for selective growth of different types of nanotubes using aligning electric fields and for Raman characterization of nanotubes.

  13. Properties of boron nitride coating films prepared by the ion beam and vapor deposition method (IVD)

    NASA Astrophysics Data System (ADS)

    Andoh, Y.; Ogata, K.; Suzuki, Y.; Kamijo, E.; Satou, M.; Fujimoto, F.

    The authors have studied coating films of boron nitride prepared by the ion implantation and vapor deposition method (IVD method) and it was found that the films consisted of the cubic, wurzite and hexagonal boron nitride. These films were manufactured by bombardment of nitrogen molecular ion with energy 25-40 keV. In the present work, we prepared films by the nitrogen molecular ions with much lower energy than the previous case. Boron was evaporated by electron beam bombardment on substrates of silicon crystal wafers and nitrogen molecular ions with energy 2-25 keV were simultaneously irradiated. Infrared absorption spectra showed a clear and strong peak due to the boron nitride of cubic structures together with a broad peak of hexagonal one. The hardness of the films was tested. The result showed that the films had 3000-5000 Hv which is much harder than titanium carbide.

  14. Polymer reinforcement using liquid-exfoliated boron nitride nanosheets

    NASA Astrophysics Data System (ADS)

    Khan, Umar; May, Peter; O'Neill, Arlene; Bell, Alan P.; Boussac, Elodie; Martin, Arnaud; Semple, James; Coleman, Jonathan N.

    2012-12-01

    We have exfoliated hexagonal boron nitride by ultrasonication in solutions of polyvinylalcohol in water. The resultant nanosheets are sterically stabilised by adsorbed polymer chains. Centrifugation-based size-selection was used to give dispersions of nanosheets with aspect ratio (length/thickness) of ~1400. Such dispersions can be used to produce polyvinylalcohol-BN composite films. Helium ion microscopy of fracture surfaces shows the nanosheets to be well dispersed and the composites to fail by pull-out. We find both modulus, Y, and strength, σB, of these composites to increase linearly with volume fraction, Vf, up to Vf ~ 0.1 vol% BN before falling off. The rates of increase are extremely high; dY/dVf = 670 GPa and dσB/dVf = 47 GPa. The former value matches theory based on continuum mechanics while the latter value is consistent with remarkably high polymer-filler interfacial strength. However, because the mechanical properties increase over such a narrow volume fraction range, the maximum values of both modulus and strength are only ~40% higher than the pure polymer. This phenomenon has also been observed for graphene-filled composites and represents a serious hurdle to the production of high performance polymer-nanosheet composites.We have exfoliated hexagonal boron nitride by ultrasonication in solutions of polyvinylalcohol in water. The resultant nanosheets are sterically stabilised by adsorbed polymer chains. Centrifugation-based size-selection was used to give dispersions of nanosheets with aspect ratio (length/thickness) of ~1400. Such dispersions can be used to produce polyvinylalcohol-BN composite films. Helium ion microscopy of fracture surfaces shows the nanosheets to be well dispersed and the composites to fail by pull-out. We find both modulus, Y, and strength, σB, of these composites to increase linearly with volume fraction, Vf, up to Vf ~ 0.1 vol% BN before falling off. The rates of increase are extremely high; dY/dVf = 670 GPa and d

  15. Interaction of carbohydrate modified boron nitride nanotubes with living cells.

    PubMed

    Emanet, Melis; Şen, Özlem; Çobandede, Zehra; Çulha, Mustafa

    2015-10-01

    Boron nitride nanotubes (BNNTs) are composed of boron and nitrogen atoms and they show significantly different properties from their carbon analogues (carbon nanotubes, CNTs). Due to their unique properties including low electrical conductivity, and imaging contrast and neutron capture properties; they can be used in biomedical applications. When their use in biological fields is considered, the route of their toxic effect should be clarified. Therefore, the study of interactions between BNNTs and living systems is important in envisaging biological applications at both cellular and sub-cellular levels to fully gain insights of their potential adverse effects. In this study, BNNTs were modified with lactose, glucose and starch and tested for their cytotoxicity. First, the interactions and the behavior of BNNTs with bovine serum albumin (BSA), Dulbecco's Modified Eagle's Medium (DMEM) and DMEM/Nutrient Mixture F-12Ham were investigated. Thereafter, their cellular uptake and the cyto- and genotoxicity on human dermal fibroblasts (HDFs) and adenocarcinoma human alveolar basal epithelial cells (A549) were evaluated. HDFs and A549 cells internalized the modified and unmodified BNNTs, and BNNTs were found to not cause significant viability change and DNA damage. A higher uptake rate of BNNTs by A549 cells compared to HDFs was observed. Moreover, a concentration-dependent cytotoxicity was observed on A549 cells while they were safer for HDFs in the same concentration range. Based on these findings, it can be concluded that BNNTs and their derivatives made with biomacromolecules might be good candidates for several applications in medicine and biomedical applications. PMID:26222410

  16. Electron knock-on cross section of carbon and boron nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Zobelli, A.; Gloter, A.; Ewels, C. P.; Seifert, G.; Colliex, C.

    2007-06-01

    We present a theoretical description of electron irradiation of single-walled carbon and boron nitride nanotubes. In a first step, the anisotropy of the atomic emission energy threshold is obtained within extended molecular-dynamics simulations based on the density-functional tight-binding method. In a second step, we numerically derive the total Mott cross section for different emission sites as a function of the incident electron energy. Two regimes are then described: at low irradiation energies (below 300keV ), the atoms are preferentially ejected from the upper and lower parts of the tube, while at high energies (above 300keV ), the atoms are preferentially ejected from the side walls. Typical values from a fraction of barn (at side wall for 150keV electron) up to around 20barn (for 1MeV electrons) are obtained for the total cross section of knock-on processes for both C and BN nanotubes. These values are smaller than those previously reported using isotropic models and the main reasons for the discrepancies are discussed. Finally, in boron nitride nanotubes, we report that the emission energy threshold maps show boron sputtering to be more favorable for low irradiation energies, while nitrogen sputtering is more favorable at high energies. These calculations of the total knock-on cross section for various nanotubes can be used as a guideline for transmission electron microscopy experimentalists using high energy focused beams to shape nanotubes, and also more generally if electron irradiation is to be used to change nanotube properties such as their optical behavior or conductivity.

  17. Electron knock-on cross section of carbon and boron nitride nanotubes

    SciTech Connect

    Zobelli, A.; Gloter, A.; Colliex, C.; Ewels, C. P.; Seifert, G.

    2007-06-15

    We present a theoretical description of electron irradiation of single-walled carbon and boron nitride nanotubes. In a first step, the anisotropy of the atomic emission energy threshold is obtained within extended molecular-dynamics simulations based on the density-functional tight-binding method. In a second step, we numerically derive the total Mott cross section for different emission sites as a function of the incident electron energy. Two regimes are then described: at low irradiation energies (below 300 keV), the atoms are preferentially ejected from the upper and lower parts of the tube, while at high energies (above 300 keV), the atoms are preferentially ejected from the side walls. Typical values from a fraction of barn (at side wall for 150 keV electron) up to around 20 barn (for 1 MeV electrons) are obtained for the total cross section of knock-on processes for both C and BN nanotubes. These values are smaller than those previously reported using isotropic models and the main reasons for the discrepancies are discussed. Finally, in boron nitride nanotubes, we report that the emission energy threshold maps show boron sputtering to be more favorable for low irradiation energies, while nitrogen sputtering is more favorable at high energies. These calculations of the total knock-on cross section for various nanotubes can be used as a guideline for transmission electron microscopy experimentalists using high energy focused beams to shape nanotubes, and also more generally if electron irradiation is to be used to change nanotube properties such as their optical behavior or conductivity.

  18. Boron nitride nanotubes enhance properties of chitosan-based scaffolds.

    PubMed

    Emanet, Melis; Kazanç, Emine; Çobandede, Zehra; Çulha, Mustafa

    2016-10-20

    With their low toxicity, high mechanical strength and chemical stability, boron nitride nanotubes (BNNTs) are good candidates to enhance the properties of polymers, composites and scaffolds. Chitosan-based scaffolds are exhaustively investigated in tissue engineering because of their biocompatibility and antimicrobial activity. However, their spontaneous degradation prevents their use in a range of tissue engineering applications. In this study, hydroxylated BNNTs (BNNT-OH) were included into a chitosan scaffold and tested for their mechanical strength, swelling behavior and biodegradability. The results show that inclusion of BNNTs-OH into the chitosan scaffold increases the mechanical strength and pore size at values optimal for high cellular proliferation and adhesion. The chitosan/BNNT-OH scaffold was also found to be non-toxic to Human Dermal Fibroblast (HDF) cells due to its slow degradation rate. HDF cell proliferation and adhesion were increased as compared to the chitosan-only scaffold as observed by scanning electron microscopy (SEM) and fluorescent microscopy images. PMID:27474572

  19. Two-Dimensional Boron-Nitride Layers as Flexoelectric Nanogenerators

    NASA Astrophysics Data System (ADS)

    Naumov, I.; Bratkovsky, A.; Ranjan, V.

    2009-03-01

    The direct conversion of ambient motion into electrical energy, especially at nanoscale, is fundamental and technological challenge. Boron-Nitride non-centrosymmetric monolayers are piezoelectrics that can sustain much larger structural and produce very large (a few Volts) voltage drop across flexed nanostrips. We show, with the use of ab-initio calculations, the existence of giant nonlinear flexoelectric effect in BN 2D strips. The induced polarization is quadratic in amplitude of atomic displacements A, yet the dipole moment per unit cell is about four times larger compared to PbZrTiO3 [1]. The resulting voltage drop across the BN nanostrip is set by bandgap in material Eg/q˜5 Volts and nearly independent of the strip width. The large voltage produced by this inert bio-compatible material may find a variety of applications and, in particular, as nanogenerators and sensors powered by an ambient motion or agitation. Prior alternatives, like ZnO, GaN and CdS, are leaky, generate much smaller voltage, and impractical [2]. [1] I.Naumov, A.Bratkovsky, V.Ranjan, arXiv:0810.1775 (2008). [2] Y. Qin, X. Wang, Z.L. Wang, Nature 451, 809 (2008); M.A. Schubert et al, Appl. Phys. Lett. 316, 122904 (2008)

  20. Mechanical deformations of boron nitride nanotubes in crossed junctions

    SciTech Connect

    Zhao, Yadong; Chen, Xiaoming; Ke, Changhong; Park, Cheol; Fay, Catharine C.; Stupkiewicz, Stanislaw

    2014-04-28

    We present a study of the mechanical deformations of boron nitride nanotubes (BNNTs) in crossed junctions. The structure and deformation of the crossed tubes in the junction are characterized by using atomic force microscopy. Our results show that the total tube heights are reduced by 20%–33% at the crossed junctions formed by double-walled BNNTs with outer diameters in the range of 2.21–4.67 nm. The measured tube height reduction is found to be in a nearly linear relationship with the summation of the outer diameters of the two tubes forming the junction. The contact force between the two tubes in the junction is estimated based on contact mechanics theories and found to be within the range of 4.2–7.6 nN. The Young's modulus of BNNTs and their binding strengths with the substrate are quantified, based on the deformation profile of the upper tube in the junction, and are found to be 1.07 ± 0.11 TPa and 0.18–0.29 nJ/m, respectively. Finally, we perform finite element simulations on the mechanical deformations of the crossed BNNT junctions. The numerical simulation results are consistent with both the experimental measurements and the analytical analysis. The results reported in this paper contribute to a better understanding of the structural and mechanical properties of BNNTs and to the pursuit of their applications.

  1. One-dimensional surface phonon polaritons in boron nitride nanotubes.

    PubMed

    Xu, Xiaoji G; Ghamsari, Behnood G; Jiang, Jian-Hua; Gilburd, Leonid; Andreev, Gregory O; Zhi, Chunyi; Bando, Yoshio; Golberg, Dmitri; Berini, Pierre; Walker, Gilbert C

    2014-01-01

    Surface polaritons, which are electromagnetic waves coupled to material charge oscillations, have enabled applications in concentrating, guiding and harvesting optical energy below the diffraction limit. Surface plasmon polaritons involve oscillations of electrons and are accessible in noble metals at visible and near-infrared wavelengths, whereas surface phonon polaritons (SPhPs) rely on phonon resonances in polar materials, and are active in the mid-infrared. Noble metal surface plasmon polaritons have limited applications in the mid-infrared. SPhPs at flat interfaces normally possess long polariton wavelengths and provide modest field confinement/enhancement. Here we demonstrate propagating SPhPs in a one-dimensional material consisting of a boron nitride nanotube at mid-infrared wavelengths. The observed SPhP exhibits high field confinement and enhancement, and a very high effective index (neff~70). We show that the modal and propagation length characteristics of the SPhPs may be controlled through the nanotube size and the supporting substrates, enabling mid-infrared applications. PMID:25154586

  2. Exfoliation of Hexagonal Boron Nitride via Ferric Chloride Intercalation

    NASA Technical Reports Server (NTRS)

    Hung, Ching-cheh; Hurst, Janet; Santiago, Diana; Rogers, Richard B.

    2014-01-01

    Sodium fluoride (NaF) was used as an activation agent to successfully intercalate ferric chloride (FeCl3) into hexagonal boron nitride (hBN). This reaction caused the hBN mass to increase by approx.100 percent, the lattice parameter c to decrease from 6.6585 to between 6.6565 and 6.6569 ?, the x-ray diffraction (XRD) (002) peak to widen from 0.01deg to 0.05deg of the full width half maximum value, the Fourier transform infrared (FTIR) spectrum's broad band (1277/cm peak) to change shape, and new FTIR bands to emerge at 3700 to 2700 and 1600/cm. This indicates hBN's structural and chemical properties are significantly changed. The intercalated product was hygroscopic and interacted with moisture in the air to cause further structural and chemical changes (from XRD and FTIR). During a 24-h hold at room temperature in air with 100 percent relative humidity, the mass increased another 141 percent. The intercalated product, hydrated or not, can be heated to 750 C in air to cause exfoliation. Exfoliation becomes significant after two intercalation-air heating cycles, when 20-nm nanosheets are commonly found. Structural and chemical changes indicated by XRD and FTIR data were nearly reversed after the product was placed in hydrochloric acid (HCl), resulting in purified, exfoliated, thin hBN products.

  3. Efficient gating of epitaxial boron nitride monolayers by substrate functionalization

    NASA Astrophysics Data System (ADS)

    Fedorov, A.; Praveen, C. S.; Verbitskiy, N. I.; Haberer, D.; Usachov, D.; Vyalikh, D. V.; Nefedov, A.; Wöll, C.; Petaccia, L.; Piccinin, S.; Sachdev, H.; Knupfer, M.; Büchner, B.; Fabris, S.; Grüneis, A.

    2015-09-01

    Insulating hexagonal boron nitride monolayers (h BN ) are best known for being resistant to chemical functionalization. This property makes h BN an excellent substrate for graphene heterostructures, but limits its application as an active element in nanoelectronics where tunable electronic properties are needed. Moreover, the two-dimensional-materials' community wishes to learn more about the adsorption and intercalation characteristics of alkali metals on h BN , which have direct relevance to several electrochemistry experiments that are envisioned with layered materials. Here we provide results on ionic functionalization of h BN /metal interfaces with K and Li dopants. By combining angle-resolved photoemission spectroscopy (ARPES), x-ray photoelectron spectroscopy, and density functional theory calculations, we show that the metallic substrate readily ionizes the alkali dopants and exposes h BN to large electric fields and band-energy shifts. In particular, if h BN is in between the negatively charged substrate and the positive alkali ion, this allows us to directly study, using ARPES, the effects of large electric fields on the electron energy bands of h BN .

  4. DFT studies of the phenol adsorption on boron nitride sheets.

    PubMed

    Hernández, Jose Mario Galicia; Cocoletzi, Gregorio Hernández; Anota, Ernesto Chigo

    2012-01-01

    We perform first principles total energy calculations to investigate the atomic structures of the adsorption of phenol (C(6)H(5)OH) on hexagonal boron nitride (BN) sheets. Calculations are done within the density functional theory as implemented in the DMOL code. Electron-ion interactions are modeled according to the local-spin-density-approximation (LSDA) method with the Perdew-Wang parametrization. Our studies take into account the hexagonal h-BN sheets and the modified by defects d-BN sheets. The d-BN sheets are composed of one hexagon, three pentagons and three heptagons. Five different atomic structures are investigated: parallel to the sheet, perpendicular to the sheet at the B site, perpendicular to the sheet at the N site, perpendicular to the central hexagon and perpendicular to the B-N bond (bridge site). To determine the structural stability we apply the criteria of minimum energy and vibration frequency. After the structural relaxation phenol molecules adsorb on both h-BN and d-BN sheets. Results of the binding energies indicate that phenol is chemisorbed. The polarity of the system increases as a consequence of the defects presence which induces transformation from an ionic to covalent bonding. The elastic properties on the BN structure present similar behavior to those reported in the literature for graphene. PMID:21523546

  5. Pentagonal monolayer crystals of carbon, boron nitride, and silver azide

    SciTech Connect

    Yagmurcukardes, M. Senger, R. T.; Sahin, H.; Kang, J.; Torun, E.; Peeters, F. M.

    2015-09-14

    In this study, we present a theoretical investigation of structural, electronic, and mechanical properties of pentagonal monolayers of carbon (p-graphene), boron nitride (p-B{sub 2}N{sub 4} and p-B{sub 4}N{sub 2}), and silver azide (p-AgN{sub 3}) by performing state-of-the-art first principles calculations. Our total energy calculations suggest feasible formation of monolayer crystal structures composed entirely of pentagons. In addition, electronic band dispersion calculations indicate that while p-graphene and p-AgN{sub 3} are semiconductors with indirect bandgaps, p-BN structures display metallic behavior. We also investigate the mechanical properties (in-plane stiffness and the Poisson's ratio) of four different pentagonal structures under uniaxial strain. p-graphene is found to have the highest stiffness value and the corresponding Poisson's ratio is found to be negative. Similarly, p-B{sub 2}N{sub 4} and p-B{sub 4}N{sub 2} have negative Poisson's ratio values. On the other hand, the p-AgN{sub 3} has a large and positive Poisson's ratio. In dynamical stability tests based on calculated phonon spectra of these pentagonal monolayers, we find that only p-graphene and p-B{sub 2}N{sub 4} are stable, but p-AgN{sub 3} and p-B{sub 4}N{sub 2} are vulnerable against vibrational excitations.

  6. Shock synthesized and static sintered boron nitride cutting tool

    NASA Astrophysics Data System (ADS)

    Araki, M.; Kuroyama, Y.

    1986-05-01

    Shock synthesis of wBN (wurtzite phase boron nitride) on an industrial scale was achieved by Nippon Oil & Fats and Showa Denko in 1971. It seemed that the resultant wBN powder might display excellent qualities as a cutting tool material when it was sintered under very high static pressure and temperature because of its polycrystalline nature. Attempts to produce a wBN cutting tool material were commenced by the Tokyo Institute of Technology and Nippon Oil & Fats in 1976 and commercially available wBN cutting tools were first sold in 1980. Meanwhile, a new type of explosion chamber designed to eliminate explosion sound and earth vibration problems, novel high pressure vessels and other peripheral apparatuses have been developed. Now, WURZIN (trademark for the wBN cutting tool) is used in many aspects of the steel cutting field because it is durable when cutting various steels from mild steels to superalloys under high speed, interrupt and precision cutting conditions.

  7. Hexagonal boron nitride film substrate for fabrication of nanostructures

    NASA Astrophysics Data System (ADS)

    Lee, K. S.; Kim, Y. S.; Tosa, M.; Kasahara, A.; Yosihara, K.

    2001-01-01

    The fabrication of material with an atomic scale manipulation requires the suitable advanced substrate for epitaxial growth without the effect by the substrate lattice structure. Hexagonal boron nitride (h-BN) can be the advanced substrate for atomic manipulation due to van der Waals' gap with little attractive force along to c axis. We have successfully synthesized h-BN layer on the co-deposited Cu/BN film by surface segregation phenomena using helicon wave plasma enhanced radio frequency (rf) magnetron sputtering system. Auger electron spectroscopy (AES) and X-ray photon spectroscopy (XPS) analysis showed that the h-BN composite segregated on the surface of Cu/BN film covered over 95% of the film annealed at 900 K for 30 min. Atomic forces microscopy (AFM) and scanning tunneling microscopy (STM) analysis showed that attractive force on the film surface is uniformly distributed to an extent of 2nN and that the h-BN surface can be a good electric insulator like sintered h-BN plate.

  8. Mechanical deformations of boron nitride nanotubes in crossed junctions

    NASA Astrophysics Data System (ADS)

    Zhao, Yadong; Chen, Xiaoming; Park, Cheol; Fay, Catharine C.; Stupkiewicz, Stanislaw; Ke, Changhong

    2014-04-01

    We present a study of the mechanical deformations of boron nitride nanotubes (BNNTs) in crossed junctions. The structure and deformation of the crossed tubes in the junction are characterized by using atomic force microscopy. Our results show that the total tube heights are reduced by 20%-33% at the crossed junctions formed by double-walled BNNTs with outer diameters in the range of 2.21-4.67 nm. The measured tube height reduction is found to be in a nearly linear relationship with the summation of the outer diameters of the two tubes forming the junction. The contact force between the two tubes in the junction is estimated based on contact mechanics theories and found to be within the range of 4.2-7.6 nN. The Young's modulus of BNNTs and their binding strengths with the substrate are quantified, based on the deformation profile of the upper tube in the junction, and are found to be 1.07 ± 0.11 TPa and 0.18-0.29 nJ/m, respectively. Finally, we perform finite element simulations on the mechanical deformations of the crossed BNNT junctions. The numerical simulation results are consistent with both the experimental measurements and the analytical analysis. The results reported in this paper contribute to a better understanding of the structural and mechanical properties of BNNTs and to the pursuit of their applications.

  9. Electron affinity of cubic boron nitride terminated with vanadium oxide

    NASA Astrophysics Data System (ADS)

    Yang, Yu; Sun, Tianyin; Shammas, Joseph; Kaur, Manpuneet; Hao, Mei; Nemanich, Robert J.

    2015-10-01

    A thermally stable negative electron affinity (NEA) for a cubic boron nitride (c-BN) surface with vanadium-oxide-termination is achieved, and its electronic structure was analyzed with in-situ photoelectron spectroscopy. The c-BN films were prepared by electron cyclotron resonance plasma-enhanced chemical vapor deposition employing BF3 and N2 as precursors. Vanadium layers of ˜0.1 and 0.5 nm thickness were deposited on the c-BN surface in an electron beam deposition system. Oxidation of the metal layer was achieved by an oxygen plasma treatment. After 650 °C thermal annealing, the vanadium oxide on the c-BN surface was determined to be VO2, and the surfaces were found to be thermally stable, exhibiting an NEA. In comparison, the oxygen-terminated c-BN surface, where B2O3 was detected, showed a positive electron affinity of ˜1.2 eV. The B2O3 evidently acts as a negatively charged layer introducing a surface dipole directed into the c-BN. Through the interaction of VO2 with the B2O3 layer, a B-O-V layer structure would contribute a dipole between the O and V layers with the positive side facing vacuum. The lower enthalpy of formation for B2O3 is favorable for the formation of the B-O-V layer structure, which provides a thermally stable surface dipole and an NEA surface.

  10. Hydrothermal Synthesis and Photoluminescence of Boron Nitride Quantum Dots

    NASA Astrophysics Data System (ADS)

    Li, Hongling; Tay, Roland Yingjie; Tsang, Siu Hon; Teo, Edwin Hang Tong

    Boron nitride quantum dots (BNQDs), as a new member of heavy metal-free quantum dots, have attracted great interest owing to its unique structure as well as fascinating physical/chemical properties. However, it is still a challenge to controllably synthesize high quality BNQDs with high quantum yield (QY), uniform size and strong luminescence. Here we present a facile and effective approach to controllablly fabricate BNQDs by snoication-solvothermal technique. Encouragingly, the as-prepared BNQDs possess strong blue luminescence with high QY of up to 19.5%, which can be attributed to the synergic effect of size, surface chemistry and edge defects. In addition, the size of the BNQDs could be controlled with a narrow size distribution of 1.32 nm and the smallest average size achieved is 2.62 nm with an average thickness of ~3 atomic layers. Furthermore, the as-prepared BNQDs are non-toxic to cells and show nanosecond-scaled lifetimes and little photobleaching effect. Therefore, it is believed that BNQDs are promising as one of the novel heavy metal-free QDs for multi-purpose applications in a range of fields. Moreover, this synthesis concept is expected to open a new window to controllably prepare other heavy metal-free QDs, as well as to understand their luminescence mechanism.

  11. Controllable Synthesis of Highly Luminescent Boron Nitride Quantum Dots.

    PubMed

    Li, Hongling; Tay, Roland Yingjie; Tsang, Siu Hon; Zhen, Xu; Teo, Edwin Hang Tong

    2015-12-22

    Boron nitride quantum dots (BNQDs), as a new member of heavy metal-free quantum dots, have aroused great interest in fundamental research and practical application due to their unique physical/chemical properties. However, it is still a challenge to controllably synthesize high-quality BNQDs with high quantum yield (QY), uniform size and strong fluorescent. In this work, BNQDs have been successfully fabricated by the liquid exfoliation and the subsequent solvothermal process with respect to its facileness and easy large scale up. Importantly, BNQDs with high-quality can be controllably obtained by adjusting the synthetic parameters involved in the solvothermal process including filling factor, synthesis temperature, and duration time. Encouragingly, the as-prepared BNQDs possess strong blue luminescence with QY as high as 19.5%, which can be attributed to the synergetic effect of size, surface chemistry and edge defects. In addition, this strategy presented here provides a new reference for the controllable synthesis of other heavy metal-free QDs. Furthermore, the as-prepared BNQDs are non-toxic to cells and exhibit nanosecond-scaled lifetimes, suggesting they have great potential biological and optoelectronic applications. PMID:26574683

  12. Thermal vibration characteristics of armchair boron-nitride nanotubes

    SciTech Connect

    Chandra, Anirban; Patra, Puneet Kumar; Bhattacharya, Baidurya

    2015-12-21

    A nanomechanical resonator based sensor works by detecting small changes in the natural frequency of the device in presence of external agents. In this study, we address the length and the temperature-dependent sensitivity of precompressed armchair Boron-Nitride nanotubes towards their use as sensors. The vibrational data, obtained using molecular dynamics simulations, are analyzed for frequency content through the fast Fourier transformation. As the temperature of the system rises, the vibrational spectrum becomes noisy, and the modal frequencies show a red-shift irrespective of the length of the nanotube, suggesting that the nanotube based sensors calibrated at a particular temperature may not function desirably at other temperatures. Temperature-induced noise becomes increasingly pronounced with the decrease in the length of the nanotube. For the shorter nanotube at higher temperatures, we observe multiple closely spaced peaks near the natural frequency, that create a masking effect and reduce the sensitivity of detection. However, longer nanotubes do not show these spurious frequencies, and are considerably more sensitive than the shorter ones.

  13. Boron nitride nanosheet coatings with controllable water repellency.

    PubMed

    Pakdel, Amir; Zhi, Chunyi; Bando, Yoshio; Nakayama, Tomonobu; Golberg, Dmitri

    2011-08-23

    The growth, structure, and properties of two-dimensional boron nitride (BN) nanostructures synthesized by a thermal chemical vapor deposition method have been systematically investigated. Most of the BN nanosheets (BNNSs) were less than 5 nm in thickness, and their purity was confirmed by X-ray energy dispersive spectroscopy, X-ray photoelectron spectroscopy, electron energy loss spectroscopy, and Raman spectroscopy. The effects of the process variables on the morphology and roughness of the coatings were studied using atomic force microscopy and scanning electron microscopy. A smooth BN coating was obtained at 900 °C, while compact BNNS coatings composed of partially vertically aligned nanosheets could be achieved at 1000 °C and higher temperatures. These nanosheets were mostly separated and exhibited high surface area especially at higher synthesis temperatures. The nonwetting properties of the BNNS coatings were independent of the water pH and were examined by contact angle goniometry. The present results enable a convenient growth of pure BNNS coatings with controllable levels of water repellency, ranging from partial hydrophilicity to superhydrophobicity with contact angles exceeding 150°. PMID:21766852

  14. Mechanical properties of hybrid boron nitride-carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhang, Jin; Wang, Chengyuan

    2016-04-01

    Hybrid boron nitride-carbon nanotubes (BN-CNTs) have attracted considerable attention in recent research. In this effort, molecular dynamics simulations were performed to study the fundamentals of BN-CNTs in tensile tests, i.e. Young’s modulus and fracture strength (strain). Particular attention was paid to the influence of the atomic structure, hybrid style, and BN concentration on the tensile properties. The morphological changes were also investigated for the BN-CNTs at the onset of fracture. It is noted that the Young’s modulus of BN-CNTs decreases almost linearly with increasing the BN concentration with a rate of change independent of the hybrid style. In contrast, the sensitivity of the fracture strength and fracture strain to the variation of BN concentration depends strongly on the hybrid style of BN-CNTs. These results are expected to significantly expand the knowledge of the elastic and fracture properties of novel nanostructures and facilitate their applications in bandgap-engineering.

  15. One-dimensional surface phonon polaritons in boron nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoji G.; Ghamsari, Behnood G.; Jiang, Jian-Hua; Gilburd, Leonid; Andreev, Gregory O.; Zhi, Chunyi; Bando, Yoshio; Golberg, Dmitri; Berini, Pierre; Walker, Gilbert C.

    2014-08-01

    Surface polaritons, which are electromagnetic waves coupled to material charge oscillations, have enabled applications in concentrating, guiding and harvesting optical energy below the diffraction limit. Surface plasmon polaritons involve oscillations of electrons and are accessible in noble metals at visible and near-infrared wavelengths, whereas surface phonon polaritons (SPhPs) rely on phonon resonances in polar materials, and are active in the mid-infrared. Noble metal surface plasmon polaritons have limited applications in the mid-infrared. SPhPs at flat interfaces normally possess long polariton wavelengths and provide modest field confinement/enhancement. Here we demonstrate propagating SPhPs in a one-dimensional material consisting of a boron nitride nanotube at mid-infrared wavelengths. The observed SPhP exhibits high field confinement and enhancement, and a very high effective index (neff~70). We show that the modal and propagation length characteristics of the SPhPs may be controlled through the nanotube size and the supporting substrates, enabling mid-infrared applications.

  16. Highly thermally conductive papers with percolative layered boron nitride nanosheets.

    PubMed

    Zhu, Hongli; Li, Yuanyuan; Fang, Zhiqiang; Xu, Jiajun; Cao, Fangyu; Wan, Jiayu; Preston, Colin; Yang, Bao; Hu, Liangbing

    2014-04-22

    In this work, we report a dielectric nanocomposite paper with layered boron nitride (BN) nanosheets wired by one-dimensional (1D) nanofibrillated cellulose (NFC) that has superior thermal and mechanical properties. These nanocomposite papers are fabricated from a filtration of BN and NFC suspensions, in which NFC is used as a stabilizer to stabilize BN nanosheets. In these nanocomposite papers, two-dimensional (2D) nanosheets form a thermally conductive network, while 1D NFC provides mechanical strength. A high thermal conductivity has been achieved along the BN paper surface (up to 145.7 W/m K for 50 wt % of BN), which is an order of magnitude higher than that in randomly distributed BN nanosheet composites and is even comparable to the thermal conductivity of aluminum alloys. Such a high thermal conductivity is mainly attributed to the structural alignment within the BN nanosheet papers; the effects of the interfacial thermal contact resistance are minimized by the fact that the heat transfer is in the direction parallel to the interface between BN nanosheets and that a large contact area occurs between BN nanosheets. PMID:24601534

  17. Thermomechanical buckling of boron nitride nanotubes using molecular dynamics

    NASA Astrophysics Data System (ADS)

    Chandra, Anirban; Patra, Puneet Kumar; Bhattacharya, Baidurya

    2016-02-01

    We study the thermal buckling behavior of precompressed boron-nitride nanotubes (BNNTs) using molecular dynamics simulations with Tersoff interatomic potential. We compute the critical buckling strains at near-zero temperature, and subsequently precompress the nanotubes at a certain fraction of this value followed by temperature ramping. The critical buckling temperature, T cr , is marked by a sudden decrease of the internal force. We observe that (i) at small to moderate lengths, T cr is higher for chiral nanotubes than for either armchair or zigzag nanotubes, (ii) T cr decreases with increasing diameter unlike in thermal disintegration where disintegration temperatures rise with increasing diameter, and (iii) armchair nanotubes have an optimal length for which T cr is maximum. We qualitatively explain the reasons for each of the findings. Thermomechanical buckling occurs predominantly in two ways depending on the length of the nanotube—while the shorter nanotubes fail by radial instability (shell-like behavior), the longer ones invariably fail due to bending-buckling (rod-like behavior).

  18. Boron nitride hollow nanospheres: Synthesis, formation mechanism and dielectric property

    SciTech Connect

    Zhong, B.; Tang, X.H.; Huang, X.X.; Xia, L.; Zhang, X.D.; Wang, C.J.; Wen, G.W.

    2015-04-15

    Highlights: • BN hollow nanospheres are fabricated in large scale via a new CVD method. • Morphology and structure are elucidated by complementary analytical techniques. • Formation mechanism is proposed based on experimental observations. • Dielectric properties are investigated in the X-band microwave frequencies. • BN hollow nanospheres show lower dielectric loss than regular BN powders. - Abstract: Boron nitride (BN) hollow nanospheres have been successfully fabricated by pyrolyzing vapors decomposed from ammonia borane (NH{sub 3}BH{sub 3}) at 1300 °C. The final products have been extensively characterized by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. The BN hollow nanospheres were ranging from 100 to 300 nm in diameter and around 30–100 nm in thickness. The internal structure of the products was found dependent on the reaction temperatures. A possible formation mechanism of the BN hollow nanospheres was proposed on the basis of the experimental observations. Dielectric measurements in the X-band microwave frequencies (8–12 GHz) showed that the dielectric loss of the paraffin filled by the BN hollow nanospheres was lower than that filled by regular BN powders, which indicated that the BN hollow nanospheres could be potentially used as low-density fillers for microwave radomes.

  19. Origin of rectification in boron nitride heterojunctions to silicon.

    PubMed

    Teii, Kungen; Hori, Takuro; Mizusako, Yusei; Matsumoto, Seiichiro

    2013-04-10

    Cubic and hexagonal boron nitride (cBN and hBN) heterojunctions to n-type Si are fabricated under low-energy ion bombardment by inductively coupled plasma-enhanced chemical vapor deposition using the chemistry of fluorine. The sp2-bonded BN/Si heterojunction shows no rectification, while the cBN/sp2BN/Si heterojunction has rectification properties analogue to typical p-n junction diodes despite a large thickness (∼130 nm) of the sp2BN interlayer. The current-voltage characteristics at temperatures up to 573 K are governed by thermal excitation of carriers, and mostly described with the ideal diode equation and the Frenkel-Poole emission model at low and high bias voltages, respectively. The rectification in the cBN/sp2BN/Si heterojunction is caused by a bias-dependent change in the barrier height for holes arising from stronger p-type conduction in the cBN layer and enhanced with the thick sp2BN interlayer for impeding the reverse current flow at defect levels mainly associated with grain boundaries. PMID:23521160

  20. Anisotropic Hexagonal Boron Nitride Nanomaterials - Synthesis and Applications

    SciTech Connect

    Han,W.Q.

    2008-08-01

    Boron nitride (BN) is a synthetic binary compound located between III and V group elements in the Periodic Table. However, its properties, in terms of polymorphism and mechanical characteristics, are rather close to those of carbon compared with other III-V compounds, such as gallium nitride. BN crystallizes into a layered or a tetrahedrally linked structure, like those of graphite and diamond, respectively, depending on the conditions of its preparation, especially the pressure applied. Such correspondence between BN and carbon readily can be understood from their isoelectronic structures [1, 2]. On the other hand, in contrast to graphite, layered BN is transparent and is an insulator. This material has attracted great interest because, similar to carbon, it exists in various polymorphic forms exhibiting very different properties; however, these forms do not correspond strictly to those of carbon. Crystallographically, BN is classified into four polymorphic forms: Hexagonal BN (h-BN) (Figure 1(b)); rhombohedral BN (r-BN); cubic BN (c-BN); and wurtzite BN (w-BN). BN does not occur in nature. In 1842, Balmain [3] obtained BN as a reaction product between molten boric oxide and potassium cyanide under atmospheric pressure. Thereafter, many methods for its synthesis were reported. h-BN and r-BN are formed under ambient pressure. c-BN is synthesized from h-BN under high pressure at high temperature while w-BN is prepared from h-BN under high pressure at room temperature [1]. Each BN layer consists of stacks of hexagonal plate-like units of boron and nitrogen atoms linked by SP{sup 2} hybridized orbits and held together mainly by Van der Waals force (Fig 1(b)). The hexagonal polymorph has two-layered repeating units: AA'AA'... that differ from those in graphite: ABAB... (Figure 1(a)). Within the layers of h-BN there is coincidence between the same phases of the hexagons, although the boron atoms and nitrogen atoms are alternatively located along the c-axis. The

  1. Remote catalyzation for growth of boron nitride nanotubes by low pressure chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Wang, Liangjie; Li, Taotao; Ling, Lin; Luo, Jie; Zhang, Kai; Xu, Yancui; Lu, Huifen; Yao, Yagang

    2016-05-01

    Direct deposition of high purity and quality boron nitride nanotubes (BNNTs) on Si substrate were obtained using low pressure chemical vapor deposition (LPCVD). We find Fe-Mg-O species may act as catalysts for growing BNNTs. This synthesis process conforms to vapor-liquid-solid (VLS) growth mechanism. As-grown BNNTs also show a large optical energy band gap of 6.12 eV, approaching to hexagonal phase BN single crystals. Meanwhile, as-grown BNNTs exhibit an intense UV-emission band located at 345 nm and a weak deep band at 237 nm. Their optoelectronic properties make them have promising for future nanoscale deep-UV light emitting devices.

  2. Evidence for Defect-Mediated Tunneling in Hexagonal Boron Nitride-Based Junctions.

    PubMed

    Chandni, U; Watanabe, K; Taniguchi, T; Eisenstein, J P

    2015-11-11

    We investigate electron tunneling through atomically thin layers of hexagonal boron nitride (hBN). Metal (Cr/Au) and semimetal (graphite) counter-electrodes are employed. While the direct tunneling resistance increases nearly exponentially with barrier thickness as expected, the thicker junctions also exhibit clear signatures of Coulomb blockade, including strong suppression of the tunnel current around zero bias and step-like features in the current at larger biases. The voltage separation of these steps suggests that single-electron charging of nanometer-scale defects in the hBN barrier layer are responsible for these signatures. We find that annealing the metal-hBN-metal junctions removes these defects and the Coulomb blockade signatures in the tunneling current. PMID:26509431

  3. Molecular hydrogen physisorption on boron-nitride nanotubes probed by second harmonic generation

    NASA Astrophysics Data System (ADS)

    Salazar-Aparicio, R. V.; Vázquez-Nava, R. A.; Arzate, N.; Mendoza, B. S.

    2014-10-01

    We present ab initio calculations to investigate second harmonic generation (SHG) response of single wall zigzag pristine boron-nitride nanotubes (BNNTs) and BNNTs modified by the molecular hydrogen adsorption. Calculations have been performed using density functional theory (DFT) within the local-density approximation (LDA) together with the GW Green function method to determine the band gap. A length gauge approach has been used to calculate the nonlinear optical response with the scissors correction to obtain the nonlinear susceptibility χzzz(-2ω ;ω,ω) of the zigzag BNNTs. We have found that, contrary to reports in the literature, the (5,0) and (9,0) BNNTs have a nonvanishing SHG response. We have also found that SHG intensity decreases with the increase of the molecular hydrogen coverage.

  4. Large area hexagonal boron nitride monolayer as efficient atomically thick insulating coating against friction and oxidation.

    PubMed

    Li, Xuemei; Yin, Jun; Zhou, Jianxin; Guo, Wanlin

    2014-03-14

    Coating is the most widely applied technology to improve surface properties of substrates, and nanotechnology has been playing an important role in enhancing the coating performance. However, the tunability of surface properties by a single atomic layer remains poorly understood. Here we demonstrate that a chemical vapor deposited hexagonal boron nitride (h-BN) monolayer of large area and high quality can serve as a perfect coating to significantly improve friction, oxidation and electric resistance of the substrates. The exceptional low friction and insulation of h-BN monolayer coating facilitate the characterization of the h-BN film vividly by atomic force microscopy, showing the h-BN monolayer consists of domains with size within a few micrometers. This excellent coating performance together with the exceptional high thermal and chemical stability make the h-BN monolayer a promising coating material. PMID:24532053

  5. Thermodynamic approach to boron nitride nanotube solubility and dispersion

    NASA Astrophysics Data System (ADS)

    Tiano, A. L.; Gibbons, L.; Tsui, M.; Applin, S. I.; Silva, R.; Park, C.; Fay, C. C.

    2016-02-01

    Inadequate dispersion of nanomaterials is a critical issue that significantly limits the potential properties of nanocomposites and when overcome, will enable further enhancement of material properties. The most common methods used to improve dispersion include surface functionalization, surfactants, polymer wrapping, and sonication. Although these approaches have proven effective, they often achieve dispersion by altering the surface or structure of the nanomaterial and ultimately, their intrinsic properties. Co-solvents are commonly utilized in the polymer, paint, and art conservation industries to selectively dissolve materials. These co-solvents are utilized based on thermodynamic interaction parameters and are chosen so that the original materials are not affected. The same concept was applied to enhance the dispersion of boron nitride nanotubes (BNNTs) to facilitate the fabrication of BNNT nanocomposites. Of the solvents tested, dimethylacetamide (DMAc) exhibited the most stable, uniform dispersion of BNNTs, followed by N,N-dimethylformamide (DMF), acetone, and N-methyl-2-pyrrolidone (NMP). Utilizing the known Hansen solubility parameters of these solvents in comparison to the BNNT dispersion state, a region of good solubility was proposed. This solubility region was used to identify co-solvent systems that led to improved BNNT dispersion in poor solvents such as toluene, hexane, and ethanol. Incorporating the data from the co-solvent studies further refined the proposed solubility region. From this region, the Hansen solubility parameters for BNNTs are thought to lie at the midpoint of the solubility sphere: 16.8, 10.7, and 9.0 MPa1/2 for δd, δp, and δh, respectively, with a calculated Hildebrand parameter of 21.8 MPa1/2.Inadequate dispersion of nanomaterials is a critical issue that significantly limits the potential properties of nanocomposites and when overcome, will enable further enhancement of material properties. The most common methods used to

  6. Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial

    NASA Astrophysics Data System (ADS)

    Dai, S.; Ma, Q.; Liu, M. K.; Andersen, T.; Fei, Z.; Goldflam, M. D.; Wagner, M.; Watanabe, K.; Taniguchi, T.; Thiemens, M.; Keilmann, F.; Janssen, G. C. A. M.; Zhu, S.-E.; Jarillo-Herrero, P.; Fogler, M. M.; Basov, D. N.

    2015-08-01

    Hexagonal boron nitride (h-BN) is a natural hyperbolic material, in which the dielectric constants are the same in the basal plane (ɛt ≡ ɛx = ɛy) but have opposite signs (ɛtɛz < 0) in the normal plane (ɛz). Owing to this property, finite-thickness slabs of h-BN act as multimode waveguides for the propagation of hyperbolic phonon polaritons—collective modes that originate from the coupling between photons and electric dipoles in phonons. However, control of these hyperbolic phonon polaritons modes has remained challenging, mostly because their electrodynamic properties are dictated by the crystal lattice of h-BN. Here we show, by direct nano-infrared imaging, that these hyperbolic polaritons can be effectively modulated in a van der Waals heterostructure composed of monolayer graphene on h-BN. Tunability originates from the hybridization of surface plasmon polaritons in graphene with hyperbolic phonon polaritons in h-BN, so that the eigenmodes of the graphene/h-BN heterostructure are hyperbolic plasmon-phonon polaritons. The hyperbolic plasmon-phonon polaritons in graphene/h-BN suffer little from ohmic losses, making their propagation length 1.5-2.0 times greater than that of hyperbolic phonon polaritons in h-BN. The hyperbolic plasmon-phonon polaritons possess the combined virtues of surface plasmon polaritons in graphene and hyperbolic phonon polaritons in h-BN. Therefore, graphene/h-BN can be classified as an electromagnetic metamaterial as the resulting properties of these devices are not present in its constituent elements alone.

  7. Anisotropic Dielectric Breakdown of Hexagonal Boron Nitride Film

    NASA Astrophysics Data System (ADS)

    Hattori, Yoshiaki; Taniguchi, Takashi; Watanabe, Kenji; Nagashio, Kosuke

    Hexagonal boron nitride (h-BN) is considered as ideal substrate for 2D material devises. However, the reliability of insulating properties of h-BN itself has not been clarified yet. In this study, the anisotropic dielectric breakdown of h-BN is studied. We have found that the dielectric breakdown in c axis direction using a conductive atomic force microscope proceeded in the layer-by-layer manner. The obtained dielectric field strength was ~12 MV/cm, which is comparable to the conventional SiO2. On the other hand, to estimate the dielectric field strength in a direction perpendicular to c axis, voltage is applied to a relatively thick h-BN (10-60 nm) through Cr/Au electrodes fabricated on the h-BN. We realized that the absorbed water on h-BN significantly affect the IV characters and the breakdown voltage. After the adsorbed water was removed by the heating in vacuum, the dielectric field strength was determined to be ~3 MV/cm, which is the same order as that in c axis direction. This value could be increased when we consider the effect of electric field concentration around the metal electrode. Although the large difference in dielectric filed strength for two directions was initially expected due to the highly-anisotropic layered structure with the van der Waals bonding, it was not the case because the sp2 bonding should be broken for dielectric breakdown regardless of its direction. This research was supported by Grants-in-Aid for Scientific Research on Innovative Areas and for Research Activity Start-up by MEXT, Japan.

  8. Nanomechanical cutting of boron nitride nanotubes by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Zheng, Meng; Chen, Xiaoming; Park, Cheol; Fay, Catharine C.; Pugno, Nicola M.; Ke, Changhong

    2013-12-01

    The length of nanotubes is a critical structural parameter for the design and manufacture of nanotube-based material systems and devices. High-precision length control of nanotubes by means of mechanical cutting using a scriber has not materialized due to the lack of the knowledge of the appropriate cutting conditions and the tube failure mechanism. In this paper, we present a quantitative nanomechanical study of the cutting of individual boron nitride nanotubes (BNNTs) using atomic force microscopy (AFM) probes. In our nanotube cutting measurements, a nanotube standing still on a flat substrate was laterally scribed by an AFM tip. The tip-tube collision force deformed the tube, and eventually fractured the tube at the collision site by increasing the cutting load. The mechanical response of nanotubes during the tip-tube collision process and the roles of the scribing velocity and the frictional interaction on the tip-tube collision contact in cutting nanotubes were quantitatively investigated by cutting double-walled BNNTs of 2.26-4.28 nm in outer diameter. The fracture strength of BNNTs was also quantified based on the measured collision forces and their structural configurations using contact mechanics theories. Our analysis reports fracture strengths of 9.1-15.5 GPa for the tested BNNTs. The nanomechanical study presented in this paper demonstrates that the AFM-based nanomechanical cutting technique not only enables effective control of the length of nanotubes with high precision, but is also promising as a new nanomechanical testing technique for characterizing the mechanical properties of tubular nanostructures.

  9. Thermodynamic approach to boron nitride nanotube solubility and dispersion.

    PubMed

    Tiano, A L; Gibbons, L; Tsui, M; Applin, S I; Silva, R; Park, C; Fay, C C

    2016-02-21

    Inadequate dispersion of nanomaterials is a critical issue that significantly limits the potential properties of nanocomposites and when overcome, will enable further enhancement of material properties. The most common methods used to improve dispersion include surface functionalization, surfactants, polymer wrapping, and sonication. Although these approaches have proven effective, they often achieve dispersion by altering the surface or structure of the nanomaterial and ultimately, their intrinsic properties. Co-solvents are commonly utilized in the polymer, paint, and art conservation industries to selectively dissolve materials. These co-solvents are utilized based on thermodynamic interaction parameters and are chosen so that the original materials are not affected. The same concept was applied to enhance the dispersion of boron nitride nanotubes (BNNTs) to facilitate the fabrication of BNNT nanocomposites. Of the solvents tested, dimethylacetamide (DMAc) exhibited the most stable, uniform dispersion of BNNTs, followed by N,N-dimethylformamide (DMF), acetone, and N-methyl-2-pyrrolidone (NMP). Utilizing the known Hansen solubility parameters of these solvents in comparison to the BNNT dispersion state, a region of good solubility was proposed. This solubility region was used to identify co-solvent systems that led to improved BNNT dispersion in poor solvents such as toluene, hexane, and ethanol. Incorporating the data from the co-solvent studies further refined the proposed solubility region. From this region, the Hansen solubility parameters for BNNTs are thought to lie at the midpoint of the solubility sphere: 16.8, 10.7, and 9.0 MPa(1/2) for δd, δp, and δh, respectively, with a calculated Hildebrand parameter of 21.8 MPa(1/2). PMID:26839175

  10. Electron affinity of cubic boron nitride terminated with vanadium oxide

    SciTech Connect

    Yang, Yu; Sun, Tianyin; Shammas, Joseph; Hao, Mei; Nemanich, Robert J.; Kaur, Manpuneet

    2015-10-28

    A thermally stable negative electron affinity (NEA) for a cubic boron nitride (c-BN) surface with vanadium-oxide-termination is achieved, and its electronic structure was analyzed with in-situ photoelectron spectroscopy. The c-BN films were prepared by electron cyclotron resonance plasma-enhanced chemical vapor deposition employing BF{sub 3} and N{sub 2} as precursors. Vanadium layers of ∼0.1 and 0.5 nm thickness were deposited on the c-BN surface in an electron beam deposition system. Oxidation of the metal layer was achieved by an oxygen plasma treatment. After 650 °C thermal annealing, the vanadium oxide on the c-BN surface was determined to be VO{sub 2}, and the surfaces were found to be thermally stable, exhibiting an NEA. In comparison, the oxygen-terminated c-BN surface, where B{sub 2}O{sub 3} was detected, showed a positive electron affinity of ∼1.2 eV. The B{sub 2}O{sub 3} evidently acts as a negatively charged layer introducing a surface dipole directed into the c-BN. Through the interaction of VO{sub 2} with the B{sub 2}O{sub 3} layer, a B-O-V layer structure would contribute a dipole between the O and V layers with the positive side facing vacuum. The lower enthalpy of formation for B{sub 2}O{sub 3} is favorable for the formation of the B-O-V layer structure, which provides a thermally stable surface dipole and an NEA surface.

  11. Computational investigation of the electronic and structural properties of ultra small-diameter boron nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Mirzaei, Mahmoud; Giahi, Masoud

    2010-06-01

    The electronic and structural properties of ultra small-diameter (3,0) and (4,0) zigzag and (2,2) and (3,3) armchair models of boron nitride nanotubes (BNNTs) are investigated by density functional theory (DFT) calculations. The atomic geometries of the considered models are optimized and then the electric field gradient (EFG) tensors are calculated at the sites of boron-11 and nitrogen-14 nuclei in the optimized structures. The results indicate that the small-diameter boron nitride nanotubes are proper for contributing to intermolecular interactions whereas the zigzag models are more preferred rather than the armchair ones. Furthermore, the boron-11 nuclei play dominant roles in the characterization of the electronic and structural properties of the BNNTs. The DFT calculations are performed by the GAUSSIAN 98 package.

  12. Thermal conductivity of ultra-thin chemical vapor deposited hexagonal boron nitride films

    NASA Astrophysics Data System (ADS)

    Alam, M. T.; Bresnehan, M. S.; Robinson, J. A.; Haque, M. A.

    2014-01-01

    Thermal conductivity of freestanding 10 nm and 20 nm thick chemical vapor deposited hexagonal boron nitride films was measured using both steady state and transient techniques. The measured value for both thicknesses, about 100 ± 10 W m-1 K-1, is lower than the bulk basal plane value (390 W m-1 K-1) due to the imperfections in the specimen microstructure. Impressively, this value is still 100 times higher than conventional dielectrics. Considering scalability and ease of integration, hexagonal boron nitride grown over large area is an excellent candidate for thermal management in two dimensional materials-based nanoelectronics.

  13. Influence of disorder on thermal transport properties of boron nitride nanostructures

    NASA Astrophysics Data System (ADS)

    Sevik, Cem; Kinaci, Alper; Haskins, Justin B.; Çaǧın, Tahir

    2012-08-01

    The impact of isotopes on thermal transport in boron nitride nanotubes (BNNTs) and boron nitride white graphene is systematically studied via molecular dynamic simulations. By varying the concentration of the 10B isotope in these materials, we find that thermal conductivity ranges from 340 to 500 W/m-1 K-1, closely agreeing with experimental observations for isotopically pure and natural (19.9% 10B) BNNTs. Further, we investigate the interplay between dimension and isotope disorder in several C-based materials. Our results show a general trend of decreasing influence of isotope disorder with dimension of these materials.

  14. Cubic boron nitride: A new prospective material for ultracold neutron application

    NASA Astrophysics Data System (ADS)

    Sobolev, Yu.; Lauer, Th.; Borisov, Yu.; Daum, M.; du Fresne, N.; Göltl, L.; Hampel, G.; Heil, W.; Knecht, A.; Keunecke, M.; Kratz, J. V.; Lang, T.; Meister, M.; Plonka-Spehr, Ch.; Pokotilovski, Yu.; Reichert, P.; Schmidt, U.; Krist, Th.; Wiehl, N.; Zenner, J.

    2010-03-01

    At the ultracold neutron (UCN) source of the TRIGA research reactor in Mainz, we have measured for the first time the material optical wall-potential of cubic boron nitride. The measurements were performed with a time-of-flight (TOF) spectrometer. The samples investigated had a wall-potential of (305±15) neV. This value is in good agreement with the result extracted from neutron reflectometry data and theoretical expectations. Because of its high critical velocity for UCN and its good dielectric characteristics, cubic boron nitride coatings (isotopically enriched) will be useful for a number of applications in UCN experiments.

  15. Phonon-Photon Mapping in a Color Center in Hexagonal Boron Nitride.

    PubMed

    Vuong, T Q P; Cassabois, G; Valvin, P; Ouerghi, A; Chassagneux, Y; Voisin, C; Gil, B

    2016-08-26

    We report on the ultraviolet optical response of a color center in hexagonal boron nitride. We demonstrate a mapping between the vibronic spectrum of the color center and the phonon dispersion in hexagonal boron nitride, with a striking suppression of the phonon assisted emission signal at the energy of the phonon gap. By means of nonperturbative calculations of the electron-phonon interaction in a strongly anisotropic phonon dispersion, we reach a quantitative interpretation of the acoustic phonon sidebands from cryogenic temperatures up to room temperature. Our analysis provides an original method for estimating the spatial extension of the electronic wave function in a point defect. PMID:27610882

  16. Assessing cytotoxicity of boron nitride nanotubes: Interference with the MTT assay

    SciTech Connect

    Ciofani, Gianni; Danti, Serena; D'Alessandro, Delfo; Moscato, Stefania; Menciassi, Arianna

    2010-04-02

    Thanks to a non-covalent wrapping with glycol-chitosan, highly biocompatible and highly concentrated dispersions of boron nitride nanotubes were obtained and tested on human neuroblastoma cells. A systematic investigation of the cytotoxicity of these nanovectors with several complementary qualitative and quantitative assays allowed a strong interference with the MTT metabolic assay to be highlighted, similar to a phenomenon already observed for carbon nanotubes, that would wrongly suggest toxicity of boron nitride nanotubes. These results confirm the high complexity of these new nanomaterials, and the needing of extensive investigations on their exciting potential applications in the biomedical field.

  17. Surface Chemistry, Microstructure, and Tribological Properties of Cubic Boron Nitride Films

    NASA Technical Reports Server (NTRS)

    Watanabe, Shuichi; Wheeler, Donald R.; Abel, Phillip B.; Street, Kenneth W.; Miyoshi, Kazuhisa; Murakawa, Masao; Miyake, Shojiro

    1998-01-01

    This report deals with the surface chemistry, microstructure, bonding state, morphology, and friction and wear properties of cubic boron nitride (c-BN) films that were synthesized by magnetically enhanced plasma ion plating. Several analytical techniques - x-ray photoelectron spectroscopy, transmission electron microscopy and electron diffraction, Fourier transform infrared spectroscopy, atomic force microscopy, and surface profilometry - were used to characterize the films. Sliding friction experiments using a ball-on-disk configuration were conducted for the c-BN films in sliding contact with 440C stainless-steel balls at room temperature in ultrahigh vacuum (pressure, 10(exp -6), in ambient air, and under water lubrication. Results indicate that the boron-to-nitrogen ratio on the surface of the as-deposited c-BN film is greater than 1 and that not all the boron is present as boron nitride but a small percentage is present as an oxide. Both in air and under water lubrication, the c-BN film in sliding contact with steel showed a low wear rate, whereas a high wear rate was observed in vacuum. In air and under water lubrication, c-BN exhibited wear resistance superior to that of amorphous boron nitride, titanium nitride, and titanium carbide.

  18. Silicon-doped boron nitride coated fibers in silicon melt infiltrated composites

    DOEpatents

    Corman, Gregory Scot; Luthra, Krishan Lal

    2002-01-01

    A fiber-reinforced silicon-silicon carbide matrix composite having improved oxidation resistance at high temperatures in dry or water-containing environments is produced. The invention also provides a method for protecting the reinforcing fibers in the silicon-silicon carbide matrix composites by coating the fibers with a silicon-doped boron nitride coating.

  19. Boron nitride as a substrate for H{sub 2} monolayer studies

    SciTech Connect

    Evans, M.D.; Patel, N.; Sullivan, N.S.

    1992-11-01

    The authors report measurements of the adsorption isotherms of helium and methane on boron nitride. The suitability of using BN as a substrate for studying the two-dimensional, orientational ordering of quantum quadrupoles on a triangular lattice is also discussed. 6 refs., 3 figs.

  20. Structural investigations of adsorbed films of Methyl Halides on Boron Nitride

    NASA Astrophysics Data System (ADS)

    Sprung, Michael; Freitag, Andrea; Hanson, Jonathan; Larese, John

    2000-03-01

    The Methyl Halides are a group of molecules whose properties of thin adsorbed films on Graphite have been well characterized. Boron Nitride forms a hexagonal structure with a slightly larger (about 2% ) unit cell than Graphite. The study of thin films of Methyl Halides (CH_3R, R=Cl, Br and I) on Boron Nitride is motivated by the hope to gain a better understanding of adsorbate-substrate interaction. High resolution adsorption isotherms and x-ray powder diffraction have been used to investigate the monolayer structures of CH_3R adsorbed on Boron Nitride. The experiments were carried out at the Beamline X7B of the NSLS. The gases were dosed onto the sample with an automated gas handling system, and a Mar345 image plate detector was used to collect the data. The measurements were performed in a temperature range between 50 and 175 K. All three adsorbates form a solid monolayer structure on Boron Nitride at low temperature. The structure of Methyl Chloride and Methyl Bromide is very similar to the high-density structure of CH_3Cl on Graphite. This is surprising for CH_3Br because it forms a different structure on Graphite. Methyl Iodide forms similar structures on both substrates.

  1. Growth of Polar Hexagonal Boron Nitride Monolayer on Nonpolar Copper with Unique Orientation.

    PubMed

    Li, Jidong; Li, Yao; Yin, Jun; Ren, Xibiao; Liu, Xiaofei; Jin, Chuanhong; Guo, Wanlin

    2016-07-01

    Suppressing the oppositely orientated hexagonal boron nitride (h-BN) domains during the growth is of great challenge due to its bipolar structure. It is found that h-BN domains grown on onefold symmetric Cu(102) or (103) share a unique orientation, with one zigzag edge of the h-BN triangles perpendicular to the symmetry axis of the substrate surface. PMID:27240098

  2. Boron nitride nanotube as a delivery system for platinum drugs: Drug encapsulation and diffusion coefficient prediction.

    PubMed

    Khatti, Zahra; Hashemianzadeh, Seyed Majid

    2016-06-10

    Molecular dynamics (MD) simulation has been applied to investigate a drug delivery system based on boron nitride nanotubes, particularly the delivery of platinum-based anticancer drugs. For this propose, the behavior of carboplatin drugs inserted in boron nitride nanotubes (BNNT) as a carrier was studied. The diffusion rate of water molecules and carboplatin was investigated inside functionalized and pristine boron nitride nanotubes. The penetration rate of water and drug in functionalized BNNT was higher than that in pristine BNNT due to favorable water-mediated hydrogen bonding in hydroxyl edge-functionalized BNNT. Additionally, the encapsulation of multiple carboplatin drugs inside functionalized boron nitride nanotubes with one to five drug molecules confined inside the nanotube cavity was examined. At high drug loading, the hydrogen bond formation between adjacent drugs and the non-bonded van der Waals interaction between carboplatin and functionalized BNNT inner surface were found to be influential in drug displacement within the functionalized BNNT cavity for higher drug-loading capacity. PMID:27084121

  3. Growth Mechanisms of Vertically-aligned Carbon, Boron Nitride, and Zinc Oxide Nanotubes

    SciTech Connect

    Yap, Yoke Khin

    2009-07-07

    Nanotubes are one-dimensional nanomaterials with all atoms located near the surface. This article provides a brief review on the possible growth mechanisms of a series of inorganic nanotubes, in particular, vertically-aligned (VA) carbon nanotubes (CNTs), boron nitride nanotubes (BNNTs), and ZnO nanotubes (ZnO NTs).

  4. Silicon-doped boron nitride coated fibers in silicon melt infiltrated composites

    DOEpatents

    Corman, Gregory Scot; Luthra, Krishan Lal

    1999-01-01

    A fiber-reinforced silicon--silicon carbide matrix composite having improved oxidation resistance at high temperatures in dry or water-containing environments is produced. The invention also provides a method for protecting the reinforcing fibers in the silicon--silicon carbide matrix composites by coating the fibers with a silicon-doped boron nitride coating.

  5. Effect of heat conditions on the mechanical properties of boron nitride polycrystals

    SciTech Connect

    Bochko, A.V.

    1986-04-01

    This paper examines the effect of various types of heat treatment on the mechanical and service properties of polycrystals of boron nitride. Quantitative phase analysis was carried out using the methods described when using a DRON-2.0 x-ray diffractometer. The mechanical characteristics were determined by the method of local loading using the standard nitride polycrystals in the initial state are quite high. On the basis of the results it may be concluded that the heat treatment conditions examined (annealing, hf heating, annealing and hf heating) lead to the same changes in the structural state as those taking place in thermal cycling thus causing the corresponding reduction of the level of the strength properties of the boron nitride polycrystals.

  6. Fabrication of particular structures of hexagonal boron nitride and boron-carbon-nitrogen layers by anisotropic etching

    NASA Astrophysics Data System (ADS)

    Vishwakarma, Riteshkumar; Sharma, Subash; Shinde, Sachin M.; Sharma, Kamal P.; Thangaraja, Amutha; Kalita, Golap; Tanemura, Masaki

    2016-05-01

    Anisotropic etching of hexagonal boron nitride (h-BN) and boron-carbon-nitrogen (BCN) basal plane can be an exciting platform to develop well-defined structures with interesting properties. Here, we developed an etching process of atomically thin h-BN and BCN layers to fabricate nanoribbons (NRs) and other distinct structures by annealing in H2 and Ar gas mixture. BCN and h-BN films are grown on Cu foil by chemical vapor deposition (CVD) using solid camphor and ammonia borane as carbon, nitrogen and boron source, respectively. Formation of micron size well-defined etched holes and NRs are obtained in both h-BN and BCN layers by the post growth annealing process. The etching process of h-BN and BCN basal plane to fabricate NRs and other structures with pronounced edges can open up new possibilities in 2D hybrid materials.

  7. Slow gold adatom diffusion on graphene: effect of silicon dioxide and hexagonal boron nitride substrates.

    PubMed

    Liu, Li; Chen, Zheyuan; Wang, Lei; Polyakova Stolyarova, Elena; Taniguchi, Takashi; Watanabe, Kenji; Hone, James; Flynn, George W; Brus, Louis E

    2013-04-25

    We examine the nucleation kinetics of Au clusters on graphene and explore the relationship with layer number and underlying supporting substrate of graphene. Using the mean field theory of diffusion-limited aggregation, morphology patterns are semiquantitatively analyzed to obtain Au adatom effective diffusion constants and activation energies. Under specified assumptions, the Au adatom diffusion constant for single-layer graphene supported on SiO2 is ∼50 times smaller than that for hexagonal boron nitride (h-BN)-supported graphene and on the order of 800 times smaller than that for multilayer graphite. Bilayer graphene on SiO2 shows a Au adatom diffusion constant similar to single-layer graphene on h-BN. Scanning probe data show that single-layer graphene is far flatter on h-BN than on SiO2. Two factors are proposed as contributing to the observed lower diffusion constants on single-layer graphene: local surface roughness and homogeneous loss of dispersion/van der Waals electronic stability in multilayers. Graphene Raman spectroscopy shows little charge transfer between Au nanoparticles and graphene. PMID:23121443

  8. Folate Functionalized Boron Nitride Nanotubes and their Selective Uptake by Glioblastoma Multiforme Cells: Implications for their Use as Boron Carriers in Clinical Boron Neutron Capture Therapy

    PubMed Central

    2009-01-01

    Boron neutron capture therapy (BNCT) is increasingly being used in the treatment of several aggressive cancers, including cerebral glioblastoma multiforme. The main requirement for this therapy is selective targeting of tumor cells by sufficient quantities of10B atoms required for their capture/irradiation with low-energy thermal neutrons. The low content of boron targeting species in glioblastoma multiforme accounts for the difficulty in selective targeting of this very malignant cerebral tumor by this radiation modality. In the present study, we have used for the first time boron nitride nanotubes as carriers of boron atoms to overcome this problem and enhance the selective targeting and ablative efficacy of BNCT for these tumors. Following their dispersion in aqueous solution by noncovalent coating with biocompatible poly-l-lysine solutions, boron nitride nanotubes were functionalized with a fluorescent probe (quantum dots) to enable their tracking and with folic acid as selective tumor targeting ligand. Initial in vitro studies have confirmed substantive and selective uptake of these nanovectors by glioblastoma multiforme cells, an observation which confirms their potential clinical application for BNCT therapy for these malignant cerebral tumors. PMID:20596476

  9. Folate Functionalized Boron Nitride Nanotubes and their Selective Uptake by Glioblastoma Multiforme Cells: Implications for their Use as Boron Carriers in Clinical Boron Neutron Capture Therapy

    NASA Astrophysics Data System (ADS)

    Ciofani, Gianni; Raffa, Vittoria; Menciassi, Arianna; Cuschieri, Alfred

    2009-02-01

    Boron neutron capture therapy (BNCT) is increasingly being used in the treatment of several aggressive cancers, including cerebral glioblastoma multiforme. The main requirement for this therapy is selective targeting of tumor cells by sufficient quantities of 10B atoms required for their capture/irradiation with low-energy thermal neutrons. The low content of boron targeting species in glioblastoma multiforme accounts for the difficulty in selective targeting of this very malignant cerebral tumor by this radiation modality. In the present study, we have used for the first time boron nitride nanotubes as carriers of boron atoms to overcome this problem and enhance the selective targeting and ablative efficacy of BNCT for these tumors. Following their dispersion in aqueous solution by noncovalent coating with biocompatible poly- l-lysine solutions, boron nitride nanotubes were functionalized with a fluorescent probe (quantum dots) to enable their tracking and with folic acid as selective tumor targeting ligand. Initial in vitro studies have confirmed substantive and selective uptake of these nanovectors by glioblastoma multiforme cells, an observation which confirms their potential clinical application for BNCT therapy for these malignant cerebral tumors.

  10. Folate Functionalized Boron Nitride Nanotubes and their Selective Uptake by Glioblastoma Multiforme Cells: Implications for their Use as Boron Carriers in Clinical Boron Neutron Capture Therapy.

    PubMed

    Ciofani, Gianni; Raffa, Vittoria; Menciassi, Arianna; Cuschieri, Alfred

    2008-01-01

    Boron neutron capture therapy (BNCT) is increasingly being used in the treatment of several aggressive cancers, including cerebral glioblastoma multiforme. The main requirement for this therapy is selective targeting of tumor cells by sufficient quantities of (10)B atoms required for their capture/irradiation with low-energy thermal neutrons. The low content of boron targeting species in glioblastoma multiforme accounts for the difficulty in selective targeting of this very malignant cerebral tumor by this radiation modality. In the present study, we have used for the first time boron nitride nanotubes as carriers of boron atoms to overcome this problem and enhance the selective targeting and ablative efficacy of BNCT for these tumors. Following their dispersion in aqueous solution by noncovalent coating with biocompatible poly-l-lysine solutions, boron nitride nanotubes were functionalized with a fluorescent probe (quantum dots) to enable their tracking and with folic acid as selective tumor targeting ligand. Initial in vitro studies have confirmed substantive and selective uptake of these nanovectors by glioblastoma multiforme cells, an observation which confirms their potential clinical application for BNCT therapy for these malignant cerebral tumors. PMID:20596476

  11. Theoretical investigation of methane adsorption onto boron nitride and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Darvish Ganji, Masoud; Mirnejad, Amir; Najafi, Ali

    2010-08-01

    Methane adsorption onto single-wall boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs) was studied using the density functional theory within the generalized gradient approximation. The structural optimization of several bonding configurations for a CH4 molecule approaching the outer surface of the (8,0) BNNT and (8,0) CNT shows that the CH4 molecule is preferentially adsorbed onto the CNT with a binding energy of -2.84 kcal mol-1. A comparative study of nanotubes with different diameters (curvatures) reveals that the methane adsorptive capability for the exterior surface increases for wider CNTs and decreases for wider BNNTs. The introduction of defects in the BNNT significantly enhances methane adsorption. We also examined the possibility of binding a bilayer or a single layer of methane molecules and found that methane molecules preferentially adsorb as a single layer onto either BNNTs or CNTs. However, bilayer adsorption is feasible for CNTs and defective BNNTs and requires binding energies of -3.00 and -1.44 kcal mol-1 per adsorbed CH4 molecule, respectively. Our first-principles findings indicate that BNNTs might be an unsuitable material for natural gas storage.

  12. High Kinetic Energy Penetrator Shielding and High Wear Resistance Materials Fabricated with Boron Nitride Nanotubes (BNNTS) and BNNT Polymer Composites

    NASA Technical Reports Server (NTRS)

    Kang, Jin Ho (Inventor); Park, Cheol (Inventor); Sauti, Godfrey (Inventor); Smith, Michael W. (Inventor); Jordan, Kevin C. (Inventor); Lowther, Sharon E. (Inventor); Bryant, Robert George (Inventor)

    2015-01-01

    Boron nitride nanotubes (BNNTs), boron nitride nanoparticles (BNNPs), carbon nanotubes (CNTs), graphites, or combinations, are incorporated into matrices of polymer, ceramic or metals. Fibers, yarns, and woven or nonwoven mats of BNNTs are used as toughening layers in penetration resistant materials to maximize energy absorption and/or high hardness layers to rebound or deform penetrators. They can be also used as reinforcing inclusions combining with other polymer matrices to create composite layers like typical reinforcing fibers such as Kevlar.RTM., Spectra.RTM., ceramics and metals. Enhanced wear resistance and usage time are achieved by adding boron nitride nanomaterials, increasing hardness and toughness. Such materials can be used in high temperature environments since the oxidation temperature of BNNTs exceeds 800.degree. C. in air. Boron nitride based composites are useful as strong structural materials for anti-micrometeorite layers for spacecraft and space suits, ultra strong tethers, protective gear, vehicles, helmets, shields and safety suits/helmets for industry.

  13. Investigation of the adsorption properties of borazine and characterisation of boron nitride on Rh(1 1 1) by electron spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Farkas, A. P.; Török, P.; Solymosi, F.; Kiss, J.; Kónya, Z.

    2015-11-01

    The adsorption and dissociation of borazine were investigated on Rh(1 1 1) single crystal surface by Auger electron spectroscopy (AES), high resolution electron energy loss spectroscopy (HREELS) and temperature programmed desorption (TPD) methods. Borazine is one of the most frequently applied precursor molecules in the preparation process of boron nitride overlayer on metal single crystal surfaces. On Rh(1 1 1) surface it adsorbs molecularly at 140 K. We did not find any preferred orientation, although there is evidence of "flat" and perpendicular molecular geometry, too. Dehydrogenation starts even below 200 K and finishes until ∼7-800 K. No other boron or nitrogen containing products were observed in TPD beyond molecular borazine. Through the hydrogen loss of molecules hexagonal boron nitride layer forms in the 600-1100 K temperature range as it was indicated by AES and the characteristic optical phonon HREEL losses of h-BN overlayer. The adsorption behaviour of the boron nitride covered surface was also studied through the adsorption of methanol at 140 K. HREELS and TPD measurements showed that methanol adsorbed molecularly and a fraction of it dissociated to form surface methoxy and gas phase hydrogen on the h-BN/Rh(1 1 1) surface.

  14. Dynamical properties of ultrathin armchair boron nitride nanotubes using density functional theory

    NASA Astrophysics Data System (ADS)

    Dabhi, Shweta D.; Jha, Prafulla K.

    2016-08-01

    Using density functional theory, we studied electronic and vibrational properties of small (n, n; n = 2–7) single walled boron nitride nanotubes (BNNTs) in armchair configuration with diameter ranging from 3 Å to 9.8 Å. We used plane wave pseudo potential method and generalized gradient approximation as exchange correlation functional. Armchair BNNT is a semiconductor with a large indirect band gap ∼4–5 eV unlike armchair carbon nanotubes (CNT) which are metallic. As n varies from 2 to 7 i.e. with increasing diameter, there is no major variation in band-gap. For even number of n, the lowest π* is at Z point and singly degenerate, while for odd n, it is doubly degenerate. Density of states show sharp singularities following E‑1/2 trend which is characteristics of 1D structure. Phonon dispersion curves for all BNNTs show no imaginary frequencies throughout the Brillouin zone confirming the dynamical stability of BNNTs with small diameter. Phonon frequencies are found to be diameter dependent. Results of the electronic and vibrational properties using ab initio calculations are comparable to the previous experimental and theoretical studies with highlighting variation in properties as change in diameter of nanotube.

  15. Self-assembled diacetylene molecular wire polymerization on an insulating hexagonal boron nitride (0001) surface.

    PubMed

    Makarova, Marina V; Okawa, Yuji; Verveniotis, Elisseos; Watanabe, Kenji; Taniguchi, Takashi; Joachim, Christian; Aono, Masakazu

    2016-09-30

    The electrical characterization of single-polymer chains on a surface is an important step towards novel molecular device development. The main challenge is the lack of appropriate atomically flat insulating substrates for fabricating single-polymer chains. Here, using atomic force microscopy, we demonstrate that the (0001) surface of an insulating hexagonal boron nitride (h-BN) substrate leads to a flat-lying self-assembled monolayer of diacetylene compounds. The subsequent heating or ultraviolet irradiation can initiate an on-surface polymerization process leading to the formation of long polydiacetylene chains. The frequency of photo-polymerization occurrence on h-BN(0001) is two orders of magnitude higher than that on graphite(0001). This is explained by the enhanced lifetime of the molecular excited state, because relaxation via the h-BN is suppressed due to a large band gap. We also demonstrate that on-surface polymerization on h-BN(0001) is possible even after the lithography process, which opens up the possibility of further electrical investigations. PMID:27573286

  16. Elastic and Piezoelectric Properties of Boron Nitride Nanotube Composites. Part II; Finite Element Model

    NASA Technical Reports Server (NTRS)

    Kim, H. Alicia; Hardie, Robert; Yamakov, Vesselin; Park, Cheol

    2015-01-01

    This paper is the second part of a two-part series where the first part presents a molecular dynamics model of a single Boron Nitride Nanotube (BNNT) and this paper scales up to multiple BNNTs in a polymer matrix. This paper presents finite element (FE) models to investigate the effective elastic and piezoelectric properties of (BNNT) nanocomposites. The nanocomposites studied in this paper are thin films of polymer matrix with aligned co-planar BNNTs. The FE modelling approach provides a computationally efficient way to gain an understanding of the material properties. We examine several FE models to identify the most suitable models and investigate the effective properties with respect to the BNNT volume fraction and the number of nanotube walls. The FE models are constructed to represent aligned and randomly distributed BNNTs in a matrix of resin using 2D and 3D hollow and 3D filled cylinders. The homogenisation approach is employed to determine the overall elastic and piezoelectric constants for a range of volume fractions. These models are compared with an analytical model based on Mori-Tanaka formulation suitable for finite length cylindrical inclusions. The model applies to primarily single-wall BNNTs but is also extended to multi-wall BNNTs, for which preliminary results will be presented. Results from the Part 1 of this series can help to establish a constitutive relationship for input into the finite element model to enable the modeling of multiple BNNTs in a polymer matrix.

  17. Suppression of thermally activated carrier transport in atomically thin MoS2 on crystalline hexagonal boron nitride substrates

    NASA Astrophysics Data System (ADS)

    Chan, Mei Yin; Komatsu, Katsuyoshi; Li, Song-Lin; Xu, Yong; Darmawan, Peter; Kuramochi, Hiromi; Nakaharai, Shu; Aparecido-Ferreira, Alex; Watanabe, Kenji; Taniguchi, Takashi; Tsukagoshi, Kazuhito

    2013-09-01

    We present the temperature-dependent carrier mobility of atomically thin MoS2 field-effect transistors on crystalline hexagonal boron nitride (h-BN) and SiO2 substrates. Our results reveal distinct weak temperature dependence of the MoS2 devices on h-BN substrates. The room temperature mobility enhancement and reduced interface trap density of the single and bilayer MoS2 devices on h-BN substrates further indicate that reducing substrate traps is crucial for enhancing the mobility in atomically thin MoS2 devices.We present the temperature-dependent carrier mobility of atomically thin MoS2 field-effect transistors on crystalline hexagonal boron nitride (h-BN) and SiO2 substrates. Our results reveal distinct weak temperature dependence of the MoS2 devices on h-BN substrates. The room temperature mobility enhancement and reduced interface trap density of the single and bilayer MoS2 devices on h-BN substrates further indicate that reducing substrate traps is crucial for enhancing the mobility in atomically thin MoS2 devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr03220e

  18. High quality boron carbon nitride/ZnO-nanorods p-n heterojunctions based on magnetron sputtered boron carbon nitride films

    SciTech Connect

    Qian, J. C.; Jha, S. K. E-mail: apwjzh@cityu.edu.hk; Wang, B. Q.; Jelenković, E. V.; Bello, I.; Klemberg-Sapieha, J. E.; Martinu, L.; Zhang, W. J. E-mail: apwjzh@cityu.edu.hk

    2014-11-10

    Boron carbon nitride (BCN) films were synthesized on Si (100) and fused silica substrates by radio-frequency magnetron sputtering from a B{sub 4}C target in an Ar/N{sub 2} gas mixture. The BCN films were amorphous, and they exhibited an optical band gap of ∼1.0 eV and p-type conductivity. The BCN films were over-coated with ZnO nanorod arrays using hydrothermal synthesis to form BCN/ZnO-nanorods p-n heterojunctions, exhibiting a rectification ratio of 1500 at bias voltages of ±5 V.

  19. Water-assisted chemical vapor deposition synthesis of boron nitride nanotubes and their photoluminescence property

    NASA Astrophysics Data System (ADS)

    Li, Juan; Li, Jianbao; Yin, Yanchun; Chen, Yongjun; Bi, Xiaofan

    2013-09-01

    A novel water-assisted chemical vapor deposition (CVD) method for the efficient synthesis of boron nitride (BN) nanotubes is demonstrated. The replacement of metal oxide by water vapor could continuously generate intermediate boron oxide vapor and enhance the production of BN nanotubes. The nanotubes synthesized when an appropriate amount of water vapor was introduced had an average diameter of about 80 nm and lengths of several hundred μm. The diameter and yield of nanotubes could be controlled by tuning the amount of water vapor. This simple water-assisted CVD approach paves a new path to the fabrication of BN nanotubes in large quantities.

  20. Effect of Low-Energy Ions on Plasma-Enhanced Deposition of Cubic Boron Nitride

    NASA Astrophysics Data System (ADS)

    Torigoe, M.; Fukui, S.; Teii, K.; Matsumoto, S.

    2015-09-01

    The effect of low-energy ions on deposition of cubic boron nitride (cBN) films in an inductively coupled plasma with the chemistry of fluorine is studied in terms of ion energy, ion flux, and ion to boron flux ratio onto the substrate. The ion energy and the ion to boron flux ratio are determined from the sheath potential and the ratio of incident ion flux to net deposited boron flux, respectively. For negative substrate biases where sp2-bonded BN phase only or no deposit is formed, both the ion energy and the ion to boron flux ratio are high. For positive substrate biases where cBN phase is formed, the ion energy and the ion to boron flux ratio are estimated in the range of a few eV to 35 eV and 100 to 130, respectively. The impact of negative ions is presumed to be negligible due to their low kinetic energy relative to the sheath potential over the substrate surface. The impact of positive ions with high ion to boron flux ratios is primarily responsible for reduction of the ion energy for cBN film deposition. Work supported in part by a Grant-in-Aid for Scientific Research (B), a Funding Program for Next Generation World-Leading Researchers, and an Industrial Technology Research Grant Program 2008.

  1. Transition from amorphous boron carbide to hexagonal boron carbon nitride thin films induced by nitrogen ion assistance

    NASA Astrophysics Data System (ADS)

    Gago, R.; Jiménez, I.; Agulló-Rueda, F.; Albella, J. M.; Czigány, Zs.; Hultman, L.

    2002-11-01

    Boron carbon nitride films (BCN) were grown by B4C evaporation under concurrent N2 ion beam assistance. The films were characterized by x-ray absorption near-edge spectroscopy, infrared and Raman spectroscopies, and high-resolution transmission electron microscopy. The bonding structure and film composition correlate with the momentum transfer per incoming atom during deposition. As the momentum transfer is increased, the film structure evolves from an amorphous boron carbide network towards a hexagonal ternary compound (h-BCN) with standing basal planes. The growth of h-BCN takes place for momentum transfer in the window between 80 and 250 (eV×amu)1/2. The characteristic vibrational features of the h-BCN compounds have also been studied. Finally, the solubility limit of carbon in the hexagonal BN structure, under the working conditions of this article, is found to be ˜15 at. %.

  2. Enhanced thermal-mechanical properties of polymer composites with hybrid boron nitride nanofillers

    NASA Astrophysics Data System (ADS)

    Yan, Haiyan; Tang, Yanxia; Su, Juling; Yang, Xiaoyan

    2014-02-01

    The present work focuses on the investigation of the thermal-mechanical properties of the epoxy composites with hybrid boron nitride nanotubes (BNNTs) and boron nitride nanosheets (BNNSs). The stable dispersions of BNNTs-BNNSs were achieved by a noncovalent functionalization with pyrene carboxylic acid. The resulting epoxy/BNNTs-BNNSs composites exhibited homogeneously dispersed BNNTs-BNNSs and a strong filler-matrix interface interaction. The composites showed a 95 % increase in thermal conductivity and a 57 % improvement in Young's modulus by addition of only 1 vol. % BNNTs-BNNSs. Meanwhile, the composites also retained a high electrical resistance of pure epoxy. Our study thus shows the potential for hybrid BNNTs-BNNSs to be successfully used as the nanofillers of polymer composites for applications in electrically insulating thermal interface materials.

  3. Thermal transport in boron nitride nanotorus—towards a nanoscopic thermal shield

    NASA Astrophysics Data System (ADS)

    Loh, G. C.; Baillargeat, D.

    2013-11-01

    Nanotori, or nanorings, are topological variants of nanotubes and are conceived to have different properties from their tubular form. In this study, the toroidal arrangement of boron nitride is introduced. Using classical molecular dynamics simulations, the thermal behaviour (thermal conductivity and thermal stability) of the boron nitride nanotorus and its relationship with the structural characteristics are investigated. Its circumferential thermal rectification strength displays a linear dependence on the bending coefficient of the nanostructure. Surface kinks are relatively inconsequential on its circumferential mode of conduction, as compared to its axial sense. The circumferential conductivity in the diffusive regime is calculated to be approximately 10 W/m K, while the axial conductivity is more than tenfold of this value. All nanotori with different toroidal characters show excellent thermal stability at extremely high temperatures approaching 3400 K. With consideration to its favourable properties, a thermal shield made up of a parallel row of nanotori is proposed as a nanoscale thermal insulation device.

  4. Shear induced formation of carbon and boron nitride nano-scrolls

    NASA Astrophysics Data System (ADS)

    Chen, Xianjue; Boulos, Ramiz A.; Dobson, John F.; Raston, Colin L.

    2012-12-01

    A `top down' synthesis of carbon and hexagonal boron nitride (h-BN) nano-scrolls has been developed using the shear forces within dynamic thin films of N-methyl-2-pyrrolidone (NMP) generated on a rapidly rotating spinning disc processor (SDP), along with a theoretical understanding of the formation of the scrolls.A `top down' synthesis of carbon and hexagonal boron nitride (h-BN) nano-scrolls has been developed using the shear forces within dynamic thin films of N-methyl-2-pyrrolidone (NMP) generated on a rapidly rotating spinning disc processor (SDP), along with a theoretical understanding of the formation of the scrolls. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr33071g

  5. Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing

    NASA Astrophysics Data System (ADS)

    Li, Peining; Lewin, Martin; Kretinin, Andrey V.; Caldwell, Joshua D.; Novoselov, Kostya S.; Taniguchi, Takashi; Watanabe, Kenji; Gaussmann, Fabian; Taubner, Thomas

    2015-06-01

    Hyperbolic materials exhibit sub-diffractional, highly directional, volume-confined polariton modes. Here we report that hyperbolic phonon polaritons allow for a flat slab of hexagonal boron nitride to enable exciting near-field optical applications, including unusual imaging phenomenon (such as an enlarged reconstruction of investigated objects) and sub-diffractional focusing. Both the enlarged imaging and the super-resolution focusing are explained based on the volume-confined, wavelength dependent propagation angle of hyperbolic phonon polaritons. With advanced infrared nanoimaging techniques and state-of-art mid-infrared laser sources, we have succeeded in demonstrating and visualizing these unexpected phenomena in both Type I and Type II hyperbolic conditions, with both occurring naturally within hexagonal boron nitride. These efforts have provided a full and intuitive physical picture for the understanding of the role of hyperbolic phonon polaritons in near-field optical imaging, guiding, and focusing applications.

  6. Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing.

    PubMed

    Li, Peining; Lewin, Martin; Kretinin, Andrey V; Caldwell, Joshua D; Novoselov, Kostya S; Taniguchi, Takashi; Watanabe, Kenji; Gaussmann, Fabian; Taubner, Thomas

    2015-01-01

    Hyperbolic materials exhibit sub-diffractional, highly directional, volume-confined polariton modes. Here we report that hyperbolic phonon polaritons allow for a flat slab of hexagonal boron nitride to enable exciting near-field optical applications, including unusual imaging phenomenon (such as an enlarged reconstruction of investigated objects) and sub-diffractional focusing. Both the enlarged imaging and the super-resolution focusing are explained based on the volume-confined, wavelength dependent propagation angle of hyperbolic phonon polaritons. With advanced infrared nanoimaging techniques and state-of-art mid-infrared laser sources, we have succeeded in demonstrating and visualizing these unexpected phenomena in both Type I and Type II hyperbolic conditions, with both occurring naturally within hexagonal boron nitride. These efforts have provided a full and intuitive physical picture for the understanding of the role of hyperbolic phonon polaritons in near-field optical imaging, guiding, and focusing applications. PMID:26112474

  7. Ultra-sensitive Hall sensors based on graphene encapsulated in hexagonal boron nitride

    SciTech Connect

    Dauber, Jan; Stampfer, Christoph; Sagade, Abhay A.; Neumaier, Daniel; Oellers, Martin; Watanabe, Kenji; Taniguchi, Takashi

    2015-05-11

    The encapsulation of graphene in hexagonal boron nitride provides graphene on substrate with excellent material quality. Here, we present the fabrication and characterization of Hall sensor elements based on graphene boron nitride heterostructures, where we gain from high mobility and low charge carrier density at room temperature. We show a detailed device characterization including Hall effect measurements under vacuum and ambient conditions. We achieve a current- and voltage-related sensitivity of up to 5700 V/AT and 3 V/VT, respectively, outpacing state-of-the-art silicon and III/V Hall sensor devices. Finally, we extract a magnetic resolution limited by low frequency electric noise of less than 50 nT/√(Hz) making our graphene sensors highly interesting for industrial applications.

  8. A quantum chemistry study of curvature effects on boron nitride nanotubes/nanosheets for gas adsorption.

    PubMed

    Sha, Haoyan; Faller, Roland

    2016-07-20

    Quantum chemistry calculations were performed to investigate the effect of the surface curvature of a Boron Nitride (BN) nanotube/nanosheet on gas adsorption. Curved boron nitride layers with different curvatures interacting with a number of different gases including noble gases, oxygen, and water on both their convex and concave sides of the surface were studied using density functional theory (DFT) with a high level dispersion corrected functional. Potential energy surfaces of the gas molecules interacting with the selected BN surfaces were investigated. In addition, the charge distribution and electrostatic potential contour of the selected BN surfaces are discussed. The results reveal how the curvature of the BN surfaces affects gas adsorption. In particular, small curvatures lead to a slight difference in the physisorption energy, while large curvatures present distinct potential energy surfaces, especially for the short-range repulsion. PMID:27399852

  9. Chemical reaction of hexagonal boron nitride and graphite nanoclusters in mechanical milling systems

    SciTech Connect

    Muramatsu, Y.; Grush, M.; Callcott, T.A.

    1997-04-01

    Synthesis of boron-carbon-nitride (BCN) hybrid alloys has been attempted extensively by many researchers because the BCN alloys are considered an extremely hard material called {open_quotes}super diamond,{close_quotes} and the industrial application for wear-resistant materials is promising. A mechanical alloying (MA) method of hexagonal boron nitride (h-BN) with graphite has recently been studied to explore the industrial synthesis of the BCN alloys. To develop the MA method for the BCN alloy synthesis, it is necessary to confirm the chemical reaction processes in the mechanical milling systems and to identify the reaction products. Therefore, the authors have attempted to confirm the chemical reaction process of the h-BN and graphite in mechanical milling systems using x-ray absorption near edge structure (XANES) methods.

  10. Raman spectroscopy measurement of bilayer graphene's twist angle to boron nitride

    SciTech Connect

    Cheng, Bin; Wang, Peng; Pan, Cheng; Miao, Tengfei; Wu, Yong; Lau, C. N.; Bockrath, M.; Taniguchi, T.; Watanabe, K.

    2015-07-20

    When graphene is placed on hexagonal boron nitride with a twist angle, new properties develop due to the resulting moiré superlattice. Here, we report a method using Raman spectroscopy to make rapid, non-destructive measurements of the twist angle between bilayer graphene and hexagonal boron nitride. The lattice orientation is determined by using flakes with both bilayer and monolayer regions, and using the known Raman signature for the monolayer to measure the twist angle of the entire flake. The widths of the second order Raman peaks are found to vary linearly in the superlattice period and are used to determine the twist angle. The results are confirmed by using transport measurements to infer the superlattice period by the charge density required to reach the secondary resistance peaks. Small twist angles are also found to produce a significant modification of the first order Raman G band peak.

  11. Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing

    PubMed Central

    Li, Peining; Lewin, Martin; Kretinin, Andrey V.; Caldwell, Joshua D.; Novoselov, Kostya S.; Taniguchi, Takashi; Watanabe, Kenji; Gaussmann, Fabian; Taubner, Thomas

    2015-01-01

    Hyperbolic materials exhibit sub-diffractional, highly directional, volume-confined polariton modes. Here we report that hyperbolic phonon polaritons allow for a flat slab of hexagonal boron nitride to enable exciting near-field optical applications, including unusual imaging phenomenon (such as an enlarged reconstruction of investigated objects) and sub-diffractional focusing. Both the enlarged imaging and the super-resolution focusing are explained based on the volume-confined, wavelength dependent propagation angle of hyperbolic phonon polaritons. With advanced infrared nanoimaging techniques and state-of-art mid-infrared laser sources, we have succeeded in demonstrating and visualizing these unexpected phenomena in both Type I and Type II hyperbolic conditions, with both occurring naturally within hexagonal boron nitride. These efforts have provided a full and intuitive physical picture for the understanding of the role of hyperbolic phonon polaritons in near-field optical imaging, guiding, and focusing applications. PMID:26112474

  12. Reconciling the electronic and geometric corrugations of the hexagonal boron nitride and graphene nanomeshes

    NASA Astrophysics Data System (ADS)

    McKee, William C.; Meunier, Vincent; Xu, Ye

    2015-12-01

    Monolayer hexagonal boron nitride on Rh(111) and graphene on Ru(0001) illustrate a trend of divergence between the density functional theory (DFT) calculated geometric corrugation, and scanning tunneling microscope (STM) measured apparent corrugation, of metal-supported 2D films that feature chemically distinct regions. Notably, the geometric and apparent corrugations differ by up to 2 Å for boron nitride/Rh(111), whereas both the DFT-simulated and the experimentally observed STM images agree in the apparent corrugation over a wide range of bias voltages. The disparity is due to unequal contributions of the low/high-lying atoms to the local density of states in the vicinity of the Fermi level. This phenomenon has important implications for the structural characterization of certain supported 2D films, which are being explored for novel electronic and material applications.

  13. Modeling low energy sputtering of hexagonal boron nitride by xenon ions

    SciTech Connect

    Yim, John T.; Falk, Michael L.; Boyd, Iain D.

    2008-12-15

    The sputtering of hexagonal boron nitride due to low energy xenon ion bombardments occurs in various applications including fabrication of cubic boron nitride and erosion of Hall thruster channel walls. At low ion energies, accurate experimental characterization of sputtering increases in difficulty due to the low yields involved. A molecular dynamics model is employed to simulate the sputtering process and to calculate sputter yields for ion energies ranging from 10 to 350 eV. The results are compared to experimental data and a semiempirical expression developed by Bohdansky [Nucl. Instrum. Methods Phys. Res. B 2, 587 (1984)] is found to adequately describe the simulation data. Surface temperature effects are also investigated, and the sputter yield at 850 K is approximately twice that at 423 K.

  14. High density hexagonal boron nitride prepared by hot isostatic pressing in refractory metal containers

    SciTech Connect

    Hoenig, C.L.

    1990-12-31

    Boron nitride powder with less than or equal to the oxygen content of starting powder (down to 0.5% or less) is hot isostatically pressed in a refractory metal container to produce hexagonal boron nitride with a bulk density greater than 2.0 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a cansister or alternatively plasma sprayed or chemical vapor deposited onto a powder compact. Hot isostatic pressing at 1800{degrees}C and 30 KSI (206.8 MPa) argon pressure for four hours produces a bulk density of 2.21 g/cc. Complex shapes can be made.

  15. High density hexagonal boron nitride prepared by hot isostatic pressing in refractory metal containers

    DOEpatents

    Hoenig, Clarence L.

    1992-01-01

    Boron nitride powder with less than or equal to the oxygen content of starting powder (down to 0.5% or less) is hot isostatically pressed in a refractory metal container to produce hexagonal boron nitride with a bulk density greater than 2.0 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed or chemical vapor deposited onto a powder compact. Hot isostatic pressing at 1800.degree. C. and 30 KSI (206.8 MPa) argon pressure for four hours produces a bulk density of 2.21 g/cc. Complex shapes can be made.

  16. Van der Waals heterostructure of phosphorene and hexagonal boron nitride: First-principles modeling

    NASA Astrophysics Data System (ADS)

    Peng, Zhang; Jing, Wang; Xiang-Mei, Duan

    2016-03-01

    We have studied the structural and electronic properties of a hybrid hexagonal boron nitride with phosphorene nanocomposite using ab initio density functional calculations. It is found that the interaction between the hexagonal boron nitride and phosphorene is dominated by the weak van der Waals interaction, with their own intrinsic electronic properties preserved. Furthermore, the band gap of the nanocomposite is dependent on the interfacial distance. Our results could shed light on the design of new devices based on van der Waals heterostructure. Projected supported by the National Natural Science Foundation of China (Grant No. 11574167), the New Century 151 Talents Project of Zhejiang Province,China, and the K. C. Wong Magna Foundation in Ningbo University, China.

  17. Marine corrosion protective coatings of hexagonal boron nitride thin films on stainless steel.

    PubMed

    Husain, Esam; Narayanan, Tharangattu N; Taha-Tijerina, Jose Jaime; Vinod, Soumya; Vajtai, Robert; Ajayan, Pulickel M

    2013-05-22

    Recently, two-dimensional, layered materials such as graphene and hexagonal boron nitride (h-BN) have been identified as interesting materials for a range of applications. Here, we demonstrate the corrosion prevention applications of h-BN in marine coatings. The performance of h-BN/polymer hybrid coatings, applied on stainless steel, were evaluated using electrochemical techniques in simulated seawater media [marine media]. h-BN/polymer coating shows an efficient corrosion protection with a low corrosion current density of 5.14 × 10(-8) A/cm(2) and corrosion rate of 1.19 × 10(-3) mm/year and it is attributed to the hydrofobic, inert and dielectric nature of boron nitride. The results indicated that the stainless steel with coatings exhibited improved corrosion resistance. Electrochemical impedance spectroscopy and potentiodynamic analysis were used to propose a mechanism for the increased corrosion resistance of h-BN coatings. PMID:23618222

  18. Electron beam machining of nanometer-sized tips from multiwalled boron nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Celik-Aktas, Ayten; Stubbins, James F.; Zuo, Jian-Min

    2007-07-01

    We report here that high energy electron irradiation of multiwalled boron nitride nanotubes can be used to form sharp, crystalline, conical tips, or to cut boron nitride nanotubes by controlling the electron beam size. Electron beam cutting is observed when a focused electron beam with a diameter much smaller than the tube diameter is used. The tip formation is observed when a shaped, disklike, electron beam is used to irradiate the tube; the diameter of the beam in this case is similar to the tube diameter. In situ electron microscopy observation shows that the tip formation effect is driven by layer peeling and the collapse of the inner walls of the nanotube. This is very different from the formation of nanoarches observed during cutting. The combination of shaping and cutting can be used to fabricate atomically sharp tips for field emitters, nanoimaging, and manipulations.

  19. Boundary scattering in quasi-ballistic graphene/hexagonal boron nitride mesoscopic wires

    NASA Astrophysics Data System (ADS)

    Iguchi, Kazuyuki; Masubuchi, Satoru; Yamaguchi, Takehiro; Ohnuki, Masahiro; Watanabe, Kenji; Taniguchi, Takashi; Machida, Tomoki

    2012-02-01

    In a quasi-ballistic transport regime where the mean free path is larger than the width of conduction channel, diffusive boundary scattering results in an anomalous positive magnetoresistance due to a megnetic commensurability effect between cyclotron motion and sample width. In this work, we fabricate a high-mobility two terminal graphene mesoscopic wire on hexagonal boron nitride with a mean free path comparable to sample width ˜ 1 μm. Magnetoresistance of the graphene mesoscopic wire shows a peak structure at a magnetic field which scales with the ratio of the cyclotron radius Rc to the wire width w. The peak field increases with back-gate voltage as a consequence that the ratio w/Rc is modified due to the change in Rc. These results indicate the quasi-ballistic transport and diffusive boundary scattering in graphene on hexagonal boron nitride.

  20. Method and device to synthesize boron nitride nanotubes and related nanoparticles

    DOEpatents

    Zettl, Alexander K.

    2016-07-19

    Methods and apparatus for producing chemical nanostructures having multiple elements, such as boron and nitride, e.g. boron nitride nanotubes, are disclosed. The method comprises creating a plasma jet, or plume, such as by an arc discharge. The plasma plume is elongated and has a temperature gradient along its length. It extends along its length into a port connector area having ports for introduction of feed materials. The feed materials include the multiple elements, which are introduced separately as fluids or powders at multiple ports along the length of the plasma plume, said ports entering the plasma plume at different temperatures. The method further comprises modifying a temperature at a distal portion of or immediately downstream of said plasma plume; and collecting said chemical nanostructures after said modifying.

  1. Line defects in boron nitride nanostructures: A first-principles study

    NASA Astrophysics Data System (ADS)

    Guerra, T.; Azevedo, S.; Machado, M.

    2016-05-01

    Using first-principles calculations we have explored the structural reconstruction of a special type of line defect (LD), formed as the result of a defective growth of a given monolayer (ML) or nanoribbon (NR). More specifically, we have studied the presence of tetragonal rings at boron nitride monolayers (BNMLs) and zigzag boron nitride nanoribbons (ZBNNRs). Different reconstruction processes are observed forming different types of LD depending on the nature of the atoms into the grain boundary between two BN domains as well as the structures type. The structural, magnetic, energetic, and electronic properties of the reconstructed BNMLs and ZBNNRs are calculated. These structures show a wide range of electronic structures going from semiconducting to semimetallic and metallic.

  2. Ultrafast optical nonlinearity and photoacoustic studies on chitosan-boron nitride nanotube composite films

    NASA Astrophysics Data System (ADS)

    Kuthirummal, Narayanan; Philip, Reji; Mohan, Athira; Jenks, Cassidy; Levi-Polyachenko, Nicole

    2016-07-01

    Ultrafast optical nonlinearity in chitosan (CS) films doped with multi-walled boron nitride nanotubes (MWBN) has been investigated using 800 nm, 100 fs laser pulses, employing the open aperture Z-scan technique. Two-photon absorption coefficients (β) of CS-MWBN films have been measured at 800 nm by Z-scan. While chitosan with 0.01% MWBN doping gives a β value of 0.28×10-13 m/W, 1% doping results in a higher β value of 1.43×10-13 m/W, showing nonlinearity enhancement by a factor of 5. These nonlinearity coefficients are comparable to those reported for silver nanoclusters in glass matrix and Pt-PVA nanocomposites, indicating potential photonic applications for MWBN doped chitosan films. Characterization of the synthesized films using Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) reveals significant interactions between the NH and CO groups of chitosan with boron nitride.

  3. Thermal transport in boron nitride nanotorus—towards a nanoscopic thermal shield

    SciTech Connect

    Loh, G. C.; Baillargeat, D.

    2013-11-14

    Nanotori, or nanorings, are topological variants of nanotubes and are conceived to have different properties from their tubular form. In this study, the toroidal arrangement of boron nitride is introduced. Using classical molecular dynamics simulations, the thermal behaviour (thermal conductivity and thermal stability) of the boron nitride nanotorus and its relationship with the structural characteristics are investigated. Its circumferential thermal rectification strength displays a linear dependence on the bending coefficient of the nanostructure. Surface kinks are relatively inconsequential on its circumferential mode of conduction, as compared to its axial sense. The circumferential conductivity in the diffusive regime is calculated to be approximately 10 W/m K, while the axial conductivity is more than tenfold of this value. All nanotori with different toroidal characters show excellent thermal stability at extremely high temperatures approaching 3400 K. With consideration to its favourable properties, a thermal shield made up of a parallel row of nanotori is proposed as a nanoscale thermal insulation device.

  4. Synthesis and structures of iron nanoparticles coated with boron nitride nanomaterials.

    PubMed

    Narita, Ichihito; Oku, Takeo; Tokoro, Hisato; Suganuma, Katsuaki

    2006-06-01

    Iron (Fe) nanoparticles coated with boron nitride (BN) nanomaterials were synthesized by using Fe(4)N and B powders as raw materials. The Fe(4)N was reduced to alpha-Fe during annealing at 1000 degrees C for several hours with flowing 100 sccm N(2) gas. The reaction was predicted by Ellingham diagram. The atomic structure and magnetic properties were investigated by high-resolution electron microscopy and vibrating sample magnetometer system. PMID:16585048

  5. Controllable synthesis of few-layered and hierarchically porous boron nitride nanosheets.

    PubMed

    Xiao, Feng; Chen, Zhixin; Casillas, Gilberto; Richardson, Christopher; Li, Huijun; Huang, Zhenguo

    2016-03-11

    Few-layered porous boron nitride nanosheets (BNNS) have been prepared using a dynamic magnesium diboride (MgB2) template and ammonium chloride (NH4Cl) etchant. Magnesium-based intermediates serve as layer separators in the synthesis and prevent extensive aggregation, resulting in few-layered BNNS. The resultant BNNS are hierarchically porous and show good CO2/N2 adsorption selectivity. PMID:26871737

  6. Features of the crystalline structure and thermal stability of the Wurtzite modification of boron nitride

    SciTech Connect

    Kurdyumov, A.V.; Oleinik, G.S.; Ostrovskaya, N.F.; Pilyankevich, A.N.; Savvakin, G.I.

    1985-06-01

    The authors propose a comparative investigation of the graphitelike modification (BNg) of wurzite boron nitride (BNw) and also a study of the rules of structure formation of polycrystalline materials during hot pressing of powders of BNw at high pressures. They conclude that their data indicates the possibility of obtaining highly dispersed polycrystalline materials consisting of a mixture of dense modifications of BN from BNw syntesized under conditions of dynamic compression rates of loading and heating.

  7. Ab initio study of phase transition of boron nitride between zinc-blende and rhombohedral structures

    SciTech Connect

    Nishida, S.; Funashima, H.; Sato, K.; Katayama-Yoshida, H.

    2013-12-04

    Boron nitride has polymorphs such as zinc-blende (c-BN), wurtzite (w-BN), rhombohedral (r-BN), and graphite-like (h-BN) forms. We simulate the direct conversion of r-BN to c-BN through electronic excitation. In our calculation, the conversion is made possible by increasing the hole concentration to over 0.06/atom. This conversion should be experimentally possible by hole-doping via an electric double layer transistor (EDLT) or capacitor.

  8. Electronic transport in heterostructures of chemical vapor deposited graphene and hexagonal boron nitride.

    PubMed

    Qi, Zhengqing John; Hong, Sung Ju; Rodríguez-Manzo, Julio A; Kybert, Nicholas J; Gudibande, Rajatesh; Drndić, Marija; Park, Yung Woo; Johnson, A T Charlie

    2015-03-25

    CVD graphene devices on stacked CVD hexagonal boron nitride (hBN) are demonstrated using a novel low-contamination transfer method, and their electrical performance is systematically compared to devices on SiO(2). An order of magnitude improvement in mobility, sheet resistivity, current density, and sustained power is reported when the oxide substrate is covered with five-layer CVD hBN. PMID:25367876

  9. Insertion mechanism and stability of boron nitride nanotubes in lipid bilayers.

    PubMed

    Thomas, Michael; Enciso, Marta; Hilder, Tamsyn A

    2015-04-16

    We provide insight into the interaction of boron nitride nanotubes (BNNTs) with cell membranes to better understand their improved biocompatibility compared to carbon nanotubes (CNTs). Contrary to CNTs, no computational studies exist investigating the insertion mechanism and stability of BNNTs in membranes. Our molecular dynamics simulations demonstrate that BNNTs are spontaneously attracted to lipid bilayers and are stable once inserted. They insert via a lipid-mediated, passive insertion mechanism. BNNTs demonstrate similar characteristics to more biocompatible functionalized CNTs. PMID:25800058

  10. Boron nitride nanotubes are noncytotoxic and can be functionalized for interaction with proteins and cells.

    PubMed

    Chen, Xing; Wu, Peng; Rousseas, Michael; Okawa, David; Gartner, Zev; Zettl, Alex; Bertozzi, Carolyn R

    2009-01-28

    We report the discovery that boron nitride nanotubes (BNNTs), isosteres of CNTs with unique physical properties, are inherently noncytotoxic. Furthermore, we developed a biomemetic coating strategy to interface BNNTs with proteins and cells. Finally, we showed that BNNTs can deliver DNA oligomers to the interior of cells with no apparent toxicity. This work suggests that BNNTs may be superior to CNTs for use as biological probes and in biomaterials. PMID:19119844

  11. The influence of metal Mg on micro-morphology and crystallinity of spherical hexagonal boron nitride

    SciTech Connect

    Zhang, Ning Liu, Huan; Kan, Hongmin; Wang, Xiaoyang; Long, Haibo; Zhou, Yonghui

    2015-08-15

    Highlights: • The action mechanism of Mg to the synthesis of spherical BN was explored. • The influence of Mg content on the crystallinity of h-BN powders was studied. • Even if not added any template, the spherical h-BN could be prepared. - Abstract: This search used the boric acid and borax as a source of boron, urea as a nitrogen source, Mg as metal catalyst, and thus prepared different micro-morphology and crystallinity hexagonal boron nitride powders under a flowing ammonia atmosphere at a nitriding temperature of 750 °C. The effect of Mg content on the crystallinity and micro-morphology of hexagonal boron nitride powders was studied, and the Mg action mechanism was explored. Without the added surfactant, the graphitization index (GI) was 6.87, and the diameter of the spherical h-BN was bigger. When the added Mg were 0.1 g, 0.3 g, 0.5 g and 0.7 g, the (GI) decreased to 6.04, 5.67, 4.62 and 4.84, respectively. When the Mg content was higher (0.9 g), GI value increased rapidly, and the crystallinity became bad. When the Mg content was 0.5 g, the dispersion of h-BN powders was at its optimum and refinement apparently, and the crystallinity at its highest.

  12. Oxidative Unzipping and Transformation of High Aspect Ratio Boron Nitride Nanotubes into "White Graphene Oxide" Platelets.

    PubMed

    Nautiyal, Pranjal; Loganathan, Archana; Agrawal, Richa; Boesl, Benjamin; Wang, Chunlei; Agarwal, Arvind

    2016-01-01

    Morphological and chemical transformations in boron nitride nanotubes under high temperature atmospheric conditions is probed in this study. We report atmospheric oxygen induced cleavage of boron nitride nanotubes at temperatures exceeding 750 °C for the first time. Unzipping is then followed by coalescence of these densely clustered multiple uncurled ribbons to form stacks of 2D sheets. FTIR and EDS analysis suggest these 2D platelets to be Boron Nitride Oxide platelets, with analogous structure to Graphene Oxide, and therefore we term them as "White Graphene Oxide" (WGO). However, not all BNNTs deteriorate even at temperatures as high as 1000 °C. This leads to the formation of a hybrid nanomaterial system comprising of 1D BN nanotubes and 2D BN oxide platelets, potentially having advanced high temperature sensing, radiation shielding, mechanical strengthening, electron emission and thermal management applications due to synergistic improvement of multi-plane transport and mechanical properties. This is the first report on transformation of BNNT bundles to a continuous array of White Graphene Oxide nanoplatelet stacks. PMID:27388704

  13. Mid-infrared polaritonic coupling between boron nitride nanotubes and graphene.

    PubMed

    Xu, Xiaoji G; Jiang, Jian-Hua; Gilburd, Leonid; Rensing, Rachel G; Burch, Kenneth S; Zhi, Chunyi; Bando, Yoshio; Golberg, Dmitri; Walker, Gilbert C

    2014-11-25

    Boron nitride (BN) is considered to be a promising substrate for graphene-based devices in part because its large band gap can serve to insulate graphene in layered heterostructures. At mid-infrared frequencies, graphene supports surface plasmon polaritons (SPPs), whereas hexagonal-BN (h-BN) is found to support surface phonon polaritons (SPhPs). We report on the observation of infrared polaritonic coupling between graphene SPPs and boron nitride nanotube (BNNT) SPhPs. Infrared scattering type scanning near-field optical microscopy is used to obtain spatial distribution of the two types of polaritons at the nanoscale. The observation suggests that those polaritons interact at the nanoscale in a one-dimensional/two-dimensional (1D/2D) geometry, exchanging energy in a nonplanar configuration at the nanoscale. Control of the polaritonic interaction is achieved by adjustment of the graphene Fermi level through voltage gating. Our observation suggests that boron nitride nanotubes and graphene can interact at mid-infrared frequencies and coherently exchange their energies at the nanoscale through the overlap of mutual electric near field of surface phonon polaritons and surface plasmon polaritons. Such interaction enables the design of nano-optical devices based on BNNT-graphene polaritonics in the mid-infrared range. PMID:25365544

  14. Effect of the hexagonal phase interlayer on rectification properties of boron nitride heterojunctions to silicon

    SciTech Connect

    Teii, K. Ito, H.; Katayama, N.; Matsumoto, S.

    2015-02-07

    Rectification properties of boron nitride/silicon p-n heterojunction diodes fabricated under low-energy ion impact by plasma-enhanced chemical vapor deposition are studied in terms of the resistive sp{sup 2}-bonded boron nitride (sp{sup 2}BN) interlayer. A two-step biasing technique is developed to control the fraction of cubic boron nitride (cBN) phase and, hence, the thickness of the sp{sup 2}BN interlayer in the films. The rectification ratio at room temperature is increased up to the order of 10{sup 4} at ±10 V of biasing with increasing the sp{sup 2}BN thickness up to around 130 nm due to suppression of the reverse leakage current. The variation of the ideality factor in the low bias region is related to the interface disorders and defects, not to the sp{sup 2}BN thickness. The forward current follows the Frenkel-Poole emission model in the sp{sup 2}BN interlayer at relatively high fields when the anomalous effect is assumed. The transport of the minority carriers for reverse current is strongly limited by the high bulk resistance of the thick sp{sup 2}BN interlayer, while that of the major carriers for forward current is much less affected.

  15. Adsorption of sugars on Al- and Ga-doped boron nitride surfaces: A computational study

    NASA Astrophysics Data System (ADS)

    Darwish, Ahmed A.; Fadlallah, Mohamed M.; Badawi, Ashraf; Maarouf, Ahmed A.

    2016-07-01

    Molecular adsorption on surfaces is a key element for many applications, including sensing and catalysis. Non-invasive sugar sensing has been an active area of research due to its importance to diabetes care. The adsorption of sugars on a template surface study is at the heart of matter. Here, we study doped hexagonal boron nitride sheets (h-BNNs) as adsorbing and sensing template for glucose and glucosamine. Using first principles calculations, we find that the adsorption of glucose and glucosamine on h-BNNs is significantly enhanced by the substitutional doping of the sheet with Al and Ga. Including long range van der Waals corrections gives adsorption energies of about 2 eV. In addition to the charge transfer occurring between glucose and the Al/Ga-doped BN sheets, the adsorption alters the size of the band gap, allowing for optical detection of adsorption. We also find that Al-doped boron nitride sheet is better than Ga-doped boron nitride sheet to enhance the adsorption energy of glucose and glucosamine. The results of our work can be potentially utilized when designing support templates for glucose and glucosamine.

  16. Effect of the hexagonal phase interlayer on rectification properties of boron nitride heterojunctions to silicon

    NASA Astrophysics Data System (ADS)

    Teii, K.; Ito, H.; Katayama, N.; Matsumoto, S.

    2015-02-01

    Rectification properties of boron nitride/silicon p-n heterojunction diodes fabricated under low-energy ion impact by plasma-enhanced chemical vapor deposition are studied in terms of the resistive sp2-bonded boron nitride (sp2BN) interlayer. A two-step biasing technique is developed to control the fraction of cubic boron nitride (cBN) phase and, hence, the thickness of the sp2BN interlayer in the films. The rectification ratio at room temperature is increased up to the order of 104 at ±10 V of biasing with increasing the sp2BN thickness up to around 130 nm due to suppression of the reverse leakage current. The variation of the ideality factor in the low bias region is related to the interface disorders and defects, not to the sp2BN thickness. The forward current follows the Frenkel-Poole emission model in the sp2BN interlayer at relatively high fields when the anomalous effect is assumed. The transport of the minority carriers for reverse current is strongly limited by the high bulk resistance of the thick sp2BN interlayer, while that of the major carriers for forward current is much less affected.

  17. The mechanism for low temperature growth of vertically aligned boron nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, Jiesheng; Xie, Ming; Khin Yap, Yoke

    2006-03-01

    Boron nitride nanotubes (BNNTs) are well recognized as the candidate that will complement the uses of carbon nanotubes (CNTs) in nanotechnology. However, high growth temperatures (>1100 ^oC), low production yield, and impurities have prevented effective synthesis and applications of boron nitride nanotubes (BNNTs) in the past ten years. For the first time, we have succeeded on the growth of pure BNNTs on substrates [1, 2]. This has been realized based on our experiences of growing CNTs and boron nitride (BN) phases (cubic phase BN, hexagonal phase BN). According to our hypothetical model, energetic growth species play an important role on controlling the phases of BN solids. We have experimentally verified that BNNTs can be grown by energetic growth species by a plasma-enhanced pulsed laser deposition (PEPLD) technique. These BNNTs can be grown vertically aligned into arrays of regular patterns at 600 ^oC, and can be used for applications without purification. The growth mechanism of thee BNNTs will be discussed. [1]. Yap et al., Bull APS Vol 50, 1346-1347 (March 2005). [2]. Wang et al., nano Letters (2005) ASAP, DOI: 10.1021/nl051859n.

  18. Characterization and growth mechanisms of boron nitride films synthesized by ion-beam-assisted deposition

    NASA Astrophysics Data System (ADS)

    Burat, O.; Bouchier, D.; Stambouli, V.; Gautherin, G.

    1990-09-01

    We have studied boron nitride films deposited at room temperature by ion-beam-assisted deposition in an ultrahigh vacuum apparatus, with ion accelerating voltages ranging between 0.25 and 2 kV. By using complementarily in situ Auger electron spectrometry and ex situ nuclear analyses to determine the respective surface and bulk N concentrations in the deposited films, we were able to identify the different phases of the mechanism leading to the nitridation of evaporated boron by nitrogen ions. For low nitrogen/boron flux ratios, the incorporation of nitrogen seems to be only governed by ion implantation, and, with respect to the depth of the deposit, the surface is found largely depleted in nitrogen, while the N-incorporation yield remains close to one whatever the ion energy. Such a behavior is well verified as long as a critical bulk nitrogen concentration close to 5.5×1022 cm-3 has not been achieved. For concentrations greater than this, superstoichiometric material is obtained up to a saturation which corresponds to a bulk N incorporation ranging from 6 to 7×1022 cm-3. Further increase of the N/B flux ratio induces a strong diffusion process from N-rich bulk to N-depleted surface, which results in the nitridation of surface boron atoms and a loss of nitrogen by sputtering or desorption. The density measurements seem to indicate that the synthesized phase is close to h-BN. However, the density of B-rich layers ([N]/[B]≊0.2-0.3) is found to be very close to that calculated for a mixture of pure boron and c-BN. The transparency and microhardness of the synthesized BN have satisfying values for its application as a wear-resistant optical coating, but it is not c-BN.

  19. Synthesis of large and few atomic layers of hexagonal boron nitride on melted copper.

    PubMed

    Khan, Majharul Haque; Huang, Zhenguo; Xiao, Feng; Casillas, Gilberto; Chen, Zhixin; Molino, Paul J; Liu, Hua Kun

    2015-01-01

    Hexagonal boron nitride nanosheets (h-BNNS) have been proposed as an ideal substrate for graphene-based electronic devices, but the synthesis of large and homogeneous h-BNNS is still challenging. In this contribution, we report a facile synthesis of few-layer h-BNNS on melted copper via an atmospheric pressure chemical vapor deposition process. Comparative studies confirm the advantage of using melted copper over solid copper as a catalyst substrate. The former leads to the formation of single crystalline h-BNNS that is several microns in size and mostly in mono- and bi-layer forms, in contrast to the polycrystalline and mixed multiple layers (1-10) yielded by the latter. This difference is likely to be due to the significantly reduced and uniformly distributed nucleation sites on the smooth melted surface, in contrast to the large amounts of unevenly distributed nucleation sites that are associated with grain boundaries and other defects on the solid surface. This synthesis is expected to contribute to the development of large-scale manufacturing of h-BNNS/graphene-based electronics. PMID:25582557

  20. Preparation of cubic boron nitride thin film by the helicon wave plasma enhanced chemical vapor deposition

    SciTech Connect

    Kim, S.; Kim, I.; Kim, K.

    1996-12-01

    Cubic boron nitride ({ital c}-BN) film was deposited on Si(100) substrate using the chemical vapor deposition process assisted by high density plasma of Helicon wave with Borazine (B{sub 3}N{sub 3}H{sub 6}) precursor. It was found that the bombardment of ions with high flux and energy onto the film was necessarily required for synthesizing a {ital c}-BN film. Increasing a negative rf bias on the substrate increased the formation fraction of {ital c}-BN in the film. A nearly pure {ital c}-BN phase was synthesized at the conditions of plasma density in the reactor and rf substrate bias, above 10{sup 11} cm{sup {minus}3} and {minus}350 V, respectively. The phase identification of BN film was carried out by the transmission electron microscopy as well as Fourier transformed infrared spectroscopy. The infrared spectra for {ital c}-BN film synthesized at the rf bias of {minus}350 V appeared at 1093 cm{sup {minus}1} with a strong single peak, which is close to a value for the characteristic vibration mode of bulk {ital c}-BN (1065 cm{sup {minus}1}). The {ital c}-BN in the film was also confirmed and found to be a fine poly-crystalline with the grain sizes ranging from 200 to 400 A. {copyright} {ital 1996 American Institute of Physics.}

  1. Synthesis of Large and Few Atomic Layers of Hexagonal Boron Nitride on Melted Copper

    PubMed Central

    Khan, Majharul Haque; Huang, Zhenguo; Xiao, Feng; Casillas, Gilberto; Chen, Zhixin; Molino, Paul J.; Liu, Hua Kun

    2015-01-01

    Hexagonal boron nitride nanosheets (h-BNNS) have been proposed as an ideal substrate for graphene-based electronic devices, but the synthesis of large and homogeneous h-BNNS is still challenging. In this contribution, we report a facile synthesis of few-layer h-BNNS on melted copper via an atmospheric pressure chemical vapor deposition process. Comparative studies confirm the advantage of using melted copper over solid copper as a catalyst substrate. The former leads to the formation of single crystalline h-BNNS that is several microns in size and mostly in mono- and bi-layer forms, in contrast to the polycrystalline and mixed multiple layers (1–10) yielded by the latter. This difference is likely to be due to the significantly reduced and uniformly distributed nucleation sites on the smooth melted surface, in contrast to the large amounts of unevenly distributed nucleation sites that are associated with grain boundaries and other defects on the solid surface. This synthesis is expected to contribute to the development of large-scale manufacturing of h-BNNS/graphene-based electronics. PMID:25582557

  2. Theoretical demonstration of the potentiality of boron nitride nanotubes to encapsulate anticancer molecule.

    PubMed

    El Khalifi, Mohammed; Duverger, Eric; Gharbi, Tijani; Boulahdour, Hatem; Picaud, Fabien

    2015-11-28

    Anticancer drug transport is now becoming an important scientific challenge since it would allow localizing the drug release near the tumor cell, avoiding secondary medical effects. We present theoretical results, based on density functional theory and molecular dynamics simulations, which demonstrate the stability of functionalized single (10,10) boron nitride nanotubes (BNNTs) filled with anticancer molecule such as carboplatin (CPT). For this functionalized system we determine the dependence of the adsorption energy on the molecule displacement near the inner BNNTs surface, together with their local morphological and electrical changes and compare the values to the adsorption energy obtained on the outer surface. Quantum simulations show that the most stable physisorption state is located inside the nanotube, with no net charge transfer. This demonstrates that chemotherapeutic encapsulation is the most favorable way to transport drug molecules. The solvent effect and dispersion repulsion contributions are then taken into account using molecular dynamics simulations. Our results confirm that carboplatin therapeutic agents are not affected when they are adsorbed inside BNNTs by the surrounding water molecules. PMID:26498990

  3. Boosting sensitivity of boron nitride nanotube (BNNT) to nitrogen dioxide by Fe encapsulation.

    PubMed

    Zhang, Yu-qing; Liu, Yue-Jie; Liu, Yan-ling; Zhao, Jing-xiang

    2014-06-01

    The pristine boron nitride nanotube (BNNT) exhibits a poor chemical reactivity to some adsorbates, thus greatly limiting its application for the gas sensor. In the present work, using density functional theory (DFT) methods, we put forward a novel strategy to enhance the sensitivity of BNNT to nitrogen dioxide (NO2) by the encapsulation of a single Fe atom inside its cavity. The results suggest that the NO2 molecule can be only physically adsorbed on the pristine BNNT with a small adsorption energy (-0.10 eV). After the inclusion of the Fe atom inside BNNT (Fe@BNNT), the interaction of NO2 molecules with this tube is significantly enhanced, leading to a transformation from the physisorption of on pristine BNNT to the current chemisorption. Interestingly, up to five NO2 molecules can be adsorbed on this encapsulated BNNT along its circumference with the average adsorption energy of -0.52 eV, corresponding to a short recovery time (6 ms). Moreover, 0.38 electrons are transferred from the Fe@BNNT to the adsorbed NO2 molecules, which is enough to induce the obvious change of its electrical conductance. Thus, we predict that the encapsulation of Fe atom inside BNNT would greatly boosts its sensitivity to NO2 molecules, indicating its potential application as NO2 sensors. PMID:24837498

  4. Non-covalent functionalization of hexagonal boron nitride nanosheets with guanine.

    PubMed

    Anota, E Chigo; Tlapale, Y; Villanueva, M Salazar; Márquez, J A Rivera

    2015-08-01

    Density functional theory (DFT) calculations were performed to analyze changes in the structural and electronic properties generated by the interaction of a single nucleobase group (guanine) with the surface of boron nitride nanosheets with hexagonal symmetry (hBNNs). Nanosheets in two contexts were tested: pristine sheets and with point defects (doped with carbon atoms). The criterion of energy minimum was used to find the ground state of the nine possible isomers generated by the hBNNs-guanine interaction. The phenomenon of physisorption is known to occur at values less than 1.0 eV; the adsorption energy results revealed that the preferential geometry was a parallel arrangement between the two partners, with van der Waals-type bonds generated for the hBNNs doped with two carbon atoms. This was the only energetically stable configuration, thus revealing a vibrational mode rather than imaginaries. Furthermore, the hBNNs/C-guanine system has a low value for work function, and therefore could be used in health applications such drug transport and delivery. The increased polarity values suggest that these nanosheets could be solubilized in common solvents used in experimental processes. PMID:26227065

  5. Chemical vapor deposition and etching of high-quality monolayer hexagonal boron nitride films.

    PubMed

    Sutter, Peter; Lahiri, Jayeeta; Albrecht, Peter; Sutter, Eli

    2011-09-27

    The growth of large-area hexagonal boron nitride (h-BN) monolayers on catalytic metal substrates is a topic of scientific and technological interest. We have used real-time microscopy during the growth process to study h-BN chemical vapor deposition (CVD) from borazine on Ru(0001) single crystals and thin films. At low borazine pressures, individual h-BN domains nucleate sparsely, grow to macroscopic dimensions, and coalescence to form a closed monolayer film. A quantitative analysis shows borazine adsorption and dissociation predominantly on Ru, with the h-BN covered areas being at least 100 times less reactive. We establish strong effects of hydrogen added to the CVD precursor gas in controlling the in-plane expansion and morphology of the growing h-BN domains. High-temperature exposure of h-BN/Ru to pure hydrogen causes the controlled edge detachment of B and N and can be used as a clean etching process for h-BN on metals. PMID:21793550

  6. Layered insulator hexagonal boron nitride for surface passivation in quantum dot solar cell

    SciTech Connect

    Shanmugam, Mariyappan; Jain, Nikhil; Jacobs-Gedrim, Robin; Yu, Bin; Xu, Yang

    2013-12-09

    Single crystalline, two dimensional (2D) layered insulator hexagonal boron nitride (h-BN), is demonstrated as an emerging material candidate for surface passivation on mesoporous TiO{sub 2}. Cadmium selenide (CdSe) quantum dot based bulk heterojunction (BHJ) solar cell employed h-BN passivated TiO{sub 2} as an electron acceptor exhibits photoconversion efficiency ∼46% more than BHJ employed unpassivated TiO{sub 2}. Dominant interfacial recombination pathways such as electron capture by TiO{sub 2} surface states and recombination with hole at valence band of CdSe are efficiently controlled by h-BN enabled surface passivation, leading to improved photovoltaic performance. Highly crystalline, confirmed by transmission electron microscopy, dangling bond-free 2D layered h-BN with self-terminated atomic planes, achieved by chemical exfoliation, enables efficient passivation on TiO{sub 2}, allowing electronic transport at TiO{sub 2}/h-BN/CdSe interface with much lower recombination rate compared to an unpassivated TiO{sub 2}/CdSe interface.

  7. The vibration properties of the (n,0) boron nitride nanotubes from ab initio quantum chemical simulations

    NASA Astrophysics Data System (ADS)

    Erba, A.; Ferrabone, M.; Baima, J.; Orlando, R.; Rérat, M.; Dovesi, R.

    2013-02-01

    The vibration spectrum of single-walled zigzag boron nitride (BN) nanotubes is simulated with an ab initio periodic quantum chemical method. The trend towards the hexagonal monolayer (h-BN) in the limit of large tube radius R is explored for a variety of properties related to the vibrational spectrum: vibration frequencies, infrared intensities, oscillator strengths, and vibration contributions to the polarizability tensor. The (n,0) family is investigated in the range from n = 6 (24 atoms in the unit cell and tube radius R = 2.5 Å) to n = 60 (240 atoms in the cell and R = 24.0 Å). Simulations are performed using the CRYSTAL program which fully exploits the rich symmetry of this class of one-dimensional periodic systems: 4n symmetry operators for the general (n,0) tube. Three sets of infrared active phonon bands are found in the spectrum. The first one lies in the 0-600 cm-1 range and goes regularly to zero when R increases; the connection between these normal modes and the elastic and piezoelectric constants of h-BN is discussed. The second (600-800 cm-1) and third (1300-1600 cm-1) sets tend regularly, but with quite different speed, to the optical modes of the h-BN layer. The vibrational contribution of these modes to the two components (parallel and perpendicular) of the polarizability tensor is also discussed.

  8. Direct growth of nanocrystalline hexagonal boron nitride films on dielectric substrates

    SciTech Connect

    Tay, Roland Yingjie; Tsang, Siu Hon; Loeblein, Manuela; Chow, Wai Leong; Loh, Guan Chee; Toh, Joo Wah; Ang, Soon Loong; Teo, Edwin Hang Tong

    2015-03-09

    Atomically thin hexagonal-boron nitride (h-BN) films are primarily synthesized through chemical vapor deposition (CVD) on various catalytic transition metal substrates. In this work, a single-step metal-catalyst-free approach to obtain few- to multi-layer nanocrystalline h-BN (NCBN) directly on amorphous SiO{sub 2}/Si and quartz substrates is demonstrated. The as-grown thin films are continuous and smooth with no observable pinholes or wrinkles across the entire deposited substrate as inspected using optical and atomic force microscopy. The starting layers of NCBN orient itself parallel to the substrate, initiating the growth of the textured thin film. Formation of NCBN is due to the random and uncontrolled nucleation of h-BN on the dielectric substrate surface with no epitaxial relation, unlike on metal surfaces. The crystallite size is ∼25 nm as determined by Raman spectroscopy. Transmission electron microscopy shows that the NCBN formed sheets of multi-stacked layers with controllable thickness from ∼2 to 25 nm. The absence of transfer process in this technique avoids any additional degradation, such as wrinkles, tears or folding and residues on the film which are detrimental to device performance. This work provides a wider perspective of CVD-grown h-BN and presents a viable route towards large-scale manufacturing of h-BN substrates and for coating applications.

  9. Migrations of pentagon-heptagon defects in hexagonal boron nitride monolayer: the first-principles study.

    PubMed

    Wang, J; Li, S N; Liu, J B

    2015-04-16

    The first-principles calculations are employed to study the migrations of pentagon-heptagon (5-7) defects in hexagonal boron nitride monolayer (h-BN). A type of grain boundaries, consisted of 5-7 defects, is constructed on the basis of experimental observations. With the absorption of a pair of atoms, one 5-7 defect in the grain boundary migrates apart by one unit cell and afterward migrates again through the bond rotation. It is also found that the two migrations could be replaced by one single step when the pair of absorbed atoms is located at another specific site in the same heptagon. Energy barriers and reaction paths for the migrations of 5-7 defects in h-BN by the bond rotation are theoretically investigated by the standard nudged elastic band method and the generalized solid-state nudged elastic band method. To elucidate the difference between the bond rotation process of the 5-7 defects with N-N bonds and those with B-B bonds, a couple of typical 21.7° grain boundaries with either N-N or B-B bonds are investigated. It is shown that the energy barrier of the migration of defects with N-N bonds is lower than that with B-B bonds in this type of grain boundaries. PMID:25811102

  10. Suppressing bacterial interaction with copper surfaces through graphene and hexagonal-boron nitride coatings.

    PubMed

    Parra, Carolina; Montero-Silva, Francisco; Henríquez, Ricardo; Flores, Marcos; Garín, Carolina; Ramírez, Cristian; Moreno, Macarena; Correa, Jonathan; Seeger, Michael; Häberle, Patricio

    2015-04-01

    Understanding biological interaction with graphene and hexagonal-boron nitride (h-BN) membranes has become essential for the incorporation of these unique materials in contact with living organisms. Previous reports show contradictions regarding the bacterial interaction with graphene sheets on metals. Here, we present a comprehensive study of the interaction of bacteria with copper substrates coated with single-layer graphene and h-BN. Our results demonstrate that such graphitic coatings substantially suppress interaction between bacteria and underlying Cu substrates, acting as an effective barrier to prevent physical contact. Bacteria do not "feel" the strong antibacterial effect of Cu, and the substrate does not suffer biocorrosion due to bacteria contact. Effectiveness of these systems as barriers can be understood in terms of graphene and h-BN impermeability to transfer Cu(2+) ions, even when graphene and h-BN domain boundary defects are present. Our results seem to indicate that as-grown graphene and h-BN films could successfully protect metals, preventing their corrosion in biological and medical applications. PMID:25774864

  11. Highly confined low-loss plasmons in graphene-boron nitride heterostructures

    NASA Astrophysics Data System (ADS)

    Woessner, Achim; Lundeberg, Mark B.; Gao, Yuanda; Principi, Alessandro; Alonso-González, Pablo; Carrega, Matteo; Watanabe, Kenji; Taniguchi, Takashi; Vignale, Giovanni; Polini, Marco; Hone, James; Hillenbrand, Rainer; Koppens, Frank H. L.

    2015-04-01

    Graphene plasmons were predicted to possess simultaneous ultrastrong field confinement and very low damping, enabling new classes of devices for deep-subwavelength metamaterials, single-photon nonlinearities, extraordinarily strong light-matter interactions and nano-optoelectronic switches. Although all of these great prospects require low damping, thus far strong plasmon damping has been observed, with both impurity scattering and many-body effects in graphene proposed as possible explanations. With the advent of van der Waals heterostructures, new methods have been developed to integrate graphene with other atomically flat materials. In this Article we exploit near-field microscopy to image propagating plasmons in high-quality graphene encapsulated between two films of hexagonal boron nitride (h-BN). We determine the dispersion and plasmon damping in real space. We find unprecedentedly low plasmon damping combined with strong field confinement and confirm the high uniformity of this plasmonic medium. The main damping channels are attributed to intrinsic thermal phonons in the graphene and dielectric losses in the h-BN. The observation and in-depth understanding of low plasmon damping is the key to the development of graphene nanophotonic and nano-optoelectronic devices.

  12. Direct growth of nanocrystalline hexagonal boron nitride films on dielectric substrates

    NASA Astrophysics Data System (ADS)

    Tay, Roland Yingjie; Tsang, Siu Hon; Loeblein, Manuela; Chow, Wai Leong; Loh, Guan Chee; Toh, Joo Wah; Ang, Soon Loong; Teo, Edwin Hang Tong

    2015-03-01

    Atomically thin hexagonal-boron nitride (h-BN) films are primarily synthesized through chemical vapor deposition (CVD) on various catalytic transition metal substrates. In this work, a single-step metal-catalyst-free approach to obtain few- to multi-layer nanocrystalline h-BN (NCBN) directly on amorphous SiO2/Si and quartz substrates is demonstrated. The as-grown thin films are continuous and smooth with no observable pinholes or wrinkles across the entire deposited substrate as inspected using optical and atomic force microscopy. The starting layers of NCBN orient itself parallel to the substrate, initiating the growth of the textured thin film. Formation of NCBN is due to the random and uncontrolled nucleation of h-BN on the dielectric substrate surface with no epitaxial relation, unlike on metal surfaces. The crystallite size is ˜25 nm as determined by Raman spectroscopy. Transmission electron microscopy shows that the NCBN formed sheets of multi-stacked layers with controllable thickness from ˜2 to 25 nm. The absence of transfer process in this technique avoids any additional degradation, such as wrinkles, tears or folding and residues on the film which are detrimental to device performance. This work provides a wider perspective of CVD-grown h-BN and presents a viable route towards large-scale manufacturing of h-BN substrates and for coating applications.

  13. Synthesis of Large and Few Atomic Layers of Hexagonal Boron Nitride on Melted Copper

    NASA Astrophysics Data System (ADS)

    Khan, Majharul Haque; Huang, Zhenguo; Xiao, Feng; Casillas, Gilberto; Chen, Zhixin; Molino, Paul J.; Liu, Hua Kun

    2015-01-01

    Hexagonal boron nitride nanosheets (h-BNNS) have been proposed as an ideal substrate for graphene-based electronic devices, but the synthesis of large and homogeneous h-BNNS is still challenging. In this contribution, we report a facile synthesis of few-layer h-BNNS on melted copper via an atmospheric pressure chemical vapor deposition process. Comparative studies confirm the advantage of using melted copper over solid copper as a catalyst substrate. The former leads to the formation of single crystalline h-BNNS that is several microns in size and mostly in mono- and bi-layer forms, in contrast to the polycrystalline and mixed multiple layers (1-10) yielded by the latter. This difference is likely to be due to the significantly reduced and uniformly distributed nucleation sites on the smooth melted surface, in contrast to the large amounts of unevenly distributed nucleation sites that are associated with grain boundaries and other defects on the solid surface. This synthesis is expected to contribute to the development of large-scale manufacturing of h-BNNS/graphene-based electronics.

  14. Band-gap engineering via tailored line defects in boron-nitride nanoribbons, sheets, and nanotubes.

    PubMed

    Li, Xiuling; Wu, Xiaojun; Zeng, Xiao Cheng; Yang, Jinlong

    2012-05-22

    We perform a comprehensive study of the effects of line defects on electronic and magnetic properties of monolayer boron-nitride (BN) sheets, nanoribbons, and single-walled BN nanotubes using first-principles calculations and Born-Oppenheimer quantum molecular dynamic simulation. Although line defects divide the BN sheet (or nanotube) into domains, we show that certain line defects can lead to tailor-made edges on BN sheets (or imperfect nanotube) that can significantly reduce the band gap of the BN sheet or nanotube. In particular, we find that the line-defect-embedded zigzag BN nanoribbons (LD-zBNNRs) with chemically homogeneous edges such as B- or N-terminated edges can be realized by introducing a B(2), N(2), or C(2) pentagon-octagon-pentagon (5-8-5) line defect or through the creation of the antisite line defect. The LD-zBNNRs with only B-terminated edges are predicted to be antiferromagnetic semiconductors at the ground state, whereas the LD-zBNNRs with only N-terminated edges are metallic with degenerated antiferromagnetic and ferromagnetic states. In addition, we find that the hydrogen-passivated LD-zBNNRs as well as line-defect-embedded BN sheets (and nanotubes) are nonmagnetic semiconductors with markedly reduced band gap. The band gap reduction is attributed to the line-defect-induced impurity states. Potential applications of line-defect-embedded BN nanomaterials include nanoelectronic and spintronic devices. PMID:22482995

  15. Synergistic Behavior of Tubes, Junctions, and Sheets Imparts Mechano-Mutable Functionality in 3D Porous Boron Nitride Nanostructures

    PubMed Central

    2015-01-01

    One-dimensional (1D) boron nitride nanotube (BNNT) and 2D hexagonal BN (h-BN) are attractive for demonstrating fundamental physics and promising applications in nano-/microscale devices. However, there is a high anisotropy associated with these BN allotropes as their excellent properties are either along the tube axis or in-plane directions, posing an obstacle in their widespread use in technological and industrial applications. Herein, we report a series of 3D BN prototypes, namely, pillared boron nitride (PBN), by fusing single-wall BNNT and monolayer h-BN aimed at filling this gap. We use density functional theory and molecular dynamics simulations to probe the diverse mechano-mutable properties of PBN prototypes. Our results demonstrate that the synergistic effect of the tubes, junctions, and sheets imparts cooperative deformation mechanisms, which overcome the intrinsic limitations of the PBN constituents and provide a number of superior characteristics including 3D balance of strength and toughness, emergence of negative Poisson’s ratio, and elimination of strain softening along the armchair orientation. These features, combined with the ultrahigh surface area and lightweight structure, render PBN as a 3D multifunctional template for applications in graphene-based nanoelectronics, optoelectronics, gas storage, and functional composites with fascinating in-plane and out-of-plane tailorable properties. PMID:25289114

  16. Synthesis of cubic boron nitride films with mean ion energies of a few eV

    SciTech Connect

    Teii, Kungen; Yamao, Ryota; Yamamura, Toshifumi; Matsumoto, Seiichiro

    2007-02-01

    The lowest threshold energy of ion bombardment for cubic boron nitride (cBN) film deposition is presented. cBN films are prepared on positively biased Si (100) substrates from boron trifluoride (BF{sub 3}) gas in the high-density source region of an inductively coupled plasma with mean ion impact energies from 45 down to a few eV or less. The great decrease in the threshold ion energy is mainly attributed to specific chemical effects of fluorine as well as high ion-to-boron flux ratios. The results show evidence for the existence of a way to deposit cBN films through quasistatic chemical processes under ultralow-energy ion impact.

  17. Laser-initiated primary and secondary nuclear reactions in Boron-Nitride.

    PubMed

    Labaune, C; Baccou, C; Yahia, V; Neuville, C; Rafelski, J

    2016-01-01

    Nuclear reactions initiated by laser-accelerated particle beams are a promising new approach to many applications, from medical radioisotopes to aneutronic energy production. We present results demonstrating the occurrence of secondary nuclear reactions, initiated by the primary nuclear reaction products, using multicomponent targets composed of either natural boron (B) or natural boron nitride (BN). The primary proton-boron reaction (p + (11)B → 3 α + 8.7 MeV), is one of the most attractive aneutronic fusion reaction. We report radioactive decay signatures in targets irradiated at the Elfie laser facility by laser-accelerated particle beams which we interpret as due to secondary reactions induced by alpha (α) particles produced in the primary reactions. Use of a second nanosecond laser beam, adequately synchronized with the short laser pulse to produce a plasma target, further enhanced the reaction rates. High rates and chains of reactions are essential for most applications. PMID:26882988

  18. Physicochemical properties of armchair non-stoichiometric boron nitride nanotubes: A density functional theory analysis

    NASA Astrophysics Data System (ADS)

    Chigo Anota, Ernesto; Salazar Villanueva, Martin; García Toral, Dolores; Tepech Carrillo, Lorenzo; Melchor Martínez, Maria del Rosario

    2016-01-01

    DFT-GGA calculations were carried out in order to analyze the structural and electronic properties of Boron Nitride nanotubes (BNNTs) for two cases: pristine and non-stoichiometric, this last rich in atoms of Nitrogen as Boron. After geometric optimization process, the doped BNNTs present an important reduction on values of HOMO-LUMO gap versus pristine case, as well as these systems have high polarity and low chemical reactivity. This effect in particular is enhanced for the nanotube with excess in Boron atoms moreover this indicates its potential application as drug delivery. An important structural feature was found for the above system due to they show very similar geometry with respect to B40 fullerene. The doped BNNTs possess low values of work function which fits to design devices for different applications.

  19. Laser-initiated primary and secondary nuclear reactions in Boron-Nitride

    NASA Astrophysics Data System (ADS)

    Labaune, C.; Baccou, C.; Yahia, V.; Neuville, C.; Rafelski, J.

    2016-02-01

    Nuclear reactions initiated by laser-accelerated particle beams are a promising new approach to many applications, from medical radioisotopes to aneutronic energy production. We present results demonstrating the occurrence of secondary nuclear reactions, initiated by the primary nuclear reaction products, using multicomponent targets composed of either natural boron (B) or natural boron nitride (BN). The primary proton-boron reaction (p + 11B → 3 α + 8.7 MeV), is one of the most attractive aneutronic fusion reaction. We report radioactive decay signatures in targets irradiated at the Elfie laser facility by laser-accelerated particle beams which we interpret as due to secondary reactions induced by alpha (α) particles produced in the primary reactions. Use of a second nanosecond laser beam, adequately synchronized with the short laser pulse to produce a plasma target, further enhanced the reaction rates. High rates and chains of reactions are essential for most applications.

  20. Laser-initiated primary and secondary nuclear reactions in Boron-Nitride

    PubMed Central

    Labaune, C.; Baccou, C.; Yahia, V.; Neuville, C.; Rafelski, J.

    2016-01-01

    Nuclear reactions initiated by laser-accelerated particle beams are a promising new approach to many applications, from medical radioisotopes to aneutronic energy production. We present results demonstrating the occurrence of secondary nuclear reactions, initiated by the primary nuclear reaction products, using multicomponent targets composed of either natural boron (B) or natural boron nitride (BN). The primary proton-boron reaction (p + 11B → 3 α + 8.7 MeV), is one of the most attractive aneutronic fusion reaction. We report radioactive decay signatures in targets irradiated at the Elfie laser facility by laser-accelerated particle beams which we interpret as due to secondary reactions induced by alpha (α) particles produced in the primary reactions. Use of a second nanosecond laser beam, adequately synchronized with the short laser pulse to produce a plasma target, further enhanced the reaction rates. High rates and chains of reactions are essential for most applications. PMID:26882988

  1. Properties of depth-profile controlled boron nitride films prepared by ion-beam assisted deposition

    NASA Astrophysics Data System (ADS)

    Kumagai, M.; Suzuki, M.; Suzuki, T.; Tanaka, Y.; Setsuhara, Y.; Miyake, S.; Ogata, K.; Kohata, M.; Higeta, K.; Einishi, T.; Suzuki, Y.; Shimoitani, Y.; Motonami, Y.

    1997-05-01

    Boron nitride films were prepared by vapor deposition of boron and simultaneous bombardment with mixed gas ions of nitrogen and argon in the energy range of 0.2 to 20 keV. The films were prepared on various kinds of substrates including silicon wafers, tungsten carbide plates and various ceramic plates at a temperature of 400°C. In the synthesis of the BN films, a boron-rich buffer layer between the substrate and the BN film was formed by energetic nitrogen ion beam bombardment, improving tribological properties such as the depth-profile controlled layer. The buffer layer improved film adhesion, and chemical stability, thermal stability at elevated temperature and corrosion resistance of the BN films also gave good results.

  2. Synthesis and characterization of hexagonal boron nitride for integration with graphene electronics

    NASA Astrophysics Data System (ADS)

    Bresnehan, Michael S.

    Hexagonal boron nitride (h-BN) has attracted increased interest as a dielectric material to graphene electronics. Traditional dielectrics, such as SiO2 or various high-k materials, can introduce scattering from charged surface states, impurities, surface optical phonons, and substrate roughness; significantly degrading the transport properties of graphene. Hexagonal boron nitride boasts several key advantages over SiO2 and high-k dielectrics. Most notably, it exhibits an atomically smooth surface that is expected to be free of dangling bonds, leading to an interface that is relatively free of surface charge traps and adsorbed impurities. Additionally, h- BN's high energy surface optical phonon modes lead to reduced phonon scattering from the dielectric. Using h-BN (grown via CVD on copper foil) as a gate dielectric to quasi-freestanding epitaxial graphene (QFEG) devices, a >2.5x increase in intrinsic current gain cut-off frequency and a >3x increase in mobility over HfO2 gated devices is obtained. In addition, this thesis presents the transfer-free deposition of boron nitride on sapphire and silicon for use as a supporting substrate to CVD-grown graphene. This is accomplished via a polymer-to-ceramic conversion process involving the deposition of polyborazylene at low temperature (≤400°C) and subsequent annealing at 1000°C to BN. Atomic force microscopy (AFM) confirms the deposition of an ultra smooth (RMS roughness <130pm) h-BN film without the need for a solution-based transfer process. However, x-ray photoelectron spectroscopy (XPS) shows that the stoichiometry is dependent on the initial polyborazylene deposition temperature. Despite a turbostratic structure and a boron-rich stoichiometry, CVD graphene transferred to boron nitride films deposited on Al2O3 at a polyborazylene deposition temperature of 400°C is nearly strain-free and results in an improvement in mobility of >1.5x and >2.5x compared to CVD graphene transferred to bare Al2O3 and SiO2

  3. The influence of Cu-doping on aluminum nitride, silicon carbide and boron nitride nanotubes’ ability to detect carbon dioxide; DFT study

    NASA Astrophysics Data System (ADS)

    Mahdavifar, Zabiollah; Abbasi, Nasibeh

    2014-02-01

    In this research, the potential use of Cu-functionalized [4,4] silicon carbide (SiC), aluminum nitride (AlN) and boron nitride (BN) single-walled nanotubes as nanodevices for CO2 monitoring is investigated. It is found that Cu-doping the different sites of the considered nanotubes and combining these nanotubes with CO2 gas molecules are both exothermic processes, and the relaxed geometries are stable. Our results reveal that the CO2 gas molecules can be strongly physisorbed on the Cu-doped nanotubes, accompanied by large adsorption energy. Compared with the weak adsorption of CO2 molecule onto pristine BNNT and SiCNT, the CO2 molecule tends to be strongly physisorbed onto Cu-decorated BNNT and SiCNT with an appreciable adsorption energy. Furthermore, the results indicate that Cu-functionalized SiCNT is more favorable than Cu-doped BNNT and AlNNT structures for CO2 adsorption. Natural bond orbital analysis indicates that the adsorption of a CO2 molecule onto Cu-doped nanotubes is influenced by the electronic conductance and mechanical properties of the nanotube, which could serve as a signal for a gas sensor. It appears that the considerable charge transfer from the Cu-doped nanotubes to a CO2 molecule reduces the energy gap. These observations suggest that the Cu-doped-SiCNT, -BNNT and -AlNNT can be introduced as promising candidates for gas sensor devices that detect CO2 molecules.

  4. Defect charge states in Si doped hexagonal boron-nitride monolayer

    NASA Astrophysics Data System (ADS)

    Mapasha, R. E.; Molepo, M. P.; Andrew, R. C.; Chetty, N.

    2016-02-01

    We perform ab initio density functional theory calculations to investigate the energetics, electronic and magnetic properties of isolated stoichiometric and non-stoichiometric substitutional Si complexes in a hexagonal boron-nitride monolayer. The Si impurity atoms substituting the boron atom sites SiB giving non-stoichiometric complexes are found to be the most energetically favourable, and are half-metallic and order ferromagnetically in the neutral charge state. We find that the magnetic moments and magnetization energies increase monotonically when Si defects form a cluster. Partial density of states and standard Mulliken population analysis indicate that the half-metallic character and magnetic moments mainly arise from the Si 3p impurity states. The stoichiometric Si complexes are energetically unfavorable and non-magnetic. When charging the energetically favourable non-stoichiometric Si complexes, we find that the formation energies strongly depend on the impurity charge states and Fermi level position. We also find that the magnetic moments and orderings are tunable by charge state modulation q  =  -2, -1, 0, +1, +2. The induced half-metallic character is lost (retained) when charging isolated (clustered) Si defect(s). This underlines the potential of a Si doped hexagonal boron-nitride monolayer for novel spin-based applications.

  5. Dipolar polarization and piezoelectricity of a hexagonal boron nitride sheet decorated with hydrogen and fluorine.

    PubMed

    Noor-A-Alam, Mohammad; Kim, Hye Jung; Shin, Young-Han

    2014-04-14

    In contrast to graphene, a hexagonal boron nitride (h-BN) monolayer is piezoelectric because it is non-centrosymmetric. However, h-BN shows neither in-plane nor out-of-plane dipole moments due to its three-fold symmetry on the plane and the fact that it is completely flat. Here, we show that the controlled adsorption of hydrogen and/or fluorine atoms on both sides of a pristine h-BN sheet induces flatness distortion in a chair form and an out-of plane dipole moment. In contrast, a boat form has no out-of-plane dipole moment due to the alternating boron and nitrogen positions normal to the plane. Consequently, the chair form of surface-modified h-BN shows both in-plane and out-of-plane piezoelectric responses; while pristine h-BN and the boat form of decorated h-BN have only in-plane piezoelectric responses. These in-plane and out-of-plane piezoelectric responses of the modified h-BN are comparable to those in known three-dimensional piezoelectric materials. Such an engineered piezoelectric two-dimensional boron nitride monolayer can be a candidate material for various nano-electromechanical applications. PMID:24569610

  6. Density functional study of manganese atom adsorption on hydrogen-terminated armchair boron nitride nanoribbons

    NASA Astrophysics Data System (ADS)

    Abdullahi, Yusuf Zuntu; Rahman, Md. Mahmudur; Shuaibu, Alhassan; Abubakar, Shamsu; Zainuddin, Hishamuddin; Muhida, Rifki; Setiyanto, Henry

    2014-08-01

    In this paper, we have investigated stable structural, electric and magnetic properties of manganese (Mn) atom adsorption on armchair hydrogen edge-terminated boron nitride nanoribbon (A-BNNRs) using first principles method based on density-functional theory with the generalized gradient approximation. Calculation shows that Mn atom situated on the ribbons of A-BNNRs is the most stable configuration, where the bonding is more pronounced. The projected density of states (PDOS) of the favored configuration has also been computed. It has been found that the covalent bonding of boron (B), nitrogen (N) and Mn is mainly contributed by s, d like-orbitals of Mn and partially occupied by the 2p like-orbital of N. The difference in energy between the inner and the edge adsorption sites of A-BNNRs shows that Mn atoms prefer to concentrate at the edge sites. The electronic structures of the various configurations are wide, narrow-gap semiconducting and half-metallic, and the magnetic moment of Mn atoms are well preserved in all considered configurations. This has shown that the boron nitride (BN) sheet covered with Mn atoms demonstrates additional information on its usefulness in future spintronics, molecular magnet and nanoelectronics devices.

  7. Direct growth of graphene on in situ epitaxial hexagonal boron nitride flakes by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Xu, Zhongguang; Zheng, Renjing; Khanaki, Alireza; Zuo, Zheng; Liu, Jianlin

    2015-11-23

    Hexagonal boron nitride (h-BN) single-crystal domains were grown on cobalt (Co) substrates at a substrate temperature of 850–900 °C using plasma-assisted molecular beam epitaxy. Three-point star shape h-BN domains were observed by scanning electron microscopy, and confirmed by Raman and X-ray photoelectron spectroscopy. The h-BN on Co template was used for in situ growth of multilayer graphene, leading to an h-BN/graphene heterostructure. Carbon atoms preferentially nucleate on Co substrate and edges of h-BN and then grow laterally to form continuous graphene. Further introduction of carbon atoms results in layer-by-layer growth of graphene on graphene and lateral growth of graphene on h-BN until it may cover entire h-BN flakes.

  8. Theoretical study of physisorption of nucleobases on boron nitride nanotubes: a new class of hybrid nano-biomaterials.

    PubMed

    Mukhopadhyay, Saikat; Gowtham, S; Scheicher, Ralph H; Pandey, Ravindra; Karna, Shashi P

    2010-04-23

    We investigate the adsorption of the nucleic acid bases-adenine (A), guanine (G), cytosine (C), thymine (T) and uracil (U)-on the outer wall of a high curvature semiconducting single-walled boron nitride nanotube (BNNT) by first-principles density functional theory calculations. The calculated binding energy shows the order: G > A approximately C approximately T approximately U, implying that the interaction strength of the high curvature BNNT with the nucleobases, G being an exception, is nearly the same. A higher binding energy for the G-BNNT conjugate appears to result from hybridization of the molecular orbitals of G and the BNNT. A smaller energy gap predicted for the G-BNNT conjugate relative to that of the pristine BNNT may be useful in the application of this class of biofunctional materials to the design of next-generation sensing devices. PMID:20351402

  9. Theoretical study of the adsorption of pentachlorophenol on the pristine and Fe-doped boron nitride nanotubes.

    PubMed

    Wang, Ruo-xi; Zhang, Dong-ju; Zhu, Rong-xiu; Liu, Cheng-bu

    2014-02-01

    To explore the novel application of boron nitride nanotubes (BNNTs), we investigated the interaction of pentachlorophenol (PCP) pollutant with the pristine and Fe doped (Fe-doped) (8, 0) single-walled BNNTs by performing density functional theory calculations. Compared with the weak physisorption on the pristine BNNT, PCP molecule presents strong chemisorption on the Fe-doped BNNT. The calculated data for the electronic properties indicate that doping Fe atom into the BNNT significantly improves the electronic transport property of BNNT, induces magnetism in the BNNT, and increases its adsorption sensitivity toward PCP molecule. It is suggested that doping BNNTs with Fe is an available strategy for improving the properties of BNNTs, and that Fe-doped BNNT would be a potential resource for adsorbing PCP pollutant in environments. PMID:24504454

  10. Enhanced optoelectronic performances of vertically aligned hexagonal boron nitride nanowalls-nanocrystalline diamond heterostructures

    NASA Astrophysics Data System (ADS)

    Sankaran, Kamatchi Jothiramalingam; Hoang, Duc Quang; Kunuku, Srinivasu; Korneychuk, Svetlana; Turner, Stuart; Pobedinskas, Paulius; Drijkoningen, Sien; van Bael, Marlies K.; D’ Haen, Jan; Verbeeck, Johan; Leou, Keh-Chyang; Lin, I.-Nan; Haenen, Ken

    2016-07-01

    Field electron emission (FEE) properties of vertically aligned hexagonal boron nitride nanowalls (hBNNWs) grown on Si have been markedly enhanced through the use of nitrogen doped nanocrystalline diamond (nNCD) films as an interlayer. The FEE properties of hBNNWs-nNCD heterostructures show a low turn-on field of 15.2 V/μm, a high FEE current density of 1.48 mA/cm2 and life-time up to a period of 248 min. These values are far superior to those for hBNNWs grown on Si substrates without the nNCD interlayer, which have a turn-on field of 46.6 V/μm with 0.21 mA/cm2 FEE current density and life-time of 27 min. Cross-sectional TEM investigation reveals that the utilization of the diamond interlayer circumvented the formation of amorphous boron nitride prior to the growth of hexagonal boron nitride. Moreover, incorporation of carbon in hBNNWs improves the conductivity of hBNNWs. Such a unique combination of materials results in efficient electron transport crossing nNCD-to-hBNNWs interface and inside the hBNNWs that results in enhanced field emission of electrons. The prospective application of these materials is manifested by plasma illumination measurements with lower threshold voltage (370 V) and longer life-time, authorizing the role of hBNNWs-nNCD heterostructures in the enhancement of electron emission.

  11. Enhanced optoelectronic performances of vertically aligned hexagonal boron nitride nanowalls-nanocrystalline diamond heterostructures

    PubMed Central

    Sankaran, Kamatchi Jothiramalingam; Hoang, Duc Quang; Kunuku, Srinivasu; Korneychuk, Svetlana; Turner, Stuart; Pobedinskas, Paulius; Drijkoningen, Sien; Van Bael, Marlies K.; D’ Haen, Jan; Verbeeck, Johan; Leou, Keh-Chyang; Lin, I-Nan; Haenen, Ken

    2016-01-01

    Field electron emission (FEE) properties of vertically aligned hexagonal boron nitride nanowalls (hBNNWs) grown on Si have been markedly enhanced through the use of nitrogen doped nanocrystalline diamond (nNCD) films as an interlayer. The FEE properties of hBNNWs-nNCD heterostructures show a low turn-on field of 15.2 V/μm, a high FEE current density of 1.48 mA/cm2 and life-time up to a period of 248 min. These values are far superior to those for hBNNWs grown on Si substrates without the nNCD interlayer, which have a turn-on field of 46.6 V/μm with 0.21 mA/cm2 FEE current density and life-time of 27 min. Cross-sectional TEM investigation reveals that the utilization of the diamond interlayer circumvented the formation of amorphous boron nitride prior to the growth of hexagonal boron nitride. Moreover, incorporation of carbon in hBNNWs improves the conductivity of hBNNWs. Such a unique combination of materials results in efficient electron transport crossing nNCD-to-hBNNWs interface and inside the hBNNWs that results in enhanced field emission of electrons. The prospective application of these materials is manifested by plasma illumination measurements with lower threshold voltage (370 V) and longer life-time, authorizing the role of hBNNWs-nNCD heterostructures in the enhancement of electron emission. PMID:27404130

  12. Connecting effect on the first hyperpolarizability of armchair carbon-boron-nitride heteronanotubes: pattern versus proportion.

    PubMed

    Zhong, Rong-Lin; Xu, Hong-Liang; Su, Zhong-Min

    2016-05-18

    Carbon-boron-nitride heteronanotubes (BNCNT) have attracted a lot of attention because of their adjustable properties and potential applications in many fields. In this work, a series of CA, PA and HA armchair BNCNT models were designed to explore their nonlinear optical (NLO) properties and provide physical insight into the structure-property relationships; CA, PA and HA represent the models that are obtained by doping the carbon segment into pristine boron nitride nanotube (BNNT) fragments circularly around the tube axis, parallel to the tube axis and helically to the tube axis, respectively. Results show that the first hyperpolarizability (β0) of an armchair BNCNT model is dramatically dependent on the connecting patterns of carbon with the boron nitride fragment. Significantly, the β0 value of PA-6 is 2.00 × 10(4) au, which is almost two orders of magnitude larger than those (6.07 × 10(2) and 1.55 × 10(2) au) of HA-6 and CA-6. In addition, the β0 values of PA and CA models increase with the increase in carbon proportion, whereas those of HA models show a different tendency. Further investigations on transition properties show that the curved charge transfer from N-connecting carbon atoms to B-connecting carbon atoms of PA models is essentially the origin of the big difference among these models. This new knowledge about armchair BNCNTs may provide important information for the design and preparation of advanced NLO nano-materials. PMID:27152376

  13. Enhanced optoelectronic performances of vertically aligned hexagonal boron nitride nanowalls-nanocrystalline diamond heterostructures.

    PubMed

    Sankaran, Kamatchi Jothiramalingam; Hoang, Duc Quang; Kunuku, Srinivasu; Korneychuk, Svetlana; Turner, Stuart; Pobedinskas, Paulius; Drijkoningen, Sien; Van Bael, Marlies K; D' Haen, Jan; Verbeeck, Johan; Leou, Keh-Chyang; Lin, I-Nan; Haenen, Ken

    2016-01-01

    Field electron emission (FEE) properties of vertically aligned hexagonal boron nitride nanowalls (hBNNWs) grown on Si have been markedly enhanced through the use of nitrogen doped nanocrystalline diamond (nNCD) films as an interlayer. The FEE properties of hBNNWs-nNCD heterostructures show a low turn-on field of 15.2 V/μm, a high FEE current density of 1.48 mA/cm(2) and life-time up to a period of 248 min. These values are far superior to those for hBNNWs grown on Si substrates without the nNCD interlayer, which have a turn-on field of 46.6 V/μm with 0.21 mA/cm(2) FEE current density and life-time of 27 min. Cross-sectional TEM investigation reveals that the utilization of the diamond interlayer circumvented the formation of amorphous boron nitride prior to the growth of hexagonal boron nitride. Moreover, incorporation of carbon in hBNNWs improves the conductivity of hBNNWs. Such a unique combination of materials results in efficient electron transport crossing nNCD-to-hBNNWs interface and inside the hBNNWs that results in enhanced field emission of electrons. The prospective application of these materials is manifested by plasma illumination measurements with lower threshold voltage (370 V) and longer life-time, authorizing the role of hBNNWs-nNCD heterostructures in the enhancement of electron emission. PMID:27404130

  14. Atomic oxygen effects on boron nitride and silicon nitride: A comparison of ground based and space flight data

    NASA Technical Reports Server (NTRS)

    Cross, J. B.; Lan, E. H.; Smith, C. A.; Whatley, W. J.

    1990-01-01

    The effects of atomic oxygen on boron nitride (BN) and silicon nitride (Si3N4) were evaluated in a low Earth orbit (LEO) flight experiment and in a ground based simulation facility. In both the inflight and ground based experiments, these materials were coated on thin (approx. 250A) silver films, and the electrical resistance of the silver was measured in situ to detect any penetration of atomic oxygen through the BN and Si3N4 materials. In the presence of atomic oxygen, silver oxidizes to form silver oxide, which has a much higher electrical resistance than pure silver. Permeation of atomic oxygen through BN, as indicated by an increase in the electrical resistance of the silver underneath, was observed in both the inflight and ground based experiments. In contrast, no permeation of atomic oxygen through Si3N4 was observed in either the inflight or ground based experiments. The ground based results show good qualitative correlation with the LEO flight results, indicating that ground based facilities such as the one at Los Alamos National Lab can reproduce space flight data from LEO.

  15. A comparison of ground-based and space flight data: Atomic oxygen reactions with boron nitride and silicon nitride

    NASA Technical Reports Server (NTRS)

    Cross, J. B.; Lan, E. H.; Smith, C. A.; Whatley, W. J.; Koontz, S. L.

    1990-01-01

    The effects of atomic oxygen on boron nitride (BN) and silicon nitride (Si3N4) have been studied in low Earth orbit (LEO) flight experiments and in a ground-based simulation facility at Los Alamos National Laboratory. Both the in-flight and ground-based experiments employed the materials coated over thin (approx 250 Angstrom) silver films whose electrical resistance was measured in situ to detect penetration of atomic oxygen through the BN and Si3N4 materials. In the presence of atomic oxygen, silver oxidizes to form silver oxide, which has a much higher electrical resistance than pure silver. Permeation of atomic oxygen through BN, as indicated by an increase in the electrical resistance of the silver underneath, was observed in both the in-flight and ground-based experiments. In contrast, no permeation of atomic oxygen through Si3N4 was observed in either the in-flight or ground-based experiments. The ground-based results show good qualitative correlation with the LEO flight results, thus validating the simulation fidelity of the ground-based facility in terms of reproducing LEO flight results.

  16. Controlled Gas Exfoliation of Boron Nitride into Few-Layered Nanosheets.

    PubMed

    Zhu, Wenshuai; Gao, Xiang; Li, Qian; Li, Hongping; Chao, Yanhong; Li, Meijun; Mahurin, Shannon M; Li, Huaming; Zhu, Huiyuan; Dai, Sheng

    2016-08-26

    The controlled exfoliation of hexagonal boron nitride (h-BN) into single- or few-layered nanosheets remains a grand challenge and becomes the bottleneck to essential studies and applications of h-BN. Here, we present an efficient strategy for the scalable synthesis of few-layered h-BN nanosheets (BNNS) using a novel gas exfoliation of bulk h-BN in liquid N2 (L-N2 ). The essence of this strategy lies in the combination of a high temperature triggered expansion of bulk h-BN and the cryogenic L-N2 gasification to exfoliate the h-BN. The produced BNNS after ten cycles (BNNS-10) consisted primarily of fewer than five atomic layers with a high mass yield of 16-20 %. N2 sorption and desorption isotherms show that the BNNS-10 exhibited a much higher specific surface area of 278 m(2)  g(-1) than that of bulk BN (10 m(2)  g(-1) ). Through the investigation of the exfoliated intermediates combined with a theoretical calculation, we found that the huge temperature variation initiates the expansion and curling of the bulk h-BN. Subseqently, the L-N2 penetrates into the interlayers of h-BN along the curling edge, followed by an immediate drastic gasification of L-N2 , further peeling off h-BN. This novel gas exfoliation of high surface area BNNS not only opens up potential opportunities for wide applications, but also can be extended to produce other layered materials in high yields. PMID:27444210

  17. DFT study on the structural and electronic properties of Pt-doped boron nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Vessally, E.; Dehbandi, B.; Edjlali, Ladan

    2016-06-01

    First-principles calculations based on density functional theory were carried out to investigate the structural and electronic properties of Pt substitution-doped boron nitride (BN) nanotubes. The electronic and structural properties were studied for substituted Pt in the boron and the nitrogen sites of the (BN) nanotube. The band gap significantly diminishes to 2.095 eV for Pt doping at the B site while the band gap diminishes to 2.231 eV for Pt doping at the N site. The band density increases in both the valence band and the conduction band after doping. The effects of the hardness and softness group 17 (halogen elements) were calculated by density functional theory (DFT).

  18. Transport properties through hexagonal boron nitride clusters embedded in graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Silva, F. W. N.; Cruz-Silva, E.; Terrones, M.; Terrones, H.; Barros, E. B.

    2016-05-01

    First-principles calculations are employed in the study of the electronic and quantum transport properties of hexagonally shaped boron nitride (h-BN) clusters embedded in either zigzag or armchair graphene nanoribbons. Chemical doping of the h-BN cluster was taken into consideration by using carbon atoms to replace either the boron ({{{B}}}24{{{N}}}27{{{C}}}3) or the nitrogen ({{{B}}}27{{{N}}}24{{{C}}}3) sites in the central ring. While the quantum conductance of the system with zigzag edges is found to be spin-dependent, it was observed that the system with an armchair edge requires an electron imbalance in order to show a spin-dependent conductance. Furthermore, the possibility of molecular adsorption onto these doped systems is studied. The effects of the attached molecules to the quantum conductance shows the potential of these hybrid systems for molecular sensing applications.

  19. Boron nitride nanotube-enhanced osteogenic differentiation of mesenchymal stem cells.

    PubMed

    Li, Xia; Wang, Xiupeng; Jiang, Xiangfen; Yamaguchi, Maho; Ito, Atsuo; Bando, Yoshio; Golberg, Dmitri

    2016-02-01

    The interaction between boron nitride nanotubes (BNNTs) layer and mesenchymal stem cells (MSCs) is evaluated for the first time in this study. BNNTs layer supports the attachment and growth of MSCs and exhibits good biocompatibility with MSCs. BNNTs show high protein adsorption ability, promote the proliferation of MSCs and increase the secretion of total protein by MSCs. Especially, BNNTs enhance the alkaline phosphatase (ALP) activity as an early marker of osteoblasts, ALP/total protein and osteocalcin (OCN) as a late marker of osteogenic differentiation, which shows that BNNTs can enhance osteogenesis of MSCs. The release of trace boron and the stress on cells exerted by BNNTs with a fiber structure may account for the enhanced differentiation of MSCs into osteoblasts. Therefore BNNTs are potentially useful for bone regeneration in orthopedic applications. PMID:25766516

  20. Transport properties through hexagonal boron nitride clusters embedded in graphene nanoribbons.

    PubMed

    Silva, F W N; Cruz-Silva, E; Terrones, M; Terrones, H; Barros, E B

    2016-05-01

    First-principles calculations are employed in the study of the electronic and quantum transport properties of hexagonally shaped boron nitride (h-BN) clusters embedded in either zigzag or armchair graphene nanoribbons. Chemical doping of the h-BN cluster was taken into consideration by using carbon atoms to replace either the boron (B27N24C3) or the nitrogen (B27N24C3) sites in the central ring. While the quantum conductance of the system with zigzag edges is found to be spin-dependent, it was observed that the system with an armchair edge requires an electron imbalance in order to show a spin-dependent conductance. Furthermore, the possibility of molecular adsorption onto these doped systems is studied. The effects of the attached molecules to the quantum conductance shows the potential of these hybrid systems for molecular sensing applications. PMID:27004996

  1. Effect of the growth process on boron nitride thin films electrical properties

    SciTech Connect

    Badi, N.; Bousetta, A.; Lu, M.

    1995-12-31

    Boron nitride thin films were grown on Si substrates using electron cyclotron resonance (ECR) plasma-ion beam (IBD), and neutral beam (NBD) assisted vapor depositions. The electrical properties of the BN films were investigated using Hall measurements. It was found that the films grown by NBD technique where p-type, those grown by ECR technique where n-type, whereas those grown by IBD where either n- to p-type depending on the ion energy. The composition of the films was investigated using EPMA, and it was found that most films were off-Stoichiometric (B/N <1 for ECR and B/N> 1 for NBD and IBD). The B/N ratio was higher for IBD BN films (up to 22 %). A model based on native defects centers (nitrogen vacancy and boron anti-site) is presented to account for the conductivity of the BN films.

  2. Chemical vapor deposition of hexagonal boron nitride films in the reduced pressure

    SciTech Connect

    Choi, B.J.

    1999-12-01

    Hexagonal boron nitride (h-BN) films were deposited onto a graphite substrate in reduced pressure by reacting ammonia and boron tribromide at 800--1,200 C. The growth rate of h-BN films was dependent on the substrate temperature and the total pressures. The growth rate increased with increasing the substrate temperature at the pressure of 2 kPa, while it showed a maximum value at the pressures of 4 and 8 kPa. The temperature at which the maximum growth rate occurs decreased with increasing total pressure. With increasing the substrate temperature and total pressure, the apparent grain size increased and the surface morphology showed a rough, cauliflower-like structure.

  3. Molecular dynamics simulations of trihalomethanes removal from water using boron nitride nanosheets.

    PubMed

    Azamat, Jafar; Khataee, Alireza; Joo, Sang Woo

    2016-04-01

    Molecular dynamics simulations were performed to investigate the separation of trihalomethanes (THMs) from water using boron nitride nanosheets (BNNSs). The studied systems included THM molecules and a functionalized BNNS membrane immersed in an aqueous solution. An external pressure was applied to the z axis of the systems. Two functionalized BNNSs with large fluorinated-hydrogenated pore (F-H-pores) and small hydrogen-hydroxyl pore (H-OH-pores) were used. The pores of the BNNS membrane were obtained by passivating each nitrogen and boron atoms at the pore edges with fluorine and hydrogen atoms in the large pore or with hydroxyl and hydrogen atoms in the small pore. The results show that the BNNS with a small functionalized pore was impermeable to THM molecules, in contrast to the BNNS with a large functionalized pore. Using these membranes, water contaminants can be removed at lower cost. PMID:26983611

  4. Thermal equation of state of cubic boron nitride: Implications for a high-temperature pressure scale

    SciTech Connect

    Goncharov, Alexander F.; Crowhurst, Jonathan C.; Dewhurst, John K.; Sharma, Sangeeta; Sanloup, Chrystele; Gregoryanz, Eugene; Guignot, Nicolas; Mezouar, Mohamed

    2007-06-01

    The equation of state of cubic boron nitride (cBN) has been determined to a maximum temperature of 3300 K at a simultaneous static pressure of up to more than 70 GPa. Ab initio calculations to 80 GPa and 2000 K have also been performed. Our experimental data can be reconciled with theoretical results and with the known thermal expansion at 1 bar if we assume a small increase in pressure during heating relative to that measured at ambient temperature. The present data combined with the Raman measurements we presented earlier form the basis of a high-temperature pressure scale that is good to at least 3300 K.

  5. Utilization of multiwalled boron nitride nanotubes for the reinforcement of lightweight aluminum ribbons.

    PubMed

    Yamaguchi, Maho; Pakdel, Amir; Zhi, Chunyi; Bando, Yoshio; Tang, Dai-Ming; Faerstein, Konstantin; Shtansky, Dmitry; Golberg, Dmitri

    2013-01-01

    Multiwalled boron nitride nanotubes (BNNTs) have very attractive mechanical and thermal properties, e.g., elasticity, tensile strength, and high resistance to oxidation, and may be considered as ideal reinforcing agents in lightweight metal matrix composites. Herein, for the first time, Al-BNNT ribbons with various BNNT contents (up to 3 wt.%) were fabricated via melt spinning in an argon atmosphere. BNNTs were randomly dispersed within a microcrystalline Al matrix under ribbon casting and led to more than doubling of room-temperature ultimate tensile strength of the composites compared to pure Al ribbons produced at the similar conditions. PMID:23279813

  6. Search for giant magnetic anisotropy in transition-metal dimers on defected hexagonal boron nitride sheet.

    PubMed

    Li, J; Wang, H; Hu, J; Wu, R Q

    2016-05-28

    Structural and magnetic properties of many transition-metal dimers embedded in a defected hexagonal boron nitride monolayer are investigated through density functional calculations to search for systems with magnetic anisotropy energies (MAEs) larger than 30meV. In particular, Ir-Ir@Dh-BN is found to have both large MAE (∼126 meV) and high structural stability against dissociation and diffusion, and it hence can serve as magnetic unit in spintronics and quantum computing devices. This giant MAE mainly results from the spin orbit coupling and the magnetization of the upper Ir atom, which is in a rather isolated environment. PMID:27250322

  7. Structural analysis of cubic boron nitride films by ultraviolet Raman spectroscopy

    SciTech Connect

    Leung, K.M.; Li, H.Q.; Zou, Y.S.; Ma, K.L.; Chong, Y.M.; Ye, Q.; Zhang, W.J.; Lee, S.T.; Bello, I.

    2006-06-12

    Cubic boron nitride (BN) films with improved crystallinity are deposited by physical vapor deposition at an extremely low substrate bias (-35 V). The films are characterized by UV Raman in association with Fourier transformed infrared (FTIR) spectroscopy. The influences of bias voltage and film thickness on the characterizations are investigated. UV Raman, in contrast to FTIR, is demonstrated to be a more powerful tool with high sensitivity for quantitative and/or qualitative evaluation of the phase purity and crystallinity, especially as the film thickness increases. Hexagonal BN inclusions (less than 1%), not evident in FTIR, are clearly revealed by UV Raman analysis.

  8. Atomic Resolution Transmission Electron Microscopy of Defects in Hexagonal Boron Nitride and Graphene

    NASA Astrophysics Data System (ADS)

    Gibb, Ashley; Alem, Nasim; Song, Chengyu; Ciston, Jim; Zettl, Alex

    2014-03-01

    Monolayer sheets of sp2-bonded materials such as graphene and hexagonal boron nitride (h-BN) have been studied extensively due to their properties including high mechanical strength, thermal conductivity, stability, interesting electronic properties, and potential for integration into novel devices. Understanding the atomic scale structure of defects in these materials is important because defects can significantly affect the physical properties in these materials. In particular, understanding the dynamics of these defects explains much about the material's stability. We have synthesized h-BN and graphene using low pressure chemical vapor deposition and imaged defects using atomic resolution aberration corrected transmission electron microscopy.

  9. Solvent-free fabrication of thermally conductive insulating epoxy composites with boron nitride nanoplatelets as fillers

    NASA Astrophysics Data System (ADS)

    Wang, Zifeng; Fu, Yuqiao; Meng, Wenjun; Zhi, Chunyi

    2014-11-01

    A solvent-free method for the fabrication of thermally conductive epoxy-boron nitride (BN) nanoplatelet composite material is developed in this study. By this method, polymer composites with nearly any filler fractions can be easily fabricated. The maximum thermal conductivity reaches 5.24 W/mK, which is 1,600% improvement in comparison with that of pristine epoxy material. In addition, the as-fabricated samples exhibit excellent overall performances with great mechanical property and thermal stability well preserved.

  10. Spring Constants for Stacks of Curved Leaves of Pyrolytic Boron Nitride

    NASA Technical Reports Server (NTRS)

    Kaforey, M. L.; Deeb, C. W.; Matthiesen, D. H.

    1999-01-01

    Stacks of curved leaves of pyrolytic boron nitride (PBN) were deflected and the force versus deflection data was recorded. From this data, the spring constant for a given spring geometry (radius of curvature of a leaf, width of a leaf, thickness of a leaf, and number of leaves in the stack) was determined. These experiments were performed at room temperature, 500 C and 1000 C. However, temperature was not found to affect the spring constant. The measured values were generally within one order of magnitude of predictions made using a previously derived equation for a simply supported cylindrical section with a line force at the center.

  11. Graphene-hexagonal boron nitride resonant tunneling diodes as high-frequency oscillators

    NASA Astrophysics Data System (ADS)

    Gaskell, J.; Eaves, L.; Novoselov, K. S.; Mishchenko, A.; Geim, A. K.; Fromhold, T. M.; Greenaway, M. T.

    2015-09-01

    We assess the potential of two-terminal graphene-hexagonal boron nitride-graphene resonant tunneling diodes as high-frequency oscillators, using self-consistent quantum transport and electrostatic simulations to determine the time-dependent response of the diodes in a resonant circuit. We quantify how the frequency and power of the current oscillations depend on the diode and circuit parameters including the doping of the graphene electrodes, device geometry, alignment of the graphene lattices, and the circuit impedances. Our results indicate that current oscillations with frequencies of up to several hundred GHz should be achievable.

  12. The unique Raman fingerprint of boron nitride substitution patterns in graphene.

    PubMed

    Maschio, Lorenzo; Lorenz, Marco; Pullini, Daniele; Sgroi, Mauro; Civalleri, Bartolomeo

    2016-07-27

    Boron nitride-substituted graphene (BNsG) two-dimensional structures are new materials of wide technological interest due to the rich variety of electronic structures and properties they can exploit. The ability to accurately characterize them is key to their future success. Here we show, by means of ab initio simulations, that the vibrational Raman spectra of such compounds are extremely sensitive to substitution motifs and concentration, and that each structure has unique and distinct features. This result can be useful as a guide for the optimization of production processes. PMID:27406407

  13. Effect of Structural Relaxation on the Electronic Structure of Graphene on Hexagonal Boron Nitride.

    PubMed

    Slotman, G J; van Wijk, M M; Zhao, Pei-Liang; Fasolino, A; Katsnelson, M I; Yuan, Shengjun

    2015-10-30

    We performed calculations of electronic, optical, and transport properties of graphene on hexagonal boron nitride with realistic moiré patterns. The latter are produced by structural relaxation using a fully atomistic model. This relaxation turns out to be crucially important for electronic properties. We describe experimentally observed features such as additional Dirac points and the "Hofstadter butterfly" structure of energy levels in a magnetic field. We find that the electronic structure is sensitive to many-body renormalization of the local energy gap. PMID:26565485

  14. Near-Field Infrared Pump-Probe Imaging of Surface Phonon Coupling in Boron Nitride Nanotubes.

    PubMed

    Gilburd, Leonid; Xu, Xiaoji G; Bando, Yoshio; Golberg, Dmitri; Walker, Gilbert C

    2016-01-21

    Surface phonon modes are lattice vibrational modes of a solid surface. Two common surface modes, called longitudinal and transverse optical modes, exhibit lattice vibration along or perpendicular to the direction of the wave. We report a two-color, infrared pump-infrared probe technique based on scattering type near-field optical microscopy (s-SNOM) to spatially resolve coupling between surface phonon modes. Spatially varying couplings between the longitudinal optical and surface phonon polariton modes of boron nitride nanotubes are observed, and a simple model is proposed. PMID:26727539

  15. Templated self-assembly and local doping of molecules on epitaxial hexagonal boron nitride.

    PubMed

    Schulz, Fabian; Drost, Robert; Hämäläinen, Sampsa K; Liljeroth, Peter

    2013-12-23

    Using low-temperature scanning tunneling microscopy, we show that monolayer hexagonal boron nitride (h-BN) on Ir(111) acts as ultrathin insulating layer for organic molecules, while simultaneously templating their self-assembly. Tunneling spectroscopy experiments on cobalt phthalocyanine (CoPC) reveal narrow molecular resonances and indicate that the charge state of CoPC is periodically modulated by the h-BN moiré superstructure. Molecules in the second layer show site-selective adsorption behavior, allowing the synthesis of molecular dimers that are spatially ordered and inaccessible by usual chemical means. PMID:24152095

  16. Electronic structures of hybrid graphene/boron nitride nanoribbons with hydrogen adsorption

    NASA Astrophysics Data System (ADS)

    Lee, Chi-Hsuan; Yang, Chih-Kai

    Electronic properties of hybrid graphene/boron nitride nanoribbons are investigated using density functional calculations. It is found that hydrogen adsorption on a graphene nanoribbon alters band structures drastically. Furthermore, H-vacancy chains and lines can effectively shape the conduction properties. Influences of edge atoms with nonzero magnetic moments and the interface between B and N are also prominent in the electronic structures. This work was supported by the Ministry of Science and Technology of the Republic of China under Grant Number MOST 104-2112-M-004-003.

  17. The deposition of boron nitride and carbon films on silica glass fibers

    SciTech Connect

    Smith, W.L.; Michalske, T.A.; Rye, R.R.

    1993-11-01

    A chemical vapor deposition technique is used to produce amorphous boron nitride and carbon thin films on high strength silica glass fibers. In this method, the fiber is drawn under ultra high vacuum conditions and low pressure process gases, in the presence of a hot tungsten filament, are used to grow films at low substrate temperatures. Films deposited with this technique do not degrade the intrinsic pristine strength of the silica fibers under dry conditions and, when stressed in chemically aggressive environments, act as effective barrier coatings.

  18. Intraband Raman laser gain in a boron nitride coupled quantum well

    NASA Astrophysics Data System (ADS)

    Moorthy, N. Narayana; Peter, A. John

    2016-05-01

    On-centre impurity related electronic and optical properties are studied in a Boron nitride coupled quantum well. Confined energies for the intraband transition are investigated by studying differential cross section of electron Raman scattering taking into consideration of spatial confinement in a B0.3Ga0.7N/BN coupled quantum well. Raman gain as a function of incident optical pump intensity is computed for constant well width. The enhancement of Raman gain is observed with the application of pump power. The results can be applied for the potential applications for fabricating some optical devices such as optical switches, infrared photo-detectors and electro-optical modulator.

  19. Lattice mismatch induced ripples and wrinkles in planar graphene/boron nitride superlattices

    SciTech Connect

    Nandwana, Dinkar; Ertekin, Elif

    2015-06-21

    A continuum theory to describe periodic ripple formation in planar graphene/boron nitride superlattices is formulated. Due to the lattice mismatch between the two materials, it is shown that flat superlattices are unstable with respect to ripple formation of appropriate wavelengths. A competition between bending energy and transverse stretching energy gives rise to an optimal ripple wavelength that depends on the superlattice pitch. The optimal wavelengths predicted by the continuum theory are in good agreement with atomic scale total energy calculations previously reported by Nandwana and Ertekin [Nano Lett. 15, 1468 (2015)].

  20. Theory of resonant tunneling in bilayer-graphene/hexagonal-boron-nitride heterostructures

    SciTech Connect

    Barrera, Sergio C. de la; Feenstra, Randall M.

    2015-03-02

    A theory is developed for calculating vertical tunneling current between two sheets of bilayer graphene separated by a thin, insulating layer of hexagonal boron nitride, neglecting many-body effects. Results are presented using physical parameters that enable comparison of the theory with recently reported experimental results. Observed resonant tunneling and negative differential resistance in the current–voltage characteristics are explained in terms of the electrostatically-induced band gap, gate voltage modulation, density of states near the band edge, and resonances with the upper sub-band. These observations are compared to ones from similar heterostructures formed with monolayer graphene.

  1. Ab Initio Investigations of Thermoelectric Effects in Graphene - Boron Nitride Nanoribbons

    NASA Astrophysics Data System (ADS)

    Visan, Camelia; Nemnes, G. A.

    2016-02-01

    Thermoelectric effects of graphene - hexagonal boron nitride (hBN) nanoribbons have been investigated by density functional theory (DFT) calculations. Pristine zig-zag nanoribbons are not suited to achieve high thermopower as the transmission function is flat around the chemical potential. By introducing hBN inclusions, the nanoribbon systems exhibit enhanced thermopower, due to the asymmetries introduced in the spin dependent transmission functions. Finite temperature differences between the two contacts are considered. The possibility of a good integration of hBN into graphene, makes the hybrid systems suitable for thermoelectric applications, which may be subject to further optimizations.

  2. Static tensile and tensile creep testing of four boron nitride coated ceramic fibers at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Coguill, Scott L.; Adams, Donald F.; Zimmerman, Richard S.

    1989-01-01

    Six types of uncoated ceramic fibers were static tensile and tensile creep tested at various elevated temperatures. Three types of boron nitride coated fibers were also tested. Room temperature static tensile tests were initially performed on all fibers, at gage lengths of 1, 2, and 4 inches, to determine the magnitude of end effects from the gripping system used. Tests at one elevated temperature, at gage lengths of 8 and 10 inches, were also conducted, to determine end effects at elevated temperatures. Fiber cross sectional shapes and areas were determined using scanning electron microscopy. Creep testing was typically performed for 4 hours, in an air atmosphere.

  3. Disordered graphene and boron nitride in a microwave tight-binding analog

    NASA Astrophysics Data System (ADS)

    Barkhofen, S.; Bellec, M.; Kuhl, U.; Mortessagne, F.

    2013-01-01

    Experiments on hexagonal graphene-like structures using microwave measuring techniques are presented. The lowest transverse-electric resonance of coupled dielectric disks sandwiched between two metallic plates establishes a tight-binding configuration. The nearest-neighbor coupling approximation is investigated in systems with few disks. Taking advantage of the high flexibility of the disks positions, consequences of the disorder introduced in the graphene lattice on the Dirac points are investigated. Using two different types of disks, a boron-nitride-like structure (a hexagonal lattice with a two-atom basis) is implemented, showing the appearance of a band gap.

  4. Effect of reaction time on the characteristics of catalytically grown boron nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Mohamed, Norani Muti; Ahmad, Pervaiz; Saheed, Mohamed Shuaib Mohamed; Burhanudin, Zainal Arif

    2014-10-01

    The paper reports on the growth of boron nitride nanotube (BNNTs) on Si substrate by catalytic chemical vapor deposition technique and the effect of reaction time and temperature on the size and purity were investigated. Scanning electron microscopy image revealed the bamboo-like BNNTs of multiwalled type with interlayer spacing of 0.34 nm. EDX analysis described the presence of a small percentage of Mg in the sample, indicating the combination of base-tip growth model for the sample synthesized at 1200°C. The reaction time has an effect of extending the length of the BNNTs until the catalyst is oxidized or covered by growth precursor.

  5. Boron Nitride Nanotubes: Recent Advances in Their Synthesis, Functionalization, and Applications.

    PubMed

    Lee, Chee Huei; Bhandari, Shiva; Tiwari, Bishnu; Yapici, Nazmiye; Zhang, Dongyan; Yap, Yoke Khin

    2016-01-01

    A comprehensive overview of current research progress on boron nitride nanotubes (BNNTs) is presented in this article. Particularly, recent advancements in controlled synthesis and large-scale production of BNNTs will first be summarized. While recent success in mass production of BNNTs has opened up new opportunities to implement the appealing properties in various applications, concerns about product purity and quality still remain. Secondly, we will summarize the progress in functionalization of BNNTs, which is the necessary step for their applications. Additionally, selected potential applications in structural composites and biomedicine will be highlighted. PMID:27428947

  6. Topologically-driven valley polarization in twisted graphene/hexagonal boron nitride heterostructures

    NASA Astrophysics Data System (ADS)

    Basile, Leonardo; Idrobo, Juan Carlos

    Valley polarization, that is, selective electronic localization in a momentum valley, has been proposed on materials presenting either a strong spin-orbit coupling (SOC) or with a weak SOC but in the presence of electric and magnetic fields. In this talk, we identify a non-centro symmetric system which can also present valley polarization purely by topological means without the necessity of SOC. We find that twisted bilayers of graphene/hexagonal boron nitride heterostructures have different absorption for right- and left- circular polarized light, indicating valley polarization. This induced polarization occurs due to band folding of the electronic bands, i.e., it has a topological origin.

  7. Robust half-metallic ferromagnetism and curvature dependent magnetic coupling in fluorinated boron nitride nanotubes.

    PubMed

    Guo, Chunsheng; Zhou, Yu; Shi, Xin-Qiang; Gan, Li-Yong; Jiang, Hong; Zhao, Yong

    2016-04-28

    The fluorinated boron nitride (F-BN) nanostructures are found to be fully spin polarized and half-metallic by means of first-principles calculations based on the Heyd-Scuseria-Ernzerhof hybrid functional. It is found that the full spin polarization and 1 μB local moment in F-BN nanotubes are independent of tube radius and it is also robust in planar ribbons and sheets. The long-ranged ferromagnetic coupling between local moments decreases with decreasing tube radius. This suggests that F-BN systems with small local curvatures could be more easily experimentally observed and have greater potential applications in spin devices. PMID:27086676

  8. Infrared spectroscopy of vertical heterostructures of graphene and hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Mucha-Kruczyński, Marcin; Abergel, David

    We suggest that optical absorption of monolayer and bilayer graphene on hexagonal boron nitride will provide meaningful information about the moiré characteristics. In particular, study of the absorption spectrum as a function of the doping for an almost completely full first miniband will distinguish between various theoretical proposals for the physically realistic interaction. Also, for bilayer graphene, the ability to compare spectra for the opposite signs of the interlayer asymmetry induced by an external electric field might provide additional information about the moiré parameters. This research was funded by EPSRC Grant No. EP/L013010/1 (MM-K), and ERC project DM-321031 (DSLA),.

  9. Molecular dynamics investigation into the oscillatory behavior of double-walled boron-nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Ansari, R.; Ajori, S.

    2016-05-01

    In this paper, the oscillatory behavior of double-walled boron-nitride nanotubes is investigated based on the molecular dynamics (MD) simulations. The MD simulations are performed using the Lennard-Jones and Tersoff-like potential functions. The influences of friction between the walls of inner and outer tubes, flexibility, velocity and outer length-to-inner length ratio on the frequency of oscillations are studied. The results show that the flexibility increases the frequency during the simulation. Furthermore, it is observed that by increasing the initial velocity, the frequency decreases.

  10. Resonant tunneling and the quasiparticle lifetime in graphene/boron nitride/graphene heterostructures

    NASA Astrophysics Data System (ADS)

    Guerrero-Becerra, Karina A.; Tomadin, Andrea; Polini, Marco

    2016-03-01

    Tunneling of quasiparticles between two nearly aligned graphene sheets produces resonant current-voltage characteristics because of the quasiexact conservation of in-plane momentum. We claim that, in this regime, vertical transport in graphene/boron nitride/graphene heterostructures carries precious information on electron-electron interactions and the quasiparticle spectral function of the two-dimensional electron system in graphene. We present extensive microscopic calculations of the tunneling spectra with the inclusion of quasiparticle lifetime effects and elucidate the range of parameters (interlayer bias, temperature, twist angle, and gate voltage) under which electron-electron interaction physics emerges.

  11. Graphene-hexagonal boron nitride resonant tunneling diodes as high-frequency oscillators

    SciTech Connect

    Gaskell, J.; Fromhold, T. M.; Greenaway, M. T.; Eaves, L.; Novoselov, K. S.; Mishchenko, A.; Geim, A. K.

    2015-09-07

    We assess the potential of two-terminal graphene-hexagonal boron nitride-graphene resonant tunneling diodes as high-frequency oscillators, using self-consistent quantum transport and electrostatic simulations to determine the time-dependent response of the diodes in a resonant circuit. We quantify how the frequency and power of the current oscillations depend on the diode and circuit parameters including the doping of the graphene electrodes, device geometry, alignment of the graphene lattices, and the circuit impedances. Our results indicate that current oscillations with frequencies of up to several hundred GHz should be achievable.

  12. Coaxial nanocable: silicon carbide and silicon oxide sheathed with boron nitride and carbon

    PubMed

    Zhang; Suenaga; Colliex; Iijima

    1998-08-14

    Multielement nanotubes comprising multiple phases, with diameters of a few tens of nanometers and lengths up to 50 micrometers, were successfully synthesized by means of reactive laser ablation. The experimentally determined structure consists of a beta-phase silicon carbide core, an amorphous silicon oxide intermediate layer, and graphitic outer shells made of boron nitride and carbon layers separated in the radial direction. The structure resembles a coaxial nanocable with a semiconductor-insulator-metal (or semiconductor-insulator-semiconductor) geometry and suggests applications in nanoscale electronic devices that take advantage of this self-organization mechanism for multielement nanotube formation. PMID:9703508

  13. Reactivity of graphene and hexagonal boron nitride in-plane heterostructures with oxygen: a DFT study.

    PubMed

    Nguyen, Manh-Thuong

    2014-08-01

    A density-functional study has been undertaken to investigate the chemical properties of in-plane heterostructures of graphene and hexagonal boron nitride. The interactions of armchair and zigzag linking edges with oxygen are looked at in detail. The results of the calculations indicate that the linking edges are highly reactive to oxygen atoms and predict that oxygen molecules can accordingly be adsorbed dissociatively. Furthermore, because oxygen atoms cooperatively interact with the heterostructures, the process can lead to opening of the linking edges, thus splitting the two materials. PMID:24862336

  14. Solvent-free fabrication of thermally conductive insulating epoxy composites with boron nitride nanoplatelets as fillers

    PubMed Central

    2014-01-01

    A solvent-free method for the fabrication of thermally conductive epoxy-boron nitride (BN) nanoplatelet composite material is developed in this study. By this method, polymer composites with nearly any filler fractions can be easily fabricated. The maximum thermal conductivity reaches 5.24 W/mK, which is 1,600% improvement in comparison with that of pristine epoxy material. In addition, the as-fabricated samples exhibit excellent overall performances with great mechanical property and thermal stability well preserved. PMID:25489292

  15. Solvent-free fabrication of thermally conductive insulating epoxy composites with boron nitride nanoplatelets as fillers.

    PubMed

    Wang, Zifeng; Fu, Yuqiao; Meng, Wenjun; Zhi, Chunyi

    2014-01-01

    A solvent-free method for the fabrication of thermally conductive epoxy-boron nitride (BN) nanoplatelet composite material is developed in this study. By this method, polymer composites with nearly any filler fractions can be easily fabricated. The maximum thermal conductivity reaches 5.24 W/mK, which is 1,600% improvement in comparison with that of pristine epoxy material. In addition, the as-fabricated samples exhibit excellent overall performances with great mechanical property and thermal stability well preserved. PMID:25489292

  16. Effect of reaction time on the characteristics of catalytically grown boron nitride nanotubes

    SciTech Connect

    Mohamed, Norani Muti E-mail: pervaiz-pas@yahoo.com E-mail: zainabh@petronas.com.my; Ahmad, Pervaiz E-mail: pervaiz-pas@yahoo.com E-mail: zainabh@petronas.com.my; Saheed, Mohamed Shuaib Mohamed E-mail: pervaiz-pas@yahoo.com E-mail: zainabh@petronas.com.my; Burhanudin, Zainal Arif E-mail: pervaiz-pas@yahoo.com E-mail: zainabh@petronas.com.my

    2014-10-24

    The paper reports on the growth of boron nitride nanotube (BNNTs) on Si substrate by catalytic chemical vapor deposition technique and the effect of reaction time and temperature on the size and purity were investigated. Scanning electron microscopy image revealed the bamboo-like BNNTs of multiwalled type with interlayer spacing of 0.34 nm. EDX analysis described the presence of a small percentage of Mg in the sample, indicating the combination of base-tip growth model for the sample synthesized at 1200°C. The reaction time has an effect of extending the length of the BNNTs until the catalyst is oxidized or covered by growth precursor.

  17. Utilization of multiwalled boron nitride nanotubes for the reinforcement of lightweight aluminum ribbons

    PubMed Central

    2013-01-01

    Multiwalled boron nitride nanotubes (BNNTs) have very attractive mechanical and thermal properties, e.g., elasticity, tensile strength, and high resistance to oxidation, and may be considered as ideal reinforcing agents in lightweight metal matrix composites. Herein, for the first time, Al-BNNT ribbons with various BNNT contents (up to 3 wt.%) were fabricated via melt spinning in an argon atmosphere. BNNTs were randomly dispersed within a microcrystalline Al matrix under ribbon casting and led to more than doubling of room-temperature ultimate tensile strength of the composites compared to pure Al ribbons produced at the similar conditions. PMID:23279813

  18. High-quality, faceted cubic boron nitride films grown by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Zhang, W. J.; Jiang, X.; Matsumoto, S.

    2001-12-01

    Thick cubic boron nitride (cBN) films showing clear crystal facets were achieved by chemical vapor deposition. The films show the highest crystallinity of cBN films ever achieved from gas phase. Clear evidence for the growth via a chemical route is obtained. A growth mechanism is suggested, in which fluorine preferentially etches hBN and stabilizes the cBN surface. Ion bombardment of proper energy activates the cBN surface bonded with fluorine so as to enhance the bonding probability of nitrogen-containing species on the F-stabilized B (111) surface.

  19. Experimental identification of p-type conduction in fluoridized boron nitride nanotube

    NASA Astrophysics Data System (ADS)

    Zhao, Jing; Li, Wuxia; Tang, Chengchun; Li, Lin; Lin, Jing; Gu, Changzhi

    2013-04-01

    The transport properties of F-doped boron nitride nanotube (BNNT) top-gate field effect devices were investigated to demonstrate the realization of p-type BNNTs by F-doping. The drain current was found to increase substantially with the applied negative gate voltage, suggesting these devices persist significant field effect with holes predominated; it also suggests that F-doping remarkably modified the band gap with F atoms preferred to be absorbed on B sites. Parameters, including the resistivity, charge concentration, and mobility, were further retrieved from the I-V curves. Our results indicate that device characterization is an effective method to reveal the specific properties of BNNTs.

  20. Effect of Structural Relaxation on the Electronic Structure of Graphene on Hexagonal Boron Nitride

    NASA Astrophysics Data System (ADS)

    Slotman, G. J.; van Wijk, M. M.; Zhao, Pei-Liang; Fasolino, A.; Katsnelson, M. I.; Yuan, Shengjun

    2015-10-01

    We performed calculations of electronic, optical, and transport properties of graphene on hexagonal boron nitride with realistic moiré patterns. The latter are produced by structural relaxation using a fully atomistic model. This relaxation turns out to be crucially important for electronic properties. We describe experimentally observed features such as additional Dirac points and the "Hofstadter butterfly" structure of energy levels in a magnetic field. We find that the electronic structure is sensitive to many-body renormalization of the local energy gap.