Science.gov

Sample records for bouri oil field

  1. Abandoned Texas oil fields

    SciTech Connect

    Not Available

    1980-12-01

    Data for Texas abandoned oil fields were primarily derived from two sources: (1) Texas Railroad Commission (TRRC), and (2) Dwight's ENERGYDATA. For purposes of this report, abandoned oil fields are defined as those fields that had no production during 1977. The TRRC OILMASTER computer tapes were used to identify these abandoned oil fields. The tapes also provided data on formation depth, gravity of oil production, location (both district and county), discovery date, and the cumulative production of the field since its discovery. In all, the computer tapes identified 9211 abandoned fields, most of which had less than 250,000 barrel cumulative production. This report focuses on the 676 abandoned onshore Texas oil fields that had cumulative production of over 250,000 barrels. The Dwight's ENERGYDATA computer tapes provided production histories for approximately two-thirds of the larger fields abandoned in 1966 and thereafter. Fields which ceased production prior to 1966 will show no production history nor abandonment date in this report. The Department of Energy hopes the general availability of these data will catalyze the private sector recovery of this unproduced resource.

  2. Oil field management system

    DOEpatents

    Fincke, James R.

    2003-09-23

    Oil field management systems and methods for managing operation of one or more wells producing a high void fraction multiphase flow. The system includes a differential pressure flow meter which samples pressure readings at various points of interest throughout the system and uses pressure differentials derived from the pressure readings to determine gas and liquid phase mass flow rates of the high void fraction multiphase flow. One or both of the gas and liquid phase mass flow rates are then compared with predetermined criteria. In the event such mass flow rates satisfy the predetermined criteria, a well control system implements a correlating adjustment action respecting the multiphase flow. In this way, various parameters regarding the high void fraction multiphase flow are used as control inputs to the well control system and thus facilitate management of well operations.

  3. Oil field redevelopment -- some lessons learned

    SciTech Connect

    Robertson, M.

    1996-12-31

    This paper presents a summary of some oil field redevelopment experiences that resulted in unanticipated expenses or other inconveniences and consequently became learning experiences. Compared with many other types of contaminated properties, oil fields are relatively easy to remediate. The primary contaminant is crude oil ranging in nature from hard and weathered tar to fresh crude with a notable fraction of light end hydrocarbons. Groundwater is usually not impacted due to the low mobility and solubility of crude oil. Crude oil overall has a relatively low toxicity, is not considered a hazardous material and can usually be easily remediated using bioremediation. All of these factors contribute to the notion that oil fields are low risk in terms of cleanup. However, experience has shown that oil field redevelopment does have some risks as is illustrated by examples.

  4. Oil and gas field code masterlist 1991

    SciTech Connect

    Not Available

    1991-12-23

    The Oil and Gas Field Code Master List 1991 is the tenth annual listing of all identified oil and gas fields in the United Sates. It is updated with field information collected through October 1991. The purpose of this publication is to provide codes for easy identification of domestic fields. Standardization on these field codes will foster consistency of field identification by government and industry.

  5. Oil field cable abrading system

    SciTech Connect

    Jenkins, R.L.

    1989-04-04

    A down-hole, oil field cable abrader is described, consisting of: a body attachable to a tubing string having an open interior which communicates with an interior of the tubing string; an elongated abrading head having an end pivotally connected to the body; an abrading portion extending axially along the head from the end pivotally connected to the body, the abrading portion including a plurality of abrading elements which spiral axially about the abrading head and taper to an area distal the end pivotally connected to the body; piston means slidably disposed in the open interior; translating means included with the abrading head for translating a portion of the longitudinal force generated by the fluid; and rotating means connected to the tubing string for rotating the abrading head when biased to the second position to a further position in which the cable is wrapped at least partially around the abrading head to abrade the cable as the abrading head rotates, severing the cable after a multiple number of passes. The patent also describes method of abrading a cable located substantially down-hole within a well bore between the well bore and a smaller, at least generally concentric tubular member.

  6. Classroom in the Oil Fields.

    ERIC Educational Resources Information Center

    Hammond, Jeanne

    1980-01-01

    Describes a petroleum production program created in Bradford, Pennsylvania, by oil company executives and local educators to answer the need of the regional oil industry for trained manpower. Discusses the need for the program, the search for qualified teachers, funding, and how one student feels about the program. (CT)

  7. OIL AND GAS FIELD EMISSIONS SURVEY

    EPA Science Inventory

    The report gives results of an oil and gas field emissions survey. The production segment of the oil and gas industry has been identified as a source category that requires the development of more reliable emissions inventory methodologies. The overall purpose of the project was ...

  8. Draugen oil field, Haltenbanken Province, offshore Norway

    SciTech Connect

    Provan, D.M.J. )

    1990-09-01

    The Draugen oil field lies in Block 6407/9 in the Haltenbanken oil and gas province. The field is located 150 km off the coast of Norway and 200 km south of the Arctic Circle, in water depths of 240-280 m. The field was discovered in 1984 by well 6407/9-1. Five more exploration/appraisal wells and two-dimensional seismic assisted in delineating the reservoir. The field is hosted by a low-relief north-south-trending anticline measuring some 20 x 6 km. The reservoir lies at a depth of 1,600 m subsea, and has an oil column of 40 m. The main reservoir is the Late Jurassic Rogn Formation sandstones, interpreted as a shallow-marine sand bar. The formation pinches out to the west and east, and is capped by Spekk Formation shales. A separate, smaller accumulation has also been proved in Middle Jurassic Gam Formation sandstones in the western part of the field. Sand quality in both reservoirs is good to excellent. Field STOIIP is estimated at 180 million Sm{sup 3} of oil. Expectation of recoverable reserves is 67 million Sm{sup 3}. Government approval for field development was given in December 1988. The field will be developed with a concrete gravity base structure and offshore loading. The initial development plan calls for six oil producers and six subsea water injectors. The platform will be installed in the summer of 1993, with first oil shortly thereafter. The planned plateau production rate is 14,300 Sm{sup 3}/day dry oil. Pending a gas offtake solution for the Haltenbanken region, produced associated gas will initially be reinjected into a water-bearing structure in the western part of the field.

  9. Methanogenic Oil Degradation in the Dagang Oil Field

    NASA Astrophysics Data System (ADS)

    Jiménez, Núria; Cai, Minmin; Straaten, Nontje; Yao, Jun; Richnow, Hans Hermann; Krüger, Martin

    2014-05-01

    Anaerobic biodegradation is one of the main in situ oil transformation processes in subsurface oil reservoirs. Recent studies have provided evidence of biodegradation of residual oil constituents under methanogenic conditions. Methane, like other biogenic gases, may contribute to reduce the viscosity of oil and enhance its flow characteristics (making it more available) but it can also be used as a energy source. So the aim of the present study was to provide reliable information on in situ biotransformation of oil under methanogenic conditions, and to assess the feasibility of implementing a MEOR strategy at this site. For this reason, chemical and isotopic analyses of injection and production fluids of the Dagang oil field (Hebei province, China) were performed. Microbial abundances were assessed by qPCR, and clone libraries were performed to study the diversity. In addition, microcosms with either oil or 13C-labelled hydrocarbons were inoculated with injection or production waters to characterize microbial processes in vitro. Geochemical and isotopic data were consistent with in situ biogenic methane production linked to aliphatic and aromatic hydrocarbon degradation: GC-MS profiles of petroleum samples were nearly devoid of n-alkanes, linear alkylbenzenes, and alkyltoluenes, and light PAH, confirming that Dagang oil is mostly highly weathered. In addition, carbon and hydrogen isotopic signatures of methane (?13CCH4 and ?DCH4, respectively), and the bulk isotopic discrimination (??13C) between methane and CO2 (between 32 and 65 ) were in accordance with previously reported values for methane formation during hydrocarbon degradation. Furthermore, methane-producing Archaea and hydrocarbon-degrading Bacteria were abundant in produced oil-water samples. On the other hand, our laboratory degradation experiments revealed that autochthonous microbiota are capable of significantly degrade oil within several months, with biodegradation patterns resembling those observed in situ, and of producing heavy methane from 13C-labelled n-hexadecane or 2-methylnaphthalene (?13C > 550 and 300, respectively). These results suggest that in situ methanogenesis may occur from the aliphatic and polyaromatic fractions of Dagang reservoir fluids. In summary, the studied areas of the Dagang oilfield may have a significant potential for the in situ conversion of oil into methane as a possible way to increase total hydrocarbon recovery.

  10. A field laboratory for improved oil recovery

    SciTech Connect

    Hildebrandt, A.F.; McDonald, J.; Claridge, E.; Killough, J.

    1992-09-01

    The purpose of Annex III of the Memorandum of Understanding, undertaken by the Houston Petroleum Research Center at the University of Houston, was to develop a field laboratory for research in improved oil recovery using a Gulf Coast reservoir in Texas. The participants: (1) make a field site selection and conducted a high resolution seismic survey in the demonstration field, (2) obtained characteristics of the reservoir (3) developed an evaluation of local flood efficiency in different parts of the demonstration reservoir, (4) used diverse methodology to evaluate the potential recovery of the remaining oil in the test reservoir, (5) developed cross-well seismic tomography, and (6) will transfer the learned technologies to oil operators through publication and workshops. This abstract is an overview of these tasks.

  11. Innovative technologies for managing oil field waste.

    SciTech Connect

    Veil, J. A.; Environmental Assessment

    2003-09-01

    Each year, the oil industry generates millions of barrels of wastes that need to be properly managed. For many years, most oil field wastes were disposed of at a significant cost. However, over the past decade, the industry has developed many processes and technologies to minimize the generation of wastes and to more safely and economically dispose of the waste that is generated. Many companies follow a three-tiered waste management approach. First, companies try to minimize waste generation when possible. Next, they try to find ways to reuse or recycle the wastes that are generated. Finally, the wastes that cannot be reused or recycled must be disposed of. Argonne National Laboratory (Argonne) has evaluated the feasibility of various oil field waste management technologies for the U.S. Department of Energy. This paper describes four of the technologies Argonne has reviewed. In the area of waste minimization, the industry has developed synthetic-based drilling muds (SBMs) that have the desired drilling properties of oil-based muds without the accompanying adverse environmental impacts. Use of SBMs avoids significant air pollution from work boats hauling offshore cuttings to shore for disposal and provides more efficient drilling than can be achieved with water-based muds. Downhole oil/water separators have been developed to separate produced water from oil at the bottom of wells. The produced water is directly injected to an underground formation without ever being lifted to the surface, thereby avoiding potential for groundwater or soil contamination. In the area of reuse/recycle, Argonne has worked with Southeastern Louisiana University and industry to develop a process to use treated drill cuttings to restore wetlands in coastal Louisiana. Finally, in an example of treatment and disposal, Argonne has conducted a series of four baseline studies to characterize the use of salt caverns for safe and economic disposal of oil field wastes.

  12. Field evaluations of marine oil spill bioremediation.

    PubMed Central

    Swannell, R P; Lee, K; McDonagh, M

    1996-01-01

    Bioremediation is defined as the act of adding or improving the availability of materials (e.g., nutrients, microorganisms, or oxygen) to contaminated environments to cause an acceleration of natural biodegradative processes. The results of field experiments and trials following actual spill incidents have been reviewed to evaluate the feasibility of this approach as a treatment for oil contamination in the marine environment. The ubiquity of oil-degrading microorganisms in the marine environment is well established, and research has demonstrated the capability of the indigenous microflora to degrade many components of petroleum shortly after exposure. Studies have identified numerous factors which affect the natural biodegradation rates of oil, such as the origin and concentration of oil, the availability of oil-degrading microorganisms, nutrient concentrations, oxygen levels, climatic conditions, and sediment characteristics. Bioremediation strategies based on the application of fertilizers have been shown to stimulate the biodegradation rates of oil in aerobic intertidal sediments such as sand and cobble. The ratio of oil loading to nitrogen concentration within the interstitial water has been identified to be the principal controlling factor influencing the success of this bioremediation strategy. However, the need for the seeding of natural environments with hydrocarbon-degrading bacteria has not been clearly demonstrated under natural environmental conditions. It is suggested that bioremediation should now take its place among the many techniques available for the treatment of oil spills, although there is still a clear need to set operational limits for its use. On the basis of the available evidence, we have proposed preliminary operational guidelines for bioremediation on shoreline environments. PMID:8801437

  13. Oil field water handling: qualitative separation equals theory plus judgment

    SciTech Connect

    Bradley, B.W.

    1985-10-14

    One of the most prevalent problems in oil field operations is the coproduction of oil and formation water, and the resulting problem of qualitative separation of water and oil. This article discusses the separation and handling of oil field brines. Oil dispersions can be cleaned up by a variety of devices which use gravity as the principal separating mechanism. Acceptable practices for disposing of oil-field brine produced with the crude oil include: injection into permeable underground formations containing saline water; reuse for supplementary recovery operations; and deoiling treatment acceptable for ocean disposal.

  14. Heavy oil: aggressive program revives field

    SciTech Connect

    Rintoul, B.

    1981-04-01

    It has been hardly more than 10 years ago that Shell Oil Co.'s production in the Mount Poso Field 14 miles north of Bakersfield, California, had declined to the point where the company, short of coming up with a new production approach, faced the necessity of abandoning a major share of the field before the end of the 1970's. Today Shell is producing approximately 24,000 BPD at Mount Poso, up from 1560 BPD in 1969. The strong performance is enough to put Mount Poso among the top 10 producing fields in California, qualifying the field for the number 8 position. Shell is the field's major producer. Other operators produce approximately 1500 BPD of the field's total current ouput of approximately 25,500 BPD. Cumulative production from the field stands at 203.3 million bbl, according to division of oil and gas figures. Shell engineered the difference between abandonment and soaring production by pioneering a steam drive process that bracketed Mount Poso's major reservoir betwen updip and downdip injectors, heating the heavy crude and pushing it toward producing wells through which it might be recovered.

  15. Predicting pavement distress in oil field areas

    SciTech Connect

    Mason, J.M.; Scullion, T.; Stampley, B.E.

    1983-05-01

    A study on oil field traffic characteristics was performed and a procedure was developed for assessing current and future effects of oil field truck traffic on surface-treated (stage construction type) pavements. A computer program calculates several types of pavement distress and serviceability parameters to evaluate pavement performance under various axle load repetitions. Stepwise regression analysis of 132 surface-treated pavement sections led to the development of individual distress equations for rutting, raveling, flushing, alligator cracking, patching, longitudinal and transverse cracking, and failures (potholes). The versatility of the program provides a means of anticipating early pavement failures due to increased axle load repetitions. The program also provides the basic framework for computing the effects of other ''special-use'' truck traffic demands.

  16. Predicting pavement distress in oil field areas

    SciTech Connect

    Mason, J.M.; Scullion, T.; Stampley, B.E.

    1984-05-01

    A study on oil field traffic characteristics was performed and a procedure was developed for assessing current and future effects of oil field truck traffic on surface-treated (stage construction type) pavements. A computer program calculates several types of pavement distress and serviceability parameters to evaluate pavement performance under various axle load repetitions. Stepwise regression analysis of 132 surface-treated pavement sections led to the development of individual distress equations for rutting, raveling, flushing, alligator cracking, patching, longitudinal and transverse cracking, and failures (potholes). The versatility of the program provides a means of anticipating early pavement failures due to increased axle load repetitions. The program also provides the basic framework for computing the effects of other ''special-use'' truck traffic demands.

  17. Assessment of remaining recoverable oil in selected major oil fields of the San Joaquin Basin, California

    USGS Publications Warehouse

    Tennyson, Marilyn E.; Cook, Troy A.; Charpentier, Ronald R.; Gautier, Donald L.; Klett, Timothy R.; Verma, Mahendra K.; Ryder, Robert T.; Attanasi, Emil D.; Freeman, Philip A.; Le, Phoung A.

    2012-01-01

    The U.S. Geological Survey (USGS) recently completed an estimate of volumes of technically recoverable, conventional oil that could eventually be added to reserves in nine selected major oil fields in the San Joaquin Basin in central California. The mean total volume of potential oil reserves that might be added in the nine fields using improved oil-recovery technologies was estimated to be about 6.5 billion barrels of oil.

  18. Oil and gas field code master list, 1993

    SciTech Connect

    Not Available

    1993-12-16

    This document contains data collected through October 1993 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. Other Federal and State government agencies, as well as industry, use the EIA Oil and Gas Field Code Master List as the standard for field identification. A machine-readable version of the Oil and Gas Field Code Master List is available from the National Technical Information Service.

  19. The Heidrun Field: Oil offtake system

    SciTech Connect

    Rajabi, F.D.; Breivik, K.; Syvertsen, K.

    1996-12-31

    Offtake of oil from the Heidrun field is achieved through a Direct Shuttle Loading (DSL) system. This approach eliminates the need for an intermediate storage facility, allowing continuous production and transfer of oil directly from the Heidrun TLP to shuttle tankers. Purpose-built or appropriately converted tankers with an integral bow turret locate and connect to a Submerged Turret Loading (STL) buoy which functions both as a tanker mooring point and a termination for the flexible offloading line. The system is designed to permit the tankers to remain connected during loading and to disengage from the STL buoy on completion of loading in all weather conditions up to and including the 100 year storm. This paper describes implementation of the Heidrun DSL system from conception to first oil. It gives the background for choosing the DSL system and information on the data generated to support the selection process. Design, fabrication and installation of various components are explained to give an insight into the challenges that had to be overcome for realization of this first-of-its-kind system in a record time of about one year. Installation of the complete DSL system in the summer of 1994, approximately one year ahead of the original plans, enabled full scale in situ testing of the system with a purpose-modified shuttle tanker. The two-month test program provided the equivalent of one year of operational experience with the system before first oil. The paper addresses data obtained during the full scale testing, and comparison with analytical results. The operation of the Heidrun DSL system is also described. These data together with the experience gained during realization of this bold concept will give key information on how such a concept can be effectively applied to any major or marginal field development scenario either as an offtake system or in conjunction with an FPSO/FSO.

  20. Gullfaks oil field - From challenge to success

    SciTech Connect

    Carlsen, H.; Nygaard, O. )

    1990-09-01

    The giant Gullfaks oil field was discovered in 1978. The field contains oil reserves in excess of 1.3 billion bbl. The field is located in the northeastern past of Block 34/10 in the Norwegian sector of the North Sea. Gullfaks represents the shallowest structural element of the Tampen Spur and was formed during the Late Jurassic to Early Cretaceous as a sloping high with a westerly structural dip gradually decreasing toward the east. The major north-south-striking faults, with easterly sloping fault planes, divided the field into several rotated fault blocks. Central and eastern parts of the structure have been eroded by the Early Cretaceous transgression. The reservoir sandstones are comprised of the Middle Jurassic to Early Cretaceous as a sloping high with a westerly structural dip gradually decreasing toward the east. The major north-south-striking faults, with easterly sloping fault planes, divided the field into several rotated fault blocks. Central and eastern parts of the structure have been eroded by the Early Cretaceous transgression. The reservoir sandstones are comprised of the Middle Jurassic delta-deposited Brent Group, the Lower Jurassic shallow-marine sandstones of the Cook Formation, and the Lower Jurassic shallow-marine sandstones of the Cook Formation, and the Lower Jurassic fluvial channel and delta-plain deposits of the Statfjord Formation. The presence of gas in the post-Jurassic section and a variable water depth have complicated seismic interpretation. However, the improved quality of the 1985 three dimensional seismic survey and deliberate deepening of the development wells have resulted in a more accurate and complete structural interpretation. The Brent reserves in the western part of the field currently are being developed by the Gullfaks A and B platforms. The eastern part of the field is developed by a third platform, Gulflaks C. Water injection is the major drive mechanism maintaining reservoir pressure above the bubble point.

  1. Design considerations for effective oil field filtration

    SciTech Connect

    Glaze, H.; Echols, J.B.

    1989-06-01

    Oil field filtration has special problems that relate to the nature of drilling and completing oil and gas wells. The use of clear brines is the root of many of these special problems. For example, within well-defined limits, there are virtually endless combinations of drilling mud constituents and mud weights. Mud weight dictates the completion fluid weight, and residual mud inside the production casing contaminates the completion fluid. As completion fluid weight increases, viscosity (Newtonian) and ionic strength of the completion brine increases. Filtration applications may be generally classified as follows: Wellsite, for completions and workovers, or stimulation; and Injection, for disposal or secondary recovery. This article focuses on wellsite filtration of completion and workover fluids. Effective filtration begins with a total system concept. Although frequently treated as such, filtration is not an isolated event during completion operations. Considerations for effective filtration include a system approach in which filtration is only a part. The system within which filtration occurs and must be considered consists of the following: Location and rig, Completion procedure, Drilling fluid, Completion fluid, Filter sizing and selection, and Quality control.

  2. Landslide oil field, San Joaquin Valley, California

    SciTech Connect

    Collins, B.P.; March, K.A.; Caballero, J.S.; Stolle, J.M.

    1988-03-01

    The Landslide field, located at the southern margin of the San Joaquin basin, was discovered in 1985 by a partnership headed by Channel Exploration Company, on a farm out from Tenneco Oil Company. Initial production from the Tenneco San Emidio 63X-30 was 2064 BOPD, making landslide one of the largest onshore discoveries in California during the past decade. Current production is 7100 BOPD from a sandstone reservoir at 12,500 ft. Fifteen wells have been drilled in the field, six of which are water injectors. Production from the Landslide field occurs from a series of upper Miocene Stevens turbidite sandstones that lie obliquely across an east-plunging structural nose. These turbidite sandstones were deposited as channel-fill sequences within a narrowly bounded levied channel complex. Both the Landslide field and the larger Yowlumne field, located 3 mi to the northwest, comprise a single channel-fan depositional system that developed in the restricted deep-water portion of the San Joaquin basin. Information from the open-hole logs, three-dimensional surveys, vertical seismic profiles, repeat formation tester data, cores, and pressure buildup tests allowed continuous drilling from the initial discovery to the final waterflood injector, without a single dry hole. In addition, the successful application of three-dimensional seismic data in the Landslide development program has helped correctly image channel-fan anomalies in the southern Maricopa basin, where data quality and severe velocity problems have hampered previous efforts. New exploration targets are currently being evaluated on the acreage surrounding the Landslide discovery and should lead to an interesting new round of drilling activity in the Maricopa basin.

  3. Method of determining interwell oil field fluid saturation distribution

    DOEpatents

    Donaldson, Erle C. (Bartlesville, OK); Sutterfield, F. Dexter (Bartlesville, OK)

    1981-01-01

    A method of determining the oil and brine saturation distribution in an oil field by taking electrical current and potential measurements among a plurality of open-hole wells geometrically distributed throughout the oil field. Poisson's equation is utilized to develop fluid saturation distributions from the electrical current and potential measurement. Both signal generating equipment and chemical means are used to develop current flow among the several open-hole wells.

  4. Oil and Gas Field Code Master List 1990

    SciTech Connect

    Not Available

    1991-01-04

    This is the ninth annual edition of the Energy Information Administration's (EIA) Oil and Gas Field Code Master List. It reflects data collected through October 1990 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. There are 54,963 field records in this year's Oil and Gas Field Code Master List (FCML). This amounts to 467 more than in last year's report. As it is maintained by EIA, the Master List includes: Field records for each state and county in which a field resides; field records for each offshore area block in the Gulf of Mexico in which a field resides;field records for each alias field name; fields crossing state boundaries that may be assigned different names by the respective state naming authorities.

  5. Microbial processes in oil fields: culprits, problems, and opportunities.

    PubMed

    Youssef, Noha; Elshahed, Mostafa S; McInerney, Michael J

    2009-01-01

    Our understanding of the phylogenetic diversity, metabolic capabilities, ecological roles, and community dynamics of oil reservoir microbial communities is far from complete. The lack of appreciation of the microbiology of oil reservoirs can lead to detrimental consequences such as souring or plugging. In contrast, knowledge of the microbiology of oil reservoirs can be used to enhance productivity and recovery efficiency. It is clear that (1) nitrate and/or nitrite addition controls H2S production, (2) oxygen injection stimulates hydrocarbon metabolism and helps mobilize crude oil, (3) injection of fermentative bacteria and carbohydrates generates large amounts of acids, gases, and solvents that increases oil recovery particularly in carbonate formations, and (4) nutrient injection stimulates microbial growth preferentially in high permeability zones and improves volumetric sweep efficiency and oil recovery. Biosurfactants significantly lower the interfacial tension between oil and water and large amounts of biosurfactant can be made in situ. However, it is still uncertain whether in situ biosurfactant production can be induced on the scale needed for economic oil recovery. Commercial microbial paraffin control technologies slow the rate of decline in oil production and extend the operational life of marginal oil fields. Microbial technologies are often applied in marginal fields where the risk of implementation is low. However, more quantitative assessments of the efficacy of microbial oil recovery will be needed before microbial oil recovery gains widespread acceptance. PMID:19203651

  6. Integrated reservoir characterization for the Mazari oil field, Pakistan 

    E-print Network

    Ashraf, Ejaz

    1994-01-01

    This thesis describes a field study performed on the Mazari oil field located in Sind province, Pakistan. We used an integrated reservoir characterization technique to incorporate the geological, petrophysical, and reservoir performance data...

  7. Using InSAR to Analyze the Effects of Oil Extraction on the Kuparuk Oil Field

    NASA Astrophysics Data System (ADS)

    Baluyut, E.; Liu, L.; Zebker, H. A.

    2012-12-01

    Ground deformation around oil fields is a major concern in regards to the impacts of this human-induced change on the environment. Interferometric synthetic aperture radar (InSAR) was used to map the ground deformation in the area of the Kuparuk Oil Field in Northern Alaska from 2007 to 2010. Data packages from the Advanced Land Observation Satellite (ALOS) and corresponding data for the digital elevation model (DEM) were used to create interferograms and the DEM. This was done using MATLAB and Python on a Linux operating system. Selected interferograms were cropped and errors from noise, topography, or atmosphere were minimized through fitting and stacking techniques. After analysis, the InSAR data yielded a chronology of a change in ground deformation around the Kuparuk Oil Field, which is correlated to a history of recovery techniques. Analysis of interferograms from before, in transition, and after application of different techniques can determine patterns of ground deformation in the field. It was found that positive ground deformation was more prevalent before the implementation of new oil recovery techniques as opposed to after implementation, with negative ground deformation occurring during the transition of the applications that allowed for more productive oil extraction. These results quantitatively demonstrate the magnitude of land subsidence that actively recovered oil fields induce. They also suggest that new methods of enhanced oil recovery are stabilizing the subterranean layers being drilled, creating a decrease in positive land deformation. This could support the continuation of research in fields of enhanced oil recovery and carbon sequestration.

  8. Kill fluid for oil field operations

    SciTech Connect

    Sydansk, R.D.

    1990-08-14

    This patent describes a process employing a kill fluid to substantially reduce the volumetric flow of formation fluid into a wellbore penetrating a formation containing the formation fluid below an earthen surface. It comprises: admixing components of a continuous flowing gel at the surface comprising of water-soluble carboxylate-containing polymer, a complex capable of crosslinking the polymer and formed of at least one electropositive chromium III species and at least one electronegative carboxylatespecies, and an aqueous solvent for the polymer and the complex; crosslinking the polymer and the complex to form the gel, wherein the kill fluid comprises the gel; placing a volume of the kill fluid in the wellbore sufficient to create a hydrostatic head which exerts a kill fluid pressure against the formation fluid substantially equal to or greater than the formation fluid pressure and thereby substantially reduces the volumetric flow of the formation fluid into the wellbore; performing an oil field operation after placing the volume of the kill fluid in the wellbore; and removing the gel from the wellbore to substantially restore the volumetric flow of the formation fluid into the wellbore.

  9. Assessment of remaining recoverable oil in selected major oil fields of the Permian Basin, Texas and New Mexico

    USGS Publications Warehouse

    Tennyson, Marilyn E.; Cook, Troy A.; Charpentier, Ronald R.; Gautier, Donald L.; Klett, Timothy R.; Verma, Mahendra K.; Ryder, Robert T.; Attanasi, Emil D.; Freeman, Philip A.; Le, Phoung A.

    2012-01-01

    The U.S. Geological Survey (USGS) recently completed an estimate of technically recoverable, conventional oil in selected oil fields in the Permian Basin in west Texas and southeastern New Mexico. The mean total volume of potential additional oil resources that might be added using improved oil-recovery technologies was estimated to be about 2.7 billion barrels of oil.

  10. Oil field waste disposal costs at commercial disposal facilities

    SciTech Connect

    Veil, J.A.

    1997-10-01

    The exploration and production segment of the U.S. oil and gas industry generates millions of barrels of nonhazardous oil field wastes annually. In most cases, operators can dispose of their oil fields wastes at a lower cost on-site than off site and, thus, will choose on-site disposal. However, a significant quantity of oil field wastes are still sent to off-site commercial facilities for disposal. This paper provides information on the availability of commercial disposal companies in different states, the treatment and disposal methods they employ, and how much they charge. There appear to be two major off-site disposal trends. Numerous commercial disposal companies that handle oil field wastes exclusively are located in nine oil-and gas-producing states. They use the same disposal methods as those used for on-site disposal. In addition, the Railroad Commission of Texas has issued permits to allow several salt caverns to be used for disposal of oil field wastes. Twenty-two other oil- and gas-producing states contain few or no disposal companies dedicated to oil and gas industry waste. The only off-site commercial disposal companies available handle general industrial wastes or are sanitary landfills. In those states, operators needing to dispose of oil field wastes off-site must send them to a local landfill or out of state. The cost of off-site commercial disposal varies substantially, depending on the disposal method used, the state in which the disposal company is located, and the degree of competition in the area.

  11. FOREST FIRES AND OIL FIELDS AS PERCOLATION PHENOMENA.

    E-print Network

    Reed, W.J.

    FOREST FIRES AND OIL FIELDS AS PERCOLATION PHENOMENA. William J. Reed #3; JUNE, 1999. Abstract A probability distribution derived from percolation theory is #12;tted to large datasets on the sizes of forest forest #12;res and oil #12;elds as percolation phenomena as well as suggesting the consideration of a new

  12. A reservoir management study of a mature oil field 

    E-print Network

    Peruzzi, Tave

    1995-01-01

    and reservoir response were identified. The best areas in the field for waterflooding were identified and analyzed with an analytical model. Based on existing development, the oil ultimate recovery is estimated to be 14.4 MMSTB or 34.0 % of original oil in place...

  13. Oil and Gas field code master list 1995

    SciTech Connect

    1995-12-01

    This is the fourteenth annual edition of the Energy Information Administration`s (EIA) Oil and Gas Field Code Master List. It reflects data collected through October 1995 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the US. The Field Code Index, a listing of all field names and the States in which they occur, ordered by field code, has been removed from this year`s publications to reduce printing and postage costs. Complete copies (including the Field Code Index) will be available on the EIA CD-ROM and the EIA World-Wide Web Site. Future editions of the complete Master List will be available on CD-ROM and other electronic media. There are 57,400 field records in this year`s Oil and Gas Field Code Master List. As it is maintained by EIA, the Master List includes the following: field records for each State and county in which a field resides; field records for each offshore area block in the Gulf of Mexico in which a field resides; field records for each alias field name (see definition of alias below); and fields crossing State boundaries that may be assigned different names by the respective State naming authorities. Taking into consideration the double-counting of fields under such circumstances, EIA identifies 46,312 distinct fields in the US as of October 1995. This count includes fields that no longer produce oil or gas, and 383 fields used in whole or in part for oil or gas Storage. 11 figs., 6 tabs.

  14. Oil sands processes-affected water treatment Research field: Oil sands processes-affected water treatment

    E-print Network

    Milgram, Paul

    , COD, FTIR, pH, conductivity etc. and tensile/compression machine. Nature of job: Experiments on flowOil sands processes-affected water treatment Research field: Oil sands processes-affected water channel, Visualization of flow patterns, Water quality tests: Chemical oxygen demand and FTIR, CFD

  15. The enigma of oil and gas field growth

    SciTech Connect

    Attanasi, E.D.; Root, D.H. )

    1994-03-01

    Growth in estimates of recovery in discovered fields is an important source of annual additions to United States proven reserves. This paper examines historical field growth and presents estimates of future additions to proved reserves from fields discovered before 1992. Field-level data permitted the sample to be partitioned on the basis of recent field growth patterns into outlier and common field set, and analyzed separately. The outlier field set accounted for less than 15% of resources, yet grew proportionately six times as much as the common fields. Because the outlier field set contained large old heavy-oil fields and old low-permeability gas fields, its future growth is expected to be particularly sensitive to prices. A lower bound of a range of estimates of future growth was calculated by applying monotone growth functions computed from the common field set to all fields. Higher growth estimates were obtained by extrapolating growth of the common field set and assuming the outlier fields would maintain the same share of total growth that occurred from 1978 through 1991. By 2020, the two estimates for additions to reserves from pre-1992 fields are 23 and 32 billion bbl of oil in oil fields and 142 and 195 tcf of gas in gas fields. 20 refs., 8 figs., 3 tabs.

  16. Oil and Gas Field Code Master List, 1985. [Contains glossary

    SciTech Connect

    Not Available

    1985-12-17

    This manual provides the Energy Information Administration (EIA) and others with standardized field name spellings and codes for all crude oil and natural gas fields throughout the United States. The codes are compiled on the computerized Field Code Master File (FCMF), which is updated on a quarterly cycle. The Oil and Gas Field Code Master List, derived from the FCMF, is published annually. The first edition was released by EIA in December 1982. Computer tapes containing the latest field code information are delivered to the National Technical Information Service in January and July of each year.

  17. Liaohe field becomes China's premier heavy oil producer

    SciTech Connect

    Shanyuan, L.

    1991-11-01

    This paper reports that Liaohe oil field is spudding into China's energy spotlight after producing 99 MMbbl (271,230 bopd) in 1990, or about 10% of the country's total. Located in northeast Chinga's Liaoning province, Liaohe ranks behind only the Daqing and Shengli producing areas in output. Oil production at Liaohe has increased by about 7.3 MMbbl (20,000 bpd) to 7.5 MMbbl (20,550 bpd) annually since 1984, posting the best growth rate among all oil fields in the country. Since production began 20 years ago, the field has yielded 868.5 MMbbl of oil and 911.1 Bcf of natural gas. More noteworthy, however, is the fact that Liaohe produces about two-thirds of China's heavy oil and condensate. Now the third largest producer behind Daqing and Shengli oil fields, Liaohe's output, with help from directional drilling, is coming into its own just in time to meet China's growing demand for heavy oil products.

  18. Largest US oil and gas fields, August 1993

    SciTech Connect

    Not Available

    1993-08-06

    The Largest US Oil and Gas Fields is a technical report and part of an Energy Information Administration (EIA) series presenting distributions of US crude oil and natural gas resources, developed using field-level data collected by EIA`s annual survey of oil and gas proved reserves. The series` objective is to provide useful information beyond that routinely presented in the EIA annual report on crude oil and natural gas reserves. These special reports also will provide oil and gas resource analysts with a fuller understanding of the nature of US crude oil and natural gas occurrence, both at the macro level and with respect to the specific subjects addressed. The series` approach is to integrate EIA`s crude oil and natural gas survey data with related data obtained from other authoritative sources, and then to present illustrations and analyses of interest to a broad spectrum of energy information users ranging from the general public to oil and gas industry personnel.

  19. Repair wind field in oil contaminated areas with SAR images

    NASA Astrophysics Data System (ADS)

    Guo, Jie; He, Yijun; Long, Xiao; Hou, Chawei; Liu, Xin; Meng, Junmin

    2015-03-01

    In this paper, we compared the normalized radar cross section in the cases of oil spill, biogenic slicks, and clean sea areas with image samples made from 11-pixel NRCS average, and determined their thresholds of the NRCS of the synthetic aperture radar. The results show that the thresholds of oil and biogenic slicks exhibit good consistency with the corresponding synthetic aperture radar images. In addition, we used the normalized radar cross section of clean water from adjacent patches of oil or biogenic slicks areas to replace that of oil or biogenic slicks areas, and retrieve wind field by CMOD5.n and compare wind velocity mending of oil and biogenic slicks areas with Weather Research and Forecasting modeled data, from which the root mean squares of wind speed (wind direction) inversion are 0.89 m/s (20.26°) and 0.88 m/s (7.07°), respectively. Therefore, after the occurrence of oil spill or biogenic slicks, the real wind field could be repaired using the method we introduced in this paper. We believe that this method could improve the accuracy in assessment of a real wind field on medium and small scales at sea, and enhance effectively the monitoring works on similar oil or biogenic slicks incidents at sea surface.

  20. Oil and gas field code master list 1994

    SciTech Connect

    Not Available

    1995-01-01

    This is the thirteenth annual edition of the Energy Information Administration`s (EIA) Oil and Gas Field Code Master List. It reflects data collected through October 1994 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. The master field name spellings and codes are to be used by respondents when filing the following Department of Energy (DOE) forms: Form EIA-23, {open_quotes}Annual Survey of Domestic Oil and Gas Reserves,{close_quotes} filed by oil and gas well operators (field codes are required from larger operators only); Forms FERC 8 and EIA-191, {open_quotes}Underground Gas Storage Report,{close_quotes} filed by natural gas producers and distributors who operate underground natural gas storage facilities. Other Federal and State government agencies, as well as industry, use the EIA Oil and Gas Field Code Master List as the standard for field identification. A machine-readable version of the Oil and Gas Field Code Master List is available from the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161, (703) 487-4650. In order for the Master List to be useful, it must be accurate and remain current. To accomplish this, EIA constantly reviews and revises this list. The EIA welcomes all comments, corrections, and additions to the Master List. All such information should be given to the EIA Field Code Coordinator at (214) 953-1858. EIA gratefully acknowledges the assistance provides by numerous State organizations and trade associations in verifying the existence of fields and their official nomenclature.

  1. Oil and gas field code master list 1997

    SciTech Connect

    1998-02-01

    The Oil and Gas Field Code Master List 1997 is the sixteenth annual listing of all identified oil and gas fields in the US. It is updated with field information collected through October 1997. The purpose of this publication is to provide unique, standardized codes for identification of domestic fields. Use of these field codes fosters consistency of field identification by government and industry. As a result of their widespread adoption they have in effect become a national standard. The use of field names and codes listed in this publication is required on survey forms and other reports regarding field-specific data collected by EIA. There are 58,366 field records in this year`s FCML, 437 more than last year. The FCML includes: field records for each State and county in which a field resides; field records for each offshore area block in the Gulf of Mexico in which a field resides; field records for each alias field name (definition of alias is listed); fields crossing State boundaries that may be assigned different names by the respective State naming authorities. This report also contains an Invalid Field Record List of 4 records that have been removed from the FCML since last year`s report. These records were found to be either technically incorrect or to represent field names which were never recognized by State naming authorities.

  2. Verifying a Simplified Fuel Oil Flow Field Measurement Protocol

    SciTech Connect

    Henderson, H.; Dentz, J.; Doty, C.

    2013-07-01

    The Better Buildings program is a U.S. Department of Energy program funding energy efficiency retrofits in buildings nationwide. The program is in need of an inexpensive method for measuring fuel oil consumption that can be used in evaluating the impact that retrofits have in existing properties with oil heat. This project developed and verified a fuel oil flow field measurement protocol that is cost effective and can be performed with little training for use by the Better Buildings program as well as other programs and researchers.

  3. Verifying a Simplified Fuel Oil Field Measurement Protocol

    SciTech Connect

    Henderson, Hugh; Dentz, Jordan; Doty, Chris

    2013-07-01

    The Better Buildings program is a U.S. Department of Energy program funding energy efficiency retrofits in buildings nationwide. The program is in need of an inexpensive method for measuring fuel oil consumption that can be used in evaluating the impact that retrofits have in existing properties with oil heat. This project developed and verified a fuel oil flow field measurement protocol that is cost effective and can be performed with little training for use by the Better Buildings program as well as other programs and researchers.

  4. Hydrocarbon emissions in the Bakken oil field in North Dakota

    NASA Astrophysics Data System (ADS)

    Mielke-Maday, I.; Petron, G.; Miller, B.; Frost, G. J.; Peischl, J.; Kort, E. A.; Smith, M. L.; Karion, A.; Dlugokencky, E. J.; Montzka, S. A.; Sweeney, C.; Ryerson, T. B.; Tans, P. P.; Schnell, R. C.

    2014-12-01

    Within the past five years, the production of oil and natural gas in the United States from tight formations has increased rapidly due to advances in technology, such as horizontal drilling and hydraulic fracturing. With the expansion of oil and natural gas extraction operations comes the need to better quantify their emissions and potential impacts on climate forcing and air quality. The Bakken formation within the Williston Basin in North Dakota has emerged as a large contributor to the recent growth in oil production and accounts for over 10% of domestic production. Close to 30% of associated gas co-produced with the oil is flared. Very little independent information is currently available to assess the oil and gas industry emissions and their impacts on regional air quality. In May 2014, an airborne field campaign was conducted by the National Oceanic and Atmospheric Administration's (NOAA) Earth System Research Laboratory and the University of Michigan to investigate hydrocarbon emissions from operations in the oil field. Here, we present results from the analysis for methane, several non-methane hydrocarbons and combustion tracers in 72 discrete air samples collected by the aircraft on nine different flights. Samples were obtained in the boundary layer upwind and downwind of the operations and in the free troposphere. We will show results of a multiple species analysis and compare them with field campaign data from other U.S. oil and gas fields, measurements from NOAA's Global Monitoring Division long-term observing network, and available bottom-up information on emissions from oil and gas operations.

  5. Alkanes in shrimp from the Buccaneer Oil Field

    SciTech Connect

    Middleditch, B.S.; Basile, B.; Chang, E.S.

    1982-07-01

    A total of 36 samples of shrimp were examined from the region of the Buccaneer oil field, eighteen of which were representatives of the commercial species Penaeus aztecus and the rest were various other species: Penaeus duorarum (pink shrimp), Trachypenaeus duorarum (sugar shrimp), Squilla empusa (mantis shrimp), and Sicyonia dorsalis (chevron shrimp). The alkanes and deuteriated alkanes were completely separated by GC, so a mass spectrometer was not required for their detection and quantitation. To confirm the identities of individual compounds, however, some samples were examined by combined gas chromatography-mass spectrometry. Results show that only thirteen of the forty shrimp collected from the region of the Buccaneer oil field contained petroleum alkanes, and the majority of these were obtained from trawls immediately adjacent to the production platforms. It appears that shrimp caught in the region of the Buccaneer oil field are not appreciably tainted with hydrocarbons discharged from the production platforms. (JMT)

  6. A field laboratory for improved oil recovery. Final report

    SciTech Connect

    Hildebrandt, A.F.; McDonald, J.; Claridge, E.; Killough, J.

    1992-09-01

    The purpose of Annex III of the Memorandum of Understanding, undertaken by the Houston Petroleum Research Center at the University of Houston, was to develop a field laboratory for research in improved oil recovery using a Gulf Coast reservoir in Texas. The participants: (1) make a field site selection and conducted a high resolution seismic survey in the demonstration field, (2) obtained characteristics of the reservoir (3) developed an evaluation of local flood efficiency in different parts of the demonstration reservoir, (4) used diverse methodology to evaluate the potential recovery of the remaining oil in the test reservoir, (5) developed cross-well seismic tomography, and (6) will transfer the learned technologies to oil operators through publication and workshops. This abstract is an overview of these tasks.

  7. Measuring marine oil spill extent by Markov Random Fields

    NASA Astrophysics Data System (ADS)

    Moctezuma, Miguel; Parmiggiani, Flavio; Lopez Lopez, Ludwin

    2014-10-01

    The Deepwater Horizon oil spill of the Gulf of Mexico in the spring of 2010 was the largest accidental marine oil spill in the history of the petroleum industry. An immediate request, after the accident, was to detect the oil slick and to measure its extent: SAR images were the obvious tool to be employed for the task. This paper presents a processing scheme based on Markov Random Fields (MRF) theory. MRF theory describes the global information by probability terms involving local neighborhood representations of the SAR backscatter data. The random degradation introduced by speckle noise is dealt with a pre-processing stage which applies a nonlinear diffusion filter. Spatial context attributes are structured by the Bayes equation derived from a Maximum-A-Posteriori (MAP) estimation. The probability terms define an objective function of a MRF model whose goal is to detect contours and fine structures. The markovian segmentation problem is solved with a numerical optimization method. The scheme was applied to an Envisat/ASAR image over the Gulf of Mexico of May 9, 2010, when the oil spill was already fully developed. The final result was obtained with 51 recursion cycles, where, at each step, the segmentation consists of a 3-class label field (open sea and two oil slick thicknesses). Both the MRF model and the parameters of the stochastic optimization procedure will be provided, together with the area measurement of the two kinds of oil slick.

  8. The Application Of Microbial Enhanced Oil Recovery On Unconventional Oil: A Field Specific Approach

    NASA Astrophysics Data System (ADS)

    Goodman, Sean; Millar, Andrew; Allison, Heather; McCarthy, Alan

    2014-05-01

    A substantial amount of the world's recoverable oil reserves are made from unconventional or heavy resources. However, great difficulty has been had in recovering this oil after primary and secondary recovery methods have been employed. Therefore, tertiary methods such as microbial enhanced oil recovery (MEOR) have been employed. MEOR involves the use of bacteria and their metabolic products to alter the oil properties or rock permeability within a reservoir in order to promote the flow of oil. Although MEOR has been trialed in the past with mixed outcomes, its feasibility on heavier oils has not been demonstrated. The aim of this study is to show that MEOR can be successfully applied to unconventional oils. By using an indigenous strain of bacteria isolated from a reservoir of interest and applied to field specific microcosms, we will look into the effect of these bacteria compared to variant inoculums to identify which mechanisms of action the bacteria are using to improve recovery. Using this information, we will be able to identify genes of interest and groups of bacteria that may be beneficial for MEOR and look accurately identify favorable bacteria within a reservoir.

  9. Reserve Growth in Oil Fields of West Siberian Basin, Russia

    USGS Publications Warehouse

    Verma, Mahendra K.; Ulmishek, Gregory F.

    2006-01-01

    Although reserve (or field) growth has proven to be an important factor contributing to new reserves in mature petroleum basins, it is still a poorly understood phenomenon. Limited studies show that the magnitude of reserve growth is controlled by several major factors, including (1) the reserve booking and reporting requirements in each country, (2) improvements in reservoir characterization and simulation, (3) application of enhanced oil recovery techniques, and (4) the discovery of new and extensions of known pools in discovered fields. Various combinations of these factors can affect the estimates of proven reserves in particular fields and may dictate repeated estimations of reserves during a field's life. This study explores the reserve growth in the 42 largest oil fields in the West Siberian Basin, which contain about 55 percent of the basin's total oil reserves. The West Siberian Basin occupies a vast swampy plain between the Ural Mountains and the Yenisey River, and extends offshore into the Kara Sea; it is the richest petroleum province in Russia. About 600 oil and gas fields with original reserves of 144 billion barrels of oil (BBO) and more than 1,200 trillion cubic feet of gas (TCFG) have been discovered. The principal oil reserves and most of the oil fields are in the southern half of the basin, whereas the northern half contains mainly gas reserves. Sedimentary strata in the basin consist of Upper Triassic through Tertiary clastic rocks. Most oil is produced from Neocomian (Lower Cretaceous) marine to deltaic sandstone reservoirs, although substantial oil reserves are also in the marine Upper Jurassic and continental to paralic Lower to Middle Jurassic sequences. The majority of oil fields are in structural traps, which are gentle, platform-type anticlines with closures ranging from several tens of meters to as much as 150 meters (490 feet). Fields producing from stratigraphic traps are generally smaller except for the giant Talin field which contains oil in Jurassic river-valley sandstones. Principal source rocks are organic-rich marine shales of the Volgian (uppermost Jurassic) Bazhenov Formation, which is 30-50 m (98- 164 feet) thick. Bazhenov-derived oils are mostly of medium gravity, and contain 0.8-1.3 percent sulfur and 2-5 percent paraffin. Oils in the Lower to Middle Jurassic clastics were sourced from lacustrine and estuarine shales of the Toarcian Togur Bed. These oils are medium to low gravity, with low sulfur (less than 0.25 percent) and high paraffin (commonly to 10 percent) contents. Among the 42 fields analyzed for reserve growth, 30 fields are located in the Middle Ob region, which includes the Samotlor field with reserves of more than 25 BBO and the Fedorov field with reserves of about 5 BBO. Data used in the study include year of discovery, year of first production, annual and cumulative production, and remaining reserves reported by Russian reserve categories (A+B+C1 and C2) in January of each year. Correlation of these Russian resource categories to U.S. categories of the Society of Petroleum Engineers classification is complex and somewhat uncertain. Reserve growth in oil fields of West Siberia was calculated using a newly developed Group Growth method, which requires that the total reserve (proven reserve plus cumulative production) of individual fields with an equal length of reserve record be added together starting with discovery year or the first production year. Then the annual growth factor (AGF), which is the ratio of total reserves of two consecutive years, is calculated for all years. Once AGFs have been calculated, the cumulative growth factor (CGF) is calculated by multiplying the AGFs of all the previous years. The CGF data are used to develop reserve growth models. The West Siberian oil fields show a 13-fold reserve growth 20 years after the discovery year and only about a 2-fold growth after the first production year. This difference is attributed to extensive exploration and field delineation activities between the discovery and the first production years. Because of u

  10. Application of oil gas-chromatography in reservoir compartmentalization in a mature Venezuelan oil field

    SciTech Connect

    Munoz, N.G.; Mompart, L.; Talukdar, S.C.

    1996-08-01

    Gas chromatographic oil {open_quotes}fingerprinting{close_quotes} was successfully applied in a multidisciplinary production geology project by Maraven, S.A. to define the extent of vertical and lateral continuity of Eocene and Miocene sandstone reservoirs in the highly faulted Bloque I field, Maracaibo Basin, Venezuela. Seventy-five non-biodegraded oils (20{degrees}-37.4{degrees} API) were analyzed with gas chromatography. Fifty were produced from the Eocene Misoa C-4, C-5, C-6 or C-7 horizons, fifteen from the Miocene basal La Rosa and ten from multizone completions. Gas chromatographic and terpane and sterane biomarker data show that all of the oils are genetically related. They were expelled from a type II, Upper Cretaceous marine La Luna source rock at about 0.80-0.90% R{sub o} maturity. Alteration in the reservoir by gas stripping with or without subsequent light hydrocarbons mixing was observed in some oils. Detailed chromatographic comparisons among the oils shown by star plots and cluster analysis utilizing several naphthenic and aromatic peak height ratios, resulted in oil pool groupings. This led to finding previously unknown lateral and vertical reservoir communication and also helped in checking and updating the scaling character of faults. In the commingled oils, percentages of each contributing zone in the mixture were also determined giving Maraven engineers a proven, rapid and inexpensive tool for production allocation and reservoir management The oil pool compartmentalization defined by the geochemical fingerprinting is in very good agreement with the sequence stratigraphic interpretation of the reservoirs and helped evaluate the influence of structure in oil migration and trapping.

  11. Spectral anomaly over Railroad Valley oil field, Nevada

    SciTech Connect

    Feldman, S.C. ); Honey, F.R. ); Ballew, G.I. )

    1990-05-01

    Oil was first discovered in Railroad Valley, south-central Nevada in 1954. Since that time, over 195 wells have been drilled and six oil fields have been found: Bacon Flat, Currant, Trap Spring, Eagle Springs, Grant Canyon and Kate Spring. Two wells in the Grant Canyon field had flows between 2,480 and 4,108 bbl/day in 1987 and may be the most prolific wells onshore in the continental US. Production in the Railroad Valley fields is from Oligocene volcanic and sedimentary rocks and Paleozoic carbonate formations. Traps are structural or structural and stratigraphic, and reservoir seals are indurated or clayey valley fill, weathered tuff, and shales in Tertiary sediments. Reservoir temperatures range between 95 and 309{degree}F. Previous workers have identified a statistically significant positive correlation between hydrocarbon microseepage and vegetation anomalies over the Railroad Valley oil fields with Landsat Multispectral Scanner (MSS) imagery. Several flight lines of high spectral and spatial resolution imagery in the visible, near infrared, shortwave infrared, and thermal infrared regions of the spectrum were flown with Geoscan's MkII Airborne Multispectral Scanner to determine if there was a mineralogical signature associated with the oil fields. The 24-channel scanner collected 8-m resolution picture elements over a swath of about 8 km. Image processing strategies were developed from a knowledge of the spectral curves of minerals in the laboratory. The results from processing Geoscans MkII data were also compared with those obtained from processing Landsat Thematic Mapper (TM) imagery over the same area. An 8 {times} 6 km carbonate and iron anomaly was detected on the processed MkII imagery over the Trap Spring oil field. This anomaly may be related to hot spring activity, reported by other workers, that has formed extensive calcite deposits along faults.

  12. Fluid loss control in oil field cements

    SciTech Connect

    Newlove, J. C.; Kitano, K.; Portnoy, R. C.; Schulz, D. N.

    1984-11-06

    The present invention relates to materials which reduce the filtration of fluid into permeable earth formations during cementing processes in the drilling and completing of subterranean wells, particularly wells for the recovery of petroleum resources. Petroleum well cementing is the process of mixing a slurry of cement, water, and other additives and pumping it down through steel casing to critical points in the oil well annulus around the casing or in the open hole below the casing string. The primary functions of the cementing process are to restrict fluid movement between geological formations and to bond and support the casing. In addition the cement aids in protecting the casing from corrosion, preventing blowouts by quickly sealing formations, protecting the casing from shock loads in drilling deeper wells, and sealing off lost circulation or thief zones. A common problem in petroleum well cementing is the flow of liquid from the cement slurry into porous earth formations in contact with the cement. This fluid loss is undesirable since it can result in dehydration of the cement slurry, and it causes thick filter cakes of cement solids which can plug the well bore. The fluid lost can damage sensitive formations. Cement fluid loss is particularly a problem in the process known as squeeze cementing. There is a requirement, therefore, for materials which, when added to the cement formulation, reduce the loss of fluid from the slurry to porous formations.

  13. Extraction of Field Pennycress Seed Oil by Full Pressing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field pennycress (Thlasphi arvense L., Brassicaceae) is a winter annual that grows widely in the temperate North America. Its seeds contain up to 36% oil (db) with the major fatty acid as erucic acid (38%). With an estimated seed production of 1,700 – 2,200 kg/ha, pennycress can be a major source of...

  14. Oil & gas E & P field personnel pollution prevention training project

    SciTech Connect

    Megna, A.T.; Kinias, C.J.; Souders, S.

    1995-12-01

    The National Environmental Training Association (NETA) with a grant from the U.S. Environmental Protection Agency (EPA) has developed a comprehensive pollution prevention training program for oil and gas exploration and production field personnel. The program, developed by an interdisciplinary committee of industry, industry association, regulatory agencies, and environmental groups, provides the knowledge, tools, and instructional techniques to transfer a pollution prevention mind-set and cost-effective methodologies to field personnel.

  15. Integrated Reservoir Characterization and Simulation Studies in Stripper Oil and Gas Fields 

    E-print Network

    Wang, Jianwei

    2010-01-14

    to increase recovery from stripper oil and gas fields. The primary objective of this research was to support optimized production of oil and gas from stripper well fields by evaluating one stripper gas field and one stripper oil field. For the stripper gas...

  16. Biodiesel Prepared From Field Pennycress Oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field pennycress (Thlaspi arvense L., FP) is a winter annual species of the mustard family (Brassicaceae) which is widely distributed throughout temperate North America that can serve as a winter rotational crop for conventional crops, thus not displacing farm land or negatively impacting the food s...

  17. Stratigraphy of Citronelle Oil Field, AL: Perspectives from Enhanced Oil Recovery and Potential CO2 Sequestration

    NASA Astrophysics Data System (ADS)

    Hills, D. J.; Pashin, J. C.; Kopaska-Merkel, D. C.; Esposito, R. A.

    2008-12-01

    The Citronelle Dome is a giant salt-cored anticline in the eastern Mississippi Interior Salt Basin of south Alabama. The dome forms an elliptical structural closure containing multiple opportunities for enhanced oil recovery (EOR) and large-capacity saline reservoir CO2 sequestration. The Citronelle Oil Field, which is on the crest of the dome, has produced more than 168 MMbbl of 42° gravity oil from marginal marine sandstone in the Lower Cretaceous Donovan Sand. Recently, EOR field tests have begun in the northeastern part of the oil field. Citronelle Unit B-19-10 #2 well (Alabama State Oil and Gas Board Permit No. 3232) will serve as the CO2 injector for the first field test. CO2 will be injected into the Upper Donovan 14-1 and 16-2 sandstone units. All well logs in the 4-square-mile area surrounding the test site have been digitized and used to construct a network of nineteen stratigraphic cross sections correlating Sands 12 through 20A in the Upper Donovan. Detailed study of Citronelle cores has shown that depositional environments in the Donovan Sand differed significantly from the earlier model that has guided past development of the Citronelle Field. The cross sections demonstrate the extreme facies heterogeneity of the Upper Donovan, and this heterogeneity is well expressed within the five-spot well pattern where the field test will be conducted. Many other features bearing on the performance of the CO2 injection test have been discovered. Of particular interest is the 16-2 sand, which is interpreted as a composite of two tiers of channel fills. Pay strata are typically developed in the lower tier, and this is where CO2 will be injected. The upper tier is highly heterogeneous and is interpreted to contain sandstone fills of variable reservoir quality, as well as mudstone plugs.

  18. Oil field experiments of microbial improved oil recovery in Vyngapour, West Siberia, Russia

    SciTech Connect

    Murygina, V.P.; Mats, A.A.; Arinbasarov, M.U.; Salamov, Z.Z.; Cherkasov, A.B.

    1995-12-31

    Experiments on microbial improved oil recovery (MIOR) have been performed in the Vyngapour oil field in West Siberia for two years. Now, the product of some producing wells of the Vyngapour oil field is 98-99% water cut. The operation of such wells approaches an economic limit. The nutritious composition containing local industry wastes and sources of nitrogen, phosphorus and potassium was pumped into an injection well on the pilot area. This method is called {open_quotes}nutritional flooding.{close_quotes} The mechanism of nutritional flooding is based on intensification of biosynthesis of oil-displacing metabolites by indigenous bacteria and bacteria from food industry wastes in the stratum. 272.5 m{sup 3} of nutritious composition was introduced into the reservoir during the summer of 1993, and 450 m3 of nutritious composition-in 1994. The positive effect of the injections in 1993 showed up in 2-2.5 months and reached its maximum in 7 months after the injections were stopped. By July 1, 1994, 2,268.6 tons of oil was produced over the base variant, and the simultaneous water extraction reduced by 33,902 m{sup 3} as compared with the base variant. The injections in 1994 were carried out on the same pilot area.

  19. Giant oil fields of the Gulf Coast area

    SciTech Connect

    Haeberle, F.R.

    1993-09-01

    The 134 giant fields in the Gulf Coastal area contain 29% of the total giant-field reserves. Cumulative production is 32% of the giant-field cumulative total and 20% of the United States cumulative production. Eighty-nine of the giant fields are offshore with 22% of the reserves, 11 fields are in east Texas with 24% of the reserves, and 1 field is in Florida with 1% of the reserves. In 106 of the giant fields the primary producing interval is Cenozoic with 65% of the reserves, and in 28 giant fields the producing interval is Mesozoic with 35% of the reserves. The primary producing interval is Mesozoic with 35% of the reserves. The primary producing interval in 124 giant fields consists of clastics with 91% of the reserves, in 7 fields the primary lithology is carbonates with 6% of the reserves, and in 3 giant fields the lithology is mixed clastics and carbonates. A total of 127 fields are in structural traps with all of the reserves, 4 fields are stratigraphic traps (3%) with 18% of the reserves, and 3 fields are combination traps with 1% of the reserves. Over 50 of the giant oil fields in structural traps are salt domes. The most prevalent types of giant fields in the Gulf Coastal area are onshore structural traps with Cenozoic clastics as the primary producing intervals.

  20. Reverse osmosis process successfully converts oil field brine into freshwater

    SciTech Connect

    Tao, F.T.; Curtice, S.; Hobbs, R.D.; Sides, J.L.; Wieser, J.D. ); Dyke, C.A.; Tuohey, D. ); Pilger, P.F. )

    1993-09-20

    A state-of-the-art process in the San Ardo oil field converted produced brine into freshwater. The conversion process used chemical clarification, softening, filtration, and reverse osmosis (RO). After extensive testing resolved RO membrane fouling problems, the pilot plant successfully handled water with about 7,000 mg/l. of total dissolved solids, 250 mg/l. silica, and 170 mg/l. soluble oil. The treated water complies with the stringent California drinking water standard. The paper describes water reclamation, the San Ardo process, stability, reverse osmosis membrane fouling, membranes at high pH, water quality, and costs.

  1. Dispersant and fluid loss additives for oil field cements

    SciTech Connect

    George, C.; Gerke, R. R.

    1985-12-10

    Dispersants and fluid loss additives for inclusion in oil field cements and methods of using the resultant compositions in oil, gas and water well cementing operations are disclosed. Such compositions incorporate a polymeric additive prepared by caustic-catalyzed condensation for formaldehyde with acetone, or a substance derived from acetone, wherein said polymer includes sodium sulfonate groups in an amount sufficient to render such polymer water soluble. A second fluid loss additive such as hydroxyethyl cellulose, carboxymethylhydroxyethyl cellulose, copolymers of N,N-dimethylacrylamide and 2-acrylamido, 2-methyl propane sulfonic acid or copolymers of acrylamide and 2-acrylamido, 2-methyl propane sulfonic acid may optionally be included.

  2. Why not biodegradation of oils some West Siberia fields?

    SciTech Connect

    Ablia, E.A.; Guseva, A.N.; Korneva, T.N.; Korneva, I.V.

    1996-10-01

    Oils were investigated from one-pool fields Shaim area, which were produced more than 20 years. Reservoirs-Jurassic clastic and porous rock of the basement; intervals - 1600-1800 m; temperature - less than 50{degrees}C; pressure - normal. The production is conducted in a mode water intrusion with use of surface waters. A comparison of oils from exploration and modem development wells revealed different direction of bulk data change - on the one hand standard relative accumulation of resins, asphaltene and wax without appreciable change of density, with the other - decrease of their concentration and appreciable facilitation of oils. The alkanes C12+ distribution in all oils has changed directly: pristane/phytane ratio from 1.3 up to 1.1-1.0 decreases, BIAS slightly decreases. The processes of biodegradation in all tests are not marked. The absence fixed biodegradation these oils under favorable external conditions can be explained (1) constant surge of {open_quotes}fresh{close_quotes} portions of HC fluid restoring the alkane balance, and, probably, (2) insignificant geological time of effect bacterium for appreciable infringement of this balance.

  3. Bird mortality in oil field wastewater disposal facilities.

    PubMed

    Ramirez, Pedro

    2010-11-01

    Commercial and centralized oilfield wastewater disposal facilities (COWDFs) are used in the Western United States for the disposal of formation water produced from oil and natural gas wells. In Colorado, New Mexico, Utah, and Wyoming, COWDFs use large evaporation ponds to dispose of the wastewater. Birds are attracted to these large evaporation ponds which, if not managed properly, can cause wildlife mortality. The U.S. Fish and Wildlife Service (USFWS) and the U.S. Environmental Protection Agency (EPA) conducted 154 field inspections of 28 COWDFs in Wyoming from March 1998 through September 2008 and documented mortality of birds and other wildlife in 9 COWDFs. Of 269 bird carcasses recovered from COWDFs, grebes (Family Podicipedidae) and waterfowl (Anatidae) were the most frequent casualties. Most mortalities were attributed to oil on evaporation ponds, but sodium toxicity and surfactants were the suspected causes of mortality at three COWDFs. Although the oil industry and state and federal regulators have made much progress in reducing bird mortality in oil and gas production facilities, significant mortality incidents continue in COWDFs, particularly older facilities permitted in the early 1980's. Inadequate operation and management of these COWDFs generally results in the discharge of oil into the large evaporation ponds which poses a risk for birds and other wildlife. PMID:20844874

  4. Strategies for field application of foams in heavy oil reservoirs

    SciTech Connect

    Isaacs, E.E.; Ivory, J.; Law, D.H.S.

    1995-12-31

    Steam-based processes in heavy oil reservoirs that are not stabilized by gravity have poor vertical and areal conformance. This is because gases are more mobile within the pore space than liquids and steam tends to override or channel through oil in a formation. The steam-foam process which consists of adding surfactant with or without non-condensible gas to the injected steam, was developed to improve the sweep efficiency of steam drive and cyclic steam processes. The foam-forming components injected with the steam stabilize the liquid lamellae and cause some of the steam to exist as a discontinuous phase. The steam mobility (gas relative permeability) is thereby reduced resulting in an increased pressure gradient in the steam-swept region, to divert steam to the unheated interval and displace the heated oil better. The propagation of surfactant in the reservoir is determined by its thermal stability, adsorption, precipitation, and oil partitioning behaviour. The propagation of the foam is determined by the mechanisms that generate and destroyfoam in the reservoir, including gas and liquid velocities, condensation and evaporation, non-condensible gas, and the presence of oil. Strategies were developed to minimize the chemical requirements for generating effective steam-foams. Economic steam-foam processes requires that surfactant losses are minimized, foam propagation and foam stability is maximized at surfactant concentrations lower than has hereto been used in the field. This paper, based on laboratory finding and field experience, discusses the important considerations which affect the efficient application of steam-foam in the field.

  5. Archaeoglobus fulgidus Isolated from Hot North Sea Oil Field Waters

    PubMed Central

    Beeder, Janiche; Nilsen, Roald Kåre; Rosnes, Jan Thomas; Torsvik, Terje; Lien, Torleiv

    1994-01-01

    A hyperthermophilic sulfate reducer, strain 7324, was isolated from hot (75°C) oil field waters from an oil production platform in the Norwegian sector of the North Sea. It was enriched on a complex medium and isolated on lactate with sulfate. The cells were nonmotile, irregular coccoid to disc shaped, and 0.3 to 1.0 ?m wide. The temperature for growth was between 60 and 85°C with an optimum of 76°C. Lactate, pyruvate, and valerate plus H2 were utilized as carbon and energy sources with sulfate as electron acceptor. Lactate was completely oxidized to CO2. The cells contained an active carbon monoxide dehydrogenase but no 2-oxoglutarate dehydrogenase activity, indicating that lactate was oxidized to CO2 via the acetyl coenzyme A/carbon monoxide dehydrogenase pathway. The cells produced small amounts of methane simultaneously with sulfate reduction. F420 was detected in the cells which showed a blue-green fluorescence at 420 nm. On the basis of morphological, physiological, and serological features, the isolate was classified as an Archaeoglobus sp. Strain 7324 showed 100% DNA-DNA homology with A. fulgidus Z, indicating that it belongs to the species A. fulgidus. Archaeoglobus sp. has been selectively enriched and immunomagnetically captured from oil field waters from three different platforms in the North Sea. Our results show that strain 7324 may grow in oil reservoirs at 70 to 85°C and contribute to hydrogen sulfide formation in this environment. Images PMID:16349231

  6. Clay-oil droplet suspensions in electric fields

    NASA Astrophysics Data System (ADS)

    Rozynek, Zbigniew; Fossum, Jon Otto; Kjerstad, Knut; Mikkelsen, Alexander; Castberg, Rene

    2012-02-01

    Silicone oil droplets containing synthetic smectite clay submerged in immiscible organic oil have been studied by observing clay particle movement and oil circulation when an electric field is applied. Results show how electric field strength, dielectric and electrorheological properties as well as electrohydrodynamics determine the fluid flow and clay particle formation. In a presence of the DC electric fields the clay particles formed a ribbon-like structure onto the inner surface of the droplet. The structure consists of short chain-like clay elements orienting parallel to the electric field direction. It is suggested that a combination of two phenomena, namely the induced viscous flow (electrohydrodynamic effect) and the polarization of the clay particles (dielectric effect), contribute to the ribbon-like structure formation. -/abstract- References [1] G. Taylor, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 291 (1966) 159--166. [2] J. R. Melcher and G. I. Taylor, Annual Review of Fluid Mechanics 1 (1969) 111--146. [3] H. Sato, N. Kaji, T. Mochizuki, and Y. H. Mori, Physics of Fluids 18 (2006) 127101. [4] D. A. Saville, Annual Review of Fluid Mechanics 29 (1997) 27--64. [5] J. O. Fossum, Y. M'eheust, K. P. S. Parmar, K. D. Knudsen, K. J. Måløy, and D. M. Fonseca Europhysics Letters 74

  7. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    SciTech Connect

    City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

    2002-09-30

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. It was hoped that the successful application of these technologies would result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs.

  8. Land subsidence near oil and gas fields, Houston, Texas.

    USGS Publications Warehouse

    Holzer, T.L.; Bluntzer, R.L.

    1984-01-01

    Subsidence profiles across 29 oil and gas fields in the 12 200 km2 Houston, Texas, regional subsidence area, which is caused by the decline of ground-water level, suggest that the contribution of petroleum withdrawal to local land subsidence is small. In addition to land subsidence, faults with an aggregate length of more than 240 km have offset the land surface in historical time. Natural geologic deformation, ground-water pumping, and petroleum withdrawal have all been considered as potential causes of the historical offset across these faults. The minor amount of localized land subsidence associated with oil and gas fields, suggests that petroleum withdrawal is not a major cause of the historical faulting. -from Authors

  9. Sulfide mineralization and magnetization, Cement oil field, Oklahoma

    USGS Publications Warehouse

    Reynolds, Richard L.; Fishman, Neil S.; Webring, Michael W.; Wanty, Richard B.; Goldhaber, Martin B.

    1989-01-01

    Geochemical, petrographic, and rock-magnetic studies were undertaken to investigate possible sources for reported positive aeromagnetic anomalies over the Cement oil field, Oklahoma. Ferrimagnetic pyrrhotite (monoclinic, Fe7S8 ), intergrown with more-abundant, nonmagnetic pyrite (FeS2), is present in well-cutting, core, and quarry samples at Cement, and it is the only identified source of possible enhanced magnetization in rocks over the field. Magnetite, found only in well cuttings from Cement, is contamination from drilling. Magnetite was considered previously by others to be the source of magnetic anomalies at Cement.

  10. Plans for first oil production revived in two Sudanese fields

    SciTech Connect

    Not Available

    1993-05-03

    A Vancouver, British Columbia, independent and its Sudanese partner have filed a development plan with the government of Sudan to produce an initial 40,000 b/d from Heglig and Unity oil fields in Sudan. Arakis Energy Corp., and the private Sudanese company State Petroleum Corp. (SPC) want to begin the first commercial hydrocarbon production in the destitute, war torn country. They are picking up where Chevron Corp. left off after years of grappling with an ambitious, costly - and ultimately futile - effort to export crude-oil from Sudan. After finding almost 300 million bbl of oil in Sudan during the early 1980s, Chevron scuttled a $2 billion project to export 50,000 b/d of Sudanese crude in 1986. It drilled 90 wells and sank more than $1 billion into the project. But it dropped the plan, citing the 1986 collapse of oil prices and concerns over security after repeated guerrilla attacks delayed work. The paper details the project.

  11. Potential for oil mining at Elk Basin oil field, Wyoming-Montana

    SciTech Connect

    Ayler, M.F.; Brechtel, C.

    1987-08-01

    By using the teachings of two US Patents, 4,458,945 and 4,595,239, it is possible to place mine workings below the Frontier sands of the Elk basin field, drill upward safely into the reservoir, and produce by gravity added to any present drive system. The patents describe equipment and a way of drilling upward with all cuttings and fluids flowing into a closed pipeline system for surface discharge. A final casing can be cemented into place and the well completed, again with all production into a closed pipeline. This system would permit field pressure control and maintenance with gravity drainage. Wells could be placed on one-acre spacing or less, thus producing much of the oil normally lost between surface wells. An analysis will be presented of probable mining costs for development of the Elk basin oil field on one-acre spacing. Petroleum engineers will then be able to estimate for themselves which method has the most profit potential and maximum recovery - the present systems or oil recovery by mining.

  12. Field observations of artificial sand and oil agglomerates

    USGS Publications Warehouse

    Dalyander, Patricia (Soupy); Long, Joseph W.; Plant, Nathaniel G.; McLaughlin, Molly R.; Mickey, Rangley C.

    2015-01-01

    Oil that comes into the surf zone following spills, such as occurred during the 2010 Deepwater Horizon (DWH) blowout, can mix with local sediment to form heavier-than-water sand and oil agglomerates (SOAs), at times in the form of mats a few centimeters thick and tens of meters long. Smaller agglomerates that form in situ or pieces that break off of larger mats, sometimes referred to as surface residual balls (SRBs), range in size from sand-sized grains to patty-shaped pieces several centimeters (cm) in diameter. These mobile SOAs can cause beach oiling for extended periods following the spill, on the scale of years as in the case of DWH. Limited research, including a prior effort by the U.S. Geological Survey (USGS) investigating SOA mobility, alongshore transport, and seafloor interaction using numerical model output, focused on the physical dynamics of SOAs. To address this data gap, we constructed artificial sand and oil agglomerates (aSOAs) with sand and paraffin wax to mimic the size and density of genuine SOAs. These aSOAs were deployed in the nearshore off the coast of St. Petersburg, Florida, during a field experiment to investigate their movement and seafloor interaction. This report presents the methodology for constructing aSOAs and describes the field experiment. Data acquired during the field campaign, including videos and images of aSOA movement in the nearshore (1.5-meter and 0.5-meter water depth) and in the swash zone, are also presented in this report.

  13. Lightweight cementing program increases profit from Kansas oil field

    SciTech Connect

    McCalmont, A.J. ); Matthews, B.; Crook, R. )

    1992-06-29

    This paper reports that single-stage, lightweight cementing in a Kansas operation improved the cement bond across a permeable oil/water sand. Additionally, pipe movement after pumping helped bond quality by preventing the slurry from beginning its transition time. This delay allowed continued transmission of hydrostatic pressure against the formation. In 1991, OXY USA Inc. completed 12 wells in the Ray field in Kansas. All wells were drilled to the Reagan sand. The sand has a distinct water/oil contact, strong water drive, and good permeability. Because of poor cement bonding across the Reagan, two-stage conventional cementing in the first eight wells did not effectively prevent excessive water production. Some of these wells had to have remedial cement squeezes and be reperforated. This work increased completion costs by about $15,000/well.

  14. Genesis and formation oil and gas fields (Azerbaijan)

    NASA Astrophysics Data System (ADS)

    Poletayev, Alexander

    2010-05-01

    The large amount of material of HC isotope composition of over 330 samples allow to restore the history of oil and gas deposits formation within the South-Caspian Depression. Maps of isotope composition changes according to area extent, as well as graphs of HC distribution depending upon stratigraphic age, including rocks, graphs of isotope composition change on sampling depth were compiled for HC study and oil-gas deposits formation. Comparison of mud volcanoes gases, oil and gas fields, gas-hydrates and bottom sediments were conducted. Gases genesis according to M. Shoelle and A. James methodic were studied. Model of area paleoconstruction was studied. Two stages of formation were distinguished as a result of gases study of various forms of their manifestation (gases of mud volcanoes, oil and gas fields, gas hydrate, bottom sediments) as well as isotope gases composition distribution in area of extent including stratigraphic age of deposits, depth of sampling and application of M. Shoelle and A. James. There were determined basic ways of HC migration as well as estimated oil-gas content prospective. The first stage has begun in the underlying PS deposits and continued up to PS deposits. At this stage one various kind of tectonic fluctuations can observed. The second stage of HC formation has started from PS and characterised with a change of geodynamic conditions in region. Avalanche sedimentation, predominance of descending movements over ascending ones promoted the accumulation of thick sediments in PS age. As a result of sediments accumulation and tectonic processes (down warping) in the deep-seated basin led to the complication of thermobaric conditions in the sedimentary series. The studied chemical and HC gases isotope composition showed that basic source of oil and gas formation is located in the deep areas of central and near-flank parts of depression. HC migration has mainly occurred upward. Study of HC migration trend in time and area as well as areas of generation etc. allows to reveal some structures where there is evidence of HC accumulation with large and gigantic reserves.

  15. Oil above the Arctic circle. [Milne Point Field

    SciTech Connect

    Dresner, S.

    1985-01-01

    Conoco is developing the company's first Arctic production venture, the Milne Point Field, on Alaska's North Slope. Development will proceed in several phases, with production being maintained. For over 20 years: an initial drilling and production program for the Kuparuk formation, followed by additional drilling to maintain productions as flow from the first wells slows. Subsequent phases in the early 90s would tap the vast reserves of thick oil in another, shallower reservoir. When the project is fully developed, total cost is expected to be near $800 million.

  16. Geochemistry of oil-field water from the North Slope

    SciTech Connect

    Kharaka, Y.K.; Carothers, W.W.

    1989-01-01

    Knowledge of the chemical composition of oil-field water is important in understanding the origin and migration of petroleum as well as the water mineral reactions that affect the porosity and permeability of the reservoir rocks. This knowledge is essential in interpreting electric logs and in determining potential pollution, corrosion, and disposal problems of water produced with oil and gas. Finally, the chemical composition of water is an important factor in determining the conditions (temperature, pressure) for the formation of clathrates. This chapter reports detailed chemical analyses of seven formation-water samples from wells within the NPRA and one surface-and two formation-water samples from the Prudhoe Bay oil field. The authors also report {delta}D and {delta}{sup 18}O values for eight of the water samples as well as analyses for gases from six wells. The formation-water samples were obtained from depths ranging from about 700 to 2800 m and from reservoir rocks ranging in age from Mississippian (Lisburne Group) to Triassic. The reservoir rocks are sandstone except for sample 79-AK-5, which was obtained from a limestone interbedded with sandstone. Generally, the pre-Cretaceous sandstone reservoir rocks on the North Slope have a similar mineral composition. Van de Kamp (1979) gave the following description of these sandstones: Quartz (usually monocrystalline) and chert are the major components; carbonate and clay are variable. Carbonate occurs as detrital grains and as cement, siderite being the most common type. Siderite can form as much as 30 percent of the rock. Clay occurs as a common matrix, generally making up less than 10 percent of the rock. Accessory minerals include pyrite, plagioclase, microcline, glauconite, zircon, sphene, tourmaline, and muscovite.

  17. Work Related Injuries in an Oil field in Oman

    PubMed Central

    Al-Rubaee, Faisal Rabia; Al-Maniri, Abdullah

    2011-01-01

    Objectives The aim of this paper is to describe the epidemiology of occupational injuries in the Harweel oil field, Oman. Methods The study is based on data gathered from a computerized database maintained by Petroleum Development of Oman (PDO). All non-fatal work-related occupational injuries registered between April 2007 and December 2009 were gathered and analyzed. Results A total of 170 work-related injuries were reported during the study period. Foreign body to the eye was the most common type of injury (27.6%) encountered among all injuries, followed by man falls/slips (11.8%). Injury to the upper extremities accounted for the largest percentage (38.8%) among other body parts. While, a significant portion of the injuries (52%) affected workers aged less than 30 years. The average injury rate per 1000 exposed workers per year was 19.8. Conclusion The study outlines the types of injuries most commonly encountered in the oil field in Oman. Additional data is required in order to devise proper epidemiological analysis. Establishing a comprehensive surveillance system for injuries is essential to ascertain factors influencing such injuries. PMID:22125724

  18. Silverthread oil field, Ventura County, California: a hydrodynamic trap

    SciTech Connect

    Hacker, R.N.; Hester, R.L.

    1987-05-01

    Silverthread oil field is located in west-central Ventura County, California. An unusual combination of Miocene turbidite sand deposition, tight folding, faulting, and hydrodynamics have created an accumulation of over 6 million bbl of oil from 33 wells. This field is also unique in that it lies beneath the convergence of several opposing major thrust faults which effectively hide any surface indication of structure at depth. Though previously and often explored by majors and other operators, the remarkable deduction and perseverance by Harry Browne and Argo Petroleum Corporation geologists led to the main area discovery in 1971. Of exceptional interest is the interaction of classic hydrodynamic flow on the distribution of fluids within the reservoir. Thirteen contour maps and numerous structure and stratigraphic sections were required to unravel the sand sequence, faulting, structure, and hydrodynamics. Because of high surface relief, most wells were directionally drilled from islands, and subsequent electric logs had to be unstretched using the Dental Dam technique to facilitate their correlation. A large, lighted, three-dimensional model consisting of thirty-six 2 x 5-ft transparent plexiglas plates was constructed to show a simple resolution of the complexities of this area and will be part of the poster session. This display, they believe, will generate considerable interest in their presentation.

  19. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    SciTech Connect

    City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

    2002-09-30

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies would result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs.

  20. FIELD TEST KIT FOR CHARACTERIZING OIL-BRINE EFFLUENTS FROM OFFSHORE DRILLING PLATFORMS

    EPA Science Inventory

    This research program was initiated to evaluate test methods for characterizing oil-brine effluents from offshore oil production platforms and to package and deliver a field test kit for on-site oil-brine analyses. After an initial laboratory evaluation and selection of test meth...

  1. Oil field waste disposal in salt caverns: An information website

    SciTech Connect

    Tomasko, D.; Veil, J. A.

    1999-12-10

    Argonne National Laboratory has completed the construction of a Website for the US Department of Energy (DOE) that provides detailed information on salt caverns and their use for disposing of nonhazardous oil field wastes (NOW) and naturally occurring radioactive materials (NORM). Specific topics in the Website include the following: descriptions of salt deposits and salt caverns within the US, salt cavern construction methods, potential types of wastes, waste emplacement, regulatory issues, costs, carcinogenic and noncarcinogenic human health risks associated with postulated cavern release scenarios, new information on cavern disposal (e.g., upcoming meetings, regulatory issues, etc.), other studies supported by the National Petroleum Technology Office (NPTO) (e.g., considerations of site location, cavern stability, development issues, and bedded salt characterization in the Midland Basin), and links to other associated Web sites. In addition, the Website allows downloadable access to reports prepared on the topic that were funded by DOE. Because of the large quantities of NOW and NORM wastes generated annually by the oil industry, information presented on this Website is particularly interesting and valuable to project managers, regulators, and concerned citizens.

  2. Indexes of pumps for oil field pumping units

    SciTech Connect

    Ibragimov, E.S.

    1995-07-01

    As reported previously, a series of oil field pumping units has been developed with power outputs of 125, 250, 500, and 1000 kW, designed for injecting working fluids in cementing operations in oil and gas wells, hydraulic fracturing of formations, washing out sand plugs, and other production operations. The units are designed for the use of three-plunger pumps with individual power outputs of 125 or 500 kW. In the 250- and 1000-kW units, two such pumps are used. The 1000-kW pumping unit serves mainly for deep-penetration hydraulic fracturing of formations, and also for fracturing deep formations. The hydraulic fracturing process does not require the use of units with two pumps; this has been demonstrated by experience, both here and in other countries. All units intended for use in hydraulic fracturing are built with a single pump, transmission, and drive. Pumping units for well cementing must have two pumps that will give a high delivery rate. At the start of the operation, a single pump can be used to feed water into the cement mixer, with the second pump used to transfer the cement slurry to the well. Then both pumps are connected to the slurry injection line. The operation of these pumps is described.

  3. Chemically bonded phosphate ceramic sealant formulations for oil field applications

    DOEpatents

    Wagh, Arun S. (Naperville, IL); Jeong, Seung-Young (Taejon, KR); McDaniel, Richard (Crest Hill, IL)

    2008-10-21

    A sealant for an oil or geothermal well capable of setting within about 3 to about 6 hours at temperatures less than about 250.degree. F. for shallow wells less than about 10,000 feet and deep wells greater than about 10,000 feet having MgO present in the range of from about 9.9 to about 14.5%, KH.sub.2PO.sub.4 present in the range of from about 29.7 to about 27.2%, class C fly ash present in the range of from about 19.8 to about 36.3%, class F fly ash present in the range of from about 19.8 to about 0%, boric acid or borax present in the range of from about 0.39 to about 1.45%, and water present in the range of from about 20.3 to about 21.86% by weight of the sealant.A method of sealing wells is disclosed as are compositions for very high temperature wells is disclosed as is a composition for treating oil field wastes.

  4. PVTX characteristics of oil inclusions from Asmari formation in Kuh-e-Mond heavy oil field in Iran

    NASA Astrophysics Data System (ADS)

    Shariatinia, Zeinab; Haghighi, Manouchehr; Shafiei, Ali; Feiznia, Sadat; Zendehboudi, Sohrab

    2015-04-01

    Incorporating PVT properties and compositional evolution of oil inclusions into reservoir engineering simulator protocols can enhance understanding of oil accumulation, reservoir charge history, and migration events. Microthermometry and volumetric analysis have proven to be useful tools in compositional reconstitution and PT studies of oil inclusions and were used to determine composition, thermodynamic conditions, physical properties, and gas-to-oil ratios of heavy oil samples from Asmari carbonate reservoir in Kuh-e-Mond heavy oil field in Iran. PVT properties were predicted using a PVT black-oil model, and an acceptable agreement was observed between the experiments and the simulations. Homogenization temperatures were determined using microthermometry techniques in dolomite and calcite cements of the Asmari Formation, as well. Based on the homogenization temperature data, the undersaturated hydrocarbon mixture prior to formation of the gas cap migrated with a higher gas-to-oil ratio from a source rock. According to the oil inclusion data, the onset of carbonate cementation occurred at temperatures above 45 °C and that cementation was progressive through burial diagenesis. PVT black-oil simulator results showed that the reservoir pressure and temperature were set at 100 bar and 54 °C during the initial stages of oil migration. Compositional modeling implies that primary and secondary cracking in source rocks were responsible for retention of heavy components and migration of miscible three-phase flow during hydrocarbon evolution. The PT evolution of the petroleum inclusions indicates changes in thermodynamic properties and mobility due to phenomena such as cracking, mixing, or/and transport at various stages of oil migration.

  5. Magnetotelluric signature of anticlines in Iran's Sehqanat oil field

    NASA Astrophysics Data System (ADS)

    Mansoori, Isa; Oskooi, Behrooz; Pedersen, Laust B.

    2015-07-01

    The magnetotelluric (MT) method has proved to be an effective tool in hydrocarbon exploration especially in areas with geological structures/formations where seismic reflection provides neither good quality data nor images. The Sehqanat oil field located in the sedimentary zone of Zagros in SW of Iran is a typical example. It is covered by the high velocity and heterogeneous formation of Gachsaran, which is exposed at the surface and has a thickness varying from 500 m to more than 2 km in the region. Gachsaran is composed mainly of salt and evaporites overlying, as a cap rock, the Asmari limestone formation which is the main reservoir in all oil fields of Iran along the Zagros range. The main geological interface which is targeted to be imaged with the MT method is the contact between the highly conductive evaporites of the Gachsaran formation and the underlying more resistive carbonates of the Asmari formation. MT data at more than 600 stations along five parallel SW-NE profiles crossing the main geological trend of the study area and transient electromagnetic data over 400 stations to be used for static shift corrections of the MT data were available. Dimensionality and strike analysis of the MT data show dominant two-dimensional (2-D) conditions in almost all sites and periods. The 2-D resistivity models resolved the boundary between Gachsaran and Asmari formations as a transition zone from highly conductive to resistive structures. The Sehqanat anticline has also been delineated throughout the 2-D resistivity sections as a resistive dome-shaped body located in the middle part of the MT profiles. There is a considerable correlation between the 2-D resistivity models and the adjacent 2-D reflection seismic sections so that a more reliable interpretation on the hydrocarbon trap of the Sehqanat anticline can be obtained.

  6. Evidence for a palaeo-oil column and alteration of residual oil in a gas-condensate field: Integrated oil inclusion and experimental results

    NASA Astrophysics Data System (ADS)

    Bourdet, Julien; Burruss, Robert C.; Chou, I.-Ming; Kempton, Richard; Liu, Keyu; Hung, Nguyen Viet

    2014-10-01

    In the Phuong Dong gas condensate field, Cuu Long Basin, Vietnam, hydrocarbon inclusions in quartz trapped a variety of petroleum fluids in the gas zone. Based on the attributes of the oil inclusion assemblages (fluorescence colour of the oil, bubble size, presence of bitumen), the presence of a palaeo-oil column is inferred prior to migration of gas into the reservoir. When a palaeo-oil column is displaced by gas, a residual volume fraction of oil remains in pores. If the gas does not completely mix with the oil, molecular partitioning between the residual oil and the new gas charge may change the composition and properties of the residual oil (gas stripping or gas washing). To simulate this phenomenon in the laboratory, we sealed small amounts of crude oil (42 and 30 °API) and excess pure gas (methane, ethane, or propane) in fused silica capillary capsules (FSCCs), with and without water. These mixtures were characterized with the same methods used to characterize the fluid inclusions, heating and cooling stage microscopy, fluorescence spectroscopy, synchrotron FT-IR, and Raman spectroscopy. At room temperature, mixtures of ethane and propane with the 30 °API oil formed a new immiscible fluorescent liquid phase with colour that is visually more blue than the initial oil. The fluorescence of the original oil phase shifted to yellow or disappeared with formation of semi-solid residues. The blue-shift of the fluorescence of the immiscible phases and strong CH stretching bands in FT-IR spectra are consistent with stripping of hydrocarbon molecules from the oil. In experiments in FSCCs with water solid residues are common. At elevated temperature, reproducing geologic reservoir conditions, the fluorescence changes and therefore the molecular fractionation are enhanced. However, the precipitation of solid residues is responsible of more complex changes. Mixing experiments with the 42 °API oil do not form a new immiscible hydrocarbon liquid although the fluorescence displays a similar yellow shift when gas is added. Solid residues rarely form in mixtures with 42 °API oil. FT-IR spectra suggest that the decrease of fluorescence intensity of the original oil at short wavelengths to be due to the partitioning of low molecular weight aromatic molecules into the vapour phase and/or the new immiscible liquid phase. The decrease of fluorescence intensity at long wavelengths appears to be due to loss of high molecular weight aromatics during precipitation of solid residues by desorption of aromatics and resins from asphaltenes. Desorption of low molecular weight aromatics and resins from asphaltenes during precipitation can also increase the fluorescence intensity at short wavelengths of the residual oil. Water clearly affects the precipitation of semi-solid residues from the oil phase of the lowest API gravity oil. The change of hydrocarbon phase(s) in UV-visible fluorescence and FT-IR enclosed within the FSCCs were compared with the fluorescence patterns of natural fluid inclusions at Phuong Dong gas condensate field. The experimental results support the concept of gas-washing of residual oil and are consistent with the oil inclusion attributes from the current gas zone at Phuong Dong field. The hydrocarbon charge history of the fractured granite reservoir is interpreted to result from the trapping of residual oil after drainage of a palaeo-oil column by gas.

  7. Tax effects upon oil field development in Venezuela

    E-print Network

    Manzano, Osmel

    2000-01-01

    Important reforms have been made to the oil sector tax code in Venezuela. Given its diversity of oil resources, there was a concern that some resources were not being exploited because of the structure of the tax code. ...

  8. CO2 Enhanced Oil Recovery Feasibility Evaluation for East Texas Oil Field

    E-print Network

    Lu, Ping

    2012-08-31

    (such as slim tube tests and swelling/extraction tests) and core flooding tests. Initial laboratory experiments indicated that miscibility was not achievable at current reservoir conditions and the oil recovery was low. Besides the low oil recovery...

  9. Air injection project breathes fire into aging West Hackberry oil field

    SciTech Connect

    Duey, R.

    1996-02-01

    Amoco, the DOE and LSU seek more oil from Gulf Coast salt dome fields with air injection technique. The West Hackberry Field in Louisiana is a water-driven reservoir. By injecting air into the high-pressure, high-temperature reservoir rock, the water is backed down, allowing the oil to drain off the steeply dipped rock.

  10. CUMULATIVE IMPACTS OF OIL FIELDS ON NORTHERN ALASKAN LANDSCAPES (JOURNAL VERSION)

    EPA Science Inventory

    Proposed further developments on Alaska's Arctic Coastal Plain raise questions about cumulative effects on arctic tundra ecosystems of development of multiple large oil fields. Maps of historical changes to the Prudhoe Bay Oil Field show indirect impacts can lag behind planned de...

  11. Integrated reservoir study of the Appleton Oil Field, Escambia County, Alabama 

    E-print Network

    Chijuka, Ekene F

    2002-01-01

    The objective of this study is the development of a reservoir characterization of the Appleton Oil Field, Escambia County, Alabama, using petrophysical data, reservoir performance data and reservoir simulation. Appleton Field is comprised of two...

  12. Process for protecting ends of oil field tubular products

    SciTech Connect

    Fraering, C.M. Jr.

    1988-08-12

    The method of protecting threaded, cut or machined ends of oil field tubular elongated hollow cylindrical articles or the like against rust, pitting, moisture induced corrosion damage and adverse weather condition during outdoor storage thereof preparatory to field use, wherein the elongated tubular cylindrical articles each have machined end surface portions forming threaded coupling ends or the like, is described comprising coating machined end portions of each of the tubular articles with a grease-like protective compound over all of the machined surface portions thereof, enshrouding the grease-coated machine surface portions thereof at each end in a respective shrinkable plastic film bag having a closed end bottom wall portion and side walls joined thereto throughout the perimeter of the bottom wall portion. The side walls extend for a length axially of the tubular articles greater than the axial distance spanned by the machined and coated surfaces and to extend inwardly beyond the machined surfaces onto uncoated adjoining exterior cylindrical surface portions of the tubular article. Heat shrinking the shrinkable plastic film bag at each end of the tubular article in situ forms an air-tight shrink wrap film enclosure enveloping the machined and coated surface portions in substantially conforming relation to the exterior surface configuration of the respective enshrouded end portion of the tubular article and tightly embracing in moisture sealing relation the exterior cylindrical surface portions thereof.

  13. Microseismic monitoring of the Chaveroo oil field, New Mexico

    SciTech Connect

    Rutledge, J.T.; Albright, J.N.

    1990-02-06

    Microseismicity was monitored in the Chaveroo oil field in southeastern New Mexico during, and for 5 weeks following, a pressurized stimulation of a well being prepared as an injector for a water flood operation. Three-thousand barrels of water were injected into the reservoir over a 5.5-hour period. Little seismicity was detected during the stimulation. Intermittent monitoring over a 5-week period following the injection indicated detectable seismicity occurring with activity levels varying in time. The most active period recorded occurred just after production resumed in the immediate area of the monitor well. Mapping the microearthquakes using the hodogram technique indicates the events occur along linear trends which corroborate known structural trends of the field. Seismicity trends were defined both parallel and perpendicular to the regionally defined maximum horizontal stress direction. Seventy-three good quality events were recorded, in a cumulative 24 hour period, from which structures were mapped up to 3000 ft from the monitor well. 13 refs., 9 figs.

  14. Basement reservoir in Zeit Bay oil field, Gulf of Suez

    SciTech Connect

    Zahran, I.; Askary, S.

    1988-02-01

    Fractured basement, one of the most important reservoirs of Zeit Bay field, contains nearly one-third of oil in place of the field. The flow rates per well vary from 700 to 9,000 BOPD. Due to its well-established production potential, 60% of the wells for the development of the field were drilled down to basement. The Zeit Bay basement consists of granitic rocks of pegmatitic to coarse porphyritic texture and has equal proportions of alkali feldspars. Dykes of various compositions are present, traversing the granite at different intervals. Dykes include aplite, microsyenite, diabase and lamprophyre. The last two pertain to the post-granitic dykes of late Proterozoic age. The main granitic pluton is related to one of the final stages of the tectonic-magmatic cycle of the Arabo-Nubian shield. The Zeit Bay area was a significant paleohigh until the Miocene, hence its structural picture is very complicated due to the impact of different tectonic movements from the late Precambrian to Cenozoic. The resulting structural elements were carefully investigated and statistically analyzed to decipher the influence of various tectonic events. The presence of high porosity in some intervals and low porosity in others could be tied to the presence of new fractures and the nature of cementing minerals. The relation of mineralized fractures and their depths lead to zonation of porous layers in the granitic pluton. Diagenetic processes on the granitic body and the alteration/resedimentation of the diagenetic products controlled the magnitude and amplitude of the porosity layers. A model has been constructed to illustrate the changes in the primary rock texture and structure with sequential diagenetic processes, taking into consideration the fracture distribution and their opening affinities as related to their depths.

  15. Basement reservoir in Zeit Bay oil field, Gulf of Suez

    SciTech Connect

    Zahran, I.; Askary, S.

    1988-01-01

    Fractured basement, one of the most important reservoirs of Zeit Bay field, contains nearly one-third of oil in place of the field. The flow rates per well vary from 700 to 9,000 BOPD. Due to its well-established production potential, 60% of the wells for the development of the field were drilled down to basement. The Zeit Bay basement consist of granitic rocks of pegmatitic to coarse porphyritic texture and has equal proportions of alkali feldspars. Dykes of various compositions are present, traversing the granite at different intervals. Dykes include aplite, microsyenite, diabase and lamprophyre. The last two pertain to the post-granitic dykes of later Proterozoic age. The main granitic luton is related to one of the final stages of the tectonic-magmatic cycle of the Arabo-Nubian sheild. The Zeit Bay area was a significant paleohigh until the Miocene, hence its structural picture is very complicated due to the impact of different tectonic movements from the late Precambrian to Cenozoic. The resulting structural elements were carefully investigated and statistically analyzed to decipher the influence of various tectonic events. The presence of high porosity in some intervals and low porosity in others could be tied to the presence of new fractures and the nature of cementing minerals. The relation of mineralized fractures and their depths lead to zonation of porous layers in the granitic pluton. Diagenetic processes on the granitic body and the alternation/resedimentation of the diagenetic products controlled the magnitude and amplitude of the porosity layers.

  16. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect

    Scott Hara

    2001-06-27

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies will result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs.

  17. Increasing Heavy Oil Reserves in the Wilmington Oil Field through Advanced Reservoir Characterization and Thermal Production Technologies

    SciTech Connect

    City of Long Beach; David K.Davies and Associates; Tidelands Oil Production Company; University of Southern California

    1999-06-25

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California. This is realized through the testing and application of advanced reservoir characterization and thermal production technologies. It is hoped that the successful application of these technologies will result in their implementation throughout the Wilmington Field and through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively insufficient because of several producability problems which are common in SBC reservoir; inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves.

  18. INCREASED OIL RECOVERY FROM MATURE OIL FIELDS USING GELLED POLYMER TREATMENTS

    SciTech Connect

    G.P. Willhite; D.W. Green; C.S. McCool

    2003-05-01

    Gelled polymer treatments are applied to oil reservoirs to increase oil production and to reduce water production by altering the fluid movement within the reservoir. This report describes the results of a three-year research program aimed at reducing barriers to the widespread use of gelled polymer treatments by (1) developing methods to predict gel behavior during placement in matrix rock and fractures, (2) determining the persistence of permeability reduction after gel placement, and (3) developing methods to design production well treatments to control water production. The work focused on the gel system composed of polyacrylamide and chromium acetate. The molar mass of the polymer was about six million. Chromium(III) acetate reacted and formed crosslinks between polymer molecules. The crosslinked polymer molecules, or pre-gel aggregates, combine and grow to eventually form a 3-dimensional gel. A fundamental study to characterize the formation and growth of pre-gel aggregates was conducted. Two methods, flow field-flow fractionation (FFFF) and multi-angle laser light scattering (MALLS) were used. Studies using FFFF were inconclusive. Data taken using MALLS showed that at the gel time the average molar mass of gel aggregates increased by a factor of about three while the average size increase was approximately 50%. Increased acetate concentration in the gelant increases the gel time. The in situ performance of an added-acetate system was investigated to determine the applicability for in-depth treatments. Increased acetate concentrations delayed the development of increased flow resistance during gelant injection in short sandpacks. The development of increased flow resistance (in situ gelation) was extended from 2 to 34 days by increasing the acetate-to-chromium ratio from 38 to 153. In situ gelation occurred at a time that was approximately 22% of the bulk gelation time. When carbonate rocks are treated with gel, chromium retention in the rock may limit in-depth treatment. Chromium retention due to precipitation was investigated by flowing chromium acetate solutions through carbonate rock. Chromium precipitated faster in the rocks than in beaker experiments at similar conditions. A mathematical model previously developed fit the precipitation data reasonably well. The stability of gels when subjected to stress was investigated by experiments with gels placed in tubes and in laboratory-scale fractures. Rupture pressures for gels placed in small diameter tubes were correlated with the ratio of tube length to tube ID. In fractures, fluid leakoff from the fracture to adjacent matrix rock affected gel formation and gel stability in a positive way. Disproportionate permeability reduction (DPR) was studied in unconsolidated sandpacks and in Berea sandstone cores. A conceptual model was developed to explain the presence of DPR. The effect of a pressure gradient, imposed by injection of oil or brine, on the permeability of gel-treated cores was investigated. DPR increased significantly as the pressure gradient was decreased. The magnitude of the pressure gradient had a much larger effect on water permeability than on oil permeability.

  19. Driving mechanism for plunger pumps in oil field installations

    SciTech Connect

    Gazarov, R.E.; Zaslavskii, Yu.V.

    1995-07-01

    Mobile oil field pumping installations of up to 1600 kW power at a pressure up to 140 MPa are widely used in hydraulic fracturing of beds, acid treatment of the near-face zone, cementation of wells, and other flushing and pressure operations. Equipment in these installations, which include high-pressure plunger pumps of high unit capacity, are mounted on mobile bases of limited lifting capacity (KrAZ automobile chassis, T-130 tractors, etc.). Very strict demands are made on the reliability, durability, and mass/size characteristics of the pumps and on all the equipment of the mobile installations. In modern pumps, an axial load of up to 100 tons or more, which is transmitted to the crankshaft, acts on each plunger. The engine of the installation rotates the crankshaft through a multiple-speed transmission and the transmission shaft of the pump. The forces acting on the elements of the driving part of a pump with a connecting rod - crank drive and a single-reduction tooth gear are described.

  20. Economic evaluation on CO?-EOR of onshore oil fields in China

    SciTech Connect

    Wei, Ning; Li, Xiaochun; Dahowski, Robert T.; Davidson, Casie L.; Liu, Shengnan; Zha, Yongjin

    2015-06-01

    Carbon dioxide enhanced oil recovery (CO?-EOR) and sequestration in depleted oil reservoirs is a plausible option for utilizing anthropogenic CO? to increase oil production while storing CO? underground. Evaluation of the storage resources and cost of potential CO?-EOR projects is an essential step before the commencement of large-scale deployment of such activities. In this paper, a hybrid techno-economic evaluation method, including a performance model and cost model for onshore CO?-EOR projects, has been developed based on previous studies. Total 296 onshore oil fields, accounting for about 70% of total mature onshore oil fields in China, were evaluated by the techno-economic method. The key findings of this study are summarized as follows: (1) deterministic analysis shows there are approximately 1.1 billion tons (7.7 billion barrels) of incremental crude oil and 2.2 billion tons CO? storage resource for onshore CO?-EOR at net positive revenue within the Chinese oil fields reviewed under the given operating strategy and economic assumptions. (2) Sensitivity study highlights that the cumulative oil production and cumulative CO? storage resource are very sensitive to crude oil price, CO? cost, project lifetime, discount rate and tax policy. High oil price, short project lifetime, low discount rate, low CO? cost, and low tax policy can greatly increase the net income of the oil enterprise, incremental oil recovery and CO? storage resource. (3) From this techno-economic evaluation, the major barriers to large-scale deployment of CO?-EOR include complex geological conditions, low API of crude oil, high tax policy, and lack of incentives for the CO?-EOR project.

  1. Economic evaluation on CO?-EOR of onshore oil fields in China

    DOE PAGESBeta

    Wei, Ning; Li, Xiaochun; Dahowski, Robert T.; Davidson, Casie L.; Liu, Shengnan; Zha, Yongjin

    2015-06-01

    Carbon dioxide enhanced oil recovery (CO?-EOR) and sequestration in depleted oil reservoirs is a plausible option for utilizing anthropogenic CO? to increase oil production while storing CO? underground. Evaluation of the storage resources and cost of potential CO?-EOR projects is an essential step before the commencement of large-scale deployment of such activities. In this paper, a hybrid techno-economic evaluation method, including a performance model and cost model for onshore CO?-EOR projects, has been developed based on previous studies. Total 296 onshore oil fields, accounting for about 70% of total mature onshore oil fields in China, were evaluated by the techno-economicmore »method. The key findings of this study are summarized as follows: (1) deterministic analysis shows there are approximately 1.1 billion tons (7.7 billion barrels) of incremental crude oil and 2.2 billion tons CO? storage resource for onshore CO?-EOR at net positive revenue within the Chinese oil fields reviewed under the given operating strategy and economic assumptions. (2) Sensitivity study highlights that the cumulative oil production and cumulative CO? storage resource are very sensitive to crude oil price, CO? cost, project lifetime, discount rate and tax policy. High oil price, short project lifetime, low discount rate, low CO? cost, and low tax policy can greatly increase the net income of the oil enterprise, incremental oil recovery and CO? storage resource. (3) From this techno-economic evaluation, the major barriers to large-scale deployment of CO?-EOR include complex geological conditions, low API of crude oil, high tax policy, and lack of incentives for the CO?-EOR project.« less

  2. Composition and structure of asphalthene components of oils from the Krapivinskoye oil field

    NASA Astrophysics Data System (ADS)

    Sergun, Valery P.; Cheshkova, Tatiana V.; Sagachenko, Tatiana A.; Min, Raissa S.

    2015-10-01

    Asphaltene substances of oil are characterized via the methods of extraction, adsorption chromatography, chemical degradation, and chromatography-mass spectrometry. The data on the structure of the high- and low molecular weight asphaltenes of methane-naphthene oils and composition of the compounds adsorbed/occluded by their molecules are presented. These investigations are important for the development of efficient petroleum technologies.

  3. Energy Conservation and Efficiency Improvement for the Electric Motors Operating in U.S. Oil Fields 

    E-print Network

    Ula, S.; Cain, W.; Nichols, T.

    1993-01-01

    energy use in the U.S. is comparable to all auto energy use. Electric motors are the largest users of energy in all mineral extraction activities. In oil fields, electric motors drive the pumping units used for lifting the oil and water to the surface...

  4. Chemical composition of asphaltenes of crude oil from Baradero field in Cuba

    SciTech Connect

    Platonov, V.V.; Proskuryakov, V.A.; Klyavina, O.A.; Kolyabina, N.A.

    1994-09-10

    Asphaltenes of crude oil from Baradero field in Cuba have been studied by physical and physicochemical methods. Dynamics of distribution of nitrogen, sulfur, and oxygen and also various functional groups in asphaltenes has been described. These data can be used for the proper deasphalting of crude oil and further treatment of asphaltenes.

  5. Production and Evaluation of Biodiesel from Field Pennycress (Thlaspi Arvense L.) Oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field pennycress (Thlaspi arvense L.) oil is evaluated for the first time as a potential feedstock for biodiesel production. Biodiesel was obtained in 82 wt % yield by a standard transesterification procedure with methanol and sodium methoxide catalyst at 60 deg C and an alcohol to oil ratio of 6:1...

  6. ORIGINAL ARTICLE On the origin of oil-field water in the Biyang Depression of China

    E-print Network

    Zhan, Hongbin

    ORIGINAL ARTICLE On the origin of oil-field water in the Biyang Depression of China Yong Fu Æ in the Biyang Depression of China and quantitatively analyzed the chemical features of those samples using to be very low in the groundwater of the Biyang Depression. The concentration of anion in the oil

  7. Geology and geothermal origin of Grant Canyon and Bacon Flat Oil Fields, Railroad Valley, Nevada

    SciTech Connect

    Hulen, J.B. ); Goff, F. ); Ross, J.R. ); Bortz, L.C. ); Bereskin, S.R. )

    1994-04-01

    Eastern Nevada's Grant Canyon and Bacon Flat oil fields show strong evidence of formation in a still-active, moderate-temperature geothermal system. Modern manifestations of this system include unusually elevated oil-reservoir temperature at shallow depth, 116-122[degrees]C at 1.1-1.6 km, and dilute Na-HCO[sub 3]Cl thermal waters directly associated with hot oil. Hydrogen and oxygen isotopic compositions indicate that these thermal waters are meteoric in origin, but were probably recharged prior to the Holocene (before 10 ka). The waters apparently ascended to oil-reservoir elevations after deep heating in response to the normal regional thermal gradient; there is no evidence for a modern magmatic heat source. The beginning of oil-reservoir evolution at both fields is recorded by late-stage, fracture-filling quartz in the vuggy, brecciated, Paleozoic dolostone reservoir rocks. Oil and aqueous solutions were trapped as fluid inclusions in the quartz at temperatures comparable to those now prevailing in the reservoirs. Present day and fluid-inclusion temperatures define essentially coincident isothermal profiles through and beneath the oil-reservoir interval, a phenomenon consistent with near-constant convective heat transfer since inception of the geothermal system. Some basin and range oil fields have arisen as valuable byproducts of actively circulating geothermal systems and blending this concept into current exploration stratigies could hasten discovery of the 100 mbbl fields many geologists believe remain to be found in this region. 100 refs., 13 figs., 5 tabs.

  8. An Analysis of the Distribution and Economics of Oil Fields for Enhanced Oil Recovery-Carbon Capture and Storage

    NASA Astrophysics Data System (ADS)

    Hall, Kristyn Ann

    The rising carbon dioxide emissions contributing to climate change has lead to the examination of potential ways to mitigate the environmental impact. One such method is through the geological sequestration of carbon (CCS). Although there are several different forms of geological sequestration (i.e. Saline Aquifers, Oil and Gas Reservoirs, Unminable Coal Seams) the current projects are just initiating the large scale-testing phase. The lead entry point into CCS projects is to combine the sequestration with enhanced oil recovery (EOR) due to the improved economic model as a result of the oil recovery and the pre-existing knowledge of the geological structures. The potential scope of CCS-EOR projects throughout the continental United States in terms of a systematic examination of individual reservoir storage potential has not been examined. Instead the majority of the research completed has centered on either estimating the total United States storage potential or the potential of a single specific reservoir. The purpose of this paper is to examine the relationship between oil recovery, carbon dioxide storage and cost during CCS-EOR. The characteristics of the oil and gas reservoirs examined in this study from the Nehring Oil and Gas Database were used in the CCS-EOR model developed by Sean McCoy to estimate the lifting and storage costs of the different reservoirs throughout the continental United States. This allows for an examination of both technical and financial viability of CCS-EOR as an intermediate step for future CCS projects in other geological formations. One option for mitigating climate change is to store industrial CO2 emissions in geologic reservoirs as part of a process known as carbon capture and storage (CCS). There is general consensus that large-scale deployment of CCS would best be initiated by combining geologic sequestration with enhanced oil recovery (EOR), which can use CO2 to improve production from declining oil fields. Revenues from the produced oil could help offset the current high costs of CCS. The cumulative potential of CCS-EOR in the continental U.S. has been evaluated in terms of both CO2 storage capacity and additional oil production. This thesis examines the same potential, but on a reservoir-by-reservoir basis. Reservoir properties from the Nehring Oil and Gas Database are used as inputs to a CCS-EOR model developed by McCoy (YR) to estimate the storage capacity, oil production and CCS-EOR costs for over 10,000 oil reservoirs located throughout the continental United States. We find that 86% of the reservoirs could store ?1 y or CO2 emissions from a single 500 MW coal-fired power plant (i.e., 3 Mtons CO2). Less than 1% of the reservoirs, on the other hand, appear capable of storing ?30 y of CO2 emissions from a 500 MW plan. But these larger reservoirs are also estimated to contain 48% of the predicted additional oil that could be produced through CCS-EOR. The McCoy model also predicts that the reservoirs will on average produce 4.5 bbl of oil for each ton of sequestered CO2, a ratio known as the utilization factor. This utilization factor is 1.5 times higher that arrived at by the U.S. Department of Energy, and leads to a cumulative production of oil for all the reservoirs examined of ˜183 billion barrels along with a cumulative storage capacity of 41 Mtons CO2. This is equivalent to 26.5 y of current oil consumption by the nation, and 8.5 y of current coal plant emissions.

  9. Environmental effects of the Kuwaiti oil field fires

    SciTech Connect

    Hahn, J. )

    1991-09-01

    Theory suggests that the rates of smoke emission and heat generation and, consequently, the atmospheric injection height and residence time of the smoke are crucial in determining whether the environmental effects are of global or only regional importance. Confirming the results of model calculations, observations have shown that, up to now, the smoke did not rise higher than to the top of the planetary boundary layer (PBL), about 3,300 m at a maximum. The photochemistry within the smoke cloud very likely is significantly different from that of the smoke-free troposphere. Also, because there is very little precipitation in the greater Gulf region from May through October, it is difficult to predict how and where NO{sub x}, SO{sub 2}, and their oxidation products HNO{sub 3} and H{sub 2}SO{sub 4} will be deposited. Photochemical oxidation should be largely suppressed in the denser parts of the smoke cloud, so major acid deposition is likely to occur at some distance from the source area, probably as far away as 2,000 km. Results of model calculations suggest that the effect of the smoke emission in Kuwait on the Asian summer monsoon is small. In summary, one should expect severe environmental consequences of the Kuwaiti oil field fires for the territory of Kuwait and for parts of Iraq, Jordan, and Saudi Arabia. Serious effects also may be felt in Iran and the other Gulf states, and perhaps even as far away as Turkey and Afghanistan. The surface waters of the Gulf also may be severely affected by smoke deposition. Significant environmental effects on a global or even hemispheric scale, however, are not likely to occur.

  10. ALASKA NORTH SLOPE OIL-FIELD RESTORATION RESEARCH STRATEGY (ANSORRS)

    EPA Science Inventory

    This document provides a research strategy to support ecological restoration of disturbances related to oil and gas developments on the North Slope of Alaska that is mutually beneficial to the arctic ecorestoration research community and the arctic regulatory community (including...

  11. Enhancement of the TORIS data base of Appalachian basin oil fields. Final report

    SciTech Connect

    1996-01-31

    The Tertiary Oil Recovery Information System, or TORIS, was developed by the Department of Energy in the early 1980s with a goal of accounting for 70% of the nation`s original oil in place (OOIP). More than 3,700 oil reservoirs were included in TORIS, but coverage in the Appalachian basin was poor. This TORIS enhancement project has two main objectives: to increase the coverage of oil fields in the Appalachian basin; and to evaluate data for reservoirs currently in TORIS, and to add, change or delete data as necessary. Both of these objectives have been accomplished. The geological surveys in Kentucky, Ohio, Pennsylvania and West Virginia have identified 113 fields in the Appalachian basin to be included in TORIS that collectively contained 80% of the original oil in place in the basin. Furthermore, data in TORIS at the outset of the project was checked and additional data were added to the original 20 TORIS oil fields. This final report is organized into four main sections: reservoir selection; evaluation of data already in TORIS; industry assistance; and data base creation and validation. Throughout the report the terms pool and reservoir may be used in reference to a single zone of oil accumulation and production within a field. Thus, a field is composed of one or more pools at various stratigraphic levels. These pools or reservoirs also are referred to as pay sands that may be individually named sandstones within a formation or group.

  12. Inversion of field-scale partitioning tracer response for characterizing oil saturation distribution: a streamline approach 

    E-print Network

    Iliassov, Pavel Alexandrovich

    2000-01-01

    through 13 production wells. We first determined the permeability distribution in the field by matching conservative tracer responses and then matched partitioning tracer responses to determine oil saturation distribution. The results of our work agree...

  13. 37. SAR2, SHOWING OIL CIRCUIT BREAKERS (ABOVE) AND GENERATOR FIELD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. SAR-2, SHOWING OIL CIRCUIT BREAKERS (ABOVE) AND GENERATOR FIELD COIL CONTROL RHEOSTATS (BELOW). SCE negative no. 10331, November 1, 1923. Photograph by G. Haven Bishop. - Santa Ana River Hydroelectric System, SAR-2 Powerhouse, Redlands, San Bernardino County, CA

  14. Real option analysis as a decision tool in oil field developments

    E-print Network

    Babajide, Abisoye (Abisoye E.)

    2007-01-01

    This thesis shows the applicability and value of real options analysis in developing an oil field, and how its use along with decision analysis can maximize the returns on a given project and minimize the losses. It focuses ...

  15. IMPROVED APPROACHES TO DESIGN OF POLYMER GEL TREATMENTS IN MATURE OIL FIELDS: FIELD DEMONSTRATION IN DICKMAN FIELD, NESS COUNTY, KANSAS

    SciTech Connect

    Ronald Fowler

    2004-11-30

    This report describes the results of the one-year project entitled ''Improved Approaches to Design of Polymer Gel Treatments in Mature Oil Fields: Field Demonstration in Dickman Field, Ness County, Kansas''. The project was a 12-month collaboration of Grand Mesa Operating Company (a small independent), TIORCO Inc. (a company focused on improved recovery technology) and the University of Kansas. The study undertook tasks to determine an optimum polymer gel treatment design in Mississippian reservoirs, demonstrate application, and evaluate the success of the program. The project investigated geologic and engineering parameters and cost-effective technologies required for design and implementation of effective polymer gel treatment programs in the Mississippian reservoir in the Midcontinent. The majority of Mississippian production in Kansas occurs at or near the top of the Mississippian section just below the regional sub-Pennsylvanian unconformity and karst surface. Dickman Field with the extremely high water cuts and low recovery factors is typical of Mississippian reservoirs. Producibility problems in these reservoirs include inadequate reservoir characterization, drilling and completion design problems, and most significantly extremely high water cuts and low recovery factors that place continued operations at or near their economic limits. Geologic, geophysical and engineering data were integrated to provide a technical foundation for candidate selection and treatment design. Data includes core, engineering data, and 3D seismic data. Based on technical and economic considerations a well was selected for gel-polymer treatment (Grand Mesa Operating Company Tilley No.2). The treatment was not successful due to the small amount of polymer that could be injected. Data from the initial well and other candidates in the demonstration area was analyzed using geologic, geophysical and engineering data. Based on the results of the treatment and the integrated reservoir characterization it was determined that a second polymer-gel treatment could not be justified. The Mississippian reservoir at Dickman Field is much more complex than originally anticipated with numerous reservoir compartments and potential attic oil beneath the irregular Mississippian karst. It appears that remaining oil in place could be best recovered using improved oil recovery techniques such as target infill drilling and horizontal wells.

  16. The artificial neural network for research of the recovery ratio of oil fields

    SciTech Connect

    Cai, Y.

    1994-12-31

    A typical artificial neural network model--back-propagation model was applied to establish a computer expert system for the prediction of recovery ration with the Hajiang Oil Field as the example in this paper. The results was satisfactory and the maximum relative error doesn`t exceed 4.6%. The calculation time doesn`t exceed 140 seconds. The results showed that the network method is good, and therefore it might be widely used in developing oil fields.

  17. The space-time structure of oil and gas field growth in a complex depositional system

    USGS Publications Warehouse

    Drew, L.J.; Mast, R.F.; Schuenemeyer, J.H.

    1994-01-01

    Shortly after the discovery of an oil and gas field, an initial estimate is usually made of the ultimate recovery of the field. With the passage of time, this initial estimate is almost always revised upward. The phenomenon of the growth of the expected ultimate recovery of a field, which is known as "field growth," is important to resource assessment analysts for several reasons. First, field growth is the source of a large part of future additions to the inventory of proved reserves of crude oil and natural gas in most petroliferous areas of the world. Second, field growth introduces a large negative bias in the forecast of the future rates of discovery of oil and gas fields made by discovery process models. In this study, the growth in estimated ultimate recovery of oil and gas in fields made up of sandstone reservoirs formed in a complex depositional environment (Frio strand plain exploration play) is examined. The results presented here show how the growth of oil and gas fields is tied directly to the architectural element of the shoreline processes and tectonics that caused the deposition of the individual sand bodies hosting the producible hydrocarbon. ?? 1994 Oxford University Press.

  18. Reservoir simulation of co2 sequestration and enhanced oil recovery in Tensleep Formation, Teapot Dome field 

    E-print Network

    Gaviria Garcia, Ricardo

    2006-04-12

    of Teapot Dome Field in the Permian Basin ................................ 13 3.2 Generalized stratigraphic column showing Permian section at the Teapot Dome field... administration. The field is operated by the Department of Energy (DOE) through its Rocky Mountain Oilfield Testing Center (RMOTC). Some activity occurred during a period of production in the 1920s and during 1958 to 1976 to mitigate loss of oil...

  19. De-convoluting mixed crude oil in Prudhoe Bay Field, North Slope, Alaska

    USGS Publications Warehouse

    Peters, K.E.; Scott, Ramos L.; Zumberge, J.E.; Valin, Z.C.; Bird, K.J.

    2008-01-01

    Seventy-four crude oil samples from the Barrow arch on the North Slope of Alaska were studied to assess the relative volumetric contributions from different source rocks to the giant Prudhoe Bay Field. We applied alternating least squares to concentration data (ALS-C) for 46 biomarkers in the range C19-C35 to de-convolute mixtures of oil generated from carbonate rich Triassic Shublik Formation and clay rich Jurassic Kingak Shale and Cretaceous Hue Shale-gamma ray zone (Hue-GRZ) source rocks. ALS-C results for 23 oil samples from the prolific Ivishak Formation reservoir of the Prudhoe Bay Field indicate approximately equal contributions from Shublik Formation and Hue-GRZ source rocks (37% each), less from the Kingak Shale (26%), and little or no contribution from other source rocks. These results differ from published interpretations that most oil in the Prudhoe Bay Field originated from the Shublik Formation source rock. With few exceptions, the relative contribution of oil from the Shublik Formation decreases, while that from the Hue-GRZ increases in reservoirs along the Barrow arch from Point Barrow in the northwest to Point Thomson in the southeast (???250 miles or 400 km). The Shublik contribution also decreases to a lesser degree between fault blocks within the Ivishak pool from west to east across the Prudhoe Bay Field. ALS-C provides a robust means to calculate the relative amounts of two or more oil types in a mixture. Furthermore, ALS-C does not require that pure end member oils be identified prior to analysis or that laboratory mixtures of these oils be prepared to evaluate mixing. ALS-C of biomarkers reliably de-convolutes mixtures because the concentrations of compounds in mixtures vary as linear functions of the amount of each oil type. ALS of biomarker ratios (ALS-R) cannot be used to de-convolute mixtures because compound ratios vary as nonlinear functions of the amount of each oil type.

  20. The discovery and development of the El Dorado (Kansas) oil field

    USGS Publications Warehouse

    Skelton, L.H.

    1997-01-01

    Pioneers named El Dorado, Kansas, in 1857 for the beauty of the site and the promise of future riches but not until 58 years later was black rather than mythical yellow gold discovered when the Stapleton No. 1 oil well came in on October 5, 1915. El Dorado's leaders were envious when nearby towns found huge gas fields and thrived. John Donley, an El Dorado barber, had tried to find either gas or oil in 1878 at a nearby site selected by a spiritualist. He staked out a townsite, spudded a well and drilled 200 feet before running out of money. Wells in 1879 and 1882 produced only brine. In June, 1914, chafed over discovery of oil in nearby Augusta, El Dorado city fathers contracted with Erasmus Haworth, soon to retire from his position as State Geologist, to perform a geological study of the area. His field work outlined the El Dorado Anticline, which unsuccessfully was drilled first in August, 1915. On abandonment, the Wichita Natural Gas Company purchased the lease and drilled the Stapleton No. 1 oil well. More success followed and by 1918, the El Dorado produced 29 million barrels, almost 9% of the nation's oil. Entrepreneurs came and prospered: the Cities Service Oil Company, A.L. Derby, Jack Vickers, and Bill Skelly all became familiar names in Midcontinent oil marketing. Earlier giant fields had hurt the price of crude oil but the El Dorado came in as both World War I and the rapid popularization of motor transport made a market for both light and heavy ends of the refinery stream. The giant gas field never materialized as hoped but in late 1995, the El Dorado Field produced its 300 millionth barrel of oil.

  1. Update on cavern disposal of NORM-contaminated oil field wastes.

    SciTech Connect

    Veil, J. A.

    1998-09-22

    Some types of oil and gas production and processing wastes contain naturally occurring radioactive material (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. Argonne National Laboratory has previously evaluated the feasibility, legality, risk and economics of disposing of nonhazardous oil field wastes, other than NORM waste, in salt caverns. Cavern disposal of nonhazardous oil field waste, other than NORM waste, is occurring at four Texas facilities, in several Canadian facilities, and reportedly in Europe. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns as well. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, a review of federal regulations and regulations from several states indicated that there are no outright prohibitions against NORM disposal in salt caverns or other Class II wells, except for Louisiana which prohibits disposal of radioactive wastes or other radioactive materials in salt domes. Currently, however, only Texas and New Mexico are working on disposal cavern regulations, and no states have issued permits to allow cavern disposal of NORM waste. On the basis of the costs currently charged for cavern disposal of nonhazardous oil field waste (NOW), NORM waste disposal in caverns is likely to be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

  2. An overview of giant oil and gas fields of the decade: 1978-1988

    SciTech Connect

    Halbouty, M.T. )

    1990-09-01

    Scientific studies and projections of future world energy demand indicate that although alternate-energy fuel sources must be actively pursued and developed, there must be adequate petroleum supplies to bridge the gap. For the international petroleum industry, the years covered by this conference, 1978-1988, were complex. They were years of boom and bust. The world's energy consciousness was boosted sharply by the effects of the 1979 Iranian revolution and the resulting embargo that sent world oil prices to record heights. Global petroleum exploration soon surged, leading to the industry's all-time drilling high in 1981. Then came the oil price collapse in 1985, and the following years were characterized by falling oil prices and drastic budget cuts for exploration and development. Although exploration dropped sharply, there was a steady flow of giant oil and gas field discoveries. Using the giant field designation criteria of 500 million bbl of oil recoverable for fields in Asiatic Russia, North Africa, and the Middle East; 100 million bbl of oil recoverable for the fields in the remainder of the world; and 3 tcf and 1 tcf of gas reserves recoverable for the same areas, respectively, it is estimated that at least 182 oil and gas fields containing an estimated 140 billion BOE were discovered in 46 countries during the years covered by this conference. Today, exploration is slowly gaining momentum in all types of petroleum provinces-intensely explored, partially explored, moderately explored, and essentially unexplored - and as long as exploration continues in whatever area of the world, there will always be opportunities to find giant oil and gas fields.

  3. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect

    Unknown

    2001-08-08

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California, through the testing and application of advanced reservoir characterization and thermal production technologies. The hope is that successful application of these technologies will result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs, including: (1) Development of three-dimensional (3-D) deterministic and stochastic reservoir simulation models--thermal or otherwise--to aid in reservoir management of the steamflood and post-steamflood phases and subsequent development work. (2) Development of computerized 3-D visualizations of the geologic and reservoir simulation models to aid reservoir surveillance and operations. (3) Perform detailed studies of the geochemical interactions between the steam and the formation rock and fluids. (4) Testing and proposed application of a novel alkaline-steam well completion technique for the containment of the unconsolidated formation sands and control of fluid entry and injection profiles. (5) Installation of a 2100 ft, 14 inch insulated, steam line beneath a harbor channel to supply steam to an island location. (6) Testing and proposed application of thermal recovery technologies to increase oil production and reserves: (a) Performing pilot tests of cyclic steam injection and production on new horizontal wells. (b) Performing pilot tests of hot water-alternating-steam (WAS) drive in the existing steam drive area to improve thermal efficiency. (7) Perform a pilot steamflood with the four horizontal injectors and producers using a pseudo steam-assisted gravity-drainage (SAGD) process. (8) Advanced reservoir management, through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring and evaluation.

  4. Assessment of Alaska's North Slope Oil Field Capacity to Sequester CO{sub 2}

    SciTech Connect

    Umekwe, Pascal; Mongrain, Joanna; Ahmadi, Mohabbat; Hanks, Catherine

    2013-03-15

    The capacity of 21 major fields containing more than 95% of the North Slope of Alaska's oil were investigated for CO{sub 2} storage by injecting CO{sub 2} as an enhanced oil recovery (EOR) agent. These fields meet the criteria for the application of miscible and immiscible CO{sub 2}-EOR methods and contain about 40 billion barrels of oil after primary and secondary recovery. Volumetric calculations from this study indicate that these fields have a static storage capacity of 3 billion metric tons of CO{sub 2}, assuming 100% oil recovery, re-pressurizing the fields to pre-fracturing pressure and applying a 50% capacity reduction to compensate for heterogeneity and for water invasion from the underlying aquifer. A ranking produced from this study, mainly controlled by field size and fracture gradient, identifies Prudhoe, Kuparuk, and West Sak as possessing the largest storage capacities under a 20% safety factor on pressures applied during storage to avoid over-pressurization, fracturing, and gas leakage. Simulation studies were conducted using CO{sub 2} Prophet to determine the amount of oil technically recoverable and CO{sub 2} gas storage possible during this process. Fields were categorized as miscible, partially miscible, and immiscible based on the miscibility of CO{sub 2} with their oil. Seven sample fields were selected across these categories for simulation studies comparing pure CO{sub 2} and water-alternating-gas injection. Results showed that the top two fields in each category for recovery and CO{sub 2} storage were Alpine and Point McIntyre (miscible), Prudhoe and Kuparuk (partially miscible), and West Sak and Lisburne (immiscible). The study concludes that 5 billion metric tons of CO{sub 2} can be stored while recovering 14.2 billion barrels of the remaining oil.

  5. Field evaluation of essential oils for reducing attraction by the Japanese beetle (Coleoptera: Scarabaeidae).

    PubMed

    Youssef, Nadeer N; Oliver, Jason B; Ranger, Christopher M; Reding, Michael E; Moyseenko, James J; Klein, Michael G; Pappas, Robert S

    2009-08-01

    Forty-one plant essential oils were tested under field conditions for the ability to reduce the attraction of adult Japanese beetles, Popillia japonica Newman (Coleoptera: Scarabaeidae), to attractant-baited or nonbaited traps. Treatments applied to a yellow and green Japanese beetle trap included a nonbaited trap, essential oil alone, a Japanese beetle commercial attractant (phenethyl proprionate:eugenol:geraniol, 3:7:3 by volume) (PEG), and an essential oil plus PEG attractant. Eight of the 41 oils reduced attractiveness of the PEG attractant to the Japanese beetle. When tested singly, wintergreen and peppermint oils were the two most effective essential oils at reducing attractiveness of the PEG attractant by 4.2x and 3.5x, respectively. Anise, bergamont mint, cedarleaf, dalmation sage, tarragon, and wormwood oils also reduced attraction of the Japanese beetle to the PEG attractant. The combination of wintergreen oil with ginger, peppermint, or ginger and citronella oils reduced attractiveness of the PEG attractant by 4.7x to 3.1x. Seventeen of the 41 essential oils also reduced attraction to the nonbaited yellow and green traps, resulting in 2.0x to 11.0x reductions in trap counts relative to nonbaited traps. Camphor, coffee, geranium, grapefruit, elemi, and citronella oils increased attractiveness of nonbaited traps by 2.1x to 7.9x when tested singly, but none were more attractive than the PEG attractant. Results from this study identified several plant essential oils that act as semiochemical disruptants against the Japanese beetle. PMID:19736768

  6. Oil, gas field growth projections: Wishful thinking or reality?

    USGS Publications Warehouse

    Attanasi, E.D.; Mast, R.F.; Root, D.H.

    1999-01-01

    The observed `field growth' for the period from 1992 through 1996 with the US Geological Survey's (USGS) predicted field growth for the same period are compared. Known field recovery of field size is defined as the sum of past cumulative field production and the field's proved reserves. Proved reserves are estimated quantities of hydrocarbons which geologic and engineering data demonstrate with reasonable certainty to recoverable from known fields under existing economic and operating conditions. Proved reserve estimates calculated with this definition are typically conservative. The modeling approach used by the USGS to characterize `field growth phenomena' is statistical rather that geologic in nature.

  7. Petroleum geology of Giant oil and gas fields in Turpan Basin Xinjiang China

    SciTech Connect

    Boliang, Hu; Jiajing, Yang,

    1995-08-01

    Turpan Basin is the smallest and the last development basin in three big basins of Xinjiang autonomous region, P.R. China. Since April, 1989, the Shanshan oilfield was discovered, the Oinling, Wenjisang, Midang, Baka, Qiudong and North Putaogou fields were discovered. In 1994, the crude oil productivity of Turpan Basin was a Million tons, with an estimated output of 3 million tons per year by 1995; obviously a key oil productive base in the west basins of China, Tarim, Jungar, Chaidam, Hexi, Erduos and Sichuan Basins. The Turpan Basin is an intermontane basin in a eugeosyncline foldbelt of the north Tianshan Mountains. The oil and gas was produced from the payzone of the Xishanyao, Sanjianfang and Qiketai Formatiosn of the Middle Jurassic series. The geochemical characteristics of the crude oil and gas indicate they derive from the Middle to Lower Jurassic coal series, in which contains the best oil-prone source rocks in the basin.

  8. Electric field and space charge distribution measurement in transformer oil struck by impulsive high voltage

    NASA Astrophysics Data System (ADS)

    Sima, Wenxia; Guo, Hongda; Yang, Qing; Song, He; Yang, Ming; Yu, Fei

    2015-08-01

    Transformer oil is widely used in power systems because of its excellent insulation properties. The accurate measurement of electric field and space charge distribution in transformer oil under high voltage impulse has important theoretical and practical significance, but still remains challenging to date because of its low Kerr constant. In this study, the continuous electric field and space charge distribution over time between parallel-plate electrodes in high-voltage pulsed transformer oil based on the Kerr effect is directly measured using a linear array photoelectrical detector. Experimental results demonstrate the applicability and reliability of this method. This study provides a feasible approach to further study the space charge effects and breakdown mechanisms in transformer oil.

  9. Rapid subsidence over oil fields measured by SAR

    NASA Technical Reports Server (NTRS)

    Fielding, E. J.; Blom, R. G.; Goldstein, R. M.

    1998-01-01

    The Lost Hills and Belridge oil felds are in the San Joaquin Valley, California. The major oil reservoir is high porosity and low permeability diatomite. Extraction of large volumes from shallow depths causes reduction in pore pressure and subsequent compaction, forming a surface subsidence bowl. We measure this subsidence from space using interferometric analysis of SAR (Synthetic Aperture Radar) data collected by the European Space Agency Remote Sensing Satellites (ERS-1 and ERS-2). Maximum subsidence rates are as high as 40 mm in 35 days or > 400 mm/yr, measured from interferograms with time separations ranging from one day to 26 months. The 8- and 26-month interferograms contain areas where the subsidence gradient exceeds the measurement possible with ERS SAR, but shows increased detail in areas of less rapid subsidence. Synoptic mapping of subsidence distribution from satellite data powerfully complements ground-based techniques, permits measurements where access is difficult, and aids identification of underlying causes.

  10. Livestock poisoning from oil field drilling fluids, muds and additives

    SciTech Connect

    Edwards, W.C.; Gregory, D.G. )

    1991-10-01

    The use and potential toxicity of various components of oil well drilling fluids, muds and additives are presented. Many components are extremely caustic resulting in rumenitis. Solvent and petroleum hydrocarbon components may cause aspiration pneumonia and rumen dysfunction. Some additives cause methemoglobinemia. The most frequently encountered heavy metals are lead, chromium, arsenic, lithium and copper. Considerations for investigating livestock poisoning cases and several typical cases are reviewed.

  11. Process and economic model of in-field heavy oil upgrading using aqueous pyrolysis

    SciTech Connect

    Thorsness, C. B., LLNL

    1997-01-21

    A process and economic model for aqueous pyrolysis in-field upgrading of heavy oil has been developed. The model has been constructed using the ASPEN PLUS chemical process simulator. The process features cracking of heavy oil at moderate temperatures in the presence of water to increase oil quality and thus the value of the oil. Calculations with the model indicate that for a 464 Mg/day (3,000 bbl/day) process, which increases the oil API gravity of the processed oil from 13.5{degree} to 22.4{degree}, the required value increase of the oil would need to be at least $2.80/Mg{center_dot}{degree}API($0.40/bbl{center_dot}{degree}API) to make the process economically attractive. This level of upgrading has been demonstrated in preliminary experiments with candidate catalysts. For improved catalysts capable of having the coke make and increasing the pyrolysis rate, a required price increase for the oil as low as $1.34/Mg{center_dot}{degree}API ($0.21/bbl{center_dot}{degree}API)has been calculated.

  12. Genomic and Genotoxic Responses to Controlled Weathered-Oil Exposures Confirm and Extend Field Studies on Impacts of the Deepwater Horizon Oil Spill on Native Killifish

    PubMed Central

    Pilcher, Whitney; Miles, Scott; Tang, Song; Mayer, Greg; Whitehead, Andrew

    2014-01-01

    To understand the ecotoxicological impacts of the Deepwater Horizon oil spill, field studies provide a context for ecological realism but laboratory-based studies offer power for connecting biological effects with specific causes. As a complement to field studies, we characterized genome-wide gene expression responses of Gulf killifish (Fundulus grandis) to oil-contaminated waters in controlled laboratory exposures. Transcriptional responses to the highest concentrations of oiled water in the laboratory were predictive of field-observed responses that coincided with the timing and location of major oiling. The transcriptional response to the low concentration (?10-fold lower than the high concentration) was distinct from the high concentration and was not predictive of major oiling in the field. The high concentration response was characterized by activation of the molecular signaling pathway that facilitates oil metabolism and oil toxicity. The high concentration also induced DNA damage. The low concentration invoked expression of genes that may support a compensatory response, including genes associated with regulation of transcription, cell cycle progression, RNA processing, DNA damage, and apoptosis. We conclude that the gene expression response detected in the field was a robust indicator of exposure to the toxic components of contaminating oil, that animals in the field were exposed to relatively high concentrations that are especially damaging to early life stages, and that such exposures can damage DNA. PMID:25208076

  13. Genomic and genotoxic responses to controlled weathered-oil exposures confirm and extend field studies on impacts of the Deepwater Horizon oil spill on native killifish.

    PubMed

    Pilcher, Whitney; Miles, Scott; Tang, Song; Mayer, Greg; Whitehead, Andrew

    2014-01-01

    To understand the ecotoxicological impacts of the Deepwater Horizon oil spill, field studies provide a context for ecological realism but laboratory-based studies offer power for connecting biological effects with specific causes. As a complement to field studies, we characterized genome-wide gene expression responses of Gulf killifish (Fundulus grandis) to oil-contaminated waters in controlled laboratory exposures. Transcriptional responses to the highest concentrations of oiled water in the laboratory were predictive of field-observed responses that coincided with the timing and location of major oiling. The transcriptional response to the low concentration (? 10-fold lower than the high concentration) was distinct from the high concentration and was not predictive of major oiling in the field. The high concentration response was characterized by activation of the molecular signaling pathway that facilitates oil metabolism and oil toxicity. The high concentration also induced DNA damage. The low concentration invoked expression of genes that may support a compensatory response, including genes associated with regulation of transcription, cell cycle progression, RNA processing, DNA damage, and apoptosis. We conclude that the gene expression response detected in the field was a robust indicator of exposure to the toxic components of contaminating oil, that animals in the field were exposed to relatively high concentrations that are especially damaging to early life stages, and that such exposures can damage DNA. PMID:25208076

  14. Economic assessment of environmental impact in the course of oil field development and production

    NASA Astrophysics Data System (ADS)

    Tsibulnikova, M. R.; Kupriyanova, O. S.; Strelnikova, A. B.

    2015-11-01

    The article considers the variety of impacts that oil exploration and production operations have on the environment at different stages of the process. To provide accurate economic assessment, an oil field development project was designed, with various development options. These options being analyzed, the strategy with the minimal environmental impact was identified. This has allowed preparation of a guideline on how to prevent deterioration of the environment and to reduce the negative environmental impact

  15. Observed oil and gas field size distributions: A consequence of the discovery process and prices of oil and gas

    USGS Publications Warehouse

    Drew, L.J.; Attanasi, E.D.; Schuenemeyer, J.H.

    1988-01-01

    If observed oil and gas field size distributions are obtained by random samplings, the fitted distributions should approximate that of the parent population of oil and gas fields. However, empirical evidence strongly suggests that larger fields tend to be discovered earlier in the discovery process than they would be by random sampling. Economic factors also can limit the number of small fields that are developed and reported. This paper examines observed size distributions in state and federal waters of offshore Texas. Results of the analysis demonstrate how the shape of the observable size distributions change with significant hydrocarbon price changes. Comparison of state and federal observed size distributions in the offshore area shows how production cost differences also affect the shape of the observed size distribution. Methods for modifying the discovery rate estimation procedures when economic factors significantly affect the discovery sequence are presented. A primary conclusion of the analysis is that, because hydrocarbon price changes can significantly affect the observed discovery size distribution, one should not be confident about inferring the form and specific parameters of the parent field size distribution from the observed distributions. ?? 1988 International Association for Mathematical Geology.

  16. Observed oil and gas field size distributions: a consequence of the discovery process and prices of oil and gas

    SciTech Connect

    Drew, L.J.; Attanasi, E.D.; Schuenemeyer, J.H.

    1988-11-01

    If observed oil and gas field size distributions are obtained by random samplings, the fitted distributions should approximate that of the parent population of oil and gas fields. However, empirical evidence strongly suggests that larger fields tend to be discovered earlier in the discovery process than they would be by random sampling. Economic factors also can limit the number of small fields that are developed and reported. This paper examines observed size distributions in state and federal waters of offshore Texas. Results of the analysis demonstrate how the shape of the observable size distributions change with significant hydrocarbon price changes. Comparison of state and federal observed size distributions in the offshore area shows how production cost differences also affect the shape of the observed size distribution. Methods for modifying the discovery rate estimation procedures when economic factors significantly affect the discovery sequence are presented. A primary conclusion of the analysis is that, because hydrocarbon price changes can significantly affect the observed discovery size distribution, one should not be confident about inferring the form and specific parameters of the parent field size distribution from the observed distributions.

  17. Genome Sequence of Hydrocarbon-Degrading Cronobacter sp. Strain DJ34 Isolated from Crude Oil-Containing Sludge from the Duliajan Oil Fields, Assam, India.

    PubMed

    Pal, Siddhartha; Das Banerjee, Tirtha; Roy, Ajoy; Sar, Pinaki; Kazy, Sufia K

    2015-01-01

    We report here the 4,856,096-bp draft genome sequence of hydrocarbon-degrading Cronobacter sp. strain DJ34 isolated from crude oil-containing sludge from the Duliajan oil fields, India. DJ34 contains genes that mediate hydrocarbon degradation, metal resistance, and biosurfactant production. This is the first report of the genome sequence of Cronobacter sp. inhabiting an oil-contaminated environment. PMID:26564043

  18. Arctic National Wildlife Refuge: oil field or wilderness

    SciTech Connect

    Spitler, A.

    1987-11-01

    The second session of the 100th Congress will see continued debate over the prospect of oil and gas drilling on a 19-million-acre expanse of mountains and tundra known as the Arctic National Wildlife Refuge (ANWR). The arctic refuge, most of which lies above the Arctic Circle, is larger than any refuges in the lower 48 states. Because of its size, the area supports a broad range of linked ecosystems. Of particular concern is the 1.5-million-acre coastal plain, which may be targeted for development. The coastal plain provides a home, at least part of the year, to Alaska's porcupine caribou. The coastal plain also supports many other forms of wildlife-including the wolf, arctic fox, brown bear, polar bear, and arctic peregrine falcon, which is listed as a threatened species. The potential effects of drilling projects extend beyond loss of wildlife; they include desecration of the land itself. Although few members of Congress deny the value of protecting the amazing variety of life on the coastal plain, some insist that limited drilling could be conducted without destroying crucial habitat. Last July, the department tentatively divided some of the targeted lands among native corporations in preparation for leasing to oil companies. In response to what was felt to be an attempt to overstep congressional authority, the House passed HR 2629, banning this kind of land deal without congressional approval. In essence, the measure reiterated congressional authority provided by the Alaska National Interest Lands Conservation Act (ANILCA) of 1980. This act mandated the study of environmental threats and oil potential by the Department of Interior, while putting the ANWR coastal plain off-limits to development without an explicit congressional directive.

  19. Dissolved methane distributions and air-sea flux in the plume of a massive seep field, Coal Oil Point, California

    E-print Network

    Washburn, Libe

    Dissolved methane distributions and air-sea flux in the plume of a massive seep field, Coal Oil coastal ocean near Coal Oil Point, Santa Barbara Channel, California. Methane was quantified in the down originating from Coal Oil Point enters the atmosphere within the study area. Most of it appears

  20. Methane-forming bacteria of oil-fields

    SciTech Connect

    Laurinavichus, K.S.; Obraztsova, A.Ya.; Belyaev, S.S.; Ivanov, M.V.

    1983-03-01

    Pure cultures of the methanogenic bacteria, Methanobacterium bryantii and M. formicicum have been isolated, for the first time from oil deposits and their morphological, physiological and biochemical properties studied. All strains grow of H/sub 2//CO/sub 2/ and two of the three M. formicicum also utilize formate as a role source of carbon and energy. In no case could methanol, acetate, methylamine or glucose serve as an energy source for these autotrophs. All strains were resistant to penicillin and streptomycin and neither sulfate or sulfide inhibited their growth. Medium salinity inhibited the growth of M. bryantii but not that of M. formicicum.

  1. Toluene depletion in produced oil contributes to souring control in a field subjected to nitrate injection.

    PubMed

    Agrawal, Akhil; Park, Hyung Soo; Nathoo, Safia; Gieg, Lisa M; Jack, Thomas R; Miner, Kirk; Ertmoed, Ryan; Benko, Aaron; Voordouw, Gerrit

    2012-01-17

    Souring in the Medicine Hat Glauconitic C field, which has a low bottom-hole temperature (30 °C), results from the presence of 0.8 mM sulfate in the injection water. Inclusion of 2 mM nitrate to decrease souring results in zones of nitrate-reduction, sulfate-reduction, and methanogenesis along the injection water flow path. Microbial community analysis by pyrosequencing indicated dominant community members in each of these zones. Nitrate breakthrough was observed in 2-PW, a major water- and sulfide-producing well, after 4 years of injection. Sulfide concentrations at four other production wells (PWs) also reached zero, causing the average sulfide concentration in 14 PWs to decrease significantly. Interestingly, oil produced by 2-PW was depleted of toluene, the preferred electron donor for nitrate reduction. 2-PW and other PWs with zero sulfide produced 95% water and 5% oil. At 2 mM nitrate and 5 mM toluene, respectively, this represents an excess of electron acceptor over electron donor. Hence, continuous nitrate injection can change the composition of produced oil and nitrate breakthrough is expected first in PWs with a low oil to water ratio, because oil from these wells is treated on average with more nitrate than is oil from PWs with a high oil to water ratio. PMID:22148580

  2. Characterising oil and water in porous media using decay due to diffusion in the internal field.

    PubMed

    Lewis, Rhiannon T; Djurhuus, Ketil; Seland, John Georg

    2015-10-01

    In the method Decay due to Diffusion in the Internal Field (DDIF), the diffusion behaviour of water molecules in the internal magnetic field makes it possible to determine a distribution of pore sizes in a sample. The DDIF experiment can also be extended to a DDIF-Carr-Purcell-Meiboom-Gill (DDIF-CPMG) experiment to measure correlations between the pore size and the transverse relaxation time, T2. In this study we have for the first time applied the DDIF experiment and the DDIF-CPMG experiment to porous materials saturated with both water and oil. Because of the large difference in diffusion rates between water and oil molecules, the DDIF experiment will act as a filter for the signal from oil, and we are left with the DDIF-signal from water only. This has been verified in model systems consisting of glass beads immersed in separate layers of water and oil, and in a sandstone sample saturated with water and oil. The results show that the DDIF and DDIF-CPMG experiments enable the determination of the confining geometry of the water phase, and how this geometry is correlated to T2. Data obtained in the sandstone sample saturated with water and oil also show that with the exception of the smallest pores there is no clear correlation between pore size and the relaxation time of water. PMID:26254732

  3. Characterising oil and water in porous media using decay due to diffusion in the internal field

    NASA Astrophysics Data System (ADS)

    Lewis, Rhiannon T.; Djurhuus, Ketil; Seland, John Georg

    2015-10-01

    In the method Decay due to Diffusion in the Internal Field (DDIF), the diffusion behaviour of water molecules in the internal magnetic field makes it possible to determine a distribution of pore sizes in a sample. The DDIF experiment can also be extended to a DDIF-Carr-Purcell-Meiboom-Gill (DDIF-CPMG) experiment to measure correlations between the pore size and the transverse relaxation time, T2 . In this study we have for the first time applied the DDIF experiment and the DDIF-CPMG experiment to porous materials saturated with both water and oil. Because of the large difference in diffusion rates between water and oil molecules, the DDIF experiment will act as a filter for the signal from oil, and we are left with the DDIF-signal from water only. This has been verified in model systems consisting of glass beads immersed in separate layers of water and oil, and in a sandstone sample saturated with water and oil. The results show that the DDIF and DDIF-CPMG experiments enable the determination of the confining geometry of the water phase, and how this geometry is correlated to T2 . Data obtained in the sandstone sample saturated with water and oil also show that with the exception of the smallest pores there is no clear correlation between pore size and the relaxation time of water.

  4. Effect of electric field treatment on unsaturated fatty acid in crude avocado oil.

    PubMed

    Ariza-Ortega, José Alberto; Ramírez-Moreno, Esther; Díaz-Reyes, Joel; Cruz-Cansino, Nelly del Socorro

    2014-09-01

    The objective of this study was to evaluate the stability of the fatty acids in avocado oil when the product is subjected to different conditions of electric field treatment (voltage: 5 kV cm(-1); frequency: 720 Hz; treatment time: 5, 10, 15, 20, and 25 min). Fatty acids were analyzed by Fourier transform infrared spectroscopy in the mid-infrared region. Electric field is a suitable method to preserve the oil quality and composition with minimal modifications in unsaturated fatty acids. PMID:25069856

  5. Application of bio-huff-`n`-puff technology at Jilin oil field

    SciTech Connect

    Xiu-Yuan Wang; Yan-Fed Xue; Gang Dai; Ling Zhao

    1995-12-31

    An enriched culture 48, capable of adapting to the reservoir conditions and fermenting molasses to produce gas and acid, was used as an inoculum for bio- huff-`n`-puff tests at Fuyu oil area of Jilin oil field. The production well was injected with water containing 4-6% (v/v) molasses and inoculum, and then shut in. After 15-21 days, the well was placed back in operation. A total of 44 wells were treated, of which only two wells showed no effects. The daily oil production of treated wells increased by 33.3-733.3%. Up to the end of 1994, the oil production was increased by 204 tons per well on average. Results obtained from various types of production wells were discussed.

  6. Analysis of the ecological risk of opening new oil and gas fields

    SciTech Connect

    Anikiev, V.V.; Mansurov, M.N.; Fleishman, B.S.

    1995-01-01

    Practical recommendations that would ensure the ecological safety of opening new marine oil and gas fields should include analysis of ecological risk. Such an analysis should precede the studies of ecological safety and resolve a sequence of problems in evaluating the ecological risk, the probability and scale of accidents at the oil and gas extraction complex, and economic damage that could occur. This paper presents a method of evaluation of risks for fish populations incurred by marine extraction of oil and gas, calculates the required limit of probability of accidents excluding the possibility of degradation of flatfish populations, estimates expenses incurred by accidental oil spills, and presents data on level of pollution. 9 refs., 1 tab.

  7. Hydrocarbon charging histories of the Ordovician reservoir in the Tahe oil field, Tarim Basin, China.

    PubMed

    Li, Chun-Quan; Chen, Hong-Han; Li, Si-Tian; Zhang, Xi-Ming; Chen, Han-Lin

    2004-08-01

    The Ordovician reservoir of the Tahe oil field went through many tectonic reconstructions, and was characterized by multiple hydrocarbon chargings. The aim of this study was to unravel the complex charging histories. Systematic analysis of fluid inclusions was employed to complete the investigation. Fluorescence observation of oil inclusions under UV light, and microthermometry of both oil and aqueous inclusions in 105 core samples taken from the Ordovician reservoir indicated that the Ordovician reservoir underwent four oil chargings and a gas charging. The hydrocarbon chargings occurred at the late Hercynian, the Indo-Sinian and Yanshan, the early Himalaya, the middle Himalaya, and the late Himalaya, respectively. The critical hydrocarbon charging time was at the late Hercynian. PMID:15236484

  8. FIELD MANUAL FOR OIL SPILLS IN COLD CLIMATES

    EPA Science Inventory

    This manual documents the state-of-the-art response techniques as of early 1979. The manual has been divided into two basic parts: A field manual and supporting data. The field manual consists of a set of matrices that summarizes applicable techniques for various conditions. The ...

  9. Field experiments of multi-channel oceanographic fluorescence lidar for oil spill and chlorophyll- a detection

    NASA Astrophysics Data System (ADS)

    Li, Xiaolong; Zhao, Chaofang; Ma, Youjun; Liu, Zhishen

    2014-08-01

    A Multi-channel Oceanographic Fluorescence Lidar (MOFL), with a UV excitation at 355 nm and multiple receiving channels at typical wavelengths of fluorescence from oil spills and chlorophyll- a (Chl- a), has been developed using the Laser-induced Fluorescence (LIF) technique. The sketch of the MOFL system equipped with a compact multi-channel photomultiplier tube (MPMT) is introduced in the paper. The methods of differentiating the oil fluorescence from the background water fluorescence and evaluating the Chl- a concentration are described. Two field experiments were carried out to investigate the field performance of the system, i.e., an experiment in coastal areas for oil pollution detection and an experiment over the Yellow Sea for Chl- a monitoring. In the coastal experiment, several oil samples and other fluorescence substances were used to analyze the fluorescence spectral characteristics for oil identification, and to estimate the thickness of oil films at the water surface. The experiment shows that both the spectral shape of fluorescence induced from surface water and the intensity ratio of two channels ( I 495/ I 405) are essential to determine oil-spill occurrence. In the airborne experiment, MOFL was applied to measure relative Chl- a concentrations in the upper layer of the ocean. A comparison of relative Chl- a concentration measurements by MOFL and the Moderate Resolution Imaging Spectroradiometer (MODIS) indicates that the two datasets are in good agreement. The results show that the MOFL system is capable of monitoring oil spills and Chl- a in the upper layer of ocean water.

  10. Programed oil generation of the Zubair Formation, Southern Iraq oil fields: Results from Petromod software modeling and geochemical analysis

    USGS Publications Warehouse

    Al-Ameri, T. K.; Pitman, J.; Naser, M.E.; Zumberge, J.; Al-Haydari, H. A.

    2011-01-01

    1D petroleum system modeling was performed on wells in each of four oil fields in South Iraq, Zubair (well Zb-47), Nahr Umr (well NR-9), West Qurna (well WQ-15 and 23), and Majnoon (well Mj-8). In each of these fields, deposition of the Zubair Formation was followed by continuous burial, reaching maximum temperatures of 100??C (equivalent to 0. 70%Ro) at depths of 3,344-3,750 m of well Zb-47 and 3,081. 5-3,420 m of well WQ-15, 120??C (equivalent to 0. 78%Ro) at depths of 3,353-3,645 m of well NR-9, and 3,391-3,691. 5 m of well Mj-8. Generation of petroleum in the Zubair Formation began in the late Tertiary, 10 million years ago. At present day, modeled transformation ratios (TR) indicate that 65% TR of its generation potential has been reached in well Zb-47, 75% TR in well NR-9 and 55-85% TR in West Qurna oil field (wells WQ-15 and WQ-23) and up to 95% TR in well Mj-8, In contrast, younger source rocks are immature to early mature (<20% TR), whereas older source rocks are mature to overmature (100% TR). Comparison of these basin modeling results, in Basrah region, are performed with Kifle oil field in Hilla region of western Euphrates River whereas the Zubair Formation is immature within temperature range of 65-70??C (0. 50%Ro equivalent) with up to 12% (TR = 12%) hydrocarbon generation efficiency and hence poor generation could be assessed in this last location. The Zubair Formation was deposited in a deltaic environment and consists of interbedded shales and porous and permeable sandstones. In Basrah region, the shales have total organic carbon of 0. 5-7. 0 wt%, Tmax 430-470??C and hydrogen indices of up to 466 with S2 = 0. 4-9. 4 of kerogen type II & III and petroleum potential of 0. 4-9. 98 of good hydrocarbon generation, which is consistent with 55-95% hydrocarbon efficiency. These generated hydrocarbons had charged (in part) the Cretaceous and Tertiary reservoirs, especially the Zubair Formation itself, in the traps formed by Alpine collision that closed the Tethys Ocean between Arabian and Euracian Plates and developed folds in Mesopotamian Basin 15-10 million years ago. These traps are mainly stratigraphic facies of sandstones with the shale that formed during the deposition of the Zubair Formation in transgression and regression phases within the main structural folds of the Zubair, Nahr Umr, West Qurna and Majnoon Oil fields. Oil biomarkers of the Zubair Formation Reservoirs are showing source affinity with mixed oil from the Upper Jurassic and Lower Cretaceous strata, including Zubair Formation organic matters, based on presentation of GC and GC-MS results on diagrams of global petroleum systems. ?? 2010 Saudi Society for Geosciences.

  11. Investigation of the effects of oil field traffic on low volume roadways

    SciTech Connect

    Mason, J.M. Jr.

    1981-01-01

    The farm to market roads in Texas are designed to provide service for relatively low traffic volumes and infrequent heavy vehicles. Efforts to increase domestic oil production have increased the demand placed on the rural highway system. These roads were not initially constructed to endure the impact of oil field traffic. This dissertation identifies oil field traffic and provides an estimate of annual cost associated with a reduced pavement life. Identification of oil field traffic through site specific observation provides the basis for the investigation. The study includes a description of traffic during the development of an oil well, an estimation of reduction in pavement life under these operating conditions, a description of associated roadway damage, and an estimation of increased annual pavement cost due to oil well traffic. Three main components of the analysis procedure include a pavement analysis, traffic analysis, and an estimate of the potential traffic generated by an oil well and placed on a section of F.M. roadway. A resurfacing interval for a bituminous surface treated pavement is then determined by comparing the estimated cumulative traffic demand with the terminal structural capability of the intended use pavement section. Comparison of the resurfacing intervals demonstrates the reduction in pavement life; a further comparison is made of the respective annual cost per mile of roadway. The difference between the estimated annual costs constitutes a unit capital loss due to increased traffic. A computational example of the analysis procedure is provided. Specific assumptions and limitations are also discussed. The results of the analysis are summarized in a chart and table format.

  12. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect

    Scott Hara

    2003-06-04

    The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

  13. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect

    Scott Hara

    2003-09-04

    The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

  14. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect

    Scott Hara

    2004-03-05

    The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

  15. Experimental study of enhancement of injectivity and in-situ oil upgrading by steam-propane injection for the Hamaca heavy oil field 

    E-print Network

    Rivero Diaz, Jose Antonio

    2002-01-01

    Experiments were conducted to study the feasibility of using propane as a steam additive to accelerate oil production and improve steam injectivity in the Hamaca field, Venezuela. The experiments utilized a vertical injection cell into which a...

  16. Characteristics of enriched cultures for bio-huff-`n`-puff tests at Jilin oil field

    SciTech Connect

    Xiu-Yuan Wang; Gang Dai; Yan-Fen Xue; Shu-Hua Xie

    1995-12-31

    Three enriched cultures (48, 15a, and 26a), selected from more than 80 soil and water samples, could grow anaerobically in the presence of crude oil at 30{degrees}C and could ferment molasses to gases and organic acids. Oil recovery by culture 48 in the laboratory model experiment was enhanced by 25.2% over the original reserves and by 53.7% over the residual reserves. Enriched culture 48 was composed of at least 4 species belonging to the genera Eubacterium, Fusobacterium, and Bacteroides. This enriched culture was used as inoculum for MEOR field trials at Jilin oil field with satisfactory results. The importance of the role of these isolates in EOR was confirmed by their presence and behavior in the fluids produced from the microbiologically treated reservoir.

  17. Rapid assessment of redevelopment potential in marginal oil fields, application to the cut bank field 

    E-print Network

    Chavez Ballesteros, Luis Eladio

    2005-02-17

    involving numerous wells, and different production and completion practices. The most accurate way to estimate infill potential is to conduct a detailed integrated reservoir study, which is often time-consuming and expensive for operators of marginal oil...

  18. Preliminary Technical and Legal Evaluation of Disposing of Nonhazardous Oil Field Waste into Salt Caverns

    SciTech Connect

    Ayers, Robert C.; Caudle, Dan; Elcock, Deborah; Raivel, Mary; Veil, John; and Grunewald, Ben

    1999-01-21

    This report presents an initial evaluation of the suitability, feasibility, and legality of using salt caverns for disposal of nonhazardous oil field wastes. Given the preliminary and general nature of this report, we recognize that some of our findings and conclusions maybe speculative and subject to change upon further research on this topic.

  19. FIELD MANUAL FOR PLUNGING WATER JET USE IN OIL SPILL CLEANUP

    EPA Science Inventory

    The use of plunging water jets can often make possible the control (and, as a consequence, the cleanup) of spilled oil and other floating pollutants in currents too swift for conventional equipment. This short, illustrated manual provides practical information for field and plann...

  20. Quality of field pennycress oil obtained by screw pressing and solvent extraction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field pennycress (Thlasphi arvense L., Brassicaceae) is a winter annual that grows widely in temperate North America. Its seeds contain up to 36% oil (dry basis, db) with the major fatty acid being erucic acid (38 %). With an estimated seed production of 1,700 – 2,200 kg/ha, pennycress can be a majo...

  1. Water alternating enriched gas injection to enhance oil production and recovery from San Francisco Field, Colombia 

    E-print Network

    Rueda Silva, Carlos Fernando

    2003-01-01

    The main objectives of this study are to determine the most suitable type of gas for a water-alternating-gas (WAG) injection scheme, the WAG cycle time, and gas injection rate to increase oil production rate and recovery from the San Francisco field...

  2. A look at Bacon Flat, Grant Canyon oil fields of Railroad Valley, Nevada

    SciTech Connect

    Johnson, E.H. )

    1993-05-17

    The prolific wells at Grant Canyon, and the puzzling geology, have intrigued explorationists and promoters. Many a Nevada prospect has been touted as 'another Grand Canyon.' But what processes formed Grant Canyon, and can others be found Last August, Equitable Resources Energy Co,'s Balcron Oil Division spudded a well at Bacon Flat, a mile west of Grant Canyon. A one well field, Bacon Flat had been abandoned in 1988. But just 900 ft north of the field opener, Balcron's well tested oil at a rate or 5,400 b/d. It turns out that Bacon Flat and Grant Canyon fields have a common geological history and, in fact, share the same faulted horst. However, they formed by an unusual combination of events that may be unique to those fields. This paper describes the geologic history, well logging interpretations, structures, the Jebco C seismic line, a geologic cross section, and the author's conclusions.

  3. Real-time oil-saturation monitoring in rock cores with low-field NMR.

    PubMed

    Mitchell, J; Howe, A M; Clarke, A

    2015-07-01

    Nuclear magnetic resonance (NMR) provides a powerful suite of tools for studying oil in reservoir core plugs at the laboratory scale. Low-field magnets are preferred for well-log calibration and to minimize magnetic-susceptibility-induced internal gradients in the porous medium. We demonstrate that careful data processing, combined with prior knowledge of the sample properties, enables real-time acquisition and interpretation of saturation state (relative amount of oil and water in the pores of a rock). Robust discrimination of oil and brine is achieved with diffusion weighting. We use this real-time analysis to monitor the forced displacement of oil from porous materials (sintered glass beads and sandstones) and to generate capillary desaturation curves. The real-time output enables in situ modification of the flood protocol and accurate control of the saturation state prior to the acquisition of standard NMR core analysis data, such as diffusion-relaxation correlations. Although applications to oil recovery and core analysis are demonstrated, the implementation highlights the general practicality of low-field NMR as an inline sensor for real-time industrial process control. PMID:25996514

  4. Development of Improved Oil Field Waste Injection Disposal Techniques

    SciTech Connect

    Terralog Technologies USA Inc.

    2001-12-17

    The goals of this DOE sponsored project are to: (1) assemble and analyze a comprehensive database of past waste injection operations; (2) develop improved diagnostic techniques for monitoring fracture growth and formation changes; (3) develop operating guidelines to optimize daily operations and ultimate storage capacity of the target formation; and (4) to test these improved models and guidelines in the field.

  5. Development of Improved Oil Field Waste Injection Disposal Techniques

    SciTech Connect

    Terralog Technologies

    2002-11-25

    The goals of this project have was to: (1) assemble and analyze a comprehensive database of past waste injection operations; (2) develop improved diagnostic techniques for monitoring fracture growth and formation changes; (3) develop operating guidelines to optimize daily operations and ultimate storage capacity of the target formation; and (4) to apply these improved models and guidelines in the field.

  6. Down hole oil field clean-out method

    SciTech Connect

    Jenkins, R.L.

    1989-06-13

    This patent describes a method of removing debris located in a production zone below a packer in an oil well or the like having an inner tubular member of a relatively small diameter of about 2 1/2 - 4 1/2 inches in diameter which extends longitudinally downward through a generally vertical outer tubular member longitudinally disposed in the well and terminates in a zone isolated from the annulus between the tubular members by the packer for producing the well through the interior of the inner tubular member, which debris is restricting flow from the zone to the interior of the inner tubular member. The method consists the steps of: (a) lowering an elongated body having a relatively small horizontal cross-section shaving an effective diameter of less than the relatively small diameter connected to the end of a tubing string downward through the inner tubular member, the effective diameters of the body and the tubing string being less than that of the inner tubular member, until the body is located below the packer, positioning an elongated blade disposed within the body by means of longitudinal movement of the tubing string so that at least the body is positioned down within the zone, (b) moving the blade radially outward toward the interior surface of the outer tubular member; (c) limiting the movement of the blade radially outward preventing the blade from cuttingly engaging the interior surface of the outer tubular member; and (d) rotating the tubing string, rotating and moving the blade within the zne, loosening the debris located in the zone within the interior of the outer tubular member.

  7. Low-Salinity Waterflooding to Improve Oil Recovery - Historical Field Evidence

    SciTech Connect

    Eric P. Robertson

    2007-11-01

    Waterflooding is by far the most widely applied method of improved oil recovery. Crude oil/brine/rock interactions can lead to large variations in the displacement efficiency of wa-terfloods. Laboratory water-flood tests and single-well tracer tests have shown that injection of dilute brine can increase oil recovery, but work designed to test the method on a field scale has not yet been undertaken. Historical waterflood records could unintentionally provide some evidence of improved recovery from waterflooding with lower salinity brine. Nu-merous fields in the Powder River basin of Wyoming have been waterflooded using low salinity brine (about 500 ppm) obtained from the Madison limestone or Fox Hills sandstone. Three Minnelusa formation fields in the basin were identified as potential candidates for waterflood comparisons based on the salinity of the connate and injection water. Historical pro-duction and injection data for these fields were obtained from the public record. Field waterflood data were manipulated to be displayed in the same format as laboratory coreflood re-sults. Recovery from fields using lower salinity injection wa-ter was greater than that using higher salinity injection wa-ter—matching recovery trends for laboratory and single-well tests.

  8. Increasing heavy oil reserves in the Wilmington Oil Field through advanced reservoir characterization and thermal production technologies. Annual report, March 30, 1995--March 31, 1996

    SciTech Connect

    1997-09-01

    The objective of this project is to increase heavy oil reserves in a portion of the Wilmington Oil Field, near Long Beach, California, by implementing advanced reservoir characterization and thermal production technologies. Based on the knowledge and experience gained with this project, these technologies are intended to be extended to other sections of the Wilmington Oil Field, and, through technology transfer, will be available to increase heavy oil reserves in other slope and basin clastic (SBC) reservoirs. The project involves implementing thermal recovery in the southern half of the Fault Block II-A Tar zone. The existing steamflood in Fault Block II-A has been relatively inefficient due to several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery efficiency and reduce operating costs.

  9. Selection of chemical products for oil field applications in arctic environments

    SciTech Connect

    Powell, D.E.; VanderWende, E.

    1996-08-01

    The Kuparuk Oil Field is located on the North Slope of Alaska, well above the Arctic Circle. Kuparuk uses chemicals for a variety of different oil production needs, including corrosion inhibition, emulsion breaking, defoaming, biofouling control, and scale inhibition. The North Slope`s isolated location demands unique logistical support, but it is otherwise accessible by unpaved road and has extensive air service. The Arctic climate provides difficult challenges and requirements for any chemical selection. This paper describes some criteria and practical experiences related to selecting the proper chemical products to be used in the Arctic environment.

  10. Sisterhood in the oil field: informal support networks, gender roles and adaptation among women in the Oklahoma oil field

    SciTech Connect

    Walsh, A.C.

    1988-01-01

    The petroleum drilling industry exhibits a number of definitive characteristics, which combined with the most recent boom/bust drilling cycle, affect women in much the same manner as factors commonly associated with the eroding of women's social and economic positions within modernizing societies. Recognizing that modernization has a negative impact on women, this study focuses on strategies of adaptation employed by women associated both directly and indirectly with the petroleum drilling industry in an oil boom/bust town in western Oklahoma. Utilizing the traditional techniques of ethnographic interview and participant observation, it was shown that informal support networks formed by women enhanced women's adaptation by extending their resource base beyond the nuclear family and encouraging solidarity. Gender-based division of labor was also modified by western energy development. Boom times facilitated a rigid division of labor that gave way to a more flexible arrangement during bust times without a concomitant change in gender-based ideology. This was accounted for by differences in the rates of change for the underlying habits and values associated with the public and private sectors.

  11. Immunomagnetically Captured Thermophilic Sulfate-Reducing Bacteria from North Sea Oil Field Waters

    PubMed Central

    Christensen, Bjørn; Torsvik, Terje; Lien, Torleiv

    1992-01-01

    Immunomagnetic beads (IMB) were used to recover thermophilic sulfate-reducing bacteria from oil field waters from oil production platforms in the Norwegian sector of the North Sea. IMB coated with polyclonal antibodies against whole-cell antigens of the thermophilic Thermodesulfobacterium mobile captured strains GFA1, GFA2, and GFA3. GFA1 was serologically and morphologically identical to T. mobile. GFA2 and GFA3 were spore forming and similar to the Desulfotomaculum strains T90A and T93B previously isolated from North Sea oil field waters by a classical enrichment procedure. Western blots (immunoblots) of whole cells showed that GFA2, GFA3, T90A, and T93B are different serotypes of the same Desulfotomaculum species. Monoclonal antibodies (MAb) against T. mobile type strain cells were produced and used as capture agents on IMB. These MAb, named A4F4, were immunoglobulin M; they were specific to T. mobile and directed against lipopolysaccharides. The prevailing cells immunocaptured with MAb A4F4 were morphologically and serologically similar to T. mobile type strain cells. T. mobile was not detected in these oil field waters by classical enrichment procedures. Furthermore, extraction with antibody-coated IMB allowed pure strains to be isolated directly from primary enrichment cultures without prior time-consuming subculturing and consecutive transfers to selective media. Images PMID:16348693

  12. Bluebell Field, Uinta Basin: reservoir characterization for improved well completion and oil recovery

    USGS Publications Warehouse

    Montgomery, S.L.; Morgan, C.D.

    1998-01-01

    Bluefield Field is the largest oil-producing area in the Unita basin of northern Utah. The field inclucdes over 300 wells and has produced 137 Mbbl oil and 177 bcf gas from fractured Paleocene-Eocene lacustrine and fluvial deposits of the Green River and Wasatch (Colton) formations. Oil and gas are produced at depths of 10 500-13 000 ft (3330-3940 m), with the most prolific reservoirs existing in over-pressured sandstones of the Colton Formation and the underlying Flagstaff Member of the lower Green River Formation. Despite a number of high-recovery wells (1-3 MMbbl), overall field recovery remains low, less than 10% original oil in place. This low recovery rate is interpreted to be at least partly a result of completion practices. Typically, 40-120 beds are perforated and stimulated with acid (no proppant) over intervals of up to 3000 ft (900 m). Little or no evaluation of individual beds is performed, preventing identification of good-quality reservoir zones, water-producing zones, and thief zones. As a result, detailed understanding of Bluebell reservoirs historically has been poor, inhibiting any improvements in recovery strategies. A recent project undertaken in Bluebell field as part of the U.S. Department of Energy's Class 1 (fluvial-deltaic reservoir) Oil Demonstration program has focused considerable effort on reservoir characterization. This effort has involved interdisciplinary analysis of core, log, fracture, geostatistical, production, and other data. Much valuable new information on reservoir character has resulted, with important implications for completion techniques and recovery expectations. Such data should have excellent applicability to other producing areas in the Uinta Basin withi reservoirs in similar lacustrine and related deposits.Bluebell field is the largest oil-producing area in the Uinta basin of northern Utah. The field includes over 300 wells and has produced 137 MMbbl oil and 177 bcf gas from fractured Paleocene-Eocene lacustrine and fluvial deposits of the Green River and Wasatch (Colton) formations. Oil and gas are produced at depths of 10,500-13,000 ft (3330-3940 m), with the most prolific reservoirs existing in over-pressured sandstones of the Colton Formation and the underlying Flagstaff Member of the lower Green River Formation. Despite a number of high-recovery wells (1-3 MMbbl), overall field recovery remains low, less than 10% original oil in place. This low recovery rate is interpreted to be at least partly a result of completion practices. Typically, 40-120 beds are perforated and stimulated with acid (no proppant) over intervals of up to 3000 ft (900 m). Little or no evaluation of individual beds is performed, preventing identification of good-quality reservoir zones, water-producing zones, and thief zones. As a result, detailed understanding of Bluebell reservoirs historically has been poor, inhibiting any improvements in recovery strategies. A recent project undertaken in Bluebell field as part of the U.S. Department of Energy's Class 1 (fluvial-deltaic reservoir) Oil Demonstration program has focused considerable effort on reservoir characterization. This effort has involved interdisciplinary analysis of core, log, fracture, geostatistical, production, and other data. Much valuable new information on reservoir character has resulted, with important implications for completion techniques and recovery expectations. Such data should have excellent applicability to other producing areas in the Uinta basin with reservoirs in similar lacustrine and related deposits.

  13. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect

    Scott Hara

    2001-05-07

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through September 2000, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on improving core analysis techniques, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post steamflood projects. Work was discontinued on the stochastic geologic model and developing a 3-D stochastic thermal reservoir simulation model of the Tar II-A Zone so the project team could use the 3-D deterministic reservoir simulation model to provide alternatives for the Tar II-A post steamflood operations and shale compaction studies. The project team spent the fourth quarter 2000 performing well work and reservoir surveillance on the Tar II-A post-steamflood project and the Tar V horizontal well steamflood pilot. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The current steamflood operations in the Tar V pilot are economical, but recent performance is below projections because of wellbore mechanical limitations that are being evaluated.

  14. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies

    SciTech Connect

    Scott Hara

    1998-03-03

    The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

  15. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies

    SciTech Connect

    Scott Hara

    1997-08-08

    The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation. Summary of Technical Progress

  16. [Dynamics of microbial processes in the stratal waters of the Romashkinskoe oil field].

    PubMed

    Tarasov, A L; Borzenkov, I A; Milekhina, E I; Beliaev, S S; Ivanov, M V

    2002-01-01

    Dynamics of the microbial processes developing in parallel with the exploitation of the Romashkinskoe oil field (Tatarstan) was studied in two areas differing in the degree of stratal water freshening. Flooding the strata in conjunction with purposeful measures on stratal microflora activation was shown to increase the microbial population density and activate both methanogenesis and sulfate-reduction; the latter process was limited by the low sulfate concentration. Development of anaerobic processes correlated with changes in acetate concentration in the stratal water. High mineralization (over 200 g/l) inhibited the stratal water microflora even if other conditions were favorable. Isotopic analysis of the carbonate carbon showed that the bicarbonate concentration increased in the stratal water due to microbial degradation of oil hydrocarbons and further participation of the biogenic carbon dioxide in dissolution of the carbonate cement of the oil-bearing strata. In strongly desalinated stratal water, the proportion of the newly formed bicarbonate was as high as 80%. PMID:12526208

  17. Evaluation of Slime-Producing Bacteria in Oil Field Core Flood Experiments

    PubMed Central

    Geesey, G. G.; Mittelman, M. W.; Lieu, V. T.

    1987-01-01

    Epifluorescence microscopy and carbohydrate determinations indicated that the decrease in permeability of oil reservoir sand to reclaimed sewage water was partially the result of biological plugging. Filtration and biocide addition studies demonstrated that the increase in bacterial densities and slime concentrations in flooded oil field cores appeared to be due to both deposition from the reclaimed water and in situ microbial growth and slime production. Although these biological components increased throughout the cores during flooding, the region where the water entered the core exhibited the highest cell densities and slime concentrations. The approach described in this report should be useful in predicting the potential of a water source to induce biological plugging of oil reservoir sand. PMID:16347276

  18. Sulfate-reducing bacteria release barium and radium from naturally occurring radioactive material in oil-field barite

    USGS Publications Warehouse

    Phillips, E.J.P.; Landa, E.R.; Kraemer, T.; Zielinski, R.

    2001-01-01

    Scale and sludge deposits formed during oil production can contain elevated levels of Ra, often coprecipitated with barium sulfate (barite). The potential for sulfate-reducing bacteria to release 226 Ra and Ba (a Ra analog) from oil-field barite was evaluated. The concentration of dissolved Ba increased when samples containing pipe scale, tank sludge, or oil-field brine pond sediment were incubated with sulfate-reducing bacteria Desulfovibrio sp., Str LZKI, isolated from an oil-field brine pond. However, Ba release was not stoichiometric with sulfide production in oil-field samples, and <0.1% of the Ba was released. Potential for the release of 226Ra was demonstrated, and the 226 Ra release associated with sulfate-reducing activity was predictable from the amount of Ba released. As with Ba, only a fraction of the 226Ra expected from the amount of sulfide produced was released, and most of the Ra remained associated with the solid material.

  19. Electric-field-induced turbulent energy cascade in an oil-in-oil emulsion

    E-print Network

    Atul Varshney; Mayur Sathe; Shankar Ghosh; Anand Yethiraj; S. Bhattacharya; J. B. Joshi

    2014-12-11

    We observe electro-hydrodynamically driven turbulent flows at low Reynolds numbers in a two-fluid emulsion consisting of micron-scale droplets. In the presence of electric fields, the droplets produce interacting hydrodynamic flows which result in a dynamical organization at a spatial scale much larger than the size of the individual droplets. We characterize the dynamics associated with these structures by both video imaging and a simultaneous, in situ, measurement of the time variation of the bulk Reynolds stress with a rheometer. The results display scale invariance in the energy spectra in both space and time.

  20. Electric-field-induced turbulent energy cascade in an oil-in-oil emulsion

    E-print Network

    Varshney, Atul; Ghosh, Shankar; Yethiraj, Anand; Bhattacharya, S; Joshi, J B

    2014-01-01

    We observe electro-hydrodynamically driven turbulent flows at low Reynolds numbers in a two-fluid emulsion consisting of micron-scale droplets. In the presence of electric fields, the droplets produce interacting hydrodynamic flows which result in a dynamical organization at a spatial scale much larger than the size of the individual droplets. We characterize the dynamics associated with these structures by both video imaging and a simultaneous, in situ, measurement of the time variation of the bulk Reynolds stress with a rheometer. The results display scale invariance in the energy spectra in both space and time.

  1. Geological reasons for rapid water encroachment in wells at Sutorma oil field

    SciTech Connect

    Arkhipov, S.V.; Dvorak, S.V.; Sonich, V.P.; Nikolayeva, Ye.V.

    1987-12-01

    The Sutorma oil field on the northern Surgut dome is one of the new fields in West Siberia. It came into production in 1982, but already by 1983 it was found that the water contents in the fluids produced were much greater than the design values. The adverse effects are particularly pronounced for the main reservoir at the deposit, the BS/sub 10//sup 2/ stratum. Later, similar problems occurred at other fields in the Noyarbr and Purpey regions. It is therefore particularly important to elucidate the geological reasons for water encroachment.

  2. Sedimentary style and oil-gas field distribution in Western Bohai Bay

    SciTech Connect

    Hansheng Qiao )

    1994-07-01

    Western Bohai Bay is located near Tianjing City and the Yanshan Mountains. Tectonically, it is part of the Bohai Bay rift, including the Qiku, Nanpu, and Cangdong depressions. The Paleogene strata consist of three cycles in the rift. Usually, the sublacustrine fans or basalts formed at the initial stage of every cycle. The dark shales and turbidites developed at the high level of lacustrine transgression. However, the deltas or evaporates appeared at the regressive stage. The sublacustrine fans or deltas generally distribute in the marginal part of a depression, with humic type kerogen. The dark shales of deep lacustrine facies in the inner part of it contain sapropel type kerogen. The transitional zone between them is interbedded shales and sandstones, with mixed type kerogen. The oil-gas fields mainly occur in the transitional zone around the oil-generating center. The great oil-gas fields are formed in areas where the big drape anticline coincided with the sublacustrine fan-front or delta-front sandstones and were sealed by shales or evaporates. A great number of small overpressured oil reservoirs are in the mature source rocks in the depression center.

  3. Microbial and Geochemical Characterization of Wellington Oil Field, Southcentral Kansas, and Potential Applications to Microbial Enhanced Oil Recovery

    E-print Network

    Huff, Breanna

    2014-08-31

    The aqueous geochemistry and microbiology of subsurface environments are intimately linked and in oil reservoir fluids. This interdependence may result in a number of processes including biodegradation of oil, corrosion of pipes, bioclogging...

  4. Evaluating GIS for establishing and monitoring environmental conditions of oil fields

    SciTech Connect

    Pfeil, R.W.; Ellis, J.W.

    1995-04-01

    Good management of an oil field and compliance with ever-increasing environmental regulations is enhanced by technologies that improve a company`s understanding of field/production facilities and environmental conditions that have occurred to both through time. In Nigeria, Kazakhstan, Indonesia, and offshore Cabinda, remote sensing, computer-aided drafting (CAD) and Global Positioning System (GPF) technologies have effectively been used by Chevron to provide accurate maps of facilities and to better understand environmental conditions. Together these proven technologies have provided a solid and cost-effective base for planning field operation, verifying well and seismic locations, and locating sampling sites. The end product of these technologies is often locations, and locating sampling sites. The end product of these technologies is often cartographic-quality hardcopy images and maps for use in the office and field. Chevron has been evaluating the capability of Geographical Information System (GIS) technology to integrate images, maps, and tabular data into a useful database that can help managers and workers better evaluate conditions in an oil field, plan new facilities, and monitor/predict trends (for example, of air emissions, groundwater, soil chemistry, subsidence, etc.). Remote sensing, CAD (if formatted properly), and GPS data can be integrated to establish the spatial or cartographic base of the GIS. A major obstacle to establishing a sophisticated GIS for an overseas operation is the initial cost of data collection and conversion from legacy data base management systems and hardcopy to appropriate digital format. However, Chevron routinely uses GIS for oil spill modeling and is now using GIS in the field for integrating GPS data with field observations and programs.

  5. Static Electric Field Mapping Using a Mosquito Racket and Baby Oil

    ERIC Educational Resources Information Center

    Rediansyah, Herfien; Khairurrijal; Viridi, Sparisoma

    2015-01-01

    The aim of this research was to design a simple experimental device to see electric field force lines using common components which are readily available in everyday life. A solution of baby oil was placed in a plastic container, 4.5 × 4.5 × 1 inches, with both ends of the electrodes (metal wire) immersed in the solution at a depth of 0.2 inches.…

  6. Disposal of NORM-Contaminated Oil Field Wastes in Salt Caverns

    SciTech Connect

    Blunt, D.L.; Elcock, D.; Smith, K.P.; Tomasko, D.; Viel, J.A.; and Williams, G.P.

    1999-01-21

    In 1995, the U.S. Department of Energy (DOE), Office of Fossil Energy, asked Argonne National Laboratory (Argonne) to conduct a preliminary technical and legal evaluation of disposing of nonhazardous oil field waste (NOW) into salt caverns. That study concluded that disposal of NOW into salt caverns is feasible and legal. If caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they can be a suitable means of disposing of NOW (Veil et al. 1996). Considering these findings and the increased U.S. interest in using salt caverns for NOW disposal, the Office of Fossil Energy asked Argonne to conduct further research on the cost of cavern disposal compared with the cost of more traditional NOW disposal methods and on preliminary identification and investigation of the risks associated with such disposal. The cost study (Veil 1997) found that disposal costs at the four permitted disposal caverns in the United States were comparable to or lower than the costs of other disposal facilities in the same geographic area. The risk study (Tomasko et al. 1997) estimated that both cancer and noncancer human health risks from drinking water that had been contaminated by releases of cavern contents were significantly lower than the accepted risk thresholds. Since 1992, DOE has funded Argonne to conduct a series of studies evaluating issues related to management and disposal of oil field wastes contaminated with naturally occurring radioactive material (NORM). Included among these studies were radiological dose assessments of several different NORM disposal options (Smith et al. 1996). In 1997, DOE asked Argonne to conduct additional analyses on waste disposal in salt caverns, except that this time the wastes to be evaluated would be those types of oil field wastes that are contaminated by NORM. This report describes these analyses. Throughout the remainder of this report, the term ''NORM waste'' is used to mean ''oil field waste contaminated by NORM''.

  7. Risk assessment of nonhazardous oil-field waste disposal in salt caverns.

    SciTech Connect

    Elcock, D.

    1998-03-05

    In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. Argonne determined that if caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they could be suitable for disposing of oil-field wastes. On the basis of these findings, Argonne subsequently conducted a preliminary evaluation of the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from the NOW disposed of in domal salt caverns. Steps used in this evaluation included the following: identifying potential contaminants of concern, determining how humans could be exposed to these contaminants, assessing contaminant toxicities, estimating contaminant intakes, and calculating human cancer and noncancer risk estimates. Five postclosure cavern release scenarios were assessed. These were inadvertent cavern intrusion, failure of the cavern seal, failure of the cavern through cracks, failure of the cavern through leaky interbeds, and a partial collapse of the cavern roof. Assuming a single, generic, salt cavern and generic oil-field wastes, potential human health effects associated with constituent hazardous substances (arsenic, benzene, cadmium, and chromium) were assessed under each of these scenarios. Preliminary results provided excess cancer risk and hazard index (referring to noncancer health effects) estimates that were well within the US Environmental Protection Agency (EPA) target range for acceptable exposure risk levels. These results led to the preliminary conclusion that from a human health perspective, salt caverns can provide an acceptable disposal method for nonhazardous oil-field wastes.

  8. INCREASING WATERFLOOD RESERVES IN THE WILMINGTON OIL FIELD THROUGH IMPROVED RESERVOIR CHARACTERIZATION AND RESERVOIR MANAGEMENT

    SciTech Connect

    Scott Walker; Chris Phillips; Roy Koerner; Don Clarke; Dan Moos; Kwasi Tagbor

    2002-02-28

    This project increased recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs. Transferring technology so that it can be applied in other sections of the Wilmington Field and by operators in other slope and basin reservoirs is a primary component of the project. This project used advanced reservoir characterization tools, including the pulsed acoustic cased-hole logging tool, geologic three-dimensional (3-D) modeling software, and commercially available reservoir management software to identify sands with remaining high oil saturation following waterflood. Production from the identified high oil saturated sands was stimulated by recompleting existing production and injection wells in these sands using conventional means as well as a short radius redrill candidate. Although these reservoirs have been waterflooded over 40 years, researchers have found areas of remaining oil saturation. Areas such as the top sand in the Upper Terminal Zone Fault Block V, the western fault slivers of Upper Terminal Zone Fault Block V, the bottom sands of the Tar Zone Fault Block V, and the eastern edge of Fault Block IV in both the Upper Terminal and Lower Terminal Zones all show significant remaining oil saturation. Each area of interest was uncovered emphasizing a different type of reservoir characterization technique or practice. This was not the original strategy but was necessitated by the different levels of progress in each of the project activities.

  9. Significant role of structural fractures in Ren-Qiu buried-block oil field, eastern China

    SciTech Connect

    Fei, Q.; Xie-Pei, W.

    1983-03-01

    Ren-qui oil field is in a buried block of Sinian (upper Proterozoic) rocks located in the Ji-zhong depression of the western Bohai Bay basin in eastern China. The main reservoir consists of Sinian dolomite rocks. It is a fault block with a large growth fault on the west side which trends north-northeast with throws of up to 1 km (0.6 mi) or more. The source rocks for the oil are Paleogene age and overlie the Sinian dolomite rocks. The structural fractures are the main factor forming the reservoir of the buried-block oil field. Three structural lines, trending northeast, north-northeast, and northwest, form the regional netted fracture system. The north-northeast growth fault controlled the structural development of the buried block. The block was raised and eroded before the Tertiary sediments were deposited. In the Eocene Epoch, the Ji-zhong depression subsided, but the deposition, faulting, and related uplift of the block happened synchronously as the block was gradually submerged. At the same time, several horizontal and vertical karst zones were formed by the karst water along the netted structural fractures. The Eocene oil source rocks lapped onto the block and so the buried block, with many developed karst fractures, was surrounded by a great thickness of source rocks. As the growth fault developed, the height of the block was increased from 400 m (1300 ft) before the Oligocene to 1300 m (4250 ft) after. As the petroleum was generated, it migrated immediately into the karst fractures of the buried block along the growth fault. The karst-fractured block reservoir has an 800-m (2600-ft) high oil-bearing closure and good connections developed between the karst fractures.

  10. Risk analyses for disposing nonhazardous oil field wastes in salt caverns

    SciTech Connect

    Tomasko, D.; Elcock, D.; Veil, J.; Caudle, D.

    1997-12-01

    Salt caverns have been used for several decades to store various hydrocarbon products. In the past few years, four facilities in the US have been permitted to dispose nonhazardous oil field wastes in salt caverns. Several other disposal caverns have been permitted in Canada and Europe. This report evaluates the possibility that adverse human health effects could result from exposure to contaminants released from the caverns in domal salt formations used for nonhazardous oil field waste disposal. The evaluation assumes normal operations but considers the possibility of leaks in cavern seals and cavern walls during the post-closure phase of operation. In this assessment, several steps were followed to identify possible human health risks. At the broadest level, these steps include identifying a reasonable set of contaminants of possible concern, identifying how humans could be exposed to these contaminants, assessing the toxicities of these contaminants, estimating their intakes, and characterizing their associated human health risks. The contaminants of concern for the assessment are benzene, cadmium, arsenic, and chromium. These were selected as being components of oil field waste and having a likelihood to remain in solution for a long enough time to reach a human receptor.

  11. Depositional environments of Upper Triassic sandstones, El Borma oil field, southwestern Tunisia

    SciTech Connect

    Bentahar, H.; Ethridge, F.G. )

    1991-03-01

    El Borma oil field in southwestern Tunisia is located on the Algerian border and produces from five Upper Triassic sandstone reservoirs at depths ranging from 2,300 to 2,400 m. The 250 km{sup 2} field has recoverable reserves of 770 mm bbl of equivalent oil. Reservoir sandstones rest unconformably on south-dipping Lower Devonian clastic deposits. Silurian shale represents the major oil source rock and the field is capped by 550 m of shale, carbonate, and evaporite. Hercynian, topography below the reservoir sandstones comprises an 18 km wide, northeast-oriented paleovalley. Each of the four lower reservoir sandstones, bounded by a lower scour surface and a basal lag deposit, is commonly discontinuous and separated by lenticular shale beds. These 5 to 15 m thick sandstones display in channels flowing to the northeast. The overlying 12 m thick transgressive marine dolomitic shale contains carbonized bivalves and is capped by a paleosoil with root structures and siderite cement indicating subaerial exposure. The clay-rich and locally bioturbated uppermost reservoir sandstone was probably deposited in a tidally influenced estuary. Overall, the Upper Triassic reservoirs at El Borma consists of valley-fill estuary deposits that were formed during transgression of the sea from the northeast.

  12. Significant role of structural fractures in Renqiu buried-hill oil field in eastern China

    SciTech Connect

    Fei Qi; Wang, Xie-Pei

    1984-08-01

    Renqiu oil field is in a buried hill of Sinian (late Precambrian) rocks located in the Jizhong depression of the western Bohai Bay basin in eastern China. The main reservoir consists of Sinian dolomite. The buried hill is a fault block bounded on the west side by a large growth fault that trends north-northeast and has throws of up to 1 km (3,300 ft). The source rocks for the oil are Tertiary sediments that overlie the Sinian dolomite. Structural fractures are the main factor forming the reservoir of the buried-hill oil field. Three dominant structural trends-northeast, north-northeast, and northwest-form the regional fracture system. The fractures are best developed along the north-northeast fault zones and at the intersections of other structural trends. Because the regional stress field altered during the late Mesozoic, the mechanical properties of north-northeast fault zones were changed from compressional shear to extensional shear. Consequently, the enlargement of the structural fractures provided good channels for the circulation of meteoric water.

  13. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect

    Scott Hara

    2001-11-01

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. Through June 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. The project team spent the Third Quarter 2001 performing well work and reservoir surveillance on the Tar II-A post-steamflood project. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. The project team ramped up well work activity from October 2000 to September 2001 to increase production and injection. This work will continue through 2001 as described in the Operational Management section. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The current steamflood operations in the Tar V pilot are economical, but recent performance is below projections because of wellbore mechanical limitations that are being addressed in 2001.

  14. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect

    Scott Hara

    2001-05-08

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through March 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. The project team spent the Second Quarter 2001 performing well work and reservoir surveillance on the Tar II-A post-steamflood project. The Tar II-A steamflood reservoirs have been operated over fifteen months at relatively stable pressures, due in large part to the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase in January 1999. Starting in the Fourth Quarter 2000, the project team has ramped up activity to increase production and injection. This work will continue through 2001 as described in the Operational Management section. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The current steamflood operations in the Tar V pilot are economical, but recent performance is below projections because of wellbore mechanical limitations that are being addressed in 2001. Much of the second quarter was spent writing DOE annual and quarterly reports to stay current with contract requirements.

  15. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect

    Scott Hara

    2002-01-31

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. Through September 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. The project team spent the Fourth Quarter 2001 performing routine well work and reservoir surveillance on the Tar II-A post-steamflood and Tar V pilot steamflood projects. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. The project team ramped up well work activity from October 2000 through November 2001 to increase production and injection. In December, water injection well FW-88 was plug and abandoned and replaced by new well FW-295 into the ''D'' sands to accommodate the Port of Long Beach at their expense. Well workovers are planned for 2002 as described in the Operational Management section. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The steamflood operation in the Tar V pilot project is mature and profitable. Recent production performance is below projections because of wellbore mechanical limitations that were being addressed in 2001. As the fluid production is hot, the pilot steamflood was converted to a hot waterflood project in June 2001.

  16. Increasing Waterflood Reserves in the Wilmington Oil Field Through Reservoir Characterization and Reservoir Management

    SciTech Connect

    Chris Phillips; Dan Moos; Don Clarke; John Nguyen; Kwasi Tagbor; Roy Koerner; Scott Walker

    1997-04-10

    This project is intended to increase recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs. Transferring technology so that it can be applied in other sections of the Wilmington Field and by operators in other slope and basin reservoirs is a primary component of the project.

  17. Field experiences with rotordynamic instability in high-performance turbomachinery. [oil and natural gas recovery

    NASA Technical Reports Server (NTRS)

    Doyle, H. E.

    1980-01-01

    Two field situations illustrate the consequences of rotordynamic instability in centrifugal compressors. One involves the reinjection of produced gas into a North Sea oil formation for the temporary extraction of crude. The other describes on-shore compressors used to deliver natural gas from off-shore wells. The problems which developed and the remedies attempted in each case are discussed. Instability problems resulted in lost production, extended construction periods and costs, and heavy maintenance expenditures. The need for effective methods to properly identify the problem in the field and in the compressor design stage is emphasized.

  18. Structure of pre-Caspian depression and major oil and gas fields of the region

    SciTech Connect

    Krylov, N.A. ); Avrov, V.P. ); Lisovsky, N.N.

    1991-03-01

    As a single unified depression, the pre-Caspian basin has been formed from Paleozoic to Cenozoic time. The basin is superimposed on two large pre-Permian depressions. On the Astrakhan-Aktyubinsk zone of uplifts between them is found sharply reduced Carboniferous and Devonian sections. Modern structural plan clearly displays two major structural stages: Subsalt (Paleozoic) and post (post-Kungurian). The post-salt stage is characterized by wide development of salt dome tectonics. It corresponds with its own petroliferous stage containing numerous, mostly small oil accumulations in terrigenous Mesozoic reservoirs. Large recent discoveries-Astrakhan condensate, Karachaganak and Kanazhol-Sinelnikov oil/condensate, Tengiz oil, and other fields-are associated with the Subsalt Paleozoic complex ranging from Lower Permian to the top of Upper Devonian. The Subsalt stage has its own regularities in hydrocarbon phase differentiation; large reserves concentration; dominantly productive carbonates with various reservoirs; and presence of structural, depositional, and erosional factors controlling formation of oil and gas traps. The paper describes major distributional features of the various arc-and-type Permian and Carboniferous formations, which in conjunction with Subsalt paleotemperature data and geochemistry of organic matter represents a basis for the forecast of new discoveries.

  19. A new reserve growth model for United States oil and gas fields

    USGS Publications Warehouse

    Verma, M.K.

    2005-01-01

    Reserve (or field) growth, which is an appreciation of total ultimate reserves through time, is a well-recognized phenomenon, particularly in mature petroleum provinces. The importance of forecasting reserve growth accurately in a mature petroleum province made it necessary to develop improved growth functions, and a critical review of the original Arrington method was undertaken. During a five-year (1992-1996), the original Arrington method gave 1.03% higher than the actual oil reserve growth, whereas the proposed modified method gave a value within 0.3% of the actual growth, and therefore it was accepted for the development for reserve growth models. During a five-year (1992-1996), the USGS 1995 National Assessment gave 39.3% higher oil and 33.6% lower gas than the actual growths, whereas the new model based on Modified Arrington method gave 11.9% higher oil and 29.8% lower gas than the actual growths. The new models forecast predict reserve growths of 4.2 billion barrels of oil (2.7%) and 30.2 trillion cubic feet of gas (5.4%) for the conterminous U.S. for the next five years (1997-2001). ?? 2005 International Association for Mathematical Geology.

  20. Residual-oil-saturation-technology test, Bell Creek Field, Montana. Final report

    SciTech Connect

    Not Available

    1981-06-01

    A field test was conducted of the technology available to measure residual oil saturation following waterflood secondary oil recovery processes. The test was conducted in a new well drilled solely for that purpose, located immediately northwest of the Bell Creek Micellar Polymer Pilot. The area where the test was conducted was originally drilled during 1968, produced by primary until late 1970, and was under line drive waterflood secondary recovery until early 1976, when the area was shut in at waterflood depletion. This report presents the results of tests conducted to determine waterflood residual oil saturation in the Muddy Sandstone reservoir. The engineering techniques used to determine the magnitude and distribution of the remaining oil saturation included both pressure and sidewall cores, conventional well logs (Dual Laterolog - Micro Spherically Focused Log, Dual Induction Log - Spherically Focused Log, Borehole Compensated Sonic Log, Formation Compensated Density-Compensated Neutron Log), Carbon-Oxygen Logs, Dielectric Logs, Nuclear Magnetism Log, Thermal Decay Time Logs, and a Partitioning Tracer Test.

  1. A field experiment to assess impact of chemically dispersed oil on Arabian Gulf corals

    SciTech Connect

    Le Gore, R.S.; Cuddeback, J.E.; Hofmann, J.E.; Marszalek, D.S.

    1983-03-01

    Field experiments were conducted on a coral reef at Jurayd Island (Saudi Arabia) in the Arabian Gulf to study the effects of chemically dispersed oil on local corals. Portions of the reef were exposed to predetermined concentrations of oil alone, dispersant alone, and oil-plus-dispersant mixtures. Areas of the reef not exposed to any of the toxicants were used as controls. Arabian Light Crude and Corexit 9527 dispersant were the test toxicants. Two series of experiments were conducted beginning in September 1981, one with a 24-hour exposure period and the other with a 5-day (120-hour) exposure period. Corals were stained for growth rate studies and extensively photographed to document any observed effects. Corals were examined for biological impacts immediately after the exposures, and then at 3-month intervals for 1 year. Water temperature, salinity, dissolved oxygen, and hydrocarbon content were recorded during the exposure periods. Coral growth appeared unaffected by exposure to the toxicants. Some Acropora species corals exposed to dispersed oil for 5 days exhibited delayed effects, which became apparent during the relatively cold winter season.

  2. Focal mechanism determination of induced microearthquakes in an oil field using full waveforms from shallow and deep seismic networks

    E-print Network

    Li, Junlun

    A new, relatively high frequency, full waveform matching method was used to study the focal mechanisms of small, local earthquakes induced in an oil field, which are monitored by a sparse near-surface network and a deep ...

  3. 77 FR 57068 - Hours of Service of Drivers of Commercial Motor Vehicles; Regulatory Guidance for Oil Field...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-17

    ...DEPARTMENT OF TRANSPORTATION Federal Motor Carrier Safety Administration (FMCSA...Hours of Service of Drivers of Commercial Motor Vehicles; Regulatory Guidance for Oil Field Exception AGENCY: Federal Motor Carrier Safety Administration...

  4. 77 FR 46640 - Hours of Service of Drivers of Commercial Motor Vehicles; Regulatory Guidance for Oil Field...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-06

    ...DEPARTMENT OF TRANSPORTATION Federal Motor Carrier Safety Administration 49 CFR...Hours of Service of Drivers of Commercial Motor Vehicles; Regulatory Guidance for Oil Field Exceptions AGENCY: Federal Motor Carrier Safety Administration...

  5. A Fuzzy Feed-Forward/Feedback Control System for a Three-Phase Oil Field Centrifuge.

    SciTech Connect

    Parkinson, W. J. ,; Smith, R. E.; Mortensen, F. N.; Wantuck, P. J.; Ross, Timothy J.; Jamshidi, Mohammad; Miller, N.

    2002-01-01

    A set of fuzzy controllers was designed and applied to a commercial three-phase oil field centrifuge. This centrifuge is essentially a one of a kind unit. It is used to recover oil from tank bottoms and oil field and/or refinery sludge. It is unique because it can separate oily emulsions into three separate phases, oil, water, and solids, in one operation. The centrifuge is a large but portable device. It is moved form site to site and is used to separate a large variety of waste emulsions. The centrifuge feedstock varies significantly from site to site and often varies significantly during the daily operation. In this application, fuzzy logic was used on a class of problems not easily solved by classical control techniques. The oil field centrifuge is a highly nonlinear system, with a time varying input. We have been unable to develop a physical-mathematical model of the portion of the centrifuge operation that actually separates the oil, water, and solids. For this portion of the operation we developed a fuzzy feedback control system that modeled a skilled operator's knowledge and actions as opposed to the physical model of the centrifuge itself. Because of the variable feed we had to develop a feed-forward controller that would sense and react to feed changes prior to the time that the actual change reached the centrifuge separation unit. This portion of the control system was also a fuzzy controller designed around the knowledge of a skilled operator. In addition to the combined feed-forward and feedback control systems, we developed a soft-sensor that was used to determine the value of variables needed for the feed-forward control system. These variables could not actually be measured but were calculated from the measurement of other variables. The soft-sensor was developed with a combination of a physical model of the feed system and a skilled operator's expert knowledge. Finally the entire control system is tied together with a fuzzy-SPC (Statistical Process Control) filter, used to filter process and instrument noise and a fuzzy conflict resolution code used to keep the feed-forward and feedback control systems working well together.

  6. Microbial diversity in methanogenic hydrocarbon-degrading enrichment cultures isolated from a water-flooded oil reservoir (Dagang oil field, China)

    NASA Astrophysics Data System (ADS)

    Jiménez, Núria; Cai, Minmin; Straaten, Nontje; Yao, Jun; Richnow, Hans H.; Krüger, Martin

    2015-04-01

    Microbial transformation of oil to methane is one of the main degradation processes taking place in oil reservoirs, and it has important consequences as it negatively affects the quality and economic value of the oil. Nevertheless, methane could constitute a recovery method of carbon from exhausted reservoirs. Previous studies combining geochemical and isotopic analysis with molecular methods showed evidence for in situ methanogenic oil degradation in the Dagang oil field, China (Jiménez et al., 2012). However, the main key microbial players and the underlying mechanisms are still relatively unknown. In order to better characterize these processes and identify the main microorganisms involved, laboratory biodegradation experiments under methanogenic conditions were performed. Microcosms were inoculated with production and injection waters from the reservoir, and oil or 13C-labelled single hydrocarbons (e.g. n-hexadecane or 2-methylnaphthalene) were added as sole substrates. Indigenous microbiota were able to extensively degrade oil within months, depleting most of the n-alkanes in 200 days, and producing methane at a rate of 76 ± 6 µmol day-1 g-1 oil added. They could also produce heavy methane from 13C-labeled 2-methylnaphthalene, suggesting that further methanogenesis may occur from the aromatic and polyaromatic fractions of Dagang reservoir fluids. Microbial communities from oil and 2-methyl-naphthalene enrichment cultures were slightly different. Although, in both cases Deltaproteobacteria, mainly belonging to Syntrophobacterales (e.g. Syntrophobacter, Smithella or Syntrophus) and Clostridia, mostly Clostridiales, were among the most represented taxa, Gammaproteobacteria could be only identified in oil-degrading cultures. The proportion of Chloroflexi, exclusively belonging to Anaerolineales (e.g. Leptolinea, Bellilinea) was considerably higher in 2-methyl-naphthalene degrading cultures. Archaeal communities consisted almost exclusively of representatives of Methanomicrobia (mainly belonging to genera Methanosaeta and Methanoculleus). As both syntrophic Bacteria and methanogenic Archaea are abundant in Dagang, the studied areas of this oil field may have a significant potential to test the in situ conversion of oil into methane as a possible way to increase total hydrocarbon recovery.

  7. NMR measurement of oil shale magnetic relaxation at high magnetic field

    USGS Publications Warehouse

    Seymour, Joseph D.; Washburn, Kathryn E.; Kirkland, Catherine M.; Vogt, Sarah J.; Birdwell, Justin E.; Codd, Sarah L.

    2013-01-01

    Nuclear magnetic resonance (NMR) at low field is used extensively to provide porosity and pore-size distributions in reservoir rocks. For unconventional resources, due to low porosity and permeability of the samples, much of the signal exists at very short T2 relaxation times. In addition, the organic content of many shales will also produce signal at short relaxation times. Despite recent improvements in low-field technology, limitations still exist that make it difficult to account for all hydrogen-rich constituents in very tight rocks, such as shales. The short pulses and dead times along with stronger gradients available when using high-field NMR equipment provides a more complete measurement of hydrogen-bearing phases due to the ability to probe shorter T2 relaxation times (-5 sec) than can be examined using low-field equipment. Access to these shorter T2 times allows for confirmation of partially resolved peaks observed in low-field NMR data that have been attributed to solid organic phases in oil shales. High-field (300 MHz or 7 T) NMR measurements of spin-spin T2 and spin-lattice T1 magnetic relaxation of raw and artificially matured oil shales have potential to provide data complementary to low field (2 MHz or 0.05T) measurements. Measurements of high-field T2 and T1-T2 correlations are presented. These data can be interpreted in terms of organic matter phases and mineral-bound water known to be present in the shale samples, as confirmed by Fourier transform infrared spectroscopy, and show distributions of hydrogen-bearing phases present in the shales that are similar to those observed in low field measurements.

  8. Regularities of changes in fluid composition and properties in Vankor field pools: from light to heavy oil

    NASA Astrophysics Data System (ADS)

    Goncharov, I. V.; Oblasov, N. V.

    2015-02-01

    Oil in layers Nkh 3-4, Nkh 1, Sd 9, Yak 3-7 and vYak 2-4 of the Vankor field occurs at the depth of -2,767 to -1,357 meters at strongly different temperatures: from 62 to 26 °C. Such temperature conditions contribute to oil biodegradation processes in the pool. Therefore, oils in different pools significantly differ from each other in terms of composition and properties depending on the intensity of biodegradation. At the same time, pools might embrace both oils that have practically been not exposed to biodegradation processes and significantly biodegraded oils. The most seriously altered oils are found in vYak 2-4 layer pools. They are the heaviest and the most viscous oils among the samples under study. Many typical oil components (alkanes, alkylbenzenes, naphthalenes, phenanthrenes, dibenzothiophenes) are absent in their composition. Besides, the initial distribution of hopanes in the composition of biomarkers is altered. Apart from the molecular composition of degassed oil samples, the work also studies the effect of biodegradation on the properties and the component and isotopic composition of oils, gases and formation fluid samples.

  9. A fortran program for Monte Carlo simulation of oil-field discovery sequences

    USGS Publications Warehouse

    Bohling, G.C.; Davis, J.C.

    1993-01-01

    We have developed a program for performing Monte Carlo simulation of oil-field discovery histories. A synthetic parent population of fields is generated as a finite sample from a distribution of specified form. The discovery sequence then is simulated by sampling without replacement from this parent population in accordance with a probabilistic discovery process model. The program computes a chi-squared deviation between synthetic and actual discovery sequences as a function of the parameters of the discovery process model, the number of fields in the parent population, and the distributional parameters of the parent population. The program employs the three-parameter log gamma model for the distribution of field sizes and employs a two-parameter discovery process model, allowing the simulation of a wide range of scenarios. ?? 1993.

  10. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect

    Scott Hara

    2002-11-08

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through June 2002, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V post-steamflood pilot and Tar II-A post-steamflood projects. During the Third Quarter 2002, the project team essentially completed implementing the accelerated oil recovery and reservoir cooling plan for the Tar II-A post-steamflood project developed in March 2002 and is proceeding with additional related work. The project team has completed developing laboratory research procedures to analyze the sand consolidation well completion technique and will initiate work in the fourth quarter. The Tar V pilot steamflood project terminated hot water injection and converted to post-steamflood cold water injection on April 19, 2002. Proposals have been approved to repair two sand consolidated horizontal wells that sanded up, Tar II-A well UP-955 and Tar V well J-205, with gravel-packed inner liner jobs to be performed next quarter. Other well work to be performed next quarter is to convert well L-337 to a Tar V water injector and to recomplete vertical well A-194 as a Tar V interior steamflood pattern producer. Plans have been approved to drill and complete well A-605 in Tar V in the first quarter 2003. Plans have been approved to update the Tar II-A 3-D deterministic reservoir simulation model and run sensitivity cases to evaluate the accelerated oil recovery and reservoir cooling plan. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. Well work related to the Tar II-A accelerated oil recovery and reservoir cooling plan began in March 2002 with oil production increasing from 1009 BOPD in the first quarter to 1145 BOPD in the third quarter. Reservoir pressures have been increased during the quarter from 88% to 91% hydrostatic levels in the ''T'' sands and from 91% to 94% hydrostatic levels in the ''D'' sands. Well work during the quarter is described in the Reservoir Management section. The post-steamflood production performance in the Tar V pilot project has been below projections because of wellbore mechanical limitations and the loss of a horizontal producer a second time to sand inflow that are being addressed in the fourth quarter. As the fluid production temperatures exceeded 350 F, our self-imposed temperature limit, the pilot steamflood was converted to a hot waterflood project in June 2001 and converted to cold water injection on April 19, 2002.

  11. Hydrocarbon-water interactions during brine migration: Evidence from hydrocarbon inclusions in calcite cements from Danish North Sea oil fields

    USGS Publications Warehouse

    Jensenius, J.; Burruss, R.C.

    1990-01-01

    Crude oils in primary and secondary fluid inclusions in calcite from fractures in seven offshore oil fields associated with diapiric salt structures in the Danish sector of the North Sea were analyzed by capillary column gas chromatography and compared with crude oils produced from the same reservoirs. Oils from fluid inclusions in all fields show evidence of biodegradation (decreased n-C17/pristane and n-C18/phytane ratios and loss of n-C7, 2-methyl hexane, and 3-methyl hexane relative to methyl cyclohexane) and water washing (absence of benzene and depletion of toluene). Some oils in inclusions are extremely enriched in C6 and C7 cyclic alkanes suggesting that these samples contain hydrocarbons exsolved from ascending, hotter formation waters. Compared to inclusion oils the produced oils are less biodegraded, but are water washed, indicating that both types of oil interacted with large volumes of formation water. The carbon isotopic composition of the calcite host of the fluid inclusions in the Dagmar and Skjold fields is as light as -16.5%. PDB and the sulfur isotopic composition of pyrite in and adjacent to the calcite veins in the Skjold field is as light as -39.6%. CDT, indicating that biodegradation of the oils was a source of some of the carbon in the calcite and sulfate reduction was the source of sulfur for the pyrite. The evidence for microbial degradation of petroleum is consistent with present-day reservoir temperatures (65??-96??C) but is not consistent with previous estimates of the temperatures of calcite vein filling (95??-130??C) which are much higher than the temperatures of known occurrences of biodegraded oil. ?? 1990.

  12. Effect of leachability on environmental risk assessment for naturally occurring radioactive materials in petroleum oil fields.

    PubMed

    Rajaretnam, G; Spitz, H B

    2000-02-01

    Elevated concentrations of naturally occurring radioactive material (NORM), including 238U, 232Th, and their progeny found in underground geologic deposits, are often encountered during crude oil recovery. Radium, the predominant radionuclide brought to the surface with the crude oil and produced water, co-precipitates with barium in the form of complex compounds of sulfates, carbonates, and silicates found in sludge and scale. These NORM deposits are highly stable and very insoluble under ambient conditions at the earth's surface. However, the co-precipitated radium matrix is not thermodynamically stable at reducing conditions which may enable a fraction of the radium to eventually be released to the environment. Although the fate of radium in uranium mill tailings has been studied extensively, the leachability of radium from crude oil NORM deposits exposed to acid-rain and other aging processes is generally unknown. The leachability of radium from NORM contaminated soil collected at a contaminated oil field in eastern Kentucky was determined using extraction fluids having wide range of pH reflecting different extreme environmental conditions. The average 226Ra concentration in the samples of soil subjected to leachability testing was 32.56 Bq g(-1) +/- 0.34 Bq g(-1). The average leaching potential of 226Ra observed in these NORM contaminated soil samples was 1.3% +/- 0.46% and was independent of the extraction fluid. Risk assessment calculations using the family farm scenario show that the annual dose to a person living and working on this NORM contaminated soil is mainly due to external gamma exposure and radon inhalation. However, waterborne pathways make a non-negligible contribution to the dose for the actual resident families living on farmland with the type of residual NORM contamination due to crude oil recovery operations. PMID:10647985

  13. A fuzzy control system for a three-phase oil field centrifuge

    SciTech Connect

    Parkinson, W.J.; Smith, R.E.; Wantuck, P.J.; Miller, N.

    1998-12-31

    The three-phase centrifuge discussed here is an excellent device for cleaning up oil field and refinery wastes. These wastes are typically composed of hydrocarbons, water, and solids. This technology converts waste, which is often classified as hazardous, into salable oil, reusable water, and solids that can be placed in landfills. No secondary waste is produced. A major problem is that only one person can set up and run the equipment well enough to provide an optimal cleanup. Demand for this technology has far exceeded a one-man operation. The solution to this problem is an intelligent control system that can replace a highly skilled operator so that several centrifuges can be operated at different locations at the same time.

  14. Costs and indices for domestic oil and gas field equipment and production operations, 1992--1995

    SciTech Connect

    1996-08-01

    This report presents estimated costs and cost indices for domestic oil and natural gas field equipment and production operations for 1992, 1993, 1994, and 1995. The costs of all equipment and services are those in effect during June of each year. The sum (aggregates) of the costs for representative leases by region, depth, and production rate were averaged and indexed. This provides a general measure of the increased or decreased costs from year to year for lease equipment and operations. These general measured do not capture changes in industry-wide costs exactly because of annual variations in the ratio of the total number of oil wells to the total number of gas wells. The detail provided in this report is unavailable elsewhere. The body of this report contains summary tables, and the appendices contain detailed tables.

  15. Sedimentation, zoning of reservoir rocks in W. Siberian basin oil fields

    SciTech Connect

    Kliger, J.A. )

    1994-02-07

    A line pattern of well cluster spacing was chosen in western Siberia because of taiga, marshes, etc., on the surface. The zoning of the oil pools within productive Upper Jurassic J[sub 3] intervals is complicated. This is why until the early 1990s almost each third well drilled in the Shaimsky region on the western edge of the West Siberian basin came up dry. The results of development drilling would be much better if one used some sedimentological relationships of zoning of the reservoir rocks within the oil fields. These natural phenomena are: Paleobasin bathymetry; Distances from the sources of the clastic material; and Proximity of the area of deposition. Using the diagram in this article, one can avoid drilling toward areas where the sandstone pinch out, area of argillization of sand-stones, or where the probability of their absence is high.

  16. Chemical comparison and acute toxicity of water accommodated fraction (WAF) of source and field collected Macondo oils from the Deepwater Horizon spill.

    PubMed

    Faksness, Liv-Guri; Altin, Dag; Nordtug, Trond; Daling, Per S; Hansen, Bjørn Henrik

    2015-02-15

    Two Source oils and five field collected oil residues from the Deepwater Horizon incident were chemically characterized. Water accommodated fractions (WAFs) of the Source oils and two of the field-weathered oils were prepared to evaluate the impact of natural weathering on the chemical composition and the acute toxicity of the WAFs. Toxicity test species representing different tropic levels were used (the primary producer Skeletonema costatum (algae) and the herbivorous copepod Acartia tonsa). The results suggest that the potential for acute toxicity is higher in WAFs from non-weathered oils than WAFs from the field weathered oils. The Source oils contained a large fraction of soluble and bioavailable components (such as BTEX (benzene, toluene, ethyl benzene, xylenes) and naphthalene), whereas in the surface collected oils these components were depleted by dissolution into the water column as the oil rose to the surface and by evaporative loss after reaching the sea surface. PMID:25534626

  17. Spatial statistical analysis of basal stem root disease under natural field epidemic of oil palm

    NASA Astrophysics Data System (ADS)

    Kamu, Assis; Phin, Chong Khim; Seman, Idris Abu; Wan, Hoong Hak; Mun, Ho Chong

    2015-02-01

    Oil palm or scientifically known as Elaeis guineensis Jacq. is the most important commodity crop in Malaysia and has greatly contributed to the economy growth of the country. As far as disease is concerned in the industry, Basal Stem Rot (BSR) caused by Ganoderma boninence remains the most important disease. BSR disease is the most widely studied with information available for oil palm disease in Malaysia. However, there is still limited study on the spatial as well as temporal pattern or distribution of the disease especially under natural field epidemic condition in oil palm plantation. The objective of this study is to spatially identify the pattern of BSR disease under natural field epidemic using two geospatial analytical techniques, which are quadrat analysis for the first order properties of partial pattern analysis and nearest-neighbor analysis (NNA) for the second order properties of partial pattern analysis. Two study sites were selected with different age of tree. Both sites are located in Tawau, Sabah and managed by the same company. The results showed that at least one of the point pattern analysis used which is NNA (i.e. the second order properties of partial pattern analysis) has confirmed the disease is complete spatial randomness. This suggests the spread of the disease is not from tree to tree and the age of palm does not play a significance role in determining the spatial pattern of the disease. From the spatial pattern of the disease, it would help in the disease management program and for the industry in the future. The statistical modelling is expected to help in identifying the right model to estimate the yield loss of oil palm due to BSR disease in the future.

  18. Monitoring Subsidence Changes over the Lost Hills Diatomite Oil Field, California*

    NASA Astrophysics Data System (ADS)

    Fielding, E. J.; Brink, J. L.; Patzek, T. W.; Silin, D. B.; Blom, R. G.

    2003-12-01

    SAR, GPS and LiDAR monitoring of the Lost Hills giant oil field in central California shows dramatic changes of subsidence over the last 15 years. Subsidence is caused by fluid withdrawal and subsequent compaction of the diatomite petroleum reservoir and in some areas has reached cumulative subsidence of 2 meters since 1989. Measurements of the surface elevation changes with semi-annual GPS surveys and SAR interferometry (using ERS-1 and ERS-2 satellite data) show subsidence rates exceeded 1 mm/day during 1995-1996 in the central part of the oil field. By 1999-2000, increased injection of water to replace the extracted fluids meant that no part of the Lost Hills field was subsiding faster than 0.5 mm/day and some areas that had extremely rapid subsidence before were slower than 0.2 mm/day. We increased the temporal resolution of the subsidence measurements for late 2002 and early 2003 by analyzing more frequent SAR acquisitions from the Radarsat-1 satellite to better understand the compaction response to changes in the oil field operations. The Radarsat-1 orbit-repeat period is 24 days but individual interferograms with short time intervals of only 24 days can have substantial errors due to atmospheric variations. Errors can be reduced by making interferograms with longer time intervals or by averaging multiple independent interferograms over a shorter interval. The Radarsat-1 satellite can image Lost Hills from up to six different tracks every 24-day cycle, potentially allowing six independent interferograms. *Part of this work was performed at the Jet Propulsion Lab, Caltech under contract with the National Aeronautics and Space Administration.

  19. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect

    Scott Hara

    2002-04-30

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. Through December 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. During the First Quarter 2002, the project team developed an accelerated oil recovery and reservoir cooling plan for the Tar II-A post-steamflood project and began implementing the associated well work in March. The Tar V pilot steamflood project will be converted to post-steamflood cold water injection in April 2002. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. Most of the 2001 well work resulted in maintaining oil and gross fluid production and water injection rates. Reservoir pressures in the ''T'' and ''D'' sands are at 88% and 91% hydrostatic levels, respectively. Well work during the first quarter and plans for 2002 are described in the Reservoir Management section. The steamflood operation in the Tar V pilot project is mature and profitable. Recent production performance has been below projections because of wellbore mechanical limitations that have been addressed during this quarter. As the fluid production temperatures were beginning to exceed 350 F, our self-imposed temperature limit, the pilot steamflood was converted to a hot waterflood project in June 2001 and will be converted to cold water injection next quarter.

  20. Gas injection may have triggered earthquakes in the Cogdell oil field, Texas.

    PubMed

    Gan, Wei; Frohlich, Cliff

    2013-11-19

    Between 1957 and 1982, water flooding was conducted to improve petroleum production in the Cogdell oil field north of Snyder, TX, and a contemporary analysis concluded this induced earthquakes that occurred between 1975 and 1982. The National Earthquake Information Center detected no further activity between 1983 and 2005, but between 2006 and 2011 reported 18 earthquakes having magnitudes 3 and greater. To investigate these earthquakes, we analyzed data recorded by six temporary seismograph stations deployed by the USArray program, and identified 93 well-recorded earthquakes occurring between March 2009 and December 2010. Relocation with a double-difference method shows that most earthquakes occurred within several northeast-southwest-trending linear clusters, with trends corresponding to nodal planes of regional focal mechanisms, possibly indicating the presence of previously unidentified faults. We have evaluated data concerning injection and extraction of oil, water, and gas in the Cogdell field. Water injection cannot explain the 2006-2011 earthquakes, especially as net volumes (injection minus extraction) are significantly less than in the 1957-1982 period. However, since 2004 significant volumes of gases including supercritical CO2 have been injected into the Cogdell field. The timing of gas injection suggests it may have contributed to triggering the recent seismic activity. If so, this represents an instance where gas injection has triggered earthquakes having magnitudes 3 and larger. Further modeling studies may help evaluate recent assertions suggesting significant risks accompany large-scale carbon capture and storage as a strategy for managing climate change. PMID:24191019

  1. Gas injection may have triggered earthquakes in the Cogdell oil field, Texas

    PubMed Central

    Gan, Wei; Frohlich, Cliff

    2013-01-01

    Between 1957 and 1982, water flooding was conducted to improve petroleum production in the Cogdell oil field north of Snyder, TX, and a contemporary analysis concluded this induced earthquakes that occurred between 1975 and 1982. The National Earthquake Information Center detected no further activity between 1983 and 2005, but between 2006 and 2011 reported 18 earthquakes having magnitudes 3 and greater. To investigate these earthquakes, we analyzed data recorded by six temporary seismograph stations deployed by the USArray program, and identified 93 well-recorded earthquakes occurring between March 2009 and December 2010. Relocation with a double-difference method shows that most earthquakes occurred within several northeast–southwest-trending linear clusters, with trends corresponding to nodal planes of regional focal mechanisms, possibly indicating the presence of previously unidentified faults. We have evaluated data concerning injection and extraction of oil, water, and gas in the Cogdell field. Water injection cannot explain the 2006–2011 earthquakes, especially as net volumes (injection minus extraction) are significantly less than in the 1957–1982 period. However, since 2004 significant volumes of gases including supercritical CO2 have been injected into the Cogdell field. The timing of gas injection suggests it may have contributed to triggering the recent seismic activity. If so, this represents an instance where gas injection has triggered earthquakes having magnitudes 3 and larger. Further modeling studies may help evaluate recent assertions suggesting significant risks accompany large-scale carbon capture and storage as a strategy for managing climate change. PMID:24191019

  2. Exposures and cancer incidence near oil fields in the Amazon basin of Ecuador

    PubMed Central

    San, S; Armstrong, B; Cordoba, J; Stephens, C

    2001-01-01

    OBJECTIVES—To examine environmental exposure and incidence and mortality of cancer in the village of San Carlos surrounded by oil fields in the Amazon basin of Ecuador.?METHODS—Water samples of the local streams were analyzed for total petroleum hydrocarbons (TPHs). A preliminary list of potential cancer cases from 1989 to 1998 was prepared. Cases were compared with expected numbers of cancer morbidity and mortality registrations from a Quito reference population.?RESULTS—Water analysis showed severe exposure to TPHs by the residents. Ten patients with cancer were diagnosed while resident in the village of San Carlos. An overall excess for all types of cancer was found in the male population (8 observed v 3.5 expected) with a risk 2.26 times higher than expected (95% confidence interval (95% CI) 0.97 to 4.46). There was an overall excess of deaths for all types of cancer (6 v 1.6 expected) among the male population 3.6 times higher than the reference population (95% CI 1.31 to 7.81).?CONCLUSIONS—The observed excess of cancer might be associated with the pollution of the environment by toxic contaminants coming from the oil production.???Keywords: cancer; oil; Amazon; Ecuador PMID:11452046

  3. Gas, Water, and Oil Production from the Wasatch Formation, Greater Natural Buttes Field, Uinta Basin, Utah

    USGS Publications Warehouse

    Nelson, Philip H.; Hoffman, Eric L.

    2009-01-01

    Gas, oil, and water production data were compiled from 38 wells with production commencing during the 1980s from the Wasatch Formation in the Greater Natural Buttes field, Uinta Basin, Utah. This study is one of a series of reports examining fluid production from tight gas reservoirs, which are characterized by low permeability, low porosity, and the presence of clay minerals in pore space. The general ranges of production rates after 2 years are 100-1,000 mscf/day for gas, 0.35-3.4 barrel per day for oil, and less than 1 barrel per day for water. The water:gas ratio ranges from 0.1 to10 barrel per million standard cubic feet, indicating that free water is produced along with water dissolved in gas in the reservoir. The oil:gas ratios are typical of a wet gas system. Neither gas nor water rates show dependence upon the number of perforations, although for low gas-flow rates there is some dependence upon the number of sandstone intervals that were perforated. Over a 5-year time span, gas and water may either increase or decrease in a given well, but the changes in production rate do not exhibit any dependence upon well proximity or well location.

  4. Integration of geological, geochemical, and geophysical spatial data of the Cement oil field, Oklahoma, test site

    USGS Publications Warehouse

    Termain, Patricia A.; Donovan, Terrence J.; Chavez, Pat S.

    1980-01-01

    Measurement pertaining to geology, geochemistry, and geophysics of the Cement oil field, Oklahoma, test site were collected employing both airborne sensors and ground-based data collection. The measurements include: (1) airborne gamma-ray spectrometry (supplying bismuth 214, thalium 208, and potassium 40 gamma-ray intensities); (2) aeromagnetic survey data; (3) multi-frequency airborne resistivity survey data (supplying apparent electrical resistivity of near surface materials); (4) gravity data; (5) geological and topographic maps; and (6) image data from Landsat MSS and U-2 photography.

  5. Notes on the uwainat oil rim development, Maydan Mahzam and Bul Hanine Fields, offshore Qatar

    SciTech Connect

    Hamam, K.A.

    1985-03-01

    As a result of reservoir simulation studies of the Uwainat reservoirs (Maydan Mahzam and Bul Hanine Fields), drilling to the Uwainat oil rim target became very ''tight'' with a very limited vertical tolerance. To achieve drilling to the tight target requires a precise position of the well at the top of the Lower Arab IV reservoir (a reliable marker) and an accurate isochore of the Lower Arab IV - Uwainat. The discussion shows that the level of accuracy needed in determining both the actual subsea well position and in constructing the depth contours of the reservoirs is extremely high.

  6. Habitat of oil in the Lindsborg field, Salina basin, north-central Kansas

    SciTech Connect

    Newell, K.D. )

    1991-03-01

    The Lindsborg field was discovered in 1938, and is now 14 mi in length and 1-2 mi in width. It has a projected ultimate recovery of 16 MMBO. Three pay zones (5-20 ft thick) produce in the field. The Simpson pay zone (Middle Ordovician) is a well-rounded, quartzitic sandstone that is interpreted to be a paralic, high-energy shelf deposit. The Viola pay (Middle Ordovician) appears to be a dolomitic, lime grainstone but no cores are available to confirm this. The uppermost pay zone, the Upper Ordovician Maquoketa, is a finely laminated, vuggy, cherry dolomite interpreted to have been deposited as a subtidal lime mudstone in a restricted lagoon. The Simpson and Viola pays are structurally trapped in culminations along the crest of the Lindsborg anticline. Although the Maquoketa pay is structurally trapped with the other pay zones in the southern half of the field, its locus of production in the north half of the fields extends 100 ft vertically down the western flank of the anticline. The trapping mechanism is unclear due to lack of core control and modern logging suites, but it may be subtle updip diagenetic change from vuggy to nonvuggy dolomite. The Simpson and Maquoketa oils are geochemically distinct. Both may reflect efficient local source-to-reservoir migration from originally rich but marginally mature Ordovician and Devonian shales that contact each pay zone. If oil in the Lindsborg field is locally generated, the prospectivity of the relatively unproductive and underexplored Salina basin may be enhanced.

  7. Enhanced oil recovery by CO/sub 2/ miscible displacement in the Little Knife Field, Billings County, North Dakota

    SciTech Connect

    Desch, J.B.; Larsen, W.K.; Lindsay, R.F.; Nettle, R.L.

    1982-01-01

    Gulf Oil Exploration and Production Company, in conjunction with the Department of Energy, has successfully conducted a field test of the CO/sub 2/ miscible displacement process in the Little Knife Field. All project objectives were conceived, implemented, and accomplished as a result of the synergetic cooperation and communication between the various departments within Gulf Oil Corporation and the DOE. The minitest succeeded in establishing water-flood residual-oil saturations. It also succeeded in reducing the waterflood residual-oil saturation to a lower value by CO/sub 2//water injection. Finally, and most importantly, the minitest was successfully characterized, developed, and monitored. Monitoring was accomplished by cased-hole logging, fluid sampling, and simulation modeling. 9 refs.

  8. Changes in the size distribution of a water-in-oil emulsion due to electric field induced coalescence

    SciTech Connect

    Williams, T.J.; Bailey, A.G.

    1986-05-01

    A knowledge of the droplet size distribution of a water-in-oil emulsion subjected to an electric field provides useful information regarding electrostatic coalescence which can aid the formulation of coalescence models and the design of commercial electrostatic separators. Water droplet-size distribution measurements made using a laser light-scattering technique during the electrostatic resolution of a low-water-content water-in-oil emulsion are reported. A qualitative explanation of the results is presented.

  9. A surface vitrinite reflectance anomaly related to Bell Creek oil field, Montana, U.S.A.

    USGS Publications Warehouse

    Barker, C.E.; Dalziel, M.C.; Pawlewicz, M.J.

    1983-01-01

    Vitrinite reflectance measurements from surface samples of mudrock and coal show anomalously high values over the Bell Creek oil field. The average vitrinite reflectance (Rm) increases to a maximum of 0.9 percent over the field against background values of about 0.3 percent. The Rm anomaly coincides with a geochemical anomaly indicated by diagenetic magnetite in surface rocks and a geobiologic anomaly indicated by ethane-consuming bacteria. These samples were taken from the Upper Cretaceous Hell Creek and Paleocene Fort Union Formations which form an essentially conformable sequence. The depositional environment is similar in both formations, and we expect little variation in the source and composition of the organic matter. The surface R m should be approximately constant because of a uniform thermal history across the field. Temperature studies over local oil fields with similar geology suggest the expected thermal anomaly would be less than 10?C (50?F), which is too small to account for the significantly higher rank over the field. Coal clinkers are rare in the vicinity of Bell Creek and an Rm anomaly caused by burning of the thin, discontinuous coal seams is unlikely. The limited topographic relief, less than 305 m (1,000 ft), over the shallow-dipping homoclinal structure and the poor correlation between Rm and sample locality elevation (r = -0.2) indicate that the Rm anomaly is not due to burial, deformation and subsequent erosion. We conjecture that activity by petroleum-metabolizing bacteria is a possible explanation of the Rm anomaly. Microseepage from oil reservoirs supports large colonies of these organisms, some of which can produce enzymes that can cleave hydrocarbon side-chains on the kerogen molecule. The loss of these side chains causes condensation of the ring structures (Stach and others, 1982) and consequently increases its reflectance. These data indicate that vitrinite reflectance may be a useful tool to explore for stratigraphic traps in the Powder River Basin. Further, the large variation of R across the Bell Creek area suggests that vitrinite reflectance data from surface samples should be interpreted with caution.

  10. Blast furnace slag slurries may have limits for oil field use

    SciTech Connect

    Benge, O.G.; Webster, W.W. )

    1994-07-18

    Thorough testing, economic evaluations, and environmental evaluations of blast furnace slag slurries revealed that replacing Portland cement with slag slurries may compromise essential properties in a cementing operation. The use of blast furnace slag (BFS) slurries should be analyzed on a per case basis for oil well cementing operations. BFS slurry technology may be a viable mud solidification process, but the slurries are not cement and should not be considered as such. Several slurries using field and laboratory prepared drilling fluids solidified with blast furnace slag were investigated to determine thickening time, compressive strength, free water, and other pertinent properties. The tests included an evaluation of the expansion of the set material and shear bond, as well as rheological compatibility studies of the finished slurries with the base muds. These additional tests are critical in the potential application of this process under field conditions.

  11. 3-D reservoir characterization of the House Creek oil field, Powder River Basin, Wyoming

    USGS Publications Warehouse

    Higley, Debra K.; Pantea, Michael P.; Slatt, Roger M.

    1997-01-01

    This CD-ROM is intended to serve a broad audience. An important purpose is to explain geologic and geochemical factors that control petroleum production from the House Creek Field. This information may serve as an analog for other marine-ridge sandstone reservoirs. The 3-D slide and movie images are tied to explanations and 2-D geologic and geochemical images to visualize geologic structures in three dimensions, explain the geologic significance of porosity/permeability distribution across the sandstone bodies, and tie this to petroleum production characteristics in the oil field. Movies, text, images including scanning electron photomicrographs (SEM), thin-section photomicrographs, and data files can be copied from the CD-ROM for use in external mapping, statistical, and other applications.

  12. Analysis of gravity anomaly over coral-reef oil field: Wilfred Pool, Sullivan County, Indiana

    SciTech Connect

    Dana, S.W.

    1980-03-01

    To compare the measured and theoretical gravity anomaly of a typical coral-reef oil field, data were collected from the wilfred Pool, Sullivan County, Indiana. Densities of available core samples from the field were determined and the anomaly was calculated, taking into account the lateral and vertical variation of density and the geologic structure known from core studies and drilling-log records of lithologic types penetrated by the wells. Comparison of the theoretical and actual anomalies indicated a rough correspondence except for several sharp negative anomalies on the flanks of the measured gravity anomaly. Further studies indicated that the negative anomalies are possibly due to fluvial erosion that produced, on the surface of the youngest Pennsylvanian sediments, channels which were later filled with glacial till of lower density than the sediments. 13 figures.

  13. Magnetic forward models of Cement oil field, Oklahoma, based on rock magnetic, geochemical, and petrologic constraints

    USGS Publications Warehouse

    Reynolds, R.L.; Webring, M.; Grauch, V.J.S.; Tuttle, M.

    1990-01-01

    Magnetic forward models of the Cement oil field, Oklahoma, were generated to assess the possibility that ferrimagnetic pyrrhotite related to hydrocarbon seepage in the upper 1 km of Permian strata contributes to aeromagnetic anomalies at Cement. Six bodies having different magnetizations were constructed for the magnetic models. Total magnetizations of the bodies of highest pyrrhotite content range from about 3 ?? 10-3 to 56 ?? 10-3 A/m in the present field direction and yield magnetic anomalies (at 120 m altitude) having amplitudes of less than 1 nT to ~6 to 7 nT, respectively. Numerous assumptions were made in the generation of the models, but nevertheless, the results suggest that pyrrhotite, formed via hydrocarbon reactions and within a range of concentrations estimated at Cement, is capable of causing magnetic anomalies. -from Authors

  14. Additional Reserve Recovery Using New Polymer Treatment on High Water Oil Ratio Wells in Alameda Field, Kingman County, Kansas

    SciTech Connect

    James Spillane

    2005-10-01

    The Chemical Flooding process, like a polymer treatment, as a tertiary (enhanced) oil recovery process can be a very good solution based on the condition of this field and its low cost compared to the drilling of new wells. It is an improved water flooding method in which high molecular-weight (macro-size molecules) and water-soluble polymers are added to the injection water to improve the mobility ratio by enhancing the viscosity of the water and by reducing permeability in invaded zones during the process. In other words, it can improve the sweep efficiency by reducing the water mobility. This polymer treatment can be performed on the same active oil producer well rather than on an injector well in the existence of strong water drive in the formation. Some parameters must be considered before any polymer job is performed such as: formation temperature, permeability, oil gravity and viscosity, location and formation thickness of the well, amount of remaining recoverable oil, fluid levels, well productivity, water oil ratio (WOR) and existence of water drive. This improved oil recovery technique has been used widely and has significant potential to extend reservoir life by increasing the oil production and decreasing the water cut. This new technology has the greatest potential in reservoirs that are moderately heterogeneous, contain moderately viscous oils, and have adverse water-oil mobility ratios. For example, many wells in Kansas's Arbuckle formation had similar treatments and we have seen very effective results. In addition, there were previous polymer treatments conducted by Texaco in Alameda Field on a number of wells throughout the Viola-Simpson formation in the early 70's. Most of the treatments proved to be very successful.

  15. Did CO2 injection induce 2006-2011 earthquakes in the Cogdell oil field, Texas?

    NASA Astrophysics Data System (ADS)

    GAN, W.; Frohlich, C.

    2013-12-01

    Induced seismicity related to underground injection of liquids has been widely reported. However, earthquakes triggered by gas injection, particularly having magnitudes M3 and larger, haven't been observed. Davis and Pennington (1) concluded that earthquakes occurring 1974-1982 in the Cogdell oil field north of Snyder, TX were induced by water flooding for secondary recovery that took place between 1956 and 1982. Subsequently the National Earthquake Information Center (NEIC) reported no further seismicity between 1983 and 2005, but between 2006 and 2011 reported 18 earthquakes having magnitudes 3 and greater. In the present study we analyzed data recorded by six temporary seismograph stations deployed by the USArray program. We identified and carefully relocated 93 well-recorded earthquakes occurring between March 2009 and December 2010. Relocated epicenters occur within several NE-SW-trending linear clusters, with trends corresponding to nodal planes of regional focal mechanisms, possibly indicating the presence of previously unidentified subsurface faults. Moreover, both the rate and b value for the 2009-2011 activity differs from the values for earlier activity, possibly suggesting a different physical origin. We have evaluated data concerning injection and extraction of oil, water, and gas in the Cogdell field. Fluid injection doesn't explain the 2006-2011 earthquakes, especially as net volumes (injection minus extraction) are significantly less than in the 1957-1982 period, and don't appear to have undergone significant recent changes. However, since 2004 significant volumes of CO2 have been injected into the Cogdell fields. The timing of gas injection suggests it may have triggered the recent seismic activity. If so, this is the first reported instance where gas injection has triggered earthquakes having magnitudes M3 and larger. Further analysis may help to evaluate recent concerns about possible risks associated with large-scale carbon capture and storage as a strategy for managing climate change. 1. Davis SD, Pennington WD (1989) Induced seismic deformation in the Cogdell oil field of west Texas. Bull Seismol Soc Amer 79:1477-1495.

  16. Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 34, quarter ending March 31, 1983

    SciTech Connect

    Linville, B.

    1983-07-01

    Progress achieved for the quarter ending March 1983 are presented for field projects and supporting research for the following: chemical flooding; carbon dioxide injection; and thermal/heavy oil. In addition, progress reports are presented for: resource assessment technology; extraction technology; environmental and safety; microbial enhanced oil recovery; oil recovered by gravity mining; improved drilling technology; and general supporting research. (ATT)

  17. CO2 Storage and Enhanced Oil Recovery: Bald Unit Test Site, Mumford Hills Oil Field, Posey County, Indiana

    SciTech Connect

    Frailey, Scott M.; Krapac, Ivan G.; Damico, James R.; Okwen, Roland T.; McKaskle, Ray W.

    2012-03-30

    The Midwest Geological Sequestration Consortium (MGSC) carried out a small-scale carbon dioxide (CO2) injection test in a sandstone within the Clore Formation (Mississippian System, Chesterian Series) in order to gauge the large-scale CO2 storage that might be realized from enhanced oil recovery (EOR) of mature Illinois Basin oil fields via miscible liquid CO2 flooding. As part of the MGSC�������¢����������������s Validation Phase (Phase II) studies, the small injection pilot test was conducted at the Bald Unit site within the Mumford Hills Field in Posey County, southwestern Indiana, which was chosen for the project on the basis of site infrastructure and reservoir conditions. Geologic data on the target formation were extensive. Core analyses, porosity and permeability data, and geophysical logs from 40 wells were used to construct cross sections and structure contour and isopach maps in order to characterize and define the reservoir architecture of the target formation. A geocellular model of the reservoir was constructed to improve understanding of CO2 behavior in the subsurface. At the time of site selection, the Field was under secondary recovery through edge-water injection, but the wells selected for the pilot in the Bald Unit had been temporarily shut-in for several years. The most recently shut-in production well, which was surrounded by four nearby shut-in production wells in a five-spot pattern, was converted to CO2 injection for this pilot. Two additional wells outside the immediate five-spot pattern, one of which was an active producer, were instrumented to measure surface temperature and pressure. The CO2 injection period lasted from September 3, 2009, through December 14, 2010, with one three-month interruption caused by cessation of CO2 deliveries due to winter weather. Water was injected into the CO2 injection well during this period. A total of 6,300 tonnes (6,950 tons) of CO2 were injected into the reservoir at rates that generally ranged from 18 to 32 tonnes (20 to 35 tons) per day. The CO2 injection bottomhole pressure generally remained at 8.3 to 9.0 MPag (1,200 to 1,300 psig). The CO2 injection was followed by continued monitoring for nine months during post-CO2 water injection. A monitoring, verification, and accounting (MVA) program was designed to determine the fate of injected CO2. Extensive periodic sampling and analysis of brine, groundwater, and produced gases began before CO2 injection and continued through the monitored waterflood periods. Samples were gathered from production wells and three newly installed groundwater monitoring wells. Samples underwent geochemical and isotopic analyses to reveal any CO2-related changes. Groundwater and kinetic modeling and mineralogical analysis were also employed to better understand the long-term dynamics of CO2 in the reservoir. No CO2 leakage into groundwater was detected, and analysis of brine and gas chemistry made it possible to track the path of plume migration and infer geochemical reactions and trapping of CO2. Cased-hole logging did not detect any CO2 in the near-wellbore region. An increase in CO2 concentration was first detected in February 2010 from the gas present in the carboy during brine sampling; however, there was no appreciable gas volume associated with the detection of CO2. The first indication of elevated gas rates from the commingled gas of the pilot�������¢����������������s production wells occurred in July 2010 and reached a maximum of 0.36 tonnes/day (0.41 tons/day) in September 2010. An estimated 27 tonnes (30 tons) of CO2 were produced at the surface from the gas separator at the tank battery from September 3, 2009, through September 11, 2011, representing 0.5% of the injected CO2. Consequently, 99.5%

  18. Incidence of plasmids in marine Vibrio spp. isolated from an oil field in the northwestern Gulf of Mexico

    SciTech Connect

    Hada, H.S.; Sizemore, R.K.

    1981-01-01

    Presumptive marine Vibrio spp. were collected from an operational oil field and control site located in the northwest Gulf of Mexico. Of 440 isolates analyzed for the presence of extrachromosomal deoxyribonucleic acid elements or plasmids by using the cleared lysate and agarose gel techniques, 31% showed distinct plasmid bands on agarose gels. A majority of the plasmids detected were estimated to have mollecular masses of 10 x 10/sup 6/ or less. Multiple plasmids were observed in approximately half of the plasmid-containing strains. A number of isolates contained plasmids with similar banding and mobility patterns. The oil field area had noticeably more plasmid-containing strains (35 versus 23% in the control site) and a greater number of plasmids per plasmid-containing strain (an average of 2.5 plasmids, vs 1.5 in the control site). Oil field discharges might have resulted in increased plasmid incidence and diversity.

  19. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect

    Scott Hara

    2000-02-18

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through March 1999, project work has been completed related to data preparation, basic reservoir engineering, developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model, and a rock-log model, well drilling and completions, and surface facilities. Work is continuing on the stochastic geologic model, developing a 3-D stochastic thermal reservoir simulation model of the Fault Block IIA Tar (Tar II-A) Zone, and operational work and research studies to prevent thermal-related formation compaction. Thermal-related formation compaction is a concern of the project team due to observed surface subsidence in the local area above the steamflood project. Last quarter on January 12, the steamflood project lost its inexpensive steam source from the Harbor Cogeneration Plant as a result of the recent deregulation of electrical power rates in California. An operational plan was developed and implemented to mitigate the effects of the two situations. Seven water injection wells were placed in service in November and December 1998 on the flanks of the Phase 1 steamflood area to pressure up the reservoir to fill up the existing steam chest. Intensive reservoir engineering and geomechanics studies are continuing to determine the best ways to shut down the steamflood operations in Fault Block II while minimizing any future surface subsidence. The new 3-D deterministic thermal reservoir simulator model is being used to provide sensitivity cases to optimize production, steam injection, future flank cold water injection and reservoir temperature and pressure. According to the model, reservoir fill up of the steam chest at the current injection rate of 28,000 BPD and gross and net oil production rates of 7,700 BPD and 750 BOPD (injection to production ratio of 4) will occur in October 1999. At that time, the reservoir should act more like a waterflood and production and cold water injection can be operated at lower net injection rates to be determined. Modeling runs developed this quarter found that varying individual well injection rates to meet added production and local pressure problems by sub-zone could reduce steam chest fill-up by up to one month.

  20. Time-lapse Measurements of Scholte Wave Velocity Over a Compacting Oil Field

    NASA Astrophysics Data System (ADS)

    Wills, P. B.; Hatchell, P. J.

    2007-12-01

    Acquisition of time-lapse seismic data over producing oil and gas fields is a proven method for optimizing hydrocarbon production. Most current data have been acquired using towed-streamer seismic vessels but new systems incorporating permanent Ocean Bottom Cable (OBC) systems are gaining in popularity, both as a way to achieve better repeatability and also to reduce the cost of acquiring many time-lapse repeats of the baseline survey. Over the last three years, more than seven repeat data sets have been acquired at the permanent OBC system installed (by the operator, BP) over the Valhall oil field located offshore Norway. This system contains ~2400 four-component receiver stations that are recorded using a dense areal shot grid ("carpet" shoot) that provides high fold and has delivered excellent time-lapse signals starting from the first repeat occurring just three months after the baseline. Time-lapse OBC data are conventionally used to measure amplitude and velocity changes of body wave reflections (PP and PS) but other measurements are also possible. In particular, Scholte waves are strongly visible on records acquired everywhere in the field on appropriately processed data and, given the high fold (because of the dense shots), Scholte wave velocity and anisotropy time-lapse changes obtained with both hydrophone and geophone sensors are accurately and robustly estimated. The resulting shallow velocity maps are very sensitive to the seabed strains and show large velocity changes overlying deep production. Also, reconstruction of compressional "head wave" velocity difference measurements and vertically propagating shear wave shallow time-lapse statics produce maps that resemble the Scholte wave maps, with differences that reflect the physics of the propagation modes and effective fold. A reservoir model that includes deep reservoir volume changes together with appropriate geomechanical properties in the overburden and a shallow conversion of strain to velocity is used to successfully predict the measured velocity changes. The strain/velocity conversion requires asymmetry between crack opening and closing as well as velocity hysteresis and, in fact, the measurements provide an excellent laboratory for testing fracture-model/velocity conversion on in-situ rocks. After calibration, the model together with the data can constrain both volume changes in the reservoir, for making drilling decisions as well as the overburden geomechanical rock properties model, which itself is used for well- path selection and facilities decisions. Scholte wave velocity measurements can also be made using an oil platform as a "passive" source, removing the need for a conventional source near the seafloor. Finally, these measurements might be applicable on time- lapse controlled source measurements of greater generality in a wider geophysical context wherever an accurate measurement of a time-varying surface strain is desired.

  1. Strontium isotope detection of brine contamination in the East Poplar oil field, Montana

    USGS Publications Warehouse

    Peterman, Zell E.; Thamke, Joanna N.; Futa, Kiyoto; Oliver, Thomas A.

    2010-01-01

    Brine contamination of groundwater in the East Poplar oil field was first documented in the mid-1980s by the U.S. Geological Survey by using hydrochemistry, with an emphasis on chloride (Cl) and total dissolved solids concentrations. Supply wells for the City of Poplar are located downgradient from the oil field, are completed in the same shallow aquifers that are documented as contaminated, and therefore are potentially at risk of being contaminated. In cooperation with the Office of Environmental Protection of the Fort Peck Tribes, groundwater samples were collected in 2009 and 2010 from supply wells, monitor wells, and the Poplar River for analyses of major and trace elements, including strontium (Sr) concentrations and isotopic compositions. The ratio of strontium-87 to strontium-86 (87Sr/86Sr) is used extensively as a natural tracer in groundwater to detect mixing among waters from different sources and to study the effects of water/rock interaction. On a plot of the reciprocal strontium concentration against the 87Sr/86Sr ratio, mixtures of two end members will produce a linear array. Using this plotting method, data for samples from most of the wells, including the City of Poplar wells, define an array with reciprocal strontium values ranging from 0.08 to 4.15 and 87Sr/86Sr ratios ranging from 0.70811 to 0.70828. This array is composed of a brine end member with an average 87Sr/86Sr of 0.70822, strontium concentrations in excess of 12.5 milligrams per liter (mg/L), and chloride concentrations exceeding 8,000 mg/L mixing with uncontaminated water similar to that in USGS06-08 with 18.0 mg/L chloride, 0.24 mg/L strontium, and a 87Sr/86Sr ratio of 0.70811. The position of samples from the City of Poplar public-water supply wells within this array indicates that brine contamination has reached all three wells. Outliers from this array are EPU-4G (groundwater from the Cretaceous Judith River Formation), brine samples from disposal wells (Huber 5-D and EPU 1-D), USGS92-11 (a well with water that was considerably contaminated in 1992 and becoming less saline with time), and PNR-27 (only slightly below the defined trend with an 87Sr/86Sr ratio of 0.70793). Water samples from the City of Poplar wells are also enriched in anions and cations that are abundant in oil-field brine.

  2. RESERVOIR CHARACTERIZATION OF UPPER DEVONIAN GORDON SANDSTONE, JACKSONBURG STRINGTOWN OIL FIELD, NORTHWESTERN WEST VIRGINIA

    SciTech Connect

    S. Ameri; K. Aminian; K.L. Avary; H.I. Bilgesu; M.E. Hohn; R.R. McDowell; D.L. Matchen

    2001-07-01

    The Jacksonburg-Stringtown oil field contained an estimated 88,500,000 barrels of oil in place, of which approximately 20,000,000 barrels were produced during primary recovery operations. A gas injection project, initiated in 1934, and a pilot waterflood, begun in 1981, yielded additional production from limited portions of the field. The pilot was successful enough to warrant development of a full-scale waterflood in 1990, involving approximately 8,900 acres in three units, with a target of 1,500 barrels of oil per acre recovery. Historical patterns of drilling and development within the field suggests that the Gordon reservoir is heterogeneous, and that detailed reservoir characterization is necessary for understanding well performance and addressing problems observed by the operators. The purpose of this work is to establish relationships among permeability, geophysical and other data by integrating geologic, geophysical and engineering data into an interdisciplinary quantification of reservoir heterogeneity as it relates to production. Conventional stratigraphic correlation and core description shows that the Gordon sandstone is composed of three parasequences, formed along the Late Devonian shoreline of the Appalachian Basin. The parasequences comprise five lithofacies, of which one includes reservoir sandstones. Pay sandstones were found to have permeabilities in core ranging from 10 to 200 mD, whereas non-pay sandstones have permeabilities ranging from below the level of instrumental detection to 5 mD; Conglomeratic zones could take on the permeability characteristics of enclosing materials, or could exhibit extremely low values in pay sandstone and high values in non-pay or low permeability pay sandstone. Four electrofacies based on a linear combination of density and scaled gamma ray best matched correlations made independently based on visual comparison of geophysical logs. Electrofacies 4 with relatively high permeability (mean value > 45 mD) was determined to be equivalent to the pay sandstone within the Gordon reservoir. Three-dimensional models of the electrofacies in the pilot waterflood showed that electrofacies 4 is present throughout this area, and the other electrofacies are more disconnected. A three-layer, back-propagation artificial neural network with three slabs in the middle layer can be used to predict permeability and porosity from gamma ray and bulk density logs, the first and the second derivatives of the log data with respect to depth, well location, and log baselines. Two flow units were defined based on the stratigraphic model and geophysical logs. A three-dimensional reservoir model including the flow units, values of permeability calculated through the artificial neural network and injection pressure-rate information were then used as inputs for a reservoir simulator to predict oil production performance for the center producers in the pilot area. This description of the reservoir provided significantly better simulation results than earlier results obtained using simple reservoir models. Bulk density and gamma ray logs were used to identify flow units throughout the field. As predicted by the stratigraphic analysis, one of the flow units crosses stratigraphic units in the reservoir. A neural network was used to predict permeability values for each flow unit in producer and injection wells. The reservoir simulator was utilized to predict the performance of two flood patterns located to the north of the pilot area. Considering the simple model utilized for simulation, the results are in very good agreement with the field history.

  3. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect

    Scott Hara

    2000-12-06

    Through December 1999, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar (Tar II-A) Zone. Work is continuing on improving core analysis techniques, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post steamflood project. Work was discontinued on the stochastic geologic model and developing a 3-D stochastic thermal reservoir simulation model of the Tar II-A Zone in order to focus the remaining time on using the 3-D deterministic reservoir simulation model to provide alternatives for the Tar II-A post steamflood operations and shale compaction studies. Thermal-related formation compaction is a concern of the project team due to observed surface subsidence in the local area above the Tar II-A steamflood project. On January 12, 1999, the steamflood project lost its inexpensive steam source from the Harbor Cogeneration Plant as a result of the recent deregulation of electrical power rates in California. An operational plan was developed and implemented to mitigate the effects of the two situations by injecting cold water into the flanks of the steamflood. The purpose of flank injection has been to increase and subsequently maintain reservoir pressures at a level that would fill-up the steam chests in the ''T'' and ''D'' sands before they can collapse and cause formation compaction and to prevent the steam chests from reoccurring. A new 3-D deterministic thermal reservoir simulation model was used to provide operations with the necessary water injection rates and allowable production rates by well to minimize future surface subsidence and to accurately project reservoir steam chest fill-up by October 1999. A geomechanics study and a separate reservoir simulation study have been performed to determine the possible indicators of formation compaction, the temperatures at which specific indicators are affected and the projected temperature profiles in the over and underburden shales over a ten year period following steam injection. It was believed that once steam chest fill-up occurred, the reservoir would act more like a waterflood and production and cold water injection could be operated at lower Injection to production ratios (I/P) and net injection rates. In mid-September 1999, net water injection was reduced substantially in the ''D'' sands following steam chest fill-up. This caused reservoir pressures to plummet about 100 psi within six weeks. Starting in late-October 1999, net ''D'' sand injection was increased and reservoir pressures have slowly increased back to steam chest fill-up pressures as of the end of March 2000. When the ''T'' sands reached fill-up, net ''T'' sand injection was lowered only slightly and reservoir pressures stabilized. A more detailed discussion of the operational changes is in the Reservoir Management section of this report. A reservoir pressure monitoring program was developed as part of the poststeamflood reservoir management plan. This bi-monthly sonic fluid level program measures the static fluid levels in all idle wells an average of once a month. The fluid levels have been calibrated for liquid and gas density gradients by comparing a number of them with Amerada bomb pressures taken within a few days. This data allows engineering to respond quickly to rises or declines in reservoir pressure by either increasing injection or production or idling production. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The current thermal operations in the Wilm

  4. Low-cost FPSO for service in the Zaafarana oil field

    SciTech Connect

    1997-04-01

    The Zaafarana oilfield development, operated by Zaafarana Oil Co. (Zafco) presented a series of unique challenges, including redeployment of an internal-turret mooring system, use of a turret-based electrical-cable jumper system, and permanent use of cable-deployed electric submersible pumps in the gravel-pack well completions. Following a detailed three-dimensional (3D) seismic program, the field was discovered by the first well in December 1990. Four subsequent appraisal wells were drilled. The discovery well and two of the appraisal wells tested oil at rates ranging from 2,000 to 10,100 B/D. Initial development plans called for the use of two conventional platforms with a pipeline to a shore-based treatment and storage terminal. Data acquired from subsequent wells were incorporated into the mapping and reserve estimates resulting in a sharp downgrade of the estimated recoverable reserves. The reduced estimate, combined with a revised pricing scenario, necessitated an amended development plan with significantly lower costs. A new plan that uses a floating production, storage, and offloading (FPSO) facility and a single drilling/wellhead platform, connected by a pipeline and by electrical and control umbilicals, was approved in October 1992.

  5. Temporal Changes in Microbial Metabolic Characteristics in Field-Scale Biopiles Composed of Aged Oil Sludge

    PubMed Central

    Wang, Xiang; Li, Fasheng; Guo, Guanlin; Wang, Shijie; Boronin, Alexander; Wang, Qunhui

    2014-01-01

    Abstract Disposal of oil sludge, a hazardous waste, is currently a prevalent environmental issue. In this study, two field-scale biopiles were constructed to explore the temporal changes of microbial metabolic characteristics during the biotreatment of aged oil sludge. Bulking agent was mixed thoroughly with oily sludge to form a treated pile. The BIOLOG™ system was used to analyze the community level physiological parameters, including microbial metabolic activity, diversity, and variance. In comparison with the control, the community level physiological parameters of the treated pile were dramatically improved. Microbial metabolic activity of the treated pile was improved by 25.06% calculated from the maximums during the treatment. Microbial diversity index (Shannon index) ranges were improved from 1.64–3.02 (control pile) to 2.34–3.14 (treated pile). The numbers of petroleum-degrading bacteria and the total heterotrophic bacteria were correlated with the environmental temperature, and microbial metabolic characteristics in the treated pile revealed the distinctive carbon resources selection with the addition of cotton stalk. Temporal microbial metabolic characteristics, which have important effect on bioremediation, were revealed in this study. PMID:25228785

  6. An efficient thermotolerant and halophilic biosurfactant-producing bacterium isolated from Dagang oil field for MEOR application

    NASA Astrophysics Data System (ADS)

    Wu, Langping; Richnow, Hans; Yao, Jun; Jain, Anil

    2014-05-01

    Dagang Oil field (Petro China Company Limited) is one of the most productive oil fields in China. In this study, 34 biosurfactant-producing strains were isolated and cultured from petroleum reservoir of Dagang oil field, using haemolytic assay and the qualitative oil-displacement test. On the basis of 16S rDNA analysis, the isolates were closely related to the species in genus Pseudomonas, Staphylococcus and Bacillus. One of the isolates identified as Bacillus subtilis BS2 were selected for further study. This bacterium was able to produce a type of biosurfactant with excessive foam-forming properties at 37ºC as well as at higher temperature of 55ºC. The biosurfactant produced by the strain BS2 could reduce the surface tension of the culture broth from 70.87 mN/m to 28.97 mN/m after 8 days of incubation at 37ºC and to 36.15 mN/m after 20 days of incubation at 55ºC, respectively. The biosurfactant showed stability at high temperature (up to 120ºC), a wide range of pH (2 to 12) and salt concentrations (up to 12%) offering potential for biotechnology. Fourier transform infrared (FT-IR) spectrum of extracted biosurfactant tentatively characterized the produced biosurfactant as glycolipid derivative. Elemental analysis of the biosurfactant by energy dispersive X-ray spectroscopy (EDS) reveals that the biosurfactant was anionic in nature. 15 days of biodegradation of crude oil suggested a preferential usage of n-alkane upon microbial metabolism of BS2 as a carbon substrate and consequently also for the synthesis of biosurfactants. Core flood studies for oil release indicated 9.6% of additional oil recovery over water flooding at 37ºC and 7.2% of additional oil recovery at 55 ºC. Strain BS2 was characterized as an efficient biosurfactant-producing, thermotolerant and halophillic bacterium and has the potential for application for microbial enhanced oil recovery (MEOR) through water flooding in China's oil fields even in situ as adapted to reservoir chemistry and temperature.

  7. El Furrial oil field, a new giant in an old basin

    SciTech Connect

    Prieto, R.; Valdes, G. )

    1990-09-01

    In 1978, Lagoven S.A., affiliate of Petroleos de Venezuela S.A., started an exploration program for deeper tracts in the northern flank of the Eastern Venezuelan basin, where the shallow upper Tertiary section had been explored for more than eight decades. The quality of the seismic data collected was sufficient to indicate thrust faults with associated structures. From 1978 to 1985, surface geology surveying, structural modeling, and interpretation of seismic data were combined to define the first prospect, 1 El Furrial. The discovery well, 1 FUL, penetrated 276 m (905 ft) of net oil sand in an 80-km{sup 2} (31-mi{sup 2}) structure with a closure of 915 m (3,000 ft). 1 FUL tested up to 12,500 bbl/day of 29{degree} API oil. This is one of the largest single discoveries of medium-gravity oil in the last 25 yr in South America. Folding and thrusting of the northern flank of the Eastern Venezuela basin occurred during the collision of the Caribbean and the South American plates. The evolution began at least by the early Paleocene. Folds associated with thrusts tend to be cylindrical and are aligned in series up to 70 km (43 mi) long. There are three tectonic domains within the foreland basin: the northern edge, constituted by the Pirital allochthonous block; the thrusted and folded middle area where the field is located; and the extensional province toward the south. The reservoir rock is a shallow-marine sandstone deposited during the late Oligocene. Gross thickness ranges from 457 to 518 m (1,500 to 1,700 ft) and porosities range from 11 to 16%; the oil is considered of marine origin, mature, and from a Cretaceous source (Cenomanian-Turonian). The El Furrial discovery represents an excellent example of the prospectivity of a foreland overthrust area and an example of continued successful exploration in an area already considered mature in the pursuit of deeper objectives.

  8. Biodegradation of marine surface floating crude oil in a large-scale field simulated experiment.

    PubMed

    Bao, Mutai; Sun, Peiyan; Yang, Xiaofei; Wang, Xinping; Wang, Lina; Cao, Lixin; Li, Fujuan

    2014-08-01

    Biodegradation of marine surface floating crude oil with hydrocarbon degrading bacteria, rhamnolipid biosurfactants, and nutrients was carried out by a large-scale field simulated experiment in this paper. After a 103 day experiment, for n-alkanes, the maximum biodegradation rate reached 71% and the results showed hydrocarbon degrading bacteria, rhamnolipid biosurfactants, and nutrients have a comprehensive effect. It also showed that rhamnolipid biosurfactants could shorten the biodegradation time through an emulsifying function; the nutrients could greatly increase the biodegradation rate by promoting HDB production. For PAHs, the chrysene series had higher weathering resistance. For the same series, the weathering resistance ability is C1- < C2- < C3- < C4-. After 53 days, no comprehensive effect occurred and more biodegradation was found for different n-alkanes in two pools which only had added rhamnolipid biosurfactants or nutrients, respectively. Except for C14, C15 and C16 sesquiterpanes, most of the steranes and terpanes had high antibiodegradability. PMID:24931448

  9. Quantitative reverse sample genome probing of microbial communities and its application to oil field production waters

    SciTech Connect

    Voordouw, G.; Shen, Y.; Harrington, C.S.; Teland, A.J. ); Jack, T.R. ); Westlake, W.S. )

    1993-12-01

    This paper presents a protocol for quantitative analysis of microbial communities by reverse sample genome probing is presented in which (i) whole community DNA is isolated and labeled in the presence of a known amount of an added internal standard and (ii) the resulting spiked reverse genome probe is hybridized with a master filter on which denatured genomic DNAs from bacterial standards isolated from the target environment were spotted in large amounts (up to 1,500 ng) in order to improve detection sensitivity. This protocol allowed reproducible fingerprinting of the microbial community in oil field production waters at 19 sites from which water and biofilm samples were collected. It appeared that selected sulfate-reducing bacteria were significantly enhanced in biofilms covering the metal surfaces in contact with the production waters.

  10. Quantitative Reverse Sample Genome Probing of Microbial Communities and Its Application to Oil Field Production Waters

    PubMed Central

    Voordouw, Gerrit; Shen, Yin; Harrington, Clare S.; Telang, Anita J.; Jack, Thomas R.; Westlake, Donald W. S.

    1993-01-01

    This paper presents a protocol for quantitative analysis of microbial communities by reverse sample genome probing is presented in which (i) whole community DNA is isolated and labeled in the presence of a known amount of an added internal standard and (ii) the resulting spiked reverse genome probe is hybridized with a master filter on which denatured genomic DNAs from bacterial standards isolated from the target environment were spotted in large amounts (up to 1,500 ng) in order to improve detection sensitivity. This protocol allowed reproducible fingerprinting of the microbial community in oil field production waters at 19 sites from which water and biofilm samples were collected. It appeared that selected sulfate-reducing bacteria were significantly enhanced in biofilms covering the metal surfaces in contact with the production waters. Images PMID:16349111

  11. Turkey's largest oil field poised for CO/sub 2/ immiscible EOR project

    SciTech Connect

    Kantar, K.; Connor, T.E.

    1984-11-26

    The Bati Raman project uses some of the latest EOR technology to increase production from Turkey's largest oil field. Engineering for this challenging project has drawn upon the petroleum industry's recent experience in CO/sub 2/EOR, on laboratory testing, and on new applications of proven technology to meet the construction and operational requirements of the project facilities. Construction is now in progress and completion is scheduled for mid1985. The data obtained during operation of the facilities will be used to guide Turkish Petroleum Corp's continuing EOR program. It will also contribute to the petroleum industry's knowledge of carbon dioxide technology and the engineering community's ability to efficiently meet future EOR design challenges.

  12. Comparison of soft computing techniques for a three-phase oil field centrifuge.

    SciTech Connect

    Smith, R. E.; Parkinson, w; Miller, N.

    2002-01-01

    In this work we compare fuzzy techniques to neural network techniques for building a soft sensor for a three-phase oil field centrifuge. The soft sensor is used in a feed-forward control system that augments a feedback control system. Two approaches were used to develop the soft sensor. The first approach was to use a fuzzy rule based system based upon the experience of an expert operator. The expert operator's experience was supplemented using a computer model of the system. The second approach was to use a neural network to build the inverse of the computer model. The pros and cons of both techniques are discussed. KEYWORDS: fuzzy logic, neural networks, soft sensor, soft computing

  13. PISCES field chemical emission measurement program: Recent emission results from oil-fired power plants

    SciTech Connect

    Chu, P.; McDannel, M.; Behrens, G.

    1995-09-01

    Title III of the 1990 Clean Air Act Amendments (CAAA) mandated that the U.S. Environmental Protection Agency (EPA) evaluate emissions and health risks associated with 189 hazardous air pollutants emitted from the stacks of electric utility steam generating stations. EPA is currently proceeding with the electric utility study and expects to summarize its findings in a report to Congress in 1995. In anticipation of the CAAA, the Electric Power Research Institute (EPRI) initiated the Power Plant Integrated Systems: Chemical Emission Studies (PISCES) research program. The PISCES program has sampled over a range of fuels, boiler configurations, flue gas desulfurization systems, and NO{sub x} control technologies. This paper highlights some of the recent results and issues from field sampling programs at utility oil-fired power plant sites.

  14. Investigating electrokinetics application for in-situ inorganic oil field scale control

    NASA Astrophysics Data System (ADS)

    Hashaykeh, Manal A. I. Albadawi

    Oil well scale formation and deposition is an expensive problem and could be a nightmare for any production engineer if the rate of deposition is rapid as in the case of North Sea oil fields. Inorganic scales accumulate in surface and subsurface equipment causing a reduction in oil production and severe damage for production equipment. The major components of most oil field scale deposits are BaSO4, CaSO4 and SrSO4, which are formed due to incompatible mixing of reservoir formation water and sea water flooded in secondary enhanced oil recovery (EOR) processes. This work focuses on BaSO4 scale as it is one of the toughest scale components to be removed either by chemical means or mechanical means. Scale control methods usually involve complicated treatment using chemical dissolution methods as primary attempt and mechanical scrapping or jetting methods in case of failure of the chemical means. In this work, we devised a novel in-situ scale control method benefiting from the application of direct current (DC) which involves some of the electrokinetic (EK) phenomena. The applications of EK has been proved in our laboratories yielding high efficiency in capturing barium and separating it from sulfate before reaching the production well, thus preventing deposition in the production wellbore or wellbore formation. This objective was evaluated in our lab designed EK apparatus in three parts. In part-1, an 18.5 cm unconsolidated sand core was used which produced inconsistent results. This problem was overcome in part-2, where the porous media involved 46 cm consolidated sandcore. This also partly fulfilled the purpose of upscaling. In part-3, the porous media was extended to a 100 cm spatial distance between the injection and production wells. For all the experiments the reservoir models were made of 125 µm uniform sand particles and followed a final consolidation pressure of 30 psi. The EK-reservoir model contains 2 basic junctions; one of them injecting a 500 ppm SO4 2- solution, representing sulfate rich sea water and the other injecting a 500 ppm Ba2+ solution representing divalent cations rich in formation water and an outlet for water production. In part-1, there were 4 locations for the electrodes, while in part-2 and part-3 there were 5 electrode locations distributed along the spatial distance. Salinity of injection and formation water was varied within a range of 0 to 40,000 ppm. The flow rates of injection and formation water were constant throughout each experiment. In part-1 experiments, the flow rate was 1 ml/min, in part-2 this was increased to 2 ml/min, finally in part-3 this was further increased to 4.3 ml/min. 2 V/cm voltage gradient was applied for all of the experiments. On a real time basis the current, pressure, temperature, and pH of production water were all monitored. Finally, solid samples with scale deposits within were collected from different locations of the flow tubes. To be analyzed using an ICP-MS. The results have demonstrated up to 90% scale mitigation by the application of EK. In addition, there was pressure reduction in the flow tube, which could be justified due to chlorine gas generation at the locations sides creating a stimulation effect due to increased acidity. The observations from this study concluded that the application of EK will attribute to the production efficiency due to less scaling and reducing corrosion of surface equipment. This will attempt to demonstrate the world's first promising technique that could be used to replace expensive solutions which require well closure and incur production interruption loss. However, it is recommended that further extensive studies need to be done to confirm the results and finally design a pilot scale project to validate the lab work.

  15. The role of active and ancient geothermal systems in evolution of Grant Canyon oil field, Railroad Valley, Nye County, Nevada

    SciTech Connect

    Hulen, J.B. ); Bereskin, S.R. ); Bortz, L.C.

    1991-06-01

    Since discovery in 1983, the Grant Canyon field has been among the most prolific oil producers (on a per-well basis) in the US. Production through June 1990 was 12,935,630 bbl of oil, principally from two wells which in tandem have consistently yielded more than 6,000 bbl of oil per day. The field is hosted by highly porous Devonian dolomite breccia loosely cemented with hydrothermal quartz. Results of fluid-inclusion and petrographic research in progress at Grant Canyon suggest that paleogeothermal and perhaps currently circulating geothermal systems may have played a major role in oil-reservoir evolution. For example, as previously reported, the breccia-cementing quartz hosts primary aqueous, aqueous/oil, and oil fluid inclusions which were trapped at about 120C (average homogenization temperature) and document initial oil migration and entrapment as droplets or globules dispersed in dilute (< 2.2 wt.% equivalent NaCl) aqueous solutions. Additional evidence of geothermal connection is that the horst-block trap at Grant Canyon is top and side sealed by valley-fill clastic and volcanic rocks which are locally hydrothermally altered and calcite flooded. These secondary seals are enhanced by disseminated, solid asphaltic residues locally accounting for 23% (volume) of the rock. Current reservoir temperatures at Grant Canyon (120C) and the adjacent Bacon Flat field (171C) attest to vigorous contemporary geothermal activity. Based on results of the authors' Grant Canyon work to date, they suggest that active and paleohydrothermal systems could be viable petroleum exploration targets in otherwise favorable terrain elsewhere in the Basin and Range.

  16. LOGAN WASH FIELD TREATABILITY STUDIES OF WASTEWATERS FROM OIL SHALE RETORTING PROCESSES

    EPA Science Inventory

    Treatability studies were conducted on retort water and gas condensate wastewater from modified in-situ oil shale retorts to evaluate the effectiveness of selected treatment technologies for removing organic and inorganic contaminants. At retorts operated by Occidental Oil Shale,...

  17. LABORATORY AND FIELD EVALUATION OF CRYSTALLIZED DOW 704 OIL ON THE PERFORMANCE OF THE PM2.5 WINS FRACTIONATOR

    EPA Science Inventory

    Subsequent to the PM2.5 FRM's 1997 promulgation, technicians at the CT Dept. of Env. Protection observed that the DOW 704 diffusion oil used in the method's WINS fractionator would occasionally crystallize during field use - particularly under wintertime conditions. While the f...

  18. Borehole geophysical data for the East Poplar oil field area, Fort Peck Indian Reservation, northeastern Montana, 1993, 2004, and 2005

    USGS Publications Warehouse

    Smith, Bruce D.; Thamke, Joanna N.; Tyrrell, Christa

    2014-01-01

    Areas of high electrical conductivity in shallow aquifers in the East Poplar oil field area were delineated by the U.S. Geological Survey (USGS), in cooperation with the Fort Peck Assiniboine and Sioux Tribes, in order to interpret areas of saline-water contamination. Ground, airborne, and borehole geophysical data were collected in the East Poplar oil field area from 1992 through 2005 as part of this delineation. This report presents borehole geophysical data for thirty-two wells that were collected during, 1993, 2004, and 2005 in the East Poplar oil field study area. Natural-gamma and induction instruments were used to provide information about the lithology and conductivity of the soil, rock, and water matrix adjacent to and within the wells. The well logs were also collected to provide subsurface controls for interpretation of a helicopter electromagnetic survey flown over most of the East Poplar oil field in 2004. The objective of the USGS studies was to improve understanding of aquifer hydrogeology particularly in regard to variations in water quality.

  19. Simulation studies of a horizontal well producing from a thin oil-rim reservoir in the SSB1 field, Malaysia 

    E-print Network

    Abdul Hakim, Hazlan

    1995-01-01

    Three-dimensional simulation studies have been carried out to investigate the performance of a horizontal well producing from a thin oil-rim reservoir, X3/X4 in the SSBI field, Malaysia. A heterogeneous model was used which honored the reservoir...

  20. Isotopic and chemical data from carbonate cements in surface rocks over and near four Oklahoma oil fields

    USGS Publications Warehouse

    Henry, Mitchell E.; Donovan, Terrence J.

    1978-01-01

    Carbonate cements in outcropping sandstones overlying the Doyle, Fox-Graham, Velma, and part of Wheeler oil fields, Oklahoma, were analyzed for their C13/ 12, 018/016, iron, and manganese compositions. The peculiar areal distribution of the values obtained is interpreted to be the direct result of hydrocarbon microseepage.

  1. FIELD STUDIES ON USBM AND TOSCO II RETORTED OIL SHALES: VEGETATION, MOISTURE, SALINITY, AND RUNOFF, 1977-1980

    EPA Science Inventory

    Field studies were initiated in 1973 to investigate the vegetative stabilization of processed oil shales and to follow moisture and soluble salt movement within the soil/shale profile. Research plots with two types of retorted shales (TOSCO II and USBM) with leaching and soil cov...

  2. 77 FR 46640 - Hours of Service of Drivers of Commercial Motor Vehicles; Regulatory Guidance for Oil Field...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-06

    ..., 2010 (75 FR 82133), or you may visit www.regulations.gov . ] Public Participation: The www.regulations... FR 33098). The regulatory guidance, effective June 5, 2012, was issued to ensure consistent... Motor Vehicles; Regulatory Guidance for Oil Field Exceptions AGENCY: Federal Motor Carrier...

  3. Olive oil pilot-production assisted by pulsed electric field: impact on extraction yield, chemical parameters and sensory properties.

    PubMed

    Puértolas, Eduardo; Martínez de Marañón, Iñigo

    2015-01-15

    The impact of the use of pulsed electric field (PEF) technology on Arroniz olive oil production in terms of extraction yield and chemical and sensory quality has been studied at pilot scale in an industrial oil mill. The application of a PEF treatment (2 kV/cm; 11.25 kJ/kg) to the olive paste significantly increased the extraction yield by 13.3%, with respect to a control. Furthermore, olive oil obtained by PEF showed total phenolic content, total phytosterols and total tocopherols significantly higher than control (11.5%, 9.9% and 15.0%, respectively). The use of PEF had no negative effects on general chemical and sensory characteristics of the olive oil, maintaining the highest quality according to EU legal standards (EVOO; extra virgin olive oil). Therefore, PEF could be an appropriate technology to improve olive oil yield and produce EVOO enriched in human-health-related compounds, such as polyphenols, phytosterols and tocopherols. PMID:25149017

  4. Insecticidal Potential of Clove Essential Oil and Its Constituents on Cacopsylla chinensis (Hemiptera: Psyllidae) in Laboratory and Field.

    PubMed

    Tian, Bao-Liang; Liu, Qi-Zhi; Liu, Zhi-Long; Li, Peng; Wang, Jie-Wen

    2015-06-01

    Cacopsylla chinensis (Yang and Li) (Hemiptera: Psyllidae) is an important pest of pear in China. As an alternative to conventional chemical pesticides, botanicals including essential oils and their constituents could provide an eco-friendly and nonhazardous control method. In this study, the essential oil of clove buds (Syzygium aromaticum) was obtained by hydrodistillation. Five constituents, accounting for 99.89% of the oil, were identified by gas chromatography-mass spectrometry, and the major constituents were eugenol (88.61%) and eugenol acetate (8.89%), followed by ?-caryophyllene (1.89%). In a laboratory bioassay, clove essential oil, commercial eugenol (99.00%) and ?-caryophyllene (98.00%) exhibited strong contact toxicity against the summerform adults of C. chinensis with LD50 values of 0.730, 0.673, and 0.708?µg/adult, and against the nymphs with LD50 values of 1.795, 1.668, and 1.770?µg/nymph, respectively. In contrast, commercial eugenol acetate (98%) had LD50 values of 9.266?µg/adult and 9.942?µg/nymph. In a field trial, clove essential oil caused significant population reductions of 73.01% (4.80?mg/ml), 66.18% (2.40?mg/ml) and 46.56% (1.20?mg/ml), respectively. Our results demonstrated that clove essential oil and its constituents have potential as a source of natural insecticides. PMID:26470216

  5. Developing and extending oil and gas fields without use of computers, remote sensing, seismic, and nonconventional methods

    SciTech Connect

    Mear, C.E. )

    1992-04-01

    Most of the geologists who work either as independents or for nonmajor oil companies do not have access to sophisticated seismic data, remote sensing information, and computer-driven maps. Nevertheless, geologists at small companies, such as Cross Timbers Oil, continue to extend oil and gas fields, and develop significant new reserves. They manage to do this by using the same tools (observation and deduction) used by geologists who worked the Permian basin before the 1970s, with the synergistic addition of input from engineers and production personnel. To paraphase Wallace Pratt, these oil and gas reserves are being found in the minds of engineers, geologists, and production people who are working as a team. The team has had to overcome log analyses that were wrong due to incorrect conclusions about the composition of reservoir beds, miscorrelations of the reservoirs due to use of erroneous geological models, and disastrous completion techniques used by majors and independents. These errors were overcome by rational thinking. Several stratigraphically trapped oil and gas fields in the Knox-Baylor basin of north Texas and on the Anadarko shelf of Oklahoma were extended by using only basic geologic and engineering concepts. The concepts may be useful for geologists who work in the Permian basin.

  6. Class III Mid-Term Project, "Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies"

    SciTech Connect

    Scott Hara

    2007-03-31

    The overall objective of this project was to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involved improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective has been to transfer technology that can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The first budget period addressed several producibility problems in the Tar II-A and Tar V thermal recovery operations that are common in SBC reservoirs. A few of the advanced technologies developed include a three-dimensional (3-D) deterministic geologic model, a 3-D deterministic thermal reservoir simulation model to aid in reservoir management and subsequent post-steamflood development work, and a detailed study on the geochemical interactions between the steam and the formation rocks and fluids. State of the art operational work included drilling and performing a pilot steam injection and production project via four new horizontal wells (2 producers and 2 injectors), implementing a hot water alternating steam (WAS) drive pilot in the existing steamflood area to improve thermal efficiency, installing a 2400-foot insulated, subsurface harbor channel crossing to supply steam to an island location, testing a novel alkaline steam completion technique to control well sanding problems, and starting on an advanced reservoir management system through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation. The second budget period phase (BP2) continued to implement state-of-the-art operational work to optimize thermal recovery processes, improve well drilling and completion practices, and evaluate the geomechanical characteristics of the producing formations. The objectives were to further improve reservoir characterization of the heterogeneous turbidite sands, test the proficiency of the three-dimensional geologic and thermal reservoir simulation models, identify the high permeability thief zones to reduce water breakthrough and cycling, and analyze the nonuniform distribution of the remaining oil in place. This work resulted in the redevelopment of the Tar II-A and Tar V post-steamflood projects by drilling several new wells and converting idle wells to improve injection sweep efficiency and more effectively drain the remaining oil reserves. Reservoir management work included reducing water cuts, maintaining or increasing oil production, and evaluating and minimizing further thermal-related formation compaction. The BP2 project utilized all the tools and knowledge gained throughout the DOE project to maximize recovery of the oil in place.

  7. Analysis of AIS Data of the Recluse Oil Field, Recluse, Wyoming

    NASA Technical Reports Server (NTRS)

    Dykstra, J. D.; Segal, D. B.

    1985-01-01

    Airborne Imaging Spectrometer (AIS) data were flown over the Recluse, Wyoming oil field on September 9, 1984. Processing software was developed at Earth Satellite Corporation (EarthSat) for interactive analysis of the AIS data. EarthSat's AIS processing capabilities include destriping, solar irradiance corrections, residual calculations, geometric resampling, equal energy normalization, interactive spectral classifications and a variety of compressive algorithms to reduce the data to 8-bit format with a minimum of information loss. The in-house photolab facilities of EarthSat can routinely produce high-quality color renditions of the enhanced AIS data. A total of 80 lithologic samples were collected under the AIS flight lines. Correlation (within the atmospheric windows) between the laboratory and the AIS spectra of sample sites was generally poor. Reasonable correlation was only possible in large, freshly plowed fields. Mixed pixels and contrast between the natural and sample's surfaces were believed responsible for the poor correlation. Finally, a drift of approximately three channels was observed in the diffraction grating position within the 1.8 to 2.1 micron quadrant.

  8. Improved Oil Recovery from Upper Jurassic Smackover Carbonates through the Application of Advanced Technologies at Womack Hill Oil Field, Choctaw and Clarke Counties, Eastern Gulf Costal Plain

    SciTech Connect

    Ernest A. Mancini

    2006-05-31

    Pruet Production Co. and the Center for Sedimentary Basin Studies at the University of Alabama, in cooperation with Texas A&M University, Mississippi State University, University of Mississippi, and Wayne Stafford and Associates proposed a three-phase, focused, comprehensive, integrated and multidisciplinary study of Upper Jurassic Smackover carbonates (Class II Reservoir), involving reservoir characterization and 3-D modeling (Phase I) and a field demonstration project (Phases II and III) at Womack Hill Field Unit, Choctaw and Clarke Counties, Alabama, eastern Gulf Coastal Plain. Phase I of the project has been completed. The principal objectives of the project are: increasing the productivity and profitability of the Womack Hill Field Unit, thereby extending the economic life of this Class II Reservoir and transferring effectively and in a timely manner the knowledge gained and technology developed from this project to producers who are operating other domestic fields with Class II Reservoirs. The major tasks of the project included reservoir characterization, recovery technology analysis, recovery technology evaluation, and the decision to implement a demonstration project. Reservoir characterization consisted of geoscientific reservoir characterization, petrophysical and engineering property characterization, microbial characterization, and integration of the characterization data. Recovery technology analysis included 3-D geologic modeling, reservoir simulation, and microbial core experiments. Recovery technology evaluation consisted of acquiring and evaluating new high quality 2-D seismic data, evaluating the existing pressure maintenance project in the Womack Hill Field Unit, and evaluating the concept of an immobilized enzyme technology project for the Womack Hill Field Unit. The decision to implement a demonstration project essentially resulted in the decision on whether to conduct an infill drilling project in Womack Hill Field. Reservoir performance, multiwell productivity analysis, and reservoir simulation studies indicate that water injection continues to provide stable support to maintain production from wells in the western unitized area of the field and that the strong water drive present in the eastern area of the field is adequate to sustain production from this part of the field. Although the results from the microbial characterization and microbial core experiments are very promising, it is recommended that an immobilized enzyme technology project not be implemented in the Womack Hill Field Unit until live (freshly taken and properly preserved) cores from the Smackover reservoir in the field are acquired to confirm the microbial core experiments to date. From 3-D geologic modeling, reservoir performance analysis, and reservoir simulation, four areas in the Womack Hill Field were identified as prospective infill drilling sites to recover undrained oil from the field. It was determined that the two areas in the unit area probably can be effectively drained by perforating higher zones in the Smackover reservoir in currently producing wells. The two areas in the eastern (non-unitized) part of the field require the drilling of new wells. The successful drilling and testing of a well in 2003 by J. R. Pounds, Inc. has proven the oil potential of the easternmost site in the non-unitized part of the field. Pruet Production Co. acquired new 2-D seismic data to evaluate the oil potential of the westernmost site. Because of the effects of a fault shadow from the major fault bounding the southern border of the Womack Hill Field, it is difficult to evaluate conclusively this potential drill site. Pruet Production Co. has decided not to drill this new well at this time and to further evaluate the new 2-D seismic profiles after these data have been processed using a pre-stack migration technique. Pruet Production Co. has elected not to continue into Phase II of this project because they are not prepared to make a proposal to the other mineral interest owners regarding the drilling of new wells as part of an infil

  9. Improved Oil Recovery from Upper Jurassic Smackover Carbonates through the Application of Advanced Technologies at Womack Hill Oil Field, Choctaw and Clarke Counties, Eastern Gulf Coastal Plain

    SciTech Connect

    Ernest A. Mancini

    2003-12-31

    Pruet Production Co. and the Center for Sedimentary Basin Studies at the University of Alabama, in cooperation with Texas A&M University, Mississippi State University, University of Mississippi, and Wayne Stafford and Associates proposed a three-phase, focused, comprehensive, integrated and multidisciplinary study of Upper Jurassic Smackover carbonates (Class II Reservoir), involving reservoir characterization and 3-D modeling (Phase I) and a field demonstration project (Phases II and III) at Womack Hill Field Unit, Choctaw and Clarke Counties, Alabama, eastern Gulf Coastal Plain. Phase I of the project has been completed. The principal objectives of the project are: increasing the productivity and profitability of the Womack Hill Field Unit, thereby extending the economic life of this Class II Reservoir and transferring effectively and in a timely manner the knowledge gained and technology developed from this project to producers who are operating other domestic fields with Class II Reservoirs. The major tasks of the project included reservoir characterization, recovery technology analysis, recovery technology evaluation, and the decision to implement a demonstration project. Reservoir characterization consisted of geoscientific reservoir characterization, petrophysical and engineering property characterization, microbial characterization, and integration of the characterization data. Recovery technology analysis included 3-D geologic modeling, reservoir simulation, and microbial core experiments. Recovery technology evaluation consisted of acquiring and evaluating new high quality 2-D seismic data, evaluating the existing pressure maintenance project in the Womack Hill Field Unit, and evaluating the concept of an immobilized enzyme technology project for the Womack Hill Field Unit. The decision to implement a demonstration project essentially resulted in the decision on whether to conduct an infill drilling project in Womack Hill Field. Reservoir performance, multiwell productivity analysis, and reservoir simulation studies indicate that water injection continues to provide stable support to maintain production from wells in the western unitized area of the field and that the strong water drive present in the eastern area of the field is adequate to sustain production from this part of the field. Although the results from the microbial characterization and microbial core experiments are very promising, it is recommended that an immobilized enzyme technology project not be implemented in the Womack Hill Field Unit until live (freshly taken and properly preserved) cores from the Smackover reservoir in the field are acquired to confirm the microbial core experiments to date. From 3-D geologic modeling, reservoir performance analysis, and reservoir simulation, four areas in the Womack Hill Field were identified as prospective infill drilling sites to recover undrained oil from the field. It was determined that the two areas in the unit area probably can be effectively drained by perforating higher zones in the Smackover reservoir in currently producing wells. The two areas in the eastern (non-unitized) part of the field require the drilling of new wells. The successful drilling and testing of a well in 2003 by J. R. Pounds, Inc. has proven the oil potential of the easternmost site in the non-unitized part of the field. Pruet Production Co. acquired new 2-D seismic data to evaluate the oil potential of the westernmost site. Because of the effects of a fault shadow from the major fault bounding the southern border of the Womack Hill Field, it is difficult to evaluate conclusively this potential drill site. Pruet Production Co. has decided not to drill this new well at this time and to further evaluate the new 2-D seismic profiles after these data have been processed using a pre-stack migration technique. Pruet Production Co. has elected not to continue into Phase II of this project because they are not prepared to make a proposal to the other mineral interest owners regarding the drilling of new wells as part of an infil

  10. Activities of the Oil Implementation Task Force, reporting period March--August 1991; Contracts for field projects and supporting research on enhanced oil recovery, reporting period October--December 1990

    SciTech Connect

    Not Available

    1991-10-01

    Activities of DOE's Oil Implementation Task Force for the period March--August 1991 are reviewed. Contracts for fields projects and supporting research on enhanced oil recovery are discussed, with a list of related publications given. Enhanced recovery processes covered include chemical flooding, gas displacement, thermal recovery, and microbial recovery.

  11. Electrochemical pilot-scale plant for oil field produced wastewater by M/C/Fe electrodes for injection.

    PubMed

    Ma, Hongzhu; Wang, Bo

    2006-05-20

    Oil field produced water by separated with crude oil were treated by an electrochemical process in laboratory pilot-scale plant, using double anodes with active metal (M) and graphite (C) and iron as cathode and a noble metal content catalyst with big surface. Due to the strong oxidizing potential of the chemicals produced (Cl(2), O(2), OCl(-), HO and so on), when the wastewater pass through the laboratory pilot-scale plant the organic pollutants including bacteria were oxidized and coagulated by produced M(n+) ion. It can be concluded that the catalytic electrochemical treatment of oil field produced wastewater is effective. Both chemical oxygen demand (COD) and biochemical oxygen demand (BOD) were reduced by over 90% in 6 min, suspense solids (SS) by 99%, Ca(2+) content by 22%, corrosion rate by 98% and bacteria (sulphate reducing bacteria (SRB), saprophytic bacteria (TGB) and iron bacteria) by 99% in 3 min under 15V/120A. These results indicate that this catalytic electrochemical method could be used for effective oil field wastewater treatment for injection purpose. PMID:16300884

  12. Bioflocculant produced by Klebsiella sp. MYC and its application in the treatment of oil-field produced water

    NASA Astrophysics Data System (ADS)

    Yue, Lixi; Ma, Chunling; Chi, Zhenming

    2006-10-01

    Seventy-nine strains of bioflocculant-producing bacteria were isolated from 3 activated sludge samples. Among them, strain MYC was found to have the highest and stable flocculating rate for both kaolin clay suspension and oil-field produced water. The bacterial strain was identified as Klebsiella sp. MYC according to its morphological and biochemical characteristics and 16SrDNA sequence. The optimal medium for bioflocculant production by this bacterial strain was composed of cane sugar 20gL-1 KH2PO4 2g L-1, K2HPO45gL-1, (NH4)2SO4 0.2gL-1, urea 0.5 gL-1 and yeast extract 0.5 gL-1, the initial pH being 5.5. When the suspension of kaolin clay was treated with 0.5% of Klebsiella sp. MYC culture broth, the flocculating rate reached more than 90.0% in the presence of 500mgL1 CaCl2, while the flocculating rate for oil-field produced water was near 80.0% in a pH range of 7.0-9.0 with the separation of oil and suspended particles from the oil-field produced water under similar conditions. The environment-friendly nature of the bioflocculant and high flocculating rate of the strain make the bioflocculant produced by Klebsiella sp. MYC an attractive bioflocculant in oil-field produced water treatment.

  13. Determination of mean droplet sizes of water-in-oil emulsions using an Earth's field NMR instrument

    NASA Astrophysics Data System (ADS)

    Fridjonsson, Einar O.; Flux, Louise S.; Johns, Michael L.

    2012-08-01

    The use of the Earth's magnetic field (EF) to conduct nuclear magnetic resonance (NMR) experiments has a long history with a growing list of applications (e.g. ground water detection, diffusion measurements of Antarctic sea ice). In this paper we explore whether EFNMR can be used to accurately and practically measure the mean droplet size () of water-in-oil emulsions (paraffin and crude oil). We use both pulsed field gradient (PFG) measurements of restricted self-diffusion and T2 relaxometry, as appropriate. T2 relaxometry allows the extension of droplet sizing ability below the limits set by the available magnetic field gradient strength of the EFNMR apparatus. A commercially available bench-top NMR spectrometer is used to verify the results obtained using the EFNMR instrument, with good agreement within experimental error, seen between the two instruments. These results open the potential for further investigation of the application of EFNMR for emulsion droplet sizing.

  14. Correlations among hydrocarbon microseepage, soil chemistry, and uptake of micronutrients by plants, Bell Creek oil field, Montana

    USGS Publications Warehouse

    Roeming, S.S.; Donovan, T.J.

    1985-01-01

    Chelate-extractable iron and manganese concentrations in soils over and around the Bell Creek oil field suggest that compared to low average background values, there are moderate amounts of these elements directly over the production area and higher concentrations distributed in an aureole pattern around the periphery of the field. Adsorbed and organically bound iron and manganese appear to be readily taken up by plants resulting in anomalously high levels of these elements in leaves and needles over the oil field and suggesting correlation with corresponding low concentrations in soils. Iron and manganese appear to have bypassed the soil formation process where, under normal oxidizing conditions, they would have ultimately precipitated as insoluble oxides and hydroxides. ?? 1985.

  15. Aerobic biodegradation process of petroleum and pathway of main compounds in water flooding well of Dagang oil field.

    PubMed

    Cai, Minmin; Yao, Jun; Yang, Huaijun; Wang, Ruixia; Masakorala, Kanaji

    2013-09-01

    Aerobic biodegradation of crude oil and its pathways were investigated via in vitro culture and GC-MS analysis in water flooding wells of Dagang oil field. The in vitro aerobic culture lasted 90 days when 99.0% of n-alkanes and 43.03-99.9% of PAHs were degraded and the biomarkers and their ratios were changed. The spectra of components in the residual oil showed the similar biodegradation between aerobic process of 90 days and degradation in reservoir which may last for some millions years, and the potential of serious aerobic biodegradation of petroleum in reservoir. 24 Metabolites compounds were separated and identified from aerobic culture, including fatty acid, naphthenic acid, aromatic carboxylic acid, unsaturated acid, alcohols, ketones and aldehydes. The pathways of alkanes and aromatics were proposed, which suggests that oxidation of hydrocarbon to organic acid is an important process in the aerobic biodegradation of petroleum. PMID:23867530

  16. Increased Oil Production and Reserves From Improved Completion Techniques in the Bluebell Field, Uinta Basin, Utah

    SciTech Connect

    Morgan, C.D.; Deo, M.D.

    1998-04-01

    The Bluebell field is productive from the Tertiary lower Green River and Colton (Wasatch) Formations of the Uinta Basin, Utah. The productive interval consists of thousands of feet of interbedded fractured clastic and carbonate beds deposited in the ancestral Lake Uinta. Wells in the Bluebell field are typically completed by perforating 40 or more beds over 1000 to 3000 vertical ft (300-900 m), then stimulating the entire interval with hydrochloric acid. This technique is often referred to as the shot gun completion. Completion techniques used in the Bluebell field were discussed in detail in the Second Annual Report (Curtice, 1996). The shot-gun technique is believed to leave many potentially productive beds damaged and/or untreated, while allowing water-bearing and low-pressure (thief) zones to communicate with the wellbore. A two-year characterization study involved detailed examination of outcrop, core, well logs, surface and subsurface fractures, produced oil-field waters, engineering parameters of the two demonstration wells, and analysis of past completion techniques and effectiveness. The study was intended to improve the geologic characterization of the producing formations and thereby develop completion techniques specific to the producing beds or facies instead of a shot gun approach to stimulating all the beds. The characterization did not identify predictable-facies or predictable-fracture trends within the vertical stratigraphic column as originally hoped. Advanced logging techniques can identify productive beds in individual wells. A field-demonstration program was developed to use cased-hole advanced logging techniques in two wells and recompletion the wells at two different scales based on the logging. The first well was going to be completed at the interval scale using a multiple stage completion technique (about 500 ft [150 m] per stage). The second well will be recompleted at the bed-scale using bridge plug and packer to isolate three or more beds for stimulation. These recompletion will show which logs are most effective in identifying productive beds and what scale of completion is most cost effective. The third demonstration will be the logging and completion of a new well using the logs and completion scale or technique, most effective in the previous demonstrations.

  17. A procedure to estimate the parent population of the size of oil and gas fields as revealed by a study of economic truncation

    USGS Publications Warehouse

    Schuenemeyer, J.H.; Drew, L.J.

    1983-01-01

    An estimation technique has been derived to predict the number of small fields in a geologic play or basin. Historically, many small oil and gas fields went unreported because they were not economical. This led to an underestimation of the number of undiscovered small fields. A study of the distributions of reported oil and gas fields in well-explored areas suggests that the large fields when grouped into log base 2 size classes are geometrically distributed. Further, the number of small fields reported is a function of the cost of exploration and development. Thus, the population field-size distribution is conjectured to be log geometric in form. ?? 1983 Plenum Publishing Corporation.

  18. Analysis of Data from a Downhole Oil/Water Separator Field Trial in East Texas

    SciTech Connect

    Veil, John A.; Layne, Arthur Langhus

    2001-04-19

    Downhole oil/water separator (DOWS) technology is available to separate oil from produced water at the bottom of an oil well. Produced water can be injected directly to a disposal formation rather than lifting it to the surface, treating it there, and reinjecting it. Because of a lack of detailed performance data on DOWS systems, the U.S. Department of Energy (DOE) provided funding to secure DOWS performance data. A large U.S. oil and gas operator offered to share its data with Argonne National Laboratory. This report summarizes data from the DOWS installation in eastern Texas.

  19. Plagioclase dissolution related to oil residence time, North Coles Levee field, California

    SciTech Connect

    Boles, J.R. )

    1991-03-01

    Diagenetic mineral zones characterize an originally homogeneous turbidite sandstone reservoir at North Coles Levee (NCL). The medium to coarse-grained sands in the reservoir contain a 500 ft oil column with high water saturation. Extensive plagioclase porosity and associated diagenetic kaolinite occur in the lower third of the oil column. Plagioclase dissolution is greatest near the oil-water contact. Kaolinite and plagioclase porosity are vary rare in the upper third of the oil column next to the gas cap. Previous work has sown that at NCL plagioclase dissolution occurred in the last several million years of the reservoir burial history, nearly contemporaneous with oil emplacement. Clearly if plagioclase alteration was independent of the hydrocarbons, a uniform alteration pattern would be expected. The zonation pattern described here appears to be related to the presence of the oil. Thus diagenesis was most intense where the residence time of the hydrocarbon was greatest (in the lower part), whereas near the gas cap, plagioclase diagenesis was minimal where the accumulation of gas effectively shut down feldspar dissolution. These new results indicate that plagioclase porosity at NCL was an effect of oil emplacement, perhaps due to acid components solubilized from the oil. Important implications of these findings are: (1) Maximum porosity enhancement may be off-structure away from the gas cap, (2) tends to confirm the importance of acid components associated with hydrocarbons on feldspar dissolution, and (3) diagenetic interpretations may differ if sample locations relative to gas/oil/water zones are not known.

  20. Probing Asphaltene Aggregation in Native Crude Oils with Low-Field NMR

    SciTech Connect

    Zielinski, Lukasz; Saha, Indrajit; Freed, Denise E.; Hrlimann, Martin D.; Liu, Yongsheng

    2010-04-13

    We show that low-field proton nuclear magnetic resonance (NMR) relaxation and diffusion experiments can be used to study asphaltene aggregation directly in crude oils. Relaxation was found to be multiexponential, reflecting the composition of a complex fluid. Remarkably, the relaxation data for samples with different asphaltene concentrations can be collapsed onto each other by a simple rescaling of the time dimension with a concentration-dependent factor {zeta}, whereas the observed diffusion behavior is unaffected by asphaltene concentration. We interpret this finding in terms of a theoretical model that explains the enhanced relaxation by the transitory entanglement of solvent hydrocarbons within asphaltene clusters and their subsequent slowed motion and diffusion within the cluster. We relate the measured scaling parameters {zeta} to cluster sizes, which we find to be on the order of 2.2-4.4 nm for an effective sphere diameter. These sizes are in agreement with the typical values reported in the literature as well as with the small-angle X-ray scattering (SAXS) experiments performed on our samples.

  1. Super-giant oil fields and future prospects in the Middle East

    SciTech Connect

    Christian, L.; Johnston, D.

    1995-06-01

    Upper Jurassic carbonates, Lower Cretaceous sands, Lower Cretaceous carbonates and Tertiary carbonates of the Middle East contain more than 50% of the worlds oil. Our area of interest covers SE Turkey and Syria in the north to the borders of Yemen and Oman in the south, and from the Red Sea across Saudi Arabia, the Emirates and the Arabian/Persian Gulf to Iran in the East. There are over 80 fields in this region with over 1 billion barrels of recoverable reserves. Yet only around 30,000 wells have been drilled in this territory. Regional structure and stratigraphy are discussed within the context of three major plays in the region as well as a new play in the Permo-Carboniferous. Numerous opportunities are available and countries such as Iraq and Iran may one day open their doors more to the industry than is presently the case. The dramatic petroleum geology of the region will stamp its influence on the nature of business and opportunities for years to come. While fiscal systems here already offer some of the toughest terms in the world, future deals in the more prolific areas will be even tougher. But, the economies of Middle Eastern scale will provide some of the great mega-opportunities of future international exploration.

  2. Core acid treatment influence on well reservoir properties in Kazan oil-gas condensate field

    NASA Astrophysics Data System (ADS)

    Janishevskii, A.; Ezhova, A.

    2015-11-01

    The research involves investigation of the influence of hydrochloric acid (HCI-12%) and mud acid (mixture: HCl - 10% and HF - 3%) treatment on the Upper-Jurassic reservoir properties in Kazan oil-gas condensate field wells. The sample collection included three lots of core cylinders from one and the same depth (all in all 42). Two lots of core cylinders were distributed as following: first lot - reservoir properties were determined, and, then thin sections were cut off from cylinder faces; second lot- core cylinders were exposed to hydrochloric acid treatment, then, after flushing the reservoir properties were determined, and thin sections were prepared. Based on the quantitative petrographic rock analysis, involvin 42 thin sections, the following factors were determined: granulometric mineral composition, cement content, intergranular contacts and pore space structure. According to the comparative analysis of initial samples, the following was determined: content decrease of feldspar, clay and mica fragments, mica, clay and carbonate cement; increase of pore spaces while in the investigated samples- on exposure of rocks to acids effective porosity and permeability value range is ambiguous.

  3. Location of oil fields in Forest City basin as related to Precambrian tectonics

    SciTech Connect

    Carlson, M.P. )

    1989-09-01

    Accumulation of petroleum in the Forest City basin is strongly influenced by the tectonic framework established during the Precambrian. A series of Late Proterozoic orogenies created a fracture pattern in the northern Mid-Continent, which was emphasized by the late Keweenawan, Mid-Continent Rift System (MRS). Reactivated basement structures have created both a structural and depositional imprint on younger rocks. The Southeast Nebraska arch is defined by Middle Ordovician (Simpson) overlap of Arbuckle equivalents. Continuing differential movement along segments of the MRS within the North Kansas basin influenced the regional facies distribution of both the Late Ordovician (Viola) and the Late Devonian (Hunton). Middle Pennsylvanian compression from the Ouachita orogeny produced the Nemaha uplift and reactivated transform faulting on the MRS. Extensions of these southeast-trending fractures created offsets on the Nemaha uplift/Humboldt fault system and enhanced structures that host oil production. Fields that lie upon these wrench-fault trends within the Forest City basin have produced from the Simpson (St. Peter), Viola, and Hunton formations. The Precambrian structures and rock types produce strong geophysical signatures in contrast to the subdued anomalies of the Paleozoic sediments. Analyses of magnetic and gravity data provide an interpretation of the basement rocks and, by extrapolation, an additional exploration tool for locating Paleozoic trends related to reactivation of Precambrian tectonics.

  4. IMPROVED OIL RECOVERY FROM UPPER JURASSIC SMACKOVER CARBONATES THROUGH THE APPLICATION OF ADVANCED TECHNOLOGIES AT WOMACK HILL OIL FIELD, CHOCTAW AND CLARKE COUNTIES, EASTERN GULF COASTAL PLAIN

    SciTech Connect

    Ernest A. Mancini

    2003-05-20

    Pruet Production Co. and the Center for Sedimentary Basin Studies at the University of Alabama, in cooperation with Texas A&M University, Mississippi State University, University of Mississippi, and Wayne Stafford and Associates are undertaking a focused, comprehensive, integrated and multidisciplinary study of Upper Jurassic Smackover carbonates (Class II Reservoir), involving reservoir characterization and 3-D modeling and an integrated field demonstration project at Womack Hill Oil Field Unit, Choctaw and Clarke Counties, Alabama, Eastern Gulf Coastal Plain. The principal objectives of the project are: increasing the productivity and profitability of the Womack Hill Field Unit, thereby extending the economic life of this Class II Reservoir and transferring effectively and in a timely manner the knowledge gained and technology developed from this project to producers who are operating other domestic fields with Class II Reservoirs. The principal research efforts for Year 3 of the project have been recovery technology analysis and recovery technology evaluation. The research focus has primarily been on well test analysis, 3-D reservoir simulation, microbial core experiments, and the decision to acquire new seismic data for the Womack Hill Field area. Although Geoscientific Reservoir Characterization and 3-D Geologic Modeling have been completed and Petrophysical and Engineering Characterization and Microbial Characterization are essentially on schedule, a no-cost extension until September 30, 2003, has been granted by DOE so that new seismic data for the Womack Hill Field can be acquired and interpreted to assist in the determination as to whether Phase II of the project should be implemented.

  5. Effectiveness of Zanthoxylum piperitum-derived essential oil as an alternative repellent under laboratory and field applications.

    PubMed

    Kamsuk, K; Choochote, W; Chaithong, U; Jitpakdi, A; Tippawangkosol, P; Riyong, D; Pitasawat, B

    2007-01-01

    Recently, there were considerable efforts made to promote the use of environmentally friendly and biodegradable natural insecticides and repellents, particularly from botanical sources. In this study, Zanthoxylum piperitum-derived essential oil isolated by steam distillation was investigated and compared to the standard synthetic repellent, N,N-diethyl-3-methylbenzamide (DEET), for repellency against mosquitoes under laboratory and field conditions. The oil of Z. piperitum alone and also with 5% vanillin added repelled laboratory-reared female Aedes aegypti with the median protection times of 1.5 and 2.5 h, respectively. These repellency times were proven to be significantly lower than those of DEET-based products: 25% DEET and 25% DEET + 5% vanillin demonstrating 3.5 and 5.5 h, respectively. However, when applied under field conditions, Z. piperitum oil + 5% vanillin was found to provide better protection against a wide range of natural mosquito populations than 25% DEET + 5% vanillin. While the product of DEET was effective in reducing bites with 99.7% protection, the protective effect of Z. piperitum oil product appeared complete (100%). It had a protective effect against Aedes gardnerii, Anopheles barbirostris, Armigeres subalbatus, Culex tritaeniorhynchus, Culex gelidus, Culex vishnui group, and Mansonia uniformis. The better repellency against a wide range of field mosquitoes derived from Z. piperitum oil products suggested an advantage of efficacy by providing a broad spectrum of activity. Therefore, Z. piperitum could have potential for use in the development of combined repellents as a natural active ingredient, synergist, or additive to conventional synthetic chemicals, particularly in situations when DEET is ineffective and impractical. PMID:16896651

  6. Costs for off-site disposal of nonhazardous oil field wastes: Salt caverns versus other disposal methods

    SciTech Connect

    Veil, J.A.

    1997-09-01

    According to an American Petroleum Institute production waste survey reported on by P.G. Wakim in 1987 and 1988, the exploration and production segment of the US oil and gas industry generated more than 360 million barrels (bbl) of drilling wastes, more than 20 billion bbl of produced water, and nearly 12 million bbl of associated wastes in 1985. Current exploration and production activities are believed to be generating comparable quantities of these oil field wastes. Wakim estimates that 28% of drilling wastes, less than 2% of produced water, and 52% of associated wastes are disposed of in off-site commercial facilities. In recent years, interest in disposing of oil field wastes in solution-mined salt caverns has been growing. This report provides information on the availability of commercial disposal companies in oil-and gas-producing states, the treatment and disposal methods they employ, and the amounts they charge. It also compares cavern disposal costs with the costs of other forms of waste disposal.

  7. DSA Analysis of IRM Curves for Hydrocarbon Microseepage Characterization in Oil Fields From Eastern and Western Venezuela

    NASA Astrophysics Data System (ADS)

    Aldana, M.; Costanzo-Alvarez, V.; Gonzalez, C.; Gomez, L.

    2009-05-01

    During the last few years we have performed surface reservoir characterization at some Venezuelan oil fields using rock magnetic properties. We have tried to identify, at shallow levels, the "oil magnetic signature" of subjacent reservoirs. Recent data obtained from eastern Venezuela (San Juan field) emphasizes the differences between rock magnetic data from eastern and western oil fields. These results support the hypothesis of different authigenic processes. To better characterize hydrocarbon microseepage in both cases, we apply a new method to analyze IRM curves in order to find out the main magnetic phases responsible for the observed magnetic susceptibility (MS) anomalies. This alternative method is based on a Direct Signal Analysis (DSA) of the IRM in order to identify the number and type of magnetic components. According to this method, the IRM curve is decomposed as the sum of N elementary curves (modeled using the expression proposed by Robertson and France, 1994) whose mean coercivities vary in the interval of the measured magnetic field. The result is an adjusted spectral histogram from which the number of main contributions, their widths and mean coercivities, associated with the number and type of magnetic minerals, can be obtained. This analysis indicates that in western fields the main magnetic mineralogy is magnetite. Conversely in eastern fields, the MS anomalies are mainly caused by the presence of Fe sulphides (i.e. greigite). These results support the hypothesis of two different processes. In western fields a net electron transfer from the organic matter, degraded by hydrocarbon gas leakage, should occur precipitating Fe(II) magnetic minerals (e.g. magnetite). On the other hand, high concentrations of H2S at shallow depth levels, might allow the formation of secondary Fe-sulphides in eastern fields.

  8. Simulation studies of steam-propane injection for the Hamaca heavy oil field 

    E-print Network

    Venturini, Gilberto Jose

    2002-01-01

    Simulation studies were performed to evaluate a novel technology, steam-propane injection, for the heavy Hamaca crude oil. The oil has a gravity of 9.3?API and a viscosity of 25,000 cp at 50?C. Two types of simulation studies were performed: a...

  9. Plagioclase dissolution related to oil residence time, North Coles Levee field, California

    SciTech Connect

    Boles, J.R. )

    1991-02-01

    Diagenetic mineral zones characterize an originally homogeneous turbidite sandstone reservoir at North Coles Levee (NCL). The medium- to coarse-grained sands in the reservoir contain a 500-ft oil column. Plagioclase dissolution is greatest near the oil-water contact. Kaolinite and plagioclase porosity are very rare in the upper 180 ft of the oil column next to the gas cap. Previous work has shown that at NCL plagioclase dissolution occurred in the last several million years of the reservoir burial history, nearly contemporaneous with oil emplacement. Clearly if plagioclase alteration was independent of the hydrocarbons, a uniform alteration pattern would be expected. The zonation pattern described here appears to be related to the presence of the oil. Thus, diagenesis was most intense where the residence time of the hydrocarbon was greatest (in the lower part), whereas near the gas cap, plagioclase diagenesis was minimal where the accumulation of gas effectively shut down feldspar dissolution. These new results indicate that plagioclase porosity at NCL was an effect of oil emplacement, perhaps due to acid components solubilized from the oil. Important implications of these findings are (1) maximum porosity enhancement may be off-structure away from the gas cap, (2) importance of acid components associated with hydrocarbons on feldspar dissolution is confirmed, and (3) diagenetic interpretations may differ if sample locations relative to gas/oil/water zones are not known.

  10. Field Evaluation of Essential Oils for Reducing Attraction by the Japanese Beetle (Coleoptera: Scarabaeidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluated 47 commercial plant-derived essential oils individually or as blends for their potential as adult Japanese beetle (Popillia japonica Newman) repellents during 2003 to 2007. A bioassay procedure used traps to evaluate whether essential oils could repel beetles from Japanese beet...

  11. ENVIRONMENTAL CHARACTERIZATION OF GEOKINETICS' IN-SITU OIL SHALE RETORTING TECHNOLOGY: FIELD AND ANALYTICAL DATA APPENDICES

    EPA Science Inventory

    Air emissions and water effluents from true in-situ oil shale retorting were physically, chemically and biologically characterized by sampling of Geokinetics Retort No. 17, a pilot-scale unit which produced 30 barrels of crude shale oil per day during testing from July 16 to July...

  12. Late diagenetic indicators of buried oil and gas: II, Direct detection experiment at Cement and Garza oil fields, Oklahoma and Texas, using enhanced LANDSAT I and II images

    USGS Publications Warehouse

    Donovan, Terrence J.; Termain, Patricia A.; Henry, Mitchell E.

    1979-01-01

    The Cement oil field, Oklahoma, was a test site for an experiment designed to evaluate LANDSAT's capability to detect an alteration zone in surface rocks caused by hydrocarbon microseepage. Loss of iron and impregnation of sandstone by carbonate cements and replacement of gypsum by calcite are the major alteration phenomena at Cement. The bedrock alterations are partially masked by unaltered overlying beds, thick soils, and dense natural and cultivated vegetation. Interpreters biased by detailed ground truth were able to map the alteration zone subjectively using a magnified, filtered, and sinusoidally stretched LANDSAT composite image; other interpreters, unbiased by ground truth data, could not duplicate that interpretation. Similar techniques were applied at a secondary test site (Garza oil field, Texas), where similar alterations in surface rocks occur. Enhanced LANDSAT images resolved the alteration zone to a biased interpreter and some individual altered outcrops could be mapped using higher resolution SKYLAB color and conventional black and white aerial photographs suggesting repeat experiments with LANDSAT C and D.

  13. The influence of bioaugmentation and biosurfactant addition on bioremediation efficiency of diesel-oil contaminated soil: feasibility during field studies.

    PubMed

    Szulc, Alicja; Ambro?ewicz, Damian; Sydow, Mateusz; ?awniczak, ?ukasz; Piotrowska-Cyplik, Agnieszka; Marecik, Roman; Chrzanowski, ?ukasz

    2014-01-01

    The study focused on assessing the influence of bioaugmentation and addition of rhamnolipids on diesel oil biodegradation efficiency during field studies. Initial laboratory studies (measurement of emitted CO2 and dehydrogenase activity) were carried out in order to select the consortium for bioaugmentation as well as to evaluate the most appropriate concentration of rhamnolipids. The selected consortium consisted of following bacterial taxa: Aeromonas hydrophila, Alcaligenes xylosoxidans, Gordonia sp., Pseudomonas fluorescens, Pseudomonas putida, Rhodococcus equi, Stenotrophomonas maltophilia, Xanthomonas sp. It was established that the application of rhamnolipids at 150 mg/kg of soil was most appropriate in terms of dehydrogenase activity. Based on the obtained results, four treatment methods were designed and tested during 365 days of field studies: I) natural attenuation; II) addition of rhamnolipids; III) bioaugmentation; IV) bioaugmentation and addition of rhamnolipids. It was observed that bioaugmentation contributed to the highest diesel oil biodegradation efficiency, whereas the addition of rhamnolipids did not notably influence the treatment process. PMID:24291585

  14. Contracts for field projects and supporting research on enhanced oil recovery. Progress review number 86, quarter ending March 31, 1996

    SciTech Connect

    1997-05-01

    Summaries are presented for 37 enhanced oil recovery contracts being supported by the Department of Energy. The projects are grouped into gas displacement methods, thermal recovery methods, geoscience technology, reservoir characterization, and field demonstrations in high-priority reservoir classes. Each summary includes the objectives of the project and a summary of the technical progress, as well as information on contract dates, size of award, principal investigator, and company or facility doing the research.

  15. LANDSAT Study of Alteration Aureoles in Surface Rocks Overlying Petroleum Deposits. [Cement and Davenport oil fields, Oklahoma

    NASA Technical Reports Server (NTRS)

    Donovan, T. J. (principal investigator)

    1975-01-01

    The author has identified the following significant results. A series of low altitude underflight remote sensing experiments were flown at Cement and Davenport oil fields, Oklahoma. An experimental algorithm which employs a sinusoidal stretch of brightness values was developed and applied to a January 1973 scene (bands 4, 5, and 6) of Cement. The results, although not spectacular, are extremely encouraging and for the first time demonstrate that the alteration anomaly at Cement may be defined through enhanced LANDSAT images.

  16. Occurrence of oil and gas fields and source rock transformation in the west Siberian basin and Barents Sea platform

    SciTech Connect

    Lopatin, N. )

    1993-09-01

    The West Siberian and Barents Sea basins contain the largest demonstrated reserves of gas in the world (more than 33 trilion m[sup 3]) and very large recoverable reserves of oil (about 19 billion tons). The main productive reservoirs are of the Jurassic and Cretaceous and are composed of marine and alluvial sandstones. Major gas fields of the West Siberian basin are located north of the Arctic Circle, from which they extend into the Yamal Peninsula and offshore into the Kara Sea. Oil fields of the basin are found mainly in the middle Ob region. Only one giant gas-condensate field has been found in the Barents Sea; however, this area has excellent potential for gas-condensate discoveries in the future. Both basins contain Kimmeridgian-Tithonian black-shale formations, which are prolific oil source rocks. In the Barents Sea basin, Kimmeridgian black shales contain 7 to 9% of organic carbon; total pyrolysis yield ranges from 5.3 to 84.2 mg HC/g rock, and hydrogen index ranges from 270 to 630 mg HC/g TOC. Our pyrolysis data and basin modeling (GALO version) indicate that the realization of the initial petroleum potential in the Shtokmanov field area has not begun because the volume of generated oil (about 8 mg HC/g TOC) is insufficient to start expulsion (threshold of expulsion is equal to 96 mg HC/g TOC). The Bazhenov Formation shales in the central part of the West Siberian basin are characterized by extremely high values of pyrolysis measurements. The organic carbon content ranges from 10 to 25%; the residual petroleum potential varies from 50 to 190 mg HC/g rock; the maturity typically corresponds to the oil window zone; and the amount of expelled hydrocarbons ranges from 40 to 60 mg HC/g rock. The expulsion of oil commenced 90 to 35 m.y. In the northern part of the West Siberian basin, the Bazhenov shales are lean source rocks.

  17. Investigation of Diospyros Kaki L.f husk extracts as corrosion inhibitors and bactericide in oil field

    PubMed Central

    2013-01-01

    Background Hydrochloric acid is used in oil-well acidizing commonly for improving the crude oil production of the low-permeable reservoirs, while it is a great challenge for the metal instruments involved in the acidification. Developing natural products as oilfield chemicals is a straight way to find less expensive, green and eco-friendly materials. The great plant resources in Qin-ling and Ba-shan Mountain Area of Shannxi Province enable the investigating of new green oil field chemicals. Diospyros Kaki L.f (persimmon), a famous fruit tree is widely planted in Qin-ling and Ba-shan Mountain Area of Shaanxi Province. It has been found that the crude persimmon extracts are complex mixtures containing vitamins, p-coumaric acid, gallic acid, catechin, flavonoids, carotenoids and condensed tannin and so on, which indicates the extracts of persimmon husk suitable to be used as green and eco-friendly corrosion inhibitors. Findings Extracts of persimmon husk were investigated, by using weight loss and potentiodynamic polarisation techniques, as green and eco-friendly corrosion inhibitors of Q235A steel in 1M HCl. The inhibition efficiency of the extracts varied with extract concentration from 10 to 1,000 mg/L. There are some synergistic effects between the extracts and KI, KSCN and HMTA. Potentiodynamic polarization studies indicate that extracts are mixed-type inhibitors. Besides, the extracts were screened for antibacterial activity against oil field microorganisms, and they showed good to moderate activity against SRB, IB and TGB. Conclusions The inhibition efficiency of the extracts varied with extract concentration from 10 to 1,000 mg/L, and the highest reaches to 65.1% with the con concentration of 1,000 mg/L WE. KI, KSCN and HMTA they can enhance the IE of WE effectively to 97.3% at most, but not effective for KI and KSCN to AE. Tafel polarisation measurements indicate the extracts behave as mixed type inhibitor. Investigation of the antibacterial activity against oil field microorganism showed the extracts can inhibit SRB, IB and TGB with moderate to highly efficiency under 1,000 mg/L, which makes extracts potential to be used as bifunctional oil field chemicals. PMID:23816431

  18. Video camera log used for water isolation in the Main Body B pool, Elk Hills field, Kern Co., California -- Water and oil identification

    SciTech Connect

    Starcher, M.G.; Murphy, J.R.; Alexander, P.D.; Whittaker, J.L.

    1995-12-31

    The Main Body B reservoir in the Elk Hills Field is a peripherally waterflooded, +400 ft thick series of layered, turbidite Stevens sands. Permeability variation between layers adversely affects the vertical sweep, resulting in production from lower permeability oil sands dominated by production from higher permeability sands. This paper discusses the unique use of various tools to identify water zones to isolate and oil zones to stimulate. Tools used to identify water and oil entry are discussed with respect to their capabilities of identifying oil and water entry into the wellbore.

  19. Application of turbidite facies of the Stevens Oil Zone for reservoir management, Elk Hills Field, California

    SciTech Connect

    Reid, S.A.; Thompson, T.W. ); McJannet, G.S. )

    1996-01-01

    A detailed depositional model for the uppermost sand reservoirs of the Stevens Oil Zone, Elk Hills Field, California, contains three facies: turbidite channel-fill sand bodies, overbank Sandstone and mudstone, and pelagic and hemipelagic siliceous shale. Sand bodies are the primary producing facies and consist of layered, graded sandstone with good permeability. The presence of incipient anticlines with subsea relief in the late Miocene resulted in deposition of lenticular and sinuous sand Was within structurally created channels. Relief of these structural channels was low when the earliest sand bodies were deposited, leading to a wide channel complex bounded by broad overbank deposits of moderate to low permeability. As deposition proceeded, increased structural relief constrained the channels, resulting in narrower sand body width and relatively abrupt channel terminations against very low permeability siliceous shale. With post-Miocene uplift and differential compaction, stratigraphic mounding of sand bodies helped create structural domes such as the 24Z reservoir. Stratigraphic traps including the 26R reservoir were also created. Such traps vary in seal quality from very effective to leaky, depending on the lateral transition from sand bodies to siliceous shale. Application of the Elk Hills turbidity model (1) provides a framework for monitoring production performance in the 24Z and Northwest Stevens waterflood projects; and for tracking gas migration into and out of the 26R reservoir, (2) helps b identify undeveloped locations in the 26R reservoir ideally suited for horizontal wells, (3) has led to the identification of two new production trends in the 29R area, and (4) makes possible the development of exploration plays in western Elk Hills.

  20. Application of turbidite facies of the Stevens Oil Zone for reservoir management, Elk Hills Field, California

    SciTech Connect

    Reid, S.A.; Thompson, T.W.; McJannet, G.S.

    1996-12-31

    A detailed depositional model for the uppermost sand reservoirs of the Stevens Oil Zone, Elk Hills Field, California, contains three facies: turbidite channel-fill sand bodies, overbank Sandstone and mudstone, and pelagic and hemipelagic siliceous shale. Sand bodies are the primary producing facies and consist of layered, graded sandstone with good permeability. The presence of incipient anticlines with subsea relief in the late Miocene resulted in deposition of lenticular and sinuous sand Was within structurally created channels. Relief of these structural channels was low when the earliest sand bodies were deposited, leading to a wide channel complex bounded by broad overbank deposits of moderate to low permeability. As deposition proceeded, increased structural relief constrained the channels, resulting in narrower sand body width and relatively abrupt channel terminations against very low permeability siliceous shale. With post-Miocene uplift and differential compaction, stratigraphic mounding of sand bodies helped create structural domes such as the 24Z reservoir. Stratigraphic traps including the 26R reservoir were also created. Such traps vary in seal quality from very effective to leaky, depending on the lateral transition from sand bodies to siliceous shale. Application of the Elk Hills turbidity model (1) provides a framework for monitoring production performance in the 24Z and Northwest Stevens waterflood projects; and for tracking gas migration into and out of the 26R reservoir, (2) helps b identify undeveloped locations in the 26R reservoir ideally suited for horizontal wells, (3) has led to the identification of two new production trends in the 29R area, and (4) makes possible the development of exploration plays in western Elk Hills.

  1. Salvaging dipmeters using an oil field {open_quotes}Dinosaur{close_quotes}

    SciTech Connect

    Breimayer, A.R.P.; Puzio, L.B.

    1996-09-01

    Although state-of-the-art methods such as 3-D seismic and formation imaging tools are widely used, the advantages of the old standard dipmeter should not be dismissed. Seismic dip is subject to velocity errors, and formation imagers cannot be run in all borehole conditions. The dipmeter offers a relatively low cost, highly effective alternative for defining geologic features. The 60{double_prime}= 100{prime} scale playback of the raw dipmeter data may be an oil field {open_quotes}dinosaur,{close_quotes} but it is also the key to assessing the reliability of a dipmeter. This playback should be used to determine CORRELATION QUALITY, critical to the accuracy of any dipmeter. Computer computation of the raw dipmeter data does not always yield reliable dip information, particularly when dipmeters are run under adverse hole conditions or in complex geology. This data can be often salvaged by optical correlation of the 60{close_quote} playback - the process of manually correlating raw dipmeter resistivity curves to determine the attitude of bedding planes in the subsurface. Problems such as tool noise, tool pulls, and poor pad contact compromise data quality. These problems can be recognized and compensated for using optical correlation. Finally, at the 60{double_prime} scale many formation textures and structural characteristics visible on the formation imaging logs are also discernible on the standard dipmeter traces. We will offer many Gulf Coast examples and some hands-on demonstrations using the 60{double_prime} data, and show improved tadpole plots which result from optical correlation.

  2. Increasing heavy oil reservers in the Wilmington oil Field through advanced reservoir characterization and thermal production technologies, technical progress report, October 1, 1996--December 31, 1996

    SciTech Connect

    Hara, S. , Casteel, J.

    1997-05-11

    The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) 11-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

  3. Increasing Waterflooding Reservoirs in the Wilmington Oil Field through Improved Reservoir Characterization and Reservoir Management, Class III

    SciTech Connect

    Koerner, Roy; Clarke, Don; Walker, Scott; Phillips, Chris; Nguyen, John; Moos, Dan; Tagbor, Kwasi

    2001-08-07

    This project was intended to increase recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs, transferring technology so that it can be applied in other sections of the Wilmington field and by operators in other slope and basin reservoirs is a primary component of the project.

  4. Fuzzy SPC filter for a feed-forward control system for a three-phase oil field centrifuge.

    SciTech Connect

    Parkinson, W. J. ,; Smith, R. E.; Mortensen, F. N.; Wantuck, P. J.; Jamshidi, Mohammad; Ross, Timothy J.

    2002-01-01

    In this work we describe a signal filter for a feed-forward controller based on the application of fuzzy logic combined with statistical process control (SPC), The feed-forward controller is for a three-phase oil field centrifuge. The centrifuge system is used to separate meta-stable three-phase emulsions consisting of oil and water stabilized by solids. These emulsions are considered to be unusable wastes and must be disposed of in an environmentally acceptable manner. The centrifuge is capable of turning these wastes into clean saleable oil, water that can be reused in an operating process or re-injected into oil wells and, solids that can be disposed of in landfills. The feed-forward controller is used for feed disturbance rejection. It works in conjunction with and, is capable of over-riding the actions of, a feedback controller. The measured feed variables for the feed-forward controller each exhibit reasonably large random fluctuations. It is therefore quite important to use a signal filter that truly recognizes the difference between random noise and a 'caused' event, in order to prevent overriding a perfectly good correction from the feedback controller.

  5. Pacific region adds fields and technology to stretch and amplify huge oil reserves

    SciTech Connect

    Lyle, D.

    1995-12-01

    The Pacific region combines the best features of the oilpatch with three states that give operators plenty of exploration prospects and two states at the forefront of development technology. The region offers something for everyone, but it has been hamstrung by low oil prices. It looks as if the repeal on the ban on exports Alaskan oil will go a long way toward easing the low-price restriction.

  6. Increasing Waterflood Reserves in the Wilmington Oil Field through Improved Reservoir Characterization and Reservoir Management

    SciTech Connect

    Clarke, D.; Koerner, R.; Moos D.; Nguyen, J.; Phillips, C.; Tagbor, K.; Walker, S.

    1999-04-05

    This project used advanced reservoir characterization tools, including the pulsed acoustic cased-hole logging tool, geologic three-dimensional (3-D) modeling software, and commercially available reservoir management software to identify sands with remaining high oil saturation following waterflood. Production from the identified high oil saturated sands was stimulated by recompleting existing production and injection wells in these sands using conventional means as well as a short radius redrill candidate.

  7. Use of radium isotopes to determine the age and origin of radioactive barite at oil-field production sites

    USGS Publications Warehouse

    Zielinski, R.A.; Otton, J.K.; Budahn, J.R.

    2001-01-01

    Radium-bearing barite (radiobarite) is a common constituent of scale and sludge deposits that form in oil-field production equipment. The barite forms as a precipitate from radium-bearing, saline formation water that is pumped to the surface along with oil. Radioactivity levels in some oil-field equipment and in soils contaminated by scale and sludge can be sufficiently high to pose a potential health threat. Accurate determinations of radium isotopes (226Ra+228Ra) in soils are required to establish the level of soil contamination and the volume of soil that may exceed regulatory limits for total radium content. In this study the radium isotopic data are used to provide estimates of the age of formation of the radiobarite contaminant. Age estimates require that highly insoluble radiobarite approximates a chemically closed system from the time of its formation. Age estimates are based on the decay of short-lived 228Ra (half-life=5.76 years) compared to 226Ra (half-life=1600 years). Present activity ratios of 228Ra/226Ra in radiobarite-rich scale or highly contaminated soil are compared to initial ratios at the time of radiobarite precipitation. Initial ratios are estimated by measurements of saline water or recent barite precipitates at the site or by considering a range of probable initial ratios based on reported values in modern oil-field brines. At sites that contain two distinct radiobarite sources of different age, the soils containing mixtures of sources can be identified, and mixing proportions quantified using radium concentration and isotopic data. These uses of radium isotope data provide more description of contamination history and can possibly address liability issues. Copyright ?? 2000 .

  8. External magnetic field dependent light transmission and scattered speckle pattern in a magnetically polarizable oil-in-water nanoemulsion

    NASA Astrophysics Data System (ADS)

    Brojabasi, Surajit; Lahiri, B. B.; Philip, John

    2014-12-01

    We study the magnetic field dependent light transmission and scattered speckle pattern in a magnetically polarizable oil-in-water emulsion of droplet diameter ~220 nm, where the direction of propagation of light is parallel to the direction of the external magnetic field. Up to a magnetic field of 50 Gauss, the nanoemulsion remains opaque due to intense Mie scattering. Above 50 Gauss, the transmitted light intensity increases with external magnetic field up to a critical field (BC). Further increase in the magnetic field leads to a reduction in the transmitted intensity. The BC shifts to a lower magnetic field with increasing volume fraction (?) and follows a power law dependence with ?, indicating a disorder-order transition. The scattered light intensity at the lobe part is found to increase with external magnetic field. The analysis of the lobe part reveals that the speckle contrast increases with external magnetic field due to the coarsening of the linear chain-like aggregates formed along the direction of the external magnetic field. The angular speckle correlation coefficient is found to be symmetrical on either side of the transmitted bright spot and decays exponentially with measurement angles.

  9. Peculiarities of the geologic structure of gigantic gas fields of the western Siberian oil and gas province

    SciTech Connect

    Belyi, N.

    1991-03-01

    The Western Siberian Oil and Gas Province is a unique one regarding the concentration of natural gas resources in Mesozoic terrigenous formations. Discovery of gigantic natural gas fields makes it possible to provide high level of gas production for future prospects. The USSR has enormous potential possibilities for discoveries of new natural gas fields onshore, as well as offshore. At present, three gigantic gas fields have been developed, namely Medvezhie, Urongoi, and Yamburg. The first one has been in operation for 18 years. In the Mesozoic section, three productive complexes can be noticed: Upper Cretaceous, Lower Cretaceous, and Jurassic. The Upper Cretaceous production complex is mostly explored, with unique gas resources containing mainly methane having been discovered. The Lower Cretaceous production complex is characterized by considerable lithofaceous uniformity of reservoirs. Gas pools of this complex contain considerable quantities of condensate quite often having oil rims. The Jurassic production complex, which is characterized by its complicated structure and considerable changeability of the filtration properties, is less studied. Study of the geological structural peculiarities of the gigantic gas fields of Western Siberia gives us the possibility to find new approval for the development and exploration of gas fields.

  10. Sources of aeromagnetic anomalies over Cement oil field (Oklahoma), Simpson oil field (Alaska), and the Wyoming-Idaho-Utah thrust belt

    USGS Publications Warehouse

    Reynolds, R.L.; Fishman, N.S.; Hudson, M.R.

    1991-01-01

    Geochemical and rock magnetic studies, undertaken to determine the causes of magnetic anomalies have revealed different magnetic sources developed under different sedimentologic, geochemical, and structural settings. Results show that abiologic and biologic mechanisms can generate different magnetic sulfide minerals in zones of sulfide hydrocarbon seepage. More commonly, sulfidic seepage could either diminish magnetization by replacement of detrital magnetic minerals with nonmagnetic sulfide minerals, or it would have no effect on magnetization if such detrital minerals were originally absent. An important negative result is the absence of abundant secondary (diagenetic) magnetite in the seepage environments. Although secondary magnetite occurs in some biodegraded crude oils, concentrations of such magnetite capable of producing aeromagnetic anomalies have not been documented. -from Authors

  11. Successful field evaluation of the efficiency of a gas gravity drainage process by applying recent developments in Sponge coring technique in a major oil field

    SciTech Connect

    Durandeau, M.; El-Emam, M.; Anis, A.H.; Fanti, G.

    1995-11-01

    This paper describes the application and integration of new technologies and recent developments in Sponge coring and presents the methodology used to carry out successfully the various phases of well designed Sponge coring project, including the coring phase, the on-site measurements and the full evaluation of the Sponge core samples. A field case is presented where a Sponge coring project was accomplished to obtain accurate fluids distribution and evaluate the gas gravity drainage efficiency in one of the Arab D sub-reservoirs of a major oil field offshore Abu Dhabi. A Sponge coring technology team was created to optimize the methodology used during Sponge coring an minimize the uncertainties which persisted on some of the previous operations. The effectiveness of the technique is discussed, with comparison to open hole logs and SCAL data. Realistic petrophysical parameters were obtained from non-invaded, native-state core samples. The effective oil saturation obtained from the Sponge core analysis results showed that the gravity segregation mechanism has been very active and efficient to recover the oil in the reservoir.

  12. Geological and Geochemical Aspects of the Deep Origin of the Oil Fields of Volga-Ural Region in East-European Platform

    NASA Astrophysics Data System (ADS)

    Plotnikova, Irina

    2010-05-01

    The study area for research is territory of Tatarstan and the South Tatarstan Arch located in the Volgo-Ural Region, which is an enigmatic crustal segment that occupies the eastern third of the East European Craton. The tectonic structure and history of geological development of this region are mainly defined by the fact that Tatarstan is a junction between several first-order tectonic elements. The present-day structure of the crystalline basement is a result of the evolution of the faults and blocks originally formed in Late Proterozoic times and those that partly originated from the older dislocations. The South Tatarstan arch contains Tatarstani largest oil fields - Romashkino, Novo-Elkhovo and Bavli. The analysis of areal and sectional distribution of the oil fields has allowed the tracing of the close link between the oil bearing capacity of the sedimentary cover and the block structure of the basement. All the oil fields above the South Tatarstan arch are controlled by the faults crosscutting the crystalline basement and the sedimentary cover. Oil accumulations in the lower productive strata of the sedimentary cover are confined to the basement zones with the maximum degree of tectonic fracturing and to the fault-intersection nodes. Genetic identity of oils and bitumens of the sedimentary cover, and the confinement of oil pools to tectonic faults confirm the role of the vertical migration it plays in the formation of commercial oil and bitumen accumulations in the Palaeozoic sedimentary sequences. The report contains data of analyse the distribution of oil in the sedimentary cover of Tatarstan in general and the location of the Romashkino oil field in particular from a new viewpoint, in their relation to the following factors: the composition and tectonomagmatic evolution of the crystalline basement in the pre-platform stage of its development; the fluid dynamic evolution in Phanerozoic times; and neotectonic processes. Cumulative oil production in Tatarstan has already reached 3.1 B tons, thus substantially exceeding hydrocarbons quantity, calculated geochemically on the basis of the Paleozoic source rock potentials of all sedimentary strata. The insufficient maturity of organic matter in Domanic clay-cilicon-carbonate formations obviously shows the impossibility for the commercial amounts of hydrocarbons of being generated from the available material of the sedimentary cover. Integrated analysis of deep drilling, geological data, geochemical characteristics of oil composition and trace elements of oil, geochemistry of dispersed organic matter of Devonian and Carboniferous deposits except the remote migration of oil from the sedimentary strata of the Urals Foredeep and Prikaspian depression toward the South Tatarstan Arch. Dominated role of the deep factors in generation of oil is grounded by results of deep drilling and geological, geochemical, geophysical investigations.

  13. The effect of an oil drilling operation on the trace metal concentrations in offshore bottom sediments of the Campos Basin oil field, SE Brazil.

    PubMed

    Rezende, C E; Lacerda, L D; Ovalle, A R C; Souza, C M M; Gobo, A A R; Santos, D O

    2002-07-01

    The concentrations of Al, Fe, Mn, Zn, Cu, Pb, Ni, Cr, Ba, V, Sn and As in offshore bottom sediments from the Bacia de Campos oil field, SE Brazil, were measured at the beginning and at 7 months after completion of the drilling operation. Concentrations of Al, Fe, Ba, Cr, Ni and Zn were significantly higher closer to the drilling site compared to stations far from the site. Average concentrations of Al, Cu, and in particular of Ni, were significantly higher at the end of the drilling operation than at the beginning. Comparison between drilling area sediments with control sediments of the continental platform, however, showed no significant difference in trace metal concentrations. Under the operation conditions of this drilling event, the results show that while changes in some trace metal concentrations do occur during drilling operations, they are not significantly large to be distinguished from natural variability of the local background concentrations. PMID:12222892

  14. Increasing heavy oil reserves in the Wilmington oil field through advanced reservoir characterization and thermal production technologies. Quarterly report, July 1 - September 30, 1996

    SciTech Connect

    Hara, S.

    1996-12-01

    The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. This is the sixth quarterly technical progress report for the project. Through September 1996, the project continues to make good progress but is slightly behind schedule. Estimated costs are on budget for the work performed to date. Technical achievements accomplished during the quarter include placing the first two horizontal wells on production following cyclic steam stimulation, completing several draft technical reports and preparing presentations on the deterministic geologic model, steam channel crossing and horizontal well drilling for technical transfer. Cyclic steam injection into the first two horizontal wells was completed in June 1996 and initial oil production from the project began the same month. Work has commenced on the stochastic geologic and reservoir simulation models. High temperature core work and reservoir tracer work will commence in the First Quarter 1997.

  15. Excito-repellency of essential oils against an Aedes aegypti (L.) field population in Thailand.

    PubMed

    Boonyuan, Wasana; Grieco, John P; Bangs, Michael J; Prabaripai, Atchariya; Tantakom, Siripun; Chareonviriyaphap, Theeraphap

    2014-06-01

    An investigation of the behavioral responses of Aedes aegypti (= Stegomyia aegypti) to various concentrations of essential oils (2.5, 5, and 10%) extracted from hairy basil (Ocimum americanum Linn), ginger (Zingiber officinale Roscoe), lemongrass (Cymbopogon citratus Stapf), citronella grass (Cymbopogon nardus Rendle), and plai (Zingiber cassumunar Roxb) were performed using an excito-repellency test chamber. Results showed that Ae. aegypti exhibited varying levels of escape response in both the contact and noncontact chambers in response to different essential oils. The magnitude of the behaviors changed in a dose-response fashion depending on the percent volume to volume concentration of oil used. A 2.5% concentration of hairy basil oil produced a significantly greater escape response compared to the other extracts at the same concentration (P< 0.05). Oils of ginger, lemongrass, and citronella produced stronger irritant and repellent responses at the median 5% concentration compared to the lowest and highest concentrations. There was marked suppression of escape for both contact and noncontact tests using 10% concentrations of hairy basil, lemongrass, and citronella, with high knockdown for all three oils after 30 min. Hairy basil and lemongrass had the highest insecticidal activity to Ae. aegypti, with LC50 values of 6.3 and 6.7 percent, respectively. We conclude that the essential oils from native plants tested, and likely many other extracts found in plants, have inherent repellent and irritant qualities that should to be screened and optimized for their behavior-modifying properties against Ae. aegypti and other biting arthropods of public health and pest importance. PMID:24820563

  16. The Effect of Oregano and Cinnamon Essential Oils on Fermentation Quality and Aerobic Stability of Field Pea Silages

    PubMed Central

    Soycan-Önenç, Sibel; Koc, Fisun; Co?kuntuna, Levent; Özdüven, M. Levent; Gümü?, Tuncay

    2015-01-01

    This study was performed to determine the effect of field pea silages which were the organic acid (OA) alternative of oregano and cinnamon essential oils on fermentation quality and aerobic stability. Whole crop pea was harvested at full pod stage and wilted in the laboratory at the 48 h. The chopped pea was mixed and divided into equal portions allocated to five groups: CON (non-treated), distilled water, denoted as control group; OA group, a mixture of 60% formic acid, 20% sodium formate and 20% water applied at a rate of 5 g/kg fresh forage (Silofarm Liquid, Farmavet); origanum (ORE) group, Origanum onites essential oil at 400 mg/kg fresh forage; cinnamon (CIN) group, cinnamon essential oil at 400 mg/kg fresh forage; origanum+cinnamon (ORECIN) group, a mixture of ORE and CIN applied at an equal rate of 400 mg/kg fresh forage. Cinnamon decreased acetic acid (AA), ammonia nitrogen (NH3-N) and weight loss (WL) at the end of 60 days silage. Crude protein (CP) and dry matter (DM) increased by cinnamon essential oil. Yeasts were not detected in any treatments, including the control, after 7 days of air exposure. The CO2 amount decreased and the formation mold was inhibited in the aerobic period by the addition of cinnamon oil. Oregano did not show a similar effect, but when it was used with cinnamon, it showed synergic effect on AA and during aerobic period, it showed antagonistic effect on mold formation and DM losses. It was found in this study that cinnamon can be an alternative to organic acids. PMID:26323518

  17. The Effect of Oregano and Cinnamon Essential Oils on Fermentation Quality and Aerobic Stability of Field Pea Silages.

    PubMed

    Soycan-Önenç, Sibel; Koc, Fisun; Co?kuntuna, Levent; Özdüven, M Levent; Gümü?, Tuncay

    2015-09-01

    This study was performed to determine the effect of field pea silages which were the organic acid (OA) alternative of oregano and cinnamon essential oils on fermentation quality and aerobic stability. Whole crop pea was harvested at full pod stage and wilted in the laboratory at the 48 h. The chopped pea was mixed and divided into equal portions allocated to five groups: CON (non-treated), distilled water, denoted as control group; OA group, a mixture of 60% formic acid, 20% sodium formate and 20% water applied at a rate of 5 g/kg fresh forage (Silofarm Liquid, Farmavet); origanum (ORE) group, Origanum onites essential oil at 400 mg/kg fresh forage; cinnamon (CIN) group, cinnamon essential oil at 400 mg/kg fresh forage; origanum+cinnamon (ORECIN) group, a mixture of ORE and CIN applied at an equal rate of 400 mg/kg fresh forage. Cinnamon decreased acetic acid (AA), ammonia nitrogen (NH3-N) and weight loss (WL) at the end of 60 days silage. Crude protein (CP) and dry matter (DM) increased by cinnamon essential oil. Yeasts were not detected in any treatments, including the control, after 7 days of air exposure. The CO2 amount decreased and the formation mold was inhibited in the aerobic period by the addition of cinnamon oil. Oregano did not show a similar effect, but when it was used with cinnamon, it showed synergic effect on AA and during aerobic period, it showed antagonistic effect on mold formation and DM losses. It was found in this study that cinnamon can be an alternative to organic acids. PMID:26323518

  18. Litho-geophysical structure of Paleozoic-Mesozoic contact zones in North-Ostaninsk oil field (Tomsk Oblast)

    NASA Astrophysics Data System (ADS)

    Ezhova, A.; Merkulov, V.; Chekanstev, V.; Abramova, R.

    2015-02-01

    A multidiscipline seismic and gravimagnetic survey, as well as paleomagnetic and lithologic-stratigraphic analysis of pre-Jurassic formations were conducted in North- Ostaninsk oil field within south-east Western Siberian petroleum province. A multidirectional tectonic deformation network merging into the destruction zones of Paleozoic basement was identified. The material composition and age of pre-Jurassic formations within each tectonic block were determined. Fundamentally new geological structure model of the Paleozoic suite was proposed : North-Ostaninsk erosion-tectonic protrusion - a reversed and structurally-complex fracture - deformed tectonic syncline fold where the oil reservoir is confined to the dipping limb. Reversed morphostructures in the erosion-tectonic protrusions could be a prospecting indicator in evaluating the hydrocarbon potential of Paleozoic sediments.

  19. ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL & GAS FIELDS IN NEW MEXICO AND WYOMING

    SciTech Connect

    Peggy Robinson

    2005-01-01

    This report summarizes activities that have taken place in the last 6 months (July 2004-December 2004) under the DOE-NETL cooperative agreement ''Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields, New Mexico and Wyoming'' DE-FC26-02NT15445. This project examines the practices and results of cultural resource investigation and management in two different oil and gas producing areas of the US: southeastern New Mexico and the Powder River Basin of Wyoming. The project evaluates how cultural resource investigations have been conducted in the past and considers how investigation and management could be pursued differently in the future. The study relies upon full database population for cultural resource inventories and resources and geomorphological studies. These are the basis for analysis of cultural resource occurrence, strategies for finding and evaluating cultural resources, and recommendations for future management practices. Activities can be summarized as occurring in either Wyoming or New Mexico.

  20. Eos modeling and reservoir simulation study of bakken gas injection improved oil recovery in the elm coulee field, Montana

    NASA Astrophysics Data System (ADS)

    Pu, Wanli

    The Bakken Formation in the Williston Basin is one of the most productive liquid-rich unconventional plays. The Bakken Formation is divided into three members, and the Middle Bakken Member is the primary target for horizontal wellbore landing and hydraulic fracturing because of its better rock properties. Even with this new technology, the primary recovery factor is believed to be only around 10%. This study is to evaluate various gas injection EOR methods to try to improve on that low recovery factor of 10%. In this study, the Elm Coulee Oil Field in the Williston Basin was selected as the area of interest. Static reservoir models featuring the rock property heterogeneity of the Middle Bakken Member were built, and fluid property models were built based on Bakken reservoir fluid sample PVT data. By employing both compositional model simulation and Todd-Longstaff solvent model simulation methods, miscible gas injections were simulated and the simulations speculated that oil recovery increased by 10% to 20% of OOIP in 30 years. The compositional simulations yielded lower oil recovery compared to the solvent model simulations. Compared to the homogeneous model, the reservoir model featuring rock property heterogeneity in the vertical direction resulted in slightly better oil recovery, but with earlier CO2 break-through and larger CO2 production, suggesting that rock property heterogeneity is an important property for modeling because it has a big effect on the simulation results. Long hydraulic fractures shortened CO2 break-through time greatly and increased CO 2 production. Water-alternating-gas injection schemes and injection-alternating-shut-in schemes can provide more options for gas injection EOR projects, especially for gas production management. Compared to CO2 injection, separator gas injection yielded slightly better oil recovery, meaning separator gas could be a good candidate for gas injection EOR; lean gas generated the worst results. Reservoir simulations also indicate that original rock properties are the dominant factor for the ultimate oil recovery for both primary recovery and gas injection EOR. Because reservoir simulations provide critical inputs for project planning and management, more effort needs to be invested into reservoir modeling and simulation, including building enhanced geologic models, fracture characterization and modeling, and history matching with field data. Gas injection EOR projects are integrated projects, and the viability of a project also depends on different economic conditions.

  1. Oil Field Souring Control by Nitrate-Reducing Sulfurospirillum spp. That Outcompete Sulfate-Reducing Bacteria for Organic Electron Donors? †

    PubMed Central

    Hubert, Casey; Voordouw, Gerrit

    2007-01-01

    Nitrate injection into oil reservoirs can prevent and remediate souring, the production of hydrogen sulfide by sulfate-reducing bacteria (SRB). Nitrate stimulates nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB) and heterotrophic nitrate-reducing bacteria (hNRB) that compete with SRB for degradable oil organics. Up-flow, packed-bed bioreactors inoculated with water produced from an oil field and injected with lactate, sulfate, and nitrate served as sources for isolating several NRB, including Sulfurospirillum and Thauera spp. The former coupled reduction of nitrate to nitrite and ammonia with oxidation of either lactate (hNRB activity) or sulfide (NR-SOB activity). Souring control in a bioreactor receiving 12.5 mM lactate and 6, 2, 0.75, or 0.013 mM sulfate always required injection of 10 mM nitrate, irrespective of the sulfate concentration. Community analysis revealed that at all but the lowest sulfate concentration (0.013 mM), significant SRB were present. At 0.013 mM sulfate, direct hNRB-mediated oxidation of lactate by nitrate appeared to be the dominant mechanism. The absence of significant SRB indicated that sulfur cycling does not occur at such low sulfate concentrations. The metabolically versatile Sulfurospirillum spp. were dominant when nitrate was present in the bioreactor. Analysis of cocultures of Desulfovibrio sp. strain Lac3, Lac6, or Lac15 and Sulfurospirillum sp. strain KW indicated its hNRB activity and ability to produce inhibitory concentrations of nitrite to be key factors for it to successfully outcompete oil field SRB. PMID:17308184

  2. Occurrence of oil in the Austin Chalk at Van field, Van Zandt County, Texas: A unique geologic setting

    SciTech Connect

    Lowe, J.T.; Carrington, D.B. )

    1990-09-01

    The Austin Chalk is buried to a depth of only 2,100-2,500 ft and has retained primary microporosity unlike the typical deep fractured chalk reservoirs. The Van structure is a complexly faulted domal anticline created by salt intrusion and is approximately 2,000 ft higher than surrounding structures in the area. A major northwest-dipping fault acts as the primary trapping mechanism. The field has produced 0.5 billion BO from thick Woodbine sands since its discovery in 1929. Occurrence of oil in the Austin Chalk has been known since the field discovery, but prior completions were low rate oil producers. Recent development of a large fracture stimulation technique has resulted in increased production rates of up to 300 BOPD. The Austin Chalk reservoir limits were determined by isopaching feet of minimum productive resistivity having porosity above a cutoff value. The resistivity/porosity isopach showed a direct correlation between Austin Chalk productivity and the Austin Chalk structure and faulting pattern. Structural evidence along with oil typing indicate that the oil in the Austin Chalk has migrated upward along fault planes and through fault juxtaposition from the Woodbine sands 200 ft below the Austin Chalk. Thin-section and scanning electron microscopy work performed on conventional cores showed that the Van Austin Chalk formation is a very fine grained limestone composed primarily of coccoliths. Various amounts of detrital illite clay are present in the coccolith matrix. All effective porosity is micro-intergranular and ranges from 15 to 35%. Based on the core analyses, the main porosity reducing agent and therefore control on reservoir quality is the amount of detrital clay present filling the micropores. Permeability is very low with values ranging from 0.01 to 1.5 md. There is no evidence of significant natural fractures in the core. Artificial fractures are therefore required to create the permeability needed to sustain commercial production rates.

  3. Floating production platforms and their applications in the development of oil and gas fields in the South China Sea

    NASA Astrophysics Data System (ADS)

    Zhang, Dagang; Chen, Yongjun; Zhang, Tianyu

    2014-03-01

    This paper studies the current available options for floating production platforms in developing deepwater oil fields and the potential development models of future oil and gas exploration in the South China Sea. A detailed review of current deepwater platforms worldwide was performed through the examples of industry projects, and the pros and cons of each platform are discussed. Four types of platforms are currently used for the deepwater development: tension leg platform, Spar, semi-submersible platform, and the floating production system offloading. Among these, the TLP and Spar can be used for dry tree applications, and have gained popularity in recent years. The dry tree application enables the extension of the drilling application for fixed platforms into floating systems, and greatly reduces the cost and complexity of the subsea operation. Newly built wet tree semi-submersible production platforms for ultra deepwater are also getting their application, mainly due to the much needed payload for deepwater making the conversion of the old drilling semi-submersible platforms impossible. These platforms have been used in different fields around the world for different environments; each has its own advantages and disadvantages. There are many challenges with the successful use of these floating platforms. A lot of lessons have been learned and extensive experience accumulated through the many project applications. Key technologies are being reviewed for the successful use of floating platforms for field development, and potential future development needs are being discussed. Some of the technologies and experience of platform applications can be well used for the development of the South China Sea oil and gas field.

  4. Clove oil as an anaesthetic for adult sockeye salmon: Field trials

    USGS Publications Warehouse

    Woody, C.A.; Nelson, J.; Ramstad, K.

    2002-01-01

    Wild migrating sockeye salmon Oncorhynchus nerka exposed to 20, 50 and 80 mg 1-1 of clove oil could be handled within 3 min, recovered within 10 min, and survived 15 min exposure trials. Fish tested at 110 mg 1-1 did not recover from 15 min exposure trials. Response curves developed for induction and recovery time considered the following predictors: clove oil concentration, sex, fish length and depth. A significant positive dependence was observed between induction time and fish length for 20, 50 and 80 mg 1-1 test concentrations; no dependence was observed between induction time and length at 110 and 140 mg 1-1. Recovery time differed as a function of clove oil concentration, but not fish size. A concentration of 50 mg 1-1 is recommended for anaesthetizing sockeye salmon ranging in length from 400 to 550 mm at water temperatures averaging 9-10??C.

  5. Development and field testing of a Light Aircraft Oil Surveillance System (LAOSS)

    NASA Technical Reports Server (NTRS)

    Burns, W.; Herz, M. J.

    1976-01-01

    An experimental device consisting of a conventional TV camera with a low light level photo image tube and motor driven polarized filter arrangement was constructed to provide a remote means of discriminating the presence of oil on water surfaces. This polarized light filtering system permitted a series of successive, rapid changes between the vertical and horizontal components of reflected polarized skylight and caused the oil based substances to be more easily observed and identified as a flashing image against a relatively static water surface background. This instrument was flight tested, and the results, with targets of opportunity and more systematic test site data, indicate the potential usefulness of this airborne remote sensing instrument.

  6. Activities of the Oil Implementation Task Force, December 1990--February 1991; Contracts for field projects and supporting research on enhanced oil recovery, April--June 1990

    SciTech Connect

    Tiedemann, H.A. )

    1991-03-01

    The Oil Implementation Task Force was appointed to implement the US DOE's new oil research program directed toward increasing domestic oil production by expanded research on near- or mid-term enhanced oil recovery methods. An added priority is to preserve access to reservoirs that have the largest potential for oil recovery, but that are threatened by the large number of wells abandoned each year. This report describes the progress of research activities in the following areas: chemical flooding; gas displacement; thermal recovery; resource assessment; microbial technology; geoscience technology; and environmental technology. (CK)

  7. Contracts for field projects and supporting research on enhanced oil recovery. Progress review number 87

    SciTech Connect

    1997-10-01

    Approximately 30 research projects are summarized in this report. Title of the project, contract number, company or university, award amount, principal investigators, objectives, and summary of technical progress are given for each project. Enhanced oil recovery projects include chemical flooding, gas displacement, and thermal recovery. Most of the research projects though are related to geoscience technology and reservoir characterization.

  8. Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields in New Mexico and Wyoming

    SciTech Connect

    Eckerle, William; Hall, Stephen

    2005-12-30

    In 2002, Gnomon, Inc., entered into a cooperative agreement with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) for a project entitled, Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields in New Mexico and Wyoming (DE-FC26-02NT15445). This project, funded through DOE’s Preferred Upstream Management Practices grant program, examined cultural resource management practices in two major oil- and gas-producing areas, southeastern New Mexico and the Powder River Basin of Wyoming (Figure 1). The purpose of this project was to examine how cultural resources have been investigated and managed and to identify more effective management practices. The project also was designed to build information technology and modeling tools to meet both current and future management needs. The goals of the project were described in the original proposal as follows: Goal 1. Create seamless information systems for the project areas. Goal 2. Examine what we have learned from archaeological work in the southeastern New Mexico oil fields and whether there are better ways to gain additional knowledge more rapidly or at a lower cost. Goal 3. Provide useful sensitivity models for planning, management, and as guidelines for field investigations. Goal 4. Integrate management, investigation, and decision- making in a real-time electronic system. Gnomon, Inc., in partnership with the Wyoming State Historic Preservation Office (WYSHPO) and Western GeoArch Research, carried out the Wyoming portion of the project. SRI Foundation, in partnership with the New Mexico Historic Preservation Division (NMHPD), Statistical Research, Inc., and Red Rock Geological Enterprises, completed the New Mexico component of the project. Both the New Mexico and Wyoming summaries concluded with recommendations how cultural resource management (CRM) processes might be modified based on the findings of this research.

  9. Application of Denaturing High-Performance Liquid Chromatography for Monitoring Sulfate-Reducing Bacteria in Oil Fields

    PubMed Central

    Nyyssönen, Mari; Bomberg, Malin; Laitila, Arja; Simell, Jaakko; Kapanen, Anu; Juvonen, Riikka

    2013-01-01

    Sulfate-reducing bacteria (SRB) participate in microbially induced corrosion (MIC) of equipment and H2S-driven reservoir souring in oil field sites. Successful management of industrial processes requires methods that allow robust monitoring of microbial communities. This study investigated the applicability of denaturing high-performance liquid chromatography (DHPLC) targeting the dissimilatory sulfite reductase ß-subunit (dsrB) gene for monitoring SRB communities in oil field samples from the North Sea, the United States, and Brazil. Fifteen of the 28 screened samples gave a positive result in real-time PCR assays, containing 9 × 101 to 6 × 105 dsrB gene copies ml?1. DHPLC and denaturing gradient gel electrophoresis (DGGE) community profiles of the PCR-positive samples shared an overall similarity; both methods revealed the same samples to have the lowest and highest diversity. The SRB communities were diverse, and different dsrB compositions were detected at different geographical locations. The identified dsrB gene sequences belonged to several phylogenetic groups, such as Desulfovibrio, Desulfococcus, Desulfomicrobium, Desulfobulbus, Desulfotignum, Desulfonatronovibrio, and Desulfonauticus. DHPLC showed an advantage over DGGE in that the community profiles were very reproducible from run to run, and the resolved gene fragments could be collected using an automated fraction collector and sequenced without a further purification step. DGGE, on the other hand, included casting of gradient gels, and several rounds of rerunning, excising, and reamplification of bands were needed for successful sequencing. In summary, DHPLC proved to be a suitable tool for routine monitoring of the diversity of SRB communities in oil field samples. PMID:23793633

  10. Application of denaturing high-performance liquid chromatography for monitoring sulfate-reducing bacteria in oil fields.

    PubMed

    Priha, Outi; Nyyssönen, Mari; Bomberg, Malin; Laitila, Arja; Simell, Jaakko; Kapanen, Anu; Juvonen, Riikka

    2013-09-01

    Sulfate-reducing bacteria (SRB) participate in microbially induced corrosion (MIC) of equipment and H2S-driven reservoir souring in oil field sites. Successful management of industrial processes requires methods that allow robust monitoring of microbial communities. This study investigated the applicability of denaturing high-performance liquid chromatography (DHPLC) targeting the dissimilatory sulfite reductase ß-subunit (dsrB) gene for monitoring SRB communities in oil field samples from the North Sea, the United States, and Brazil. Fifteen of the 28 screened samples gave a positive result in real-time PCR assays, containing 9 × 10(1) to 6 × 10(5) dsrB gene copies ml(-1). DHPLC and denaturing gradient gel electrophoresis (DGGE) community profiles of the PCR-positive samples shared an overall similarity; both methods revealed the same samples to have the lowest and highest diversity. The SRB communities were diverse, and different dsrB compositions were detected at different geographical locations. The identified dsrB gene sequences belonged to several phylogenetic groups, such as Desulfovibrio, Desulfococcus, Desulfomicrobium, Desulfobulbus, Desulfotignum, Desulfonatronovibrio, and Desulfonauticus. DHPLC showed an advantage over DGGE in that the community profiles were very reproducible from run to run, and the resolved gene fragments could be collected using an automated fraction collector and sequenced without a further purification step. DGGE, on the other hand, included casting of gradient gels, and several rounds of rerunning, excising, and reamplification of bands were needed for successful sequencing. In summary, DHPLC proved to be a suitable tool for routine monitoring of the diversity of SRB communities in oil field samples. PMID:23793633

  11. Explosively produced fracture of oil shale. Progress report, July-September 1981. [Field experiments; computer models; retort stability

    SciTech Connect

    1982-04-01

    The Los Alamos National Laboratory is conducting rock fragmentation research in oil shale to develop the blasting technologies and designs required to create a rubble bed for a modified in situ retort. This report outlines our first field experiments at the Anvil Points Mine in Colorado. These experiments are part of a research program, sponsored by the Laboratory through the Department of Energy and by a Consortium of oil companies. Also included are some typical numerical calculations made in support of proposed field experiments. Two papers detail our progress in computer modeling and theory. The first presents a method for eliminating hourglassing in two-dimensional finite-difference calculations of rock fracture without altering the physical results. The second discusses the significant effect of buoyancy on tracer gas flow through the retort. A paper on retort stability details a computer application of the Schmidt graphical method for calculating fine-scale temperature gradients in a retort wall. The final paper, which describes our approach to field experiments, presents the instrumentation and diagnostic techniques used in rock fragmentation experiments at Anvil Points Mine.

  12. Outcomes of pregnancy among women living in the proximity of oil fields in the Amazon basin of Ecuador.

    PubMed

    San Sebastián, Miguel; Armstrong, Ben; Stephens, Carolyn

    2002-01-01

    Oil companies have released billions of gallons of untreated wastes and oil directly into the environment of the Ecuadorian Amazon. This cross-sectional study investigated the environmental conditions and reproductive health of women living in rural communities surrounded by oil fields in the Amazon basin and in unexposed communities. Water from local streams was analyzed for total petroleum hydrocarbons (TPH). The women, aged 17 to 45 years, had resided for at least three years in the study communities. Socioeconomic and reproductive histories of the last three pregnancies were obtained from interviews. Information from the questionnaire was available for 365 exposed and 283 non-exposed women. The study was conducted from November 1998 to April 1999. Streams of exposed communities had TPH concentrations above the allowable limit. After adjustment for potential confounders, the pregnancies of women in exposed communities were more likely to end in spontaneous abortion (OR: 2.47; 95% CI: 1.61-3.79; p < 0.01). No association was found between stillbirth and exposure. An environmental system to control and eliminate the sources of pollution in the area is needed. PMID:12412848

  13. Assessment of the potential environmental fate and effects of oil-field discharge waters containing {sup 226}radium

    SciTech Connect

    Herrera, A.W.; Hill, S.L.; Bergman, H.L.

    1994-12-31

    The naturally occurring radionuclide, radium-226, has been detected in oil production waters in all regions of the country. A produced water discharge into the Loch Katrina wetland in Park County, WY was investigated with respect to the transport and fate of radium in surface waters. The 866-acre Loch Katrina wetland complex is sustained primarily by oil-field produced waters and provides habitat for many species of aquatic birds. While the short-term benefits of this discharge are indisputable, the long-term hazards posed by the transport of radium from deep aquifers to surface waters are not well understood. Guidelines regulating the management of radium-contaminated sediments in receiving waters or settling ponds in Wyoming have yet to be established. The purpose of this study was to provide information to regional regulatory agencies and the oil and gas industry in the development of guidelines and procedures for managing radium and other naturally occurring radioactive materials. The authors will report the results of the sampling survey of produced waters, sediment and biota performed in the Loch Katrina wetland complex in Wyoming.

  14. Electric-fields-enhanced destabilization of oil-in-water emulsions flowing through a confined wedgelike gap

    NASA Astrophysics Data System (ADS)

    Xie, Guoxin; Luo, Jianbin; Liu, Shuhai; Guo, Dan; Zhang, Chenhui

    2010-09-01

    External electric fields (EEFs) have been applied on a wedgelike gap in a ball-disk configuration, through which oil-in-water (O/W) emulsions flowed. The film formation properties of O/W emulsions in the contact region between the ball and the disk, which is closely related to the stability of oil droplets in the wedgelike gap, have been investigated experimentally. It is found that the film formation property of emulsions in the contact region increases with the EEF strength, but tends to saturate after a critical EEF strength was reached. For the emulsion with a larger oil concentration, it can be enhanced by EEFs more dramatically. The change in the film formation property is more significant when EEFs were applied in emulsions with relatively high emulsifier concentrations, however, the droplet stability is higher in the emulsions with low emulsifier concentrations even when EEFs were applied. The ability of the deformation and breakup of droplets under EEFs in the wedge was also analyzed theoretically to correlate with the experimental results.

  15. Applications of EOR (enhanced oil recovery) technology in field projects--1990 update

    SciTech Connect

    Pautz, J.F.; Thomas, R.D.

    1991-01-01

    Trends in the type and number of US enhanced oil recovery (EOR) projects are analyzed for the period from 1980 through 1989. The analysis is based on current literature and news media and the Department of Energy (DOE) EOR Project Data Base, which contains information on over 1,348 projects. The characteristics of the EOR projects are grouped by starting date and process type to identify trends in reservoir statistics and applications of process technologies. Twenty-two EOR projects starts were identified for 1989 and ten project starts for 1988. An obvious trend over recent years has been the decline in the number of project starts since 1981 until 1988 which corresponds to the oil price decline during that period. There was a modest recovery in 1989 of project starts, which lags the modest recovery of oil prices in 1987 that was reconfirmed in 1989. During the time frame of 1980 to 1989, there has been a gradual improvement in costs of operation for EOR technology. The perceived average cost of EOR has gone down from a $30/bbl range to low $20/bbl. These costs of operation seems to stay just at the price of oil or slightly above to result in marginal profitability. The use of polymer flooding has drastically decreased both in actual and relative numbers of project starts since the oil price drop in 1986. Production from polymer flooding is down more than 50%. Long-term plans for large, high-cost projects such as CO{sub 2} flooding in West Texas, steamflooding in California, and hydrocarbon flooding on the North Slope have continued to be implemented. EOR process technologies have been refined to be more cost effective as shown by the continued application and rising production attributable to EOR. 8 refs., 6 figs., 13 tabs.

  16. Increased Oil Production and Reserves from Improved Completion Techniques in the Bluebell Field, Uinta Basin, Utah, Class I

    SciTech Connect

    Morgan, Craig D.; Gwynn, Wallace; Deo, Milind D.; Jarrard, Richard; Curtice, Richard; Morris, Thomas H.; Smouse, DeForrest; Tripp, Carol N.

    2000-01-20

    The objective of this project was to increase oil production and reserves by the use of improved reservoir characterization and completion techniques in the Unita Basin Utah. To accomplish this objective, a two-year geologic and engineering characterization of the Bluebell field was conducted. The study evaluated surface and subsurface data, currently used completion techniques, and common production problems. It was determined that advanced case- and open-hole logs could be effective in determining productive beds and that staged-interval (about 500 ft [150 m] per stage) and bed-scale isolation completion techniques could result in improved well performance.

  17. Caribou distribution during the post-calving period in relation to infrastructure in the Prudhoe Bay oil field, Alaska

    USGS Publications Warehouse

    Cronin, M.A.; Amstrup, Steven C.; Durner, G.M.; Noel, L.E.; McDonald, T.L.; Ballard, W.B.

    1998-01-01

    There is concern that caribou (Rangifer tarandus) may avoid roads and facilities (i.e., infrastructure) in the Prudhoe Bay oil field (PBOF) in northern Alaska, and that this avoidance can have negative effects on the animals. We quantified the relationship between caribou distribution and PBOF infrastructure during the post-calving period (mid-June to mid-August) with aerial surveys from 1990 to 1995. We conducted four to eight surveys per year with complete coverage of the PBOF. We identified active oil field infrastructure and used a geographic information system (GIS) to construct ten 1 km wide concentric intervals surrounding the infrastructure. We tested whether caribou distribution is related to distance from infrastructure with a chi-squared habitat utilization-availability analysis and log-linear regression. We considered bulls, calves, and total caribou of all sex/age classes separately. The habitat utilization-availability analysis indicated there was no consistent trend of attraction to or avoidance of infrastructure. Caribou frequently were more abundant than expected in the intervals close to infrastructure, and this trend was more pronounced for bulls and for total caribou of all sex/age classes than for calves. Log-linear regression (with Poisson error structure) of numbers of caribou and distance from infrastructure were also done, with and without combining data into the 1 km distance intervals. The analysis without intervals revealed no relationship between caribou distribution and distance from oil field infrastructure, or between caribou distribution and Julian date, year, or distance from the Beaufort Sea coast. The log-linear regression with caribou combined into distance intervals showed the density of bulls and total caribou of all sex/age classes declined with distance from infrastructure. Our results indicate that during the post-calving period: 1) caribou distribution is largely unrelated to distance from infrastructure; 2) caribou regularly use habitats in the PBOF; 3) caribou often occur close to infrastructure; and 4) caribou do not appear to avoid oil field infrastructure.

  18. Neutron scattering studies of crude oil viscosity reduction with electric field

    NASA Astrophysics Data System (ADS)

    Du, Enpeng

    Small-angle neutron scattering (SANS) is a very powerful laboratory technique for micro structure research which is similar to the small angle X-ray scattering (SAXS) and light scattering for microstructure investigations in various materials. In small-angle neutron scattering (SANS) technique, the neutrons are elastically scattered by changes of refractive index on a nanometer scale inside the sample through the interaction with the nuclei of the atoms present in the sample. Because the nuclei of all atoms are compact and of comparable size, neutrons are capable of interacting strongly with all atoms. This is in contrast to X-ray techniques where the X-rays interact weakly with hydrogen, the most abundant element in most samples. The SANS refractive index is directly related to the scattering length density and is a measure of the strength of the interaction of a neutron wave with a given nucleus. It can probe inhomogeneities in the nanometer scale from 1nm to 1000nm. Since the SANS technique probes the length scale in a very useful range, this technique provides valuable information over a wide variety of scientific and technological applications, including chemical aggregation, defects in materials, surfactants, colloids, ferromagnetic correlations in magnetism, alloy segregation, polymers, proteins, biological membranes, viruses, ribosome and macromolecules. Quoting the Nobel committee, when awarding the prize to C. Shull and B. Brockhouse in 1994: "Neutrons tell you where the atoms are and what the atoms do". At NIST, there is a single beam of neutrons generated from either reactor or pulsed neutron source and selected by velocity selector. The beam passes through a neutron guide then scattered by the sample. After the sample chamber, there are 2D gas detectors to collect the elastic scattering information. SANS usually uses collimation of the neutron beam to determine the scattering angle of a neutron, which results in an even lower signal-to-noise ratio for data that contains information on the properties of a sample. We can analyze the data acquisition from the detectors and get the information on size, shape, etc. This is why we choose SANS as our research tool. The world's top energy problems are security concerns, climate concerns and environmental concerns. So far, oil (37%) is still the No.1 fuel in world energy consumption (Oil 37%, Coal 25%, Bio-fuels 0.2%, Gas 23%, Nuclear 6%, Biomass 4%, Hydro 3%, Solar heat 0.5%, Wind 0.3%, Geothermal 0.2% and Solar photovoltaic 0.04%). Even more and more alternative energy: bio-fuels, nuclear and solar energy will be used in the future, but nuclear energy has a major safety issue after the Japanese Fukushima I nuclear accidents, and other energies contribute only a small percent. Thus, it is very important to improve the efficiency and reduce the population of petroleum products. There is probably one thing that we can all agree on: the world's energy reserves are not unlimited. Even though it is limited, only 30% of the oil reserves is conventional oil, so in order to produce, transport, and refine of heavy crude oil without wasting huge amounts of energy, we need to reduce the viscosity without using high temperature stream heating or diluent; As more and more off-shore oil is exploited at that we need reduce the viscosity without increasing temperature. The whole petroleum consumed in U.S. in 2009 was 18.7 million barrels per day and 35% of all the energy we consumed. Diesel is one of the very important fossil fuel which is about 20% of petroleum consumed. Most of the world's oils are non-conventional, 15 % of heavy oil, 25 % of extra heavy oil, 30 % of the oil sands and bitumen, and the conventional oil reserves is only 30%. The oil sand is closely related to the heavy crude oil, the main difference being that oil sands generally do not flow at all. For efficient energy production and conservation, how to lower the liquated fuel and crude oil viscosity is a very important topic. Dr. Tao with his group at Temple University, using his electro or magnetic rh

  19. Jurassic Bazhenov Unit in the Salym oil field, West Siberia - An excellent source rock and fractured shale reservoir

    SciTech Connect

    Petzoukha, Y.; Rovenskaya, A.; Zonn, M.; Kononkov, A. )

    1991-03-01

    The Upper Jurassic Bazhenov Unit covers approximately 1 million km{sup 2} of West Siberia and is an excellent source rock. This Unit has proved to be a prolific shale reservoir in 14 local highs with the Salym oil field the major discovery. More than 300 wells have been drilled to date in this area, covering approximately 5800 km{sup 2}. The Bazhenov formation is composed of calcerous, organic-rich mudstone and siliceous hale lithofacies. Producing capacities of individual wells range from a few barrels daily to a maximum of 1000 bbl/day, and occasionally reaching 10,000 bbl/day. On average the porosity is 6.1%. The rock matrix is virtually impermeable and oil flow occurs via various types of fractures. All production is water free. The initial formation pressure ranges from normal hydrostatic to abnormally high, reaching 4060 and 6525 psi, respectively, at 2800 m depth. The temperature ranges from 180 to 280{degree} at depths from 2750 to 2950 m. The oil density varies between 30 and 46{degree} API, and the sulfur content ranges from 0.08 to 0.48%. The range of CO{sub 2} content in the associated gas is between 0.2 and 11.5%. Material of marine origin was the precursor organic matter of the kerogen for the Bazhenov Unit. The organic carbon content is high, ranging from 5 to 7% and occasionally reaching 15-20%. These are type II kerogens. The Bazhenov source rocks generate in situ high quality paraffin-base oils.

  20. Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity. Appendix 1, Volume 4

    SciTech Connect

    Kopasaka-Merkel, D.C.; Moore, H.E. Jr.; Mann, S.D; Hall, D.R.

    1992-06-01

    This volume contains maps, well log correlated to lithology, porosity and permeability, structural cross section, graph of production history, porosity vs. natural log permeability plots; detailed core log, porosity vs. natural permeability plot for one lithofacies, paragenetic sequence and reservoir characterization sheet for the following fields in southwest Alabama: Stave Creek oil field; Sugar Ridge oil field; Toxey oil field, Turkey Creed oil field; Turnerville oil field, Uriah oil field; Vocation oil field; Wallace oil field; Wallers Creek oil field; West Appleton oil field; West Barrytown oil field; West Bend oil field; West Okatuppa Creed oil field; Wild Fork Creek oil field; Wimberly oil field; Womack Hill oil field; and Zion Chapel oil field. (AT)

  1. Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity. [Jurassic Smackover Formation

    SciTech Connect

    Kopasaka-Merkel, D.C.; Moore, H.E. Jr.; Mann, S.D; Hall, D.R.

    1992-06-01

    This volume contains maps, well log correlated to lithology, porosity and permeability, structural cross section, graph of production history, porosity vs. natural log permeability plots; detailed core log, porosity vs. natural permeability plot for one lithofacies, paragenetic sequence and reservoir characterization sheet for the following fields in southwest Alabama: Stave Creek oil field; Sugar Ridge oil field; Toxey oil field, Turkey Creed oil field; Turnerville oil field, Uriah oil field; Vocation oil field; Wallace oil field; Wallers Creek oil field; West Appleton oil field; West Barrytown oil field; West Bend oil field; West Okatuppa Creed oil field; Wild Fork Creek oil field; Wimberly oil field; Womack Hill oil field; and Zion Chapel oil field. (AT)

  2. Investigation of high-temperature, igneous-related hydraulic fracturing as a reservoir control in the Blackburn and Grant Canyon/Bacon Flat oil fields, Nevada

    SciTech Connect

    Hulen, J.B.

    1991-01-01

    Research in progress to evaluate natural, igenous-related hydrothermal fracturing as a reservoir control in two eastern Nevada oil fields has revealed evidence of a far more comprehensive role for moderate- to high-temperature hydrothermal systems in Basin-and-Range oil-reservoir evolution. Fluid-inclusion and petrographic studies have shown that (now) oil-bearing dolomite breccias of the Blackburn field (Pine Valley, Eureka County) were formed when overpressured, magmatically-heated, high-temperature (>350{degrees}C) hydrothermal brines explosively ruptured their host rocks; similar studies of texturally identical breccias of the Grant Canyon/Bacon Flat field (Railroad Valley, Nye County) so far do not support such an explosive origin. At Grant Canyon, however, hydrothermal, breccia-cementing quartz hosts primary oil, aqueous/oil, and aqueous fluid inclusions (homogenization temperature = 120{degrees}C) which document a direct geothermal connection for oil migration and entrapment. Moreover, at both Blackburn and Grant Canyon/Bacon Flat, the oil reservoirs are top- and side-sealed by hydrothermally altered Tertiary ignimbrites and epiclastic rocks. Contemporary geothermal activity is also apparent at grant Canyon/Bacon Flat, where subsurface water temperatures reach 171{degrees}C, and at Blackburn, above which a petroleum-providing hot spring issues at a temperature of 90{degrees}C. We suggest that in the Basin and Range province, hydrothermal systems may have: (1) matured oil from otherwise submature source rocks; (2) transported oil to ultimate entrapment sites by convection in moderate-to high-temperature fluids; and (3) sealed reservoir traps through hydrothermal alteration of overlying Tertiary caprocks. 69 refs., 11 figs., 1 tab.

  3. Orgin and significance of geochemical variability among oils and gas-condensates in the Tiger Shoal Field, northern Gulf of Mexico

    SciTech Connect

    Kelley, P.A.; Imbus, S.W.; McKeever, S.R.

    1995-12-31

    Geochemical data placed in geological context is key to understanding the processes controlling the variability of oils and gas-condensates in the Tiger Shoal Field, northern Gulf of Mexico. Thermal maturity at generation and phase partitioning are the principal processes accounting for variability in the bulk and molecular properties of the oils and gas-condensates. Quantification of the extent that these processes altered the oils and gas-condensates between fault blocks and among individual sands permits: (1) documentation of the most effective migration conduits, (2) inference of deeper or shallower pay zones, (3) and assessment of vertical and lateral fluid connectivity. Calibration of bulk to molecular properties will permit rapid assessment of the type and extent of alteration using basic parameters such as API gravity and gas oil ratio (GOR). Upon mass balancing with initial reserves data, a detailed risking scheme for remaining prospects within the field can be formulated.

  4. Field endurance test of diesel engines fueled with sunflower oil/diesel fuel blends

    SciTech Connect

    German, T.J.; Kaufman, K.R.; Pratt, G.L.; Derry, J.

    1985-01-01

    Four John Deere and two J.I. Case tractors were fueled with 25% or 50% blends of alkali-refined, winterized sunflower oil and No. 2 diesel fuel while in farm service. All engines were turbocharged, direct injection diesel engines and each was operated for approximately 1000 hours. No power losses were detected during the test period. However, one engine experienced camshaft/valve train failure while in service. Engine deposits were measured according to the CRC Diesel Engine Rating system after the test period was completed. Statistical analysis revealed heavier deposits in most areas of the combustion chamber of the three engines fueled with the 50% sunflower oil/50% No. 2 diesel fuel blend. No detrimental engine deposits due to differences in engine size were observed. No injector coking problems or ring sticking problems were encountered. Bearing wear was normal.

  5. Bacterial community dynamics and hydrocarbon degradation during a field-scale evaluation of bioremediation on a mudflat beach contaminated with buried oil.

    PubMed

    Röling, Wilfred F M; Milner, Michael G; Jones, D Martin; Fratepietro, Francesco; Swannell, Richard P J; Daniel, Fabien; Head, Ian M

    2004-05-01

    A field-scale experiment with a complete randomized block design was performed to study the degradation of buried oil on a shoreline over a period of almost 1 year. The following four treatments were examined in three replicate blocks: two levels of fertilizer treatment of oil-treated plots, one receiving a weekly application of liquid fertilizer and the other treated with a slow-release fertilizer; and two controls, one not treated with oil and the other treated with oil but not with fertilizer. Oil degradation was monitored by measuring carbon dioxide evolution and by chemical analysis of the oil. Buried oil was degraded to a significantly greater extent in fertilized plots, but no differences in oil chemistry were observed between the two different fertilizer treatments, although carbon dioxide production was significantly higher in the oil-treated plots that were treated with slow-release fertilizer during the first 14 days of the experiment. Bacterial communities present in the beach sediments were profiled by denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified 16S rRNA gene fragments and 16S rRNA amplified by reverse transcriptase PCR. Similarities between the DGGE profiles were calculated, and similarity matrices were subjected to statistical analysis. These analyses showed that although significant hydrocarbon degradation occurred both in plots treated with oil alone and in the plots treated with oil and liquid fertilizer, the bacterial community structure in these plots was, in general, not significantly different from that in the control plots that were not treated with oil and did not change over time. In contrast, the bacterial community structure in the plots treated with oil and slow-release fertilizer changed rapidly, and there were significant differences over time, as well as between blocks and even within plots. The differences were probably related to the higher concentrations of nutrients measured in interstitial water from the plots treated with slow-release fertilizer. Bacteria with 16S rRNA sequences closely related (>99.7% identity) to Alcanivorax borkumensis and Pseudomonas stutzeri sequences dominated during the initial phase of oil degradation in the plots treated with slow-release fertilizer. Field data were compared to the results of previous laboratory microcosm experiments, which revealed significant differences. PMID:15128509

  6. Reservoir characteristics of two minter oil sands based on continuous core, E-logs, and geochemical data: Bee Brake field, East-Central Louisiana

    SciTech Connect

    Echols, J.B.; Goddard, D.A.; Bouma, A. )

    1993-09-01

    The Bee Brake field area, located in township 4N/6E and 4N/7E in Concordia Parish, has been one of the more prolific oil-producing areas in east-central Louisiana. Production decline in various fields, however, has sparked interest in the economic feasibility of locating and producing the remaining bypassed oil in the lower Wilcox. For this purpose, the Angelina BBF No. 1 well was drilled, and a 500-ft conventional core and a complete suite of state-of-the-are wireline logs were recovered. Production tests were run on the Minter interval of interest. The 16-ft Minter interval (6742-6758 ft depth), bounded at its top and base by lignite seams, consists of an upper 4-ft oil sand (Bee Brake) and a lower 3-ft oil sand (Angelina). The oil sands are separated by approximately 5 ft of thinly laminated silty shale and 4 ft of very fine-grained silty sandstone. Detailed sedimentologic and petrographic descriptions of the Minter interval provide accurate facies determinations of this lower delta-plain sequence. Petrophysical evaluation, combining core plug and modern electric-log data show differences between reservoir quality of the Bee Brake and Angelina sands. This data will also be useful for correlating and interpolating old electric logs. Organic geochemistry of the oil, lignites, and shales provides insight as to the source of the Minter oils and the sourcing potential of the lignites.

  7. Hydrolytically stable polymers for use in oil field cementing methods and compositions

    SciTech Connect

    Rao, S. P.; Burkhalter, J. F.

    1985-11-26

    Cementing compositions and methods of using such compositions in oil, gas and water well cementing operations to reduce fluid loss from the composition to the formation are disclosed. Such compositions incorporate certain copolymers and copolymer salts of N,N dimethylacrylamide and 2-acrylamido, 2-methyl propane sulfonic acid having mole ratios of between 1:4 and 4:1 respectively and average molecular weights of between about 75,000 and about 300,000.

  8. Investments in oil field development by the example of Tomsk oblast

    NASA Astrophysics Data System (ADS)

    Shmidt, Ye I.; Il'ina, G. F.; Matveenko, I. A.

    2015-11-01

    The article describes the geologic structure of the formation located not far from Strezhevoy Tomsk Oblast. The formation has been poorly studied by seismic methods. The reserves categories C1 and C2 as well as hydrocarbon potential are presented. 4 exploratory and 39 production wells are designed to be drilled depending on geologic knowledge and formation conditions. The article deals with the investment plan including development, oil export expenditures and implementing cost calculation.

  9. Repellency of hydrogenated catmint oil formulations to black flies and mosquitoes in the field.

    PubMed

    Spero, Niketas C; Gonzalez, Yamaira I; Scialdone, Mark A; Hallahan, David L

    2008-11-01

    The essential oil of catmint, Nepeta cataria L., was hydrogenated to yield an oil enriched in dihydronepetalactone (DHN) diastereomers, termed. This material was used for the preparation of liquid alcohol-based and lotion formulations. The efficacy of these formulations as repellents was tested after application to human test subjects at two locations in the United States: Maine and Florida. In Maine, data on repellency of the hydrogenated catmint oil formulations toward black flies (Simulium decorum Walker) and mosquitoes (primarily Aedes intrudens Dyar) were obtained. In these tests, protection from black flies was conferred for 6 h or more with all formulations, and both liquid and lotion formulations at 15 wt% active ingredient gave complete protection for 7.5 h. All formulations conferred protection from mosquitoes for >4 h, with the best (15 wt% lotion) giving >8 h of complete protection. In Florida, data on repellency toward a mixed population of mosquitoes indicated that all formulations conferred protection for >4 h, with the 15 wt% lotion giving >6 h complete protection from bites. PMID:19058632

  10. Thermal and mass history of Fairway Field in east Texas: Implication for geothermal energy development in an oil and gas setting

    NASA Astrophysics Data System (ADS)

    Kweik, Ramsey Sharif

    Fairway Field is an oil field operated by Hunt Oil Company located in East Texas near the town of Poynor, Texas in Henderson County. The field was discovered in 1960 and is still producing today with the field life projected beyond 2015 (Webster et al., 2008). Hunt Oil Company granted access to over 2,900 open-hole well logs and pressure surveys for this research project. This thermal and mass history of production from a major hydrocarbon field is an especially rare opportunity, as oil and gas companies in Texas are generally not required to share pressure survey data with regulatory agencies, and thus these types of data are not typically available to the research community. This data set, coupled with fluid production and injection data, provides an opportunity to analyze temperature variations associated with fluid migration and field development as a function of time. Fairway Field was determined to have an average conductive heat flow value of 69 +/- 6 mW/m2. Using fluid production volumes, heat loss was determined to be -1.7 x 1017 Joules which represents a thermal recovery factor of -6.2% for the James Limestone Formation in Fairway Field. Given the fact that the field has been in development for over 50 years and has not exhibited a decrease but an increase in reservoir temperatures (+20 °F over 54 years), Fairway Field illustrates that sedimentary basins have considerable potential for geothermal development. An increased availability of pressure survey temperature data and fluid data from oil and gas companies provides a better understanding of such dynamic geothermal systems, helps evaluate the working life of a field, and is a tool for assessing development risk associated with future geothermal energy development in such settings.

  11. Application of bioflocculating property of Pseudomonas aeruginosa strain IASST201 in treatment of oil-field formation water.

    PubMed

    Pathak, Mihirjyoti; Devi, Arundhuti; Sarma, Hridip Kumar; Lal, Banwari

    2014-07-01

    A bioflocculating activity of 89.8% was depicted by an activated sludge-borne bacteria Pseudomonas aeruginosa strain IASST201 with a yield of bioflocculant of 2.68?g?L(-1) obtained from production media broth after optimization of different parameters. The highest bioflocculation efficiency was found at the pre-stationary phase of the bacterial growth period in the production media broth at 96th hour examined from a growth-flocculation kinetics study. 85.67% of bioflocculation was observed in oil-field formation water, with a separation of 68.7% of aliphatic hydrocarbon contents of the formation water after the application of the bacterial bioflocculant by entrapment mechanism with formation of flocs which was analyzed and examined comparatively through gas-chromatography. Extensive removal of heavy metal contents of the oil-field formation water due to bioflocculation was estimated by Atomic Absorption Spectrophotometer (AAS). The SEM and AFM studies declare the extracellular polymeric nature of the bioflocculant produced by this bacterium clumped within bacterial biofilm supported with FTIR study of the extracted bioflocculant. PMID:24740803

  12. Identification of Distinct Communities of Sulfate-Reducing Bacteria in Oil Fields by Reverse Sample Genome Probing

    PubMed Central

    Voordouw, Gerrit; Voordouw, Johanna K.; Jack, Thomas R.; Foght, Julia; Fedorak, Phillip M.; Westlake, Donald W. S.

    1992-01-01

    Thirty-five different standards of sulfate-reducing bacteria, identified by reverse sample genome probing and defined as bacteria with genomes showing little or no cross-hybridization, were in part characterized by Southern blotting, using 16S rRNA and hydrogenase gene probes. Samples from 56 sites in seven different western Canadian oil field locations were collected and enriched for sulfate-reducing bacteria by using different liquid media containing one of the following carbon sources: lactate, ethanol, benzoate, decanoate, propionate, or acetate. DNA was isolated from the enrichments and probed by reverse sample genome probing using master filters containing denatured chromosomal DNAs from the 35 sulfate-reducing bacterial standards. Statistical analysis of the microbial compositions at 44 of the 56 sites indicated the presence of two distinct communities of sulfate-reducing bacteria. The discriminating factor between the two communities was the salt concentration of the production waters, which were either fresh water or saline. Of 34 standards detected, 10 were unique to the fresh water and 18 were unique to the saline oil field environment, while only 6 organisms were cultured from both communities. Images PMID:16348801

  13. Strontium isotope systematics of mixing groundwater and oil-field brine at Goose Lake in northeastern Montana, USA

    USGS Publications Warehouse

    Peterman, Zell E.; Thamke, Joanna N.; Futa, Kiyoto; Preston, Todd

    2012-01-01

    Groundwater, surface water, and soil in the Goose Lake oil field in northeastern Montana have been affected by Cl?-rich oil-field brines during long-term petroleum production. Ongoing multidisciplinary geochemical and geophysical studies have identified the degree and local extent of interaction between brine and groundwater. Fourteen samples representing groundwater, surface water, and brine were collected for Sr isotope analyses to evaluate the usefulness of 87Sr/86Sr in detecting small amounts of brine. Differences in Sr concentrations and 87Sr/86Sr are optimal at this site for the experiment. Strontium concentrations range from 0.13 to 36.9 mg/L, and corresponding 87Sr/86Sr values range from 0.71097 to 0.70828. The local brine has 168 mg/L Sr and a 87Sr/86Sr value of 0.70802. Mixing relationships are evident in the data set and illustrate the sensitivity of Sr in detecting small amounts of brine in groundwater. The location of data points on a Sr isotope-concentration plot is readily explained by an evaporation-mixing model. The model is supported by the variation in concentrations of most of the other solutes.

  14. Carbonate platform evolution, Upper Paleozoic, southern Kazakhstan, USSR: A surface analog for the super giant Tengiz oil field western Kazakhstan

    SciTech Connect

    Cook, H.E. ); Gatosvseey, Y.A.; Ponoeearenko, S.B.; Styehtsyehnka, I.G.; Styehtsyennka, V.P.; Zoran, A.E. ); Zhemchuzhnikov, V. )

    1991-08-01

    The Upper Devonian and Carboniferous carbonate platform and associated bioherms in the Bolshoi Karatau Mountains of southern Kazakhstan are similar to coeval carbonate platform and biohermal reservoir facies recently described in the Tengiz oil field of western Kazakhstan on the southeastern margin of the Pre-Caspian basin. Like Tengiz, the Bolshoi Karatau carbonate platform developed upon Devonian siliciclastics. The size of the two platforms are also similar as both the Bolshoi Karatau and the Tengiz carbonate platform are about 2-4 km thick and about 100 km wide. In the Bolshoi Karatau Mountains, the carbonate platform trends northwest-southeast, with the continental land mass to the east, and the open ocean platform margin toward Tengiz. Within the Bolshoi Karatau carbonate platform are several types of bioherms and carbonate sand bodies that may be analogous to the reservoir facies in the Tengiz oil field. Some of these facies exhibit karsting and solution voids which probably developed during sea level fluctuation. The Bolshoi Karatau carbonate sequence provides new data on the stratigraphic and sedimentologic evolution of Upper Devonian and Carboniferous carbonate platforms in southern Kazakhstan. Depositional, diagenetic, and reservoir models of this outcrop belt that are currently being developed should be useful for making subsurface predictions in the Tengiz area and other stratigraphically similar areas of the Soviet Union.

  15. Silurian "Clinton" Sandstone Reservoir Characterization for Evaluation of CO2-EOR Potential in the East Canton Oil Field, Ohio

    SciTech Connect

    Ronald Riley; John Wicks; Christopher Perry

    2009-12-30

    The purpose of this study was to evaluate the efficacy of using CO2-enhanced oil recovery (EOR) in the East Canton oil field (ECOF). Discovered in 1947, the ECOF in northeastern Ohio has produced approximately 95 million barrels (MMbbl) of oil from the Silurian 'Clinton' sandstone. The original oil-in-place (OOIP) for this field was approximately 1.5 billion bbl and this study estimates by modeling known reservoir parameters, that between 76 and 279 MMbbl of additional oil could be produced through secondary recovery in this field, depending on the fluid and formation response to CO2 injection. A CO2 cyclic test ('Huff-n-Puff') was conducted on a well in Stark County to test the injectivity in a 'Clinton'-producing oil well in the ECOF and estimate the dispersion or potential breakthrough of the CO2 to surrounding wells. Eighty-one tons of CO2 (1.39 MMCF) were injected over a 20-hour period, after which the well was shut in for a 32-day 'soak' period before production was resumed. Results demonstrated injection rates of 1.67 MMCF of gas per day, which was much higher than anticipated and no CO2 was detected in gas samples taken from eight immediately offsetting observation wells. All data collected during this test was analyzed, interpreted, and incorporated into the reservoir characterization study and used to develop the geologic model. The geologic model was used as input into a reservoir simulation performed by Fekete Associates, Inc., to estimate the behavior of reservoir fluids when large quantities of CO2 are injected into the 'Clinton' sandstone. Results strongly suggest that the majority of the injected CO2 entered the matrix porosity of the reservoir pay zones, where it diffused into the oil. Evidence includes: (A) the volume of injected CO2 greatly exceeded the estimated capacity of the hydraulic fracture and natural fractures; (B) there was a gradual injection and pressure rate build-up during the test; (C) there was a subsequent, gradual flashout of the CO2 within the reservoir during the ensuing monitored production period; and (D) a large amount of CO2 continually off-gassed from wellhead oil samples collected as late as 3 1/2 months after injection. After the test well was returned to production, it produced 174 bbl of oil during a 60-day period (September 22 to November 21, 2008), which represents an estimated 58 percent increase in incremental oil production over preinjection estimates of production under normal, conditions. The geologic model was used in a reservoir simulation model for a 700-acre model area and to design a pilot to test the model. The model was designed to achieve a 1-year response time and a five-year simulation period. The reservoir simulation modeling indicated that the injection wells could enhance oil production and lead to an additional 20 percent recovery in the pilot area over a five-year period. The base case estimated that by injecting 500 MCF per day of CO2 into each of the four corner wells, 26,000 STBO would be produced by the central producer over the five-year period. This would compare to 3,000 STBO if a new well were drilled without the benefit of CO2 injection. This study has added significant knowledge to the reservoir characterization of the 'Clinton' in the ECOF and succeeded in identifying a range on CO2-EOR potential. However, additional data on fluid properties (PVT and swelling test), fractures (oriented core and microseis), and reservoir characteristics (relative permeability, capillary pressure, and wet ability) are needed to further narrow the uncertainties and refine the reservoir model and simulation. After collection of this data and refinement of the model and simulation, it is recommended that a larger scale cyclic-CO2 injection test be conducted to better determine the efficacy of CO2-EOR in the 'Clinton' reservoir in the ECOF.

  16. Silurian "Clinton" Sandstone Reservoir Characterization for Evaluation of CO2-EOR Potential in the East Canton Oil Field, Ohio

    SciTech Connect

    Riley, Ronald; Wicks, John; Perry, Christopher

    2009-12-30

    The purpose of this study was to evaluate the efficacy of using CO2-enhanced oil recovery (EOR) in the East Canton oil field (ECOF). Discovered in 1947, the ECOF in northeastern Ohio has produced approximately 95 million barrels (MMbbl) of oil from the Silurian “Clinton” sandstone. The original oil-in-place (OOIP) for this field was approximately 1.5 billion bbl and this study estimates by modeling known reservoir parameters, that between 76 and 279 MMbbl of additional oil could be produced through secondary recovery in this field, depending on the fluid and formation response to CO2 injection. A CO2 cyclic test (“Huff-n-Puff”) was conducted on a well in Stark County to test the injectivity in a “Clinton”-producing oil well in the ECOF and estimate the dispersion or potential breakthrough of the CO2 to surrounding wells. Eighty-one tons of CO2 (1.39 MMCF) were injected over a 20-hour period, after which the well was shut in for a 32-day “soak” period before production was resumed. Results demonstrated injection rates of 1.67 MMCF of gas per day, which was much higher than anticipated and no CO2 was detected in gas samples taken from eight immediately offsetting observation wells. All data collected during this test was analyzed, interpreted, and incorporated into the reservoir characterization study and used to develop the geologic model. The geologic model was used as input into a reservoir simulation performed by Fekete Associates, Inc., to estimate the behavior of reservoir fluids when large quantities of CO2 are injected into the “Clinton” sandstone. Results strongly suggest that the majority of the injected CO2 entered the matrix porosity of the reservoir pay zones, where it diffused into the oil. Evidence includes: (A) the volume of injected CO2 greatly exceeded the estimated capacity of the hydraulic fracture and natural fractures; (B) there was a gradual injection and pressure rate build-up during the test; (C) there was a subsequent, gradual flashout of the CO2 within the reservoir during the ensuing monitored production period; and (D) a large amount of CO2 continually off-gassed from wellhead oil samples collected as late as 3½ months after injection. After the test well was returned to production, it produced 174 bbl of oil during a 60-day period (September 22 to November 21, 2008), which represents an estimated 58 percent increase in incremental oil production over preinjection estimates of production under normal, conditions. The geologic model was used in a reservoir simulation model for a 700-acre model area and to design a pilot to test the model. The model was designed to achieve a 1-year response time and a five-year simulation period. The reservoir simulation modeling indicated that the injection wells could enhance oil production and lead to an additional 20 percent recovery in the pilot area over a five-year period. The base case estimated that by injecting 500 MCF per day of CO2 into each of the four corner wells, 26,000 STBO would be produced by the central producer over the five-year period. This would compare to 3,000 STBO if a new well were drilled without the benefit of CO2 injection. This study has added significant knowledge to the reservoir characterization of the “Clinton” in the ECOF and succeeded in identifying a range on CO2-EOR potential. However, additional data on fluid properties (PVT and swelling test), fractures (oriented core and microseis), and reservoir characteristics (relative permeability, capillary pressure, and wet ability) are needed to further narrow the uncertainties and refine the reservoir model and simulation. After collection of this data and refinement of the model and simulation, it is recommended that a larger scale cyclic- CO2 injection test be conducted to better determine the efficacy of CO2-EOR in the “Clinton” reservoir in the ECOF.

  17. Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity. Appendix 1, Volume 1

    SciTech Connect

    Kopaska-Merkel, D.C.; Moore, H.E. Jr.; Mann, S.D.; Hall, D.R.

    1992-06-01

    This volume contains maps, well logging correlated to porosity and permeability, structural cross section, graph of production history, porosity vs. natural log permeability plot, detailed core log, paragenetic sequence and reservoir characterization sheet of the following fields in southwest Alabama: Appleton oil field; Barnett oil field; Barrytown oil field; Big Escambia Creek gas and condensate field; Blacksher oil field; Broken Leg Creed oil field; Bucatunna Creed oil field; Chappell Hill oil field; Chatom gas and condensate field; Choctaw Ridge oil field; Chunchula gas and condensate field; Cold Creek oil field; Copeland gas and condensate field; Crosbys Creed gas and condensate field; and East Barnett oil field. (AT)

  18. Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity. [Jurassic Smackover Formation

    SciTech Connect

    Kopaska-Merkel, D.C.; Moore, H.E. Jr.; Mann, S.D.; Hall, D.R.

    1992-06-01

    This volume contains maps, well logging correlated to porosity and permeability, structural cross section, graph of production history, porosity vs. natural log permeability plot, detailed core log, paragenetic sequence and reservoir characterization sheet of the following fields in southwest Alabama: Appleton oil field; Barnett oil field; Barrytown oil field; Big Escambia Creek gas and condensate field; Blacksher oil field; Broken Leg Creed oil field; Bucatunna Creed oil field; Chappell Hill oil field; Chatom gas and condensate field; Choctaw Ridge oil field; Chunchula gas and condensate field; Cold Creek oil field; Copeland gas and condensate field; Crosbys Creed gas and condensate field; and East Barnett oil field. (AT)

  19. Producing Light Oil from a Frozen Reservoir: Reservoir and Fluid Characterization of Umiat Field, National Petroleum Reserve, Alaska

    SciTech Connect

    Hanks, Catherine

    2012-12-31

    Umiat oil field is a light oil in a shallow, frozen reservoir in the Brooks Range foothills of northern Alaska with estimated oil-in-place of over 1 billion barrels. Umiat field was discovered in the 1940’s but was never considered viable because it is shallow, in the permafrost, and far from any transportation infrastructure. The advent of modern drilling and production techniques has made Umiat and similar fields in northern Alaska attractive exploration and production targets. Since 2008 UAF has been working with Renaissance Alaska Inc. and, more recently, Linc Energy, to develop a more robust reservoir model that can be combined with rock and fluid property data to simulate potential production techniques. This work will be used to by Linc Energy as they prepare to drill up to 5 horizontal wells during the 2012-2013 drilling season. This new work identified three potential reservoir horizons within the Cretaceous Nanushuk Formation: the Upper and Lower Grandstand sands, and the overlying Ninuluk sand, with the Lower Grandstand considered the primary target. Seals are provided by thick interlayered shales. Reserve estimates for the Lower Grandstand alone range from 739 million barrels to 2437 million barrels, with an average of 1527 million bbls. Reservoir simulations predict that cold gas injection from a wagon-wheel pattern of multilateral injectors and producers located on 5 drill sites on the crest of the structure will yield 12-15% recovery, with actual recovery depending upon the injection pressure used, the actual Kv/Kh encountered, and other geologic factors. Key to understanding the flow behavior of the Umiat reservoir is determining the permeability structure of the sands. Sandstones of the Cretaceous Nanushuk Formation consist of mixed shoreface and deltaic sandstones and mudstones. A core-based study of the sedimentary facies of these sands combined with outcrop observations identified six distinct facies associations with distinctive permeability trends. The Lower Grandstand sand consists of two coarsening-upward shoreface sands sequences while the Upper Grandstand consists of a single coarsening-upward shoreface sand. Each of the shoreface sands shows a distinctive permeability profile with high horizontal permeability at the top getting progressively poorer towards the base of the sand. In contrast, deltaic sandstones in the overlying Ninuluk are more permeable at the base of the sands, with decreasing permeability towards the sand top. These trends impart a strong permeability anisotropy to the reservoir and are being incorporated into the reservoir model. These observations also suggest that horizontal wells should target the upper part of the major sands. Natural fractures may superimpose another permeability pattern on the Umiat reservoir that need to be accounted for in both the simulation and in drilling. Examination of legacy core from Umiat field indicate that fractures are present in the subsurface, but don't provide information on their orientation and density. Nearby surface exposures of folds in similar stratigraphy indicate there are at least three possible fracture sets: an early, N/S striking set that may predate folding and two sets possibly related to folding: an EW striking set of extension fractures that are parallel to the fold axes and a set of conjugate shear fractures oriented NE and NW. Analysis of fracture spacing suggests that these natural fractures are fairly widely spaced (25-59 cm depending upon the fracture set), but could provide improved reservoir permeability in horizontal legs drilled perpendicular to the open fracture set. The phase behavior of the Umiat fluid needed to be well understood in order for the reservoir simulation to be accurate. However, only a small amount of Umiat oil was available; this oil was collected in the 1940’s and was severely weathered. The composition of this ‘dead’ Umiat fluid was characterized by gas chromatography. This analysis was then compared to theoretical Umiat composition derived using the Pedersen method with original Umiat

  20. Oil palm water use: calibration of a sap flux method and a field measurement scheme.

    PubMed

    Niu, Furong; Röll, Alexander; Hardanto, Afik; Meijide, Ana; Köhler, Michael; Hendrayanto; Hölscher, Dirk

    2015-05-01

    Oil palm (Elaeis guineensis Jacq.) water use was assessed by sap flux density measurements with the aim to establish the method and derive water-use characteristics. Thermal dissipation probes were inserted into leaf petioles of mature oil palms. In the laboratory, we tested our set-up against gravimetric measurements and derived new parameters for the original calibration equation that are specific to oil palm petioles. In the lowlands of Jambi, Indonesia, in a 12-year-old monoculture plantation, 56 leaves on 10 palms were equipped with one sensor per leaf. A 10-fold variation in individual leaf water use among leaves was observed, but we did not find significant correlations to the variables trunk height and diameter, leaf azimuthal orientation, leaf inclination or estimated horizontal leaf shading. We thus took an un-stratified approach to determine an appropriate sampling design to estimate stand transpiration (Es, mm day(-1)) rates of oil palm. We used the relative standard error of the mean (SEn, %) as a measure for the potential estimation error of Es associated with sample size. It was 14% for a sample size of 13 leaves to determine the average leaf water use and four palms to determine the average number of leaves per palm. Increasing these sample sizes only led to minor further decreases of the SEn of Es. The observed 90-day average of Es was 1.1 mm day(-1) (error margin ± 0.2 mm day(-1)), which seems relatively low, but does not contradict Penman-Monteith-derived estimates of evapotranspiration. Examining the environmental drivers of Es on an intra-daily scale indicates an early, pre-noon maximum of Es rates (11 am) due to a very sensitive reaction of Es to increasing vapor pressure deficit in the morning. This early peak is followed by a steady decline of Es rates for the rest of the day, despite further rising levels of vapor pressure deficit and radiation; this results in pronounced hysteresis, particularly between Es and vapor pressure deficit. PMID:25787332

  1. Increasing Waterflooding Reservoirs in the Wilmington Oil Field through Improved Reservoir Characterization and Reservoir Management

    SciTech Connect

    Koerner, Roy; Clarke, Don; Walker, Scott

    1999-11-09

    The objectives of this quarterly report was to summarize the work conducted under each task during the reporting period April - June 1998 and to report all technical data and findings as specified in the ''Federal Assistance Reporting Checklist''. The main objective of this project is the transfer of technologies, methodologies, and findings developed and applied in this project to other operators of Slope and Basin Clastic Reservoirs. This project will study methods to identify sands with high remaining oil saturation and to recomplete existing wells using advanced completion technology.

  2. Increasing Waterflood Reserves in the Wilmington Oil Field Through Improved Reservoir Characterization and Reservoir Management

    SciTech Connect

    Chris Phillips; Dan Moos; Don Clarke; Dwasi Tagbor; John Nguygen; Roy Koerner; Scott Walker

    1997-04-10

    The objectives of this quarterly report are to summarize the work conducted under each task during the reporting period January - March 1997 and to report all technical data and findings as specified in the "Federal Assistance Reporting Checklist". The main objective of this project is the transfer of technologies, methodologies, and findings developed and applied in this project to other operators of Slope and Basin Clastic Reservoirs. This project will study methods to identify sands with high remaining oil saturation and to recomplete existing wells using advanced completion technology.

  3. Brief history of fiber optic sensing in the oil field industry

    NASA Astrophysics Data System (ADS)

    Baldwin, Christopher S.

    2014-06-01

    The use of fiber optic sensing in the oil and gas industry has greatly expanded over the past two decades. Since the first optical fiber-based pressure sensor was installed in a well in 1993, the industry has sought to use fiber sensing technology to monitor in-well parameters. Through the years, optical fiber sensing has been used in an increasing number of applications as technical advances have opened the door for new measurements. Today, fiber optic sensors are used routinely to measure temperature throughout the wellbore. Optical sensors also provide pressure measurements at key locations within the well. These measurements are used to verify the integrity of the well, provide feedback during well completion operations, including the actuation of downhole valves, and to monitor the production or injection process. Other sensors, such as seismic monitors and flowmeters, use fiber sensing technology to make in-well measurements. Various optical sensing techniques are used to make these measurements, including Bragg grating, Raman scattering, and coherent Rayleigh scattering. These measurements are made in harsh environments, which require rugged designs for optical cable systems and instrumentation systems. Some of these applications have operating temperatures of 572°F (300°C), and other applications can have pressures in excess of 20,000 psi (1,379 bar). This paper provides a historical perspective on the use of fiber optic sensing in the oil and gas industry from industry firsts to current applications.

  4. Silica phase changes: Diagenetic agent for oil entrapment, Lost Hills field, California

    SciTech Connect

    Julander, D.R.; Szymanski, D.L. )

    1991-02-01

    The siliceous shales of the Monterey Group are the primary development target at Lost Hills. Silica phase changes have influenced the distribution and entrapment of hydrocarbons. With increasing temperature, opal A phase diatomite is converted to opal CT and finally quartz phase rock. All phases are low in permeability. The opal A diatomite is characteristically high in oil saturation and productive saturation. Productivity from this phase is dependent on structural position and fieldwide variations in oil viscosity and biodegradation. The deeper chert reservoir coincides with the opal CT to quartz phase transition. Porosity is again reduced in this transition, but saturations in the quartz phase rocks increase. Tests in the chert reservoir indicate a single, low-permeability system, suggesting the importance of matric contribution. resistivity and porosity in the diatomite, and resistivity and velocity in the chert, are the physical properties which best reflect saturation. Methods exploiting these properties (FMS, BHTV, borehole, and surface shear wave studies) should be helpful in further characterizing the reservoirs and identifying future pay.

  5. Geothermal test hints at oil potential in eastern Arizona volcanic field

    SciTech Connect

    Rauzi, S.L. )

    1993-01-03

    A recently drilled geothermal well, funded by the US Department of Energy and the Arizona Department of Commerce, has provided information about the geology of east-central Arizona and west-central New Mexico. Tonto Drilling Services in cooperation with New Mexico State University completed the well, the 1 Alpine-Federal, at a total depth of 4,505 ft. The well is located among volcanic rocks in the Apache-Sitgreaves National Forest about 6 miles north of the town of Alpine and 6.2 miles west of the Arizona-New Mexico line. The well was drilled to determine the hot dry rock geothermal potential of Precambrian rocks. The operator expected to penetrate Precambrian at about 4,200 ft, but the hole was still in Permian rocks at that depth and was in a mafic dike that intruded the Permian rocks at the total depth of 4,505 ft. The hole did show that Cretaceous and Permian strata contain potentially important source rocks for oil and gas that are apparently unaffected by nearby volcanism. These potential oil source rocks are the focus of this article.

  6. Fracture density determination using a novel hybrid computational scheme: a case study on an Iranian Marun oil field reservoir

    NASA Astrophysics Data System (ADS)

    Nouri-Taleghani, Morteza; Mahmoudifar, Mehrzad; Shokrollahi, Amin; Tatar, Afshin; Karimi-Khaledi, Mina

    2015-04-01

    Most oil production all over the world is from carbonated reservoirs. Carbonate reservoirs are abundant in the Middle East, the Gulf of Mexico and in other major petroleum fields that are regarded as the main oil producers. Due to the nature of such reservoirs that are associated with low matrix permeability, the fracture is the key parameter that governs the fluid flow in porous media and consequently oil production. Conventional methods to determine the fracture density include utilizing core data and the image log family, which are both time consuming and costly processes. In addition, the cores are limited to certain intervals and there is no image log for the well drilled before the introduction of this tool. These limitations motivate petroleum engineers to try to find appropriate alternatives. Recently, intelligent systems on the basis of machine learning have been applied to various branches of science and engineering. The objective of this study is to develop a mathematical model to predict the fracture density using full set log data as inputs based on a combination of three intelligent systems namely, the radial basis function neural network, the multilayer perceptron neural network and the least square supported vector machine. The developed committee machine intelligent system (CMIS) is the weighted average of the individual results of each expert. Proper corresponding weights are determined using a genetic algorithm (GA). The other important feature of the proposed model is its generalization capability. The ability of this model to predict data that have not been introduced during the training stage is very good.

  7. Oil Fires and Oil Slick, Kuwait

    NASA Technical Reports Server (NTRS)

    1991-01-01

    In this color infrared view of the Kuwait oil fires and offshore oil slick, (29.0N, 48.0E), smoke from the burning oil fields both to the north and south of Kuwait City almost totally obliterates the image. Unburned pools of oil on the ground and oil offshore in the Persian Gulf are reflecting sunlight, much the same way as water does, and appear as white or light toned features. The water borne oil slicks drifted south toward the Arab Emirate States.

  8. Modern Processes of Hydrocarbon Migration and Re-Formation of Oil and Gas Fields (Based on the Results of Monitoring and Geochemical Studies)

    NASA Astrophysics Data System (ADS)

    Plotnikova, Irina; Salakhidinova, Gulmira; Nosova, Fidania; Pronin, Nikita; Ostroukhov, Sergey

    2015-04-01

    Special geochemical studies of oils allowed to allocate a movable migration component of oils in the industrial oil deposits. In the field the migration component of oils varies in different parts of the field. The largest percentage of the light migration component (gas condensate of the oil) was detected in the central part of the Kama-Kinel troughs system. Monitoring of the composition of water, oil and gas (condensate light oil component) in the sedimentary cover and ni crystalline basement led to the conclusion of modern migration of hydrocarbons in sedimentary cover. This proves the existence of the modern processes of formation and reformation of oil and gas fields. This presentation is dedicated to the problem of definition of geochemical criteria of selection of hydrocarbons deposit reformation zone in the sample wells of Minibaevskaya area of Romashkinskoye field. While carrying out this work we examined 11 samples of oil from the Upper Devonian Pashiysky horizon. Four oil samples were collected from wells reckoned among the "anomalous" zones that were marked out according to the results of geophysical, oil field and geological research. Geochemical studies of oils were conducted in the laboratory of geochemistry of the Kazan (Volga-region) Federal University. The wells where the signs of hydrocarbons influx from the deep zones of the crust were recorded are considered to be "anomalous". A number of scientists connect this fact to the hypothesis about periodic influx of deep hydrocarbons to the oil deposits of Romashkinskoye field. Other researchers believe that the source rocks of the adjacent valleys sedimentary cover generate gases when entering the main zone of gas formation, which then migrate up the section and passing through the previously formed deposits of oil, change and "lighten" their composition. Regardless of the point of view on the source of the hydrocarbons, the study of the process of deposits refilling with light hydrocarbons is an important fundamental task of exceptional practical importance. The reservoir water monitoring has been conducted in five wells that have penetrated the water-saturated, loosely aggregated zones of the South Tatarstan Arch's basement. The long-term testing resulted in the production of reservoir water from the basement. The sedimentary cover in these wells is blocked by the column, which prevents water cross-flowing from the sedimentary cover. The observations have shown that the levels, gas saturation, mineralisation, density, and composition of reservoir waters from the loosely aggregated zones of the basement change with time. The varying characteristics of the water include its component composition, redox potential, and amount of chlorine and some other components and trace elements. Compositional changes in gases of the loosely aggregated zones of the basement, variations in the gas saturation of reservoir waters and of their composition, the decreasing density of oil in the sedimentary cover, - all result from one cause. This cause is the movement of fluids (solutions and gases dissolved in them) through the loosely aggregated zones and faults of the Earth's crust and the sedimentary cover. The fluids mainly move vertically in an upward direction, although their migration through subhorizontal, loosely aggregated zones of the crystalline basement is also possible. Fluid migration still takes place in the Earth's crust of ancient platforms. This phenomenon indicates that some portions of the platforms - primarily, their margins - periodically resume tectonic activities. The fluid dynamic activity of the crust define the processes in the sedimentary cover. It affects the development of the sedimentary basin during the sedimentation period, and the formation of mineral deposits. The monitoring of the present-day movement of fluid systems in the loosely aggregated zones of the basement will permit the more detailed study of the present-day fluid regime in the upper portion of the Earth's crust and the sedimentary cover.

  9. Repellency of oils of lemon eucalyptus, geranium, and lavender and the mosquito repellent MyggA natural to Ixodes ricinus (Acari: Ixodidae) in the laboratory and field.

    PubMed

    Jaenson, Thomas G T; Garboui, Samira; Palsson, Katinka

    2006-07-01

    MyggA Natural (Bioglan, Lund, Sweden) is a commercially available repellent against blood-feeding arthropods. It contains 30% of lemon-scented eucalyptus, Corymbia citriodora (Hook.) K. D. Hill & L. A. S. Johnson (Myrtaceae), oil with a minimum of 50% p-menthane-3,8-diol. MyggA Natural also contains small amounts of the essential oils of lavender, Lavandula angustifolia Mill. (Lamiaceae), and geranium, Pelargonium graveolens L'Her. (Geraniaceae). In laboratory bioassays, MyggA Natural and C. citriodora oil exhibited 100% repellency against host-seeking nymphs of Ixodes ricinus (L.) (Acari: Ixodidae). Lavender oil and geranium oil, when diluted to 1% in 1,2-propanediol, had weak repellent activities on I. ricinus nymphs, but when diluted to 30% in 1,2-propanediol had 100% repellencies. 1,2-Propanediol (100%) had no significant repellent activity in comparison with that of the control. In field tests in tick-infested areas in central Sweden, tick repellency of MyggA Natural and C. citriodora oil was tested by the blanket-dragging technique for 4 d during a 6-d period. The repellencies (74 and 85%, respectively) on day 1 are similar (89%) to that of blankets treated in a similar manner with 19% diethyl-methyl-benzamide, based on previous work. Repellencies declined significantly from day 1 to day 6 (74 to 45% for MyggA Natural; 85 to 42% for C. citriodora oil). PMID:16892632

  10. ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL & GAS FIELDS IN NEW MEXICO AND WYOMING

    SciTech Connect

    Peggy Robinson

    2005-07-01

    This report summarizes activities that have taken place in the last six (6) months (January 2005-June 2005) under the DOE-NETL cooperative agreement ''Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields, New Mexico and Wyoming'' DE-FC26-02NT15445. This project examines the practices and results of cultural resource investigation and management in two different oil and gas producing areas of the United States: southeastern New Mexico and the Powder River Basin of Wyoming. The project evaluates how cultural resource investigations have been conducted in the past and considers how investigation and management could be pursued differently in the future. The study relies upon full database population for cultural resource inventories and resources and geomorphological studies. These are the basis for analysis of cultural resource occurrence, strategies for finding and evaluating cultural resources, and recommendations for future management practices. Activities can be summarized as occurring in either Wyoming or New Mexico. Gnomon as project lead, worked in both areas.

  11. Leaching of polycyclic aromatic hydrocarbons from oil shale processing waste deposit: a long-term field study.

    PubMed

    Jefimova, Jekaterina; Irha, Natalya; Reinik, Janek; Kirso, Uuve; Steinnes, Eiliv

    2014-05-15

    The leaching behavior of selected polycyclic aromatic hydrocarbons (PAHs) from an oil shale processing waste deposit was monitored during 2005-2009. Samples were collected from the deposit using a special device for leachate sampling at field conditions without disturbance of the upper layers. Contents of 16 priority PAHs in leachate samples collected from aged and fresh parts of the deposit were determined by GC-MS. The sum of the detected PAHs in leachates varied significantly throughout the study period: 19-315 ?g/l from aged spent shale, and 36-151 ?g/l from fresh spent shale. Among the studied PAHs the low-molecular weight compounds phenanthrene, naphthalene, acenaphthylene, and anthracene predominated. Among the high-molecular weight PAHs benzo[a]anthracene and pyrene leached in the highest concentrations. A spent shale deposit is a source of PAHs that could infiltrate into the surrounding environment for a long period of time. PMID:24631927

  12. Utilization of solar energy in the photodegradation of gasoline in water and of oil-field-produced water.

    PubMed

    Moraes, José Ermírio F; Silva, Douglas N; Quina, Frank H; Chiavone-Filho, Osvaldo; Nascimento, Cláudio Augusto O

    2004-07-01

    The photo-Fenton process utilizes ferrous ions (Fe2+), hydrogen peroxide (H2O2), and ultraviolet (UV) irradiation as a source of hydroxyl radicals for the oxidation of organic matter present in aqueous effluents. The cost associated with the use of artificial irradiation sources has hindered industrial application of this process. In this work, the applicability of solar radiation for the photodegradation of raw gasoline in water has been studied. The photo-Fenton process was also applied to a real effluent, i.e., oil-field-produced water, and the experimental results demonstrate the feasibility of employing solar irradiation to degrade this complex saturated-hydrocarbon-containing system. PMID:15296328

  13. Distribution of Hydrogenase Genes in Desulfovibrio spp. and Their Use in Identification of Species from the Oil Field Environment

    PubMed Central

    Voordouw, Gerrit; Niviere, Vincent; Ferris, F. Grant; Fedorak, Phillip M.; Westlake, Donald W. S.

    1990-01-01

    The distribution of genes for [Fe], [NiFe], and [NiFeSe] hydrogenases was determined for 22 Desulfovibrio species. The genes for [NiFe] hydrogenase were present in all species, whereas those for the [Fe] and [NiFeSe] hydrogenases had a more limited distribution. Sulfate-reducing bacteria from 16S rRNA groups other than the genus Desulfovibrio (R. Devereux, M. Delaney, F. Widdel, and D. A. Stahl, J. Bacteriol. 171:6689-6695, 1989) did not react with the [NiFe] hydrogenase gene probe, which could be used to identify different Desulfovibrio species in oil field samples following growth on lactate-sulfate medium. Images PMID:16348376

  14. Measurement of ²²?Ra in soil from oil field: advantages of ?-ray spectrometry and application to the IAEA-448 CRM.

    PubMed

    Ceccatelli, A; Katona, R; Kis-Benedek, G; Pitois, A

    2014-05-01

    The analytical performance of gamma-ray spectrometry for the measurement of (226)Ra in TENORM (Technically Enhanced Naturally Occurring Radioactive Material) soil was investigated by the IAEA. Fast results were obtained for characterization and certification of a new TENORM Certified Reference Material (CRM), identified as IAEA-448 (soil from oil field). The combined standard uncertainty of the gamma-ray spectrometry results is of the order of 2-3% for massic activity measurement values ranging from 16500 Bq kg(-1) to 21500 Bq kg(-1). Methodologies used for the production and certification of the IAEA-448 CRM are presented. Analytical results were confirmed by alpha spectrometry. The "t" test showed agreement between alpha and gamma results at 95% confidence level. PMID:24332337

  15. ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL & GAS FIELDS IN NEW MEXICO AND WYOMING

    SciTech Connect

    Peggy Robinson

    2004-01-01

    This report contains a summary of activities of Gnomon, Inc. and five subcontractors that have taken place during the second six months (July 1, 2003-December 31, 2003) under the DOE-NETL cooperative agreement: ''Adaptive Management and Planning Models for Cultural Resources in Oil & Gas Fields in New Mexico and Wyoming'', DE-FC26-02NT15445. Although Gnomon and all five subcontractors completed tasks during these six months, most of the technical experimental work was conducted by the subcontractor, SRI Foundation (SRIF). SRIF created a sensitivity model for the Loco Hills area of southeastern New Mexico that rates areas as having a very good chance, a good chance, or a very poor chance of containing cultural resource sites. SRIF suggested that the results of the sensitivity model might influence possible changes in cultural resource management (CRM) practices in the Loco Hills area of southeastern New Mexico.

  16. ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL & GAS FIELDS IN NEW MEXICO AND WYOMING

    SciTech Connect

    Peggy Robinson

    2004-07-01

    This report contains a summary of activities of Gnomon, Inc. and five subcontractors that have taken place during the first six months of 2004 (January 1, 2004-June 30, 2004) under the DOE-NETL cooperative agreement: ''Adaptive Management and Planning Models for Cultural Resources in Oil & Gas Fields in New Mexico and Wyoming'', DE-FC26-02NT15445. Although Gnomon and all five subcontractors completed tasks during these six months, most of the technical experimental work was conducted by the subcontractor, SRI Foundation (SRIF). SRIF created a sensitivity model for the Azotea Mesa area of southeastern New Mexico that rates areas as having a very good chance, a good chance, or a very poor chance of containing cultural resource sites. SRIF suggested that the results of the sensitivity model might influence possible changes in cultural resource management (CRM) practices in the Azote Mesa area of southeastern New Mexico.

  17. Improved Oil Recovery from Upper Jurassic Smackover Carbonates through the Application of Advanced Technologies at Womack Hill Oil Field, Choctaw and Clarke Counties, Alabama, Eastern Gulf Coastal Plan (Phase II)

    SciTech Connect

    Ernest A. Mancini; Joe Benson; David Hilton; David Cate; Lewis Brown

    2006-05-29

    The principal research efforts for Phase II of the project were drilling an infill well strategically located in Section 13, T. 10 N., R. 2 W., of the Womack Hill Field, Choctaw and Clarke Counties, Alabama, and obtaining fresh core from the upper Smackover reservoir to test the feasibility of implementing an immobilized enzyme technology project in this field. The Turner Land and Timber Company 13-10 No. 1 well was successfully drilled and tested at a daily rate of 132 barrels of oil in Section 13. The well has produced 27,720 barrels of oil, and is currently producing at a rate of 60 barrels of oil per day. The 13-10 well confirmed the presence of 175,000 barrels of attic (undrained) oil in Section 13. As predicted from reservoir characterization, modeling and simulation, the top of the Smackover reservoir in the 13-10 well is structurally high to the tops of the Smackover in offsetting wells, and the 13-10 well has significantly more net pay than the offsetting wells. The drilling and testing of the 13-10 well showed that the eastern part of the field continues to have a strong water drive and that there is no need to implement a pressure maintenance program in this part of the Womack Hill Field at this time. The success achieved in drilling and testing the 13-10 infill well demonstrates the benefits of building a geologic model to target areas in mature fields that have the potential to contain undrained oil, thus increasing the productivity and profitability of these fields. Microbial cultures that grew at 90 C and converted ethanol to acid were recovered from fresh cuttings from the Smackover carbonate reservoir in an analogous field to the Womack Hill Field in southwest Alabama; however, no viable microorganisms were found in the Smackover cores recovered from the drilling of the 13-10 well in Womack Hill Field. Further evaluation is, therefore, required prior to implementing an immobilized enzyme technology project in the Womack Hill Field.

  18. Using chemical and isotopic data to quantify ionic trapping of injected carbon dioxide in oil field brines.

    PubMed

    Raistrick, Mark; Mayer, Bernhard; Shevalier, Maurice; Perez, Renee J; Hutcheon, Ian; Perkins, Ernie; Gunter, Bill

    2006-11-01

    Injection of carbon dioxide into depleted oil fields or deep saline aquifers represents one of the most promising means of long-term storage of this greenhouse gas. While the ultimate goal of CO2 injection in the subsurface is mineral storage of CO2 as carbonates, short-term (<50 year) storage of injected CO2 is most likely to be accomplished by ionic trapping of CO2 as bicarbonate ions (HCO3-) and hydrogeological trapping of molecular CO2. Here, we demonstrate a technique for quantifying ionic trapping of injected CO2 as HCO3- using geochemical data collected prior to and during 40 months of CO2 injection into a hydrocarbon reservoir at the International Energy Agency (IEA) Weyburn CO2 Monitoring and Storage Project, Saskatchewan, Canada. As a result of injection of CO2 with a low carbon isotope ratio (delta13C value), fluid and gas samples from four selected production wells showed an increase in HCO3- concentration and a decrease in delta13C values of HCO3- and CO2 over the observation period. Isotope and mass balance calculations indicate that, after 40 months of injection, approximately 80% of the HCO3- in the reservoir brines sampled from the four wells formed via dissolution and dissociation of injected CO2. This chemical and isotopic technique should be applicable to CO2 injection and storage in oil fields and in deep saline aquifers, provided there is sufficient carbon isotopic distinction between injected CO2 and baseline aquifer HCO3- and CO2. PMID:17144305

  19. Reconnaissance evaluation of contamination in the alluvial aquifer in the East Poplar oil field, Roosevelt County, Montana

    SciTech Connect

    Levings, G.W.

    1984-09-01

    The alluvial aquifer in the East Poplar oil field was studied to determine the occurrence, movement, and chemical quality of ground water and to evaluate contamination in the alluvial aquifer. In the oil field area, shallow water occurs in alluvium beneath the Poplar River valley floor. Four distinct types of ground water were identified in the study area. Type 1 is sodium bicarbonate water with a range of dissolved-solids concentration of about 490 to 770 milligrams per liter. Type 2 is sodium chloride water with varying quantities of calcium and magnesium and dissolved-solids concentration ranging from about 1600 to 7200 milligrams per liter. Type 3 water contains sodium and chloride in significantly larger concentrations than Type 2 water, and dissolved-solids concentrations range from 13,800 to 114,000 milligrams per liter. Type 3 water is from test wells drilled near a brine-disposal well and is similar to Type 4 water, which is the brine being injected. The dissolved-solids concentrations of the brine being injected are 97,900 and 161,000 milligrams per liter. Contamination of the alluvial aquifer by brine is indicated by a brine/fresh-water interface in the alluvium, and a downstream increase in chloride concentration (20 to 880 milligrams per liter) and change in water type (from sodium bicarbonate to sodium chloride) of the Poplar River. Contamination also may be indicated by the distribution of iron and manganese concentrations in water from wells near a brine-disposal well. Possible sources of sodium chloride contamination in the alluvium are brine-disposal wells, pipelines, and storage or evaporation pits. The contamination can occur from leaks in the casing of brine-disposal wells or in pipelines caused by the corrosive nature of the brine or from storage or evaporation pits that have been improperly sealed or have sustained tears in the sealing material. 12 refs., 10 figs., 4 tabs.

  20. Petroleum source rock identification of United Kingdom Atlantic Margin oil fields and the Western Canadian Oil Sands using Platinum, Palladium, Osmium and Rhenium: Implications for global petroleum systems

    NASA Astrophysics Data System (ADS)

    Finlay, Alexander J.; Selby, David; Osborne, Mark J.

    2012-01-01

    This study demonstrates that petroleum and source rocks are enriched in Pt and Pd to the ppb level, and that the 187Os/ 188Os composition coupled with the Pt/Pd value permits the fingerprinting of petroleum to its source. Oils from the United Kingdom Atlantic Margin (sourced from the Upper Jurassic Kimmeridge Clay Fm.) as well as source rock samples have been analysed for Pt and Pd. When the Pt/Pd value is compared with 187Os/ 188Os (calculated at the time of oil generation; Os g) the values from both the known source and the oils are similar, demonstrating that they can be used as an oil to source fingerprinting tool. This inorganic petroleum fingerprinting tool is particularly important in heavily biodegraded petroleum systems where traditional fingerprinting techniques (e.g. biomarkers) are severely hampered, e.g. the world's largest oil sand deposit, the West Canadian Oil Sands (WCOS). This has caused the source of the WCOS to be hotly debated, with no present day consensus between inputs from potential source units e.g. Exshaw and Gordondale Fms. 187Os/ 188Os and Pt/Pd fingerprinting of the oil sands shows that the majority of the petroleum have similar 187Os/ 188Os and Pt/Pd values, supporting the hypothesis of one principal source. Analysis of the potential source rocks establishes that the principal source of the oil sands to be from the Jurassic Gordondale Fm., with a minor Exshaw Fm. input. Thus, the combination of previously pioneered Re-Os petroleum geochronology with 187Os/ 188Os and Pt/Pd values of petroleum permits both a temporal and spatial understanding of petroleum systems.

  1. U(VI) bioreduction with emulsified vegetable oil as the electron donor-Model application to a field test

    SciTech Connect

    Tang, Guoping; Watson, David B; Wu, Wei-min; Schadt, Christopher Warren; Parker, Jack C; Brooks, Scott C

    2013-01-01

    A one-time 2-hour emulsified vegetable oil (EVO) injection in a fast flowing aquifer decreased U discharge to a stream for over a year. Using a comprehensive biogeochemical model developed in the companion article based on microcosm tests, we approximately matched the observed acetate, nitrate, Fe, U, and sulfate concentrations, and described the major evolution trends of multiple microbial functional groups in the field test. While the lab-determined parameters were generally applicable in the field-scale simulation, the EVO hydrolysis rate constant was estimated to be an order of magnitude greater in the field than in the microcosms. The model predicted substantial biomass (sulfate reducers) and U(IV) accumulation near the injection wells and along the side boundaries of the treatment zone where electron donors (long-chain fatty acids) from the injection wells met electron acceptors (sulfate) from the surrounding environment. While EVO retention and hydrolysis characteristics were expected to control treatment longevity, modeling results indicated that electron acceptors such as sulfate may not only compete for electrons but also play a conducive role in degrading complex substrates and enhancing U(VI) reduction and immobilization. As a result, the spacing of the injection wells could be optimized for effective sustainable bioremediation.

  2. Three-dimensional seismic full waveform inversion of ocean bottom cable data from the Valhall oil field

    NASA Astrophysics Data System (ADS)

    Etienne, V.; Hu, G.; Operto, S.; Virieux, J.

    2012-04-01

    In the past few years, the ability to reconstruct accurate 3D velocity models by full waveform inversion (FWI) has been shown by the academic research and the oil industry. In this study, we present a massively parallel algorithm for 3D seismic FWI together with an application to the ocean bottom cable (OBC) data from the Valhall oil field (North Sea). To achieve a computational efficiency and a flexible algorithm, we design a process, which can combine various forward modelling engines (such as finite-difference or finite-element methods) in time or frequency domains and an inversion core formulated in the frequency domain. Our algorithm relies on two key features: (1) the parametrizations of the subsurface for the seismic modeling and the inversion are uncoupled, that allows to interface different modeling engines with the inversion, and to consider target-oriented imaging. (2) Two nested levels of parallelism, by source distribution and domain decomposition, are implemented for the optimization of the performances of the scheme with respect to the computational platform, the dimensions of the model and the acquisition geometry. We present an application of our algorithm to OBC data recorded in the Valhall oil field. A total of 49 954 air-gun sources and 2 302 receivers located at the sea-floor (70 m depth) are used in this seismic experiment. The dimensions of the inverted target are 9.6 x 16.6 x 4.8 km. For the forward modelling, we adopt a finite-difference method in time to solve the acoustic wave equation, and monochromatic solutions are extracted from time signals. For the inversion, three overlapping groups of frequencies, [3.5 - 4], [4 - 5] and [5 - 7] Hz, respectively, are inverted successively to build a P-wave velocity model from the hydrophone component. The algorithm is performed on a IBM Blue Gene computer, by combining source distribution and domain decomposition over several hundreds of processors. The final FWI model exhibits remarkable structures, which are consistent with previous studies: paleo-channels below the sea-floor, low velocity and fractured zones in depths, probably related to accumulation of gas, and deep reflectors below the reservoir level. Comparison between the inverted model and a well log of vertical velocity possibly reveals the footprint of the anisotropy.

  3. High temperature annealing of fission tracks in fluorapatite, Santa Fe Springs oil field, Los Angeles Basin, California

    USGS Publications Warehouse

    Naeser, Nancy D.; Crowley, Kevin D.; McCulloh, Thane H.; Reaves, Chris M.

    1990-01-01

    Annealing of fission tracks is a kinetic process dependent primarily on temperature and to a laser extent on time. Several kinetic models of apatite annealing have been proposed. The predictive capabilities of these models for long-term geologic annealing have been limited to qualitative or semiquantitative at best, because of uncertainties associated with (1) the extrapolation of laboratory observations to geologic conditions, (2) the thermal histories of field samples, and (3) to some extent, the effect of apatite composition on reported annealing temperatures. Thermal history in the Santa Fe Springs oil field, Los Angeles Basin, California, is constrained by an exceptionally well known burial history and present-day temperature gradient. Sediment burial histories are continuous and tightly constrained from about 9 Ma to present, with an important tie at 3.4 Ma. No surface erosion and virtually no uplift were recorded during or since deposition of these sediments, so the burial history is simple and uniquely defined. Temperature gradient (???40??C km-1) is well established from oil-field operations. Fission-track data from the Santa Fe Springs area should thus provide one critical field test of kinetic annealing models for apatite. Fission-track analysis has been performed on apatites from sandstones of Pliocene to Miocene age from a deep drill hole at Santa Fe Springs. Apatite composition, determined by electron microprobe, is fluorapatite [average composition (F1.78Cl0.01OH0.21)] with very low chlorine content [less than Durango apatite; sample means range from 0.0 to 0.04 Cl atoms, calculated on the basis of 26(O, F, Cl, OH)], suggesting that the apatite is not unusually resistant to annealing. Fission tracks are preserved in these apatites at exceptionally high present-day temperatures. Track loss is not complete until temperatures reach the extreme of 167-178??C (at 3795-4090 m depth). The temperature-time annealing relationships indicated by the new data from Santa Fe Springs conflict with predictions based on previously published, commonly used, kinetic annealing models for apatite. Work is proceeding on samples from another area of the basin that may resolve this discrepancy.

  4. Field Evaluation of a Kudzu/Cottonseed Oil Formulation on the Persistence of the Beet Armyworm Nucleopolyhedrovirus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A plant extract (kudzu) was tested as a UV protectant for SeMNPV, with and without the addition of an oil/emulsifier (cottonseed oil/lecithin) formulation. Aqueous and oil emulsion formulations of the beet armyworm, Spodoptera exigua (Hübner), nucleopolyhedrovirus SeMNPV were applied to collards an...

  5. Case report: Profound neurobehavioral deficits in an oil field worker overcome by hydrogen sulfide

    SciTech Connect

    Kilburn, K.H. )

    1993-11-01

    A 24-year-old oil well tester was rendered semiconscious by hydrogen sulfide (H2S). He received oxygen and was hospitalized but released in 30 minutes. The next day, nausea, vomiting, diarrhea, and incontinence of urine and stool led to rehospitalization. These problems and leg shaking, dizziness, sweating, trouble sleeping, and nightmares prevented his return to work. A physical examination, chest x-ray, and pulmonary function tests were normal 39 months after the episode but vibration sense was diminished. Two choice visual reaction times were delayed. Balance was highly abnormal (5 to 6 cm/sec) with eyes closed. Blink reflex latency was slow (R-1 17.5 msec versus normal 14.3 msec). Numbers written on finger tips were not recognized. Verbal and visual recall were impaired but overlearned memory was intact. Cognitive functions measured by Culture Fair, block design, and digit symbol were impaired. Perceptual motor was slow. Scores for confusion, tension-anxiety, depression, and fatigue were elevated and vigor was reduced. Forty-nine months after exposure his reaction time, sway speed, and color vision had not improved. His recall and his cognitive, constructional, and psychomotor speeds had improved but remained abnormal. These deficits are most likely due to H2S. Similar testing of other survivors is recommended.

  6. Study on detailed geological modelling for fluvial sandstone reservoir in Daqing oil field

    SciTech Connect

    Zhao Hanqing; Fu Zhiguo; Lu Xiaoguang

    1997-08-01

    Guided by the sedimentation theory and knowledge of modern and ancient fluvial deposition and utilizing the abundant information of sedimentary series, microfacies type and petrophysical parameters from well logging curves of close spaced thousands of wells located in a large area. A new method for establishing detailed sedimentation and permeability distribution models for fluvial reservoirs have been developed successfully. This study aimed at the geometry and internal architecture of sandbodies, in accordance to their hierarchical levels of heterogeneity and building up sedimentation and permeability distribution models of fluvial reservoirs, describing the reservoir heterogeneity on the light of the river sedimentary rules. The results and methods obtained in outcrop and modem sedimentation studies have successfully supported the study. Taking advantage of this method, the major producing layers (PI{sub 1-2}), which have been considered as heterogeneous and thick fluvial reservoirs extending widely in lateral are researched in detail. These layers are subdivided into single sedimentary units vertically and the microfacies are identified horizontally. Furthermore, a complex system is recognized according to their hierarchical levels from large to small, meander belt, single channel sandbody, meander scroll, point bar, and lateral accretion bodies of point bar. The achieved results improved the description of areal distribution of point bar sandbodies, provide an accurate and detailed framework model for establishing high resolution predicting model. By using geostatistic technique, it also plays an important role in searching for enriched zone of residual oil distribution.

  7. Phase field modelling of spinodal decomposition in the oil/water/asphaltene system.

    PubMed

    Tóth, Gyula I; Kvamme, Bjørn

    2015-08-21

    In this paper the quantitative applicability of van der Sman/van der Graaf type Ginzburg-Landau theories of surfactant assisted phase separation [van der Sman et al., Rheol. Acta, 2006, 46, 3] is studied for real systems displaying high surfactant concentrations at the liquid-liquid interface. The model is applied for the water/heptane/asphaltene system (a model of heavy crude oil), for which recent molecular dynamics (MD) simulations provide microscopic data needed to calibrate the theory. A list of general requirements is set up first, which is then followed by analytical calculations of the equilibrium properties of the system, such as the equilibrium liquid densities, the adsorption isotherm and the interfacial tension. Based on the results of these calculations, the model parameters are then determined numerically, yielding a reasonable reproduction of the MD density profiles. The results of time-dependent simulations addressing the dynamical behaviour of the system will also be presented. It will be shown that the competition between the diffusion and hydrodynamic time scales can lead to the formation of an emulsion. We also address the main difficulties and limitations of the theory regarding quantitative modelling of surfactant assisted liquid phase separation. PMID:26185915

  8. Helicopter electromagnetic and magnetic survey maps and data, East Poplar Oil Field area, August 2004, Fort Peck Indian Reservation, northeastern Montana

    USGS Publications Warehouse

    Smith, Bruce D.; Thamke, Joanna N.; Cain, Michael J.; Tyrrell, Christa; Hill, Patricia L.

    2006-01-01

    This report is a data release for a helicopter electromagnetic and magnetic survey that was conducted during August 2004 in a 275-square-kilometer area that includes the East Poplar oil field on the Fort Peck Indian Reservation. The electromagnetic equipment consisted of six different coil-pair orientations that measured resistivity at separate frequencies from about 400 hertz to about 140,000 hertz. The electromagnetic resistivity data were converted to six electrical conductivity grids, each representing different approximate depths of investigation. The range of subsurface investigation is comparable to the depth of shallow aquifers. Areas of high conductivity in shallow aquifers in the East Poplar oil field area are being delineated by the U.S. Geological Survey, in cooperation with the Fort Peck Assiniboine and Sioux Tribes, in order to map areas of saline-water plumes. Ground electromagnetic methods were first used during the early 1990s to delineate more than 31 square kilometers of high conductivity saline-water plumes in a portion of the East Poplar oil field area. In the 10 years since the first delineation, the quality of water from some wells completed in the shallow aquifers in the East Poplar oil field changed markedly. The extent of saline-water plumes in 2004 likely differs from that delineated in the early 1990s. The geophysical and hydrologic information from U.S. Geological Survey studies is being used by resource managers to develop ground-water resource plans for the area.

  9. Uncertainty Analysis of a Giant Oil Field in the Middle East Using Surrogate Reservoir Model Shahab D. Mohaghegh, West Virginia University

    E-print Network

    Mohaghegh, Shahab

    Uncertainty Analysis of a Giant Oil Field in the Middle East Using Surrogate Reservoir Model Shahab, and Maher Kenawy, ADCO ABSTRACT Simulation models are routinely used as a powerful tool for reservoir realizations and runs of the reservoir simulation model. In this day and age, as reservoir models are getting

  10. Contracts for field projects and supporting research on enhanced oil recovery. Progress review No. 82, quarterly report, January--March 1995

    SciTech Connect

    1996-06-01

    This document consists of a list of projects supporting work on oil recovery programs. A publications list and index of companies and institutions is provided. The remaining portion of the document provides brief descriptions on projects in chemical flooding, gas displacement, thermal recovery, geoscience, resource assessment, and reservoir class field demonstrations.

  11. GREEN RIVER AIR QUALITY MODEL DEVELOPMENT: METEOROLOGICAL DATA - AUGUST 1980 FIELD STUDY IN THE PICEANCE CREEK BASIN OIL SHALE RESOURCES AREA

    EPA Science Inventory

    Special meteorological and air quality studies were conducted during August 1980 in the Piceance Creek Basin oil shale resource area of Northwestern Colorado as part of the EPA-sponsored Green River Ambient Model Assessment program. The objective of the limited field program was ...

  12. Draft Genome Sequence of Rhodococcus rhodochrous Strain KG-21, a Soil Isolate from Oil Fields of Krishna-Godavari Basin, India

    PubMed Central

    Dawar, Chhavi

    2015-01-01

    Here, we present the 6.1-Mb draft genome sequence of Rhodococcus rhodochrous strain KG-21, a soil isolate from the oil fields of Krishna-Godavari Basin in Andhra Pradesh, India. This genomic resource may help in the identification of the gene(s) involved in hydrocarbon degradation and their possible deployment for bioremediation. PMID:26472842

  13. The MS-Q Force Field for Clay Minerals: Application to Oil Production Sungu Hwang, Mario Blanco, Ersan Demiralp, Tahir Cagin, and William A. Goddard, III*

    E-print Network

    Çagin, Tahir

    The MS-Q Force Field for Clay Minerals: Application to Oil Production Sungu Hwang, Mario Blanco to model kaolinite and pyrophyllite clay minerals and their interactions with representative organic molecules. The MS-Q FF reproduces the structural parameters for these clay minerals and gives accurate

  14. Locating earthquakes in west Texas oil fields using 3-D anisotropic velocity models

    SciTech Connect

    Hua, Fa; Doser, D.; Baker, M. . Dept. of Geological Sciences)

    1993-02-01

    Earthquakes within the War-Wink gas field, Ward County, Texas, that have been located with a 1-D velocity model occur near the edges and top of a naturally occurring overpressured zone. Because the War-Wink field is a structurally controlled anticline with significant velocity anisotropy associated with the overpressured zone and finely layered evaporites, the authors have attempted to re-locate earthquakes using a 3-D anisotropic velocity model. Preliminary results with this model give the unsatisfactory result that many earthquakes previously located at the top of the overpressured zone (3-3.5 km) moved into the evaporites (1-1.5 km) above the field. They believe that this result could be caused by: (1) aliasing the velocity model; or (2) problems in determining the correct location minima when several minima exist. They are currently attempting to determine which of these causes is more likely for the unsatisfactory result observed.

  15. Flaxseed oil

    MedlinePLUS

    Flaxseed is the seed from the plant Linum usitatissimum. Oil from the seed is used to make medicine. People try flaxseed oil for ... Oil, Echter Lein, Flachs, Flachssamen, Flax Oil, Flax Seed Oil, Golden Flax Oil, Graine de Lin, Huile ...

  16. New Acid Stimulation Treatment to Sustain Production - Los Angeles Downtown Oil Field

    SciTech Connect

    Russell, Richard C.

    2003-03-10

    Hydrochloric acid stimulation was successfully used on several wells in the Los Angeles Downtown Field, in the past. The decline rates after stimulation were relatively high and generally within six months to a year, production rates have returned to their prestimulation rates. The wells in Los Angeles Downtown Field have strong scale producing tendencies and many wells are treated for scale control. Four wells were carefully selected that are representative of wells that had a tendency to form calcium carbonate scale and had shown substantial decline over the last few years.

  17. Seismic Illumination Analysis in Poor Oil & Gas Field Data by Using Focal Beam Method

    NASA Astrophysics Data System (ADS)

    Latiff, A. H. Abdul; Ghosh, D. P.; Harith, Z. Z. Tuan

    2014-03-01

    The area underneath shallow gas cloud is an area where the image of subsurface data is generally poor. This distorted image underneath gas zones usually contains precious information of hydrocarbon accumulation. Previously, we analyse the factors contribute to poor subsurface seismic image underneath the gas cloud model and use focal beam technique to understand subsurface illumination information. Encourage by model-based success, we shift our focus to data-based application by applying the focal beam technique into a real field data. The results from this field were analyse in term of resolution function and amplitude versus ray parameter (AVP) imprint for different reflector depth, followed by acquisition analysis on the surface level. For this purpose, a velocity data of a field located in Malay Basin was built before applying the focal beam calculation. We will demonstrate that by using focal beam analysis for this field, we will able to obtain good imaging particularly for target reflector at 2000ms, 4000ms and 6000ms depth, provided the full 3D acquisition geometry was used during focal beam application.

  18. Challenges of Tengiz oil field and other FSU joint ventures. [Former Soviet Union

    SciTech Connect

    Matzke, R.H. )

    1994-07-04

    Chevron has been operating a joint venture for the past year to develop supergiant Tengiz field in Kazakhstan. This article contains impressions on doing business in the former Soviet Union, details of some of the unique challenges of working on that part of the world, an update of the Tengiz project, and discussion of the Caspian region pipeline situation.

  19. Collecting field pennycress germplasm in Colorado and characterization of oil and root variation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field pennycress (Thlaspi arvense) has been identified as a possible source of biodiesel that may perform better in colder climates than other biodiesel fuels. A germplasm collection of the species is being maintained by the U.S. Department of Agriculture for use in research, education, and crop imp...

  20. Contracts for field projects and supporting research on enhanced oil recovery. Progress review No. 89

    SciTech Connect

    1998-04-01

    Summaries are presented for the DOE contracts related to supported research for thermal recovery of petroleum, geoscience technology, and field demonstrations in high-priority reservoir classes. Data included for each project are: title, contract number, principal investigator, research organization, beginning date, expected completion date, amount of award, objectives of the research, and summary of technical progress.

  1. Field Pennycress (Thlaspi arvense L.) Oil: A Promising Source of Biodiesel.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field pennycress (Thlaspi arvense L., FP) is a winter annual species of the mustard family (Brassicaceae) that is widely distributed throughout temperate North America and which can serve in a winter rotational cycle with conventional crops, thus not displacing existing agricultural production or ne...

  2. Competitive Oxidation of Volatile Fatty Acids by Sulfate- and Nitrate-Reducing Bacteria from an Oil Field in Argentina? †

    PubMed Central

    Grigoryan, Aleksandr A.; Cornish, Sabrina L.; Buziak, Brenton; Lin, Shiping; Cavallaro, Adriana; Arensdorf, Joseph J.; Voordouw, Gerrit

    2008-01-01

    Acetate, propionate, and butyrate, collectively referred to as volatile fatty acids (VFA), are considered among the most important electron donors for sulfate-reducing bacteria (SRB) and heterotrophic nitrate-reducing bacteria (hNRB) in oil fields. Samples obtained from a field in the Neuquén Basin, western Argentina, had significant activity of mesophilic SRB, hNRB, and nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB). In microcosms, containing VFA (3 mM each) and excess sulfate, SRB first used propionate and butyrate for the production of acetate, which reached concentrations of up to 12 mM prior to being used as an electron donor for sulfate reduction. In contrast, hNRB used all three organic acids with similar kinetics, while reducing nitrate to nitrite and nitrogen. Transient inhibition of VFA-utilizing SRB was observed with 0.5 mM nitrite and permanent inhibition with concentrations of 1 mM or more. The addition of nitrate to medium flowing into an upflow, packed-bed bioreactor with an established VFA-oxidizing SRB consortium led to a spike of nitrite up to 3 mM. The nitrite-mediated inhibition of SRB led, in turn, to the transient accumulation of up to 13 mM of acetate. The complete utilization of nitrate and the incomplete utilization of VFA, especially propionate, and sulfate indicated that SRB remained partially inhibited. Hence, in addition to lower sulfide concentrations, an increase in the concentration of acetate in the presence of sulfate in waters produced from an oil field subjected to nitrate injection may indicate whether the treatment is successful. The microbial community composition in the bioreactor, as determined by culturing and culture-independent techniques, indicated shifts with an increasing fraction of nitrate. With VFA and sulfate, the SRB genera Desulfobotulus, Desulfotignum, and Desulfobacter as well as the sulfur-reducing Desulfuromonas and the NR-SOB Arcobacter were detected. With VFA and nitrate, Pseudomonas spp. were present. hNRB/NR-SOB from the genus Sulfurospirillum were found under all conditions. PMID:18502934

  3. Enhanced oil recovery by CO/sub 2/ miscible displacement in the Little Knife Field, Billings County, North Dakota

    SciTech Connect

    Desch, J.B.; Larsen, W.K.; Lindsay, R.F.; Nettle, R.L.

    1982-01-01

    A CO/sub 2/ minitest employing the miscible displacement process was conducted in the Mission Canyon Formation (lower Mississippian) at Little Knife Field, North Dakota. The Mission Canyon is a dolomitized carbonate reservoir which is undergoing primary depletion. Four wells were drilled in an inverted four-spot configuration, covering five acres. The central well served as the injection well and was surrounded by three non-producing observation wells. A WAG-type injection sequence utilized five alternate slugs of formation water and CO/sub 2/. Preflush injection began December 11, 1980, followed by the WAG slugs from January 7 to March 25, 1981. Drive water injection commenced immediately and was completed on September 24, 1981. Injection rates were maintained at 1150 B/D during water injection and 40 T/D during CO/sub 2/ injection. Tracers were used during the waterflood preflush and with the water during the WAG. A pressure core behind the flood front was obtained to confirm residual-oil saturations in the project interval. Overall rock recovery was excellent, 90%, but sample recovery under reservoir pressure was less than anticipated. Invasion of drilling fluids during coring was checked by introduction of a radioactive tracer into the coring fluid. Project analysis is still ongoing and once completed, the simulation models will be updated and used to predict field-wide applicability. (JMT)

  4. A detailed analysis of wastewater-induced seismicity in the Val d'Agri oil field (Italy)

    NASA Astrophysics Data System (ADS)

    Improta, Luigi; Valoroso, Luisa; Piccinini, Davide; Chiarabba, Claudio

    2015-04-01

    The Val d'Agri basin in the Apennines seismic belt hosts the largest oil field in onshore Europe. High-quality recordings from a temporary dense network unravel a swarm of 111 small-magnitude events (ML ? 1.8) occurred in June 2006 during the first stage of wastewater injection into a high-rate well. High-precision relative locations define a preexisting blind fault located 1 km below the well inside fractured and saturated carbonates where wastewater is reinjected. Seismicity begins 3 h after the initiation of injection. The seismicity rate strictly correlates with injection curves and temporal variations of elastic and anisotropic parameters. Seismicity is induced by rapid communication of pore pressure perturbations along a high-permeability fault zone favorably oriented with respect to the local extensional stress field. Our accurate 3-D locations of 219 events (ML ? 2.2) detected by the local operator network after June 2006 concentrate on the preexisting fault measuring 5 km along dip. Over the following 7.5 years, the seismicity rate correlates with short-term increases in injection pressure.

  5. Analysis of bacterial and archaeal communities along a high-molecular-weight polyacrylamide transportation pipeline system in an oil field.

    PubMed

    Li, Cai-Yun; Li, Jing-Yan; Mbadinga, Serge Maurice; Liu, Jin-Feng; Gu, Ji-Dong; Mu, Bo-Zhong

    2015-01-01

    Viscosity loss of high-molecular-weight partially hydrolyzed polyacrylamide (HPAM) solution was observed in a water injection pipeline before being injected into subterranean oil wells. In order to investigate the possible involvement of microorganisms in HPAM viscosity loss, both bacterial and archaeal community compositions of four samples collected from different points of the transportation pipeline were analyzed using PCR-amplification of the 16S rRNA gene and clone library construction method together with the analysis of physicochemical properties of HPAM solution and environmental factors. Further, the relationship between environmental factors and HPAM properties with microorganisms were delineated by canonical correspondence analysis (CCA). Diverse bacterial and archaeal groups were detected in the four samples. The microbial community of initial solution S1 gathered from the make-up tank is similar to solution S2 gathered from the first filter, and that of solution S3 obtained between the first and the second filter is similar to that of solution S4 obtained between the second filter and the injection well. Members of the genus Acinetobacter sp. were detected with high abundance in S3 and S4 in which HPAM viscosity was considerably reduced, suggesting that they likely played a considerable role in HPAM viscosity loss. This study presents information on microbial community diversity in the HPAM transportation pipeline and the possible involvement of microorganisms in HPAM viscosity loss and biodegradation. The results will help to understand the microbial community contribution made to viscosity change and are beneficial for providing information for microbial control in oil fields. PMID:25849654

  6. Analysis of Bacterial and Archaeal Communities along a High-Molecular-Weight Polyacrylamide Transportation Pipeline System in an Oil Field

    PubMed Central

    Li, Cai-Yun; Li, Jing-Yan; Mbadinga, Serge Maurice; Liu, Jin-Feng; Gu, Ji-Dong; Mu, Bo-Zhong

    2015-01-01

    Viscosity loss of high-molecular-weight partially hydrolyzed polyacrylamide (HPAM) solution was observed in a water injection pipeline before being injected into subterranean oil wells. In order to investigate the possible involvement of microorganisms in HPAM viscosity loss, both bacterial and archaeal community compositions of four samples collected from different points of the transportation pipeline were analyzed using PCR-amplification of the 16S rRNA gene and clone library construction method together with the analysis of physicochemical properties of HPAM solution and environmental factors. Further, the relationship between environmental factors and HPAM properties with microorganisms were delineated by canonical correspondence analysis (CCA). Diverse bacterial and archaeal groups were detected in the four samples. The microbial community of initial solution S1 gathered from the make-up tank is similar to solution S2 gathered from the first filter, and that of solution S3 obtained between the first and the second filter is similar to that of solution S4 obtained between the second filter and the injection well. Members of the genus Acinetobacter sp. were detected with high abundance in S3 and S4 in which HPAM viscosity was considerably reduced, suggesting that they likely played a considerable role in HPAM viscosity loss. This study presents information on microbial community diversity in the HPAM transportation pipeline and the possible involvement of microorganisms in HPAM viscosity loss and biodegradation. The results will help to understand the microbial community contribution made to viscosity change and are beneficial for providing information for microbial control in oil fields. PMID:25849654

  7. Gas, Oil, and Water Production from Jonah, Pinedale, Greater Wamsutter, and Stagecoach Draw Fields in the Greater Green River Basin, Wyoming

    USGS Publications Warehouse

    Nelson, Philip H.; Ewald, Shauna M.; Santus, Stephen L.; Trainor, Patrick K.

    2010-01-01

    Gas, oil, and water production data were compiled from selected wells in four gas fields in rocks of Late Cretaceous age in southwestern Wyoming. This study is one of a series of reports examining fluid production from tight-gas reservoirs, which are characterized by low permeability, low porosity, and the presence of clay minerals in pore space. Production from each well is represented by two samples spaced five years apart, the first sample typically taken two years after commencement of production. For each producing interval, summary diagrams of oil versus gas and water versus gas production show fluid production rates, the change in rates during five years, the water-gas and oil-gas ratios, and the fluid type. These diagrams permit well-to-well and field-to-field comparisons. Fields producing water at low rates (water dissolved in gas in the reservoir) can be distinguished from fields producing water at moderate or high rates, and the water-gas ratios are quantified. The ranges of first-sample gas rates in Pinedale field and Jonah field are quite similar, and the average gas production rate for the second sample, taken five years later, is about one-half that of the first sample for both fields. Water rates are generally substantially higher in Pinedale than in Jonah, and water-gas ratios in Pinedale are roughly a factor of ten greater in Pinedale than in Jonah. Gas and water production rates from each field are fairly well grouped, indicating that Pinedale and Jonah fields are fairly cohesive gas-water systems. Pinedale field appears to be remarkably uniform in its flow behavior with time. Jonah field, which is internally faulted, exhibits a small spread in first-sample production rates. In the Greater Wamsutter field, gas production from the upper part of the Almond Formation is greater than from the main part of the Almond. Some wells in the main and the combined (upper and main parts) Almond show increases in water production with time, whereas increases in water production are rare in the upper part of the Almond, and a higher percentage of wells in the upper part of the Almond show water decreasing at the same rate as gas than in the main or combined parts of the Almond. In Stagecoach Draw field, the gas production rate after five years is about one-fourth that of the first sample, whereas in Pinedale, Jonah, and Greater Wamsutter fields, the production rate after five years is about one-half that of the first sample. The more rapid gas decline rate seems to be the outstanding feature distinguishing Stagecoach Draw field, which is characterized as a conventional field, from Pinedale, Jonah, and Greater Wamsutter fields, which are generally characterized as tight-gas accumulations. Oil-gas ratios are fairly consistent within Jonah, Pinedale, and Stagecoach Draw fields, suggesting similar chemical composition and pressure-temperature conditions within each field, and are less than the 20 bbl/mmcf upper limit for wet gas. However, oil-gas ratios vary considerably from one area to another in the Greater Wamsutter field, demonstrating a lack of commonality in either chemistry or pressure-temperature conditions among the six areas. In all wells in all four fields examined here, water production commences with gas production-there are no examples of wells with water-free production and no examples where water production commences after first-sample gas production. The fraction of records with water production higher in the second sample than in the first sample varies from field to field, with Pinedale field showing the lowest percentage of such cases and Jonah field showing the most. Most wells have water-gas ratios exceeding the amount that could exist dissolved in gas at reservoir pressure and temperature.

  8. Activities of the Oil Implementation Task Force; Contracts for field projects and supporting research on enhanced oil recovery, July--September 1990

    SciTech Connect

    Tiedemann, H.A. )

    1991-05-01

    The report contains a general introduction and background to DOE's revised National Energy Strategy Advanced Oil Recovery Program and activities of the Oil Implementation Task Force; a detailed synopsis of the symposium, including technical presentations, comments and suggestions; a section of technical information on deltaic reservoirs; and appendices containing a comprehensive listing of references keyed to general deltaic and geological aspects of reservoirs and those relevant to six selected deltaic plays. Enhanced recovery processes include chemical floodings, gas displacement, thermal recovery, geoscience, and microbial recovery.

  9. Geology of oil fields and future exploration potential in west African Aptian Salt basin

    SciTech Connect

    Bignell, R.D.; Edwards, A.D.

    1987-05-01

    The Aptian Salt basin of west Africa, extends from Equatorial Guinea southward to Angola, contains recoverable reserves estimated at nearly 4 billion BOE, and is current producing 600,000 BOPD. The basin developed as a result of tensional forces between west Africa and South America initiated at the end of the Jurassic. The prospective sedimentary sequences ranged in age from Early Cretaceous (uppermost Jurassic in places) to Holocene and is divided by the Aptian transgressive sand and salt into a pre-salt, nonmarine, syn-rift sequence and a post-salt, marine, post-rift sequence. Both the pre- and post-salt sequences contain several successful exploration plays, the most prolific of which are the Early Cretaceous nonmarine sandstone fields in tilted fault blocks of Gabon and Cabinda; Early Cretaceous carbonate buildups on the margins of basement highs in Cabinda; Early Cretaceous transgressive marine sandstone fields in anticlines draped over basement highs in Gabon; Late Cretaceous shallow marine sandstone and carbonate fields in salt-related structures in the Congo, Zaire, Cabinda, and Angola; Late Cretaceous dolomites in structural/stratigraphic traps in Angola; Late Cretaceous/early Tertiary deltaic/estuarine sandstone traps formed by salt movement in Gabon, Cabinda, and angola; and Tertiary marine turbidite fields in Cabinda and Angola. Despite the exploration success in these trends, much of the basin is under or poorly explored. The major problems for exploration are the poor quality of seismic definition beneath the salt, which makes it difficult to predict pre-salt structure and stratigraphy, and the importance of a stratigraphic element in many of the post-salt traps, also difficult to detect on seismic.

  10. Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama. Final report, March 1996--September 1998

    SciTech Connect

    Pashin, J.C.; Raymond, D.E.; Rindsberg, A.K.; Alabi, G.G.; Carroll, R.E.; Groshong, R.H.; Jin, G.

    1998-12-01

    This project was designed to analyze the structure of Mesozoic and Tertiary strata in Gilbertown Field and adjacent areas to suggest ways in which oil recovery can be improved. The Eutaw Formation comprises 7 major flow units and is dominated by low-resistivity, low-contrast play that is difficult to characterize quantitatively. Selma chalk produces strictly from fault-related fractures that were mineralized as warm fluid migrated from deep sources. Resistivity, dipmeter, and fracture identification logs corroborate that deformation is concentrated in the hanging-wall drag zones. New area balancing techniques were developed to characterize growth strata and confirm that strain is concentrated in hanging-wall drag zones. Curvature analysis indicates that the faults contain numerous fault bends that influence fracture distribution. Eutaw oil is produced strictly from footwall uplifts, whereas Selma oil is produced from fault-related fractures. Clay smear and mineralization may be significant trapping mechanisms in the Eutaw Formation. The critical seal for Selma reservoirs, by contrast, is where Tertiary clay in the hanging wall is juxtaposed with poorly fractured Selma chalk in the footwall. Gilbertown Field can be revitalized by infill drilling and recompletion of existing wells. Directional drilling may be a viable technique for recovering untapped oil from Selma chalk. Revitalization is now underway, and the first new production wells since 1985 are being drilled in the western part of the field.

  11. Oil industry first field trial of inter-well reservoir nanoagent tracers

    NASA Astrophysics Data System (ADS)

    Kanj, Mazen Y.; Kosynkin, Dmitry V.

    2015-05-01

    This short manuscript highlights the industry's first proven reservoir nanoagents' design and demonstrates a successful multi-well field trial using these agents. Our fundamental nanoparticles tracer template, A-Dots or Arab-D Dots, is intentionally geared towards the harsh but prolific Arab-D carbonate reservoir environment of 100+°C temperature, 150,000+ppm salinity, and an abundant presence of divalent ions in the connate water. Preliminary analyses confirmed nanoparticles' breakthrough at a producer nearly 500m from the injector at the reservoir level; thus, proving the tracer nanoparticles' mobility and transport capability. This is considered industry-first and a breakthrough achievement complementing earlier accomplishments in regard to the nanoagents' reservoir stability with the first successful single well test and ease of scale up with the synthesis of one metric ton of this material. The importance of this accomplishment is not in how sophisticated is the sensing functionalities of this design but rather in its stability, mobility, scalability, and field application potentials. This renders the concept of having active, reactive, and even communicative, in-situ reservoir nanoagents for underground sensing and intervention a well anticipated near-future reality.

  12. Effects of Saline-Wastewater Injection on Water Quality in the Altamont-Bluebell Oil and Gas Field, Duchesne County, Utah, 1990-2005

    USGS Publications Warehouse

    Steiger, Judy I.

    2007-01-01

    The Altamont-Bluebell oil and gas field in the Uinta Basin in northeastern Utah has been an important oil and natural gas production area since the 1950s. Saline water is produced along with oil during the oil-well drilling and pumping process. The saline wastewater is disposed of by injection into wells completed in the Duchesne River Formation, Uinta Formation, and other underlying formations. There are concerns that the injected saline wastewater could migrate into the upper part of the Duchesne River and Uinta Formations and surficial deposits that are used for drinking-water supply and degrade the quality of the drinking water. The U.S. Geological Survey, in cooperation with the Utah Department of Natural Resources, Division of Oil, Gas, and Mining, began a program in 1990 to monitor water quality in five wells in the Altamont-Bluebell oil and gas field. By 1996, water-quality samples had been collected from 20 wells. Ten of the 20 wells were sampled yearly during 1996-2005 and analyzed for bromide, chloride, and stable isotopes. Comparison of major chemical constituents, bromide-to-chloride ratios, trend analysis, and isotope ratios were used to assess if saline wastewater is migrating into parts of the formation that are developed for drinking-water supplies. Results of four different analyses all indicate that saline wastewater injected into the lower part of the Duchesne River and Uinta Formations and underlying formations is not migrating upward into the upper parts of the formations that are used for drinking-water supplies.

  13. Novel Cleanup Agents Designed Exclusively for Oil Field Membrane Filtration Systems Low Cost Field Demonstrations of Cleanup Agents in Controlled Experimental Environments

    SciTech Connect

    David Burnett; Harold Vance

    2007-08-31

    The goal of our project is to develop innovative processes and novel cleaning agents for water treatment facilities designed to remove fouling materials and restore micro-filter and reverse osmosis (RO) membrane performance. This project is part of Texas A&M University's comprehensive study of the treatment and reuse of oilfield brine for beneficial purposes. Before waste water can be used for any beneficial purpose, it must be processed to remove contaminants, including oily wastes such as residual petroleum hydrocarbons. An effective way of removing petroleum from brines is the use of membrane filters to separate oily waste from the brine. Texas A&M and its partners have developed highly efficient membrane treatment and RO desalination for waste water including oil field produced water. We have also developed novel and new cleaning agents for membrane filters utilizing environmentally friendly materials so that the water from the treatment process will meet U.S. EPA drinking water standards. Prototype micellar cleaning agents perform better and use less clean water than alternate systems. While not yet optimized, the new system restores essentially complete membrane flux and separation efficiency after cleaning. Significantly the amount of desalinated water that is required to clean the membranes is reduced by more than 75%.

  14. Sequence stratigraphic-structural analysis of the East Midlands Carboniferous oil field, UK: Implications for fluvial reservoir models

    SciTech Connect

    Aitken, J.F.; Quirk, D.G.

    1996-12-31

    The integration of seismic, well log and core data from, the Scampton North and Welton oil fields, Lincolnshire, UK, has enabled the development of a sequence stratigraphic-structural model for late Namurian and early Westphalian fluvial reservoirs. The tectonic and sequence stratigraphic setting is remarkably similar to that in the Southern North Sea which extends more than 250 km to the east. Closer onshore well spacing, supplemented with coal exploration borehole data, provides an excellent analogue for new Carboniferous Southern North Sea developments and prospects. The reservoirs comprise medium-grained, low sinuosity fluvial aggradational packages within a coal-bearing, fluvio-deltaic depositional environment. Although major active faults occur within the Namurian, tectonic activity had ceased by the start of the Westphalian which has a tramline-like appearance on seismic. The reservoirs are poorly interconnected as a consequence of small-scale faults and extensive shale baffles, which have resulted in considerable production problems, accentuated by an initial poor reservoir correlation. Palynology has proven to be highly imprecise, consequently, the use of seismic picks as chronostratigraphic markers combined with the coal stratigraphy from British Coal boreholes and the application of sequence stratigraphic, concepts has enabled a more precise reservoir correlation to be made.

  15. Sequence stratigraphic-structural analysis of the East Midlands Carboniferous oil field, UK: Implications for fluvial reservoir models

    SciTech Connect

    Aitken, J.F.; Quirk, D.G. )

    1996-01-01

    The integration of seismic, well log and core data from, the Scampton North and Welton oil fields, Lincolnshire, UK, has enabled the development of a sequence stratigraphic-structural model for late Namurian and early Westphalian fluvial reservoirs. The tectonic and sequence stratigraphic setting is remarkably similar to that in the Southern North Sea which extends more than 250 km to the east. Closer onshore well spacing, supplemented with coal exploration borehole data, provides an excellent analogue for new Carboniferous Southern North Sea developments and prospects. The reservoirs comprise medium-grained, low sinuosity fluvial aggradational packages within a coal-bearing, fluvio-deltaic depositional environment. Although major active faults occur within the Namurian, tectonic activity had ceased by the start of the Westphalian which has a tramline-like appearance on seismic. The reservoirs are poorly interconnected as a consequence of small-scale faults and extensive shale baffles, which have resulted in considerable production problems, accentuated by an initial poor reservoir correlation. Palynology has proven to be highly imprecise, consequently, the use of seismic picks as chronostratigraphic markers combined with the coal stratigraphy from British Coal boreholes and the application of sequence stratigraphic, concepts has enabled a more precise reservoir correlation to be made.

  16. Hydrology of the uppermost Cretaceous and the lowermost Paleocene rocks in the Hilight oil field, Campbell County, Wyoming

    USGS Publications Warehouse

    Lowry, Marlin E.

    1973-01-01

    The lithologic equivalents of the Fox Hills Sandstone, Lance Formation, and the Tullock member of the Fort Union Formation, as mapped on the east side of the Powder River Basin, can be recognized throughout the basin; however, the formations are in hydraulic connection and cannot be treated as separate aquifers. Recharge to the Lance-Fox Hills aquifer in the Hilight oil field is largely by vertical movement; there is no recharge from the Lance and Fox Hills outcrops on the east side of the basin to the formations in the Hilight area. At the and of the central Hilight water-flood project, the maximum possible drawdown resulting from the pumping of any one well at a distance of l0 miles from the pumped well, would be about 15 feet, if the projected pumping were evenly distributed among the project wells. Within a few years after pumping has ceased, water in the project wells will approach the levels present before pumping began. The only irreversible effect of pumping will be the compaction of shale, with attendant subsidence, because the water derived from the shale probably will not be replaced.

  17. FIELD TESTING TO DETERMINE THE PRESENCE OR ABSENCE OF SULFUR DIOXIDE EMISSIONS FROM OLD IN SITU OIL SHALE FIELD-SITES

    EPA Science Inventory

    One of the major technology needs in the development of the oil shale industry is to adopt and develop methods for controlling the release of pollutants to the environment. Large quantities of sulfur dioxide may be generated from oil shale retorting operations. Sulfur dioxide is ...

  18. INCREASING OIL RECOVERY THROUGH ADVANCED REPROCESSING OF 3D SEISMIC, GRANT CANYON AND BACON FLAT FIELDS, NYE COUNTY, NEVADA

    SciTech Connect

    Eric H. Johnson; Don E. French

    2001-06-01

    Makoil, Inc., of Orange, California, with the support of the U.S. Department of Energy has reprocessed and reinterpreted the 3D seismic survey of the Grant Canyon area, Railroad Valley, Nye County, Nevada. The project was supported by Dept. of Energy Grant DE-FG26-00BC15257. The Grant Canyon survey covers an area of 11 square miles, and includes Grant Canyon and Bacon Flat oil fields. These fields have produced over 20 million barrels of oil since 1981, from debris slides of Devonian rocks that are beneath 3,500 to 5,000 ft of Tertiary syntectonic deposits that fill the basin of Railroad Valley. High-angle and low-angle normal faults complicate the trap geometry of the fields, and there is great variability in the acoustic characteristics of the overlying valley fill. These factors combine to create an area that is challenging to interpret from seismic reflection data. A 3D seismic survey acquired in 1992-93 by the operator of the fields has been used to identify development and wildcat locations with mixed success. Makoil believed that improved techniques of processing seismic data and additional well control could enhance the interpretation enough to improve the chances of success in the survey area. The project involved the acquisition of hardware and software for survey interpretation, survey reprocessing, and reinterpretation of the survey. SeisX, published by Paradigm Geophysical Ltd., was chosen as the interpretation software, and it was installed on a Dell Precision 610 computer work station with the Windows NT operating system. The hardware and software were selected based on cost, possible addition of compatible modeling software in the future, and the experience of consulting geophysicists in the Billings area. Installation of the software and integration of the hardware into the local office network was difficult at times but was accomplished with some technical support from Paradigm and Hewlett Packard, manufacturer of some of the network equipment. A number of improvements in the processing of the survey were made compared to the original work. Pre-stack migration was employed, and some errors in muting in the original processing were found and corrected. In addition, improvements in computer hardware allowed interactive monitoring of the processing steps, so that parameters could be adjusted before completion of each step. The reprocessed survey was then loaded into SeisX, v. 3.5, for interpretation work. Interpretation was done on 2, 21-inch monitors connected to the work station. SeisX was prone to crashing, but little work was lost because of this. The program was developed for use under the Unix operating system, and some aspects of the design of the user interface betray that heritage. For example, printing is a 2-stage operation that involves creation of a graphic file using SeisX and printing the file with printer utility software. Because of problems inherent in using graphics files with different software, a significant amount of trial and error is introduced in getting printed output. Most of the interpretation work was done using vertical profiles. The interpretation tools used with time slices are limited and hard to use, but a number to tools and techniques are available to use with vertical profiles. Although this project encountered a number of delays and difficulties, some unavoidable and some self-inflicted, the result is an improved 3D survey and greater confidence in the interpretation. The experiences described in this report will be useful to those that are embarking on a 3D seismic interpretation project.

  19. Depositional environments, sequence stratigraphy, and trapping mechanisms of Fall River Formation in Donkey Creek and Coyote Creek oil fields, Powder River basin, Wyoming

    SciTech Connect

    Knox, P.R. )

    1989-09-01

    Donkey Creek and Coyote Creek fields contain combined reserves of approximately 35 million bbl of oil and are within a trend of fields on the eastern flank of the Powder River basin that totals over 100 million bbl of reserves. The principal producing formation is the Lower Cretaceous Fall River Sandstone. A study of 45 cores and 248 logs from the three pools in the Donkey Creek and Coyote fields has shown that the Fall River is composed of three progradational deltaic units deposited during a period of rising relative sea level. These are locally eroded and are filled by a fluvial point-bar complex deposited following a lowering of relative sea level. Four important depositional facies have been recognized: the delta-front and distributary-channel sandstone of the highstand deltaic sequence and the point-bar sandstone and channel-abandonment of the lowstand fluvial sequence. Stratigraphic traps in Coyote Creek and south Donkey Creek pools are the result of permeable (250 md) point-bar sandstone (250 bbl oil/day ip) bounded updip by impermeable (0.1 md) channel abandonment mudstone. Most of the oil in the central Donkey Creek pool is produced from permeable (76 md) distributary-channel sandstone (150 bbl oil/day ip), which is restricted to the western flank of a structural nose. Lesser production, on the crest and upper western flank of the structure, is obtained from the less permeable (2.8 md) delta-front sandstone (50 bbl oil/day ip). Production is possibly limited to the crest and western flank by hydrodynamic processes.

  20. Integration of seismic and petrophysics to characterize reservoirs in "ALA" oil field, Niger Delta.

    PubMed

    Alao, P A; Olabode, S O; Opeloye, S A

    2013-01-01

    In the exploration and production business, by far the largest component of geophysical spending is driven by the need to characterize (potential) reservoirs. The simple reason is that better reservoir characterization means higher success rates and fewer wells for reservoir exploitation. In this research work, seismic and well log data were integrated in characterizing the reservoirs on "ALA" field in Niger Delta. Three-dimensional seismic data was used to identify the faults and map the horizons. Petrophysical parameters and time-depth structure maps were obtained. Seismic attributes was also employed in characterizing the reservoirs. Seven hydrocarbon-bearing reservoirs with thickness ranging from 9.9 to 71.6?m were delineated. Structural maps of horizons in six wells containing hydrocarbon-bearing zones with tops and bottoms at range of -2,453 to -3,950?m were generated; this portrayed the trapping mechanism to be mainly fault-assisted anticlinal closures. The identified prospective zones have good porosity, permeability, and hydrocarbon saturation. The environments of deposition were identified from log shapes which indicate a transitional-to-deltaic depositional environment. In this research work, new prospects have been recommended for drilling and further research work. Geochemical and biostratigraphic studies should be done to better characterize the reservoirs and reliably interpret the depositional environments. PMID:24068883

  1. Integration of Seismic and Petrophysics to Characterize Reservoirs in “ALA” Oil Field, Niger Delta

    PubMed Central

    Alao, P. A.; Olabode, S. O.; Opeloye, S. A.

    2013-01-01

    In the exploration and production business, by far the largest component of geophysical spending is driven by the need to characterize (potential) reservoirs. The simple reason is that better reservoir characterization means higher success rates and fewer wells for reservoir exploitation. In this research work, seismic and well log data were integrated in characterizing the reservoirs on “ALA” field in Niger Delta. Three-dimensional seismic data was used to identify the faults and map the horizons. Petrophysical parameters and time-depth structure maps were obtained. Seismic attributes was also employed in characterizing the reservoirs. Seven hydrocarbon-bearing reservoirs with thickness ranging from 9.9 to 71.6?m were delineated. Structural maps of horizons in six wells containing hydrocarbon-bearing zones with tops and bottoms at range of ?2,453 to ?3,950?m were generated; this portrayed the trapping mechanism to be mainly fault-assisted anticlinal closures. The identified prospective zones have good porosity, permeability, and hydrocarbon saturation. The environments of deposition were identified from log shapes which indicate a transitional-to-deltaic depositional environment. In this research work, new prospects have been recommended for drilling and further research work. Geochemical and biostratigraphic studies should be done to better characterize the reservoirs and reliably interpret the depositional environments. PMID:24068883

  2. Reservoir rock permeability prediction using support vector regression in an Iranian oil field

    NASA Astrophysics Data System (ADS)

    Saffarzadeh, Sadegh; Shadizadeh, Seyed Reza

    2012-06-01

    Reservoir permeability is a critical parameter for the evaluation of hydrocarbon reservoirs. It is often measured in the laboratory from reservoir core samples or evaluated from well test data. The prediction of reservoir rock permeability utilizing well log data is important because the core analysis and well test data are usually only available from a few wells in a field and have high coring and laboratory analysis costs. Since most wells are logged, the common practice is to estimate permeability from logs using correlation equations developed from limited core data; however, these correlation formulae are not universally applicable. Recently, support vector machines (SVMs) have been proposed as a new intelligence technique for both regression and classification tasks. The theory has a strong mathematical foundation for dependence estimation and predictive learning from finite data sets. The ultimate test for any technique that bears the claim of permeability prediction from well log data is the accurate and verifiable prediction of permeability for wells where only the well log data are available. The main goal of this paper is to develop the SVM method to obtain reservoir rock permeability based on well log data.

  3. Dark-field microscopy visualization of unstained axonal pathways using oil of wintergreen.

    PubMed

    Senatorov, Vladimir V

    2002-01-15

    Despite enormous progress in the development of new morphological techniques, there is still not a simple technique for visualization of the fiber architecture in the mammalian brain. To develop such a technique, thick (400-600 microm) sections of the rat, mice, calf or postmortal human brain were fixed in paraformaldehyde, dehydrated in a series of ethanol and finally immersed in methyl salicylate. The major principle of this newly developed method was to make the neural tissue transparent, and then utilize the ability of neuronal fibers to deflect and deviate light directed from the side to render them visible. Dark-field illumination was used to create illuminating rays of light arriving at an angle exceeding the collecting angle of the objective lens, thus causing only the axonal pathways to be visible as a bright silver silhouette against a dark background. As a result, a three-dimensional structure of the whole white matter of the brain slice became clearly viewable. This technique worked equally well for mammalian brain frontal, sagittal and horizontal sections, as well as for the spinal cord sections. The method was appropriate for verification of axonal fiber courses in brain slice preparations used in electrophysiological experiments, including special applications, such as visualization of axonal bundles within neural transplants. Due to its simplicity, the technique can be successfully used even in an amateur laboratory having basic microscopy equipment and reagents. PMID:11741722

  4. Public Hearing or `Hearing Public'? An Evaluation of the Participation of Local Stakeholders in Environmental Impact Assessment of Ghana's Jubilee Oil Fields

    NASA Astrophysics Data System (ADS)

    Bawole, Justice Nyigmah

    2013-08-01

    This article investigates the involvement of local stakeholders in the environmental impact assessment (EIA) processes of Ghana's first off-shore oil fields (the Jubilee fields). Adopting key informants interviews and documentary reviews, the article argues that the public hearings and the other stakeholder engagement processes were cosmetic and rhetoric with the view to meeting legal requirements rather than a purposeful interest in eliciting inputs from local stakeholders. It further argues that the operators appear to lack the social legitimacy and social license that will make them acceptable in the project communities. A rigorous community engagement along with a commitment to actively involving local stakeholders in the corporate social responsibility (CSR) programmes of the partners may enhance the image of the partners and improve their social legitimacy. Local government agencies should be capacitated to actively engage project organisers; and government must mitigate the impact of the oil projects through well-structured social support programmes.

  5. Public hearing or 'hearing public'? an evaluation of the participation of local stakeholders in environmental impact assessment of Ghana's Jubilee oil fields.

    PubMed

    Bawole, Justice Nyigmah

    2013-08-01

    This article investigates the involvement of local stakeholders in the environmental impact assessment (EIA) processes of Ghana's first off-shore oil fields (the Jubilee fields). Adopting key informants interviews and documentary reviews, the article argues that the public hearings and the other stakeholder engagement processes were cosmetic and rhetoric with the view to meeting legal requirements rather than a purposeful interest in eliciting inputs from local stakeholders. It further argues that the operators appear to lack the social legitimacy and social license that will make them acceptable in the project communities. A rigorous community engagement along with a commitment to actively involving local stakeholders in the corporate social responsibility (CSR) programmes of the partners may enhance the image of the partners and improve their social legitimacy. Local government agencies should be capacitated to actively engage project organisers; and government must mitigate the impact of the oil projects through well-structured social support programmes. PMID:23716010

  6. Stratigraphy, depositional history, and trapping mechanisms of Lone Tree Creek and Lodgepole Creek oil fields, Lower Cretaceous Fall River formation, Powder River Basin, Wyoming

    SciTech Connect

    Gustason, E.R.; Ryer, T.A.

    1985-05-01

    Stratigraphically trapped accumulations of oil in the Lone Tree Creek and Lodgepole Creek fields occur within and just updip from a fluvial meander belt within the Fall River Formation. The meander belt can be mapped north-to-south over a distance of at least 100 mi (161 km) in the eastern part of the Powder River basin. The northern part of the meander belt contains the oil fields of the Coyote Creek-Miller Creek trend; the southern part contains only the relatively small Lone Tree Creek and Lodgepole Creek fields. These small fields are of considerable interest, as they display a style of stratigraphic trapping of hydrocarbons not observed in the prolific Coyote Creek-Miller Creek trend. The stratigraphic traps of the Coyote Creek-Miller Creek trend occur at updip facing convexities along the eastern edge of the meander belt, with abandonment clay plugs serving as lateral permeability barriers to hydrocarbon migration. Oil has been produced in part of the Lone Tree Creek field from a similar trap. The remaining part of Lone Tree Creek field and Lodgepole creek field produce from stratigraphic traps formed by lateral pinch-outs of delta-front sandstone bodies. These traps are situated updip from and apparently in continuity with the meander-belt deposits, indicating that they may have been charged with hydrocarbons that found their way through the clay-plug barriers along the margin of the meander belt. Similar, undiscovered traps may exist updip from Fall River meander belts elsewhere in the basin.

  7. Sonar Determination of Environmental and Geologic Controls of Spatial-Temporal Variability in the Coal Oil Point Seep Field, California

    NASA Astrophysics Data System (ADS)

    Leifer, I.; Luyendyk, B. P.; Stubbs, C. C.; Wilson, D.; Kamerling, M.

    2007-12-01

    Marine seepage of geologic methane, CH4, is a significant yet poorly understood contribution to atmospheric greenhouse gases, and is at least 20 times as potent as CO2. Marine seeps, excluding hydrates, are ~13% of natural emissions although there is significant uncertainty due the lack of published studies. Currently, sonar is the best method for seep emission quantification. Repeat sonar surveys spanning ten years were conducted in the Coal Oil Point (COP) marine hydrocarbon seep field in southern California. The field is one of the largest in the world emitting 105m3day-1 of CH4 from ~3 km2 of seafloor at depths from 2 to 90 m. Seepage arises from the Monterey Fm reservoir, which is overlain and capped by the Sisquoc Fm. Surveys sought to locate seeps, quantify emissions, relate seepage to geological structures, and identify spatial- temporal variability in the seep field to examine controls of and environmental factors. Sonars used were wide beam 3 kHz and 3-15 kHz. To estimate emissions, RMS sonar backscatter amplitude was calculated for a fixed depth window above the seafloor and normalized to the bottom return (termed J). Then, seepage above noise along track lines was quantified for J and gridded with ~40 m resolution. The noise level was calculated from the probability distribution of J for each track line. Emissions were derived from J using a lab calibration. Results suggest geology has a controlling influence on seep spatial distribution through features including fault planes, outcrops of the contact between the Monterey and Sisquoc Fms, and folded beds. The bed and fault plane interfaces provide pathways for bubbles to migrate from the Monterey Fm through and around the capping units. Emissions show significant variability on tidal to decadal time scales and decameter to km spatial scales, including the activation and deactivation of seepage areas. Environmental factors influence seepage- e.g., emissions inversely relate to tides- with variability occurring along pathways that appear to be geologically controlled. Emission uncertainty arises from the calibration function, which showed very poor dynamic range, and the inherent geometric limitations in wide beam sonar. Further, its low spatial resolution prevents correlation of seepage with smaller geologic structures. Recent studies show high frequency multibeam sonar mapping achieves spatial resolutions < 50 cm. This allows identification of individual bubble plumes, eliminating geometric uncertainty and improving dynamic range.

  8. Draft Genome Sequence of Oleiagrimonas soli 3.5XT, a Type Species in a Newly Identified Genus, Isolated from an Oil Field in China.

    PubMed

    Huang, Yong; Fang, Tingting; Wang, Hui; Zhou, Haiyan

    2015-01-01

    Oleiagrimonas gudaosoli 3.5X(T) was isolated from an oil field and identified as a new member of a novel genus. The draft genome sequence of this strain, which comprises 3,379,958 bp encoding 3,010 open reading frames (ORFs), can provide insight into the life style of this newly identified genus in petroleum-contaminated soil. PMID:25977438

  9. Cottonseed protein, oil, and mineral status in near-isogenic Gossypium hirsutum cotton lines expressing fuzzy/linted and fuzzless/linted seed phenotypes under field conditions

    PubMed Central

    Bellaloui, Nacer; Stetina, Salliana R.; Turley, Rickie B.

    2015-01-01

    Cotton is an important crop in the world and is a major source of oil for human consumption and cotton meal for livestock. Cottonseed nutrition (seed composition: protein, oil, and minerals) determines the quality of seeds. Therefore, maintaining optimum levels of cottonseed nutrition is critical. Physiological and genetic mechanisms controlling the levels of these constituents in cottonseed are still largely unknown. Our previous research conducted under greenhouse conditions showed that seed and leaf nutrition differed between fuzzless and fuzzy seed isolines. Therefore, the objective of this research was to investigate the seed fuzz phenotype (trait) effects on seed protein, oil, N, C, S, and minerals in five sets of near-isogenic mutant cotton lines for seed fuzz in a 2-year experiment under field condition to evaluate the stability of the effect of the trait on seed nutrition. The isolines (genotypes) in each set differ for the seed fuzz trait (fuzzless/linted seed line, N lines, and fuzzy/linted seed line, F lines). Results showed that seed protein was higher in the fuzzy genotype in all sets, but seed oil was higher in fuzzless genotype in all sets. The concentrations of seed Ca and C were higher in all fuzzless genotypes, but N, S, B, Fe, and Zn were higher in most of the fuzzy genotypes. Generally, minerals were higher in leaves of F lines, suggesting the translocation of minerals from leaves to seeds was limited. The research demonstrated that fiber development could be involved in cottonseed composition. This may be due to the involvement of fiber development in carbon and nitrogen metabolism, and the mobility of nutrients from leaves (source) to seed (sink). This information is beneficial to breeders to consider fuzzless cottonseed for potential protein and oil use and select for higher oil or higher protein content, and to physiologists to further understand the mobility of minerals to increase the quality of cottonseed nutrition for food and feed. PMID:25852704

  10. Geology of the Volga-Ural petroleum province and detailed description of the Ramashkino and Arlan oil fields

    USGS Publications Warehouse

    Peterson, James A.; Clarke, James W.

    1983-01-01

    The Volga-Ural petroleum province is in general coincident with the Volga-Ural regional high, a broad upwarp of the east-central part of the Russian (East European) platform. The central part of the province is occupied by the Tatar arch, which contains the major share of the oil fields of the province. The Perm-Bashkir arch forms the northeastern part of the regional high, and the Zhigulevsko-Orenburg arch makes up the southern part. These arches are separated from one another by elongate downwarps. The platform cover overlies an Archean crystalline basement and consists of seven main sedimentation cycles as follows: 1) Riphean (lower Bavly) continental sandstone, shale, and conglomerate beds from 500 to 5,000 m thick deposited in aulacogens. 2) Vendian (upper Bavly) continental and marine shale and sandstone up to 3,000 m thick. 3) Middle Devonian-Tournaisian transgressive deposits, which are sandstone, siltstone, and shale in the lower part and carbonates with abundant reefs in the upper; thickness is 300-1,000 m. In the upper carbonate part is the Kamsko-Kinel trough system, which consists of narrow interconnected deep-water troughs. 4) The Visean-Namurian-Bashkirian cycle, which began with deposition of Visean clastics that draped over reefs of the previous cycle and filled in an erosional relief that had formed in some places on the sediments of the previous cycle. The Visean clastics are overlain by marine carbonates. Thickness of the cycle is 50-800 m. 5) Early Moscovian-Early Permian terrigenous clastic deposits and marine carbonate beds 1,000-3,000 m thick. 6) The late Early Permian-Late Permian cycle, which reflects maximum growth of the Ural Mountains and associated Ural foredeep. Evaporites were first deposited, then marine limestones and dolomites, which intertongue eastward with clastic sediments from the Ural Mountains. 7) Continental redbeds of Triassic age and mixed continental and marine elastic beds of Jurassic and Cretaceous age, which were deposited on the southern, southwestern, and northern margins of the Russian platform; they are generally absent in the Volga-Ural province, however. The Volga-Ural oil and gas basin is a single artesian system that contains seven aquifers separated by seals. The areas of greatest hydraulic head are in the eastern parts of the basin near areas where the aquifers crop out on the western slopes of the Ural Mountains. The Peri-Caspian basin is the principal drainage area of the artesian system. Approximately 600 oil and gas fields and 2,000 pools have been found in the Volga-Ural province. Nine productive sequences are recognized as follows: 1) Upper Proterozoic (Bavly beds), which are promising but not yet commercial. 2) Clastic Devonian, which contains the major reserves and includes the main pays of the super-giant Romashkino field. 3) Carbonate Upper Devonian and lowermost Carboniferous, which is one of the main reef-bearing intervals. 4) Visean (Lower Carboniferous) elastics, which are the main pays in the super-giant Arian field. 5) Carbonate Lower and Middle Carboniferous. 6) Clastic Middle Carboniferous Moscovian. 7) Carbonate Middle and Upper Carboniferous. 8) Carbonate-evaporite Lower Permian, which contains the major gas reserves and the lower part of the Melekess tar deposits. 9) Clastic-carbonate Upper Permian, which contains the major part of the Melekess tar deposits. The Volga-Ural province is divided into several productive regions on a basis of differences in structure, distribution of reservoir and source-rock facies, and general composition of the petroleum accumulations. These regions are the Tatar arch, Birsk saddle, Upper Kama depression, Perm-Bashkir arch, Ufa-Orenburg monocline, Melekess-Sernovodsko-Abdulino basin, Zhligulevsko-Orenburg arch, Ural foredeep, and north borders of the Peri-Casplan depression. Exploration activity has declined in recent years; however, interest remains high in several parts of the province, particula

  11. Heterogeneity of fluvial-deltaic reservoirs in the Appalachian basin: A case study from a Lower Mississippian oil field in central West Virginia

    SciTech Connect

    Hohn, M.E.; McDowell, R.R.; Matchen, D.L.

    1997-06-01

    Since discovery in 1924, Granny Creek field in central West Virginia has experienced several periods of renewed drilling for oil in a fluvial-deltaic sandstone in the Lower Mississippian Price Formation. Depositional and diagenetic features leading to reservoir heterogeneity include highly variable grain size, thin shale and siltstone beds, and zones containing large quantities of calcite, siderite, or quartz cement. Electrofacies defined through cluster analysis of wireline log responses corresponded approximately to facies observed in core. Three-dimensional models of porosity computed from density logs showed that zones of relatively high porosity were discontinuous across the field. The regression of core permeability on core porosity is statistically significant, and differs for each electrofacies. Zones of high permeability estimated from porosity and electrofacies tend to be discontinuous and aligned roughly north-south. Cumulative oil production varies considerably between adjacent wells, and corresponds very poorly with trends in porosity and permeability. Original oil in place, estimated for each well from reservoir thickness, porosity, water saturation, and an assumed value for drainage radius, is highly variable in the southern part of the field, which is characterized by relatively complex interfingering of electrofacies and similar variability in porosity and permeability.

  12. Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama. Annual report, March 1996--March 1997

    SciTech Connect

    Pashin, J.C.; Raymond, D.E.; Rindsberg, A.K.; Alabi, G.G.; Groshong, R.H.

    1997-08-01

    Gilbertown Field is the oldest oil field in Alabama and produces oil from chalk of the Upper Cretaceous Selma Group and from sandstone of the Eutaw Formation along the southern margin of the Gilbertown fault system. Most of the field has been in primary recovery since establishment, but production has declined to marginally economic levels. This investigation applies advanced geologic concepts designed to aid implementation of improved recovery programs. The Gilbertown fault system is detached at the base of Jurassic salt. The fault system began forming as a half graben and evolved in to a full graben by the Late Cretaceous. Conventional trapping mechanisms are effective in Eutaw sandstone, whereas oil in Selma chalk is trapped in faults and fault-related fractures. Burial modeling establishes that the subsidence history of the Gilbertown area is typical of extensional basins and includes a major component of sediment loading and compaction. Surface mapping and fracture analysis indicate that faults offset strata as young as Miocene and that joints may be related to regional uplift postdating fault movement. Preliminary balanced structural models of the Gilbertown fault system indicate that synsedimentary growth factors need to be incorporated into the basic equations of area balance to model strain and predict fractures in Selma and Eutaw reservoirs.

  13. Environmental Forensics: Molecular Insight into Oil Spill Weathering Helps Advance High Magnetic Field FT-ICR Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    McKenna, Amy

    2013-03-01

    The depletion of terrestrial global oil reserves has shifted oil exploration into offshore and ultra-deep water (> 5000 ft) oil reserves to meet global energy demands. Deep water reservoirs are currently in production in many parts of the world, including the Gulf of Mexico, but production is complicated by the water depth and thick salt caps that challenge reservoir characterization / production. The explosion aboard the Deepwater Horizon in April 2010 resulted in an estimated total release of ~5 million barrels (BP claims that they collected ~1M barrels, for a net release of 4 M) of light, sweet crude oil into the Gulf of Mexico and shifted attention toward the environmental risks associated with offshore oil production. The growing emphasis on deep water and ultra-deep water oil production poses a significant environmental threat, and increased regulations require that oil companies minimize environmental impact to prevent oil spills, and mitigate environmental damage when spills occur. Every oil spill is unique. The molecular transformations that occur to petroleum after contact with seawater depend on the physical and chemical properties of the spilled oil, environmental conditions, and deposition environment. Molecular-level knowledge of the composition, distribution, and total mass of released hydrocarbons is essential to disentangle photo- and bio-degradation, source identification, and long-term environmental impact of hydrocarbons released into the environment. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) is unsurpassed in its ability to characterize complex mixtures at the level of elemental composition assignment. Only FT-ICR mass spectrometry can routinely achieve the required minimum resolving power necessary to elucidate molecular-level characterization of crude oil. Conversely, the spectral complexity of petroleum facilitates identification of systematic errors in the accumulation, transfer, excitation, and detection events in the FT-ICR experiment. For example, the high density of peaks at each nominal mass unit provides unprecedented insight into how excitation conditions affect ion motion during detection. Aggregated oil (i.e., tar balls, tar mats) that reached the surface exhibits a more than two-fold increase in the total number of detected species, with an increased number of oxygenated species. Principal component analysis (PCA) applied to two possible source oils (contained within the same ship) and weathered samples provide the first application of FT-ICR MS for source identification. Molecular formulae from parent and weathered oil indicate that the lightest petroleum fractions (saturated hydrocarbons) are the most readily oxidized components, and can serve as a template to determine chemical transformations that occur throughout the water column. The ability to differentiate and catalogue compositional changes that occur to oil after its release into the environment relies heavily on gains achieved in nearly all steps in the FT-ICR mass spectral experiment required to accommodate larger ion populations inherent to heavily weathered crude oil. Here, we present the requirement for FT-ICR MS for comprehensive oil spill characterization, and highlight advances made to FT-ICR MS experimental conditions developed from petroleum characterization. Work supported by DMR-06-54118, NSF CHE-10-49753 (RAPID), BP/The Gulf of Mexico Research Initiative, and the State of Florida

  14. Combination of pulsed electric fields, mild heat and essential oils as an alternative to the ultrapasteurization of liquid whole egg.

    PubMed

    Espina, Laura; Monfort, Silvia; Alvarez, Ignacio; García-Gonzalo, Diego; Pagán, Rafael

    2014-10-17

    The production of microbiologically safe liquid whole egg (LWE) by industrial ultrapasteurization is restricted by the high thermal sensitivity of LWE components. This research proposes an alternative treatment based on the application of pulsed electric fields (PEF) and mild heat, in the presence of natural essential oils (EOs) or their individual components (ICs). The obtained results indicate that the successive application of PEF (25kV/ and 100kJ/kg) followed by heat (60°C during 3.5') to LWE added with 200?L/L of lemon EO would reach 4log10cycles of inactivation of Salmonella Senftenberg 775W and Listeria monocytogenes, when any of these barriers acting alone inactivated less than 1.5log10cycles of either bacteria. Therefore, the synergism between lemon EO and the successive application of PEF and heat would provide a safety level similar to that of ultrapasteurization treatment for Salmonella Senftenberg 775W and L. monocytogenes, but at a lower temperature. To a lesser extent, synergism with the successive application of PEF and heat was also observed in the presence of 200?L/L of carvacrol, citral, (+)-limonene, or mandarin EO, reaching about 3.5log10cycles of inactivation in Salmonella Senftenberg and 3.0log10cycles in L. monocytogenes, respectively. A sensory test on LWE containing 200?L/L of each additive in the form of omelets and sponge cakes revealed that this concentration of mandarin EO, lemon EO, or (+)-limonene did not decrease the sensory acceptability of the LWE-containing products, and lemon EO and mandarin EO even increased the hedonic acceptability of sponge cakes. In conclusion, this process could be applied in the food industry to obtain microbiologically safe LWE, which could be used to produce egg-based products without decreasing (and even increasing) their sensory appeal. PMID:25146463

  15. Seafloor bathymetry in deep and shallow water marine CSEM responses of Nigerian Niger Delta oil field: Effects and corrections

    NASA Astrophysics Data System (ADS)

    Folorunso, Adetayo Femi; Li, Yuguo

    2015-12-01

    Topography distortions in bathymetrically acquired marine Controlled-Source Electromagnetic (mCSEM) responses are capable of misleading interpretation to the presence or absence of the target if not corrected for. For this reason, the effects and correction of bathymetry distortions on the deep and shallow seafloor mCSEM responses of the Niger Delta Oil province were examined in this paper. Marine CSEM response of the Niger Delta geological structure was modelled by using a 2.5D adaptive finite element forward modelling code. In both the deep water and shallow water cases, the bathymetry distortions in the electric field amplitude and phase were found to get smaller with increasing Tx-Rx offsets and contain short-wavelength components in the amplitude curves which persist at all Tx-Rx offsets. In the deep water, topographic effects on the reservoir signatures are not significant, but as water depth reduces, bathymetric distortions become more significant as a result of the airwave effects, masking the target signatures. The correction technique produces a good agreement between the flat-seafloor reservoir model and its equivalent bathymetric model in deep water at 0.25 Hz, while in shallow water, the corrected response only shows good agreement at shorter offsets but becomes complicated at longer offsets due to airwave effects. Transmission frequency was extended above and below 0.25 Hz in the frequency spectrum and the correction method applied. The bathymetry correction at higher frequency (1.75 Hz) is not effective in removing the topographic effects in either deep or shallow water. At 0.05 Hz for both seafloor scenarios, we obtained the best corrected amplitude profiles, removing completely the distortions from both topographic undulation and airwave effects in the shallow water model. Overall, the work shows that the correction technique is effective in reducing bathymetric effects in deep water at medium frequency and in both deep and shallow waters at a low frequency of 0.05 Hz.

  16. Increasing heavy oil reserves in the Wilmington oil field through advanced reservoir characterization and thermal production technologies. Quarterly technical progress report, March 30, 1995--June 30, 1995

    SciTech Connect

    Clarke, D.; Ershaghi, I.; Davies, D.; Phillips, C.; Mondragon, J.

    1995-07-28

    This is the first quarterly technical progress report for the project. Although the contract was awarded on March 30, 1995 and Pre-Award Approval was given on January 26, 1995, the partners of this project initiated work on October 1, 1994. As such, this progress report summarizes the work performed from project inception. The production and injection data, reservoir engineering data, and digitized and normalized log data were all completed sufficiently by the end of the quarter to start work on the basic reservoir engineering and geologic stochastic models. Basic reservoir engineering analysis began June 1 and will continue to March, 1996. Design work for the 5 observation/core holes, oil finger printing of the cored oil sands, and tracers surveys began in January, 1995. The wells will be drilled from July--August, 1995 and tracer injection work is projected to start in October, 1995. A preliminary deterministic 3-D geologic model was completed in June which is sufficient to start work on the stochastic 3-D geologic model. The four proposed horizontal wells (two injectors and two producers) have been designed, equipment has been ordered, and the wells will be drilled from mid-August through September. Four existing steam injection wells were converted to hot water injection in March, 1995. Initial rates were kept low to minimize operational problems. Injection rates will be increased significantly in July.

  17. EFFECTIVENESS AND SAFETY OF STRATEGIES FOR OIL SPILL BIOREMEDIATION: POTENTIAL AND LIMITATION, LABORATORY TO FIELD (RESEARCH BRIEF)

    EPA Science Inventory

    Several important additional research efforts were identified during the development of test systems and protocols for assessing the effectiveness and environmental safety of oil spill commercial bioremediation agents (CBAs). Research that examined CBA efficacy issues included: (...

  18. Geographic information system (GIS)-based maps of Appalachian basin oil and gas fields: Chapter C.2 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Ryder, Robert T.; Kinney, Scott A.; Suitt, Stephen E.; Merrill, Matthew D.; Trippi, Michael H.

    2014-01-01

    In 2006 and 2007, the greenline Appalachian basin field maps were digitized under the supervision of Scott Kinney and converted to geographic information system (GIS) files for chapter I.1 (this volume). By converting these oil and gas field maps to a digital format and maintaining the field names where noted, they are now available for a variety of oil and gas and possibly carbon-dioxide sequestration projects. Having historical names assigned to known digitized conventional fields provides a convenient classification scheme into which cumulative production and ultimate field-size databases can be organized. Moreover, as exploratory and development drilling expands across the basin, many previou

  19. Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama -- Year 2. Annual report, March 1997--March 1998

    SciTech Connect

    Pashin, J.C.; Raymond, D.E.; Rindsberg, A.K.; Alabi, G.G.; Carroll, R.E.

    1998-09-01

    Gilbertown Field is the oldest oil field in Alabama and has produced oil from fractured chalk of the Cretaceous Selma Group and glauconitic sandstone of the Eutaw Formation. Nearly all of Gilbertown Field is still in primary recovery, although waterflooding has been attempted locally. The objective of this project is to analyze the geologic structure and burial history of Mesozoic and Tertiary strata in Gilbertown Field and adjacent areas in order to suggest ways in which oil recovery can be improved. Indeed, the decline of oil production to marginally economic levels in recent years has made this type of analysis timely and practical. Key technical advancements being sought include understanding the relationship of requisite strain to production in Gilbertown reservoirs, incorporation of synsedimentary growth factors into models of area balance, quantification of the relationship between requisite strain and bed curvature, determination of the timing of hydrocarbon generation, and identification of the avenues and mechanisms of fluid transport.

  20. Fuel properties of cottonseed oil

    SciTech Connect

    Karaosmanoglu, F.; Tueter, M.; Goellue, E.; Yanmaz, S.; Altintig, E.

    1999-11-01

    The use of vegetable oils as fuel alternatives has an exceptional importance in the field of research. In this study, evaluation possibilities of cottonseed oil have been investigated as an alternative candidate for diesel fuel and fuel oil. The fuel property tests were performed according to standard analysis methods for oil and fuel. An overall evaluation of the results indicates that cottonseed oil can be proposed as a possible green substitute for fuel.

  1. Reactivation of an Idle Lease to Increase Heavy Oil Recovery Through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California

    SciTech Connect

    Steven Schamel

    1998-08-31

    A previously idle portion of the Midway-Sunset field, the ARCO Western Energy Pru Fee property, is being brought back into commercial production through tight integration of geologic characterization, geostatistical modeling, reservoir simulation, and petroleum engineering. This property, shut-in over a decade ago as economically marginal using conventional cyclic steaming methods, has a 200-300 foot thick oil column in the Monarch Sand. However, the sand lacks effective steam barriers and has a thick water-saturation zone above the oil-water contact. These factors require an innovative approach to steam flood production design that will balance optimal total oil production against economically viable steam-oil ratios and production rates. The methods used in the Class III demonstration are accessible to most operators in the Midway-Sunset field and could be used to revitalize properties with declining production of heavy oils throughout the region.

  2. Reactivation of an Idle Lease to Increase Heavy Oil Recovery Through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California

    SciTech Connect

    Steven Schamel

    1998-03-20

    A previously idle portion of the Midway-Sunset field, the ARCO Western Energy Pru Fee property, is being brought back into commercial production through tight integration of geologic characterization, geostatistical modeling, reservoir simulation, and petroleum engineering. This property, shut-in over a decade ago as economically marginal using conventional cyclic steaming methods, has a 200-300 foot thick oil column in the Monarch Sand. However, the sand lacks effective steam barriers and has a thick water-saturation zone above the oil-water contact. These factors require an innovative approach to steam flood production design that will balance optimal total oil production against economically viable steam-oil ratios and production rates. The methods used in the Class III demonstration are accessible to most operators in the Midway-Sunset field and could be used to revitalize properties with declining production of heavy oils throughout the region.

  3. Cyclic CO{sub 2} injection for light oil recovery: Performance of a cost shared field test in Louisiana. Final report, November 21, 1988--November 30, 1992

    SciTech Connect

    Bassiouni, Z.A.

    1992-12-31

    The ultimate objectives of the research were to provide a base of knowledge on the cyclic CO{sub 2} stimulation (or CO{sub 2} huff-n-puff) process for the enhanced recovery of Louisiana crude oil, and to demonstrate the utility of the process to the small independent producer. The project was divided into four subtasks: laboratory coreflood experiments, computer simulation, field testing, and technology transfer. Laboratory corefloods were performed to investigate important process parameters. Computer simulation was used to confirm and expand laboratory coreflood results. A field-test data base was constructed and analyzed to facilitate target reservoir screening and to identify successful operational practices. The laboratory coreflood results and data base evaluations were used in the design and implementation of a field test that was conducted in conjunction with the private sector. The results of laboratory and field studies were disseminated to the industry through presentations at technical conferences and publications in technical journals.

  4. Field Laboratory in the Osage Reservation -- Determination of the Status of Oil and Gas Operations: Task 1. Development of Survey Procedures and Protocols

    SciTech Connect

    Carroll, Herbert B.; Johnson, William I.

    1999-04-27

    Procedures and protocols were developed for the determination of the status of oil, gas, and other mineral operations on the Osage Mineral Reservation Estate. The strategy for surveying Osage County, Oklahoma, was developed and then tested in the field. Two Osage Tribal Council members and two Native American college students (who are members of the Osage Tribe) were trained in the field as a test of the procedures and protocols developed in Task 1. Active and inactive surface mining operations, industrial sites, and hydrocarbon-producing fields were located on maps of the county, which was divided into four more or less equal areas for future investigation. Field testing of the procedures, protocols, and training was successful. No significant damage was found at petroleum production operations in a relatively new production operation and in a mature waterflood operation.

  5. Crude Oil Analysis Database

    DOE Data Explorer

    Shay, Johanna Y.

    The composition and physical properties of crude oil vary widely from one reservoir to another within an oil field, as well as from one field or region to another. Although all oils consist of hydrocarbons and their derivatives, the proportions of various types of compounds differ greatly. This makes some oils more suitable than others for specific refining processes and uses. To take advantage of this diversity, one needs access to information in a large database of crude oil analyses. The Crude Oil Analysis Database (COADB) currently satisfies this need by offering 9,056 crude oil analyses. Of these, 8,500 are United States domestic oils. The database contains results of analysis of the general properties and chemical composition, as well as the field, formation, and geographic location of the crude oil sample. [Taken from the Introduction to COAMDATA_DESC.pdf, part of the zipped software and database file at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the zipped file to your PC. When opened, it will contain PDF documents and a large Excel spreadsheet. It will also contain the database in Microsoft Access 2002.

  6. A field and laboratory assessment of oil spill effects on survival and reproduction of Pacific herring following the Exxon Valdez spill

    SciTech Connect

    Pearson, W.H.; Skalski, J.R.

    1995-12-31

    Field and laboratory investigations in 1989 and 1990 were designed to assess potential injury to Prince William Sound herring by testing for differences between oiled regions and unoiled reference areas and by relating biological response variables to the concentrations of polycyclic aromatic hydrocarbons (PAH) in eggs-on-kelp samples. Hydrocarbon analyses and laboratory incubation were conducted on eggs-on-kelp samples from Prince William Sound and Sitka Sound. The eggs and hatching larvae were examined to evaluate several response variables: egg development, hatch, larval survival, abnormal development of larvae, larval length, and larval yolk-sac volume. Analysis of 1989 shoreline surveys indicate that about 96% of the total spawn length (158 km) in Prince William Sound occurred along shorelines with no oiling, and less than 1% of the 1989 total spawn length occurred along shorelines with moderate to heavy oiling. Analysis of shoreline oiling in both 1989 and 1990 from all surveys indicates that about 90 to 91% of the total 1989 spawn length occurred along unoiled shorelines. Effects on herring eggs were minor in 1989 even in oiled areas. No significant relationship was found between 1989 PAH burdens in eggs-on-kelp samples and 9 out of 10 biological response variables. In 1989, significantly lower proportions of developed eggs were observed for Cabin Bay samples visibly contaminated with tarry deposits. The location where these effects were seen represented less than 2% of total 1989 spawn length. No effects of the spill on herring were evident in 1990. No significant relationship was found between 1990 PAH burdens and the seven biological response variables studied. 33 refs., 11 figs., 5 tabs.

  7. Increased oil production and reserves from improved completion techniques in the Bluebell Field, Uinta Basin, Utah. Seventh quarterly technical progress report, April 1, 1995--June 30, 1995

    SciTech Connect

    Morgan, C.D.

    1995-09-01

    The objective of this project is to increase oil production and reserves in the Uinta Basin by demonstrating improved completion techniques. Low productivity of Uinta Basin wells is caused by gross production intervals of several thousand feet that contain perforated thief zones, water-bearing zones, and unperforated oil-bearing intervals. Geologic and engineering characterization and computer simulation of the Green River and Wasatch formations in the Bluebell field will determine reservoir heterogeneities related to fractures and depositional trends. This will be followed by drilling and recompletion of several wells to demonstrate improved completion techniques based on the reservoir characterization. Transfer of the project results will be an ongoing component of the project. Technical progress for this quarter are discussed for subsurface and engineering studies.

  8. Lateral seismic prediction of 3rd member sand reservoir in Shahejie formation in Southern Bohai oil field and the prediction result

    SciTech Connect

    Wengong, H.; Hongming, C.; Jinlian, L. )

    1992-01-01

    Major reservoir in Southern Bohar Oil Field is the 3rd member turbidite sand in the Shahejie formation. The lateral seismic prediction involves the following interpretation jobs: comprehensive analysis of average velocity, synthetic seismogram and VSP data in the area; recognition of reservoir reflection characters in high-resolution seismic section which goes through well; lateral reservoir prediction using the reflection characters; plotting the structural map and isopach map of the reservoir; and offering favourable exploratory well site after reasonable reservoir evaluation that uses relevant materials, such as dynamic and static data of hydrocarbon. In this paper, using the technique, the authors have interpreted 17 sand bodies covering 38 km[sup 2] totally, and offered 25 exploration and development well sites. 8 wells have been completed, of which 7 wells produce industrial oil flow. The predicted horizons coincide with the drilled ones very well. Very good exploration effect has been received satisfactorily.

  9. Study of the electrodes length influence on the trajectories of water droplets dispersed in oil and affected by non-uniform electric field

    NASA Astrophysics Data System (ADS)

    Kharlamov, S. N.; Zaikovskii, V. V.; Shenderova, I. V.

    2015-11-01

    The paper presents the results of numerical modelling of the processes accompanying movement of drop viscous media (water) in oil under the influence of exterior forces of the electric and dynamic nature. Systematic calculations of influence on the electric field heterogeneity drops, created by a symmetric and asymmetrical configuration of electrodes are carried out both in inter electrode and behind electrode areas taking into account a complex operation of dielectrophoresis forces, buoyancies and drag, as well as the variability of electrode sizes. The analysis of drop movement trajectories shows that the asymmetrical configuration of electrodes can be applied for an electro-coalescence intensification of water-in-oil emulsion. Correctness of calculations of the mathematical model and numerical methods are confirmed by good results if compared with the available data of the other authors.

  10. Heliophrya sp. , a new protozoan biomonitor of pollution: culture techniques, toxin uptake and elimination, and field studies in an oil-polluted stream

    SciTech Connect

    Sayre, P.G.

    1984-01-01

    The stalkless suctorian Heliophyra sp., a sessile ciliated protozoan, was used as a pollution biomonitor. The research objectives were to determine: (1) optimal culture conditions and techniques for biotoxicity testing; (2) ability of Helipophrya to incorporate and eliminate a /sup 14/C oil component and other organic toxins; (3) suitability of Heliophrya as a biomonitor of oil pollution. Selection of culture conditions for Heliophrya were based on survival over a three week period and ability to divide when fed after three weeks. The LC50 (lethal concentration for 50% of the population) for 96 h was 12.4 ppt salinity. Heliophrya were exposed to /sup 14/C toxins for 48 h, then organisms were transferred to nonradioactive water for 96 h. The uptake rate of /sup 14/C octachlorostyrene was higher than /sup 14/C phenanthrene or /sup 14/C diisononyl phthalate. Elimination rates were comparable to other test organisms. Heliophrya and d. pulex were placed at three stations, in a stream which received chronic oil pollution, for periods of 48 h and seven days. A 48 h lab test with dilutions of field water was performed. Water samples were analyzed by gas chromatography and mass spectrometry. Death of Heliophrya at the three polluted stations over 48 h was not significantly greater than at a less polluted tributary; however, all the Daphnia in the polluted stream stations were killed. In the seven day field study, Heliophrya had an estimated LC50 of 1 ppm for the aromatic and 29 ppm for the total hydrocarbons. Compared to other species, Heliophrya is moderately sensitive to oil pollution, and is a good companion biomonitor to the more sensitive Daphnia.

  11. Characteristics of discrete and basin-centered parts of the Lower Silurian regional oil and gas accumulation, Appalachian basin; preliminary results from a data set of 25 oil and gas fields

    USGS Publications Warehouse

    Ryder, Robert T.

    1998-01-01

    Oil and gas trapped in Lower Silurian 'Clinton' sands and Medina Group sandstone constitute a regional hydrocarbon accumulation that extends 425 mi in length from Ontario, Canada to northeastern Kentucky. The 125-mi width of the accumulation extends from central Ohio eastward to western Pennsylvania and west-central New York. Lenticular and intertonguing reservoirs, a gradual eastward decrease in reservoir porosity and permeability, and poorly segregated gas, oil, and water in the reservoirs make it very difficult to recognize clear-cut geologic- and production-based subdivisions in the accumulation that are relevant to resource assessment. However, subtle variations are recognizable that permit the regional accumulation to be subdivided into three tentative parts: a western gas-bearing part having more or less discrete fields; an eastern gas-bearing part having many characteristics of a basin-centered accumulation; and a central oil- and gas-bearing part with 'hybrid' fields that share characteristics of both discrete and basin-centered accumulation. A data set of 25 oil and gas fields is used in the report to compare selected attributes of the three parts of the regional accumulation. A fourth part of the regional accumulation, not discussed here, is an eastern extension of basin-centered accumulation having local commercial gas in the Tuscarora Sandstone, a proximal facies of the Lower Silurian depositional system. A basin-centered gas accumulation is a regionally extensive and commonly very thick zone of gas saturation that occurs in low-permeability rocks in the central, deeper part of a sedimentary basin. Another commonly used term for this type of accumulation is deep-basin gas accumulation. Basin-centered accumulation is a variety of continuous-type accumulation. The 'Clinton' sands and Medina Group sandstone part of the basin-centered gas accumulation is characterized by: a) reservoir porosity ranging from about 5 to 10 percent; b) reservoir permeability equal to or less than 0.1 mD; c) low reservoir water saturation and an average water yield per well less than about 9 to 13 BW/MMCFG; d) a broadly defined updip water-block trap; e) underpressured reservoirs with a gradient ranging from 0.25 to 0.35 psi/ft; and f) reservoir temperature of at least 125? F (52? C). Other than for historical and location purposes, the term field has little or no meaning as an assessment unit for the regional accumulation. In practice, each designated field represents a production sweet spot having relatively high EURs per well that in turn merges with surrounding gas-productive regions that are generally larger in area but have lower EURs per well. This important feature of the Lower Silurian regional accumulation, whereby most wells drilled into it are gas productive, must be considered when assessing its potential for remaining recoverable gas resources. Most of the remaining gas resources reside in 'Clinton' sands and Medina Group sandstone in the basin-centered part of the accumulation where as much as several tens of TCF of natural gas may be technically recoverable. The Tuscarora Sandstone in the eastern extension of the basin-centered part of the accumulation underlies a very large area and, although commonly characterized by very low porosity and permeability and low-Btu gas, probably contains additional gas resources. Remaining undiscovered recoverable gas and oil resources in the discrete and hybrid parts of the accumulation are primarily located beneath Lake Erie.

  12. High field electron paramagnetic resonance characterization of electronic and structural environments for paramagnetic metal ions and organic free radicals in Deepwater Horizon oil spill tar balls.

    PubMed

    Ramachandran, Vasanth; van Tol, Johan; McKenna, Amy M; Rodgers, Ryan P; Marshall, Alan G; Dalal, Naresh S

    2015-02-17

    In the first use of high-field electron paramagnetic resonance (EPR) spectroscopy to characterize paramagnetic metal-organic and free radical species from tar balls and weathered crude oil samples from the Gulf of Mexico (collected after the Deepwater Horizon oil spill) and an asphalt volcano sample collected off the coast of Santa Barbara, CA, we are able to identify for the first time the various paramagnetic species present in the native state of these samples and understand their molecular structures and bonding. The two tar ball and one asphalt volcano samples contain three distinct paramagnetic species: (i) an organic free radical, (ii) a [VO](2+) containing porphyrin, and (iii) a Mn(2+) containing complex. The organic free radical was found to have a disc-shaped or flat structure, based on its axially symmetric spectrum. The characteristic spectral features of the vanadyl species closely resemble those of pure vanadyl porphyrin; hence, its nuclear framework around the vanadyl ion must be similar to that of vanadyl octaethyl porphyrin (VOOEP). The Mn(2+) ion, essentially undetected by low-field EPR, yields a high-field EPR spectrum with well-resolved hyperfine features devoid of zero-field splitting, characteristic of tetrahedral or octahedral Mn-O bonding. Although the lower-field EPR signals from the organic free radicals in fossil fuel samples have been investigated over the last 5 decades, the observed signal was featureless. In contrast, high-field EPR (up to 240 GHz) reveals that the species is a disc-shaped hydrocarbon molecule in which the unpaired electron is extensively delocalized. We envisage that the measured g-value components will serve as a sensitive basis for electronic structure calculations. High-field electron nuclear double resonance experiments should provide an accurate picture of the spin density distribution for both the vanadyl-porphyrin and Mn(2+) complexes, as well as the organic free radical, and will be the focus of follow-up studies. PMID:25647548

  13. Corn oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn oil is a popular vegetable oil in the US and in many other countries. Because of its pleasant nutty flavor, its good stability, and its popularity for making margarines, corn oil has long been considered a premium vegetable oil. Among all of the vegetable oils, corn oil ranks tenth in terms of ...

  14. Concurrence of aqueous and gas phase contamination of groundwater in the Wattenberg oil and gas field of northern Colorado.

    PubMed

    Li, Huishu; Son, Ji-Hee; Carlson, Kenneth H

    2016-01-01

    The potential impact of rapid development of unconventional oil and natural gas resources using hydraulic fracturing and horizontal drilling on regional groundwater quality has received significant attention. Major concerns are methane or oil/gas related hydrocarbon (such as TPHs, BTEX including benzene, toluene, ethybenzene and xylene) leaks into the aquifer due to the failure of casing and/or stray gas migration. Previously, we investigated the relationship between oil and gas activity and dissolved methane concentration in a drinking water aquifer with the major finding being the presence of thermogenic methane contamination, but did not find detectable concentrations of TPHs or BTEX. To understand if aqueous and gas phases from the producing formation were transported concurrently to drinking water aquifers without the presence of oil/gas related hydrocarbons, the ionic composition of three water groups was studied: (1) uncontaminated deep confined aquifer, (2) suspected contaminated groundwater - deep confined aquifer containing thermogenic methane, and (3) produced water from nearby oil and gas wells that would represent aqueous phase contaminants. On the basis of quantitative and spatial analysis, we identified that the "thermogenic methane contaminated" groundwater did not have similarities to produced water in terms of ionic character (e.g. Cl/TDS ratio), but rather to the "uncontaminated" groundwater. The analysis indicates that aquifer wells with demonstrated gas phase contamination have not been contacted by an aqueous phase from oil and gas operations according to the methodology we use in this study and the current groundwater quality data from COGCC. However, the research does not prove conclusively that this the case. The results may provide insight on contamination mechanisms since improperly sealed well casing may result in stray gas but not aqueous phase transport. PMID:26519629

  15. The impact of energy production on the atmosphere: Laboratory and field studies of emissions from oil and gas production and their chemical transformation

    NASA Astrophysics Data System (ADS)

    Li, Rui

    Over the past decades, the rapid development of energy production in the U.S. has led to significant changes in atmospheric emissions and transformation of trace gas and particles, which are still very uncertain and poorly understood. Through laboratory, modeling and field experiments we hope to better understand the trace gas emission and their contribution to secondary organic aerosols (SOA) formation in the oil and natural gas (O&NG) operations. A fast time-response Oxidation Flow Reactor (OFR) is used for the study of SOA formation from oil vapors. The radical chemistry and quantification of OH exposure (OHexp) in the reactor under various conditions were investigated using a photochemical kinetic model. An OHexp estimation equation derived from the model was shown to agree with measurements in several field campaigns. This work further establishes the usefulness of such reactors in atmospheric studies. Motivated from the SOA observations of Gulf of Mexico oil spill, the SOA formation from organic compounds of different volatility in the oil vapors was studied in the laboratory using OFR. We use the evaporation time dependence on volatility of the precursors to quantify their contribution to total SOA formation. This study shows (1) organic compounds of intermediate volatility contribute the large majority of SOA mass formed, (2) the mass spectral signature of SOA shows good agreement with that of ambient SOA formed during oil spill. These results in O&NG operations, the air toxic hydrogen sulfide (H 2S) can be released at wellheads, separation and storage tanks. Here, quantitative, fast time-response measurements of H2S using Proton-Transfer-Reaction Mass-Spectrometry (PTR-MS) instruments in an O&NG field are presented. A laboratory calibration study was performed to measure the humidity dependent sensitivities of H2S. The close correlation between H2S and CH4 and significant H2S levels downwind of storage tanks suggest that H2S emissions associated with O&NG production can lead to short-term high levels close to point sources, and elevated background levels away from those sources. In addition, this work has demonstrated that PTR-MS can make reliable measurements of H2S at levels below 1 ppbv.

  16. IMPROVED OIL RECOVERY FROM UPPER JURASSIC SMACKOVER CARBONATES THROUGH THE APPLICATION OF ADVANCED TECHNOLOGIES AT WOMACK HILL OIL FIELD, CHOCTAW AND CLARKE COUNTIES, ALABAMA, EASTERN GULF COASTAL PLAIN

    SciTech Connect

    Ernest A. Mancini

    2004-12-06

    The principal research effort for Year 1 of the project is drilling an infill well in the Womack Hill Field, Choctaw and Clarke Counties, Alabama. The objectives of the project are to drill and core an infill well in Womack Hill Field; to utilize samples from the core to evaluate further the feasibility of implementing an immobilized enzyme technology project in the field; and to use the new information resulting from the drilling of the well to revise and modify the 3-D geologic model, to further modify the injection strategy for the existing pressure maintenance program, and to assess whether a second infill well should be drilled using lateral/multilateral well completions.

  17. IMPROVED OIL RECOVERY FROM UPPER JURASSIC SMACKOVER CARBONATES THROUGH THE APPLICATION OF ADVANCED TECHNOLOGIES AT WOMACK HILL OIL FIELD, CHOCTAW AND CLARKE COUNTIES, ALABAMA, EASTERN GULF COASTAL PLAIN

    SciTech Connect

    Ernest A. Mancini

    2004-12-13

    The principal research effort for Year 1 of the project is drilling an infill well in the Womack Hill Field, Choctaw and Clarke Counties, Alabama. The objectives of the project are to drill and core an infill well in Womack Hill Field; to utilize samples from the core to evaluate further the feasibility of implementing an immobilized enzyme technology project in the field; and to use the new information resulting from the drilling of the well to revise and modify the 3-D geologic model, to further modify the injection strategy for the existing pressure maintenance program, and to assess whether a second infill well should be drilled using lateral/multilateral well completions.

  18. LABORATORY AND FIELD EVALUATION OF CRYSTALLIZED DOW 704 OIL ON THE PERFORMANCE OF THE WINS PM2.5 FRACTIONATOR

    EPA Science Inventory

    Subsequent to the 1997 promulgation of the Federal Reference Method (FRM) for monitoring PM2.5 in ambient air, the United States Environmental Protection Agency (USEPA) received reports that the Dow 704 diffusion oil used in the method's WINS fractionator would occasionally cry...

  19. Oriented core application in texture analysis of J1 formation in Kazan oil-gas condensate field (Tomsk Oblast)

    NASA Astrophysics Data System (ADS)

    Krasnoshekova, L.; Cherdansteva, D.; Yurkova, M.; Abramova, R.

    2015-11-01

    The paper describes the results of the characteristic structure features of oil-bearing rocks via paleomagnetic oriented cores. Volume core model is plotted on the basis of circular panoramic images. In applying scanned panoramic core it is possible to determine the azimuth of terrigenous material transportation and its course and to describe its sedimentation environment in details.

  20. All About Oils

    MedlinePLUS

    ... canola oil, corn oil, cottonseed oil, olive oil, safflower oil, soybean oil, and sunflower oil. Some oils ... oils (such as canola, corn, cottonseed, olive, peanut, safflower, soybean, and sunflower) 1 Tbsp 3 tsp/14 ...

  1. Using Flue Gas Huff 'n Puff Technology and Surfactants to Increase Oil Production from the Antelope Shale Formation of the Railroad Gap Oil Field

    SciTech Connect

    McWilliams, Michael

    2001-12-18

    This project was designed to test cyclic injection of exhaust flue gas from compressors located in the field to stimulate production from Antelope Shale zone producers. Approximately 17,000 m{sup 3} ({+-}600 MCF) of flue gas was to be injected into each of three wells over a three-week period, followed by close monitoring of production for response. Flue gas injection on one of the wells would be supplemented with a surfactant.

  2. Microseismic Monitoring During CO2 Injection at the Aneth Oil Field: Constraining Source Depths Using Reflected Phases Detected on a Single Vertical Receiver Array

    NASA Astrophysics Data System (ADS)

    Rutledge, J. T.; Soma, N.

    2011-12-01

    We have monitored microseismicity during a CO2 enhanced oil recovery operation in the Aneth oil field of southeast Utah. A 60-level, 900-m-length geophone array was cemented into a monitoring well with the deepest sonde placed at a depth of 1700 m, approximately 30 m above the top of the oil reservoir. During the first year of monitoring approximately 3800 microearthquakes with moment magnitude ranging from -1.2 to 0.8 were detected within about 4.8 km of the geophone array. The events delineate two distinct structures active on opposite flanks of the oil field. Over 96% of events detected occur along a NW-SE trending fracture zone over 1500 m long, but located from 1 to 3 km from the monitor well. Due to the large offsets from the geophone string, we have supplemented the direct P- and S-wave arrivals with multiple reflected phases to effectively lengthen the aperture of the vertical array and help constrain source depths. To identify reflected arrivals, we used R*Z analysis which is the product of radial and vertical components. For inclined wave paths, R*Z traces enhance the arrivals of P and SV plane waves because the amplitudes of R and Z component increase together at these wave onsets. Multiple SV reflections from the top and bottom of a thick salt interval beneath the oil reservoir were identified on selected, high signal-to-noise master events along the structures length. We computed synthetic seismograms to verify the origins of the reflected phases. The master events were located using the direct P and SV arrival times plus the SV reflections from the salt interval. The remaining events were then tied in a relative sense to the masters using correlated picks of the direct P and SV phases only. The active structure is about 335 m beneath the oil reservoir, at a depth of 2120 m, just beneath the salt interval and near the top of the Mississippian Leadville limestone. The NW-SE strike is consistent with the prevalent orientation of basement faults of Mississippian and Pennsylvanian age seen on a 3D seismic survey collected over the study area and with the prevalent structural fabric of the region. The time-space evolution of the seismicity and the seismic recurrence (b-value = 2) suggest the structure is composed of a number of discontinuous fault or fracture segments. We found no clear or consistent correlations of the seismicity and moment release rates with injection and production rates in the study area. The source locations on opposite flanks of the oil reservoir suggest it may be associated with stress changes driven by reservoir volume reduction over the field's 50-plus-year production history.

  3. Delineation of brine contamination in and near the East Poplar oil field, Fort Peck Indian Reservation, northeastern Montana, 2004-09

    USGS Publications Warehouse

    Thamke, Joanna N.; Smith, Bruce D.

    2014-01-01

    The extent of brine contamination in the shallow aquifers in and near the East Poplar oil field is as much as 17.9 square miles and appears to be present throughout the entire saturated zone in contaminated areas. The brine contamination affects 15–37 billion gallons of groundwater. Brine contamination in the shallow aquifers east of the Poplar River generally moves to the southwest toward the river and then southward in the Poplar River valley. The likely source of brine contamination in the shallow aquifers is brine that is produced with crude oil in the East Poplar oil field study area. Brine contamination has not only affected the water quality from privately owned wells in and near the East Poplar oil field, but also the city of Poplar’s public water-supply wells. Three water-quality types characterize water in the shallow aquifers; a fourth water-quality type in the study area characterizes the brine. Type 1 is uncontaminated water that is suitable for most domestic purposes and typically contains sodium bicarbonate and sodium/magnesium sulfate as the dominant ions. Type 2 is moderately contaminated water that is suitable for some domestic purposes, but not used for drinking water, and typically contains sodium and chloride as the dominant ions. Type 3 is considerably contaminated water that is unsuitable for any domestic purpose and always contains sodium and chloride as the dominant ions. Type 3 quality of water in the shallow aquifers is similar to Type 4, which is the brine that is produced with crude oil. Electromagnetic apparent conductivity data were collected in the 106 square-mile area and used to determine extent of brine contamination. These data were collected and interpreted in conjunction with water-quality data collected through 2009 to delineate brine plumes in the shallow aquifers. Monitoring wells subsequently were drilled in some areas without existing water wells to confirm most of the delineated brine plumes; however, several possible plumes do not contain either existing water wells or monitoring wells. Analysis of groundwater samples from wells confirms the presence of 12.1 square miles of contamination, as much as 1.7 square miles of which is considerably contaminated (Type 3). Electromagnetic apparent conductivity data in areas with no wells delineate an additional 5.8 square miles of possible contamination, 2.1 square miles of which might be considerably contaminated (Type 3). Storage-tank facilities, oil wells, brine-injection wells, pipelines, and pits are likely sources of brine in the study area. It is not possible to identify discrete oil-related features as likely sources of brine plumes because several features commonly are co-located. During the latter half of the twentieth century, many brine plumes migrated beyond the immediate source area and likely mix together in modern and ancestral Poplar River valley subareas.

  4. MICROBIAL POPULATION CHANGES DURING BIOREMEDIATION OF AN EXPERIMENTAL OIL SPILL

    EPA Science Inventory

    Three crude oil bioremediation techniques were applied in a randomized block field experiment simulating a coastal oil-spill. Four treatments (no oil control, oil alone, oil + nutrients, and oil + nutrients + an indigenous inoculum) were applied. In-situ microbial community str...

  5. Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California

    SciTech Connect

    Steven Schamel

    1998-02-27

    A previously idle portion of the Midway-Sunset field, the ARCO Western Energy Pru Fee property, is being brought back into commercial production through tight integration of geologic characterization, geostatistical modeling, reservoir simulation, and petroleum engineering. This property, shut-in over a decade ago as economically marginal using conventional cyclic steaming methods, has a 200-300 foot thick oil column in the Monarch Sand. However, the sand lacks effective steam barriers and has a thick water-saturation zone above the oil-water contact. These factors require an innovative approach to steam flood production design that will balance optimal total oil production against economically viable steam-oil ratios and production rates. The methods used in the Class III demonstration are accessible to most operators in the Midway-Sunset field and could be used to revitalize properties with declining production of heavy oils throughout the region. In January 1997 the project entered its second and main phase with the purpose of demonstrating whether steamflood can be a more effective mode of production of the heavy, viscous oils from the Monarch Sand reservoir than the more conventional cyclic steaming. The objective is not just to produce the pilot site within the Pru Fee property south of Taft, but to test which production parameters optimize total oil recovery at economically acceptable rates of production and production costs.

  6. Non-destructive Analysis of Oil-Contaminated Soil Core Samples by X-ray Computed Tomography and Low-Field Nuclear Magnetic Resonance Relaxometry: a Case Study.

    PubMed

    Nakashima, Yoshito; Mitsuhata, Yuji; Nishiwaki, Junko; Kawabe, Yoshishige; Utsuzawa, Shin; Jinguuji, Motoharu

    2011-01-01

    Non-destructive measurements of contaminated soil core samples are desirable prior to destructive measurements because they allow obtaining gross information from the core samples without touching harmful chemical species. Medical X-ray computed tomography (CT) and time-domain low-field nuclear magnetic resonance (NMR) relaxometry were applied to non-destructive measurements of sandy soil core samples from a real site contaminated with heavy oil. The medical CT visualized the spatial distribution of the bulk density averaged over the voxel of 0.31?×?0.31?×?2 mm(3). The obtained CT images clearly showed an increase in the bulk density with increasing depth. Coupled analysis with in situ time-domain reflectometry logging suggests that this increase is derived from an increase in the water volume fraction of soils with depth (i.e., unsaturated to saturated transition). This was confirmed by supplementary analysis using high-resolution micro-focus X-ray CT at a resolution of ?10 ?m, which directly imaged the increase in pore water with depth. NMR transverse relaxation waveforms of protons were acquired non-destructively at 2.7 MHz by the Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence. The nature of viscous petroleum molecules having short transverse relaxation times (T2) compared to water molecules enabled us to distinguish the water-saturated portion from the oil-contaminated portion in the core sample using an M(0)-T2 plot, where M(0) is the initial amplitude of the CPMG signal. The present study demonstrates that non-destructive core measurements by medical X-ray CT and low-field NMR provide information on the groundwater saturation level and oil-contaminated intervals, which is useful for constructing an adequate plan for subsequent destructive laboratory measurements of cores. PMID:21258437

  7. Non-destructive Analysis of Oil-Contaminated Soil Core Samples by X-ray Computed Tomography and Low-Field Nuclear Magnetic Resonance Relaxometry: a Case Study

    PubMed Central

    Mitsuhata, Yuji; Nishiwaki, Junko; Kawabe, Yoshishige; Utsuzawa, Shin; Jinguuji, Motoharu

    2010-01-01

    Non-destructive measurements of contaminated soil core samples are desirable prior to destructive measurements because they allow obtaining gross information from the core samples without touching harmful chemical species. Medical X-ray computed tomography (CT) and time-domain low-field nuclear magnetic resonance (NMR) relaxometry were applied to non-destructive measurements of sandy soil core samples from a real site contaminated with heavy oil. The medical CT visualized the spatial distribution of the bulk density averaged over the voxel of 0.31?×?0.31?×?2 mm3. The obtained CT images clearly showed an increase in the bulk density with increasing depth. Coupled analysis with in situ time-domain reflectometry logging suggests that this increase is derived from an increase in the water volume fraction of soils with depth (i.e., unsaturated to saturated transition). This was confirmed by supplementary analysis using high-resolution micro-focus X-ray CT at a resolution of ?10 ?m, which directly imaged the increase in pore water with depth. NMR transverse relaxation waveforms of protons were acquired non-destructively at 2.7 MHz by the Carr–Purcell–Meiboom–Gill (CPMG) pulse sequence. The nature of viscous petroleum molecules having short transverse relaxation times (T2) compared to water molecules enabled us to distinguish the water-saturated portion from the oil-contaminated portion in the core sample using an M0–T2 plot, where M0 is the initial amplitude of the CPMG signal. The present study demonstrates that non-destructive core measurements by medical X-ray CT and low-field NMR provide information on the groundwater saturation level and oil-contaminated intervals, which is useful for constructing an adequate plan for subsequent destructive laboratory measurements of cores. PMID:21258437

  8. The effects of annealing temperature on the in-field Jc and surface pinning in silicone oil doped MgB2 bulks and wires

    NASA Astrophysics Data System (ADS)

    Hossain, M. S. A.; Motaman, A.; Çiçek, Ö.; A??l, H.; Ertekin, E.; Gencer, A.; Wang, X. L.; Dou, S. X.

    2012-12-01

    The effects of sintering temperature on the lattice parameters, full width at half maximum (FWHM), strain, critical temperature (Tc), critical current density (Jc), irreversibility field (Hirr), upper critical field (Hc2), and resistivity (?) of 10 wt.% silicone oil doped MgB2 bulk and wire samples are investigated in state of the art by this article. The a-lattice parameter of the silicone oil doped samples which were sintered at different temperatures was drastically reduced from 3.0864 Å to 3.0745 Å, compared to the un-doped samples, which indicates the substitution of the carbon (C) into the boron sites. It was found that sintered samples at the low temperature of 600 °C shows more lattice distortion by more C-substitution and higher strain, lower Tc, higher impurity scattering, and enhancement of both magnetic Jc and Hc2, compared to those sintered samples at high temperatures. The flux pinning mechanism has been analyzed based on the extended normalized pinning force density fp = Fp/Fp,max scaled with b = B/Bmax. Results show that surface pinning is the dominant pinning mechanism for the doped sample sintered at the low temperature of 600 °C, while point pinning is dominant for the un-doped sample. The powder in tube (PIT) MgB2 wire was also fabricated by using of this liquid doping and found that both transport Jc and n-factor increased which proves this cheap and abundant silicone oil doping can be a good candidate for industrial application.

  9. Isolation and Characterization of Strains CVO and FWKO B, Two Novel Nitrate-Reducing, Sulfide-Oxidizing Bacteria Isolated from Oil Field Brine

    PubMed Central

    Gevertz, Diane; Telang, Anita J.; Voordouw, Gerrit; Jenneman, Gary E.

    2000-01-01

    Bacterial strains CVO and FWKO B were isolated from produced brine at the Coleville oil field in Saskatchewan, Canada. Both strains are obligate chemolithotrophs, with hydrogen, formate, and sulfide serving as the only known energy sources for FWKO B, whereas sulfide and elemental sulfur are the only known electron donors for CVO. Neither strain uses thiosulfate as an energy source. Both strains are microaerophiles (1% O2). In addition, CVO grows by denitrification of nitrate or nitrite whereas FWKO B reduces nitrate only to nitrite. Elemental sulfur is the sole product of sulfide oxidation by FWKO B, while CVO produces either elemental sulfur or sulfate, depending on the initial concentration of sulfide. Both strains are capable of growth under strictly autotrophic conditions, but CVO uses acetate as well as CO2 as its sole carbon source. Neither strain reduces sulfate; however, FWKO B reduces sulfur and displays chemolithoautotrophic growth in the presence of elemental sulfur, hydrogen, and CO2. Both strains grow at temperatures between 5 and 40°C. CVO is capable of growth at NaCl concentrations as high as 7%. The present 16s rRNA analysis suggests that both strains are members of the epsilon subdivision of the division Proteobacteria, with CVO most closely related to Thiomicrospira denitrifcans and FWKO B most closely related to members of the genus Arcobacter. The isolation of these two novel chemolithotrophic sulfur bacteria from oil field brine suggests the presence of a subterranean sulfur cycle driven entirely by hydrogen, carbon dioxide, and nitrate. PMID:10831429

  10. Economic Geology (Oil & Gas)

    ERIC Educational Resources Information Center

    Geotimes, 1972

    1972-01-01

    Briefly reviews the worldwide developments in petroleum geology in 1971, including exploration, new fields, and oil production. This report is condensed from the October Bulletin of the American Association of Petroleum Geologists. (PR)

  11. Initiation of Freezing a Super-cooled Water Droplet in Oil by Colliding with the Electrodes for Applying Uniform DC Electric Field

    NASA Astrophysics Data System (ADS)

    Tochitani, Yoshiro; Kawasaki, Naoto

    A water droplet injected into silicone oil, to which uniform electric field is applied by use of a pair of electrode plate, reciprocates colliding alternately with each electrode plate. This paper proposes to use the collision to augment initiation of freezing nucleation of super-cooling water droplet, and deals with the characteristics of the phenomena. The shuttle migration of a droplet between electrodes and initiation of freezing is photographed by use of a video camera, and the phenomena are analyzed on a monitor. As a result, the freezing initiation of the droplet is observed while the droplet is touched to the negative electrode plate. Relative frequency of the initiation is shown by the super-cooling degree and the electric field strength. The upper limitation of the temperature at which all sample droplets initiate to freeze is -3°C. Characteristics of the initiation are clarified and the effectiveness of this method is shown.

  12. Kerr electro-optic field mapping study of the effect of charge injection on the impulse breakdown strength of transformer oil

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Zahn, M.

    2013-10-01

    The smart use of charge injection to improve breakdown strength in transformer oil is demonstrated in this paper. Hypothetically, bipolar homo-charge injection with reduced electric field at both electrodes may allow higher voltage operation without insulation failure, since electrical breakdown usually initiates at the electrode-dielectric interfaces. To find experimental evidence, the applicability and limitation of the hypothesis is first analyzed. Impulse breakdown tests and Kerr electro-optic field mapping measurements are then conducted with different combinations of parallel-plate aluminum and brass electrodes stressed by millisecond duration impulse. It is found that the breakdown voltage of brass anode and aluminum cathode is ˜50% higher than that of aluminum anode and brass cathode. This can be explained by charge injection patterns from Kerr measurements under a lower voltage, where aluminum and brass electrodes inject negative and positive charges, respectively. This work provides a feasible approach to investigating the effect of electrode material on breakdown strength.

  13. Evaluation of solitary waves as a mechanism for oil transport in poroelastic media: A case study of the South Eugene Island field, Gulf of Mexico basin

    SciTech Connect

    Joshi, Ajit; Appold, Martin S.; Nunn, Jeffrey A.

    2012-11-01

    Hydrocarbons in shallow reservoirs of the Eugene Island 330 field in the Gulf of Mexico basin are thought to have migrated rapidly along low permeability sediments of the Red fault zone as discrete pressure pulses from source rocks at depths of about 4.5 km. The aim of this research was to evaluate the hypothesis that these pressure pulses represent solitary waves by investigating the mechanics of solitary wave formation and motion and wave oil transport capability. A two-dimensional numerical model of Eugene Island minibasin formation predicted overpressures at the hydrocarbon source depth to increase at an average rate of 30 Pa/yr, reaching 52 MPa by the present day and oil velocities of 1E�¢����12 m/yr, far too low for kilometer scale oil transport to fill shallow Plio-Pleistocene reservoirs within the 3.6 million year minibasin history. Calculations from a separate one-dimensional model that used the pressure generation rate from the two-dimensional model showed that solitary waves could only form and migrate within sediments that have very low permeabilities between 1E�¢����25 to 1E�¢����24 m2 and that are highly overpressured to 91-93% of lithostatic pressure. Solitary waves were found to have a maximum pore volume of 105 m3, to travel a maximum distance of 1-2 km, and to have a maximum velocity of 1E�¢����3 m/yr. Based on these results, solitary waves are unlikely to have transported oil to the shallowest reservoirs in the Eugene Island field in a poroelastic fault gouge rheology at the pressure generation rates likely to have been caused by disequilibrium compaction and hydrocarbon generation. However, solitary waves could perhaps be important agents for oil transport in other locations where reservoirs are closer to the source rocks, where the pore space is occupied by more than one fluid, or where sudden fracturing of overpressured hydrocarbon source sediments would allow the solitary waves to propagate as shock waves. Hydrocarbons in shallow reservoirs of the Eugene Island 330 field in the Gulf of Mexico basin are thought to have migrated rapidly along low permeability sediments of the Red fault zone as discrete pressure pulses from source rocks at depths of about 4.5 km. The aim of this research was to evaluate the hypothesis that these pressure pulses represent solitary waves by investigating the mechanics of solitary wave formation and motion and wave oil transport capability. A two-dimensional numerical model of Eugene Island minibasin formation predicted overpressures at the hydrocarbon source depth to increase at an average rate of 30 Pa/yr, reaching 52 MPa by the present day and oil velocities of 1E�¢����12 m/yr, far too low for kilometer scale oil transport to fill shallow Plio-Pleistocene reservoirs within the 3.6 million year minibasin history. Calculations from a separate one-dimensional model that used the pressure generation rate from the two-dimensional model showed that solitary waves could only form and migrate within sediments that have very low permeabilities between 1E�¢����25 to 1E�¢����24 m2 and that are highly overpressured to 91-93% of lithostatic pressure. Solitary waves were found to have a maximum pore volume of 100,000 m3, to travel a maximum distance of 1-2 km, and to have a maximum velocity of 1E�¢����3 m/yr. Based on these results, solitary waves are unlikely to have transported oil to the shallowest reservoirs in the Eugene Island field in a poroelastic fault gouge rheology at the pressure generation rates likely to have been caused by disequilibrium compaction and hydrocarbon generation. However, solitary waves could perhaps be important agents for oil transport in other locations where reservoirs are closer to the source rocks, where the pore space is occupied by more than one fl

  14. Ammonium Concentrations in Produced Waters from a Mesothermic Oil Field Subjected to Nitrate Injection Decrease through Formation of Denitrifying Biomass and Anammox Activity? †

    PubMed Central

    Cornish Shartau, Sabrina L.; Yurkiw, Marcy; Lin, Shiping; Grigoryan, Aleksandr A.; Lambo, Adewale; Park, Hyung-Soo; Lomans, Bart P.; van der Biezen, Erwin; Jetten, Mike S. M.; Voordouw, Gerrit

    2010-01-01

    Community analysis of a mesothermic oil field, subjected to continuous field-wide injection of nitrate to remove sulfide, with denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA genes indicated the presence of heterotrophic and sulfide-oxidizing, nitrate-reducing bacteria (hNRB and soNRB). These reduce nitrate by dissimilatory nitrate reduction to ammonium (e.g., Sulfurospirillum and Denitrovibrio) or by denitrification (e.g., Sulfurimonas, Arcobacter, and Thauera). Monitoring of ammonium concentrations in producing wells (PWs) indicated that denitrification was the main pathway for nitrate reduction in the field: breakthrough of nitrate and nitrite in two PWs was not associated with an increase in the ammonium concentration, and no increase in the ammonium concentration was seen in any of 11 producing wells during periods of increased nitrate injection. Instead, ammonium concentrations in produced waters decreased on average from 0.3 to 0.2 mM during 2 years of nitrate injection. Physiological studies with produced water-derived hNRB microcosms indicated increased biomass formation associated with denitrification as a possible cause for decreasing ammonium concentrations. Use of anammox-specific primers and cloning of the resulting PCR product gave clones affiliated with the known anammox genera “Candidatus Brocadia” and “Candidatus Kuenenia,” indicating that the anammox reaction may also contribute to declining ammonium concentrations. Overall, the results indicate the following: (i) that nitrate injected into an oil field to oxidize sulfide is primarily reduced by denitrifying bacteria, of which many genera have been identified by DGGE, and (ii) that perhaps counterintuitively, nitrate injection leads to decreasing ammonium concentrations in produced waters. PMID:20562276

  15. Peppermint Oil

    MedlinePLUS

    ... Read our disclaimer about external links Menu Peppermint Oil Common Name: peppermint oil Latin Name: Mentha x piperita peppermint.jpg © Steven ... This fact sheet provides basic information about peppermint oil—common names, what the science says, potential side ...

  16. Speciation of radium-226 in podzols of northeastern Sakhalin in the impact zone of the oil field

    NASA Astrophysics Data System (ADS)

    Manakhov, D. V.; Egorova, Z. N.

    2014-06-01

    Podzols in oil-mining areas of northeastern Sakhalin were examined. The physicochemical properties of the podzols on the industrial plot, on the adjacent territory, and in the background landscapes were characterized. It was found that the distribution of the particular forms of radium-226 in the podzols contaminated with slightly saline and slightly radioactive stratal water differs from that in the background soils. In the contaminated podzols, the portion of exchangeable radium-226 increases in the lower part of the profile; the accumulation of mobile water-soluble and acid-soluble radionuclid increases in the illuvial horizons and decreases in the upper organic horizons.

  17. Fuel properties of eleven vegetable oils

    SciTech Connect

    Goering, C.E.; Daugherty, M.J.; Heakin, A.J.; Pryde, E.H.; Schwab, A.W.

    1982-11-01

    Eleven vegetable oils that can be grown as domestic field crops were identified for inclusion in a comparative study of chemical and fuel properties. Sample lots of each oil were subjected to ASTM tests appropriate for diesel fuels. The tests identified some problem areas with vegetable oil fuels. The oil samples were also characterized chemically and certain fuel properties were correlated to chemical compositions.

  18. Fuel properties of eleven vegetable oils

    SciTech Connect

    Goering, C.E.; Schwab, A.W.; Daugherty, M.J.; Pryde, E.H.; Keakin, A.J.

    1981-01-01

    Eleven vegetable oils that can be grown as domestic field crops were identified for inclusion in a comparative study. Sample lots of each oil were subjected to ASTM tests appropriate for diesel fuels. The tests identified some problem areas with vegetable oil fuels. The oil samples were also characterized chemically and certain fuel properties were correlated to chemical composition. 10 refs.

  19. Western Canada study of animal health effects associated with exposure to emissions from oil and natural gas field facilities. Study design and data collection III. Methods of assessing animal exposure to contaminants from the oil and gas industry.

    PubMed

    Waldner, Cheryl L

    2008-01-01

    Researchers measured exposure to oil and gas industry emissions in 205 cow-calf herds located in Western Canada. They measured airborne concentrations of sulfur dioxide, hydrogen sulfide, and volatile organic compounds with passive monitors placed in each pasture, wintering, or calving area that contained study animals from the start of the breeding season in the spring of 2001 until June 30, 2002. Researchers continued air monitoring in a subset of herds to the end of the study in fall 2002. Each sampling device was exposed for 1 month and then shipped to the laboratory for analysis. New samplers were installed and the shelters relocated, as necessary, to follow the movements of herd-management groups between pastures. Researchers linked the results of the air-monitoring analysis to individual animals for the relevant month. For the 205 herds examined at pregnancy testing in 2001, monthly mean exposures on the basis of all available data were as follows: sulfur dioxide, geometric mean (GM)=0.5 ppb, geometric standard deviation (GSD)=2.2; hydrogen sulfide, GM=0.14 ppb, GSD=2.3; benzene, GM=0.247 microg/m3, GSD=2.5; and toluene, GM=0.236 microg/m3, GSD=2.7. Benzene and toluene were surrogates for volatile organic compound exposure. In addition to passive measurements of air quality, researchers obtained data from provincial regulatory agencies on the density of oil and gas field facilities and on flaring and venting from the surrounding facilities. They developed the data into additional measures of exposure that were linked to each animal at each location for each month of the study. PMID:19106064

  20. Increased oil production and reserves from improved completion techniques in the Bluebell field, Uinta Basin, Utah. Annual report, October 1, 1995--September 30, 1996

    SciTech Connect

    Morgan, C.D.; Allison, M.L.

    1997-08-01

    The Bluebell field is productive from the Tertiary lower Green River and Wasatch Formations of the Uinta Basin, Utah. The productive interval consists of thousands of feet of interbedded fractured clastic and carbonate beds deposited in a fluvial-dominated lacustrine environment. Wells in the Bluebell field are typically completed by perforating 40 or more beds over 1,000 to 3,000 vertical feet (300-900 m), then stimulating the entire interval. This completion technique is believed to leave many potentially productive beds damaged and/or untreated, while allowing water-bearing and low-pressure (thief) zones to communicate with the wellbore. Geologic and engineering characterization has been used to define improved completion techniques. A two-year characterization study involved detailed examination of outcrop, core, well logs, surface and subsurface fractures, produced oil-field waters, engineering parameters of the two demonstration wells, and analysis of past completion techniques and effectiveness. The characterization study resulted in recommendations for improved completion techniques and a field-demonstration program to test those techniques. The results of the characterization study and the proposed demonstration program are discussed in the second annual technical progress report. The operator of the wells was unable to begin the field demonstration this project year (October 1, 1995 to September 20, 1996). Correlation and thickness mapping of individual beds in the Wasatch Formation was completed and resulted in a. series of maps of each of the individual beds. These data were used in constructing the reservoir models. Non-fractured and fractured geostatistical models and reservoir simulations were generated for a 20-square-mile (51.8-km{sup 2}) portion of the Bluebell field. The modeling provides insights into the effects of fracture porosity and permeability in the Green River and Wasatch reservoirs.

  1. Long-range, critical-point dynamics in oil field flow rate data I. G. Main,1

    E-print Network

    with the directions of incipient horizontal-displacement tensile and shear failure in the present-day stress field-earthquakes began in hydrothermal fields at distances quite remote from the main- shock, immediately after the passage of the Rayleigh wave, indicating a dynamic triggering mechanism. Others have argued instead