Science.gov

Sample records for borrelia burgdorferi revealed

  1. Genetics of Borrelia burgdorferi

    PubMed Central

    Brisson, Dustin; Drecktrah, Dan; Eggers, Christian H.; Samuels, D. Scott

    2013-01-01

    The spirochetes in the Borrelia burgdorferi sensu lato genospecies group cycle in nature between tick vectors and vertebrate hosts. The current assemblage of B. burgdorferi sensu lato, of which three species cause Lyme disease in humans, originated from a rapid species radiation that occurred near the origin of the clade. All of these species share a unique genome structure that is highly segmented and predominantly composed of linear replicons. One of the circular plasmids is a prophage that exists as several isoforms in each cell and can be transduced to other cells, likely contributing to an otherwise relatively anemic level of horizontal gene transfer, which nevertheless appears to be adequate to permit strong natural selection and adaptation in populations of B. burgdorferi. Although the molecular genetic toolbox is meager, several antibiotic-resistant mutants have been isolated, and the resistance alleles, as well as some exogenous genes, have been fashioned into markers to dissect gene function. Genetic studies have probed the role of the outer membrane lipoprotein OspC, which is maintained in nature by multiple niche polymorphisms and negative frequency-dependent selection. One of the most intriguing genetic systems in B. burgdorferi is vls recombination, which generates antigenic variation during infection of mammalian hosts. PMID:22974303

  2. Hemolytic activity of Borrelia burgdorferi.

    PubMed Central

    Williams, L R; Austin, F E

    1992-01-01

    Zones of beta-hemolysis occurred around colonies of Borrelia burgdorferi grown on Barbour-Stoenner-Kelly medium containing agarose and horse blood. Blood plates were inoculated with either the infective strain Sh-2-82 or noninfective strain B-31 in an overlay and incubated in a candle jar. Both strains of B. burgdorferi displayed beta-hemolysis after 1 to 2 weeks of incubation. The hemolytic activity diffused out from the borrelial colonies, eventually resulting in lysis of the entire blood plate. Hemolysis was most pronounced with horse blood and was less intense with bovine, sheep, and rabbit blood. Hemolysis was enhanced by hot-cold incubation, which is typical of phospholipase-like activities in other bacteria. Further characterization of the borrelial hemolysin by using a spectrophotometric assay revealed its presence in the supernatant fluids of stationary-phase cultures. Detection of the borrelial hemolytic activity was dependent on activation of the hemolysin by the reducing agent cysteine. This study provides the first evidence of hemolytic activity associated with B. burgdorferi. Images PMID:1639493

  3. Molecular Typing of Borrelia burgdorferi

    PubMed Central

    Wang, Guiqing; Liveris, Dionysios; Mukherjee, Priyanka; Jungnick, Sabrina; Margos, Gabriele; Schwartz, Ira

    2015-01-01

    Borrelia burgdorferi sensu lato is a group of spirochetes belonging to the genus Borrelia in the family of Spirochaetaceae. The spirochete is transmitted between reservoirs and hosts by ticks of the family Ixodidae. Infection with B. burgdorferi in humans causes Lyme disease or Lyme borreliosis. Currently, 20 Lyme disease-associated Borrelia species and more than 20 relapsing fever-associated Borrelia species have been described. Identification and differentiation of different Borrelia species and strains is largely dependent on analyses of their genetic characteristics. A variety of molecular techniques have been described for Borrelia isolate speciation, molecular epidemiology, and pathogenicity studies. In this unit, we focus on three basic protocols, PCR-RFLP-based typing of the rrs-rrlA and rrfA-rrlB ribosomal spacer, ospC typing, and MLST. These protocols can be employed alone or in combination for characterization of B. burgdorferi isolates or directly on uncultivated organisms in ticks, mammalian host reservoirs, and human clinical specimens. PMID:25082003

  4. Borrelia burgdorferi Infections in the United States

    PubMed Central

    Heymann, Warren R.

    2012-01-01

    It is becoming increasingly evident that the clinical presentation of infection with Borrelia burgdorferi varies greatly between different parts of the world. A growing number of European and Asian isolates of Lyme borreliae, differing from the American strain of Borrelia burgdorferi, have been identified in several different disorders. In light of the increasing number of reports describing an association between various cutaneous disorders and infection with Borrelia burgdorferi and the controversy that still remains over where Borrelia burgdorferi is truly pathogenic in these diseases, this review of the literature assesses the significance of these reports in substantiating these hypotheses, as such associations are important both diagnostically and therapeutically. PMID:22916311

  5. Live imaging reveals a biphasic mode of dissemination of Borrelia burgdorferi within ticks

    PubMed Central

    Dunham-Ems, Star M.; Caimano, Melissa J.; Pal, Utpal; Wolgemuth, Charles W.; Eggers, Christian H.; Balic, Anamaria; Radolf, Justin D.

    2009-01-01

    Lyme disease is caused by transmission of the spirochete Borrelia burgdorferi from ticks to humans. Although much is known about B. burgdorferi replication, the routes and mechanisms by which it disseminates within the tick remain unclear. To better understand this process, we imaged live, infectious B. burgdorferi expressing a stably integrated, constitutively expressed GFP reporter. Using isolated tick midguts and salivary glands, we observed B. burgdorferi progress through the feeding tick via what we believe to be a novel, biphasic mode of dissemination. In the first phase, replicating spirochetes, positioned at varying depths throughout the midgut at the onset of feeding, formed networks of nonmotile organisms that advanced toward the basolateral surface of the epithelium while adhering to differentiating, hypertrophying, and detaching epithelial cells. In the second phase of dissemination, the nonmotile spirochetes transitioned into motile organisms that penetrated the basement membrane and entered the hemocoel, then migrated to and entered the salivary glands. We designated the first phase of dissemination “adherence-mediated migration” and provided evidence that it involves the inhibition of spirochete motility by one or more diffusible factors elaborated by the feeding tick midgut. Our studies, which we believe are the first to relate the transmission dynamics of spirochetes to the complex morphological and developmental changes that the midgut and salivary glands undergo during engorgement, challenge the conventional viewpoint that dissemination of Lyme disease–causing spirochetes within ticks is exclusively motility driven. PMID:19920352

  6. Cryoelectron tomography reveals the sequential assembly of bacterial flagella in Borrelia burgdorferi.

    PubMed

    Zhao, Xiaowei; Zhang, Kai; Boquoi, Tristan; Hu, Bo; Motaleb, M A; Miller, Kelly A; James, Milinda E; Charon, Nyles W; Manson, Michael D; Norris, Steven J; Li, Chunhao; Liu, Jun

    2013-08-27

    Periplasmic flagella are essential for the distinctive morphology, motility, and infectious life cycle of the Lyme disease spirochete Borrelia burgdorferi. In this study, we genetically trapped intermediates in flagellar assembly and determined the 3D structures of the intermediates to 4-nm resolution by cryoelectron tomography. We provide structural evidence that secretion of rod substrates triggers remodeling of the central channel in the flagellar secretion apparatus from a closed to an open conformation. This open channel then serves as both a gateway and a template for flagellar rod assembly. The individual proteins assemble sequentially to form a modular rod. The hook cap initiates hook assembly on completion of the rod, and the filament cap facilitates filament assembly after formation of the mature hook. Cryoelectron tomography and mutational analysis thus combine synergistically to provide a unique structural blueprint of the assembly process of this intricate molecular machine in intact cells. PMID:23940315

  7. Study of the response regulator Rrp1 reveals its regulatory role in chitobiose utilization and virulence of Borrelia burgdorferi.

    PubMed

    Sze, Ching Wooen; Smith, Alexis; Choi, Young Hee; Yang, Xiuli; Pal, Utpal; Yu, Aiming; Li, Chunhao

    2013-05-01

    Life cycle alternation between arthropod and mammals forces the Lyme disease spirochete, Borrelia burgdorferi, to adapt to different host milieus by utilizing diverse carbohydrates. Glycerol and chitobiose are abundantly present in the Ixodes tick. B. burgdorferi can utilize glycerol as a carbohydrate source for glycolysis and chitobiose to produce N-acetylglucosamine (GlcNAc), a key component of the bacterial cell wall. A recent study reported that Rrp1, a response regulator that synthesizes cyclic diguanylate (c-di-GMP), governs glycerol utilization in B. burgdorferi. In this report, we found that the rrp1 mutant had growth defects and formed membrane blebs that led to cell lysis when GlcNAc was replaced by chitobiose in the growth medium. The gene chbC encodes a key chitobiose transporter of B. burgdorferi. We found that the expression level of chbC was significantly repressed in the mutant and that constitutive expression of chbC in the mutant successfully rescued the growth defect, indicating a regulatory role of Rrp1 in chitobiose uptake. Immunoblotting and transcriptional studies revealed that Rrp1 is required for the activation of bosR and rpoS and that its impact on chbC is most likely mediated by the BosR-RpoS regulatory pathway. Tick-mouse infection studies showed that although the rrp1 mutant failed to establish infection in mice via tick bite, exogenous supplementation of GlcNAc into unfed ticks partially rescued the infection. The finding reported here provides us with new insight into the regulatory role of Rrp1 in carbohydrate utilization and virulence of B. burgdorferi. PMID:23478317

  8. Rickettsiae and Borrelia burgdorferi in ixodid ticks.

    PubMed Central

    Magnarelli, L A; Andreadis, T G; Stafford, K C; Holland, C J

    1991-01-01

    Nymphs and adults of hard-bodied ticks were collected in Connecticut and tested by direct and indirect immunofluorescence staining methods for rickettsiae and Borrelia burgdorferi. Of the 609 Ixodes dammini ticks examined, 59 (9.7%) harbored rickettsialike microorganisms in hemocytes (blood cells). These bacteria reacted with fluorescein-conjugated antiserum to Ehrlichia canis, the etiologic agent of with fluorescein-conjugated antiserum to Ehrlichia canis, the etiologic agent of canine ehrlichiosis. Prevalence of infection ranged from 6.8 to 12.7% for males and females, respectively. Although the specific identities of the hemocytic rickettsialike organisms are unknown, they share antigens with ehrlichiae. Electron microscopy revealed rickettsiae in ovarian tissues of I. dammini that also had infected hemocytes. Rickettsialike organisms were also observed in the hemocytes of 5 (6.9%) of 73 Dermacentor variabilis ticks. In analyses for B. burgdorferi, 146 (23.7%) of 617 I. dammini ticks harbored these spirochetes in midguts. Hemocytic rickettsialike microorganisms coexisted with B. burgdorferi in 36 (6.7%) of the 537 nymphs and adults of I. dammini examined. I. dammini, with its broad host range, has the potential to acquire multiple microorganisms. Images PMID:1757551

  9. Borrelia burgdorferi tissue morphologies and imaging methodologies.

    PubMed

    MacDonald, A B

    2013-08-01

    This manuscript offers an image presentation of diverse forms of Borrelia burgdorferi spirochetes which are not spiral or corkscrew shaped. Explanations are offered to justify the legitimacy of tissue forms of Borrelia which may confuse the inexperienced microscopic examiner and which may lead to the misdiagnosis of non-spiral forms as artifacts. Images from the author's personal collection of Borrelia burgdorferi images and a few select images of Borrelia burgdorferi from the peer-reviewed published literature are presented. A commentary justifying each of the image profiles and a survey of the imaging modalities utilized provides the reader with a frame of reference. Regularly spiraled Borrelia are rarely seen in solid tissues. A variety of straightened, undulating, and clipped-off profiles are demonstrated, and the structural basis for each image is explained. Tissue examination is a diagnostic tool and a quality control for judging the eradication or the persistence of borreliosis following attempts to eradicate the infection with antibiotic therapy. The presence or absence of chronic Lyme borreliosis may be objectively adjudicated by tissue examinations which demonstrate or which fail to show pathogenic microbes in patients who have received a full course of antibiotics. PMID:23479042

  10. Borrelia burgdorferi bind to epithelial cell proteoglycans.

    PubMed Central

    Isaacs, R D

    1994-01-01

    Borrelia burgdorferi adhere to mammalian cells in vitro but neither the ligand(s) nor the receptor(s) has (have) been clearly established. Using an in vitro attachment-inhibition assay, a B. burgdorferi attachment mechanism has been identified. Heparin, heparan sulfate, and dermatan sulfate reduced the attachment of virulent B. burgdorferi strain 297 to HeLa cells by approximately 60%. In addition, virulent, but not avirulent, B. burgdorferi strains B31, N40, and HB19 demonstrated heparin attachment-inhibition. Attachment to Chinese hamster ovary cells deficient in heparan sulfate proteoglycans was reduced by 68% compared to attachment to wild-type cells and was identical to attachment at maximum heparin inhibition to the wild-type cells. Pretreatment of HeLa cell monolayers with heparitinase, heparinase, and chondroitinase ABC, but not with chondroitinase AC, reduced borrelial attachment by approximately 50%. A moderately high affinity, low copy number, promiscuous B. burgdorferi glycosaminoglycan receptor was demonstrated by equilibrium binding studies. A 39-kD polypeptide, purified by heparin affinity chromatography from Triton X-100 extracts derived from virulent borrelia, was a candidate for this receptor. These studies indicate that one mode of B. burgdorferi attachment to eukaryotic cells is mediated by a borrelial glycosaminoglycan receptor attaching to surface-exposed proteoglycans on mammalian cells. Images PMID:8113413

  11. Intrauterine transmission of Borrelia burgdorferi in dogs.

    PubMed

    Gustafson, J M; Burgess, E C; Wachal, M D; Steinberg, H

    1993-06-01

    To determine whether intrauterine transmission of Borrelia burgdorferi could exist in dogs, 10 female Beagles were inoculated intradermally with approximately 1,000 B burgdorferi on day 1 of proestrus; inoculation was repeated every 2 weeks during the gestation period. Ten female control Beagles were similarly inoculated with phosphate-buffered saline solution. Prior to the start of the study, all females and 3 males used for breeding were seronegative for B burgdorferi on the basis of results of the indirect fluorescent antibody test and immunoblot (western analysis. Similarly, results of culture of blood for B burgdorferi were negative. All 20 of the females were bred naturally. Blood samples were collected weekly for serologic testing and culture. Blood samples were obtained from live pups on day 1 of life, then weekly until pups were 6 weeks old when they were euthanatized. Tissues were obtained for culture and testing by use of polymerase chain reaction (PCR). Of 10 spirochete-inoculated (SI) females, 8 became infected with B burgdorferi as evidenced by spirochete culture results and/or PCR-detected B burgdorferi DNA in the tissues of females or their pups. Of the 10 SI females, 8 delivered litters (3 to 7 pups) that had at least 1 neonatal or 6-week-old pup with B burgdorferi DNA-positive tissues (by PCR), and spirochetes were cultured from tissues from pups of 2 litters.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8323057

  12. [Clinical aspects of Borrelia burgdorferi infections].

    PubMed

    Neubert, U

    1989-08-15

    Skin lesions due to Borrelia burgdorferi-like erythema migrans, lymphadenosis cutis benigna, and acrodermatitis chronica atrophicans - are hall-marks of a systemic infection, which tends to a chronically relapsing course. Even if the skin lesions are missing, or disappear spontaneously, the infection may persist and affect other organs. This presumption is supported by the outcome of a long-term follow-up study on seropositive forest workers. In association with meningopolyneuritis (Garin-Bujadoux-Bannwarth disease) and acrodermatitis chronica atrophicans - myositis and fasciitis have been recently reported as further possible manifestations of Borrelia burgdorferi infection. Borrelial infection during pregnancy should promptly be treated with antibiotics in high dosages, in order to prevent maternal-fetal transmission of borrelial organisms resulting in stillbirth or congenital defects of the newborn. PMID:2678790

  13. Is Localized Scleroderma Caused by Borrelia burgdorferi?

    PubMed

    Zinchuk, Alexander N; Kalyuzhna, Lidiya D; Pasichna, Iryna A

    2016-09-01

    Despite considerable achievements in the study of localized scleroderma, the etiology of the disease has not been investigated completely. Borrelia burgdorferi-the agent of Lyme disease-is suggested to be one of the possible etiological factors of localized scleroderma. However, among scientists, this hypothesis is quite controversial. We have conducted investigations of the level of IgM and IgG class antibodies to B. burgdorferi in the serum of patients with localized scleroderma. To rationally substantiate the role of B. burgdorferi in the occurrence of localized scleroderma, thirty-two patients with localized scleroderma treated at an in-patient department were examined. The level of anti-Borrelia antibodies was determined in ELISA. Diagnostic levels of IgM and/or IgG were detected in 18.8% of patients with localized scleroderma, which is more than in the population (p < 0.01). Positive levels of anti-Borrelia antibodies in patients with localized scleroderma confirm the borreliosis nature of the disease, requiring conduction of complex antimicrobial treatment. PMID:27387068

  14. Comparative Genome Hybridization Reveals Substantial Variation among Clinical Isolates of Borrelia burgdorferi Sensu Stricto with Different Pathogenic Properties

    PubMed Central

    Terekhova, Darya; Iyer, Radha; Wormser, Gary P.; Schwartz, Ira

    2006-01-01

    Clinical and murine studies suggest that there is a differential pathogenicity of different genotypes of Borrelia burgdorferi, the spirochetal agent of Lyme disease. Comparative genome hybridization was used to explore the relationship between different genotypes. The chromosomes of all studied isolates were highly conserved (>93%) with respect to both sequence and gene order. Plasmid sequences were substantially more diverse. Plasmids lp54, cp26, and cp32 were present in all tested isolates, and their sequences and gene order were conserved. The majority of linear plasmids showed variation both in terms of presence among different isolates and in terms of sequence and gene order. The data strongly imply that all B. burgdorferi clinical isolates contain linear plasmids related to each other, but the structure of these replicons may vary substantially from isolate to isolate. These alterations include deletions and presumed rearrangements that are likely to result in unique plasmid elements in many isolates. There is a strong correlation between complete genome hybridization profiles and other typing methods, which, in turn, also correlate to differences in pathogenicity. Because there is substantially less variation in the chromosomal and circular plasmid portions of the genome, the major differences in open reading frame content and genomic diversity among isolates are linear plasmid driven. PMID:16923879

  15. Recombinant constructs of Borrelia burgdorferi

    DOEpatents

    Dattwyler, Raymond J.; Gomes-Solecki, Maria J. C.; Luft, Benjamin J.; Dunn, John J.

    2007-02-20

    Novel chimeric nucleic acids, encoding chimeric Borrelia proteins comprising OspC or an antigenic fragment thereof and OspA or an antigenic fragment thereof, are disclosed. Chimeric proteins encoded by the nucleic acid sequences are also disclosed. The chimeric proteins are useful as vaccine immunogens against Lyme borreliosis, as well as for immunodiagnostic reagents.

  16. Borrelia burgdorferi visualized in Ixodes scapularis tick excrement by immunofluorescence.

    PubMed

    Patton, Toni G; Brandt, Kevin S; Gilmore, Robert D

    2012-11-01

    The enzootic cycle of Borrelia burgdorferi, the etiologic agent of Lyme disease, involves Ixodes spp. ticks and vertebrates. Resident tick Borrelia, harbored inside the midgut, are eventually expelled with the tick's saliva into the vertebrate host when a tick consumes a blood meal. During this 4- to 5-day feeding period I. scapularis will defecate onto the host's skin. Previously we detected borrelial DNA in tick feces throughout engorgement. In this study we report the microscopic examination for B. burgdorferi in nymphal excrement. Using immunofluorescence assays, we observed Borrelia in all mouse skin and capsule fecal swabs tested, although we could not culture the spirochetes. These results update our previous analysis by revealing that spirochetes can also be visualized in tick excrement. Furthermore, the results emphasize that borrelial contamination by defecation is a possibility, and that caution should be exercised by researchers investigating pathogen/host/vector interactions. The biological significance of the presence of non-culturable Borrelia in tick feces during engorgement is unclear. PMID:22651382

  17. Genomic Characteristics of Chinese Borrelia burgdorferi Isolates

    PubMed Central

    Hou, Xuexia; Zhang, Lin; Zhang, Yuanyuan; Liu, Huixin; Liu, Wei; Chen, Chen; Wan, Kanglin

    2016-01-01

    In China, B. burgdorferi, B.garinii, B. afzelii and B. yangtze sp. nov have been reported; B.garinii and B. afzelii are the main pathogenic genotypes. But until now only one Chinese strain was reported with whole genome sequence. In order to further understand the genomic characteristics and diversity of Chinese Borrelia strains, 5 isolates from China were sequenced and compared with the whole genome sequences of strains in other areas. The results showed a high degree of conservation within the linear chromosome of Chinese strains, whereas plasmid showed a much larger diversity according to the majority genomic information of plasmids. The genome sequences of the five Chinese strains were compared with the corresponding reference strains, respectively, according to the genospecies. Pairwise analysis demonstrates that there are only 70 SNPs between the genomes of CS4 and B31. However, there are many more SNPs between the genomes of QX-S13 and VS116, PD91 and PBi, FP1 and PKo, R9 and Pko, respectively. Gene comparison showed some important different genes. OspA was one of the important different genes. Comparative genomic studies have found that OspA gene sequences of PD91 and R9 had great differences compared with the sequence of B31. OspA gene sequence of R9 had a 96bp deletion; OspA gene of PD91 had two deletions: 9bp and 10 bp. To conclude, we showed the genomic characteristics of four genotype Chinese B. burgdorferi strains. The genomic sequence of B. yangtze sp. nov and differences from B. valaisiana were first reported. Comparative analysis of Chinese strains with the different Borrelia species from other areas will help us to understand evolution and pathogenesis of Chinese Borrelia burgdorferi strains. PMID:27093540

  18. Biomechanics of Borrelia burgdorferi Vascular Interactions.

    PubMed

    Ebady, Rhodaba; Niddam, Alexandra F; Boczula, Anna E; Kim, Yae Ram; Gupta, Nupur; Tang, Tian Tian; Odisho, Tanya; Zhi, Hui; Simmons, Craig A; Skare, Jon T; Moriarty, Tara J

    2016-09-01

    Systemic dissemination of microbes is critical for progression of many infectious diseases and is associated with most mortality due to bacterial infection. The physical mechanisms mediating a key dissemination step, bacterial association with vascular endothelia in blood vessels, remain unknown. Here, we show that endothelial interactions of the Lyme disease spirochete Borrelia burgdorferi under physiological shear stress mechanistically resemble selectin-dependent leukocyte rolling. Specifically, these interactions are mediated by transfer of mechanical load along a series of adhesion complexes and are stabilized by tethers and catch bond properties of the bacterial adhesin BBK32. Furthermore, we found that the forces imposed on adhesive bonds under flow may be small enough to permit active migration driven by bacterial flagellar motors. These findings provide insight into the biomechanics of bacterial-vascular interactions and demonstrate that disseminating bacteria and circulating host immune cells share widely conserved mechanisms for interacting with endothelia under physiological shear stress. PMID:27568563

  19. Adherence of Borrelia burgdorferi to granulocytes of different animal species.

    PubMed

    Grassmann, B; Kopp, P A; Schmitt, M; Blobel, H

    1997-04-01

    Adherence of 4 Borrelia (B.) burgdorferi strains (z7/22, z7/27, z7/41, PBi) to polymorphonuclear granulocytes from different domestic animals (horses, cattle, sheep, dogs) was investigated. All 4 strains adhered to the granulocytes. Binding assays indicated that the adherence occurred between structures on the surface of the borreliae ("binding-sites") and on the membranes of the granulocytes ("receptors"). The "receptors" consisted of 4 fractions (A, B, C, and D) with components differing in molecular weight (MW) and binding activity for proteins on the surface of B. burgdorferi. Fraction A (MW 80000) had the highest binding activity for B. burgdorferi. PMID:9144911

  20. Renal lesions associated with Borrelia burgdorferi infection in a dog.

    PubMed

    Grauer, G F; Burgess, E C; Cooley, A J; Hagee, J H

    1988-07-15

    Borrelia burgdorferi infection was diagnosed serologically in a dog with lethargy, stiffness, and anorexia. Treatment with ampicillin and chloramphenicol did not alleviate the signs. Azotemia, proteinuria, cylindruria, pyuria, and hematuria developed over a 3-month period. Antibody titer for B burgdorferi remained high (1:8,192) during this time. Renal histopathologic findings included severe, chronic, diffuse, membranoproliferative glomerulonephritis and moderate chronic, multifocal, interstitial nephritis. Borrelia burgdorferi organisms were identified in renal tissue and in urine by results of immunofluorescent studies and bacteriologic culture, respectively. PMID:3403355

  1. Borrelia burgdorferi mutant lacking Osp: biological and immunological characterization.

    PubMed Central

    Sadziene, A; Thomas, D D; Barbour, A G

    1995-01-01

    All Borrelia burgdorferi sensu lato isolates characterized to date have one or a combination of several major outer surface proteins (Osps). Mutants of B. burgdorferi lacking Osps were selected with polyclonal or monoclonal antibodies at a frequency of 10(-6) to 10(-5). One mutant that lacked OspA, -B, -C, and -D was further characterized. It was distinguished from the OspA+B+ cells by its (i) autoaggregation and slower growth rate, (ii) decreased plating efficiency on solid medium, (iii) serum and complement sensitivity, and (iv) diminished capacity to adhere to human umbilical vein endothelial cells. The Osp-less mutant was unable to evoke a detectable immune response after intradermal live cell immunization even though mutant survived in mouse skin for the same duration as wild-type cells. Polyclonal mouse serum raised against Osp-less cells inhibited growth of the mutant but not of wild-type cells, an indication that other antigens are present on the surface of the Osp-less mutant. Two types of monoclonal antibodies (MAbs) with growth-inhibiting properties for mutant cells were identified. The first type bound to a 13-kDa surface protein of B. burgdorferi sensu stricto and of B. afzelii. The MIC of the Fab fragment of one MAb of this type was 0.2 micrograms/ml. The second type of MAb to the Osp-less mutant did not bind to B. burgdorferi components by Western blotting (immunoblotting) but did not bind to unfixed, viable cells in immunofluorescence and growth inhibition assays. These studies revealed possible functions Osp proteins in borrelias, specifically serum resistance, and indicated that in the absence of Osp proteins, other antigens are expressed or become accessible at the cell surface. PMID:7890424

  2. Colony formation and morphology in Borrelia burgdorferi.

    PubMed

    Kurtti, T J; Munderloh, U G; Johnson, R C; Ahlstrand, G G

    1987-11-01

    Two strains of Borrelia burgdorferi, B31 and 297, formed colonies when plated onto Barbour-Stoenner-Kelly medium solidified with agarose (1.3%) and incubated in a candle jar at 34 degrees C. Colonies differing in morphology were observed in both strains after 2 to 3 weeks of incubation. Strain B31 colonies were either compact, round (mean diameter, 0.43 mm), and restricted to the surface of the agarose medium or diffuse (mean diameter, 1.80 mm) and penetrating into the solid medium. Strain 297 colonies (mean diameter, 1.43 mm) either showed a raised center surrounded by a diffuse ring of spirochetes or consisted of numerous small spirochetal aggregates. Both colony types expanded into the agarose medium. Scanning electron and light microscopy confirmed that the colonies were formed by spirochetes. Twisted tangles of intertwined spirochetes were visible on the surface, with numerous spherical bodies among them, especially in the central regions. At the periphery, the borreliae were more loosely packed, and individual coils were discernible. PMID:3693538

  3. Antigenically variable Borrelia burgdorferi isolated from cottontail rabbits and Ixodes dentatus in rural and urban areas.

    PubMed Central

    Anderson, J F; Magnarelli, L A; LeFebvre, R B; Andreadis, T G; McAninch, J B; Perng, G C; Johnson, R C

    1989-01-01

    Spirochetes were isolated from 71 subadult Ixodes dentatus removed from cottontail rabbits captured in Millbrook, N.Y., and in New York, N.Y. Spirochetes were also cultured from kidney tissues of six rabbits. While all isolates reacted with monoclonal antibody H9724, which identifies the spirochetes as borreliae, more than half did not bind with antibody H5332 and even fewer reacted with H3TS, both of which were produced to outer surface protein A of Borrelia burgdorferi. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis protein profiles of three isolates differed from one another and from all previously characterized B. burgdorferi strains from humans, ticks, and wildlife in North America. The 12 periplasmic flagella that originated subterminally from each pointed end of a rabbit Borellia isolate contrasted with the 11 or fewer flagella for B. burgdorferi reported previously from North America. Although DNA homology and restriction endonuclease analysis also revealed differences among a rabbit kidney isolate, an I. dentatus isolate, and B. burgdorferi B31, similarities were sufficient to lead us to conclude that the borreliae in rabbits and I. dentatus are B. burgdorferi. Enzyme-linked immunosorbent assay titers of sera from humans with diagnosed Lyme disease to rabbit tick B. burgdorferi were often similar to one another and to those recorded for a reference B. burgdorferi strain. Images PMID:2913024

  4. Detection of Borrelia burgdorferi sensu stricto and Borrelia garinii DNAs in patient with Hyperkeratosis lenticularis perstans (Flegel disease).

    PubMed

    Schwarzova, Katarina; Kozub, Peter; Szep, Zoltan; Golovchenko, Marina; Rudenko, Natasha

    2016-09-01

    Determination of the causative agent of erythema-like skin lesions in case of nonspecific superficial perivascular dermatitis was supported by histological examination and led to the latter diagnosis of Hyperkeratosis lenticularis perstans (Flegel disease) in patient. The presence of antibodies against Borrelia burgdorferi in patient serum was confirmed by a routine ELISA method and verified by Western blot technique. Skin biopsy and blood specimens were analyzed by PCR and multilocus sequence analysis (MLSA). Western blot method revealed IgG antibody response against two specific antigens, 17 and 83 kDa proteins. The recombinant test detected IgG antibody response against p100 and p41 antigens. The sequence analysis of amplicons from the selected genomic loci obtained from skin biopsy and serum samples revealed the presence of two species from B. burgdorferi sensu lato complex as a co-infection in this patient-B. burgdorferi sensu stricto (s.s.) and Borrelia garinii. PMID:26769152

  5. Two Boundaries Separate Borrelia burgdorferi Populations in North America

    PubMed Central

    Tsao, Jean I.; Castillo-Ramírez, Santiago; Girard, Yvette A.; Hamer, Sarah A.; Hoen, Anne Gatewood; Lane, Robert S.; Raper, Steve L.; Ogden, Nicholas H.

    2012-01-01

    Understanding the spread of infectious diseases is crucial for implementing effective control measures. For this, it is important to obtain information on the contemporary population structure of a disease agent and to infer the evolutionary processes that may have shaped it. Here, we investigate on a continental scale the population structure of Borrelia burgdorferi, the causative agent of Lyme borreliosis (LB), a tick-borne disease, in North America. We test the hypothesis that the observed population structure is congruent with recent population expansions and that these were preceded by bottlenecks mostly likely caused by the near extirpation in the 1900s of hosts required for sustaining tick populations. Multilocus sequence typing and complementary population analytical tools were used to evaluate B. burgdorferi samples collected in the Northeastern, Upper Midwestern, and Far-Western United States and Canada. The spatial distribution of sequence types (STs) and inferred population boundaries suggest that the current populations are geographically separated. One major population boundary separated western B. burgdorferi populations transmitted by Ixodes pacificus in California from Eastern populations transmitted by I. scapularis; the other divided Midwestern and Northeastern populations. However, populations from all three regions were genetically closely related. Together, our findings suggest that although the contemporary populations of North American B. burgdorferi now comprise three geographically separated subpopulations with no or limited gene flow among them, they arose from a common ancestral population. A comparative analysis of the B. burgdorferi outer surface protein C (ospC) gene revealed novel linkages and provides additional insights into the genetic characteristics of strains. PMID:22729536

  6. Fatty acids of Treponema pallidum and Borrelia burgdorferi lipoproteins.

    PubMed Central

    Belisle, J T; Brandt, M E; Radolf, J D; Norgard, M V

    1994-01-01

    A fundamental ultrastructural feature shared by the spirochetal pathogens Treponema pallidum subsp. pallidum (T. pallidum) and Borrelia burgdorferi, the etiological agents of venereal syphilis and Lyme disease, respectively, is that their most abundant membrane proteins contain covalently attached fatty acids. In this study, we identified the fatty acids covalently bound to lipoproteins of B. burgdorferi and T. pallidum and examined potential acyl donors to these molecules. Palmitate was the predominant fatty acid of both B. burgdorferi and T. pallidum lipoproteins. T. pallidum lipoproteins also contained substantial amounts of stearate, a fatty acid not typically prevalent in prokaryotic lipoproteins. In both spirochetes, the fatty acids of cellular lipids differed from those of their respective lipoproteins. To characterize phospholipids in these organisms, spirochetes were metabolically labeled with [3H]palmitate or [3H]oleate; B. burgdorferi contained only phosphatidylglycerol and phosphatidylcholine, while T. pallidum contained phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, and cardiolipin. Although palmitate predominated in the lipoproteins, there were no apparent differences in the incorporation of these two fatty acids into phospholipids (putative acyl donors). Phospholipase A1 and A2 digestion of phosphatidylcholine from B. burgdorferi and T. pallidum labeled with either [3H]palmitate or [3H]oleate also revealed that neither fatty acid was incorporated preferentially into the 1 and 2 positions (potential acyl donor sites) of the glycerol backbone. The combined findings suggest that fatty acid utilization during lipoprotein synthesis is determined largely by the fatty acid specificities of the lipoprotein acyl transferases. These findings also provide the basis for ongoing efforts to elucidate the relationship between lipoprotein acylation and the physiological functions and inflammatory

  7. Distribution of Borrelia burgdorferi in host mice in Pennsylvania.

    PubMed Central

    Lord, R D; Lord, V R; Humphreys, J G; McLean, R G

    1994-01-01

    Host mice (Peromyscus leucopus and Peromyscus maniculatus) were sampled throughout the state of Pennsylvania to determine the geographical and ecological distribution of the Lyme disease spirochete Borrelia burgdorferi. All 67 counties of the state were sampled. A total of 1,619 mice were captured from a total of 157 sites during the period 1990 to 1993 for an overall capture rate of 29.69%. A total of 112 (6.92%) isolations of B. burgdorferi were made. The distribution of isolations revealed the reason for the correlated distribution of human cases of Lyme disease in the state. Significantly more mice were captured and significantly more isolations were made from hemlock (Tsuga canadensis) habitat than from deciduous species forest. Nevertheless, high isolation rates from counties of the southeastern corner of the state illustrate well that hemlock habitat is not essential. Evidence suggests that in some areas, transmission between mice is occurring in some way other than through ticks as vectors. Host mice proved useful for determining the geographical and ecological distribution of B. burgdorferi. PMID:7814489

  8. Role of outer membrane architecture in immune evasion by Treponema pallidum and Borrelia burgdorferi.

    PubMed

    Radolf, J D

    1994-09-01

    Combined ultrastructural and molecular studies have revealed that the syphilis and Lyme-disease spirochetes, Treponema pallidum and Borrelia burgdorferi, have distinctive molecular architectures. Both organisms persist in their hosts and have strategies for immune evasion that include the use of rare, poorly immunogenic surface-exposed proteins as potential virulence determinants. PMID:7812663

  9. Whole-Genome Sequences of Thirteen Isolates of Borrelia burgdorferi

    SciTech Connect

    Schutzer S. E.; Dunn J.; Fraser-Liggett, C. M.; Casjens, S. R.; Qiu, W.-G.; Mongodin, E. F.; Luft, B. J.

    2011-02-01

    Borrelia burgdorferi is a causative agent of Lyme disease in North America and Eurasia. The first complete genome sequence of B. burgdorferi strain 31, available for more than a decade, has assisted research on the pathogenesis of Lyme disease. Because a single genome sequence is not sufficient to understand the relationship between genotypic and geographic variation and disease phenotype, we determined the whole-genome sequences of 13 additional B. burgdorferi isolates that span the range of natural variation. These sequences should allow improved understanding of pathogenesis and provide a foundation for novel detection, diagnosis, and prevention strategies.

  10. Suppression of Long-Lived Humoral Immunity Following Borrelia burgdorferi Infection

    PubMed Central

    Elsner, Rebecca A.; Hastey, Christine J.; Olsen, Kimberly J.; Baumgarth, Nicole

    2015-01-01

    Lyme Disease caused by infection with Borrelia burgdorferi is an emerging infectious disease and already by far the most common vector-borne disease in the U.S. Similar to many other infections, infection with B. burgdorferi results in strong antibody response induction, which can be used clinically as a diagnostic measure of prior exposure. However, clinical studies have shown a sometimes-precipitous decline of such antibodies shortly following antibiotic treatment, revealing a potential deficit in the host’s ability to induce and/or maintain long-term protective antibodies. This is further supported by reports of frequent repeat infections with B. burgdorferi in endemic areas. The mechanisms underlying such a lack of long-term humoral immunity, however, remain unknown. We show here that B. burgdorferi infected mice show a similar rapid disappearance of Borrelia-specific antibodies after infection and subsequent antibiotic treatment. This failure was associated with development of only short-lived germinal centers, micro-anatomical locations from which long-lived immunity originates. These showed structural abnormalities and failed to induce memory B cells and long-lived plasma cells for months after the infection, rendering the mice susceptible to reinfection with the same strain of B. burgdorferi. The inability to induce long-lived immune responses was not due to the particular nature of the immunogenic antigens of B. burgdorferi, as antibodies to both T-dependent and T-independent Borrelia antigens lacked longevity and B cell memory induction. Furthermore, influenza immunization administered at the time of Borrelia infection also failed to induce robust antibody responses, dramatically reducing the protective antiviral capacity of the humoral response. Collectively, these studies show that B. burgdorferi-infection results in targeted and temporary immunosuppression of the host and bring new insight into the mechanisms underlying the failure to develop long

  11. Borrelia burgdorferi Infection and Cutaneous Lyme Disease, Mexico

    PubMed Central

    Gordillo-Pérez, Guadalupe; Torres, Javier; Solórzano-Santos, Fortino; de Martino, Sylvie; Lipsker, Dan; Velázquez, Edmundo; Ramon, Guillermo; Onofre, Muñoz; Jaulhac, Benoit

    2007-01-01

    Four patients who had received tick bites while visiting forests in Mexico had skin lesions that met the case definition of erythema migrans, or borrelial lymphocytoma. Clinical diagnosis was supported with histologic, serologic, and molecular tests. This study suggests the Borrelia burgdorferi infection is in Mexico. PMID:18258006

  12. Membrane topology of Borrelia burgdorferi and Treponema pallidum lipoproteins.

    PubMed Central

    Jones, J D; Bourell, K W; Norgard, M V; Radolf, J D

    1995-01-01

    A critical issue regarding the molecular architectures of Treponema pallidum and Borrelia burgdorferi, the agents of venereal syphilis and Lyme disease, respectively, concerns the membrane topologies of their major lipoprotein immunogens. A related question is whether these lipid-modified membrane proteins form intramembranous particles during freeze fracture electron microscopy. To address these issues, native borrelial and treponemal lipoproteins were reconstituted into liposomes of diverse composition. The importance of the covalently associated lipids for membrane association of lipoproteins was revealed by the observation that nonlipidated recombinant forms of both B. burgdorferi OspA and the T. pallidum 47-kDa immunogen (Tpp47) showed very weak or no binding to model bilayer vesicles. In contrast to control liposomes reconstituted with bacteriorhodopsin or bovine rhodopsin, two well-characterized transmembrane proteins, none of the lipoprotein-liposomes contained particles when examined by freeze fracture electron microscopy. To extend these findings to prokaryotic lipoproteins with relatively amphiphilic polypeptides, similar experiments were conducted with a recombinant nonlipidated form of Escherichia coli TraT, a lipoprotein which has putative transmembrane domains. The nonlipidated TraT oligomers bound vesicles derived from E. coli lipids but, surprisingly, did not form particles in the freeze-fractured liposomes. These findings support (i) a proposed topology of spirochetal lipoproteins in which the polypeptide is extrinsic to the membrane surface and (ii) the contention that particles visualized in freeze-fractured spirochetal membranes represent poorly characterized transmembrane proteins. PMID:7790053

  13. Case Report: Bilateral diaphragmatic dysfunction due to Borrelia Burgdorferi

    PubMed Central

    Basunaid, Suhail; van der Grinten, Chris; Cobben, Nicole; Otte, Astrid; Sprooten, Roy; Gernot, Rohde

    2014-01-01

    Summary: In this case report we describe a rare case of bilateral diaphragmatic dysfunction due to Lyme disease. Case report: A 62-years-old male presented to the hospital because of flu-like symptoms. During initial evaluation a bilateral diaphragmatic weakness with orthopnea and nocturnal hypoventilation was observed, without a known aetiology. Bilateral diaphragmatic paralysis was confirmed by fluoroscopy with a positive sniff test. The patient was referred to our centre for chronic non-invasive nocturnal ventilation (cNPPV). Subsequent investigations revealed evidence of anti- Borrelia seroactivity in EIA-IgG and IgG-blot, suggesting a recent infection with Lyme disease, and resulted in a 4-week treatment with oral doxycycline. The symptoms of nocturnal hypoventilation were successfully improved with cNPPV. However, our patient still shows impaired diaphragmatic function but he is no longer fully dependent on nocturnal ventilatory support.     Conclusion: Lyme disease should be considered in the differential diagnosis of diaphragmatic dysfunction. It is a tick-borne illness caused by one of the three pathogenic species of the spirochete Borrelia burgdorferi, present in Europe. A delay in recognizing the symptoms can negatively affect the success of treatment. Non-invasive mechanical ventilation (NIV) is considered a treatment option for patients with diaphragmatic paralysis. PMID:25671085

  14. Autophagy suppresses host adaptive immune responses toward Borrelia burgdorferi.

    PubMed

    Buffen, Kathrin; Oosting, Marije; Li, Yang; Kanneganti, Thirumala-Devi; Netea, Mihai G; Joosten, Leo A B

    2016-09-01

    We have previously demonstrated that inhibition of autophagy increased the Borrelia burgdorferi induced innate cytokine production in vitro, but little is known regarding the effect of autophagy on in vivo models of Borrelia infection. Here, we showed that ATG7-deficient mice that were intra-articular injected with Borrelia spirochetes displayed increased joint swelling, cell influx, and enhanced interleukin-1β and interleukin-6 production by inflamed synovial tissue. Because both interleukin-1β and interleukin-6 are linked to the development of adaptive immune responses, we examine the function of autophagy on Borrelia induced adaptive immunity. Human peripheral blood mononuclear cells treated with autophagy inhibitors showed an increase in interleukin-17, interleukin-22, and interferon-γ production in response to exposure to Borrelia burgdorferi. Increased IL-17 production was dependent on IL-1β release but, interestingly, not on interleukin-23 production. In addition, cytokine quantitative trait loci in ATG9B modulate the Borrelia induced interleukin-17 production. Because high levels of IL-17 have been found in patients with confirmed, severe, chronic borreliosis, we propose that the modulation of autophagy may be a potential target for anti-inflammatory therapy in patients with persistent Lyme disease. PMID:27101991

  15. Patterns and regulation of ribosomal RNA transcription in Borrelia burgdorferi

    PubMed Central

    2011-01-01

    Background Borrelia burgdorferi contains one 16S and two tandem sets of 23S-5S ribosomal (r) RNA genes whose patterns of transcription and regulation are unknown but are likely to be critical for survival and persistence in its hosts. Results RT-PCR of B. burgdorferi N40 and B31 revealed three rRNA region transcripts: 16S rRNA-alanine transfer RNA (tRNAAla); tRNAIle; and both sets of 23S-5S rRNA. At 34°C, there were no differences in growth rate or in accumulation of total protein, DNA and RNA in B31 cultured in Barbour-Stoenner-Kelly (BSK)-H whether rabbit serum was present or not. At 23°C, B31 grew more slowly in serum-containing BSK-H than at 34°C. DNA per cell was higher in cells in exponential as compared to stationary phase at either temperature; protein per cell was similar at both temperatures in both phases. Similar amounts of rRNA were produced in exponential phase at both temperatures, and rRNA was down-regulated in stationary phase at either temperature. Interestingly, a relBbu deletion mutant unable to generate (p)ppGpp did not down-regulate rRNA at transition to stationary phase in serum-containing BSK-H at 34°C, similar to the relaxed phenotype of E. coli relA mutants. Conclusions We conclude that rRNA transcription in B. burgdorferi is complex and regulated both by growth phase and by the stringent response but not by temperature-modulated growth rate. PMID:21251259

  16. Western gray squirrel (Rodentia: Sciuridae): a primary reservoir host of Borrelia burgdorferi in Californian oak woodlands?

    PubMed

    Lane, Robert S; Mun, Jeomhee; Eisen, Rebecca J; Eisen, Lars

    2005-05-01

    In California, dense woodlands have been recognized as important biotopes where humans are exposed to the nymphal stage of the western blacklegged tick, Ixodes pacificus Cooley & Kohls, the primary vector of the Lyme disease spirochete Borrelia burgdorferi sensu stricto (s.s.), in the far-western United States. To identify the principal reservoir host(s) of this spirochete, and of closely related spirochetes in the B. burgdorferi sensu lato (s.l.) complex, in dense woodlands in Mendocino County, California, approximately 50 species of birds and mammals, including wood rats and kangaroo rats, were evaluated as potential hosts for vector ticks and borreliae in 2002 and 2003. Although polymerase chain reaction (PCR) and sequencing analyses revealed that many vertebrate species had been exposed to one or more members of the B. burgdorferi s.l. spirochetal complex, only the western gray squirrel, Sciurus griseus, fulfilled the major criteria for a reservoir host of B. burgdorferi s.s. Ear-punch biopsies from eight of 10 squirrels collected from five separate woodlands were PCR-positive for B. burgdorferi s.s., 47% of I. pacificus larvae (n = 64) and 31% of nymphs (n = 49) removed from squirrels contained B. burgdorferi s.l., and the engorgement status of I. pacificus larvae was associated positively with acquisition of spirochetes. Overall, 83 and 100% of the amplicons sequenced from PCR-positive I. pacificus larvae and nymphs, respectively, were identified as B. burgdorferi s.s, Among the five remaining positive I. pacificus larvae, three contained B. bissettii and two had uncharacterized B. burgdorferi s.l. Borrelia burgdorferi s.s. was detected in one of five larvae and zero of two nymphs of the Pacific Coast tick, Dermacentor occidentalis Marx, that likewise had been removed from squirrels. The rickettsial agent of human anaplasmosis, Anaplasma phagocytophilum, was detected in the blood or ear biopsies of two squirrels and in one (1.6%) of 64 I. pacificus larvae and

  17. Lyme borreliosis caused by diverse genospecies of Borrelia burgdorferi sensu lato in northeastern China.

    PubMed

    Ni, X-B; Jia, N; Jiang, B-G; Sun, T; Zheng, Y-C; Huo, Q-B; Liu, K; Ma, L; Zhao, Q-M; Yang, H; Wang, X; Jiang, J-F; Cao, W-C

    2014-08-01

    The variety of Borrelia burgdorferi sensu lato (B. burgdorferi) genospecies leads to distinction in clinical manifestations of Lyme borreliosis (LB). There are reports of LB clinical characteristics in China, where the B. burgdorferi genospecies in ticks and animal hosts are different from those in Europe and North America. During May to September in 2010 and 2011, all patients who had erythema migrans (EM, more than 5 cm in diameter) after a recent tick-bite, and sought medical care at Mudanjiang Forestry Central Hospital, Heilongjiang Province of northeastern China, were enrolled in the study. Specific PCR was used to determine the B. burgdorferi genospecies in the disseminated patients. Of 265 EM patients, B. burgdorferi DNA was detected in blood specimens from 15 of 55 disseminated patients. Sequence analyses of 5S-23S rRNA, flagellin, ospC, 16S rRNA and ospA genes revealed that 11 patients were infected with Borrelia garinii, three with Borrelia afzelii and one with Borrelia valaisiana-related genospecies. Among 15 patients, 40%, 13.3% and 13.3% manifested pruritus, pain and ulceration, respectively. Systemic symptoms, arthralgia or a swollen joint and lymphadenopathy were observed in 26.7%, 13.3% and 6.7% patients, respectively. In northeastern China, three genospecies of LB patients were detected. The B. burgdorferi genospecies identified in this study was predominantly B. garinii. A case infected with B. valaisiana-related genospecies was reported for the first time. PMID:24438159

  18. Evidence that BosR (BB0647) Is a Positive Autoregulator in Borrelia burgdorferi.

    PubMed

    Ouyang, Zhiming; Zhou, Jianli; Norgard, Michael V

    2016-09-01

    Borrelia burgdorferi survives in nature through a complex tick-mammalian life cycle. During its transit between ticks and mammalian hosts, B. burgdorferi must dramatically alter its outer surface profile in order to interact with and adapt to these two diverse niches. It has been established that the regulator BosR (BB0647) in B. burgdorferi plays important roles in modulating borrelial host adaptation. However, to date, how bosR expression itself is controlled in B. burgdorferi remains largely unknown. Previously, it has been shown that DNA sequences upstream of BosR harbor multiple sites for the binding of recombinant BosR, suggesting that BosR may influence its own expression in B. burgdorferi However, direct experimental evidence supporting this putative autoregulation of BosR has been lacking. Here, we investigated the expression of bosR throughout the tick-mammal life cycle of B. burgdorferi via quantitative reverse transcription (RT)-PCR analyses. Our data indicated that bosR is expressed not only during mouse infection, but also during the tick acquisition, intermolt, and transmission phases. Further investigation revealed that bosR expression in B. burgdorferi is influenced by environmental stimuli, such as temperature shift and pH change. By employing luciferase reporter assays, we also identified two promoters potentially driving bosR transcription. Our study offers strong support for the long-postulated function of BosR as an autoregulator in B. burgdorferi. PMID:27324485

  19. Immunogenic integral membrane proteins of Borrelia burgdorferi are lipoproteins.

    PubMed

    Brandt, M E; Riley, B S; Radolf, J D; Norgard, M V

    1990-04-01

    The pathogenic spirochete Borrelia burgdorferi contains a set of integral membrane proteins which were selectively extracted into the detergent phase upon solubilization of intact B. burgdorferi with the nonionic detergent Triton X-114. Virtually all of these hydrophobic proteins were recognized by antibodies in pooled sera from patients with chronic Lyme arthritis, demonstrating that proteins partitioning into the detergent phase of Triton X-114 encompass the major B. burgdorferi immunogens. Furthermore, most of these immunogenic proteins, including the previously characterized OspA and OspB membrane antigens, could be biosynthetically labeled when B. burgdorferi was incubated in vitro with [3H]palmitate. The OspA and OspB antigens were radioimmunoprecipitated from [3H]palmitate-labeled detergent-phase proteins with monoclonal antibodies, and [3H]palmitate was recovered unaltered from these proteins after sequential alkaline and acid hydrolyses. The combined results provide formal confirmation that the major B. burgdorferi immunogens extracted by Triton X-114 are lipoproteins. The demonstration that B. burgdorferi integral membrane antigens are lipoproteins may explain the basis of their immunogenicity and may help to improve our understanding of the surface topology of B. burgdorferi. PMID:2318538

  20. Interaction between Borrelia burgdorferi and endothelium in vitro.

    PubMed

    Szczepanski, A; Furie, M B; Benach, J L; Lane, B P; Fleit, H B

    1990-05-01

    During the pathogenesis of Lyme disease, Borrelia burgdorferi spreads hematogenously from the site of a tick bite to several tissues throughout the body. The specific mechanism of spirochete emigration is presently unknown. Using cultured human umbilical vein endothelial cells, we found that Borrelia burgdorferi bound to the endothelial cells and to the subendothelial matrix. Low passage isolates adhered 22-30-fold greater than a strain maintained in culture continuously. Spirochete binding to subendothelial matrix was inhibited 48-63% by pretreatment of the matrix with anti-fibronectin antiserum. Spirochete migration across endothelial monolayers cultured on amniotic membrane was increased when the monolayers were damaged by chemical or physical means. Electron microscopic examination of spirochete-endothelial interactions demonstrated the presence of spirochetes in the intercellular junctions between endothelial cells as well as beneath the monolayers. Scanning electron microscopy identified a mechanism of transendothelial migration whereby spirochetes pass between cells into the amniotic membrane at areas where subendothelium is exposed. PMID:2332509

  1. Comparison of Growth of Borrelia afzelii, Borrelia garinii, and Borrelia burgdorferi Sensu Stricto at Five Different Temperatures

    PubMed Central

    Veinović, Gorana; Ružić-Sabljić, Eva; Strle, Franc; Cerar, Tjaša

    2016-01-01

    Lyme borreliosis is caused by the spirochete Borrelia burgdorferi sensu lato, a fastidious bacterium that replicates slowly and requires special conditions to grow in the laboratory. Borrelia isolation from clinical material is a golden standard for microbiological diagnosis of borrelial infection. Important factors that affect in vitro borrelia growth are temperature of incubation and number of borrelia cells in the sample. The aim of the study was to assess the influence of temperature on borrelia growth and survival by evaluation and comparison of growth of 31 different borrelia strains at five different temperatures and to determine the influence of different inoculums on borrelia growth at different temperatures. Borreliae were cultured in the MKP medium; the initial and final number of spirochetes was determined by dark field microscopy using Neubauer counting chamber. The growth of borrelia was defined as final number of cells/mL after three days of incubation. For all three Borrelia species, the best growth was found at 33°C, followed by 37, 28, and 23°C, while no growth was detected at 4°C (P<0.05). The growth of B. afzelii species was weaker in comparison to the other two species at 23, 28, 33 and 37°C (P<0.05), respectively. There was no statistically significant difference between the growth of B. garinii and B. burgdorferi sensu stricto at 28, 33, and 37°C (P>0.05), respectively. Inoculum had statistically significant influence on growth of all three Borrelia species at all tested temperatures except at 4°C. PMID:27310556

  2. Comparison of Growth of Borrelia afzelii, Borrelia garinii, and Borrelia burgdorferi Sensu Stricto at Five Different Temperatures.

    PubMed

    Veinović, Gorana; Ružić-Sabljić, Eva; Strle, Franc; Cerar, Tjaša

    2016-01-01

    Lyme borreliosis is caused by the spirochete Borrelia burgdorferi sensu lato, a fastidious bacterium that replicates slowly and requires special conditions to grow in the laboratory. Borrelia isolation from clinical material is a golden standard for microbiological diagnosis of borrelial infection. Important factors that affect in vitro borrelia growth are temperature of incubation and number of borrelia cells in the sample. The aim of the study was to assess the influence of temperature on borrelia growth and survival by evaluation and comparison of growth of 31 different borrelia strains at five different temperatures and to determine the influence of different inoculums on borrelia growth at different temperatures. Borreliae were cultured in the MKP medium; the initial and final number of spirochetes was determined by dark field microscopy using Neubauer counting chamber. The growth of borrelia was defined as final number of cells/mL after three days of incubation. For all three Borrelia species, the best growth was found at 33°C, followed by 37, 28, and 23°C, while no growth was detected at 4°C (P<0.05). The growth of B. afzelii species was weaker in comparison to the other two species at 23, 28, 33 and 37°C (P<0.05), respectively. There was no statistically significant difference between the growth of B. garinii and B. burgdorferi sensu stricto at 28, 33, and 37°C (P>0.05), respectively. Inoculum had statistically significant influence on growth of all three Borrelia species at all tested temperatures except at 4°C. PMID:27310556

  3. Analysis of the HD-GYP Domain Cyclic Dimeric GMP Phosphodiesterase Reveals a Role in Motility and the Enzootic Life Cycle of Borrelia burgdorferi ▿ †

    PubMed Central

    Sultan, Syed Z.; Pitzer, Joshua E.; Boquoi, Tristan; Hobbs, Gerry; Miller, Michael R.; Motaleb, M. A.

    2011-01-01

    HD-GYP domain cyclic dimeric GMP (c-di-GMP) phosphodiesterases are implicated in motility and virulence in bacteria. Borrelia burgdorferi possesses a single set of c-di-GMP-metabolizing enzymes, including a putative HD-GYP domain protein, BB0374. Recently, we characterized the EAL domain phosphodiesterase PdeA. A mutation in pdeA resulted in cells that were defective in motility and virulence. Here we demonstrate that BB0374/PdeB specifically hydrolyzed c-di-GMP with a Km of 2.9 nM, confirming that it is a functional phosphodiesterase. Furthermore, by measuring phosphodiesterase enzyme activity in extracts from cells containing the pdeA pdeB double mutant, we demonstrate that no additional phosphodiesterases are present in B. burgdorferi. pdeB single mutant cells exhibit significantly increased flexing, indicating a role for c-di-GMP in motility. Constructing and analyzing a pilZ pdeB double mutant suggests that PilZ likely interacts with chemotaxis signaling. While virulence in needle-inoculated C3H/HeN mice did not appear to be altered significantly in pdeB mutant cells, these cells exhibited a reduced ability to survive in Ixodes scapularis ticks. Consequently, those ticks were unable to transmit the infection to naïve mice. All of these phenotypes were restored when the mutant was complemented. Identification of this role of pdeB increases our understanding of the c-di-GMP signaling network in motility regulation and the life cycle of B. burgdorferi. PMID:21670168

  4. Proteome Analysis of Borrelia burgdorferi Response to Environmental Change

    SciTech Connect

    Angel, Thomas E.; Luft, Benjamin J.; Yang, Xiaohua; Nicora, Carrie D.; Camp, David G.; Jacobs, Jon M.; Smith, Richard D.

    2010-11-02

    We examined global changes in protein expression in the B31 strain of Borrelia burgdorferi, in response to two environmental cues (pH and temperature) chosen for their reported similarity to those encountered at different stages of the organism’s life cycle. Multidimensional nano-liquid chromatographic separations coupled with tandem mass spectrometry were used to examine the array of proteins (i.e., the proteome) of B. burgdorferi for different pH and temperature culture conditions. Changes in pH and temperature elicited in vitro adaptations of this spirochete known to cause Lyme disease and led to alterations in protein expression that are associated with increased microbial pathogenesis. We identified 1031 proteins that represent 59% of the annotated genome of B. burgdorferi and elucidated a core proteome of 414 proteins that were present in all environmental conditions investigated. Observed changes in protein abundances indicated varied replicon usage, as well as proteome functional distributions between the in vitro cell culture conditions. Surprisingly, the pH and temperature conditions that mimicked B. burgdorferi residing in the gut of a fed tick showed a marked reduction in protein diversity. Additionally, the results provide us with leading candidates for exploring how B. burgdorferi adapts to and is able to survive in a wide variety of environmental conditions and lay a foundation for planned in situ studies of B. burgdorferi isolated from the tick midgut and infected animals.

  5. MLST of housekeeping genes captures geographic population structure and suggests a European origin of Borrelia burgdorferi

    PubMed Central

    Margos, Gabriele; Gatewood, Anne G.; Aanensen, David M.; Hanincová, Klára; Terekhova, Darya; Vollmer, Stephanie A.; Cornet, Muriel; Piesman, Joseph; Donaghy, Michael; Bormane, Antra; Hurn, Merrilee A.; Feil, Edward J.; Fish, Durland; Casjens, Sherwood; Wormser, Gary P.; Schwartz, Ira; Kurtenbach, Klaus

    2008-01-01

    Lyme borreliosis, caused by the tick-borne bacterium Borrelia burgdorferi, has become the most common vector-borne disease in North America over the last three decades. To understand the dynamics of the epizootic spread and to predict the evolutionary trajectories of B. burgdorferi, accurate information on the population structure and the evolutionary relationships of the pathogen is crucial. We, therefore, developed a multilocus sequence typing (MLST) scheme for B. burgdorferi based on eight chromosomal housekeeping genes. We validated the MLST scheme on B. burgdorferi specimens from North America and Europe, comprising both cultured isolates and infected ticks. These data were compared with sequences for the commonly used genetic markers rrs-rrlA intergenic spacer (IGS) and the gene encoding the outer surface protein C (ospC). The study demonstrates that the concatenated sequences of the housekeeping genes of B. burgdorferi provide highly resolved phylogenetic signals and that the housekeeping genes evolve differently compared with the IGS locus and ospC. Using sequence data, the study reveals that North American and European populations of B. burgdorferi correspond to genetically distinct populations. Importantly, the MLST data suggest that B. burgdorferi originated in Europe rather than in North America as proposed previously. PMID:18574151

  6. Persister Development by Borrelia burgdorferi Populations In Vitro.

    PubMed

    Caskey, John R; Embers, Monica E

    2015-10-01

    Doxycycline is an antibiotic commonly used to treat Lyme disease and other bacterial infections. The MIC and minimum bactericidal concentration (MBC) for Borrelia burgdorferi have been investigated by different groups but were experimentally established in this study as a function of input cell density. We demonstrated that B. burgdorferi treated in the stationary phase has a higher probability of regrowth following removal of antibiotic. In addition, we determined experimentally and mathematically that the spirochetes which persist posttreatment do not have a longer lag phase but exhibit a lower growth rate than untreated spirochetes. Finally, we found that treating the spirochetes by pulse-dosing did not eliminate growth or reduce the persister population in vitro. From these data, we propose that B. burgdorferi persister development is stochastic and driven by slowed growth. PMID:26248368

  7. Differential Expression of Borrelia burgdorferi Proteins during Growth In Vitro

    PubMed Central

    Ramamoorthy, Ramesh; Philipp, Mario T.

    1998-01-01

    In an earlier paper we described the transcriptionally regulated differential levels of expression of two lipoproteins of Borrelia burgdorferi, P35 and P7.5, during growth of the spirochetes in culture from logarithmic phase to stationary phase (K. J. Indest, R. Ramamoorthy, M. Solé, R. D. Gilmore, B. J. B. Johnson, and M. T. Philipp, Infect. Immun. 65:1165–1171, 1997). Here we further assess this phenomenon by investigating whether the expression of other antigens of B. burgdorferi, including some well-characterized ones, are also regulated in a growth-phase-dependent manner in vitro. These studies revealed 13 additional antigens, including OspC, BmpD, and GroEL, that were upregulated 2- to 66-fold and a 28-kDa protein that was downregulated 2- to 10-fold, during the interval between the logarithmic- and stationary-growth phases. Unlike with these in vitro-regulated proteins, the levels of expression of OspA, OspB, P72, flagellin, and BmpA remained unchanged throughout growth of the spirochetes in culture. Furthermore, ospAB, bmpAB, groEL, and fla all exhibited similar mRNA profiles, which is consistent with the constitutive expression of these genes. By contrast, the mRNA and protein profiles of ospC and bmpD indicated regulated expression of these genes. While bmpD exhibited a spike in mRNA expression in early stationary phase, ospC maintained a relatively higher level of mRNA throughout culture. These findings demonstrate that there are additional genes besides P7.5 and P35 whose regulated expression can be investigated in vitro and which may thus serve as models to facilitate the study of regulatory mechanisms in an organism that cycles between an arthropod and a vertebrate host. PMID:9784512

  8. A Manganese-rich Environment Supports Superoxide Dismutase Activity in a Lyme Disease Pathogen, Borrelia burgdorferi*

    PubMed Central

    Aguirre, J. Dafhne; Clark, Hillary M.; McIlvin, Matthew; Vazquez, Christine; Palmere, Shaina L.; Grab, Dennis J.; Seshu, J.; Hart, P. John; Saito, Mak; Culotta, Valeria C.

    2013-01-01

    The Lyme disease pathogen Borrelia burgdorferi represents a novel organism in which to study metalloprotein biology in that this spirochete has uniquely evolved with no requirement for iron. Not only is iron low, but we show here that B. burgdorferi has the capacity to accumulate remarkably high levels of manganese. This high manganese is necessary to activate the SodA superoxide dismutase (SOD) essential for virulence. Using a metalloproteomic approach, we demonstrate that a bulk of B. burgdorferi SodA directly associates with manganese, and a smaller pool of inactive enzyme accumulates as apoprotein. Other metalloproteins may have similarly adapted to using manganese as co-factor, including the BB0366 aminopeptidase. Whereas B. burgdorferi SodA has evolved in a manganese-rich, iron-poor environment, the opposite is true for Mn-SODs of organisms such as Escherichia coli and bakers' yeast. These Mn-SODs still capture manganese in an iron-rich cell, and we tested whether the same is true for Borrelia SodA. When expressed in the iron-rich mitochondria of Saccharomyces cerevisiae, B. burgdorferi SodA was inactive. Activity was only possible when cells accumulated extremely high levels of manganese that exceeded cellular iron. Moreover, there was no evidence for iron inactivation of the SOD. B. burgdorferi SodA shows strong overall homology with other members of the Mn-SOD family, but computer-assisted modeling revealed some unusual features of the hydrogen bonding network near the enzyme's active site. The unique properties of B. burgdorferi SodA may represent adaptation to expression in the manganese-rich and iron-poor environment of the spirochete. PMID:23376276

  9. aadA Confers Streptomycin Resistance in Borrelia burgdorferi

    PubMed Central

    Frank, Kristi L.; Bundle, Sharyl F.; Kresge, Michele E.; Eggers, Christian H.; Samuels, D. Scott

    2003-01-01

    To enhance genetic manipulation of the Lyme disease spirochete Borrelia burgdorferi, we assayed the aadA gene for the ability to confer resistance to the antibiotics spectinomycin and streptomycin. Using the previously described pBSV2 as a backbone, a shuttle vector, termed pKFSS1, which carries the aadA open reading frame fused to the B. burgdorferi flgB promoter was constructed. The hybrid flgB promoter-aadA cassette confers resistance to spectinomycin and streptomycin in both B. burgdorferi and Escherichia coli. pKFSS1 has a replication origin derived from the 9-kb circular plasmid and can be comaintained in B. burgdorferi with extant shuttle vector pCE320, which has a replication origin derived from a 32-kb circular plasmid, or pBSV2, despite the fact that pKFSS1 and pBSV2 have the same replication origin. Our results demonstrate the availability of a new selectable marker and shuttle vector for genetically dissecting B. burgdorferi at the molecular level. PMID:14594849

  10. Virulent strain associated outer membrane proteins of Borrelia burgdorferi.

    PubMed Central

    Skare, J T; Shang, E S; Foley, D M; Blanco, D R; Champion, C I; Mirzabekov, T; Sokolov, Y; Kagan, B L; Miller, J N; Lovett, M A

    1995-01-01

    We have isolated and purified outer membrane vesicles (OMV) from Borrelia burgdorferi strain B31 based on methods developed for isolation of Treponema pallidum OMV. Purified OMV exhibited distinct porin activities with conductances of 0.6 and 12.6 nano-Siemen and had no detectable beta-NADH oxidase activity indicating their outer membrane origin and their lack of inner membrane contamination, respectively. Hydrophobic proteins were identified by phase partitioning with Triton X-114. Most of these hydrophobic membrane proteins were not acylated, suggesting that they are outer membrane-spanning proteins. Identification of palmitate-labeled lipoproteins revealed that several were enriched in the OMV, several were enriched in the protoplasmic cylinder inner membrane fraction, and others were found exclusively associated with the inner membrane. The protein composition of OMV changed significantly with successive in vitro cultivation of strain B31. Using antiserum with specificity for virulent strain B31, we identified OMV antigens on the surface of the spirochete and identified proteins whose presence in OMV could be correlated with virulence and protective immunity in the rabbit Lyme disease model. These virulent strain associated outer membrane-spanning proteins may provide new insight into the pathogenesis of Lyme disease. Images PMID:7593626

  11. Whole genome sequence of an unusual Borrelia burgdorferi sensu lato isolate

    SciTech Connect

    Casjens, S.R.; Dunn, J.; Fraser-Liggett, C. M.; Mongodin, E. F.; Qiu, W. G.; Luft, B. J.; Schutzer, S. E.

    2011-03-01

    Human Lyme disease is caused by a number of related Borrelia burgdorferi sensu lato species. We report here the complete genome sequence of Borrelia sp. isolate SV1 from Finland. This isolate is to date the closest known relative of B. burgdorferi sensu stricto, but it is sufficiently genetically distinct from that species that it and its close relatives warrant its candidacy for new-species status. We suggest that this isolate should be named 'Borrelia finlandensis.'

  12. Susceptibility of selected rodent species from Colorado to Borrelia burgdorferi.

    PubMed

    Ubico, S R; McLean, R G; Cooksey, L M

    1996-04-01

    To determine the susceptibility of some common Colorado (USA) rodent species to Borrelia burgdorferi, pregnant Peromyscus maniculatus, Tamias minimus, and Spermophilus lateralis were trapped in May 1990 and kept in quarantine until their young were old enough to be used in the experiment. Six to eight 8-wk-old individuals of each of the Colorado species and, for comparison, eight laboratory raised P. leucopus were subcutaneously inoculated with > or = 10(5) spirochetes in 0.1 ml in July 1990. Tissue specimens were collected for isolation from these animals through April 1991. Spirochetes were isolated from blood, ear, bladder, kidney, spleen, liver, and eye in Barbour-Stoener-Kelly (BSK) medium from P. maniculatus, P. leucopus and T. minimus. Spirochetes were isolated from at least one tissue from all of these animals and no isolations were obtained from any of the S. lateralis. Thus, three of the four rodent species tested are susceptible to, and could harbor, B. burgdorferi. PMID:8722268

  13. Lipid Exchange between Borrelia burgdorferi and Host Cells

    PubMed Central

    Crowley, Jameson T.; Toledo, Alvaro M.; LaRocca, Timothy J.; Coleman, James L.; London, Erwin; Benach, Jorge L.

    2013-01-01

    Borrelia burgdorferi, the agent of Lyme disease, has cholesterol and cholesterol-glycolipids that are essential for bacterial fitness, are antigenic, and could be important in mediating interactions with cells of the eukaryotic host. We show that the spirochetes can acquire cholesterol from plasma membranes of epithelial cells. In addition, through fluorescent and confocal microscopy combined with biochemical approaches, we demonstrated that B. burgdorferi labeled with the fluorescent cholesterol analog BODIPY-cholesterol or 3H-labeled cholesterol transfer both cholesterol and cholesterol-glycolipids to HeLa cells. The transfer occurs through two different mechanisms, by direct contact between the bacteria and eukaryotic cell and/or through release of outer membrane vesicles. Thus, two-way lipid exchange between spirochetes and host cells can occur. This lipid exchange could be an important process that contributes to the pathogenesis of Lyme disease. PMID:23326230

  14. Nanoscopic Localization of Surface-Exposed Antigens of Borrelia burgdorferi.

    PubMed

    Lemgruber, Leandro; Sant'Anna, Celso; Griffths, Caron; Abud, Yuri; Mhlanga, Musa; Wallich, Reinhard; Frischknecht, Friedrich

    2015-06-01

    Borrelia burgdorferi sensu lato, the causative agent of Lyme disease, is transmitted to humans through the bite of infected Ixodes spp. ticks. Successful infection of vertebrate hosts necessitates sophisticated means of the pathogen to escape the vertebrates' immune system. One strategy employed by Lyme disease spirochetes to evade adaptive immunity involves a highly coordinated regulation of the expression of outer surface proteins that is vital for infection, dissemination, and persistence. Here we characterized the expression pattern of bacterial surface antigens using different microscopy techniques, from fluorescent wide field to super-resolution and immunogold-scanning electron microscopy. A fluorescent strain of B. burgdorferi spirochetes was labeled with monoclonal antibodies directed against various bacterial surface antigens. Our results indicate that OspA is more evenly distributed over the surface than OspB and OspC that were present as punctate areas. PMID:25739645

  15. Borrelia burgdorferi infection and Lyme disease in children.

    PubMed

    Esposito, Susanna; Bosis, Samantha; Sabatini, Caterina; Tagliaferri, Laura; Principi, Nicola

    2013-03-01

    Lyme disease is a multisystem disease that frequently affects children. It is caused by a group of related spirochetes, Borrelia burgdorferi sensu lato, that are transmitted by ticks belonging to species of the genus Ixodes. The clinical characteristics of Lyme disease in pediatrics resemble those observed in adults, although the symptoms may last for a shorter time and the outcome may be better. However, identifying Lyme disease in children can be significantly more difficult because some of its signs and symptoms can be similar to those of other common pediatric clinical manifestations. Finally, the diagnostic and therapeutic approach to childhood Lyme disease is frequently not codified, and guidelines specifically prepared for adults are used for children without having been validated. This review of the currently available data will evaluate what may be the best approach to the diagnosis and treatment of B. burgdorferi infection and disease in the pediatric population. PMID:23141587

  16. Serological Detection of Borrelia burgdorferi among Horses in Korea

    PubMed Central

    Lee, Seung-Hun; Yun, Sun-Hee; Choi, Eunsang; Park, Yong-Soo; Lee, Sang-Eun; Cho, Gil-Jae; Kwon, Oh-Deog; Kwak, Dongmi

    2016-01-01

    Lyme disease is a tick-borne zoonotic infectious disease caused by Borrelia burgdorferi. The present study assessed the infection status of B. burgdorferi among horses reared in Korea using ELISA and PCR. Between 2009 and 2013, blood samples were collected from 727 horses throughout Korea. Data for each animal including age, gender, breed, and region of sample collection were used for epidemiological analysis. Overall, 38 (5.2%; true prevalence: 5.5%) of 727 horses were seropositive by ELISA. There were statistically significant differences according to breed and region (P<0.001) whose differences might be attributed to the ecology of vector ticks and climate conditions. Using 2 nested PCR, none of the samples tested positive for B. burgdorferi. Thus, a positive ELISA result can indicate only that the tested horse was previously exposed to B. burgdorferi, with no certainty over the time of exposure. Since global warming is likely to increase the abundance of ticks in Korea, continuous monitoring of tick-borne diseases in Korean horses is needed. PMID:26951987

  17. The Elastic Basis for the Shape of Borrelia burgdorferi

    PubMed Central

    Dombrowski, Christopher; Kan, Wanxi; Motaleb, Md. Abdul; Charon, Nyles W.; Goldstein, Raymond E.; Wolgemuth, Charles W.

    2009-01-01

    The mechanisms that determine bacterial shape are in many ways poorly understood. A prime example is the Lyme disease spirochete, Borrelia burgdorferi (B. burgdorferi), which mechanically couples its motility organelles, helical flagella, to its rod-shaped cell body, producing a striking flat-wave morphology. A mathematical model is developed here that accounts for the elastic coupling of the flagella to the cell cylinder and shows that the flat-wave morphology is in fact a natural consequence of the geometrical and material properties of the components. Observations of purified periplasmic flagella show two flagellar conformations. The mathematical model suggests that the larger waveform flagellum is the more relevant for determining the shape of B. burgdorferi. Optical trapping experiments were used to measure directly the mechanical properties of these spirochetes. These results imply relative stiffnesses of the two components, which confirm the predictions of the model and show that the morphology of B. burgdorferi is completely determined by the elastic properties of the flagella and cell body. This approach is applicable to a variety of other structures in which the shape of the composite system is markedly different from that of the individual components, such as coiled-coil domains in proteins and the eukaryotic axoneme. PMID:19486665

  18. Serological Detection of Borrelia burgdorferi among Horses in Korea.

    PubMed

    Lee, Seung-Hun; Yun, Sun-Hee; Choi, Eunsang; Park, Yong-Soo; Lee, Sang-Eun; Cho, Gil-Jae; Kwon, Oh-Deog; Kwak, Dongmi

    2016-02-01

    Lyme disease is a tick-borne zoonotic infectious disease caused by Borrelia burgdorferi. The present study assessed the infection status of B. burgdorferi among horses reared in Korea using ELISA and PCR. Between 2009 and 2013, blood samples were collected from 727 horses throughout Korea. Data for each animal including age, gender, breed, and region of sample collection were used for epidemiological analysis. Overall, 38 (5.2%; true prevalence: 5.5%) of 727 horses were seropositive by ELISA. There were statistically significant differences according to breed and region (P<0.001) whose differences might be attributed to the ecology of vector ticks and climate conditions. Using 2 nested PCR, none of the samples tested positive for B. burgdorferi. Thus, a positive ELISA result can indicate only that the tested horse was previously exposed to B. burgdorferi, with no certainty over the time of exposure. Since global warming is likely to increase the abundance of ticks in Korea, continuous monitoring of tick-borne diseases in Korean horses is needed. PMID:26951987

  19. Identification and function of the RNA chaperone Hfq in the Lyme disease spirochete Borrelia burgdorferi

    PubMed Central

    Lybecker, Meghan C.; Abel, Cassandra A.; Feig, Andrew L.; Samuels, D. Scott

    2010-01-01

    Summary Hfq is a global regulatory RNA-binding protein. We have identified and characterized an atypical Hfq required for gene regulation and infectivity in the Lyme disease spirochete Borrelia burgdorferi. Sequence analyses of the putative B. burgdorferi Hfq protein revealed only a modest level of similarity with the Hfq from Escherichia coli, although a few key residues are retained and the predicted tertiary structure is similar. Several lines of evidence suggest that the B. burgdorferi bb0268 gene encodes a functional Hfq homolog. First, the hfqBb gene (bb0268) restores the efficient translation of an rpoS::lacZ fusion in an E. coli hfq null mutant. Second, the Hfq from B. burgdorferi binds to the small RNA DsrABb and the rpoS mRNA. Third, a B. burgdorferi hfq null mutant was generated and has a pleiotropic phenotype that includes increased cell length and decreased growth rate, as found in hfq mutants in other bacteria. The hfqBb mutant phenotype is complemented in trans with the hfq gene from either B. burgdorferi or, surprisingly, E. coli. This is the first example of a heterologous bacterial gene complementing a B. burgdorferi mutant. The alternative sigma factor RpoS and the outer membrane lipoprotein OspC, which are induced by increased temperature and required for mammalian infection, are not upregulated in the hfq mutant. Consequently, the hfq mutant is not infectious by needle inoculation in the murine model. These data suggest that Hfq plays a key role in the regulation of pathogenicity factors in B. burgdorferi and we hypothesize that the spirochete has a complex Hfq-dependent sRNA network. PMID:20815822

  20. [Tick infestation and the prevalence of Borrelia burgdorferi and Babesia divergens in cattle in Bavaria].

    PubMed

    Lengauer, Heidi; Just, Frank Thomas; Edelhofer, Renate; Pfister, Kurt

    2006-01-01

    During the grazing period 2002 319 cattle from 31 farms located in 6 districts of southern Bavaria were examined for the presence of ticks in 4- to 5-week intervals, and 287 serum samples were tested for the presence of antibodies against Borrelia burgdorferi and Babesia divergens. Ticks were detected in all 31 farms with a mean prevalence of 69%. 3218 out of 3453 collected ticks were Ixodes ricinus; 139 nymphs, 19 larvae and 77 damaged adult specimens could only be determined to the Genus level (Ixodes). The seasonal pattern revealed the highest frequencies of ticks in May/June and September. The intensity of tick infestation of positive animals was generally low. 76.5% of parasitized cattle had 1-6 ticks per day of investigation. Individual cattle showed up to 250 ticks per day. The percentage of infested animals in each herd varied within the period between 0-100%. The examination of serum samples by immunofluorescence technique (IFAT) revealed positive anti-Borrelia antibody titers (> or = 1:64) for 45.6% of the animals. The within-farm seroprevalence of borreliosis ranged from 20 to 100% in 27 of the 31 farms. A significant correlation could be detected between the number of ticks/cattle and the anti-Borrelia burgdorferi IgG-titer. By contrast, there was no significant correlation between the age of the animals and anti-Borrelia serum titers. For comparative reasons, 64 IFAT-positive serum samples were tested by Western blot techniques for the presence of antibodies cross-reacting with Borrelia garinii antigen. These analyses revealed that 69% of the samples reacted positively, 28% were unclear and 3% were negative. Examinations of the 287 serum samples for the presence of anti-Babesia divergens antibodies revealed one positive animal with a titer of 1:16. PMID:17009719

  1. Evidence for Host-Genotype Associations of Borrelia burgdorferi Sensu Stricto

    PubMed Central

    Mechai, Samir; Margos, Gabriele; Feil, Edward J.; Barairo, Nicole; Lindsay, L. Robbin; Michel, Pascal; Ogden, Nicholas H.

    2016-01-01

    Different genotypes of the agent of Lyme disease in North America, Borrelia burgdorferi sensu stricto, show varying degrees of pathogenicity in humans. This variation in pathogenicity correlates with phylogeny and we have hypothesized that the different phylogenetic lineages in North America reflect adaptation to different host species. In this study, evidence for host species associations of B. burgdorferi genotypes was investigated using 41 B. burgdorferi-positive samples from five mammal species and 50 samples from host-seeking ticks collected during the course of field studies in four regions of Canada: Manitoba, northwestern Ontario, Quebec, and the Maritimes. The B. burgdorferi genotypes in the samples were characterized using three established molecular markers (multi-locus sequence typing [MLST], 16S-23S rrs-rrlA intergenic spacer, and outer surface protein C sequence [ospC] major groups). Correspondence analysis and generalized linear mixed effect models revealed significant associations between B. burgdorferi genotypes and host species (in particular chipmunks, and white-footed mice and deer mice), supporting the hypotheses that host adaptation contributes to the phylogenetic structure and possibly the observed variation in pathogenicity in humans. PMID:26901761

  2. Analysis of Borrelia burgdorferi membrane architecture by freeze-fracture electron microscopy.

    PubMed Central

    Radolf, J D; Bourell, K W; Akins, D R; Brusca, J S; Norgard, M V

    1994-01-01

    Freeze-fracture electron microscopy was used to investigate the membrane architectures of high-passage Borrelia burgdorferi B31 and low- and high-passage isolates of B. burgdorferi N40. In all three organisms, fractures occurred almost exclusively through the outer membrane (OM), and the large majority of intramembranous particles were distributed randomly throughout the concave OM leaflet. The density of intramembranous particles in the concave OM leaflet of the high-passage N40 isolate was significantly greater than that in the corresponding leaflet of the low-passage N40 isolate. Also noted in the OMs of all three organisms were unusual structures, designated linear bodies, which typically were more or less perpendicular to the axis of the bacterium. A comparison of freeze-fractured B. burgdorferi and Treponema pallidum, the syphilis spirochete, revealed that the OM architectures of these two pathogens differed markedly. All large membrane blebs appeared to be bounded by a membrane identical to the OM of B. burgdorferi whole cells; in some blebs, the fracture plane also revealed a second bilayer closely resembling the B. burgdorferi cytoplasmic membrane. Aggregation of the lipoprotein immunogens outer surface protein A (OspA) and OspB on the bacterial surface by incubation of B. burgdorferi B31 with specific polyclonal antisera did not affect the distribution of OM particles, supporting the contention that lipoproteins do not form particles in freeze-fractured OMs. The expression of poorly immunogenic, surface-exposed proteins as virulence determinants may be part of the parasitic strategy used by B. burgdorferi to establish and maintain chronic infection in Lyme disease. Images PMID:8282698

  3. First report of Borrelia burgdorferi sensu lato in two threatened carnivores: the Marbled polecat, Vormela peregusna and the European mink, Mustela lutreola (Mammalia: Mustelidae)

    PubMed Central

    2012-01-01

    Background Lyme disease is a widespread cosmopolitan zoonosis caused by species belonging to the genus Borrelia. It is transmitted from animal reservoir hosts to humans through hard - ticks of genus Ixodes which are vectors of the disease. Case presentation Borrelia burgdorferi sensu lato infection was identified in a marbled polecat, Vormela peregusna, and two European minks, Mustela lutreola, from Romania, by PCR. RFLP revealed the presence of a single genospecies, Borrelia burgdorferi sensu stricto. Conclusions This is the first report of the Lyme disease spirochetes in the two mentioned hosts. PMID:22901862

  4. A Short-Term Borrelia burgdorferi Infection Model Identifies Tissue Tropisms and Bloodstream Survival Conferred by Adhesion Proteins

    PubMed Central

    Caine, Jennifer A.

    2015-01-01

    Borrelia burgdorferi, the causative agent of Lyme disease in the United States, is able to persist in the joint, heart, skin, and central nervous system for the lifetime of its mammalian host. Borrelia species achieve dissemination to distal sites in part by entry into and travel within the bloodstream. Much work has been performed in vitro describing the roles of many B. burgdorferi outer surface proteins in adhesion to host cell surface proteins and extracellular matrix components, although the biological relevance of these interactions is only beginning to be explored in vivo. A need exists in the field for an in vivo model to define the biological roles of B. burgdorferi adhesins in tissue-specific vascular interactions. We have developed an in vivo model of vascular interaction of B. burgdorferi in which the bacteria are injected intravenously and allowed to circulate for 1 h. This model has shown that the fibronectin binding protein BB0347 has a tropism for joint tissue. We also have shown an importance of the integrin binding protein, P66, in binding to vasculature of the ear and heart. This model also revealed unexpected roles for Borrelia adhesins BBK32 and OspC in bacterial burdens in the bloodstream. The intravenous inoculation model of short-term infection provides new insights into critical B. burgdorferi interactions with the host required for initial survival and tissue colonization. PMID:26015482

  5. Evolutionary Genomics of Borrelia burgdorferi sensu lato: Findings, Hypotheses, and the Rise of Hybrids

    PubMed Central

    Qiu, Wei-Gang; Martin, Che L.

    2014-01-01

    Borrelia burgdorferi sensu lato (B. burgdorferi s.l.), the group of bacterial species represented by Lyme Disease pathogens, has one of the most complex and variable genomic architectures among prokaryotes. Showing frequent recombination within and limited gene flow among geographic populations, the B. burgdorferi s.l. genomes provides an excellent window into the processes of bacterial evolution at both within- and between-population levels. Comparative analyses of B. burgdorferi s.l. genomes revealed a highly dynamic plasmid composition but a conservative gene repertoire. Gene duplication and loss as well as sequence variations at loci encoding surface-localized lipoproteins (e.g., the PF54 genes) are strongly associated with adaptive differences between species. There are a great many conserved intergenic spacer sequences that are candidates for cis-regulatory elements and non-coding RNAs. Recombination among coexisting strains occurs at a rate approximately three times the mutation rate. The coexistence of a large number of genomic groups within local B. burgdorferi s.l. populations may be driven by immune-mediated diversifying selection targeting major antigen loci as well as by adaptation to multiple host species. Questions remain regarding the ecological causes (e.g., climate change, host movements, or new adaptations) of the ongoing range expansion of B. burgdorferi s.l. and on the genomic variations associated with its ecological and clinical variability. Anticipating an explosive growth of the number of B. burgdorferi s.l. genomes sampled from both within and among species, we propose genome-based methods to test adaptive mechanisms and to identify molecular bases of phenotypic variations. Genome sequencing is also necessary to monitor the ongoing genetic admixture of previously isolated species and populations in North America and elsewhere. PMID:24704760

  6. Pleomorphic forms of Borrelia burgdorferi induce distinct immune responses.

    PubMed

    Meriläinen, Leena; Brander, Heini; Herranen, Anni; Schwarzbach, Armin; Gilbert, Leona

    2016-01-01

    Borrelia burgdorferi is the causative agent of tick-borne Lyme disease. As a response to environmental stress B. burgdorferi can change its morphology to a round body form. The role of B. burgdorferi pleomorphic forms in Lyme disease pathogenesis has long been debated and unclear. Here, we demonstrated that round bodies were processed differently in differentiated macrophages, consequently inducing distinct immune responses compared to spirochetes in vitro. Colocalization analysis indicated that the F-actin participates in internalization of both forms. However, round bodies end up less in macrophage lysosomes than spirochetes suggesting that there are differences in processing of these forms in phagocytic cells. Furthermore, round bodies stimulated distinct cytokine and chemokine production in these cells. We confirmed that spirochetes and round bodies present different protein profiles and antigenicity. In a Western blot analysis Lyme disease patients had more intense responses to round bodies when compared to spirochetes. These results suggest that round bodies have a role in Lyme disease pathogenesis. PMID:27139815

  7. Morphological and biochemical features of Borrelia burgdorferi pleomorphic forms

    PubMed Central

    Herranen, Anni; Schwarzbach, Armin; Gilbert, Leona

    2015-01-01

    The spirochaete bacterium Borrelia burgdorferi sensu lato is the causative agent of Lyme disease, the most common tick-borne infection in the northern hemisphere. There is a long-standing debate regarding the role of pleomorphic forms in Lyme disease pathogenesis, while very little is known about the characteristics of these morphological variants. Here, we present a comprehensive analysis of B. burgdorferi pleomorphic formation in different culturing conditions at physiological temperature. Interestingly, human serum induced the bacterium to change its morphology to round bodies (RBs). In addition, biofilm-like colonies in suspension were found to be part of B. burgdorferi’s normal in vitro growth. Further studies provided evidence that spherical RBs had an intact and flexible cell envelope, demonstrating that they are not cell wall deficient, or degenerative as previously implied. However, the RBs displayed lower metabolic activity compared with spirochaetes. Furthermore, our results indicated that the different pleomorphic variants were distinguishable by having unique biochemical signatures. Consequently, pleomorphic B. burgdorferi should be taken into consideration as being clinically relevant and influence the development of novel diagnostics and treatment protocols. PMID:25564498

  8. Seroprevalence of Leptospira spp. and Borrelia burgdorferi sensu lato in Italian horses.

    PubMed

    Ebani, Valentina V; Bertelloni, Fabrizio; Pinzauti, Paolo; Cerri, Domenico

    2012-01-01

    The aim of the study was to determine the seroprevalence of Leptospira spp. and Borrelia burgdorferi sensu lato in healthy horses living in 7 provinces of central Italy. In the period 2007-2009, sera from 386 horses were tested by microagglutination test (MAT) to detect antibodies to Leptospira spp., employing the following serovars as antigens: Bratislava, Ballum, Canicola, Icterohaemorrhagiae, Grippotyphosa, Hardjo, Pomona, Tarassovi. 3 animals were positive for the serovars Icterohaemorrhagiae, 2 to Bratislava, and 1 to Pomona, for a total 1.5% seroprevalence. All sera were examined by immunofluorence antibody test (IFAT) to reveal anti-B. burgdorferi s.l. antibodies. 94 (24.3%) horses were positive with antibody titres ranging from 1:64 to 1:1,024. The seroprevalence was significantly higher in >10 year-old horses compared to younger subjects. No significant differences in the mean seroprevalence were observed in the respective years. The total mean seroprevalence were strictly related to the environmental conditions of the areas in which the horses lived. No cross-reactions between Leptospira and Borrelia were observed. This is the first serological survey on antibodies to B. burgdorferi s.l. in Italian horses. PMID:22742794

  9. Sylvatic maintenance of Borrelia burgdorferi (Spirochaetales) in Northern California: untangling the web of transmission.

    PubMed

    Brown, R N; Peot, M A; Lane, R S

    2006-07-01

    Lyme borreliosis is associated with several genospecies of Borrelia burgdorferi sensu lato (s.l.) (Spirochaetales), but human disease has been associated only with Borrelia burgdorferi sensu stricto (s.s.) Johnson, Schmid, Hyde, Steigerwalt & Brenner in the western United States. Restriction fragment length polymorphism (RFLP) analysis of rrf-rrl amplicons from 124 tick and mammalian isolates from various habitats yielded 13 RFLP patterns. Of these patterns, six were patterns previously associated either with Borrelia bissettii Postic, Marti Ras, Lane, Hendson & Baranton or Borrelia burgdorferi s.s., and the remaining seven patterns belonged to diverse and previously uncharacterized Borrelia spp. Uncharacterized Borrelia spp. were cultured most frequently from Ixodes spinipalpis Hadwen & Nuttall and California kangaroo rats, Dipodomys californicus Merriam, inhabiting grasslands, and B. bissettii from I. spinipalpis and dusky-footed woodrats, Neotoma fuscipes Baird, associated with oak woodlands or chaparral. B. burgdorferi s.s. typically was isolated from host-seeking Ixodes pacificus Cooley & Kohls collected in dense oak woodlands, woodland-grass, or redwood forests. Although some isolates of B. burgdorferi s.s. were cultured from woodrats, there was no clear association of this human pathogen with any vertebrate host. These findings, along with recent evidence indicating that the western gray squirrel, Sciurus griseus Ord, may be an important reservoir of B. burgdorferi s.s. in Californian oak woodlands, suggest that our earlier hypothesis implicating an enzootic cycle involving woodrats and I. spinipalpis is insufficient to account for observed patterns of infection in nature. PMID:16892634

  10. Infants born to mothers with antibodies against Borrelia burgdorferi at delivery.

    PubMed

    Nadal, D; Hunziker, U A; Bucher, H U; Hitzig, W H; Duc, G

    1989-02-01

    A serological survey over a 1-year period of 1416 mothers at delivery and their 1434 offspring for the presence of anti-Borrelia burgdorferi antibodies revealed a prevalence of 0.85%. Clinically active Lyme disease during pregnancy was found in 1 of these 12 women with elevated titres and the child was born with a ventricular septal defect. Of six affected children, two had hyperbilirubinaemia, one muscular hypotonia, one was underweight for gestational age, one was macrocephalic, and one had supraventricular extrasystoles. Anomalous findings could not be attributed to B. burgdorferi due to a lack of serological evidence of intrauterine infection. Our data do not imply the need for serological screening in pregnancy, however, the importance of recognition and treatment of Lyme disease in pregnancy is emphasized. PMID:2920747

  11. Borrelia burgdorferi sensu lato in humans in a rural area of Paraná State, Brazil

    PubMed Central

    Gonçalves, Daniela Dib; Moura, Rodrigo Assunção; Nunes, Mônica; Carreira, Teresa; Vidotto, Odilon; Freitas, Julio Cesar; Vieira, Maria Luísa

    2015-01-01

    This study describes the detection of Borrelia garinii and Borrelia burgdorferi sensu stricto (s.s.) in Brazilian individuals using PCR and DNA sequencing. Our results suggest that these species are emerging pathogens in this country, and additional studies are necessary to determine the epidemiological characteristics of this disease in Brazil. PMID:26273276

  12. Borrelia burgdorferi sensu lato in humans in a rural area of Paraná State, Brazil.

    PubMed

    Gonçalves, Daniela Dib; Moura, Rodrigo Assunção; Nunes, Mônica; Carreira, Teresa; Vidotto, Odilon; Freitas, Julio Cesar; Vieira, Maria Luísa

    2015-06-01

    This study describes the detection of Borrelia garinii and Borrelia burgdorferi sensu stricto (s.s.) in Brazilian individuals using PCR and DNA sequencing. Our results suggest that these species are emerging pathogens in this country, and additional studies are necessary to determine the epidemiological characteristics of this disease in Brazil. PMID:26273276

  13. Enhancement of Borrelia burgdorferi PCR by uracil N-glycosylase.

    PubMed Central

    Loewy, Z G; Mecca, J; Diaco, R

    1994-01-01

    Uracil DNA glycosylases are DNA repair enzymes present in virtually every organism. These enzymes function by excising from DNA uracil residues resulting from either misincorporation of dUMP residues by a DNA polymerase or deamination of cytosine. Recently, the enzyme has been exploited in PCRs as a means for controlling carryover contamination from previously amplified DNA. When the enzyme is used in amplifications of Borrelia burgdorferi target sequences, we have observed an enhancement in signal detected by a microwell plate DNA hybridization assay. This increase in signal is dependent upon the length of the target, is titratable with enzyme concentration, and has been observed with amplifications performed with both symmetric and asymmetric PCR profiles. The enhancement is shown to occur at the level of the target genomic DNA. PMID:8126168

  14. BB0172, a Borrelia burgdorferi Outer Membrane Protein That Binds Integrin α3β1

    PubMed Central

    Wood, Elaine; Tamborero, Silvia; Mingarro, Ismael

    2013-01-01

    Lyme disease is a multisystemic disorder caused by Borrelia burgdorferi infection. Upon infection, some B. burgdorferi genes are upregulated, including members of the microbial surface components recognizing adhesive matrix molecule (MSCRAMM) protein family, which facilitate B. burgdorferi adherence to extracellular matrix components of the host. Comparative genome analysis has revealed a new family of B. burgdorferi proteins containing the von Willebrand factor A (vWFA) domain. In the present study, we characterized the expression and membrane association of the vWFA domain-containing protein BB0172 by using in vitro transcription/translation systems in the presence of microsomal membranes and with detergent phase separation assays. Our results showed evidence of BB0172 localization in the outer membrane, the orientation of the vWFA domain to the extracellular environment, and its function as a metal ion-dependent integrin-binding protein. This is the first report of a borrelial adhesin with a metal ion-dependent adhesion site (MIDAS) motif that is similar to those observed in eukaryotic integrins and has a similar function. PMID:23687274

  15. Polysynovitis in a horse due to Borrelia burgdorferi sensu lato infection--Case study.

    PubMed

    Passamonti, Fabrizio; Veronesi, Fabrizia; Cappelli, Katia; Capomaccio, Stefano; Reginato, Alice; Miglio, Arianna; Vardi, Doron M; Stefanetti, Valentina; Coletti, Mauro; Bazzica, Chiara; Pepe, Marco

    2015-01-01

    Lyme borreliosis (LB) is a multi-systemic tick-borne disease affecting both humans and animals, including horses, and is caused by a group of interrelated spirochetes classified within the Borrelia burgdorferi sensu lato (s.l.) complex. Despite the high reported seroprevalence in the European equine population for B. burgdorferi s.l., to-date no documented clinical cases have been described. A 6-year-old Paint gelding was referred with a history of three weeks of fever, intermittent lameness and digital flexor tendon sheath effusion of the right hind limb. Based on a strict diagnostic protocol, which included serological tests for infectious diseases and molecular investigations, a final diagnosis was made of polysynovitis due to B. burgdorferi s.l. infection. An unreported aspect observed in this case was the absence of the pathogen DNA in two of the affected joints. To the authors' knowledge, the case described represents the first documented clinical case of equine LB in Italy. Moreover, the absence of pathogen DNA in two of the affected joints observed in this case revealed a possible similarity with the same condition described in humans, where an immunomediated pathogenesis for arthropathy due to B. burgdorferi s.l. infection is suspected. Since humans and horses share the same habitat, this report supports the role of the horse as potential sentinel for human biological risk. PMID:26094517

  16. BB0172, a Borrelia burgdorferi outer membrane protein that binds integrin α3β1.

    PubMed

    Wood, Elaine; Tamborero, Silvia; Mingarro, Ismael; Esteve-Gassent, Maria D

    2013-08-01

    Lyme disease is a multisystemic disorder caused by Borrelia burgdorferi infection. Upon infection, some B. burgdorferi genes are upregulated, including members of the microbial surface components recognizing adhesive matrix molecule (MSCRAMM) protein family, which facilitate B. burgdorferi adherence to extracellular matrix components of the host. Comparative genome analysis has revealed a new family of B. burgdorferi proteins containing the von Willebrand factor A (vWFA) domain. In the present study, we characterized the expression and membrane association of the vWFA domain-containing protein BB0172 by using in vitro transcription/translation systems in the presence of microsomal membranes and with detergent phase separation assays. Our results showed evidence of BB0172 localization in the outer membrane, the orientation of the vWFA domain to the extracellular environment, and its function as a metal ion-dependent integrin-binding protein. This is the first report of a borrelial adhesin with a metal ion-dependent adhesion site (MIDAS) motif that is similar to those observed in eukaryotic integrins and has a similar function. PMID:23687274

  17. Widespread dispersal of Borrelia burgdorferi-infected ticks collected from songbirds across Canada.

    PubMed

    Scott, John D; Anderson, John F; Durden, Lance A

    2012-02-01

    Millions of Lyme disease vector ticks are dispersed annually by songbirds across Canada, but often overlooked as the source of infection. For clarity on vector distribution, we sampled 481 ticks (12 species and 3 undetermined ticks) from 211 songbirds (42 species/subspecies) nationwide. Using PCR, 52 (29.5%) of 176 Ixodes ticks tested were positive for the Lyme disease spirochete, Borrelia burgdorferi s.l. Immature blacklegged ticks, Ixodes scapularis , collected from infested songbirds had a B. burgdorferi infection prevalence of 36% (larvae, 48%; nymphs, 31%). Notably, Ixodes affinis is reported in Canada for the first time and, similarly, Ixodes auritulus for the initial time in the Yukon. Firsts for bird-parasitizing ticks include I. scapularis in Quebec and Saskatchewan. We provide the first records of 3 tick species cofeeding on passerines (song sparrow, Swainson's thrush). New host records reveal I. scapularis on the blackpoll warbler and Nashville warbler. We furnish the following first Canadian reports of B. burgdorferi-positive ticks: I. scapularis on chipping sparrow, house wren, indigo bunting; I. auritulus on Bewick's wren; and I. spinipalpis on a Bewick's wren and song sparrow. First records of B. burgdorferi-infected ticks on songbirds include the following: the rabbit-associated tick, Ixodes dentatus, in western Canada; I. scapularis in Quebec, Saskatchewan, northern New Brunswick, northern Ontario; and Ixodes spinipalpis (collected in British Columbia). The presence of B. burgdorferi in Ixodes larvae suggests reservoir competency in 9 passerines (Bewick's wren, common yellowthroat, dark-eyed junco, Oregon junco, red-winged blackbird, song sparrow, Swainson's thrush, swamp sparrow, and white-throated sparrow). We report transstadial transmission (larva to nymph) of B. burgdorferi in I. auritulus. Data suggest a possible 4-tick, i.e., I. angustus, I. auritulus, I. pacificus, and I. spinipalpis, enzootic cycle of B. burgdorferi on Vancouver Island

  18. PCR in laboratory diagnosis of human Borrelia burgdorferi infections.

    PubMed Central

    Schmidt, B L

    1997-01-01

    The laboratory diagnosis of Lyme borreliosis, the most prevalent vector-borne disease in the United States and endemic in parts of Europe and Asia, is currently based on serology with known limitations. Direct demonstration of Borrelia burgdorferi by culture may require weeks, while enzyme-linked immunosorbent assays for antigen detection often lack sensitivity. The development of the PCR has offered a new dimension in the diagnosis. Capable of amplifying minute amounts of DNA into billions of copies in just a few hours, PCR facilitates the sensitive and specific detection of DNA or RNA of pathogenic organisms. This review is restricted to applications of PCR methods in the diagnosis of human B. burgdorferi infections. In the first section, methodological aspects, e.g., sample preparation, target selection, primers and PCR methods, and detection and control of inhibition and contamination, are highlighted. In the second part, emphasis is placed on diagnostic aspects, where PCR results in patients with dermatological, neurological, joint, and ocular manifestations of the disease are discussed. Here, special attention is given to monitoring treatment efficacy by PCR tests. Last, specific guidelines on how to interpret PCR results, together with the advantages and limitations of these new techniques, are presented. PMID:8993863

  19. Linear and Circular Plasmid Content in Borrelia burgdorferi Clinical Isolates

    PubMed Central

    Iyer, Radha; Kalu, Ogori; Purser, Joye; Norris, Steven; Stevenson, Brian; Schwartz, Ira

    2003-01-01

    The genome of Borrelia burgdorferi, the etiologic agent of Lyme disease, is composed of a linear chromosome and more than 20 linear and circular plasmids. Typically, plasmid content analysis has been carried out by pulsed-field gel electrophoresis and confirmed by Southern hybridization. However, multiple plasmids of virtually identical sizes (e.g., lp28 and cp32) complicate the interpretation of such data. The present study was undertaken to investigate the complete plasmid complements of B. burgdorferi clinical isolates cultivated from patients from a single region where early Lyme disease is endemic. A total of 21 isolates obtained from the skin biopsy or blood samples of Lyme disease patients were examined for their complete plasmid complements by Southern hybridization and plasmid-specific PCR analysis. All clinical isolates harbored at least six of the nine previously characterized cp32s. Fourteen isolates harbored all B31-like linear plasmids, and seven isolates simultaneously lacked lp56, lp38, and some segments of lp28-1. The distinctive plasmid profile observed in these seven isolates was specific to organisms that had ribosomal spacer type 2 and pulsed-field gel type A, which implies a clonal origin for this genotype. The presence of nearly identical complements of multiple linear and circular plasmids in all of the human isolates suggests that these plasmids may be particularly necessary for infection, adaptation, and/or maintenance in the infected host. PMID:12819050

  20. Infection of Ixodes ricinus (Acari: Ixodidae) by Borrelia burgdorferi sensu lato in North Africa

    USGS Publications Warehouse

    Zhioua, E.; Bouattour, A.; Hu, C.M.; Gharbi, M.; Aeschliman, A.; Ginsberg, H.S.; Gern, L.

    1999-01-01

    Free-living adult Ixodes ricinus L. were collected in Amdoun, situated in the Kroumiry mountains in northwestern Tunisia (North Africa). Using direct fluorescence antibody assay, the infection rate of field-collected I. ricinus by Borrelia burgdorferi sensu lato was 30.5% (n = 72). No difference in infection rate was observed between male and female ticks. Spirochetes that had been isolated from I. ricinus from Ain Drahim (Kroumiry Mountains) in 1988 were identified as Borrelia lusitaniae (formerly genospecies PotiB2). This is the first identification of a genospecies of Borrelia burgdorferi sensu lato from the continent of Africa.

  1. Prevalence of Borrelia burgdorferi s. l. in Ixodes ricinus ticks from four localities in Bavaria, Germany.

    PubMed

    Vögerl, Maria; Zubriková, Dana; Pfister, Kurt

    2012-01-01

    As a part of a larger survey a total of 599 Ixodes ricinus ticks collected from four locations (Neustadt an der Waldnaab, Amberg, Poppenricht and Lintach) in the north of the Upper Palatinate in Bavaria were investigated for infection with Borrelia burgdorferi sensu lato (s. l.) species using the 5S-23S intergenic spacer of rRNA gene as a target in a nested PCR (Rijpkema et al., 1995) and a sequencing method. Overall, 15.8% ticks were infected with B. burgdorferi s. I. Borrelia afzelii (43.1%) was the predominant genospecies, followed by Borrelia valaisiana (14.7%), Borrelia garinii (13.7%) and Borrelia burgdorferi sensu stricto (6.3%). Also Borrelia spielmanii was found (1.1%). Of the infected ticks, 21.1% harbored multiple infections with B. burgdorferi s. I. The highest number of infected ticks was found in Amberg (22.5%) and the lowest number in Neustadt an der Waldnaab (11.9%). In Poppenricht and Lintach, the numbers of infected ticks were 12% and 18.7%, respectively. Human pathogenic Borrelia species were found to be prevalent at each study site thus representing the potential risk for people living and visiting these areas. PMID:23045802

  2. Hypothetical Protein BB0569 Is Essential for Chemotaxis of the Lyme Disease Spirochete Borrelia burgdorferi

    PubMed Central

    Zhang, Kai; Liu, Jun; Charon, Nyles W.

    2015-01-01

    ABSTRACT The Lyme disease spirochete Borrelia burgdorferi has five putative methyl-accepting chemotaxis proteins (MCPs). In this report, we provide evidence that a hypothetical protein, BB0569, is essential for the chemotaxis of B. burgdorferi. While BB0569 lacks significant homology to the canonical MCPs, it contains a conserved domain (spanning residues 110 to 170) that is often evident in membrane-bound MCPs such as Tar and Tsr of Escherichia coli. Unlike Tar and Tsr, BB0569 lacks transmembrane regions and recognizable HAMP and methylation domains and is similar to TlpC, a cytoplasmic chemoreceptor of Rhodobacter sphaeroides. An isogenic mutant of BB0569 constantly runs in one direction and fails to respond to attractants, indicating that BB0569 is essential for chemotaxis. Immunofluorescence, green fluorescent protein (GFP) fusion, and cryo-electron tomography analyses demonstrate that BB0569 localizes at the cell poles and is required for chemoreceptor clustering at the cell poles. Protein cross-linking studies reveal that BB0569 forms large protein complexes with MCP3, indicative of its interactions with other MCPs. Interestingly, analysis of B. burgdorferi mcp mutants shows that inactivation of either mcp2 or mcp3 reduces the level of BB0569 substantially and that such a reduction is caused by protein turnover. Collectively, these results demonstrate that the domain composition and function of BB0569 are similar in some respects to those of TlpC but that these proteins are different in their cellular locations, further highlighting that the chemotaxis of B. burgdorferi is unique and different from the Escherichia coli and Salmonella enterica paradigm. IMPORTANCE Spirochete chemotaxis differs substantially from the Escherichia coli and Salmonella enterica paradigm, and the basis for controlling the rotation of the bundles of periplasmic flagella at each end of the cell is unknown. In recent years, Borrelia burgdorferi, the causative agent of Lyme disease, has

  3. Characterization of outer membranes isolated from Borrelia burgdorferi, the Lyme disease spirochete.

    PubMed Central

    Radolf, J D; Goldberg, M S; Bourell, K; Baker, S I; Jones, J D; Norgard, M V

    1995-01-01

    The lack of methods for isolating Borrelia burgdorferi outer membranes (OMs) has hindered efforts to characterize borrelial surface-exposed proteins. Here we isolated OMs by immersion of motile spirochetes in hypertonic sucrose followed by isopycnic ultracentrifugation of the plasmolyzed cells. The unilamellar vesicles thus obtained were shown to be OMs by the following criteria: (i) they contained OspA and OspB; (ii) they did not contain flagellin, NADH oxidase activity, or the 60-kDa heat shock protein; and (iii) their morphology by freeze-fracture electron microscopy was identical to that of OMs of intact organisms. Consistent with previous studies which employed immunoelectron microscopy and detergent-based solubilization of B. burgdorferi OMs, only small proportions of the total cellular content of OspA or OspB were OM associated. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) fluorography of OMs from spirochetes metabolically radiolabeled with [3H]palmitate or 35S-amino acids demonstrated that the OMs contained both nonlipidated and lipidated proteins. This fractionation procedure was also used to isolate OMs from virulent and avirulent isolates of the well-characterized B. burgdorferi N40 strain. SDS-PAGE fluorography revealed that OMs from the two isolates differed with respect to both nonlipoprotein and lipoprotein constituents. When whole cells, protoplasmic cylinders, and OMs were immunoblotted against sera from mice persistently infected with B. burgdorferi N40, the majority of antibody reactivity was directed against intracellular proteins. The availability of isolated OMs should facilitate efforts to elucidate the complex relationship(s) between B. burgdorferi membrane composition and Lyme disease pathogenesis. PMID:7768594

  4. Borrelia burgdorferi supercoiled plasmids encode multicopy tandem open reading frames and a lipoprotein gene family.

    PubMed Central

    Porcella, S F; Popova, T G; Akins, D R; Li, M; Radolf, J D; Norgard, M V

    1996-01-01

    DNA sequencing and Southern blot analyses of a Borrelia burgdorferi DNA fragment encoding a signal sequence led to the discovery of a genetic locus, designated 2.9, which appears to be present in at least seven copies in virulent B. burgdorferi 297. DNA sequence analysis of these regions revealed that each 2.9 locus contained an operon of four genes (ABCD) and open reading frames designated rep+ (positive strand) and rep- (negative strand) which encoded multiple repeat motifs. Downstream of the rep+ gene(s) in six of the completely cloned and sequenced 2.9 loci also were lipoprotein (LP) genes possessing highly similar signal sequences but encoding variable mature polypeptides. The lipoproteins could he separated into two classes on the basis of hydrophilicity profiles, sequence similarities, and reactivity with specific antibodies. The 2.9 loci were localized to two (20- and 30-kb) supercoiled plasmids in B. burgdorferi 297. Northern (RNA) blot analysis established that the 2.9 ABCD operon was only minimally expressed, whereas the rep- gene(s) and at least three of the seven LP genes were expressed by B. burgdorferi in vitro. A single putative promoter element was identified by RNA primer extension analysis upstream of the ABCD operon, whereas a number of potential promoter regions existed upstream of the LP genes. The combined data indicate that the ABCD operon, rep+ and rep- genes, and LP genes are separately transcribed during in vitro growth. The 2.9 loci possess a repetitiveness, diversity, and complexity not previously described for B. burgdorferi; differential expression of these genes may facilitate the spirochete's ability to survive in diverse host environments. PMID:8655511

  5. Cell-density-dependent expression of Borrelia burgdorferi lipoproteins in vitro.

    PubMed Central

    Indest, K J; Ramamoorthy, R; Solé, M; Gilmore, R D; Johnson, B J; Philipp, M T

    1997-01-01

    Previously, we had identified non-OspA-OspB surface proteins of Borrelia burgdorferi that are targeted by the antibody-dependent complement-mediated killing mechanism. Here we demonstrate by Western blotting that one of these proteins, P35, is upregulated at the onset of stationary phase in vitro. Northern analysis revealed that the upregulation of P35 is at the level of transcription. In addition, the expression of an open reading frame (ORF) located downstream of the p35 gene was found to be regulated in the same fashion as that of P35. This ORF encodes a 7.5-kDa lipoprotein. The transcriptional start sites for both of these genes were determined, to aid in the identification of the putative promoter regions. Additional sequencing of the 5' flanking region of the p35 gene revealed a region of dyad symmetry 52 bp upstream of the transcription start site. Southern analysis demonstrated that the expression of these genes was not due to a cell-density-dependent rearrangement in the genome of B. burgdorferi. These findings provide an in vitro model for studying mechanisms of gene regulation in B. burgdorferi. PMID:9119447

  6. Fourier transform infrared spectroscopy of DNA from Borrelia burgdorferi sensu lato and Ixodes ricinus ticks.

    PubMed

    Muntean, Cristina M; Stefan, Razvan; Bindea, Maria; Cozma, Vasile

    2013-06-01

    In this work we present a method for detection of motile and immotile Borrelia burgdorferi genomic DNA, in relation with infectious and noninfectious spirochetes. An FT-IR study of DNA isolated from B. burgdorferi sensu lato strains and from positive and negative Ixodes ricinus ticks, respectively, is reported. Motile bacterial cells from the species B. burgdorferi sensu stricto, Borrelia garinii and Borrelia afzelii were of interest. Also, FT-IR absorbance spectra of DNA from immotile spirochetes of B. burgdorferi sensu stricto, in the absence and presence of different antibiotics (doxycycline, erythromycin, gentamicin, penicillin V or phenoxymethylpenicillin, tetracycline, respectively) were investigated. FT-IR spectra, providing a high molecular structural information, have been analyzed in the wavenumber range 400-1800 cm(-1). FT-IR signatures, spectroscopic band assignments and structural interpretations of these DNAs are reported. Spectral differences between FT-IR absorbances of DNAs from motile bacterial cells and immotile spirochetes, respectively, have been found. Particularly, alterations of the sugar-phosphate B-form chain in the case of DNA from Borrelia immotile cells, as compared with DNA from B. burgdorferi sensu lato motile cells have been observed. Based on this work, specific B. burgdorferi sensu lato and I. ricinus DNA-ligand interactions, respectively, might be further investigated using Fourier transform infrared spectroscopy. PMID:23563637

  7. Fourier transform infrared spectroscopy of DNA from Borrelia burgdorferi sensu lato and Ixodes ricinus ticks

    NASA Astrophysics Data System (ADS)

    Muntean, Cristina M.; Stefan, Razvan; Bindea, Maria; Cozma, Vasile

    2013-06-01

    In this work we present a method for detection of motile and immotile Borrelia burgdorferi genomic DNA, in relation with infectious and noninfectious spirochetes. An FT-IR study of DNA isolated from B. burgdorferi sensu lato strains and from positive and negative Ixodes ricinus ticks, respectively, is reported. Motile bacterial cells from the species B. burgdorferi sensu stricto, Borrelia garinii and Borrelia afzelii were of interest. Also, FT-IR absorbance spectra of DNA from immotile spirochetes of B. burgdorferi sensu stricto, in the absence and presence of different antibiotics (doxycycline, erythromycin, gentamicin, penicillin V or phenoxymethylpenicillin, tetracycline, respectively) were investigated. FT-IR spectra, providing a high molecular structural information, have been analyzed in the wavenumber range 400-1800 cm-1. FT-IR signatures, spectroscopic band assignments and structural interpretations of these DNAs are reported. Spectral differences between FT-IR absorbances of DNAs from motile bacterial cells and immotile spirochetes, respectively, have been found. Particularly, alterations of the sugar-phosphate B-form chain in the case of DNA from Borrelia immotile cells, as compared with DNA from B. burgdorferi sensu lato motile cells have been observed. Based on this work, specific B. burgdorferi sensu lato and I. ricinus DNA-ligand interactions, respectively, might be further investigated using Fourier transform infrared spectroscopy.

  8. Babesia microti, human babesiosis, and Borrelia burgdorferi in Connecticut.

    PubMed Central

    Anderson, J F; Mintz, E D; Gadbaw, J J; Magnarelli, L A

    1991-01-01

    Babesia microti was isolated from a white-footed mouse (Peromyscus leucopus) that was captured in southeastern Connecticut in 1988, when the first human case of babesiosis acquired in Connecticut was recognized. To date, 13 cases of babesiosis have been reported in Connecticut, the largest number of human cases reported on the mainland United States. Two of nine patients quiried remembered a prior tick bite. Since Babesia parasites are known to be vectored only by ticks, we surmise that 12 of these infections were acquired via tick bites; 1 was obtained by blood transfusion (the patient was 46 years of age) from an endemically infected donor. The ages of the patients with tick-acquired babesiosis ranged from 61 to 95 years. Two patients died with active infections, and one patient died from chronic obstructive pulmonary disease soon after treatment with clindamycin and quinine. Indirect fluorescent-antibody titers of blood samples drawn at the time of hospitalization for 11 patients and at the time of active infection for 1 asymptomatic person ranged from 1:1,024 to 1:4,096. Five of eight patients with babesiosis also had significant immunoglobulin G or immunoglobulin M titers (1:640 to 1:5,120) to Borrelia burgdorferi. B. microti was isolated in Syrian hamsters inoculated with blood from 7 of 12 patients tested and was also isolated from mice captured in six towns. The peridomestic nature of the disease was demonstrated by isolating the parasite from white-footed mice captured in or near the yards of eight different patients. Of 59 mice tested, 27 were positive and 25 were coinfected with B. burgdorferi. The isolation of B. microti from a white-footed mouse captured in north-central Connecticut (West Hartford), away from the focus of human infections in southeastern Connecticut, suggests that this pathogen may spread into other areas where Ixodes dammini, the tick vector, becomes established. PMID:1757548

  9. Morphoea and Borrelia burgdorferi: results from the Scottish Highlands in the context of the world literature

    PubMed Central

    Goodlad, J R; Davidson, M M; Gordon, P; Billington, R; Ho-Yen, D O

    2002-01-01

    Aims: Previous studies investigating the link between infection with Borrelia burgdorferi and morphoea have produced conflicting results. Often, these studies have been undertaken in patients from different regions or countries, and using methods of varying sensitivity for detecting Borrelia burgdorferi infection. This study aimed to establish whether a relation could be demonstrated in the Highlands of Scotland, an area with endemic Lyme disease, with the use of a sensitive method for detecting the organism. Methods: The study was performed on biopsies of lesional skin taken from 16 patients from the Highlands of Scotland with typical clinical features of morphoea. After histological confirmation of the diagnosis, a nested polymerase chain reaction (PCR) using primers to a unique conserved region of the Borrelia burgdorferi flagellin gene was performed on DNA extracts from each biopsy. A literature search was also performed for comparable studies. Results: None of the 16 patients had documented clinical evidence of previous infection with B burgdorferi. DNA was successfully extracted from 14 of the 16 cases but all of these were negative using PCR for B burgdorferi specific DNA, despite successful amplification of appropriate positive controls in every test. The results were compared with those of other documented studies. Conclusions: Examination of the literature suggests that there is a strong geographical relation between B burgdorferi and morphoea. These results, in which no such association was found, indicate that morphoea may not be associated with the subspecies of B burgdorferi found in the Highlands of Scotland. PMID:12456775

  10. Evidence of a conjugal erythromycin resistance element in the Lyme disease spirochete Borrelia burgdorferi

    PubMed Central

    Jackson, Charlene R.; Boylan, Julie; Frye, Jonathan G.; Gherardini, Frank C.

    2007-01-01

    We report the identification of isolates of Borrelia burgdorferi strain B31 that exhibit an unusual macrolide–lincosamide (ML) or macrolide–lincosamide–streptogramin A (MLSA) antibiotic resistance pattern. Low-passage isolates were resistant to high levels (>100 μg/mL) of erythromycin, spiramycin and the lincosamides but were sensitive to dalfopristin, an analogue of streptogramin B. Interestingly, the high-passage erythromycin-resistant strain B31 was resistant to quinupristin, an analogue of streptogramin A (25 μg/mL). Biochemical analysis revealed that resistance was not due to antibiotic inactivation or energy-dependent efflux but was instead due to modification of ribosomes in these isolates. Interestingly, we were able to demonstrate high-frequency transfer of the resistance phenotype via conjugation from B. burgdorferi to Bacillus subtilis (10−2–10−4) or Enterococcus faecalis (10−5). An intergeneric conjugal system in B. burgdorferi suggests that horizontal gene transfer may play a role in its evolution and is a potential tool for developing new genetic systems to study the pathogenesis of Lyme disease. PMID:17905571

  11. RpoS Regulates Essential Virulence Factors Remaining to Be Identified in Borrelia burgdorferi

    PubMed Central

    Xu, Qilong; Shi, Yanlin; Dadhwal, Poonam; Liang, Fang Ting

    2012-01-01

    Background Since the RpoN-RpoS regulatory network was revealed in the Lyme disease spirochete Borrelia burgdorferi a decade ago, both upstream and downstream of the pathway have been intensively investigated. While significant progress has been made into understanding of how the network is regulated, most notably, discovering a relationship of the network with Rrp2 and BosR, only three crucial virulence factors, including outer surface protein C (OspC) and decorin-binding proteins (Dbps) A and B, are associated with the pathway. Moreover, for more than 10 years no single RpoS-controlled gene has been found to be critical for infection, raising a question about whether additional RpoS-dependent virulence factors remain to be identified. Methodology/Principal Findings The rpoS gene was deleted in B. burgdorferi; resulting mutants were modified to constitutively express all the known virulence factors, OspC, DbpA and DbpB. This genetic modification was unable to restore the rpoS mutant with infectivity. Conclusions/Significance The inability to restore the rpoS mutant with infectivity by simultaneously over-expressing all the three virulence factors allows us to conclude RpoS also regulates essential genes that remain to be identified in B. burgdorferi. PMID:23300893

  12. Serologic analyses of Peromyscus leucopus, a rodent reservoir for Borrelia burgdorferi, in northeastern United States.

    PubMed Central

    Magnarelli, L A; Anderson, J F; Hyland, K E; Fish, D; Mcaninch, J B

    1988-01-01

    An enzyme-linked immunosorbent assay (ELISA) and indirect fluorescent-antibody test were used to detect antibodies to Borrelia burgdorferi, the causative agent of Lyme disease, in Peromyscus leucopus (white-footed mouse). Of the 661 mice captured in Connecticut, Rhode Island, and New York during 1980 and 1983 to 1987, 166 (25.1%) had antibodies to B. burgdorferi by ELISA. Comparative analyses of 210 serum specimens, collected in areas where Lyme disease is endemic, revealed a threefold difference in sensitivity between the ELISA (38.1% positive) and the indirect fluorescent-antibody method (12.4%). Although prevalence of seropositive P. leucopus was highest during June, elevated amounts of antibody (1:1,280 to 1:2,560) were detected in mice that harbored spirochetes during all seasons. Being reservoirs for B. burgdorferi, these rodents are suitable for monitoring spirochete infections at foci and should be included in field evaluations of control programs aimed at suppressing Lyme disease. PMID:3384925

  13. Borrelia burgdorferi Induces the Production and Release of Proinflammatory Cytokines in Canine Synovial Explant Cultures

    PubMed Central

    Straubinger, Reinhard K.; Straubinger, Alix F.; Summers, Brian A.; Erb, Hollis N.; Härter, Luc; Appel, Max J. G.

    1998-01-01

    Canine synovial membrane explants were exposed to high- or low-passage Borrelia burgdorferi for 3, 6, 12, and 24 h. Spirochetes received no treatment, were UV light irradiated for 16 h, or were sonicated prior to addition to synovial explant cultures. In explant tissues, mRNA levels for the proinflammatory cytokines tumor necrosis factor alpha (TNF-α), interleukin-1α (IL-1α), IL-1β, and IL-8 were surveyed semiquantitatively by reverse transcription-PCR. Culture supernatants were examined for numbers of total and motile (i.e., viable) spirochetes, TNF-like and IL-1-like activities, polymorphonuclear neutrophil (PMN) chemotaxis-inducing activities, and IL-8. During exposure to synovial explant tissues, the total number of spirochetes in the supernatants decreased gradually by ∼30%, and the viability also declined. mRNAs for TNF-α, IL-1α, IL-1β, and IL-8 were up-regulated in synovial explant tissues within 3 h after infection with untreated or UV light-irradiated B. burgdorferi, and mRNA levels corresponded to the results obtained with bioassays. During 24 h of coincubation, cultures challenged with untreated or UV light-irradiated spirochetes produced similar levels of TNF-like and IL-1-like activities. In contrast, explant tissues exposed to untreated B. burgdorferi generated significantly higher levels of chemotactic factors after 24 h of incubation than did explant tissues exposed to UV light-treated spirochetes. In identical samples, a specific signal for IL-8 was identified by Western blot analysis. High- and low-passage borreliae did not differ in their abilities to induce proinflammatory cytokines. No difference in cytokine induction between untreated and sonicated high-passage spirochetes was observed, suggesting that fractions of the organism can trigger the production and release of inflammatory mediators. The titration of spirochetes revealed a dose-independent cytokine response, where 103 to 107 B. burgdorferi organisms induced similar TNF

  14. Seasonal prevalence of Borrelia burgdorferi in natural populations of white-footed mice, Peromyscus leucopus.

    PubMed

    Anderson, J F; Johnson, R C; Magnarelli, L A

    1987-08-01

    Borrelia burgdorferi, the etiologic agent of Lyme disease, was isolated from 111 of 237 Peromyscus leucopus captured during all seasons of the year. Borreliae were cultured from tissues of the spleen (101 mice), left kidney (76 mice), and right kidney (73 mice), from blood (12 mice), and from one fetus. Mice were infected during the winter, when immature Ixodes dammini were inactive. The prevalence of infection during the winter (less than or equal to 33%) was more than twofold lower than that during the summer (ca. 75%), a time when nymphal ticks are abundant. Overwintering, infected mice are reservoir hosts for subadult ticks that begin feeding in early spring. Twenty white-footed mice from which B. burgdorferi was isolated from tissues of spleen or kidney but not from blood were parasitized by larval I. dammini or Dermacentor variabilis which harbored borreliae. We conclude that these mice were infectious to feeding ticks, even though borreliae were not isolated from blood. PMID:3624451

  15. In vitro susceptibilities of Borrelia burgdorferi to five oral cephalosporins and ceftriaxone.

    PubMed

    Agger, W A; Callister, S M; Jobe, D A

    1992-08-01

    We determined the in vitro susceptibilities of eight Borrelia burgdorferi isolates to five oral cephalosporins. MICs for B. burgdorferi 297 were 23 micrograms/ml (cephalexin), 45 micrograms/ml (cefadroxil), 91 micrograms/ml (cefaclor), 0.13 microgram/ml (cefuroxime), 0.8 microgram/ml (cefixime), and 0.02 microgram/ml (ceftriaxone). When B. burgdorferi isolates were exposed to concentrations twice the MIC of cefuroxime, cefixime, or ceftriaxone, at least 72 h of incubation was required to kill 99% of the organisms. PMID:1416868

  16. Functional outcomes in patients with Borrelia burgdorferi reinfection.

    PubMed

    Jares, Tyler M; Mathiason, Michelle A; Kowalski, Todd J

    2014-02-01

    When Lyme disease is treated with appropriate antibiotic therapy in the early stages, long-term outcomes are good. However, a few patients have persistent symptoms despite appropriate therapy. Whether these patients' symptoms are any different from those of patients with reinfection is unclear. Our objective was to compare long-term symptoms and functional outcomes of patients with Borrelia burgdorferi reinfection with those of patients with only 1 episode of infection and with no history of infection. We compared outcomes of Lyme reinfection patients, characterized by recurrent erythema migrans (EM) lesions, with those of patients with 1 episode of Lyme disease (Lyme control) and with no history of Lyme disease (non-Lyme control) by retrospective medical record review and a survey consisting of a 36-item Short-Form Health Survey (SF-36) and a 10-item symptom questionnaire. Analysis of variance (ANOVA) for continuous variables and χ(2) analysis for categorical variables were used. In cases of low cell counts, Fisher's exact tests were used. Bonferroni correction was used for multiple comparisons when ANOVA was significant. Reinfection was identified in 23/673 (3.4%) patients who had a diagnosis of Lyme disease in our health system during 2000-2004. Of the 23, 15 had long-term follow-up data and were age- and sex-matched to 45 Lyme control and 60 non-Lyme control group patients. Clinical characteristics were similar in the reinfection and Lyme control groups. SF-36 results were similar between groups for all domains except energy/vitality (VT). The SF-36 domain of VT was significantly different between groups: 63.0 vs. 54.5 vs. 64.5 in the reinfection, Lyme control, and non-Lyme control groups, respectively (p=0.047). Clinical features and long-term outcomes of patients with recurrent EM lesions were similar to those of the control groups and consistent with B. burgdorferi reinfection, not persistent infection. Patients with Lyme reinfection should be treated with

  17. Reservoir competence of Microtus pennsylvanicus (Rodentia: Cricetidae) for the Lyme disease spirochete, Borrelia burgdorferi

    USGS Publications Warehouse

    Markowski, D.; Ginsberg, H.S.; Hyland, K.E.; Hu, R.

    1998-01-01

    The reservoir competence of the meadow vole, Microtus pennsylvanicus Ord, for the Lyme disease spirochete, Borrelia burgdorferi Johnson, Schmid, Hyde, Steigerwalt & Brenner was established on Patience Island, RI. Meadow voles were collected from 5 locations throughout Rhode Island. At 4 of the field sites, M. pennsylvanicus represented only 4.0% (n = 141) of the animals captured. However, on Patience Island, M. pennsylvanicus was the sole small mammal collected (n = 48). Of the larval Ixodes scapularis Say obtained from the meadow voles on Patience Island, 62% (n = 78) was infected with B. burgdorferi. Meadow voles from all 5 locations were successfully infected with B. burgdorferi in the laboratory and were capable of passing the infection to xenodiagnostic I. scapularis larvae for 9 wk. We concluded that M. pennsylvanicus was physiologically capable of maintaining B. burgdorferi infection. However, in locations where Peromyscus leucopus (Rafinesque) is abundant, the role of M. pennsylvanicus as a primary reservoir for B. burgdorferi was reduced.

  18. Prevalence of Borrelia burgdorferi sensu lato in ticks from eastern China.

    PubMed

    Hou, Juan; Ling, Feng; Chai, Chengliang; Lu, Ye; Yu, Xianghua; Lin, Junfen; Sun, Jimin; Chang, Yue; Ye, Xiaodong; Gu, Shiping; Pang, Weilong; Wang, Chengwei; Zheng, Xiaohua; Jiang, Jianmin; Chen, Zhiping; Gong, Zhenyu

    2015-02-01

    To explore the tick distribution and prevalence of Borrelia in Zhejiang Province, we performed a survey in nine sites. A total of 447 adult ticks of 11 species were captured and the dominant tick species were Haemaphysalis longicornis and Ixodes sinensis and the abundance of tick species in different areas varied significantly. Overall, 4.70% of the ticks were polymerase chain reaction (PCR) positive for Borrelia. The average PCR positive rates were 5.19% for H. longicornis, 3.45% for Amblyomma testudinarium, 1.06% for I. sinensis, 5.00% for Rhipicephalus (Boophilus) microplus, and 19.44% for Ixodes granulatus, respectively. No Borrelia DNA was detected in Rhiphicephalus haemaphysaloides, Haemaphysalis yeni, Dermacentor taiwanensis, Haemaphysalis hystricis, Hyalomna asiaticum, and Ixodes ovatus. The prevalence of Borrelia was significantly different among tick species and the prevalence in I. granulatus was significantly higher than that in other tick species. Of note, experimentally confirmed vectors for B. burgdorferi s.l. including I. sinensis and I. granulatus were found in Zhejiang Province. Two species of B. burgdorferi s.l. exist in Zhejiang Province of which 12 sequences were most similar to the sequence of Borrelia garinii and nine sequences were most similar to the sequence of Borrelia valaisiana or Borrelia yangtze sp. nov. PMID:25548382

  19. First record of Borrelia burgdorferi B31 strain in Dermacentor nitens ticks in the northern region of Parana (Brazil)

    PubMed Central

    Gonçalves, Daniela Dib; Carreira, Teresa; Nunes, Mónica; Benitez, Aline; Lopes-Mori, Fabiana Maria Ruiz; Vidotto, Odilon; de Freitas, Julio Cesar; Vieira, Maria Luísa

    2013-01-01

    The aim of this study was to investigate the presence of DNA of Borrelia burgdorferi sensu lato (s.l.) in ticks that feed on horses used for animal traction in rural Jataizinho, Parana, Brazil. Between February and June 2008, a total of 224 ticks was collected of which 75% were identified as Dermacentor nitens and 25% as Amblyomma cajenense. To amplify B. burgdorferi s.l. DNA, the intergenic space region (ISR) between the 5S (rrf) 23S (rrl) rRNA genes was used as targets for nested-PCR. Two ticks of the D. nitens species were positive for B. burgdorferi s.l. Both species showed a fragment of 184 bp, but the sequencing revealed 99.9% homology with the B. burgdorferi sensu stricto (s.s.) strain B31. These results showed, for the first time, the presence of spirochete DNA infecting ticks that parasitize horses used for animal traction, in the rural municipality mentioned. In conclusion, this study opens up promising prospects for determining the infection rate of B. burgdorferi s.s. genospecies or other species in the equine population, as well as the impact of the infection rate on Lyme disease in the state of Parana. PMID:24516456

  20. First record of Borrelia burgdorferi B31 strain in Dermacentor nitens ticks in the northern region of Parana (Brazil).

    PubMed

    Gonçalves, Daniela Dib; Carreira, Teresa; Nunes, Mónica; Benitez, Aline; Lopes-Mori, Fabiana Maria Ruiz; Vidotto, Odilon; de Freitas, Julio Cesar; Vieira, Maria Luísa

    2013-01-01

    The aim of this study was to investigate the presence of DNA of Borrelia burgdorferi sensu lato (s.l.) in ticks that feed on horses used for animal traction in rural Jataizinho, Parana, Brazil. Between February and June 2008, a total of 224 ticks was collected of which 75% were identified as Dermacentor nitens and 25% as Amblyomma cajenense. To amplify B. burgdorferi s.l. DNA, the intergenic space region (ISR) between the 5S (rrf) 23S (rrl) rRNA genes was used as targets for nested-PCR. Two ticks of the D. nitens species were positive for B. burgdorferi s.l. Both species showed a fragment of 184 bp, but the sequencing revealed 99.9% homology with the B. burgdorferi sensu stricto (s.s.) strain B31. These results showed, for the first time, the presence of spirochete DNA infecting ticks that parasitize horses used for animal traction, in the rural municipality mentioned. In conclusion, this study opens up promising prospects for determining the infection rate of B. burgdorferi s.s. genospecies or other species in the equine population, as well as the impact of the infection rate on Lyme disease in the state of Parana. PMID:24516456

  1. Pervasive recombination and sympatric genome diversification driven by frequency-dependent selection in Borrelia burgdorferi, the Lyme disease bacterium.

    PubMed

    Haven, James; Vargas, Levy C; Mongodin, Emmanuel F; Xue, Vincent; Hernandez, Yozen; Pagan, Pedro; Fraser-Liggett, Claire M; Schutzer, Steven E; Luft, Benjamin J; Casjens, Sherwood R; Qiu, Wei-Gang

    2011-11-01

    How genomic diversity within bacterial populations originates and is maintained in the presence of frequent recombination is a central problem in understanding bacterial evolution. Natural populations of Borrelia burgdorferi, the bacterial agent of Lyme disease, consist of diverse genomic groups co-infecting single individual vertebrate hosts and tick vectors. To understand mechanisms of sympatric genome differentiation in B. burgdorferi, we sequenced and compared 23 genomes representing major genomic groups in North America and Europe. Linkage analysis of >13,500 single-nucleotide polymorphisms revealed pervasive horizontal DNA exchanges. Although three times more frequent than point mutation, recombination is localized and weakly affects genome-wide linkage disequilibrium. We show by computer simulations that, while enhancing population fitness, recombination constrains neutral and adaptive divergence among sympatric genomes through periodic selective sweeps. In contrast, simulations of frequency-dependent selection with recombination produced the observed pattern of a large number of sympatric genomic groups associated with major sequence variations at the selected locus. We conclude that negative frequency-dependent selection targeting a small number of surface-antigen loci (ospC in particular) sufficiently explains the maintenance of sympatric genome diversity in B. burgdorferi without adaptive divergence. We suggest that pervasive recombination makes it less likely for local B. burgdorferi genomic groups to achieve host specialization. B. burgdorferi genomic groups in the northeastern United States are thus best viewed as constituting a single bacterial species, whose generalist nature is a key to its rapid spread and human virulence. PMID:21890743

  2. Antibodies against Borrelia burgdorferi sensu lato among Adults, Germany, 2008–2011

    PubMed Central

    Fingerle, Volker; Klier, Christiane; Thamm, Michael; Stark, Klaus

    2015-01-01

    To assess Borrelia burgdorferi sensu lato (the cause of Lyme borreliosis) seropositivity in Germany, we tested serum samples from health survey (2008–2011) participants. Seroprevalence was 5.8% among women and 13.0% among men; infection risk was highest among persons >60 years of age. Public health interventions, including education about risk factors and preventive measures, are needed. PMID:25531140

  3. Antibodies against Borrelia burgdorferi sensu lato among Adults, Germany, 2008-2011.

    PubMed

    Wilking, Hendrik; Fingerle, Volker; Klier, Christiane; Thamm, Michael; Stark, Klaus

    2015-01-01

    To assess Borrelia burgdorferi sensu lato (the cause of Lyme borreliosis) seropositivity in Germany, we tested serum samples from health survey (2008-2011) participants. Seroprevalence was 5.8% among women and 13.0% among men; infection risk was highest among persons >60 years of age. Public health interventions, including education about risk factors and preventive measures, are needed. PMID:25531140

  4. Persistence of antibodies to Borrelia burgdorferi in dogs of New York and Connecticut.

    PubMed

    Magnarelli, L A; Anderson, J F; Schreier, A B

    1990-04-01

    Multiple blood samples were obtained from privately owned dogs living in tick-infested areas of New York (Westchester County) and Connecticut, where Lyme disease in human beings has been reported. Of the 175 dogs examined, 127 (72.6%) had limb/joint disorder, whereas the remaining 48 dogs were considered healthy. Results of analysis of 419 serum samples revealed IgM antibody to Borrelia burgdorferi in healthy and lame dogs during all seasons. Prevalence of seropositivity was significantly (P less than 0.01) greater, using a polyvalent ELISA (89.5%) than using a class-specific ELISA for IGM antibody (57.8%). Mean antibody titers obtained by use of polyvalent ELISA were likewise higher than IgM titers. Analysis of paired serum samples from dogs with limb/joint disorder indicated that 118 (92.9%) remained positive for IgM or IgG antibodies when retested weeks or months after initial testing. In 48 dogs without history of joint involvement or other signs of disease, 43 (89.6%) had antibody to B burgdorferi 2 or more times. Serotest results also revealed little or no change in antibody titer for lame dogs given antibiotics or for healthy dogs 2 or more months after initial sample collection. PMID:2329074

  5. First isolation and cultivation of Borrelia burgdorferi sensu lato from Missouri.

    PubMed

    Oliver, J H; Kollars, T M; Chandler, F W; James, A M; Masters, E J; Lane, R S; Huey, L O

    1998-01-01

    Five Borrelia burgdorferi sensu lato isolates from Missouri are described. This represents the first report and characterization of such isolates from that state. The isolates were obtained from either Ixodes dentatus or Amblyomma americanum ticks that had been feeding on cottontail rabbits (Sylvilagus floridanus) from a farm in Bollinger County, Mo., where a human case of Lyme disease had been reported. All isolates were screened immunologically by indirect immunofluorescence by using monoclonal antibodies to B. burgdorferi-specific outer surface protein A (OspA) (antibodies H3TS and H5332), B. burgdorferi-specific OspB (antibody H6831), Borrelia (genus)-specific antiflagellin (antibody H9724), and Borrelia hermsii-specific antibody (antibody H9826). Analysis of the isolates also involved a comparison of their protein profiles by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Finally, the isolates were analyzed by PCR with six pairs of primers known to amplify selected DNA target sequences specifically found in the reference strain B. burgdorferi B-31. Although some genetic variability was detected among the five isolates as well as between them and the B-31 strain, enough similarities were found to classify them as B. burgdorferi sensu lato. PMID:9431909

  6. In vitro activities of faropenem, ertapenem, imipenem and meropenem against Borrelia burgdorferi s.l.

    PubMed

    Rödel, Rebecca; Freyer, Alexandra; Bittner, Thomas; Schäfer, Volker; Hunfeld, Klaus-Peter

    2007-07-01

    Little is known about the in vitro activity of penems and carbapenems against the spirochete Borrelia burgdorferi. Here, faropenem, ertapenem, imipenem and meropenem as well as the third-generation cephalosporin ceftriaxone and tobramycin were tested in vitro against 11 isolates of the B. burgdorferi sensu lato complex. On a microg/mL basis, ertapenem was the most potent carbapenem (minimal inhibitory concentration (MIC) range: 0.015-0.125 microg/mL), with in vitro activity comparable with that of ceftriaxone against Borrelia. These findings are supported by the results of time-kill experiments in a Borrelia afzelii skin isolate, demonstrating a >3 log10 unit (99.9%) reduction of the inoculum after 96 h of exposure to either drug at a concentration of three log2 unit dilutions above the respective MIC. PMID:17512703

  7. The Western progression of lyme disease: infectious and Nonclonal Borrelia burgdorferi Sensu Lato populations in Grand Forks County, North Dakota.

    PubMed

    Stone, Brandee L; Russart, Nathan M; Gaultney, Robert A; Floden, Angela M; Vaughan, Jefferson A; Brissette, Catherine A

    2015-01-01

    Scant attention has been paid to Lyme disease, Borrelia burgdorferi, Ixodes scapularis, or reservoirs in eastern North Dakota despite the fact that it borders high-risk counties in Minnesota. Recent reports of B. burgdorferi and I. scapularis in North Dakota, however, prompted a more detailed examination. Spirochetes cultured from the hearts of five rodents trapped in Grand Forks County, ND, were identified as B. burgdorferi sensu lato through sequence analyses of the 16S rRNA gene, the 16S rRNA gene-ileT intergenic spacer region, flaB, ospA, ospC, and p66. OspC typing revealed the presence of groups A, B, E, F, L, and I. Two rodents were concurrently carrying multiple OspC types. Multilocus sequence typing suggested the eastern North Dakota strains are most closely related to those found in neighboring regions of the upper Midwest and Canada. BALB/c mice were infected with B. burgdorferi isolate M3 (OspC group B) by needle inoculation or tick bite. Tibiotarsal joints and ear pinnae were culture positive, and B. burgdorferi M3 was detected by quantitative PCR (qPCR) in the tibiotarsal joints, hearts, and ear pinnae of infected mice. Uninfected larval I. scapularis ticks were able to acquire B. burgdorferi M3 from infected mice; M3 was maintained in I. scapularis during the molt from larva to nymph; and further, M3 was transmitted from infected I. scapularis nymphs to naive mice, as evidenced by cultures and qPCR analyses. These results demonstrate that isolate M3 is capable of disseminated infection by both artificial and natural routes of infection. This study confirms the presence of unique (nonclonal) and infectious B. burgdorferi populations in eastern North Dakota. PMID:25304515

  8. Complement Evasion by Borrelia burgdorferi: Serum-Resistant Strains Promote C3b Inactivation

    PubMed Central

    Alitalo, Antti; Meri, Taru; Rämö, Lasse; Jokiranta, T. Sakari; Heikkilä, Tero; Seppälä, Ilkka J. T.; Oksi, Jarmo; Viljanen, Matti; Meri, Seppo

    2001-01-01

    The most characteristic features of the Lyme disease pathogens, the Borrelia burgdorferi sensu lato (s.l.) group, are their ability to invade tissues and to circumvent the immune defenses of the host for extended periods of time, despite elevated levels of borrelia-specific antibodies in serum and other body fluids. Our aim in the present study was to determine whether B. burgdorferi is able to interfere with complement (C) at the level of C3 by accelerating C3b inactivation and thus to inhibit the amplification of the C cascade. Strains belonging to different genospecies (Borrelia garinii, B. burgdorferi sensu stricto, and Borrelia afzelii) were compared for their sensitivities to normal human serum and abilities to promote factor I-mediated C3b degradation. B. burgdorferi sensu stricto and B. afzelii strains were found to be serum resistant. When the spirochetes were incubated with radiolabeled C3b, factor I-mediated degradation of C3b was observed in the presence of C-resistant B. afzelii (n = 3) and B. burgdorferi sensu stricto (n = 1) strains but not in the presence of C-sensitive B. garinii (n = 7) strains or control bacteria (Escherichia coli, Staphylococcus aureus, and Enterococcus faecalis). Immunoblotting and radioligand binding analyses showed that the C-resistant strains had the capacity to acquire the C inhibitors factor H and factor H-like protein 1 (FHL-1) from growth medium and human serum. A novel surface protein with an apparent molecular mass of 35 kDa was found to preferentially bind to the N terminus region of factor H. Thus, the serum-resistant B. burgdorferi s.l. strains can circumvent C attack by binding the C inhibitors factor H and FHL-1 to their surfaces and promoting factor I-mediated C3b degradation. PMID:11349031

  9. Borrelia burgdorferi Proteins Whose Expression Is Similarly Affected by Culture Temperature and pH

    PubMed Central

    Ramamoorthy, Ramesh; Scholl-Meeker, Dorothy

    2001-01-01

    Previously, we had demonstrated the upregulation in the expression of several proteins, including the lipoproteins OspC and P35, of Borrelia burgdorferi in the stationary growth phase. Since the expression of OspC is also known to be affected by culture temperature and pH, we examined the effects of both variables on the expression of the remaining stationary-phase-upregulated proteins. Our study revealed that the expression of each of the remaining stationary-phase-upregulated proteins, P35 included, was also influenced by culture temperature; these proteins were selectively expressed at 34°C but not at 24°C. Significantly, the expression of a majority of these proteins was also affected by culture pH, since they were abundantly expressed at pH 7.0 (resembling the tick midgut pH of 6.8 during feeding) but only sparsely at pH 8.0 (a condition closer to that of the unfed tick midgut pH of 7.4). We propose that this group of B. burgdorferi proteins, which in culture is selectively expressed under conditions of 34°C and pH 7.0, may be induced in the tick midgut during the feeding event. Furthermore, the differential and coordinate expression of these proteins under different environmental conditions suggests that the encoding genes may be coregulated. PMID:11254645

  10. Structure of decorin binding protein B from Borrelia burgdorferi and its interactions with glycosaminoglycans.

    PubMed

    Feng, Wei; Wang, Xu

    2015-12-01

    Decorin-binding proteins (DBPs), DBPA and DBPB, are surface lipoproteins on Borrelia burgdorferi, the causative agent of Lyme disease. DBPs bind to the connective tissue proteoglycan decorin and facilitate tissue colonization by the bacterium. Although structural and biochemical properties of DBPA are well understood, little is known about DBPB. In current work, we determined the solution structure of DBPB from strain B31 of B. burgdorferi and characterized its interactions with glycosaminoglycans (GAGs). Our structure shows that DBPB adopts the same topology as DBPA, but possesses a much shorter terminal helix, resulting in a longer unstructured C-terminal tail, which is also rich in basic amino acids. Characterization of DBPB-GAG interactions reveals that, despite similar GAG affinities of DBPA and DBPB, the primary GAG-binding sites in DBPB are different from DBPA. In particular, our results indicate that lysines in the C-terminus of DBPB are vital to DBPB's ability to bind GAGs whereas C-terminal tail for DBPA from strain B31 only plays a minor role in facilitating GAG bindings. Furthermore, the traditional GAG-binding pocket important to DBPA-GAG interactions is only secondary to DBPB's GAG-binding ability. PMID:26275806

  11. Potentially conflicting selective forces that shape the vls antigenic variation system in Borrelia burgdorferi

    PubMed Central

    Zhou, Wei; Brisson, Dustin

    2014-01-01

    Changing environmental conditions present an evolutionary challenge for all organisms. The environment of microbial pathogens, including the adaptive immune responses of the infected host, changes rapidly and is lethal to the pathogen lineages that cannot quickly adapt. The dynamic immune environment creates strong selective pressures favoring microbial pathogen lineages with antigenic variation systems that maximize the antigenic divergence among expressed antigenic variants. However, divergence among expressed antigens may be constrained by other molecular features such as the efficient expression of functional proteins. We computationally examined potential conflicting selection pressures on antigenic variation systems using the vls antigenic variation system in Borrelia burgdorferi as a model system. The vls system alters the sequence of the expressed antigen by recombining gene fragments from unexpressed but divergent ‘cassettes’ into the expression site, vlsE. The in silico analysis of natural and altered cassettes from seven lineages in the B. burgdorferi sensu lato species complex revealed that sites that are polymorphic among unexpressed cassettes, as well as the insertion/deletion mutations, are organized to maximize divergence among the expressed antigens within the constraints of translational ability and high translational efficiency. This study provides empirical evidence that conflicting selection pressures on antigenic variation systems can limit the potential antigenic divergence in order to maintain proper molecular function. PMID:24837669

  12. Dynamics of connective-tissue localization during chronic Borrelia burgdorferi infection.

    PubMed

    Imai, Denise M; Feng, Sunlian; Hodzic, Emir; Barthold, Stephen W

    2013-08-01

    The etiologic agent of Lyme disease, Borrelia burgdorferi, localizes preferentially in the extracellular matrix during persistence. In chronically infected laboratory mice, there is a direct association between B. burgdorferi and the proteoglycan decorin, which suggests that decorin has a role in defining protective niches for persistent spirochetes. In this study, the tissue colocalization of B. burgdorferi with decorin and the dynamics of borrelial decorin tropism were evaluated during chronic infection. Spirochetes were found to colocalize absolutely with decorin, but not collagen I in chronically infected immunocompetent C3H mice. Passive immunization of infected C3H-scid mice with B. burgdorferi-specific immune serum resulted in the localization of spirochetes in decorin-rich microenvironments, with clearance of spirochetes from decorin-poor microenvironments. In passively immunized C3H-scid mice, tissue spirochete burdens were initially reduced, but increased over time as the B. burgdorferi-specific antibody levels waned. Concurrent repopulation of the previously cleared decorin-poor microenvironments was observed with the rising tissue spirochete burden and declining antibody titer. These findings indicate that the specificity of B. burgdorferi tissue localization during chronic infection is determined by decorin, driven by the borrelia-specific antibody response, and fluctuates with the antibody response. PMID:23797360

  13. The cyclic-di-GMP signaling pathway in the Lyme disease spirochete, Borrelia burgdorferi

    PubMed Central

    Novak, Elizabeth A.; Sultan, Syed Z.; Motaleb, Md. A.

    2014-01-01

    In nature, the Lyme disease spirochete Borrelia burgdorferi cycles between the unrelated environments of the Ixodes tick vector and mammalian host. In order to survive transmission between hosts, B. burgdorferi must be able to not only detect changes in its environment, but also rapidly and appropriately respond to these changes. One manner in which this obligate parasite regulates and adapts to its changing environment is through cyclic-di-GMP (c-di-GMP) signaling. c-di-GMP has been shown to be instrumental in orchestrating the adaptation of B. burgdorferi to the tick environment. B. burgdorferi possesses only one set of c-di-GMP-metabolizing genes (one diguanylate cyclase and two distinct phosphodiesterases) and one c-di-GMP-binding PilZ-domain protein designated as PlzA. While studies in the realm of c-di-GMP signaling in B. burgdorferi have exploded in the last few years, there are still many more questions than answers. Elucidation of the importance of c-di-GMP signaling to B. burgdorferi may lead to the identification of mechanisms that are critical for the survival of B. burgdorferi in the tick phase of the enzootic cycle as well as potentially delineate a role (if any) c-di-GMP may play in the transmission and virulence of B. burgdorferi during the enzootic cycle, thereby enabling the development of effective drugs for the prevention and/or treatment of Lyme disease. PMID:24822172

  14. Borrelia burgdorferi sensu lato and co-infections with Anaplasma phagocytophilum and Rickettsia spp. in Ixodes ricinus in Hamburg, Germany.

    PubMed

    May, K; Jordan, D; Fingerle, V; Strube, C

    2015-12-01

    To obtain initial data on Borrelia burgdorferi sensu lato (Spirochaetales: Spirochaetaceae) in Ixodes ricinus (Ixodida: Ixodidae) ticks in Hamburg, Germany, 1400 questing ticks were collected by flagging at 10 different public recreation areas in 2011 and analysed using probe-based quantitative real-time polymerase chain reaction. The overall rate of infection with B. burgdorferi s.l. was 34.1%; 30.0% of adults were infected (36.7% of females and 26.0% of males), as were 34.5% of nymphs. Significant differences in tick infection rates were observed between the spring and summer/autumn months, as well as among sampling locations. Borrelia genospecies identification by reverse line blotting was successful in 43.6% of positive tick samples. The most frequent genospecies was Borrelia garinii/Borrelia bavariensis, followed by Borrelia afzelii, Borrelia valaisiana, B. burgdorferi sensu stricto, Borrelia spielmanii, Borrelia bissettii and Borrelia lusitaniae. Based on previously published data, co-infection of Borrelia and Rickettsiales spp. was determined in 25.8% of ticks. Overall, 22.9% of ticks were co-infected with Rickettsia spp. (Rickettsiales: Rickettsiaceae), 1.7% with Anaplasma phagocytophilum (Rickettsiales: Anaplasmataceae), and 1.2% with both pathogens. Study results show a high prevalence of Borrelia-positive ticks in recreation areas in the northern German city of Hamburg and the potential health risk to humans in these areas should not be underestimated. PMID:26096626

  15. Symptomatic co-infection with Babesia microti and Borrelia burgdorferi in patient after international exposure; a challenging case in Poland.

    PubMed

    Jabłońska, Joanna; Żarnowska-Prymek, Hanna; Stańczak, Joanna; Kozłowska, Joanna; Wiercińska-Drapało, Alicja

    2016-06-01

    The report presents a well-documented case of symptomatic co-infection of Babesia microti and Borrelia burgdorferi in a Polish immunocompetent patient after travelling to Canada and the USA. PMID:27294655

  16. Mammal Diversity and Infection Prevalence in the Maintenance of Enzootic Borrelia burgdorferi along the Western Coastal Plains of Maryland

    PubMed Central

    ANDERSON, JENNIFER M.; SWANSON, KATHERINE I.; SCHWARTZ, TIMOTHY R.; GLASS, GREGORY E.; NORRIS, DOUGLAS E.

    2014-01-01

    The primary vector of Borrelia burgdorferi in North America, Ixodes scapularis, feeds on various mammalian, avian, and reptilian hosts. Several small mammal hosts; Peromyscus leucopus, Tamias striatus, Microtus pennsylvanicus, and Blarina spp. can serve as reservoirs in an enzootic cycle of Lyme disease. The primary reservoir in the northeast United States is the white-footed mouse, P. leucopus. The infection prevalence of this reservoir as well as the roles of potential secondary reservoirs has not been established in southern Maryland, a region of low to moderate Borrelia infection in humans. Intensive trapping at 96 locations throughout the western Coastal Plains of Maryland was conducted and we found that 31.6% of P. leucopus were infected with B. burgdorferi. Sequence and phylogenetic analysis revealed that only B. burgdorferi sensu stricto circulated in southern Maryland. Feral house mice and voles also were infected and may serve as secondary hosts. Peromyscus gender, age and month of capture were significantly associated with infection status. Larval I. scapularis were the dominant ectoparasite collected from captured rodents even though host seeking A. americanum and D. variabilis were collected in greater numbers across the sampling region. Our findings illustrate that the enzootic cycle of LD is maintained in the western Coastal Plains region of southern Maryland between I. scapularis and P. leucopus as the dominant reservoir. PMID:17187577

  17. Glycosaminoglycan binding by Borrelia burgdorferi adhesin BBK32 specifically and uniquely promotes joint colonization

    PubMed Central

    Lin, Yi-Pin; Chen, Qiang; Ritchie, Jennifer A.; Dufour, Nicholas P.; Fischer, Joshua R.; Coburn, Jenifer; Leong, John M.

    2014-01-01

    SUMMARY Microbial pathogens that colonize multiple tissues commonly produce adhesive surface proteins that mediate attachment to cells and/or extracellular matrix in target organs. Many of these ‘adhesins’ bind to multiple ligands, complicating efforts to understand the role of each ligand-binding activity. Borrelia burgdorferi, the causative agent of Lyme disease, produces BBK32, first identified as a fibronectin-binding adhesin that promotes skin and joint colonization. BBK32 also binds to glycosaminoglycan (GAG), which, like fibronectin is ubiquitously present on cell surfaces. To determine which binding activity is relevant for BBK32-promoted infectivity, we generated a panel of BBK32 truncation and internal deletion mutants, and identified variants specifically defective for binding to either fibronectin or GAG. These variants promoted bacterial attachment to different mammalian cell types in vitro, suggesting that fibronectin and GAG binding may play distinct roles during infection. Intravenous inoculation of mice with a high-passage non-infectious B. burgdorferi strain that produced wild type BBK32 or BBK32 mutants defective for GAG or fibronectin binding, revealed that only GAG-binding activity was required for significant localization to joints at 60 minutes post-infection. An otherwise infectious B. burgdorferi strain producing BBK32 specifically deficient in fibronectin binding was fully capable of both skin and joint colonization in the murine model, whereas a strain producing BBK32 selectively attenuated for GAG binding colonized the inoculation site but not knee or tibiotarsus joints. Thus, the BBK32 fibronectin- and GAG-binding activities are separable in vivo, and BBK32-mediated GAG binding, but not fibronectin binding, contributes to joint colonization. PMID:25486989

  18. P55, an immunogenic but nonprotective 55-kilodalton Borrelia burgdorferi protein in murine Lyme disease.

    PubMed Central

    Feng, S; Barthold, S W; Telford, S R; Fikrig, E

    1996-01-01

    Immunization of C3H mice with P55 (previously called S1), a 55-kDa Borrelia burgdorferi antigen that is immunogenic after infection, elicited a strong antibody response but did not protect mice against B. burgdorferi challenge. Mice immunized with a P55 fusion protein in complete Freund's adjuvant developed anti-P55 antibodies, detectable at a titer of 1:10,000 by immunoblotting. To determine, if a protective response had been elicited, P55-vaccinated mice were fed upon by ticks infected with B. burgdorferi. The frequency of B. burgdorferi infection was similar in P55-immunized and control mice, and spirochetes were not destroyed within ticks that fed on P55-vaccinated mice. P55 is an immunogenic antigen that does not induce a protective response in the vertebrate or invertebrate host. PMID:8557366

  19. Divergence of Borrelia burgdorferi sensu lato spirochetes could be driven by the host: diversity of Borrelia strains isolated from ticks feeding on a single bird

    PubMed Central

    2014-01-01

    Background The controversy surrounding the potential impact of birds in spirochete transmission dynamics and their capacity to serve as a reservoir has existed for a long time. The majority of analyzed bird species are able to infect larval ticks with Borrelia. Dispersal of infected ticks due to bird migration is a key to the establishment of new foci of Lyme borreliosis. The dynamics of infection in birds supports the mixing of different species, the horizontal exchange of genetic information, and appearance of recombinant genotypes. Methods Four Borrelia burgdorferi sensu lato strains were cultured from Ixodes minor larvae and four strains were isolated from Ixodes minor nymphs collected from a single Carolina Wren (Thryothorus ludovicianus). A multilocus sequence analysis that included 16S rRNA, a 5S-23S intergenic spacer region, a 16S-23S internal transcribed spacer, flagellin, p66, and ospC separated 8 strains into 3 distinct groups. Additional multilocus sequence typing of 8 housekeeping genes, clpA, clpX, nifS, pepX, pyrG, recG, rplB, and uvrA was used to resolve the taxonomic status of bird-associated strains. Results Results of analysis of 14 genes confirmed that the level of divergence among strains is significantly higher than what would be expected for strains within a single species. The presence of cross-species recombination was revealed: Borrelia burgdorferi sensu stricto housekeeping gene nifS was incorporated into homologous locus of strain, previously assigned to B. americana. Conclusions Genetically diverse Borrelia strains are often found within the same tick or same vertebrate host, presenting a wide opportunity for genetic exchange. We report the cross-species recombination that led to incorporation of a housekeeping gene from the B. burgdorferi sensu stricto strain into a homologous locus of another bird-associated strain. Our results support the hypothesis that recombination maintains a majority of sequence polymorphism within Borrelia

  20. Few vertebrate species dominate the Borrelia burgdorferi s.l. life cycle

    NASA Astrophysics Data System (ADS)

    Hofmeester, T. R.; Coipan, E. C.; van Wieren, S. E.; Prins, H. H. T.; Takken, W.; Sprong, H.

    2016-04-01

    Background. In the northern hemisphere, ticks of the Ixodidae family are vectors of diseases such as Lyme borreliosis, Rocky Mountain spotted fever and tick-borne encephalitis. Most of these ticks are generalists and have a three-host life cycle for which they are dependent on three different hosts for their blood meal. Finding out which host species contribute most in maintaining ticks and the pathogens they transmit, is imperative in understanding the drivers behind the dynamics of a disease. Methods. We performed a systematic review to identify the most important vertebrate host species for Ixodes ricinus and Borrelia burgdorferi s.l. as a well-studied model system for tick-borne diseases. We analyzed data from 66 publications and quantified the relative contribution for 15 host species. Review results. We found a positive correlation between host body mass and tick burdens for the different stages of I. ricinus. We show that nymphal burdens of host species are positively correlated with infection prevalence with B. burgdorferi s.l., which is again positively correlated with the realized reservoir competence of a host species for B. burgdorferi s.l. Our quantification method suggests that only a few host species, which are amongst the most widespread species in the environment (rodents, thrushes and deer), feed the majority of I. ricinus individuals and that rodents infect the majority of I. ricinus larvae with B. burgdorferi s.l. Discussion. We argue that small mammal-transmitted Borrelia spp. are maintained due to the high density of their reservoir hosts, while bird-transmitted Borrelia spp. are maintained due to the high infection prevalence of their reservoir hosts. Our findings suggest that Ixodes ricinus and Borrelia burgdorferi s.l. populations are maintained by a few widespread host species. The increase in distribution and abundance of these species, could be the cause for the increase in Lyme borreliosis incidence in Europe in recent decades.

  1. Large Scale Spatial Risk and Comparative Prevalence of Borrelia miyamotoi and Borrelia burgdorferi Sensu Lato in Ixodes pacificus

    PubMed Central

    Padgett, Kerry; Bonilla, Denise; Kjemtrup, Anne; Vilcins, Inger-Marie; Yoshimizu, Melissa Hardstone; Hui, Lucia; Sola, Milagros; Quintana, Miguel; Kramer, Vicki

    2014-01-01

    Borrelia miyamotoi is a newly described emerging pathogen transmitted to people by Ixodes species ticks and found in temperate regions of North America, Europe, and Asia. There is limited understanding of large scale entomological risk patterns of B. miyamotoi and of Borreila burgdorferi sensu stricto (ss), the agent of Lyme disease, in western North America. In this study, B. miyamotoi, a relapsing fever spirochete, was detected in adult (n = 70) and nymphal (n = 36) Ixodes pacificus ticks collected from 24 of 48 California counties that were surveyed over a 13 year period. Statewide prevalence of B. burgdorferi sensu lato (sl), which includes B. burgdorferi ss, and B. miyamotoi were similar in adult I. pacificus (0.6% and 0.8%, respectively). In contrast, the prevalence of B. burgdorferi sl was almost 2.5 times higher than B. miyamotoi in nymphal I. pacificus (3.2% versus 1.4%). These results suggest similar risk of exposure to B. burgdorferi sl and B. miyamotoi from adult I. pacificus tick bites in California, but a higher risk of contracting B. burgdorferi sl than B. miyamotoi from nymphal tick bites. While regional risk of exposure to these two spirochetes varies, the highest risk for both species is found in north and central coastal California and the Sierra Nevada foothill region, and the lowest risk is in southern California; nevertheless, tick-bite avoidance measures should be implemented in all regions of California. This is the first study to comprehensively evaluate entomologic risk for B. miyamotoi and B. burgdorferi for both adult and nymphal I. pacificus, an important human biting tick in western North America. PMID:25333277

  2. Molecular and Pathogenic Characterization of Borrelia burgdorferi Sensu Lato Isolates from Spain

    PubMed Central

    Escudero, Raquel; Barral, Marta; Pérez, Azucena; Vitutia, M. Mar; García-Pérez, Ana L.; Jiménez, Santos; Sellek, Ricela E.; Anda, Pedro

    2000-01-01

    Fifteen Borrelia burgdorferi sensu lato isolates from questing ticks and skin biopsy specimens from erythema migrans patients in three different areas of Spain were characterized. Four different genospecies were found (nine Borrelia garinii, including the two human isolates, three B. burgdorferi sensu stricto, two B. valaisiana, and one B. lusitaniae), showing a diverse spectrum of B. burgdorferi sensu lato species. B. garinii isolates were highly variable in terms of pulsed-field gel electrophoresis pattern and OspA serotype, with four of the seven serotypes described. One of the human isolates was OspA serotype 5, the same found in four of seven tick isolates. The second human isolate was OspA serotype 3, which was not present in ticks from the same area. Seven B. garinii isolates were able to disseminate through the skin of C3H/HeN mice and to cause severe inflammation of joints. One of the two B. valaisiana isolates also caused disease in mice. Only one B. burgdorferi sensu stricto isolate was recovered from the urinary bladder. One isolate each of B. valaisiana and B. lusitaniae were not able to disseminate through the skin of mice or to infect internal organs. In summary, there is substantial diversity in the species and in the pathogenicity of B. burgdorferi sensu lato in areas in northern Spain where Lyme disease is endemic. PMID:11060064

  3. Partial destruction of Borrelia burgdorferi within ticks that engorged on OspE- or OspF-immunized mice.

    PubMed Central

    Nguyen, T P; Lam, T T; Barthold, S W; Telford, S R; Flavell, R A; Fikrig, E

    1994-01-01

    We determined whether Borrelia burgdorferi outer surface proteins (Osps) E and F could elicit immune responses useful for a Lyme disease vaccine. Thirty days after challenge with B. burgdorferi, mice produced antibodies to OspE but not OspF, whereas antibodies to OspF were present in sera of mice obtained 90 days after infection. Examination of sera from patients with Lyme disease revealed antibodies to OspF in a small number (14%) of early-stage disease patients but in a majority (58%) of patients with late-stage disease, while antibodies to OspE were rarely detected in patients. Mice immunized with recombinant OspE or OspF produced high titers of antibodies to OspE or OspF, respectively. OspF-immunized mice were partially protected from both intradermal syringe challenge and tick-mediated transmission of B. burgdorferi while vaccination with OspE did not confer immunity. B. burgdorferi organisms were, however, substantially destroyed within ticks that engorged on either OspE- (75% reduction in the number of spirochetes within the ticks, compared with controls) or OspF (90% reduction in the number of spirochetes within the ticks)-immunized mice. Images PMID:8168973

  4. Coexistence of Borrelia burgdorferi s.l. genospecies within Ixodes ricinus ticks from central and eastern Poland.

    PubMed

    Sytykiewicz, Hubert; Karbowiak, Grzegorz; Chorostowska-Wynimko, Joanna; Szpechciński, Adam; Supergan-Marwicz, Marta; Horbowicz, Marcin; Szwed, Magdalena; Czerniewicz, Paweł; Sprawka, Iwona

    2015-12-01

    The purpose of the study was to assess the prevalence and coinfection rates of Borrelia burgdorferi sensu lato genotypes in Ixodes ricinus (L.) ticks sampled from diverse localities in central and eastern regions of Poland. In years 2009-2011, questing nymphs and adults of I. ricinus were collected using a flagging method at 18 localities representing distinct ecosystem types: urban green areas, suburban forests and rural woodlands. Molecular detection of B. burgdorferi s.l. genospecies was based on amplification of a fla gene using nested PCR technique, subsequent PCR-RFLP analysis and bidirectional sequencing. It was revealed that 45 samples (2.1%) harboured two different B. burgdorferi s.l. genospecies, whereas triple infections with various spirochetes was found in 11 (0.5%) individuals. Generally, the highest average coinfection rates were evidenced in arachnids gathered at rural woodlands, intermediate at suburban forests, while the lowest were recorded at urban green areas. Overall, single spirochete infections were noted in 16.3% (n = 352/2,153) ticks. Importantly, it is the first report evidencing the occurrence of Borrelia miyamotoi (0.3%, n = 7/2153) in I. ricinus populations within central Poland. Circumstantial variability of B. burgdorferi s.l. genospecies in the common tick individuals sampled at various habitat types in central and eastern Poland was displayed. The coexistence of two or three different spirochete genospecies in single adult ticks, as well as the presence of B. miyamotoi were demonstrated. Therefore, further studies uncovering the co-circulation of the tested bacteria and other human pathogens in I. ricinus ticks are required. PMID:26408587

  5. Rrp1, a cyclic-di-GMP-producing response regulator, is an important regulator of Borrelia burgdorferi core cellular functions

    PubMed Central

    Rogers, Elizabeth A.; Terekhova, Darya; Zhang, Hong-Ming; Hovis, Kelley M.; Schwartz, Ira; Marconi, Richard T.

    2010-01-01

    Summary Two-component systems (TCS) are universal among bacteria and play critical roles in gene regulation. Our understanding of the contributions of TCS in the biology of the Borrelia is just now beginning to develop. Borrelia burgdorferi, a causative agent of Lyme disease, harbours a TCS comprised of open reading frames (ORFs) BB0419 and BB0420. BB0419 encodes a response regulator designated Rrp1, and BB0420 encodes a hybrid histidine kinase–response regulator designated Hpk1. Rrp1, which contains a conserved GGDEF domain, undergoes phosphorylation and produces the secondary messenger, cyclic diguanylate (c-di-GMP), a critical signaling molecule in numerous organisms. However, the regulatory role of the Rrp1–Hpk1 TCS and c-di-GMP signaling in Borrelia biology are unexplored. In this study, the distribution, conservation, expression and potential global regulatory capability of Rrp1 were assessed. rrp1 was found to be universal and highly conserved among isolates, co-transcribed with hpk1, constitutively expressed during in vitro cultivation, and significantly upregulated upon tick feeding. Allelic exchange replacement and microarray analyses revealed that the Rrp1 regulon consists of a large number of genes encoded by the core Borrelia genome (linear chromosome, linear plasmid 54 and circular plasmid 26) that encode for proteins involved in central metabolic processes and virulence mechanisms including immune evasion. PMID:19210621

  6. Complement-mediated killing of Borrelia burgdorferi by nonimmune sera from sika deer.

    PubMed

    Nelson, D R; Rooney, S; Miller, N J; Mather, T N

    2000-12-01

    Various species of cervid deer are the preferred hosts for adult, black-legged ticks (Ixodes scapularis and Ixodes pacificus) in the United States. Although frequently exposed to the agent of Lyme disease (Borrelia burgdorferi), these animals, for the most part, are incompetent as transmission reservoirs. We examined the borreliacidal activity of normal and B. burgdorferi-immune sera from sika deer (Cervus nippon) maintained in a laboratory setting and compared it to that of similar sera from reservoir-competent mice and rabbits. All normal deer sera (NDS) tested killed > 90% of B. burgdorferi cells. In contrast, normal mouse and rabbit sera killed < or = 22% of the Borrelia. Anti-B. burgdorferi antibodies could not be detected in any normal sera by indirect fluorescent antibody assay (IFA). Sera collected from deer 6 wk after exposure to B. burgdorferi by tick feeding exhibited IFA titers of 1:256, whereas sera from mice and rabbits similarly exposed had titers of > 1:1,024. Heat treatment (56 C, 30 min) of NDS reduced borreliacidal activity, with < 20% of the B. burgdorferi cells killed, suggesting complement-mediated killing. The chelators EGTA and EDTA were used to block the classical or both the classical and alternative complement pathways, respectively. Addition of 10 mM EGTA to NDS had a negligible effect on borreliacidal activity, with > 90% of the cells killed. Addition of 10 mM EDTA reduced the killing to approximately 30%, whereas the addition of Mg2+ (10 mM) restored borreliacidal activity to NDS. The addition of zymosan A, an activator of the alternative pathway, increased the survival of B. burgdorferi cells to approximately 80% in NDS. These data suggest that the alternative complement activation pathway plays a major role in the borreliacidal activity of NDS. Additionally, 10 mM EGTA had almost no effect on the killing activity of B. burgdorferi-exposed deer sera, suggesting that the classical pathway is not involved in Borrelia killing, even in

  7. CD4+ T Cells Promote Antibody Production but Not Sustained Affinity Maturation during Borrelia burgdorferi Infection

    PubMed Central

    Elsner, Rebecca A.; Hastey, Christine J.

    2014-01-01

    CD4 T cells are crucial for enhancing B cell-mediated immunity, supporting the induction of high-affinity, class-switched antibody responses, long-lived plasma cells, and memory B cells. Previous studies showed that the immune response to Borrelia burgdorferi appears to lack robust T-dependent B cell responses, as neither long-lived plasma cells nor memory B cells form for months after infection, and nonswitched IgM antibodies are produced continuously during this chronic disease. These data prompted us to evaluate the induction and functionality of B. burgdorferi infection-induced CD4 TFH cells. We report that CD4 T cells were effectively primed and TFH cells induced after B. burgdorferi infection. These CD4 T cells contributed to the control of B. burgdorferi burden and supported the induction of B. burgdorferi-specific IgG responses. However, while affinity maturation of antibodies against a prototypic T-dependent B. burgdorferi protein, Arthritis-related protein (Arp), were initiated, these increases were reversed later, coinciding with the previously observed involution of germinal centers. The cessation of affinity maturation was not due to the appearance of inhibitory or exhausted CD4 T cells or a strong induction of regulatory T cells. In vitro T-B cocultures demonstrated that T cells isolated from B. burgdorferi-infected but not B. burgdorferi-immunized mice supported the rapid differentiation of B cells into antibody-secreting plasma cells rather than continued proliferation, mirroring the induction of rapid short-lived instead of long-lived T-dependent antibody responses in vivo. The data further suggest that B. burgdorferi infection drives the humoral response away from protective, high-affinity, and long-lived antibody responses and toward the rapid induction of strongly induced, short-lived antibodies of limited efficacy. PMID:25312948

  8. Antibodies to Borrelia burgdorferi in rodents in the eastern and southern United States.

    PubMed Central

    Magnarelli, L A; Oliver, J H; Hutcheson, H J; Boone, J L; Anderson, J F

    1992-01-01

    Serologic studies were conducted to determine whether white-footed mice (Peromyscus leucopus) and cotton mice (Peromyscus gossypinus) contained serum antibodies to Borrelia burgdorferi, the causative agent of Lyme borreliosis. Enzyme-linked immunosorbent assays detected antibodies to this spirochete in 35.7 and 27.3% of 56 P. leucopus and 535 P. gossypinus serum samples, respectively, collected in Connecticut, North Carolina, South Carolina, Georgia, Florida, Alabama, and Mississippi. Antibody titers ranged from 1:160 to greater than or equal to 1:40,960. On the basis of adsorption tests, the antibodies detected appeared to be specific to Borrelia spirochetes. Seropositive rodents in the eastern and southern United States, areas where human cases of Lyme borreliosis have been reported, indicate a widespread geographic distribution of B. burgdorferi or a closely related spirochete. PMID:1624561

  9. Detection of Borrelia burgdorferi in urine of Peromyscus leucopus by inhibition enzyme-linked immunosorbent assay.

    PubMed

    Magnarelli, L A; Anderson, J F; Stafford, K C

    1994-03-01

    An inhibition enzyme-linked immunosorbent assay was developed to detect Borrelia burgdorferi, the etiologic agent of Lyme borreliosis, in urine from white-footed mice (Peromyscus leucopus). Of the 87 urine specimens tested from 87 mice collected in widely separated tick-infested sites in Connecticut, 57 (65.5%) contained detectable concentrations of spirochetal antigens. Forty-seven (62.7%) of 75 serum samples analyzed contained antibodies to B. burgdorferi. In culture work with tissues from bladders, kidneys, spleens, or ears, 50 of 87 mice (57.5%) were infected with B. burgdorferi. Thirty-eight (76%) of 50 infected mice had antigens of this spirochete in urine, while 36 (72%) individuals had infected bladders. Of those with infected bladders, 24 (66.7%) mice excreted subunits or whole cells of B. burgdorferi into urine. Successful culturing of B. burgdorferi from mouse tissues, the presence of serum antibodies to this bacterium, and detection of antigens to this spirochete in urine provide further evidence that multiple assays can be performed to verify the presence of B. burgdorferi in P. leucopus. PMID:8195393

  10. Borrelia burgdorferi, Host-Derived Proteases, and the Blood-Brain Barrier

    PubMed Central

    Grab, Dennis J.; Perides, George; Dumler, J. Stephen; Kim, Kee Jun; Park, Jinho; Kim, Yuri V.; Nikolskaia, Olga; Choi, Kyoung Seong; Stins, Monique F.; Kim, Kwang Sik

    2005-01-01

    Neurological manifestations of Lyme disease in humans are attributed in part to penetration of the blood-brain barrier (BBB) and invasion of the central nervous system (CNS) by Borrelia burgdorferi. However, how the spirochetes cross the BBB remains an unresolved issue. We examined the traversal of B. burgdorferi across the human BBB and systemic endothelial cell barriers using in vitro model systems constructed of human brain microvascular endothelial cells (BMEC) and EA.hy 926, a human umbilical vein endothelial cell (HUVEC) line grown on Costar Transwell inserts. These studies showed that B. burgdorferi differentially crosses human BMEC and HUVEC and that the human BMEC form a barrier to traversal. During the transmigration by the spirochetes, it was found that the integrity of the endothelial cell monolayers was maintained, as assessed by transendothelial electrical resistance measurements at the end of the experimental period, and that B. burgdorferi appeared to bind human BMEC by their tips near or at cell borders, suggesting a paracellular route of transmigration. Importantly, traversal of B. burgdorferi across human BMEC induces the expression of plasminogen activators, plasminogen activator receptors, and matrix metalloproteinases. Thus, the fibrinolytic system linked by an activation cascade may lead to focal and transient degradation of tight junction proteins that allows B. burgdorferi to invade the CNS. PMID:15664945

  11. A Novel Isothermal Assay of Borrelia burgdorferi by Recombinase Polymerase Amplification with Lateral Flow Detection

    PubMed Central

    Liu, Wei; Liu, Hui-Xin; Zhang, Lin; Hou, Xue-Xia; Wan, Kang-Lin; Hao, Qin

    2016-01-01

    A novel isothermal detection for recombinase polymerase amplification with lateral flow (LF-RPA) was established for Borrelia burgdorferi (B. burgdorferi) detection in this study. This assay with high sensitivity and specificity can get a visible result without any additional equipment in 30 min. We designed a pair of primers according to recA gene of B. burgdorferi strains and a methodology evaluation was performed. The results showed that the RPA assay based on the recA gene was successfully applied in B. burgdorferi detection, and its specific amplification was only achieved from the genomic DNA of B. burgdorferi. The detection limit of the new assay was about 25 copies of the B. burgdorferi genomic DNA. Twenty Lyme borreliosis patients’ serum samples were detected by LF-RPA assay, real-time qPCR and nested-PCR. Results showed the LF-RPA assay is more effective than nested-PCR for its shorter reaction time and considerably higher detection rate. This method is of great value in clinical rapid detection for Lyme borreliosis. Using the RPA assay might be a megatrend for DNA detection in clinics and endemic regions. PMID:27527151

  12. A Novel Isothermal Assay of Borrelia burgdorferi by Recombinase Polymerase Amplification with Lateral Flow Detection.

    PubMed

    Liu, Wei; Liu, Hui-Xin; Zhang, Lin; Hou, Xue-Xia; Wan, Kang-Lin; Hao, Qin

    2016-01-01

    A novel isothermal detection for recombinase polymerase amplification with lateral flow (LF-RPA) was established for Borrelia burgdorferi (B. burgdorferi) detection in this study. This assay with high sensitivity and specificity can get a visible result without any additional equipment in 30 min. We designed a pair of primers according to recA gene of B. burgdorferi strains and a methodology evaluation was performed. The results showed that the RPA assay based on the recA gene was successfully applied in B. burgdorferi detection, and its specific amplification was only achieved from the genomic DNA of B. burgdorferi. The detection limit of the new assay was about 25 copies of the B. burgdorferi genomic DNA. Twenty Lyme borreliosis patients' serum samples were detected by LF-RPA assay, real-time qPCR and nested-PCR. Results showed the LF-RPA assay is more effective than nested-PCR for its shorter reaction time and considerably higher detection rate. This method is of great value in clinical rapid detection for Lyme borreliosis. Using the RPA assay might be a megatrend for DNA detection in clinics and endemic regions. PMID:27527151

  13. Differences in Genotype, Clinical Features, and Inflammatory Potential of Borrelia burgdorferi sensu stricto Strains from Europe and the United States.

    PubMed

    Cerar, Tjasa; Strle, Franc; Stupica, Dasa; Ruzic-Sabljic, Eva; McHugh, Gail; Steere, Allen C; Strle, Klemen

    2016-05-01

    Borrelia burgdorferi sensu stricto isolates from patients with erythema migrans in Europe and the United States were compared by genotype, clinical features of infection, and inflammatory potential. Analysis of outer surface protein C and multilocus sequence typing showed that strains from these 2 regions represent distinct genotypes. Clinical features of infection with B. burgdorferi in Slovenia were similar to infection with B. afzelii or B. garinii, the other 2 Borrelia spp. that cause disease in Europe, whereas B. burgdorferi strains from the United States were associated with more severe disease. Moreover, B. burgdorferi strains from the United States induced peripheral blood mononuclear cells to secrete higher levels of cytokines and chemokines associated with innate and Th1-adaptive immune responses, whereas strains from Europe induced greater Th17-associated responses. Thus, strains of the same B. burgdorferi species from Europe and the United States represent distinct clonal lineages that vary in virulence and inflammatory potential. PMID:27088349

  14. Differences in Genotype, Clinical Features, and Inflammatory Potential of Borrelia burgdorferi sensu stricto Strains from Europe and the United States

    PubMed Central

    Cerar, Tjasa; Strle, Franc; Stupica, Dasa; Ruzic-Sabljic, Eva; McHugh, Gail; Steere, Allen C.

    2016-01-01

    Borrelia burgdorferi sensu stricto isolates from patients with erythema migrans in Europe and the United States were compared by genotype, clinical features of infection, and inflammatory potential. Analysis of outer surface protein C and multilocus sequence typing showed that strains from these 2 regions represent distinct genotypes. Clinical features of infection with B. burgdorferi in Slovenia were similar to infection with B. afzelii or B. garinii, the other 2 Borrelia spp. that cause disease in Europe, whereas B. burgdorferi strains from the United States were associated with more severe disease. Moreover, B. burgdorferi strains from the United States induced peripheral blood mononuclear cells to secrete higher levels of cytokines and chemokines associated with innate and Th1-adaptive immune responses, whereas strains from Europe induced greater Th17-associated responses. Thus, strains of the same B. burgdorferi species from Europe and the United States represent distinct clonal lineages that vary in virulence and inflammatory potential. PMID:27088349

  15. Borrelia burgdorferi and tick proteins supporting pathogen persistence in the vector

    PubMed Central

    Kung, Faith; Anguita, Juan; Pal, Utpal

    2013-01-01

    Borrelia burgdorferi, a pathogen transmitted by Ixodes ticks, is responsible for a prevalent illness known as Lyme disease, and a vaccine for human use is unavailable. Recently, genome sequences of several B. burgdorferi strains and Ixodes scapularis ticks have been determined. In addition, remarkable progress has been made in developing molecular genetic tools to study the pathogen and vector, including their intricate relationship. These developments are helping unravel the mechanisms by which Lyme disease pathogens survive in a complex enzootic infection cycle. Notable discoveries have already contributed to understanding the spirochete gene regulation accounting for the temporal and spatial expression of B. burgdorferi genes during distinct phases of the lifecycle. A number of pathogen and vector gene products have also been identified that contribute to microbial virulence and/or persistence. These research directions will enrich our knowledge of vector-borne infections and contribute towards the development of preventative strategies against Lyme disease. PMID:23252492

  16. Transmission risk of Borrelia burgdorferi sensu lato from Ixodes ricinus ticks to humans in southwest Germany.

    PubMed Central

    Maiwald, M.; Oehme, R.; March, O.; Petney, T. N.; Kimmig, P.; Naser, K.; Zappe, H. A.; Hassler, D.; von Knebel Doeberitz, M.

    1998-01-01

    The risk of Borrelia burgdorferi infection and the value of antibiotic prophylaxis after tick bite are controversial. In this study, performed in two areas of southwestern Germany, ticks were collected from 730 patients and examined by the polymerase chain reaction (PCR) for B. burgdorferi. To assess whether transmission of B. burgdorferi occurred, the patients were clinically and serologically examined after tick removal and during follow-up examinations. Data from all tick bites gave a total transmission rate of 2.6% (19 patients). Eighty-four ticks (11.3%) were PCR positive. Transmission occurred to 16 (26.7%) of 60 patients who were initially seronegative and could be followed up after the bite of an infected tick. These results indicate that the transmission rate from infected ticks in Europe is higher than previously assumed. Examination of ticks and antibiotic prophylaxis in the case of positivity appears to be indicated. PMID:9747761

  17. A MODEST MODEL EXPLAINS THE DISTRIBUTION AND ABUNDANCE OF BORRELIA BURGDORFERI STRAINS

    PubMed Central

    BRISSON, DUSTIN; DYKHUIZEN, DANIEL E.

    2006-01-01

    The distribution and abundance of Borrelia burgdorferi, including human Lyme disease strains, is a function of its interactions with vertebrate species. We present a mathematical model describing important ecologic interactions affecting the distribution and abundance of B. burgdorferi strains, marked by the allele at the outer surface protein C locus, in Ixodes scapularis ticks, the principal vector. The frequency of each strain in ticks can be explained by the vertebrate species composition, the density of each vertebrate species, the number of ticks that feed on individuals of each species, and the rate at which those ticks acquire different strain. The model results are consistent with empirical data collected in a major Lyme disease focus in New England. An applicable extension of these results would be to predict the proportion of ticks carrying human infectious strains of B. burgdorferi from disease host densities and thus predict the local risk of contracting Lyme disease. PMID:16606995

  18. Specific adherence of Borrelia burgdorferi extracellular vesicles to human endothelial cells in culture.

    PubMed Central

    Shoberg, R J; Thomas, D D

    1993-01-01

    Borrelia burgdorferi produces extracellular vesicles which contain some of the outer surface proteins of the bacterium (e.g., OspA and OspB). Borrelial vesicles, isolated by differential centrifugation and filtration, were tested for the ability to bind to cultured human umbilical vein endothelial (HUVE) cells in culture. The recently described lipoprotein OspD was expressed on vesicles. Vesicles exhibited differential expression of OspB and OspD in a relationship with passage number and medium serum supplement type, respectively. Qualitative immunoblotting analyses demonstrated dose-dependent, passage number-dependent adsorption of vesicles by HUVE cells. This adsorption was demonstrated to be dependent upon a borrelial component of the vesicle and not due to the presence of minor contamination with intact spirochetes. Quantitative experiments examining inhibition of B. burgdorferi-HUVE association as a function of prior vesicle-HUVE association demonstrated dependence upon (i) a borrelial component(s) in the vesicle, (ii) low passage number, and (iii) vesicle protein concentration. However, vesicle pretreatment of the HUVE cell monolayer was not requisite for this inhibition. Vesicles from highly passaged borrelias were noninhibitory for B. burgdorferi-HUVE cell association, regardless of the serum used to supplement the medium. The use of vesicles as a tool for studying B. burgdorferi pathogenesis and/or physiology is proposed. Images PMID:8359911

  19. Influence of arthritis-related protein (BBF01) on infectivity of Borrelia burgdorferi B31

    PubMed Central

    2013-01-01

    Background Lyme borreliosis, caused by tick-borne Borrelia burgdorferi, is a multi-phasic, multi-system disease in humans. Similar to humans, C3H mice develop arthritis and carditis, with resolution and periodic bouts of recurrence over the course of persistent infection. Borrelia burgdorferi arthritis-related protein (Arp/BBF01), a highly conserved protein among B. burgdorferi s.s. isolates, has been shown to be antigenic in humans with Lyme borreliosis, and a target for antibody-mediated disease resolution in the mouse model. Results A mutant strain of B. burgdorferi s.s. deficient of the arp gene and a complemented version of that mutant were created and examined for phenotypic effects in mice compared to wild-type B. burgdorferi. Deletion of arp did not abolish infectivity, but did result in a higher infectious dose compared to wild-type B. burgdorferi, which was restored by complementation. Spirochete burdens in tissues of C3H-scid mice were lower when infected with the arp mutant, compared to wild-type, but arthritis was equally severe. Spirochete burdens were also lower in C3H mice infected with the arp mutant, but disease was markedly reduced. Ticks that fed upon infected C3H mice were able to acquire infection with both wild-type and arp mutant spirochetes. Arp mutant spirochetes were marginally able to be transmitted to naïve hosts by infected ticks. Conclusion These results indicated that deletion of BBF01/arp did not abrogate, but diminished infectivity and limited spirochete burdens in tissues of both immunocompetent and immunodeficient hosts, and attenuated, but did not abolish the ability of ticks to acquire or transmit infection. PMID:23651628

  20. Identification of novel activity against Borrelia burgdorferi persisters using an FDA approved drug library.

    PubMed

    Feng, Jie; Wang, Ting; Shi, Wanliang; Zhang, Shuo; Sullivan, David; Auwaerter, Paul G; Zhang, Ying

    2014-07-01

    Although antibiotic treatment for Lyme disease is effective in the majority of cases, especially during the early phase of the disease, a minority of patients suffer from post-treatment Lyme disease syndrome (PTLDS). It is unclear what mechanisms drive this problem, and although slow or ineffective killing of Borrelia burgdorferi has been suggested as an explanation, there is a lack of evidence that viable organisms are present in PTLDS. Although not a clinical surrogate, insight may be gained by examining stationary-phase in vitro Borrelia burgdorferi persisters that survive treatment with the antibiotics doxycycline and amoxicillin. To identify drug candidates that can eliminate B. burgdorferi persisters more effectively, we screened an Food and Drug Administration (FDA)-approved drug library consisting of 1524 compounds against stationary-phase B. burgdorferi by using a newly developed high throughput SYBR Green I/propidium iodide (PI) assay. We identified 165 agents approved for use in other disease conditions that had more activity than doxycycline and amoxicillin against B. burgdorferi persisters. The top 27 drug candidates from the 165 hits were confirmed to have higher anti-persister activity than the current frontline antibiotics. Among the top 27 confirmed drug candidates from the 165 hits, daptomycin, clofazimine, carbomycin, sulfa drugs (e.g., sulfamethoxazole), and certain cephalosporins (e.g. cefoperazone) had the highest anti-persister activity. In addition, some drug candidates, such as daptomycin and clofazimine (which had the highest activity against non-growing persisters), had relatively poor activity or a high minimal inhibitory concentration (MIC) against growing B. burgdorferi. Our findings may have implications for the development of a more effective treatment for Lyme disease and for the relief of long-term symptoms that afflict some Lyme disease patients. PMID:26038747

  1. Bird-feeding ticks transstadially transmit Borrelia burgdorferi that infect Syrian hamsters.

    PubMed

    Anderson, J F; Magnarelli, L A; Stafford, K C

    1990-01-01

    Bird-feeding Ixodes dammini ticks were documented for the first time to successfully molt and transstadially pass Borrelia burgdorferi spirochetes that were indistinguishable by sodium dodecyl sulfate-polyacrylamide gel electrophoresis from the type B31 strain. Forty-six of 73 blood-engorged larvae and 50 of 66 fully-fed nymphs, removed from wild-caught birds, successfully molted. Borreliae were isolated from 21 of 78 partially- and fully-fed larvae off birds, including six specimens that molted. Spirochete-positive cultures also were obtained from 35 of 60 partially- and fully-fed nymphs that had fed from birds, including 20 nymphs that molted into adult ticks. Transstadially passed borreliae by bird-feeding larval and nymphal I. dammini were infectious to hamsters, leading us to suggest that these ticks are capable of subsequently transmitting infectious spirochetes to mammals, including humans. An isolated of B. burgdorferi, recovered from a bird-feeding larval Ixodes dentatus, was indistinguishable by sodium dodecyl sulfate-polyacrylamide gel electrophoresis from the B31 strain. This isolate, unlike another from I. dentatus off a cottontail rabbit (Sylvilagus floridanus), had a protein band with a molecular weight of approximately 31,000 that reacted with murine monoclonal antibodies H3TS and H5332 in western blot analysis. Thus, closely related borreliae are present in both I. dentatus and I. dammini. PMID:2304189

  2. Proteomic Analysis of Lyme Disease: Global Protein Comparison of Three Strains of Borrelia burgdorferi

    SciTech Connect

    Jacobs, Jon M.; Yang, Xiaohua; Luft, Benjamin J.; Dunn, John J.; Camp, David G.; Smith, Richard D.

    2005-04-01

    The Borrelia burgdorferi spirochete is the causative agent of Lyme disease, the most common tick-borne disease in the United States. It has been studied extensively to help understand its pathogenicity of infection and how it can persist in different mammalian hosts. We report the proteomic analysis of the archetype B. burgdorferi B31 strain and two other strains (ND40, and JD-1) having different Borrelia pathotypes using strong cation exchange fractionation of proteolytic peptides followed by high-resolution, reversed phase capillary liquid chromatography coupled with ion trap tandem mass spectrometric (LC-MS/MS) analysis. Protein identification was facilitated by the availability of the complete B31 genome sequence. A total of 665 Borrelia proteins were identified representing ~38 % coverage of the theoretical B31 proteome. A significant overlap was observed between the identified proteins in direct comparisons between any two strains (>72%), but distinct differences were observed among identified hypothetical and outer membrane proteins of the three strains. Such a concurrent proteomic overview of three Borrelia strains based upon only the B31 genome sequence is shown to provide significant insights into the presence or absence of specific proteins and a broad overall comparison among strains.

  3. Transmission cycles of Borrelia burgdorferi and B. bissettii in relation to habitat type in northwestern California.

    PubMed

    Eisen, Lars; Eisen, Rebecca J; Mun, Jeomhee; Salkeld, Daniel J; Lane, Robert S

    2009-06-01

    This study was undertaken to determine which rodent species serve as primary reservoirs for the Lyme disease spirochete Borrelia burgdorferi in commonly occurring woodland types in inland areas of northwestern California, and to examine whether chaparral or grassland serve as source habitats for dispersal of B. burgdorferi- or B. bissettii-infected rodents into adjacent woodlands. The western gray squirrel (Sciurus griseus) was commonly infected with B. burgdorferi in oak woodlands, whereas examination of 30 dusky-footed woodrats (Neotoma fuscipes) and 280 Peromyscus spp. mice from 13 widely spaced Mendocino County woodlands during 2002 and 2003 yielded only one infected woodrat and one infected deer mouse (P. maniculatus). These data suggest that western gray squirrels account for the majority of production by rodents of fed Ixodes pacificus larvae infected with B. burgdorferi in the woodlands sampled. Infections with B. burgdorferi also were rare in woodrats (0/47, 0/3) and mice (3/66, 1/6) captured in chaparral and grassland, respectively, and therefore these habitats are unlikely sources for dispersal of this spirochete into adjacent woodlands. On the other hand, B. bissettii was commonly detected in both woodrats (22/47) and mice (15/66) in chaparral. We conclude that the data from this and previous studies in northwestern California are suggestive of a pattern where inland oak-woodland habitats harbor a B. burgdorferi transmission cycle driven primarily by I. pacificus and western gray squirrels, whereas chaparral habitats contain a B. bissettii transmission cycle perpetuated largely by I. spinipalpis, woodrats and Peromyscus mice. The dominant role of western gray squirrels as reservoirs of B. burgdorferi in certain woodlands offers intriguing opportunities for preventing Lyme disease by targeting these animals by means of either host-targeted acaricides or oral vaccination against B. burgdorferi. PMID:20514140

  4. BB0744 Affects Tissue Tropism and Spatial Distribution of Borrelia burgdorferi.

    PubMed

    Wager, Beau; Shaw, Dana K; Groshong, Ashley M; Blevins, Jon S; Skare, Jon T

    2015-09-01

    Borrelia burgdorferi, the etiologic agent of Lyme disease, produces a variety of proteins that promote survival and colonization in both the Ixodes species vector and various mammalian hosts. We initially identified BB0744 (also known as p83/100) by screening for B. burgdorferi strain B31 proteins that bind to α1β1 integrin and hypothesized that, given the presence of a signal peptide, BB0744 may be a surface-exposed protein. In contrast to this expectation, localization studies suggested that BB0744 resides in the periplasm. Despite its subsurface location, we were interested in testing whether BB0744 is required for borrelial pathogenesis. To this end, a bb0744 deletion was isolated in a B. burgdorferi strain B31 infectious background, complemented, and queried for the role of BB0744 following experimental infection. A combination of bioluminescent imaging, cultivation of infected tissues, and quantitative PCR (qPCR) demonstrated that Δbb0744 mutant B. burgdorferi bacteria were attenuated in the ability to colonize heart tissue, as well as skin locations distal to the site of infection. Furthermore, qPCR indicated a significantly reduced spirochetal load in distal skin and joint tissue infected with Δbb0744 mutant B. burgdorferi. Complementation with bb0744 restored infectivity, indicating that the defect seen in Δbb0744 mutant B. burgdorferi was due to the loss of BB0744. Taken together, these results suggest that BB0744 is necessary for tissue tropism, particularly in heart tissue, alters the ability of B. burgdorferi to disseminate efficiently, or both. Additional studies are warranted to address the mechanism employed by BB0744 that alters the pathogenic potential of B. burgdorferi. PMID:26150534

  5. Transmission cycles of Borrelia burgdorferi and B. bissettii in relation to habitat type in northwestern California

    PubMed Central

    Eisen, Lars; Eisen, Rebecca J.; Mun, Jeomhee; Salkeld, Daniel J.; Lane, Robert S.

    2008-01-01

    This study was undertaken to determine which rodent species serve as primary reservoirs for the Lyme disease spirochete Borrelia burgdorferi in commonly occurring woodland types in inland areas of northwestern California, and to examine whether chaparral or grassland serve as source habitats for dispersal of B. burgdorferi- or B. bissettii-infected rodents into adjacent woodlands. The western gray squirrel (Sciurus griseus) was commonly infected with B. burgdorferi in oak woodlands, whereas examination of 30 dusky-footed woodrats (Neotoma fuscipes) and 280 Peromyscus spp. mice from 13 widely spaced Mendocino County woodlands during 2002 and 2003 yielded only one infected woodrat and one infected deer mouse (P. maniculatus). These data suggest that western gray squirrels account for the majority of production by rodents of fed Ixodes pacificus larvae infected with B. burgdorferi in the woodlands sampled. Infections with B. burgdorferi also were rare in woodrats (0/47, 0/3) and mice (3/66, 1/6) captured in chaparral and grassland, respectively, and therefore these habitats are unlikely sources for dispersal of this spirochete into adjacent woodlands. On the other hand, B. bissettii was commonly detected in both woodrats (22/47) and mice (15/66) in chaparral. We conclude that the data from this and previous studies in northwestern California are suggestive of a pattern where inland oak-woodland habitats harbor a B. burgdorferi transmission cycle driven primarily by I. pacificus and western gray squirrels, whereas chaparral habitats contain a B. bissettii transmission cycle perpetuated largely by I. spinipalpis, woodrats and Peromyscus mice. The dominant role of western gray squirrels as reservoirs of B. burgdorferi in certain woodlands offers intriguing opportunities for preventing Lyme disease by targeting these animals by means of either host-targeted acaricides or oral vaccination against B. burgdorferi. PMID:20514140

  6. Host-Adapted Borrelia burgdorferi in Mice Expresses OspA during Inflammation

    PubMed Central

    Crowley, Helena; Huber, Brigitte T.

    2003-01-01

    Antibody responses to outer surface protein A (OspA) of Borrelia burgdorferi may occur during periods of arthritis late in the clinical course of untreated Lyme disease. These antibody responses are paradoxical, given the conclusive evidence demonstrating that B. burgdorferi transmitted to the mammalian host expresses little or no OspA. The parallel occurrence of OspA antibodies and arthritic episodes suggests that OspA expression is upregulated during infection with B. burgdorferi. We hypothesized that this was due to the inflammatory environment caused by the immune response to the spirochete. To test our hypothesis, we adapted an in vivo model that mimics the host-pathogen interaction. Dialysis chambers containing B. burgdorferi were implanted into the peritoneal cavities of mice in the presence or absence of zymosan, a yeast cell wall extract that induces inflammation. Spirochetes were harvested 2 days later, and OspA expression was assessed at the protein and transcription level by Western blotting and real-time reverse transcription-PCR, respectively. Flow cytometry was also utilized to evaluate OspA protein expression on individual spirochetes. B. burgdorferi maintained in an inflammatory in vivo environment show an increased OspA expression relative to B. burgdorferi kept under normal in vivo conditions. Furthermore, host-adapted B. burgdorferi with a low OspA phenotype upregulates OspA expression when transferred to an inflammatory in vivo environment. The results obtained by these techniques uniformly identify inflammation as a mediator of in vivo OspA expression in host-adapted B. burgdorferi, providing insights into the behavior of live spirochetes in the mammalian host. PMID:12819088

  7. BB0744 Affects Tissue Tropism and Spatial Distribution of Borrelia burgdorferi

    PubMed Central

    Wager, Beau; Shaw, Dana K.; Groshong, Ashley M.; Blevins, Jon S.

    2015-01-01

    Borrelia burgdorferi, the etiologic agent of Lyme disease, produces a variety of proteins that promote survival and colonization in both the Ixodes species vector and various mammalian hosts. We initially identified BB0744 (also known as p83/100) by screening for B. burgdorferi strain B31 proteins that bind to α1β1 integrin and hypothesized that, given the presence of a signal peptide, BB0744 may be a surface-exposed protein. In contrast to this expectation, localization studies suggested that BB0744 resides in the periplasm. Despite its subsurface location, we were interested in testing whether BB0744 is required for borrelial pathogenesis. To this end, a bb0744 deletion was isolated in a B. burgdorferi strain B31 infectious background, complemented, and queried for the role of BB0744 following experimental infection. A combination of bioluminescent imaging, cultivation of infected tissues, and quantitative PCR (qPCR) demonstrated that Δbb0744 mutant B. burgdorferi bacteria were attenuated in the ability to colonize heart tissue, as well as skin locations distal to the site of infection. Furthermore, qPCR indicated a significantly reduced spirochetal load in distal skin and joint tissue infected with Δbb0744 mutant B. burgdorferi. Complementation with bb0744 restored infectivity, indicating that the defect seen in Δbb0744 mutant B. burgdorferi was due to the loss of BB0744. Taken together, these results suggest that BB0744 is necessary for tissue tropism, particularly in heart tissue, alters the ability of B. burgdorferi to disseminate efficiently, or both. Additional studies are warranted to address the mechanism employed by BB0744 that alters the pathogenic potential of B. burgdorferi. PMID:26150534

  8. Persisting atypical and cystic forms of Borrelia burgdorferi and local inflammation in Lyme neuroborreliosis

    PubMed Central

    Miklossy, Judith; Kasas, Sandor; Zurn, Anne D; McCall, Sherman; Yu, Sheng; McGeer, Patrick L

    2008-01-01

    Background The long latent stage seen in syphilis, followed by chronic central nervous system infection and inflammation, can be explained by the persistence of atypical cystic and granular forms of Treponema pallidum. We investigated whether a similar situation may occur in Lyme neuroborreliosis. Method Atypical forms of Borrelia burgdorferi spirochetes were induced exposing cultures of Borrelia burgdorferi (strains B31 and ADB1) to such unfavorable conditions as osmotic and heat shock, and exposure to the binding agents Thioflavin S and Congo red. We also analyzed whether these forms may be induced in vitro, following infection of primary chicken and rat neurons, as well as rat and human astrocytes. We further analyzed whether atypical forms similar to those induced in vitro may also occur in vivo, in brains of three patients with Lyme neuroborreliosis. We used immunohistochemical methods to detect evidence of neuroinflammation in the form of reactive microglia and astrocytes. Results Under these conditions we observed atypical cystic, rolled and granular forms of these spirochetes. We characterized these abnormal forms by histochemical, immunohistochemical, dark field and atomic force microscopy (AFM) methods. The atypical and cystic forms found in the brains of three patients with neuropathologically confirmed Lyme neuroborreliosis were identical to those induced in vitro. We also observed nuclear fragmentation of the infected astrocytes using the TUNEL method. Abundant HLA-DR positive microglia and GFAP positive reactive astrocytes were present in the cerebral cortex. Conclusion The results indicate that atypical extra- and intracellular pleomorphic and cystic forms of Borrelia burgdorferi and local neuroinflammation occur in the brain in chronic Lyme neuroborreliosis. The persistence of these more resistant spirochete forms, and their intracellular location in neurons and glial cells, may explain the long latent stage and persistence of Borrelia infection

  9. Geographic Differences in Genetic Locus Linkages for Borrelia burgdorferi

    PubMed Central

    Travinsky, Bridgit; Bunikis, Jonas

    2010-01-01

    Borrelia burdorferi genotype in the northeastern United States is associated with Lyme borreliosis severity. Analysis of DNA sequences of the outer surface protein C gene and rrs-rrlA intergenic spacer from extracts of Ixodes spp. ticks in 3 US regions showed linkage disequilibrium between the 2 loci within a region but not consistently between regions. PMID:20587192

  10. Imbalanced presence of Borrelia burgdorferi s.l. multilocus sequence types in clinical manifestations of Lyme borreliosis.

    PubMed

    Coipan, E Claudia; Jahfari, Setareh; Fonville, Manoj; Oei, G Anneke; Spanjaard, Lodewijk; Takumi, Katsuhisa; Hovius, Joppe W R; Sprong, Hein

    2016-08-01

    In this study we used typing based on the eight multilocus sequence typing scheme housekeeping genes (MLST) and 5S-23S rDNA intergenic spacer (IGS) to explore the population structure of Borrelia burgdorferi sensu lato isolates from patients with Lyme borreliosis (LB) and to test the association between the B. burgdorferi s.l. sequence types (ST) and the clinical manifestations they cause in humans. Isolates of B. burgdorferi from 183 LB cases across Europe, with distinct clinical manifestations, and 257 Ixodes ricinus lysates from The Netherlands, were analyzed for this study alone. For completeness, we incorporated in our analysis also 335 European B. burgdorferi s.l. MLST profiles retrieved from literature. Borrelia afzelii and Borrelia bavariensis were associated with human cases of LB while Borrelia garinii, Borrelia lusitaniae and Borrelia valaisiana were associated with questing I. ricinus ticks. B. afzelii was associated with acrodermatitis chronica atrophicans, while B. garinii and B. bavariensis were associated with neuroborreliosis. The samples in our study belonged to 251 different STs, of which 94 are newly described, adding to the overall picture of the genetic diversity of Borrelia genospecies. The fraction of STs that were isolated from human samples was significantly higher for the genospecies that are known to be maintained in enzootic cycles by mammals (B. afzelii, B. bavariensis, and Borrelia spielmanii) than for genospecies that are maintained by birds (B. garinii and B. valaisiana) or lizards (B. lusitaniae). We found six multilocus sequence types that were significantly associated to clinical manifestations in humans and five IGS haplotypes that were associated with the human LB cases. While IGS could perform just as well as the housekeeping genes in the MLST scheme for predicting the infectivity of B. burgdorferi s.l., the advantage of MLST is that it can also capture the differential invasiveness of the various STs. PMID:27125686

  11. Autophagy Modulates Borrelia burgdorferi-induced Production of Interleukin-1β (IL-1β)*

    PubMed Central

    Buffen, Kathrin; Oosting, Marije; Mennens, Svenja; Anand, Paras K.; Plantinga, Theo S.; Sturm, Patrick; van de Veerdonk, Frank L.; van der Meer, Jos W. M.; Xavier, Ramnik J.; Kanneganti, Thirumala-Devi; Netea, Mihai G.; Joosten, Leo A. B.

    2013-01-01

    Borrelia burgdorferi sensu lato is the causative agent of Lyme disease. Recent studies have shown that recognition of the spirochete is mediated by TLR2 and NOD2. The latter receptor has been associated with the induction of the intracellular degradation process called autophagy. The present study demonstrated for the first time the induction of autophagy by exposure to B. burgdorferi and that autophagy modulates the B. burgdorferi-dependent cytokine production. Human peripheral blood mononuclear cells treated with autophagy inhibitors showed an increased IL-1β and IL-6 production in response to the exposure of the spirochete, whereas TNFα production was unchanged. Autophagy induction against B. burgdorferi was dependent on reactive oxygen species (ROS) because cells from patients with chronic granulomatous disease, which are defective in ROS production, also produced elevated IL-1β. Further, the enhanced production of the proinflammatory cytokines was because of the elevated mRNA expression in the absence of autophagy. Our results thus demonstrate the induction of autophagy, which, in turn, modulates cytokine production by B. burgdorferi for the first time. PMID:23386602

  12. Borrelia burgdorferi membranes are the primary targets of reactive oxygen species

    PubMed Central

    Boylan, Julie A; Lawrence, Kevin A; Downey, Jennifer S; Gherardini, Frank C

    2008-01-01

    Spirochetes living in an oxygen-rich environment or when challenged by host immune cells are exposed to reactive oxygen species (ROS). These species can harm/destroy cysteinyl residues, iron-sulphur clusters, DNA and polyunsaturated lipids, leading to inhibition of growth or cell death. Because Borrelia burgdorferi contains no intracellular iron, DNA is most likely not a major target for ROS via Fenton reaction. In support of this, growth of B. burgdorferi in the presence of 5 mM H2O2 had no effect on the DNA mutation rate (spontaneous coumermycin A1 resistance), and cells treated with 10 mM t-butyl hydroperoxide or 10 mM H2O2 show no increase in DNA damage. Unlike most bacteria, B. burgdorferi incorporates ROS-susceptible polyunsaturated fatty acids from the environment into their membranes. Analysis of lipoxidase-treated B. burgdorferi cells by Electron Microscopy showed significant irregularities indicative of membrane damage. Fatty acid analysis of cells treated with lipoxidase indicated that host-derived linoleic acid had been dramatically reduced (50-fold) in these cells, with a corresponding increase in the levels of malondialdehyde by-product (fourfold). These data suggest that B. burgdorferi membrane lipids are targets for attack by ROS encountered in the various stages of the infective cycle. PMID:18373524

  13. Vectors as Epidemiological Sentinels: Patterns of Within-Tick Borrelia burgdorferi Diversity

    PubMed Central

    Walter, Katharine S.; Carpi, Giovanna; Evans, Benjamin R.; Caccone, Adalgisa; Diuk-Wasser, Maria A.

    2016-01-01

    Hosts including humans, other vertebrates, and arthropods, are frequently infected with heterogeneous populations of pathogens. Within-host pathogen diversity has major implications for human health, epidemiology, and pathogen evolution. However, pathogen diversity within-hosts is difficult to characterize and little is known about the levels and sources of within-host diversity maintained in natural populations of disease vectors. Here, we examine genomic variation of the Lyme disease bacteria, Borrelia burgdorferi (Bb), in 98 individual field-collected tick vectors as a model for study of within-host processes. Deep population sequencing reveals extensive and previously undocumented levels of Bb variation: the majority (~70%) of ticks harbor mixed strain infections, which we define as levels Bb diversity pre-existing in a diverse inoculum. Within-tick diversity is thus a sample of the variation present within vertebrate hosts. Within individual ticks, we detect signatures of positive selection. Genes most commonly under positive selection across ticks include those involved in dissemination in vertebrate hosts and evasion of the vertebrate immune complement. By focusing on tick-borne Bb, we show that vectors can serve as epidemiological and evolutionary sentinels: within-vector pathogen diversity can be a useful and unbiased way to survey circulating pathogen diversity and identify evolutionary processes occurring in natural transmission cycles. PMID:27414806

  14. Vectors as Epidemiological Sentinels: Patterns of Within-Tick Borrelia burgdorferi Diversity.

    PubMed

    Walter, Katharine S; Carpi, Giovanna; Evans, Benjamin R; Caccone, Adalgisa; Diuk-Wasser, Maria A

    2016-07-01

    Hosts including humans, other vertebrates, and arthropods, are frequently infected with heterogeneous populations of pathogens. Within-host pathogen diversity has major implications for human health, epidemiology, and pathogen evolution. However, pathogen diversity within-hosts is difficult to characterize and little is known about the levels and sources of within-host diversity maintained in natural populations of disease vectors. Here, we examine genomic variation of the Lyme disease bacteria, Borrelia burgdorferi (Bb), in 98 individual field-collected tick vectors as a model for study of within-host processes. Deep population sequencing reveals extensive and previously undocumented levels of Bb variation: the majority (~70%) of ticks harbor mixed strain infections, which we define as levels Bb diversity pre-existing in a diverse inoculum. Within-tick diversity is thus a sample of the variation present within vertebrate hosts. Within individual ticks, we detect signatures of positive selection. Genes most commonly under positive selection across ticks include those involved in dissemination in vertebrate hosts and evasion of the vertebrate immune complement. By focusing on tick-borne Bb, we show that vectors can serve as epidemiological and evolutionary sentinels: within-vector pathogen diversity can be a useful and unbiased way to survey circulating pathogen diversity and identify evolutionary processes occurring in natural transmission cycles. PMID:27414806

  15. Borrelia burgdorferi Harbors a Transport System Essential for Purine Salvage and Mammalian Infection

    PubMed Central

    Jain, Sunny; Sutchu, Selina; Rosa, Patricia A.; Byram, Rebecca

    2012-01-01

    Borrelia burgdorferi is the tick-borne bacterium that causes the multistage inflammatory disease Lyme disease. B. burgdorferi has a reduced genome and lacks the enzymes required for de novo synthesis of purines for synthesis of RNA and DNA. Therefore, this obligate pathogen is dependent upon the tick vector and mammalian host environments for salvage of purine bases for nucleic acid biosynthesis. This pathway is vital for B. burgdorferi survival throughout its infectious cycle, as key enzymes in the purine salvage pathway are essential for the ability of the spirochete to infect mice and critical for spirochete replication in the tick. The transport of preformed purines into the spirochete is the first step in the purine salvage pathway and may represent a novel therapeutic target and/or means to deliver antispirochete molecules to the pathogen. However, the transport systems critical for purine salvage by B. burgdorferi have yet to be identified. Herein, we demonstrate that the genes bbb22 and bbb23, present on B. burgdorferi's essential plasmid circular plasmid 26 (cp26), encode key purine transport proteins. BBB22 and/or BBB23 is essential for hypoxanthine transport and contributes to the transport of adenine and guanine. Furthermore, B. burgdorferi lacking bbb22-23 was noninfectious in mice up to a dose of 1 × 107 spirochetes. Together, our data establish that bbb22-23 encode purine permeases critical for B. burgdorferi mammalian infectivity, suggesting that this transport system may serve as a novel antimicrobial target for the treatment of Lyme disease. PMID:22710875

  16. Occurrence of Borrelia burgdorferi s.l. in different genera of mosquitoes (Culicidae) in Central Europe.

    PubMed

    Melaun, Christian; Zotzmann, Sina; Santaella, Vanesa Garcia; Werblow, Antje; Zumkowski-Xylander, Helga; Kraiczy, Peter; Klimpel, Sven

    2016-03-01

    Lyme disease or Lyme borreliosis is a vector-borne infectious disease caused by spirochetes of the Borrelia burgdorferi sensu lato complex. Some stages of the borrelial transmission cycle in ticks (transstadial, feeding and co-feeding) can potentially occur also in insects, particularly in mosquitoes. In the present study, adult as well as larval mosquitoes were collected at 42 different geographical locations throughout Germany. This is the first study, in which German mosquitoes were analyzed for the presence of Borrelia spp. Targeting two specific borrelial genes, flaB and ospA encoding for the subunit B of flagellin and the outer surface protein A, the results show that DNA of Borrelia afzelii, Borrelia bavariensis and Borrelia garinii could be detected in ten Culicidae species comprising four distinct genera (Aedes, Culiseta, Culex, and Ochlerotatus). Positive samples also include adult specimens raised in the laboratory from wild-caught larvae indicating that transstadial and/or transovarial transmission might occur within a given mosquito population. PMID:26631488

  17. [Borrelia burgdorferi sensu lato in ixodid ticks from Ostrava slag heaps].

    PubMed

    Jarosová, V; Rudolf, I; Halouzka, J; Hubálek, Z

    2009-04-01

    In 2005 and 2006, Ixodes ricinus ticks were collected on two slag (waste rock) heaps from coal mines in the Ostrava area (North Moravia/Silesia, Czech Republic), Oskar (site A) and Emma (site B), partially covered by vegetation including trees, and at a control forest site near Hlucín (site C). The mean numbers of L. ricinus nymphs and imagoes flagged per person-hour were high: 35.3 nymphs and 12.7 imagoes, at site A, 23.3 and 26.0, respectively, at site B, and 25.4 and 16.8, respectively, at control site C. Using dark-field microscopy, 100 nymphs and 100 imagoes (50 females and 50 males) from each site were examined for borreliae. The mean prevalence rates of Borrelia burgdorferi sensu lato in nymphs and imagoes were 10.0% and 12.0%, respectively, at site A, 10.0% and 24.0%, respectively, at site B, and 13.0% and 17.0%, respectively, at site C. Differences in the prevalence of borreliae in nymphal and adult ticks from the slag heaps and control site were insignificant, but adult ticks from site B compared to site A contained borreliae significantly more frequently. The mean numbers of nymphs and imagoes infected with borreliae flagged per person-hour were 3.3 and 1.2, respectively at site A, 1.5 and 2.9, respectively, at site B, and 3.1 and 2.6, respectively, at site C. Isolation experiments for borreliae were carried out only in 16 ticks containing higher numbers of borreliae, with eight of these being culture-positive. The cultured borreliae were identified by PCR-RFLP as B. garinii (3 isolates: two from site B, one from site C), B. afzelii (4 isolates: one from site A, three from site B) and B. burgdorferi s.s. (one isolate from site A). Surprisingly, the results suggest that slag heaps, when covered by woody vegetation and frequented by humans, could theoretically pose roughly the same LB transmission risk to humans as common forest biotopes. PMID:19526923

  18. Isolation and characterization of Borrelia burgdorferi strains from Ixodes ricinus ticks in the southern England

    PubMed Central

    Sorouri, Rahim; Ramazani, Ali; Karami, Ali; Ranjbar, Reza; Guy, Edward C.

    2015-01-01

    Introduction: Lyme disease is a bacterial infection caused by the spiral-shaped bacterium Borrelia burgdorferi. We investigated the presence and prevalence of Borrelia species in ticks from the southern England. Methods: One hundred fifty-five cases (103 adult and 52 nymphal ticks) were collected from animal carcases. The midguts were removed, cultured in Barbour/Stoenner/Kelly II (BSK-II) and Barbour/ Stoenner/Kelly F (BSK-F) media and examined by IF, dark-field microscopy, and nested PCR. Results: From a total 155 cultured ticks, two showed evidence of spirochetes and denoted as SO-1 and SO-2 strains. The availability of these two isolates enabled their antigenic characterization with SDS-PAGE and western blotting and comparison with two standard isolates. These studies identified six protein antigens with molecular weights of 18, 30, 39, 47, 60 and 88 kDa with particular promise for detecting specific immune responses to B. burgdorferi infection including Lyme disease. We also investigated the effect of repeated subculture on the antigenic pattern of UK isolate of B. burgdorferi. Conclusion: As a result of this study, antigenic differences have been seen between the UK isolates and the foreign isolates used as laboratory standards. PMID:26191500

  19. Serological reactivity to Borrelia burgdorferi sensu lato in dogs and horses from distinct areas in Romania.

    PubMed

    Kiss, Timea; Cadar, Daniel; Krupaci, Alexandra Florina; Bordeanu, Armela; Brudaşcă, Gheorghe Florinel; Mihalca, Andrei Daniel; Mircean, Viorica; Gliga, Lucia; Dumitrache, Mirabela Oana; Spînu, Marina

    2011-09-01

    Lyme disease is a perfect model of the complex relationship between host, vector, and the vector-borne bacteria. Both dogs and horses in Romania are exposed to infection. The aim of the present study was to assess the seroreactivity against Borrelia burgdorferi sensu lato in dogs and horses from different regions of Romania. 276 samples from dogs and 260 samples from horses located in different regions of Romania were analyzed by ELISA and IFA, respectively. The effect of several factors potentially affecting seroreactivity (location, age, gender, occupation, and vector exposition risk) was evaluated using Fisher's exact test (R 2.12.0). The overall prevalence of anti-Borrelia antibodies was 6.52% (18/276) in dogs, with a significantly higher positivity (46.15%, 6/13, p = 0.0005) recorded in a midcountry region. Seroreactivity was correlated with occupation, with working dogs being more exposed. The results may indicate that Lyme borreliosis foci are restricted to small areas, but further studies on Borrelia prevalence in tick populations are needed to confirm this hypothesis. In horses, a global seroprevalence of 11.92% (31/260) was observed. No correlations were found between positive results and age, sex, county, or occupation. This is the first serological survey on antibodies to B. burgdorferi sensu lato in Romanian dogs and horses. PMID:21612524

  20. Identification of Anaplasma phagocytophilum and Borrelia burgdorferi sensu lato in patients with erythema migrans.

    PubMed

    Hulínská, D; Votýpka, J; Vanousová, D; Hercogová, J; Hulínský, V; Drevová, H; Kurzová, Z; Uherková, L

    2009-01-01

    Anaplasma phagocytophilum has been first isolated from the blood of two Czech patients simultaneously with a cultivation of Borrelia burgdorferi sensu lato from their erythema migrans lesions. Cultivation of different Borrelia spp. from 12 erythema migrans biopsies, from 2 blood, one liquor and one placenta sample in BSK-H medium was successful. Adapted conventional methods targeting 16S rRNA and OspA genes for real-time polymerase chain reaction (PCR) and partial sequencing of these genes together with microscopical examinations of the blood smears provided a direct detection of the B. afzelii, B. burgdorferi, B. garinii, B. valaisiana and B. bissettii in the skin, B. garinii in the blood, placenta and liquor in 24 (36.3 %) patients, and A. phagocytophilum in 10 (15 %) patients with erythema migrans. Positive indirect IgM immunofluorescence against Anaplasma sp. was obtained in 7 cases, specific IgG antibodies were detected in 12 patients. Three women suffering from erythema migrans in the first trimester had positive PCR for Anaplasma and/or for Borrelia in the blood and two of them, later, in the placenta. Interpretation of laboratory data can bring important contribution to establishing the role of Anaplasma sp. in erythema migrans and forming the principle of precaution with laboratory diagnosis during pregnancy which always should be reflected in the resistance of Anaplasma sp. toward penicillins. PMID:19649743

  1. Protein-losing nephropathy associated with Borrelia burgdorferi seropositivity in a soft-coated wheaten terrier: Response to therapy

    PubMed Central

    Horney, Barbara S.; Stojanovic, Vladimir

    2013-01-01

    A soft-coated wheaten terrier was examined for lameness with subsequent identification of protein-losing nephropathy, hypoalbuminemia, hyperglobulinemia, and seroconversion to Borrelia burgdorferi. Following doxycycline therapy, the urine protein loss decreased significantly and serum albumin concentration remained close to or within the reference interval for over 3 years, contrary to the reported poor prognosis for renal disease associated with B. burgdorferi or protein-losing nephropathy of soft-coated wheaten terriers. PMID:24082169

  2. Borrelia burgdorferi Requires Glycerol for Maximum Fitness During The Tick Phase of the Enzootic Cycle

    PubMed Central

    Pappas, Christopher J.; Iyer, Radha; Petzke, Mary M.; Caimano, Melissa J.; Radolf, Justin D.; Schwartz, Ira

    2011-01-01

    Borrelia burgdorferi, the spirochetal agent of Lyme disease, is a vector-borne pathogen that cycles between a mammalian host and tick vector. This complex life cycle requires that the spirochete modulate its gene expression program to facilitate growth and maintenance in these diverse milieus. B. burgdorferi contains an operon that is predicted to encode proteins that would mediate the uptake and conversion of glycerol to dihydroxyacetone phosphate. Previous studies indicated that expression of the operon is elevated at 23°C and is repressed in the presence of the alternative sigma factor RpoS, suggesting that glycerol utilization may play an important role during the tick phase. This possibility was further explored in the current study by expression analysis and mutagenesis of glpD, a gene predicted to encode glycerol 3-phosphate dehydrogenase. Transcript levels for glpD were significantly lower in mouse joints relative to their levels in ticks. Expression of GlpD protein was repressed in an RpoS-dependent manner during growth of spirochetes within dialysis membrane chambers implanted in rat peritoneal cavities. In medium supplemented with glycerol as the principal carbohydrate, wild-type B. burgdorferi grew to a significantly higher cell density than glpD mutant spirochetes during growth in vitro at 25°C. glpD mutant spirochetes were fully infectious in mice by either needle or tick inoculation. In contrast, glpD mutants grew to significantly lower densities than wild-type B. burgdorferi in nymphal ticks and displayed a replication defect in feeding nymphs. The findings suggest that B. burgdorferi undergoes a switch in carbohydrate utilization during the mammal to tick transition. Further, the results demonstrate that the ability to utilize glycerol as a carbohydrate source for glycolysis during the tick phase of the infectious cycle is critical for maximal B. burgdorferi fitness. PMID:21750672

  3. Molecular Dissection of a Borrelia burgdorferi In Vivo Essential Purine Transport System

    PubMed Central

    Jain, Sunny; Showman, Adrienne C.

    2015-01-01

    The Lyme disease spirochete Borrelia burgdorferi is dependent on purine salvage from the host environment for survival. The genes bbb22 and bbb23 encode purine permeases that are essential for B. burgdorferi mouse infectivity. We now demonstrate the unique contributions of each of these genes to purine transport and murine infection. The affinities of spirochetes carrying bbb22 alone for hypoxanthine and adenine were similar to those of spirochetes carrying both genes. Spirochetes carrying bbb22 alone were able to achieve wild-type levels of adenine saturation but not hypoxanthine saturation, suggesting that maximal hypoxanthine uptake requires the presence of bbb23. Moreover, the purine transport activity conferred by bbb22 was dependent on an additional distal transcriptional start site located within the bbb23 open reading frame. The initial rates of uptake of hypoxanthine and adenine by spirochetes carrying bbb23 alone were below the level of detection. However, these spirochetes demonstrated a measurable increase in hypoxanthine uptake over a 30-min time course. Our findings indicate that bbb22-dependent adenine transport is essential for B. burgdorferi survival in mice. The bbb23 gene was dispensable for B. burgdorferi mouse infectivity, yet its presence was required along with that of bbb22 for B. burgdorferi to achieve maximal spirochete loads in infected mouse tissues. These data demonstrate that both genes, bbb22 and bbb23, are critical for B. burgdorferi to achieve wild-type infection of mice and that the differences in the capabilities of the two transporters may reflect distinct purine salvage needs that the spirochete encounters throughout its natural infectious cycle. PMID:25776752

  4. Borrelia burgdorferi intercepts host hormonal signals to regulate expression of outer surface protein A

    PubMed Central

    Scheckelhoff, Mark R.; Telford, Sam R.; Wesley, Mary; Hu, Linden T.

    2007-01-01

    The Borrelia burgdorferi infectious cycle requires that the organism adapt to vast differences in environmental conditions found in its tick and mammalian hosts. Previous studies have shown that B. burgdorferi accomplishes this accomodation in part by regulating expression of its surface proteins. Outer surface protein A (OspA) is a borrelial protein important in colonization of the tick midgut. OspA is up-regulated when the organism is in its tick host and down-regulated when it is in a mammalian host. However, little is known about how it is up-regulated again in a mammalian host in preparation for entry into a feeding tick. Here, we report that the host neuroendocrine stress hormones, epinephrine and norepinephrine, are specifically bound by B. burgdorferi and result in increased expression of OspA. This recognition is specific and blocked by competitive inhibitors of human adrenergic receptors. To determine whether recognition of catecholamines, which are likely to be present at the site of a tick bite, may play a role in preparing the organism for reentry into a tick from a mammalian host, we administered a β-adrenergic blocker, propranolol, to infected mice. Propranolol significantly reduced uptake of B. burgdorferi by feeding ticks and decreased expression of OspA in B. burgdorferi recovered from ticks that fed on propranolol-treated mice. Our studies suggest that B. burgdorferi may co-opt host neuroendocrine signals to inform the organism of local changes that predict the presence of its next host and allow it to prepare for transition to a new environment. PMID:17438273

  5. Borrelia burgdorferi BBK32 Inhibits the Classical Pathway by Blocking Activation of the C1 Complement Complex.

    PubMed

    Garcia, Brandon L; Zhi, Hui; Wager, Beau; Höök, Magnus; Skare, Jon T

    2016-01-01

    Pathogens that traffic in blood, lymphatics, or interstitial fluids must adopt strategies to evade innate immune defenses, notably the complement system. Through recruitment of host regulators of complement to their surface, many pathogens are able to escape complement-mediated attack. The Lyme disease spirochete, Borrelia burgdorferi, produces a number of surface proteins that bind to factor H related molecules, which function as the dominant negative regulator of the alternative pathway of complement. Relatively less is known about how B. burgdorferi evades the classical pathway of complement despite the observation that some sensu lato strains are sensitive to classical pathway activation. Here we report that the borrelial lipoprotein BBK32 potently and specifically inhibits the classical pathway by binding with high affinity to the initiating C1 complex of complement. In addition, B. burgdorferi cells that produce BBK32 on their surface bind to both C1 and C1r and a serum sensitive derivative of B. burgdorferi is protected from killing via the classical pathway in a BBK32-dependent manner. Subsequent biochemical and biophysical approaches localized the anti-complement activity of BBK32 to its globular C-terminal domain. Mechanistic studies reveal that BBK32 acts by entrapping C1 in its zymogen form by binding and inhibiting the C1 subcomponent, C1r, which serves as the initiating serine protease of the classical pathway. To our knowledge this is the first report of a spirochetal protein acting as a direct inhibitor of the classical pathway and is the only example of a biomolecule capable of specifically and noncovalently inhibiting C1/C1r. By identifying a unique mode of complement evasion this study greatly enhances our understanding of how pathogens subvert and potentially manipulate host innate immune systems. PMID:26808924

  6. A chromosomal Borrelia burgdorferi gene encodes a 22-kilodalton lipoprotein, P22, that is serologically recognized in Lyme disease.

    PubMed Central

    Lam, T T; Nguyen, T P; Fikrig, E; Flavell, R A

    1994-01-01

    We describe the isolation of the gene encoding a 22-kDa antigen from Borrelia burgdorferi, the etiologic agent of Lyme disease. The p22 gene is 582 nucleotides in length and encodes a protein of 194 amino acids with a predicted molecular mass of 21.8 kDa. The leader signal sequence of P22 consists of a positively charged short amino terminus, a central hydrophobic domain, and at the carboxyl terminus, a cleavage site that is presumably recognized and cleaved by a B. burgdorferi signal peptidase. P22 has 98.5% homology with the recently described B. burgdorferi protein IpLA7. P22 is processed as a lipoprotein, as demonstrated by [3H]palmitate labeling. Pulsed-field gel electrophoresis showed that p22, like LA7, is localized to the linear chromosome of B. burgdorferi. Examination of sera from patients with Lyme disease revealed that antibodies to P22 are rarely detected in patients with early-stage disease characterized by erythema migrans (2 of 20), and 35% of the patients with late-stage disease characterized by arthritis (9 of 26) developed antibodies to P22. Sera from patients with syphilis did not react with P22. When patients with late-stage disease were tested for their antibody reactivities to four other outer surface proteins (OspA), OspB, OspE, and OspF), 75% of these patients responded to P22 or to one or more outer surface proteins. Images PMID:8027338

  7. Borrelia burgdorferi BBK32 Inhibits the Classical Pathway by Blocking Activation of the C1 Complement Complex

    PubMed Central

    Wager, Beau; Höök, Magnus; Skare, Jon T.

    2016-01-01

    Pathogens that traffic in blood, lymphatics, or interstitial fluids must adopt strategies to evade innate immune defenses, notably the complement system. Through recruitment of host regulators of complement to their surface, many pathogens are able to escape complement-mediated attack. The Lyme disease spirochete, Borrelia burgdorferi, produces a number of surface proteins that bind to factor H related molecules, which function as the dominant negative regulator of the alternative pathway of complement. Relatively less is known about how B. burgdorferi evades the classical pathway of complement despite the observation that some sensu lato strains are sensitive to classical pathway activation. Here we report that the borrelial lipoprotein BBK32 potently and specifically inhibits the classical pathway by binding with high affinity to the initiating C1 complex of complement. In addition, B. burgdorferi cells that produce BBK32 on their surface bind to both C1 and C1r and a serum sensitive derivative of B. burgdorferi is protected from killing via the classical pathway in a BBK32-dependent manner. Subsequent biochemical and biophysical approaches localized the anti-complement activity of BBK32 to its globular C-terminal domain. Mechanistic studies reveal that BBK32 acts by entrapping C1 in its zymogen form by binding and inhibiting the C1 subcomponent, C1r, which serves as the initiating serine protease of the classical pathway. To our knowledge this is the first report of a spirochetal protein acting as a direct inhibitor of the classical pathway and is the only example of a biomolecule capable of specifically and noncovalently inhibiting C1/C1r. By identifying a unique mode of complement evasion this study greatly enhances our understanding of how pathogens subvert and potentially manipulate host innate immune systems. PMID:26808924

  8. Detection of Borrelia burgdorferi DNA in museum specimens of Ixodes dammini ticks.

    PubMed

    Persing, D H; Telford, S R; Rys, P N; Dodge, D E; White, T J; Malawista, S E; Spielman, A

    1990-09-21

    In order to investigate the potential for Borrelia burgdorferi infection before the recognition of Lyme disease as a clinical entity, the polymerase chain reaction (PCR) was used to examine museum specimens of Ixodes dammini (deer ticks) for the presence of spirochete-specific DNA sequences. One hundred and thirty-six archival tick specimens were obtained representing various continental U.S. locations; DNA sequences characteristic of modern day isolates of B. burgdorferi were detected in 13 1940s specimens from Montauk Point and Hither Hills, Long Island, New York. Five archival specimens of Dermacentor variabilis (dog tick) from the same collection and 118 Ixodes specimens from other endemic and nonendemic sites were negative. These data suggest that the appearance of the Lyme disease spirochete in suitable arthropod vectors preceded, by at least a generation, the formal recognition of this disease as a clinical entity in the United States. PMID:2402635

  9. Evolution and population genomics of the Lyme borreliosis pathogen, Borrelia burgdorferi

    PubMed Central

    Seifert, Stephanie N; Khatchikian, Camilo E.; Zhou, Wei

    2015-01-01

    Population genomic studies have the potential to address many unresolved questions about microbial pathogens by facilitating the identification of genes underlying ecologically important traits such as novel virulence factors and adaptations to humans or other host species. Additionally, this framework improves estimations of population demography and evolutionary history to accurately reconstruct recent epidemics and identify the molecular and environmental factors that resulted in the outbreak. The Lyme disease bacterium, Borrelia burgdorferi, exemplifies the power and promise of the application of population genomics to microbial pathogens. We discuss here the future of evolutionary studies in B.burgdorferi - focusing on the primary evolutionary forces of horizontal gene transfer, natural selection, and migration - as investigations transition from analyses of single genes to genomes. PMID:25765920

  10. Reservoir Targeted Vaccine Against Borrelia burgdorferi: A New Strategy to Prevent Lyme Disease Transmission

    PubMed Central

    Richer, Luciana Meirelles; Brisson, Dustin; Melo, Rita; Ostfeld, Richard S.; Zeidner, Nordin; Gomes-Solecki, Maria

    2014-01-01

    A high prevalence of infection with Borrelia burgdorferi in ixodid ticks is correlated with a high incidence of Lyme disease. The transmission of B. burgdorferi to humans can be disrupted by targeting 2 key elements in its enzootic cycle: the reservoir host and the tick vector. In a prospective 5-year field trial, we show that oral vaccination of wild white-footed mice resulted in outer surface protein A–specific seropositivity that led to reductions of 23% and 76% in the nymphal infection prevalence in a cumulative, time-dependent manner (2 and 5 years, respectively), whereas the proportion of infected ticks recovered from control plots varied randomly over time. Significant decreases in tick infection prevalence were observed within 3 years of vaccine deployment. Implementation of such a long-term public health measure could substantially reduce the risk of human exposure to Lyme disease. PMID:24523510

  11. Motility is crucial for the infectious life cycle of Borrelia burgdorferi.

    PubMed

    Sultan, Syed Z; Manne, Akarsh; Stewart, Philip E; Bestor, Aaron; Rosa, Patricia A; Charon, Nyles W; Motaleb, M A

    2013-06-01

    The Lyme disease spirochete, Borrelia burgdorferi, exists in a zoonotic cycle involving an arthropod tick and mammalian host. Dissemination of the organism within and between these hosts depends upon the spirochete's ability to traverse through complex tissues. Additionally, the spirochete outruns the host immune cells while migrating through the dermis, suggesting the importance of B. burgdorferi motility in evading host clearance. B. burgdorferi's periplasmic flagellar filaments are composed primarily of a major protein, FlaB, and minor protein, FlaA. By constructing a flaB mutant that is nonmotile, we investigated for the first time the absolute requirement for motility in the mouse-tick life cycle of B. burgdorferi. We found that whereas wild-type cells are motile and have a flat-wave morphology, mutant cells were nonmotile and rod shaped. These mutants were unable to establish infection in C3H/HeN mice via either needle injection or tick bite. In addition, these mutants had decreased viability in fed ticks. Our studies provide substantial evidence that the periplasmic flagella, and consequently motility, are critical not only for optimal survival in ticks but also for infection of the mammalian host by the arthropod tick vector. PMID:23529620

  12. The critical role of the linear plasmid lp36 in the infectious cycle of Borrelia burgdorferi.

    PubMed

    Jewett, Mollie W; Lawrence, Kevin; Bestor, Aaron C; Tilly, Kit; Grimm, Dorothee; Shaw, Pamela; VanRaden, Mark; Gherardini, Frank; Rosa, Patricia A

    2007-06-01

    Borrelia burgdorferi, the aetiological agent of Lyme disease, follows a life cycle that involves passage between the tick vector and the mammalian host. To investigate the role of the 36 kb linear plasmid, lp36 (also designated the B. burgdorferi K plasmid), in the infectious cycle of B. burgdorferi, we examined a clone lacking this plasmid, but containing all other plasmids known to be required for infectivity. Our results indicated that lp36 was not required for spirochete survival in the tick, but the clone lacking lp36 demonstrated low infectivity in the mammal. Restoration of lp36 to the mutant strain confirmed that the infectivity defect was due to loss of lp36. Moreover, spirochetes lacking lp36 exhibited a nearly 4-log increase in ID(50) relative to the isogenic lp36(+) clone. The infectivity defect of lp36-minus spirochetes was localized, in part, to loss of the bbk17 (adeC) gene, which encodes an adenine deaminase. This work establishes a vital role for lp36 in the infectious cycle of B. burgdorferi and identifies the bbk17 gene as a component of this plasmid that contributes to mammalian infectivity. PMID:17542926

  13. The critical role of the linear plasmid lp36 in the infectious cycle of Borrelia burgdorferi

    PubMed Central

    Jewett, Mollie W; Lawrence, Kevin; Bestor, Aaron C; Tilly, Kit; Grimm, Dorothee; Shaw, Pamela; VanRaden, Mark; Gherardini, Frank; Rosa, Patricia A

    2007-01-01

    Borrelia burgdorferi, the aetiological agent of Lyme disease, follows a life cycle that involves passage between the tick vector and the mammalian host. To investigate the role of the 36 kb linear plasmid, lp36 (also designated the B. burgdorferi K plasmid), in the infectious cycle of B. burgdorferi, we examined a clone lacking this plasmid, but containing all other plasmids known to be required for infectivity. Our results indicated that lp36 was not required for spirochete survival in the tick, but the clone lacking lp36 demonstrated low infectivity in the mammal. Restoration of lp36 to the mutant strain confirmed that the infectivity defect was due to loss of lp36. Moreover, spirochetes lacking lp36 exhibited a nearly 4-log increase in ID50 relative to the isogenic lp36+ clone. The infectivity defect of lp36-minus spirochetes was localized, in part, to loss of the bbk17 (adeC) gene, which encodes an adenine deaminase. This work establishes a vital role for lp36 in the infectious cycle of B. burgdorferi and identifies the bbk17 gene as a component of this plasmid that contributes to mammalian infectivity. PMID:17542926

  14. Integrin binding by Borrelia burgdorferi P66 facilitates dissemination but is not required for infectivity

    PubMed Central

    Ristow, Laura C.; Bonde, Mari; Lin, Yi-Pin; Sato, Hiromi; Curtis, Michael; Wesley, Erin; Hahn, Beth L.; Fang, Juan; Wilcox, David A.; Leong, John M.; Bergström, Sven; Coburn, Jenifer

    2015-01-01

    Summary P66, a Borrelia burgdorferi surface protein with porin and integrin-binding activities, is essential for murine infection. The role of P66 integrin-binding activity in B. burgdorferi infection was investigated and found to affect transendothelial migration. The role of integrin binding, specifically, was tested by mutation of two amino acids (D205A,D207A) or deletion of seven amino acids (Del202–208). Neither change affected surface localization or channel-forming activity of P66, but both significantly reduced binding to αvβ3. Integrin-binding deficient B. burgdorferi strains caused disseminated infection in mice at 4 weeks post-subcutaneous inoculation, but bacterial burdens were significantly reduced in some tissues. Following intravenous inoculation, the Del202–208 bacteria were below the limit of detection in all tissues assessed at 2 weeks post-inoculation, but bacterial burdens recovered to wild-type levels at 4 weeks post-inoculation. The delay in tissue colonization correlated with reduced migration of the Del202–208 strains across microvascular endothelial cells, similar to Δp66 bacteria. These results indicate that integrin binding by P66 is important to efficient dissemination of B. burgdorferi, which is critical to its ability to cause disease manifestations in incidental hosts and to its maintenance in the enzootic cycle. PMID:25604835

  15. Human Coinfection with Borrelia burgdorferi and Babesia microti in the United States

    PubMed Central

    Knapp, Kristen L.; Rice, Nancy A.

    2015-01-01

    Borrelia burgdorferi, the causative agent of Lyme disease, and Babesia microti, a causative agent of babesiosis, are increasingly implicated in the growing tick-borne disease burden in the northeastern United States. These pathogens are transmitted via the bite of an infected tick vector, Ixodes scapularis, which is capable of harboring and inoculating a host with multiple pathogens simultaneously. Clinical presentation of the diseases is heterogeneous and ranges from mild flu-like symptoms to near-fatal cardiac arrhythmias. While the reason for the variability is not known, the possibility exists that concomitant infection with both B. burgdorferi and B. microti may synergistically increase disease severity. In an effort to clarify the current state of understanding regarding coinfection with B. burgdorferi and B. microti, in this review, we discuss the geographical distribution and pathogenesis of Lyme disease and babesiosis in the United States, the immunological response of humans to B. burgdorferi or B. microti infection, the existing knowledge regarding coinfection disease pathology, and critical factors that have led to ambiguity in the literature regarding coinfection, in order to eliminate confusion in future experimental design and investigation. PMID:26697208

  16. GENETIC AND IMMUNOLOGICAL EVIDENCES OF BORRELIA BURGDORFERI IN DOG IN THAILAND.

    PubMed

    Sthitmatee, Nattawooti; Jinawan, Wanna; Jaisan, Nawaporn; Tangjitjaroen, Weerapongse; Chailangkarn, Sasisophin; Sodarat, Chollada; Ekgatat, Monaya; Padungtod, Pawin

    2016-01-01

    Lyme disease is a tick-borne zoonotic disease caused by spirochete Borrelia burgdorferi. It is transmitted from animals to humans by the bite of infected ticks of the genus Ixodes. Although Lyme disease has been reported in China and Japan, the disease has never been reported in Thailand. Blood samples and ticks were collected from 402 dogs from 7 and 3 animal clinics in Chiang Mai and Phuket Provinces, Thailand, respectively. Blood samples were tested for antibodies against B. burgdorferi, Anaplasma spp, Ehrlichia spp and Dirofilaria immitis using a commercial kit, and positive blood samples were subjected to nested PCR assay for B. burgdorferi fla, ospA and ospC, amplicons of which also were sequenced. Only one dog (from Chiang Mai) was positive for B. burgdorferi, with 97% to 100% genetic identity, depending on the sequences used for comparison, with strains from United State of America. All 376 ticks collected were Rhipicephalus sanguineus, but no tick was found on the infected dog. Further investigations of the infection source and vector are needed to understand potential risks of Lyme disease to dogs and humans in Thailand. PMID:27086427

  17. Borrelia burgdorferi BBA52 is a potential target for transmission blocking Lyme disease vaccine

    PubMed Central

    Kumar, Manish; Kaur, Simarjot; Kariu, Toru; Yang, Xiuli; Bossis, Ioannis; Anderson, John F.; Pal, Utpal

    2011-01-01

    The surface-exposed antigens of Borrelia burgdorferi represent important targets for induction of protective host immune responses. BBA52 is preferentially expressed by B. burgdorferi in the feeding tick, and a targeted deletion of bba52 interferes with vector-host transitions in vivo. In this study, we demonstrate that BBA52 is an outer membrane surface-exposed protein and that disulfide bridges take part in the homo-oligomeric assembly of native protein. BBA52 antibodies lack detectable borreliacidal activities in vitro. However, active immunization studies demonstrated that BBA52 vaccinated mice were significantly less susceptible to subsequent tick-borne challenge infection. Similarly, passive transfer of BBA52 antibodies in ticks completely blocked B. burgdorferi transmission from feeding ticks to naïve mice. Taken together, these studies highlight the role of BBA52 in spirochete dissemination from ticks to mice and demonstrate the potential of BBA52 antibody-mediated strategy to complement the ongoing efforts to develop vaccines for blocking the transmission of B. burgdorferi. PMID:21945261

  18. Live Attenuated Borrelia burgdorferi Targeted Mutants in an Infectious Strain Background Protect Mice from Challenge Infection.

    PubMed

    Hahn, Beth L; Padmore, Lavinia J; Ristow, Laura C; Curtis, Michael W; Coburn, Jenifer

    2016-08-01

    Borrelia burgdorferi, B. garinii, and B. afzelii are all agents of Lyme disease in different geographic locations. If left untreated, Lyme disease can cause significant and long-term morbidity, which may continue after appropriate antibiotic therapy has been administered and live bacteria are no longer detectable. The increasing incidence and geographic spread of Lyme disease are renewing interest in the vaccination of at-risk populations. We took the approach of vaccinating mice with two targeted mutant strains of B. burgdorferi that, unlike the parental strain, are avirulent in mice. Mice vaccinated with both strains were protected against a challenge with the parental strain and a heterologous B. burgdorferi strain by either needle inoculation or tick bite. In ticks, the homologous strain was eliminated but the heterologous strain was not, suggesting that the vaccines generated a response to antigens that are produced by the bacteria both early in mammalian infection and in the tick. Partial protection against B. garinii infection was also conferred. Protection was antibody mediated, and reactivity to a variety of proteins was observed. These experiments suggest that live attenuated B. burgdorferi strains may be informative regarding the identification of protective antigens produced by the bacteria and recognized by the mouse immune system in vivo Further work may illuminate new candidates that are effective and safe for the development of Lyme disease vaccines. PMID:27335385

  19. Seroprevalence of Borrelia burgdorferi antibodies in white-tailed deer from Texas.

    PubMed

    Adetunji, Shakirat A; Krecek, Rosina C; Castellanos, Gabrielle; Morrill, John C; Blue-McLendon, Alice; Cook, Walt E; Esteve-Gassent, Maria D

    2016-08-01

    Lyme Disease is caused by the bacterial pathogen Borrelia burgdorferi, and is transmitted by the tick-vector Ixodes scapularis. It is the most prevalent arthropod-borne disease in the United States. To determine the seroprevalence of B. burgdorferi antibodies in white-tailed deer (Odocoileus virginianus) from Texas, we analyzed serum samples (n = 1493) collected during the 2001-2015 hunting seasons, using indirect ELISA. Samples with higher sero-reactivity (0.803 and above) than the negative control group (0.662) were further tested using a more specific standardized western immunoblot assay to rule out false positives. Using ELISA, 4.7% of the samples were sero-reactive against B. burgdorferi, and these originated in two eco-regions in Texas (Edwards Plateau and South Texas Plains). However, only 0.5% of the total samples were sero-reactive by standardized western immunoblot assay. Additionally, both ELISA and standardized western immunoblot assay results correlated with an increased incidence in human Lyme Disease cases reported in Texas. This is the first longitudinal study to demonstrate fluctuation in sero-reactivity of white-tailed deer to B. burgdorferi sensu stricto antigens in southern United States. Future ecological and geographical studies are needed to assess the environmental factors governing the prevalence of Lyme Disease in non-endemic areas of the southern United States. PMID:27366674

  20. Destruction of spirochete Borrelia burgdorferi round-body propagules (RBs) by the antibiotic Tigecycline

    PubMed Central

    Brorson, Øystein; Brorson, Sverre-Henning; Scythes, John; MacAllister, James; Wier, Andrew; Margulis, Lynn

    2009-01-01

    Persistence of tissue spirochetes of Borrelia burgdorferi as helices and round bodies (RBs) explains many erythema-Lyme disease symptoms. Spirochete RBs (reproductive propagules also called coccoid bodies, globular bodies, spherical bodies, granules, cysts, L-forms, sphaeroplasts, or vesicles) are induced by environmental conditions unfavorable for growth. Viable, they grow, move and reversibly convert into motile helices. Reversible pleiomorphy was recorded in at least six spirochete genera (>12 species). Penicillin solution is one unfavorable condition that induces RBs. This antibiotic that inhibits bacterial cell wall synthesis cures neither the second “Great Imitator” (Lyme borreliosis) nor the first: syphilis. Molecular-microscopic techniques, in principle, can detect in animals (insects, ticks, and mammals, including patients) helices and RBs of live spirochetes. Genome sequences of B. burgdorferi and Treponema pallidum spirochetes show absence of >75% of genes in comparison with their free-living relatives. Irreversible integration of spirochetes at behavioral, metabolic, gene product and genetic levels into animal tissue has been documented. Irreversible integration of spirochetes may severely impair immunological response such that they persist undetected in tissue. We report in vitro inhibition and destruction of B. burgdorferi (helices, RBs = “cysts”) by the antibiotic Tigecycline (TG; Wyeth), a glycylcycline protein-synthesis inhibitor (of both 30S and 70S ribosome subunits). Studies of the pleiomorphic life history stages in response to TG of both B. burgdorferi and Treponema pallidum in vivo and in vitro are strongly encouraged. PMID:19843691

  1. Statistical analysis of the distribution of amino acids in Borrelia burgdorferi genome under different genetic codes

    NASA Astrophysics Data System (ADS)

    García, José A.; Alvarez, Samantha; Flores, Alejandro; Govezensky, Tzipe; Bobadilla, Juan R.; José, Marco V.

    2004-10-01

    The genetic code is considered to be universal. In order to test if some statistical properties of the coding bacterial genome were due to inherent properties of the genetic code, we compared the autocorrelation function, the scaling properties and the maximum entropy of the distribution of distances of amino acids in sequences obtained by translating protein-coding regions from the genome of Borrelia burgdorferi, under different genetic codes. Overall our results indicate that these properties are very stable to perturbations made by altering the genetic code. We also discuss the evolutionary likely implications of the present results.

  2. The Lyme disease agent Borrelia burgdorferi requires BB0690, a Dps homologue, to persist within ticks.

    PubMed

    Li, Xin; Pal, Utpal; Ramamoorthi, Nandhini; Liu, Xianzhong; Desrosiers, Daniel C; Eggers, Christian H; Anderson, John F; Radolf, Justin D; Fikrig, Erol

    2007-02-01

    Borrelia burgdorferi survives in an enzootic cycle, and Dps proteins protect DNA against damage during starvation or oxidative stress. The role of a Dps homologue encoded by Borrelia in spirochaete survival was assessed. Dps-deficient spirochaetes were infectious in mice via needle-inoculation at the dose of 10(5) spirochaetes. Larval ticks successfully acquired Dps-deficient spirochaetes via a blood meal on mice. However, after extended periods within unfed nymphs, the Dps-deficient spirochaetes failed to be transmitted to a new host when nymphs fed. Our data suggest that Dps functions to protect the spirochaetes during dormancy in unfed ticks, and in its absence, the spirochaetes become susceptible during tick feeding. dps is differentially expressed in vivo- low in mice and high in ticks - but constitutively expressed in vitro, showing little change during growth or in response to oxidative stress. Borrelia Dps forms a dodecameric complex capable of sequestering iron. The Dps-deficient spirochaetes showed no defect in starvation and oxidative stress assays, perhaps due to the lack of iron in spirochaetes grown in vitro. Dps is critical for spirochaete persistence within ticks, and strategies to interfere with Dps could potentially reduce Borrelia populations in nature and thereby influence the incidence of Lyme disease. PMID:17181780

  3. Geographical differences in seroprevalence of Borrelia burgdorferi antibodies in Norway, 2011-2013.

    PubMed

    Vestrheim, Didrik F; White, Richard A; Aaberge, Ingeborg S; Aase, Audun

    2016-07-01

    Detection of specific antibodies against Borrelia burgdorferi sensu lato is a useful aid for the diagnosis of Lyme borreliosis. However, antibodies are present in the general population. The seroprevalence increase with age, and varies according to the prevalence of infected ticks. We performed a seroprevalence study of IgM and IgG antibody reactivity against B. burgdorferi sensu lato in Norway by age-groups and geography, in order to provide a reference set of seroprevalence to inform the interpretation of positive test results. We used two commercially available enzyme immuno assays (EIA) and a multiplexed bead assay to detect Borrelia IgG antibodies in a convenience sample of 3057 sera collected from clinical chemistry laboratories in 10 of 19 counties in Norway between December 2011 and January 2013. We estimated seroprevalence by age and county by a logistic regression model. IgM antibodies were detected by two commercially available EIAs and a multiplexed bead assay. The overall seroprevalence of Borrelia IgG was 4.0% (95% CI: 2.4-6.6%) and 4.2% (2.6-6.8%) by the two EIAs, respectively. The seroprevalence increased by age, and by geography from north to south. The IgG assays showed a good agreement for positive test results. All sera positive for IgG in the multiplexed bead assay reacted with the VlsE antigen, and also had high antibody levels by EIA. The Borrelia seroprevalence varied by geography and increased by age. The results indicate regional differences in pre-test probabilities for positive test results, and can inform the interpretation of laboratory results. PMID:26961275

  4. Geographical distribution and prevalence of Borrelia burgdorferi genospecies in questing Ixodes ricinus from Romania: a countrywide study.

    PubMed

    Kalmár, Zsuzsa; Mihalca, Andrei D; Dumitrache, Mirabela O; Gherman, Călin M; Magdaş, Cristian; Mircean, Viorica; Oltean, Miruna; Domşa, Cristian; Matei, Ioana A; Mărcuţan, Daniel I; Sándor, Attila D; D'Amico, Gianluca; Paştiu, Anamaria; Györke, Adriana; Gavrea, Raluca; Marosi, Béla; Ionică, Angela; Burkhardt, Etelka; Toriay, Hortenzia; Cozma, Vasile

    2013-09-01

    The paper reports the prevalence and geographical distribution of Borrelia burgdorferi sensu lato (s.l.) and its genospecies in 12,221 questing Ixodes ricinus ticks collected at 183 locations from all the 41 counties of Romania. The unfed ticks were examined for the presence of B. burgdorferi s.l. by PCR targeting the intergenic spacer 5S-23S. Reverse line blot hybridization (RLB) and restriction fragment length polymorphism (RFLP) analysis were performed for identification of B. burgdorferi genospecies. The overall prevalence of infection was 1.4%, with an average local prevalence between 0.75% and 18.8%. B. burgdorferi s.l. was found in ticks of 55 of the 183 localities. The overall prevalence B. burgdorferi s.l. in ticks in the infected localities was 3.8%. The total infection prevalence was higher in female ticks than in other developmental stages. Three Borrelia genospecies were detected. The most widely distributed genospecies was B. afzelii, followed by B. garinii and B. burgdorferi sensu stricto (s.s.). The study is the first countrywide study and the first report of B. burgdorferi s.s. in Romania. The distribution maps show that higher prevalences were recorded in hilly areas, but Lyme borreliosis spirochetes were also present in forested lowlands, albeit with a lower prevalence. PMID:23890805

  5. The chitobiose transporter, chbC, is required for chitin utilization in Borrelia burgdorferi

    PubMed Central

    2010-01-01

    Background The bacterium Borrelia burgdorferi, the causative agent of Lyme disease, is a limited-genome organism that must obtain many of its biochemical building blocks, including N-acetylglucosamine (GlcNAc), from its tick or vertebrate host. GlcNAc can be imported into the cell as a monomer or dimer (chitobiose), and the annotation for several B. burgdorferi genes suggests that this organism may be able to degrade and utilize chitin, a polymer of GlcNAc. We investigated the ability of B. burgdorferi to utilize chitin in the absence of free GlcNAc, and we attempted to identify genes involved in the process. We also examined the role of RpoS, one of two alternative sigma factors present in B. burgdorferi, in the regulation of chitin utilization. Results Using fluorescent chitinase substrates, we demonstrated an inherent chitinase activity in rabbit serum, a component of the B. burgdorferi growth medium (BSK-II). After inactivating this activity by boiling, we showed that wild-type cells can utilize chitotriose, chitohexose or coarse chitin flakes in the presence of boiled serum and in the absence of free GlcNAc. Further, we replaced the serum component of BSK-II with a lipid extract and still observed growth on chitin substrates without free GlcNAc. In an attempt to knockout B. burgdorferi chitinase activity, we generated mutations in two genes (bb0002 and bb0620) predicted to encode enzymes that could potentially cleave the β-(1,4)-glycosidic linkages found in chitin. While these mutations had no effect on the ability to utilize chitin, a mutation in the gene encoding the chitobiose transporter (bbb04, chbC) did block utilization of chitin substrates by B. burgdorferi. Finally, we provide evidence that chitin utilization in an rpoS mutant is delayed compared to wild-type cells, indicating that RpoS may be involved in the regulation of chitin degradation by this organism. Conclusions The data collected in this study demonstrate that B. burgdorferi can utilize

  6. Borrelia burgdorferi, the Causative Agent of Lyme Disease, Forms Drug-Tolerant Persister Cells.

    PubMed

    Sharma, Bijaya; Brown, Autumn V; Matluck, Nicole E; Hu, Linden T; Lewis, Kim

    2015-08-01

    Borrelia burgdorferi is the causative agent of Lyme disease, which affects an estimated 300,000 people annually in the United States. When treated early, the disease usually resolves, but when left untreated, it can result in symptoms such as arthritis and encephalopathy. Treatment of the late-stage disease may require multiple courses of antibiotic therapy. Given that antibiotic resistance has not been observed for B. burgdorferi, the reason for the recalcitrance of late-stage disease to antibiotics is unclear. In other chronic infections, the presence of drug-tolerant persisters has been linked to recalcitrance of the disease. In this study, we examined the ability of B. burgdorferi to form persisters. Killing growing cultures of B. burgdorferi with antibiotics used to treat the disease was distinctly biphasic, with a small subpopulation of surviving cells. Upon regrowth, these cells formed a new subpopulation of antibiotic-tolerant cells, indicating that these are persisters rather than resistant mutants. The level of persisters increased sharply as the culture transitioned from the exponential to stationary phase. Combinations of antibiotics did not improve killing. Daptomycin, a membrane-active bactericidal antibiotic, killed stationary-phase cells but not persisters. Mitomycin C, an anticancer agent that forms adducts with DNA, killed persisters and eradicated growing and stationary cultures of B. burgdorferi. Finally, we examined the ability of pulse dosing an antibiotic to eliminate persisters. After addition of ceftriaxone, the antibiotic was washed away, surviving persisters were allowed to resuscitate, and the antibiotic was added again. Four pulse doses of ceftriaxone killed persisters, eradicating all live bacteria in the culture. PMID:26014929

  7. Oral Immunization with OspC Does Not Prevent Tick-Borne Borrelia burgdorferi Infection

    PubMed Central

    Melo, Rita; Richer, Luciana; Johnson, Daniel L.; Gomes-Solecki, Maria

    2016-01-01

    Oral vaccination strategies are of interest to prevent transmission of Lyme disease as they can be used to deliver vaccines to humans, pets, and to natural wildlife reservoir hosts of Borrelia burgdorferi. We developed a number of oral vaccines based in E. coli expressing recombinant OspC type K, OspB, BBK32 from B. burgdorferi, and Salp25, Salp15 from Ixodes scapularis. Of the five immunogenic candidates only OspC induced significant levels of antigen-specific IgG and IgA when administered to mice via the oral route. Antibodies to OspC did not prevent dissemination of B. burgdorferi as determined by the presence of spirochetes in ear, heart and bladder tissues four weeks after challenge. Next generation sequencing of genomic DNA from ticks identified multiple phyletic types of B. burgdorferi OspC (A, D, E, F, I, J, K, M, Q, T, X) in nymphs that engorged on vaccinated mice. PCR amplification of OspC types A and K from flat and engorged nymphal ticks, and from heart and bladder tissues collected after challenge confirmed sequencing analysis. Quantification of spirochete growth in a borreliacidal assay shows that both types of spirochetes (A and K) survived in the presence of OspC-K specific serum whereas the spirochetes were killed by OspA specific serum. We show that oral vaccination of C3H-HeN mice with OspC-K induced significant levels of antigen-specific IgG. However, these serologic antibodies did not protect mice from infection with B. burgdorferi expressing homologous or heterologous types of OspC after tick challenge. PMID:26990760

  8. Oral Immunization with OspC Does Not Prevent Tick-Borne Borrelia burgdorferi Infection.

    PubMed

    Melo, Rita; Richer, Luciana; Johnson, Daniel L; Gomes-Solecki, Maria

    2016-01-01

    Oral vaccination strategies are of interest to prevent transmission of Lyme disease as they can be used to deliver vaccines to humans, pets, and to natural wildlife reservoir hosts of Borrelia burgdorferi. We developed a number of oral vaccines based in E. coli expressing recombinant OspC type K, OspB, BBK32 from B. burgdorferi, and Salp25, Salp15 from Ixodes scapularis. Of the five immunogenic candidates only OspC induced significant levels of antigen-specific IgG and IgA when administered to mice via the oral route. Antibodies to OspC did not prevent dissemination of B. burgdorferi as determined by the presence of spirochetes in ear, heart and bladder tissues four weeks after challenge. Next generation sequencing of genomic DNA from ticks identified multiple phyletic types of B. burgdorferi OspC (A, D, E, F, I, J, K, M, Q, T, X) in nymphs that engorged on vaccinated mice. PCR amplification of OspC types A and K from flat and engorged nymphal ticks, and from heart and bladder tissues collected after challenge confirmed sequencing analysis. Quantification of spirochete growth in a borreliacidal assay shows that both types of spirochetes (A and K) survived in the presence of OspC-K specific serum whereas the spirochetes were killed by OspA specific serum. We show that oral vaccination of C3H-HeN mice with OspC-K induced significant levels of antigen-specific IgG. However, these serologic antibodies did not protect mice from infection with B. burgdorferi expressing homologous or heterologous types of OspC after tick challenge. PMID:26990760

  9. Diverse Borrelia burgdorferi Strains in a Bird-Tick Cryptic Cycle ▿ †

    PubMed Central

    Hamer, Sarah A.; Hickling, Graham J.; Sidge, Jennifer L.; Rosen, Michelle E.; Walker, Edward D.; Tsao, Jean I.

    2011-01-01

    The blacklegged tick Ixodes scapularis is the primary vector of the most prevalent vector-borne zoonosis in North America, Lyme disease (LD). Enzootic maintenance of the pathogen Borrelia burgdorferi by I. scapularis and small mammals is well documented, whereas its “cryptic” maintenance by other specialist ticks and wildlife hosts remains largely unexplored because these ticks rarely bite humans. We quantified B. burgdorferi infection in a cryptic bird-rabbit-tick cycle. Furthermore, we explored the role of birds in maintaining and moving B. burgdorferi strains by comparing their genetic diversity in this cryptic cycle to that found in cycles vectored by I. scapularis. We examined birds, rabbits, and small mammals for ticks and infection over a 4-year period at a focal site in Michigan, 90 km east of a zone of I. scapularis invasion. We mist netted 19,631 birds that yielded 12,301 ticks, of which 86% were I. dentatus, a bird-rabbit specialist. No resident wildlife harbored I. scapularis, and yet 3.5% of bird-derived ticks, 3.6% of rabbit-derived ticks, and 20% of rabbit ear biopsy specimens were infected with B. burgdorferi. We identified 25 closely related B. burgdorferi strains using an rRNA gene intergenic spacer marker, the majority (68%) of which had not been reported previously. The presence of strains common to both cryptic and endemic cycles strongly implies bird-mediated dispersal. Given continued large-scale expansion of I. scapularis populations, we predict that its invasion into zones of cryptic transmission will allow for bridging of novel pathogen strains to humans and animals. PMID:21257811

  10. NKT cells prevent chronic joint inflammation after infection with Borrelia burgdorferi.

    PubMed

    Tupin, Emmanuel; Benhnia, Mohammed Rafii-El-Idrissi; Kinjo, Yuki; Patsey, Rebeca; Lena, Christopher J; Haller, Matthew C; Caimano, Melissa J; Imamura, Masakazu; Wong, Chi-Huey; Crotty, Shane; Radolf, Justin D; Sellati, Timothy J; Kronenberg, Mitchell

    2008-12-16

    Borrelia burgdorferi is the etiologic agent of Lyme disease, a multisystem inflammatory disorder that principally targets the skin, joints, heart, and nervous system. The role of T lymphocytes in the development of chronic inflammation resulting from B. burgdorferi infection has been controversial. We previously showed that natural killer T (NKT) cells with an invariant (i) TCR alpha chain (iNKT cells) recognize glycolipids from B. burgdorferi, but did not establish an in vivo role for iNKT cells in Lyme disease pathogenesis. Here, we evaluate the importance of iNKT cells for host defense against these pathogenic spirochetes by using Valpha14i NKT cell-deficient (Jalpha18(-/-)) BALB/c mice. On tick inoculation with B. burgdorferi, Jalpha18(-/-) mice exhibited more severe and prolonged arthritis as well as a reduced ability to clear spirochetes from infected tissues. Valpha14i NKT cell deficiency also resulted in increased production of antibodies directed against both B. burgdorferi protein antigens and borrelial diacylglycerols; the latter finding demonstrates that anti-glycolipid antibody production does not require cognate help from Valpha14i NKT cells. Valpha14i NKT cells in infected wild-type mice expressed surface activation markers and produced IFNgamma in vivo after infection, suggesting a participatory role for this unique population in cellular immunity. Our data are consistent with the hypothesis that the antigen-specific activation of Valpha14i NKT cells is important for the prevention of persistent joint inflammation and spirochete clearance, and they counter the long-standing notion that humoral rather than cellular immunity is sufficient to facilitate Lyme disease resolution. PMID:19060201

  11. NKT cells prevent chronic joint inflammation after infection with Borrelia burgdorferi

    PubMed Central

    Tupin, Emmanuel; Benhnia, Mohammed Rafii-El-Idrissi; Kinjo, Yuki; Patsey, Rebeca; Lena, Christopher J.; Haller, Matthew C.; Caimano, Melissa J.; Imamura, Masakazu; Wong, Chi-Huey; Crotty, Shane; Radolf, Justin D.; Sellati, Timothy J.; Kronenberg, Mitchell

    2008-01-01

    Borrelia burgdorferi is the etiologic agent of Lyme disease, a multisystem inflammatory disorder that principally targets the skin, joints, heart, and nervous system. The role of T lymphocytes in the development of chronic inflammation resulting from B. burgdorferi infection has been controversial. We previously showed that natural killer T (NKT) cells with an invariant (i) TCR α chain (iNKT cells) recognize glycolipids from B. burgdorferi, but did not establish an in vivo role for iNKT cells in Lyme disease pathogenesis. Here, we evaluate the importance of iNKT cells for host defense against these pathogenic spirochetes by using Vα14i NKT cell-deficient (Jα18−/−) BALB/c mice. On tick inoculation with B. burgdorferi, Jα18−/− mice exhibited more severe and prolonged arthritis as well as a reduced ability to clear spirochetes from infected tissues. Vα14i NKT cell deficiency also resulted in increased production of antibodies directed against both B. burgdorferi protein antigens and borrelial diacylglycerols; the latter finding demonstrates that anti-glycolipid antibody production does not require cognate help from Vα14i NKT cells. Vα14i NKT cells in infected wild-type mice expressed surface activation markers and produced IFNγ in vivo after infection, suggesting a participatory role for this unique population in cellular immunity. Our data are consistent with the hypothesis that the antigen-specific activation of Vα14i NKT cells is important for the prevention of persistent joint inflammation and spirochete clearance, and they counter the long-standing notion that humoral rather than cellular immunity is sufficient to facilitate Lyme disease resolution. PMID:19060201

  12. Borrelia burgdorferi, the Causative Agent of Lyme Disease, Forms Drug-Tolerant Persister Cells

    PubMed Central

    Sharma, Bijaya; Brown, Autumn V.; Matluck, Nicole E.; Hu, Linden T.

    2015-01-01

    Borrelia burgdorferi is the causative agent of Lyme disease, which affects an estimated 300,000 people annually in the United States. When treated early, the disease usually resolves, but when left untreated, it can result in symptoms such as arthritis and encephalopathy. Treatment of the late-stage disease may require multiple courses of antibiotic therapy. Given that antibiotic resistance has not been observed for B. burgdorferi, the reason for the recalcitrance of late-stage disease to antibiotics is unclear. In other chronic infections, the presence of drug-tolerant persisters has been linked to recalcitrance of the disease. In this study, we examined the ability of B. burgdorferi to form persisters. Killing growing cultures of B. burgdorferi with antibiotics used to treat the disease was distinctly biphasic, with a small subpopulation of surviving cells. Upon regrowth, these cells formed a new subpopulation of antibiotic-tolerant cells, indicating that these are persisters rather than resistant mutants. The level of persisters increased sharply as the culture transitioned from the exponential to stationary phase. Combinations of antibiotics did not improve killing. Daptomycin, a membrane-active bactericidal antibiotic, killed stationary-phase cells but not persisters. Mitomycin C, an anticancer agent that forms adducts with DNA, killed persisters and eradicated growing and stationary cultures of B. burgdorferi. Finally, we examined the ability of pulse dosing an antibiotic to eliminate persisters. After addition of ceftriaxone, the antibiotic was washed away, surviving persisters were allowed to resuscitate, and the antibiotic was added again. Four pulse doses of ceftriaxone killed persisters, eradicating all live bacteria in the culture. PMID:26014929

  13. Population Bottlenecks during the Infectious Cycle of the Lyme Disease Spirochete Borrelia burgdorferi

    PubMed Central

    Rego, Ryan O. M.; Bestor, Aaron; Štefka, Jan; Rosa, Patricia A.

    2014-01-01

    Borrelia burgdorferi is a zoonotic pathogen whose maintenance in nature depends upon an infectious cycle that alternates between a tick vector and mammalian hosts. Lyme disease in humans results from transmission of B. burgdorferi by the bite of an infected tick. The population dynamics of B. burgdorferi throughout its natural infectious cycle are not well understood. We addressed this topic by assessing the colonization, dissemination and persistence of B. burgdorferi within and between the disparate mammalian and tick environments. To follow bacterial populations during infection, we generated seven isogenic but distinguishable B. burgdorferi clones, each with a unique sequence tag. These tags resulted in no phenotypic changes relative to wild type organisms, yet permitted highly sensitive and specific detection of individual clones by PCR. We followed the composition of the spirochete population throughout an experimental infectious cycle that was initiated with a mixed inoculum of all clones. We observed heterogeneity in the spirochete population disseminating within mice at very early time points, but all clones displayed the ability to colonize most mouse tissues by 3 weeks of infection. The complexity of clones subsequently declined as murine infection persisted. Larval ticks typically acquired a reduced and variable number of clones relative to what was present in infected mice at the time of tick feeding, and maintained the same spirochete population through the molt to nymphs. However, only a random subset of infectious spirochetes was transmitted to naïve mice when these ticks next fed. Our results clearly demonstrate that the spirochete population experiences stochastic bottlenecks during both acquisition and transmission by the tick vector, as well as during persistent infection of its murine host. The experimental system that we have developed can be used to further explore the forces that shape the population of this vector-borne bacterial pathogen

  14. Borrelia burgdorferi Promotes the Establishment of Babesia microti in the Northeastern United States

    PubMed Central

    Dunn, Jessica M.; Krause, Peter J.; Davis, Stephen; Vannier, Edouard G.; Fitzpatrick, Meagan C.; Rollend, Lindsay; Belperron, Alexia A.; States, Sarah L.; Stacey, Andrew; Bockenstedt, Linda K.; Fish, Durland; Diuk-Wasser, Maria A.

    2014-01-01

    Babesia microti and Borrelia burgdorferi, the respective causative agents of human babesiosis and Lyme disease, are maintained in their enzootic cycles by the blacklegged tick (Ixodes scapularis) and use the white-footed mouse (Peromyscus leucopus) as primary reservoir host. The geographic range of both pathogens has expanded in the United States, but the spread of babesiosis has lagged behind that of Lyme disease. Several studies have estimated the basic reproduction number (R0) for B. microti to be below the threshold for persistence (<1), a finding that is inconsistent with the persistence and geographic expansion of this pathogen. We tested the hypothesis that host coinfection with B. burgdorferi increases the likelihood of B. microti transmission and establishment in new areas. We fed I. scapularis larva on P. leucopus mice that had been infected in the laboratory with B. microti and/or B. burgdorferi. We observed that coinfection in mice increases the frequency of B. microti infected ticks. To identify the ecological variables that would increase the probability of B. microti establishment in the field, we integrated our laboratory data with field data on tick burden and feeding activity in an R0 model. Our model predicts that high prevalence of B. burgdorferi infected mice lowers the ecological threshold for B. microti establishment, especially at sites where larval burden on P. leucopus is lower and where larvae feed simultaneously or soon after nymphs infect mice, when most of the transmission enhancement due to coinfection occurs. Our studies suggest that B. burgdorferi contributes to the emergence and expansion of B. microti and provides a model to predict the ecological factors that are sufficient for emergence of B. microti in the wild. PMID:25545393

  15. Evaluation of the importance of VlsE antigenic variation for the enzootic cycle of borrelia burgdorferi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Efficient acquisition and transmission of Borrelia burgdorferi by the tick vector, and the ability to persistently infect both vector and host, are important elements for the life cycle of the Lyme disease pathogen. Previous work has provided strong evidence implicating the significance of the vls l...

  16. Tick infestation risk and Borrelia burgdorferi s.l. infection-induced increase in host-finding efficacy of female Ixodes ricinus under natural conditions.

    PubMed

    Faulde, Michael K; Robbins, Richard G

    2008-02-01

    An investigation of the risk of human tick infestation, together with the prevalence of Borrelia burgdorferi s.l. infection, was conducted in a sylvatic habitat in western Germany to provide data needed for future risk-benefit evaluations of acaricides used for clothing impregnation. Additionally, data were collected on behavioural changes in Borrelia burgdorferi s.l.-infected adult female I. ricinus ticks and the possible impact of such changes on host-finding efficacy. The risk of I. ricinus-infestation was determined by collecting from the protective clothing of volunteers and by dragging in known tick-infested sites in the Kühkopf Mountain area, Koblenz, Germany, from June through October 2006. The overall tick infestation rate per person per hour was 7.4+/-5.5, with the following sex- and stage-specific differences: males 0.32+/-0.37, females 1.1+/-1.2, nymphs 3.6+/-4.4, larvae 2.4+/-3.5. Concurrent dragging revealed an average 19.4+/-16.2 times higher infestation rate as well as a markedly lower infection rate with borreliae in adult I. ricinus ticks when compared to ticks collected from exposed human volunteers. Although the difference in infection rates was statistically significant (P<0.023) only in adult female ticks, our data indicate that B. burgdorferi s.l. infection may increase host-finding efficacy in adult I. ricinus. The overall exposure risk was 1.0 B. burgdorferi s.l.-infected ticks per person per hour of exposure, or 0.25 ticks per 100 m walking distance in the study area. PMID:18273686

  17. Antigens of Lyme disease of spirochaete Borrelia burgdorferi inhibits antigen or mitogen-induced lymphocyte proliferation.

    PubMed

    Chiao, J W; Pavia, C; Riley, M; Altmann-Lasekan, W; Abolhassani, M; Liegner, K; Mittelman, A

    1994-02-01

    Modulation of cellular immune responses by the spirochaete Borrelia burgdorferi, the bacteria that causes Lyme disease, was demonstrated. When cultured in the presence of sonicated Borrelia preparation (Bb), the mitogen- or antigen-stimulated proliferative responses of normal lymphocytes were consistently lowered. Bb caused the greatest reduction in Concanavalin A (ConA) or antigen-stimulated proliferation, where almost 100% reduction in proliferation could be achieved. Bb also reduced phytohemagglutinin-M (PHA) or pokeweed mitogen (PWM)-stimulated peripheral blood lymphocyte (PBL) proliferation, with the PWM proliferation being the least affected. This regulatory activity was not due to toxicity and was determined to be caused by Bb protein antigens. The degree of the proliferation reduction was directly proportional to both Bb quantity and length of exposure to lymphocytes. IL-2 production was significantly reduced from Bb-exposed lymphocytes. The entry of lymphocytes into the proliferating phases of the cell cycle was also shown to be blocked. These results have demonstrated an immune suppressive mechanism of B. burgdorferi. The magnitude of host immune responses may be dependent on the degree of suppression which is related to the spirochaete quantity and their length of presence in the host. PMID:8173554

  18. Clinical Features of 705 Borrelia burgdorferi Seropositive Patients in an Endemic Area of Northern Italy

    PubMed Central

    Ruscio, Maurizio; Trotter, Davide

    2014-01-01

    Background. Lyme Borreliosis is a multisystemic infection caused by spirochetes of Borrelia burgdorferi sensu lato complex. The features of Lyme Borreliosis may differ in the various geographical areas, primarily between the manifestations found in America and those found in Europe and Asia. Objective. to describe the clinical features of Lyme Borreliosis in an endemic geographic area such as Friuli-Venezia Giulia in the Northeastern part of Italy. Methods. The medical records of patients resulted seropositive for Borrelia burgdorferi have been retrospectively recorded and analyzed. Results. Seven hundred and five patients met the inclusion criteria, 363 males and 342 females. Erythema migrans was the most common manifestation, detected in 437 patients. Other classical cutaneous manifestations included 58 cases of multiple erythema migrans, 7 lymphadenosis benigna cutis, and 18 acrodermatitis chronica atrophicans. The musculoskeletal system was involved in 511 patients. Four hundred and sixty patients presented a neurological involvement. Flu-like symptoms preceded or accompanied or were the only clinical feature in 119 patients. Comments. The manifestations of Lyme borreliosis recorded in this study are similar to the ones of other endemic areas in Europe, even if there are some peculiar features which are different from those reported in Northern Europe and in the USA. PMID:24550705

  19. The Enolase of Borrelia burgdorferi Is a Plasminogen Receptor Released in Outer Membrane Vesicles

    PubMed Central

    Toledo, A.; Coleman, J. L.; Kuhlow, C. J.; Crowley, J. T.

    2012-01-01

    The agent of Lyme disease, Borrelia burgdorferi, has a number of outer membrane proteins that are differentially regulated during its life cycle. In addition to their physiological functions in the organism, these proteins also likely serve different functions in invasiveness and immune evasion. In borreliae, as well as in other bacteria, a number of membrane proteins have been implicated in binding plasminogen. The activation and transformation of plasminogen into its proteolytically active form, plasmin, enhances the ability of the bacteria to disseminate in the host. Outer membrane vesicles of B. burgdorferi contain enolase, a glycolytic-cycle enzyme that catalyzes 2-phosphoglycerate to form phosphoenolpyruvate, which is also a known plasminogen receptor in Gram-positive bacteria. The enolase was cloned, expressed, purified, and used to generate rabbit antienolase serum. The enolase binds plasminogen in a lysine-dependent manner but not through ionic interactions. Although it is present in the outer membrane, microscopy and proteinase K treatment showed that enolase does not appear to be exposed on the surface. However, enolase in the outer membrane vesicles is accessible to proteolytic degradation by proteinase K. Samples from experimentally and tick-infected mice and rabbits as well as from Lyme disease patients exhibit recognition of enolase in serologic assays. Thus, this immunogenic plasminogen receptor released in outer membrane vesicles could be responsible for external proteolysis in the pericellular environment and have roles in nutrition and in enhancing dissemination. PMID:22083700

  20. Fluorescent membrane markers elucidate the association of Borrelia burgdorferi with tick cell lines

    PubMed Central

    Teixeira, R.C.; Baêta, B.A.; Ferreira, J.S.; Medeiros, R.C.; Maya-Monteiro, C.M.; Lara, F.A.; Bell-Sakyi, L.; Fonseca, A.H.

    2016-01-01

    This study aimed to describe the association of Borrelia burgdorferi s.s. with ixodid tick cell lines by flow cytometry and fluorescence and confocal microscopy. Spirochetes were stained with a fluorescent membrane marker (PKH67 or PKH26), inoculated into 8 different tick cell lines and incubated at 30°C for 24 h. PKH efficiently stained B. burgdorferi without affecting bacterial viability or motility. Among the tick cell lines tested, the Rhipicephalus appendiculatus cell line RA243 achieved the highest percentage of association/internalization, with both high (90%) and low (10%) concentrations of BSK-H medium in tick cell culture medium. Treatment with cytochalasin D dramatically reduced the average percentage of cells with internalized spirochetes, which passed through a dramatic morphological change during their internalization by the host cell as observed in time-lapse photography. Almost all of the fluorescent bacteria were seen to be inside the tick cells. PKH labeling of borreliae proved to be a reliable and valuable tool to analyze the association of spirochetes with host cells by flow cytometry, confocal and fluorescence microscopy. PMID:27332772

  1. Fluorescent membrane markers elucidate the association of Borrelia burgdorferi with tick cell lines.

    PubMed

    Teixeira, R C; Baêta, B A; Ferreira, J S; Medeiros, R C; Maya-Monteiro, C M; Lara, F A; Bell-Sakyi, L; Fonseca, A H

    2016-06-20

    This study aimed to describe the association of Borrelia burgdorferi s.s. with ixodid tick cell lines by flow cytometry and fluorescence and confocal microscopy. Spirochetes were stained with a fluorescent membrane marker (PKH67 or PKH26), inoculated into 8 different tick cell lines and incubated at 30°C for 24 h. PKH efficiently stained B. burgdorferi without affecting bacterial viability or motility. Among the tick cell lines tested, the Rhipicephalus appendiculatus cell line RA243 achieved the highest percentage of association/internalization, with both high (90%) and low (10%) concentrations of BSK-H medium in tick cell culture medium. Treatment with cytochalasin D dramatically reduced the average percentage of cells with internalized spirochetes, which passed through a dramatic morphological change during their internalization by the host cell as observed in time-lapse photography. Almost all of the fluorescent bacteria were seen to be inside the tick cells. PKH labeling of borreliae proved to be a reliable and valuable tool to analyze the association of spirochetes with host cells by flow cytometry, confocal and fluorescence microscopy. PMID:27332772

  2. BBA70 of Borrelia burgdorferi Is a Novel Plasminogen-binding Protein*

    PubMed Central

    Koenigs, Arno; Hammerschmidt, Claudia; Jutras, Brandon L.; Pogoryelov, Denys; Barthel, Diana; Skerka, Christine; Kugelstadt, Dominik; Wallich, Reinhard; Stevenson, Brian; Zipfel, Peter F.; Kraiczy, Peter

    2013-01-01

    The Lyme disease spirochete Borrelia burgdorferi lacks endogenous, surface-exposed proteases. In order to efficiently disseminate throughout the host and penetrate tissue barriers, borreliae rely on recruitment of host proteases, such as plasmin(ogen). Here we report the identification of a novel plasminogen-binding protein, BBA70. Binding of plasminogen is dose-dependent and is affected by ionic strength. The BBA70-plasminogen interaction is mediated by lysine residues, primarily located in a putative C-terminal α-helix of BBA70. These lysine residues appear to interact with the lysine-binding sites in plasminogen kringle domain 4 because a deletion mutant of plasminogen lacking that domain was unable to bind to BBA70. Bound to BBA70, plasminogen activated by urokinase-type plasminogen activator was able to degrade both a synthetic chromogenic substrate and the natural substrate fibrinogen. Furthermore, BBA70-bound plasmin was able to degrade the central complement proteins C3b and C5 and inhibited the bacteriolytic effects of complement. Consistent with these functional activities, BBA70 is located on the borrelial outer surface. Additionally, serological evidence demonstrated that BBA70 is produced during mammalian infection. Taken together, recruitment and activation of plasminogen could play a beneficial role in dissemination of B. burgdorferi in the human host and may possibly aid the spirochete in escaping the defense mechanisms of innate immunity. PMID:23861404

  3. Inter- and intra-specific pan-genomes of Borrelia burgdorferi sensu lato: genome stability and adaptive radiation

    PubMed Central

    2013-01-01

    Background Lyme disease is caused by spirochete bacteria from the Borrelia burgdorferi sensu lato (B. burgdorferi s.l.) species complex. To reconstruct the evolution of B. burgdorferi s.l. and identify the genomic basis of its human virulence, we compared the genomes of 23 B. burgdorferi s.l. isolates from Europe and the United States, including B. burgdorferi sensu stricto (B. burgdorferi s.s., 14 isolates), B. afzelii (2), B. garinii (2), B. “bavariensis” (1), B. spielmanii (1), B. valaisiana (1), B. bissettii (1), and B. “finlandensis” (1). Results Robust B. burgdorferi s.s. and B. burgdorferi s.l. phylogenies were obtained using genome-wide single-nucleotide polymorphisms, despite recombination. Phylogeny-based pan-genome analysis showed that the rate of gene acquisition was higher between species than within species, suggesting adaptive speciation. Strong positive natural selection drives the sequence evolution of lipoproteins, including chromosomally-encoded genes 0102 and 0404, cp26-encoded ospC and b08, and lp54-encoded dbpA, a07, a22, a33, a53, a65. Computer simulations predicted rapid adaptive radiation of genomic groups as population size increases. Conclusions Intra- and inter-specific pan-genome sizes of B. burgdorferi s.l. expand linearly with phylogenetic diversity. Yet gene-acquisition rates in B. burgdorferi s.l. are among the lowest in bacterial pathogens, resulting in high genome stability and few lineage-specific genes. Genome adaptation of B. burgdorferi s.l. is driven predominantly by copy-number and sequence variations of lipoprotein genes. New genomic groups are likely to emerge if the current trend of B. burgdorferi s.l. population expansion continues. PMID:24112474

  4. Genome Stability of Lyme Disease Spirochetes: Comparative Genomics of Borrelia burgdorferi Plasmids

    PubMed Central

    Casjens, Sherwood R.; Mongodin, Emmanuel F.; Qiu, Wei-Gang; Luft, Benjamin J.; Schutzer, Steven E.; Gilcrease, Eddie B.; Huang, Wai Mun; Vujadinovic, Marija; Aron, John K.; Vargas, Levy C.; Freeman, Sam; Radune, Diana; Weidman, Janice F.; Dimitrov, George I.; Khouri, Hoda M.; Sosa, Julia E.; Halpin, Rebecca A.; Dunn, John J.; Fraser, Claire M.

    2012-01-01

    Lyme disease is the most common tick-borne human illness in North America. In order to understand the molecular pathogenesis, natural diversity, population structure and epizootic spread of the North American Lyme agent, Borrelia burgdorferi sensu stricto, a much better understanding of the natural diversity of its genome will be required. Towards this end we present a comparative analysis of the nucleotide sequences of the numerous plasmids of B. burgdorferi isolates B31, N40, JD1 and 297. These strains were chosen because they include the three most commonly studied laboratory strains, and because they represent different major genetic lineages and so are informative regarding the genetic diversity and evolution of this organism. A unique feature of Borrelia genomes is that they carry a large number of linear and circular plasmids, and this work shows that strains N40, JD1, 297 and B31 carry related but non-identical sets of 16, 20, 19 and 21 plasmids, respectively, that comprise 33–40% of their genomes. We deduce that there are at least 28 plasmid compatibility types among the four strains. The B. burgdorferi ∼900 Kbp linear chromosomes are evolutionarily exceptionally stable, except for a short ≤20 Kbp plasmid-like section at the right end. A few of the plasmids, including the linear lp54 and circular cp26, are also very stable. We show here that the other plasmids, especially the linear ones, are considerably more variable. Nearly all of the linear plasmids have undergone one or more substantial inter-plasmid rearrangements since their last common ancestor. In spite of these rearrangements and differences in plasmid contents, the overall gene complement of the different isolates has remained relatively constant. PMID:22432010

  5. Genome Stability of Lyme Disease Spirochetes: Comparative Genomics of Borrelia burgdorferi Plasmids

    SciTech Connect

    Casjens S. R.; Dunn J.; Mongodin, E. F.; Qiu, W.-G.; Luft, B. J.; Schutzer, S. E.; Gilcrease, E. B.; Huang, W. M.; Vujadinovic, M.; Aron, J. K.; Vargas, L. C.; Freeman, S.; Radune, D.; Weidman, J. F.; Dimitrov, G. I.; Khouri, H. M.; Sosa, J. E.; Halpin, R. A.; Fraser, C. M.

    2012-03-14

    Lyme disease is the most common tick-borne human illness in North America. In order to understand the molecular pathogenesis, natural diversity, population structure and epizootic spread of the North American Lyme agent, Borrelia burgdorferi sensu stricto, a much better understanding of the natural diversity of its genome will be required. Towards this end we present a comparative analysis of the nucleotide sequences of the numerous plasmids of B. burgdorferi isolates B31, N40, JD1 and 297. These strains were chosen because they include the three most commonly studied laboratory strains, and because they represent different major genetic lineages and so are informative regarding the genetic diversity and evolution of this organism. A unique feature of Borrelia genomes is that they carry a large number of linear and circular plasmids, and this work shows that strains N40, JD1, 297 and B31 carry related but non-identical sets of 16, 20, 19 and 21 plasmids, respectively, that comprise 33-40% of their genomes. We deduce that there are at least 28 plasmid compatibility types among the four strains. The B. burgdorferi {approx}900 Kbp linear chromosomes are evolutionarily exceptionally stable, except for a short {le}20 Kbp plasmid-like section at the right end. A few of the plasmids, including the linear lp54 and circular cp26, are also very stable. We show here that the other plasmids, especially the linear ones, are considerably more variable. Nearly all of the linear plasmids have undergone one or more substantial inter-plasmid rearrangements since their last common ancestor. In spite of these rearrangements and differences in plasmid contents, the overall gene complement of the different isolates has remained relatively constant.

  6. BB0844, an RpoS-Regulated Protein, Is Dispensable for Borrelia burgdorferi Infectivity and Maintenance in the Mouse-Tick Infectious Cycle▿

    PubMed Central

    Banik, Sukalyani; Terekhova, Darya; Iyer, Radha; Pappas, Christopher J.; Caimano, Melissa J.; Radolf, Justin D.; Schwartz, Ira

    2011-01-01

    The genome of Borrelia burgdorferi, the causative agent of Lyme disease, is comprised of a large linear chromosome and numerous smaller linear and circular plasmids. B. burgdorferi exhibits substantial genomic variation, and previous studies revealed genotype-specific variation at the right chromosomal telomere. A correlation has also been established between genotype and invasiveness. The correlation between chromosome length and genotype and between genotype and invasiveness suggested that a gene(s) at the right chromosome telomere may be required for virulence. Of particular interest was bb0844, an RpoS-regulated gene at the right telomere, the expression of which is induced when the spirochete undergoes adaptation to the mammalian host. The structure of the right chromosomal telomere was examined in 53 B. burgdorferi clinical isolates of various genotypes. Four distinct patterns were observed for bb0844: (i) chromosomal localization, (ii) plasmid localization, (iii) presence on both chromosome and plasmid, and (iv) complete absence. These patterns correlated with the B. burgdorferi genotype. On the basis of available sequence data, we propose a mechanism for the genomic rearrangements that accounts for the variability in bb0844 genomic localization. To further explore the role of BB0844 in the spirochete life cycle, a bb0844 deletion mutant was constructed by allelic exchange, and the viability of wild-type and bb0844 deletion mutants was examined in an experimental mouse-tick infection model. The bb0844 mutant was fully infectious in C3H/HeJ mice by either needle inoculation or tick transmission with B. burgdorferi-infected Ixodes scapularis larvae. Naïve larval ticks acquired both wild-type and mutant spirochetes with equal efficiency from B. burgdorferi-infected mice. The results demonstrate that BB0844 is not required for spirochete viability, pathogenicity, or maintenance in the tick vector or the mammalian host. At present, a defined role for BB0844 in B

  7. Blocking pathogen transmission at the source: reservoir targeted OspA-based vaccines against Borrelia burgdorferi

    PubMed Central

    Gomes-Solecki, Maria

    2014-01-01

    Control strategies are especially challenging for microbial diseases caused by pathogens that persist in wildlife reservoirs and use arthropod vectors to cycle amongst those species. One of the most relevant illnesses that pose a direct human health risk is Lyme disease; in the US, the Centers for Disease Control and Prevention recently revised the probable number of cases by 10-fold, to 300,000 cases per year. Caused by Borrelia burgdorferi, Lyme disease can affect the nervous system, joints and heart. No human vaccine is approved by the Food and Drug Administration. In addition to novel human vaccines, new strategies for prevention of Lyme disease consist of pest management interventions, vector-targeted vaccines and reservoir-targeted vaccines. However, even human vaccines can not prevent Lyme disease expansion into other geographical areas. The other strategies aim at reducing tick density and at disrupting the transmission of B. burgdorferi by targeting one or more key elements that maintain the enzootic cycle: the reservoir host and/or the tick vector. Here, I provide a brief overview of the application of an OspA-based wildlife reservoir targeted vaccine aimed at reducing transmission of B. burgdorferi and present it as a strategy for reducing Lyme disease risk to humans. PMID:25309883

  8. Development of an extrachromosomal cloning vector system for use in Borrelia burgdorferi.

    PubMed

    Sartakova, M; Dobrikova, E; Cabello, F C

    2000-04-25

    Molecular genetic analysis of Borrelia burgdorferi, the cause of Lyme disease, has been hampered by the absence of any means of efficient generation, identification, and complementation of chromosomal and plasmid null gene mutants. The similarity of borrelial G + C content to that of Gram-positive organisms suggested that a wide-host-range plasmid active in Gram-positive bacteria might also be recognized by borrelial DNA replication machinery. One such plasmid, pGK12, is able to propagate in both Gram-positive and Gram-negative bacteria and carries erythromycin and chloramphenicol resistance markers. pGK12 propagated extrachromosomally in B. burgdorferi B31 after electroporation but conferred only erythromycin resistance. pGK12 was used to express enhanced green fluorescent protein in B31 under the control of the flaB promoter. Escherichia coli transformed with pGK12 DNA extracted from B31 expressing only erythromycin resistance developed both erythromycin and chloramphenicol resistance, and plasmid DNA isolated from these transformed E. coli had a restriction pattern similar to the original pGK12. Our data indicate that the replicons of pGK12 can provide the basis to continue developing efficient genetic systems for B. burgdorferi together with the erythromycin resistance and reporter egfp genes. PMID:10781091

  9. Microarray-Based Comparative Genomic and Transcriptome Analysis of Borrelia burgdorferi

    PubMed Central

    Iyer, Radha; Schwartz, Ira

    2016-01-01

    Borrelia burgdorferi, the spirochetal agent of Lyme disease, is maintained in nature in a cycle involving a tick vector and a mammalian host. Adaptation to the diverse conditions of temperature, pH, oxygen tension and nutrient availability in these two environments requires the precise orchestration of gene expression. Over 25 microarray analyses relating to B. burgdorferi genomics and transcriptomics have been published. The majority of these studies has explored the global transcriptome under a variety of conditions and has contributed substantially to the current understanding of B. burgdorferi transcriptional regulation. In this review, we present a summary of these studies with particular focus on those that helped define the roles of transcriptional regulators in modulating gene expression in the tick and mammalian milieus. By performing comparative analysis of results derived from the published microarray expression profiling studies, we identified composite gene lists comprising differentially expressed genes in these two environments. Further, we explored the overlap between the regulatory circuits that function during the tick and mammalian phases of the enzootic cycle. Taken together, the data indicate that there is interplay among the distinct signaling pathways that function in feeding ticks and during adaptation to growth in the mammal. PMID:27600075

  10. BB0238, a Presumed Tetratricopeptide Repeat-Containing Protein, Is Required during Borrelia burgdorferi Mammalian Infection

    PubMed Central

    Groshong, Ashley M.; Fortune, Danielle E.; Moore, Brendan P.; Spencer, Horace J.; Skinner, Robert A.; Bellamy, William T.

    2014-01-01

    The Lyme disease spirochete, Borrelia burgdorferi, occupies both a tick vector and mammalian host in nature. Considering the unique enzootic life cycle of B. burgdorferi, it is not surprising that a large proportion of its genome is composed of hypothetical proteins not found in other bacterial pathogens. bb0238 encodes a conserved hypothetical protein of unknown function that is predicted to contain a tetratricopeptide repeat (TPR) domain, a structural motif responsible for mediating protein-protein interactions. To evaluate the role of bb0238 during mammalian infection, a bb0238-deficient mutant was constructed. The bb0238 mutant was attenuated in mice infected via needle inoculation, and complementation of bb0238 expression restored infectivity to wild-type levels. bb0238 expression does not change in response to varying culture conditions, and thus, it appears to be constitutively expressed under in vitro conditions. bb0238 is expressed in murine tissues during infection, though there was no significant change in expression levels among different tissue types. Localization studies indicate that BB0238 is associated with the inner membrane of the spirochete and is therefore unlikely to promote interaction with host ligands during infection. B. burgdorferi clones containing point mutations in conserved residues of the putative TPR motif of BB0238 demonstrated attenuation in mice that was comparable to that in the bb0238 deletion mutant, suggesting that BB0238 may contain a functional TPR domain. PMID:25069985

  11. BB0238, a presumed tetratricopeptide repeat-containing protein, is required during Borrelia burgdorferi mammalian infection.

    PubMed

    Groshong, Ashley M; Fortune, Danielle E; Moore, Brendan P; Spencer, Horace J; Skinner, Robert A; Bellamy, William T; Blevins, Jon S

    2014-10-01

    The Lyme disease spirochete, Borrelia burgdorferi, occupies both a tick vector and mammalian host in nature. Considering the unique enzootic life cycle of B. burgdorferi, it is not surprising that a large proportion of its genome is composed of hypothetical proteins not found in other bacterial pathogens. bb0238 encodes a conserved hypothetical protein of unknown function that is predicted to contain a tetratricopeptide repeat (TPR) domain, a structural motif responsible for mediating protein-protein interactions. To evaluate the role of bb0238 during mammalian infection, a bb0238-deficient mutant was constructed. The bb0238 mutant was attenuated in mice infected via needle inoculation, and complementation of bb0238 expression restored infectivity to wild-type levels. bb0238 expression does not change in response to varying culture conditions, and thus, it appears to be constitutively expressed under in vitro conditions. bb0238 is expressed in murine tissues during infection, though there was no significant change in expression levels among different tissue types. Localization studies indicate that BB0238 is associated with the inner membrane of the spirochete and is therefore unlikely to promote interaction with host ligands during infection. B. burgdorferi clones containing point mutations in conserved residues of the putative TPR motif of BB0238 demonstrated attenuation in mice that was comparable to that in the bb0238 deletion mutant, suggesting that BB0238 may contain a functional TPR domain. PMID:25069985

  12. Borrelia burgdorferi BmpA Is a Laminin-Binding Protein▿

    PubMed Central

    Verma, Ashutosh; Brissette, Catherine A.; Bowman, Amy; Stevenson, Brian

    2009-01-01

    The Borrelia burgdorferi BmpA outer surface protein plays a significant role in mammalian infection by the Lyme disease spirochete and is an important antigen for the serodiagnosis of human infection. B. burgdorferi adheres to host extracellular matrix components, including laminin. The results of our studies indicate that BmpA and its three paralogous proteins, BmpB, BmpC, and BmpD, all bind to mammalian laminin. BmpA did not bind mammalian type I or type IV collagens or fibronectin. BmpA-directed antibodies significantly inhibited the adherence of live B. burgdorferi to laminin. The laminin-binding domain of BmpA was mapped to the carboxy-terminal 80 amino acids. Solubilized collagen inhibited BmpA-laminin binding, suggesting interactions through the collagen-binding domains of laminin. These results, together with previous data, indicate that BmpA and its paralogs are targets for the development of preventative and curative therapies for Lyme disease. PMID:19703983

  13. Transcription and genetic analyses of a putative N-acetylmuramyl-L-alanine amidase in Borrelia burgdorferi

    PubMed Central

    Yang, Yu; Li, Chunhao

    2010-01-01

    In this study, a putative N-acetylmuramyl-L-alanine amidase gene (bb0666) was identified in the genome of the Lyme disease spirochete Borrelia burgdorferi. This protein shares c. 30% identity with its counterparts from other bacteria. Reverse transcriptase-PCR analysis showed that bb0666 along with two other genes (bb0665 and bb0667) are cotranscribed with the motility and chemotaxis genes. This newly identified operon is termed as pami. Sequence and primer extension analyses showed that pami was regulated by a σ70-like promoter, which is designated as Pami. Transcriptional analysis using a gene encoding green fluorescence protein as a reporter demonstrated that Pami functions in both Escherichia coli and B. burgdorferi. Genetic studies showed that the Δbb0666 mutant grows in long chains of unseparated cells, whose phenotype is similar to its counterparts in E. coli. Taken together, these results demonstrate that bb0666 is a homolog of MurNac-LAAs that contributes to the cell division of B. burgdorferi. PMID:19025570

  14. Porin activity of the native and recombinant outer membrane protein Oms28 of Borrelia burgdorferi.

    PubMed Central

    Skare, J T; Champion, C I; Mirzabekov, T A; Shang, E S; Blanco, D R; Erdjument-Bromage, H; Tempst, P; Kagan, B L; Miller, J N; Lovett, M A

    1996-01-01

    The outer membrane-spanning (Oms) proteins of Borrelia burgdorferi have been visualized by freeze-fracture analysis but, until recently, not further characterized. We developed a method for the isolation of B. burgdorferi outer membrane vesicles and described porin activities with single-channel conductances of 0.6 and 12.6 nS in 1 M KCI. By using both nondenaturing isoelectric focusing gel electrophoresis and fast-performance liquid chromatography separation after detergent solubilization, we found that the 0.6-nS porin activity resided in a 28-kDa protein, designated Oms28. The oms28 gene was cloned, and its nucleotide sequence was determined. The deduced amino acid sequence of Oms28 predicted a 257-amino-acid precursor protein with a putative 24-amino-acid leader peptidase I signal sequence. Processed Oms28 yielded a mature protein with a predicted molecular mass of 25,363 Da. When overproduced in Escherichia coli, the Oms28 porin fractionated in part to the outer membrane. Sodium dodecyl sulfate-polyacrylamide gel-purified recombinant Oms28 from E. coli retained functional activity as demonstrated by an average single-channel conductance of 1.1 nS in the planar lipid bilayer assay. These findings confirmed that Oms28 is a B. burgdorferi porin, the first to be described. As such, it is potential relevance to the pathogenesis of Lyme borreliosis and to the physiology of the spirochete. PMID:8759855

  15. Essential protective role attributed to the surface lipoproteins of Borrelia burgdorferi against innate defenses

    PubMed Central

    Xu, Qilong; McShan, Kristy; Liang, Fang Ting

    2008-01-01

    Summary To initiate infection, a microbial pathogen must be able to evade innate immunity. Here we show that the Lyme disease spirochete Borrelia burgdorferi depends on its surface lipoproteins for protection against innate defenses. The deficiency for OspC, an abundantly expressed surface lipoprotein during early infection, led to quick clearance of B. burgdorferi after inoculation into the skin of SCID mice. Increasing expression of any of the four randomly chosen surface lipoproteins, OspA, OspE, VlsE or DbpA, fully protected the ospC mutant from elimination from the skin tissue of SCID mice; moreover, increased OspA, OspE, or VlsE expression allowed the mutant to cause disseminated infection and restored the ability to effectively colonize both joint and skin tissues, albeit the dissemination process was much slower than that of the mutant restored with OspC expression. When the ospC mutant was modified to express OspA under control of the ospC regulatory elements, it registered only a slight increase in the 50% infectious dose than the control in SCID mice but a dramatic increase in immunocompetent mice. Taken together, the study demonstrated that the surface lipoproteins provide B. burgdorferi with an essential protective function against host innate elimination. PMID:18452586

  16. Apparent Role for Borrelia burgdorferi LuxS during Mammalian Infection

    PubMed Central

    Arnold, William K.; Savage, Christina R.; Antonicello, Alyssa D.

    2015-01-01

    The Lyme disease spirochete, Borrelia burgdorferi, controls protein expression patterns during its tick-mammal infection cycle. Earlier studies demonstrated that B. burgdorferi synthesizes 4,5-dihydroxy-2,3-pentanedione (autoinducer-2 [AI-2]) and responds to AI-2 by measurably changing production of several infection-associated proteins. luxS mutants, which are unable to produce AI-2, exhibit altered production of several proteins. B. burgdorferi cannot utilize the other product of LuxS, homocysteine, indicating that phenotypes of luxS mutants are not due to the absence of that molecule. Although a previous study found that a luxS mutant was capable of infecting mice, a critical caveat to those results is that bacterial loads were not quantified. To more precisely determine whether LuxS serves a role in mammalian infection, mice were simultaneously inoculated with congenic wild-type and luxS strains, and bacterial numbers were assessed using quantitative PCR. The wild-type bacteria substantially outcompeted the mutants, suggesting that LuxS performs a significant function during mammalian infection. These data also provide further evidence that nonquantitative infection studies do not necessarily provide conclusive results and that regulatory factors may not make all-or-none, black-or-white contributions to infectivity. PMID:25605770

  17. Mechanisms generating long range correlation in nucleotide composition of the Borrelia Burgdorferi genome

    NASA Astrophysics Data System (ADS)

    Mackiewicz, P.; Gierlik, A.; Kowalczuk, M.; Szczepanik, D.; Dudek, M. R.; Cebrat, S.

    1999-12-01

    We have analysed protein coding and intergenic sequences in the Borrelia burgdorferi (the Lyme disease bacterium) genome using different kinds of DNA walks. Genes occupying the leading strand of DNA have significantly different nucleotide composition from genes occupying the lagging strand. Nucleotide compositional bias of the two DNA strands reflects the aminoacid composition of proteins. 96% of genes coding for ribosomal proteins lie on the leading DNA strand, which suggests that the positions of these as well as other genes are non-random. In the B. burgdorferi genome, the asymmetry in intergenic DNA sequences is lower than the asymmetry in the third positions in codons. All these characters of the B. burgdorferi genome suggest that both replication-associated mutational pressure and recombination mechanisms have established the specific structure of the genome and now any recombination leading to inversion of a gene in respect to the direction of replication is forbidden. This property of the genome allows us to assume that it is in a steady state, which enables us to fix some parameters for simulations of DNA evolution.

  18. The BBA33 lipoprotein binds collagen and impacts Borrelia burgdorferi pathogenesis

    PubMed Central

    Zhi, Hui; Weening, Eric H.; Barbu, Elena Magda; Hyde, Jenny A.; Höök, Magnus; Skare, Jon T.

    2016-01-01

    Summary Borrelia burgdorferi , the etiologic agent of Lyme disease, adapts to the mammalian hosts by differentially expressing several genes in the BosR and Rrp2-RpoN-RpoS dependent pathways, resulting in a distinct protein profile relative to that seen for survival in the Ixodes spp. tick. Previous studies indicate that a putative lipoprotein, BBA33, is produced in an RpoS-dependent manner under conditions that mimic the mammalian component of the borrelial lifecycle. However, the significance and function for BBA33 is not known. Given its linkage to the BosR/Rrp2-RpoN-RpoS regulatory cascade, we hypothesized that BBA33 facilitates B. burgdorferi infection in the mammalian host. The deletion of bba33 eliminated B. burgdorferi infectivity in C3H mice, which was rescued by genetic complementation with intact bba33. With regard to function, a combinatorial peptide approach, coupled with subsequent in vitro binding assays, indicated that BBA33 binds to collagen type VI and, to a lesser extent, collagen type IV. Whole cell binding assays demonstrated BBA33-dependent binding to human collagen type VI. Taken together, these results suggest that BBA33 interacts with collagenous structures and may function as an adhesin in a process that is required to prevent bacterial clearance. PMID:25560615

  19. In vitro susceptibilities of Leptospira spp. and Borrelia burgdorferi isolates to amoxicillin, tilmicosin, and enrofloxacin.

    PubMed

    Kim, Doo; Kordick, Dorsey; Divers, Thomas; Chang, Yung Fu

    2006-12-01

    Antimicrobial susceptibility testing was conducted with 6 different spirochetal strains (4 strains of Leptospira spp. and 2 strains of Borrelia burgdorferi) against 3 antimicrobial agents, commonly used in equine and bovine practice. The ranges of MIC and MBC of amoxicillin against Leptospira spp. were 0.05 - 6.25 microgram/ml and 6.25 - 25.0 microgram/ml, respectively. And the ranges of minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of amoxicillin against B. burgdorferi were 0.05 - 0.39 microgram/ml and 0.20 - 0.78 microgram/ml, respectively. The ranges of MIC and MBC of enrofloxacin against Leptospira spp. were 0.05 - 0.39 microgram/ml and 0.05 - 0.39 microgram/ml, respectively. Two strains of B. burgdorferi were resistant to enrofloxacin at the highest concentration tested for MBC (>or=100 microgram/ml). Therefore, the potential role of tilmicosin in the treatment of leptospirosis and borreliosis should be further evaluated in animal models to understand whether the in vivo studies will confirm in vitro results. All spirochetal isolates were inhibited (MIC) and were killed (MBC) by tilmicosin at concentrations below the limit of testing (

  20. Microarray-Based Comparative Genomic and Transcriptome Analysis of Borrelia burgdorferi.

    PubMed

    Iyer, Radha; Schwartz, Ira

    2016-01-01

    Borrelia burgdorferi, the spirochetal agent of Lyme disease, is maintained in nature in a cycle involving a tick vector and a mammalian host. Adaptation to the diverse conditions of temperature, pH, oxygen tension and nutrient availability in these two environments requires the precise orchestration of gene expression. Over 25 microarray analyses relating to B. burgdorferi genomics and transcriptomics have been published. The majority of these studies has explored the global transcriptome under a variety of conditions and has contributed substantially to the current understanding of B. burgdorferi transcriptional regulation. In this review, we present a summary of these studies with particular focus on those that helped define the roles of transcriptional regulators in modulating gene expression in the tick and mammalian milieus. By performing comparative analysis of results derived from the published microarray expression profiling studies, we identified composite gene lists comprising differentially expressed genes in these two environments. Further, we explored the overlap between the regulatory circuits that function during the tick and mammalian phases of the enzootic cycle. Taken together, the data indicate that there is interplay among the distinct signaling pathways that function in feeding ticks and during adaptation to growth in the mammal. PMID:27600075

  1. The BBA33 lipoprotein binds collagen and impacts Borrelia burgdorferi pathogenesis.

    PubMed

    Zhi, Hui; Weening, Eric H; Barbu, Elena Magda; Hyde, Jenny A; Höök, Magnus; Skare, Jon T

    2015-04-01

    Borrelia burgdorferi, the etiologic agent of Lyme disease, adapts to the mammalian hosts by differentially expressing several genes in the BosR and Rrp2-RpoN-RpoS dependent pathways, resulting in a distinct protein profile relative to that seen for survival in the Ixodes spp. tick. Previous studies indicate that a putative lipoprotein, BBA33, is produced in an RpoS-dependent manner under conditions that mimic the mammalian component of the borrelial lifecycle. However, the significance and function for BBA33 is not known. Given its linkage to the BosR/Rrp2-RpoN-RpoS regulatory cascade, we hypothesized that BBA33 facilitates B. burgdorferi infection in the mammalian host. The deletion of bba33 eliminated B. burgdorferi infectivity in C3H mice, which was rescued by genetic complementation with intact bba33. With regard to function, a combinatorial peptide approach, coupled with subsequent in vitro binding assays, indicated that BBA33 binds to collagen type VI and, to a lesser extent, collagen type IV. Whole cell binding assays demonstrated BBA33-dependent binding to human collagen type VI. Taken together, these results suggest that BBA33 interacts with collagenous structures and may function as an adhesin in a process that is required to prevent bacterial clearance. PMID:25560615

  2. Distribution and Habitat of Ixodes pacificus (Acari: Ixodidae) and Prevalence of Borrelia burgdorferi in Utah.

    PubMed

    Davis, Ryan S; Ramirez, Ricardo A; Anderson, J Laine; Bernhardt, Scott A

    2015-11-01

    Knowledge about the distribution and abundance of the western black-legged tick, Ixodes pacificus Cooley and Kohls, in Utah is limited. Recent concerns over tick-borne diseases in Utah, primarily Lyme disease, have reinvigorated the need to understand the distribution and habitats favored by this tick species. We surveyed 157 sites throughout Utah to examine the distribution, abundance, and habitat of I. pacificus. In total, 343 adult ticks were collected from 2011 to 2013. Specifically, 119 I. pacificus, 217 Dermacentor andersoni Stiles, six D. albipictus Packard, and one D. hunteri Bishopp were collected. Overall, tick abundance was relatively low in the areas evaluated in Utah. I. pacificus collections were limited to sites above 1700 m. Ninety-two percent of I. pacificus were captured in the Sheeprock Mountains in Tooele County. I. pacificus positive collection sites were characterized by Gambel oak (Quercus gambelii Nuttall), juniper (Juniperus spp. L.), big sagebrush (Artemisia tridentata Nuttall) and black sagebrush (A. nova Nelson), and mixed grass habitat. All I. pacificus ticks were tested for the presence of Borrelia burgdorferi (Johnson, Schmid, Hyde, Steigerwalt, and Brenner, sensu stricto) using real-time PCR. All ticks tested negative for B. burgdorferi. The likelihood of encountering I. pacificus and acquiring Lyme disease in the areas evaluated in Utah is considerably low due to low tick abundance and limited distribution, as well as low prevalence (or absence) of B. burgdorferi in Utah. PMID:26336263

  3. Novel methods for surveying reservoir hosts and vectors of Borrelia burgdorferi in Northern Minnesota

    NASA Astrophysics Data System (ADS)

    Seifert, Veronica Aili

    Lyme disease is the most prevalent tick-borne disease in North America and presents challenges to clinicians, researchers and the public in diagnosis, treatment and prevention. Lyme disease is caused by the spirochete, Borrelia burgdorferi, which is a zoonotic pathogen obligate upon hematophagous arthropod vectors and propagates in small mammal reservoir hosts. Identifying factors governing zoonotic diseases within regions of high-risk provides local health and agricultural agencies with necessary information to formulate public policy and implement treatment protocols to abate the rise and expansion of infectious disease outbreaks. In the United States, the documented primary reservoir host of Lyme disease is the white-footed mouse, Peromyscus leucopus, and the arthropod vector is the deer tick, Ixodes scapularis. Reducing the impact of Lyme disease will need novel methods for identifying both the reservoir host and the tick vector. The reservoir host, Peromyscus leucopus is difficult to distinguish from the virtually identical Peromyscus maniculatus that also is present in Northern Minnesota, a region where Lyme disease is endemic. Collection of the Ixodes tick, the Lyme disease vector, is difficult as this is season dependent and differs from year to year. This study develops new strategies to assess the extent of Borrelia burgdorferi in the local environment of Northern Minnesota. A selective and precise method to identify Peromyscus species was developed. This assay provides a reliable and definitive method to identify the reservoir host, Peromyscus leucopus from a physically identical and sympatric Peromyscus species, Peromyscus maniculatus. A new strategy to collect ticks for measuring the disbursement of Borrelia was employed. Students from local high schools were recruited to collect ticks. This strategy increased the available manpower to cover greater terrain, provided students with valuable experience in research methodology, and highlighted the

  4. Structural and functional analysis of BB0689 from Borrelia burgdorferi, a member of the bacterial CAP superfamily.

    PubMed

    Brangulis, Kalvis; Jaudzems, Kristaps; Petrovskis, Ivars; Akopjana, Inara; Kazaks, Andris; Tars, Kaspars

    2015-12-01

    Spirochete Borrelia burgdorferi is the causative agent of Lyme disease and is transmitted from infected Ixodes ticks to a mammalian host after a tick bite. The outer surface protein BB0689 from B. burgdorferi is up-regulated when the tick feeds, which indicates a potential role for BB0689 in Lyme disease pathogenesis. We have determined the crystal structure of BB0689, which revealed that the protein belongs to the CAP superfamily. Though the CAP domain is widespread in all three cellular domains of life, thus far the CAP domain has been studied only in eukaryotes, in which it is usually linked to certain other domains to form a multi-domain protein and is associated with the mammalian reproductive tract, the plant response to pathogens, venom allergens from insects and reptiles, and the growth of human brain tumors. Though the exact function of the isolated CAP domain remains ambiguous, several functions, including the binding of cholesterol, lipids and heparan sulfate, have been recently attributed to different CAP domain proteins. In this study, the bacterial CAP domain structure was analyzed and compared with the previously solved crystal structures of representative CAPs, and the function of BB0689 was examined. To determine the potential function of BB0689 and ascertain whether the functions that have been attributed to the CAP domain proteins are conserved, the binding of previously reported CAP domain interaction partners was analyzed, and the results suggested that BB0689 has a unique function that is yet to be discovered. PMID:26407658

  5. P13, an Integral Membrane Protein of Borrelia burgdorferi, Is C-Terminally Processed and Contains Surface-Exposed Domains

    PubMed Central

    Noppa, Laila; Östberg, Yngve; Lavrinovicha, Marija; Bergström, Sven

    2001-01-01

    To elucidate antigens present on the bacterial surface of Borrelia burgdorferi sensu lato that may be involved in pathogenesis, we characterized a protein, P13, with an apparent molecular mass of 13 kDa. The protein was immunogenic and was expressed in large amounts during in vitro cultivation compared to other known antigens. An immunofluorescence assay, immunoelectron microscopy, and protease sensitivity assays indicated that P13 is surface exposed. The deduced sequence of the P13 peptide revealed a possible signal peptidase type I cleavage site, and computer analysis predicted that P13 is an integral membrane protein with three transmembrane-spanning domains. Mass spectrometry, in vitro translation, and N- and C-terminal amino acid sequencing analyses indicated that P13 was posttranslationally processed at both ends and modified by an unknown mechanism. Furthermore, p13 belongs to a gene family with five additional members in B. burgdorferi sensu stricto. The p13 gene is located on the linear chromosome of the bacterium, in contrast to five paralogous genes, which are located on extrachromosomal plasmids. The size of the p13 transcript was consistent with a monocistronic transcript. This new gene family may be involved in functions that are specific for this spirochete and its pathogenesis. PMID:11292755

  6. Nitrosative damage to free and zinc-bound cysteine thiols underlies nitric oxide toxicity in wild-type Borrelia burgdorferi

    PubMed Central

    Bourret, Travis J; Boylan, Julie A; Lawrence, Kevin A; Gherardini, Frank C

    2011-01-01

    Borrelia burgdorferi encounters potentially harmful reactive nitrogen species (RNS) throughout its infective cycle. In this study, diethylamine NONOate (DEA/NO) was used to characterize the lethal effects of RNS on B. burgdorferi. RNS produce a variety of DNA lesions in a broad spectrum of microbial pathogens; however, levels of the DNA deamination product, deoxyinosine, and the numbers of apurinic/apyrimidinic (AP) sites were identical in DNA isolated from untreated and DEA/NO-treated B. burgdorferi cells. Strains with mutations in the nucleotide excision repair (NER) pathway genes uvrC or uvrB treated with DEA/NO had significantly higher spontaneous mutation frequencies, increased numbers of AP sites in DNA and reduced survival compared with wild-type controls. Polyunsaturated fatty acids in B. burgdorferi cell membranes, which are susceptible to peroxidation by reactive oxygen species (ROS), were not sensitive to RNS-mediated lipid peroxidation. However, treatment of B. burgdorferi cells with DEA/NO resulted in nitrosative damage to several proteins, including the zinc-dependent glycolytic enzyme fructose-1,6-bisphosphate aldolase (BB0445), the Borrelia oxidative stress regulator (BosR) and neutrophil-activating protein (NapA). Collectively, these data suggested that nitrosative damage to proteins harbouring free or zinc-bound cysteine thiols, rather than DNA or membrane lipids underlies RNS toxicity in wild-type B. burgdorferi. PMID:21564333

  7. Genotypic diversity of an emergent population of Borrelia burgdorferi at a coastal Maine island recently colonized by Ixodes scapularis.

    PubMed

    MacQueen, Douglas D; Lubelczyk, Charles; Elias, Susan P; Cahill, Bruce K; Mathers, Amy J; Lacombe, Eleanor H; Rand, Peter W; Smith, Robert P

    2012-06-01

    The recent range expansion of Ixodes scapularis has been accompanied by the emergence of Borrelia burgdorferi. The development of genetic diversity in B. burgdorferi at these sites of emergence and its relationship to range expansion is poorly understood. We followed colonization of I. scapularis on a coastal Maine island over a 17-year period. B. burgdorferi's emergence was documented, as was expansion of ospC strain diversity. Ticks collected from rodents and vegetation were examined for the presence of B. burgdorferi. Sequencing and reverse line blot were used to detect B. burgdorferi ospC major groups (oMG). No I. scapularis were found until year four of the study, after which time they increased in abundance. No B. burgdorferi was detected by darkfield microscopy in I. scapularis until 10 years into the study, when 4% of adult ticks were infected. Seven years later, 43% of adult ticks were infected. In 2003, one oMG accounted for 91% of B. burgdorferi strains. This "founder" strain persisted in 2005, but by 2007 was a minority of the 7 oMGs present. Given the island's isolation, gene flow by avian introduction of multiple strains is suggested in the development of B. burgdorferi oMG diversity. PMID:22217172

  8. Serologic survey of the wild boar (Sus scrofa) for Borrelia burgdorferi sensu lato.

    PubMed

    Juricová, Z; Hubálek, Z

    2009-10-01

    Sera of 642 wild boars (Sus scrofa) shot by hunters in ten administrative regions of the Czech Republic during 1995-2000, were tested by indirect hemagglutination assay (IHA) for the presence of anti-Borrelia IgG. Antibodies to Borrelia burgdorferi sensu lato (Bb) were detected in serum samples from all 10 regions, and overall seroprevalence rate was 12.8%. Titres of antibodies ranged from 1:80 to 1:640. Borrelia antibodies were most frequent in the animals from three administrative regions of the Czech Republic: Moravskoslezsky (25.0%), Pardubicky (25.0%) and Královehradecky (24.1%), followed by the regions Plzen sky (16.7%), Olomoucky (13.3%), Jihomoravsky (12.8%), Vysoc ina (11.1%), Jihoc esky (11.1%), Zlínsky (10.3%), and Liberecky (8.9%). Seasonal seroprevalence rate increased in March and April, the peak was in May. The results suggest frequent exposure of wild boars to ixodid ticks infected with Bb, predominantly in rural and forested regions. The study also reviews the importance of wild boar in Lyme borreliosis (LB) ecology. Wild boar serology may provide another means of surveillance of endemic areas of LB. PMID:18973452

  9. Distribution of the Lyme Disease Spirochete Borrelia burgdorferi in Naturally and Experimentally Infected Western Gray Squirrels (Sciurus griseus)

    PubMed Central

    Jensen, Kelly; Salkeld, Daniel J.; Lane, Robert S.

    2010-01-01

    Abstract The dynamics of Borrelia burgdorferi infections within its natural hosts are poorly understood. We necropsied four wild-caught western gray squirrels (Sciurus griseus) that were acquired during a previous study that evaluated the reservoir competence of this rodent for the Lyme disease spirochete. One animal was infected experimentally, whereas the others were infected in the wild before capture. To investigate dissemination of B. burgdorferi and concurrent histopathologic lesions in different tissues, blood specimens, synovial and cerebrospinal fluid, ear-punch biopsies, and diverse tissue samples from skin and various organs were taken and examined by culture, polymerase chain reaction, and histology. Borrelia-positive cultures were obtained from three of the squirrels, that is, from skin biopsies (7 of 20 samples), ear-punch biopsies (2 of 8), and one (1 of 5) lymph node. Sequencing of amplicons confirmed B. burgdorferi sensu stricto (s.s.) infection in 9 of 10 culture-positive samples and in DNA extracted from all 10 positive cultures. The experimentally infected squirrel yielded most of the positive samples. In contrast, bodily fluids, all other organ specimens from these animals, and all samples from one naturally infected squirrel were negative for Borrelia for both assays. None of the necropsied squirrels exhibited specific clinical signs associated with B. burgdorferi. Similarly, necropsy and histological examination of tissues indicated the presence of underlying infectious processes, none of which could be ascribed conclusively to B. burgdorferi infection. Based on these results, obtained from a small number of animals investigated at a single time point, we suggest that B. burgdorferi s.s. infection in S. griseus may result in rather localized dissemination of spirochetes, and that mild or nonclinical disease might be more common after several months of infection duration. Since spirochetes could be detected in squirrels 7–21 months

  10. Life history of Ixodes (Ixodes) jellisoni (Acari: Ixodidae) and its vector competence for Borrelia burgdorferi sensu lato.

    PubMed

    Lane, R S; Peavey, C A; Padgett, K A; Hendson, M

    1999-05-01

    Ixodes (Ixodes) jellisoni Cooley & Kohls, a nonhuman biting and little known tick, is one of 4 members of the I. ricinus complex in the United States. A localized population of I. jellisoni inhabiting a grassland biotope in Mendocino County, CA, was studied from 1993 to 1997. Rodent trapping in all seasons revealed that the only host of both immature and adult I. jellisoni was the heteromyid rodent Dipodomys californicus Merriam. Field investigations suggested that I. jellisoni is nidicolous in habit, and laboratory findings demonstrated that it reproduces parthenogenetically. Known parthenogenetic females (n = 4) produced an average of 530 eggs of which 74% hatched, which was comparable to the fecundity and fertility of wild-caught females (n = 8). After the transstadial molt, 57 F1 or F2 nymphs derived from 2 wild-caught or 4 laboratory-reared, unmated females produced only females. Ixodes jellisoni males were not found on 112 wild-caught D. californicus individuals that were captured an average of 2 times. Collectively, these findings suggest that I. jellisoni may be obligatorily parthenogenetic. Borrelial isolates were obtained from 85% of 58 D. californicus and 33% of 21 I. jellisoni females removed from this rodent. None of the 7 infected female ticks passed borreliae ovarially to its F1 larval progeny. Eight D. californicus and 5 I. jellisoni-derived isolates that were genetically characterized belonged to 2 restriction pattern groups of Borrelia burgdorferi s.l. Neither restriction pattern group has been assigned to a particular genospecies yet. After placement on naturally infected D. californicus, noninfected larval ticks acquired and transstadially passed spirochetes as efficiently as (group 1 borreliae) or 6 times more efficiently (group 2 borreliae) than Ixodes pacificus Cooley & Kohls. As few as 1-4 infected I. jellisoni nymphs were capable of transmitting group 1 or group 2 borreliae to naive D. californicus. We conclude that I. jellisoni is a

  11. Identification of new drug candidates against Borrelia burgdorferi using high-throughput screening

    PubMed Central

    Pothineni, Venkata Raveendra; Wagh, Dhananjay; Babar, Mustafeez Mujtaba; Inayathullah, Mohammed; Solow-Cordero, David; Kim, Kwang-Min; Samineni, Aneesh V; Parekh, Mansi B; Tayebi, Lobat; Rajadas, Jayakumar

    2016-01-01

    Lyme disease is the most common zoonotic bacterial disease in North America. It is estimated that >300,000 cases per annum are reported in USA alone. A total of 10%–20% of patients who have been treated with antibiotic therapy report the recrudescence of symptoms, such as muscle and joint pain, psychosocial and cognitive difficulties, and generalized fatigue. This condition is referred to as posttreatment Lyme disease syndrome. While there is no evidence for the presence of viable infectious organisms in individuals with posttreatment Lyme disease syndrome, some researchers found surviving Borrelia burgdorferi population in rodents and primates even after antibiotic treatment. Although such observations need more ratification, there is unmet need for developing the therapeutic agents that focus on removing the persisting bacterial form of B. burgdorferi in rodent and nonhuman primates. For this purpose, high-throughput screening was done using BacTiter-Glo assay for four compound libraries to identify candidates that stop the growth of B. burgdorferi in vitro. The four chemical libraries containing 4,366 compounds (80% Food and Drug Administration [FDA] approved) that were screened are Library of Pharmacologically Active Compounds (LOPAC1280), the National Institutes of Health Clinical Collection, the Microsource Spectrum, and the Biomol FDA. We subsequently identified 150 unique compounds, which inhibited >90% of B. burgdorferi growth at a concentration of <25 µM. These 150 unique compounds comprise many safe antibiotics, chemical compounds, and also small molecules from plant sources. Of the 150 unique compounds, 101 compounds are FDA approved. We selected the top 20 FDA-approved molecules based on safety and potency and studied their minimum inhibitory concentration and minimum bactericidal concentration. The promising safe FDA-approved candidates that show low minimum inhibitory concentration and minimum bactericidal concentration values can be chosen as

  12. Diversity of Antibody Responses to Borrelia burgdorferi in Experimentally Infected Beagle Dogs

    PubMed Central

    Grosenbaugh, Deborah A.

    2014-01-01

    Lyme borreliosis (LB) is a common infection of domestic dogs in areas where there is enzootic transmission of the agent Borrelia burgdorferi. While immunoassays based on individual subunits have mostly supplanted the use of whole-cell preparations for canine serology, only a limited number of informative antigens have been identified. To more broadly characterize the antibody responses to B. burgdorferi infection and to assess the diversity of those responses in individual dogs, we examined sera from 32 adult colony-bred beagle dogs that had been experimentally infected with B. burgdorferi through tick bites and compared those sera in a protein microarray with sera from uninfected dogs in their antibody reactivities to various recombinant chromosome- and plasmid-encoded B. burgdorferi proteins, including 24 serotype-defining OspC proteins of North America. The profiles of immunogenic proteins for the dogs were largely similar to those for humans and natural-reservoir rodents; these proteins included the decorin-binding protein DbpB, BBA36, BBA57, BBA64, the fibronectin-binding protein BBK32, VlsE, FlaB and other flagellar structural proteins, Erp proteins, Bdr proteins, and all of the OspC proteins. In addition, the canine sera bound to the presumptive lipoproteins BBB14 and BB0844, which infrequently elicited antibodies in humans or rodents. Although the beagle, like most other domestic dog breeds, has a small effective population size and features extensive linkage disequilibrium, the group of animals studied here demonstrated diversity in antibody responses in measures of antibody levels and specificities for conserved proteins, such as DbpB, and polymorphic proteins, such as OspC. PMID:24695775

  13. Delineating the Requirement for the Borrelia burgdorferi Virulence Factor OspC in the Mammalian Host

    PubMed Central

    Stewart, Philip E.; Wang, Xiaohui; Bueschel, Dawn M.; Clifton, Dawn R.; Grimm, Dorothee; Tilly, Kit; Carroll, James A.; Weis, Janis J.; Rosa, Patricia A.

    2006-01-01

    We previously demonstrated that outer surface protein C (OspC) of Borrelia burgdorferi is essential for establishing mammalian infection. However, the role of OspC in mammalian infection is unknown. Here, we report experiments designed to distinguish between two models of OspC function in the mammalian host: (i) OspC fulfills an essential physiological role for growth and host adaptation or (ii) OspC provides a protective role for evasion of components of the innate immune response. We found that a B. burgdorferi ospC mutant, previously demonstrated to be noninfectious in both immunocompetent and SCID mice, could survive in the relatively immune-privileged environment of dialysis membrane chambers implanted within the peritoneum of a rat. The ospC mutant also adapts to the mammalian environment, as determined by the protein profiles of the chamber-cultivated spirochetes. Therefore, OspC does not appear to provide a physiological function for the survival of B. burgdorferi within the mammalian host. The second model, evasion of the innate immune system, was tested by assessing the infectivity of the ospC mutant in mice deficient for myeloid differentiation protein 88 (MyD88). Recent studies have shown that B. burgdorferi is prevented from reaching high cell numbers in the mammalian host by MyD88-dependent signaling pathways. The ospC mutant was incapable of infecting MyD88-deficient mice, suggesting that the role of OspC cannot be related solely to evasion of MyD88-mediated innate immunity. These results reiterate the importance of OspC in mammalian infection and eliminate simple models of function for this enigmatic protein. PMID:16714587

  14. Distribution and molecular analysis of Lyme disease spirochetes, Borrelia burgdorferi, isolated from ticks throughout California.

    PubMed Central

    Schwan, T G; Schrumpf, M E; Karstens, R H; Clover, J R; Wong, J; Daugherty, M; Struthers, M; Rosa, P A

    1993-01-01

    Previous studies describing the occurrence and molecular characteristics of Lyme disease spirochetes, Borrelia burgdorferi, from California have been restricted primarily to isolates obtained from the north coastal region of this large and ecologically diverse state. Our objective was to look for and examine B. burdorferi organisms isolated from Ixodes pacificus ticks collected from numerous regions spanning most parts of California where this tick is found. Thirty-one isolates of B. burgdorferi were examined from individual or pooled I. pacificus ticks collected from 25 counties throughout the state. One isolate was obtained from ticks collected at Wawona Campground in Yosemite National Park, documenting the occurrence of the Lyme disease spirochete in an area of intensive human recreational use. One isolate from an Ixodes neotomae tick from an additional county was also examined. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis, immunoblot analysis, agarose gel electrophoresis, Southern blot analysis, and the polymerase chain reaction were used to examine the molecular and genetic determinants of these uncloned, low-passage-number isolates. All of the isolates were identified as B. burgdorferi by their protein profiles and reactivities with monoclonal and polyclonal antibodies, and all the isolates were typed by the polymerase chain reaction as North American-type spirochetes (B. burgdorferi sensu stricto). Although products of the ospAB locus were identified in protein analyses in all of the isolates, several isolates contained deleted forms of this locus that would result in the expression of chimeric OspA-OspB proteins. The analysis of OspC demonstrated that this protein was widely conserved among the isolates but was also quite variable in its molecular mass and the amount of it that was expressed. Images PMID:8308101

  15. Use of an endogenous plasmid locus for stable in trans complementation in Borrelia burgdorferi.

    PubMed

    Kasumba, Irene N; Bestor, Aaron; Tilly, Kit; Rosa, Patricia A

    2015-02-01

    Targeted mutagenesis and complementation are important tools for studying genes of unknown function in the Lyme disease spirochete Borrelia burgdorferi. A standard method of complementation is reintroduction of a wild-type copy of the targeted gene on a shuttle vector. However, shuttle vectors are present at higher copy numbers than B. burgdorferi plasmids and are potentially unstable in the absence of selection, thereby complicating analyses in the mouse-tick infectious cycle. B. burgdorferi has over 20 plasmids, with some, such as linear plasmid 25 (lp25), carrying genes required by the spirochete in vivo but relatively unstable during in vitro cultivation. We propose that complementation on an endogenous plasmid such as lp25 would overcome the copy number and in vivo stability issues of shuttle vectors. In addition, insertion of a selectable marker on lp25 could ensure its stable maintenance by spirochetes in culture. Here, we describe the construction of a multipurpose allelic-exchange vector containing a multiple-cloning site and either of two selectable markers. This suicide vector directs insertion of the complementing gene into the bbe02 locus, a site on lp25 that was previously shown to be nonessential during both in vitro and in vivo growth. We demonstrate the functional utility of this strategy by restoring infectivity to an ospC mutant through complementation at this site on lp25 and stable maintenance of the ospC gene throughout mouse infection. We conclude that this represents a convenient and widely applicable method for stable gene complementation in B. burgdorferi. PMID:25452278

  16. Emergence of Ixodes scapularis and Borrelia burgdorferi, the Lyme disease vector and agent, in Ohio.

    PubMed

    Wang, Peng; Glowacki, Meaghan N; Hoet, Armando E; Needham, Glen R; Smith, Kathleen A; Gary, Richard E; Li, Xin

    2014-01-01

    Lyme disease, the most common vector-borne disease in the United States, is caused by a tick-borne infection with Borrelia burgdorferi. Currently, Ohio is considered by the Centers for Disease Control and Prevention (CDC) to be non-endemic for Lyme disease. The low incidence of Lyme disease in this state was largely attributed to the absence of the transmitting vector, Ixodes scapularis, commonly known as the blacklegged tick. However, a tick surveillance program established by Ohio Department of Health indicated that the number of I. scapularis in Ohio had increased sharply in recent years, from 0 - 5 ticks per year during 1983-2008 to 15 in 2009, 40 in 2010, and 184 in 2011. During the fall deer hunting season, examination of deer heads submitted to Ohio Department of Agriculture found 29 I. scapularis from 7 counties in 2010 and 1,830 from 25 counties in 2011. As of 2012, the tick had been found in 57 of the 88 counties of Ohio. In addition, all three active stages (larva, nymph, and adult) of I. scapularis were found in Tiverton Township of Coshocton County, demonstrating the presence of established tick populations at this central Ohio location. Of 530 nymphal or adult I. scapularis analyzed by quantitative polymerase chain reaction (qPCR), 32 (6.1%) tested positive for the B. burgdorferi flaB gene, ranging from 36 to 390,000 copies per tick. Antibodies to B. burgdorferi antigens were detected in 2 of 10 (20%) field-captured Peromyscus leucopus from Tiverton Township, and in 41 of 355 (11.5%) dogs residing in Ohio. Collectively, these data suggest that the enzootic life cycle of B. burgdorferi has become established in Ohio, which poses risk of Lyme disease to people and animals in the area. PMID:24926441

  17. Emergence of Ixodes scapularis and Borrelia burgdorferi, the Lyme disease vector and agent, in Ohio

    PubMed Central

    Wang, Peng; Glowacki, Meaghan N.; Hoet, Armando E.; Needham, Glen R.; Smith, Kathleen A.; Gary, Richard E.; Li, Xin

    2014-01-01

    Lyme disease, the most common vector-borne disease in the United States, is caused by a tick-borne infection with Borrelia burgdorferi. Currently, Ohio is considered by the Centers for Disease Control and Prevention (CDC) to be non-endemic for Lyme disease. The low incidence of Lyme disease in this state was largely attributed to the absence of the transmitting vector, Ixodes scapularis, commonly known as the blacklegged tick. However, a tick surveillance program established by Ohio Department of Health indicated that the number of I. scapularis in Ohio had increased sharply in recent years, from 0 - 5 ticks per year during 1983–2008 to 15 in 2009, 40 in 2010, and 184 in 2011. During the fall deer hunting season, examination of deer heads submitted to Ohio Department of Agriculture found 29 I. scapularis from 7 counties in 2010 and 1,830 from 25 counties in 2011. As of 2012, the tick had been found in 57 of the 88 counties of Ohio. In addition, all three active stages (larva, nymph, and adult) of I. scapularis were found in Tiverton Township of Coshocton County, demonstrating the presence of established tick populations at this central Ohio location. Of 530 nymphal or adult I. scapularis analyzed by quantitative polymerase chain reaction (qPCR), 32 (6.1%) tested positive for the B. burgdorferi flaB gene, ranging from 36 to 390,000 copies per tick. Antibodies to B. burgdorferi antigens were detected in 2 of 10 (20%) field-captured Peromyscus leucopus from Tiverton Township, and in 41 of 355 (11.5%) dogs residing in Ohio. Collectively, these data suggest that the enzootic life cycle of B. burgdorferi has become established in Ohio, which poses risk of Lyme disease to people and animals in the area. PMID:24926441

  18. Use of an Endogenous Plasmid Locus for Stable in trans Complementation in Borrelia burgdorferi

    PubMed Central

    Bestor, Aaron; Tilly, Kit; Rosa, Patricia A.

    2014-01-01

    Targeted mutagenesis and complementation are important tools for studying genes of unknown function in the Lyme disease spirochete Borrelia burgdorferi. A standard method of complementation is reintroduction of a wild-type copy of the targeted gene on a shuttle vector. However, shuttle vectors are present at higher copy numbers than B. burgdorferi plasmids and are potentially unstable in the absence of selection, thereby complicating analyses in the mouse-tick infectious cycle. B. burgdorferi has over 20 plasmids, with some, such as linear plasmid 25 (lp25), carrying genes required by the spirochete in vivo but relatively unstable during in vitro cultivation. We propose that complementation on an endogenous plasmid such as lp25 would overcome the copy number and in vivo stability issues of shuttle vectors. In addition, insertion of a selectable marker on lp25 could ensure its stable maintenance by spirochetes in culture. Here, we describe the construction of a multipurpose allelic-exchange vector containing a multiple-cloning site and either of two selectable markers. This suicide vector directs insertion of the complementing gene into the bbe02 locus, a site on lp25 that was previously shown to be nonessential during both in vitro and in vivo growth. We demonstrate the functional utility of this strategy by restoring infectivity to an ospC mutant through complementation at this site on lp25 and stable maintenance of the ospC gene throughout mouse infection. We conclude that this represents a convenient and widely applicable method for stable gene complementation in B. burgdorferi. PMID:25452278

  19. Identification of new drug candidates against Borrelia burgdorferi using high-throughput screening.

    PubMed

    Pothineni, Venkata Raveendra; Wagh, Dhananjay; Babar, Mustafeez Mujtaba; Inayathullah, Mohammed; Solow-Cordero, David; Kim, Kwang-Min; Samineni, Aneesh V; Parekh, Mansi B; Tayebi, Lobat; Rajadas, Jayakumar

    2016-01-01

    Lyme disease is the most common zoonotic bacterial disease in North America. It is estimated that >300,000 cases per annum are reported in USA alone. A total of 10%-20% of patients who have been treated with antibiotic therapy report the recrudescence of symptoms, such as muscle and joint pain, psychosocial and cognitive difficulties, and generalized fatigue. This condition is referred to as posttreatment Lyme disease syndrome. While there is no evidence for the presence of viable infectious organisms in individuals with posttreatment Lyme disease syndrome, some researchers found surviving Borrelia burgdorferi population in rodents and primates even after antibiotic treatment. Although such observations need more ratification, there is unmet need for developing the therapeutic agents that focus on removing the persisting bacterial form of B. burgdorferi in rodent and nonhuman primates. For this purpose, high-throughput screening was done using BacTiter-Glo assay for four compound libraries to identify candidates that stop the growth of B. burgdorferi in vitro. The four chemical libraries containing 4,366 compounds (80% Food and Drug Administration [FDA] approved) that were screened are Library of Pharmacologically Active Compounds (LOPAC1280), the National Institutes of Health Clinical Collection, the Microsource Spectrum, and the Biomol FDA. We subsequently identified 150 unique compounds, which inhibited >90% of B. burgdorferi growth at a concentration of <25 µM. These 150 unique compounds comprise many safe antibiotics, chemical compounds, and also small molecules from plant sources. Of the 150 unique compounds, 101 compounds are FDA approved. We selected the top 20 FDA-approved molecules based on safety and potency and studied their minimum inhibitory concentration and minimum bactericidal concentration. The promising safe FDA-approved candidates that show low minimum inhibitory concentration and minimum bactericidal concentration values can be chosen as lead

  20. Differences in prevalence of Borrelia burgdorferi and Anaplasma spp. infection among host-seeking Dermacentor occidentalis, Ixodes pacificus, and Ornithodoros coriaceus ticks in northwestern California

    PubMed Central

    Lane, Robert S.; Mun, Jeomhee; Peribáñez, Miguel A.; Fedorova, Natalia

    2010-01-01

    Previous studies revealed that the Pacific Coast tick (Dermacentor occidentalis) is infected occasionally with the agents of Lyme disease (Borrelia burgdorferi) or human granulocytic anaplasmosis (Anaplasma phagocytophilum) and that it is an inefficient experimental vector of B. burgdorferi. The relationship of the pajahuello tick (Ornithodoros coriaceus) to each of these bacterial zoonotic agents has not been reported. The primary bridging vector of both bacterial zoonotic agents to humans is the western black-legged tick (Ixodes pacificus). Because of the spatial and temporal overlap of D. occidentalis and O. coriaceus populations with those of I. pacificus in natural foci of B. burgdorferi and A. phagocytophilum in northwestern California, we conducted field and laboratory studies to determine if the Pacific Coast tick or the pajahuello tick potentially may serve as secondary vectors of either bacterium. Our findings reconfirmed that wild-caught D. occidentalis ticks are infected infrequently with B. burgdorferi or A. phagocytophilum, but some adult ticks from dense woodlands or chaparral were found to contain 2 important veterinary pathogens for the first time (Anaplasma bovis, A. ovis). The high prevalence of A. bovis infection (4.3%, n=185 ticks) within chaparral-derived ticks suggests that D. occidentalis could be an efficient vector of this rickettsia. Experimental attempts to transmit borreliae or Anaplasma spp. that may have been present in >100 wild-caught D. occidentalis adults to naïve rabbits were unsuccessful. Anaplasma spp. were not detected in O. coriaceus, but one (4.3%) of 23 nymphs was infected with B. bissettii. This finding and an antecedent report of a B. burgdorferi-like spirochete from the same tick species demonstrate that O. coriaceus sometimes acquires and transstadially passes Lyme disease group spirochetes. I. pacificus nymphs inhabiting a woodland nidus of B. burgdorferi and A. phagocytophilum had a 5-fold higher prevalence of

  1. The Heterogeneity, Distribution, and Environmental Associations of Borrelia burgdorferi Sensu Lato, the Agent of Lyme Borreliosis, in Scotland

    PubMed Central

    James, Marianne C.; Gilbert, Lucy; Bowman, Alan S.; Forbes, Ken J.

    2014-01-01

    Lyme borreliosis is an emerging infectious human disease caused by the Borrelia burgdorferi sensu lato complex of bacteria with reported cases increasing in many areas of Europe and North America. To understand the drivers of disease risk and the distribution of symptoms, which may improve mitigation and diagnostics, here we characterize the genetics, distribution, and environmental associations of B. burgdorferi s.l. genospecies across Scotland. In Scotland, reported Lyme borreliosis cases have increased almost 10-fold since 2000 but the distribution of B. burgdorferi s.l. is so far unstudied. Using a large survey of over 2200 Ixodes ricinus tick samples collected from birds, mammals, and vegetation across 25 sites we identified four genospecies: Borrelia afzelii (48%), Borrelia garinii (36%), Borrelia valaisiana (8%), and B. burgdorferi sensu stricto (7%), and one mixed genospecies infection. Surprisingly, 90% of the sequence types were novel and, importantly, up to 14% of samples were mixed intra-genospecies co-infections, suggesting tick co-feeding, feeding on multiple hosts, or multiple infections in hosts. B. garinii (hosted by birds) was considerably more genetically diverse than B. afzelii (hosted by small mammals), as predicted since there are more species of birds than small mammals and birds can import strains from mainland Europe. Higher proportions of samples contained B. garinii and B. valaisiana in the west, while B. afzelii and B. garinii were significantly more associated with mixed/deciduous than with coniferous woodlands. This may relate to the abundance of transmission hosts in different regions and habitats. These data on the genetic heterogeneity within and between Borrelia genospecies are a first step to understand pathogen spread and could help explain the distribution of patient symptoms, which may aid local diagnosis. Understanding the environmental associations of the pathogens is critical for rational policy making for disease risk

  2. Phagocytosis of Borrelia burgdorferi, the Lyme Disease Spirochete, Potentiates Innate Immune Activation and Induces Apoptosis in Human Monocytes▿

    PubMed Central

    Cruz, Adriana R.; Moore, Meagan W.; La Vake, Carson J.; Eggers, Christian H.; Salazar, Juan C.; Radolf, Justin D.

    2008-01-01

    We have previously demonstrated that phagocytosed Borrelia burgdorferi induces activation programs in human peripheral blood mononuclear cells that differ qualitatively and quantitatively from those evoked by equivalent lipoprotein-rich lysates. Here we report that ingested B. burgdorferi induces significantly greater transcription of proinflammatory cytokine genes than do lysates and that live B. burgdorferi, but not B. burgdorferi lysate, is avidly internalized by monocytes, where the bacteria are completely degraded within phagolysosomes. In the course of these experiments, we discovered that live B. burgdorferi also induced a dose-dependent decrease in monocytes but not a decrease in dendritic cells or T cells and that the monocyte population displayed morphological and biochemical hallmarks of apoptosis. Particularly noteworthy was the finding that apoptotic changes occurred predominantly in monocytes that had internalized spirochetes. Abrogation of phagocytosis with cytochalasin D prevented the death response. Heat-killed B. burgdorferi, which was internalized as well as live organisms, induced a similar degree of apoptosis of monocytes but markedly less cytokine production. Surprisingly, opsonophagocytosis of Treponema pallidum did not elicit a discernible cell death response. Our combined results demonstrate that B. burgdorferi confined to phagolysosomes is a potent inducer of cytosolic signals that result in (i) production of NF-κB-dependent cytokines, (ii) assembly of the inflammasome and activation of caspase-1, and (iii) induction of programmed cell death. We propose that inflammation and apoptosis represent mutually reinforcing components of the immunologic arsenal that the host mobilizes to defend itself against infection with Lyme disease spirochetes. PMID:17938216

  3. Lipopeptides of Borrelia burgdorferi outer surface proteins induce Th1 phenotype development in alphabeta T-cell receptor transgenic mice.

    PubMed Central

    Infante-Duarte, C; Kamradt, T

    1997-01-01

    Induction of the appropriate T helper cell (Th) subset is crucial for the resolution of infectious diseases and the prevention of immunopathology. Some pathogens preferentially induce Th1 or Th2 responses. How microorganisms influence Th phenotype development is unknown. We asked if Borrelia burgdorferi, the spirochete which causes Lyme arthritis, can promote a cytokine milieu in which T cells which are not specific for B. burgdorferi are induced to produce proinflammatory cytokines. Using alphabeta T-cell receptor transgenic mice as a source of T cells with a defined specificity other than for B. burgdorferi, we found that B. burgdorferi induced Th1 phenotype development in ovalbumin-specific transgenic T cells. Small synthetic lipopeptides corresponding to the N-terminal sequences of B. burgdorferi outer surface lipoproteins had similar effects. B. burgdorferi and its lipopeptides induced host cells to produce interleukin-12. When the peptides were used in delipidated form, they did not induce Th1 development. These findings may be of pathogenic importance, since it is currently assumed that a Th2-mediated antibody response is protective against B. burgdorferi. Bacteria associated with reactive arthritis, namely, Yersinia enterocolitica, Shigella flexneri, and Salmonella enteritidis, had different effects. The molecular definition of pathogen-host interactions determining cytokine production should facilitate rational therapeutic interventions directing the host response towards the desired cytokine response. Here, we describe small synthetic molecules capable of inducing Th1 phenotype development. PMID:9317013

  4. Borrelia burgdorferi Sensu Lato Spirochetes in Wild Birds in Northwestern California: Associations with Ecological Factors, Bird Behavior and Tick Infestation

    PubMed Central

    Newman, Erica A.; Eisen, Lars; Eisen, Rebecca J.; Fedorova, Natalia; Hasty, Jeomhee M.; Vaughn, Charles; Lane, Robert S.

    2015-01-01

    Although Borrelia burgdorferi sensu lato (s.l.) are found in a great diversity of vertebrates, most studies in North America have focused on the role of mammals as spirochete reservoir hosts. We investigated the roles of birds as hosts for subadult Ixodes pacificus ticks and potential reservoirs of the Lyme disease spirochete B. burgdorferi sensu stricto (s.s.) in northwestern California. Overall, 623 birds representing 53 species yielded 284 I. pacificus larvae and nymphs. We used generalized linear models and zero-inflated negative binomial models to determine associations of bird behaviors, taxonomic relationships and infestation by I. pacificus with borrelial infection in the birds. Infection status in birds was best explained by taxonomic order, number of infesting nymphs, sampling year, and log-transformed average body weight. Presence and counts of larvae and nymphs could be predicted by ground- or bark-foraging behavior and contact with dense oak woodland. Molecular analysis yielded the first reported detection of Borrelia bissettii in birds. Moreover, our data suggest that the Golden-crowned Sparrow (Zonotrichia atricapilla), a non-resident species, could be an important reservoir for B. burgdorferi s.s. Of 12 individual birds (9 species) that carried B. burgdorferi s.l.-infected larvae, no birds carried the same genospecies of B. burgdorferi s.l. in their blood as were present in the infected larvae removed from them. Possible reasons for this discrepancy are discussed. Our study is the first to explicitly incorporate both taxonomic relationships and behaviors as predictor variables to identify putative avian reservoirs of B. burgdorferi s.l. Our findings underscore the importance of bird behavior to explain local tick infestation and Borrelia infection in these animals, and suggest the potential for bird-mediated geographic spread of vector ticks and spirochetes in the far-western United States. PMID:25714376

  5. Absence of sodA Increases the Levels of Oxidation of Key Metabolic Determinants of Borrelia burgdorferi

    PubMed Central

    Esteve-Gassent, Maria D.; Smith, Trever C.; Small, Christina M.; Thomas, Derek P.; Seshu, J.

    2015-01-01

    Borrelia burgdorferi, the causative agent of Lyme disease, alters its gene expression in response to environmental signals unique to its tick vector or vertebrate hosts. B. burgdorferi carries one superoxide dismutase gene (sodA) capable of controlling intracellular superoxide levels. Previously, sodA was shown to be essential for infection of B. burgdorferi in the C3H/HeN model of Lyme disease. We employed two-dimensional electrophoresis (2-DE) and immunoblot analysis with antibodies specific to carbonylated proteins to identify targets that were differentially oxidized in the soluble fractions of the sodA mutant compared to its isogenic parental control strain following treatment with an endogenous superoxide generator, methyl viologen (MV, paraquat). HPLC-ESI-MS/MS analysis of oxidized proteins revealed that several proteins of the glycolytic pathway (BB0057, BB0020, BB0348) exhibited increased carbonylation in the sodA mutant treated with MV. Levels of ATP and NAD/NADH were reduced in the sodA mutant compared with the parental strain following treatment with MV and could be attributed to increased levels of oxidation of proteins of the glycolytic pathway. In addition, a chaperone, HtpG (BB0560), and outer surface protein A (OspA, BBA15) were also observed to be oxidized in the sodA mutant. Immunoblot analysis revealed reduced levels of Outer surface protein C (OspC), Decorin binding protein A (DbpA), fibronectin binding protein (BBK32), RpoS and BosR in the sodA mutant compared to the control strains. Viable sodA mutant spirochetes could not be recovered from both gp91/phox−⁄− and iNOS deficient mice while borrelial DNA was detected in multiple tissues samples from infected mice at significantly lower levels compared to the parental strain. Taken together, these observations indicate that the increased oxidation of select borrelial determinants and reduced levels of critical pathogenesis-associated lipoproteins contribute to the in vivo deficit of the sod

  6. Effectiveness of Stevia Rebaudiana Whole Leaf Extract Against the Various Morphological Forms of Borrelia Burgdorferi in Vitro.

    PubMed

    Theophilus, P A S; Victoria, M J; Socarras, K M; Filush, K R; Gupta, K; Luecke, D F; Sapi, E

    2015-12-01

    Lyme disease is a tick-borne multisystemic disease caused by Borrelia burgdorferi. Administering antibiotics is the primary treatment for this disease; however, relapse often occurs when antibiotic treatment is discontinued. The reason for relapse remains unknown, but recent studies suggested the possibilities of the presence of antibiotic resistant Borrelia persister cells and biofilms. In this study, we evaluated the effectiveness of whole leaf Stevia extract against B. burgdorferi spirochetes, persisters, and biofilm forms in vitro. The susceptibility of the different forms was evaluated by various quantitative techniques in addition to different microscopy methods. The effectiveness of Stevia was compared to doxycycline, cefoperazone, daptomycin, and their combinations. Our results demonstrated that Stevia had significant effect in eliminating B. burgdorferi spirochetes and persisters. Subculture experiments with Stevia and antibiotics treated cells were established for 7 and 14 days yielding, no and 10% viable cells, respectively compared to the above-mentioned antibiotics and antibiotic combination. When Stevia and the three antibiotics were tested against attached biofilms, Stevia significantly reduced B. burgdorferi forms. Results from this study suggest that a natural product such as Stevia leaf extract could be considered as an effective agent against B. burgdorferi. PMID:26716015

  7. Effectiveness of Stevia Rebaudiana Whole Leaf Extract Against the Various Morphological Forms of Borrelia Burgdorferi in Vitro

    PubMed Central

    Theophilus, P. A. S.; Victoria, M. J.; Socarras, K. M.; Filush, K. R.; Gupta, K.; Luecke, D. F.; Sapi, E.

    2015-01-01

    Lyme disease is a tick-borne multisystemic disease caused by Borrelia burgdorferi. Administering antibiotics is the primary treatment for this disease; however, relapse often occurs when antibiotic treatment is discontinued. The reason for relapse remains unknown, but recent studies suggested the possibilities of the presence of antibiotic resistant Borrelia persister cells and biofilms. In this study, we evaluated the effectiveness of whole leaf Stevia extract against B. burgdorferi spirochetes, persisters, and biofilm forms in vitro. The susceptibility of the different forms was evaluated by various quantitative techniques in addition to different microscopy methods. The effectiveness of Stevia was compared to doxycycline, cefoperazone, daptomycin, and their combinations. Our results demonstrated that Stevia had significant effect in eliminating B. burgdorferi spirochetes and persisters. Subculture experiments with Stevia and antibiotics treated cells were established for 7 and 14 days yielding, no and 10% viable cells, respectively compared to the above-mentioned antibiotics and antibiotic combination. When Stevia and the three antibiotics were tested against attached biofilms, Stevia significantly reduced B. burgdorferi forms. Results from this study suggest that a natural product such as Stevia leaf extract could be considered as an effective agent against B. burgdorferi. PMID:26716015

  8. Complement Receptor 3 Binds the Borrelia burgdorferi Outer Surface Proteins OspA and OspB in an iC3b-Independent Manner

    PubMed Central

    Garcia, Rodolfo C.; Murgia, Rossella; Cinco, Marina

    2005-01-01

    Persistence of borreliae within the vertebrate host depends on the fate of interactions between the spirochetes and target cells. The present work demonstrates the direct binding of the Borrelia burgdorferi outer surface proteins OspA and OspB to CR3 and that this binding is independent of iC3b. PMID:16113335

  9. Human cord blood contains an IGM antibody to the 41KD flagellar antigen of Borrelia burgdorferi.

    PubMed

    Cooke, W D; Orr, A S; Wiseman, B L; Rouse, S B; Murray, W C; Ranck, S G

    1993-10-01

    Natural antibodies are the IgM products of fetal and neonatal B cells. These are germline encoded low affinity antibodies with multiple specificities to self and exogenous antigens. Lyme borreliosis is the disease resulting from infection with the spirochete, Borrelia burgdorferi. The humoral response to this organism is brisk, directed at multiple proteins, and persistent. Antibody to the 41kd flagellar antigen is found early in disease, but may also be found in non-exposed individuals. These properties suggest that the anti-41kd antibody may be a natural antibody. We report here the finding of an IgM anti-41kd reactivity in 29% of cord blood samples from patients in an area non-endemic for Lyme disease. The results are consistent with the hypothesis that antibody to flagellin may be a germline encoded natural antibody, and could be important in the immunopathogenesis of Lyme arthritis and other arthritides. PMID:8211003

  10. The Borrelia burgdorferi 37-Kilodalton Immunoblot Band (P37) Used in Serodiagnosis of Early Lyme Disease Is the flaA Gene Product

    PubMed Central

    Gilmore, Robert D.; Murphree, Rendi L.; James, Angela M.; Sullivan, Sarah A.; Johnson, Barbara J. B.

    1999-01-01

    The 37-kDa protein (P37) of Borrelia burgdorferi is an antigen that elicits an early immunoglobulin M (IgM) antibody response in Lyme disease patients. The P37 gene was cloned from a B. burgdorferi genomic library by screening with antibody from a Lyme disease patient who had developed a prominent humoral response to the P37 antigen. DNA sequence analysis of this clone revealed the identity of P37 to be FlaA, an outer sheath protein of the periplasmic flagella. Recombinant P37 expression was accomplished in Escherichia coli by using a gene construct with the leader peptide deleted and fused to a 38-kDa E. coli protein. The recombinant antigen was reactive in IgM immunoblots using serum samples from patients clinically diagnosed with early Lyme disease that had been scored positive for B. burgdorferi anti-P37 reactivity. Lyme disease patient samples serologically negative for the B. burgdorferi P37 protein did not react with the recombinant. Recombinant P37 may be a useful component of a set of defined antigens for the serodiagnosis of early Lyme disease. This protein can be utilized as a marker in diagnostic immunoblots, aiding in the standardization of the present generation of IgM serologic tests. PMID:9986810

  11. Spirochetes in ticks and antibodies to Borrelia burgdorferi in white-tailed deer from Connecticut, New York State, and North Carolina.

    PubMed

    Magnarelli, L A; Anderson, J F; Apperson, C S; Fish, D; Johnson, R C; Chappell, W A

    1986-04-01

    Ticks were screened for spirochetes and serum samples from white-tailed deer (Odocoileus virginianus) were assayed for antibodies to Borrelia burgdorferi during 1983-1984. Using fluorescein isothiocyanate-labeled rabbit antibodies produced to B. burgdorferi, the etiologic agent of Lyme disease, spirochetes were detected in Ixodes dammini (10.5% of 1,193) and Dermacentor albipictus (0.6% of 157) adults from Connecticut, I. dammini nymphs (49.1% of 108) and adults (64.7% of 99) from Armonk, New York, and in I. scapularis (0.4% of 531) and Amblyomma americanum (3.5% of 173) adults from North Carolina. Infected ticks were either seeking hosts or feeding on deer during the summer and fall. Direct fluorescent antibody staining also revealed spirochetes in two larvae of I. scapularis that emerged from eggs deposited by separate females in the laboratory. Using indirect immunofluorescence tests, antibodies to B. burgdorferi were identified in white-tailed deer living in tick-infested areas of all three states. Aside from minor cross-reactivity, there was no serologic evidence of Treponema or Leptospira infections. Ixodes dammini is a primary vector of B. burgdorferi in northeastern United States, but in North Carolina, other ixodid ticks may transmit this spirochete to humans and wildlife. PMID:3520030

  12. Host, habitat and climate preferences of Ixodes angustus (Acari: Ixodidae) and infection with Borrelia burgdorferi and Anaplasma phagocytophilum in California, USA.

    PubMed

    Stephenson, Nicole; Wong, Johnny; Foley, Janet

    2016-10-01

    The Holarctic tick Ixodes angustus is a competent vector for Borrelia burgdorferi, the etiologic agent of Lyme disease, and possibly Anaplasma phagocytophilum, the etiologic agent of granulocytic anaplasmosis, as well. From 2005 to 2013, we collected host-feeding I. angustus individuals from live-trapped small mammals and by flagging vegetation from 12 study sites in northern and central California, and tested for B. burgdorferi sensu lato, A. phagocytophilum, and Rickettsia spp. DNA by real-time PCR. Among 261 I. angustus collected (259 from hosts and two by flagging), the most common hosts were tree squirrels (20 % of ticks) and chipmunks (37 %). The PCR-prevalence for A. phagocytophilum and B. burgdorferi in ticks was 2 % and zero, respectively. The minimum infection prevalence on pooled DNA samples was 10 % for Rickettsia spp. DNA sequencing of the ompA gene identified this rickettsia as Candidatus Rickettsia angustus, a putative endosymbiont. A zero-inflated negative binomial mixed effects model was used to evaluate geographical and climatological predictors of I. angustus burden. When host species within study site and season within year were included in the model as nested random effects, all significant variables revealed that I. angustus burden increased as temperature decreased. Together with published data, these findings suggest that I. angustus is a host generalist, has a broad geographic distribution, is more abundant in areas with lower temperature within it's range, and is rarely infected with the pathogens A. phagocytophilum and B. burgdorferi. PMID:27416728

  13. Detection of Borrelia burgdorferi sensu lato and spotted fever group rickettsiae in hard ticks (Acari, Ixodidae) parasitizing bats in Poland.

    PubMed

    Piksa, Krzysztof; Stańczak, Joanna; Biernat, Beata; Górz, Andrzej; Nowak-Chmura, Magdalena; Siuda, Krzysztof

    2016-04-01

    A total of 491 Ixodes vespertilionis and 8 Ixodes ricinus collected from bats and cave walls in southern Poland between 2010 and 2012 were examined by the polymerase chain reaction for tick-transmitted pathogens. PCR analysis for Borrelia burgdorferi s.l., Rickettsia spp., and Anaplasma phagocytophilum yielded negative results for all I. vespertilionis. DNA of Rickettsia helvetica was detected in three specimens of I. ricinus attached to Rhinolophus hipposideros or Myotis myotis, while Borrelia garinii was found in one tick parasitizing Myotis daubentonii. These pathogens were recorded for the first time in hard ticks that parasitized bats. PMID:26833325

  14. Panuveitis caused by Borrelia burgdorferi sensu lato infection.

    PubMed

    Mahne, Jasna; Kranjc, Branka Stirn; Strle, Franc; Ružić-Sabljić, Eva; Arnež, Maja

    2015-01-01

    A 13-year-old boy who presented with a red left eye, painful eye movement, blurred vision, photophobia and increased lacrimation, was diagnosed with 1-sided panuveitis with optic disk edema. Diagnostic work-up revealed borrelial antibodies in serum. Diagnosis of Lyme borreliosis was substantiated by demonstration of lymphocytic pleocytosis, intrathecal borrelial antibody synthesis, improvement after treatment with ceftriaxone and exclusion of other causes. PMID:25741803

  15. Structural Modeling and Physicochemical Characterization Provide Evidence that P66 Forms a β-Barrel in the Borrelia burgdorferi Outer Membrane

    PubMed Central

    Kenedy, Melisha R.; Luthra, Amit; Anand, Arvind; Dunn, Joshua P.; Radolf, Justin D.

    2014-01-01

    The Borrelia burgdorferi outer membrane (OM) contains numerous surface-exposed lipoproteins but a relatively low density of integral OM proteins (OMPs). Few membrane-spanning OMPs of B. burgdorferi have been definitively identified, and none are well characterized structurally. Here, we provide evidence that the borrelial OMP P66, a known adhesin with pore-forming activity, forms a β-barrel in the B. burgdorferi OM. Multiple computer-based algorithms predict that P66 forms a β-barrel with either 22 or 24 transmembrane domains. According to our predicted P66 topology, a lysine residue (K487) known to be sensitive to trypsin cleavage is located within a surface-exposed loop. When we aligned the mature P66 amino acid sequences from B. burgdorferi and B. garinii, we found that K487 was present only in the B. burgdorferi P66 protein sequence. When intact cells from each strain were treated with trypsin, only B. burgdorferi P66 was trypsin sensitive, indicating that K487 is surface exposed, as predicted. Consistent with this observation, when we inserted a c-Myc tag adjacent to K487 and utilized surface localization immunofluorescence, we detected the loop containing K487 on the surface of B. burgdorferi. P66 was examined by both Triton X-114 phase partitioning and circular dichroism, confirming that the protein is amphiphilic and contains extensive (48%) β-sheets, respectively. Moreover, P66 also was able to incorporate into liposomes and form channels in large unilamellar vesicles. Finally, blue native PAGE (BN-PAGE) revealed that under nondenaturing conditions, P66 is found in large complexes of ∼400 kDa and ∼600 kDa. Outer surface lipoprotein A (OspA) and OspB both coimmunoprecipitate with P66, demonstrating that P66 associates with OspA and OspB in B. burgdorferi. The combined computer-based structural analyses and supporting physicochemical properties of P66 provide a working model to further examine the porin and integrin-binding activities of this OMP as

  16. Relative infectivity of Borrelia burgdorferi in Lewis rats by various routes of inoculation.

    PubMed

    Moody, K D; Barthold, S W

    1991-02-01

    Various routes of Borrelia burgdorferi infection were studied in laboratory rats. Three-week-old Lewis rats were inoculated either intradermally (i.d.), intraperitoneally (i.p.), or oronasally (o.n.) with serial 10-fold dilutions of B. burgdorferi. Thirty days later, groups of rats were killed and serology, splenic culture, and histology were used to evaluate infection. Rats were successfully infected i.d. with 10(2-4) organisms or i.p. with 10(4-5) organisms. Neither three-day-old nor three-week-old rats were successfully infected o.n. with up to 10(6) organisms. For contact transmission, three-day-old or three-week-old inoculated rats were housed with unexposed littermates for 30 days. Inoculated rats became infected but contact rats remained free of infection. To study in utero transmission, five pregnant female Lewis rats were inoculated i.p. with 10(6) spirochetes at four days gestation. Although adult females seroconverted or had positive splenic cultures at 20 days gestation, the placentas and fetuses were uniformly culture-negative. Venereal transmission from seven infected females or six infected males to uninfected rats of the opposite sex was not demonstrated. PMID:2012256

  17. The distribution of canine exposure to Borrelia burgdorferi in a Lyme-Disease endemic area.

    PubMed Central

    Falco, R C; Smith, H A; Fish, D; Mojica, B A; Bellinger, M A; Harris, H L; Hechemy, K E

    1993-01-01

    OBJECTIVES. A serosurvey of canine exposure to Borrelia burgdorferi, the causative agent of human Lyme disease, was conducted in Westchester County, New York, to determine the distribution of exposure in an area endemic for Lyme disease. METHODS. A total of 1446 blood samples was collected from resident dogs and tested by modified enzyme-linked immunosorbent assay. Equivocal samples were further tested by immunoblot. A mean number of 57.8 samples was collected from each of 25 towns and cities. RESULTS. Seroprevalence rates for municipalities ranged from 6.5% to 85.2%. County seroprevalence was 49.2%. There was a significant difference among the rates for the northern (67.3%), central (45.2%), and southern (17.3%) regions. Multiple range analysis indicated homogeneity between the southern and central regions and the central and northern regions. CONCLUSIONS. Canine exposure to B burgdorferi increases in a south to north gradient within the county. Intensity of exposure, measured by enzyme-linked immunosorbent assay titers, indicates a similar pattern. The close association between dogs and humans suggests that human risk of acquiring Lyme disease within Westchester County is equally disparate and is inversely related to the degree of urbanization. PMID:8363007

  18. Atovaquone plus cholestyramine in patients coinfected with Babesia microti and Borrelia burgdorferi refractory to other treatment.

    PubMed

    Shoemaker, Ritchie C; Hudnell, H Kenneth; House, Dennis E; Van Kempen, Amy; Pakes, Gary E

    2006-01-01

    Ten percent of US patients with Lyme disease are coinfected with Babesia microti. A double-blind, placebo-controlled, crossover trial enrolled 25 patients with confirmed Borrelia burgdorferi/B microti coinfection, abnormal visual contrast sensitivity (VCS), and persistent symptoms despite prior treatment with atovaquone and azithromycin. Patients were randomly assigned to atovaquone suspension or placebo plus cholestyramine for 3 weeks, were crossed over for 3 weeks, and then received open-label atovaquone and cholestyramine for 6 weeks. Symptoms and VCS scores were recorded at baseline and after weeks 3, 6, 9, and 12. Improvements in symptoms and VCS deficits were observed only after at least 9 weeks of treatment. At week 12, 5 patients were asymptomatic, and 16 had a notable reduction in the number of symptoms. The entire cohort demonstrated significant increases in VCS scores. Adverse effects were rare. Patients coinfected with B burgdorferi and B microti derive measurable clinical benefit from prolonged treatment with atovaquone and cholestyramine. Longer-term combination therapy may be indicated. PMID:16644602

  19. BmpA is a surface-exposed outer membrane protein of Borrelia burgdorferi

    PubMed Central

    Bryksin, Anton V.; Tomova, Alexandra; Godfrey, Henry P.; Cabello, Felipe C.

    2010-01-01

    BmpA is an immunodominant protein of Borrelia burgdorferi as well as an arthritogenic factor. Rabbit anti-recombinant BmpA (rBmpA) antibodies were raised, characterized by assaying their cross reactivity with rBmpB, rBmpC and rBmpD, then rendered monospecific by absorption with rBmpB. This monospecific reagent reacted only with rBmpA in dot immunobinding and detected a single 39-kDa, pI 5.0, spot on two-dimensional immunoblots. It was used to assess BmpA cellular location. BmpA was present in both detergent-soluble and -insoluble fractions of Triton X-114 phase-partitioned borrelial cells, suggesting it was a membrane lipoprotein. Immunoblots of proteinase K-treated intact and Triton X-100 permeabilized cells showed digestion of BmpA in intact cells, consistent with surface exposure. This exposure was confirmed by dual-label immunofluorescence microscopy of intact and permeabilized borrelial cells. Conservation and surface localization of BmpA in all B. burgdorferi sensu lato genospecies could point to its playing a key role in this organism’s biology and pathobiology. PMID:20546313

  20. Borrelia burgdorferi infection regulates CD1 expression in human cells and tissues via IL1-β

    PubMed Central

    Yakimchuk, Konstantin; Roura-Mir, Carme; Magalhaes, Kelly Grace; De Jong, Annemieke; Kasmar, Anne G.; Granter, Scott R.; Budd, Ralph; Steere, Allen; Pena-Cruz, Victor; Kirschning, Carsten; Cheng, Tan-Yun; Moody, D. Branch

    2011-01-01

    The appearance of newly translated group 1 CD1 proteins (CD1a, CD1b, CD1c) on maturing myeloid DC to effective lipid antigen presenting cells. Here we show that Borrelia burgdorferi, the causative agent of Lyme disease, triggers appearance of group 1 CD1 proteins at high density on the surface of human myeloid DC during infection. Within human skin, CD1b and CD1c expression was low or absent prior to infection, but increased significantly after experimental infections and in erythema migrans lesions from Lyme Disease patients. The induction of CD1 was initiated by borrelial lipids acting through TLR-2 within minutes, but required 3 days for maximum effect. The delay in CD1 protein appearance involved a multi-step process whereby TLR-2 stimulated cells release soluble factors, which are sufficient to transfer the CD1-inducing effect in trans to other cells. Analysis of these soluble factors identified IL-1β as a previously unknown pathway leading to group 1 CD1 protein function. These studies establish that upregulation of group 1 CD1 proteins is an early event in B. burgdorferi infection and suggest a stepwise mechanism whereby bacterial cell walls, TLR activation and cytokine release cause DC precursors to express group 1 CD1 proteins. PMID:21246541

  1. Borrelia burgdorferi strain-specific Osp C-mediated immunity in mice.

    PubMed

    Bockenstedt, L K; Hodzic, E; Feng, S; Bourrel, K W; de Silva, A; Montgomery, R R; Fikrig, E; Radolf, J D; Barthold, S W

    1997-11-01

    Antibodies to the outer surface proteins (Osps) A, B, and C of the spirochete Borrelia burgdorferi can prevent infection in animal models of Lyme borreliosis. We have previously demonstrated that immune serum from mice infected with B. burgdorferi N40 can also prevent challenge infection and induce disease regression in infected mice. The antigens targeted by protective and disease-modulating antibodies are presently unknown, but they do not include Osp A or Osp B. Because Osp C antibodies are present in immune mouse serum, we investigated the ability of hyperimmune serum to recombinant Osp C (N40) to protect mice against challenge infection with N40 spirochetes. In both active and passive immunization studies, Osp C (N40) antiserum failed to protect mice from challenge infection with cultured organisms. Mice actively immunized with recombinant Osp C (N40) were susceptible to tick-borne challenge infection, and nymphal ticks remained infected after feeding on Osp C-hyperimmunized mice. In contrast, similar immunization studies performed with Osp C (PKo) antiserum prevented challenge infection of mice with a clone of PKo spirochetes pathogenic for mice. Both Osp C (N40) and Osp C (PKo) antisera showed minimal in vitro borreliacidal activity, and immunofluorescence studies localized Osp C beneath the outer membrane of both N40 and PKo spirochetes. We conclude that Osp C antibody-mediated immunity is strain specific and propose that differences in Osp C surface expression by spirochetes in vivo may account for strain-specific immunity. PMID:9353047

  2. The prevalence and significance of Borrelia burgdorferi in the urine of feral reservoir hosts.

    PubMed

    Bosler, E M; Schulze, T L

    1986-12-01

    Live Borrelia burgdorferi were isolated from the blood and/or urine of white-footed mice (Peromyscus leucopus) collected on Shelter Island, New York, in 1984 and 1985. Prevalence of spirochetes in urine was consistently higher than in blood or both fluids simultaneously. Spirochetes remained viable for 18-24 hours in urine and were maintained in culture for one week. Mice removed from the field were spirocheturic for at least 13 months. One spirocheturic mouse developed spirochetemia one month after field removal indicating the pathogen can return to the peripheral circulation. Twenty-one kidneys from 22 mice had spirochetes in the interstitial areas and bridging the tubules. A positive correlation between Babesia microti infection and spirocheturia was seen. Although the mechanism of entry into the urine is unknown, B. microti infection may increase glomerular permeability. Babesia induced hematuria may provide possible nutrients to maintain spirochetes. Urine may provide a method for contact non-tick transmission of B. burgdorferi in natural rodent populations particularly during periods of nesting and/or breeding. PMID:3577491

  3. Distribution of Ticks and Prevalence of Borrelia burgdorferi in the Upper Connecticut River Valley of Vermont

    PubMed Central

    Serra, Abigail C.; Warden, Paul S.; Fricker, Colin R.; Giese, Alan R.

    2014-01-01

    Ixodes scapularis (Black-legged Tick) has expanded its range in recent decades. To establish baseline data on the abundance of the Black-legged Tick and Borrelia burgdorferi (causative agent of Lyme disease) at the edge of a putative range expansion we collected 1398 ticks from five locations along the Connecticut River in Vermont. Collection locations were approximately evenly distributed between the villages of Ascutney and Guildhall. Relative abundance and distribution by species varied across sites. Black-legged Ticks dominated our collections (n = 1348, 96%), followed by Haemaphysalis leporispalustris (Rabbit Tick, n = 45, 3%) and Dermacentor variabilis (American Dog Tick, n = 5, <1%). Black-legged Tick abundance ranged from 6198 ticks per survey hectare (all life stages combined) at the Thetford site to zero at the Guildhall site. There was little to no overlap of tick species across sites. Phenology of Black-legged Ticks matched published information from other regions of the northeastern USA. Prevalence of B. burgdorferi in adult Black-legged Ticks was 8.9% (n = 112). PMID:25473255

  4. Cardiac Tropism of Borrelia burgdorferi: An Autopsy Study of Sudden Cardiac Death Associated with Lyme Carditis.

    PubMed

    Muehlenbachs, Atis; Bollweg, Brigid C; Schulz, Thadeus J; Forrester, Joseph D; DeLeon Carnes, Marlene; Molins, Claudia; Ray, Gregory S; Cummings, Peter M; Ritter, Jana M; Blau, Dianna M; Andrew, Thomas A; Prial, Margaret; Ng, Dianna L; Prahlow, Joseph A; Sanders, Jeanine H; Shieh, Wun Ju; Paddock, Christopher D; Schriefer, Martin E; Mead, Paul; Zaki, Sherif R

    2016-05-01

    Fatal Lyme carditis caused by the spirochete Borrelia burgdorferi rarely is identified. Here, we describe the pathologic, immunohistochemical, and molecular findings of five case patients. These sudden cardiac deaths associated with Lyme carditis occurred from late summer to fall, ages ranged from young adult to late 40s, and four patients were men. Autopsy tissue samples were evaluated by light microscopy, Warthin-Starry stain, immunohistochemistry, and PCR for B. burgdorferi, and immunohistochemistry for complement components C4d and C9, CD3, CD79a, and decorin. Post-mortem blood was tested by serology. Interstitial lymphocytic pancarditis in a relatively characteristic road map distribution was present in all cases. Cardiomyocyte necrosis was minimal, T cells outnumbered B cells, plasma cells were prominent, and mild fibrosis was present. Spirochetes in the cardiac interstitium associated with collagen fibers and co-localized with decorin. Rare spirochetes were seen in the leptomeninges of two cases by immunohistochemistry. Spirochetes were not seen in other organs examined, and joint tissue was not available for evaluation. Although rare, sudden cardiac death caused by Lyme disease might be an under-recognized entity and is characterized by pancarditis and marked tropism of spirochetes for cardiac tissues. PMID:26968341

  5. Development of a Multiantigen Panel for Improved Detection of Borrelia burgdorferi Infection in Early Lyme Disease.

    PubMed

    Lahey, Lauren J; Panas, Michael W; Mao, Rong; Delanoy, Michelle; Flanagan, John J; Binder, Steven R; Rebman, Alison W; Montoya, Jose G; Soloski, Mark J; Steere, Allen C; Dattwyler, Raymond J; Arnaboldi, Paul M; Aucott, John N; Robinson, William H

    2015-12-01

    The current standard for laboratory diagnosis of Lyme disease in the United States is serologic detection of antibodies against Borrelia burgdorferi. The Centers for Disease Control and Prevention recommends a two-tiered testing algorithm; however, this scheme has limited sensitivity for detecting early Lyme disease. Thus, there is a need to improve diagnostics for Lyme disease at the early stage, when antibiotic treatment is highly efficacious. We examined novel and established antigen markers to develop a multiplex panel that identifies early infection using the combined sensitivity of multiple markers while simultaneously maintaining high specificity by requiring positive results for two markers to designate a positive test. Ten markers were selected from our initial analysis of 62 B. burgdorferi surface proteins and synthetic peptides by assessing binding of IgG and IgM to each in a training set of Lyme disease patient samples and controls. In a validation set, this 10-antigen panel identified a higher proportion of early-Lyme-disease patients as positive at the baseline or posttreatment visit than two-tiered testing (87.5% and 67.5%, respectively; P < 0.05). Equivalent specificities of 100% were observed in 26 healthy controls. Upon further analysis, positivity on the novel 10-antigen panel was associated with longer illness duration and multiple erythema migrans. The improved sensitivity and comparable specificity of our 10-antigen panel compared to two-tiered testing in detecting early B. burgdorferi infection indicates that multiplex analysis, featuring the next generation of markers, could advance diagnostic technology to better aid clinicians in diagnosing and treating early Lyme disease. PMID:26447113

  6. Prednisolone reduces experimental arthritis, and inflammatory tissue destruction in SCID mice infected with Borrelia burgdorferi.

    PubMed

    Hurtenbach, U; Böggemeyer, E; Stehle, T; Museteanu, C; Del Pozo, E; Simon, M M

    1996-05-01

    Glucocorticosteroids (GC) are widely used as anti-inflammatory agents. The effects of Prednisolone on the development of Borrelia (B.) burgdorferi-induced clinical arthritis and organ inflammation was studied in severe combined immunodeficiency (SCID) mice. The drug was administered orally at a dose of 3, 10 and 30 mg/kg, starting shortly before experimental infection of the mice. A dose dependent inhibition of arthritic joint swelling was observed. Full protection was obtained with 30 mg/kg until 21 days after infection, subsequently, mild joint swelling developed but progression and severity of the disease was considerably less than in the other treated as well as in the untreated mice. Inhibition of clinical arthritis coincided with reduction of inflammatory cell infiltration in the joints, liver and muscle. Prednisolone was ineffective when application was initiated after arthritis was fully developed, i.e., 22 days after infection. Since the activated endothelium plays a critical role in development of inflammatory lesions, the expression of the cellular adhesion molecules (CAMs) E-selectin, P-selectin, ICAM-1 and VCAM-1 was determined in vitro using the bEnd3 endothelial cell line. Stimulation with a sonicated B. burgdorferi preparation in the presence of the water-soluble compound Prednisolone-21-hemisuccinate considerably reduced expression of ICAM-1, and marginally also of E-selectin, whereas the level of P-selectin and VCAM-1 remained unaltered. Thus, downregulation of ICAM-1 might be a critical factor in Prednisolone-mediated inhibition of B. burgdorferi-induced inflammation; the flare up of the disease after the initial protection indicates that additional therapy, e.g. with antibiotics, is necessary. PMID:8933206

  7. Selective Association of Outer Surface Lipoproteins with the Lipid Rafts of Borrelia burgdorferi

    PubMed Central

    Toledo, Alvaro; Crowley, Jameson T.; Coleman, James L.; LaRocca, Timothy J.; Chiantia, Salvatore; London, Erwin; Benach, Jorge L.

    2014-01-01

    ABSTRACT Borrelia burgdorferi contains unique cholesterol-glycolipid-rich lipid rafts that are associated with lipoproteins. These complexes suggest the existence of macromolecular structures that have not been reported for prokaryotes. Outer surface lipoproteins OspA, OspB, and OspC were studied for their participation in the formation of lipid rafts. Single-gene deletion mutants with deletions of ∆ospA, ∆ospB, and ∆ospC and a spontaneous gene mutant, strain B313, which does not express OspA and OspB, were used to establish their structural roles in the lipid rafts. All mutant strains used in this study produced detergent-resistant membranes, a common characteristic of lipid rafts, and had similar lipid and protein slot blot profiles. Lipoproteins OspA and OspB but not OspC were shown to be associated with lipid rafts by transmission electron microscopy. When the ability to form lipid rafts in live B. burgdorferi spirochetes was measured by fluorescence resonance energy transfer (FRET), strain B313 showed a statistically significant lower level of segregation into ordered and disordered membrane domains than did the wild-type and the other single-deletion mutants. The transformation of a B313 strain with a shuttle plasmid containing ospA restored the phenotype shared by the wild type and the single-deletion mutants, demonstrating that OspA and OspB have redundant functions. In contrast, a transformed B313 overexpressing OspC neither rescued the FRET nor colocalized with the lipid rafts. Because these lipoproteins are expressed at different stages of the life cycle of B. burgdorferi, their selective association is likely to have an important role in the structure of prokaryotic lipid rafts and in the organism’s adaptation to changing environments. PMID:24618252

  8. Serum antibodies to whole-cell and recombinant antigens of Borrelia burgdorferi in cottontail rabbits.

    PubMed

    Magnarelli, Louis A; Norris, Steven J; Fikrig, Erol

    2012-01-01

    Archived serum samples, from 95 eastern cottontail rabbits (Sylvilagus floridanus) captured in New York, New York, USA and Millbrook, New York, USA, during 1985-86, were analyzed in solid-phase enzyme-linked immunosorbent assays (ELISA) for total and class-specific immunoglobulin (Ig) M antibodies to whole-cell or recombinant antigens of Borrelia burgdorferi sensu stricto. Using a polyvalent conjugate, rabbit sera contained antibodies to whole-cell and recombinant antigens (protein [p]35, p37, or VlsE) during different seasons, but there was no reactivity to outer surface protein (Osp)A or OspB. Seventy-six of the 102 sera (75%) analyzed were reactive with one or more of the antigens; 61 of the positive samples (80%) reacted to whole-cell antigens, followed by results for the p35 (58%, 44/76), VlsE (43%, 33/76), and p37 (29%, 22/ 76) antigens. Fifty-eight sera (76%) contained antibodies to the VlsE or p35 antigens with or without reactivity to whole-cell antigens. High antibody titers (≥1:2,560) recorded for 52 sera indicate robust antibody production. In analyses for IgM antibodies in an ELISA containing whole-cell antigens, there were 30 positive sera; titers ranged from 1:160 to 1:640. There was minimal cross-reactivity when rabbit antisera to Treponema pallidum or four serovars of Leptospira interrogans were screened against B. burgdorferi antigens. Based on more-specific results, VlsE and p35 antigens appear to be useful markers for detecting possible B. burgdorferi infections. PMID:22247369

  9. SERUM ANTIBODIES TO WHOLE-CELL AND RECOMBINANT ANTIGENS OF BORRELIA BURGDORFERI IN COTTONTAIL RABBITS

    PubMed Central

    Magnarelli, Louis A.; Norris, Steven J.; Fikrig, Erol

    2011-01-01

    Archived serum samples, from 95 eastern cottontail rabbits (Sylvilagus floridanus) captured in New York, New York, USA and Millbrook, New York, USA, during 1985–86, were analyzed in solid-phase enzyme-linked immunosorbent assays (ELISA) for total and class-specific immunoglobulin (Ig) M antibodies to whole-cell or recombinant antigens of Borrelia burgdorferi sensu stricto. Using a polyvalent conjugate, rabbit sera contained antibodies to whole-cell and recombinant antigens (protein [p]35, p37, or VlsE) during different seasons, but there was no reactivity to outer surface protein (Osp)A or OspB. Seventy-six of the 102 sera (75%) analyzed were reactive with one or more of the antigens; 61 of the positive samples (80%) reacted to whole-cell antigens, followed by results for the p35 (58%, 44/76), VlsE (43%, 33/76), and p37 (29%, 22/76) antigens. Fifty-eight sera (76%) contained antibodies to the VlsE or p35 antigens with or without reactivity to whole-cell antigens. High antibody titers (≥1:2,560) recorded for 52 sera indicate robust antibody production. In analyses for IgM antibodies in an ELISA containing whole-cell antigens, there were 30 positive sera; titers ranged from 1:160 to 1:640. There was minimal cross-reactivity when rabbit antisera to Treponema pallidum or four serovars of Leptospira interrogans were screened against B. burgdorferi antigens. Based on more-specific results, VlsE and p35 antigens appear to be useful markers for detecting possible B. burgdorferi infections. PMID:22247369

  10. Two CheW coupling proteins are essential in a chemosensory pathway of Borrelia burgdorferi

    PubMed Central

    Zhang, Kai; Liu, Jun; Tu, Youbin; Xu, Hongbin; Charon, Nyles W.; Li, Chunhao

    2012-01-01

    SUMMARY In the model organism Escherichia coli, the coupling protein CheW, which bridges the chemoreceptors and histidine kinase CheA, is essential for chemotaxis. Unlike the situation in E. coli, Borrelia burgdorferi, the causative agent of Lyme disease, has three cheW homologues (cheW1, cheW2, and cheW3). Here, a comprehensive approach is utilized to investigate the roles of the three cheWs in chemotaxis of B. burgdorferi. First, genetic studies indicated that both the cheW1 and cheW3 genes are essential for chemotaxis, as the mutants had altered swimming behaviors and were non-chemotactic. Second, immunofluorescence and cryo-electron tomography studies suggested that both CheW1 and CheW3 are involved in the assembly of chemoreceptor arrays at the cell poles. In contrast to cheW1 and cheW3, cheW2 is dispensable for chemotaxis and assembly of the chemoreceptor arrays. Finally, immunoprecipitation studies demonstrated that the three CheWs interact with different CheAs: CheW1 and CheW3 interact with CheA2 whereas CheW2 binds to CheA1. Collectively, our results indicate that CheW1 and CheW3 are incorporated into one chemosensory pathway that is essential for B. burgdorferi chemotaxis. Although many bacteria have more than one homologue of CheW, to our knowledge, this report provides the first experimental evidence that two CheW proteins co-exist in one chemosensory pathway and that both are essential for chemotaxis. PMID:22780444

  11. The Oms66 (p66) protein is a Borrelia burgdorferi porin.

    PubMed Central

    Skare, J T; Mirzabekov, T A; Shang, E S; Blanco, D R; Erdjument-Bromage, H; Bunikis, J; Bergström, S; Tempst, P; Kagan, B L; Miller, J N; Lovett, M A

    1997-01-01

    In this study we report the purification and characterization of a 66-kDa protein, designated Oms66, for outer membrane-spanning 66-kDa protein, that functions as a porin in the outer membrane (OM) of Borrelia burgdorferi. Oms66 was purified by fast-performance liquid chromatography and exhibited an average single-channel conductance of 9.62 +/- 0.37 nS in 1 M KCl, as evidenced by 581 individual insertional events in planar lipid bilayers. Electrophysiological characterization indicated that Oms66 was virtually nonselective between cations and anions and exhibited voltage-dependent closure with multiple substates. The amino acid sequence of tryptic peptides derived from purified Oms66 was identical to the deduced amino acid sequence of p66, a previously described surface-exposed protein of B. burgdorferi. Purified Oms66 was recognized by antiserum specific for p66 and serum from rabbits immune to challenge with virulent B. burgdorferi, indicating that p66 and Oms66 were identical proteins and that Oms66/p66 is an immunogenic protein in infected rabbits. In a methodology that reduces liposomal trapping and nonspecific interactions, native Oms66 was incorporated into liposomes, confirming that Oms66 is an outer membrane-spanning protein. Proteoliposomes containing Oms66 exhibited porin activity nearly identical to that of native, purified Oms66, indicating that reconstituted Oms66 retained native conformation. The use of proteoliposomes reconstituted with Oms66 and other Oms proteins provides an experimental system for determinating the relationship between conformation, protection, and biological function of these molecules. PMID:9284133

  12. Borrelia burgdorferi swims with a planar waveform similar to that of eukaryotic flagella.

    PubMed Central

    Goldstein, S F; Charon, N W; Kreiling, J A

    1994-01-01

    Borrelia burgdorferi is a motile spirochete with multiple internal periplasmic flagella (PFs) attached near each end of the cell cylinder; these PFs overlap in the cell center. We analyzed the shape and motion of wild type and PF-deficient mutants using both photomicrography and video microscopy. We found that swimming cells resembled the dynamic movements of eukaryotic flagella. In contrast to helically shaped spirochetes, which propagate spiral waves, translating B. burgdorferi swam with a planar waveform with occasional axial twists; waves had a peak-to-peak amplitude of 0.85 micron and a wavelength of 3.19 microns. Planar waves began full-sized at the anterior end and propagated toward the back end of the cell. Concomitantly, these waves gyrated counter-clockwise as viewed from the posterior end along the cell axis. In nontranslating cells, wave propagation ceased. Either the waveform of nontranslating cells resembled the translating form, or the cells became markedly contorted. Cells of the PF-deficient mutant isolated by Sadziene et al. [Sadziene, A., Thomas, D. D., Bundoc, V. G., Holt, S. C. & Barbour, A. G. (1991) J. Clin. Invest. 88, 82-92] were found to be relatively straight. The results suggest that the shape of B. burgdorferi is dictated by interactions between the cell body and the PFs. In addition, the PFs from opposite ends of the cell are believed to interact with one another so that during the markedly distorted nontranslational form, the PFs from opposite ends rotate in opposing directions around one another, causing the cell to bend. Images PMID:8159765

  13. Identification of Additional Anti-Persister Activity against Borrelia burgdorferi from an FDA Drug Library.

    PubMed

    Feng, Jie; Weitner, Megan; Shi, Wanliang; Zhang, Shuo; Sullivan, David; Zhang, Ying

    2015-01-01

    Lyme disease is a leading vector-borne disease in the United States. Although the majority of Lyme patients can be cured with standard 2-4 week antibiotic treatment, 10%-20% of patients continue to suffer from prolonged post-treatment Lyme disease syndrome (PTLDS). While the cause for this is unclear, persisting organisms not killed by current Lyme antibiotics may be involved. In our previous study, we screened an FDA drug library and reported 27 top hits that showed high activity against Borrelia persisters. In this study, we present the results of an additional 113 active hits that have higher activity against the stationary phase B. burgdorferi than the currently used Lyme antibiotics. Many antimicrobial agents (antibiotics, antivirals, antifungals, anthelmintics or antiparasitics) used for treating other infections were found to have better activity than the current Lyme antibiotics. These include antibacterials such as rifamycins (3-formal-rifamycin, rifaximin, rifamycin SV), thiostrepton, quinolone drugs (sarafloxacin, clinafloxacin, tosufloxacin), and cell wall inhibitors carbenicillin, tazobactam, aztreonam; antifungal agents such as fluconazole, mepartricin, bifonazole, climbazole, oxiconazole, nystatin; antiviral agents zanamivir, nevirapine, tilorone; antimalarial agents artemisinin, methylene blue, and quidaldine blue; antihelmintic and antiparasitic agents toltrazuril, tartar emetic, potassium antimonyl tartrate trihydrate, oxantel, closantel, hycanthone, pyrimethamine, and tetramisole. Interestingly, drugs used for treating other non-infectious conditions including verteporfin, oltipraz, pyroglutamic acid, pidolic acid, and dextrorphan tartrate, that act on the glutathione/γ-glutamyl pathway involved in protection against free radical damage, and also the antidepressant drug indatraline, were found to have high activity against stationary phase B. burgdorferi. Among the active hits, agents that affect cell membranes, energy production, and reactive

  14. Identification of Additional Anti-Persister Activity against Borrelia burgdorferi from an FDA Drug Library

    PubMed Central

    Feng, Jie; Weitner, Megan; Shi, Wanliang; Zhang, Shuo; Sullivan, David; Zhang, Ying

    2015-01-01

    Lyme disease is a leading vector-borne disease in the United States. Although the majority of Lyme patients can be cured with standard 2–4 week antibiotic treatment, 10%–20% of patients continue to suffer from prolonged post-treatment Lyme disease syndrome (PTLDS). While the cause for this is unclear, persisting organisms not killed by current Lyme antibiotics may be involved. In our previous study, we screened an FDA drug library and reported 27 top hits that showed high activity against Borrelia persisters. In this study, we present the results of an additional 113 active hits that have higher activity against the stationary phase B. burgdorferi than the currently used Lyme antibiotics. Many antimicrobial agents (antibiotics, antivirals, antifungals, anthelmintics or antiparasitics) used for treating other infections were found to have better activity than the current Lyme antibiotics. These include antibacterials such as rifamycins (3-formal-rifamycin, rifaximin, rifamycin SV), thiostrepton, quinolone drugs (sarafloxacin, clinafloxacin, tosufloxacin), and cell wall inhibitors carbenicillin, tazobactam, aztreonam; antifungal agents such as fluconazole, mepartricin, bifonazole, climbazole, oxiconazole, nystatin; antiviral agents zanamivir, nevirapine, tilorone; antimalarial agents artemisinin, methylene blue, and quidaldine blue; antihelmintic and antiparasitic agents toltrazuril, tartar emetic, potassium antimonyl tartrate trihydrate, oxantel, closantel, hycanthone, pyrimethamine, and tetramisole. Interestingly, drugs used for treating other non-infectious conditions including verteporfin, oltipraz, pyroglutamic acid, pidolic acid, and dextrorphan tartrate, that act on the glutathione/γ-glutamyl pathway involved in protection against free radical damage, and also the antidepressant drug indatraline, were found to have high activity against stationary phase B. burgdorferi. Among the active hits, agents that affect cell membranes, energy production, and

  15. Development of a Multiantigen Panel for Improved Detection of Borrelia burgdorferi Infection in Early Lyme Disease

    PubMed Central

    Panas, Michael W.; Mao, Rong; Delanoy, Michelle; Flanagan, John J.; Binder, Steven R.; Rebman, Alison W.; Montoya, Jose G.; Soloski, Mark J.; Steere, Allen C.; Dattwyler, Raymond J.; Arnaboldi, Paul M.; Aucott, John N.

    2015-01-01

    The current standard for laboratory diagnosis of Lyme disease in the United States is serologic detection of antibodies against Borrelia burgdorferi. The Centers for Disease Control and Prevention recommends a two-tiered testing algorithm; however, this scheme has limited sensitivity for detecting early Lyme disease. Thus, there is a need to improve diagnostics for Lyme disease at the early stage, when antibiotic treatment is highly efficacious. We examined novel and established antigen markers to develop a multiplex panel that identifies early infection using the combined sensitivity of multiple markers while simultaneously maintaining high specificity by requiring positive results for two markers to designate a positive test. Ten markers were selected from our initial analysis of 62 B. burgdorferi surface proteins and synthetic peptides by assessing binding of IgG and IgM to each in a training set of Lyme disease patient samples and controls. In a validation set, this 10-antigen panel identified a higher proportion of early-Lyme-disease patients as positive at the baseline or posttreatment visit than two-tiered testing (87.5% and 67.5%, respectively; P < 0.05). Equivalent specificities of 100% were observed in 26 healthy controls. Upon further analysis, positivity on the novel 10-antigen panel was associated with longer illness duration and multiple erythema migrans. The improved sensitivity and comparable specificity of our 10-antigen panel compared to two-tiered testing in detecting early B. burgdorferi infection indicates that multiplex analysis, featuring the next generation of markers, could advance diagnostic technology to better aid clinicians in diagnosing and treating early Lyme disease. PMID:26447113

  16. Lyme Borreliosis: is there a preexisting (natural) variation in antimicrobial susceptibility among Borrelia burgdorferi strains?

    PubMed Central

    Hodzic, Emir

    2015-01-01

    The development of antibiotics changed the world of medicine and has saved countless human and animal lives. Bacterial resistance/tolerance to antibiotics have spread silently across the world and has emerged as a major public health concern. The recent emergence of pan-resistant bacteria can overcome virtually any antibiotic and poses a major problem for their successful control. Selection for antibiotic resistance may take place where an antibiotic is present in the skin, gut, and other tissues of humans and animals and in the environment. Borrelia burgdorferi, the etiological agents of Lyme borreliosis, evades host immunity and establishes persistent infections in its mammalian hosts. The persistent infection poses a challenge to the effective antibiotic treatment, as demonstrated in various animal models. An increasingly heterogeneous subpopulation of replicatively attenuated spirochetes arises following treatment, and these persistent antimicrobial tolerant/resistant spirochetes are non-cultivable. The non-cultivable spirochetes resurge in multiple tissues at 12 months after treatment, with B. burgdorferi-specific DNA copy levels nearly equivalent to those found in shame-treated experimental animals. These attenuated spirochetes remain viable, but divide slowly, thereby being tolerant to antibiotics. Despite the continued non-cultivable state, RNA transcription of multiple B. burgdorferi genes was detected in host tissues, spirochetes were acquired by xenodiagnostic ticks, and spirochetal forms could be visualized within ticks and mouse tissues. A number of host cytokines were up- or down-regulated in tissues of both shame- and antibiotic-treated mice in the absence of histopathology, indicating a lack of host response to the presence of antimicrobial tolerant/resistant spirochetes. PMID:26295288

  17. Borrelia burgdorferi clinical isolates induce human innate immune responses that are not dependent on genotype.

    PubMed

    Mason, Lauren M K; Herkes, Eduard A; Krupna-Gaylord, Michelle A; Oei, Anneke; van der Poll, Tom; Wormser, Gary P; Schwartz, Ira; Petzke, Mary M; Hovius, Joppe W R

    2015-10-01

    Borrelia burgdorferi can be categorized based on restriction fragment length polymorphism analysis into ribosomal spacer type (RST) 1, 2 and 3. A correlation between RST type and invasiveness of Borrelia isolates has been demonstrated in clinical studies and experimental models, and RST 1 isolates are more likely to cause disseminated disease than RST 3 isolates. We hypothesized that this could partially be due to increased susceptibility of RST 3 isolates to killing by the innate immune system early in infection. Thus, we investigated the interaction of five RST 1 and five RST 3 isolates with various components of the human innate immune system in vitro. RST 3 isolates induced significantly greater upregulation of activation markers in monocyte-derived dendritic cells compared to RST 1 isolates at a low multiplicity of infection. However, RST 1 isolates stimulated greater interleukin-6 production. At a high multiplicity of infection no differences in dendritic cell activation or cytokine production were observed. In addition, we observed no differences in the ability of RST 1 and RST 3 isolates to activate monocytes or neutrophils and all strains were phagocytosed at a comparable rate. Finally, all isolates tested were equally resistant to complement-mediated killing, as determined by dark-field microscopy and a growth inhibition assay. In conclusion, we demonstrate that the RST 1 and 3 isolates showed no distinction in their susceptibility to the various components of the human immune system studied here, suggesting that other factors are responsible for their differential invasiveness. PMID:26093919

  18. Prevalence of Borrelia burgdorferi and Babesia microti in mice on islands inhabited by white-tailed deer.

    PubMed Central

    Anderson, J F; Johnson, R C; Magnarelli, L A; Hyde, F W; Myers, J E

    1987-01-01

    Borrelia burgdorferi and Babesia microti were isolated from 35 of 51 white-footed mice (Peromyscus leucopus) and meadow voles (Microtus pennsylvanicus) captured on two Narragansett Bay, R.I., islands inhabited by deer, the principal host for the adult stages of the vector tick, Ixodes dammini. Immature ticks parasitized mice from both islands. From 105 mice captured on four other islands not inhabited by deer neither pathogen was isolated, nor were I. dammini found. PMID:3555339

  19. Long-term survival of Borrelia burgdorferi lacking the hibernation promotion factor homolog in the unfed tick vector.

    PubMed

    Fazzino, Lisa; Tilly, Kit; Dulebohn, Daniel P; Rosa, Patricia A

    2015-12-01

    Borrelia burgdorferi, a causative agent of Lyme borreliosis, is a zoonotic pathogen that survives in nutrient-limited environments within a tick, prior to transmission to its mammalian host. Survival under these prolonged nutrient-limited conditions is thought to be similar to survival during stationary phase, which is characterized by growth cessation and decreased protein production. Multiple ribosome-associated proteins are implicated in stationary-phase survival of Escherichia coli. These proteins include hibernation-promoting factor (HPF), which dimerizes ribosomes and prevents translation of mRNA. Bioinformatic analyses indicate that B. burgdorferi harbors an hpf homolog, the bb0449 gene. BB0449 protein secondary structure modeling also predicted HPF-like structure and function. However, BB0449 protein was not localized in the ribosome-associated protein fraction of in vitro-grown B. burgdorferi. In wild-type B. burgdorferi, bb0449 transcript and BB0449 protein levels are low during various growth phases. These results are inconsistent with patterns of synthesis of HPF-like proteins in other bacterial species. In addition, two independently derived bb0449 mutants successfully completed the mouse-tick infectious cycle, indicating that bb0449 is not required for prolonged survival in the nutrient-limited environment in the unfed tick or any other stage of infection by B. burgdorferi. We suggest either that BB0449 is associated with ribosomes under specific conditions not yet identified or that BB0449 of B. burgdorferi has a function other than ribosome conformation modulation. PMID:26438790

  20. A Surface Enolase Participates in Borrelia burgdorferi-Plasminogen Interaction and Contributes to Pathogen Survival within Feeding Ticks

    PubMed Central

    Nogueira, Sarah Veloso; Smith, Alexis A.; Qin, Jin-Hong

    2012-01-01

    Borrelia burgdorferi, a tick-borne bacterial pathogen, causes a disseminated infection involving multiple organs known as Lyme disease. Surface proteins can directly participate in microbial virulence by facilitating pathogen dissemination via interaction with host factors. We show here that a fraction of the B. burgdorferi chromosomal gene product BB0337, annotated as enolase or phosphopyruvate dehydratase, is associated with spirochete outer membrane and is surface exposed. B. burgdorferi enolase, either in a recombinant form or as a membrane-bound native antigen, displays enzymatic activities intrinsic to the glycolytic pathway. However, the protein also interacts with host plasminogen, potentially leading to its activation and resulting in B. burgdorferi-induced fibrinolysis. As expected, enolase displayed consistent expression in vivo, however, with a variable temporal and spatial expression during spirochete infection in mice and ticks. Despite an extracellular exposure of the antigen and a potential role in host-pathogen interaction, active immunization of mice with recombinant enolase failed to evoke protective immunity against subsequent B. burgdorferi infection. In contrast, enolase immunization of murine hosts significantly reduced the acquisition of spirochetes by feeding ticks, suggesting that the protein could have a stage-specific role in B. burgdorferi survival in the feeding vector. Strategies to interfere with the function of surface enolase could contribute to the development of novel preventive measures to interrupt the spirochete infection cycle and reduce the incidences of Lyme disease. PMID:22025510

  1. Long-Term Survival of Borrelia burgdorferi Lacking the Hibernation Promotion Factor Homolog in the Unfed Tick Vector

    PubMed Central

    Fazzino, Lisa; Dulebohn, Daniel P.

    2015-01-01

    Borrelia burgdorferi, a causative agent of Lyme borreliosis, is a zoonotic pathogen that survives in nutrient-limited environments within a tick, prior to transmission to its mammalian host. Survival under these prolonged nutrient-limited conditions is thought to be similar to survival during stationary phase, which is characterized by growth cessation and decreased protein production. Multiple ribosome-associated proteins are implicated in stationary-phase survival of Escherichia coli. These proteins include hibernation-promoting factor (HPF), which dimerizes ribosomes and prevents translation of mRNA. Bioinformatic analyses indicate that B. burgdorferi harbors an hpf homolog, the bb0449 gene. BB0449 protein secondary structure modeling also predicted HPF-like structure and function. However, BB0449 protein was not localized in the ribosome-associated protein fraction of in vitro-grown B. burgdorferi. In wild-type B. burgdorferi, bb0449 transcript and BB0449 protein levels are low during various growth phases. These results are inconsistent with patterns of synthesis of HPF-like proteins in other bacterial species. In addition, two independently derived bb0449 mutants successfully completed the mouse-tick infectious cycle, indicating that bb0449 is not required for prolonged survival in the nutrient-limited environment in the unfed tick or any other stage of infection by B. burgdorferi. We suggest either that BB0449 is associated with ribosomes under specific conditions not yet identified or that BB0449 of B. burgdorferi has a function other than ribosome conformation modulation. PMID:26438790

  2. A plasmid-encoded nicotinamidase (PncA) is essential for infectivity of Borrelia burgdorferi in a mammalian host.

    PubMed

    Purser, Joye E; Lawrenz, Matthew B; Caimano, Melissa J; Howell, Jerrilyn K; Radolf, Justin D; Norris, Steven J

    2003-05-01

    Borrelia burgdorferi, a spirochaete that causes Lyme borreliosis, contains 21 linear and circular plasmids thought to be important for survival in mammals or ticks. Our results demonstrate that the gene BBE22 encoding a nicotinamidase is capable of replacing the requirement for the 25 kb linear plasmid lp25 during mammalian infection. Transformation of B. burgdorferi lacking lp25 with a shuttle vector containing the lp25 gene BBE22 (pBBE22) restored infectivity in mice to a level comparable to that of wild-type Borrelia. This complementation also restored the growth and host adaptation of lp25-B. burgdorferi in dialysis membrane chambers (DMCs) implanted in rats. A single Cys to Ala conversion at the putative active site of BBE22 abrogated the ability of pBBE22 to re-establish infectivity or growth in DMCs. Additional Salmonella typhimurium complementation studies and enzymatic analysis demonstrated that the BBE22 gene product has nicotinamidase activity and is most probably required for the biosynthesis of NAD. These results indicate that some plasmid-encoded products fulfil physiological functions required in the enzootic cycle of pathogenic Borrelia. PMID:12694619

  3. Borrelia burgdorferi sensu lato in Ixodes cf. neuquenensis and Ixodes sigelos ticks from the Patagonian region of Argentina.

    PubMed

    Sebastian, Patrick S; Bottero, Maria Noelia Saracho; Carvalho, Luis; Mackenstedt, Ute; Lareschi, Marcela; Venzal, José M; Nava, Santiago

    2016-10-01

    This study was conducted to detect Borrelia burgdorferi sensu lato infection in ixodid ticks from the Patagonia region in the south of Argentina. Therefore, ticks were collected on rodents in the provinces of Chubut, Río Negro and Santa Cruz. These ticks were identified as nymphs of Ixodes cf. neuquenensis and Ixodes sigelos. The B. burgdorferi s.l. infection was tested by a battery of PCR methods targeting the gene flagellin (fla) and the rrfA-rrlB intergenic spacer region (IGS). Three pools of I. sigelos nymphs from Chubut and Santa Cruz provinces as well as one pool of I. cf. neuquenensis nymphs from Río Negro province were tested positive in the fla-PCR. The samples of I. sigelos were also positive for the IGS-PCR. Phylogenetically, the haplotypes found in the positive ticks belong to the B. burgdorferi s.l. complex, and they were closely related to Borrelia chilensis, a genospecies isolated from Ixodes stilesi in Chile. The pathogenic relevance of the Borrelia genospecies detected in both I. neuquenensis and I. sigelos is unknown. PMID:27372197

  4. Interferon-α curbs production of interleukin-22 by human peripheral blood mononuclear cells exposed to live Borrelia burgdorferi.

    PubMed

    Berner, Anika; Bachmann, Malte; Pfeilschifter, Josef; Kraiczy, Peter; Mühl, Heiko

    2015-10-01

    Cytokine networks initiated by means of innate immunity are regarded as a major determinant of host defence in response to acute infection by bacteria including Borrelia burgdorferi. Herein, we demonstrate that interferon (IFN)-α, either endogenously produced after exposure of cells to toll-like receptor-9-activating CpG oligonucleotides or provided as recombinant cytokine, weakens activation of the anti-bacterial interleukin (IL)-1/IL-22 axis in human peripheral blood mononuclear cells exposed to viable B. burgdorferi. As IFN-α has been related to pathological dissemination of the spirochaete, data suggest an immunoregulatory role of type I IFN in this context that is able to significantly modify cytokine profiles thereby possibly determining early course of B. burgdorferi infection. PMID:26152778

  5. Isolation of live Borrelia burgdorferi sensu lato spirochaetes from patients with undefined disorders and symptoms not typical for Lyme borreliosis.

    PubMed

    Rudenko, N; Golovchenko, M; Vancova, M; Clark, K; Grubhoffer, L; Oliver, J H

    2016-03-01

    Lyme borreliosis is a multisystem disorder with a diverse spectrum of clinical manifestations, caused by spirochaetes of the Borrelia burgdorferi sensu lato complex. It is an infectious disease that can be successfully cured by antibiotic therapy in the early stages; however, the possibility of the appearance of persistent signs and symptoms of disease following antibiotic treatment is recognized. It is known that Lyme borreliosis mimics multiple diseases that were never proven to have a spirochaete aetiology. Using complete modified Kelly-Pettenkofer medium we succeeded in cultivating live B. burgdorferi sensu lato spirochaetes from samples taken from people who suffered from undefined disorders, had symptoms not typical for Lyme borreliosis, but who had undergone antibiotic treatment due to a suspicion of having Lyme disease even though they were seronegative. We report the first recovery of live B. burgdorferi sensu stricto from residents of southeastern USA and the first successful cultivation of live Borrelia bissettii-like strain from residents of North America. Our results support the fact that B. bissettii is responsible for human Lyme borreliosis worldwide along with B. burgdorferi s.s. The involvement of new spirochaete species in Lyme borreliosis changes the understanding and recognition of clinical manifestations of this disease. PMID:26673735

  6. Expression of the bmpB Gene of Borrelia burgdorferi Is Modulated by Two Distinct Transcription Termination Events

    PubMed Central

    Ramamoorthy, Ramesh; McClain, Natalie A.; Gautam, Aarti; Scholl-Meeker, Dorothy

    2005-01-01

    bmp gene family 36 of Borrelia burgdorferi, the agent of Lyme disease, comprises four paralogs: bmpA, bmpB, bmpC, and bmpD. The bmpA and bmpB genes constitute an operon. All four genes have been found to be transcribed in cultured spirochetes. Expression from the bmpAB operon results in three distinct transcripts of 1.1, 1.6, and 2.4 kb, and the relative expression of bmpA mRNA is three- to fourfold greater than that of bmpB mRNA. However, thus far only expression of the BmpA protein has been demonstrated. Therefore, in this study we characterized the origins of the three transcripts and compared the relative expression of the BmpA and BmpB proteins. Northern blotting revealed that the three distinct transcripts originated from a single promoter located upstream of bmpA but terminated either 3′ to the bmpA (1.1-kb RNA) or bmpB (2.4-kb RNA) gene or, most unusually, within the bmpB gene (1.6-kb RNA). Termination within the bmpB gene was associated with a functional Rho-independent transcription terminator. At the protein level, we also observed a 4.3-fold greater abundance of BmpA compared to that of BmpB. These studies identify a transcription termination mechanism in B. burgdorferi resulting in the disparate expression of the two genes of the bmpAB operon. PMID:15805505

  7. Carbon storage regulator A (CsrABb) is a repressor of Borrelia burgdorferi flagellin protein FlaB

    PubMed Central

    Sze, Ching Wooen; Morado, Dustin R.; Jun, Liu; Charon, Nyles W.; Hongbin, Xu; Chunhao, Li

    2011-01-01

    SUMMARY The Lyme disease spirochete Borrelia burgdorferi lacks the transcriptional cascade control of flagellar protein synthesis common to other bacteria. Instead, it relies on a post-transcriptional mechanism to control its flagellar synthesis. The underlying mechanism of this control remains elusive. A recent study reported that the increased level of BB0184 (CsrABb; a homolog of carbon storage regulator A) substantially inhibited the accumulation of FlaB, the major flagellin protein of B. burgdorferi. In this report, we deciphered the regulatory role of CsrABb on FlaB synthesis and the mechanism involved by analyzing two mutants, csrABb− (a deletion mutant of csrABb) and csrABb+ (a mutant conditionally over-expressing csrABb). We found that FlaB accumulation was significantly inhibited in csrABb+ but was substantially increased in csrABb−. In contrast, the levels of other flagellar proteins remained unchanged. Cryo-electron tomography and immuno-fluorescence microscopic analyses revealed that the altered synthesis of CsrABb in these two mutants specifically affected flagellar filament length. The leader sequence of flaB transcript contains two conserved CsrA-binding sites, with one of these sites overlapping the Shine-Dalgarno sequence. We found that CsrABb bound to the flaB transcripts via these two binding sites, and this binding inhibited the synthesis of FlaB at the translational level. Taken together, our results indicate that CsrABb specifically regulates the periplasmic flagellar synthesis by inhibiting translation initiation of the flaB transcript. PMID:21999436

  8. Borrelia chilensis, a new member of the Borrelia burgdorferi sensu lato complex that extends the range of this genospecies in the Southern Hemisphere

    PubMed Central

    Ivanova, Larisa B.; Tomova, Alexandra; González-Acuña, Daniel; Murúa, Roberto; Moreno, Claudia X.; Hernández, Claudio; Cabello, Javier; Cabello, Carlos; Daniels, Thomas J.; Godfrey, Henry P.; Cabello, Felipe C.

    2014-01-01

    Summary Borrelia burgdorferi sensu lato (s.l.), transmitted by Ixodes spp. ticks, is the causative agent of Lyme disease. Although Ixodes spp. ticks are distributed in both Northern and Southern Hemispheres, evidence for the presence of B. burgdorferi s.l. in South America apart from Uruguay is lacking. We now report the presence of culturable spirochetes with flat-wave morphology and borrelial DNA in endemic Ixodes stilesi ticks collected in Chile from environmental vegetation and long-tailed rice rats (Oligoryzomys longicaudatus). Cultured spirochetes and borrelial DNA in ticks were characterized by multilocus sequence typing and by sequencing five other loci (16S and 23S ribosomal genes, 5S-23S intergenic spacer, flaB, ospC). Phylogenetic analysis placed this spirochete as a new genospecies within the Lyme borreliosis group. Its plasmid profile determined by PCR and pulsed-field gel electrophoresis differed from that of B. burgdorferi B31A3. We propose naming this new South American member of the Lyme borreliosis group Borrelia chilensis VA1, in honor of its country of origin. PMID:24148079

  9. Molecular characterization, genomic arrangement, and expression of bmpD, a new member of the bmp class of genes encoding membrane proteins of Borrelia burgdorferi.

    PubMed Central

    Ramamoorthy, R; Povinelli, L; Philipp M, T

    1996-01-01

    An expression library made with Borrelia burgdorferi DNA in the vector lambda ZapII was screened with serum from a monkey infected with the Lyme disease agent. This serum killed B. burgdorferi in vitro by an antibody-dependent, complement-mediated mechanism and contained antibodies to at least seven spirochetal antigens, none of which were the major outer surface proteins OspA or OspB. Among several positive clones, a clone containing the B. burgdorferi bmpA gene encoding the immunodominant antigen P39 was obtained. Chromosome walking and DNA sequence analysis permitted the identification of two additional upstream genes homologous to the bmpA gene and its related companion, bmpB. The first of these was the recently characterized bmpC gene, and adjacent to it was the fourth and new member of this class, which has been designated bmpD. The gene product encoded by bmpD is 34l residues long, contains a signal sequence with a potential signal peptidase II cleavage site, and has 26% identity with TmpC of Treponema pallidum. Southern blotting confirmed the tandem arrangement of all four bmp genes in the chromosome of B. burgdorferi JD1. However, Northern (RNA) blotting revealed that bmpD is expressed as a monocistronic transcript, which indicates that it is not part of an operon at the bmp locus. The bmpD gene was found to be conserved in representative members of the three species of the B. burgdorferi sensu lato complex, suggesting that it serves an important biological function in the spirochete. PMID:8606088

  10. Evolution and Distribution of the ospC Gene, a Transferable Serotype Determinant of Borrelia burgdorferi

    PubMed Central

    Barbour, Alan G.; Travinsky, Bridgit

    2010-01-01

    Borrelia burgdorferi, an emerging bacterial pathogen, is maintained in nature by transmission from one vertebrate host to another by ticks. One of the few antigens against which mammals develop protective immunity is the highly polymorphic OspC protein, encoded by the ospC gene on the cp26 plasmid. Intragenic recombination among ospC genes is known, but the extent to which recombination extended beyond the ospC locus itself is undefined. We accessed and supplemented collections of DNA sequences of ospC and other loci from ticks in three U.S. regions (the Northeast, the Midwest, and northern California); a total of 839 ospC sequences were analyzed. Three overlapping but distinct populations of B. burgdorferi corresponded to the geographic regions. In addition, we sequenced 99 ospC flanking sequences from different lineages and compared the complete cp26 sequences of 11 strains as well as the cp26 bbb02 loci of 56 samples. Besides recombinations with traces limited to the ospC gene itself, there was evidence of lateral gene transfers that involved (i) part of the ospC gene and one of the two flanks or (ii) the entire ospC gene and different lengths of both flanks. Lateral gene transfers resulted in different linkages between the ospC gene and loci of the chromosome or other plasmids. By acquisition of the complete part or a large part of a novel ospC gene, an otherwise adapted strain would assume a new serotypic identity, thereby being comparatively fitter in an area with a high prevalence of immunity to existing OspC types. PMID:20877579

  11. Seroprevalence of Borrelia burgdorferi in occupationally exposed persons in the Belgrade area, Serbia

    PubMed Central

    Jovanovic, Dragutin; Atanasievska, Sonja; Protic-Djokic, Vesna; Rakic, Uros; Lukac-Radoncic, Elvira; Ristanovic, Elizabeta

    2015-01-01

    Lyme disease (LD) is a natural focal zoonotic disease caused by Borrelia burgdorferi, which is mainly transmitted through infected Ixodes ricinus tick bites. The presence and abundance of ticks in various habitats, the infectivity rate, as well as prolonged human exposure to ticks are factors that may affect the infection risk as well as the incidence of LD. In recent years, 20% to 25% of ticks infected with different borrelial species, as well as about 5,300 citizens with LD, have been registered in the Belgrade area. Many of the patients reported tick bites in city’s grassy areas. The aim of this study was to assess the seroprevalence of B. burgdorferi in high-risk groups (forestry workers and soldiers) in the Belgrade area, and to compare the results with healthy blood donors. A two-step algorithm consisting of ELISA and Western blot tests was used in the study. Immunoreactivity profiles were also compared between the groups. The results obtained showed the seroprevalence to be 11.76% in the group of forestry workers, 17.14% in the group of soldiers infected by tick bites and 8.57% in the population of healthy blood donors. The highest IgM reactivity was detected against the OspC protein, while IgG antibodies showed high reactivity against VlsE, p19, p41, OspC, OspA and p17. Further investigations in this field are necessary in humans and animals in order to improve protective and preventive measures against LD. PMID:26413064

  12. Identification of new compounds with high activity against stationary phase Borrelia burgdorferi from the NCI compound collection.

    PubMed

    Feng, Jie; Shi, Wanliang; Zhang, Shuo; Zhang, Ying

    2015-01-01

    Lyme disease is the leading tick-borne disease in the USA. Whereas the majority of Lyme disease patients with early disease can be cured with standard treatment, some patients suffer from chronic fatigue and joint and muscular pain despite treatment, a syndrome called posttreatment Lyme disease syndrome. Although the cause is unclear, ineffective killing of Borrelia burgdorferi persisters by current Lyme disease antibiotics is one possible explanation. We took advantage of our recently developed high-throughput viability assay and screened the National Cancer Institute compound library collection consisting of 2526 compounds against stationary phase B. burgdorferi. We identified the top 30 new active hits, including the top six anthracycline antibiotics daunomycin 3-oxime, dimethyldaunomycin, daunomycin, NSC299187, NSC363998 and nogalamycin, along with other compounds, including prodigiosin, mitomycin, nanaomycin and dactinomycin, as having excellent activity against B. burgdorferi stationary phase culture. The anthracycline or anthraquinone compounds, which are known to have both anti-cancer and antibacterial activities, also had high activity against growing B. burgdorferi with low minimum inhibitory concentration. Future studies on the structure-activity relationship and mechanisms of action of anthracyclines/anthraquinones are warranted. In addition, drug combination studies with the anthracycline class of compounds and the current Lyme antibiotics to eradicate B. burgdorferi persisters in vitro and in animal models are needed to determine if they improve the treatment of Lyme disease. PMID:26954881

  13. A tightly regulated surface protein of Borrelia burgdorferi is not essential to the mouse-tick infectious cycle.

    PubMed

    Stewart, Philip E; Bestor, Aaron; Cullen, Jonah N; Rosa, Patricia A

    2008-05-01

    Borrelia burgdorferi synthesizes a variety of differentially regulated outer surface lipoproteins in the tick vector and in vertebrate hosts. Among these is OspD, a protein that is highly induced in vitro by conditions that mimic the tick environment. Using genetically engineered strains in which ospD is deleted, we demonstrate that this protein is not required for B. burgdorferi survival and infectivity in either the mouse or the tick. However, examination of both transcript levels and protein expression indicates that OspD expression is limited to a discrete window of time during B. burgdorferi replication within the tick. This time frame corresponds to tick detachment from the host following feeding, and expression of OspD continues during tick digestion of the blood meal but is low or undetectable after the tick has molted. The high level of OspD production correlates to the highest cell densities that B. burgdorferi is known to reach in vivo. Although OspD is nonessential to the infectious cycle of B. burgdorferi, the tight regulation of expression suggests a beneficial contribution of OspD to the spirochete during bacterial replication within the tick midgut. PMID:18332210

  14. An Invasive Mammal (the Gray Squirrel, Sciurus carolinensis) Commonly Hosts Diverse and Atypical Genotypes of the Zoonotic Pathogen Borrelia burgdorferi Sensu Lato

    PubMed Central

    Magierecka, Agnieszka; Gilbert, Lucy; Edoff, Alissa; Brereton, Amelia; Kilbride, Elizabeth; Denwood, Matt; Birtles, Richard; Biek, Roman

    2015-01-01

    Invasive vertebrate species can act as hosts for endemic pathogens and may alter pathogen community composition and dynamics. For the zoonotic pathogen Borrelia burgdorferi sensu lato, the agent of Lyme borreliosis, recent work shows invasive rodent species can be of high epidemiological importance and may support host-specific strains. This study examined the role of gray squirrels (Sciurus carolinensis) (n = 679), an invasive species in the United Kingdom, as B. burgdorferi sensu lato hosts. We found that gray squirrels were frequently infested with Ixodes ricinus, the main vector of B. burgdorferi sensu lato in the United Kingdom, and 11.9% were infected with B. burgdorferi sensu lato. All four genospecies that occur in the United Kingdom were detected in gray squirrels, and unexpectedly, the bird-associated genospecies Borrelia garinii was most common. The second most frequent infection was with Borrelia afzelii. Genotyping of B. garinii and B. afzelii produced no evidence for strains associated with gray squirrels. Generalized linear mixed models (GLMM) identified tick infestation and date of capture as significant factors associated with B. burgdorferi sensu lato infection in gray squirrels, with infection elevated in early summer in squirrels infested with ticks. Invasive gray squirrels appear to become infected with locally circulating strains of B. burgdorferi sensu lato, and further studies are required to determine their role in community disease dynamics. Our findings highlight the fact that the role of introduced host species in B. burgdorferi sensu lato epidemiology can be highly variable and thus difficult to predict. PMID:25888168

  15. Bacterial tick-borne diseases caused by Bartonella spp., Borrelia burgdorferi sensu lato, Coxiella burnetii, and Rickettsia spp. among patients with cataract surgery

    PubMed Central

    Chmielewski, Tomasz; Brydak-Godowska, Joanna; Fiecek, Beata; Rorot, Urszula; Sędrowicz, Elżbieta; Werenowska, Małgorzata; Kopacz, Dorota; Hevelke, Agata; Michniewicz, Magdalena; Kęcik, Dariusz; Tylewska-Wierzbanowska, Stanisława

    2014-01-01

    Background Clinical data have shown that tick-borne diseases caused by Borrelia burgdorferi sensu lato, Bartonella spp., Coxiella burnetii, and Rickettsia spp. can affect the central nervous system, including the eye. The aim of this study was to establish a relationship between the incidence of cataract and evidence of bacterial infections transmitted by ticks. Material/Methods Fluid with lenticular masses from inside of the eye and blood from 109 patients were tested by PCR and sequencing. Sera from patients and the control group were subjected to serological tests to search specific antibodies to the bacteria. Results Microbiological analysis revealed the presence of Bartonella sp. DNA in intraoperative specimens from the eye in 1.8% of patients. Serological studies have shown that infections caused by B. burgdorferi sensu lato and Bartonella sp. were detected in 34.8% and 4.6% of patients with cataract surgery, respectively. Conclusions Presence of DNA of yet uncultured and undescribed species of Bartonella in eye liquid indicates past infection with this pathogen. Specific antibodies to B. burgdorferi sensu lato and Bartonella sp. are detected more frequently in patients with cataract compared to the control group. This could indicate a possible role of these organisms in the pathological processes within the eyeball, leading to changes in the lens. Further studies are needed to identify Bartonella species, as well as to recognize the infectious mechanisms involved in cataract development. PMID:24902636

  16. Inactivation of a putative flagellar motor switch protein FliG1 prevents Borrelia burgdorferi from swimming in highly viscous media and blocks its infectivity

    PubMed Central

    Li, Chunhao; Xu, Hongbin; Zhang, Kai; Liang, Fang Ting

    2015-01-01

    Summary The flagellar motor switch complex protein FliG plays an essential role in flagella biosynthesis and motility. In most motile bacteria, only one fliG homologue is present in the genome. However, several spirochete species have two putative fliG genes (referred to as fliG1 and fliG2) and their roles in flagella assembly and motility remain unknown. In this report, the Lyme disease spirochete Borrelia burgdorferi was used as a genetic model to investigate the roles of these two fliG homologues. It was found that fliG2 encodes a typical motor switch complex protein that is required for the flagellation and motility of B. burgdorferi. In contrast, the function of fliG1 is quite unique. Disruption of fliG1 did not affect flagellation and the mutant was still motile but failed to translate in highly viscous media. GFP-fusion and motion tracking analyses revealed that FliG1 asymmetrically locates at one end of cells and the loss of fliG1 somehow impacted one bundle of flagella rotation. In addition, animal studies demonstrated that the fliG1− mutant was quickly cleared after inoculation into the murine host, which highlights the importance of the ability to swim in highly viscous media in the infectivity of B. burgdorferi and probably other pathogenic spirochetes. PMID:20180908

  17. PCR-Based quantification of Borrelia burgdorferi organisms in canine tissues over a 500-Day postinfection period.

    PubMed

    Straubinger, R K

    2000-06-01

    Borrelia burgdorferi infection in beagle dogs was studied quantitatively with skin punch biopsy samples and blood samples collected at 4- and 2-week intervals, respectively, over a 500-day period. Thereafter, 25 tissue samples of each dog were collected for further analysis. Starting at day 120 after tick challenge, 12 dogs were treated with antibiotics (azithromycin, ceftriaxone, or doxycycline) for 30 consecutive days. Four dogs received no antibiotic therapy. Quantification of B. burgdorferi DNA was done with an ABI Prism 7700 Sequence Detection System with oligonucleotide primers and a fluorescence-labeled probe designed to specifically amplify a fragment of the ospA gene of B. burgdorferi strain N40. All 16 dogs became infected with B. burgdorferi after tick challenge. In skin biopsy samples, spirochete numbers peaked at day 60 postinfection (<1.5 x 10(6) organisms per 100 microgram of extracted DNA), at the same time when clinical signs of arthritis developed in 11 of 16 dogs, and decreased to almost undetectable levels during the following 6 months. The number of B. burgdorferi organisms detected in skin biopsy samples was inversely correlated with the antibody levels measured by enzyme-linked immunosorbent assay. Antibiotic treatment reduced the amount of detectable spirochete DNA in skin tissue by a factor of 1,000 or more. At the end of the experiment, B. burgdorferi DNA was detectable at low levels (10(2) to 10(4) organisms per 100 microgram of extracted DNA) in multiple tissue samples regardless of treatment. However, more tissue samples of untreated dogs than of antibiotic-treated dogs were positive, and tissue samples of untreated dogs also were positive by culture. Only 1.6% of 576 blood samples of all dogs were positive for B. burgdorferi by PCR. PMID:10834975

  18. BB0324 and BB0028 are constituents of the Borrelia burgdorferi β-barrel assembly machine (BAM) complex

    PubMed Central

    2012-01-01

    Background Similar to Gram-negative bacteria, the outer membrane (OM) of the pathogenic spirochete, Borrelia burgdorferi, contains integral OM-spanning proteins (OMPs), as well as membrane-anchored lipoproteins. Although the mechanism of OMP biogenesis is still not well-understood, recent studies have indicated that a heterooligomeric OM protein complex, known as BAM (β-barrel assembly machine) is required for proper assembly of OMPs into the bacterial OM. We previously identified and characterized the essential β-barrel OMP component of this complex in B. burgdorferi, which we determined to be a functional BamA ortholog. Results In the current study, we report on the identification of two additional protein components of the B. burgdorferi BAM complex, which were identified as putative lipoproteins encoded by ORFs BB0324 and BB0028. Biochemical assays with a BamA-depleted B. burgdorferi strain indicate that BB0324 and BB0028 do not readily interact with the BAM complex without the presence of BamA, suggesting that the individual B. burgdorferi BAM components may associate only when forming a functional BAM complex. Cellular localization assays indicate that BB0324 and BB0028 are OM-associated subsurface lipoproteins, and in silico analyses indicate that BB0324 is a putative BamD ortholog. Conclusions The combined data suggest that the BAM complex of B. burgdorferi contains unique protein constituents which differ from those found in other proteobacterial BAM complexes. The novel findings now allow for the B. burgdorferi BAM complex to be further studied as a model system to better our understanding of spirochetal OM biogenesis in general. PMID:22519960

  19. Decorin Binding Proteins of Borrelia burgdorferi Promote Arthritis Development and Joint Specific Post-Treatment DNA Persistence in Mice

    PubMed Central

    Salo, Jemiina; Jaatinen, Annukka; Söderström, Mirva; Viljanen, Matti K.; Hytönen, Jukka

    2015-01-01

    Decorin binding proteins A and B (DbpA and B) of Borrelia burgdorferi are of critical importance for the virulence of the spirochete. The objective of the present study was to further clarify the contribution of DbpA and B to development of arthritis and persistence of B. burgdorferi after antibiotic treatment in a murine model of Lyme borreliosis. With that goal, mice were infected with B. burgdorferi strains expressing either DbpA or DbpB, or both DbpA and B, or with a strain lacking the adhesins. Arthritis development was monitored up to 15 weeks after infection, and bacterial persistence was studied after ceftriaxone and immunosuppressive treatments. Mice infected with the B. burgdorferi strain expressing both DbpA and B developed an early and prominent joint swelling. In contrast, while strains that expressed DbpA or B alone, or the strain that was DbpA and B deficient, were able to colonize mouse joints, they caused only negligible joint manifestations. Ceftriaxone treatment at two or six weeks of infection totally abolished joint swelling, and all ceftriaxone treated mice were B. burgdorferi culture negative. Antibiotic treated mice, which were immunosuppressed by anti-TNF-alpha, remained culture negative. Importantly, among ceftriaxone treated mice, B. burgdorferi DNA was detected by PCR uniformly in joint samples of mice infected with DbpA and B expressing bacteria, while this was not observed in mice infected with the DbpA and B deficient strain. In conclusion, these results show that both DbpA and B adhesins are crucial for early and prominent arthritis development in mice. Also, post-treatment borrelial DNA persistence appears to be dependent on the expression of DbpA and B on B. burgdorferi surface. Results of the immunosuppression studies suggest that the persisting material in the joints of antibiotic treated mice is DNA or DNA containing remnants rather than live bacteria. PMID:25816291

  20. In vitro antimicrobial susceptibility testing of Borrelia burgdorferi: a microdilution MIC method and time-kill studies.

    PubMed Central

    Dever, L L; Jorgensen, J H; Barbour, A G

    1992-01-01

    The susceptibility of Borrelia burgdorferi, the causative agent of Lyme borreliosis, to various antimicrobial agents varies widely among published studies. These differences are probably due in part to variations in susceptibility testing techniques and growth endpoint determinations. We developed a microdilution method for determining the MICs of antibiotics against B. burgdorferi. The method incorporated BSK II medium, a final inoculum of 10(6) cells per ml, and a 72-h incubation period and was found to be simple and highly reproducible. A variety of antibiotics and strains of B. burgdorferi and one strain of Borrelia hermsii were examined by this method. MICs of penicillin, ceftriaxone, and erythromycin for the B31 strain of B. burgdorferi were 0.06, 0.03, and 0.03 microgram/ml, respectively. We compared the MICs obtained by the microdilution method with those obtained by a macrodilution method using similar criteria for endpoint determinations and found the values obtained by both methods to be in close agreement. To further investigate the bactericidal activities of penicillin, ceftriaxone, and erythromycin against strain B31, we used subsurface plating to determine MBCs and we also performed time-kill studies. The MBCs of penicillin, ceftriaxone, and erythromycin were 0.125, 0.03, and 0.06 micrograms/ml, respectively. Time-kill curves demonstrated a greater than or equal to 3-log10-unit killing after 72 h with penicillin, ceftriaxone, and erythromycin; ceftriaxone provided the greatest reduction in CFU. The described methods offer a more standardized and objective approach to susceptibility testing of B. burgdorferi. Images PMID:1400969

  1. Sigma factor selectivity in Borrelia burgdorferi: RpoS recognition of the ospE/ospF/elp promoters is dependent on the sequence of the -10 region.

    PubMed

    Eggers, Christian H; Caimano, Melissa J; Radolf, Justin D

    2006-03-01

    Members of the ospE/ospF/elp lipoprotein gene families of Borrelia burgdorferi, the Lyme disease agent, are transcriptionally upregulated in response to the influx of blood into the midgut of an infected tick. We recently have demonstrated that despite the high degree of similarity between the promoters of the ospF (P(ospF)) and ospE (P(ospE)) genes of B. burgdorferi strain 297, the differential expression of ospF is RpoS-dependent, while ospE is controlled by sigma(70). Herein we used wild-type and RpoS-deficient strains of B. burgdorferi and Escherichia coli to analyse transcriptional reporters consisting of a green fluorescent protein (gfp) gene fused to P(ospF), P(ospE), or two hybrid promoters in which the -10 regions of P(ospF) and P(ospE) were switched [P(ospF ) ((E - 10)) and P(ospE) ((F - 10)) respectively]. We found that the P(ospF)-10 region is both necessary and sufficient for RpoS-dependent recognition in B. burgdorferi, while sigma(70) specificity for P(ospE) is dependent on elements outside of the -10 region. In E. coli, sigma factor selectivity for these promoters was much more permissive, with expression of each being primarily due to sigma(70). Alignment of the sequences upstream of each of the ospE/ospF/elp genes from B. burgdorferi strains 297 and B31 revealed that two B31 ospF paralogues [erpK (BBM38) and erpL (BBO39)] have -10 regions virtually identical to that of P(ospF). Correspondingly, expression of gfp reporters based on the erpK and erpL promoters was RpoS-dependent. Thus, the sequence of the P(ospF)-10 region appears to serve as a motif for RpoS recognition, the first described for any B. burgdorferi promoter. Taken together, our data support the notion that B. burgdorferi utilizes sequence differences at the -10 region as one mechanism for maintaining the transcriptional integrity of RpoS-dependent and -independent genes activated at the onset of tick feeding. PMID:16553889

  2. Correlation of Borrelia burgdorferi sensu lato prevalence in questing Ixodes ricinus ticks with specific abiotic traits in the western palearctic.

    PubMed

    Estrada-Peña, Agustín; Ortega, Carmelo; Sánchez, Nely; Desimone, Lorenzo; Sudre, Bertrand; Suk, Jonathan E; Semenza, Jan C

    2011-06-01

    This meta-analysis of reports examining ticks throughout the Western Palearctic region indicates a distinct geographic pattern for Borrelia burgdorferi sensu lato prevalence in questing nymphal Ixodes ricinus ticks. The greatest prevalence was reported between the 5°E and 25°E longitudes based on an analysis of 123 collection points with 37,940 nymphal tick specimens (87.43% of total nymphs; 56.35% of total ticks in the set of reports over the target area). Climatic traits, such as temperature and vegetation stress, and their seasonality correlated with Borrelia prevalence in questing ticks. The greatest prevalence was associated with mild winter, high summer, and low seasonal amplitude of temperatures within the range of the tick vector, higher vegetation indices in the May-June period, and well-connected vegetation patches below a threshold at which rates suddenly drop. Classification of the target territory using a qualitative risk index derived from the abiotic variables produced an indicator of the probability of finding infected ticks in the Western Palearctic region. No specific temporal trends were detected in the reported prevalence. The ranges of the different B. burgdorferi sensu lato genospecies showed a pattern of high biodiversity between 4°W and 20°E, partially overlapping the area of highest prevalence in ticks. Borrelia afzelii and Borrelia garinii are the dominant species in central Europe (east of ∼25°E), but B. garinii may appear alone at southern latitudes and Borrelia lusitaniae is the main indicator species for meridional territories. PMID:21498767

  3. Trans-Atlantic exchanges have shaped the population structure of the Lyme disease agent Borrelia burgdorferi sensu stricto

    PubMed Central

    Castillo-Ramírez, S.; Fingerle, V.; Jungnick, S.; Straubinger, R. K.; Krebs, S.; Blum, H.; Meinel, D. M.; Hofmann, H.; Guertler, P.; Sing, A.; Margos, G.

    2016-01-01

    The origin and population structure of Borrelia burgdorferi sensu stricto (s.s.), the agent of Lyme disease, remain obscure. This tick-transmitted bacterial species occurs in both North America and Europe. We sequenced 17 European isolates (representing the most frequently found sequence types in Europe) and compared these with 17 North American strains. We show that trans-Atlantic exchanges have occurred in the evolutionary history of this species and that a European origin of B. burgdorferi s.s. is marginally more likely than a USA origin. The data further suggest that some European human patients may have acquired their infection in North America. We found three distinct genetically differentiated groups: i) the outgroup species Borrelia bissettii, ii) two divergent strains from Europe, and iii) a group composed of strains from both the USA and Europe. Phylogenetic analysis indicated that different genotypes were likely to have been introduced several times into the same area. Our results demonstrate that irrespective of whether B. burgdorferi s.s. originated in Europe or the USA, later trans-Atlantic exchange(s) have occurred and have shaped the population structure of this genospecies. This study clearly shows the utility of next generation sequencing to obtain a better understanding of the phylogeography of this bacterial species. PMID:26955886

  4. Trans-Atlantic exchanges have shaped the population structure of the Lyme disease agent Borrelia burgdorferi sensu stricto.

    PubMed

    Castillo-Ramírez, S; Fingerle, V; Jungnick, S; Straubinger, R K; Krebs, S; Blum, H; Meinel, D M; Hofmann, H; Guertler, P; Sing, A; Margos, G

    2016-01-01

    The origin and population structure of Borrelia burgdorferi sensu stricto (s.s.), the agent of Lyme disease, remain obscure. This tick-transmitted bacterial species occurs in both North America and Europe. We sequenced 17 European isolates (representing the most frequently found sequence types in Europe) and compared these with 17 North American strains. We show that trans-Atlantic exchanges have occurred in the evolutionary history of this species and that a European origin of B. burgdorferi s.s. is marginally more likely than a USA origin. The data further suggest that some European human patients may have acquired their infection in North America. We found three distinct genetically differentiated groups: i) the outgroup species Borrelia bissettii, ii) two divergent strains from Europe, and iii) a group composed of strains from both the USA and Europe. Phylogenetic analysis indicated that different genotypes were likely to have been introduced several times into the same area. Our results demonstrate that irrespective of whether B. burgdorferi s.s. originated in Europe or the USA, later trans-Atlantic exchange(s) have occurred and have shaped the population structure of this genospecies. This study clearly shows the utility of next generation sequencing to obtain a better understanding of the phylogeography of this bacterial species. PMID:26955886

  5. Borrelia burgdorferi BBA74, a Periplasmic Protein Associated with the Outer Membrane, Lacks Porin-Like Properties▿

    PubMed Central

    Mulay, Vishwaroop; Caimano, Melissa J.; Liveris, Dionysios; Desrosiers, Daniel C.; Radolf, Justin D.; Schwartz, Ira

    2007-01-01

    The outer membrane of Borrelia burgdorferi, the causative agent of Lyme disease, contains very few integral membrane proteins, in contrast to other gram-negative bacteria. BBA74, a Borrelia burgdorferi plasmid-encoded protein, was proposed to be an integral outer membrane protein with putative porin function and designated as a 28-kDa outer membrane-spanning porin (Oms28). In this study, the biophysical properties of BBA74 and its subcellular localization were investigated. BBA74 is posttranslationally modified by signal peptidase I cleavage to a mature 25-kDa protein. The secondary structure of BBA74 as determined by circular dichroism spectroscopy consists of at least 78% α-helix with little β-sheet structure. BBA74 in intact B. burgdorferi cells was insensitive to proteinase K digestion, and indirect immunofluorescence microscopy showed that BBA74 was not exposed on the cell surface. Triton X-114 extraction of outer membrane vesicle preparations indicated that BBA74 is not an integral membrane protein. Taken together, the data indicate that BBA74 is a periplasmic, outer membrane-associated protein that lacks properties typically associated with porins. PMID:17189354

  6. Borrelia burgdorferi BBA74, a periplasmic protein associated with the outer membrane, lacks porin-like properties.

    PubMed

    Mulay, Vishwaroop; Caimano, Melissa J; Liveris, Dionysios; Desrosiers, Daniel C; Radolf, Justin D; Schwartz, Ira

    2007-03-01

    The outer membrane of Borrelia burgdorferi, the causative agent of Lyme disease, contains very few integral membrane proteins, in contrast to other gram-negative bacteria. BBA74, a Borrelia burgdorferi plasmid-encoded protein, was proposed to be an integral outer membrane protein with putative porin function and designated as a 28-kDa outer membrane-spanning porin (Oms28). In this study, the biophysical properties of BBA74 and its subcellular localization were investigated. BBA74 is posttranslationally modified by signal peptidase I cleavage to a mature 25-kDa protein. The secondary structure of BBA74 as determined by circular dichroism spectroscopy consists of at least 78% alpha-helix with little beta-sheet structure. BBA74 in intact B. burgdorferi cells was insensitive to proteinase K digestion, and indirect immunofluorescence microscopy showed that BBA74 was not exposed on the cell surface. Triton X-114 extraction of outer membrane vesicle preparations indicated that BBA74 is not an integral membrane protein. Taken together, the data indicate that BBA74 is a periplasmic, outer membrane-associated protein that lacks properties typically associated with porins. PMID:17189354

  7. Evaluation of Borrelia burgdorferi BbHtrA Protease as a Vaccine Candidate for Lyme Borreliosis in Mice

    PubMed Central

    Ullmann, Amy J.; Russell, Theresa M.; Dolan, Marc C.; Williams, Martin; Hojgaard, Andrias; Weiner, Zachary P.; Johnson, Barbara J. B.

    2015-01-01

    Borrelia burgdorferi synthesizes an HtrA protease (BbHtrA) which is a surface-exposed, conserved protein within Lyme disease spirochetes with activity toward CheX and BmpD of Borrelia spp, as well as aggrecan, fibronectin and proteoglycans found in skin, joints and neural tissues of vertebrates. An antibody response against BbHtrA is observed in Lyme disease patients and in experimentally infected laboratory mice and rabbits. Given the surface location of BbHtrA on B. burgdorferi and its ability to elicit an antibody response in infected hosts, we explored recombinant BbHtrA as a potential vaccine candidate in a mouse model of tick-transmitted Lyme disease. We immunized mice with two forms of BbHtrA: the proteolytically active native form and BbHtrA ablated of activity by a serine to alanine mutation at amino acid 226 (BbHtrAS226A). Although inoculation with either BbHtrA or BbHtrAS226A produced high-titer antibody responses in C3H/HeJ mice, neither antigen was successful in protecting mice from B. burgdorferi challenge. These results indicate that the search for novel vaccine candidates against Lyme borreliosis remains a challenge. PMID:26076465

  8. Borrelia burgdorferi Oxidative Stress Regulator BosR Directly Represses Lipoproteins Primarily Expressed in the Tick during Mammalian Infection

    PubMed Central

    Wang, Peng; Dadhwal, Poonam; Cheng, Zhihui; Zianni, Michael R.; Rikihisa, Yasuko; Liang, Fang Ting; Li, Xin

    2013-01-01

    Summary Differential gene expression is a key strategy adopted by the Lyme disease spirochaete, Borrelia burgdorferi, for adaptation and survival in the mammalian host and the tick vector. Many B. burgdorferi surface lipoproteins fall into two distinct groups according to their expression patterns: one group primarily expressed in the tick and the other group primarily expressed in the mammal. Here, we show that the Fur homologue in this bacterium, also known as Borrelia oxidative stress regulator (BosR), is required for repression of outer surface protein A (OspA) and OspD in the mammal. Furthermore, BosR binds directly to sequences upstream of the ospAB operon and the ospD gene through recognition of palindromic motifs similar to those recognized by other Fur homologues but with a 1-bp variation in the spacer length. Putative BosR-binding sites have been identified upstream of 156 B. burgdorferi genes. Some of these genes share the same expression pattern as ospA and ospD. Most notably, 12 (67%) of the 18 genes previously identified in a genome-wide microarray study to be most significantly repressed in the mammal are among the putative BosR regulon. These data indicate that BosR may directly repress transcription of many genes that are down-regulated in the mammal. PMID:23869590

  9. BosR Functions as a Repressor of the ospAB Operon in Borrelia burgdorferi

    PubMed Central

    Shi, Yanlin; Dadhwal, Poonam; Li, Xin; Liang, Fang Ting

    2014-01-01

    The Lyme disease spirochete, Borrelia burgdorferi, must abundantly produce outer surface lipoprotein A (OspA) in the tick vector but downregulate OspA in mammals in order to evade the immune system and maintain its natural enzootic cycle. Here, we show that BosR binds two regulatory elements of the ospAB operon and that increasing BosR expression leads to downregulation of OspA. Both regulatory sequences, cisI and cisII, showed strong BosR-binding and cisII bound much tighter than cisI. A promoterless bosR gene fused with an inducible promoter was introduced into an rpoS mutant and a wild-type strain to assess RpoS-independent and -dependent downregulation of OspA by BosR. With the induction of BosR expression, OspA expression was reduced more significantly in the RpoS-deficient than wild-type background, but not completely repressed. In the presence of constitutive expression of OspC, DbpA and DbpB, increasing BosR production resulted in complete repression of OspA in the RpoS mutant. Taken together, the study clearly demonstrated BosR serves as a repressor that binds both regulatory elements of the ospAB operon and shuts off expression. PMID:25271631

  10. Reservoir competence of native North American birds for the Lyme disease spirochete, Borrelia burgdorferi

    USGS Publications Warehouse

    Ginsberg, H.S.; Buckley, P.A.; Balmforth, M.G.; Zhioua, E.; Mitra, Siddhartha; Buckley, F.G.

    2005-01-01

    Reservoir competence of the Lyme disease spirochete, Borrelia burgdorferi, was tested for six species of native North American birds: American Robin, Gray Catbird, Brown Thrasher, Eastern Towhee, Song Sparrow, and Northern Cardinal. Wild birds collected by mistnetting on Fire Island, NY, were held in a field lab in cages over water, and locally collected larval ticks were placed on the birds, harvested from the water after engorgement, and tested for infection by DFA after molting to the nymphal stage. American Robins were competent reservoirs, infecting 16.1% of larvae applied to wild-caught birds, compared to 0% of control ticks placed on uninfected lab mice. Robins that were previously infected in the lab by nymphal feeding infected 81.8% of applied larvae. Wild-caught Song Sparrows infected 4.8% of applied larvae, and 21.1% when infected by nymphal feeding. Results suggest moderate levels of reservoir competence for Northern Cardinals, lower levels for Gray Catbirds, and little evidence of reservoir competence for Eastern Towhees or Brown Thrashers. Lower infection rates in larvae applied to wild-caught birds compared to birds infected in the lab suggest that infected birds display temporal variability in infectiousness to larval ticks. Engorged larvae drop from birds abundantly during daylight hours, so the abundance of these bird species in the peridomestic environment suggests that they might contribute infected ticks to lawns and gardens.

  11. Cystitis induced by infection with the Lyme disease spirochete, Borrelia burgdorferi, in mice.

    PubMed Central

    Czub, S.; Duray, P. H.; Thomas, R. E.; Schwan, T. G.

    1992-01-01

    Previous studies have demonstrated that the urinary bladder is a consistent source for isolating the Lyme disease spirochete, Borrelia burgdorferi, from both experimentally infected and naturally exposed rodents. We examined histopathologic changes in the urinary bladder of different types of rodents experimentally infected with Lyme spirochetes, including BALB/c mice (Mus musculus), nude mice (M. musculus), white-footed mice (Peromyscus leucopus), and grasshopper mice (Onychomys leucogaster). Animals were inoculated intraperitoneally, subcutaneously, or intranasally with low-passaged spirochetes, high-passaged spirochetes, or phosphate-buffered saline. At various times after inoculation, animals were killed and approximately one-half of each urinary bladder and kidney were cultured separately in BSK-II medium while the other half of each organ was prepared for histologic examination. Spirochetes were cultured from the urinary bladder of all 35 mice inoculated with low-passaged spirochetes while we were unable to isolate spirochetes from any kidneys of the same mice. The pathologic changes observed most frequently in the urinary bladder of the infected mice were the presence of lymphoid aggregates, vascular changes, including an increase in the number of vessels and thickening of the vessel walls, and perivascular infiltrates. Our results demonstrate that nearly all individuals (93%) of the four types of mice examined had a cystitis associated with spirochetal infection. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:1443051

  12. Automated purification of Borrelia burgdorferi s.l. PCR products with KingFisher™ magnetic particle processor prior to genome sequencing

    NASA Astrophysics Data System (ADS)

    Mäkinen, Johanna; Marttila, Harri; Viljanen, Matti K.

    2001-01-01

    Borrelia burgdorferi sensu lato genospecies were differentiated by PCR-based sequencing of the borrelial flagellin gene. To evaluate the usefulness of KingFisher™ magnetic particle processor in PCR product purification, borrelia PCR products were purified with KingFisher™ magnetic particle processor prior to cycle sequencing and the quality of the sequence data received was analyzed. KingFisher was found to offer a rapid and reliable alternative for borrelial PCR product purification.

  13. Evaluation of the Importance of VlsE Antigenic Variation for the Enzootic Cycle of Borrelia burgdorferi

    PubMed Central

    Rogovskyy, Artem S.; Casselli, Timothy; Tourand, Yvonne; Jones, Cami R.; Owen, Jeb P.; Mason, Kathleen L.; Scoles, Glen A.; Bankhead, Troy

    2015-01-01

    Efficient acquisition and transmission of Borrelia burgdorferi by the tick vector, and the ability to persistently infect both vector and host, are important elements for the life cycle of the Lyme disease pathogen. Previous work has provided strong evidence implicating the significance of the vls locus for B. burgdorferi persistence. However, studies involving vls mutant clones have thus far only utilized in vitro-grown or host-adapted spirochetes and laboratory strains of mice. Additionally, the effects of vls mutation on tick acquisition and transmission has not yet been tested. Thus, the importance of VlsE antigenic variation for persistent infection of the natural reservoir host, and for the B. burgdorferi enzootic life cycle in general, has not been examined to date. In the current work, Ixodes scapularis and Peromyscus maniculatus were infected with different vls mutant clones to study the importance of the vls locus for the enzootic cycle of the Lyme disease pathogen. The findings highlight the significance of the vls system for long-term infection of the natural reservoir host, and show that VlsE antigenic variability is advantageous for efficient tick acquisition of B. burgdorferi from the mammalian reservoir. The data also indicate that the adaptation state of infecting spirochetes influences B. burgdorferi avoidance from host antibodies, which may be in part due to its respective VlsE expression levels. Overall, the current findings provide the most direct evidence on the importance of VlsE for the enzootic cycle of Lyme disease spirochetes, and underscore the significance of VlsE antigenic variation for maintaining B. burgdorferi in nature. PMID:25893989

  14. Induction of indoleamine 2,3-dioxygenase by Borrelia burgdorferi in human immune cells correlates with pathogenic potential

    PubMed Central

    Love, Andrea C.; Schwartz, Ira; Petzke, Mary M.

    2015-01-01

    Borrelia burgdorferi, the bacterial agent of Lyme disease, induces the production of type I IFNs by human DCs through TLR7 and TLR9 signaling. This type I IFN response occurs in a genotype-dependent manner, with significantly higher levels of IFN-α elicited by B. burgdorferi strains that have a greater capacity for causing disseminated infection. A B. burgdorferi strain that was previously shown to induce IFN-α was found to elicit significantly higher levels of IDO1 protein and its downstream metabolite, kynurenine, compared with a B. burgdorferi mutant that lacks a single linear plasmid (lp36); this mutant is unable to induce IFN-α and is severely attenuated for infectivity in mice. Production of IDO by mDC and pDC populations, present within human PBMCs, was concomitant with increased expression of the DC maturation markers, CD83 and CCR7. The defects in IDO production and expression of CD83 and CCR7 could be restored by complementation of the mutant with lp36. Maximal IDO production in response to the wild-type strain was dependent on contributions by both type I IFN and IFN-γ, the type II IFN. Induction of IDO was mediated by the same TLR7-dependent recognition of B. burgdorferi RNA that contributes to the production of type I IFNs by human DCs. The ability of IFN-α-inducing B. burgdorferi strains to stimulate production of IDO and kynurenines may be a mechanism that is used by the pathogen to promote localized immunosuppression and facilitate hematogenous dissemination. PMID:25420916

  15. Evaluation of the Importance of VlsE Antigenic Variation for the Enzootic Cycle of Borrelia burgdorferi.

    PubMed

    Rogovskyy, Artem S; Casselli, Timothy; Tourand, Yvonne; Jones, Cami R; Owen, Jeb P; Mason, Kathleen L; Scoles, Glen A; Bankhead, Troy

    2015-01-01

    Efficient acquisition and transmission of Borrelia burgdorferi by the tick vector, and the ability to persistently infect both vector and host, are important elements for the life cycle of the Lyme disease pathogen. Previous work has provided strong evidence implicating the significance of the vls locus for B. burgdorferi persistence. However, studies involving vls mutant clones have thus far only utilized in vitro-grown or host-adapted spirochetes and laboratory strains of mice. Additionally, the effects of vls mutation on tick acquisition and transmission has not yet been tested. Thus, the importance of VlsE antigenic variation for persistent infection of the natural reservoir host, and for the B. burgdorferi enzootic life cycle in general, has not been examined to date. In the current work, Ixodes scapularis and Peromyscus maniculatus were infected with different vls mutant clones to study the importance of the vls locus for the enzootic cycle of the Lyme disease pathogen. The findings highlight the significance of the vls system for long-term infection of the natural reservoir host, and show that VlsE antigenic variability is advantageous for efficient tick acquisition of B. burgdorferi from the mammalian reservoir. The data also indicate that the adaptation state of infecting spirochetes influences B. burgdorferi avoidance from host antibodies, which may be in part due to its respective VlsE expression levels. Overall, the current findings provide the most direct evidence on the importance of VlsE for the enzootic cycle of Lyme disease spirochetes, and underscore the significance of VlsE antigenic variation for maintaining B. burgdorferi in nature. PMID:25893989

  16. A 55-kilodalton antigen encoded by a gene on a Borrelia burgdorferi 49-kilobase plasmid is recognized by antibodies in sera from patients with Lyme disease.

    PubMed Central

    Feng, S; Das, S; Lam, T; Flavell, R A; Fikrig, E

    1995-01-01

    We have identified a 55-kDa antigen encoded by a gene on a 49-kb plasmid of Borrelia burgdorferi. The screening of a B. burgdorferi DNA expression library (N40 strain) with rabbit anti-B. burgdorferi serum and then with serum from a patient with Lyme disease arthritis revealed a clone that synthesized an antigen that was reactive with both sera. DNA sequence analysis identified an operon with two genes, s1 and s2 (1,254 and 780 nucleotides), that expressed antigens with the predicted molecular masses of 55 and 29 kDa, respectively. Pulsed-field gel electrophoresis showed that the s1-s2 operon was located on the 49-kb plasmid. Recombinant S1 was synthesized as a glutathione S-transferase fusion protein in Escherichia coli. Antibodies to recombinant S1 bound to a 55-kDa protein in lysates of B. burgdorferi, indicating that cultured spirochetes synthesized S1. Thirty-one of 100 Lyme disease patients had immunoglobulin G (IgG) and/or IgM antibodies to S1. IgG antibodies to S1 were detected by enzyme-linked immunosorbent assay and immunoblots in the sera of 21 (21%) of 100 patients with Lyme disease; 11 (27.5%) of the S1-positive samples were from patients (40) with early-stage Lyme disease, and 10 (16.7%) were from patients (60) with late-stage Lyme disease. Fifteen (38.5%) of 40 serum samples from patients with early-stage Lyme disease had IgM antibodies to S1. These data suggest that the S1 antigen encoded by a gene on the 49-kb plasmid is recognized serologically by a subset of patients with early- or late-stage Lyme disease. PMID:7642278

  17. Genospecies of Borrelia burgdorferi sensu lato in Ixodes ricinus ticks from the Autonomous Province of Trento, Italy.

    PubMed

    Pecchioli, Elena; Hauffe, Heidi C; Tagliapietra, Valentina; Bandi, Claudio; Genchi, Claudio; Rizzoli, Annapaola

    2007-02-01

    Sequences of the variable intergenic spacer region 5S (rrfA) 23S (rrlB) rRNA were used to identify Borrelia genospecies present in Ixodes ricinus nymphs collected from the Lamar Lakes area of the Province of Trento, Italy (overall prevalence=6.3%). Four genospecies were identified, one for the first time in this Province (B. valaisiana), and three which have been noted previously (B. afzelii, B. garinii, and B. burgdorferi s.s.). In order to compare the genetic variability of these genospecies in Trento with that at a European level, our 21 sequences (15 new haplotypes) and all appropriate European Borrelia sequences registered in GenBank (up to the end of 2004) were subjected to a phylogenetic analysis (for a total of 73 sequences and 43 haplotypes). Clusters of sequences representing the five main European genospecies (afzelii, garinii, burgdorferi s.s., valaisiana, lusitaniae) are well-supported. At least two other groups of haplotypes (genospecies) are suggested by our analysis; moreover, divergent evolution may be occurring in several genospecies. The maximum uncorrected pairwise differences between sequences within genospecies ranges from 1.5% (B. burgdorferi s.s.), to 2.3% (B. garinii and B. valaisiana) to 4.7% (B. afzelii), and are not correlated with geographical distribution. Within the Province of Trento, these values for the same genospecies are 1.5%, 2.3%, 0.9%, 1.9%, respectively. These high mutation rates within genospecies suggest that the sequencing of haplotypes should continue if we are to fully understand and monitor the evolution and epidemiology of Borrelia. PMID:17137840

  18. BB0323 function is essential for Borrelia burgdorferi virulence and persistence through tick-rodent transmission cycle

    PubMed Central

    Zhang, Xinyue; Yang, Xiuli; Kumar, Manish; Pal, Utpal

    2010-01-01

    Borrelia burgdorferi bb0323 encodes an immunogenic protein in mammalian hosts including humans. An analysis of bb0323 expression in vivo showed variable transcription throughout the spirochete infection cycle, with elevated expression during tick-mouse transmission. Deletion of bb0323 in infectious B. burgdorferi did not affect microbial survival in vitro, despite significant alterations in growth kinetics and cell morphology. bb0323 mutants were unable to infect either mice or ticks, and were quickly eliminated from immunocompetent and immunodeficient hosts and the vector, within the first few days of inoculation. Chromosomal complementation of the mutant with native bb0323 and phenotypic analysis in vivo indicated the significant restoration of spirochete virulence and persistence throughout the mouse-tick infection cycle. BB0323 may serve an indispensable physiological function that is more pronounced during microbial persistence and transitions between the host and the vector in vivo. Strategies to interfere with BB0323 function may interrupt the infectious cycle of spirochetes. PMID:19754308

  19. Simultaneous coexpression of Borrelia burgdorferi Erp proteins occurs through a specific, erp locus-directed regulatory mechanism.

    PubMed

    El-Hage, Nazira; Stevenson, Brian

    2002-08-01

    An individual Borrelia burgdorferi bacterium can encode as many as 13 different Erp (OspE/F-related) proteins from mono-and bicistronic loci that are carried on up to 10 separate plasmids. We demonstrate through multilabel immunofluorescence analyses that individual bacteria simultaneously coexpress their entire Erp protein repertoire. While it has been proposed that B. burgdorferi controls expression of Erp and other plasmid-encoded proteins through changes in DNA topology, we observed regulated Erp expression in the absence of detectable differences in DNA supercoiling. Likewise, inhibition of DNA gyrase had no detectable effect on Erp expression. Furthermore, expression of loci physically adjacent to erp loci was observed to be independently regulated. It is concluded that Erp expression is regulated by a mechanism(s) directed at erp loci and not by a global, plasmid-wide mechanism. PMID:12142424

  20. Confirmation of Borrelia burgdorferi spirochetes by polymerase chain reaction in placentas of women with reactive serology for Lyme antibodies.

    PubMed

    Figueroa, R; Bracero, L A; Aguero-Rosenfeld, M; Beneck, D; Coleman, J; Schwartz, I

    1996-01-01

    The purpose of our study was to determine whether Borrelia burgdorferi spirochetes were present in placentas of asymptomatic women with reactive Lyme serology using a silver stain, and to confirm the identity of the spirochetes by polymerase chain reaction (PCR). Sixty placentas of asymptomatic women with ELISA-positive or-equivocal serology for Lyme antibodies during pregnancy were examined for spirochetes using a silver stain. The results of the ELISA serology were confirmed by Western blot analysis. PCR amplification for B. burgdorferi was performed on placentas identified to have spirochetes and on a group of placentas negative for spirochetes. Spirochetes were identified by silver staining in 3 (5%) of the 60 placentas. PCR confirmed B. burgdorferi nucleotide sequences in 2 of the placentas. The 5 women had equivocal Lyme ELISA and negative syphilis serology. The results of the Western blot analysis were negative in 2 cases and indeterminate in 1 case. Six controls were negative for spirochetes by silver staining and PCR. A normal perinatal outcome was observed in all cases. Spirochetes identified in placental tissue of pregnancies with reactive Lyme serology were confirmed by PCR to be B. burgdorferi. There was no relationship between the presence of placental spirochetes and the results of Lyme serology or the pregnancy outcome. PMID:8793493

  1. Investigation of venereal, transplacental, and contact transmission of the Lyme disease spirochete, Borrelia burgdorferi, in Syrian hamsters.

    PubMed

    Woodrum, J E; Oliver, J H

    1999-06-01

    A hamster was inoculated with the SI-1 strain of Borrelia burgdorferi and subsequently served as a host to larval Ixodes scapularis Say. Approximately 68% of the nymphs resulting from the fed larvae were infected. Nymphs from this group were fed on uninfected hamsters, and 3 of 4 males and 6 of 6 females became infected. The infected hamsters were allowed to mate with uninfected partners to test for venereal transmission. Six infected females were mated with 6 uninfected males, whereas 3 infected males were mated with 6 uninfected females. None of the uninfected hamsters became infected after mating. Two protocols were used to determine if transplacental transmission of B. burgdorferi occurred. One group included 6 nonpregnant infected females that were subsequently mated and became pregnant. Three of the females were allowed to carry to full term, whereas the other 3 were killed prior to parturition. All fetuses and offspring were negative for B. burgdorferi based on cultures and monoclonal antibody assays. Another group of 6 females was infected via tick bite after becoming pregnant; those females were allowed to carry fetuses to birth and all were negative. Attempts at contact transmission of B. burgdorferi from 2 infected females to 2 uninfected male and 2 uninfected female hamsters and from 2 infected males to 2 uninfected male and uninfected female hamsters via urine or feces failed. PMID:10386432

  2. Quantification of Borrelia burgdorferi Membrane Proteins in Human Serum: A New Concept for Detection of Bacterial Infection.

    PubMed

    Cheung, Crystal S F; Anderson, Kyle W; Benitez, Kenia Y Villatoro; Soloski, Mark J; Aucott, John N; Phinney, Karen W; Turko, Illarion V

    2015-11-17

    The Borrelia burgdorferi spirochete is the causative agent of Lyme disease, the most common tick-borne disease in the United States. The low abundance of bacterial proteins in human serum during infection imposes a challenge for early proteomic detection of Lyme disease. To address this challenge, we propose to detect membrane proteins released from bacteria due to disruption of their plasma membrane triggered by the innate immune system. These membrane proteins can be separated from the bulk of serum proteins by high-speed centrifugation causing substantial sample enrichment prior to targeted protein quantification using multiple reaction monitoring mass spectrometry. This new approach was first applied to detection of B. burgdorferi membrane proteins supplemented in human serum. Our results indicated that detection of B. burgdorferi membrane proteins, which are ≈10(7) lower in abundance than major serum proteins, is feasible. Therefore, quantitative analysis was also carried out for serum samples from three patients with acute Lyme disease. We were able to demonstrate the detection of ospA, the major B. burgdorferi lipoprotein at the level of 4.0 fmol of ospA/mg of serum protein. The results confirm the concept and suggest that the proposed approach can be expanded to detect other bacterial infections in humans, particularly where existing diagnostics are unreliable. PMID:26491962

  3. A seventeen-year epidemiological surveillance study of Borrelia burgdorferi infections in two provinces of northern Spain.

    PubMed

    Lledó, Lourdes; Gegúndez, María Isabel; Giménez-Pardo, Consuelo; Álamo, Rufino; Fernández-Soto, Pedro; Nuncio, María Sofia; Saz, José Vicente

    2014-02-01

    This paper reports a 17-year seroepidemiological surveillance study of Borrelia burgdorferi infection, performed with the aim of improving our knowledge of the epidemiology of this pathogen. Serum samples (1,179) from patients (623, stratified with respect to age, sex, season, area of residence and occupation) bitten by ticks in two regions of northern Spain were IFA-tested for B. burgdorferi antibodies. Positive results were confirmed by western blotting. Antibodies specific for B. burgdorferi were found in 13.3% of the patients; 7.8% were IgM positive, 9.6% were IgG positive, and 4.33% were both IgM and IgG positive. Five species of ticks were identified in the seropositive patients: Dermacentor marginatus (41.17% of such patients) Dermacentor reticulatus (11.76%), Rhiphicephalus sanguineus (17.64%), Rhiphicephalus turanicus (5.88%) and Ixodes ricinus (23.52%). B. burgdorferi DNA was sought by PCR in ticks when available. One tick, a D. reticulatus male, was found carrying the pathogen. The seroprevalence found was similar to the previously demonstrated in similar studies in Spain and other European countries. PMID:24487455

  4. Borrelia burgdorferi lipoprotein BmpA activates pro-inflammatory responses in human synovial cells through a protein moiety

    PubMed Central

    Yang, Xiuli; Izadi, Hooman; Coleman, Adam S.; Wang, Penghua; Ma, Yongsheng; Fikrig, Erol; Anguita, Juan; Pal, Utpal

    2008-01-01

    Borrelia burgdorferi invasion of mammalian joints results in genesis of Lyme arthritis. Other than spirochete lipids, existence of protein antigens, which are abundant in joints and participate in B. burgdorferi-induced host inflammatory response, is unknown. Here, we report that major products of the B. burgdorferi basic membrane protein (bmp) A/B operon that are induced in murine and human joints, possess inflammatory properties. Compared to the wild type B. burgdorferi, an isogenic bmpA/B mutant induced significantly lower levels of pro-inflammatory cytokines TNF-α and IL-1β in cultured human synovial cells, which could be restored using bmpA/B-complemented mutants, and more directly, upon addition of recombinant BmpA, but not BmpB or control spirochete proteins. Non-lipidated and lipidated versions of BmpA induced similar levels of cytokines, and remained unaffected by treatment with lipopolysaccharide inhibitor, polymyxin B. The bmpA/B mutant was also impaired in the induction of NF-κB and p38 MAP kinase signaling pathways in synovial cells, which were activated by non-lipidated BmpA. These results show that a protein moiety of BmpA can induce cytokine responses in synovial cells via activation of the NF-κB and p38 MAP kinase pathways and thus, could potentially contribute to the genesis of Lyme arthritis. PMID:18725314

  5. Oral Vaccination With Vaccinia Virus Expressing the Tick Antigen Subolesin Inhibits Tick Feeding and Transmission of Borrelia burgdorferi Vaccination

    PubMed Central

    Bensaci, Mekki; Bhattacharya, Debaditya; Clark, Roger; Hu, Linden T.

    2014-01-01

    Immunization with the Ixodes scapularis protein, subolesin, has previously been shown to protect hosts against tick infestation and to decrease acquisition of Anaplsma marginale and Babesia bigemina. Here we report the efficacy of subolesin expressed from Vaccinia virus for use as an orally delivered reservoir–targeted vaccine for prevention of tick infestation and acquisition/transmission of Borrelia burgdorferi to its tick and mouse hosts. We cloned subolesin into Vaccinia virus and showed that it is expressed from mammalian cells infected with the recombinant virus in vitro. We then vaccinated mice by oral gavage. A single dose of the vaccine was sufficient for mice to generate antibody response to subolesin. Vaccination with the subolesin expressing Vaccinia virus inhibited tick infestation by 52% compared to control vaccination with Vaccinia virus and reduced uptake of B. burgdorferi among the surviving ticks that fed to repletion by 34%. There was a reduction in transmission of B. burgdorferi to uninfected vaccinated mice of 40% compared to controls. These results suggest that subolesin has potential as a component of a reservoir targeted vaccine to decrease B. burgdorferi, Babesia and Anaplasma species infections in their natural hosts. PMID:22864146

  6. Borrelia burgdorferi sensu lato infection pressure shapes innate immune gene evolution in natural rodent populations across Europe

    PubMed Central

    Tschirren, Barbara

    2015-01-01

    Although parasite-mediated selection is assumed to be the main driver of immune gene evolution, empirical evidence that parasites induce allele frequency changes at host immune genes in time and/or space remains scarce. Here, I show that the frequency of a protective gene variant of the innate immune receptor Toll-like receptor 2 in natural bank vole (Myodes glareolus) populations is positively associated with the strength of Borrelia burgdorferi sensu lato infection risk across the European continent. Thereby, this study provides rare evidence for the role of spatially variable infection pressures in moulding the vertebrate immune system. PMID:26018834

  7. Borrelia burgdorferi sensu lato infection pressure shapes innate immune gene evolution in natural rodent populations across Europe.

    PubMed

    Tschirren, Barbara

    2015-05-01

    Although parasite-mediated selection is assumed to be the main driver of immune gene evolution, empirical evidence that parasites induce allele frequency changes at host immune genes in time and/or space remains scarce. Here, I show that the frequency of a protective gene variant of the innate immune receptor Toll-like receptor 2 in natural bank vole (Myodes glareolus) populations is positively associated with the strength of Borrelia burgdorferi sensu lato infection risk across the European continent. Thereby, this study provides rare evidence for the role of spatially variable infection pressures in moulding the vertebrate immune system. PMID:26018834

  8. Prevalence of Borrelia burgdorferi in white-footed mice and Ixodes dammini at Fort McCoy, Wis.

    PubMed Central

    Anderson, J F; Duray, P H; Magnarelli, L A

    1987-01-01

    Borrelia burgdorferi, the causative agent of Lyme disease, was isolated from 15 of 17 white-footed mice (Peromyscus leucopus) and 54 of 82 subadult Ixodes dammini from Fort McCoy, Wis. Of the 47 isolates tested, all reacted in indirect fluorescent-antibody tests with monoclonal antibodies directed against a surface protein of B. burgdorferi (approximate molecular weight, 31,000) and flagellins that are common to all Borrelia species. Indirect fluorescent-antibody reactions were variable when an antibody that binds to a surface protein with an approximate molecular weight of 34,000 was tested. The major proteins of isolates from ticks and mice had approximate molecular weights of 31,000, 34,000, and 41,000. Antibodies to B. burgdorferi were present (titer, greater than or equal to 1:64) in 16 of 97 white-tailed deer (Odocoileus virginianus). The mean number of subadult I. dammini on mice captured in June 1986 was 6.5, and the mean number of adult I. dammini on deer killed in November 1986 was 5.9. The presence of ticks and the high prevalence of I. dammini and mice infected with B. burgdorferi establish that Fort McCoy is an area in which the Lyme disease agent is highly endemic, even though there have been relatively few documented cases in humans. The low number of reported cases in humans may be a result of National Guard and reserve unit personnel returning home to civilian life and having symptoms expressed subsequently, or it could be due to misdiagnosis or nonreporting. Images PMID:3305566

  9. Role of small mammals in the ecology of Borrelia burgdorferi in a peri-urban park in north coastal California.

    PubMed

    Peavy, C A; Lane, R S; Kleinjan, J E

    1997-08-01

    The role of small mammals other than woodrats in the enzootiology of the Lyme disease spirochete, Borrelia burgorferi, was assessed in the peri-urban park. Mammals were collected monthly from September through to April. Following tick removal, the animals were tested for B. burgdorferi by culture of ear-punch biopsies. Larvae and nymphs that were intermediate in morphology between Ixodes spinipalpis and Ixodes neotomae occurred on several species of rodents (Peromyscus truei, Peromyscus californicus, Microtus californicus, Rattus rattus and Reithrodontomys megalotis) and the brush rabbit (Sylvilagus bachmani). Morphometric analyses of these I. spinipalpis-like ticks and the offspring from two I. neotomae females from the site suggest that I. neotomae may bo conspecific with I. spinipalpis. Borrelia burgdorferi was isolated from eight out of 109 (7.3%), three out of 16 (18.8%), two out of 38 (5.3%) and two out of six (33.3%) P. truei, P. maniculatus, M. californicus and R. rattus, respectively. One bush rabbit yielded the first isolate of B. burgdorferi from a lagomorph in western North America. This isolate and three others derived from unfed I. spinipalpis-like nymphs failed to produce infection when inoculated intradermally into 11-12 P. maniculatus each. Likewise, no spirochetes were detected in 420 Ixodes pacificus nymphs derived from larvae fed on animals inoculated with these isolates. An additional isolate, derived from an I. spinipalpis-like nymph, was recovered by ear-punch biopsies from five our of 12 (42%) needle-inoculated P. maniculatus. However, spirochetes were not detected in 20 I. pacificus nymphs fed as larvae on each of five mice (two infected and three uninfected) inoculated with this isolate. We conclude that brush rabbits and several species of rodents besides woodrats may contribute to the maintenance of B. burgdorferi because they harbour the spirochete and are fed upon by competent enzootic vectors. PMID:9291589

  10. African Relapsing Fever Borreliae Genomospecies Revealed by Comparative Genomics

    PubMed Central

    Elbir, Haitham; Abi-Rached, Laurent; Pontarotti, Pierre; Yoosuf, Niyaz; Drancourt, Michel

    2014-01-01

    Background: Relapsing fever borreliae are vector-borne bacteria responsible for febrile infection in humans in North America, Africa, Asia, and in the Iberian Peninsula in Europe. Relapsing fever borreliae are phylogenetically closely related, yet they differ in pathogenicity and vectors. Their long-term taxonomy, based on geography and vector grouping, needs to be re-apprised in a genomic context. We therefore embarked into genomic analyses of relapsing fever borreliae, focusing on species found in Africa. Results: Genome-wide phylogenetic analyses group Old World Borrelia crocidurae, Borrelia hispanica, B. duttonii, and B. recurrentis in one clade, and New World Borrelia turicatae and Borrelia hermsii in a second clade. Accordingly, average nucleotide identity is 99% among B. duttonii, B. recurrentis, and B. crocidurae and 96% between latter borreliae and B. hispanica while the similarity is 86% between Old World and New World borreliae. Comparative genomics indicates that the Old World relapsing fever B. duttonii, B. recurrentis, B. crocidurae, and B. hispanica have a 2,514-gene pan genome and a 933-gene core genome that includes 788 chromosomal and 145 plasmidic genes. Analyzing the role that natural selection has played in the evolution of Old World borreliae species revealed that 55 loci were under positive diversifying selection, including loci coding for membrane, flagellar, and chemotaxis proteins, three categories associated with adaption to specific niches. Conclusion: Genomic analyses led to a reappraisal of the taxonomy of relapsing fever borreliae in Africa. These analyses suggest that B. crocidurae, B. duttonii, and B. recurrentis are ecotypes of a unique genomospecies, while B. hispanica is a distinct species. PMID:25229054

  11. Antibody profile to Borrelia burgdorferi in veterinarians from Nuevo León, Mexico, a non-endemic area of this zoonosis

    PubMed Central

    Skinner-Taylor, Cassandra M.; Salinas, José A.; Arevalo-Niño, Katiushka; Galán-Wong, Luis J.; Maldonado, Guadalupe; Garza-Elizondo, Mario A.

    2016-01-01

    Objectives Lyme disease is a tick-borne disease caused by infections with Borrelia. Persons infected with Borrelia can be asymptomatic or can develop disseminated disease. Diagnosis and recognition of groups at risk of infection with Borrelia burgdorferi is of great interest to contemporary rheumatology. There are a few reports about Borrelia infection in Mexico, including lymphocytoma cases positive to B. burgdorferi sensu stricto by PCR and a patient with acrodermatitis chronica atrophicans. Veterinarians have an occupational risk due to high rates of tick contact. The aim of this work was to investigate antibodies to Borrelia in students at the Faculty of Veterinary Medicine and Zootechnics, at Nuevo León, Mexico, and determine the antibody profile to B. burgdorferi antigens. Material and methods Sera were screened using a C6 ELISA, IgG and IgM ELISA using recombinant proteins from B. burgdorferi, B. garinii and B. afzelii. Sera with positive or grey-zone values were tested by IgG Western blot to B. burgdorferi sensu stricto. Results All volunteers reported tick exposures and 72.5% remembered tick bites. Only nine persons described mild Lyme disease related symptoms, including headaches, paresthesias, myalgias and arthralgias. None of the volunteers reported erythema migrans. Nine samples were confirmed by IgG Western blot. The profile showed 89% reactivity to OspA, 67% to p83, and 45% to BmpA. Conclusions Positive sera samples shared antibody reactivity to the markers of late immune response p83 and BmpA, even if individuals did not present symptoms of Lyme arthritis or post-Lyme disease. The best criterion to diagnose Lyme disease in our country remains to be established, because it is probable that different strains coexist in Mexico. This is the first report of antibodies to B. burgdorferi in Latin American veterinarians. Veterinarians and high-risk people should be alert to take precautionary measures to prevent tick-borne diseases. PMID:27504018

  12. Initial characterization of the FlgE hook high molecular weight complex of Borrelia burgdorferi.

    PubMed

    Miller, Kelly A; Motaleb, Md A; Liu, Jun; Hu, Bo; Caimano, Melissa J; Miller, Michael R; Charon, Nyles W

    2014-01-01

    The spirochete periplasmic flagellum has many unique attributes. One unusual characteristic is the flagellar hook. This structure serves as a universal joint coupling rotation of the membrane-bound motor to the flagellar filament. The hook is comprised of about 120 FlgE monomers, and in most bacteria these structures readily dissociate to monomers (∼ 50 kDa) when treated with heat and detergent. However, in spirochetes the FlgE monomers form a large mass of over 250 kDa [referred to as a high molecular weight complex (HMWC)] that is stable to these and other denaturing conditions. In this communication, we examined specific aspects with respect to the formation and structure of this complex. We found that the Lyme disease spirochete Borrelia burgdorferi synthesized the HMWC throughout the in vitro growth cycle, and also in vivo when implanted in dialysis membrane chambers in rats. The HMWC was stable to formic acid, which supports the concept that the stability of the HMWC is dependent on covalent cross-linking of individual FlgE subunits. Mass spectrometry analysis of the HMWC from both wild type periplasmic flagella and polyhooks from a newly constructed ΔfliK mutant indicated that other proteins besides FlgE were not covalently joined to the complex, and that FlgE was the sole component of the complex. In addition, mass spectrometry analysis also indicated that the HMWC was composed of a polymer of the FlgE protein with both the N- and C-terminal regions remaining intact. These initial studies set the stage for a detailed characterization of the HMWC. Covalent cross-linking of FlgE with the accompanying formation of the HMWC we propose strengthens the hook structure for optimal spirochete motility. PMID:24859001

  13. Borrelia burgdorferi infection in dairy cows, rodents, and birds from four Wisconsin dairy farms.

    PubMed

    Burgess, E C; Wachal, M D; Cleven, T D

    1993-05-01

    A combination of culture and subsequent spirochete identification with the polymerase chain reaction technique was used to identify cows, rodents, and birds infected with Borrelia burgdorferi. Animals were trapped on four Wisconsin dairy farms during the summer of 1990. Farms 1 and 2 were located in counties nonendemic for Lyme disease and Farms 3 and 4 were located in counties endemic for Lyme disease. The results of the rodent and bird samples were as follows given as the number yielding organisms number tested: Farm 1, 1/17 Mus musculus and 2/52 Peromyscus domesticus; Farm 2, 4/49 M. musculus, 1/2 P. maniculatus, 1/1 P. leucopus, and 1/35 P. domesticus; Farm 3, 0/27 M. musculus, 0/5 P. leucopus, 0/12 P. maniculatus and, 3/58 P. domesticus; and Farm 4, 1/24 M. musculus, 2/19 P. leucopus, 1/12 Microtus pennsylvanicus, and 0/17 P. domesticus. One P. leucopus and one M. musculus from Farm 2 were pregnant and fetal tissues from both were positive. Cow blood sample results were as follows: Farm 1, 7/47 in July, and 2/45 in August; Farm 2, 0/28 in August and 0/23 in October; Farm 3, 0/13 in July and 1/18 in August 29; and Farm 4, 3/45 in August. Ticks were found on rodents on Farm 4 and on one bird on Farm 3. Spirochetemic cows, rodents, and birds were found in non-Lyme endemic counties suggesting that alternate modes of transmission other than by ticks may be important. Transplacental transmission was shown in M. musculus and P. leucopus. PMID:8362496

  14. Occurrence and transmission efficiencies of Borrelia burgdorferi ospC types in avian and mammalian wildlife

    PubMed Central

    Vuong, Holly B.; Canham, Charles D.; Fonseca, Dina M.; Brisson, Dustin; Morin, Peter J.; Smouse, Peter E.; Ostfeld, Richard S.

    2014-01-01

    Borrelia burgdorferi s.s., the bacterium that causes Lyme disease in North America, circulates among a suite of vertebrate hosts and their tick vector. The bacterium can be differentiated at the outer surface protein C (ospC) locus into 25 genotypes. Wildlife hosts can be infected with a suite of ospC types but knowledge on the transmission efficiencies of these naturally infected hosts to ticks is still lacking. To evaluate the occupancy and detection of ospC types in wildlife hosts, we adapted a likelihood-based species patch occupancy model to test for the occurrence probabilities (ψ – “occupancy”) and transmission efficiencies (ε – “detection”) of each ospC type. We detected differences in ospC occurrence and transmission efficiencies from the null models with HIS (human invasive strains) types A and K having the highest occurrence estimates, but both HIS and non-HIS types having high transmission efficiencies. We also examined ospC frequency patterns with respect to strains known to be invasive in humans across the host species and phylogenetic groups. We found that shrews and to a lesser extent, birds, were important host groups supporting relatively greater frequencies of HIS to non-HIS types. This novel method of simultaneously assessing occurrence and transmission of ospC types provides a powerful tool in assessing disease risk at the genotypic level in naturally infected wildlife hosts and offers the opportunity to examine disease risk at the community level. PMID:24382473

  15. Genetic diversity of ospC in a local population of Borrelia burgdorferi sensu stricto.

    PubMed Central

    Wang, I N; Dykhuizen, D E; Qiu, W; Dunn, J J; Bosler, E M; Luft, B J

    1999-01-01

    The outer surface protein, OspC, is highly variable in Borrelia burgdorferi sensu stricto, the agent of Lyme disease. We have shown that even within a single population OspC is highly variable. The variation of ospA and ospC in the 40 infected deer ticks collected from a single site on Shelter Island, New York, was determined using PCR-SSCP. There is very strong apparent linkage disequilibrium between ospA and ospC alleles, even though they are located on separate plasmids. Thirteen discernible SSCP mobility classes for ospC were identified and the DNA sequence for each was determined. These sequences, combined with 40 GenBank sequences, allow us to define 19 major ospC groups. Sequences within a major ospC group are, on average, <1% different from each other, while sequences between major ospC groups are, on average, approximately 20% different. The tick sample contains 11 major ospC groups, GenBank contains 16 groups, with 8 groups found in both samples. Thus, the ospC variation within a local population is almost as great as the variation of a similar-sized sample of the entire species. The Ewens-Watterson-Slatkin test of allele frequency showed significant deviation from the neutral expectation, indicating balancing selection for these major ospC groups. The variation represented by major ospC groups needs to be considered if the OspC protein is to be used as a serodiagnostic antigen or a vaccine. PMID:9872945

  16. Initial Characterization of the FlgE Hook High Molecular Weight Complex of Borrelia burgdorferi

    PubMed Central

    Miller, Kelly A.; Motaleb, Md. A.; Liu, Jun; Hu, Bo; Caimano, Melissa J.; Miller, Michael R.; Charon, Nyles W.

    2014-01-01

    The spirochete periplasmic flagellum has many unique attributes. One unusual characteristic is the flagellar hook. This structure serves as a universal joint coupling rotation of the membrane-bound motor to the flagellar filament. The hook is comprised of about 120 FlgE monomers, and in most bacteria these structures readily dissociate to monomers (∼ 50 kDa) when treated with heat and detergent. However, in spirochetes the FlgE monomers form a large mass of over 250 kDa [referred to as a high molecular weight complex (HMWC)] that is stable to these and other denaturing conditions. In this communication, we examined specific aspects with respect to the formation and structure of this complex. We found that the Lyme disease spirochete Borrelia burgdorferi synthesized the HMWC throughout the in vitro growth cycle, and also in vivo when implanted in dialysis membrane chambers in rats. The HMWC was stable to formic acid, which supports the concept that the stability of the HMWC is dependent on covalent cross-linking of individual FlgE subunits. Mass spectrometry analysis of the HMWC from both wild type periplasmic flagella and polyhooks from a newly constructed ΔfliK mutant indicated that other proteins besides FlgE were not covalently joined to the complex, and that FlgE was the sole component of the complex. In addition, mass spectrometry analysis also indicated that the HMWC was composed of a polymer of the FlgE protein with both the N- and C-terminal regions remaining intact. These initial studies set the stage for a detailed characterization of the HMWC. Covalent cross-linking of FlgE with the accompanying formation of the HMWC we propose strengthens the hook structure for optimal spirochete motility. PMID:24859001

  17. Comparative Genome Analysis of the Pathogenic Spirochetes Borrelia burgdorferi and Treponema pallidum

    PubMed Central

    Subramanian, G.; Koonin, Eugene V.; Aravind, L.

    2000-01-01

    A comparative analysis of the predicted protein sequences encoded in the complete genomes of Borrelia burgdorferi and Treponema pallidum provides a number of insights into evolutionary trends and adaptive strategies of the two spirochetes. A measure of orthologous relationships between gene sets, termed the orthology coefficient (OC), was developed. The overall OC value for the gene sets of the two spirochetes is about 0.43, which means that less than one-half of the genes show readily detectable orthologous relationships. This emphasizes significant divergence between the two spirochetes, apparently driven by different biological niches. Different functional categories of proteins as well as different protein families show a broad distribution of OC values, from near 1 (a perfect, one-to-one correspondence) to near 0. The proteins involved in core biological functions, such as genome replication and expression, typically show high OC values. In contrast, marked variability is seen among proteins that are involved in specific processes, such as nutrient transport, metabolism, gene-specific transcription regulation, signal transduction, and host response. Differences in the gene complements encoded in the two spirochete genomes suggest active adaptive evolution for their distinct niches. Comparative analysis of the spirochete genomes produced evidence of gene exchanges with other bacteria, archaea, and eukaryotic hosts that seem to have occurred at different points in the evolution of the spirochetes. Examples are presented of the use of sequence profile analysis to predict proteins that are likely to play a role in pathogenesis, including secreted proteins that contain specific protein-protein interaction domains, such as von Willebrand A, YWTD, TPR, and PR1, some of which hitherto have been reported only in eukaryotes. We tentatively reconstruct the likely evolutionary process that has led to the divergence of the two spirochete lineages; this reconstruction seems

  18. DhhP, a cyclic di-AMP phosphodiesterase of Borrelia burgdorferi, is essential for cell growth and virulence.

    PubMed

    Ye, Meiping; Zhang, Jun-Jie; Fang, Xin; Lawlis, Gavin B; Troxell, Bryan; Zhou, Yan; Gomelsky, Mark; Lou, Yongliang; Yang, X Frank

    2014-05-01

    Cyclic di-AMP (c-di-AMP) is a recently discovered second messenger in bacteria. Most of work on c-di-AMP signaling has been done in Gram-positive bacteria, firmicutes, and actinobacteria, where c-di-AMP signaling pathways affect potassium transport, cell wall structure, and antibiotic resistance. Little is known about c-di-AMP signaling in other bacteria. Borrelia burgdorferi, the causative agent of Lyme disease, is a spirochete that has a Gram-negative dual membrane. In this study, we demonstrated that B. burgdorferi BB0619, a DHH-DHHA1 domain protein (herein designated DhhP), functions as c-di-AMP phosphodiesterase. Recombinant DhhP hydrolyzed c-di-AMP to pApA in a Mn(2+)- or Mg(2+)-dependent manner. In contrast to c-di-AMP phosphodiesterases reported thus far, DhhP appears to be essential for B. burgdorferi growth both in vitro and in the mammalian host. Inactivation of the chromosomal dhhP gene could be achieved only in the presence of a plasmid-encoded inducible dhhP gene. The conditional dhhP mutant had a dramatic increase in intracellular c-di-AMP level in comparison to the isogenic wild-type strain. Unlike what has been observed in Gram-positive bacteria, elevated cellular c-di-AMP in B. burgdorferi did not result in an increased resistance to β-lactamase antibiotics, suggesting that c-di-AMP's functions in spirochetes differ from those in Gram-positive bacteria. In addition, the dhhP mutant was defective in induction of the σ(S) factor, RpoS, and the RpoS-dependent outer membrane virulence factor OspC, which uncovers an important role of c-di-AMP in B. burgdorferi virulence. PMID:24566626

  19. DhhP, a Cyclic di-AMP Phosphodiesterase of Borrelia burgdorferi, Is Essential for Cell Growth and Virulence

    PubMed Central

    Ye, Meiping; Zhang, Jun-Jie; Fang, Xin; Lawlis, Gavin B.; Troxell, Bryan; Zhou, Yan; Gomelsky, Mark

    2014-01-01

    Cyclic di-AMP (c-di-AMP) is a recently discovered second messenger in bacteria. Most of work on c-di-AMP signaling has been done in Gram-positive bacteria, firmicutes, and actinobacteria, where c-di-AMP signaling pathways affect potassium transport, cell wall structure, and antibiotic resistance. Little is known about c-di-AMP signaling in other bacteria. Borrelia burgdorferi, the causative agent of Lyme disease, is a spirochete that has a Gram-negative dual membrane. In this study, we demonstrated that B. burgdorferi BB0619, a DHH-DHHA1 domain protein (herein designated DhhP), functions as c-di-AMP phosphodiesterase. Recombinant DhhP hydrolyzed c-di-AMP to pApA in a Mn2+- or Mg2+-dependent manner. In contrast to c-di-AMP phosphodiesterases reported thus far, DhhP appears to be essential for B. burgdorferi growth both in vitro and in the mammalian host. Inactivation of the chromosomal dhhP gene could be achieved only in the presence of a plasmid-encoded inducible dhhP gene. The conditional dhhP mutant had a dramatic increase in intracellular c-di-AMP level in comparison to the isogenic wild-type strain. Unlike what has been observed in Gram-positive bacteria, elevated cellular c-di-AMP in B. burgdorferi did not result in an increased resistance to β-lactamase antibiotics, suggesting that c-di-AMP's functions in spirochetes differ from those in Gram-positive bacteria. In addition, the dhhP mutant was defective in induction of the σS factor, RpoS, and the RpoS-dependent outer membrane virulence factor OspC, which uncovers an important role of c-di-AMP in B. burgdorferi virulence. PMID:24566626

  20. Induction of Type I and Type III Interferons by Borrelia burgdorferi Correlates with Pathogenesis and Requires Linear Plasmid 36

    PubMed Central

    Krupna-Gaylord, Michelle A.; Liveris, Dionysios; Love, Andrea C.; Wormser, Gary P.; Schwartz, Ira; Petzke, Mary M.

    2014-01-01

    The capacity for Borrelia burgdorferi to cause disseminated infection in humans or mice is associated with the genotype of the infecting strain. The cytokine profiles elicited by B. burgdorferi clinical isolates of different genotype (ribosomal spacer type) groups were assessed in a human PBMC co-incubation model. RST1 isolates, which are more frequently associated with disseminated Lyme disease in humans and mice, induced significantly higher levels of IFN-α and IFN-λ1/IL29 relative to RST3 isolates, which are less frequently associated with disseminated infection. No differences in the protein concentrations of IFN-γ, IL-1β, IL-6, IL-8, IL-10 or TNF-α were observed between isolates of differing genotype. The ability of B. burgdorferi to induce type I and type III IFNs was completely dependent on the presence of linear plasmid (lp) 36. An lp36-deficient B. burgdorferi mutant adhered to, and was internalized by, PBMCs and specific dendritic cell (DC) subsets less efficiently than its isogenic B31 parent strain. The association defect with mDC1s and pDCs could be restored by complementation of the mutant with the complete lp36. The RST1 clinical isolates studied were found to contain a 2.5-kB region, located in the distal one-third of lp36, which was not present in any of the RST3 isolates tested. This divergent region of lp36 may encode one or more factors required for optimal spirochetal recognition and the production of type I and type III IFNs by human DCs, thus suggesting a potential role for DCs in the pathogenesis of B. burgdorferi infection. PMID:24945497

  1. Prevalence of the Lyme Disease Spirochete, Borrelia burgdorferi, in Blacklegged Ticks, Ixodes scapularis at Hamilton-Wentworth, Ontario.

    PubMed

    Scott, John D; Anderson, John F; Durden, Lance A; Smith, Morgan L; Manord, Jodi M; Clark, Kerry L

    2016-01-01

    Lyme disease has emerged as a major health concern in Canada, where the etiological agent, Borrelia burgdorferi sensu lato (s.l.), a spirochetal bacterium, is typically spread by the bite of certain ticks. This study explores the presence of B. burgdorferi s.l. in blacklegged ticks, Ixodes scapularis, collected at Dundas, Ontario (a locality within the region of Hamilton-Wentworth). Using passive surveillance, veterinarians and pet groomers were asked to collect blacklegged ticks from dogs and cats with no history of travel. Additionally, I. scapularis specimens were submitted from local residents and collected by flagging. Overall, 12 (41%) of 29 blacklegged ticks were infected with B. burgdorferi s.l. Using polymerase chain reaction (PCR) and DNA sequencing, two borrelial amplicons were characterized as B. burgdorferi sensu stricto (s.s.), a genospecies pathogenic to humans and certain domestic animals. Notably, three different vertebrate hosts each had two engorged I. scapularis females removed on the same day and, likewise, one cat had three repeat occurrences of this tick species. These multiple infestations suggest that a population of I. scapularis may be established in this area. The local public health unit has been underreporting the presence of B. burgdorferi s.l.-infected I. scapularis in the area encompassing Dundas. Our findings raise concerns about the need to erect tick warning signs in parkland areas. Veterinarians, medical professionals, public health officials, and the general public must be vigilant that Lyme disease-carrying blacklegged ticks pose a public health risk in the Dundas area and the surrounding Hamilton-Wentworth region. PMID:27226771

  2. Reactivity of dog sera to whole-cell or recombinant antigens of Borrelia burgdorferi by ELISA and immunoblot analysis.

    PubMed

    Magnarelli, L A; Levy, S A; Ijdo, J W; Wu, C; Padula, S J; Fikrig, E

    2001-10-01

    Enzyme-linked immunosorbent assays (ELISAs) with separate preparations of 10 purified recombinant antigens of Borrelia burgdorferi sensu stricto were used to test sera from 36 dogs not vaccinated with whole cells of this agent and from five dogs vaccinated with whole-cell B. burgdorferi bacteria. All dogs lived in tick-infested areas of Connecticut and south-eastern New York state, USA. The non-vaccinated dogs had limb or joint disorder, lameness and fever during the period 1984-1991 and had antibodies to B. burgdorferi, as determined by a polyvalent ELISA with whole-cell antigen. In re-analyses of sera for total immunoglobulins in ELISAs with recombinant antigens, reactions were most frequently recorded when outer-surface protein (Osp) F, protein (p)35, p37, p39 and p-41G (a flagellin component) were tested separately. Western immunoblots of a subset of 16 sera, positive by ELISA with whole-cell antigen and representing a range of antibody titres (640-40960), verified immune responses to these or other lysed whole-cell antigens. Sera from vaccinated dogs contained antibodies to OspA, OspB, p22, p37 and p41-G. Therefore, serological reactions to OspF, p35 and p39 were the most important indicators of natural exposure to B. burgdorferi. Serum reactivities to these recombinant antigens in ELISAs can be used to help identify possible natural infections of canine borreliosis in dogs not vaccinated with whole-cell B. burgdorferi and to provide information on the geographic distribution of this bacterium. PMID:11599738

  3. Prevalence of the Lyme Disease Spirochete, Borrelia burgdorferi, in Blacklegged Ticks, Ixodes scapularis at Hamilton-Wentworth, Ontario

    PubMed Central

    Scott, John D.; Anderson, John F.; Durden, Lance A.; Smith, Morgan L.; Manord, Jodi M.; Clark, Kerry L.

    2016-01-01

    Lyme disease has emerged as a major health concern in Canada, where the etiological agent, Borrelia burgdorferi sensu lato (s.l.), a spirochetal bacterium, is typically spread by the bite of certain ticks. This study explores the presence of B. burgdorferi s.l. in blacklegged ticks, Ixodes scapularis, collected at Dundas, Ontario (a locality within the region of Hamilton-Wentworth). Using passive surveillance, veterinarians and pet groomers were asked to collect blacklegged ticks from dogs and cats with no history of travel. Additionally, I. scapularis specimens were submitted from local residents and collected by flagging. Overall, 12 (41%) of 29 blacklegged ticks were infected with B. burgdorferi s.l. Using polymerase chain reaction (PCR) and DNA sequencing, two borrelial amplicons were characterized as B. burgdorferi sensu stricto (s.s.), a genospecies pathogenic to humans and certain domestic animals. Notably, three different vertebrate hosts each had two engorged I. scapularis females removed on the same day and, likewise, one cat had three repeat occurrences of this tick species. These multiple infestations suggest that a population of I. scapularis may be established in this area. The local public health unit has been underreporting the presence of B. burgdorferi s.l.-infected I. scapularis in the area encompassing Dundas. Our findings raise concerns about the need to erect tick warning signs in parkland areas. Veterinarians, medical professionals, public health officials, and the general public must be vigilant that Lyme disease-carrying blacklegged ticks pose a public health risk in the Dundas area and the surrounding Hamilton-Wentworth region. PMID:27226771

  4. Exposure to Borrelia burgdorferi and other tick-borne pathogens in Gettysburg National Military Park, South-Central Pennsylvania, 2009.

    PubMed

    Han, George S; Stromdahl, Ellen Y; Wong, David; Weltman, Andre C

    2014-04-01

    Since 1998, Lyme disease cases have increased in south-central Pennsylvania, which includes Gettysburg National Military Park (NMP). Limited information is available about tick populations or pathogens in this area, and no data regarding frequency of tick bites or prevention measures among Gettysburg NMP employees are available. To address these gaps, ticks were collected, classified, and replaced (to minimize disruptions to tick populations) at two sites within Gettysburg NMP during April-September, 2009, among eight nonremoval samplings. On two additional occasions during May and June, 2009, ticks were collected and removed from the two original sites plus 10 additional sites and tested for tick-borne pathogens by using PCR. A self-administered anonymous survey of Gettysburg NMP employees was conducted to determine knowledge, attitudes, and practices regarding tick-borne diseases. Peak Ixodes scapularis nymph populations were observed during May-July. Of 115 I. scapularis ticks tested, 21% were infected with Borrelia burgdorferi, including 18% of 74 nymphs and 27% of 41 adults; no other pathogen was identified. The entomologic risk index was calculated at 1.3 infected nymphs/hour. An adult and nymph Amblyomma americanum were also found, representing the first confirmed field collection of this tick in Pennsylvania, but no pathogens were detected. The survey revealed that most park employees believed Lyme disease was a problem at Gettysburg NMP and that they frequently found ticks on their skin and clothing. However, use of personal preventive measures was inconsistent, and 6% of respondents reported contracting Lyme disease while employed at Gettysburg NMP. These findings indicate a need to improve surveillance for tick bites among employees and enhance prevention programs for park staff and visitors. PMID:24689815

  5. Presence of host-seeking Ixodes ricinus and their infection with Borrelia burgdorferi sensu lato in the Northern Apennines, Italy.

    PubMed

    Ragagli, Charlotte; Mannelli, Alessandro; Ambrogi, Cecilia; Bisanzio, Donal; Ceballos, Leonardo A; Grego, Elena; Martello, Elisa; Selmi, Marco; Tomassone, Laura

    2016-06-01

    Host-seeking ticks were collected in the Northern Apennines, Italy, by dragging at 35 sites, at altitudes ranging from 680 and 1670 m above sea level (asl), from April to November, in 2010 and 2011. Ixodes ricinus (4431 larvae, 597 nymphs and 12 adults) and Haemaphysalis punctata (11,209 larvae, 313 nymphs, and 25 adults) were the most abundant species, followed by Haemaphysalis sulcata (20 larvae, five nymphs, and 13 adults), Dermacentor marginatus (42 larvae and two adults) and Ixodes hexagonus (one nymph). Greatest numbers of ticks were collected at locations characterised by southern exposure and limestone substratum, at altitudes <1400 m asl; I. ricinus was most abundant in Turkey oak (Quercus cerris) wood, whereas H. punctata was mostly collected in hop hornbeam (Ostrya carpinifolia) wood and on exposed rocks. Ixodes ricinus was also found up to 1670 m asl, in high stand beech (Fagus sylvatica) wood. The overall prevalence of Borrelia burgdorferi sensu lato (sl) in 294 host-seeking I. ricinus nymphs was 8.5 %. Borrelia garinii was the most frequently identified genospecies (64.0 % of positive nymphs), followed by B. valaisiana, B. burgdorferi sensu stricto, B. afzelii, and B. lusitaniae. Based upon the comparison with the results of previous studies at the same location, these research findings suggest the recent invasion of the study area by the tick vector and the agents of Lyme borreliosis. PMID:26964552

  6. Borrelia burgdorferi bb0426 encodes a 2′-deoxyribosyltransferase that plays a central role in purine salvage

    PubMed Central

    Lawrence, Kevin A; Jewett, Mollie W; Rosa, Patricia A; Gherardini, Frank C

    2009-01-01

    Borrelia burgdorferi is an obligate parasite with a limited genome that severely narrows its metabolic and biosynthetic capabilities. Thus survival of this spirochaete in an arthropod vector and mammalian host requires that it can scavenge amino acids, fatty acids and nucleosides from a blood meal or various host tissues. Additionally, the utilization of ribonucleotides for DNA synthesis is further complicated by the lack of a ribonucleotide reductase for the conversion of nucleoside-5′-diphosphates to deoxynucleosides-5′-diphosphates. The data presented here demonstrate that B. burgdorferi must rely on host-derived sources of purine bases, deoxypurines and deoxypyrimidines for the synthesis of DNA. However, if deoxyguanosine (dGuo) is limited in host tissue, the enzymatic activities of a 2′-deoxyribosyltransferase (DRTase, encoded by bb0426), IMP dehydrogenase (GuaB) and GMP synthase (GuaA) catalyse the multistep conversion of hypoxanthine (Hyp) to dGMP for DNA synthesis. This pathway provides additional biochemical flexibility for B. burgdorferi when it colonizes and infects different host tissues. PMID:19460093

  7. Analyses of mammalian sera in enzyme-linked immunosorbent assays with different strains of Borrelia burgdorferi sensu lato.

    PubMed

    Magnarelli, L A; Anderson, J F; Johnson, R C

    1995-04-01

    Blood samples were collected from cottontail rabbits (Sylvilagus floridanus), raccoons (Procyon lotor), white-footed mice (Peromyscus leucopus), and white-tailed deer (Odocoileus virginianus) between 1977 and 1991 in southern Connecticut and New York State (USA) and were tested for antibodies against eight strains of Borrelia burgdorferi sensu lato in enzyme-linked immunosorbent assays. Among these spirochetes were six strains of B. burgdorferi sensu stricto, one strain of B. garinii (=IP90) and a strain (IPF) in group VS461. Sera from each study group reacted positively to all strains having origins in North America and Eurasia. Assay sensitivities normally ranged between 85% and 100% for all study groups. The lowest sensitivity (66%) was noted when mouse sera were tested with B. garinii, an isolate from Ixodes persulcatus in the former Soviet Union. Differences in serum reactivity to various strains were noted for all study groups, but because of multiple shared antigens among the closely related spirochetes tested, the selection of a particular North American strain of B. burgdorferi sensu stricto did not appear to be a critical factor for optimal assay performance. Locally obtained strains of this bacterium are preferred as coating antigens for serologic testing because of their availability. PMID:8583632

  8. Borrelia burgdorferi EbfC defines a newly-identified, widespread family of bacterial DNA-binding proteins

    PubMed Central

    Riley, Sean P.; Bykowski, Tomasz; Cooley, Anne E.; Burns, Logan H.; Babb, Kelly; Brissette, Catherine A.; Bowman, Amy; Rotondi, Matthew; Miller, M. Clarke; DeMoll, Edward; Lim, Kap; Fried, Michael G.; Stevenson, Brian

    2009-01-01

    The Lyme disease spirochete, Borrelia burgdorferi, encodes a novel type of DNA-binding protein named EbfC. Orthologs of EbfC are encoded by a wide range of bacterial species, so characterization of the borrelial protein has implications that span the eubacterial kingdom. The present work defines the DNA sequence required for high-affinity binding by EbfC to be the 4 bp broken palindrome GTnAC, where ‘n’ can be any nucleotide. Two high-affinity EbfC-binding sites are located immediately 5′ of B. burgdorferi erp transcriptional promoters, and binding of EbfC was found to alter the conformation of erp promoter DNA. Consensus EbfC-binding sites are abundantly distributed throughout the B. burgdorferi genome, occurring approximately once every 1 kb. These and other features of EbfC suggest that this small protein and its orthologs may represent a distinctive type of bacterial nucleoid-associated protein. EbfC was shown to bind DNA as a homodimer, and site-directed mutagenesis studies indicated that EbfC and its orthologs appear to bind DNA via a novel α-helical ‘tweezer’-like structure. PMID:19208644

  9. Genetic Diversity of Borrelia burgdorferi and Detection of B. bissettii-Like DNA in Serum of North-Coastal California Residents▿

    PubMed Central

    Girard, Yvette A.; Fedorova, Natalia; Lane, Robert S.

    2011-01-01

    In North America, Lyme borreliosis (LB) is a tick-borne disease caused by infection with the spirochete Borrelia burgdorferi. We studied the genetic diversity of LB spirochetes in north-coastal California residents. Spirochete DNA was detected in 23.7% (27/114) of the study subjects using a PCR protocol optimized for increased sensitivity in human sera. Californians were most commonly infected with B. burgdorferi ospC genotype A, a globally widespread spirochete associated with high virulence in LB patients. Sequence analysis of rrf-rrl and p66 loci in 11% (3/27) of the PCR-positive study subjects revealed evidence of infection with an organism closely related to B. bissettii. This spirochete, heretofore associated with LB only in Europe, is widely distributed among ticks and wildlife in North America. Further molecular testing of sera from residents in areas where LB is endemic is warranted to enhance our understanding of the geographic distribution and frequency of occurrence of B. bissettii-like infections. PMID:21177909

  10. A Tick Gut Protein with Fibronectin III Domains Aids Borrelia burgdorferi Congregation to the Gut during Transmission

    PubMed Central

    Schuijt, Tim J.; Boder, Eric; Hovius, Joppe W.; Fikrig, Erol

    2014-01-01

    Borrelia burgdorferi transmission to the vertebrate host commences with growth of the spirochete in the tick gut and migration from the gut to the salivary glands. This complex process, involving intimate interactions of the spirochete with the gut epithelium, is pivotal to transmission. We utilized a yeast surface display library of tick gut proteins to perform a global screen for tick gut proteins that might interact with Borrelia membrane proteins. A putative fibronectin type III domain-containing tick gut protein (Ixofin3D) was most frequently identified from this screen and prioritized for further analysis. Immunization against Ixofin3D and RNA interference-mediated reduction in expression of Ixofin3D resulted in decreased spirochete burden in tick salivary glands and in the murine host. Microscopic examination showed decreased aggregation of spirochetes on the gut epithelium concomitant with reduced expression of Ixofin3D. Our observations suggest that the interaction between Borrelia and Ixofin3D facilitates spirochete congregation to the gut during transmission, and provides a “molecular exit” direction for spirochete egress from the gut. PMID:25102051

  11. Adaptive and Innate Immune Responsiveness to Borrelia burgdorferi sensu lato in Exposed Asymptomatic Children and Children with Previous Clinical Lyme Borreliosis

    PubMed Central

    Skogman, Barbro H.; Hellberg, Sandra; Ekerfelt, Christina; Jenmalm, Maria C.; Forsberg, Pia; Ludvigsson, Johnny; Bergström, Sven; Ernerudh, Jan

    2012-01-01

    Why some individuals develop clinical manifestations in Lyme borreliosis (LB) while others remain asymptomatic is largely unknown. Therefore, we wanted to investigate adaptive and innate immune responsiveness to Borrelia burgdorferi sensu lato in exposed Borrelia-antibody-positive asymptomatic children (n = 20), children with previous clinical LB (n = 24), and controls (n = 20). Blood samples were analyzed for Borrelia-specific interferon (IFN)-γ, interleukin (IL)-4, and IL-17 secretion by ELISPOT and Borrelia-induced IL-1β, IL-6, IL-10, IL-12(p70), and tumor necrosis factor (TNF) secretion by Luminex. We found no significant differences in cytokine secretion between groups, but a tendency towards an increased spontaneous secretion of IL-6 was found among children with previous clinical LB. In conclusion, the adaptive or innate immune responsiveness to Borrelia burgdorferi sensu lato was similar in Borrelia-exposed asymptomatic children and children with previous clinical LB. Thus, the immunological mechanisms of importance for eradicating the spirochete effectively without developing clinical manifestations of LB remain unknown. PMID:22190976

  12. Human seroprevalence against Borrelia burgdorferi sensu lato in two comparable regions of the eastern Alps is not correlated to vector infection rates.

    PubMed

    Sonnleitner, S T; Margos, G; Wex, F; Simeoni, J; Zelger, R; Schmutzhard, E; Lass-Flörl, C; Walder, G

    2015-04-01

    Seroprevalences were determined by testing sera of 1607 blood donors from North, East, and South Tyrol. In the Tyrols, the continental divide delimitates areas with high seroprevalences of IgG antibodies against Borrelia burgdorferi sensu lato in the North (7.2%) from areas with low seroprevalences in the South (1.5%). To determine Borrelia prevalences in unfed Ixodes ricinus ticks, 755 questing ticks were tested by PCR. Prevalences in nymphal and adult ticks were found to be 19.7% (n=132) and 21.5% (n=205) in North Tyrol and 23% (n=43) and 23.7% (n=376) in South Tyrol, respectively. Sequencing of 46 Borrelia-positive ticks yielded 74% Borrelia (B.) afzelii, 11% B. garinii, 7% B. lusitaniae, 7% B. burgdorferi sensu stricto, and 2% B. valaisiana infections. Distinct genetic clusters could not be delimitated on either side of the continental divide. This study describes occurrence and geographic dispersion of Borrelia spp. in the Tyrols, discusses possible reasons for significant differences in human seroprevalence, and indicates that prevalence of Borrelia in vector ticks is not a direct predictive factor for the local seroprevalence in humans. PMID:25661649

  13. Detection of Borrelia burgdorferi Sensu Stricto ospC Alleles Associated with Human Lyme Borreliosis Worldwide in Non-Human-Biting Tick Ixodes affinis and Rodent Hosts in Southeastern United States

    PubMed Central

    Golovchenko, Maryna; Hönig, Václav; Mallátová, Nadja; Krbková, Lenka; Mikulášek, Peter; Fedorova, Natalia; Belfiore, Natalia M.; Grubhoffer, Libor; Lane, Robert S.; Oliver, James H.

    2013-01-01

    Comparative analysis of ospC genes from 127 Borrelia burgdorferi sensu stricto strains collected in European and North American regions where Lyme disease is endemic and where it is not endemic revealed a close relatedness of geographically distinct populations. ospC alleles A, B, and L were detected on both continents in vectors and hosts, including humans. Six ospC alleles, A, B, L, Q, R, and V, were prevalent in Europe; 4 of them were detected in samples of human origin. Ten ospC alleles, A, B, D, E3, F, G, H, H3, I3, and M, were identified in the far-western United States. Four ospC alleles, B, G, H, and L, were abundant in the southeastern United States. Here we present the first expanded analysis of ospC alleles of B. burgdorferi strains from the southeastern United States with respect to their relatedness to strains from other North American and European localities. We demonstrate that ospC genotypes commonly associated with human Lyme disease in European and North American regions where the disease is endemic were detected in B. burgdorferi strains isolated from the non-human-biting tick Ixodes affinis and rodent hosts in the southeastern United States. We discovered that some ospC alleles previously known only from Europe are widely distributed in the southeastern United States, a finding that confirms the hypothesis of transoceanic migration of Borrelia species. PMID:23263953

  14. Geographic uniformity of the Lyme disease spirochete (Borrelia burgdorferi) and its shared history with tick vector (Ixodes scapularis) in the Northeastern United States.

    PubMed

    Qiu, Wei-Gang; Dykhuizen, Daniel E; Acosta, Michael S; Luft, Benjamin J

    2002-03-01

    Over 80% of reported cases of Lyme disease in the United States occur in coastal regions of northeastern and mid-Atlantic states. The genetic structure of the Lyme disease spirochete (Borrelia burgdorferi) and its main tick vector (Ixodes scapularis) was studied concurrently and comparatively by sampling natural populations of I. scapularis ticks along the East Coast from 1996 to 1998. Borrelia is genetically highly diverse at the outer surface protein ospC. Since Borrelia is highly clonal, the ospC alleles can be used to define clones. A newly designed reverse line blotting (RLB) assay shows that up to 10 Borrelia clones can infect a single tick. The clone frequencies in Borrelia populations are the same across the Northeast. On the other hand, I. scapularis populations show strong regional divergence (among northeastern, mid-Atlantic, and southern states) as well as local differentiation. The high genetic diversity within Borrelia populations and the disparity in the genetic structure between Borrelia and its tick vector are likely consequences of strong balancing selection on local Borrelia clones. Demographically, both Borrelia and I. scapularis populations in the Northeast show the characteristics of a species that has recently expanded from a population bottleneck. Major geological and ecological events, such as the last glacial maximum (18,000 years ago) and the modern-day expansion of tick habitats, are likely causes of the observed "founder effects" for the two organisms in the Northeast. We therefore conclude that the genetic structure of B. burgdorferi has been intimately shaped by the natural history of its main vector, the northern lineage of I. scapularis ticks. PMID:11901105

  15. Geographic uniformity of the Lyme disease spirochete (Borrelia burgdorferi) and its shared history with tick vector (Ixodes scapularis) in the Northeastern United States.

    PubMed Central

    Qiu, Wei-Gang; Dykhuizen, Daniel E; Acosta, Michael S; Luft, Benjamin J

    2002-01-01

    Over 80% of reported cases of Lyme disease in the United States occur in coastal regions of northeastern and mid-Atlantic states. The genetic structure of the Lyme disease spirochete (Borrelia burgdorferi) and its main tick vector (Ixodes scapularis) was studied concurrently and comparatively by sampling natural populations of I. scapularis ticks along the East Coast from 1996 to 1998. Borrelia is genetically highly diverse at the outer surface protein ospC. Since Borrelia is highly clonal, the ospC alleles can be used to define clones. A newly designed reverse line blotting (RLB) assay shows that up to 10 Borrelia clones can infect a single tick. The clone frequencies in Borrelia populations are the same across the Northeast. On the other hand, I. scapularis populations show strong regional divergence (among northeastern, mid-Atlantic, and southern states) as well as local differentiation. The high genetic diversity within Borrelia populations and the disparity in the genetic structure between Borrelia and its tick vector are likely consequences of strong balancing selection on local Borrelia clones. Demographically, both Borrelia and I. scapularis populations in the Northeast show the characteristics of a species that has recently expanded from a population bottleneck. Major geological and ecological events, such as the last glacial maximum (18,000 years ago) and the modern-day expansion of tick habitats, are likely causes of the observed "founder effects" for the two organisms in the Northeast. We therefore conclude that the genetic structure of B. burgdorferi has been intimately shaped by the natural history of its main vector, the northern lineage of I. scapularis ticks. PMID:11901105

  16. The Lyme Disease Spirochete Borrelia burgdorferi Utilizes Multiple Ligands, Including RNA, for Interferon Regulatory Factor 3-Dependent Induction of Type I Interferon-Responsive Genes ▿

    PubMed Central

    Miller, Jennifer C.; Maylor-Hagen, Heather; Ma, Ying; Weis, John H.; Weis, Janis J.

    2010-01-01

    We recently discovered a critical role for type I interferon (IFN) in the development of murine Lyme arthritis. Borrelia burgdorferi-mediated induction of IFN-responsive genes by bone marrow-derived macrophages (BMDMs) was dependent upon a functional type I IFN receptor but independent of Toll-like receptor 2 (TLR2), TLR4, TLR9, and the adapter molecule MyD88. We now demonstrate that induction of the IFN transcriptional profile in B. burgdorferi-stimulated BMDMs occurs independently of the adapter TRIF and of the cytoplasmic sensor NOD2. In contrast, B. burgdorferi-induced transcription of these genes was dependent upon a rapid STAT1 feedback amplification pathway. IFN profile gene transcription was IRF3 dependent but did not utilize B. burgdorferi-derived DNA or DNase-sensitive ligands. Instead, IFN-responsive gene expression could be induced by B. burgdorferi-derived RNA. Interferon regulatory factor 3 (IRF3)-dependent IFN profile gene transcription was also induced by sonicated bacteria, by the lipoprotein OspA, and by factors released into the BSKII medium during culture of B. burgdorferi. The IFN-stimulatory activity of B. burgdorferi culture supernatants was not destroyed by nuclease treatment. Nuclease digestion also had no effect on IFN profile induction mediated by sonicated B. burgdorferi. Thus, B. burgdorferi-derived RNA, OspA, and non-nucleic acid ligands present in both sonicated bacteria and B. burgdorferi culture medium contribute to type I IFN-responsive gene induction. These findings suggest that B. burgdorferi invasion of joint tissue and the resultant type I IFN induction associated with Lyme arthritis development may involve multiple triggering ligands. PMID:20404081

  17. Whole-Genome Sequences of Borrelia bissettii Borrelia valaisiana and Borrelia spielmanii

    SciTech Connect

    Schutzer S. E.; Dunn J.; Fraser-Liggett C. M.; Qiu W.-G.; Kraiczy P.; Mongodin E. F.; Luft B. J.; Casjens S. R.

    2012-01-01

    It has been known for decades that human Lyme disease is caused by the three spirochete species Borrelia burgdorferi, Borrelia afzelii, and Borrelia garinii. Recently, Borrelia valaisiana, Borrelia spielmanii, and Borrelia bissettii have been associated with Lyme disease. We report the complete genome sequences of B. valaisiana VS116, B. spielmanii A14S, and B. bissettii DN127.

  18. Lyme disease caused by Borrelia burgdorferi with two homeologous 16S rRNA genes: a case report

    PubMed Central

    Lee, Sin Hang

    2016-01-01

    Lyme disease (LD), the most common tick-borne disease in North America, is believed to be caused exclusively by Borrelia burgdorferi sensu stricto and is usually diagnosed by clinical evaluation and serologic assays. As reported previously in a peer-reviewed article, a 13-year-old boy living in the Northeast of the USA was initially diagnosed with LD based on evaluation of his clinical presentations and on serologic test results. The patient was treated with a course of oral doxycycline for 28 days, and the symptoms resolved. A year later, the boy developed a series of unusual symptoms and did not attend school for 1 year. A LD specialist reviewed the case and found the serologic test band patterns nondiagnostic of LD. The boy was admitted to a psychiatric hospital. After discharge from the psychiatric hospital, a polymerase chain reaction test performed in a winter month when the boy was 16 years old showed a low density of B. burgdorferi sensu lato in the blood of the patient, confirmed by partial 16S rRNA (ribosomal RNA) gene sequencing. Subsequent DNA sequencing analysis presented in this report demonstrated that the spirochete isolate was a novel strain of B. burgdorferi with two homeologous 16S rRNA genes, which has never been reported in the world literature. This case report shows that direct DNA sequencing is a valuable tool for reliable molecular diagnosis of Lyme and related borrelioses, as well as for studies of the diversity of the causative agents of LD because LD patients infected by a rare or novel borrelial variant may produce an antibody pattern that can be different from the pattern characteristic of an infection caused by a typical B. burgdorferi sensu stricto strain. PMID:27186082

  19. In Vivo Imaging Demonstrates That Borrelia burgdorferi ospC Is Uniquely Expressed Temporally and Spatially throughout Experimental Infection.

    PubMed

    Skare, Jonathan T; Shaw, Dana K; Trzeciakowski, Jerome P; Hyde, Jenny A

    2016-01-01

    Borrelia burgdorferi is a spirochetal bacterium transmitted by the Ixodes tick that causes Lyme disease in humans due to its ability to evade the host immune response and disseminate to multiple immunoprotective tissues. The pathogen undergoes dynamic genetic alterations important for adaptation from the tick vector to the mammalian host, but little is known regarding the changes at the transcriptional level within the distal tissues they colonize. In this study, B. burgdorferi infection and gene expression of the essential virulence determinant ospC was quantitatively monitored in a spatial and temporal manner utilizing reporter bioluminescent borrelial strains with in vivo and ex vivo imaging. Although expressed from a shuttle vector, the PospC-luc construct exhibited a similar expression pattern relative to native ospC. Bacterial burden in skin, inguinal lymph node, heart, bladder and tibiotarsal joint varied between tissues and fluctuated over the course of infection possibly in response to unique cues of each microenvironment. Expression of ospC, when normalized for changes in bacterial load, presented unique profiles in murine tissues at different time points. The inguinal lymph node was infected with a significant B. burgdorferi burden, but showed minimal ospC expression. B. burgdorferi infected skin and heart induced expression of ospC early during infection while the bladder and tibiotarsal joint continued to display PospC driven luminescence throughout the 21 day time course. Localized skin borrelial burden increased dramatically in the first 96 hours following inoculation, which was not paralleled with an increase in ospC expression, despite the requirement of ospC for dermal colonization. Quantitation of bioluminescence representing ospC expression in individual tissues was validated by qRT-PCR of the native ospC transcript. Taken together, the temporal regulation of ospC expression in distal tissues suggests a role for this virulence determinant beyond

  20. Insertion of fluorescent fatty acid probes into the outer membranes of the pathogenic spirochaetes Treponema pallidum and Borrelia burgdorferi.

    PubMed

    Cox, D L; Radolf, J D

    2001-05-01

    The authors examined the ability of octadecanoyl (C(18)), hexadecanoyl (C(16)) and dodecanoyl (C(12)) fatty acid (FA) conjugates of 5-aminofluorescein (OAF, HAF and DAF, respectively) to insert into the outer membranes (OMs) of Treponema pallidum, Borrelia burgdorferi and Escherichia coli. Biophysical studies have demonstrated that these compounds stably insert into phospholipid bilayers with the acyl chain within the hydrophobic interior of the apical leaflet and the hydrophilic fluorescein moiety near the phospholipid head groups. Consistent with the known poor intrinsic permeability of the E. coli OM to hydrophobic compounds and surfactants, E. coli was not labelled with any of the FA probes. OAF inserted more readily into OMs of B. burgdorferi than into those of T. pallidum, although both organisms were completely labelled at concentrations at or below 2 microg ml(-1). Intact spirochaetes were labelled with OAF but not with antibodies against known periplasmic antigens, thereby confirming that the probe interacted exclusively with the spirochaetal OMs. Separate experiments in which organisms were cooled to 4 degrees C (i.e. below the OM phase-transition temperatures) indicated that labelling with OAF was due to insertion of the probe into the OMs. B. burgdorferi, but not T. pallidum, was labelled by relatively high concentrations of HAF and DAF. Taken as a whole, these findings support the prediction that the lack of lipopolysaccharide renders T. pallidum and B. burgdorferi OMs markedly more permeable to lipophilic compounds than their Gram-negative bacterial counterparts. The data also raise the intriguing possibility that these two pathogenic spirochaetes obtain long-chain FAs, nutrients they are unable to synthesize, by direct permeation of their OMs. PMID:11320119

  1. Role of Acetyl-Phosphate in Activation of the Rrp2-RpoN-RpoS Pathway in Borrelia burgdorferi

    PubMed Central

    Xu, Haijun; Caimano, Melissa J.; Lin, Tao; He, Ming; Radolf, Justin D.; Norris, Steven J.; Gheradini, Frank; Wolfe, Alan J.; Yang, X. Frank

    2010-01-01

    Borrelia burgdorferi, the Lyme disease spirochete, dramatically alters its transcriptome and proteome as it cycles between the arthropod vector and mammalian host. During this enzootic cycle, a novel regulatory network, the Rrp2-RpoN-RpoS pathway (also known as the σ54–σS sigma factor cascade), plays a central role in modulating the differential expression of more than 10% of all B. burgdorferi genes, including the major virulence genes ospA and ospC. However, the mechanism(s) by which the upstream activator and response regulator Rrp2 is activated remains unclear. Here, we show that none of the histidine kinases present in the B. burgdorferi genome are required for the activation of Rrp2. Instead, we present biochemical and genetic evidence that supports the hypothesis that activation of the Rrp2-RpoN-RpoS pathway occurs via the small, high-energy, phosphoryl-donor acetyl phosphate (acetyl∼P), the intermediate of the Ack-Pta (acetate kinase-phosphate acetyltransferase) pathway that converts acetate to acetyl-CoA. Supplementation of the growth medium with acetate induced activation of the Rrp2-RpoN-RpoS pathway in a dose-dependent manner. Conversely, the overexpression of Pta virtually abolished acetate-induced activation of this pathway, suggesting that acetate works through acetyl∼P. Overexpression of Pta also greatly inhibited temperature and cell density-induced activation of RpoS and OspC, suggesting that these environmental cues affect the Rrp2-RpoN-RpoS pathway by influencing acetyl∼P. Finally, overexpression of Pta partially reduced infectivity of B. burgdorferi in mice. Taken together, these findings suggest that acetyl∼P is one of the key activating molecule for the activation of the Rrp2-RpoN-RpoS pathway and support the emerging concept that acetyl∼P can serve as a global signal in bacterial pathogenesis. PMID:20862323

  2. Lyme disease caused by Borrelia burgdorferi with two homeologous 16S rRNA genes: a case report.

    PubMed

    Lee, Sin Hang

    2016-01-01

    Lyme disease (LD), the most common tick-borne disease in North America, is believed to be caused exclusively by Borrelia burgdorferi sensu stricto and is usually diagnosed by clinical evaluation and serologic assays. As reported previously in a peer-reviewed article, a 13-year-old boy living in the Northeast of the USA was initially diagnosed with LD based on evaluation of his clinical presentations and on serologic test results. The patient was treated with a course of oral doxycycline for 28 days, and the symptoms resolved. A year later, the boy developed a series of unusual symptoms and did not attend school for 1 year. A LD specialist reviewed the case and found the serologic test band patterns nondiagnostic of LD. The boy was admitted to a psychiatric hospital. After discharge from the psychiatric hospital, a polymerase chain reaction test performed in a winter month when the boy was 16 years old showed a low density of B. burgdorferi sensu lato in the blood of the patient, confirmed by partial 16S rRNA (ribosomal RNA) gene sequencing. Subsequent DNA sequencing analysis presented in this report demonstrated that the spirochete isolate was a novel strain of B. burgdorferi with two homeologous 16S rRNA genes, which has never been reported in the world literature. This case report shows that direct DNA sequencing is a valuable tool for reliable molecular diagnosis of Lyme and related borrelioses, as well as for studies of the diversity of the causative agents of LD because LD patients infected by a rare or novel borrelial variant may produce an antibody pattern that can be different from the pattern characteristic of an infection caused by a typical B. burgdorferi sensu stricto strain. PMID:27186082

  3. Borrelia burgdorferi CheD Promotes Various Functions in Chemotaxis and the Pathogenic Life Cycle of the Spirochete.

    PubMed

    Moon, Ki Hwan; Hobbs, Gerry; Motaleb, M A

    2016-06-01

    Borrelia burgdorferi possesses a sophisticated chemotaxis signaling system; however, the roles of the majority of the chemotaxis proteins in the infectious life cycle have not yet been demonstrated. Specifically, the role of CheD during host colonization has not been demonstrated in any bacterium. Here, we systematically characterized the B. burgdorferi CheD homolog using genetics and biochemical and mouse-tick-mouse infection cycle studies. Bacillus subtilis CheD plays an important role in chemotaxis by deamidation of methyl-accepting chemotaxis protein receptors (MCPs) and by increasing the receptor kinase activity or enhancing CheC phosphatase activity, thereby regulating the levels of the CheY response regulator. Our biochemical analysis indicates that B. burgdorferi CheD significantly enhances CheX phosphatase activity by specifically interacting with the phosphatase. Moreover, CheD specifically binds two of the six MCPs, indicating that CheD may also modulate the receptor proteins. Although the motility of the cheD mutant cells was indistinguishable from that of the wild-type cells, the mutant did exhibit reduced chemotaxis. Importantly, the mutant showed significantly reduced infectivity in C3H/HeN mice via needle inoculation. Mouse-tick-mouse infection assays indicated that CheD is dispensable for acquisition or transmission of spirochetes; however, the viability of cheD mutants in ticks is marginally reduced compared to that of the wild-type or complemented cheD spirochetes. These data suggest that CheD plays an important role in the chemotaxis and pathogenesis of B. burgdorferi We propose potential connections between CheD, CheX, and MCPs and discuss how these interactions play critical roles during the infectious life cycle of the spirochete. PMID:27021244

  4. Borrelia burgdorferi bba74 Is Expressed Exclusively during Tick Feeding and Is Regulated by Both Arthropod- and Mammalian Host-Specific Signals▿ †

    PubMed Central

    Mulay, Vishwaroop B.; Caimano, Melissa J.; Iyer, Radha; Dunham-Ems, Star; Liveris, Dionysios; Petzke, Mary M.; Schwartz, Ira; Radolf, Justin D.

    2009-01-01

    Although BBA74 initially was described as a 28-kDa virulence-associated outer-membrane-spanning protein with porin-like function, subsequent studies revealed that it is periplasmic and downregulated in mammalian host-adapted spirochetes. To further elucidate the role of this protein in the Borrelia burgdorferi tick-mammal cycle, we conducted a thorough examination of its expression profile in comparison with the profiles of three well-characterized, differentially expressed borrelial genes (ospA, ospC, and ospE) and their proteins. In vitro, transcripts for bba74 were expressed at 23°C and further enhanced by a temperature shift (37°C), whereas BBA74 protein diminished at elevated temperatures; in contrast, neither transcript nor protein was expressed by spirochetes grown in dialysis membrane chambers (DMCs). Primer extension of wild-type B. burgdorferi grown in vitro, in conjunction with expression analysis of DMC-cultivated wild-type and rpoS mutant spirochetes, revealed that, like ospA, bba74 is transcribed by σ70 and is subject to RpoS-mediated repression within the mammalian host. A series of experiments utilizing wild-type and rpoS mutant spirochetes was conducted to determine the transcriptional and translational profiles of bba74 during the tick-mouse cycle. Results from these studies revealed (i) that bba74 is transcribed by σ70 exclusively during the larval and nymphal blood meals and (ii) that transcription of bba74 is bracketed by RpoS-independent and -dependent forms of repression that are induced by arthropod- and mammalian host-specific signals, respectively. Although loss of BBA74 does not impair the ability of B. burgdorferi to complete its infectious life cycle, the temporal compartmentalization of this gene's transcription suggests that BBA74 facilitates fitness of the spirochete within a narrow window of its tick phase. A reexamination of the paradigm for reciprocal regulation of ospA and ospC, performed herein, revealed that the

  5. Identification of loci critical for replication and compatibility of a Borrelia burgdorferi cp32 plasmid and use of a cp32-based shuttle vector for the expression of fluorescent reporters in the lyme disease spirochaete.

    PubMed

    Eggers, Christian H; Caimano, Melissa J; Clawson, Michael L; Miller, William G; Samuels, D Scott; Radolf, Justin D

    2002-01-01

    The 32kb circular plasmid (cp32) family of Borrelia burgdorferi has been the subject of intensive investigation because its members encode numerous differentially expressed lipoproteins. As many as nine different cp32s appear to be capable of stable replication within a single spirochaete. Here, we show that a construct (pCE310) containing a 4 kb fragment from the putative maintenance region of a B. burgdorferi CA-11.2A cp32 was capable of autonomous replication in both high-passage B. burgdorferi B31 and virulent B. burgdorferi 297. Deletion analysis revealed that only the member of paralogous family 57 and the adjacent non-coding segment were essential for replication. The PF32 ParA orthologue encoded by the pCE310 insert was almost identical to the PF32 orthologues encoded on the B31 and 297 cp32-3 plasmids. The finding that cp32-3 was selectively deleted in both B31 and 297 transformants carrying pCE310 demonstrated the importance of the PF32 protein for cp32 compatibility and confirmed the prediction that cp32 plasmids expressing identical PF32 paralogues are incompatible. A shuttle vector containing the CA-11.2A cp32 plasmid maintenance region was used to introduce green, yellow and cyan fluorescent protein reporters into B. burgdorferi. Flow cytometry revealed that the green fluorescent protein was well expressed by almost 90% of both avirulent and infectious transformants. In addition to enhancing our understanding of B. burgdorferi plasmid biology, our results further the development of genetic systems for dissecting pathogenic mechanisms in Lyme disease. PMID:11985709

  6. The coenzyme A disulfide reductase of Borrelia burgdorferi is important for rapid growth throughout the enzootic cycle and essential for infection of the mammalian host

    PubMed Central

    Eggers, Christian H.; Caimano, Melissa J.; Malizia, Robert A.; Kariu, Toru; Cusack, Brian; Desrosiers, Daniel C.; Hazlett, Karsten R.O.; Claiborne, Al; Pal, Utpal; Radolf, Justin D.

    2011-01-01

    Summary In a microarray analysis of the RpoS regulon in mammalian host-adapted Borrelia burgdorferi, bb0728 (cdr) was found to be dually-transcribed by the sigma factors σ70 and RpoS. The cdr gene encodes a coenzyme A disulfide reductase (CoADR) that reduces CoA-disulfides to CoA in an NADH-dependent manner. Based on the abundance of CoA in B. burgdorferi and the biochemistry of the enzyme, CoADR has been proposed to play a role in the spirochete’s response to reactive oxygen species (ROS). To better understand the physiologic function(s) of Bb CoADR, we generated a B. burgdorferi mutant in which the cdr gene was disrupted. RT-PCR and 5′-RACE analysis revealed that cdr and bb0729 are co-transcribed from a single transcriptional start site upstream of the bb0729 coding sequence; a shuttle vector containing the bb0729-cdr operon and upstream promoter element was used to complement the cdr mutant. Although the mutant was no more sensitive to hydrogen peroxide than its parent, it did exhibit increased sensitivity to high concentrations of t -butyl-hydroperoxide, an oxidizing compound that damages spirochetal membranes. Characterization of the mutant during standard (15% oxygen, 6% CO2) and anaerobic (<1% O2, 9–13% CO2) cultivation at 37°C revealed a growth defect under both conditions that was particularly striking during anaerobiosis. The mutant was avirulent by needle inoculation and showed decreased survival in feeding nymphs, but displayed no survival defect in unfed flat nymphs. Based on these results, we propose that Bb CoADR is necessary to maintain optimal redox ratios for CoA/CoA-disulfide and NAD+/NADH during periods of rapid replication throughout the enzootic cycle, to support thiol-disulfide homeostasis, and to indirectly protect the spirochete against peroxide-mediated membrane damage; one or more of these functions are essential for infection of the mammalian host by B. burgdorferi. PMID:21923763

  7. Growth inhibiting activity of lipophilic extracts from Dipsacus sylvestris Huds. roots against Borrelia burgdorferi s. s. in vitro.

    PubMed

    Liebold, T; Straubinger, R K; Rauwald, H W

    2011-08-01

    Fresh first year roots from Dipsacus sylvestris HUDS. were extracted with 70% ethanol, ethyl acetate as well as dichloromethane. Extracts were solubilized in water (lipophilic extracts with addition of polysorbate 80) and tested for their activity against Borrelia burgdorferi sensu stricto in vitro during an eight-day period using amoxicillin as standard. The hydroethanolic extract showed no growth inhibition whereas significant growth inhibiting activity could be shown in the two less polar fractions for the first time. Strongest inhibition was found in the ethyl acetate extract. The effect of polysorbate 80 on bacterial growth was examined and found to be negligible. As the nature of bioactive constituents has not been clarified yet, a micellar electrokinetic capillary chromatography fingerprint analysis for a methanolic extract was applied including loganin, chlorogenic acid, cantleyoside and caffeic acid as marker substances. PMID:21901989

  8. Use of peroxidase-labelled antigen for the detection of antibodies to Borrelia burgdorferi in human and animal sera.

    PubMed

    Eiffert, H; Lotter, H; Thomssen, R

    1991-01-01

    We have developed a modified ELISA for the detection of anti-Borrelia burgdorferi (Bb) antibodies based on a peroxidase enzyme labelled antigen (ELAT). Microtiter plates were coated with antigen of Bb. The immunoglobulins of the serum samples were bound to the antigen and specific antibodies were detected by an enzyme labelled antigen. The test principle facilitates the recognition of specific antibodies in different collectives of human and animal sera. We performed epidemiological studies with the ELAT on 231 sera from mothers in maternity wards (9.5% positive), 219 patient sera sent to the Bb routine diagnostics (15% positive) and 230 sera from forestry workers (21.3% positive). We further investigated sera from red deer from South Lower Saxony which remained 55% Bb-antibody positive; deer were 37% and fallow deer were 29% positive. PMID:2028231

  9. Vaccination with the ospA- and ospB-Negative Borrelia burgdorferi Strain 50772 Provides Significant Protection against Canine Lyme Disease

    PubMed Central

    LaFleur, Rhonda L.; Dant, Jennifer C.; Wasmoen, Terri L.; Jobe, Dean A.; Lovrich, Steven D.

    2015-01-01

    Beagles received placebo or ospA- and ospB-negative Borrelia burgdorferi before a tick challenge. A total of 28 (41%) ticks and skin biopsy specimens from each control dog (n = 10) contained B. burgdorferi. In contrast, 12 (19%) ticks recovered from the vaccine recipients (n = 10) were infected (P = 0.0077), and 5 dogs yielded spirochetes from the skin biopsy specimens (P = 0.0325). In addition, 9 (90%) placebo recipients and 4 (40%) vaccine recipients developed joint abnormalities (P = 0.0573). Therefore, vaccination with the ospA- and ospB-negative spirochete provided significant protection against Lyme disease. PMID:25972405

  10. Response to Esteve-Gassent et al.: flaB sequences obtained from Texas PCR products are identical to the positive control strain Borrelia burgdorferi B31.

    PubMed

    Norris, Steven J; Barbour, Alan G; Fish, Durland; Diuk-Wasser, Maria A

    2015-01-01

    Feria-Arroyo et al. had reported previously that, based on PCR analysis, 45% of Ixodes scapularis ticks collected in Texas and Mexico were infected with the Lyme disease spirochete Borrelia burgdorferi (Parasit. Vectors 2014, 7:199). However, our analyses of their initial data (Parasit. Vectors 2014, 7:467) and a recent response by Esteve-Gassent et al. (Parasit. Vectors 2015, 8:129) provide evidence that the positive PCR results obtained from both ribosomal RNA intergenic sequences and the flagellin gene flaB are highly likely due to contamination by the B. burgdorferi B31 positive control strain. PMID:26050617

  11. Borrelia burgdorferi migrates into joint capsules and causes an up-regulation of interleukin-8 in synovial membranes of dogs experimentally infected with ticks.

    PubMed Central

    Straubinger, R K; Straubinger, A F; Härter, L; Jacobson, R H; Chang, Y F; Summers, B A; Erb, H N; Appel, M J

    1997-01-01

    Twenty 6-week-old specific-pathogen-free beagles were infected with Borrelia burgdorferi by tick challenge, and five uninfected dogs served as controls. During the study, all dogs were monitored for infection, clinical signs, and antibody response against B. burgdorferi. During episodes of lameness or postmortem, synovial fluids from each dog were examined for volume, cell number, polymorphonuclear leukocyte (PMN) content, cell viability, and chemotactic activity. Twenty-five tissues collected postmortem from each dog were tested for interleukin-8 (IL-8) mRNA, tumor necrosis factor alpha (TNF-alpha) mRNA, presence of live spirochetes, and histopathological changes. Thirteen infected dogs (group A), which seroconverted rapidly (maximum titers within 50 to 90 days), developed acute and severe mono- or oligoarthritis almost exclusively in the limb closest to the tick bite (median incubation period, 66 days). Synovial fluids of the arthritic joints collected during episodes of lameness had significantly elevated volume, cell count, PMN proportion, cell viability, and chemotactic activity for PMNs. The remaining joints of the same animals contained synovial fluids with elevated chemotactic activity and cell viability. Twelve dogs tested positive for IL-8 mRNA in multiple tissues (synovia, pericardium, and peritoneum), and 10 dogs expressed TNF-alpha mRNA, but only in the tributary lymph nodes of the inflamed joints. Histological examinations revealed severe poly- or oligoarthritis and moderate to severe cortical hyperplasia in draining lymph nodes of the inflamed joints in all 13 dogs. Seven infected dogs with mild or no clinical signs (group B) seroconverted slowly (peak titers after 90 days), and only some joint fluids showed chemotactic activity, which on average was lower than that in inflamed and noninflamed joints from dogs in group A. Four dogs expressed IL-8 mRNA (in the synovia and pericardium), and three dogs had TNF-alpha mRNA in tributary lymph nodes

  12. Interleukin-10 Alters Effector Functions of Multiple Genes Induced by Borrelia burgdorferi in Macrophages To Regulate Lyme Disease Inflammation ▿ †

    PubMed Central

    Gautam, Aarti; Dixit, Saurabh; Philipp, Mario T.; Singh, Shree R.; Morici, Lisa A.; Kaushal, Deepak; Dennis, Vida A.

    2011-01-01

    Interleukin-10 (IL-10) modulates inflammatory responses elicited in vitro and in vivo by Borrelia burgdorferi, the Lyme disease spirochete. How IL-10 modulates these inflammatory responses still remains elusive. We hypothesize that IL-10 inhibits effector functions of multiple genes induced by B. burgdorferi in macrophages to control concomitantly elicited inflammation. Because macrophages are essential in the initiation of inflammation, we used mouse J774 macrophages and live B. burgdorferi spirochetes as the model target cell and stimulant, respectively. First, we employed transcriptome profiling to identify genes that were induced by stimulation of cells with live spirochetes and that were perturbed by addition of IL-10 to spirochete cultures. Spirochetes significantly induced upregulation of 347 genes at both the 4-h and 24-h time points. IL-10 inhibited the expression levels, respectively, of 53 and 65 of the 4-h and 24-h genes, and potentiated, respectively, at 4 h and 24 h, 65 and 50 genes. Prominent among the novel identified IL-10-inhibited genes also validated by quantitative real-time PCR (qRT-PCR) were Toll-like receptor 1 (TLR1), TLR2, IRAK3, TRAF1, IRG1, PTGS2, MMP9, IFI44, IFIT1, and CD40. Proteome analysis using a multiplex enzyme-linked immunosorbent assay (ELISA) revealed the IL-10 modulation/and or potentiation of RANTES/CCL5, macrophage inflammatory protein 2 (MIP-2)/CXCL2, IP-10/CXCL10, MIP-1α/CCL3, granulocyte colony-stimulating factor (G-CSF)/CSF3, CXCL1, CXCL5, CCL2, CCL4, IL-6, tumor necrosis factor alpha (TNF-α), IL-1α, IL-1β, gamma interferon (IFN-γ), and IL-9. Similar results were obtained using sonicated spirochetes or lipoprotein as stimulants. Our data show that IL-10 alters effectors induced by B. burgdorferi in macrophages to control concomitantly elicited inflammatory responses. Moreover, for the first time, this study provides global insight into potential mechanisms used by IL-10 to control Lyme disease inflammation. PMID

  13. Early Cytokine Release in Response to Live Borrelia burgdorferi Sensu Lato Spirochetes Is Largely Complement Independent

    PubMed Central

    Säve, Susanne; Bergström, Sven; Forsberg, Pia; Jonsson, Nina; Ernerudh, Jan; Ekdahl, Kristina N.

    2014-01-01

    Aim Here we investigated the role of complement activation in phagocytosis and the release of cytokines and chemokines in response to two clinical isolates: Borrelia afzelii K78, which is resistant to complement-mediated lysis, and Borrelia garinii LU59, which is complement-sensitive. Methods Borrelia spirochetes were incubated in hirudin plasma, or hirudin-anticoagulated whole blood. Complement activation was measured as the generation of C3a and sC5b-9. Binding of the complement components C3, factor H, C4, and C4BP to the bacterial surfaces was analyzed. The importance of complement activation on phagocytosis, and on the release of cytokines and chemokines, was investigated using inhibitors acting at different levels of the complement cascade. Results 1) Borrelia garinii LU59 induced significantly higher complement activation than did Borrelia afzelii K78. 2) Borrelia afzelii K78 recruited higher amounts of factor H resulting in significantly lower C3 binding. 3) Both Borrelia strains were efficiently phagocytized by granulocytes and monocytes, with substantial inhibition by complement blockade at the levels of C3 and C5. 4) The release of the pro-inflammatory cytokines and chemokines IL-1β, IL-6, TNF, CCL20, and CXCL8, together with the anti-inflammatory IL-10, were increased the most (by>10-fold after exposure to Borrelia). 5) Both strains induced a similar release of cytokines and chemokines, which in contrast to the phagocytosis, was almost totally unaffected by complement blockade. Conclusions Our results show that complement activation plays an important role in the process of phagocytosis but not in the subsequent cytokine release in response to live Borrelia spirochetes. PMID:25265036

  14. Treponema pallidum Lipoprotein TP0435 Expressed in Borrelia burgdorferi Produces Multiple Surface/Periplasmic Isoforms and mediates Adherence

    PubMed Central

    Chan, Kamfai; Nasereddin, Thayer; Alter, Laura; Centurion-Lara, Arturo; Giacani, Lorenzo; Parveen, Nikhat

    2016-01-01

    The ability of Treponema pallidum, the syphilis spirochete to colonize various tissues requires the presence of surface-exposed adhesins that have been difficult to identify due to the inability to culture and genetically manipulate T. pallidum. Using a Borrelia burgdorferi-based heterologous system and gain-in-function approach, we show for the first time that a highly immunogenic lipoprotein TP0435 can be differentially processed into multiple isoforms with one variant stochastically displayed on the spirochete surface. TP0435 was previously believed to be exclusively located in T. pallidum periplasm. Furthermore, non-adherent B. burgdorferi strain expressing TP0435 acquires the ability to bind to a variety of host cells including placental cells and exhibits slow opsonophagocytosis in vitro similar to poor ex vivo phagocytosis of T. pallidum by host macrophages reported previously. This phenomenon of production of both surface and periplasmic immunogenic lipoprotein isoforms has possible implications in immune evasion of the obligate pathogen T. pallidum during infection. PMID:27161310

  15. Minimal role of eastern fence lizards in Borrelia burgdorferi transmission in central New Jersey oak/pine woodlands

    USGS Publications Warehouse

    Rulison, Eric L.; Kerr, Kaetlyn T; Dyer, Megan C; Han, Seungeun; Burke, Russell L.; Tsao, Jean I.; Ginsberg, Howard S.

    2014-01-01

    The Eastern fence lizard, Sceloporus undulatus, is widely distributed in eastern and central North America, ranging through areas with high levels of Lyme disease, as well as areas where Lyme disease is rare or absent. We studied the potential role of S. undulatus in transmission dynamics of Lyme spirochetes by sampling ticks from a variety of natural hosts at field sites in central New Jersey, and by testing the reservoir competence of S. undulatus for Borrelia burgdorferi in the laboratory. The infestation rate of ticks on fence lizards was extremely low (proportion infested = 0.087, n = 23) compared to that on white footed mice and other small mammals (proportion infested = 0.53, n = 140). Of 159 nymphs that had fed as larvae on lizards that had previously been exposed to infected nymphs, none was infected with B. burgdorferi, compared with 79.9% of 209 nymphs that had fed as larvae on infected control mice. Simulations suggest that changes in the numbers of fence lizards in a natural habitat would have little effect on the infection rate of nymphal ticks with Lyme spirochetes. We conclude that in central New Jersey S. undulatus plays a minimal role in the enzootic transmission cycle of Lyme spirochetes.

  16. Treponema pallidum Lipoprotein TP0435 Expressed in Borrelia burgdorferi Produces Multiple Surface/Periplasmic Isoforms and mediates Adherence.

    PubMed

    Chan, Kamfai; Nasereddin, Thayer; Alter, Laura; Centurion-Lara, Arturo; Giacani, Lorenzo; Parveen, Nikhat

    2016-01-01

    The ability of Treponema pallidum, the syphilis spirochete to colonize various tissues requires the presence of surface-exposed adhesins that have been difficult to identify due to the inability to culture and genetically manipulate T. pallidum. Using a Borrelia burgdorferi-based heterologous system and gain-in-function approach, we show for the first time that a highly immunogenic lipoprotein TP0435 can be differentially processed into multiple isoforms with one variant stochastically displayed on the spirochete surface. TP0435 was previously believed to be exclusively located in T. pallidum periplasm. Furthermore, non-adherent B. burgdorferi strain expressing TP0435 acquires the ability to bind to a variety of host cells including placental cells and exhibits slow opsonophagocytosis in vitro similar to poor ex vivo phagocytosis of T. pallidum by host macrophages reported previously. This phenomenon of production of both surface and periplasmic immunogenic lipoprotein isoforms has possible implications in immune evasion of the obligate pathogen T. pallidum during infection. PMID:27161310

  17. A Borrelia burgdorferi Surface-Exposed Transmembrane Protein Lacking Detectable Immune Responses Supports Pathogen Persistence and Constitutes a Vaccine Target.

    PubMed

    Kung, Faith; Kaur, Simarjot; Smith, Alexis A; Yang, Xiuli; Wilder, Cara N; Sharma, Kavita; Buyuktanir, Ozlem; Pal, Utpal

    2016-06-01

    Borrelia burgdorferi harbors a limited set of transmembrane surface proteins, most of which constitute key targets of humoral immune responses. Here we show that BB0405, a conserved membrane-spanning protein of unknown function, fails to evoke detectable antibody responses despite its extracellular exposure. bb0405 is a member of an operon and ubiquitously expressed throughout the rodent-tick infection cycle. The gene product serves an essential function in vivo, as bb0405-deletion mutants are unable to transmit from ticks and establish infection in mammalian hosts. Despite the lack of BB0405-specific immunoglobulin M or immunoglobulin G antibodies during natural infection, mice immunized with a recombinant version of the protein elicited high-titer and remarkably long-lasting antibody responses, conferring significant host protection against tick-borne infection. Taken together, these studies highlight the essential role of an apparently immune-invisible borrelial transmembrane protein in facilitating infection and its usefulness as a target of protective host immunity blocking the transmission of B. burgdorferi. PMID:26747708

  18. The lipoprotein La7 contributes to Borrelia burgdorferi persistence in ticks and their transmission to naïve hosts.

    PubMed

    Yang, Xiuli; Hegde, Shylaja; Shroder, Deborah Y; Smith, Alexis A; Promnares, Kamoltip; Neelakanta, Girish; Anderson, John F; Fikrig, Erol; Pal, Utpal

    2013-01-01

    La7, an immunogenic outer membrane lipoprotein of Borrelia burgdorferi, produced during infection, has been shown to play a redundant role in mammalian infectivity. Here we show that La7 facilitates pathogen survival in all tested phases of the vector-specific spirochete life cycle, including tick-to-host transmission. Unlike wild type or la7-complemented isolates, isogenic La7-deficient spirochetes are severely impaired in their ability to persist within feeding ticks during acquisition from mice, in quiescent ticks during larval-nymphal inter-molt, and in subsequent pathogen transmission from ticks to naïve hosts. Analysis of gene expression during the major stages of the tick-rodent infection cycle showed increased expression of la7 in the vector and a swift downregulation in the mammalian hosts. Co-immunoprecipitation studies coupled with liquid chromatography-mass spectrometry analysis further suggested that La7, a highly conserved and abundant inner membrane protein, is involved in protein-protein interaction with a discrete set of borrelial ligands although biological significance of such interactions remains unclear. Further characterization of vector-induced membrane antigens like La7 and its interacting partners will likely aid in our understanding of the molecular details of B. burgdorferi persistence and transmission through a complex enzootic cycle. PMID:23774694

  19. Minimal role of eastern fence lizards in Borrelia burgdorferi transmission in central New Jersey oak/pine woodlands.

    PubMed

    Rulison, Eric L; Kerr, Kaetlyn T; Dyer, Megan C; Han, Seungeun; Burke, Russell L; Tsao, Jean I; Ginsberg, Howard S

    2014-10-01

    The eastern fence lizard, Sceloporus undulatus , is widely distributed in eastern and central North America, ranging through areas with high levels of Lyme disease, as well as areas where Lyme disease is rare or absent. We studied the potential role of S. undulatus in transmission dynamics of Lyme spirochetes by sampling ticks from a variety of natural hosts at field sites in central New Jersey, and by testing the reservoir competence of S. undulatus for Borrelia burgdorferi in the laboratory. The infestation rate of ticks on fence lizards was extremely low (prevalence = 0.087, n = 23) compared to that on white-footed mice and other small mammals (prevalence = 0.53, n = 140). Of 159 nymphs that had fed as larvae on lizards that had previously been exposed to infected nymphs, none was infected with B. burgdorferi , compared with 79.9% of 209 nymphs that had fed as larvae on infected control mice. Simulations suggest that changes in the numbers of fence lizards in a natural habitat would have little effect on the infection rate of nymphal ticks with Lyme spirochetes. We conclude that in central New Jersey, S. undulatus plays a minimal role in the enzootic transmission cycle of Lyme spirochetes. PMID:24871138

  20. Antibody detection against Borrelia burgdorferi in horses located in the suburban areas of Monterrey, Nuevo León.

    PubMed

    Salinas-Mélendez, J A; Galván de la Garza, S; Riojas-Valdés, V M; Wong González, A; Avalos-Ramírez, R

    2001-01-01

    The aim of the present study was to determine the presence of Borrelia burgdorferi antibodies in horses from the metropolitan area of Monterrey, Nuevo León, México. Blood serum was obtained from a total of 100 horses residing at different counties in the area. From each animal data was obtained on age, sex, county of residence, presence of ectoparasites and clinical signs. All sera samples were analyzed by indirect immunofluoresence and the sera that resulted positive to this test was analyzed by Western blot. The serological test yielded 34 positive sera at 1:64 dilution, and from them 6 were positive at 1:128 dilution, 3 at 1:256, and only one at 1:512. Confirmation of the infection by Western blot was obtained only in the sample positive at the 1:512 dilution. These results shown a low frequency of seropositivity to B. burgdorferi of the horses in the area, confirming previous studies indicating that in northeast Mexico Lyme disease is present in different animal species. PMID:17061503

  1. Evidence of Anaplasma phagocytophilum and Borrelia burgdorferi infection in cats after exposure to wild-caught adult Ixodes scapularis.

    PubMed

    Lappin, Michael R; Chandrashekar, Ramaswamy; Stillman, Brett; Liu, Jiayou; Mather, Thomas N

    2015-07-01

    Cats are infected by Anaplasma phagocytophilum and Borrelia burgdorferi when exposed to infected Ixodes scapularis (black-legged ticks). The purpose of our study was to allow wild-caught I. scapularis to feed on healthy research cats (n = 4) and temporally evaluate for A. phagocytophilum DNA in blood by a polymerase chain reaction (PCR) assay as well as for antibody responses to the B. burgdorferi C6 peptide, to the A. phagocytophilum P44 peptide, and to a novel A. phagocytophilum peptide (P44-4). Prior to I. scapularis infestation, all cats were negative for antibodies against both organisms based on a kit optimized for dog serum, and negative for A. phagocytophilum DNA in blood using a conventional PCR assay. Using the pre-infestation samples, an enzyme-linked immunosorbent assay for detecting antibodies against the P44-4 peptide was optimized. Cats were infested with wild-caught I. scapularis for 7 days. Genomic DNA of A. phagocytophilum was amplified from the blood before antibodies were detected in all 4 cats. Antibodies against the C6 peptide, P44 peptide, and P44-4 peptide were detected in the sera of all 4 cats. Antibodies against P44-4 were detected prior to those against P44 in 3 out of 4 cats. The results suggest that a PCR assay should be considered in acutely ill cats with suspected anaplasmosis that are seronegative. PMID:26179101

  2. Efficacy of sarolaner in the prevention of Borrelia burgdorferi and Anaplasma phagocytophilum transmission from infected Ixodes scapularis to dogs.

    PubMed

    Honsberger, Nicole A; Six, Robert H; Heinz, Thomas J; Weber, Angela; Mahabir, Sean P; Berg, Thomas C

    2016-05-30

    The efficacy of sarolaner (Simparica™, Zoetis) to prevent transmission primarily of Borrelia burgdorferi and secondarily of Anaplasma phagocytophilum from infected wild-caught Ixodes scapularis to dogs was evaluated in a placebo-controlled laboratory study. Twenty-four purpose-bred laboratory Beagles seronegative for B. burgdorferi and A. phagocytophilum antibodies were allocated randomly to one of three treatment groups: placebo administered orally on Days 0 and 7, or sarolaner at 2mg/kg administered orally on Day 0 (28 days prior to tick infestation) or on Day 7 (21 days prior to tick infestation). On Day 28, each dog was infested with approximately 25 female and 25 male wild caught adult I. scapularis that were determined to have prevalence of 57% for B. burgdorferi and 6.7% for A. phagocytophilum by PCR. In situ tick counts were conducted on Days 29 and 30. On Day 33, all ticks were counted and removed. Acaricidal efficacy was calculated based on the reduction of geometric mean live tick counts in the sarolaner-treated groups compared to the placebo-treated group for each tick count. Blood samples collected from each dog on Days 27, 49, 63, 77, 91 and 104 were tested for the presence of B. burgdorferi and A. phagocytophilum antibodies using the SNAP(®) 4Dx(®) Plus Test, and quantitatively assayed for B. burgdorferi antibodies using an ELISA test. Skin biopsies collected on Day 104 were tested for the presence of B. burgdorferi by bacterial culture and PCR. Geometric mean live tick counts for placebo-treated dogs were 14.8, 12.8, and 19.1 on Days 29, 30, and 33, respectively. The percent reductions in mean live tick counts at 1, 2, and 5 days after infestation were 86.3%, 100%, and 100% for the group treated with sarolaner 21 days prior to infestation, and 90.9%, 97.1%, and 100% for the group treated with sarolaner 28 days prior to infestation. Geometric mean live tick counts for both sarolaner-treated groups were significantly lower than those for the

  3. Diagnostic Value of PCR for Detection of Borrelia burgdorferi in Skin Biopsy and Urine Samples from Patients with Skin Borreliosis

    PubMed Central

    Brettschneider, S.; Bruckbauer, H.; Klugbauer, N.; Hofmann, H.

    1998-01-01

    Skin biopsies of 36 patients with erythema migrans and acrodermatitis chronica atrophicans (ACA) before therapy and those of 8 patients after therapy were examined for Borrelia burgdorferi DNA by PCR. Skin biopsies of 27 patients with dermatological diseases other than Lyme borreliosis and those of 10 healthy persons were examined as controls. Two different primer sets targeting 23S rRNA (PCR I) and 66-kDa protein (PCR II) genes were used. PCR was performed with freshly frozen tissue (FFT) and paraffin-embedded tissue (PET). For FFT specimens of erythema migrans, 73% were positive by PCR I, 79% were positive by PCR II, and 88% were positive by combining PCR I and II. For PET specimens, PCR was less sensitive (PCR I, 44%; PCR II, 52%). For FFT specimens of ACA, PCR I was positive for two of five patients and PCR II was positive for four of five patients. B. burgdorferi was cultured from 79% of the erythema migrans specimens but not from any of the ACA lesions. Elevated B. burgdorferi antibodies were detected in sera of 74% of erythema migrans patients and 100% of ACA patients. All urine samples were negative by PCR II, whereas PCR I was positive for 27%. However, hybridization of these amplicons was negative. Sequencing of three amplicons identified nonborrelial DNA. In conclusion, urine PCR is not suitable for the diagnosis of skin borreliosis. A combination of two different primer sets achieves high sensitivity with skin biopsies. In early erythema migrans infection, culture and PCR are more sensitive than serology. PMID:9705410

  4. Canine infection with Dirofilaria immitis, Borrelia burgdorferi, Anaplasma spp., and Ehrlichia spp. in the United States, 2010–2012

    PubMed Central

    2014-01-01

    Background The geographic distribution of canine infection with vector-borne disease agents in the United States appears to be expanding. Methods To provide an updated assessment of geographic trends in canine infection with Dirofilaria immitis, Borrelia burgdorferi, Ehrlichia spp., and Anaplasma spp., we evaluated results from an average of 3,588,477 dogs tested annually by veterinarians throughout the United States from 2010 – 2012. Results As in an earlier summary report, the percent positive test results varied by agent and region, with antigen of D. immitis and antibody to Ehrlichia spp. most commonly identified in the Southeast (2.9% and 3.2%, respectively) and antibody to both B. burgdorferi and Anaplasma spp. most commonly identified in the Northeast (13.3% and 7.1%, respectively) and upper Midwest (4.4% and 3.9%, respectively). Percent positive test results for D. immitis antigen were lower in every region considered, including in the Southeast, than previously reported. Percent positive test results for antibodies to B. burgdorferi and Ehrlichia spp. were higher nationally than previously reported, and, for antibodies to Anaplasma spp., were higher in the Northeast but lower in the Midwest and West, than in the initial report. Annual reports of human cases of Lyme disease, ehrlichiosis, and anaplasmosis were associated with percent positive canine test results by state for each respective tick-borne disease agent (R2 = 0.701, 0.457, and 0.314, respectively). Within endemic areas, percent positive test results for all three tick-borne agents demonstrated evidence of geographic expansion. Conclusions Continued national monitoring of canine test results for vector-borne zoonotic agents is an important tool for accurately mapping the geographic distribution of these agents, and greatly aids our understanding of the veterinary and public health threats they pose. PMID:24886589

  5. Analysis of an Ordered, Comprehensive STM Mutant Library in Infectious Borrelia burgdorferi: Insights into the Genes Required for Mouse Infectivity

    PubMed Central

    Lin, Tao; Gao, Lihui; Zhang, Chuhua; Odeh, Evelyn; Jacobs, Mary B.; Coutte, Loïc; Chaconas, George; Philipp, Mario T.; Norris, Steven J.

    2012-01-01

    The identification of genes important in the pathogenesis of Lyme disease Borrelia has been hampered by exceedingly low transformation rates in low-passage, infectious organisms. Using the infectious, moderately transformable B. burgdorferi derivative 5A18NP1 and signature-tagged versions of the Himar1 transposon vector pGKT, we have constructed a defined transposon library for the efficient genome-wide investigation of genes required for wild-type pathogenesis, in vitro growth, physiology, morphology, and plasmid replication. To facilitate analysis, the insertion sites of 4,479 transposon mutants were determined by sequencing. The transposon insertions were widely distributed across the entire B. burgdorferi genome, with an average of 2.68 unique insertion sites per kb DNA. The 10 linear plasmids and 9 circular plasmids had insertions in 33 to 100 percent of their predicted genes. In contrast, only 35% of genes in the 910 kb linear chromosome had incapacitating insertions; therefore, the remaining 601 chromosomal genes may represent essential gene candidates. In initial signature-tagged mutagenesis (STM) analyses, 434 mutants were examined at multiple tissue sites for infectivity in mice using a semi-quantitative, Luminex-based DNA detection method. Examples of genes found to be important in mouse infectivity included those involved in motility, chemotaxis, the phosphoenolpyruvate phosphotransferase system, and other transporters, as well as putative plasmid maintenance genes. Availability of this ordered STM library and a high-throughput screening method is expected to lead to efficient assessment of the roles of B. burgdorferi genes in the infectious cycle and pathogenesis of Lyme disease. PMID:23133514

  6. Outer surface protein OspC is an antiphagocytic factor that protects Borrelia burgdorferi from phagocytosis by macrophages.

    PubMed

    Carrasco, Sebastian E; Troxell, Bryan; Yang, Youyun; Brandt, Stephanie L; Li, Hongxia; Sandusky, George E; Condon, Keith W; Serezani, C Henrique; Yang, X Frank

    2015-12-01

    Outer surface protein C (OspC) is one of the major lipoproteins expressed on the surface of Borrelia burgdorferi during tick feeding and the early phase of mammalian infection. OspC is required for B. burgdorferi to establish infection in both immunocompetent and SCID mice and has been proposed to facilitate evasion of innate immune defenses. However, the exact biological function of OspC remains elusive. In this study, we showed that the ospC-deficient spirochete could not establish infection in NOD-scid IL2rγ(null) mice that lack B cells, T cells, NK cells, and lytic complement. The ospC mutant also could not establish infection in anti-Ly6G-treated SCID and C3H/HeN mice (depletion of neutrophils). However, depletion of mononuclear phagocytes at the skin site of inoculation in SCID and C3H/HeN mice allowed the ospC mutant to establish infection in vivo. In phagocyte-depleted mice, the ospC mutant was able to colonize the joints and triggered neutrophilia during dissemination. Furthermore, we found that phagocytosis of green fluorescent protein (GFP)-expressing ospC mutant spirochetes by murine peritoneal macrophages and human THP-1 macrophage-like cells, but not in PMN-HL60, was significantly higher than parental wild-type B. burgdorferi strains, suggesting that OspC has an antiphagocytic property. In addition, overproduction of OspC in spirochetes also decreased the uptake of spirochetes by murine peritoneal macrophages. Together, our findings provide evidence that mononuclear phagocytes play a key role in clearance of the ospC mutant and that OspC promotes spirochetes' evasion of macrophages during early Lyme borreliosis. PMID:26438793

  7. Clonal Polymorphism of Borrelia burgdorferi Strain B31 MI: Implications for Mutagenesis in an Infectious Strain Background

    PubMed Central

    Elias, Abdallah F.; Stewart, Philip E.; Grimm, Dorothee; Caimano, Melissa J.; Eggers, Christian H.; Tilly, Kit; Bono, James L.; Akins, Darrin R.; Radolf, Justin D.; Schwan, Tom G.; Rosa, Patricia

    2002-01-01

    A major obstacle to studying the functions of particular gene products in the mouse-tick infectious cycle of Borrelia burgdorferi has been an inability to knock out genes in pathogenic strains. Here, we investigated conditions for site-directed mutagenesis in B31 MI, the low-passage-number, infectious B. burgdorferi strain whose genome was sequenced. We inactivated several plasmid and chromosomal genes in B31 MI and determined that clones carrying these mutations were not infectious for mice. However, we found extensive heterogeneity among clones and mutants derived from B31 MI based on colony phenotype, growth rate, plasmid content, protein profile, and transformability. Significantly, several B31 MI clones that were not subjected to mutagenesis but that lacked particular plasmids also exhibited defects at various stages in the infectious cycle. Therefore, the high degree of clonal polymorphism within B31 MI complicates the assessment of the contributions of individual genes to the observed phenotypes of the mutants. Our results indicate that B31 MI is not an appropriate strain background for genetic studies in infectious B. burgdorferi, and a well-defined isogenic clone is a prerequisite for targeted mutagenesis. To this end, we derived several wild-type clones from B31 MI that were infectious for mice, and gene inactivation was successful in one of these clones. Due to the instability of the genome with in vitro propagation, careful monitoring of plasmid content of derived mutants and complementation of inactivated genes will be crucial components of genetic studies with this pathogen. PMID:11895980

  8. Clonal polymorphism of Borrelia burgdorferi strain B31 MI: implications for mutagenesis in an infectious strain background.

    PubMed

    Elias, Abdallah F; Stewart, Philip E; Grimm, Dorothee; Caimano, Melissa J; Eggers, Christian H; Tilly, Kit; Bono, James L; Akins, Darrin R; Radolf, Justin D; Schwan, Tom G; Rosa, Patricia

    2002-04-01

    A major obstacle to studying the functions of particular gene products in the mouse-tick infectious cycle of Borrelia burgdorferi has been an inability to knock out genes in pathogenic strains. Here, we investigated conditions for site-directed mutagenesis in B31 MI, the low-passage-number, infectious B. burgdorferi strain whose genome was sequenced. We inactivated several plasmid and chromosomal genes in B31 MI and determined that clones carrying these mutations were not infectious for mice. However, we found extensive heterogeneity among clones and mutants derived from B31 MI based on colony phenotype, growth rate, plasmid content, protein profile, and transformability. Significantly, several B31 MI clones that were not subjected to mutagenesis but that lacked particular plasmids also exhibited defects at various stages in the infectious cycle. Therefore, the high degree of clonal polymorphism within B31 MI complicates the assessment of the contributions of individual genes to the observed phenotypes of the mutants. Our results indicate that B31 MI is not an appropriate strain background for genetic studies in infectious B. burgdorferi, and a well-defined isogenic clone is a prerequisite for targeted mutagenesis. To this end, we derived several wild-type clones from B31 MI that were infectious for mice, and gene inactivation was successful in one of these clones. Due to the instability of the genome with in vitro propagation, careful monitoring of plasmid content of derived mutants and complementation of inactivated genes will be crucial components of genetic studies with this pathogen. PMID:11895980

  9. Outer Surface Protein OspC Is an Antiphagocytic Factor That Protects Borrelia burgdorferi from Phagocytosis by Macrophages

    PubMed Central

    Carrasco, Sebastian E.; Troxell, Bryan; Yang, Youyun; Brandt, Stephanie L.; Li, Hongxia; Sandusky, George E.; Condon, Keith W.

    2015-01-01

    Outer surface protein C (OspC) is one of the major lipoproteins expressed on the surface of Borrelia burgdorferi during tick feeding and the early phase of mammalian infection. OspC is required for B. burgdorferi to establish infection in both immunocompetent and SCID mice and has been proposed to facilitate evasion of innate immune defenses. However, the exact biological function of OspC remains elusive. In this study, we showed that the ospC-deficient spirochete could not establish infection in NOD-scid IL2rγnull mice that lack B cells, T cells, NK cells, and lytic complement. The ospC mutant also could not establish infection in anti-Ly6G-treated SCID and C3H/HeN mice (depletion of neutrophils). However, depletion of mononuclear phagocytes at the skin site of inoculation in SCID and C3H/HeN mice allowed the ospC mutant to establish infection in vivo. In phagocyte-depleted mice, the ospC mutant was able to colonize the joints and triggered neutrophilia during dissemination. Furthermore, we found that phagocytosis of green fluorescent protein (GFP)-expressing ospC mutant spirochetes by murine peritoneal macrophages and human THP-1 macrophage-like cells, but not in PMN-HL60, was significantly higher than parental wild-type B. burgdorferi strains, suggesting that OspC has an antiphagocytic property. In addition, overproduction of OspC in spirochetes also decreased the uptake of spirochetes by murine peritoneal macrophages. Together, our findings provide evidence that mononuclear phagocytes play a key role in clearance of the ospC mutant and that OspC promotes spirochetes' evasion of macrophages during early Lyme borreliosis. PMID:26438793

  10. An RND-Type Efflux System in Borrelia burgdorferi Is Involved in Virulence and Resistance to Antimicrobial Compounds

    PubMed Central

    Bunikis, Ignas; Denker, Katrin; Östberg, Yngve; Andersen, Christian; Benz, Roland; Bergström, Sven

    2008-01-01

    Borrelia burgdorferi is remarkable for its ability to thrive in widely different environments due to its ability to infect various organisms. In comparison to enteric Gram-negative bacteria, these spirochetes have only a few transmembrane proteins some of which are thought to play a role in solute and nutrient uptake and excretion of toxic substances. Here, we have identified an outer membrane protein, BesC, which is part of a putative export system comprising the components BesA, BesB and BesC. We show that BesC, a TolC homolog, forms channels in planar lipid bilayers and is involved in antibiotic resistance. A besC knockout was unable to establish infection in mice, signifying the importance of this outer membrane channel in the mammalian host. The biophysical properties of BesC could be explained by a model based on the channel-tunnel structure. We have also generated a structural model of the efflux apparatus showing the putative spatial orientation of BesC with respect to the AcrAB homologs BesAB. We believe that our findings will be helpful in unraveling the pathogenic mechanisms of borreliae as well as in developing novel therapeutic agents aiming to block the function of this secretion apparatus. PMID:18389081

  11. The salt-sensitive structure and zinc inhibition of Borrelia burgdorferi protease BbHtrA.

    PubMed

    Russell, Theresa M; Tang, Xiaoling; Goldstein, Jason M; Bagarozzi, Dennis; Johnson, Barbara J B

    2016-02-01

    HtrA serine proteases are highly conserved and essential ATP-independent proteases with chaperone activity. Bacteria express a variable number of HtrA homologues that contribute to the virulence and pathogenicity of bacterial pathogens. Lyme disease spirochetes possess a single HtrA protease homologue, Borrelia burgdorferi HtrA (BbHtrA). Previous studies established that, like the human orthologue HtrA1, BbHtrA is proteolytically active against numerous extracellular proteins in vitro. In this study, we utilized size exclusion chromatography and blue native polyacrylamide gel electrophoresis (BN-PAGE) to demonstrate BbHtrA oligomeric structures that were substrate independent and salt sensitive. Examination of the influence of transition metals on the activity of BbHtrA revealed that this protease is inhibited by Zn(2+) > Cu(2+) > Mn(2+). Extending this analysis to two other HtrA proteases, E. coli DegP and HtrA1, revealed that all three HtrA proteases were reversibly inhibited by ZnCl2 at all micro molar concentrations examined. Commercial inhibitors for HtrA proteases are not available and physiologic HtrA inhibitors are unknown. Our observation of conserved zinc inhibition of HtrA proteases will facilitate structural and functional studies of additional members of this important class of proteases. PMID:26480895

  12. Quantitative Detection of Borrelia burgdorferi sensu lato in Erythema Migrans Skin Lesions Using Internally Controlled Duplex Real Time PCR

    PubMed Central

    Lusa, Lara; Stupica, Dasa; Maraspin, Vera; Barrett, P. Noel; Strle, Franc; Livey, Ian

    2013-01-01

    B. burgdorferi sensu stricto, B. afzelii, B. garinii and B. bavariensis are the principal species which account for Lyme borreliosis (LB) globally. We have developed an internally controlled duplex quantitative real time PCR assay targeting the Borrelia 16S rRNA and the human RNAseP genes. This assay is well-suited for laboratory confirmation of suspected cases of LB and will be used to assess the efficacy of a vaccine against LB in clinical trials. The assay is highly specific, successfully detecting DNA extracted from 83 diverse B. burgdorferi sensu lato strains representing all major species causing LB, while 21 unrelated microbial species and human genomic DNA tested negative. The assay was highly reproducible and sensitive, with a lower limit of detection of 6 copies per PCR reaction. Together with culture, the assay was used to evaluate paired 3 mm skin biopsy samples taken from 121 patients presenting with solitary erythema migrans (EM) lesion. PCR testing identified more positive biopsy samples than culture (77.7% PCR positive versus 55.1% culture positive) and correctly identified all specimens scored as culture positive. OspA-based typing identified the majority of isolates as B. afzelii (96.8%) and the bacterial load was significantly higher in culture positive biopsies than in culture negative biopsies (P<0.001). The quantitative data also enabled relationships between Borrelia burden and patient symptoms to be evaluated. The bacterial load was significantly higher among patients with systemic symptoms than without (P = 0.02) and was significantly higher for biopsies retrieved from patients with EM lesions with central clearing (P<0.001). 16S copy numbers were moderately lower in samples from patients reporting a history of LB (P = 0.10). This is the first quantitative PCR study of human skin biopsies predominantly infected with B. afzelii and the first study to demonstrate a clear relationship between clinical symptoms in B. afzelii

  13. Recognition of Borrelia burgdorferi by NOD2 is central for the induction of an inflammatory reaction.

    PubMed

    Oosting, Marije; Berende, Anneleen; Sturm, Patrick; Ter Hofstede, Hadewych J M; de Jong, Dirk J; Kanneganti, Thirumala-Devi; van der Meer, Jos W M; Kullberg, Bart-Jan; Netea, Mihai G; Joosten, Leo A B

    2010-06-15

    Toll-like receptor 2 (TLR2) plays an important role in the recognition of Borrelia bacteria, the causative agent of Lyme disease, but the existence and importance of additional receptors in this process has been hypothesized. In the present study, we confirmed the role played by TLR2 in the recognition of Borrelia bacteria but also demonstrated a crucial role for the intracellular peptidoglycan receptor NOD2 for sensing the spirochete. Cells from individuals who were homozygous for the loss-of-function mutation 3020insC in the NOD2 gene were defective with respect to cytokine release after stimulation with Borrelia species, and this was confirmed in peritoneal macrophages from mice lacking RICK, the adaptor molecule used by NOD2. In contrast, NOD1 played no major role in the recognition of Borrelia spirochetes. This raises the intriguing possibility that recognition of Borrelia spirochetes is exerted by TLR2 in combination with NOD2 and that both receptors are necessary for an effective induction of cytokines by Borrelia species. The interplay between TLR2 and NOD2 might not only be necessary for the induction of a proper immune response but may also contribute to inflammatory-induced pathology. PMID:20441518

  14. The OspE-Related Proteins Inhibit Complement Deposition and Enhance Serum Resistance of Borrelia burgdorferi, the Lyme Disease Spirochete ▿

    PubMed Central

    Kenedy, Melisha R.; Akins, Darrin R.

    2011-01-01

    Borrelia burgdorferi, the Lyme disease spirochete, binds the host complement inhibitors factor H (FH) and FH-like protein 1 (FHL-1). Binding of FH/FHL-1 by the B. burgdorferi proteins CspA and the OspE-related proteins is thought to enhance resistance to serum-mediated killing. While previous reports have shown that CspA confers serum resistance in B. burgdorferi, it is unclear whether the OspE-related proteins are relevant in B. burgdorferi serum resistance when OspE is expressed on the borrelial surface. To assess the role of the OspE-related proteins, we overexpressed them in a serum-sensitive CspA mutant strain. OspE overexpression enhanced serum resistance of the CspA-deficient organisms. Furthermore, FH was more efficiently bound to the B. burgdorferi surface when OspE was overexpressed. Deposition of complement components C3 and C5b-9 (the membrane attack complex), however, was reduced on the surface of the OspE-overexpressing strain compared to that on the CspA mutant strain. These data demonstrate that OspE proteins expressed on the surface of B. burgdorferi bind FH and protect the organism from complement deposition and subsequent serum-mediated destruction. PMID:21282413

  15. Persistence of Borrelia burgdorferi in Rhesus Macaques following Antibiotic Treatment of Disseminated Infection

    PubMed Central

    Embers, Monica E.; Barthold, Stephen W.; Borda, Juan T.; Bowers, Lisa; Doyle, Lara; Hodzic, Emir; Jacobs, Mary B.; Hasenkampf, Nicole R.; Martin, Dale S.; Narasimhan, Sukanya; Phillippi-Falkenstein, Kathrine M.; Purcell, Jeanette E.; Ratterree, Marion S.; Philipp, Mario T.

    2012-01-01

    The persistence of symptoms in Lyme disease patients following antibiotic therapy, and their causes, continue to be a matter of intense controversy. The studies presented here explore antibiotic efficacy using nonhuman primates. Rhesus macaques were infected with B. burgdorferi and a portion received aggressive antibiotic therapy 4–6 months later. Multiple methods were utilized for detection of residual organisms, including the feeding of lab-reared ticks on monkeys (xenodiagnosis), culture, immunofluorescence and PCR. Antibody responses to the B. burgdorferi-specific C6 diagnostic peptide were measured longitudinally and declined in all treated animals. B. burgdorferi antigen, DNA and RNA were detected in the tissues of treated animals. Finally, small numbers of intact spirochetes were recovered by xenodiagnosis from treated monkeys. These results demonstrate that B. burgdorferi can withstand antibiotic treatment, administered post-dissemination, in a primate host. Though B. burgdorferi is not known to possess resistance mechanisms and is susceptible to the standard antibiotics (doxycycline, ceftriaxone) in vitro, it appears to become tolerant post-dissemination in the primate host. This finding raises important questions about the pathogenicity of antibiotic-tolerant persisters and whether or not they can contribute to symptoms post-treatment. PMID:22253822

  16. Cholesterol lipids of Borrelia burgdorferi form lipid rafts and are required for the bactericidal mechanism of a complement-independent antibody

    PubMed Central

    LaRocca, Timothy J; Crowley, Jameson T; Cusack, Brian J; Pathak, Priyadarshini; Benach, Jordi; London, Erwin; Garcia-Monco, Juan C; Benach, Jorge L

    2010-01-01

    SUMMARY Borrelia burgdorferi (the agent of Lyme disease) is unusual in that it contains free cholesterol and cholesterol glycolipids. It is also susceptible to complement-independent bactericidal antibodies, such as CB2, a monoclonal IgG1 against outer surface protein B (OspB). The bactericidal action of CB2 requires the presence of cholesterol glycolipids and cholesterol. Through ultrastructural, biochemical and biophysical approaches, we show that these cholesterol glycolipids exist as lipid raft-like microdomains in the outer membrane of cultured and mouse-derived B. burgdorferi, and in model membranes from B. burgdorferi lipids. The order and size of the microdomains of intact cells and model membranes are temperature sensitive and correlate with the bactericidal activity of CB2. Here we demonstrate the existence of cholesterol-containing lipid raft-like microdomains in a prokaryote. PMID:20951967

  17. A Single-Domain FlgJ Contributes to Flagellar Hook and Filament Formation in the Lyme Disease Spirochete Borrelia burgdorferi

    PubMed Central

    Zhang, Kai; Tong, Brian A.; Liu, Jun

    2012-01-01

    FlgJ plays a very important role in flagellar assembly. In the enteric bacteria, flgJ null mutants fail to produce the flagellar rods, hooks, and filaments but still assemble the integral membrane-supramembrane (MS) rings. These mutants are nonmotile. The FlgJ proteins consist of two functional domains. The N-terminal rod-capping domain acts as a scaffold for rod assembly, and the C-terminal domain acts as a peptidoglycan (PG) hydrolase (PGase), which allows the elongating flagellar rod to penetrate through the PG layer. However, the FlgJ homologs in several bacterial phyla (including spirochetes) often lack the PGase domain. The function of these single-domain FlgJ proteins remains elusive. Herein, a single-domain FlgJ homolog (FlgJBb) was studied in the Lyme disease spirochete Borrelia burgdorferi. Cryo-electron tomography analysis revealed that the flgJBb mutant still assembled intact flagellar basal bodies but had fewer and disoriented flagellar hooks and filaments. Consistently, Western blots showed that the levels of flagellar hook (FlgE) and filament (FlaB) proteins were substantially decreased in the flgJBb mutant. Further studies disclosed that the decreases of FlgE and FlaB in the mutant occurred at the posttranscriptional level. Microscopic observation and swarm plate assay showed that the motility of the flgJBb mutant was partially deficient. The altered phenotypes were completely restored when the mutant was complemented. Collectively, these results indicate that FlgJBb is involved in the assembly of the flagellar hook and filament but not the flagellar rod in B. burgdorferi. The observed phenotype is different from that of flgJ mutants in the enteric bacteria. PMID:22155773

  18. Disruption of bbe02 by Insertion of a Luciferase Gene Increases Transformation Efficiency of Borrelia burgdorferi and Allows Live Imaging in Lyme Disease Susceptible C3H Mice

    PubMed Central

    Chan, Kamfai; Alter, Laura; Barthold, Stephen W.; Parveen, Nikhat

    2015-01-01

    Lyme disease is the most prevalent tick-borne disease in North America and Europe. The causative agent, Borrelia burgdorferi persists in the white-footed mouse. Infection with B. burgdorferi can cause acute to persistent multisystemic Lyme disease in humans. Some disease manifestations are also exhibited in the mouse model of Lyme disease. Genetic manipulation of B. burgdorferi remains difficult. First, B. burgdorferi contains a large number of endogenous plasmids with unique sequences encoding unknown functions. The presence of these plasmids needs to be confirmed after each genetic manipulation. Second, the restriction modification defense systems, including that encoded by bbe02 gene lead to low transformation efficiency in B. burgdorferi. Therefore, studying the molecular basis of Lyme pathogenesis is a challenge. Furthermore, investigation of the role of a specific B. burgdorferi protein throughout infection requires a large number of mice, making it labor intensive and expensive. To overcome the problems associated with low transformation efficiency and to reduce the number of mice needed for experiments, we disrupted the bbe02 gene of a highly infectious and pathogenic B. burgdorferi strain, N40 D10/E9 through insertion of a firefly luciferase gene. The bbe02 mutant shows higher transformation efficiency and maintains luciferase activity throughout infection as detected by live imaging of mice. Infectivity and pathogenesis of this mutant were comparable to the wild-type N40 strain. This mutant will serve as an ideal parental strain to examine the roles of various B. burgdorferi proteins in Lyme pathogenesis in the mouse model in the future. PMID:26069970

  19. Regulation of OspE-Related, OspF-Related, and Elp Lipoproteins of Borrelia burgdorferi Strain 297 by Mammalian Host-Specific Signals

    PubMed Central

    Hefty, P. Scott; Jolliff, Sarah E.; Caimano, Melissa J.; Wikel, Stephen K.; Radolf, Justin D.; Akins, Darrin R.

    2001-01-01

    In previous studies we have characterized the cp32/18 loci in Borrelia burgdorferi 297 which encode OspE and OspF orthologs and a third group of lipoproteins which possess OspE/F-like leader peptides (Elps). To further these studies, we have comprehensively analyzed their patterns of expression throughout the borrelial enzootic cycle. Serial dilution reverse transcription-PCR analysis indicated that although a shift in temperature from 23 to 37°C induced transcription for all nine genes analyzed, this effect was often markedly enhanced in mammalian host-adapted organisms cultivated within dialysis membrane chambers (DMCs) implanted within the peritoneal cavities of rats. Indirect immunofluorescence assays performed on temperature-shifted, in vitro-cultivated spirochetes and organisms in the midguts of unfed and fed ticks revealed distinct expression profiles for many of the OspE-related, OspF-related, and Elp proteins. Other than BbK2.10 and ElpA1, all were expressed by temperature-shifted organisms, while only OspE, ElpB1, OspF, and BbK2.11 were expressed in the midguts of fed ticks. Additionally, although mRNA was detected for all nine lipoprotein-encoding genes, two of these proteins (BbK2.10 and ElpA1) were not expressed by spirochetes cultivated in vitro, within DMCs, or by spirochetes within tick midguts. However, the observation that B. burgdorferi-infected mice generated specific antibodies against BbK2.10 and ElpA1 indicated that these antigens are expressed only in the mammalian host and that a form of posttranscriptional regulation is involved. Analysis of the upstream regions of these genes revealed several differences between their promoter regions, the majority of which were found in the −10 and −35 hexamers and the spacer regions between them. Also, rather than undergoing simultaneous upregulation during tick feeding, these genes and the corresponding lipoproteins appear to be subject to progressive recruitment or enhancement of expression as B

  20. Regulation of OspE-related, OspF-related, and Elp lipoproteins of Borrelia burgdorferi strain 297 by mammalian host-specific signals.

    PubMed

    Hefty, P S; Jolliff, S E; Caimano, M J; Wikel, S K; Radolf, J D; Akins, D R

    2001-06-01

    In previous studies we have characterized the cp32/18 loci in Borrelia burgdorferi 297 which encode OspE and OspF orthologs and a third group of lipoproteins which possess OspE/F-like leader peptides (Elps). To further these studies, we have comprehensively analyzed their patterns of expression throughout the borrelial enzootic cycle. Serial dilution reverse transcription-PCR analysis indicated that although a shift in temperature from 23 to 37 degrees C induced transcription for all nine genes analyzed, this effect was often markedly enhanced in mammalian host-adapted organisms cultivated within dialysis membrane chambers (DMCs) implanted within the peritoneal cavities of rats. Indirect immunofluorescence assays performed on temperature-shifted, in vitro-cultivated spirochetes and organisms in the midguts of unfed and fed ticks revealed distinct expression profiles for many of the OspE-related, OspF-related, and Elp proteins. Other than BbK2.10 and ElpA1, all were expressed by temperature-shifted organisms, while only OspE, ElpB1, OspF, and BbK2.11 were expressed in the midguts of fed ticks. Additionally, although mRNA was detected for all nine lipoprotein-encoding genes, two of these proteins (BbK2.10 and ElpA1) were not expressed by spirochetes cultivated in vitro, within DMCs, or by spirochetes within tick midguts. However, the observation that B. burgdorferi-infected mice generated specific antibodies against BbK2.10 and ElpA1 indicated that these antigens are expressed only in the mammalian host and that a form of posttranscriptional regulation is involved. Analysis of the upstream regions of these genes revealed several differences between their promoter regions, the majority of which were found in the -10 and -35 hexamers and the spacer regions between them. Also, rather than undergoing simultaneous upregulation during tick feeding, these genes and the corresponding lipoproteins appear to be subject to progressive recruitment or enhancement of expression as

  1. Heterogeneity of Borrelia burgdorferi Sensu Stricto Population and Its Involvement in Borrelia Pathogenicity: Study on Murine Model with Specific Emphasis on the Skin Interface

    PubMed Central

    Kern, Aurélie; Schnell, Gilles; Bernard, Quentin; Bœuf, Amandine; Jaulhac, Benoît; Collin, Elody; Barthel, Cathy

    2015-01-01

    Lyme disease is a multisystemic disorder caused by B. burgdorferi sl. The molecular basis for specific organ involvement is poorly understood. The skin plays a central role in the development of Lyme disease as the entry site of B. burgdorferi in which specific clones are selected before dissemination. We compared the skin inflammatory response (antimicrobial peptides, cytokines and chemokines) elicited by spirochete populations recovered from patients presenting different clinical manifestations. Remarkably, these spirochete populations induced different inflammatory profiles in the skin of C3H/HeN mice. As spirochete population transmitted into the host skin is heterogeneous, we isolated one bacterial clone from a population recovered from a patient with neuroborreliosis and compared its virulence to the parental population. This clone elicited a strong cutaneous inflammatory response characterized by MCP-1, IL-6 and antimicrobial peptides induction. Mass spectrometry of this clone revealed 110 overexpressed proteins when compared with the parental population. We further focused on the expression of nine bacterial surface proteins. bb0347 coding for a protein that interacts with host fibronectin, allowing bacterial adhesion to vascular endothelium and extracellular matrix, was found to be induced in host skin with another gene bb0213 coding for a hypothetical protein. These findings demonstrate the heterogeneity of the B. burgdorferi ss population and the complexity of the interaction involved early in the skin. PMID:26197047

  2. Treatment with Doxycycline of Generalized Annular Elastolytic Giant Cell Granuloma Associated with Borrelia burgdorferi Infection

    PubMed Central

    Tas, B; Caglar, A; Ozdemir, B

    2015-01-01

    ABSTRACT This is a case of generalized annular elastolytic giant cell granuloma (AEGCG) associated with borrelia infection and genes of p-30, p-31, p-39. A possible cross-mediated reaction from the T-cell type which might have induced the AEGCG is discussed from the concept of “heat-shock proteins (HSPs) and molecular mimicry”. PMID:26624605

  3. Lipoproteins of Borrelia burgdorferi and Treponema pallidum activate cachectin/tumor necrosis factor synthesis. Analysis using a CAT reporter construct.

    PubMed

    Radolf, J D; Norgard, M V; Brandt, M E; Isaacs, R D; Thompson, P A; Beutler, B

    1991-09-15

    Lipoproteins from two pathogenic spirochetes (Borrelia burgdorferi and Treponema pallidum) induced the biosynthesis of TNF in murine macrophages and in permanently transformed macrophages of the cell line RAW 264.7. Induction was studied by measuring the secretion of biologically active TNF and by measuring the activity of the reporter enzyme chloramphenicol acetyltransferase (CAT) produced within macrophages transfected with an endotoxin-responsive CAT construct. Several lines of evidence indicated that the induction of TNF and CAT was attributable to the spirochete lipoproteins rather than to contaminating or endogenous LPS: 1) the dose response curves observed for the lipoproteins were markedly different from those obtained with LPS; 2) lipoprotein-mediated activation was unaffected by amounts of polymyxin B that completely neutralized the induction of TNF and CAT by LPS, 3) low concentrations of the lipoproteins induced TNF in macrophages from endotoxin-unresponsive C3H/HeJ mice as effectively as in macrophages from normal C3H/HeN mice, and 4) isolated spirochete lipoproteins, but not a non-lipoprotein immunogen, were potent inducers of CAT in the transformed macrophages. Moreover, LPS was not detected in the B. burgdorferi lipoprotein mixtures by Limulus amebocyte lysate assay. Proteolytic digestion of the intact bacterial protein preparations only modestly diminished their ability to activate the cells, suggesting that small lipopeptides comprise the biologically active portions of the molecules, as is the case with the murein lipoprotein of Escherichia coli. Through their ability to induce TNF production by macrophages, spirochete lipoproteins may play important roles in the development of the local inflammatory changes and the systemic manifestations that characterize syphilis and Lyme disease. PMID:1890308

  4. Common and Unique Contributions of Decorin-Binding Proteins A and B to the Overall Virulence of Borrelia burgdorferi

    PubMed Central

    Shi, Yanlin; Xu, Qilong; Seemanaplli, Sunita V.; McShan, Kristy; Liang, Fang Ting

    2008-01-01

    As an extracellular bacterium, the Lyme disease spirochete Borrelia burgdorferi resides primarily in the extracellular matrix and connective tissues and between host cells during mammalian infection, where decorin and glycosaminoglycans are abundantly found, so its interactions with these host ligands potentially affect various aspects of infection. Decorin-binding proteins (Dbps) A and B, encoded by a 2-gene operon, are outer surface lipoproteins with similar molecular weights and share approximately 40% identity, and both bind decorin and glycosaminoglycans. To investigate how DbpA and DbpB contribute differently to the overall virulence of B. burgdorferi, a dbpAB mutant was modified to overproduce the adhesins. Overproduction of either DbpA or DbpB resulted in restoration of the infectivity of the mutant to the control level, measured by 50% infectious dose (ID50), indicating that the two virulence factors are interchangeable in this regard. Overproduction of DbpA also allowed the mutant to disseminate to some but not all distal tissues slightly slower than the control, but the mutant with DbpB overproduction showed severely impaired dissemination to all tissues that were analyzed. The mutant with DbpA overproduction colonized all tissues, albeit generating bacterial loads significantly lower than the control in heart and joint, while the mutant overproducing DbpB remained severely defective in heart colonization and registered bacterial loads substantially lower than the control in joint. Taken together, the study indicated that DbpA and DbpB play a similar role in contribution to infectivity as measured by ID50 value but contribute differently to dissemination and tissue colonization. PMID:18833332

  5. Interaction of the Lyme Disease Spirochete Borrelia burgdorferi with Brain Parenchyma Elicits Inflammatory Mediators from Glial Cells as Well as Glial and Neuronal Apoptosis

    PubMed Central

    Ramesh, Geeta; Borda, Juan T.; Dufour, Jason; Kaushal, Deepak; Ramamoorthy, Ramesh; Lackner, Andrew A.; Philipp, Mario T.

    2008-01-01

    Lyme neuroborreliosis, caused by the spirochete Borrelia burgdorferi, often manifests by causing neurocognitive deficits. As a possible mechanism for Lyme neuroborreliosis, we hypothesized that B. burgdorferi induces the production of inflammatory mediators in the central nervous system with concomitant neuronal and/or glial apoptosis. To test our hypothesis, we constructed an ex vivo model that consisted of freshly collected slices from brain cortex of a rhesus macaque and allowed live B. burgdorferi to penetrate the tissue. Numerous transcripts of genes that regulate inflammation as well as oligodendrocyte and neuronal apoptosis were significantly altered as assessed by DNA microarray analysis. Transcription level increases of 7.43-fold (P = 0.005) for the cytokine tumor necrosis factor-α and 2.31-fold (P = 0.016) for the chemokine interleukin (IL)-8 were also detected by real-time-polymerase chain reaction array analysis. The immune mediators IL-6, IL-8, IL-1β, COX-2, and CXCL13 were visualized in glial cells in situ by immunofluorescence staining and confocal microscopy. Concomitantly, significant proportions of both oligodendrocytes and neurons undergoing apoptosis were present in spirochete-stimulated tissues. IL-6 production by astrocytes in addition to oligodendrocyte apoptosis were also detected, albeit at lower levels, in rhesus macaques that had received in vivo intraparenchymal stereotaxic inoculations of live B. burgdorferi. These results provide proof of concept for our hypothesis that B. burgdorferi produces inflammatory mediators in the central nervous system, accompanied by glial and neuronal apoptosis. PMID:18832582

  6. Interaction of the Lyme disease spirochete Borrelia burgdorferi with brain parenchyma elicits inflammatory mediators from glial cells as well as glial and neuronal apoptosis.

    PubMed

    Ramesh, Geeta; Borda, Juan T; Dufour, Jason; Kaushal, Deepak; Ramamoorthy, Ramesh; Lackner, Andrew A; Philipp, Mario T

    2008-11-01

    Lyme neuroborreliosis, caused by the spirochete Borrelia burgdorferi, often manifests by causing neurocognitive deficits. As a possible mechanism for Lyme neuroborreliosis, we hypothesized that B. burgdorferi induces the production of inflammatory mediators in the central nervous system with concomitant neuronal and/or glial apoptosis. To test our hypothesis, we constructed an ex vivo model that consisted of freshly collected slices from brain cortex of a rhesus macaque and allowed live B. burgdorferi to penetrate the tissue. Numerous transcripts of genes that regulate inflammation as well as oligodendrocyte and neuronal apoptosis were significantly altered as assessed by DNA microarray analysis. Transcription level increases of 7.43-fold (P = 0.005) for the cytokine tumor necrosis factor-alpha and 2.31-fold (P = 0.016) for the chemokine interleukin (IL)-8 were also detected by real-time-polymerase chain reaction array analysis. The immune mediators IL-6, IL-8, IL-1beta, COX-2, and CXCL13 were visualized in glial cells in situ by immunofluorescence staining and confocal microscopy. Concomitantly, significant proportions of both oligodendrocytes and neurons undergoing apoptosis were present in spirochete-stimulated tissues. IL-6 production by astrocytes in addition to oligodendrocyte apoptosis were also detected, albeit at lower levels, in rhesus macaques that had received in vivo intraparenchymal stereotaxic inoculations of live B. burgdorferi. These results provide proof of concept for our hypothesis that B. burgdorferi produces inflammatory mediators in the central nervous system, accompanied by glial and neuronal apoptosis. PMID:18832582

  7. Function of the Borrelia burgdorferi FtsH Homolog Is Essential for Viability both In Vitro and In Vivo and Independent of HflK/C

    PubMed Central

    Chu, Chen-Yi; Bestor, Aaron; Hansen, Bryan; Lin, Tao; Gao, Lihui; Rosa, Patricia A.

    2016-01-01

    ABSTRACT In many bacteria, the FtsH protease and its modulators, HflK and HflC, form a large protein complex that contributes to both membrane protein quality control and regulation of the cellular response to environmental stress. Both activities are crucial to the Lyme disease pathogen Borrelia burgdorferi, which depends on membrane functions, such as motility, protein transport, and cell signaling, to respond to rapid changes in its environment. Using an inducible system, we demonstrate that FtsH production is essential for both mouse and tick infectivity and for in vitro growth of B. burgdorferi. FtsH depletion in B. burgdorferi cells resulted in membrane deformation and cell death. Overproduction of the protease did not have any detectable adverse effects on B. burgdorferi growth in vitro, suggesting that excess FtsH does not proteolytically overwhelm its substrates. In contrast, we did not observe any phenotype for cells lacking the protease modulators HflK and HflC (ΔHflK/C), although we examined morphology, growth rate, growth under stress conditions, and the complete mouse-tick infectious cycle. Our results demonstrate that FtsH provides an essential function in the life cycle of the obligate pathogen B. burgdorferi but that HflK and HflC do not detectably affect FtsH function. PMID:27094329

  8. Coinfection of western gray squirrel (Sciurus griseus) and other sciurid rodents with Borrelia burgdorferi sensu stricto and Anaplasma phagocytophilum in California.

    PubMed

    Nieto, Nathan C; Leonhard, Sarah; Foley, Janet E; Lane, Robert S

    2010-01-01

    Overlapping geographic distributions of tick-borne disease agents utilizing the same tick vectors are common, and coinfection of humans, domestic animals, wildlife, and ticks with both Borrelia burgdorferi and Anaplasma phagocytophilum has been frequently reported. This study was undertaken in order to evaluate the prevalence of both B. burgdorferi sensu stricto (hereinafter referred to as B. burgdorferi) and A. phagocytophilum in several species of sciurid rodents from northern California, USA. Rodents were either collected dead as road-kills or live-trapped in four state parks from 13 counties. Thirty-seven western gray squirrels (Sciurus griseus), nine nonnative eastern gray squirrels (S. carolinensis) and an eastern fox squirrel (S. niger), four Douglas squirrels (Tamiasciurus douglasii), and two northern flying squirrels (Glaucomys sabrinus) were tested by polymerase chain reaction (PCR) and serology for evidence of coinfection. Of the 14 individual S. griseus that were PCR-positive for B. burgdorferi, two (14%) also were PCR-positive for A. phagocytophilum and 11 (79%) had serologic evidence of A. phagocytophilum exposure. Two of the four Douglas squirrels were PCR positive for B. burgdorferi and seropositive to A. phagocytophilum. Evidence of coinfection with these zoonotic pathogens in western gray squirrels suggests that both bacteria may be maintained in a similar transmission cycle involving this sciurid and the western black-legged tick Ixodes pacificus, the primary bridging vector to humans in the far-western US. PMID:20090047

  9. Motor Rotation Is Essential for the Formation of the Periplasmic Flagellar Ribbon, Cellular Morphology, and Borrelia burgdorferi Persistence within Ixodes scapularis Tick and Murine Hosts

    PubMed Central

    Sultan, Syed Z.; Sekar, Padmapriya; Zhao, Xiaowei; Manne, Akarsh; Liu, Jun; Wooten, R. Mark

    2015-01-01

    Borrelia burgdorferi must migrate within and between its arthropod and mammalian hosts in order to complete its natural enzootic cycle. During tick feeding, the spirochete transmits from the tick to the host dermis, eventually colonizing and persisting within multiple, distant tissues. This dissemination modality suggests that flagellar motor rotation and, by extension, motility are crucial for infection. We recently reported that a nonmotile flaB mutant that lacks periplasmic flagella is rod shaped and unable to infect mice by needle or tick bite. However, those studies could not differentiate whether motor rotation or merely the possession of the periplasmic flagella was crucial for cellular morphology and host persistence. Here, we constructed and characterized a motB mutant that is nonmotile but retains its periplasmic flagella. Even though ΔmotB bacteria assembled flagella, part of the mutant cell is rod shaped. Cryoelectron tomography revealed that the flagellar ribbons are distorted in the mutant cells, indicating that motor rotation is essential for spirochetal flat-wave morphology. The ΔmotB cells are unable to infect mice, survive in the vector, or migrate out of the tick. Coinfection studies determined that the presence of these nonmotile ΔmotB cells has no effect on the clearance of wild-type spirochetes during murine infection and vice versa. Together, our data demonstrate that while flagellar motor rotation is necessary for spirochetal morphology and motility, the periplasmic flagella display no additional properties related to immune clearance and persistence within relevant hosts. PMID:25690096

  10. Central Role of the Holliday Junction Helicase RuvAB in vlsE Recombination and Infectivity of Borrelia burgdorferi

    PubMed Central

    Edmondson, Diane G.; Jacobs, Mary B.; Philipp, Mario T.; Norris, Steven J.

    2009-01-01

    Antigenic variation plays a vital role in the pathogenesis of many infectious bacteria and protozoa including Borrelia burgdorferi, the causative agent of Lyme disease. VlsE, a 35 kDa surface-exposed lipoprotein, undergoes antigenic variation during B. burgdorferi infection of mammalian hosts, and is believed to be a critical mechanism by which the spirochetes evade immune clearance. Random, segmental recombination between the expressed vlsE gene and adjacent vls silent cassettes generates a large number of different VlsE variants within the infected host. Although the occurrence and importance of vlsE sequence variation is well established, little is known about the biological mechanism of vlsE recombination. To identify factors important in antigenic variation and vlsE recombination, we screened transposon mutants of genes known to be involved in DNA recombination and repair for their effects on infectivity and vlsE recombination. Several mutants, including those in BB0023 (ruvA), BB0022 (ruvB), BB0797 (mutS), and BB0098 (mutS-II), showed reduced infectivity in immunocompetent C3H/HeN mice. Mutants in ruvA and ruvB exhibited greatly reduced rates of vlsE recombination in C3H/HeN mice, as determined by restriction fragment polymorphism (RFLP) screening and DNA sequence analysis. In severe combined immunodeficiency (C3H/scid) mice, the ruvA mutant retained full infectivity; however, all recovered clones retained the ‘parental’ vlsE sequence, consistent with low rates of vlsE recombination. These results suggest that the reduced infectivity of ruvA and ruvB mutants is the result of ineffective vlsE recombination and underscores the important role that vlsE recombination plays in immune evasion. Based on functional studies in other organisms, the RuvAB complex of B. burgdorferi may promote branch migration of Holliday junctions during vlsE recombination. Our findings are consistent with those in the accompanying article by Dresser et al., and together these

  11. Drug combinations against Borrelia burgdorferi persisters in vitro: eradication achieved by using daptomycin, cefoperazone and doxycycline.

    PubMed

    Feng, Jie; Auwaerter, Paul G; Zhang, Ying

    2015-01-01

    Although most Lyme disease patients can be cured with antibiotics doxycycline or amoxicillin using 2-4 week treatment durations, some patients suffer from persistent arthritis or post-treatment Lyme disease syndrome. Why these phenomena occur is unclear, but possibilities include host responses, antigenic debris, or B. burgdorferi organisms remaining despite antibiotic therapy. In vitro, B. burgdorferi developed increasing antibiotic tolerance as morphology changed from typical spirochetal form in log phase growth to variant round body and microcolony forms in stationary phase. B. burgdorferi appeared to have higher persister frequencies than E. coli as a control as measured by SYBR Green I/propidium iodide (PI) viability stain and microscope counting. To more effectively eradicate the different persister forms tolerant to doxycycline or amoxicillin, drug combinations were studied using previously identified drugs from an FDA-approved drug library with high activity against such persisters. Using a SYBR Green/PI viability assay, daptomycin-containing drug combinations were the most effective. Of studied drugs, daptomycin was the common element in the most active regimens when combined with doxycycline plus either beta-lactams (cefoperazone or carbenicillin) or an energy inhibitor (clofazimine). Daptomycin plus doxycycline and cefoperazone eradicated the most resistant microcolony form of B. burgdorferi persisters and did not yield viable spirochetes upon subculturing, suggesting durable killing that was not achieved by any other two or three drug combinations. These findings may have implications for improved treatment of Lyme disease, if persistent organisms or detritus are responsible for symptoms that do not resolve with conventional therapy. Further studies are needed to validate whether such combination antimicrobial approaches are useful in animal models and human infection. PMID:25806811

  12. Population genetic analysis of Borrelia burgdorferi isolates by multilocus enzyme electrophoresis.

    PubMed Central

    Boerlin, P; Peter, O; Bretz, A G; Postic, D; Baranton, G; Piffaretti, J C

    1992-01-01

    Fifty Borellia burgdorferi strains isolated from humans and ticks in Europe and the United States were analyzed by multilocus enzyme electrophoresis. Eleven genetic loci were characterized on the basis of the electrophoretic mobilities of their products. Ten loci were polymorphic. The average number of alleles per locus was 5.9, with a mean genetic diversity of 0.673 among electrophoretic types (ETs). The strains were grouped into 35 ETs constituting three main divisions (I, II, and III) separated at a genetic distance greater than 0.75. Divisions I, II, and III contained 13, 6, and 16 ETs, respectively. These findings, together with previous data from DNA hybridization and restriction enzyme analysis of rRNA genes, suggest that divisions I, II, and III may represent three distinct genomic species. All three divisions contained human clinical ETs. However, in division I, which includes the ET of the type strain of B. burgdorferi, the human pathogenic ETs constituted a single clone. The ETs of division I were from west-central Europe and the United States, whereas divisions II and III contained ETs from west-central and northern Europe but not from the United States. Finally, our data show that the genetic structure of B. burgdorferi populations is clonal. PMID:1548090

  13. Surveillance for Ixodes pacificus and the tick-borne pathogens Anaplasma phagocytophilum and Borrelia burgdorferi in birds from California's Inner Coast Range.

    PubMed

    Dingler, Regina J; Wright, Stan A; Donohue, Ann M; Macedo, Paula A; Foley, Janet E

    2014-06-01

    We investigated the involvement of birds in the ecology of the western black-legged tick, Ixodes pacificus, and its associated zoonotic bacteria, Borrelia burgdorferi and Anaplasma phagocytophilum, at two interior coast-range study sites in northern California. Anaplasma phagocytophilum, the agent of granulocytic anaplasmosis (GA), and B. burgdorferi s.s., the agent of Lyme disease (LD), are tick-borne pathogens that are well established in California. We screened blood and ticks from 349 individual birds in 48 species collected in 2011 and 2012 using pathogen-specific PCR. A total of 617 immature I. pacificus was collected with almost three times as many larvae than nymphs. There were 7.5 times more I. pacificus at the Napa County site compared to the Yolo County site. Two of 74 (3%) nymphal pools from an Oregon junco (Junco hyemalis) and a hermit thrush (Catharus guttatus) and 4 individual larvae (all from Oregon juncos) were PCR-positive for B. burgdorferi. Blood samples from a golden-crowned sparrow (Zonotrichia atricapilla) and a European starling (Sturnus vulgaris) were positive for A. phagocytophilum DNA at very low levels. Birds that forage on ground or bark and nest on the ground, as well as some migratory species, are at an increased risk for acquiring I. pacificus. Our findings show that birds contribute to the ecologies of LD and GA in California by serving as a blood-meal source, feeding and transporting immature I. pacificus, and sometimes as a source of Borrelia infection. PMID:24690191

  14. Changes in Bacterial Growth Rate Govern Expression of the Borrelia burgdorferi OspC and Erp Infection-Associated Surface Proteins

    PubMed Central

    Jutras, Brandon L.; Chenail, Alicia M.

    2013-01-01

    The Lyme disease spirochete controls production of its OspC and Erp outer surface proteins, repressing protein synthesis during colonization of vector ticks but increasing expression when those ticks feed on vertebrate hosts. Early studies found that the synthesis of OspC and Erps can be stimulated in culture by shifting the temperature from 23°C to 34°C, leading to a hypothesis that Borrelia burgdorferi senses environmental temperature to determine its location in the tick-mammal infectious cycle. However, borreliae cultured at 34°C divide several times faster than do those cultured at 23°C. We developed methods that disassociate bacterial growth rate and temperature, allowing a separate evaluation of each factor's impacts on B. burgdorferi gene and protein expression. Altogether, the data support a new paradigm that B. burgdorferi actually responds to changes in its own replication rate, not temperature per se, as the impetus to increase the expression of the OspC and Erp infection-associated proteins. PMID:23222718

  15. Follistatin-like protein 1 is a critical mediator of experimental Lyme arthritis and the humoral response to Borrelia burgdorferi infection

    PubMed Central

    Campfield, Brian T.; Nolder, Christi L.; Marinov, Anthony; Bushnell, Daniel; Davis, Amy; Spychala, Caressa; Hirsch, Raphael; Nowalk, Andrew J.

    2016-01-01

    Follistatin-like protein 1 (FSTL-1) has recently been described as a critical mediator of CIA and a marker of disease activity. Lyme arthritis, caused by Borrelia burgdorferi, shares similarities with autoimmune arthritis and the experimental murine model collagen-induced arthritis (CIA). Because FSTL-1 is important in CIA and autoimmune arthritides, and Lyme arthritis shares similarities with CIA, we hypothesized that FSTL-1 may be an important mediator of Lyme arthritis. We demonstrate for the first time that FSTL-1 is induced by B. burgdorferi infection and is required for the development of Lyme arthritis in a murine model, utilizing a gene insertion to generate FSTL-1 hypomorphic mice. Using qPCR and qRT-PCR, we found that despite similar early infectious burden, FSTL-1 hypomorphic mice have improved spirochetal clearance in the face of attenuated arthritis and inflammatory cytokine production. Further, FSTL-1 mediates pathogen-specific antibody production and antigen recognition when assessed by ELISA and one- and two-dimensional immunoblotting. This study is the first to describe a role for FSTL-1 in the development of Lyme arthritis and anti-Borrelia response, and the first to demonstrate a role for FSTL-1 in response to infection, highlighting the potential for FSTL-1 as a target in the treatment of B. burgdorferi infection. PMID:24768929

  16. Borrelia burgdorferi RevA Significantly Affects Pathogenicity and Host Response in the Mouse Model of Lyme Disease

    PubMed Central

    Byram, Rebecca; Gaultney, Robert A.; Floden, Angela M.; Hellekson, Christopher; Stone, Brandee L.; Bowman, Amy; Stevenson, Brian; Johnson, Barbara J. B.

    2015-01-01

    The Lyme disease spirochete, Borrelia burgdorferi, expresses RevA and numerous outer surface lipoproteins during mammalian infection. As an adhesin that promotes bacterial interaction with fibronectin, RevA is poised to interact with the extracellular matrix of the host. To further define the role(s) of RevA during mammalian infection, we created a mutant that is unable to produce RevA. The mutant was still infectious to mice, although it was significantly less well able to infect cardiac tissues. Complementation of the mutant with a wild-type revA gene restored heart infectivity to wild-type levels. Additionally, revA mutants led to increased evidence of arthritis, with increased fibrotic collagen deposition in tibiotarsal joints. The mutants also induced increased levels of the chemokine CCL2, a monocyte chemoattractant, in serum, and this increase was abolished in the complemented strain. Therefore, while revA is not absolutely essential for infection, deletion of revA had distinct effects on dissemination, arthritis severity, and host response. PMID:26150536

  17. Borrelia burgdorferi erp proteins are immunogenic in mammals infected by tick bite, and their synthesis is inducible in cultured bacteria.

    PubMed

    Stevenson, B; Bono, J L; Schwan, T G; Rosa, P

    1998-06-01

    Borrelia burgdorferi, the causative agent of Lyme disease, can contain multiple genes encoding different members of the Erp lipoprotein family. Some arthropod-borne bacteria increase the synthesis of proteins required for transmission or mammalian infection when cultures are shifted from cool, ambient air temperature to a warmer, blood temperature. We found that all of the erp genes known to be encoded by infectious isolate B31 were differentially expressed in culture after a change in temperature, with greater amounts of message being produced by bacteria shifted from 23 to 35 degrees C than in those maintained at 23 degrees C. Mice infected with B31 by tick bite produced antibodies that recognized each of the Erp proteins within 4 weeks of infection, suggesting that the Erp proteins are produced by the bacteria during the early stages of mammalian infection and may play roles in transmission from ticks to mammals. Several of the B31 Erp proteins were also recognized by antibodies from patients with Lyme disease and may prove to be useful antigens for diagnostic testing or as components of a protective vaccine. PMID:9596729

  18. Growth inhibiting activity of volatile oil from Cistus creticus L. against Borrelia burgdorferi s.s. in vitro.

    PubMed

    Hutschenreuther, A; Birkemeyer, C; Grötzinger, K; Straubinger, R K; Rauwald, H W

    2010-04-01

    Borreliosis patients from self-help groups reported considerable pain relief after ingestion of Cistus creticus leaf preparations. C. creticus leaf extracts of different polarities such as aqueous, ethyl acetate, hexane extracts as well as the volatile oil fraction obtained by steam distillation were tested for their antibacterial activity against Borrelia burgdorferi sensu stricto (Bbss) in vitro using the antibiotic amoxicilline as standard and polysorbate 80 as solubilizer for lipophilic extracts. Comparison of the four plant preparations shows that the volatile oil exerts the strongest growth inhibitory effect. Even concentrations of 0.02% (w/v) volatile oil in cultivation media reduced the total number of bacteria to 2% in comparison to a growth control after an eight-day cultivation period. While the aqueous extract did not reduce bacterial growth, incubation with hexane and ethyl acetate extracts clearly inhibited microbial growth. The main volatile components of the three active extracts tested were analyzed by GC-MS. The number of different labdane-type diterpenes as well as the total relative amount of diterpenes in the samples tested was highest in the essential oil of C. creticus. Identification of ten different volatile labdane-type diterpenes was assigned to the essential oil of C. creticus. Among these, manoyl oxide, 13-epi-manoyl oxide, 3-acetoxy-manoyl oxide and the monoterpene carvacrol were determined to be major constituents, accompanied by minor amounts of 3-hydroxy-manoyl oxide, all of which are known to exert antimicrobial activity. PMID:20432627

  19. A Drug Combination Screen Identifies Drugs Active against Amoxicillin-Induced Round Bodies of In Vitro Borrelia burgdorferi Persisters from an FDA Drug Library

    PubMed Central

    Feng, Jie; Shi, Wanliang; Zhang, Shuo; Sullivan, David; Auwaerter, Paul G.; Zhang, Ying

    2016-01-01

    Although currently recommended antibiotics for Lyme disease such as doxycycline or amoxicillin cure the majority of the patients, about 10–20% of patients treated for Lyme disease may experience lingering symptoms including fatigue, pain, or joint and muscle aches. Under experimental stress conditions such as starvation or antibiotic exposure, Borrelia burgdorferi can develop round body forms, which are a type of persister bacteria that appear resistant in vitro to customary first-line antibiotics for Lyme disease. To identify more effective drugs with activity against the round body form of B. burgdorferi, we established a round body persister model induced by exposure to amoxicillin (50 μg/ml) and then screened the Food and Drug Administration drug library consisting of 1581 drug compounds and also 22 drug combinations using the SYBR Green I/propidium iodide viability assay. We identified 23 drug candidates that have higher activity against the round bodies of B. burgdorferi than either amoxicillin or doxycycline. Eleven individual drugs scored better than metronidazole and tinidazole which have been previously described to be active against round bodies. In this amoxicillin-induced round body model, some drug candidates such as daptomycin and clofazimine also displayed enhanced activity which was similar to a previous screen against stationary phase B. burgdorferi persisters not exposure to amoxicillin. Additional candidate drugs active against round bodies identified include artemisinin, ciprofloxacin, nifuroxime, fosfomycin, chlortetracycline, sulfacetamide, sulfamethoxypyridazine and sulfathiozole. Two triple drug combinations had the highest activity against amoxicillin-induced round bodies and stationary phase B. burgdorferi persisters: artemisinin/cefoperazone/doxycycline and sulfachlorpyridazine/daptomycin/doxycycline. These findings confirm and extend previous findings that certain drug combinations have superior activity against B. burgdorferi

  20. Decorin-binding proteins A and B confer distinct mammalian cell type-specific attachment by Borrelia burgdorferi, the Lyme disease spirochete

    PubMed Central

    Fischer, Joshua R.; Parveen, Nikhat; Magoun, Loranne; Leong, John M.

    2003-01-01

    Host cell binding is an essential step in colonization by many bacterial pathogens, and the Lyme disease agent, Borrelia burgdorferi, which colonizes multiple tissues, is capable of attachment to diverse cell types. Glycosaminoglycans (GAGs) are ubiquitously expressed on mammalian cells and are recognized by multiple B. burgdorferi surface proteins. We previously showed that B. burgdorferi strains differ in the particular spectrum of GAGs that they recognize, leading to differences in the cultured mammalian cell types that they efficiently bind. The molecular basis of these binding specificities remains undefined, due to the difficulty of analyzing multiple, potentially redundant cell attachment pathways and to the paucity of genetic tools for this pathogen. In the current study, we show that the expression of decorin-binding protein (Dbp) A and/or DbpB, two B. burgdorferi surface proteins that bind GAGs, is sufficient to convert a high-passage nonadherent B. burgdorferi strain into one that efficiently binds 293 epithelial cells. Epithelial cell attachment was mediated by dermatan sulfate, and, consistent with this GAG-binding specificity, these recombinant strains did not bind EA-Hy926 endothelial cells. The GAG-binding properties of bacteria expressing DbpB or DbpA were distinguishable, and DbpB but not DbpA promoted spirochetal attachment to C6 glial cells. Thus, DbpA and DbpB may each play central but distinct roles in cell type-specific binding by Lyme disease spirochetes. This study illustrates that transformation of high-passage B. burgdorferi strains may provide a relatively simple genetic approach to analyze virulence-associated phenotypes conferred by multiple bacterial factors. PMID:12773620

  1. A Drug Combination Screen Identifies Drugs Active against Amoxicillin-Induced Round Bodies of In Vitro Borrelia burgdorferi Persisters from an FDA Drug Library.

    PubMed

    Feng, Jie; Shi, Wanliang; Zhang, Shuo; Sullivan, David; Auwaerter, Paul G; Zhang, Ying

    2016-01-01

    Although currently recommended antibiotics for Lyme disease such as doxycycline or amoxicillin cure the majority of the patients, about 10-20% of patients treated for Lyme disease may experience lingering symptoms including fatigue, pain, or joint and muscle aches. Under experimental stress conditions such as starvation or antibiotic exposure, Borrelia burgdorferi can develop round body forms, which are a type of persister bacteria that appear resistant in vitro to customary first-line antibiotics for Lyme disease. To identify more effective drugs with activity against the round body form of B. burgdorferi, we established a round body persister model induced by exposure to amoxicillin (50 μg/ml) and then screened the Food and Drug Administration drug library consisting of 1581 drug compounds and also 22 drug combinations using the SYBR Green I/propidium iodide viability assay. We identified 23 drug candidates that have higher activity against the round bodies of B. burgdorferi than either amoxicillin or doxycycline. Eleven individual drugs scored better than metronidazole and tinidazole which have been previously described to be active against round bodies. In this amoxicillin-induced round body model, some drug candidates such as daptomycin and clofazimine also displayed enhanced activity which was similar to a previous screen against stationary phase B. burgdorferi persisters not exposure to amoxicillin. Additional candidate drugs active against round bodies identified include artemisinin, ciprofloxacin, nifuroxime, fosfomycin, chlortetracycline, sulfacetamide, sulfamethoxypyridazine and sulfathiozole. Two triple drug combinations had the highest activity against amoxicillin-induced round bodies and stationary phase B. burgdorferi persisters: artemisinin/cefoperazone/doxycycline and sulfachlorpyridazine/daptomycin/doxycycline. These findings confirm and extend previous findings that certain drug combinations have superior activity against B. burgdorferi

  2. Enhanced Adhesion and OspC Protein Synthesis of the Lyme Disease Spirochete Borrelia Burgdorferi Cultivated in a Host-Derived Tissue Co-Culture System

    PubMed Central

    Şen, Ece; Sigal, Leonard H.

    2013-01-01

    Background: The adhesion process of Borrelia burgdorferi to susceptible host cell has not yet been completely understood regarding the function of OspA, OspB and OspC proteins and a conflict exists in the infection process. Aims: The adhesion rates of pathogenic (low BSK medium passaged or susceptible rat joint tissue co-cultivated) or non-pathogenic Borrelia burgdorferi (high BSK medium passaged) isolate (FNJ) to human umbilical vein endothelial cells (HUVEC) cultured on coverslips and the synthesis of OspA and OspC proteins were investigated to analyze the infection process of this bacterium. Study Design: In-vitro study. Methods: Spirochetes were cultured in BSK medium or in a LEW/N rat tibiotarsal joint tissue feeder layer supported co-culture system using ESG co-culture medium and labelled with 3H-adenine for 48 hours. SDS-PAGE, Western Blotting, Immunogold A labeling as well as radiolabeling experiments were used to compare pathogenic or non pathogenic spirochetes during the adhesion process. Results: Tissue co-cultured B. burgdorferi adhered about ten times faster than BSK-grown spirochetes. Trypsin inhibited attachment to HUVEC and co-culture of trypsinized spirochetes with tissues reversed the inhibition. Also, the synthesis of OspC protein by spirochetes was increased in abundance after tissue co-cultures, as determined by SDS-PAGE and by electron microscopy analysis of protein A-immunogold staining by anti-OspC antibodies. OspA protein was synthesized in similar quantities in all Borrelia cultures analyzed by the same techniques. Conclusion: Low BSK passaged or tissue co-cultured pathogenic Lyme disease spirochetes adhere to HUVEC faster than non-pathogenic high BSK passaged forms of this bacterium. Spirochetes synthesized OspC protein during host tissue-associated growth. However, we did not observe a reduction of OspA synthesis during host tissue co-cultivation in vitro. PMID:25207103

  3. Ticks and tick-borne pathogens in South Bohemia (Czech Republic)--Spatial variability in Ixodes ricinus abundance, Borrelia burgdorferi and tick-borne encephalitis virus prevalence.

    PubMed

    Hönig, V; Svec, P; Halas, P; Vavruskova, Z; Tykalova, H; Kilian, P; Vetiskova, V; Dornakova, V; Sterbova, J; Simonova, Z; Erhart, J; Sterba, J; Golovchenko, M; Rudenko, N; Grubhoffer, L

    2015-07-01

    Spatial distribution of Ixodes ricinus tick host-seeking activity, as well as prevalence of Borrelia burgdorferi sensu lato and tick-borne encephalitis virus (TBEV) were studied in the TBE endemic area of South Bohemia (Czech Republic). High variability in tick abundance detected in a network of 30 study sites was most closely associated with characteristics of vegetation cover. Of 11,182 tested tick samples, 12% carried DNA of spirochete from B. burgdorferi s.l. complex. B. afzelii and B. garinii prevailed among spirochete species. The presence of B. spielmanii in the region was confirmed. The median number of borrelial genome copies in positive samples reached 6.6 × 10(3) by real-time PCR. The total prevalence of TBEV in pooled samples reached 0.32% (20,057 samples tested), at least one TBEV positive tick was present in 21 out of 30 sampling sites. PMID:25976235

  4. BB0347, from the Lyme Disease Spirochete Borrelia burgdorferi, Is Surface Exposed and Interacts with the CS1 Heparin-Binding Domain of Human Fibronectin

    PubMed Central

    Gaultney, Robert A.; Gonzalez, Tammy; Floden, Angela M.; Brissette, Catherine A.

    2013-01-01

    The causative agent of Lyme disease, Borrelia burgdorferi, codes for several known fibronectin-binding proteins. Fibronectin a common the target of diverse bacterial pathogens, and has been shown to be essential in allowing for the development of certain disease states. Another borrelial protein, BB0347, has sequence similarity with these other known fibronectin-binding proteins, and may be important in Lyme disease pathogenesis. Herein, we perform an initial characterization of BB0347 via the use of molecular and biochemical techniques. We found that BB0347 is expressed, produced, and presented on the outer surface of intact B. burgdorferi. We also demonstrate that BB0347 has the potential to be important in Lyme disease progression, and have begun to characterize the nature of the interaction between human fibronectin and this bacterial protein. Further work is needed to define the role of this protein in the borrelial infection process. PMID:24086600

  5. Climate change and habitat fragmentation drive the occurrence of Borrelia burgdorferi, the agent of Lyme disease, at the northeastern limit of its distribution

    PubMed Central

    Simon, Julie A; Marrotte, Robby R; Desrosiers, Nathalie; Fiset, Jessica; Gaitan, Jorge; Gonzalez, Andrew; Koffi, Jules K; Lapointe, Francois-Joseph; Leighton, Patrick A; Lindsay, Lindsay R; Logan, Travis; Milord, Francois; Ogden, Nicholas H; Rogic, Anita; Roy-Dufresne, Emilie; Suter, Daniel; Tessier, Nathalie; Millien, Virginie

    2014-01-01

    Lyme borreliosis is rapidly emerging in Canada, and climate change is likely a key driver of the northern spread of the disease in North America. We used field and modeling approaches to predict the risk of occurrence of Borrelia burgdorferi, the bacteria causing Lyme disease in North America. We combined climatic and landscape variables to model the current and future (2050) potential distribution of the black-legged tick and the white-footed mouse at the northeastern range limit of Lyme disease and estimated a risk index for B. burgdorferi from these distributions. The risk index was mostly constrained by the distribution of the white-footed mouse, driven by winter climatic conditions. The next factor contributing to the risk index was the distribution of the black-legged tick, estimated from the temperature. Landscape variables such as forest habitat and connectivity contributed little to the risk index. We predict a further northern expansion of B. burgdorferi of approximately 250–500 km by 2050 – a rate of 3.5–11 km per year – and identify areas of rapid rise in the risk of occurrence of B. burgdorferi. Our results will improve understanding of the spread of Lyme disease and inform management strategies at the most northern limit of its distribution. PMID:25469157

  6. The nucleotide excision repair system of Borrelia burgdorferi is the sole pathway involved in repair of DNA damage by UV light.

    PubMed

    Hardy, Pierre-Olivier; Chaconas, George

    2013-05-01

    To survive and avoid accumulation of mutations caused by DNA damage, the genomes of prokaryotes encode a variety of DNA repair pathways most well characterized in Escherichia coli. Some of these are required for the infectivity of various pathogens. In this study, the importance of 25 DNA repair/recombination genes for Borrelia burgdorferi survival to UV-induced DNA damage was assessed. In contrast to E. coli, where 15 of these genes have an effect on survival of UV irradiation, disruption of recombinational repair, transcription-coupled repair, methyl-directed mismatch correction, and repair of arrested replication fork pathways did not decrease survival of B. burgdorferi exposed to UV light. However, the disruption of the B. burgdorferi nucleotide excision repair (NER) pathway (uvrA, uvrB, uvrC, and uvrD) resulted in a 10- to 1,000-fold increase in sensitivity to UV light. A functional NER pathway was also shown to be required for B. burgdorferi resistance to nitrosative damage. Finally, disruption of uvrA, uvrC, and uvrD had only a minor effect upon murine infection by increasing the time required for dissemination. PMID:23475971

  7. Borrelia burgdorferi Induces TLR1 and TLR2 in human microglia and peripheral blood monocytes but differentially regulates HLA-class II expression.

    PubMed

    Cassiani-Ingoni, Riccardo; Cabral, Erik S; Lünemann, Jan D; Garza, Zoila; Magnus, Tim; Gelderblom, Harald; Munson, Peter J; Marques, Adriana; Martin, Roland

    2006-06-01

    The spirochete Borrelia burgdorferi is the agent of Lyme disease, which causes central nervous system manifestations in up to 20% of patients. We investigated the response of human brain microglial cells, glial progenitors, neurons, astrocytes, as well as peripheral blood monocytes to stimulation with B. burgdorferi. We used oligoarrays to detect changes in the expression of genes important for shaping adaptive and innate immune responses. We found that stimulation with B. burgdorferi lysate increased the expression of Toll-like receptors (TLRs) 1 and 2 in all cell types except neurons. However, despite similarities in global gene profiles of monocytes and microglia, only microglial cells responded to the stimulation with a robust increase in HLA-DR, HLA-DQ, and also coexpressed CD11-c, a dendritic cell marker. In contrast, a large number of HLA-related molecules were repressed at both the RNA and the protein levels in stimulated monocytes, whereas secretion of IL-10 and TNF-alpha was strongly induced. These results show that signaling through TLR1/2 in response to B. burgdorferi can elicit opposite immunoregulatory effects in blood and in brain immune cells, which could play a role in the different susceptibility of these compartments to infection. PMID:16783164

  8. Distribution of ixodid ticks on dogs in Nuevo León, Mexico, and their association with Borrelia burgdorferi sensu lato.

    PubMed

    Galaviz-Silva, Lucio; Pérez-Treviño, Karla Carmelita; Molina-Garza, Zinnia J

    2013-12-01

    This study aimed to document the geographic distribution of Ixodes tick species in dogs and the prevalence of Borrelia burgdorferi s.l. in adult ticks and blood samples by amplification of the ospA region of the B. burgdorferi genome. The study area included nine localities in Nuevo León state. DNA amplification was performed on pools of ticks to calculate the maximum likelihood estimation (MLE), and the community composition (prevalence, abundance, and intensity of infestation) was recorded. A total of 2,543 adult ticks, representing four species, Rhipicephalus sanguineus, Dermacentor variabilis, Rhipicephalus (Boophilus) annulatus, and Amblyomma cajennense, were recorded from 338 infested dogs. Statistically significant correlations were observed between female dogs and infestation (P = 0.0003) and between R. sanguineus and locality (P = 0.0001). Dogs sampled in Guadalupe and Estanzuela were positive by PCR (0.9 %) for B. burgdorferi. Rhipicephalus sanguineus had the highest abundance, intensity, and prevalence (10.57, 7.12 and 94.6, respectively). PCR results from 256 pools showed that four pools were positive for D. variabilis (1.6 %), with an MLE of 9.2 %; nevertheless, it is important to consider that in the area under examination probably other reservoir hosts for D. variabilis and B. burgdorferi are present that, very likely, play a much more important role in the ecology of Lyme borreliosis than dogs, which could be considered in future studies. PMID:23749032

  9. Pattern of pro-inflammatory cytokine induction in RAW264.7 mouse macrophages is identical for virulent and attenuated Borrelia burgdorferi1

    PubMed Central

    Wang, Guiqing; Petzke, Mary M.; Iyer, Radha; Wu, Hongyan; Schwartz, Ira

    2008-01-01

    Lyme disease pathogenesis results from a complex interaction between Borrelia burgdorferi and the host immune system. The intensity and nature of the inflammatory response of host immune cells to B. burgdorferi may be a determining factor in disease progression. Gene array analysis was used to examine the expression of genes encoding cytokines, chemokines, and related factors in the joint tissue of infected C3H/HeJ mice and in a murine macrophage-like cell line in response to a disseminating or attenuated clinical isolate of B. burgdorferi. Both isolates elicited a robust pro-inflammatory response in RAW264.7 cells characterized by an increase in transcript levels of genes encoding CC and CXC chemokines, pro-inflammatory cytokines, and TNF superfamily members. Transcription of genes encoding IL-1β, IL-6, MCP-1, MIP-1α, CXCR4 and TLR2 induced in RAW264.7 cells by either live or heat-killed spirochetes did not differ significantly at any time point over a 24-hour period, nor was there a difference in the protein levels of IL-10, TNF-α, IL-6 and IL-12p70 in culture supernatants. Thus, induction of host macrophage expression of pro-inflammatory mediators by host macrophages does not contribute to the differential pathogenicity of different B. burgdorferi strains. PMID:18523297

  10. Elimination of Borrelia burgdorferi and Anaplasma phagocytophilum in Rodent Reservoirs and Ixodes scapularis Ticks Using a Doxycycline Hyclate-Laden Bait

    PubMed Central

    Dolan, Marc C.; Schulze, Terry L.; Jordan, Robert A.; Dietrich, Gabrielle; Schulze, Christopher J.; Hojgaard, Andrias; Ullmann, Amy J.; Sackal, Cherilyn; Zeidner, Nordin S.; Piesman, Joseph

    2011-01-01

    A field trial was conducted in a Lyme disease-endemic area of New Jersey to determine the efficacy of a doxycyline hyclate rodent bait to prophylactically protect and cure small-mammal reservoirs and reduce infection rates in questing Ixodes scapularis ticks for Borrelia burgdorferi and Anaplasma phagocytophilum. The doxycycline-laden bait was formulated at a concentration of 500 mg/kg and delivered during the immature tick feeding season in rodent-targeted bait boxes. The percentage of infected small mammals recovered from treated areas after 2 years of treatment was reduced by 86.9% for B. burgdorferi and 74% for A. phagocytophilum. Infection rates in questing nymphal ticks for both B. burgdorferi and A. phagocytophilum were reduced by 94.3% and 92%, respectively. Results from this study indicate that doxycycline-impregnated bait is an effective means of reducing infection rates for B. burgdorferi and A. phagocytophilum in both rodent reservoirs and questing I. scapularis ticks. PMID:22144454

  11. Linkages of Weather and Climate With Ixodes scapularis and Ixodes pacificus (Acari: Ixodidae), Enzootic Transmission of Borrelia burgdorferi, and Lyme Disease in North America.

    PubMed

    Eisen, Rebecca J; Eisen, Lars; Ogden, Nicholas H; Beard, Charles B

    2016-03-01

    Lyme disease has increased both in incidence and geographic extent in the United States and Canada over the past two decades. One of the underlying causes is changes during the same time period in the distribution and abundance of the primary vectors: Ixodes scapularis Say and Ixodes pacificus Cooley and Kohls in eastern and western North America, respectively. Aside from short periods of time when they are feeding on hosts, these ticks exist in the environment where temperature and relative humidity directly affect their development, survival, and host-seeking behavior. Other important factors that strongly influence tick abundance as well as the proportion of ticks infected with the Lyme disease spirochete, Borrelia burgdorferi, include the abundance of hosts for the ticks and the capacity of tick hosts to serve as B. burgdorferi reservoirs. Here, we explore the linkages between climate variation and: 1) duration of the seasonal period and the timing of peak activity; 2) geographic tick distributions and local abundance; 3) enzootic B. burgdorferi transmission cycles; and 4) Lyme disease cases. We conclude that meteorological variables are most influential in determining host-seeking phenology and development, but, while remaining important cofactors, additional variables become critical when exploring geographic distribution and local abundance of ticks, enzootic transmission of B. burgdorferi, and Lyme disease case occurrence. Finally, we review climate change-driven projections for future impact on vector ticks and Lyme disease and discuss knowledge gaps and research needs. PMID:26681789

  12. Isolation of DNA after Extraction of RNA To Detect the Presence of Borrelia burgdorferi and Expression of Host Cellular Genes from the Same Tissue Sample

    PubMed Central

    Amemiya, Kei; Schaefer, Henry; Pachner, Andrew R.

    1999-01-01

    We are investigating the neuropathogenesis of Lyme disease caused by Borrelia burgdorferi in a nonhuman primate model. In the past, two separate pieces of tissue had to be used when both analyzing for the presence of the spirochete and examining the host response to infection. We have modified a procedure to purify DNA from the same sample after the extraction of RNA. The remaining material containing the DNA was precipitated, and residual organic reagent was removed prior to deproteinization and extraction of the DNA. This procedure now allows us to both assay for the presence of the Lyme microorganism and analyze the host response in the same tissue preparation. PMID:10325389

  13. Borrelia burgdorferi upregulates the adhesion molecules E-selectin, P-selectin, ICAM-1 and VCAM-1 on mouse endothelioma cells in vitro.

    PubMed

    Böggemeyer, E; Stehle, T; Schaible, U E; Hahne, M; Vestweber, D; Simon, M M

    1994-06-01

    In order to obtain more information on processes leading to Borrelia burgdorferi-induced inflammation in the host, we have developed an in vitro model to study the upregulation of cell surface expression of adhesion molecules on endothelial cells by spirochetes. A mouse endothelioma cell line, derived from brain capillaries, bEnd3, was used as indicator population. bEnd3 cells were incubated with preparations of viable, inactivated or sonicated spirochetes and the expression of E-selectin, P-selectin, ICAM-1 and VCAM-1 was monitored by immunocytochemistry and quantified by cell surface ELISA. We show that all three spirochetal preparations are able to upregulate cell surface expression of E-selectin, P-selectin, ICAM-1 and VCAM-1 on bEnd 3 cells in a dose-dependent manner. The kinetics of cell surface expression of the individual adhesion molecules in the presence of Borrelia burgdorferi showed maxima at about 50 h of incubation or later; this was distinct from results obtained with sonicated-preparations of Escherichia coli bacteria or with enterobacterial LPS where peak expression was observed between 4 h and 16 h. The fact that Borrelia burgdorferi does not contain conventional LPS suggests that the mode of induction of adhesion molecules on endothelial cells is influenced by the phenotype of bacteria. At the peak of spirochete-induced cell surface expression of adhesion molecules (approximately 50 h), bEnd3 cells were found to bind cells of a VLA-4+ B lymphoma line (L1-2) much more efficiently than untreated control cells. The binding of L1-2 cells to presensitized bEnd3 cells was significantly inhibited (more than 75%) in the presence of monoclonal antibodies to both VLA-4 and its endothelial counterreceptor VCAM-1. These findings demonstrate that Borrelia burgdorferi organisms are able to induce functionally active adhesion molecules on endothelial cells in vitro and suggest that E-selectin, P-selectin, ICAM-1 and VCAM-1 play an important role in the

  14. Mapping human risk of infection with Borrelia burgdorferi sensu lato, the agent of Lyme borreliosis, in a periurban forest in France.

    PubMed

    Vourc'h, G; Abrial, D; Bord, S; Jacquot, M; Masséglia, S; Poux, V; Pisanu, B; Bailly, X; Chapuis, J-L

    2016-07-01

    Lyme borreliosis is a major zoonosis in Europe, with estimates of over 26,000 cases per year in France alone. The etiological agents are spirochete bacteria that belong to the Borrelia burgdorferi sensu lato (s. l.) complex and are transmitted by hard ticks among a large range of vertebrate hosts. In Europe, the tick Ixodes ricinus is the main vector. In the absence of a vaccine and given the current difficulties to diagnose and treat chronic Lyme syndromes, there is urgent need for prevention. In this context, accurate information on the spatial patterns of risk of exposure to ticks is of prime importance for public health. The objective of our study was to provide a snapshot map of the risk of human infection with B. burgdorferi s. l. pathogens in a periurban forest at a high resolution, and to analyze the factors that contribute to variation in this risk. Field monitoring took place over three weeks in May 2011 in the suburban Sénart forest (3,200ha; southeast of Paris), which receives over 3 million people annually. We sampled ticks over the entire forest area (from 220 forest stands with a total area of 35,200m(2)) and quantified the density of questing nymphs (DON), the prevalence of infection among nymphs (NIP), and the density of infected nymphs (DIN), which is the most important predictor of the human risk of Lyme borreliosis. For each of these response variables, we explored the relative roles of weather (saturation deficit), hosts (abundance indices of ungulates and Tamias sibiricus, an introduced rodent species), vegetation and forest cover, superficial soil composition, and the distance to forest roads. In total, 19,546 questing nymphs were collected and the presence of B. burgdorferi s. l. was tested in 3,903 nymphs by qPCR. The mean DON was 5.6 nymphs per 10m(2) (standard deviation=10.4) with an average NIP of 10.1% (standard deviation=0.11). The highest DIN was 8.9 infected nymphs per 10m(2), with a mean of 0.59 (standard deviation=0.6). Our

  15. Detailed Analysis of Sequence Changes Occurring during vlsE Antigenic Variation in the Mouse Model of Borrelia burgdorferi Infection

    PubMed Central

    Coutte, Loïc; Botkin, Douglas J.; Gao, Lihui; Norris, Steven J.

    2009-01-01

    Lyme disease Borrelia can infect humans and animals for months to years, despite the presence of an active host immune response. The vls antigenic variation system, which expresses the surface-exposed lipoprotein VlsE, plays a major role in B. burgdorferi immune evasion. Gene conversion between vls silent cassettes and the vlsE expression site occurs at high frequency during mammalian infection, resulting in sequence variation in the VlsE product. In this study, we examined vlsE sequence variation in B. burgdorferi B31 during mouse infection by analyzing 1,399 clones isolated from bladder, heart, joint, ear, and skin tissues of mice infected for 4 to 365 days. The median number of codon changes increased progressively in C3H/HeN mice from 4 to 28 days post infection, and no clones retained the parental vlsE sequence at 28 days. In contrast, the decrease in the number of clones with the parental vlsE sequence and the increase in the number of sequence changes occurred more gradually in severe combined immunodeficiency (SCID) mice. Clones containing a stop codon were isolated, indicating that continuous expression of full-length VlsE is not required for survival in vivo; also, these clones continued to undergo vlsE recombination. Analysis of clones with apparent single recombination events indicated that recombinations into vlsE are nonselective with regard to the silent cassette utilized, as well as the length and location of the recombination event. Sequence changes as small as one base pair were common. Fifteen percent of recovered vlsE variants contained “template-independent” sequence changes, which clustered in the variable regions of vlsE. We hypothesize that the increased frequency and complexity of vlsE sequence changes observed in clones recovered from immunocompetent mice (as compared with SCID mice) is due to rapid clearance of relatively invariant clones by variable region-specific anti-VlsE antibody responses. PMID:19214205

  16. Genetic Heterogeneity of Borrelia burgdorferi Sensu Lato in the Southern United States Based on Restriction Fragment Length Polymorphism and Sequence Analysis

    PubMed Central

    Lin, T.; Oliver, J. H.; Gao, L.; Kollars, T. M.; Clark, K. L.

    2001-01-01

    Fifty-six strains of Borrelia burgdorferi sensu lato, isolated from ticks and vertebrate animals in Missouri, South Carolina, Georgia, Florida, and Texas, were identified and characterized by PCR-restriction fragment length polymorphism (RFLP) analysis of rrf (5S)-rrl (23S) intergenic spacer amplicons. A total of 241 to 258 bp of intergenic spacers between tandemly duplicated rrf (5S) and rrl (23S) was amplified by PCR. MseI and DraI restriction fragment polymorphisms were used to analyze these strains. PCR-RFLP analysis results indicated that the strains represented at least three genospecies and 10 different restriction patterns. Most of the strains isolated from the tick Ixodes dentatus in Missouri and Georgia belonged to the genospecies Borrelia andersonii. Excluding the I. dentatus strains, most southern strains, isolated from the ticks Ixodes scapularis and Ixodes affinis, the cotton rat (Sigmodon hispidus), and cotton mouse (Peromyscus gossypinus) in Georgia and Florida, belonged to Borrelia burgdorferi sensu stricto. Seven strains, isolated from Ixodes minor, the wood rat (Neotoma floridana), the cotton rat, and the cotton mouse in South Carolina and Florida, belonged to Borrelia bissettii. Two strains, MI-8 from Florida and TXW-1 from Texas, exhibited MseI and DraI restriction patterns different from those of previously reported genospecies. Eight Missouri tick strains (MOK-3a group) had MseI patterns similar to that of B. andersonii reference strain 21038 but had a DraI restriction site in the spacer. Strain SCGT-8a had DraI restriction patterns identical to that of strain 25015 (B. bissettii) but differed from strain 25015 in its MseI restriction pattern. Strain AI-1 had the same DraI pattern as other southern strains in the B. bissettii genospecies but had a distinct MseI profile. The taxonomic status of these atypical strains needs to be further evaluated. To clarify the taxonomic positions of these atypical Borrelia strains, the complete sequences of

  17. Population structure of the lyme borreliosis spirochete Borrelia burgdorferi in the western black-legged tick (Ixodes pacificus) in Northern California.

    PubMed

    Girard, Yvette A; Travinsky, Bridgit; Schotthoefer, Anna; Fedorova, Natalia; Eisen, Rebecca J; Eisen, Lars; Barbour, Alan G; Lane, Robert S

    2009-11-01

    Factors potentially contributing to the lower incidence of Lyme borreliosis (LB) in the far-western than in the northeastern United States include tick host-seeking behavior resulting in fewer human tick encounters, lower densities of Borrelia burgdorferi-infected vector ticks in peridomestic environments, and genetic variation among B. burgdorferi spirochetes to which humans are exposed. We determined the population structure of B. burgdorferi in over 200 infected nymphs of the primary bridging vector to humans, Ixodes pacificus, collected in Mendocino County, CA. This was accomplished by sequence typing the spirochete lipoprotein ospC and the 16S-23S rRNA intergenic spacer (IGS). Thirteen ospC alleles belonging to 12 genotypes were found in California, and the two most abundant, ospC genotypes H3 and E3, have not been detected in ticks in the Northeast. The most prevalent ospC and IGS biallelic profile in the population, found in about 22% of ticks, was a new B. burgdorferi strain defined by ospC genotype H3. Eight of the most common ospC genotypes in the northeastern United States, including genotypes I and K that are associated with disseminated human infections, were absent in Mendocino County nymphs. ospC H3 was associated with hardwood-dominated habitats where western gray squirrels, the reservoir host, are commonly infected with LB spirochetes. The differences in B. burgdorferi population structure in California ticks compared to the Northeast emphasize the need for a greater understanding of the genetic diversity of spirochetes infecting California LB patients. PMID:19783741

  18. Structure of an outer surface lipoprotein BBA64 from the Lyme disease agent Borrelia burgdorferi which is critical to ensure infection after a tick bite.

    PubMed

    Brangulis, Kalvis; Tars, Kaspars; Petrovskis, Ivars; Kazaks, Andris; Ranka, Renate; Baumanis, Viesturs

    2013-06-01

    Lyme disease is a tick-borne infection caused by the transmission of Borrelia burgdorferi from infected Ixodes ticks to a mammalian host during the blood meal. Previous studies have shown that the expression of B. burgdorferi surface-localized lipoproteins, which include BBA64, is up-regulated during the process of tick feeding. Although the exact function of BBA64 is not known, this lipoprotein is critical for the transmission of the spirochete from the tick salivary glands to the mammalian organism after a tick bite. Since the mechanism of development of the disease and the functions of the surface lipoproteins associated with borreliosis are still poorly understood, the crystal structure of the B. burgdorferi outer surface lipoprotein BBA64 was solved at 2.4 Å resolution in order to obtain a better insight into the pathogenesis of B. burgdorferi and to promote the discovery of novel potential preventive drugs against Lyme disease. In this study, the crystal structure of BBA64 was also compared with that of the paralogous protein CspA (also referred to as BbCRASP-1, CRASP-1 or BBA68). CspA is the complement regulator-acquiring surface protein-1 of B. burgdorferi; its structure is known, but its function apparently differs from that of BBA64. It is demonstrated that unlike the homologous CspA, BBA64 does not form a homodimer. Their differences in function could be explained by divergence in their amino-acid sequences, electrostatic surface potentials and overall tertiary structures. The C-terminal part of BBA64 has a different conformation to that of CspA; the conformation of this region is essential for the proper function of CspA. PMID:23695254

  19. The Borrelia burgdorferi RelA/SpoT Homolog and Stringent Response Regulate Survival in the Tick Vector and Global Gene Expression during Starvation.

    PubMed

    Drecktrah, Dan; Lybecker, Meghan; Popitsch, Niko; Rescheneder, Philipp; Hall, Laura S; Samuels, D Scott

    2015-09-01

    As the Lyme disease bacterium Borrelia burgdorferi traverses its enzootic cycle, alternating between a tick vector and a vertebrate host, the spirochete must adapt and persist in the tick midgut under prolonged nutrient stress between blood meals. In this study, we examined the role of the stringent response in tick persistence and in regulation of gene expression during nutrient limitation. Nutritionally starving B. burgdorferi in vitro increased the levels of guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp), collectively referred to as (p)ppGpp, products of the bifunctional synthetase/hydrolase RelBbu (RelA/SpoT homolog). Conversely, returning B. burgdorferi to a nutrient-rich medium decreased (p)ppGpp levels. B. burgdorferi survival in ticks between the larval and nymph blood meals, and during starvation in vitro, was dependent on RelBbu. Furthermore, normal morphological conversion from a flat-wave shape to a condensed round body (RB) form during starvation was dependent on RelBbu; relBbu mutants more frequently formed RBs, but their membranes were compromised. By differential RNA sequencing analyses, we found that RelBbu regulates an extensive transcriptome, both dependent and independent of nutrient stress. The RelBbu regulon includes the glp operon, which is important for glycerol utilization and persistence in the tick, virulence factors and the late phage operon of the 32-kb circular plasmid (cp32) family. In summary, our data suggest that RelBbu globally modulates transcription in response to nutrient stress by increasing (p)ppGpp levels to facilitate B. burgdorferi persistence in the tick. PMID:26371761

  20. Multiple antigen target approach using the Accuplex4 BioCD system to detect Borrelia burgdorferi antibodies in experimentally infected and vaccinated dogs.

    PubMed

    Moroff, Scott; Woodruff, Colby; Woodring, Todd; Sokolchik, Irene; Lappin, Michael R

    2015-09-01

    The primary objective of our study was to optimize detection of serum antibodies to Borrelia burgdorferi using a new commercial automated fluorescence system (Accuplex4 BioCD system, Antech Diagnostics, Lake Success, New York). The system used multiple natural and artificial peptides-outer surface proteins (OspA, OspC, OspF), an outer membrane protein (P39), and a proprietary synthetic peptide (small Lyme peptide [SLP])-and the results were compared with a commercially available enzyme-linked immunosorbent assay that uses a proprietary peptide (C6). Sera from 4 groups were evaluated: dogs vaccinated with 1 of 3 commercially available vaccines (n = 18); dogs infested with adult Ixodes scapularis (black-legged tick; n = 18); dogs previously vaccinated and then infested with I. scapularis (n = 18); and dogs with B. burgdorferi infection that were then vaccinated (n = 14). All of the vaccines evaluated induced OspA responses. However, antibodies against OspF or C6 were not induced in any of the vaccinated dogs. Additionally, the OspF antibodies had 100% sensitivity and specificity when compared to antibodies against C6 peptide. In B. burgdorferi-infected dogs, antibodies against OspC and SLP were detected in serum sooner than antibodies against the other targets. Low levels of antibodies against OspA developed in 6 of 14 B. burgdorferi-infected, unvaccinated dogs and had the shortest duration compared to the other antibodies. Detection of antibody responses to multiple B. burgdorferi targets with this system can be used to help differentiate vaccinated dogs from exposed dogs as well as acute infection from chronic infection. PMID:26289718

  1. Borrelia burgdorferi outer membrane protein A induces nuclear translocation of nuclear factor-kappa B and inflammatory activation in human endothelial cells.

    PubMed

    Wooten, R M; Modur, V R; McIntyre, T M; Weis, J J

    1996-11-15

    Lyme disease is caused by infection with Borrelia burgdorferi, and is characterized by bacterial persistence and inflammation in a number of host tissues. B. burgdorferi outer surface lipoproteins possess cytokine stimulatory properties that may be responsible for localized inflammation. B. burgdorferi presence is correlated with severity of disease, and the pathology of many tissues, particularly the arthritic joint, is consistent with localized cytokine production. Spirochete invasion of tissues requires interaction with and penetration of vascular endothelium, suggesting endothelial cells may participate in the inflammation of Lyme disease. In this study, outer surface protein A (OspA), a model B. burgdorferi lipoprotein, was found to be a potent stimulant of nuclear factor-kappa B (NF-kappa B) nuclear translocation in human endothelial cells, resulting in nuclear levels similar to those seen in response to known inflammatory mediators. Only the lipid-modified OspA had activity, and activity was not due to contamination with LPS. Nuclear NF-kappa B was detectable within 15 min, suggesting that OspA directly mediates NF-kappa B nuclear translocation. OspA also rapidly up-regulated endothelial cell production of several proteins whose transcription is dependent on NF-kappa B: the cytokine IL-6; the chemokine IL-8; and the adhesion molecules E-selectin, VCAM-1, and ICAM-1. The adhesion molecules were functional, as demonstrated by enhanced binding of neutrophils to OspA-stimulated endothelial monolayers. These data suggest that OspA may initiate synthesis of many proteins essential for localized inflammation via the direct activation of NF-kappa B-dependent transcription. These observations suggest that the interaction of B. burgdorferi lipoproteins with the endothelium may directly induce the inflammation responsible for the symptoms of Lyme disease. PMID:8906837

  2. The Borrelia burgdorferi RelA/SpoT Homolog and Stringent Response Regulate Survival in the Tick Vector and Global Gene Expression during Starvation

    PubMed Central

    Drecktrah, Dan; Lybecker, Meghan; Popitsch, Niko; Rescheneder, Philipp; Hall, Laura S.; Samuels, D. Scott

    2015-01-01

    As the Lyme disease bacterium Borrelia burgdorferi traverses its enzootic cycle, alternating between a tick vector and a vertebrate host, the spirochete must adapt and persist in the tick midgut under prolonged nutrient stress between blood meals. In this study, we examined the role of the stringent response in tick persistence and in regulation of gene expression during nutrient limitation. Nutritionally starving B. burgdorferi in vitro increased the levels of guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp), collectively referred to as (p)ppGpp, products of the bifunctional synthetase/hydrolase RelBbu (RelA/SpoT homolog). Conversely, returning B. burgdorferi to a nutrient-rich medium decreased (p)ppGpp levels. B. burgdorferi survival in ticks between the larval and nymph blood meals, and during starvation in vitro, was dependent on RelBbu. Furthermore, normal morphological conversion from a flat-wave shape to a condensed round body (RB) form during starvation was dependent on RelBbu; relBbu mutants more frequently formed RBs, but their membranes were compromised. By differential RNA sequencing analyses, we found that RelBbu regulates an extensive transcriptome, both dependent and independent of nutrient stress. The RelBbu regulon includes the glp operon, which is important for glycerol utilization and persistence in the tick, virulence factors and the late phage operon of the 32-kb circular plasmid (cp32) family. In summary, our data suggest that RelBbu globally modulates transcription in response to nutrient stress by increasing (p)ppGpp levels to facilitate B. burgdorferi persistence in the tick. PMID:26371761

  3. Assessment of decorin-binding protein A to the infectivity of Borrelia burgdorferi in the murine models of needle and tick infection

    PubMed Central

    Blevins, Jon S; Hagman, Kayla E; Norgard, Michael V

    2008-01-01

    Background Decorin-binding proteins (Dbps) A and B of Borrelia burgdorferi, the agent of Lyme disease, are surface-exposed lipoproteins that presumably bind to the extracellular matrix proteoglycan, decorin. B. burgdorferi infects various tissues including the bladder, heart, joints, skin and the central nervous system, and the ability of B. burgdorferi to bind decorin has been hypothesized to be important for this disseminatory pathogenic strategy. Results To determine the role of DbpBA in the infectious lifecycle of B. burgdorferi, we created a DbpBA-deficient mutant of B. burgdorferi strain 297 and compared the infectious phenotype of the mutant to the wild-type strain in the experimental murine model of Lyme borreliosis. The mutant strain exhibited a 4-log decrease in infectivity, relative to the wild-type strain, when needle inoculated into mice. Upon complementation of the DbpBA-mutant strain with DbpA, the wild-type level of infectivity was restored. In addition, we demonstrated that the DbpBA-deficient mutant was able to colonize Ixodes scapularis larval ticks after feeding on infected mice and persist within the ticks during the molt to the nymphal state. Moreover, surprisingly, the DbpBA-mutant strain was capable of being transmitted to naïve mice via tick bite, giving rise to infected mice. Conclusion These results suggest that DbpBA is not required for the natural tick-transmission process to mammals, despite inferences from needle-inoculation experiments implying a requirement for DbpBA during mammalian infection. The combined findings also send a cautionary note regarding how results from needle-inoculation experiments with mice should be interpreted. PMID:18507835

  4. Lyme disease risk not amplified in a species-poor vertebrate community: similar Borrelia burgdorferi tick infection prevalence and OspC genotype frequencies

    PubMed Central

    States, S.L.; Brinkerhoff, R. J.; Carpi, G.; Steeves, T.K.; Folsom-O'Keefe, C.; DeVeaux, M.; Diuk-Wasser, M.A.

    2015-01-01

    The effect of biodiversity declines on human health are currently debated, but empirical assessments are lacking. Lyme disease provides a model system to assess relationships between biodiversity and human disease because the etiologic agent, Borrelia burgdorferi, is transmitted in the United States by the generalist black-legged tick (Ixodes scapularis) among a wide range of mammalian and avian hosts. The ‘dilution effect’ hypothesis predicts that species-poor host communities dominated by white-footed mice (Peromyscus leucopus) will pose the greatest human risk because P. leucopus infects the largest numbers of ticks, resulting in higher human exposure to infected I. scapularis ticks. P. leucopus-dominated communities are also expected to maintain a higher frequency of those B. burgdorferi outer surface protein C (ospC) genotypes that this host species more efficiently transmits (‘multiple niche polymorphism’ hypothesis). Because some of these genotypes are human invasive, an additive increase in human disease risk is expected in species-poor settings. We assessed these theoretical predictions by comparing I. scapularis nymphal infection prevalence, density of infected nymphs and B. burgdorferi genotype diversity at sites on Block Island, RI, where P. leucopus dominates the mammalian host community, to species-diverse sites in northeastern Connecticut. We found no support for the dilution effect hypothesis; B. burgdorferi nymphal infection prevalence was similar between island and mainland and the density of B. burgdorferi infected nymphs was higher on the mainland, contrary to what is predicted by the dilution effect hypothesis. Evidence for the multiple niche polymorphism hypothesis was mixed: there was lower ospC genotype diversity at island than mainland sites, but no overrepresentation of genotypes with higher fitness in P. leucopus or that are more invasive in humans. We conclude that other mechanisms explain similar nymphal infection prevalence in

  5. The MEK/ERK Pathway is the Primary Conduit for Borrelia burgdorferi-Induced Inflammation and P53-Mediated Apoptosis in Oligodendrocytes

    PubMed Central

    Parthasarathy, Geetha; Philipp, Mario T.

    2013-01-01

    Lyme neuroborreliosis (LNB) affects both the central and peripheral nervous systems. In a rhesus macaque model of LNB we had previously shown that brains of rhesus macaques inoculated with Borrelia burgdorferi release inflammatory mediators, and undergo oligodendrocyte and neuronal cell death. In vitro analysis of this phenomenon indicated that while B. burgdorferi can induce inflammation and apoptosis of oligodendrocytes per se, microglia are required for neuronal apoptosis. We hypothesized that the inflammatory milieu elicited by the bacterium in microglia or oligodendrocytes contributes to the apoptosis of neurons and glial cells, respectively, and that downstream signaling events in NFkB and/or MAPK pathways play a role in these phenotypes. To test these hypotheses in oligodendrocytes, several pathway inhibitors were used to determine their effect on inflammation and apoptosis, as induced by B. burgdorferi. In a human oligodendrocyte cell line (MO3.13), inhibition of the ERK pathway in the presence of B. burgdorferi markedly reduced inflammation, followed by the JNK, p38 and NFkB pathway inhibition. In addition to eliciting inflammation, B. burgdorferi also increased total p53 protein levels, and suppression of the ERK pathway mitigated this effect. While inhibition of p53 had a minimal effect in reducing inflammation, suppression of the ERK pathway or p53 reduced apoptosis as measured by active caspase-3 activity and the TUNEL assay. A similar result was seen in primary human oligodendrocytes wherein suppression of ERK or p53 reduced apoptosis. It is possible that inflammation and apoptosis in oligodendrocytes are divergent arms of MAPK pathways, particularly the MEK/ERK pathway. PMID:24114360

  6. Analysis of the RpoS regulon in Borrelia burgdorferi in response to mammalian host signals provides insight into RpoS function during the enzootic cycle

    PubMed Central

    Caimano, Melissa J.; Iyer, Radha; Eggers, Christian H.; Gonzalez, Cynthia; Morton, Elizabeth A.; Gilbert, Michael A.; Schwartz, Ira; Radolf, Justin D.

    2010-01-01

    Summary Borrelia burgdorferi (Bb) adapts to its arthropod and mammalian hosts by altering its transcriptional and antigenic profiles in response to environmental signals associated with each of these milieus. In studies presented here, we provide evidence to suggest that mammalian host signals are important for modulating and maintaining both the positive and negative aspects of mammalian host adaptation mediated by the alternative sigma factor RpoS in Bb. Although considerable overlap was observed between genes induced by RpoS during growth within the mammalian host and following