Sample records for brachytherapy zvysovani efektivity

  1. [Brachytherapy training].

    PubMed

    Hannoun-Lévi, J-M; Marchesi, V; Peiffert, D

    2013-04-01

    Treatment technique training needs theoretical and practical knowledge allowing proposing the right treatment for the right patient, but also allowing performing the technical gesture in the best conditions for an optimal result with a maximal security. The evolution of the brachytherapy techniques needs the set up of specific theoretical and practical training sessions. The present article focuses on the importance of the brachytherapy training as well as the different means currently available for the young radiation oncologist community for perfecting their education. National and international trainings are presented. The role of the simulation principle in the frame of brachytherapy is also discussed. Even if brachytherapy is not always an easy technique, its efficacy and its medico-economical impact need to be passed down to motivated students with the implementation of relevant educational means. Copyright © 2013 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  2. MRI-guided brachytherapy

    PubMed Central

    Tanderup, Kari; Viswanathan, Akila; Kirisits, Christian; Frank, Steven J.

    2014-01-01

    The application of MRI-guided brachytherapy has demonstrated significant growth during the last two decades. Clinical improvements in cervix cancer outcomes have been linked to the application of repeated MRI for identification of residual tumor volumes during radiotherapy. This has changed clinical practice in the direction of individualized dose administration, and mounting evidence of improved clinical outcome with regard to local control, overall survival as well as morbidity. MRI-guided prostate HDR and LDR brachytherapy has improved the accuracy of target and organs-at-risk (OAR) delineation, and the potential exists for improved dose prescription and reporting for the prostate gland and organs at risk. Furthermore, MRI-guided prostate brachytherapy has significant potential to identify prostate subvolumes and dominant lesions to allow for dose administration reflecting the differential risk of recurrence. MRI-guided brachytherapy involves advanced imaging, target concepts, and dose planning. The key issue for safe dissemination and implementation of high quality MRI-guided brachytherapy is establishment of qualified multidisciplinary teams and strategies for training and education. PMID:24931089

  3. New era of electronic brachytherapy

    PubMed Central

    Ramachandran, Prabhakar

    2017-01-01

    Traditional brachytherapy refers to the placement of radioactive sources on or inside the cancer tissues. Based on the type of sources, brachytherapy can be classified as radionuclide and electronic brachytherapy. Electronic brachytherapy uses miniaturized X-ray sources instead of radionuclides to deliver high doses of radiation. The advantages of electronic brachytherapy include low dose to organs at risk, reduced dose to treating staff, no leakage radiation in off state, less shielding, and no radioactive waste. Most of these systems operate between 50 and 100 kVp and are widely used in the treatment of skin cancer. Intrabeam, Xoft and Papillon systems are also used in the treatment of intra-operative radiotherapy to breast in addition to other treatment sites. The rapid fall-off in the dose due to its low energy is a highly desirable property in brachytherapy and results in a reduced dose to the surrounding normal tissues compared to the Ir-192 source. The Xoft Axxent brachytherapy system uses a 2.25 mm miniaturized X-ray tube and the source almost mimics the high dose rate Ir-192 source in terms of dose rate and it is the only electronic brachytherapy system specifically used in the treatment of cervical cancers. One of the limiting factors that impede the use of electronic brachytherapy for interstitial application is the source dimension. However, it is highly anticipated that the design of miniaturized X-ray tube closer to the dimension of an Ir-192 wire is not too far away, and the new era of electronic brachytherapy has just begun. PMID:28529679

  4. Image Guided Cervical Brachytherapy: 2014 Survey of the American Brachytherapy Society

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grover, Surbhi, E-mail: Surbhi.grover@uphs.upenn.edu; Harkenrider, Matthew M.; Cho, Linda P.

    Purpose: To provide an update of the 2007 American brachytherapy survey on image-based brachytherapy, which showed that in the setting of treatment planning for gynecologic brachytherapy, although computed tomography (CT) was often used for treatment planning, most brachytherapists used point A for dose specification. Methods and Materials: A 45-question electronic survey on cervical cancer brachytherapy practice patterns was sent to all American Brachytherapy Society members and additional radiation oncologists and physicists based in the United States between January and September 2014. Responses from the 2007 survey and the present survey were compared using the χ{sup 2} test. Results: There weremore » 370 respondents. Of those, only respondents, not in training, who treat more than 1 cervical cancer patient per year and practice in the United States, were included in the analysis (219). For dose specification to the target (cervix and tumor), 95% always use CT, and 34% always use MRI. However, 46% use point A only for dose specification to the target. There was a lot of variation in parameters used for dose evaluation of target volume and normal tissues. Compared with the 2007 survey, use of MRI has increased from 2% to 34% (P<.0001) for dose specification to the target. Use of volume-based dose delineation to the target has increased from 14% to 52% (P<.0001). Conclusion: Although use of image-based brachytherapy has increased in the United States since the 2007 survey, there is room for further growth, particularly with the use of MRI. This increase may be in part due to educational initiatives. However, there is still significant heterogeneity in brachytherapy practice in the United States, and future efforts should be geared toward standardizing treatment.« less

  5. Dosimetric audit in brachytherapy

    PubMed Central

    Bradley, D A; Nisbet, A

    2014-01-01

    Dosimetric audit is required for the improvement of patient safety in radiotherapy and to aid optimization of treatment. The reassurance that treatment is being delivered in line with accepted standards, that delivered doses are as prescribed and that quality improvement is enabled is as essential for brachytherapy as it is for the more commonly audited external beam radiotherapy. Dose measurement in brachytherapy is challenging owing to steep dose gradients and small scales, especially in the context of an audit. Several different approaches have been taken for audit measurement to date: thimble and well-type ionization chambers, thermoluminescent detectors, optically stimulated luminescence detectors, radiochromic film and alanine. In this work, we review all of the dosimetric brachytherapy audits that have been conducted in recent years, look at current audits in progress and propose required directions for brachytherapy dosimetric audit in the future. The concern over accurate source strength measurement may be essentially resolved with modern equipment and calibration methods, but brachytherapy is a rapidly developing field and dosimetric audit must keep pace. PMID:24807068

  6. High dose rate brachytherapy for oral cancer.

    PubMed

    Yamazaki, Hideya; Yoshida, Ken; Yoshioka, Yasuo; Shimizutani, Kimishige; Furukawa, Souhei; Koizumi, Masahiko; Ogawa, Kazuhiko

    2013-01-01

    Brachytherapy results in better dose distribution compared with other treatments because of steep dose reduction in the surrounding normal tissues. Excellent local control rates and acceptable side effects have been demonstrated with brachytherapy as a sole treatment modality, a postoperative method, and a method of reirradiation. Low-dose-rate (LDR) brachytherapy has been employed worldwide for its superior outcome. With the advent of technology, high-dose-rate (HDR) brachytherapy has enabled health care providers to avoid radiation exposure. This therapy has been used for treating many types of cancer such as gynecological cancer, breast cancer, and prostate cancer. However, LDR and pulsed-dose-rate interstitial brachytherapies have been mainstays for head and neck cancer. HDR brachytherapy has not become widely used in the radiotherapy community for treating head and neck cancer because of lack of experience and biological concerns. On the other hand, because HDR brachytherapy is less time-consuming, treatment can occasionally be administered on an outpatient basis. For the convenience and safety of patients and medical staff, HDR brachytherapy should be explored. To enhance the role of this therapy in treatment of head and neck lesions, we have reviewed its outcomes with oral cancer, including Phase I/II to Phase III studies, evaluating this technique in terms of safety and efficacy. In particular, our studies have shown that superficial tumors can be treated using a non-invasive mold technique on an outpatient basis without adverse reactions. The next generation of image-guided brachytherapy using HDR has been discussed. In conclusion, although concrete evidence is yet to be produced with a sophisticated study in a reproducible manner, HDR brachytherapy remains an important option for treatment of oral cancer.

  7. Physics of vascular brachytherapy.

    PubMed

    Jani, S K

    1999-08-01

    Basic physics plays an important role in understanding the clinical utility of radioisotopes in brachytherapy. Vascular brachytherapy is a very unique application of localized radiation in that dose levels very close to the source are employed to treat tissues within the arterial wall. This article covers basic physics of radioactivity and differentiates between beta and gamma radiations. Physical parameters such as activity, half-life, exposure and absorbed dose have been explained. Finally, the dose distribution around a point source and a linear source is described. The principles of basic physics are likely to play an important role in shaping the emerging technology and its application in vascular brachytherapy.

  8. High dose rate brachytherapy for oral cancer

    PubMed Central

    YamazakI, Hideya; Yoshida, Ken; Yoshioka, Yasuo; Shimizutani, Kimishige; Furukawa, Souhei; Koizumi, Masahiko; Ogawa, Kazuhiko

    2013-01-01

    Brachytherapy results in better dose distribution compared with other treatments because of steep dose reduction in the surrounding normal tissues. Excellent local control rates and acceptable side effects have been demonstrated with brachytherapy as a sole treatment modality, a postoperative method, and a method of reirradiation. Low-dose-rate (LDR) brachytherapy has been employed worldwide for its superior outcome. With the advent of technology, high-dose-rate (HDR) brachytherapy has enabled health care providers to avoid radiation exposure. This therapy has been used for treating many types of cancer such as gynecological cancer, breast cancer, and prostate cancer. However, LDR and pulsed-dose-rate interstitial brachytherapies have been mainstays for head and neck cancer. HDR brachytherapy has not become widely used in the radiotherapy community for treating head and neck cancer because of lack of experience and biological concerns. On the other hand, because HDR brachytherapy is less time-consuming, treatment can occasionally be administered on an outpatient basis. For the convenience and safety of patients and medical staff, HDR brachytherapy should be explored. To enhance the role of this therapy in treatment of head and neck lesions, we have reviewed its outcomes with oral cancer, including Phase I/II to Phase III studies, evaluating this technique in terms of safety and efficacy. In particular, our studies have shown that superficial tumors can be treated using a non-invasive mold technique on an outpatient basis without adverse reactions. The next generation of image-guided brachytherapy using HDR has been discussed. In conclusion, although concrete evidence is yet to be produced with a sophisticated study in a reproducible manner, HDR brachytherapy remains an important option for treatment of oral cancer. PMID:23179377

  9. 10 CFR 35.406 - Brachytherapy sources accountability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Brachytherapy sources accountability. 35.406 Section 35....406 Brachytherapy sources accountability. (a) A licensee shall maintain accountability at all times... area. (c) A licensee shall maintain a record of the brachytherapy source accountability in accordance...

  10. Brachytherapy

    MedlinePlus

    ... care for brachytherapy catheters. top of page What equipment is used? For permanent implants, radioactive material (which ... the tumor. top of page Who operates the equipment? The equipment is operated by a medical physicist, ...

  11. MO-E-BRD-03: Intra-Operative Breast Brachytherapy: Is One Stop Shopping Best? [Non-invasive Image-Guided Breast Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Libby, B.

    2015-06-15

    Is Non-invasive Image-Guided Breast Brachytherapy Good? – Jess Hiatt, MS Non-invasive Image-Guided Breast Brachytherapy (NIBB) is an emerging therapy for breast boost treatments as well as Accelerated Partial Breast Irradiation (APBI) using HDR surface breast brachytherapy. NIBB allows for smaller treatment volumes while maintaining optimal target coverage. Considering the real-time image-guidance and immobilization provided by the NIBB modality, minimal margins around the target tissue are necessary. Accelerated Partial Breast Irradiation in brachytherapy: is shorter better? - Dorin Todor, PhD VCU A review of balloon and strut devices will be provided together with the origins of APBI: the interstitial multi-catheter implant.more » A dosimetric and radiobiological perspective will help point out the evolution in breast brachytherapy, both in terms of devices and the protocols/clinical trials under which these devices are used. Improvements in imaging, delivery modalities and convenience are among the factors driving the ultrashort fractionation schedules but our understanding of both local control and toxicities associated with various treatments is lagging. A comparison between various schedules, from a radiobiological perspective, will be given together with a critical analysis of the issues. to review and understand the evolution and development of APBI using brachytherapy methods to understand the basis and limitations of radio-biological ‘equivalence’ between fractionation schedules to review commonly used and proposed fractionation schedules Intra-operative breast brachytherapy: Is one stop shopping best?- Bruce Libby, PhD. University of Virginia A review of intraoperative breast brachytherapy will be presented, including the Targit-A and other trials that have used electronic brachytherapy. More modern approaches, in which the lumpectomy procedure is integrated into an APBI workflow, will also be discussed. Learning Objectives: To review past and

  12. State-of-the-art: prostate LDR brachytherapy.

    PubMed

    Voulgaris, S; Nobes, J P; Laing, R W; Langley, S E M

    2008-01-01

    This article on low dose rate (LDR) prostate brachytherapy reviews long-term results, patient selection and quality of life issues. Mature results from the United States and United Kingdom are reported and issues regarding definitions of biochemical failure are discussed. Latest data comparing brachytherapy with radical prostatectomy or no definitive treatment and also the risk of secondary malignancies after prostate brachytherapy are presented. Urological parameters of patient selection and quality of life issues concerning urinary, sexual and bowel function are reviewed. The position of prostate brachytherapy next to surgery as a first-line treatment modality is demonstrated.

  13. The dosimetry of brachytherapy-induced erectile dysfunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merrick, Gregory S.; Butler, Wayne M

    2003-12-31

    There is emerging evidence that brachytherapy-induced erectile dysfunction (ED) is technique-related and may be minimized by careful attention to source placement. Herein, we review the relationship between radiation doses to the prostate gland/surrounding structures and the development of brachytherapy-induced ED. The permanent prostate brachytherapy literature was reviewed using MEDLINE searches to ensure completeness. Although the site-specific structure associated with brachytherapy-induced ED remains unknown, there is an increasing body of data implicating the proximal penis. With day 0 CT-based dosimetry, the dose to 50% (D{sub 50}) and 25% (D{sub 25}) of the bulb of the penis should be maintained below 40%more » and 60% mPD, respectively, while the crura D{sub 50} should be maintained below 28% mPD to maximize post-brachytherapy potency. To date, there is no data to suggest that either radiation doses to the neurovascular bundles or choice of isotope is associated with brachytherapy-induced ED, while conflicting data has been reported regarding radiation dose to the prostate and the use of supplemental external beam radiation therapy. Although the etiology of brachytherapy-induced ED is likely multifactorial, the available data supports the proximal penis as an important site-specific structure. Refinements in implant technique, including preplanning and intraoperative seed placement, will result in lower radiation doses to the proximal penis with potential improvement in potency preservation.« less

  14. MO-B-BRC-01: Introduction [Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prisciandaro, J.

    2016-06-15

    Brachytherapy has proven to be an effective treatment option for prostate cancer. Initially, prostate brachytherapy was delivered through permanently implanted low dose rate (LDR) radioactive sources; however, high dose rate (HDR) temporary brachytherapy for prostate cancer is gaining popularity. Needle insertion during prostate brachytherapy is most commonly performed under ultrasound (U/S) guidance; however, treatment planning may be performed utilizing several imaging modalities either in an intra- or post-operative setting. During intra-operative prostate HDR, the needles are imaged during implantation, and planning may be performed in real time. At present, the most common imaging modality utilized for intra-operative prostate HDR ismore » U/S. Alternatively, in the post-operative setting, following needle implantation, patients may be simulated with computed tomography (CT) or magnetic resonance imaging (MRI). Each imaging modality and workflow provides its share of benefits and limitations. Prostate HDR has been adopted in a number of cancer centers across the nation. In this educational session, we will explore the role of U/S, CT, and MRI in HDR prostate brachytherapy. Example workflows and operational details will be shared, and we will discuss how to establish a prostate HDR program in a clinical setting. Learning Objectives: Review prostate HDR techniques based on the imaging modality Discuss the challenges and pitfalls introduced by the three imagebased options for prostate HDR brachytherapy Review the QA process and learn about the development of clinical workflows for these imaging options at different institutions.« less

  15. Place of modern imaging in brachytherapy planning.

    PubMed

    Hellebust, T P

    2018-06-01

    Imaging has probably been the most important driving force for the development of brachytherapy treatments the last 20 years. Due to implementation of three-dimensional imaging, brachytherapy is nowadays a highly accurate and reliable treatment option for many cancer patients. To be able to optimize the dose distribution in brachytherapy the anatomy and the applicator(s) or sources should be correctly localised in the images. For computed tomography (CT) the later criteria is easily fulfilled for most brachytherapy sites. However, for many sites, like cervix and prostate, CT is not optimal for delineation since soft tissue is not adequately visualized and the tumor is not well discriminated. For cervical cancer treatment planning based on magnetic resonance imaging (MRI) is recommended. Some centres also use MRI for postimplant dosimetry of permanent prostate seed implant and high dose rate prostate brachytherapy. Moreover, in so called focal brachytherapy where only a part of the prostate is treated, multiparametric MRI is an excellent tool that can assist in defining the target volume. Applicator or source localization is challenging using MRI, but tolls exist to assist this process. Also, geometrical distortions should be corrected or accounted for. Transrectal ultrasound is considered to be the gold standard for high dose rate prostate brachytherapy and transrectal ultrasound -based brachytherapy procedure offers a method for interactive treatment planning. Reconstruction of the needles is sometimes challenging, especially to identify the needle tip. The accuracy of the reconstruction could be improved by measuring the residuals needle length and by using a bi-planar transducer. The last decade several groups worldwide have explored the use of transrectal and transabdominal ultrasound for cervical cancer brachytherapy. Since ultrasonography is widely available, offers fast image acquisition and is a rather inexpensive modality such development is interesting

  16. Brachytherapy for Prostate Cancer: A Systematic Review

    PubMed Central

    Koukourakis, Georgios; Kelekis, Nikolaos; Armonis, Vassilios; Kouloulias, Vassilios

    2009-01-01

    Low-dose rate brachytherapy has become a mainstream treatment option for men diagnosed with prostate cancer because of excellent long-term treatment outcomes in low-, intermediate-, and high-risk patients. To a great extend due to patient lead advocacy for minimally invasive treatment options, high-quality prostate implants have become widely available in the US, Europe, and Japan. High-dose-rate (HDR) afterloading brachytherapy in the management of localised prostate cancer has practical, physical, and biological advantages over low-dose-rate seed brachytherapy. There are no free live sources used, no risk of source loss, and since the implant is a temporary procedure following discharge no issues with regard to radioprotection use of existing facilities exist. Patients with localized prostate cancer may benefit from high-dose-rate brachytherapy, which may be used alone in certain circumstances or in combination with external-beam radiotherapy in other settings. The purpose of this paper is to present the essentials of brachytherapies techniques along with the most important studies that support their effectiveness in the treatment of prostate cancer. PMID:19730753

  17. Patterns of care for brachytherapy in Europe. Results in Spain.

    PubMed

    López Torrecilla, J; Guedea, F; Heeren, G; Nissin, R; Ellison, T; Cottier, B

    2006-05-01

    In 2003 ESTRO began a project whose primary objective, was to make a map in the European area of infrastructures in technology and personnel for brachytherapy. A survey and a web site were elaborated. The survey was sent to the 76 Spanish Radiation Oncology departments in May 2003. By the end of 2003, 66 (86.8%) services had responded, 40 (71.4%) of which had brachytherapy. The services with brachytherapy treated 73.5% of the total patients, an average of 1,199 patients. The mean number of patients treated with brachytherapy by department was 135.5 and the number of applications was 265 annually. The average number of specialists was 7, 4 of them trained in brachytherapy. The average weekly work load of the radiation oncologists, physicists, and technicians was 22.6 h, 13.8 h and 21.0 h, respectively. The mean time dedicated to each patient by radiation oncologists, physicists and technicians was 9.2 h; 6.19 h; 7.2 h, respectively. The total number of afterloaders was 43 (22 HDR, 18 LDR, 3 PDR). The tumours most frequently treated with brachytherapy were gynaecological (56.24%), breast (14.2%) and prostate (11.7%). High dose rate was used in 47.46% of the patients and low dose rate in 47.24%. Between 1997 and 2002 there was an increase of 50.53% in patients treated with brachytherapy. The survey shows the brachytherapy resources and activity in Spain up to 2003. Increased use of brachytherapy in prostate tumours, prevalence of gynaecology brachytherapy and similar number of treatments with HDR and LDR are demonstrated in the Patterns of Care of Brachytherapy in Europe (PCBE) study in Spain.

  18. The American brachytherapy society survey of brachytherapy practice for carcinoma of the cervix in the United States.

    PubMed

    Nag, S; Orton, C; Young, D; Erickson, B

    1999-04-01

    The purpose of this study was to survey the brachytherapy practice for cervical cancer in the United States. The Clinical Research Committee of the American Brachytherapy Society (ABS) performed a retrospective survey of individual physicians of the ABS and American Society of Therapeutic Radiologists and Oncologists regarding the details of the brachytherapy techniques they personally used in the treatment of cervical cancer patients for the year 1995. The replies (some of which may have been an estimate only) were tabulated. The scope of this survey did not allow us to verify the data by chart audits. A total of about 3500 questionnaires were mailed out; 521 responses were received. Of these responders, 206 (40%) did not perform any brachytherapy for carcinoma of the cervix in 1995. Of the other 315 responders reporting a total of 4892 patients treated in 1995, 88% used low dose rate (LDR) while 24% used high dose rate (HDR). There was a wide variation in the doses used. For LDR treatments, the median total external beam radiation therapy (EBRT) dose was 45 and 50 Gy and the LDR dose was 42 and 45 Gy for early and advanced cancers, respectively. For HDR treatments, the median EBRT dose was 48 and 50 Gy and the median HDR dose was 29 and 30 Gy for early and advanced cancers, respectively. The median dose per fraction was 6 Gy for a median of five fractions. Interstitial brachytherapy was used as a component of the treatment in 6% of the patients by 21% of responders. Very few responders treated with pulsed or medium dose rates. This retrospective survey showed the current brachytherapy practice pattern in the treatment of cervical cancer in the United States and can serve as a basis for future prospective national brachytherapy data registry. There was wide variation in the practice pattern, emphasizing the urgent need for consensus on these issues. Copyright 1999 Academic Press.

  19. 10 CFR 35.2406 - Records of brachytherapy source accountability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Records of brachytherapy source accountability. 35.2406... Records of brachytherapy source accountability. (a) A licensee shall maintain a record of brachytherapy source accountability required by § 35.406 for 3 years. (b) For temporary implants, the record must...

  20. Mental Nerve Blocks for Lip Brachytherapy: A Case Report.

    PubMed

    Hafez, Osama; Ackerman, Robert S; Evans, Trip; Patel, Sephalie Y; Padalia, Devang M

    2018-05-15

    High dose rate interstitial brachytherapy is a commonly performed procedure for carcinoma of the lower lip. Placement of the brachytherapy catheters can be painful and may require monitored anesthesia care or general anesthesia. We present the use of bilateral mental nerve blocks with minimal sedation to facilitate placement of brachytherapy catheters.

  1. Brachytherapy for cervix cancer: low-dose rate or high-dose rate brachytherapy – a meta-analysis of clinical trials

    PubMed Central

    Viani, Gustavo A; Manta, Gustavo B; Stefano, Eduardo J; de Fendi, Ligia I

    2009-01-01

    Background The literature supporting high-dose rate brachytherapy (HDR) in the treatment of cervical carcinoma derives primarily from retrospective series. However, controversy still persists regarding the efficacy and safety of HDR brachytherapy compared to low-dose rate (LDR) brachytherapy, in particular, due to inadequate tumor coverage for stage III patients. Whether LDR or HDR brachytherapy produces better results for these patients in terms of survival rate, local control rate and the treatment complications remain controversial. Methods A meta-analysis of RCT was performed comparing LDR to HDR brachytherapy for cervix cancer treated for radiotherapy alone. The MEDLINE, EMBASE, CANCERLIT and Cochrane Library databases, as well as abstracts published in the annual proceedings were systematically searched. We assessed methodological quality for each outcome by grading the quality of evidence using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology. We used "recommend" for strong recommendations, and "suggest" for weak recommendations. Results Pooled results from five randomized trials (2,065 patients) of HDR brachytherapy in cervix cancer showed no significant increase of mortality (p = 0.52), local recurrence (p = 0.68), or late complications (rectal; p = 0.7, bladder; p = 0.95 or small intestine; p = 0.06) rates as compared to LDR brachytherapy. In the subgroup analysis no difference was observed for overall mortality and local recurrence in patients with clinical stages I, II and III. The quality of evidence was low for mortality and local recurrence in patients with clinical stage I, and moderate for other clinical stages. Conclusion Our meta-analysis shows that there are no differences between HDR and LDR for overall survival, local recurrence and late complications for clinical stages I, II and III. By means of the GRADE system, we recommend the use of HDR for all clinical stages of cervix cancer. PMID:19344527

  2. Current status of brachytherapy in Korea: a national survey of radiation oncologists

    PubMed Central

    Kim, Joo-Young; Park, Won; Kim, Young Seok

    2016-01-01

    Objective The aim of the present study was to acquire information on brachytherapy resources in Korea through a national survey of radiation oncologists. Methods Between October 2014 and January 2015, a questionnaire on the current status of brachytherapy was distributed to all 86 radiation oncology departments in Korea. The questionnaire was divided into sections querying general information on human resources, brachytherapy equipment, and suggestions for future directions of brachytherapy policy in Korea. Results The response rate of the survey was 88.3%. The average number of radiation oncologists per center was 2.3. At the time of survey, 28 centers (36.8%) provided brachytherapy to patients. Among the 28 brachytherapy centers, 15 (53.5%) were located in in the capital Seoul and its surrounding metropolitan areas. All brachytherapy centers had a high-dose rate system using 192Ir (26 centers) or 60Co (two centers). Among the 26 centers using 192Ir sources, 11 treated fewer than 40 patients per year. In the two centers using 60Co sources, the number of patients per year was 16 and 120, respectively. The most frequently cited difficulties in performing brachytherapy were cost related. A total of 21 centers had a plan to sustain the current brachytherapy system, and four centers noted plans to upgrade their brachytherapy system. Two centers stated that they were considering discontinuation of brachytherapy due to cost burdens of radioisotope source replacement. Conclusion The present study illustrated the current status of brachytherapy in Korea. Financial difficulties were the major barriers to the practice of brachytherapy. PMID:27102244

  3. Current status of brachytherapy in Korea: a national survey of radiation oncologists.

    PubMed

    Kim, Haeyoung; Kim, Joo Young; Kim, Juree; Park, Won; Kim, Young Seok; Kim, Hak Jae; Kim, Yong Bae

    2016-07-01

    The aim of the present study was to acquire information on brachytherapy resources in Korea through a national survey of radiation oncologists. Between October 2014 and January 2015, a questionnaire on the current status of brachytherapy was distributed to all 86 radiation oncology departments in Korea. The questionnaire was divided into sections querying general information on human resources, brachytherapy equipment, and suggestions for future directions of brachytherapy policy in Korea. The response rate of the survey was 88.3%. The average number of radiation oncologists per center was 2.3. At the time of survey, 28 centers (36.8%) provided brachytherapy to patients. Among the 28 brachytherapy centers, 15 (53.5%) were located in in the capital Seoul and its surrounding metropolitan areas. All brachytherapy centers had a high-dose rate system using (192)Ir (26 centers) or (60)Co (two centers). Among the 26 centers using (192)Ir sources, 11 treated fewer than 40 patients per year. In the two centers using (60)Co sources, the number of patients per year was 16 and 120, respectively. The most frequently cited difficulties in performing brachytherapy were cost related. A total of 21 centers had a plan to sustain the current brachytherapy system, and four centers noted plans to upgrade their brachytherapy system. Two centers stated that they were considering discontinuation of brachytherapy due to cost burdens of radioisotope source replacement. The present study illustrated the current status of brachytherapy in Korea. Financial difficulties were the major barriers to the practice of brachytherapy.

  4. Long duration mild temperature hyperthermia and brachytherapy.

    PubMed

    Armour, E P; Raaphorst, G P

    2004-03-01

    Combining long duration mild temperature hyperthermia (LDMH) and low dose-rate (LDR) brachytherapy to enhance therapeutic killing of cancer cells was proposed many years ago. The cellular and tumour research that supports this hypothesis is presented in this review. Research describing LDMH interaction with pulsed brachytherapy and high dose-rate brachytherapy using clinically relevant parameters are compared with LDMH/LDR brachytherapy. The mechanism by which LDMH sensitizes LDR has been established as the inhibition of sublethal damage repair. The molecular mechanisms have been shown to involve DNA repair enzymes, but the exact nature of these processes is still under investigation. The relative differences between LDMH interactions with human and rodent cells are presented to help in the understanding of possible roles of LDMH in clinical application. The role of LDMH in modifying tumour blood flow and its possible role in LDR sensitization of tumours is also presented. The positive aspects of LDMH-brachytherapy for clinical application are sixfold; (1) the thermal goals (temperature, time and volume) are achievable with currently available technology, (2) the hyperthermia by itself has no detectable toxic effects, (3) thermotolerance appears to play a minor if any role in radiation sensitization, (4) TER of around 2 can be expected, (5) hypoxic fraction may be decreased due to blood flow modification and (6) simultaneous chemotherapy may also be sensitized. Combined LDMH and brachytherapy is a cancer therapy that has established biological rationale and sufficient technical and clinical advancements to be appropriately applied. This modality is ripe for clinical testing.

  5. 21 CFR 892.5730 - Radionuclide brachytherapy source.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radionuclide brachytherapy source. 892.5730 Section 892.5730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5730 Radionuclide brachytherapy...

  6. [Valorisation of brachytherapy and medico-economic considerations].

    PubMed

    Pommier, P; Morelle, M; Millet-Lagarde, F; Peiffert, D; Gomez, F; Perrier, L

    2013-04-01

    Economic data in the literature for brachytherapy are still sparse and heterogeneous, with few controlled prospective studies and a perspective most often limited to those of the provider (health insurances). Moreover, these observation and conclusions are difficult to generalize in France. The prospective health economic studies performed in France in the framework of a national program to sustain innovative and costly therapies (STIC program) launched by the French cancer national institute are therefore of most importance. With the exception of prostate brachytherapy with permanent seeds, the valorisation of the brachytherapy activity by the French national health insurance does not take into account the degree of complexity and the real costs supported by health institutions (i.e. no specific valorisation for 3D image-based treatment planning and dose optimization and for the use of pulsed dose rate brachytherapy). Copyright © 2013 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  7. High versus low-dose rate brachytherapy for cervical cancer.

    PubMed

    Patankar, Sonali S; Tergas, Ana I; Deutsch, Israel; Burke, William M; Hou, June Y; Ananth, Cande V; Huang, Yongmei; Neugut, Alfred I; Hershman, Dawn L; Wright, Jason D

    2015-03-01

    Brachytherapy plays an important role in the treatment of cervical cancer. While small trials have shown comparable survival outcomes between high (HDR) and low-dose rate (LDR) brachytherapy, little data is available in the US. We examined the utilization of HDR brachytherapy and analyzed the impact of type of brachytherapy on survival for cervical cancer. Women with stages IB2-IVA cervical cancer treated with primary (external beam and brachytherapy) radiotherapy between 2003-2011 and recorded in the National Cancer Database (NCDB) were analyzed. Generalized linear mixed models and Cox proportional hazards regression were used to examine predictors of HDR brachytherapy use and the association between HDR use and survival. A total of 10,564 women including 2681 (25.4%) who received LDR and 7883 (74.6%) that received HDR were identified. Use of HDR increased from 50.2% in 2003 to 83.9% in 2011 (P<0.0001). In a multivariable model, year of diagnosis was the strongest predictor of use of HDR. While patients in the Northeast were more likely to receive HDR therapy, there were no other clinical or socioeconomic characteristics associated with receipt of HDR. In a multivariable Cox model, survival was similar between the HDR and LDR groups (HR=0.93; 95% CI 0.83-1.03). Similar findings were noted in analyses stratified by stage and histology. Kaplan-Meier analyses demonstrated no difference in survival based on type of brachytherapy for stage IIB (P=0.68), IIIB (P=0.17), or IVA (P=0.16) tumors. The use of HDR therapy has increased rapidly. Overall survival is similar for LDR and HDR brachytherapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. High versus Low-Dose Rate Brachytherapy for Cervical Cancer

    PubMed Central

    Patankar, Sonali S.; Tergas, Ana I.; Deutsch, Israel; Burke, William M.; Hou, June Y.; Ananth, Cande V.; Huang, Yongmei; Neugut, Alfred I.; Hershman, Dawn L.; Wright, Jason D.

    2015-01-01

    Objectives Brachytherapy plays an important role in the treatment of cervical cancer. While small trials have shown comparable survival outcomes between high (HDR) and low-dose rate (LDR) brachytherapy, little data is available in the US. We examined the utilization of HDR brachytherapy and analyzed the impact of type of brachytherapy on survival for cervical cancer. Methods Women with stage IB2–IVA cervical cancer treated with primary (external beam and brachytherapy) radiotherapy between 2003–2011 and recorded in the National Cancer Database (NCDB) were analyzed. Generalized linear mixed models and Cox proportional hazards regression were used to examine predictors of HDR brachytherapy use and the association between HDR use and survival. Results A total of 10,564 women including 2681 (25.4%) who received LDR and 7883 (74.6%) that received HDR were identified. Use of HDR increased from 50.2% in 2003 to 83.9% in 2011 (P<0.0001). In a multivariable model, year of diagnosis was the strongest predictor of use of HDR. While patients in the Northeast were more likely to receive HDR therapy, there were no other clinical or socioeconomic characteristics associated with receipt of HDR. In a multivariable Cox model, survival was similar between the HDR and LDR groups (HR=0.93; 95% 0.83–1.03). Similar findings were noted in analyses stratified by stage and histology. Kaplan-Meier analyses demonstrated no difference in survival based on type of brachytherapy for stage IIB (P=0.68), IIIB (P=0.17), or IVA (P=0.16) tumors. Conclusions The use of HDR therapy has increased rapidly. Overall survival is similar for LDR and HDR brachytherapy. PMID:25575481

  9. Proficiency-based cervical cancer brachytherapy training.

    PubMed

    Zhao, Sherry; Francis, Louise; Todor, Dorin; Fields, Emma C

    2018-04-25

    Although brachytherapy increases the local control rate for cervical cancer, there has been a progressive decline in its use. Furthermore, the training among residency programs for gynecologic brachytherapy varies considerably, with some residents receiving little to no training. This trend is especially concerning given the association between poor applicator placement and decline in local control. Considering the success of proficiency-based training in other procedural specialties, we developed and implemented a proficiency-based cervical brachytherapy training curriculum for our residents. Each resident placed tandem and ovoid applicators with attending guidance and again alone 2 weeks later using a pelvic model that was modified to allow for cervical brachytherapy. Plain films were taken of the pelvic model, and applicator placement quality was evaluated. Other evaluated metrics included retention of key procedural details, the time taken for each procedure and presession and postsession surveys to assess confidence. During the initial session, residents on average met 4.5 of 5 placement criteria, which improved to 5 the second session. On average, residents were able to remember 7.6 of the 8 key procedural steps. Execution time decreased by an average of 10.5%. Resident confidence with the procedure improved dramatically, from 2.6 to 4.6 of 5. Residents who had previously never performed a tandem and ovoid procedure showed greater improvements in these criteria than those who had. All residents strongly agreed that the training was helpful and wanted to participate again the following year. Residents participating in this simulation training had measurable improvements in the time to perform the procedure, applicator placement quality, and confidence. This curriculum is easy to implement and is of great value for training residents, and would be particularly beneficial in programs with low volume of cervical brachytherapy cases. Simulation programs could

  10. [Why is brachytherapy still essential in 2017?

    PubMed

    Haie-Méder, C; Maroun, P; Fumagalli, I; Lazarescu, I; Dumas, I; Martinetti, F; Chargari, C

    2018-05-16

    These recent years, brachytherapy has benefited from imaging modalities advances. A more systematic use of tomodensitometric, ultrasonographic and MRI images during brachytherapy procedures has allowed an improvement in target and organs at risk assessment as well as their relationship with the applicators. New concepts integrating tumor regression during treatment have been defined and have been clinically validated. New applicators have been developed and are commercially available. Optimization processes have been developed, integrating hypofractionation modalities leading to tumor control improvement. All these opportunities led to further development of brachytherapy, with indisputable ballistic advantages, especially compared to external irradiation. Copyright © 2018. Published by Elsevier SAS.

  11. MO-D-BRD-00: Electronic Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Electronic brachytherapy (eBT) has seen an insurgence of manufacturers entering the US market for use in radiation therapy. In addition to the established interstitial, intraluminary, and intracavitary applications of eBT, many centers are now using eBT to treat skin lesions. It is important for medical physicists working with electronic brachytherapy sources to understand the basic physics principles of the sources themselves as well as the variety of applications for which they are being used. The calibration of the sources is different from vendor to vendor and the traceability of calibrations has evolved as new sources came to market. In 2014,more » a new air-kerma based standard was introduced by the National Institute of Standards and Technology (NIST) to measure the output of an eBT source. Eventually commercial treatment planning systems should accommodate this new standard and provide NIST traceability to the end user. The calibration and commissioning of an eBT system is unique to its application and typically entails a list of procedural recommendations by the manufacturer. Commissioning measurements are performed using a variety of methods, some of which are modifications of existing AAPM Task Group protocols. A medical physicist should be familiar with the different AAPM Task Group recommendations for applicability to eBT and how to properly adapt them to their needs. In addition to the physical characteristics of an eBT source, the photon energy is substantially lower than from HDR Ir-192 sources. Consequently, tissue-specific dosimetry and radiobiological considerations are necessary when comparing these brachytherapy modalities and when making clinical decisions as a radiation therapy team. In this session, the physical characteristics and calibration methodologies of eBt sources will be presented as well as radiobiology considerations and other important clinical considerations. Learning Objectives: To understand the basic principles of

  12. Methods for prostate stabilization during transperineal LDR brachytherapy.

    PubMed

    Podder, Tarun; Sherman, Jason; Rubens, Deborah; Messing, Edward; Strang, John; Ng, Wan-Sing; Yu, Yan

    2008-03-21

    In traditional prostate brachytherapy procedures for a low-dose-rate (LDR) radiation seed implant, stabilizing needles are first inserted to provide some rigidity and support to the prostate. Ideally this will provide better seed placement and an overall improved treatment. However, there is much speculation regarding the effectiveness of using regular brachytherapy needles as stabilizers. In this study, we explored the efficacy of two types of needle geometries (regular brachytherapy needle and hooked needle) and several clinically feasible configurations of the stabilization needles. To understand and assess the prostate movement during seed implantation, we collected in vivo data from patients during actual brachytherapy procedures. In vitro experimentation with tissue-equivalent phantoms allowed us to further understand the mechanics behind prostate stabilization. We observed superior stabilization with the hooked needles compared to the regular brachytherapy needles (more than 40% in bilateral parallel needle configuration). Prostate movement was also reduced significantly when regular brachytherapy needles were in an angulated configuration as compared to the parallel configuration (more than 60%). When the hooked needles were angulated for stabilization, further reduction in prostate displacement was observed. In general, for convenience of dosimetric planning and to avoid needle collision, all needles are desired to be in a parallel configuration. In this configuration, hooked needles provide improved stabilization of the prostate. On the other hand, both regular and hooked needles appear to be equally effective in reducing prostate movement when they are in angulated configurations, which will be useful in seed implantation using a robotic system. We have developed nonlinear spring-damper model for the prostate movement which can be used for adapting dosimetric planning during brachytherapy as well as for developing more realistic haptic devices and

  13. Percutaneous interstitial brachytherapy for adrenal metastasis: technical report.

    PubMed

    Kishi, Kazushi; Tamura, Shinji; Mabuchi, Yasushi; Sonomura, Tetsuo; Noda, Yasutaka; Nakai, Motoki; Sato, Morio; Ino, Kazuhiko; Yamanaka, Noboru

    2012-09-01

    We developed and evaluated the feasibility of a brachytherapy technique as a safe and effective treatment for adrenal metastasis. Adapting a paravertebral insertion technique in radiofrequency ablation of adrenal tumors, we developed an interstitial brachytherapy for adrenal metastasis achievable on an outpatient basis. Under local anesthesia and under X-ray CT guidance, brachytherapy applicator needles were percutaneously inserted into the target. A treatment plan was created to eradicate the tumor while preserving normal organs including the spinal cord and kidney. We applied this interstitial brachytherapy technique to two patients: one who developed adrenal metastasis as the third recurrence of uterine cervical cancer after reirradiation, and one who developed metachronous multiple metastases from malignant melanoma. The whole procedure was completed in 2.5 hours. There were no procedure-related or radiation-related early/late complications. FDG PET-CT images at two and three months after treatment showed absence of FDG uptake, and no recurrence of the adrenal tumor was observed for over seven months until expiration, and for six months until the present, respectively. This interventional interstitial brachytherapy procedure may be useful as a safe and eradicative treatment for adrenal metastasis.

  14. Dosimetric characterization and output verification for conical brachytherapy surface applicators. Part I. Electronic brachytherapy source

    PubMed Central

    Fulkerson, Regina K.; Micka, John A.; DeWerd, Larry A.

    2014-01-01

    Purpose: Historically, treatment of malignant surface lesions has been achieved with linear accelerator based electron beams or superficial x-ray beams. Recent developments in the field of brachytherapy now allow for the treatment of surface lesions with specialized conical applicators placed directly on the lesion. Applicators are available for use with high dose rate (HDR) 192Ir sources, as well as electronic brachytherapy sources. Part I of this paper will discuss the applicators used with electronic brachytherapy sources; Part II will discuss those used with HDR 192Ir sources. Although the use of these applicators has gained in popularity, the dosimetric characteristics including depth dose and surface dose distributions have not been independently verified. Additionally, there is no recognized method of output verification for quality assurance procedures with applicators like these. Existing dosimetry protocols available from the AAPM bookend the cross-over characteristics of a traditional brachytherapy source (as described by Task Group 43) being implemented as a low-energy superficial x-ray beam (as described by Task Group 61) as observed with the surface applicators of interest. Methods: This work aims to create a cohesive method of output verification that can be used to determine the dose at the treatment surface as part of a quality assurance/commissioning process for surface applicators used with HDR electronic brachytherapy sources (Part I) and 192Ir sources (Part II). Air-kerma rate measurements for the electronic brachytherapy sources were completed with an Attix Free-Air Chamber, as well as several models of small-volume ionization chambers to obtain an air-kerma rate at the treatment surface for each applicator. Correction factors were calculated using MCNP5 and EGSnrc Monte Carlo codes in order to determine an applicator-specific absorbed dose to water at the treatment surface from the measured air-kerma rate. Additionally, relative dose

  15. A novel applicator design for intracavitary brachytherapy of the nasopharynx: Simulated reconstruction, image-guided adaptive brachytherapy planning, and dosimetry.

    PubMed

    Bacorro, Warren R; Agas, Ryan Anthony F; Cabrera, Stellar Marie R; Bojador, Maureen R; Sogono, Paolo G; Mejia, Michael Benedict A; Sy Ortin, Teresa T

    2018-05-11

    In nasopharyngeal cancer, brachytherapy is given as boost in primary treatment or as salvage for recurrent or persistent disease. The Rotterdam nasopharyngeal applicator (RNA) allows for suboptimal reduction of soft palate radiation dose, based on image-guided brachytherapy plans. Building on the RNA, we propose a novel design, the Benavides nasopharyngeal applicator (BNA). The virtual BNA was reconstructed on two cases (one T1, one T2) previously treated with intracavitary brachytherapy using the RNA. Dose was prescribed to the high-risk clinical target volumes (CTVs) and optimization was such that high-risk CTV D90 ≥ 100% of prescribed dose (PD), intermediate-risk-CTV D90 ≥ 75% PD, and soft palate D2cc ≤ 120% PD. The optimized RNA and BNA image-guided brachytherapy plans were compared in terms of CTV coverage and organs-at-risk sparing. Optimization objectives were more easily met with the BNA. For the T1 case, all three planning objectives were easily achieved in both the RNA and BNA, but with 18-19% lower soft palate doses with the BNA. For the T2 case, the CTV planning objectives were achieved in both the RNA and BNA, but the soft palate constraint was only achieved with the BNA, with 38-41% lower soft palate doses. Compared to the RNA, the BNA permits easier optimization and improves therapeutic ratio by a significant reduction of soft palate doses, based on simulation using a proposed system for CTV/organs-at-risk delineation, prescription, and optimization for image-guided adaptive brachytherapy. Clinical piloting using a prototype is necessary to evaluate its feasibility and utility. Copyright © 2018 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  16. Prostate brachytherapy - discharge

    MedlinePlus

    ... chap 84. Read More Prostate brachytherapy Prostate cancer Prostate-specific antigen (PSA) blood test Radical prostatectomy Review Date 2/21/2017 Updated by: Jennifer Sobol, DO, Urologist with the Michigan ... Cancer Browse the Encyclopedia A.D.A.M., ...

  17. [Brachytherapy for head and neck cancers].

    PubMed

    Peiffert, D; Coche-Dequéant, B; Lapeyre, M; Renard, S

    2018-05-29

    The main indications of the brachytherapy of head and neck cancers are the limited tumours of the lip, the nose, the oral cavity and the oropharynx. Nasopharynx tumours are nowadays treated by intensity-modulated radiotherapy. This technique can be exclusive, associated with external radiotherapy or postoperative. It can also be a salvage treatment for the second primaries in previously irradiated areas. If the low dose rate brachytherapy rules remain the reference, the pulse dose rate technique allows the prescription of the dose rate and the optimisation of the dose distribution. Results of high dose rate brachytherapy are now published. This paper reports the recommendations of the Gec-ESTRO, published in 2017, and takes into account the data of the historical low dose rate series, and is upgraded with the pulsed-dose rate and high dose rate series. Copyright © 2018. Published by Elsevier SAS.

  18. Outcomes and toxicities in patients with intermediate-risk prostate cancer treated with brachytherapy alone or brachytherapy and supplemental external beam radiation therapy.

    PubMed

    Schlussel Markovic, Emily; Buckstein, Michael; Stone, Nelson N; Stock, Richard G

    2018-05-01

    To evaluate the cancer control outcomes and long-term treatment-related morbidity of brachytherapy as well as combination brachytherapy and external beam radiation therapy (EBRT) in patients with intermediate-risk prostate cancer. A retrospective review was conducted in a prospectively collected database of patients with intermediate-risk prostate cancer who were treated either with brachytherapy or brachytherapy and EBRT, with or without androgen deprivation therapy (ADT), in the period 1990-2014. Urinary and erectile dysfunction symptoms were measured using the International Prostate Symptom Score (IPSS), the Mount Sinai erectile function scale and the Sexual Health Inventory for Men (SHIM). Cancer control endpoints included biochemical failure and development of distant metastases. All statistical analyses were carried out using the Statistical Package for Social Science (SPSS). Survival curves were calculated using Kaplan-Meier actuarial methods and compared using log-rank tests. Cox regression multivariate analyses were used to test the effect of multiple variables on treatment outcomes. A total of 902 patients were identified, with a median follow-up of 91 months. Of these, 390 received brachytherapy and 512 received combination therapy with EBRT. In patients with one intermediate-risk factor, the addition of EBRT did not significantly affect freedom from biochemical failure or distant metastases. Among patients with two or three intermediate-risk factors, added EBRT did not improve freedom from biochemical failure. Significant differences in late toxicity between patients treated with brachytherapy vs combination brachytherapy and EBRT were identified including urge incontinence (P < 0.001), haematuria (P < 0.001), dysuria (P < 0.001), and change in quality-of-life IPSS (P = 0.002). These symptoms were reported by patients at any point during treatment follow-up. Analysis of patients who were potent before treatment using actuarial methods showed that

  19. Trends in the Utilization of Brachytherapy in Cervical Cancer in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Kathy, E-mail: Kathy.Han@rmp.uhn.on.ca; Milosevic, Michael; Fyles, Anthony

    2013-09-01

    Purpose: To determine the trends in brachytherapy use in cervical cancer in the United States and to identify factors and survival benefits associated with brachytherapy treatment. Methods and Materials: Using the Surveillance, Epidemiology, and End Results (SEER) database, we identified 7359 patients with stages IB2-IVA cervical cancer treated with external beam radiation therapy (EBRT) between 1988 and 2009. Propensity score matching was used to adjust for differences between patients who received brachytherapy and those who did not from 2000 onward (after the National Cancer Institute alert recommending concurrent chemotherapy). Results: Sixty-three percent of the 7359 women received brachytherapy in combinationmore » with EBRT, and 37% received EBRT alone. The brachytherapy utilization rate has decreased from 83% in 1988 to 58% in 2009 (P<.001), with a sharp decline of 23% in 2003 to 43%. Factors associated with higher odds of brachytherapy use include younger age, married (vs single) patients, earlier years of diagnosis, earlier stage and certain SEER regions. In the propensity score-matched cohort, brachytherapy treatment was associated with higher 4-year cause-specific survival (CSS; 64.3% vs 51.5%, P<.001) and overall survival (OS; 58.2% vs 46.2%, P<.001). Brachytherapy treatment was independently associated with better CSS (hazard ratio [HR], 0.64; 95% confidence interval [CI], 0.57-0.71), and OS (HR 0.66; 95% CI, 0.60 to 0.74). Conclusions: This population-based analysis reveals a concerning decline in brachytherapy utilization and significant geographic disparities in the delivery of brachytherapy in the United States. Brachytherapy use is independently associated with significantly higher CSS and OS and should be implemented in all feasible cases.« less

  20. American Brachytherapy Society consensus report for accelerated partial breast irradiation using interstitial multicatheter brachytherapy.

    PubMed

    Hepel, Jaroslaw T; Arthur, Douglas; Shaitelman, Simona; Polgár, Csaba; Todor, Dorin; Zoberi, Imran; Kamrava, Mitchell; Major, Tibor; Yashar, Catheryn; Wazer, David E

    To develop a consensus report for the quality practice of accelerated partial breast irradiation (APBI) using interstitial multicatheter brachytherapy (IMB). The American Brachytherapy Society Board appointed an expert panel with clinical and research experience with breast brachytherapy to provide guidance for the current practice of IMB. This report is based on a comprehensive literature review with emphasis on randomized data and expertise of the panel. Randomized trials have demonstrated equivalent efficacy of APBI using IMB compared with whole breast irradiation for select patients with early-stage breast cancer. Several techniques for placement of interstitial catheters are described, and importance of three-dimensional planning with appropriate optimization is reviewed. Optimal target definition is outlined. Commonly used dosing schemas include 50 Gy delivered in pulses of 0.6-0.8 Gy/h using pulsed-dose-rate technique and 34 Gy in 10 fractions, 32 Gy in eight fractions, or 30 Gy in seven fractions using high-dose-rate technique. Potential toxicities and strategies for toxicity avoidance are described in detail. Dosimetric constraints include limiting whole breast volume that receives ≥50% of prescription dose to <60%, skin dose to ≤100% of prescription dose (≤60-70% preferred), chest wall dose to ≤125% of prescription dose, Dose Homogeneity Index to >0.75 (>0.85 preferred), V 150  < 45 cc, and V 200  < 14 cc. Using an optimal implant technique coupled with optimal planning and appropriate dose constraints, a low rate of toxicity and a good-to-excellent cosmetic outcome of ≥90% is expected. IMB is an effective technique to deliver APBI for appropriately selected women with early-stage breast cancer. This consensus report has been created to assist clinicians in the appropriate practice of APBI using IMB. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  1. Radioactive implant migration in patients treated for localized prostate cancer with interstitial brachytherapy.

    PubMed

    Older, R A; Synder, B; Krupski, T L; Glembocki, D J; Gillenwater, J Y

    2001-05-01

    In several of the initial patients undergoing brachytherapy at our institution radioactive implants were visible in the thorax on chest radiography. The clinical ramifications of this unanticipated finding were unclear. Thus, we investigated the incidence of brachytherapy seed migration to the chest and whether these seeds were associated with any clinical significance. We retrospectively reviewed the records of all patients who underwent ultrasound or computerized tomography guided brachytherapy of 103palladium seeds from March 1997 to March 1999. This list of patients on brachytherapy was then matched against the radiology computer system to determine those who had undergone chest X-ray after brachytherapy. When the radiology report was unclear regarding brachytherapy seeds, chest x-rays were reviewed by one of us (R. O.) to determine the presence and position of the seeds. Post-brachytherapy chest x-rays were available in 110 of the 183 patients. In 78 cases no brachytherapy seeds were identified. Radioactive implants were identified on chest radiography in 32 patients (29%), including 1 to 5 seeds in 20, 8, 1, 2 and 1, respectively. No patients complained of any change in pulmonary symptoms after brachytherapy. Radioactive implants migrated after brachytherapy for localized prostate cancer in 29% of the patients who underwent post-procedure radiography. There did not appear to be a pattern to the seed distribution. However, while the incidence was not negligible, no patient appeared to have any acute pulmonary symptoms. Therefore, while the migration of radioactive implants to the chest is a real phenomenon, it appears to have no adverse clinical consequences in the early post-procedure period.

  2. Radioactive seed migration following parotid gland interstitial brachytherapy.

    PubMed

    Fan, Yi; Huang, Ming-Wei; Zhao, Yi-Jiao; Gao, Hong; Zhang, Jian-Guo

    To evaluate the incidence and associated factors of pulmonary seed migration after parotid brachytherapy using a novel migrated seed detection technique. Patients diagnosed with parotid cancer who underwent permanent parotid brachytherapy from January 2006 to December 2011 were reviewed retrospectively. Head and neck CT scans and chest X-rays were evaluated during routine follow-up. Mimics software and Geomagic Studio software were used for seed reconstruction and migrated seed detection from the original implanted region, respectively. Postimplant dosimetry analysis was performed after seeds migration if the seeds were still in their emitting count. Adverse clinical sequelae from seed embolization to the lung were documented. The radioactive seed implants were identified on chest X-rays in 6 patients. The incidence rate of seed migration in 321 parotid brachytherapy patients was 1.87% (6/321) and that of individual seed migration was 0.04% (6/15218 seeds). All migrated seeds were originally from the retromandibular region. No adverse dosimetric consequences were found in the target region. Pulmonary symptoms were not reported by any patient in this study. In our patient set, migration of radioactive seeds with an initial radioactivity of 0.6-0.7 mCi to the chest following parotid brachytherapy was rare. Late migration of a single seed from the central target region did not affect the dosimetry significantly, and patients did not have severe short-term complications. This study proposed a novel technique to localize the anatomical origin of the migrated seeds during brachytherapy. Our evidence suggested that placement of seeds adjacent to blood vessels was associated with an increased likelihood of seed migration to the lungs. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  3. Urethral toxicity after LDR brachytherapy: experience in Japan.

    PubMed

    Tanaka, Nobumichi; Asakawa, Isao; Hasegawa, Masatoshi; Fujimoto, Kiyohide

    2015-01-01

    Urinary toxicity is common after low-dose-rate (LDR) brachytherapy, and the resolution of urinary toxicity is a concern. In particular, urinary frequency is the most common adverse event among the urinary toxicities. We have previously reported that approximately 70% of patients experience urinary frequency during the first 6 months after seed implantation. Most urinary adverse events were classified as Grade 1, and Grade 2 or higher adverse events were rare. The incidence of urinary retention was approximately 2-4%. A high International Prostate Symptom Score before seed implantation was an independent predictor of acute urinary toxicity of Grade 2 or higher. Several previous reports from the United States also supported this trend. In Japan, LDR brachytherapy was legally approved in 2003. A nationwide prospective cohort study entitled Japanese Prostate Cancer Outcome Study of Permanent Iodine-125 Seed Implantation was initiated in July 2005. It is an important issue to limit urinary toxicities in patients who undergo LDR brachytherapy. Copyright © 2015 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  4. [Developments in brachytherapy].

    PubMed

    Ikeda, H

    1995-09-01

    Brachytherapy is one of the ideal methods of radiotherapy because of the concentration of a high dose on the target. Recent developments, including induction of afterloading method, utilization of small-sized high-activity sources such as Iridium-192, and induction of high technology and computerization, have made for shortening of irradiation time and source handling, which has led to easier management of the patient during treatment. Dose distribution at high dose rate (HDR) is at least as good as that of low dose rate (LDR), and selection of fractionation and treatment time assures even greater biological effects on hypoxic tumor cells than LDR. Experience with HDR brachytherapy in uterine cervix cancer using Cobalt-60 during the past 20 years in this country has gradually been evaluated in U.S. and Europe. The indications for HDR treatment have extended to esophagus, bronchus, bile duct, brain, intraoperative placement of source guide, and perineal region using templates, as well as the conventional use for uterus, tongue and so on.

  5. A survey of current clinical practice in permanent and temporary prostate brachytherapy: 2010 update.

    PubMed

    Buyyounouski, Mark K; Davis, Brian J; Prestidge, Bradley R; Shanahan, Thomas G; Stock, Richard G; Grimm, Peter D; Demanes, D Jeffrey; Zaider, Marco; Horwitz, Eric M

    2012-01-01

    To help establish patterns of care and standards of care of interstitial permanent low-dose-rate (LDR) and temporary high-dose-rate brachytherapy for prostate cancer and to compare the results with a similar 1998 American Brachytherapy Society (ABS) survey. A comprehensive questionnaire intended to survey specific details of current clinical brachytherapy practice was provided to the participants of the seventh ABS Prostate Brachytherapy School. Responses were tabulated and descriptive statistics are reported. Sixty-five brachytherapy practitioners responded to the survey. Eighty-nine percent (89%) of respondents performed LDR and 49% perform high-dose-rate brachytherapy. The median number of years of experience for LDR brachytherapists increased from 5 to 10 years over the course of the 12 years since the preceding survey. Compared with the first ABS, a smaller proportion of respondents received formal brachytherapy residency training (43% vs. 56%) or formal "hands-on" brachytherapy training (15% vs. 63%). There has been a marked decline in the utilization of the Mick applicator (Mick Radio-Nuclear Instruments, Inc., Mount Vernon, NY, USA) (60% vs. 28%) and an increase in the use of stranded seeds (40% vs. 11%). Compliance with postimplant dosimetry was higher in the 2010 survey. This survey does suggest an evolution in the practice of LDR brachytherapy since 1998 and aids in identifying aspects that require further progress or investigation. ABS guidelines and other practice recommendations appear to impact the practice of brachytherapy. Copyright © 2012 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  6. Dosimetric characteristics of a new unit for electronic skin brachytherapy

    PubMed Central

    Garcia-Martinez, Teresa; Chan, Jan-Pieter; Perez-Calatayud, Jose

    2014-01-01

    Purpose Brachytherapy with radioactive high dose rate (HDR) 192Ir source is applied to small skin cancer lesions, using surface applicators, i.e. Leipzig or Valencia type. New developments in the field of radiotherapy for skin cancer include electronic brachytherapy. This technique involves the placement of an HDR X-ray source close to the skin, therefore combining the benefits of brachytherapy with the reduced shielding requirements and targeted energy of low energy X-rays. Recently, the Esteya® Electronic Brachytherapy System (Esteya EBS, Elekta AB-Nucletron, Stockholm, Sweden) has been developed specifically for HDR brachytherapy treatment of surface lesions. The system provides radionuclide free HDR brachytherapy by means of a small 69.5 kV X-ray source. The purpose of this study is to obtain the dosimetric characterization required for clinical implementation, providing the detailed methodology to perform the commissioning. Material and methods Flatness, symmetry and penumbra, percentage of depth dose (PDD), kV stability, HVL, output, spectrum, linearity, and leakage have been evaluated for a set of applicators (from 10 mm to 30 mm in diameter). Results Flatness and symmetry resulted better than 5% with around 1 mm of penumbra. The depth dose gradient is about 7%/mm. A kV value of 68.4 ± 1.0 kV (k = 1) was obtained, in good agreement with manufacturer data (69.5 kV). HVL was 1.85 mm Al. Dose rate for a typical 6 Gy to 7 Gy prescription resulted about 3.3 Gy/min and the leakage value was < 100 µGy/min. Conclusions The new Esteya® Electronic Brachytherapy System presents excellent flatness and penumbra as with the Valencia applicator case, combined with an improved PDD, allowing treatment of lesions of up to a depth of 5 mm in combination with reduced treatment duration. The Esteya unit allows HDR brachytherapy superficial treatment within a minimally shielded environment due its low energy. PMID:24790622

  7. Air kerma and absorbed dose standards for reference dosimetry in brachytherapy

    PubMed Central

    2014-01-01

    This article reviews recent developments in primary standards for the calibration of brachytherapy sources, with an emphasis on the currently most common photon-emitting radionuclides. The introduction discusses the need for reference dosimetry in brachytherapy in general. The following section focuses on the three main quantities, i.e. reference air kerma rate, air kerma strength and absorbed dose rate to water, which are currently used for the specification of brachytherapy photon sources and which can be realized with primary standards from first principles. An overview of different air kerma and absorbed dose standards, which have been independently developed by various national metrology institutes over the past two decades, is given in the next two sections. Other dosimetry techniques for brachytherapy will also be discussed. The review closes with an outlook on a possible transition from air kerma to absorbed dose to water-based calibrations for brachytherapy sources in the future. PMID:24814696

  8. MO-E-BRD-01: Is Non-Invasive Image-Guided Breast Brachytherapy Good?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiatt, J.

    2015-06-15

    Is Non-invasive Image-Guided Breast Brachytherapy Good? – Jess Hiatt, MS Non-invasive Image-Guided Breast Brachytherapy (NIBB) is an emerging therapy for breast boost treatments as well as Accelerated Partial Breast Irradiation (APBI) using HDR surface breast brachytherapy. NIBB allows for smaller treatment volumes while maintaining optimal target coverage. Considering the real-time image-guidance and immobilization provided by the NIBB modality, minimal margins around the target tissue are necessary. Accelerated Partial Breast Irradiation in brachytherapy: is shorter better? - Dorin Todor, PhD VCU A review of balloon and strut devices will be provided together with the origins of APBI: the interstitial multi-catheter implant.more » A dosimetric and radiobiological perspective will help point out the evolution in breast brachytherapy, both in terms of devices and the protocols/clinical trials under which these devices are used. Improvements in imaging, delivery modalities and convenience are among the factors driving the ultrashort fractionation schedules but our understanding of both local control and toxicities associated with various treatments is lagging. A comparison between various schedules, from a radiobiological perspective, will be given together with a critical analysis of the issues. to review and understand the evolution and development of APBI using brachytherapy methods to understand the basis and limitations of radio-biological ‘equivalence’ between fractionation schedules to review commonly used and proposed fractionation schedules Intra-operative breast brachytherapy: Is one stop shopping best?- Bruce Libby, PhD. University of Virginia A review of intraoperative breast brachytherapy will be presented, including the Targit-A and other trials that have used electronic brachytherapy. More modern approaches, in which the lumpectomy procedure is integrated into an APBI workflow, will also be discussed. Learning Objectives: To review past and

  9. High brachytherapy doses can counteract hypoxia in cervical cancer—a modelling study

    NASA Astrophysics Data System (ADS)

    Lindblom, Emely; Dasu, Alexandru; Beskow, Catharina; Toma-Dasu, Iuliana

    2017-01-01

    Tumour hypoxia is a well-known adverse factor for the outcome of radiotherapy. For cervical tumours in particular, several studies indicate large variability in tumour oxygenation. However, clinical evidence shows that the management of cervical cancer including brachytherapy leads to high rate of success. It was the purpose of this study to investigate whether the success of brachytherapy for cervical cancer, seemingly regardless of oxygenation status, could be explained by the characteristics of the brachytherapy dose distributions. To this end, a previously used in silico model of tumour oxygenation and radiation response was further developed to simulate the treatment of cervical cancer employing a combination of external beam radiotherapy and intracavitary brachytherapy. Using a clinically-derived brachytherapy dose distribution and assuming a homogeneous dose delivered by external radiotherapy, cell survival was assessed on voxel level by taking into account the variation of sensitivity with oxygenation as well as the effects of repair, repopulation and reoxygenation during treatment. Various scenarios were considered for the conformity of the brachytherapy dose distribution to the hypoxic region in the target. By using the clinically-prescribed brachytherapy dose distribution and varying the total dose delivered with external beam radiotherapy in 25 fractions, the resulting values of the dose for 50% tumour control, D 50, were in agreement with clinically-observed values for high cure rates if fast reoxygenation was assumed. The D 50 was furthermore similar for the different degrees of conformity of the brachytherapy dose distribution to the tumour, regardless of whether the hypoxic fraction was 10%, 25%, or 40%. To achieve 50% control with external RT only, a total dose of more than 70 Gy in 25 fractions would be required for all cases considered. It can thus be concluded that the high doses delivered in brachytherapy can counteract the increased

  10. Temporal relationship between prostate brachytherapy and the diagnosis of colorectal cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutman, Sarah A.; Merrick, Gregory S.; Butler, Wayne M.

    2006-09-01

    Purpose: To identify the location of pretreatment and posttreatment colorectal malignancies and posttreatment colorectal polyps in patients with clinically localized prostate cancer managed with brachytherapy. Methods and Materials: From April 1995 through July 2004, 1,351 consecutive patients underwent brachytherapy for clinical stage T1b-T3a (American Joint Committee on Cancer, 2002) prostate cancer. Supplemental external beam radiotherapy (XRT) was administered to 699 patients. The median follow-up was 4.6 years. Operative and pathology reports were reviewed for all patients with pretreatment and posttreatment colorectal cancer and posttreatment colorectal polyps. Multiple parameters were evaluated for the development of colorectal cancer or colorectal polyps. Results:more » Colorectal cancer was diagnosed in 23 and 25 patients before and after prostate brachytherapy, respectively. No differences were identified in the distribution of colorectal cancers either before or after treatment (3 and 4 rectal cancers in the pre- and postbrachytherapy cohorts). Thirty-five of the 48 colorectal cancers (73%) were diagnosed within 5 years of brachytherapy with a peak incidence 1 year after brachytherapy. One hundred ninety-two colorectal polyps were diagnosed after brachytherapy, 160 (83%) occurred within 4 years of brachytherapy, and only 27 (14%) were located in the rectum. In multivariate Cox regression analysis, prostate D{sub 9} (minimum percentage of the dose covering 90% of the target volume) predicted for posttreatment colorectal cancer. Rectal polyps were most closely related to patient age and percent positive biopsies, whereas sigmoid/colon polyps were best predicted by patient age, planning volume, and supplemental XRT. Conclusions: Colorectal cancer was diagnosed with equal frequency before and after brachytherapy with comparable geographic distributions. In addition, the vast majority of postbrachytherapy colorectal polyps were located beyond the confines

  11. LDR vs. HDR brachytherapy for localized prostate cancer: the view from radiobiological models.

    PubMed

    King, Christopher R

    2002-01-01

    Permanent LDR brachytherapy and temporary HDR brachytherapy are competitive techniques for clinically localized prostate radiotherapy. Although a randomized trial will likely never be conducted comparing these two forms of brachytherapy, a comparative radiobiological modeling analysis proves useful in understanding some of their intrinsic differences, several of which could be exploited to improve outcomes. Radiobiological models based upon the linear quadratic equations are presented for fractionated external beam, fractionated (192)Ir HDR brachytherapy, and (125)I and (103)Pd LDR brachytherapy. These models incorporate the dose heterogeneities present in brachytherapy based upon patient-derived dose volume histograms (DVH) as well as tumor doubling times and repair kinetics. Radiobiological parameters are normalized to correspond to three accepted clinical risk factors based upon T-stage, PSA, and Gleason score to compare models with clinical series. Tumor control probabilities (TCP) for LDR and HDR brachytherapy (as monotherapy or combined with external beam) are compared with clinical bNED survival rates. Predictions are made for dose escalation with HDR brachytherapy regimens. Model predictions for dose escalation with external beam agree with clinical data and validate the models and their underlying assumptions. Both LDR and HDR brachytherapy achieve superior tumor control when compared with external beam at conventional doses (<70 Gy), but similar to results from dose escalation series. LDR brachytherapy as boost achieves superior tumor control than when used as monotherapy. Stage for stage, both LDR and current HDR regimens achieve similar tumor control rates, in agreement with current clinical data. HDR monotherapy with large-dose fraction sizes might achieve superior tumor control compared with LDR, especially if prostate cancer possesses a high sensitivity to dose fractionation (i.e., if the alpha/beta ratio is low). Radiobiological models support the

  12. Calculated and measured brachytherapy dosimetry parameters in water for the Xoft Axxent X-Ray Source: an electronic brachytherapy source.

    PubMed

    Rivard, Mark J; Davis, Stephen D; DeWerd, Larry A; Rusch, Thomas W; Axelrod, Steve

    2006-11-01

    A new x-ray source, the model S700 Axxent X-Ray Source (Source), has been developed by Xoft Inc. for electronic brachytherapy. Unlike brachytherapy sources containing radionuclides, this Source may be turned on and off at will and may be operated at variable currents and voltages to change the dose rate and penetration properties. The in-water dosimetry parameters for this electronic brachytherapy source have been determined from measurements and calculations at 40, 45, and 50 kV settings. Monte Carlo simulations of radiation transport utilized the MCNP5 code and the EPDL97-based mcplib04 cross-section library. Inter-tube consistency was assessed for 20 different Sources, measured with a PTW 34013 ionization chamber. As the Source is intended to be used for a maximum of ten treatment fractions, tube stability was also assessed. Photon spectra were measured using a high-purity germanium (HPGe) detector, and calculated using MCNP. Parameters used in the two-dimensional (2D) brachytherapy dosimetry formalism were determined. While the Source was characterized as a point due to the small anode size, < 1 mm, use of the one-dimensional (1D) brachytherapy dosimetry formalism is not recommended due to polar anisotropy. Consequently, 1D brachytherapy dosimetry parameters were not sought. Calculated point-source model radial dose functions at gP(5) were 0.20, 0.24, and 0.29 for the 40, 45, and 50 kV voltage settings, respectively. For 1

  13. Variation in uterus position prior to brachytherapy of the cervix: A case report.

    PubMed

    Georgescu, M T; Anghel, R

    2017-01-01

    Rationale: brachytherapy is administered in the treatment of patients with locally advanced cervical cancer following chemoradiotherapy. Lack of local anatomy evaluation prior to this procedure might lead to the selection of an inappropriate brachytherapy applicator, increasing the risk of side effects (e.g. uterus perforation, painful procedure ...). Objective: To assess the movement of the uterus and cervix prior to brachytherapy in patients with gynecological cancer, in order to select the proper type of brachytherapy applicator. Also we wanted to promote the replacement of the plain X-ray brachytherapy with the image-guided procedure. Methods and results: We presented the case of a 41-year-old female diagnosed with a biopsy that was proven cervical cancer stage IIIB. At diagnosis, the imaging studies identified an anteverted uterus. The patient underwent preoperative chemoradiotherapy. Prior to brachytherapy, the patient underwent a pelvic magnetic resonance imaging (MRI), which identified a displacement of the uterus in the retroverted position. Discussion: A great variety of brachytherapy applicators is available nowadays. Major changes in uterus position and lack of evaluation prior to brachytherapy might lead to a higher rate of incidents during this procedure. Also, by using orthogonal simulation and bidimensional (2D) treatment planning, brachytherapy would undoubtedly fail to treat the remaining tumoral tissue. This is the reason why we proposed the implementation of a prior imaging of the uterus and computed tomography (CT)/ MRI-based simulation in the brachytherapy procedure. Abbreviations: MRI = magnetic resonance imaging, CT = computed tomography, CTV = clinical target volume, DVH = dose-volume histogram, EBRT = external beam radiotherapy, GTV = gross tumor volume, Gy = Gray (unit), ICRU = International Commission of Radiation Units, IGRT = image guided radiotherapy, IM = internal margin, IMRT = image modulated radiotherapy, ITV = internal target

  14. Advantages of high-dose rate (HDR) brachytherapy in treatment of prostate cancer

    NASA Astrophysics Data System (ADS)

    Molokov, A. A.; Vanina, E. A.; Tseluyko, S. S.

    2017-09-01

    One of the modern methods of preserving organs radiation treatment is brachytherapy. This article analyzes the results of prostate brachytherapy. These studies of the advantages of high dose brachytherapy lead to the conclusion that this method of radiation treatment for prostate cancer has a favorable advantage in comparison with remote sensing methods, and is competitive, preserving organs in comparison to surgical methods of treatment. The use of the method of polyfocal transperineal biopsy during the brachytherapy session provides information on the volumetric spread of prostate cancer and adjust the dosimetry plan taking into account the obtained data.

  15. The evolution of brachytherapy for prostate cancer.

    PubMed

    Zaorsky, Nicholas G; Davis, Brian J; Nguyen, Paul L; Showalter, Timothy N; Hoskin, Peter J; Yoshioka, Yasuo; Morton, Gerard C; Horwitz, Eric M

    2017-06-30

    Brachytherapy (BT), using low-dose-rate (LDR) permanent seed implantation or high-dose-rate (HDR) temporary source implantation, is an acceptable treatment option for select patients with prostate cancer of any risk group. The benefits of HDR-BT over LDR-BT include the ability to use the same source for other cancers, lower operator dependence, and - typically - fewer acute irritative symptoms. By contrast, the benefits of LDR-BT include more favourable scheduling logistics, lower initial capital equipment costs, no need for a shielded room, completion in a single implant, and more robust data from clinical trials. Prospective reports comparing HDR-BT and LDR-BT to each other or to other treatment options (such as external beam radiotherapy (EBRT) or surgery) suggest similar outcomes. The 5-year freedom from biochemical failure rates for patients with low-risk, intermediate-risk, and high-risk disease are >85%, 69-97%, and 63-80%, respectively. Brachytherapy with EBRT (versus brachytherapy alone) is an appropriate approach in select patients with intermediate-risk and high-risk disease. The 10-year rates of overall survival, distant metastasis, and cancer-specific mortality are >85%, <10%, and <5%, respectively. Grade 3-4 toxicities associated with HDR-BT and LDR-BT are rare, at <4% in most series, and quality of life is improved in patients who receive brachytherapy compared with those who undergo surgery.

  16. Underuse of brachytherapy for the treatment of dysphagia owing to esophageal cancer. An Italian survey.

    PubMed

    Fuccio, Lorenzo; Guido, Alessandra; Hassan, Cesare; Frazzoni, Leonardo; Arcelli, Alessandra; Farioli, Andrea; Giaccherini, Lucia; Galuppi, Andrea; Mandolesi, Daniele; Cellini, Francesco; Mantello, Giovanna; Macchia, Gabriella; de Bortoli, Nicola; Repici, Alessandro; Valentini, Vincenzo; Bazzoli, Franco; Morganti, Alessio Giuseppe

    2016-10-01

    International guidelines strongly recommend brachytherapy as valid alternative or in addition to stenting in patients with dysphagia owing to esophageal cancer. However, for not well understood reasons, brachytherapy is definitively underused for the palliative treatment of malignant dysphagia. Aim of the current survey was to investigate the use of brachytherapy for the treatment of malignant dysphagia in Italy. A structured questionnaire was submitted to the 1510 members of the Italian Association of Radiation Oncologists (AIRO). These members refer to 177 centres of radiotherapy across Italy and in 68 (38.4%) of them brachytherapy is routinely performed. Of the 1510 invited members, 178 completed the survey (11.7%). The answers provided by the 178 participants allowed to get information on 40 out of 68 brachytherapy centres (58.8%). Seven out of 40 (17.5%) centres perform brachytherapy of the oesophagus, in 3 out of 40 (7.5%) centres brachytherapy represents the first line of treatment. The main reason why brachytherapy is not routinely performed is the lack of experience. Despite the strong recommendations of the international guidelines and the wide diffusion of brachytherapy centres across Italy, only very few of them routinely considered brachytherapy for the treatment of dysphagia due to esophageal cancer. Copyright © 2016 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  17. Brachytherapy for Buccal Cancer: From Conventional Low Dose Rate (LDR) or Mold Technique to High Dose Rate Interstitial Brachytherapy (HDR-ISBT).

    PubMed

    Kotsuma, Tadayuki; Yamazaki, Hideya; Masui, Koji; Yoshida, Ken; Shimizutani, Kimishige; Akiyama, Hironori; Murakami, Shumei; Isohashi, Fumiaki; Yoshioka, Yasuo; Ogawa, Kazuhiko; Tanaka, Eiichi

    2017-12-01

    To examine the effectiveness of newly-installed high-dose-rate interstitial brachytherapy (HDR-ISBT) for buccal cancer. We retrospectively reviewed 36 patients (25 men and 11 women) with buccal cancer treated with curative brachytherapy with or without external radiotherapy with a median follow-up of 99 months. A total of 15 HDR-ISBT (median 48 Gy/ 8 fractions, range=24-60 Gy) patients were compared to conventional 15 cases LDR-ISBT (70 Gy, range=42.8-110 Gy) and 7 molds techniques (15 Gy, range=9-74 Gy). A total of 31 patients also underwent external radiotherapy (30 Gy, range=24-48 Gy). They comprised of 3T1, 23 T2, 8 T3, 3 T4 including 11 node positive cases. HDR-ISBT provided 82% of local control rate at 5 years, whereas conventional brachytherapy showed 72% [p=0.44; LDR-ISBT (65%), mold therapy (85.7%)]. Patients with early lesions (T1-2 or stage I-II) showed better local control rates than those with advanced lesions (T3-4 or stage III-IV). Severe late grade 3 complications developed in two patients treated with LDR-ISBT and EBRT. There is no significant difference in toxicity grade ≤2 between conventional brachytherapy (5/15=33%) and HDR-ISBT (7/32=32%, p=0.92). HDR-ISBT achieved good and comparable local control rates to conventional brachytherapy without elevating the toxicity. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  18. Oncentra brachytherapy planning system.

    PubMed

    Yang, Jack

    2018-03-27

    In modern cancer management, treatment planning has progressed as a contemporary tool with all the advances in computing power in recent years. One of the advanced planning tools uses 3-dimensional (3D) data sets for accurate dose distributions in patient prescription. Among these planning processes, brachytherapy has been a very important part of a successful cancer management program, offering clinical benefits with specific or combined treatments with external beam therapy. In this chapter, we mainly discussed the Elekta Oncentra planning system, which is the main treatment planning tool for high-dose rate (HDR) modality in our facility and in many other facilities in the United States. HDR is a technically advanced form of brachytherapy; a high-intensity radiation source (3.6 mm in length) is delivered with step motor in submillimeter precision under computer guidance directly into the tumor areas while minimizing injury to surrounding normal healthy tissue. Oncentra planning is the key component to generate a deliverable brachytherapy procedure, which is executed on the microSelectron V3 remote afterloader treatment system. Creating a highly conformal plan can be a time-consuming task. The development of Oncentra software (version 4.5.3) offers a variety of useful tools that facilitate many of the clinical challenging tasks for planning, such as contouring and image reconstruction, as well as rapid planning calculations with dose and dose volume histogram analysis. Oncentra Brachy module creates workflow and optimizes the planning accuracy for wide varieties of clinical HDR treatments, such as skin, gynecologic (GYN), breast, prostate, and many other applications. The treatment file can also be transferred to the afterloader control station for speedy delivery. The design concept, calculation algorithms, and optimization modules presented some key characteristics to plan and treat the patients effectively and accurately. The dose distribution and accuracy of

  19. MO-FG-210-00: US Guided Systems for Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Ultrasound (US) is one of the most widely used imaging modalities in medical practice. Since US imaging offers real-time imaging capability, it has becomes an excellent option to provide image guidance for brachytherapy (IGBT). (1) The physics and the fundamental principles of US imaging are presented, and the typical steps required to commission an US system for IGBT is provided for illustration. (2) Application of US for prostate HDR brachytherapy, including partial prostate treatments using MR-ultrasound co-registration to enable a focused treatment on the disease within the prostate is also presented. Prostate HDR with US image guidance planning can benefitmore » from real time visualization of the needles, and fusion of the ultrasound images with T2 weighted MR allows the focusing of the treatment to the specific areas of disease within the prostate, so that the entire gland need not be treated. Finally, (3) ultrasound guidance for an eye plaque program is presented. US can be a key component of placement and QA for episcleral plaque brachytherapy for ocular cancer, and the UCLA eye plaque program with US for image guidance is presented to demonstrate the utility of US verification of plaque placement in improving the methods and QA in episcleral plaque brachytherapy. Learning Objectives: To understand the physics of an US system and the necessary aspects of commissioning US for image guided brachytherapy (IGBT). To understand real time planning of prostate HDR using ultrasound, and its application in partial prostate treatments using MR-ultrasound fusion to focus treatment on disease within the prostate. To understand the methods and QA in applying US for localizing the target and the implant during a episcleral plaque brachytherapy procedures.« less

  20. Disease-specific survival following the brachytherapy management of prostate cancer.

    PubMed

    Stock, Richard G; Cesaretti, Jamie A; Stone, Nelson N

    2006-03-01

    To determine disease-specific survival (DSS) and associated predictive factors after prostate brachytherapy. A total of 1561 patients underwent brachytherapy for prostate cancer from 1990 to 2004 (median follow-up, 3.8 years). Treatment included brachytherapy alone (n = 634), brachytherapy and hormonal therapy (n = 420), and implant and external beam therapy (n = 507). The DSS and overall survival rates at 10 years were 96% and 74%, respectively. Gleason score significantly impacted DSS, with 10-year rates of 98%, 91%, and 92% for scores of < or = 6, 7, and > or = 8, respectively (p < 0.0001). Multivariate analysis revealed that PSA status after treatment had the most significant effect on DSS. Ten-year DSS rates were 100%, 52%, and 98%, respectively for patients without PSA failure (n = 1430), failure with a doubling time (DT) < or = 10 months (n = 64), and failure with a DT > 10 months (n = 67), respectively (p < 0.0001). In patients with PSA failure, DSS rates were 30%, 67%, and 98%, for those with DT < or = 6 months, > 6-10 months, and > 10 months, respectively (p < 0.0001). The 10-year DSS rate supports the efficacy of brachytherapy. Patients dying with disease within 10 years after treatment harbor inherently aggressive cancer with high Gleason scores and short DT.

  1. MO-E-BRD-02: Accelerated Partial Breast Irradiation in Brachytherapy: Is Shorter Better?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todor, D.

    2015-06-15

    Is Non-invasive Image-Guided Breast Brachytherapy Good? – Jess Hiatt, MS Non-invasive Image-Guided Breast Brachytherapy (NIBB) is an emerging therapy for breast boost treatments as well as Accelerated Partial Breast Irradiation (APBI) using HDR surface breast brachytherapy. NIBB allows for smaller treatment volumes while maintaining optimal target coverage. Considering the real-time image-guidance and immobilization provided by the NIBB modality, minimal margins around the target tissue are necessary. Accelerated Partial Breast Irradiation in brachytherapy: is shorter better? - Dorin Todor, PhD VCU A review of balloon and strut devices will be provided together with the origins of APBI: the interstitial multi-catheter implant.more » A dosimetric and radiobiological perspective will help point out the evolution in breast brachytherapy, both in terms of devices and the protocols/clinical trials under which these devices are used. Improvements in imaging, delivery modalities and convenience are among the factors driving the ultrashort fractionation schedules but our understanding of both local control and toxicities associated with various treatments is lagging. A comparison between various schedules, from a radiobiological perspective, will be given together with a critical analysis of the issues. to review and understand the evolution and development of APBI using brachytherapy methods to understand the basis and limitations of radio-biological ‘equivalence’ between fractionation schedules to review commonly used and proposed fractionation schedules Intra-operative breast brachytherapy: Is one stop shopping best?- Bruce Libby, PhD. University of Virginia A review of intraoperative breast brachytherapy will be presented, including the Targit-A and other trials that have used electronic brachytherapy. More modern approaches, in which the lumpectomy procedure is integrated into an APBI workflow, will also be discussed. Learning Objectives: To review past and

  2. ALGEBRA: ALgorithm for the heterogeneous dosimetry based on GEANT4 for BRAchytherapy.

    PubMed

    Afsharpour, H; Landry, G; D'Amours, M; Enger, S; Reniers, B; Poon, E; Carrier, J-F; Verhaegen, F; Beaulieu, L

    2012-06-07

    Task group 43 (TG43)-based dosimetry algorithms are efficient for brachytherapy dose calculation in water. However, human tissues have chemical compositions and densities different than water. Moreover, the mutual shielding effect of seeds on each other (interseed attenuation) is neglected in the TG43-based dosimetry platforms. The scientific community has expressed the need for an accurate dosimetry platform in brachytherapy. The purpose of this paper is to present ALGEBRA, a Monte Carlo platform for dosimetry in brachytherapy which is sufficiently fast and accurate for clinical and research purposes. ALGEBRA is based on the GEANT4 Monte Carlo code and is capable of handling the DICOM RT standard to recreate a virtual model of the treated site. Here, the performance of ALGEBRA is presented for the special case of LDR brachytherapy in permanent prostate and breast seed implants. However, the algorithm is also capable of handling other treatments such as HDR brachytherapy.

  3. Dynamic modulated brachytherapy (DMBT) and intensity modulated brachytherapy (IMBT) for the treatment of rectal and breast carcinomas

    NASA Astrophysics Data System (ADS)

    Webster, Matthew Julian

    The ultimate goal of any treatment of cancer is to maximize the likelihood of killing the tumor while minimizing the chance of damaging healthy tissues. One of the most effective ways to accomplish this is through radiation therapy, which must be able to target the tumor volume with a high accuracy while minimizing the dose delivered to healthy tissues. A successful method of accomplishing this is brachytherapy which works by placing the radiation source in very close proximity to the tumor. However, most current applications of brachytherapy rely mostly on the geometric manipulation of isotropic sources, which limits the ability to specifically target the tumor. The purpose of this work is to introduce several types of shielded brachytherapy applicators which are capable of targeting tumors with much greater accuracy than existing technologies. These applicators rely on the modulation of the dose profile through a high-density tungsten alloy shields to create anisotropic dose distributions. Two classes of applicators have been developed in this work. The first relies on the active motion of the shield, to aim a highly directional radiation profile. This allows for very precise control of the dose distribution for treatment, achieving unparalleled dose coverage to the tumor while sparing healthy tissues. This technique has been given the moniker of Dynamic Modulated Brachytherapy (DMBT). The second class of applicators, designed to reduce treatment complexity uses static applicators. These applicators retain the use of the tungsten shield, but the shield is motionless during treatment. By intelligently designing the shield, significant improvements over current methods have been demonstrated. Although these static applicators fail to match the dosimetric quality of DMBT applicators the simplified setup and treatment procedure gives them significant appeal. The focus of this work has been to optimize these shield designs, specifically for the treatment of rectal and

  4. Directional interstitial brachytherapy from simulation to application

    NASA Astrophysics Data System (ADS)

    Lin, Liyong

    Organs at risk (OAR) are sometimes adjacent to or embedded in or overlap with the clinical target volume (CTV) to be treated. The purpose of this PhD study is to develop directionally low energy gamma-emitting interstitial brachytherapy sources. These sources can be applied between OAR to selectively reduce hot spots in the OARs and normal tissues. The reduction of dose over undesired regions can expand patient eligibility or reduce toxicities for the treatment by conventional interstitial brachytherapy. This study covers the development of a directional source from design optimization to construction of the first prototype source. The Monte Carlo code MCNP was used to simulate the radiation transport for the designs of directional sources. We have made a special construction kit to assemble radioactive and gold-shield components precisely into D-shaped titanium containers of the first directional source. Directional sources have a similar dose distribution as conventional sources on the treated side but greatly reduced dose on the shielded side, with a sharp dose gradient between them. A three-dimensional dose deposition kernel for the 125I directional source has been calculated. Treatment plans can use both directional and conventional 125I sources at the same source strength for low-dose-rate (LDR) implants to optimize the dose distributions. For prostate tumors, directional 125I LDR brachytherapy can potentially reduce genitourinary and gastrointestinal toxicities and improve potency preservation for low risk patients. The combination of better dose distribution of directional implants and better therapeutic ratio between tumor response and late reactions enables a novel temporary LDR treatment, as opposed to permanent or high-dose-rate (HDR) brachytherapy for the intermediate risk T2b and high risk T2c tumors. Supplemental external-beam treatments can be shortened with a better brachytherapy boost for T3 tumors. In conclusion, we have successfully finished the

  5. Contemporary Toxicity Profile of Breast Brachytherapy Versus External Beam Radiation After Lumpectomy for Breast Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huo, Jinhai; Giordano, Sharon H.; Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas

    Purpose: We compared toxicities after brachytherapy versus external beam radiation therapy (EBRT) in contemporary breast cancer patients. Methods and Materials: Using MarketScan healthcare claims, we identified 64,112 women treated from 2003 to 2012 with lumpectomy followed by radiation (brachytherapy vs EBRT). Brachytherapy was further classified by multichannel versus single-channel applicator approach. We identified the risks and predictors of 1-year infectious and noninfectious postoperative adverse events using logistic regression and temporal trends using Cochran-Armitage tests. We estimated the 5-year Kaplan-Meier cumulative incidence of radiation-associated adverse events. Results: A total of 4522 (7.1%) patients received brachytherapy (50.2% multichannel vs 48.7% single-channel applicator).more » The overall risk of infectious adverse events was higher after brachytherapy than after EBRT (odds ratio [OR] = 1.21; 95% confidence interval [CI] 1.09-1.34, P<.001). However, over time, the frequency of infectious adverse events after brachytherapy decreased, from 17.3% in 2003 to 11.6% in 2012, and was stable after EBRT at 9.7%. Beyond 2007, there were no longer excess infections with brachytherapy (P=.97). The overall risk of noninfectious adverse events was higher after brachytherapy than after EBRT (OR=2.27; 95% CI 2.09-2.47, P<.0001). Over time, the frequency of noninfectious adverse events detected increased: after multichannel brachytherapy, from 9.1% in 2004 to 18.9% in 2012 (Ptrend = .64); single-channel brachytherapy, from 12.8% to 29.8% (Ptrend<.001); and EBRT, from 6.1% to 10.3% (Ptrend<.0001). The risk was significantly higher with single-channel than with multichannel brachytherapy (hazard ratio = 1.32; 95% CI 1.03-1.69, P=.03). Of noninfectious adverse events, 70.9% were seroma. Seroma significantly increased breast pain risk (P<.0001). Patients with underlying diabetes, cardiovascular disease, and treatment with chemotherapy had increased

  6. HDR-192Ir intraluminal brachytherapy in treatment of malignant obstructive jaundice

    PubMed Central

    Chen, Yi; Wang, Xiao-Lin; Yan, Zhi-Ping; Cheng, Jie-Min; Wang, Jian-Hua; Gong, Gao-Quan; Qian, Sheng; Luo, Jian-Jun; Liu, Qing-Xin

    2004-01-01

    AIM: To determine the feasibility and safety of intraluminal brachytherapy in treatment of malignant obstructive jaundice (MOJ) and to evaluate the clinical effect of intraluminal brachytherapy on stent patency and patient survival. METHODS: Thirty-four patients with MOJ were included in this study. Having biliary stent placed, all patients were classified into intraluminal brachytherapy group (group A, n = 14) and control group (group B, n = 20) according to their own choice. Intraluminal brachytherapy regimen included: HDR-192Ir was used in the therapy, fractional doses of 4-7 Gy were given every 3-6 d for 3-4 times, and standard points were established at 0.5-1.0 cm. Some patients of both groups received transcatheter arterial chemoembolization (TACE) after stent placement. RESULTS: In group A, the success rate of intraluminal brachytherapy was 98.0%, RTOG grade 1 acute radiation morbidity occurred in 3 patients, RTOG/EORTC grade 1 late radiation morbidity occurred in 1 patient. Mean stent patency of group A (12.6 mo) was significantly longer than that of group B (8.3 mo) (P < 0.05). There was no significant difference in the mean survival (9.4 mo vs 6.0 mo) between the two groups. CONCLUSION: HDR-192Ir intraluminal brachytherapy is a safe palliative therapy in treating MOJ, and it may prolong stent patency and has the potentiality of extending survival of patients with MOJ. PMID:15526374

  7. [Brachytherapy in France: current situation and economic outlook due to the unavailability of iridium wires].

    PubMed

    Le Vu, B; Boucher, S

    2014-10-01

    In 2013, about 6000 patients were treated with brachytherapy, the number diminishing by 2.6% per year since 2008. Prostate, breast and gynecological cancers are the most common types of cancers. Since 2008, the number of brachytherapy facilities has decreased by 18%. In medicoeconomic terms, brachytherapy faces many problems: the coding system is outdated; brachytherapy treatments cost as much as internal radiation; fees do not cover costs; since iridium wire has disappeared from the market, the technique will be transferred to more expensive high-speed or pulse dose rates. The French financing grid based on the national study of costs lags behind changes in such treatments and in the best of cases, hospitals resorting to alternatives such as in-hospital brachytherapy are funded at 46% of their additional costs. Brachytherapy is a reference technique. With intense pressure on hospital pricing, financing brachytherapy facilities will become even more problematic as a consequence of the disappearance of iridium 192 wires. The case of brachytherapy illustrates the limits of the French financing system and raises serious doubts as to its responsiveness. Copyright © 2014 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  8. Low-Dose-Rate Brachytherapy Versus Cryotherapy in Low- and Intermediate-Risk Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gestaut, Matthew M., E-mail: Matthew.Gestaut@BSWHealth.org; Cai, Wendi; Vyas, Shilpa

    Purpose: Cryotherapy and brachytherapy are definitive local treatment options for low- to intermediate-risk prostate cancer. There are both prospective and retrospective data for brachytherapy, but the use of cryotherapy has been limited primarily to single-institution retrospective studies. Currently, no published evidence has compared low-dose-rate brachytherapy versus cryotherapy. Methods and Materials: Institutional review board approval was obtained to conduct a retrospective chart review of consecutive patients treated at our institution from 1990 to 2012. For inclusion, patients must have received a prostate cancer diagnosis and have been considered to have low- to intermediate-risk disease according to the National Comprehensive Cancer Networkmore » criteria. All patients received brachytherapy or cryotherapy treatment. Disease specifics and failure details were collected for all patients. Failure was defined as prostate-specific antigen nadir +2 ng/mL. Results: A total of 359 patients were analyzed. The groups comprised 50 low-risk cryotherapy (LRC), 92 intermediate-risk cryotherapy (IRC), 133 low-risk brachytherapy (LRB), and 84 intermediate-risk brachytherapy (IRB) patients. The median prostate-specific antigen follow-up periods were 85.6 months (LRC), 59.2 months (IRC), 74.9 months (LRB), and 59.8 months (IRB). The 5-year biochemical progression–free survival (bPFS) rate was 57.9% in the cryotherapy group versus 89.6% in the brachytherapy group (P<.0001). The 5-year bPFS rate was 70.0% (LRC), 51.4% (IRC), 89.4% (LRB), and 89.7% (IRB). The bPFS rate was significantly different between brachytherapy and cryotherapy for low- and intermediate-risk groups (P<.05). The mean nadir temperature reached for cryotherapy patients was −35°C (range, −96°C to −6°C). Cryotherapy used a median of 2 freeze-thaw cycles (range, 2-4 freeze-thaw cycles). Conclusions: Results from this study suggest that cryotherapy is inferior to brachytherapy for

  9. WE-E-BRD-01: HDR Brachytherapy I: Overview of Clinical Application and QA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Libby, B; Showalter, T

    2014-06-15

    With the increased usage of high dose rate (HDR) brachytherapy and the introduction of dedicated image guided brachytherapy suites, it is necessary to review the processes and procedures associated with safely delivering these treatments in the expedited time scales that dedicated treatment suites afford. The speakers will present the clinical aspects of switching from LDR to HDR treatments, including guidelines for patient selection, and the clinical outcomes comparing LDR to HDR. The speakers will also discuss the HDR treatment process itself, because the shortened clinical timeline involved with a streamlined scan/plan/treat workflow can introduce other issues. Safety and QA aspectsmore » involved with the streamlined process, including increased personnel required for parallel tasks, and possible interfering tasks causing delays in patient treatments will also be discussed. Learning Objectives: To understand the clinical aspects of HDR Brachytherapy, including common clinical indications, patient selection, and the evolving evidence in support of this therapeutic modality To review the current prominent clinical trials for HDR brachytherapy To interpret the established guidelines for HDR brachytherapy quality assurance for implementation into practical clinical settings. To introduce the basic requirements for image guided brachytherapy.« less

  10. Magnetic resonance imaging in prostate brachytherapy: Evidence, clinical end points to data, and direction forward.

    PubMed

    Pugh, Thomas J; Pokharel, Sajal S

    The integration of multiparametric MRI into prostate brachytherapy has become a subject of interest over the past 2 decades. MRI directed high-dose-rate and low-dose-rate prostate brachytherapy offers the potential to improve treatment accuracy and standardize postprocedure quality. This article reviews the evidence to date on MRI utilization in prostate brachytherapy and postulates future pathways for MRI integration. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  11. Development of a brachytherapy audit checklist tool.

    PubMed

    Prisciandaro, Joann; Hadley, Scott; Jolly, Shruti; Lee, Choonik; Roberson, Peter; Roberts, Donald; Ritter, Timothy

    2015-01-01

    To develop a brachytherapy audit checklist that could be used to prepare for Nuclear Regulatory Commission or agreement state inspections, to aid in readiness for a practice accreditation visit, or to be used as an annual internal audit tool. Six board-certified medical physicists and one radiation oncologist conducted a thorough review of brachytherapy-related literature and practice guidelines published by professional organizations and federal regulations. The team members worked at two facilities that are part of a large, academic health care center. Checklist items were given a score based on their judged importance. Four clinical sites performed an audit of their program using the checklist. The sites were asked to score each item based on a defined severity scale for their noncompliance, and final audit scores were tallied by summing the products of importance score and severity score for each item. The final audit checklist, which is available online, contains 83 items. The audit scores from the beta sites ranged from 17 to 71 (out of 690) and identified a total of 7-16 noncompliance items. The total time to conduct the audit ranged from 1.5 to 5 hours. A comprehensive audit checklist was developed which can be implemented by any facility that wishes to perform a program audit in support of their own brachytherapy program. The checklist is designed to allow users to identify areas of noncompliance and to prioritize how these items are addressed to minimize deviations from nationally-recognized standards. Copyright © 2015 American Brachytherapy Society. All rights reserved.

  12. Utilization of prostate brachytherapy for low risk prostate cancer: Is the decline overstated?

    PubMed

    Safdieh, Joseph; Wong, Andrew; Weiner, Joseph P; Schwartz, David; Schreiber, David

    2016-08-01

    Several prior studies have suggested that brachytherapy utilization has markedly decreased, coinciding with the recent increased utilization of intensity modulated radiation therapy, as well as an increase in urologist-owned centers. We sought to investigate the brachytherapy utilization in a large, hospital-based registry. Men with prostate cancer diagnosed between 2004-2012 and treated with either external beam radiation and/or prostate brachytherapy were abstracted from the National Cancer Database. In order to be included, men had to be clinically staged as T1c-T2aNx-0Mx-0, Gleason 6, PSA ≤ 10.0 ng/ml. Descriptive statistics were used to analyze brachytherapy utilization over time and were compared via χ(2). Multivariate logistic regression was used to assess for covariables associated with increased brachytherapy usage. There were 89,413 men included in this study, of which 37,054 (41.6%) received only external beam radiation, and 52,089 (58.4%) received prostate brachytherapy. The use of brachytherapy declined over time from 62.9% in 2004 to 51.3% in 2012 (p < 0.001). This decline was noted in both academic facilities (60.8% in 2004 to 47.0% in 2012, p < 0.001) as well as in non-academic facilities (63.7% in 2004 to 53.0% in 2012, p < 0.001). The decline was more pronounced in patients who lived closer to treatment facilities than those who lived further. The use of intensity modulated radiation therapy increased during this same time period from 18.4% in 2004 to 38.2% in 2012 (p < 0.001). On multivariate analysis, treatment at an academic center, increasing age, decreasing distance from the treatment center, and years of diagnosis from 2006-2012 were significantly associated with reduced brachytherapy usage. In this hospital-based registry, prostate brachytherapy usage has declined for low risk prostate cancer as intensity modulated radiation therapy usage has increased. However, it still remains the treatment of choice for 51.3% of patients as of 2012.

  13. Sci-Thur PM – Brachytherapy 01: Fast brachytherapy dose calculations: Characterization of egs-brachy features to enhance simulation efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chamberland, Marc; Taylor, Randle E.P.; Rogers, Da

    2016-08-15

    Purpose: egs-brachy is a fast, new EGSnrc user-code for brachytherapy applications. This study characterizes egs-brachy features that enhance simulation efficiency. Methods: Calculations are performed to characterize efficiency gains from various features. Simulations include radionuclide and miniature x-ray tube sources in water phantoms and idealized prostate, breast, and eye plaque treatments. Features characterized include voxel indexing of sources to reduce boundary checks during radiation transport, scoring collision kerma via tracklength estimator, recycling photons emitted from sources, and using phase space data to initiate simulations. Bremsstrahlung cross section enhancement (BCSE), uniform bremsstrahlung splitting (UBS), and Russian Roulette (RR) are considered for electronicmore » brachytherapy. Results: Efficiency is enhanced by a factor of up to 300 using tracklength versus interaction scoring of collision kerma and by up to 2.7 and 2.6 using phase space sources and particle recycling respectively compared to simulations in which particles are initiated within sources. On a single 2.5 GHz Intel Xeon E5-2680 processor cor, simulations approximating prostate and breast permanent implant ((2 mm){sup 3} voxels) and eye plaque ((1 mm){sup 3}) treatments take as little as 9 s (prostate, eye) and up to 31 s (breast) to achieve 2% statistical uncertainty on doses within the PTV. For electronic brachytherapy, BCSE, UBS, and RR enhance efficiency by a factor >2000 compared to a factor of >10{sup 4} using a phase space source. Conclusion: egs-brachy features provide substantial efficiency gains, resulting in calculation times sufficiently fast for full Monte Carlo simulations for routine brachytherapy treatment planning.« less

  14. A comparison study on various low energy sources in interstitial prostate brachytherapy.

    PubMed

    Bakhshabadi, Mahdi; Ghorbani, Mahdi; Khosroabadi, Mohsen; Knaup, Courtney; Meigooni, Ali S

    2016-02-01

    Low energy sources are routinely used in prostate brachytherapy. (125)I is one of the most commonly used sources. Low energy (131)Cs source was introduced recently as a brachytherapy source. The aim of this study is to compare dose distributions of (125)I, (103)Pd, and (131)Cs sources in interstitial brachytherapy of prostate. ProstaSeed (125)I brachytherapy source was simulated using MCNPX Monte Carlo code. Additionally, two hypothetical sources of (103)Pd and (131)Cs were simulated with the same geometry as the ProstaSeed (125)I source, while having their specific emitted gamma spectra. These brachytherapy sources were simulated with distribution of forty-eight seeds in a phantom including prostate. The prostate was considered as a sphere with radius of 1.5 cm. Absolute and relative dose rates were obtained in various distances from the source along the transverse and longitudinal axes inside and outside the tumor. Furthermore, isodose curves were plotted around the sources. Analyzing the initial dose profiles for various sources indicated that with the same time duration and air kerma strength, (131)Cs delivers higher dose to tumor. However, relative dose rate inside the tumor is higher and outside the tumor is lower for the (103)Pd source. The higher initial absolute dose in cGy/(h.U) of (131)Cs brachytherapy source is an advantage of this source over the others. The higher relative dose inside the tumor and lower relative dose outside the tumor for the (103)Pd source are advantages of this later brachytherapy source. Based on the total dose the (125)I source has advantage over the others due to its longer half-life.

  15. Ocular Response of Choroidal Melanoma With Monosomy 3 Versus Disomy 3 After Iodine-125 Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marathe, Omkar S.; Wu, Jeffrey; Lee, Steve P.

    2011-11-15

    Purpose: To report the ocular response of choroidal melanoma with monosomy 3 vs. disomy 3 after {sup 125}I brachytherapy. Methods and Materials: We evaluated patients with ciliochoroidal melanoma managed with fine needle aspiration biopsy immediately before plaque application for {sup 125}I brachytherapy between January 1, 2005 and December 31, 2008. Patients with (1) cytopathologic diagnosis of melanoma, (2) melanoma chromosome 3 status identified by fluorescence in situ hybridization, and (3) 6 or more months of follow-up after brachytherapy were sorted by monosomy 3 vs. disomy 3 and compared by Kruskal-Wallis test. Results: Among 40 ciliochoroidal melanomas (40 patients), 15 hadmore » monosomy 3 and 25 had disomy 3. Monosomy 3 melanomas had a median greatest basal diameter of 12.00 mm and a median tumor thickness of 6.69 mm before brachytherapy; at a median of 1.75 years after brachytherapy, median thickness was 3.10 mm. Median percentage decrease in tumor thickness was 48.3%. Disomy 3 melanomas had a median greatest basal diameter of 10.00 mm and median tumor thickness of 3.19 mm before brachytherapy; at a median of 2.00 years after brachytherapy, median tumor thickness was 2.37 mm. The median percentage decrease in tumor thickness was 22.7%. Monosomy 3 melanomas were statistically greater in size than disomy 3 melanomas (p < 0.001) and showed a greater decrease in tumor thickness after brachytherapy (p = 0.006). Conclusion: In this study, ciliochoroidal melanomas with monosomy 3 were significantly greater in size than disomy 3 melanoma and showed a significantly greater decrease in thickness at a median of 1.75 years after brachytherapy. The greater decrease in monosomy 3 melanoma thickness after brachytherapy is consistent with other malignancies in which more aggressive pathology has been shown to be associated with a greater initial response to radiotherapy.« less

  16. Vaginal cuff dehiscence after intracavitary brachytherapy for endometrial cancer

    PubMed Central

    Shah, Karan; Potkul, Ronald

    2012-01-01

    We describe 2 unusual cases of vaginal dehiscence after intracavitary brachytherapy performed following robotic laparoscopic hysterectomy (RLH) along with their management. This unusual complication, which may be more common because of the robotic procedures, can be prevented by careful examination and possible delay of the onset of brachytherapy, if indicated. Our report reviews techniques of avoiding this complication and suggests that these complications should be discussed with the patients. PMID:23349653

  17. Minimal percentage of dose received by 90% of the urethra (%UD90) is the most significant predictor of PSA bounce in patients who underwent low-dose-rate brachytherapy (LDR-brachytherapy) for prostate cancer.

    PubMed

    Tanaka, Nobumichi; Asakawa, Isao; Fujimoto, Kiyohide; Anai, Satoshi; Hirayama, Akihide; Hasegawa, Masatoshi; Konishi, Noboru; Hirao, Yoshihiko

    2012-09-14

    To clarify the significant clinicopathological and postdosimetric parameters to predict PSA bounce in patients who underwent low-dose-rate brachytherapy (LDR-brachytherapy) for prostate cancer. We studied 200 consecutive patients who received LDR-brachytherapy between July 2004 and November 2008. Of them, 137 patients did not receive neoadjuvant or adjuvant androgen deprivation therapy. One hundred and forty-two patients were treated with LDR-brachytherapy alone, and 58 were treated with LDR-brachytherapy in combination with external beam radiation therapy. The cut-off value of PSA bounce was 0.1 ng/mL. The incidence, time, height, and duration of PSA bounce were investigated. Clinicopathological and postdosimetric parameters were evaluated to elucidate independent factors to predict PSA bounce in hormone-naïve patients who underwent LDR-brachytherapy alone. Fifty patients (25%) showed PSA bounce and 10 patients (5%) showed PSA failure. The median time, height, and duration of PSA bounce were 17 months, 0.29 ng/mL, and 7.0 months, respectively. In 103 hormone-naïve patients treated with LDR-brachytherapy alone, and univariate Cox proportional regression hazard model indicated that age and minimal percentage of the dose received by 30% and 90% of the urethra were independent predictors of PSA bounce. With a multivariate Cox proportional regression hazard model, minimal percentage of the dose received by 90% of the urethra was the most significant parameter of PSA bounce. Minimal percentage of the dose received by 90% of the urethra was the most significant predictor of PSA bounce in hormone-naïve patients treated with LDR-brachytherapy alone.

  18. Recommendations of the Spanish brachytherapy group (GEB) of Spanish Society of Radiation Oncology (SEOR) and the Spanish Society of Medical Physics (SEFM) for high-dose rate (HDR) non melanoma skin cancer brachytherapy.

    PubMed

    Rodríguez, S; Arenas, M; Gutierrez, C; Richart, J; Perez-Calatayud, J; Celada, F; Santos, M; Rovirosa, A

    2018-04-01

    Clinical indications of brachytherapy in non-melanoma skin cancers, description of applicators and dosimetry recommendations are described based on the literature review, clinical practice and experience of Spanish Group of Brachytherapy and Spanish Society of Medical Physics reported in the XIV Annual Consensus Meeting on Non Melanoma Skin Cancer Brachytherapy held in Benidorm, Alicante (Spain) on October 21st, 2016. All the recommendations for which consensus was achieved are highlighted in blue. Regular and small surfaces may be treated with Leipzig, Valencia, flap applicators or electronic brachytherapy (EBT). For irregular surfaces, customized molds or interstitial implants should be employed. The dose is prescribed at a maximum depth of 3-4 mm of the clinical target volume/planning target volume (CTV/PTV) in all cases except in flaps or molds in which 5 mm is appropriate. Interstitial brachytherapy should be used for CTV/PTV >5 mm. Different total doses and fraction sizes are used with very similar clinical and toxicity results. Hypofractionation is very useful twice or 3 times a week, being comfortable for patients and practical for Radiotherapy Departments. In interstitial brachytherapy 2 fractions twice a day are applied.

  19. Erectile Function Durability Following Permanent Prostate Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taira, Al V.; Merrick, Gregory S., E-mail: gmerrick@urologicresearchinstitute.or; Galbreath, Robert W.

    2009-11-01

    Purpose: To evaluate long-term changes in erectile function following prostate brachytherapy. Methods and Materials: This study included 226 patients with prostate cancer and preimplant erectile function assessed by the International Index of Erectile Function-6 (IIEF-6) who underwent brachytherapy in two prospective randomized trials between February 2001 and January 2003. Median follow-up was 6.4 years. Pre- and postbrachytherapy potency was defined as IIEF-6 >= 13 without pharmacologic or mechanical support. The relationship among clinical, treatment, and dosimetric parameters and erectile function was examined. Results: The 7-year actuarial rate of potency preservation was 55.6% with median postimplant IIEF of 22 in potentmore » patients. Potent patients were statistically younger (p = 0.014), had a higher preimplant IIEF (p < 0.001), were less likely to be diabetic (p = 0.002), and were more likely to report nocturnal erections (p = 0.008). Potency preservation in men with baseline IIEF scores of 29-30, 24-28, 18-23, and 13-17 were 75.5% vs. 73.6%, 51.7% vs. 44.8%, 48.0% vs. 40.0%, and 23.5% vs. 23.5% in 2004 vs. 2008. In multivariate Cox regression analysis, preimplant IIEF, hypertension, diabetes, prostate size, and brachytherapy dose to proximal penis strongly predicted for potency preservation. Impact of proximal penile dose was most pronounced for men with IIEF of 18-23 and aged 60-69. A significant minority of men who developed postimplant impotence ultimately regained erectile function. Conclusion: Potency preservation and median IIEF scores following brachytherapy are durable. Thoughtful dose sparing of proximal penile structures and early penile rehabilitation may further improve these results.« less

  20. A comparison study on various low energy sources in interstitial prostate brachytherapy

    PubMed Central

    Bakhshabadi, Mahdi; Ghorbani, Mahdi; Knaup, Courtney; Meigooni, Ali S.

    2016-01-01

    Purpose Low energy sources are routinely used in prostate brachytherapy. 125I is one of the most commonly used sources. Low energy 131Cs source was introduced recently as a brachytherapy source. The aim of this study is to compare dose distributions of 125I, 103Pd, and 131Cs sources in interstitial brachytherapy of prostate. Material and methods ProstaSeed 125I brachytherapy source was simulated using MCNPX Monte Carlo code. Additionally, two hypothetical sources of 103Pd and 131Cs were simulated with the same geometry as the ProstaSeed 125I source, while having their specific emitted gamma spectra. These brachytherapy sources were simulated with distribution of forty-eight seeds in a phantom including prostate. The prostate was considered as a sphere with radius of 1.5 cm. Absolute and relative dose rates were obtained in various distances from the source along the transverse and longitudinal axes inside and outside the tumor. Furthermore, isodose curves were plotted around the sources. Results Analyzing the initial dose profiles for various sources indicated that with the same time duration and air kerma strength, 131Cs delivers higher dose to tumor. However, relative dose rate inside the tumor is higher and outside the tumor is lower for the 103Pd source. Conclusions The higher initial absolute dose in cGy/(h.U) of 131Cs brachytherapy source is an advantage of this source over the others. The higher relative dose inside the tumor and lower relative dose outside the tumor for the 103Pd source are advantages of this later brachytherapy source. Based on the total dose the 125I source has advantage over the others due to its longer half-life. PMID:26985200

  1. GGEMS-Brachy: GPU GEant4-based Monte Carlo simulation for brachytherapy applications

    NASA Astrophysics Data System (ADS)

    Lemaréchal, Yannick; Bert, Julien; Falconnet, Claire; Després, Philippe; Valeri, Antoine; Schick, Ulrike; Pradier, Olivier; Garcia, Marie-Paule; Boussion, Nicolas; Visvikis, Dimitris

    2015-07-01

    In brachytherapy, plans are routinely calculated using the AAPM TG43 formalism which considers the patient as a simple water object. An accurate modeling of the physical processes considering patient heterogeneity using Monte Carlo simulation (MCS) methods is currently too time-consuming and computationally demanding to be routinely used. In this work we implemented and evaluated an accurate and fast MCS on Graphics Processing Units (GPU) for brachytherapy low dose rate (LDR) applications. A previously proposed Geant4 based MCS framework implemented on GPU (GGEMS) was extended to include a hybrid GPU navigator, allowing navigation within voxelized patient specific images and analytically modeled 125I seeds used in LDR brachytherapy. In addition, dose scoring based on track length estimator including uncertainty calculations was incorporated. The implemented GGEMS-brachy platform was validated using a comparison with Geant4 simulations and reference datasets. Finally, a comparative dosimetry study based on the current clinical standard (TG43) and the proposed platform was performed on twelve prostate cancer patients undergoing LDR brachytherapy. Considering patient 3D CT volumes of 400  × 250  × 65 voxels and an average of 58 implanted seeds, the mean patient dosimetry study run time for a 2% dose uncertainty was 9.35 s (≈500 ms 10-6 simulated particles) and 2.5 s when using one and four GPUs, respectively. The performance of the proposed GGEMS-brachy platform allows envisaging the use of Monte Carlo simulation based dosimetry studies in brachytherapy compatible with clinical practice. Although the proposed platform was evaluated for prostate cancer, it is equally applicable to other LDR brachytherapy clinical applications. Future extensions will allow its application in high dose rate brachytherapy applications.

  2. Adherence to Vaginal Dilation Following High Dose Rate Brachytherapy for Endometrial Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman, Lois C., E-mail: Lois.Friedman@UHhospitals.org; Abdallah, Rita; Schluchter, Mark

    Purpose: We report demographic, clinical, and psychosocial factors associated with adherence to vaginal dilation and describe the sexual and marital or nonmarital dyadic functioning of women following high dose rate (HDR) brachytherapy for endometrial cancer. Methods and Materials: We retrospectively evaluated women aged 18 years or older in whom early-stage endometrial (IAgr3-IIB) cancers were treated by HDR intravaginal brachytherapy within the past 3.5 years. Women with or without a sexual partner were eligible. Patients completed questionnaires by mail or by telephone assessing demographic and clinical variables, adherence to vaginal dilation, dyadic satisfaction, sexual functioning, and health beliefs. Results: Seventy-eight ofmore » 89 (88%) eligible women with early-stage endometrial cancer treated with HDR brachytherapy completed questionnaires. Only 33% of patients were adherers, based on reporting having used a dilator more than two times per week in the first month following radiation. Nonadherers who reported a perceived change in vaginal dimension following radiation reported that their vaginas were subjectively smaller after brachytherapy (p = 0.013). Adherers reported more worry about their sex lives or lack thereof than nonadherers (p = 0.047). Patients reported considerable sexual dysfunction following completion of HDR brachytherapy. Conclusions: Adherence to recommendations for vaginal dilator use following HDR brachytherapy for endometrial cancer is poor. Interventions designed to educate women about dilator use benefit may increase adherence. Although sexual functioning was compromised, it is likely that this existed before having cancer for many women in our study.« less

  3. American Brachytherapy Society Task Group Report: Combination of brachytherapy and external beam radiation for high-risk prostate cancer.

    PubMed

    Spratt, Daniel E; Soni, Payal D; McLaughlin, Patrick W; Merrick, Gregory S; Stock, Richard G; Blasko, John C; Zelefsky, Michael J

    To review outcomes for high-risk prostate cancer treated with combined modality radiation therapy (CMRT) utilizing external beam radiation therapy (EBRT) with a brachytherapy boost. The available literature for high-risk prostate cancer treated with combined modality radiation therapy was reviewed and summarized. At this time, the literature suggests that the majority of high-risk cancers are curable with multimodal treatment. Several large retrospective studies and three prospective randomized trials comparing CMRT to dose-escalated EBRT have demonstrated superior biochemical control with CMRT. Longer followup of the randomized trials will be required to determine if this will translate to a benefit in metastasis-free survival, disease-specific survival, and overall survival. Although greater toxicity has been associated with CMRT compared to EBRT, recent studies suggest that technological advances that allow better definition and sparing of critical adjacent structures as well as increasing experience with brachytherapy have improved implant quality and the toxicity profile of brachytherapy. The role of androgen deprivation therapy is well established in the external beam literature for high-risk disease, but there is controversy regarding the applicability of these data in the setting of dose escalation. At this time, there is not sufficient evidence for the omission of androgen deprivation therapy with dose escalation in this population. Comparisons with surgery remain limited by differences in patient selection, but the evidence would suggest better disease control with CMRT compared to surgery alone. Due to a series of technological advances, modern combination series have demonstrated unparalleled rates of disease control in the high-risk population. Given the evidence from recent randomized trials, combination therapy may become the standard of care for high-risk cancers. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All

  4. Performance profiling for brachytherapy applications

    NASA Astrophysics Data System (ADS)

    Choi, Wonqook; Cho, Kihyeon; Yeo, Insung

    2018-05-01

    In many physics applications, a significant amount of software (e.g. R, ROOT and Geant4) is developed on novel computing architectures, and much effort is expended to ensure the software is efficient in terms of central processing unit (CPU) time and memory usage. Profiling tools are used during the evaluation process to evaluate the efficiency; however, few such tools are able to accommodate low-energy physics regions. To address this limitation, we developed a low-energy physics profiling system in Geant4 to profile the CPU time and memory of software applications in brachytherapy applications. This paper describes and evaluates specific models that are applied to brachytherapy applications in Geant4, such as QGSP_BIC_LIV, QGSP_BIC_EMZ, and QGSP_BIC_EMY. The physics range in this tool allows it to be used to generate low energy profiles in brachytherapy applications. This was a limitation in previous studies, which caused us to develop a new profiling tool that supports profiling in the MeV range, in contrast to the TeV range that is supported by existing high-energy profiling tools. In order to easily compare the profiling results between low-energy and high-energy modes, we employed the same software architecture as that in the SimpliCarlo tool developed at the Fermilab National Accelerator Laboratory (FNAL) for the Large Hadron Collider (LHC). The results show that the newly developed profiling system for low-energy physics (less than MeV) complements the current profiling system used for high-energy physics (greater than TeV) applications.

  5. Brachytherapy of prostate cancer after colectomy for colorectal cancer: pilot experience.

    PubMed

    Koutrouvelis, Panos G; Theodorescu, Dan; Katz, Stuart; Lailas, Niko; Hendricks, Fred

    2005-01-01

    We present a method of brachytherapy for prostate cancer using a 3-dimensional stereotactic system and computerized tomography guidance in patients without a rectum due to previous treatment for colorectal cancer. From June 1994 to November 2003 a cohort of 800 patients were treated with brachytherapy for prostate cancer. Four patients had previously been treated for colorectal cancer with 4,500 cGy external beam radiation therapy, abdominoperineal resection and chemotherapy, while 1 underwent abdominoperineal resection alone for ulcerative colitis. Because of previous radiation therapy, these patients were not candidates for salvage external beam radiation therapy or radical prostatectomy and they had no rectum for transrectal ultrasound guided transperineal brachytherapy or cryotherapy. A previously described, 3-dimensional stereotactic system was used for brachytherapy in these patients. The prescribed radiation dose was 120 to 144 Gy with iodine seeds in rapid strand format. Patient followup included clinical examination and serum prostate specific antigen measurement. Average followup was 18.6 months. Four patients had excellent biochemical control, while 1 had biochemical failure. Patients did not experience any gastrointestinal morbidity. One patient had a stricture of the distal ureter, requiring a stent. Three-dimensional computerized tomography guided brachytherapy for prostate cancer in patients with a history of colorectal cancer who have no rectum is a feasible method of treatment.

  6. Low-dose-rate or high-dose-rate brachytherapy in treatment of prostate cancer – between options

    PubMed Central

    2013-01-01

    Purpose Permanent low-dose-rate (LDR-BT) and temporary high-dose-rate (HDR-BT) brachytherapy are competitive techniques for clinically localized prostate radiotherapy. Although a randomized trial will likely never to be conducted comparing these two forms of brachytherapy, a comparative analysis proves useful in understanding some of their intrinsic differences, several of which could be exploited to improve outcomes. The aim of this paper is to look for possible similarities and differences between both brachytherapy modalities. Indications and contraindications for monotherapy and for brachytherapy as a boost to external beam radiation therapy (EBRT) are presented. It is suggested that each of these techniques has attributes that advocates for one or the other. First, they represent the extreme ends of the spectrum with respect to dose rate and fractionation, and therefore have inherently different radiobiological properties. Low-dose-rate brachytherapy has the great advantage of being practically a one-time procedure, and enjoys a long-term follow-up database supporting its excellent outcomes and low morbidity. Low-dose-rate brachytherapy has been a gold standard for prostate brachytherapy in low risk patients since many years. On the other hand, HDR is a fairly invasive procedure requiring several sessions associated with a brief hospital stay. Although lacking in significant long-term data, it possesses the technical advantage of control over its postimplant dosimetry (by modulating the source dwell time and position), which is absent in LDR brachytherapy. This important difference in dosimetric control allows HDR doses to be escalated safely, a flexibility that does not exist for LDR brachytherapy. Conclusions Radiobiological models support the current clinical evidence for equivalent outcomes in localized prostate cancer with either LDR or HDR brachytherapy, using current dose regimens. At present, all available clinical data regarding these two techniques

  7. EM-navigated catheter placement for gynecologic brachytherapy: an accuracy study

    NASA Astrophysics Data System (ADS)

    Mehrtash, Alireza; Damato, Antonio; Pernelle, Guillaume; Barber, Lauren; Farhat, Nabgha; Viswanathan, Akila; Cormack, Robert; Kapur, Tina

    2014-03-01

    Gynecologic malignancies, including cervical, endometrial, ovarian, vaginal and vulvar cancers, cause significant mortality in women worldwide. The standard care for many primary and recurrent gynecologic cancers consists of chemoradiation followed by brachytherapy. In high dose rate (HDR) brachytherapy, intracavitary applicators and /or interstitial needles are placed directly inside the cancerous tissue so as to provide catheters to deliver high doses of radiation. Although technology for the navigation of catheters and needles is well developed for procedures such as prostate biopsy, brain biopsy, and cardiac ablation, it is notably lacking for gynecologic HDR brachytherapy. Using a benchtop study that closely mimics the clinical interstitial gynecologic brachytherapy procedure, we developed a method for evaluating the accuracy of image-guided catheter placement. Future bedside translation of this technology offers the potential benefit of maximizing tumor coverage during catheter placement while avoiding damage to the adjacent organs, for example bladder, rectum and bowel. In the study, two independent experiments were performed on a phantom model to evaluate the targeting accuracy of an electromagnetic (EM) tracking system. The procedure was carried out using a laptop computer (2.1GHz Intel Core i7 computer, 8GB RAM, Windows 7 64-bit), an EM Aurora tracking system with a 1.3mm diameter 6 DOF sensor, and 6F (2 mm) brachytherapy catheters inserted through a Syed-Neblett applicator. The 3D Slicer and PLUS open source software were used to develop the system. The mean of the targeting error was less than 2.9mm, which is comparable to the targeting errors in commercial clinical navigation systems.

  8. Penile brachytherapy: Results for 49 patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crook, Juanita M.; Jezioranski, John; Grimard, Laval

    2005-06-01

    Purpose: To report results for 49 men with squamous cell carcinoma (SCC) of the penis treated with primary penile interstitial brachytherapy at one of two institutions: the Ottawa Regional Cancer Center, Ottawa, and the Princess Margaret Hospital, Toronto, Ontario, Canada. Methods and Materials: From September 1989 to September 2003, 49 men (mean age, 58 years; range, 22-93 years) had brachytherapy for penile SCC. Fifty-one percent of tumors were T1, 33% T2, and 8% T3; 4% were in situ and 4% Tx. Grade was well differentiated in 31%, moderate in 45%, and poor in 2%; grade was unspecified for 20%. Onemore » tumor was verrucous. All tumors in Toronto had pulsed dose rate (PDR) brachytherapy (n = 23), whereas those in Ottawa had either Iridium wire (n 22) or seeds (n = 4). Four patients had a single plane implant with a plastic tube technique, and all others had a volume implant with predrilled acrylic templates and two or three parallel planes of needles (median, six needles). Mean needle spacing was 13.5 mm (range, 10-18 mm), mean dose rate was 65 cGy/h (range, 33-160 cGy/h), and mean duration was 98.8 h (range, 36-188 h). Dose rates for PDR brachytherapy were 50-61.2 cGy/h, with no correction in total dose, which was 60 Gy in all cases. Results: Median follow-up was 33.4 months (range, 4-140 months). At 5 years, actuarial overall survival was 78.3% and cause-specific survival 90.0%. Four men died of penile cancer, and 6 died of other causes with no evidence of recurrence. The cumulative incidence rate for never having experienced any type of failure at 5 years was 64.4% and for local failure was 85.3%. All 5 patients with local failure were successfully salvaged by surgery; 2 other men required penectomy for necrosis. The soft tissue necrosis rate was 16% and the urethral stenosis rate 12%. Of 8 men with regional failure, 5 were salvaged by lymph node dissection with or without external radiation. All 4 men with distant failure died of disease. Of 49 men, 42 had

  9. Long-term outcomes in younger men following permanent prostate brachytherapy.

    PubMed

    Shapiro, Edan Y; Rais-Bahrami, Soroush; Morgenstern, Carol; Napolitano, Barbara; Richstone, Lee; Potters, Louis

    2009-04-01

    We reviewed the long-term outcomes in men undergoing permanent prostate brachytherapy with a focus on those presenting before age 60 years. Between 1992 and 2005 a total of 2,119 patients with clinical stage T1-T2, N0, M0 prostate cancer treated with permanent prostate brachytherapy were included in this study. Treatment regimens consisted of permanent prostate brachytherapy with or without hormone therapy, permanent prostate brachytherapy with external beam radiotherapy, or all 3 modalities. Biochemical recurrence was defined using the Phoenix definition. Multivariate analysis was performed to determine if age and/or other clinicopathological features were associated with disease progression. The Kaplan-Meier method was used to calculate rates of freedom from progression with the log rank test to compare patients younger than 60 vs 60 years or older. Median followup was 56.1 months. In the study population 237 patients were younger than 60 years at diagnosis (11%). The 5 and 10-year freedom from progression rates were 90.1% and 85.6%, respectively, for the entire population. Multivariate analysis demonstrated that prostate specific antigen (p <0.01), biopsy Gleason score (p <0.0001) and year of treatment (p <0.001) were associated with freedom from progression while age (p = 0.95) and clinical stage (p = 0.11) were not. There was no significant difference in freedom from progression between men younger than 60, or 60 years or older (log rank p = 0.46). In the younger cohort the 10-year freedom from progression for patients presenting with low, intermediate and high risk disease was 91.3%, 80.0% and 70.2% compared to 91.8%, 83.4% and 72.1%, respectively, for men 60 years or older. Our long-term results confirm favorable outcomes after permanent prostate brachytherapy in men younger than 60 years. Outcomes are impacted by disease related risk factors but not by age or clinical stage. Definitive treatment options for younger men with clinically localized prostate

  10. The perioperative charge equivalence of interstitial brachytherapy and radical prostatectomy with 1-year followup.

    PubMed

    Kohan, A D; Armenakas, N A; Fracchia, J A

    2000-02-01

    We compare the comprehensive 1-year charges in a consecutive group of patients undergoing radical prostatectomy and transperineal interstitial brachytherapy for clinically localized prostate cancer at a single urban institution. A total of 60 consecutive men with clinically localized prostate cancer (T1-T2, N0, M0) were treated during a 15-month period with radical prostatectomy or interstitial brachytherapy. Hospital and outpatient records were analyzed for each patient in regard to preoperative, operative and postoperative charges. Parameters included number of encounters, diagnostic and therapeutic interventions, hospitalization and operative charges, and followup visits, diagnostic tests and interventions for 1 year. All charge calculations were based arbitrarily on the 1996 Medicare fee schedule, factoring in the mandated global charge reimbursement period of 90 days for both procedures. Of the patients 38 underwent radical prostatectomy (prostatectomy group) and 22 underwent interstitial brachytherapy (brachytherapy group). The brachytherapy group was older with higher pretreatment serum prostate specific antigen and clinical stage disease, and more frequently received neoadjuvant hormonal therapy compared to the prostatectomy group. The 2 groups were similar in Gleason score and, when applicable, duration of neoadjuvant hormonal therapy. Preoperative charges were 15.3% lower for prostatectomy than for brachytherapy (not statistically significant). Conversely, operative charges for prostatectomy were 13.5% higher (p = 0.04). The major difference among preoperative, operative and postoperative charges was for those incurred postoperatively by the brachytherapy group, which were 56.0% higher than those for the prostatectomy group ($2,285.20 versus $1,007.20, p = 0.0004). Transperineal interstitial seed implantation is perceived by many as more cost-effective than radical prostatectomy for patients with clinically localized prostate cancer. We demonstrated that

  11. Design and optimization of a brachytherapy robot

    NASA Astrophysics Data System (ADS)

    Meltsner, Michael A.

    Trans-rectal ultrasound guided (TRUS) low dose rate (LDR) interstitial brachytherapy has become a popular procedure for the treatment of prostate cancer, the most common type of non-skin cancer among men. The current TRUS technique of LDR implantation may result in less than ideal coverage of the tumor with increased risk of negative response such as rectal toxicity and urinary retention. This technique is limited by the skill of the physician performing the implant, the accuracy of needle localization, and the inherent weaknesses of the procedure itself. The treatment may require 100 or more sources and 25 needles, compounding the inaccuracy of the needle localization procedure. A robot designed for prostate brachytherapy may increase the accuracy of needle placement while minimizing the effect of physician technique in the TRUS procedure. Furthermore, a robot may improve associated toxicities by utilizing angled insertions and freeing implantations from constraints applied by the 0.5 cm-spaced template used in the TRUS method. Within our group, Lin et al. have designed a new type of LDR source. The "directional" source is a seed designed to be partially shielded. Thus, a directional, or anisotropic, source does not emit radiation in all directions. The source can be oriented to irradiate cancerous tissues while sparing normal ones. This type of source necessitates a new, highly accurate method for localization in 6 degrees of freedom. A robot is the best way to accomplish this task accurately. The following presentation of work describes the invention and optimization of a new prostate brachytherapy robot that fulfills these goals. Furthermore, some research has been dedicated to the use of the robot to perform needle insertion tasks (brachytherapy, biopsy, RF ablation, etc.) in nearly any other soft tissue in the body. This can be accomplished with the robot combined with automatic, magnetic tracking.

  12. Whitmore, Henschke, and Hilaris: The reorientation of prostate brachytherapy (1970-1987).

    PubMed

    Aronowitz, Jesse N

    2012-01-01

    Urologists had performed prostate brachytherapy for decades before New York's Memorial Hospital retropubic program. This paper explores the contribution of Willet Whitmore, Ulrich Henschke, Basil Hilaris, and Memorial's physicists to the evolution of the procedure. Literature review and interviews with program participants. More than 1000 retropubic implants were performed at Memorial between 1970 and 1987. Unlike previous efforts, Memorial's program benefited from the participation of three disciplines in its conception and execution. Memorial's retropubic program was a collaboration of urologists, radiation therapists, and physicists. Their approach focused greater attention on dosimetry and radiation safety, and served as a template for subsequent prostate brachytherapy programs. Copyright © 2012 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  13. Evaluation and implementation of triple‐channel radiochromic film dosimetry in brachytherapy

    PubMed Central

    Bradley, David; Nisbet, Andrew

    2014-01-01

    The measurement of dose distributions in clinical brachytherapy, for the purpose of quality control, commissioning or dosimetric audit, is challenging and requires development. Radiochromic film dosimetry with a commercial flatbed scanner may be suitable, but careful methodologies are required to control various sources of uncertainty. Triple‐channel dosimetry has recently been utilized in external beam radiotherapy to improve the accuracy of film dosimetry, but its use in brachytherapy, with characteristic high maximum doses, steep dose gradients, and small scales, has been less well researched. We investigate the use of advanced film dosimetry techniques for brachytherapy dosimetry, evaluating uncertainties and assessing the mitigation afforded by triple‐channel dosimetry. We present results on postirradiation film darkening, lateral scanner effect, film surface perturbation, film active layer thickness, film curling, and examples of the measurement of clinical brachytherapy dose distributions. The lateral scanner effect in brachytherapy film dosimetry can be very significant, up to 23% dose increase at 14 Gy, at ± 9 cm lateral from the scanner axis for simple single‐channel dosimetry. Triple‐channel dosimetry mitigates the effect, but still limits the useable width of a typical scanner to less than 8 cm at high dose levels to give dose uncertainty to within 1%. Triple‐channel dosimetry separates dose and dose‐independent signal components, and effectively removes disturbances caused by film thickness variation and surface perturbations in the examples considered in this work. The use of reference dose films scanned simultaneously with brachytherapy test films is recommended to account for scanner variations from calibration conditions. Postirradiation darkening, which is a continual logarithmic function with time, must be taken into account between the reference and test films. Finally, films must be flat when scanned to avoid the Callier

  14. Brachytherapy Application With In Situ Dose Painting Administered by Gold Nanoparticle Eluters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinha, Neeharika; Cifter, Gizem; Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts

    Purpose: Recent studies show promise that administering gold nanoparticles (GNP) to tumor cells during brachytherapy could significantly enhance radiation damage to the tumor. A new strategy proposed for sustained administration of the GNP in prostate tumors is to load them into routinely used brachytherapy spacers for customizable in situ release after implantation. This in silico study investigated the intratumor biodistribution and corresponding dose enhancement over time due to GNP released from such GNP-loaded brachytherapy spacers (GBS). Method and Materials: An experimentally determined intratumoral diffusion coefficient (D) for 10-nm nanoparticles was used to estimate D for other sizes by using themore » Stokes-Einstein equation. GNP concentration profiles, obtained using D, were then used to calculate the corresponding dose enhancement factor (DEF) for each tumor voxel, using dose painting-by-numbers approach, for times relevant to the considered brachytherapy sources' lifetimes. The investigation was carried out as a function of GNP size for the clinically applicable low-dose-rate brachytherapy sources iodine-125 (I-125), palladium-103 (Pd-103), and cesium-131 (Cs-131). Results: Results showed that dose enhancement to tumor voxels and subvolumes during brachytherapy can be customized by varying the size of GNP released or eluted from the GBS. For example, using a concentration of 7 mg/g GNP, significant DEF (>20%) could be achieved 5 mm from a GBS after 5, 12, 25, 46, 72, 120, and 195 days, respectively, for GNP sizes of 2, 5, 10, 20, 30, and 50 nm and for 80 nm when treating with I-125. Conclusions: Analyses showed that using Cs-131 provides the highest dose enhancement to tumor voxels. However, given its relatively longer half-life, I-125 presents the most flexibility for customizing the dose enhancement as a function of GNP size. These findings provide a useful reference for further work toward development of potential new brachytherapy

  15. Brachytherapy in Head and Neck Cancers: "Are We Doing It or Are We Done with It".

    PubMed

    Kirthi Koushik, A S; Alva, Ram Charith

    2018-06-01

    We performed an e-Survey and reviewed the literature on the prevalence of use of brachytherapy in head and neck cancers in order to understand the patterns of care and probable application of this modality. A five-point questionnaire was prepared and sent to 300 oncologists through a web-based survey engine. This was done in preparation for my lecture on "Ongoing Research and Potential Research Avenues" in IBSCON held in Chennai in August 2016. SPSS software was used for the statistical analysis. Of a total of 300 emails that were sent out for the survey, 120 replies were received, which is 40%. Among the results of various questions, (i) 65% of the oncologists felt that there were > 300 ongoing studies in brachytherapy and out of them only 10-20 were on head and neck brachytherapy; (ii) 58% of the responders felt that external beam radiotherapy (EBRT) advances followed by lack of training and experience are the reasons for declining role of brachytherapy; (iii) among the responders, numbers of head and neck brachytherapy performed stand third after gynecological and breast brachytherapy. This survey shows that brachytherapy in head and neck cancers is an essential tool, but seldom practiced. If no path-breaking event happens, we may be dealing with it as a dying art.

  16. Multihelix rotating shield brachytherapy for cervical cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dadkhah, Hossein; Kim, Yusung; Flynn, Ryan T., E-mail: ryan-flynn@uiowa.edu

    Purpose: To present a novel brachytherapy technique, called multihelix rotating shield brachytherapy (H-RSBT), for the precise angular and linear positioning of a partial shield in a curved applicator. H-RSBT mechanically enables the dose delivery using only linear translational motion of the radiation source/shield combination. The previously proposed approach of serial rotating shield brachytherapy (S-RSBT), in which the partial shield is rotated to several angular positions at each source dwell position [W. Yang et al., “Rotating-shield brachytherapy for cervical cancer,” Phys. Med. Biol. 58, 3931–3941 (2013)], is mechanically challenging to implement in a curved applicator, and H-RSBT is proposed as amore » feasible solution. Methods: A Henschke-type applicator, designed for an electronic brachytherapy source (Xoft Axxent™) and a 0.5 mm thick tungsten partial shield with 180° or 45° azimuthal emission angles and 116° asymmetric zenith angle, is proposed. The interior wall of the applicator contains six evenly spaced helical keyways that rigidly define the emission direction of the partial radiation shield as a function of depth in the applicator. The shield contains three uniformly distributed protruding keys on its exterior wall and is attached to the source such that it rotates freely, thus longitudinal translational motion of the source is transferred to rotational motion of the shield. S-RSBT and H-RSBT treatment plans with 180° and 45° azimuthal emission angles were generated for five cervical cancer patients with a diverse range of high-risk target volume (HR-CTV) shapes and applicator positions. For each patient, the total number of emission angles was held nearly constant for S-RSBT and H-RSBT by using dwell positions separated by 5 and 1.7 mm, respectively, and emission directions separated by 22.5° and 60°, respectively. Treatment delivery time and tumor coverage (D{sub 90} of HR-CTV) were the two metrics used as the basis for

  17. Multihelix rotating shield brachytherapy for cervical cancer

    PubMed Central

    Dadkhah, Hossein; Kim, Yusung; Wu, Xiaodong; Flynn, Ryan T.

    2015-01-01

    Purpose: To present a novel brachytherapy technique, called multihelix rotating shield brachytherapy (H-RSBT), for the precise angular and linear positioning of a partial shield in a curved applicator. H-RSBT mechanically enables the dose delivery using only linear translational motion of the radiation source/shield combination. The previously proposed approach of serial rotating shield brachytherapy (S-RSBT), in which the partial shield is rotated to several angular positions at each source dwell position [W. Yang et al., “Rotating-shield brachytherapy for cervical cancer,” Phys. Med. Biol. 58, 3931–3941 (2013)], is mechanically challenging to implement in a curved applicator, and H-RSBT is proposed as a feasible solution. Methods: A Henschke-type applicator, designed for an electronic brachytherapy source (Xoft Axxent™) and a 0.5 mm thick tungsten partial shield with 180° or 45° azimuthal emission angles and 116° asymmetric zenith angle, is proposed. The interior wall of the applicator contains six evenly spaced helical keyways that rigidly define the emission direction of the partial radiation shield as a function of depth in the applicator. The shield contains three uniformly distributed protruding keys on its exterior wall and is attached to the source such that it rotates freely, thus longitudinal translational motion of the source is transferred to rotational motion of the shield. S-RSBT and H-RSBT treatment plans with 180° and 45° azimuthal emission angles were generated for five cervical cancer patients with a diverse range of high-risk target volume (HR-CTV) shapes and applicator positions. For each patient, the total number of emission angles was held nearly constant for S-RSBT and H-RSBT by using dwell positions separated by 5 and 1.7 mm, respectively, and emission directions separated by 22.5° and 60°, respectively. Treatment delivery time and tumor coverage (D90 of HR-CTV) were the two metrics used as the basis for evaluation and

  18. Scintillating fiber optic dosimeters for breast and prostate brachytherapy

    NASA Astrophysics Data System (ADS)

    Moutinho, L. M.; Castro, I. F.; Freitas, H.; Melo, J.; Silva, P.; Gonçalves, A.; Peralta, L.; Rachinhas, P. J.; Simões, P. C. P. S.; Pinto, S.; Pereira, A.; Santos, J. A. M.; Costa, M.; Veloso, J. F. C. A.

    2017-02-01

    Brachytherapy is a radiotherapy modality where the radioactive material is placed close to the tumor, being a common treatment for skin, breast, gynecological and prostate cancers. These treatments can be of low-dose-rate, using isotopes with mean energy of 30 keV, or high-dose-rate, using isotopes such as 192Ir with a mean energy of 380 keV. Currently these treatments are performed in most cases without in-vivo dosimetry for quality control and quality assurance. We developed a dosimeter using small diameter probes that can be inserted into the patient's body using standard brachytherapy needles. By performing real-time dosimetry in breast and prostate brachytherapy it will be possible to perform real-time dose correction when deviations from the treatment plan are observed. The dosimeter presented in this work was evaluated in-vitro. The studies consisted in the characterization of the dosimeter with 500 μm diameter sensitive probes (with a BCF-12 scintillating optical fiber) using an inhouse made gelatin breast phantom with a volume of 566 cm3. A breast brachytherapy treatment was simulated considering a tumor volume of 27 cm3 and a prescribed absolute dose of 5 Gy. The dose distribution was determined by the Inverse Planning Simulated Annealing (IPSA) optimization algorithm (ELEKTA). The dwell times estimated from the experimental measurements are in agreement with the prescribed dwell times, with relative error below 3%. The measured signal-to-noise ratio (SNR) including the stem-effect contribution is below 3%.

  19. Interventional Radiation Oncology (IRO): Transition of a magnetic resonance simulator to a brachytherapy suite.

    PubMed

    Anderson, Roberta; Armour, Elwood; Beeckler, Courtney; Briner, Valerie; Choflet, Amanda; Cox, Andrea; Fader, Amanda N; Hannah, Marie N; Hobbs, Robert; Huang, Ellen; Kiely, Marilyn; Lee, Junghoon; Morcos, Marc; McMillan, Paige E; Miller, Dave; Ng, Sook Kien; Prasad, Rashmi; Souranis, Annette; Thomsen, Robert; DeWeese, Theodore L; Viswanathan, Akila N

    As a core component of a new gynecologic cancer radiation program, we envisioned, structured, and implemented a novel Interventional Radiation Oncology (IRO) unit and magnetic resonance (MR)-brachytherapy environment in an existing MR simulator. We describe the external and internal processes required over a 6-8 month time frame to develop a clinical and research program for gynecologic brachytherapy and to successfully convert an MR simulator into an IRO unit. Support of the institution and department resulted in conversion of an MR simulator to a procedural suite. Development of the MR gynecologic brachytherapy program required novel equipment, staffing, infrastructural development, and cooperative team development with anesthetists, nurses, therapists, physicists, and physicians to ensure a safe and functional environment. Creation of a separate IRO unit permitted a novel billing structure. The creation of an MR-brachytherapy environment in an MR simulator is feasible. Developing infrastructure includes several collaborative elements. Unique to the field of radiation oncology, formalizing the space as an Interventional Radiation Oncology unit permits a sustainable financial structure. Copyright © 2018 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  20. Treating Locally Advanced Cervical Cancer With Concurrent Chemoradiation Without Brachytherapy in Low-resource Countries.

    PubMed

    Chuang, Linus; Kanis, Margaux J; Miller, Brigitte; Wright, Jason; Small, William; Creasman, William

    2016-02-01

    To summarize the literature on options of management of patients treated for locally advanced cervical cancers with a specific focus on resource-constrained settings where brachytherapy is not available. A Medline search was performed to summarize studies about treatment approaches including neoadjuvant chemotherapy, primary surgery for bulky cervical cancer, and chemoradiation followed by surgery. Summaries are by treatment approaches that are relevant to resource-constrained settings. There are a lack of studies performed on neoadjuvant chemotherapy in low-resource settings. Primary surgery followed by chemoradiation therapy for selected patients with bulky cervical cancer is a feasible option. The disadvantage is the potential increase in treatment complications. Chemoradiation without brachytherapy followed by surgery has been found to have equivalent outcomes and is associated with acceptable morbidity. In resource-constrained settings where brachytherapy is not available, performing radical hysterectomy after chemoradiation therapy without brachytherapy has been shown to produce equivalent outcomes. It seems reasonable to adopt a modified therapeutic protocol of chemoradiation followed by extrafascial hysterectomy as an alternative treatment option in low-resource countries where brachytherapy is not readily available.

  1. Efficacy and safety of iodine-125 radioactive seeds brachytherapy for advanced non-small cell lung cancer-A meta-analysis.

    PubMed

    Zhang, Wenchao; Li, Jiawei; Li, Ran; Zhang, Ying; Han, Mingyong; Ma, Wei

    This meta-analysis was conducted to investigate the efficacy and safety of 125 I brachytherapy for locally advanced non-small cell lung cancer (NSCLC). Trials comparing 125 I brachytherapy with chemotherapy in NSCLC were identified. Meta-analysis was performed to obtain pooled risk ratios for an overall response rate (ORR), disease control rate (DCR) and complications, and pooled hazard ratio for overall survival (OS). Fifteen studies including 1188 cases were included. The pooled result indicated that there were significant differences in ORR, DCR, and OS between 125 I brachytherapy combined with chemotherapy and chemotherapy alone, but no statistic differences in gastrointestinal symptoms, leukopenia, myelosuppression, and hemoglobin reduction. Patients treated with 125 I brachytherapy combined with chemotherapy have a higher relative risk of pneumothorax, bloody sputum, and pneumorrhagia compared with chemotherapy alone. Seeds migration only occurred in the group treated with 125 I brachytherapy. There were significant differences in ORR, DCR, and myelosuppression between 125 I brachytherapy alone and chemotherapy. 125 I brachytherapy combined with chemotherapy can significantly enhance the clinical efficacy and improve the OS of patients with advanced NSCLC without increasing the incidence of complications of chemotherapy. 125 I brachytherapy alone can significantly enhance the clinical efficacy and reduce the incidence of myelosuppression compared with chemotherapy. However, 125 I brachytherapy may cause lung injury. Large sample and higher-quality randomized controlled trials are needed to confirm the pooled results of complications. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  2. SU-F-BRA-04: Prostate HDR Brachytherapy with Multichannel Robotic System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph, F Maria; Podder, T; Yu, Y

    Purpose: High-dose-rate (HDR) brachytherapy is gradually becoming popular in treating patients with prostate cancers. However, placement of the HDR needles at desired locations into the patient is challenging. Application of robotic system may improve the accuracy of the clinical procedure. This experimental study is to evaluate the feasibility of using a multichannel robotic system for prostate HDR brachytherapy. Methods: In this experimental study, the robotic system employed was a 6-DOF Multichannel Image-guided Robotic Assistant for Brachytherapy (MIRAB), which was designed and fabricated for prostate seed implantation. The MIRAB has the provision of rotating 16 needles while inserting them. Ten prostatemore » HDR brachytherapy needles were simultaneously inserted using MIRAB into a commercially available prostate phantom. After inserting the needles into the prostate phantom at desired locations, 2mm thick CT slices were obtained for dosimetric planning. HDR plan was generated using Oncetra planning system with a total prescription dose of 34Gy in 4 fractions. Plan quality was evaluated considering dose coverage to prostate and planning target volume (PTV), with 3mm margin around prostate, as well as the dose limit to the organs at risk (OARs) following the American Brachytherapy Society (ABS) guidelines. Results: From the CT scan, it is observed that the needles were inserted straight into the desired locations and they were adequately spaced and distributed for a clinically acceptable HDR plan. Coverage to PTV and prostate were about 91% (V100= 91%) and 96% (V100=96%), respectively. Dose to 1cc of urethra, rectum, and bladder were within the ABS specified limits. Conclusion: The MIRAB was able to insert multiple needles simultaneously into the prostate precisely. By controlling the MIRAB to insert all the ten utilized needles into the prostate phantom, we could achieve the robotic HDR brachytherapy successfully. Further study for assessing the system

  3. 78 FR 41125 - Interim Enforcement Policy for Permanent Implant Brachytherapy Medical Event Reporting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-09

    ... Brachytherapy Medical Event Reporting AGENCY: Nuclear Regulatory Commission. ACTION: Policy statement; revision... medical events occurring under an NRC licensee's permanent implant brachytherapy program. This interim..., ``Adequacy of Medical Event Definitions in 10 CFR [Title 10 of the Code of Federal Regulations] 35.3045, and...

  4. Current situation of high-dose-rate brachytherapy for cervical cancer in Brazil*

    PubMed Central

    da Silva, Rogério Matias Vidal; Pinezi, Juliana Castro Dourado; Macedo, Luiz Eduardo Andrade; Souza, Divanízia do Nascimento

    2014-01-01

    Objective To assess the current situation of high-dose-rate (HDR) brachytherapy for cancer of the cervix in Brazil, regarding apparatuses, planning methods, prescription, fractionation schedule and evaluation of dose in organs at risk. Materials and Methods In the period between March/2012 and May/2013, a multiple choice questionnaire was developed and sent to 89 Brazilian hospitals which perform HDR brachytherapy. Results Sixty-one services answered the questionnaire. All regions of the country experienced a sharp increase in the number of HDR brachytherapy services in the period from 2001 to 2013. As regards planning, although a three-dimensional planning software was available in 91% of the centers, conventional radiography was mentioned by 92% of the respondents as their routine imaging method for such a purpose. Approximately 35% of respondents said that brachytherapy sessions are performed after teletherapy. The scheme of four 7 Gy intracavitary insertions was mentioned as the most frequently practiced. Conclusion The authors observed that professionals have difficulty accessing adjuvant three-dimensional planning tools such as computed tomography and magnetic resonance imaging. PMID:25741073

  5. Interactive multiobjective optimization for anatomy-based three-dimensional HDR brachytherapy

    NASA Astrophysics Data System (ADS)

    Ruotsalainen, Henri; Miettinen, Kaisa; Palmgren, Jan-Erik; Lahtinen, Tapani

    2010-08-01

    In this paper, we present an anatomy-based three-dimensional dose optimization approach for HDR brachytherapy using interactive multiobjective optimization (IMOO). In brachytherapy, the goals are to irradiate a tumor without causing damage to healthy tissue. These goals are often conflicting, i.e. when one target is optimized the other will suffer, and the solution is a compromise between them. IMOO is capable of handling multiple and strongly conflicting objectives in a convenient way. With the IMOO approach, a treatment planner's knowledge is used to direct the optimization process. Thus, the weaknesses of widely used optimization techniques (e.g. defining weights, computational burden and trial-and-error planning) can be avoided, planning times can be shortened and the number of solutions to be calculated is small. Further, plan quality can be improved by finding advantageous trade-offs between the solutions. In addition, our approach offers an easy way to navigate among the obtained Pareto optimal solutions (i.e. different treatment plans). When considering a simulation model of clinical 3D HDR brachytherapy, the number of variables is significantly smaller compared to IMRT, for example. Thus, when solving the model, the CPU time is relatively short. This makes it possible to exploit IMOO to solve a 3D HDR brachytherapy optimization problem. To demonstrate the advantages of IMOO, two clinical examples of optimizing a gynecologic cervix cancer treatment plan are presented.

  6. Photoacoustic imaging of prostate brachytherapy seeds with transurethral light delivery

    NASA Astrophysics Data System (ADS)

    Lediju Bell, Muyinatu A.; Guo, Xiaoyu; Song, Danny Y.; Boctor, Emad M.

    2014-03-01

    We present a novel approach to photoacoustic imaging of prostate brachytherapy seeds utilizing an existing urinary catheter for transurethral light delivery. Two canine prostates were surgically implanted with brachyther- apy seeds under transrectal ultrasound guidance. One prostate was excised shortly after euthanasia and fixed in gelatin. The second prostate was imaged in the native tissue environment shortly after euthanasia. A urinary catheter was inserted in the urethra of each prostate. A 1-mm core diameter optical fiber coupled to a 1064 nm Nd:YAG laser was inserted into the urinary catheter. Light from the fiber was either directed mostly parallel to the fiber axis (i.e. end-fire fire) or mostly 90° to the fiber axis (i.e. side-fire fiber). An Ultrasonix SonixTouch scanner, transrectal ultrasound probe with curvilinear (BPC8-4) and linear (BPL9-5) arrays, and DAQ unit were utilized for synchronized laser light emission and photoacoustic signal acquisition. The implanted brachytherapy seeds were visualized at radial distances of 6-16 mm from the catheter. Multiple brachytherapy seeds were si- multaneously visualized with each array of the transrectal probe using both delay-and-sum (DAS) and short-lag spatial coherence (SLSC) beamforming. This work is the first to demonstrate the feasibility of photoacoustic imaging of prostate brachytherapy seeds using a transurethral light delivery method.

  7. Characterization of Low-Energy Photon-Emitting Brachytherapy Sources with Modified Strengths for Applications in Focal Therapy

    NASA Astrophysics Data System (ADS)

    Reed, Joshua L.

    Permanent implants of low-energy photon-emitting brachytherapy sources are used to treat a variety of cancers. Individual source models must be separately characterized due to their unique geometry, materials, and radionuclides, which all influence their dose distributions. Thermoluminescent dosimeters (TLDs) are often used for dose measurements around low-energy photon-emitting brachytherapy sources. TLDs are typically calibrated with higher energy sources such as 60Co, which requires a correction for the change in the response of the TLDs as a function of photon energy. These corrections have historically been based on TLD response to x ray bremsstrahlung spectra instead of to brachytherapy sources themselves. This work determined the TLD intrinsic energy dependence for 125I and 103Pd sources relative to 60Co, which allows for correction of TLD measurements of brachytherapy sources with factors specific to their energy spectra. Traditional brachytherapy sources contain mobile internal components and large amounts of high-Z material such as radio-opaque markers and titanium encapsulations. These all contribute to perturbations and uncertainties in the dose distribution around the source. The CivaString is a new elongated 103Pd brachytherapy source with a fixed internal geometry, polymer encapsulation, and lengths ranging from 1 to 6 cm, which offers advantages over traditional source designs. This work characterized the CivaString source and the results facilitated the formal approval of this source for use in clinical treatments. Additionally, the accuracy of a superposition technique for dose calculation around the sources with lengths >1 cm was verified. Advances in diagnostic techniques are paving the way for focal brachytherapy in which the dose is intentionally modulated throughout the target volume to focus on subvolumes that contain cancer cells. Brachytherapy sources with variable longitudinal strength (VLS) are a promising candidate for use in focal

  8. In vivo TLD dose measurements in catheter-based high-dose-rate brachytherapy.

    PubMed

    Adlienė, Diana; Jakštas, Karolis; Urbonavičius, Benas Gabrielis

    2015-07-01

    Routine in vivo dosimetry is well established in external beam radiotherapy; however, it is restricted mainly to detection of gross errors in high-dose-rate (HDR) brachytherapy due to complicated measurements in the field of steep dose gradients in the vicinity of radioactive source and high uncertainties. The results of in vivo dose measurements using TLD 100 mini rods and TLD 'pin worms' in catheter-based HDR brachytherapy are provided in this paper alongside with their comparison with corresponding dose values obtained using calculation algorithm of the treatment planning system. Possibility to perform independent verification of treatment delivery in HDR brachytherapy using TLDs is discussed. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Imaging method for monitoring delivery of high dose rate brachytherapy

    DOEpatents

    Weisenberger, Andrew G; Majewski, Stanislaw

    2012-10-23

    A method for in-situ monitoring both the balloon/cavity and the radioactive source in brachytherapy treatment utilizing using at least one pair of miniature gamma cameras to acquire separate images of: 1) the radioactive source as it is moved in the tumor volume during brachytherapy; and 2) a relatively low intensity radiation source produced by either an injected radiopharmaceutical rendering cancerous tissue visible or from a radioactive solution filling a balloon surgically implanted into the cavity formed by the surgical resection of a tumor.

  10. Implantable chemothermal brachytherapy seeds: A synergistic approach to brachytherapy using polymeric dual drug delivery and hyperthermia for malignant solid tumor ablation.

    PubMed

    Aguilar, Ludwig Erik; Thomas, Reju George; Moon, Myeong Ju; Jeong, Yong Yeon; Park, Chan Hee; Kim, Cheol Sang

    2018-08-01

    Chemothermal brachytherapy seeds have been developed using a combination of polymeric dual drug chemotherapy and alternating magnetic field induced hyperthermia. The synergistic effect of chemotherapy and hyperthermia brachytherapy has been investigated in a way that has never been performed before, with an in-depth analysis of the cancer cell inhibition property of the new system. A comprehensive in vivo study on athymic mice model with SCC7 tumor has been conducted to determine optimal arrays and specifications of the chemothermal seeds. Dual drug chemotherapy has been achieved via surface deposition of polydopamine that carries bortezomib, and also via loading an acidic pH soluble hydrogel that contains 5-Fluorouracil inside the chemothermal seed; this increases the drug loading capacity of the chemothermal seed, and creates dual drug synergism. An external alternating magnetic field has been utilized to induce hyperthermia conditions, using the inherent ferromagnetic property of the nitinol alloy used as the seed casing. The materials used in this study were fully characterized using FESEM, H 1 NMR, FT-IR, and XPS to validate their properties. This new approach to experimental cancer treatment is a pilot study that exhibits the potential of thermal brachytherapy and chemotherapy as a combined treatment modality. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. CT-based MCNPX dose calculations for gynecology brachytherapy employing a Henschke applicator

    NASA Astrophysics Data System (ADS)

    Yu, Pei-Chieh; Nien, Hsin-Hua; Tung, Chuan-Jong; Lee, Hsing-Yi; Lee, Chung-Chi; Wu, Ching-Jung; Chao, Tsi-Chian

    2017-11-01

    The purpose of this study is to investigate the dose perturbation caused by the metal ovoid structures of a Henschke applicator using Monte Carlo simulation in a realistic phantom. The Henschke applicator has been widely used for gynecologic patients treated by brachytherapy in Taiwan. However, the commercial brachytherapy planning system (BPS) did not properly evaluate the dose perturbation caused by its metal ovoid structures. In this study, Monte Carlo N-Particle Transport Code eXtended (MCNPX) was used to evaluate the brachytherapy dose distribution of a Henschke applicator embedded in a Plastic water phantom and a heterogeneous patient computed tomography (CT) phantom. The dose comparison between the MC simulations and film measurements for a Plastic water phantom with Henschke applicator were in good agreement. However, MC dose with the Henschke applicator showed significant deviation (-80.6%±7.5%) from those without Henschke applicator. Furthermore, the dose discrepancy in the heterogeneous patient CT phantom and Plastic water phantom CT geometries with Henschke applicator showed 0 to -26.7% dose discrepancy (-8.9%±13.8%). This study demonstrates that the metal ovoid structures of Henschke applicator cannot be disregard in brachytherapy dose calculation.

  12. Image-guided high dose rate endorectal brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devic, Slobodan; Vuong, Te; Moftah, Belal

    2007-11-15

    Fractionated high dose rate endorectal brachytherapy (HDR-EBT) using CT-based treatment planning is an alternative method for preoperative down-sizing and down-staging of advanced rectal adeno-carcinomas. The authors present an image guidance procedure that was developed to ensure daily dose reproducibility for the four brachytherapy treatment fractions. Since the applicator might not be placed before each treatment fraction inside the rectal lumen in the same manner as it was placed during the 3D CT volume acquisition used for treatment planning, there is a shift along the catheter axis that may have to be performed. The required shift is determined by comparison ofmore » a daily radiograph with the treatment planning digitally-reconstructed radiograph (DRR). A procedure is developed for DRR reconstruction from the 3D data set used for the treatment planning, and two possible daily longitudinal shifts are illustrated: above and below the planning dose distribution. The authors also describe the procedure for rotational alignment illustrated on a clinical case. Reproduction of the treatment planned dose distribution on a daily basis is crucial for the success of fractionated 3D based brachytherapy treatments. Due to the cylindrical symmetry of the applicator used for preoperative HDR-EBT, two types of adjustments are necessary: applicator rotation and dwell position shift along the applicator's longitudinal axis. The impact of the longitudinal applicator shift prior to treatment delivery for 62 patients treated in our institution is also assessed.« less

  13. Dosimetry Modeling for Focal Low-Dose-Rate Prostate Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Qaisieh, Bashar; Mason, Josh, E-mail: joshua.mason@nhs.net; Bownes, Peter

    2015-07-15

    Purpose: Focal brachytherapy targeted to an individual lesion(s) within the prostate may reduce side effects experienced with whole-gland brachytherapy. The outcomes of a consensus meeting on focal prostate brachytherapy were used to investigate optimal dosimetry of focal low-dose-rate (LDR) prostate brachytherapy targeted using multiparametric magnetic resonance imaging (mp-MRI) and transperineal template prostate mapping (TPM) biopsy, including the effects of random and systematic seed displacements and interseed attenuation (ISA). Methods and Materials: Nine patients were selected according to clinical characteristics and concordance of TPM and mp-MRI. Retrospectively, 3 treatment plans were analyzed for each case: whole-gland (WG), hemi-gland (hemi), and ultra-focalmore » (UF) plans, with 145-Gy prescription dose and identical dose constraints for each plan. Plan robustness to seed displacement and ISA were assessed using Monte Carlo simulations. Results: WG plans used a mean 28 needles and 81 seeds, hemi plans used 17 needles and 56 seeds, and UF plans used 12 needles and 25 seeds. Mean D90 (minimum dose received by 90% of the target) and V100 (percentage of the target that receives 100% dose) values were 181.3 Gy and 99.8% for the prostate in WG plans, 195.7 Gy and 97.8% for the hemi-prostate in hemi plans, and 218.3 Gy and 99.8% for the focal target in UF plans. Mean urethra D10 was 205.9 Gy, 191.4 Gy, and 92.4 Gy in WG, hemi, and UF plans, respectively. Mean rectum D2 cm{sup 3} was 107.5 Gy, 77.0 Gy, and 42.7 Gy in WG, hemi, and UF plans, respectively. Focal plans were more sensitive to seed displacement errors: random shifts with a standard deviation of 4 mm reduced mean target D90 by 14.0%, 20.5%, and 32.0% for WG, hemi, and UF plans, respectively. ISA has a similar impact on dose-volume histogram parameters for all plan types. Conclusions: Treatment planning for focal LDR brachytherapy is feasible. Dose constraints are easily met with a

  14. Introduction of novel 3D-printed superficial applicators for high-dose-rate skin brachytherapy.

    PubMed

    Jones, Emma-Louise; Tonino Baldion, Anna; Thomas, Christopher; Burrows, Tom; Byrne, Nick; Newton, Victoria; Aldridge, Sarah

    Custom-made surface mold applicators often allow more flexibility when carrying out skin brachytherapy, particularly for small treatment areas with high surface obliquity. They can, however, be difficult to manufacture, particularly if there is a lack of experience in superficial high-dose-rate brachytherapy techniques or with limited resources. We present a novel method of manufacturing superficial brachytherapy applicators utilizing three-dimensional (3D)-printing techniques. We describe the treatment planning process and the process of applicator manufacture. The treatment planning process, with the introduction of a pre-plan, allows for an "ideal" catheter arrangement within an applicator to be determined, exploiting varying catheter orientations, heights, and curvatures if required. The pre-plan arrangement is then 3D printed to the exact specifications of the pre-plan applicator design. This results in improved target volume coverage and improved sparing of organs at risk. Using a pre-plan technique for ideal catheter placement followed by automated 3D-printed applicator manufacture has greatly improved the entire process of superficial high-dose-rate brachytherapy treatment. We are able to design and manufacture flexible, well-fitting, superior quality applicators resulting in a more efficient and improved patient pathway and patient experience. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  15. The Royal College of Radiologists' audit of prostate brachytherapy in the year 2012.

    PubMed

    Stewart, A J; Drinkwater, K J; Laing, R W; Nobes, J P; Locke, I

    2015-06-01

    This audit provides a comprehensive overview of UK prostate brachytherapy practice in the year 2012, measured against existing standards, immediately before the introduction of new Royal College of Radiologists (RCR) guidelines. This audit allows comparison with European and North American brachytherapy practice and for the impact of the RCR 2012 guidelines to be assessed in the future. A web-based data collection tool was developed by the RCR Clinical Audit Committee and sent to audit leads at all cancer centres in the UK. Standards were developed based on available guidelines in use at the start of 2012 covering case mix and dosimetry. Further questions were included to reflect areas of anticipated change with the implementation of the 2012 guidelines. Audit findings were compared with similar audits of practice in Europe, the USA and Latin America. Forty-nine of 59 cancer centres submitted data. Twenty-nine centres reported carrying out prostate brachytherapy; of these, 25 (86%) provided data regarding the number of implants, staffing, dosimetry, medication and anaesthesia and follow-up. Audit standards achieved excellent compliance in most areas, although were low in post-implant dosimetry and in post-implant scanning at 30 days. This audit provides a comprehensive picture of prostate brachytherapy in the UK in 2012. Patterns of care of prostate brachytherapy are similar to practice in the USA and Europe. The number of prostate brachytherapy implants carried out in the UK has grown significantly since a previous RCR audit in 2005 and it is important that centres maintain minimum numbers of cases to ensure that experience can be maintained and compliance to guidelines achieved. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  16. For-Profit Hospital Ownership Status and Use of Brachytherapy after Breast-Conserving Surgery

    PubMed Central

    Sen, Sounok; Soulos, Pamela R.; Herrin, Jeph; Roberts, Kenneth B.; Yu, James B.; Lesnikoski, Beth-Ann; Ross, Joseph S.; Krumholz, Harlan M.; Gross, Cary P.

    2014-01-01

    BACKGROUND Little is known about the relation between surgical care for breast cancer at for-profit hospitals and subsequent use of adjuvant radiation therapy (RT). Among Medicare beneficiaries, we examined whether hospital ownership status is associated with the use of breast brachytherapy – a newer and more expensive modality – as well as overall RT. METHODS We conducted a retrospective study of female Medicare beneficiaries receiving breast-conserving surgery for invasive breast cancer in 2008 and 2009. We assessed the relationship between hospital ownership and receipt of brachytherapy or overall RT using hierarchical generalized linear models. RESULTS The sample consisted of 35,118 women, 8.0% of whom had surgery at for-profit hospitals. Among patients who received RT, those who underwent surgery at for-profit hospitals were significantly more likely to receive brachytherapy (20.2%) than patients treated at not-for-profit hospitals (15.2%; OR for for-profit vs. not-for-profit: 1.50; 95%CI: 1.23–1.84; p<0.001). Among women aged 66–79, there was no relation between hospital ownership status and overall RT use. Among women aged 80–94 years old – the group least likely to benefit from RT due to shorter life expectancy – receipt of surgery at a for-profit hospital was significantly associated with higher overall RT use (OR: 1.22; 95%CI: 1.03–1.45, p=0.03) and brachytherapy use (OR: 1.66; 95%CI: 1.18–2.34, p=0.003). CONCLUSIONS Surgical care at for-profit hospitals was associated with increased use of the newer and more expensive RT modality, brachytherapy. Among the oldest women, who are least likely to benefit from RT, surgical care at a for-profit hospital was associated with higher overall RT use, with this difference largely driven by the use of brachytherapy. PMID:24787104

  17. Cervical brachytherapy technique for locally advanced carcinoma of the cervix in a patient with septate uterus.

    PubMed

    Platta, Christopher S; Wallace, Charlie; Gondi, Vinai; Das, Rupak; Straub, Margaret; Al-Niaimi, Ahmed; Applegate, Glenn; Bradley, Kristin A

    2014-03-01

    To describe an approach to cervical brachytherapy in a patient with congenital septate uterus and locally advanced cervical carcinoma. The patient is a 34-year-old female with septate uterus presenting with pelvic pain. Workup demonstrated a stage IIB cervical adenocarcinoma with imaging evidence of an involved right external iliac lymph node. The patient received whole pelvic radiation, with concurrent weekly cisplatin (40 mg/m(2)), to a dose of 45 Gy in 25 fractions followed by a parametrial boost of 5.4 Gy and an additional nodal boost of 9 Gy. The patient was initiated on cervical brachytherapy following fraction 23 of pelvic radiation. To conform to her septated uterus, a Rotte-Y tandem was used. Additionally, 2 CT-compatible ovoids were placed in the vaginal apex to enhance dose distribution and coverage of the target volume. Each fraction of brachytherapy was performed with CT-based planning. A high-risk clinical target volume (HR-CTV) and normal structures were defined and constrained per American Brachytherapy Society (ABS) and Groupe Européen de Curiethérapie/European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) guidelines. The brachytherapy dose was 27.5 Gy in 5 fractions of 5.5 Gy each, prescribed to the HR-CTV. Herein, we report the first documented case of cervical brachytherapy in a patient with septate uterus and locally advanced cervical carcinoma. Using CT-guided planning, in conjunction with the ABS and GEC-ESTRO guidelines, the patient was effectively treated with adapted cervical brachytherapy, meeting criteria for HR-CTV coverage and normal tissue tolerances.

  18. Real-time photoacoustic imaging of prostate brachytherapy seeds using a clinical ultrasound system.

    PubMed

    Kuo, Nathanael; Kang, Hyun Jae; Song, Danny Y; Kang, Jin U; Boctor, Emad M

    2012-06-01

    Prostate brachytherapy is a popular prostate cancer treatment option that involves the permanent implantation of radioactive seeds into the prostate. However, contemporary brachytherapy procedure is limited by the lack of an imaging system that can provide real-time seed-position feedback. While many other imaging systems have been proposed, photoacoustic imaging has emerged as a potential ideal modality to address this need, since it could easily be incorporated into the current ultrasound system used in the operating room. We present such a photoacoustic imaging system built around a clinical ultrasound system to achieve the task of visualizing and localizing seeds. We performed several experiments to analyze the effects of various parameters on the appearance of brachytherapy seeds in photoacoustic images. We also imaged multiple seeds in an ex vivo dog prostate phantom to demonstrate the possibility of using this system in a clinical setting. Although still in its infancy, these initial results of a photoacoustic imaging system for the application of prostate brachytherapy seed localization are highly promising.

  19. Superficial ocular malignancies treated with strontium-90 brachytherapy: long term outcomes.

    PubMed

    Laskar, Siddhartha; Gurram, Lavanya; Laskar, Sarbani Ghosh; Chaudhari, Suresh; Khanna, Nehal; Upreti, Rituraj

    2015-10-01

    The incidence of conjunctival malignancies is less than 1%. Though surgical excision remains the mainstay of treatment, the incidence of positive surgical margins and local recurrence rates are high, which is approximately up to 33% in negative margins and 56% in positive margins. Radiotherapy reduces the risk of recurrence in these cases. Brachytherapy using β emitters such as strontium-90 ((90)Sr) is an ideal treatment technique for these tumors with the advantage of treating only a few millimeters of tissue while sparing the underlying normal eye. We report the long term outcomes in the form of local control and late sequelae of patients with conjunctival malignancies treated with (90)Sr applicator brachytherapy. During 1999-2013, 13 patients with conjunctival tumors, treated using (90)Sr brachytherapy were analyzed. Brachytherapy was either in a post-operative adjuvant or in a recurrent setting. Local control (LC), disease free survival (DFS), overall survival (OS), and late sequelae were evaluated. The median age at presentation was 47 years (range: 11-71 years). Thirteen patients with 15 tumors were treated. The commonest histology was squamous cell carcinoma. The median dose was 44 Gy over 11 fractions. The median follow up of all the patients was 51 months (range: 3-139 months). The median follow up of patients with carcinoma only was 64 months with a LC and DFS of 90.9% at 5 years. None of the patients developed ≥ grade II Radiation Therapy Oncology Group (RTOG) acute toxicities. One patient developed a focal scar and another developed corneal opacification at the limbus. Vision was not impaired in any of the patients. Strontium-90 brachytherapy used in early invasive conjunctival malignancies as an adjunct to surgery in primary and recurrent settings, results in optimal disease control and ocular functional outcomes.

  20. Superficial ocular malignancies treated with strontium-90 brachytherapy: long term outcomes

    PubMed Central

    Gurram, Lavanya; Laskar, Sarbani Ghosh; Chaudhari, Suresh; Khanna, Nehal; Upreti, Rituraj

    2015-01-01

    Purpose The incidence of conjunctival malignancies is less than 1%. Though surgical excision remains the mainstay of treatment, the incidence of positive surgical margins and local recurrence rates are high, which is approximately up to 33% in negative margins and 56% in positive margins. Radiotherapy reduces the risk of recurrence in these cases. Brachytherapy using β emitters such as strontium-90 (90Sr) is an ideal treatment technique for these tumors with the advantage of treating only a few millimeters of tissue while sparing the underlying normal eye. We report the long term outcomes in the form of local control and late sequelae of patients with conjunctival malignancies treated with 90Sr applicator brachytherapy. Material and methods During 1999-2013, 13 patients with conjunctival tumors, treated using 90Sr brachytherapy were analyzed. Brachytherapy was either in a post-operative adjuvant or in a recurrent setting. Local control (LC), disease free survival (DFS), overall survival (OS), and late sequelae were evaluated. Results The median age at presentation was 47 years (range: 11-71 years). Thirteen patients with 15 tumors were treated. The commonest histology was squamous cell carcinoma. The median dose was 44 Gy over 11 fractions. The median follow up of all the patients was 51 months (range: 3-139 months). The median follow up of patients with carcinoma only was 64 months with a LC and DFS of 90.9% at 5 years. None of the patients developed ≥ grade II Radiation Therapy Oncology Group (RTOG) acute toxicities. One patient developed a focal scar and another developed corneal opacification at the limbus. Vision was not impaired in any of the patients. Conclusions Strontium-90 brachytherapy used in early invasive conjunctival malignancies as an adjunct to surgery in primary and recurrent settings, results in optimal disease control and ocular functional outcomes. PMID:26622243

  1. Developing A Directional High-Dose Rate (d-HDR) Brachytherapy Source

    NASA Astrophysics Data System (ADS)

    Heredia, Athena Yvonne

    Conventional sources used in brachytherapy provide nearly isotropic or radially symmetric dose distributions. Optimizations of dose distributions have been limited to varied dwell times at specified locations within a given treatment volume, or manipulations in source position for seed implantation techniques. In years past, intensity modulated brachytherapy (IMBT) has been used to reduce the amount of radiation to surrounding sensitive structures in select intracavitary cases by adding space or partial shields. Previous work done by Lin et al., at the University of Wisconsin-Madison, has shown potential improvements in conformality for brachytherapy treatments using a directionally shielded low dose rate (LDR) source for treatments in breast and prostate. Directional brachytherapy sources irradiate approximately half of the radial angles around the source, and adequately shield a quarter of the radial angles on the opposite side, with sharp gradient zones between the treated half and shielded quarter. With internally shielded sources, the radiation can be preferentially emitted in such a way as to reduce toxicities in surrounding critical organs. The objective of this work is to present findings obtained in the development of a new directional high dose rate (d-HDR) source. To this goal, 103Pd (Z = 46) is reintroduced as a potential radionuclide for use in HDR brachytherapy. 103Pd has a low average photon energy (21 keV) and relatively short half -life (17 days), which is why it has historically been used in low dose rate applications and implantation techniques. Pd-103 has a carrier-free specific activity of 75000 Ci/g. Using cyclotron produced 103Pd, near carrier-free specific activities can be achieved, providing suitability for high dose rate applications. The evolution of the d-HDR source using Monte Carlo simulations is presented, along with dosimetric parameters used to fully characterize the source. In addition, a discussion on how to obtain elemental

  2. MO-D-BRD-03: Radiobiology and Commissioning of Electronic Brachytherapy for IORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, J.

    2015-06-15

    Electronic brachytherapy (eBT) has seen an insurgence of manufacturers entering the US market for use in radiation therapy. In addition to the established interstitial, intraluminary, and intracavitary applications of eBT, many centers are now using eBT to treat skin lesions. It is important for medical physicists working with electronic brachytherapy sources to understand the basic physics principles of the sources themselves as well as the variety of applications for which they are being used. The calibration of the sources is different from vendor to vendor and the traceability of calibrations has evolved as new sources came to market. In 2014,more » a new air-kerma based standard was introduced by the National Institute of Standards and Technology (NIST) to measure the output of an eBT source. Eventually commercial treatment planning systems should accommodate this new standard and provide NIST traceability to the end user. The calibration and commissioning of an eBT system is unique to its application and typically entails a list of procedural recommendations by the manufacturer. Commissioning measurements are performed using a variety of methods, some of which are modifications of existing AAPM Task Group protocols. A medical physicist should be familiar with the different AAPM Task Group recommendations for applicability to eBT and how to properly adapt them to their needs. In addition to the physical characteristics of an eBT source, the photon energy is substantially lower than from HDR Ir-192 sources. Consequently, tissue-specific dosimetry and radiobiological considerations are necessary when comparing these brachytherapy modalities and when making clinical decisions as a radiation therapy team. In this session, the physical characteristics and calibration methodologies of eBt sources will be presented as well as radiobiology considerations and other important clinical considerations. Learning Objectives: To understand the basic principles of

  3. MO-D-BRD-04: NIST Air-Kerma Standard for Electronic Brachytherapy Calibrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitch, M.

    Electronic brachytherapy (eBT) has seen an insurgence of manufacturers entering the US market for use in radiation therapy. In addition to the established interstitial, intraluminary, and intracavitary applications of eBT, many centers are now using eBT to treat skin lesions. It is important for medical physicists working with electronic brachytherapy sources to understand the basic physics principles of the sources themselves as well as the variety of applications for which they are being used. The calibration of the sources is different from vendor to vendor and the traceability of calibrations has evolved as new sources came to market. In 2014,more » a new air-kerma based standard was introduced by the National Institute of Standards and Technology (NIST) to measure the output of an eBT source. Eventually commercial treatment planning systems should accommodate this new standard and provide NIST traceability to the end user. The calibration and commissioning of an eBT system is unique to its application and typically entails a list of procedural recommendations by the manufacturer. Commissioning measurements are performed using a variety of methods, some of which are modifications of existing AAPM Task Group protocols. A medical physicist should be familiar with the different AAPM Task Group recommendations for applicability to eBT and how to properly adapt them to their needs. In addition to the physical characteristics of an eBT source, the photon energy is substantially lower than from HDR Ir-192 sources. Consequently, tissue-specific dosimetry and radiobiological considerations are necessary when comparing these brachytherapy modalities and when making clinical decisions as a radiation therapy team. In this session, the physical characteristics and calibration methodologies of eBt sources will be presented as well as radiobiology considerations and other important clinical considerations. Learning Objectives: To understand the basic principles of

  4. Patterns of brachytherapy practice for patients with carcinoma of the cervix (1996-1999): a patterns of care study.

    PubMed

    Erickson, Beth; Eifel, Patricia; Moughan, Jennifer; Rownd, Jason; Iarocci, Thomas; Owen, Jean

    2005-11-15

    To analyze the details of brachytherapy practice in patients treated for carcinoma of the cervix in the United States between 1996 and 1999. Radiation facilities were selected from a stratified random sample. Patients were randomly selected from lists of eligible patients treated at each facility. A total of 442 patients' records were reviewed in 59 facilities to obtain data about patients' characteristics, evaluation, tumor extent, and treatment. National estimates were made using weights that reflected the relative contribution of each institution and of each patient within the sampled institutions. From our survey we estimate that 16,375 patients were treated in the United States during this study period. Unless otherwise specified, brachytherapy practice was based on the 408 patients who had their brachytherapy or all their treatment at the surveyed facility. A total of 91.5% of patients underwent brachytherapy at the initial treating institution; 8.5% were referred to a second site for brachytherapy. Forty-two percent of U.S. facilities referred at least some patients to a second facility for brachytherapy. Of U.S. facilities that treated < or =2 eligible patients per year, 61% referred all of their patients to a second facility for brachytherapy or treated with external RT alone; none of the U.S. facilities with larger experience (>2 eligible patients per year) referred all their patients to a second facility for brachytherapy treatment, but 28% referred some patients to an outside facility for brachytherapy. Overall, 94% of patients who completed treatment with curative intent received brachytherapy. Of these patients who had brachytherapy, 77.8%, 13.3%, and 0.9%, respectively, were treated with low-dose-rate (LDR), high-dose-rate (HDR), or a combination of HDR and LDR brachytherapy; 7.9% had interstitial brachytherapy (5.7% LDR and 1.9% HDR, 0.3% mixed). In facilities that treated >2 patients per year, 15.5% and 9.4% of brachytherapy procedures included HDR

  5. Technology Insight: Combined external-beam radiation therapy and brachytherapy in the management of prostate cancer.

    PubMed

    Hurwitz, Mark D

    2008-11-01

    External-beam radiation therapy (EBRT) combined with brachytherapy is an attractive treatment option for selected patients with clinically localized prostate cancer. This therapeutic strategy offers dosimetric coverage if local-regional microscopic disease is present and provides a highly conformal boost of radiation to the prostate and immediate surrounding tissues. Either low-dose-rate (LDR) permanent brachytherapy or high-dose-rate (HDR) temporary brachytherapy can be combined with EBRT; such combined-modality therapy (CMT) is typically used to treat patients with intermediate-risk to high-risk, clinically localized disease. Controversy persists with regard to indications for CMT, choice of LDR or HDR boost, isotope selection for LDR, and integration of EBRT and brachytherapy. Initial findings from prospective, multicenter trials of CMT support the feasibility of this strategy. Updated results from these trials as well as those of ongoing and new phase III trials should help to define the role of CMT in the management of prostate cancer. In the meantime, long-term expectations for outcomes of CMT are based largely on the experience of single institutions, which demonstrate that CMT with EBRT and either LDR or HDR brachytherapy can provide freedom from disease recurrence with acceptable toxicity.

  6. Effect of photon energy spectrum on dosimetric parameters of brachytherapy sources.

    PubMed

    Ghorbani, Mahdi; Mehrpouyan, Mohammad; Davenport, David; Ahmadi Moghaddas, Toktam

    2016-06-01

    The aim of this study is to quantify the influence of the photon energy spectrum of brachytherapy sources on task group No. 43 (TG-43) dosimetric parameters. Different photon spectra are used for a specific radionuclide in Monte Carlo simulations of brachytherapy sources. MCNPX code was used to simulate 125I, 103Pd, 169Yb, and 192Ir brachytherapy sources. Air kerma strength per activity, dose rate constant, radial dose function, and two dimensional (2D) anisotropy functions were calculated and isodose curves were plotted for three different photon energy spectra. The references for photon energy spectra were: published papers, Lawrence Berkeley National Laboratory (LBNL), and National Nuclear Data Center (NNDC). The data calculated by these photon energy spectra were compared. Dose rate constant values showed a maximum difference of 24.07% for 103Pd source with different photon energy spectra. Radial dose function values based on different spectra were relatively the same. 2D anisotropy function values showed minor differences in most of distances and angles. There was not any detectable difference between the isodose contours. Dosimetric parameters obtained with different photon spectra were relatively the same, however it is suggested that more accurate and updated photon energy spectra be used in Monte Carlo simulations. This would allow for calculation of reliable dosimetric data for source modeling and calculation in brachytherapy treatment planning systems.

  7. Rectourethral fistula following LDR brachytherapy.

    PubMed

    Borchers, Holger; Pinkawa, Michael; Donner, Andreas; Wolter, Timm P; Pallua, Norbert; Eble, Michael J; Jakse, Gerhard

    2009-01-01

    Modern LDR brachytherapy has drastically reduced rectal toxicity and decreased the occurrence of rectourethral fistulas to <0.5% of patients. Therefore, symptoms of late-onset sequelae are often ignored initially. These fistulas cause severe patient morbidity and require interdisciplinary treatment. We report on the occurrence and management of a rectourethral fistula which occurred 4 years after (125)I seed implantation. Copyright 2009 S. Karger AG, Basel.

  8. SU-F-T-50: Evaluation of Monte Carlo Simulations Performance for Pediatric Brachytherapy Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatzipapas, C; Kagadis, G; Papadimitroulas, P

    Purpose: Pediatric tumors are generally treated with multi-modal procedures. Brachytherapy can be used with pediatric tumors, especially given that in this patient population low toxicity on normal tissues is critical as is the suppression of the probability for late malignancies. Our goal is to validate the GATE toolkit on realistic brachytherapy applications, and evaluate brachytherapy plans on pediatrics for accurate dosimetry on sensitive and critical organs of interest. Methods: The GATE Monte Carlo (MC) toolkit was used. Two High Dose Rate (HDR) 192Ir brachytherapy sources were simulated (Nucletron mHDR-v1 and Varian VS2000), and fully validated using the AAPM and ESTROmore » protocols. A realistic brachytherapy plan was also simulated using the XCAT anthropomorphic computational model .The simulated data were compared to the clinical dose points. Finally, a 14 years old girl with vaginal rhabdomyosarcoma was modelled based on clinical procedures for the calculation of the absorbed dose per organ. Results: The MC simulations resulted in accurate dosimetry in terms of dose rate constant (Λ), radial dose gL(r) and anisotropy function F(r,θ) for both sources.The simulations were executed using ∼1010 number of primaries resulting in statistical uncertainties lower than 2%.The differences between the theoretical values and the simulated ones ranged from 0.01% up to 3.3%, with the largest discrepancy (6%) being observed in the dose rate constant calculation.The simulated DVH using an adult female XCAT model was also compared to a clinical one resulting in differences smaller than 5%. Finally, a realistic pediatric brachytherapy simulation was performed to evaluate the absorbed dose per organ and to calculate DVH with respect to heterogeneities of the human anatomy. Conclusion: GATE is a reliable tool for brachytherapy simulations both for source modeling and for dosimetry in anthropomorphic voxelized models. Our project aims to evaluate a variety of pediatric

  9. Brachytherapy devices and methods employing americium-241

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, L. A.

    1985-04-16

    Sources and methods for radiation therapy, particularly brachytherapy, employing americium-241 (60 keV gamma emission and 433 year half-life) provide major advantages for radiotherapy, including simplified radiation protection, dose reduction to healthy tissue, increased dose to tumor, and improved dose distributions. A number of apparent drawbacks and unfavorable considerations including low gamma factor, high self-absorption, increased activity required and alpha-particle generation leading to helium gas pressure buildup and potential neutron contamination in the generated radiation are all effectively dealt with and overcome through recognition of subtle favorable factors unique to americium-241 among brachytherapy sources and through suitable constructional techniques. Due tomore » an additional amount of radiation, in the order of 50%, provided primarily to nearby regions as a result of Compton scatter in tissue and water, higher dose rates occur than would be predicted by conventional calculations.« less

  10. Metal artifact reduction in MRI-based cervical cancer intracavitary brachytherapy

    NASA Astrophysics Data System (ADS)

    Rao, Yuan James; Zoberi, Jacqueline E.; Kadbi, Mo; Grigsby, Perry W.; Cammin, Jochen; Mackey, Stacie L.; Garcia-Ramirez, Jose; Goddu, S. Murty; Schwarz, Julie K.; Gach, H. Michael

    2017-04-01

    Magnetic resonance imaging (MRI) plays an increasingly important role in brachytherapy planning for cervical cancer. Yet, metal tandem, ovoid intracavitary applicators, and fiducial markers used in brachytherapy cause magnetic susceptibility artifacts in standard MRI. These artifacts may impact the accuracy of brachytherapy treatment and the evaluation of tumor response by misrepresenting the size and location of the metal implant, and distorting the surrounding anatomy and tissue. Metal artifact reduction sequences (MARS) with high bandwidth RF selective excitations and turbo spin-echo readouts were developed for MRI of orthopedic implants. In this study, metal artifact reduction was applied to brachytherapy of cervical cancer using the orthopedic metal artifact reduction (O-MAR) sequence. O-MAR combined MARS features with view angle tilting and slice encoding for metal artifact correction (SEMAC) to minimize in-plane and through-plane susceptibility artifacts. O-MAR improved visualization of the tandem tip on T2 and proton density weighted (PDW) imaging in phantoms and accurately represented the diameter of the tandem. In a pilot group of cervical cancer patients (N  =  7), O-MAR significantly minimized the blooming artifact at the tip of the tandem in PDW MRI. There was no significant difference observed in artifact reduction between the weak (5 kHz, 7 z-phase encodes) and medium (10 kHz, 13 z-phase encodes) SEMAC settings. However, the weak setting allowed a significantly shorter acquisition time than the medium setting. O-MAR also reduced susceptibility artifacts associated with metal fiducial markers so that they appeared on MRI at their true dimensions.

  11. Salvage/Adjuvant Brachytherapy After Ophthalmic Artery Chemosurgery for Intraocular Retinoblastoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francis, Jasmine H., E-mail: francij1@mskcc.org; Barker, Christopher A.; Wolden, Suzanne L.

    2013-11-01

    Purpose: To evaluate the efficacy and toxicity of brachytherapy after ophthalmic artery chemosurgery (OAC) for retinoblastoma. Methods and Materials: This was a single-arm, retrospective study of 15 eyes in 15 patients treated with OAC followed by brachytherapy at (blinded institution) between May 1, 2006, and December 31, 2012, with a median 19 months' follow-up from plaque insertion. Outcome measurements included patient and ocular survival, visual function, and retinal toxicity measured by electroretinogram (ERG). Results: Brachytherapy was used as adjuvant treatment in 2 eyes and as salvage therapy in 13 eyes of which 12 had localized vitreous seeding. No patients developedmore » metastasis or died of retinoblastoma. The Kaplan-Meier estimate of ocular survival was 79.4% (95% confidence interval 48.7%-92.8%) at 18 months. Three eyes were enucleated, and an additional 6 eyes developed out-of-target volume recurrences, which were controlled with additional treatments. Patients with an ocular complication had a mean interval between last OAC and plaque of 2.5 months (SD 2.3 months), which was statistically less (P=.045) than patients without ocular complication who had a mean interval between last OAC and plaque of 6.5 months (SD 4.4 months). ERG responses from pre- versus postplaque were unchanged or improved in more than half the eyes. Conclusions: Brachytherapy following OAC is effective, even in the presence of vitreous seeding; the majority of eyes maintained stable or improved retinal function following treatment, as assessed by ERG.« less

  12. Ejaculatory function after permanent 125I prostate brachytherapy for localized prostate cancer.

    PubMed

    Huyghe, Eric; Delannes, Martine; Wagner, Fabien; Delaunay, Boris; Nohra, Joe; Thoulouzan, Matthieu; Shut-Yee, J Yeung; Plante, Pierre; Soulie, Michel; Thonneau, Patrick; Bachaud, Jean Marc

    2009-05-01

    Ejaculatory function is an underreported aspect of male sexuality in men treated for prostate cancer. We conducted the first detailed analysis of ejaculatory function in patients treated with permanent (125)I prostate brachytherapy for localized prostate cancer. Of 270 sexually active men with localized prostate cancer treated with permanent (125)I prostate brachytherapy, 241 (89%), with a mean age of 65 years (range, 43-80), responded to a mailed questionnaire derived from the Male Sexual Health Questionnaire regarding ejaculatory function. Five aspects of ejaculatory function were examined: frequency, volume, dry ejaculation, pleasure, and pain. Of the 241 sexually active men, 81.3% had conserved ejaculatory function after prostate brachytherapy; however, the number of patients with rare/absent ejaculatory function was double the pretreatment number (p < .0001). The latter finding was correlated with age (p < .001) and the preimplant International Index of Erectile Function score (p < .001). However, 84.9% of patients with maintained ejaculatory function after implantation reported a reduced volume of ejaculate compared with 26.9% before (p < .001), with dry ejaculation accounting for 18.7% of these cases. After treatment, 30.3% of the patients experienced painful ejaculation compared with 12.9% before (p = .0001), and this was associated with a greater number of implanted needles (p = .021) and the existence of painful ejaculation before implantation (p < .0001). After implantation, 10% of patients who continued to be sexually active experienced no orgasm compared with only 1% before treatment. in addition, more patients experienced late/difficult or weak orgasms (p = .001). Most men treated with brachytherapy have conserved ejaculatory function after prostate brachytherapy. However, most of these men experience a reduction in volume and a deterioration in orgasm.

  13. [Recurrence rate following adjuvant strontium-90 brachytherapy after excision of conjunctival melanoma].

    PubMed

    Krause, L; Ritter, C; Wachtlin, J; Kreusel, K-M; Höcht, S; Foerster, M H; Bechrakis, N E

    2008-07-01

    Because of the high local recurrence rates after excision of conjunctival melanomas, adjuvant local chemotherapy or irradiation is recommended. Strontium-90 brachytherapy is one radiotherapeutic option due to its low penetration depth. 15 patients with conjunctival melanoma were treated with adjuvant strontium-90 brachytherapy after tumour excision. The treatment was fractionated into 9 irradiation sessions with 6 Gy each. The mean follow-up was 35 months (12-60 months). Seven patients (46%) had no recurrence during the follow-up. Three patients (20%) had a recurrence in the treated or adjacent area. Eight patients (53%) developed new tumours in non-treated areas. Strontium-90 brachytherapy is a useful adjuvant in the treatment of conjunctival melanomas. Regular ophthalmoscopic controls are necessary because of the high rate of new tumours in non-irradiated areas, especially in cases with primary acquired melanosis.

  14. External beam techniques to boost cervical cancer when brachytherapy is not an option—theories and applications

    PubMed Central

    Kilic, Sarah; Khan, Atif J.; Beriwal, Sushil; Small, William

    2017-01-01

    The management of locally advanced cervical cancer relies on brachytherapy (BT) as an integral part of the radiotherapy delivery armamentarium. Occasionally, intracavitary BT is neither possible nor available. In these circumstances, post-external beam radiotherapy (EBRT) interstitial brachytherapy and/or hysterectomy may represent viable options that must be adequately executed in a timely manner. However, if these options are not applicable due to patient related or facility related reasons, a formal contingency plan should be in place. Innovative EBRT techniques such as intensity modulated and stereotactic radiotherapy may be considered for patients unable to undergo brachytherapy. Relying on provocative arguments and recent data, this review explores the rationale for and limitations of non-brachytherapy substitutes in that setting aiming to establish a formal process for the optimal execution of this alternative plan. PMID:28603722

  15. Preliminary report on the effect of brachytherapy on expression of p53, bc1-2 and apoptosis in squamous cell carcinoma of the oesophagus.

    PubMed

    Sur, Monalisa; Sur, Ranjan K; Cooper, Kum; Bizos, Damon

    2003-02-01

    Pre-brachytherapy biopsies and post-brachytherapy oesophagectomy specimens of 10 patients with early squamous cell carcinoma of the middle third of the oesophagus were examined for the expression of p53, bcl-2 and apoptosis using immunohistochemical markers. There was no expression of p53 in one patient in both pre- and post-brachytherapy specimens. In 8 patients, p53 staining was strongly positive (3+) with approximately 50% or more cells, and with diffuse and no specific pattern in the pre-brachytherapy biopsies. The tumour areas of the post-brachytherapy specimens of this group showed strong 3+ positivity with p53 (10-50% positive cell count), with the pattern being focal and peripheral in the tumour islands. The centre of the tumour islands showed necrosis and/or keratinisation. In one patient, the pre-brachytherapy biopsy showed expression of p53 while the post-brachytherapy specimen was negative. bcl-2 expression in both pre- and post-brachytherapy was equivocal and inconclusive in both the pre- and post-brachytherapy specimens. Apoptosis was negative in all the pre- and post-brachytherapy tissue sections in the presence of positive controls. Brachytherapy does not cause cell death by apoptosis but by necrosis and maturation of the cells into better differentiated cells, which is caused by OH free radical, and induction of the keratin gene respectively. It is possible that brachytherapy may cause destruction of cells containing wild-type p53, while mutant p53 in cells located at the tumour periphery escape the effect of brachytherapy. This may be responsible for the high incidence of local recurrence and distant metastasis in oesophageal cancer treated with radiotherapy. There is no effect of brachytherapy on bcl-2 expression in oesophageal cancer.

  16. Highly efficient method for production of radioactive silver seed cores for brachytherapy.

    PubMed

    Cardoso, Roberta Mansini; de Souza, Carla Daruich; Rostelato, Maria Elisa Chuery Martins; Araki, Koiti

    2017-02-01

    A simple and highly efficient (shorter reaction time and almost no rework) method for production of iodine based radioactive silver seed cores for brachytherapy is described. The method allows almost quantitative deposition of iodine-131 on dozens of silver substrates at once, with even distribution of activity per core and insignificant amounts of liquid and solid radioactive wastes, allowing the fabrication of cheaper radioactive iodine seeds for brachytherapy. Copyright © 2016. Published by Elsevier Ltd.

  17. Patient-specific Monte Carlo-based dose-kernel approach for inverse planning in afterloading brachytherapy.

    PubMed

    D'Amours, Michel; Pouliot, Jean; Dagnault, Anne; Verhaegen, Frank; Beaulieu, Luc

    2011-12-01

    Brachytherapy planning software relies on the Task Group report 43 dosimetry formalism. This formalism, based on a water approximation, neglects various heterogeneous materials present during treatment. Various studies have suggested that these heterogeneities should be taken into account to improve the treatment quality. The present study sought to demonstrate the feasibility of incorporating Monte Carlo (MC) dosimetry within an inverse planning algorithm to improve the dose conformity and increase the treatment quality. The method was based on precalculated dose kernels in full patient geometries, representing the dose distribution of a brachytherapy source at a single dwell position using MC simulations and the Geant4 toolkit. These dose kernels are used by the inverse planning by simulated annealing tool to produce a fast MC-based plan. A test was performed for an interstitial brachytherapy breast treatment using two different high-dose-rate brachytherapy sources: the microSelectron iridium-192 source and the electronic brachytherapy source Axxent operating at 50 kVp. A research version of the inverse planning by simulated annealing algorithm was combined with MC to provide a method to fully account for the heterogeneities in dose optimization, using the MC method. The effect of the water approximation was found to depend on photon energy, with greater dose attenuation for the lower energies of the Axxent source compared with iridium-192. For the latter, an underdosage of 5.1% for the dose received by 90% of the clinical target volume was found. A new method to optimize afterloading brachytherapy plans that uses MC dosimetric information was developed. Including computed tomography-based information in MC dosimetry in the inverse planning process was shown to take into account the full range of scatter and heterogeneity conditions. This led to significant dose differences compared with the Task Group report 43 approach for the Axxent source. Copyright © 2011

  18. Effect of photon energy spectrum on dosimetric parameters of brachytherapy sources

    PubMed Central

    Ghorbani, Mahdi; Davenport, David

    2016-01-01

    Abstract Aim The aim of this study is to quantify the influence of the photon energy spectrum of brachytherapy sources on task group No. 43 (TG-43) dosimetric parameters. Background Different photon spectra are used for a specific radionuclide in Monte Carlo simulations of brachytherapy sources. Materials and methods MCNPX code was used to simulate 125I, 103Pd, 169Yb, and 192Ir brachytherapy sources. Air kerma strength per activity, dose rate constant, radial dose function, and two dimensional (2D) anisotropy functions were calculated and isodose curves were plotted for three different photon energy spectra. The references for photon energy spectra were: published papers, Lawrence Berkeley National Laboratory (LBNL), and National Nuclear Data Center (NNDC). The data calculated by these photon energy spectra were compared. Results Dose rate constant values showed a maximum difference of 24.07% for 103Pd source with different photon energy spectra. Radial dose function values based on different spectra were relatively the same. 2D anisotropy function values showed minor differences in most of distances and angles. There was not any detectable difference between the isodose contours. Conclusions Dosimetric parameters obtained with different photon spectra were relatively the same, however it is suggested that more accurate and updated photon energy spectra be used in Monte Carlo simulations. This would allow for calculation of reliable dosimetric data for source modeling and calculation in brachytherapy treatment planning systems. PMID:27247558

  19. Novel use of the Contura for high dose rate cranial brachytherapy.

    PubMed

    Scanderbeg, Daniel J; Alksne, John F; Lawson, Joshua D; Murphy, Kevin T

    2011-01-01

    A popular choice for treatment of recurrent gliomas was cranial brachytherapy using the GliaSite Radiation Therapy System. However, this device was taken off the market in late 2008, thus leaving a treatment void. This case study presents our experience treating a cranial lesion for the first time using a Contura multilumen, high-dose-rate (HDR) brachytherapy balloon applicator. The patient was a 47-year-old male who was diagnosed with a recurrent right frontal anaplastic oligodendroglioma. Previous radiosurgery made him a good candidate for brachytherapy. An intracavitary HDR balloon brachytherapy device (Contura) was placed in the resection cavity and treated with a single fraction of 20 Gy. The implant, treatment, and removal of the device were all completed without incident. Dosimetry of the device was excellent because the dose conformed very well to the target. V90, V100, V150, and V200 were 98.9%, 95.7%, 27.2, and 8.8 cc, respectively. This patient was treated successfully using the Contura multilumen balloon. Contura was originally designed for deployment in a postlumpectomy breast for treatment by accelerated partial breast irradiation. Being an intracavitary balloon device, its similarity to the GliaSite system makes it a viable replacement candidate. Multiple lumens in the device also make it possible to shape the dose delivered to the target, something not possible before with the GliaSite applicator. Copyright © 2011 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  20. Transition from LDR to HDR brachytherapy for cervical cancer: Evaluation of tumor control, survival, and toxicity.

    PubMed

    Romano, K D; Pugh, K J; Trifiletti, D M; Libby, B; Showalter, T N

    In 2012, our institution transitioned from low-dose-rate (LDR) brachytherapy to high dose-rate (HDR) brachytherapy. We report clinical outcomes after brachytherapy for cervical cancer at our institution over a continuous 10-year period. From 2004 to 2014, 258 women (184 LDR and 74 HDR) were treated with tandem and ovoid brachytherapy in the multidisciplinary management of International Federation of Gynecology and Obstetrics Stages IA-IVB cervical cancer. Clinical and treatment-related prognostic factors including age, stage, smoking status, relevant doses, and toxicity data were recorded. Median followup for the LDR and HDR groups was 46 months and 12 months, respectively. The majority of patients (92%) received external beam radiotherapy as well as concurrent chemotherapy (83%) before the start of brachytherapy. For all stages, the 1-year local control and overall survival (OS) rates were comparable between the LDR and HDR groups (87% vs. 81%, p = 0.12; and 75% vs. 85%, p = 0.16), respectively. Factors associated with OS on multivariate analysis include age, stage, and nodal involvement. On multivariate analysis, severe toxicity (acute or chronic) was higher with HDR than LDR (24% vs. 10%, p = 0.04). Additional prognostic factors associated with increased severe toxicity include former/current smokers and total dose to lymph nodes. This comparative retrospective analysis of a large cohort of women treated with brachytherapy demonstrates no significant difference in OS or local control between the LDR and HDR. Acute and chronic toxicity increased shortly after the implementation of HDR, highlighting the importance of continued refinement of HDR methods, including integrating advanced imaging. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  1. For-profit hospital ownership status and use of brachytherapy after breast-conserving surgery.

    PubMed

    Sen, Sounok; Soulos, Pamela R; Herrin, Jeph; Roberts, Kenneth B; Yu, James B; Lesnikoski, Beth-Ann; Ross, Joseph S; Krumholz, Harlan M; Gross, Cary P

    2014-05-01

    Little is known about the relationship between operative care for breast cancer at for-profit hospitals and subsequent use of adjuvant radiation therapy (RT). Among Medicare beneficiaries, we examined whether hospital ownership status is associated with the use of breast brachytherapy--a newer and more expensive modality--as well as overall RT. We conducted a retrospective study of female Medicare beneficiaries who received breast-conserving surgery for invasive breast cancer in 2008 and 2009. We assessed the relationship between hospital ownership and receipt of brachytherapy or overall RT by using hierarchical generalized linear models. The sample consisted of 35,118 women, 8.0% of whom had breast-conserving operations at for-profit hospitals. Among patients who received RT, those who underwent operation at for-profit hospitals were more likely to receive brachytherapy (20.2%) than patients treated at not-for-profit hospitals (15.2%; odds ratio [OR] for for-profit versus not-for-profit: 1.50; 95% confidence interval [95% CI] 1.23-1.84; P < .001). Among women aged 66-79 years, there was no relationship between hospital ownership status and overall use of RT. Among women ages 80-94 years of age--the group least likely to benefit from RT due to shorter life expectancy--undergoing breast-conserving operations at a for-profit hospital was associated with greater overall use of RT (OR 1.22; 95% CI 1.03-1.45, P = .03) and brachytherapy use (OR 1.66; 95% CI 1.18-2.34, P = .003). Operative care at for-profit hospitals was associated with increased use of the newer and more expensive RT modality, brachytherapy. Among the oldest women who are least likely to benefit from RT, operative care at a for-profit hospital was associated with greater overall use of RT, with this difference largely driven by the use of brachytherapy. Copyright © 2014 Mosby, Inc. All rights reserved.

  2. MO-D-BRD-02: Radiological Physics and Surface Lesion Treatments with Electronic Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fulkerson, R.

    Electronic brachytherapy (eBT) has seen an insurgence of manufacturers entering the US market for use in radiation therapy. In addition to the established interstitial, intraluminary, and intracavitary applications of eBT, many centers are now using eBT to treat skin lesions. It is important for medical physicists working with electronic brachytherapy sources to understand the basic physics principles of the sources themselves as well as the variety of applications for which they are being used. The calibration of the sources is different from vendor to vendor and the traceability of calibrations has evolved as new sources came to market. In 2014,more » a new air-kerma based standard was introduced by the National Institute of Standards and Technology (NIST) to measure the output of an eBT source. Eventually commercial treatment planning systems should accommodate this new standard and provide NIST traceability to the end user. The calibration and commissioning of an eBT system is unique to its application and typically entails a list of procedural recommendations by the manufacturer. Commissioning measurements are performed using a variety of methods, some of which are modifications of existing AAPM Task Group protocols. A medical physicist should be familiar with the different AAPM Task Group recommendations for applicability to eBT and how to properly adapt them to their needs. In addition to the physical characteristics of an eBT source, the photon energy is substantially lower than from HDR Ir-192 sources. Consequently, tissue-specific dosimetry and radiobiological considerations are necessary when comparing these brachytherapy modalities and when making clinical decisions as a radiation therapy team. In this session, the physical characteristics and calibration methodologies of eBt sources will be presented as well as radiobiology considerations and other important clinical considerations. Learning Objectives: To understand the basic principles of

  3. Dosimetric impact of an air passage on intraluminal brachytherapy for bronchus cancer.

    PubMed

    Okamoto, Hiroyuki; Wakita, Akihisa; Nakamura, Satoshi; Nishioka, Shie; Aikawa, Ako; Kato, Toru; Abe, Yoshihisa; Kobayashi, Kazuma; Inaba, Koji; Murakami, Naoya; Itami, Jun

    2016-11-01

    The brachytherapy dose calculations used in treatment planning systems (TPSs) have conventionally been performed assuming homogeneous water. Using measurements and a Monte Carlo simulation, we evaluated the dosimetric impact of an air passage on brachytherapy for bronchus cancer. To obtain the geometrical characteristics of an air passage, we analyzed the anatomical information from CT images of patients who underwent intraluminal brachytherapy using a high-dose-rate 192 Ir source (MicroSelectron V2r®, Nucletron). Using an ionization chamber, we developed a measurement system capable of measuring the peripheral dose with or without an air cavity surrounding the catheter. Air cavities of five different radii (0.3, 0.5, 0.75, 1.25 and 1.5 cm) were modeled by cylindrical tubes surrounding the catheter. A Monte Carlo code (GEANT4) was also used to evaluate the dosimetric impact of the air cavity. Compared with dose calculations in homogeneous water, the measurements and GEANT4 indicated a maximum overdose of 5-8% near the surface of the air cavity (with the maximum radius of 1.5 cm). Conversely, they indicated a minimum overdose of ~1% in the region 3-5 cm from the cavity surface for the smallest radius of 0.3 cm. The dosimetric impact depended on the size and the distance of the air passage, as well as the length of the treatment region. Based on dose calculations in water, the TPS for intraluminal brachytherapy for bronchus cancer had an unexpected overdose of 3-5% for a mean radius of 0.75 cm. This study indicates the need for improvement in dose calculation accuracy with respect to intraluminal brachytherapy for bronchus cancer. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  4. Dosimetric impact of an air passage on intraluminal brachytherapy for bronchus cancer

    PubMed Central

    Okamoto, Hiroyuki; Wakita, Akihisa; Nakamura, Satoshi; Nishioka, Shie; Aikawa, Ako; Kato, Toru; Abe, Yoshihisa; Kobayashi, Kazuma; Inaba, Koji; Murakami, Naoya; Itami, Jun

    2016-01-01

    The brachytherapy dose calculations used in treatment planning systems (TPSs) have conventionally been performed assuming homogeneous water. Using measurements and a Monte Carlo simulation, we evaluated the dosimetric impact of an air passage on brachytherapy for bronchus cancer. To obtain the geometrical characteristics of an air passage, we analyzed the anatomical information from CT images of patients who underwent intraluminal brachytherapy using a high-dose-rate 192Ir source (MicroSelectron V2r®, Nucletron). Using an ionization chamber, we developed a measurement system capable of measuring the peripheral dose with or without an air cavity surrounding the catheter. Air cavities of five different radii (0.3, 0.5, 0.75, 1.25 and 1.5 cm) were modeled by cylindrical tubes surrounding the catheter. A Monte Carlo code (GEANT4) was also used to evaluate the dosimetric impact of the air cavity. Compared with dose calculations in homogeneous water, the measurements and GEANT4 indicated a maximum overdose of 5–8% near the surface of the air cavity (with the maximum radius of 1.5 cm). Conversely, they indicated a minimum overdose of ~1% in the region 3–5 cm from the cavity surface for the smallest radius of 0.3 cm. The dosimetric impact depended on the size and the distance of the air passage, as well as the length of the treatment region. Based on dose calculations in water, the TPS for intraluminal brachytherapy for bronchus cancer had an unexpected overdose of 3–5% for a mean radius of 0.75 cm. This study indicates the need for improvement in dose calculation accuracy with respect to intraluminal brachytherapy for bronchus cancer. PMID:27605630

  5. In vivo photoacoustic imaging of prostate brachytherapy seeds

    NASA Astrophysics Data System (ADS)

    Lediju Bell, Muyinatu A.; Kuo, Nathanael P.; Song, Danny Y.; Kang, Jin; Boctor, Emad M.

    2014-03-01

    We conducted an approved canine study to investigate the in vivo feasibility of photoacoustic imaging for intraoperative updates to brachytherapy treatment plans. Brachytherapy seeds coated with black ink were inserted into the canine prostate using methods similar to a human procedure. A transperineal, interstitial, fiber optic light delivery method, coupled to a 1064 nm laser, was utilized to irradiate the prostate and the resulting acoustic waves were detected with a transrectal ultrasound probe. The fiber was inserted into a high dose rate (HDR) brachytherapy needle that acted as a light-diffusing sheath, enabling radial light delivery from the tip of the fiber inside the sheath. The axis of the fiber was located at a distance of 4-9 mm from the long axis of the cylindrical seeds. Ultrasound images acquired with the transrectal probe and post-operative CT images of the implanted seeds were analyzed to confirm seed locations. In vivo limitations with insufficient light delivery within the ANSI laser safety limit (100 mJ/cm2) were overcome by utilizing a short-lag spatial coherence (SLSC) beamformer, which provided average seed contrasts of 20-30 dB for energy densities ranging 8-84 mJ/cm2. The average contrast was improved by up to 20 dB with SLSC beamforming compared to conventional delay-and-sum beamforming. There was excellent agreement between photoacoustic, ultrasound, and CT images. Challenges included visualization of photoacoustic artifacts that corresponded with locations of the optical fiber and hyperechoic tissue structures.

  6. Optical fibre luminescence sensor for real-time LDR brachytherapy dosimetry

    NASA Astrophysics Data System (ADS)

    Woulfe, P.; Sullivan, F. J.; O'Keeffe, S.

    2016-05-01

    An optical fibre sensor for monitoring low dose radiation is presented. The sensor is based on a scintillation material embedded within the optical fibre core, which emits visible light when exposed to low level ionising radiation. The incident level of ionising radiation can be determined by analysing the optical emission. An optical fibre sensor is presented, based on radioluminescence whereby radiation sensitive scintillation material, terbium doped gadolinium oxysulphide (Gd2O2S:Tb), is embedded in a cavity of 250μm of a 500μm plastic optical fibre. The sensor is designed for in-vivo monitoring of the radiation dose during radio-active seed implantation for brachytherapy, in prostate cancer treatment, providing oncologists with real-time information of the radiation dose to the target area and/or nearby critical structures. The radiation from the brachytherapy seeds causes emission of visible light from the scintillation material through the process of radioluminescence, which penetrates the fibre, propagating along the optical fibre for remote detection using a multi-pixel photon counter. The sensor demonstrates a high sensitivity to Iodine-125, the radioactive source most commonly used in brachytherapy for treating prostate cancer.

  7. SU-F-T-06: Development of a Formalism for Practical Dose Measurements in Brachytherapy in the German Standard DIN 6803

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hensley, F; Chofor, N; Schoenfeld, A

    2016-06-15

    Purpose: In the steep dose gradients in the vicinity of a radiation source and due to the properties of the changing photon spectra, dose measurements in Brachytherapy usually have large uncertainties. Working group DIN 6803-3 is presently discussing recommendations for practical brachytherapy dosimetry incorporating recent theoretical developments in the description of brachytherapy radiation fields as well as new detectors and phantom materials. The goal is to prepare methods and instruments to verify dose calculation algorithms and for clinical dose verification with reduced uncertainties. Methods: After analysis of the distance dependent spectral changes of the radiation field surrounding brachytherapy sources, themore » energy dependent response of typical brachytherapy detectors was examined with Monte Carlo simulations. A dosimetric formalism was developed allowing the correction of their energy dependence as function of source distance for a Co-60 calibrated detector. Water equivalent phantom materials were examined with Monte Carlo calculations for their influence on brachytherapy photon spectra and for their water equivalence in terms of generating equivalent distributions of photon spectra and absorbed dose to water. Results: The energy dependence of a detector in the vicinity of a brachytherapy source can be described by defining an energy correction factor kQ for brachytherapy in the same manner as in existing dosimetry protocols which incorporates volume averaging and radiation field distortion by the detector. Solid phantom materials were identified which allow precise positioning of a detector together with small correctable deviations from absorbed dose to water. Recommendations for the selection of detectors and phantom materials are being developed for different measurements in brachytherapy. Conclusion: The introduction of kQ for brachytherapy sources may allow more systematic and comparable dose measurements. In principle, the corrections can

  8. Phase I/II prospective trial of cancer-specific imaging using ultrasound spectrum analysis tissue-type imaging to guide dose-painting prostate brachytherapy.

    PubMed

    Ennis, Ronald D; Quinn, S Aidan; Trichter, Frieda; Ryemon, Shannon; Jain, Anudh; Saigal, Kunal; Chandrashekhar, Sarayu; Romas, Nicholas A; Feleppa, Ernest J

    2015-01-01

    To assess the technical feasibility, toxicity, dosimetry, and preliminary efficacy of dose-painting brachytherapy guided by ultrasound spectrum analysis tissue-type imaging (TTI) in low-risk, localized prostate cancer. Fourteen men with prostate cancer who were candidates for brachytherapy as sole treatment were prospectively enrolled. Treatment planning goal was to escalate the tumor dose to 200% with a modest de-escalation of dose to remaining prostate compared with our standard. Primary end points included technical feasibility of TTI-guided brachytherapy and equivalent or better toxicity compared with standard brachytherapy. Secondary end points included dose escalation to tumor regions and de-escalated dose to nontumor regions on the preimplant plan, negative prostate biopsy at 2 years, and freedom from biochemical failure. Thirteen of fourteen men successfully completed the TTI-guided brachytherapy procedure for a feasibility rate of 93%. A software malfunction resulted in switching one patient from TTI-guided to standard brachytherapy. An average of 2.7 foci per patient was demonstrated and treated with an escalated dose. Dosimetric goals on preplan were achieved. One patient expired from unrelated causes 65 days after brachytherapy. Toxicity was at least as low as standard brachytherapy. Two-year prostate biopsies were obtained from six men; five (83%) were definitively negative, one showed evidence of disease with treatment effect, and none were positive. No patients experienced biochemical recurrence after a median followup of 31.5 (24-52) months. We have demonstrated that TTI-guided dose-painting prostate brachytherapy is technically feasible and results in clinical outcomes that are encouraging in terms of low toxicity and successful biochemical disease control. Copyright © 2015 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  9. Deformable anatomical templates for brachytherapy treatment planning in radiotherapy of cervical cancer

    NASA Astrophysics Data System (ADS)

    Christensen, Gary E.; Williamson, Jeffrey F.; Chao, K. S. C.; Miller, Michael I.; So, F. B.; Vannier, Michael W.

    1997-10-01

    This paper describes a new method to register serial, volumetric x-ray computed tomography (CT) data sets for tracking soft-tissue deformation caused by insertion of intracavity brachytherapy applicators to treat cervical cancer. 3D CT scans collected from the same patient with and without a brachytherapy applicator are registered to aid in computation of the radiation dose to tumor and normal tissue. The 3D CT image volume of pelvic anatomy with the applicator. Initial registration is accomplished by rigid alignment of the pelvic bones and non-rigid alignment of gray scale CT data and hand segmentations of the vagina, cervix, bladder, and rectum. A viscous fluid transformation model is used for non-rigid registration to allow for local, non-linear registration of the vagina, cervix, bladder, and rectum without disturbing the rigid registration of the bony pelvis and adjacent structures. Results are presented in which two 3D CT data sets of the same patient - imaged with and without a brachytherapy applicator - are registered.

  10. Sci-Thur PM – Brachytherapy 04: Commissioning and Implementation of a Cobalt-60 High Dose Rate Brachytherapy Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dysart, Jonathan

    An Eckert & Ziegler Bebig Co0.A86 cobalt 60 high dose rate (HDR) brachytherapy source was commissioned for clinical use. Long-lived Co-60 HDR sources offer potential logistical and economic advantages over Ir-192 sources, and should be considered for low to medium workload brachytherapy departments where modest increases in treatment times are not a factor. In optimized plans, the Co-60 source provides a similar dose distribution to Ir-192 despite the difference in radiation energy. By switching to Co-60, source exchange frequency can be reduced by a factor of 20, resulting in overall financial savings of more than 50% compared to Ir-192 sources.more » In addition, a reduction in Physicist QA workload of roughly 200 hours over the 5 year life of the Co-60 source is also expected. These benefits should be considered against the modest increases in average treatment time compared to those of Ir-192 sources, as well as the centre-specific needs for operating room shielding modification.« less

  11. Spectroscopic characterization of low dose rate brachytherapy sources

    NASA Astrophysics Data System (ADS)

    Beach, Stephen M.

    The low dose rate (LDR) brachytherapy seeds employed in permanent radioactive-source implant treatments usually use one of two radionuclides, 125I or 103Pd. The theoretically expected source spectroscopic output from these sources can be obtained via Monte Carlo calculation based upon seed dimensions and materials as well as the bare-source photon emissions for that specific radionuclide. However the discrepancies resulting from inconsistent manufacturing of sources in comparison to each other within model groups and simplified Monte Carlo calculational geometries ultimately result in undesirably large uncertainties in the Monte Carlo calculated values. This dissertation describes experimentally attained spectroscopic outputs of the clinically used brachytherapy sources in air and in liquid water. Such knowledge can then be applied to characterize these sources by a more fundamental and metro logically-pure classification, that of energy-based dosimetry. The spectroscopic results contained within this dissertation can be utilized in the verification and benchmarking of Monte Carlo calculational models of these brachytherapy sources. This body of work was undertaken to establish a usable spectroscopy system and analysis methods for the meaningful study of LDR brachytherapy seeds. The development of a correction algorithm and the analysis of the resultant spectroscopic measurements are presented. The characterization of the spectrometer and the subsequent deconvolution of the measured spectrum to obtain the true spectrum free of any perturbations caused by the spectrometer itself is an important contribution of this work. The approach of spectroscopic deconvolution that was applied in this work is derived in detail and it is applied to the physical measurements. In addition, the spectroscopically based analogs to the LDR dosimetry parameters that are currently employed are detailed, as well as the development of the theory and measurement methods to arrive at these

  12. Quality of life after open or robotic prostatectomy, cryoablation or brachytherapy for localized prostate cancer.

    PubMed

    Malcolm, John B; Fabrizio, Michael D; Barone, Bethany B; Given, Robert W; Lance, Raymond S; Lynch, Donald F; Davis, John W; Shaves, Mark E; Schellhammer, Paul F

    2010-05-01

    Health related quality of life concerns factor prominently in prostate cancer management. We describe health related quality of life impact and recovery profiles of 4 commonly used operative treatments for localized prostate cancer. Beginning in February 2000 all patients treated with open radical prostatectomy, robot assisted laparoscopic prostatectomy, brachytherapy or cryotherapy were asked to complete the UCLA-PCI questionnaire before treatment, and at 3, 6, 12, 18, 24, 30 and 36 months after treatment. Outcomes were compared across treatment types with statistical analysis using univariate and multivariate models. A total of 785 patients treated between February 2000 and December 2008 were included in the analysis with a mean followup of 24 months. All health related quality of life domains were adversely affected by all treatments and recovery profiles varied significantly by treatment type. Overall urinary function and bother outcomes scored significantly higher after brachytherapy and cryotherapy compared to open radical prostatectomy and robotic assisted laparoscopic radical prostatectomy. Brachytherapy and cryotherapy had a 3-fold higher rate of return to baseline urinary function compared to open radical prostatectomy and robotic assisted laparoscopic radical prostatectomy. Sexual function and bother scores were highest after brachytherapy, with a 5-fold higher rate of return to baseline function compared to cryotherapy, open radical prostatectomy and robotic assisted laparoscopic radical prostatectomy. All 4 treatments were associated with relatively transient and less pronounced impact on bowel function and bother. In a study of sequential health related quality of life assessments brachytherapy and cryotherapy were associated with higher urinary function and bother scores compared to open radical prostatectomy and da Vinci prostatectomy. Brachytherapy was associated with higher sexual function and bother scores compared to open radical prostatectomy

  13. MO-FG-210-02: Implementation of Image-Guided Prostate HDR Brachytherapy Using MR-Ultrasound Fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Libby, B.

    Ultrasound (US) is one of the most widely used imaging modalities in medical practice. Since US imaging offers real-time imaging capability, it has becomes an excellent option to provide image guidance for brachytherapy (IGBT). (1) The physics and the fundamental principles of US imaging are presented, and the typical steps required to commission an US system for IGBT is provided for illustration. (2) Application of US for prostate HDR brachytherapy, including partial prostate treatments using MR-ultrasound co-registration to enable a focused treatment on the disease within the prostate is also presented. Prostate HDR with US image guidance planning can benefitmore » from real time visualization of the needles, and fusion of the ultrasound images with T2 weighted MR allows the focusing of the treatment to the specific areas of disease within the prostate, so that the entire gland need not be treated. Finally, (3) ultrasound guidance for an eye plaque program is presented. US can be a key component of placement and QA for episcleral plaque brachytherapy for ocular cancer, and the UCLA eye plaque program with US for image guidance is presented to demonstrate the utility of US verification of plaque placement in improving the methods and QA in episcleral plaque brachytherapy. Learning Objectives: To understand the physics of an US system and the necessary aspects of commissioning US for image guided brachytherapy (IGBT). To understand real time planning of prostate HDR using ultrasound, and its application in partial prostate treatments using MR-ultrasound fusion to focus treatment on disease within the prostate. To understand the methods and QA in applying US for localizing the target and the implant during a episcleral plaque brachytherapy procedures.« less

  14. Serum Testosterone Kinetics After Brachytherapy for Clinically Localized Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taira, Al V.; Merrick, Gregory S., E-mail: gmerrick@urologicresearchinstitute.org; Galbreath, Robert W.

    Purpose: To evaluate temporal changes in testosterone after prostate brachytherapy and investigate the potential impact of these changes on response to treatment. Methods and Materials: Between January 2008 and March 2009, 221 consecutive patients underwent Pd-103 brachytherapy without androgen deprivation for clinically localized prostate cancer. Prebrachytherapy prostate-specific antigen (PSA) and serum testosterone were obtained for each patient. Repeat levels were obtained 3 months after brachytherapy and at least every 6 months thereafter. Multiple clinical, treatment, and dosimetric parameters were evaluated to determine an association with temporal testosterone changes. In addition, analysis was conducted to determine if there was an associationmore » between testosterone changes and treatment outcomes or the occurrence of a PSA spike. Results: There was no significant difference in serum testosterone over time after implant (p = 0.57). 29% of men experienced an increase {>=}25%, 23% of men experienced a decrease {>=}25%, and the remaining 48% of men had no notable change in testosterone over time. There was no difference in testosterone trends between men who received external beam radiotherapy and those who did not (p = 0.12). On multivariate analysis, preimplant testosterone was the only variable that consistently predicted for changes in testosterone over time. Men with higher than average testosterone tended to experience drop in testosterone (p < 0.001), whereas men with average or below average baseline testosterone had no significant change. There was no association between men who experienced PSA spike and testosterone temporal trends (p = 0.50) nor between initial PSA response and testosterone trends (p = 0.21). Conclusion: Prostate brachytherapy does not appear to impact serum testosterone over time. Changes in serum testosterone do not appear to be associated with PSA spike phenomena nor with initial PSA response to treatment; therefore, PSA

  15. Study of two different radioactive sources for prostate brachytherapy treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereira Neves, Lucio; Perini, Ana Paula; Souza Santos, William de

    In this study we evaluated two radioactive sources for brachytherapy treatments. Our main goal was to quantify the absorbed doses on organs and tissues of an adult male patient, submitted to a brachytherapy treatment with two radioactive sources. We evaluated a {sup 192}Ir and a {sup 125}I radioactive sources. The {sup 192}Ir radioactive source is a cylinder with 0.09 cm in diameter and 0.415 cm long. The {sup 125}I radioactive source is also a cylinder, with 0.08 cm in diameter and 0.45 cm long. To evaluate the absorbed dose distribution on the prostate, and other organs and tissues of anmore » adult man, a male virtual anthropomorphic phantom MASH, coupled in the radiation transport code MCNPX 2.7.0, was employed.We simulated 75, 90 and 102 radioactive sources of {sup 125}I and one of {sup 192}Ir, inside the prostate, as normally used in these treatments, and each treatment was simulated separately. As this phantom was developed in a supine position, the displacement of the internal organs of the chest, compression of the lungs and reduction of the sagittal diameter were all taken into account. For the {sup 192}Ir, the higher doses values were obtained for the prostate and surrounding organs, as the colon, gonads and bladder. Considering the {sup 125}I sources, with photons with lower energies, the doses to organs that are far from the prostate were lower. All values for the dose rates are in agreement with those recommended for brachytherapy treatments. Besides that, the new seeds evaluated in this work present usefulness as a new tool in prostate brachytherapy treatments, and the methodology employed in this work may be applied for other radiation sources, or treatments. (authors)« less

  16. Local Failure After Episcleral Brachytherapy for Posterior Uveal Melanoma: Patterns, Risk Factors, and Management.

    PubMed

    Bellerive, Claudine; Aziz, Hassan A; Bena, James; Wilkinson, Allan; Suh, John H; Plesec, Thomas; Singh, Arun D

    2017-05-01

    To evaluate the patterns, the risk factors, and the management of recurrence following brachytherapy in patients with posterior uveal melanoma, given that an understanding of the recurrence patterns can improve early recognition and management of local treatment failure in such patients. Retrospective cohort study. Setting: Multispecialty tertiary care center. A total of 375 eyes treated with episcleral brachytherapy for posterior uveal melanoma from January 2004 to December 2014. Exclusion criteria included inadequate follow-up (<1 year) and previous radiation therapy. Main Outcomes and Measures: Local control rate and time to recurrence were the primary endpoints. Kaplan-Meier estimation and Cox proportional hazards models were conducted to identify risk factors for recurrence. Twenty-one patients (5.6%) experienced recurrence (follow-up range 12-156 months; median 47 months). The median time to recurrence was 18 months (range 4-156 months). Five-year estimated local recurrence rate was 6.6%. The majority (90.5%) of the recurrences occurred within the first 5 years. The predominant site of recurrence was at the tumor margin (12 patients, 57.1%). Univariate analysis identified 3 statistically significant recurrence risk factors: advanced age, largest basal diameter, and the use of adjuvant transpupillary thermotherapy (TTT). Recurrent tumors were managed by repeat brachytherapy, TTT, or enucleation. Local recurrences following brachytherapy are uncommon 5 years after episcleral brachytherapy. Follow-up intervals can be adjusted to reflect time to recurrence. Most of the eyes with recurrent tumor can be salvaged by conservative methods. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Prostate Brachytherapy Case Volumes by Academic and Nonacademic Practices: Implications for Future Residency Training

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orio, Peter F., E-mail: PORIO@lroc.harvard.edu; Harvard Medical School, Boston, Massachusetts; Nguyen, Paul L.

    Purpose: The use of prostate brachytherapy has continued to decline in the United States. We examined the national practice patterns of both academic and nonacademic practices performing prostate brachytherapy by case volume per year to further characterize the decline and postulate the effect this trend might have on training the next generation of residents. Methods and Materials: Men diagnosed with prostate cancer who had undergone radiation therapy in 2004 to 2012 were identified. The annual brachytherapy case volume at each facility was determined and further categorized into ≤12 cases per year (ie, an average of ≤1 cases per month), 13more » to 52 cases per year, and ≥53 cases per year (ie, an average of ≥1 cases per week) in academic practices versus nonacademic practices. Results: In 2004 to 2012, academic practices performing an average of ≤1 brachytherapy cases per month increased from 56.4% to 73.7%. In nonacademic practices, this percentage increased from 60.2% to 77.4% (P<.0001 for both). Practices performing an average of ≥1 cases per week decreased among both academic practices (from 6.7% to 1.5%) and nonacademic practices (from 4.5% to 2.7%). Conclusions: Both academic and nonacademic radiation oncology practices have demonstrated a significant reduction in the use of prostate brachytherapy from 2004 to 2012. With the case volume continuing to decline, it is unclear whether we are prepared to train the next generation of residents in this critical modality.« less

  18. Ruby-based inorganic scintillation detectors for 192Ir brachytherapy

    NASA Astrophysics Data System (ADS)

    Kertzscher, Gustavo; Beddar, Sam

    2016-11-01

    We tested the potential of ruby inorganic scintillation detectors (ISDs) for use in brachytherapy and investigated various unwanted luminescence properties that may compromise their accuracy. The ISDs were composed of a ruby crystal coupled to a poly(methyl methacrylate) fiber-optic cable and a charge-coupled device camera. The ISD also included a long-pass filter that was sandwiched between the ruby crystal and the fiber-optic cable. The long-pass filter prevented the Cerenkov and fluorescence background light (stem signal) induced in the fiber-optic cable from striking the ruby crystal, which generates unwanted photoluminescence rather than the desired radioluminescence. The relative contributions of the radioluminescence signal and the stem signal were quantified by exposing the ruby detectors to a high-dose-rate brachytherapy source. The photoluminescence signal was quantified by irradiating the fiber-optic cable with the detector volume shielded. Other experiments addressed time-dependent luminescence properties and compared the ISDs to commonly used organic scintillator detectors (BCF-12, BCF-60). When the brachytherapy source dwelled 0.5 cm away from the fiber-optic cable, the unwanted photoluminescence was reduced from  >5% to  <1% of the total signal as long as the ISD incorporated the long-pass filter. The stem signal was suppressed with a band-pass filter and was  <3% as long as the source distance from the scintillator was  <7 cm. Some ruby crystals exhibited time-dependent luminescence properties that altered the ruby signal by  >5% within 10 s from the onset of irradiation and after the source had retracted. The ruby-based ISDs generated signals of up to 20 times that of BCF-12-based detectors. The study presents solutions to unwanted luminescence properties of ruby-based ISDs for high-dose-rate brachytherapy. An optic filter should be sandwiched between the ruby crystal and the fiber-optic cable to suppress the

  19. Ruby-based inorganic scintillation detectors for 192Ir brachytherapy

    PubMed Central

    Kertzscher, Gustavo; Beddar, Sam

    2016-01-01

    We tested the potential of ruby inorganic scintillation detectors (ISDs) for use in brachytherapy and investigated various unwanted luminescence properties that may compromise their accuracy. The ISDs were composed of a ruby crystal coupled to a poly(methyl methacrylate) fiber-optic cable and a charge-coupled device camera. The ISD also included a long-pass filter that was sandwiched between the ruby crystal and the fiber-optic cable. The long-pass filter prevented the Cerenkov and fluorescence background light (stem signal) induced in the fiber-optic cable from striking the ruby crystal, which generates unwanted photoluminescence rather than the desired radioluminescence. The relative contributions of the radioluminescence signal and the stem signal were quantified by exposing the ruby detectors to a high-dose-rate brachytherapy source. The photoluminescence signal was quantified by irradiating the fiber-optic cable with the detector volume shielded. Other experiments addressed time-dependent luminescence properties and compared the ISDs to commonly used organic scintillator detectors (BCF-12, BCF-60). When the brachytherapy source dwelled 0.5 cm away from the fiber-optic cable, the unwanted photoluminescence was reduced from > 5% to < 1% of the total signal as long as the ISD incorporated the long-pass filter. The stem signal was suppressed with a band-pass filter and was < 3% as long as the source distance from the scintillator was < 7 cm. Some ruby crystals exhibited time-dependent luminescence properties that altered the ruby signal by > 5% within 10 s from the onset of irradiation and after the source had retracted. The ruby-based ISDs generated signals of up to 20 times that of BCF-12-based detectors. The study presents solutions to unwanted luminescence properties of ruby-based ISDs for high-dose-rate brachytherapy. An optic filter should be sandwiched between the ruby crystal and the fiber-optic cable to suppress the photoluminescence. Furthermore, we

  20. Ruby-based inorganic scintillation detectors for 192Ir brachytherapy.

    PubMed

    Kertzscher, Gustavo; Beddar, Sam

    2016-11-07

    We tested the potential of ruby inorganic scintillation detectors (ISDs) for use in brachytherapy and investigated various unwanted luminescence properties that may compromise their accuracy. The ISDs were composed of a ruby crystal coupled to a poly(methyl methacrylate) fiber-optic cable and a charge-coupled device camera. The ISD also included a long-pass filter that was sandwiched between the ruby crystal and the fiber-optic cable. The long-pass filter prevented the Cerenkov and fluorescence background light (stem signal) induced in the fiber-optic cable from striking the ruby crystal, which generates unwanted photoluminescence rather than the desired radioluminescence. The relative contributions of the radioluminescence signal and the stem signal were quantified by exposing the ruby detectors to a high-dose-rate brachytherapy source. The photoluminescence signal was quantified by irradiating the fiber-optic cable with the detector volume shielded. Other experiments addressed time-dependent luminescence properties and compared the ISDs to commonly used organic scintillator detectors (BCF-12, BCF-60). When the brachytherapy source dwelled 0.5 cm away from the fiber-optic cable, the unwanted photoluminescence was reduced from  >5% to  <1% of the total signal as long as the ISD incorporated the long-pass filter. The stem signal was suppressed with a band-pass filter and was  <3% as long as the source distance from the scintillator was  <7 cm. Some ruby crystals exhibited time-dependent luminescence properties that altered the ruby signal by  >5% within 10 s from the onset of irradiation and after the source had retracted. The ruby-based ISDs generated signals of up to 20 times that of BCF-12-based detectors. The study presents solutions to unwanted luminescence properties of ruby-based ISDs for high-dose-rate brachytherapy. An optic filter should be sandwiched between the ruby crystal and the fiber-optic cable to suppress the

  1. Targeting MRS-Defined Dominant Intraprostatic Lesions with Inverse-Planned High Dose Rate Brachytherapy. Addendum

    DTIC Science & Technology

    2009-06-01

    imagining) into the HDR brachytherapy treatment planning has been demonstrated. Using the inverse planning program IPSA , dose escalation of target...Principles and Clinical Applications of IPSA ; Nucletron International Physics Seminar, Vaals, Netherlands, Sept 13-16, 2006. 7 IPSA ...experience with IPSA for prostate cancer treatment in HDR Brachytherapy, 4ième séminaire francophone de curiethérapie, Arcachon, France, June 15, 2006

  2. Rectal bleeding after high-dose-rate brachytherapy combined with hypofractionated external-beam radiotherapy for localized prostate cancer: Impact of rectal dose in high-dose-rate brachytherapy on occurrence of grade 2 or worse rectal bleeding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akimoto, Tetsuo; Katoh, Hiroyuki; Kitamoto, Yoshizumi

    2006-06-01

    Purpose: To evaluate the incidence of Grade 2 or worse rectal bleeding after high-dose-rate (HDR) brachytherapy combined with hypofractionated external-beam radiotherapy (EBRT), with special emphasis on the relationship between the incidence of rectal bleeding and the rectal dose from HDR brachytherapy. Methods and Materials: The records of 100 patients who were treated by HDR brachytherapy combined with EBRT for {>=}12 months were analyzed. The fractionation schema for HDR brachytherapy was prospectively changed, and the total radiation dose for EBRT was fixed at 51 Gy. The distribution of the fractionation schema used in the patients was as follows: 5 Gy xmore » 5 in 13 patients; 7 Gy x 3 in 19 patients; and 9 Gy x 2 in 68 patients. Results: Ten patients (10%) developed Grade 2 or worse rectal bleeding. Regarding the correlation with dosimetric factors, no significant differences were found in the average percentage of the entire rectal volume receiving 30%, 50%, 80%, and 90% of the prescribed radiation dose from EBRT between those with bleeding and those without. The average percentage of the entire rectal volume receiving 10%, 30%, 50%, 80%, and 90% of the prescribed radiation dose from HDR brachytherapy in those who developed rectal bleeding was 77.9%, 28.6%, 9.0%, 1.5%, and 0.3%, respectively, and was 69.2%, 22.2%, 6.6%, 0.9%, and 0.4%, respectively, in those without bleeding. The differences in the percentages of the entire rectal volume receiving 10%, 30%, and 50% between those with and without bleeding were statistically significant. Conclusions: The rectal dose from HDR brachytherapy for patients with prostate cancer may have a significant impact on the incidence of Grade 2 or worse rectal bleeding.« less

  3. Phase III randomized trial comparing LDR and HDR brachytherapy in treatment of cervical carcinoma.

    PubMed

    Lertsanguansinchai, Prasert; Lertbutsayanukul, Chawalit; Shotelersuk, Kanjana; Khorprasert, Chonlakiet; Rojpornpradit, Prayuth; Chottetanaprasith, Taywin; Srisuthep, Apiradee; Suriyapee, Sivalee; Jumpangern, Chotika; Tresukosol, Damrong; Charoonsantikul, Chulee

    2004-08-01

    Intracavitary brachytherapy plays an important role in the treatment of cervical carcinoma. Previous results have shown controversy between the effect of dose rate on tumor control and the occurrence of complications. We performed a prospective randomized clinical trial to compare the clinical outcomes between low-dose-rate (LDR) and high-dose-rate (HDR) intracavitary brachytherapy for treatment of invasive uterine cervical carcinoma. A total of 237 patients with previously untreated invasive carcinoma of the uterine cervix treated at King Chulalongkorn Memorial Hospital were randomized between June 1995 and December 2001. Excluding ineligible, incomplete treatment, and incomplete data patients, 109 and 112 patients were in the LDR and HDR groups, respectively. All patients were treated with external beam radiotherapy and LDR or HDR intracavitary brachytherapy using the Chulalongkorn treatment schedule. The median follow-up for the LDR and HDR groups was 40.2 and 37.2 months, respectively. The actuarial 3-year overall and relapse-free survival rate for all patients was 69.6% and 70%, respectively. The 3-year overall survival rate in the LDR and HDR groups was 70.9% and 68.4% (p = 0.75) and the 3-year pelvic control rate was 89.1% and 86.4% (p = 0.51), respectively. The 3-year relapse-free survival rate in both groups was 69.9% (p = 0.35). Most recurrences were distant metastases, especially in Stage IIB and IIIB patients. Grade 3 and 4 complications were found in 2.8% and 7.1% of the LDR and HDR groups (p = 0.23). Comparable outcomes were demonstrated between LDR and HDR intracavitary brachytherapy. Concerning patient convenience, the lower number of medical personnel needed, and decreased radiation to health care workers, HDR intracavitary brachytherapy is an alternative to conventional LDR brachytherapy. The high number of distant failure suggests that other modalities such as systemic concurrent or adjuvant chemotherapy might lower this high recurrence

  4. Review of advanced catheter technologies in radiation oncology brachytherapy procedures

    PubMed Central

    Zhou, Jun; Zamdborg, Leonid; Sebastian, Evelyn

    2015-01-01

    The development of new catheter and applicator technologies in recent years has significantly improved treatment accuracy, efficiency, and outcomes in brachytherapy. In this paper, we review these advances, focusing on the performance of catheter imaging and reconstruction techniques in brachytherapy procedures using magnetic resonance images and electromagnetic tracking. The accuracy of catheter reconstruction, imaging artifacts, and other notable properties of plastic and titanium applicators in gynecologic treatments are reviewed. The accuracy, noise performance, and limitations of electromagnetic tracking for catheter reconstruction are discussed. Several newly developed applicators for accelerated partial breast irradiation and gynecologic treatments are also reviewed. New hypofractionated high dose rate treatment schemes in prostate cancer and accelerated partial breast irradiation are presented. PMID:26203277

  5. MO-D-BRD-01: Clinical Implementation of An Electronic Brachytherapy Program for the Skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouhib, Z.

    2015-06-15

    Electronic brachytherapy (eBT) has seen an insurgence of manufacturers entering the US market for use in radiation therapy. In addition to the established interstitial, intraluminary, and intracavitary applications of eBT, many centers are now using eBT to treat skin lesions. It is important for medical physicists working with electronic brachytherapy sources to understand the basic physics principles of the sources themselves as well as the variety of applications for which they are being used. The calibration of the sources is different from vendor to vendor and the traceability of calibrations has evolved as new sources came to market. In 2014,more » a new air-kerma based standard was introduced by the National Institute of Standards and Technology (NIST) to measure the output of an eBT source. Eventually commercial treatment planning systems should accommodate this new standard and provide NIST traceability to the end user. The calibration and commissioning of an eBT system is unique to its application and typically entails a list of procedural recommendations by the manufacturer. Commissioning measurements are performed using a variety of methods, some of which are modifications of existing AAPM Task Group protocols. A medical physicist should be familiar with the different AAPM Task Group recommendations for applicability to eBT and how to properly adapt them to their needs. In addition to the physical characteristics of an eBT source, the photon energy is substantially lower than from HDR Ir-192 sources. Consequently, tissue-specific dosimetry and radiobiological considerations are necessary when comparing these brachytherapy modalities and when making clinical decisions as a radiation therapy team. In this session, the physical characteristics and calibration methodologies of eBt sources will be presented as well as radiobiology considerations and other important clinical considerations. Learning Objectives: To understand the basic principles of

  6. MAGIC with formaldehyde applied to dosimetry of HDR brachytherapy source

    NASA Astrophysics Data System (ADS)

    Marques; T; Fernandes; J; Barbi; G; Nicolucci; P; Baffa; O

    2009-05-01

    The use of polymer gel dosimeters in brachytherapy can allow the determination of three-dimensional dose distributions in large volumes and with high spatial resolution if an adequate calibration process is performed. One of the major issues in these experiments is the polymer gel response dependence on dose rate when high dose rate sources are used and the doses in the vicinity of the sources are to be determinated. In this study, the response of a modified MAGIC polymer gel with formaldehyde around an Iridium-192 HDR brachytherapy source is presented. Experimental results obtained with this polymer gel were compared with ionization chamber measurements and with Monte Carlo simulation with PENELOPE. A maximum difference of 3.10% was found between gel dose measurements and Monte Carlo simulation at a radial distance of 18 mm from the source. The results obtained show that the gel's response is strongly influenced by dose rate and that a different calibration should be used for the vicinity of the source and for regions of lower dose rates. The results obtained in this study show that, provided the proper calibration is performed, MAGIC with formaldehyde can be successfully used to accurate determinate dose distributions form high dose rate brachytherapy sources.

  7. Optical fibre luminescence sensor for real-time LDR brachytherapy dosimetry

    NASA Astrophysics Data System (ADS)

    Woulfe, P.; O'Keeffe, S.; Sullivan, F. J.

    2018-02-01

    An optical fibre sensor for monitoring low dose radiation is presented. The sensor is based on a scintillation material embedded within the optical fibre core, which emits visible light when exposed to low level ionising radiation. The incident level of ionising radiation can be determined by analysing the optical emission. An optical fibre sensor is developed, based on radioluminescence whereby radiation sensitive scintillation material, terbium doped gadolinium oxysulphide (Gd2O2S:Tb), is embedded in a cavity of 700μm of a 1mm plastic optical fibre. The sensor is designed for in-vivo monitoring of the radiation dose during radio-active seed implantation for low dose rate (LDR) brachytherapy, in prostate cancer treatment, providing radiation oncologists with real-time information of the radiation dose to the target area and/or nearby organs at risk (OARs). The radiation from the brachytherapy seeds causes emission of visible light from the scintillation material through the process of radioluminescence, which penetrates the fibre, propagating along the optical fibre for remote detection using a multi-pixel photon counter. The sensor demonstrates a high sensitivity to 0.397mCi of Iodine125, the radioactive source most commonly used in brachytherapy for treating prostate cancer.

  8. Custom-made micro applicators for high-dose-rate brachytherapy treatment of chronic psoriasis.

    PubMed

    Buzurovic, Ivan M; O'Farrell, Desmond A; Bhagwat, Mandar S; Hansen, Jorgen L; Harris, Thomas C; Friesen, Scott; Cormack, Robert A; Devlin, Phillip M

    2017-06-01

    In this study, we present the treatment of the psoriatic nail beds of patients refractory to standard therapies using high-dose-rate (HDR) brachytherapy. The custom-made micro applicators (CMMA) were designed and constructed for radiation dose delivery to small curvy targets with complicated topology. The role of the HDR brachytherapy treatment was to stimulate the T cells for an increased immune response. The patient diagnosed with psoriatic nail beds refractory to standard therapies received monthly subunguinal injections that caused significant pain and discomfort in both hands. The clinical target was defined as the length from the fingertip to the distal interphalangeal joint. For the accurate and reproducible setup in the multi-fractional treatment delivery, the CMMAs were designed. Five needles were embedded into the dense plastic mesh and covered with 5 mm bolus material for each micro applicator. Five CMMAs were designed, resulting in the usage of 25 catheters in total. The prescription dose was planned to the depth of the anterior surface of the distal phalanx, allowing for the sparing of the surrounding tissue. The total number of the active dwell positions was 145 with step size of 5 mm. The total treatment time was 115 seconds with a 7.36 Ci activity of the 192 Ir source. The treatment resulted in good pain control. The patient did not require further injections to the nail bed. After this initial treatment, additional two patients with similar symptoms received HDR brachytherapy. The treatment outcome was favorable in all cases. The first HDR brachytherapy treatment of psoriasis of the nail bed is presented. The initial experience revealed that brachytherapy treatment was well-tolerated and resulted in adequate control of the disease. A larger cohort of patients will be required for additional conclusions related to the long-term clinical benefits.

  9. Ejaculatory Function After Permanent {sup 125}I Prostate Brachytherapy for Localized Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huyghe, Eric; Department of Urology and Andrology, Paul Sabatier University, CHU Paule de Viguier, Toulouse; Delannes, Martine

    Purpose: Ejaculatory function is an underreported aspect of male sexuality in men treated for prostate cancer. We conducted the first detailed analysis of ejaculatory function in patients treated with permanent {sup 125}I prostate brachytherapy for localized prostate cancer. Patients and Methods: Of 270 sexually active men with localized prostate cancer treated with permanent {sup 125}I prostate brachytherapy, 241 (89%), with a mean age of 65 years (range, 43-80), responded to a mailed questionnaire derived from the Male Sexual Health Questionnaire regarding ejaculatory function. Five aspects of ejaculatory function were examined: frequency, volume, dry ejaculation, pleasure, and pain. Results: Of themore » 241 sexually active men, 81.3% had conserved ejaculatory function after prostate brachytherapy; however, the number of patients with rare/absent ejaculatory function was double the pretreatment number (p < .0001). The latter finding was correlated with age (p < .001) and the preimplant International Index of Erectile Function score (p < .001). However, 84.9% of patients with maintained ejaculatory function after implantation reported a reduced volume of ejaculate compared with 26.9% before (p < .001), with dry ejaculation accounting for 18.7% of these cases. After treatment, 30.3% of the patients experienced painful ejaculation compared with 12.9% before (p = .0001), and this was associated with a greater number of implanted needles (p = .021) and the existence of painful ejaculation before implantation (p < .0001). After implantation, 10% of patients who continued to be sexually active experienced no orgasm compared with only 1% before treatment. in addition, more patients experienced late/difficult or weak orgasms (p = .001). Conclusion: Most men treated with brachytherapy have conserved ejaculatory function after prostate brachytherapy. However, most of these men experience a reduction in volume and a deterioration in orgasm.« less

  10. Benefit of Adjuvant Brachytherapy Versus External Beam Radiation for Early Breast Cancer: Impact of Patient Stratification on Breast Preservation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Grace L.; Jiang, Jing; Buchholz, Thomas A.

    Purpose: Brachytherapy after lumpectomy is an increasingly popular breast cancer treatment, but data concerning its effectiveness are conflicting. Recently proposed “suitability” criteria guiding patient selection for brachytherapy have never been empirically validated. Methods: Using the Surveillance, Epidemiology, and End Results–Medicare linked database, we compared women aged 66 years or older with invasive breast cancer (n=28,718) or ductal carcinoma in situ (n=7229) diagnosed from 2002 to 2007, treated with lumpectomy alone, brachytherapy, or external beam radiation therapy (EBRT). The likelihood of breast preservation, measured by subsequent mastectomy risk, was compared by use of multivariate proportional hazards, further stratified by American Societymore » for Radiation Oncology (ASTRO) brachytherapy suitability groups. We compared 1-year postoperative complications using the χ{sup 2} test and 5-year local toxicities using the log-rank test. Results: For patients with invasive cancer, the 5-year subsequent mastectomy risk was 4.7% after lumpectomy alone (95% confidence interval [CI], 4.1%-5.4%), 2.8% after brachytherapy (95% CI, 1.8%-4.3%), and 1.3% after EBRT (95% CI, 1.1%-1.5%) (P<.001). Compared with lumpectomy alone, brachytherapy achieved a more modest reduction in adjusted risk (hazard ratio [HR], 0.61; 95% CI, 0.40-0.94) than achieved with EBRT (HR, 0.22; 95% CI, 0.18-0.28). Relative risks did not differ when stratified by ASTRO suitability group (P=.84 for interaction), although ASTRO “suitable” patients did show a low absolute subsequent mastectomy risk, with a minimal absolute difference in risk after brachytherapy (1.6%; 95% CI, 0.7%-3.5%) versus EBRT (0.8%; 95% CI, 0.6%-1.1%). For patients with ductal carcinoma in situ, EBRT maintained a reduced risk of subsequent mastectomy (HR, 0.40; 95% CI, 0.28-0.55; P<.001), whereas the small number of patients treated with brachytherapy (n=179) precluded definitive comparison with lumpectomy

  11. Source position verification and dosimetry in HDR brachytherapy using an EPID.

    PubMed

    Smith, R L; Taylor, M L; McDermott, L N; Haworth, A; Millar, J L; Franich, R D

    2013-11-01

    Accurate treatment delivery in high dose rate (HDR) brachytherapy requires correct source dwell positions and dwell times to be administered relative to each other and to the surrounding anatomy. Treatment delivery inaccuracies predominantly occur for two reasons: (i) anatomical movement or (ii) as a result of human errors that are usually related to incorrect implementation of the planned treatment. Electronic portal imaging devices (EPIDs) were originally developed for patient position verification in external beam radiotherapy and their application has been extended to provide dosimetric information. The authors have characterized the response of an EPID for use with an (192)Ir brachytherapy source to demonstrate its use as a verification device, providing both source position and dosimetric information. Characterization of the EPID response using an (192)Ir brachytherapy source included investigations of reproducibility, linearity with dose rate, photon energy dependence, and charge build-up effects associated with exposure time and image acquisition time. Source position resolution in three dimensions was determined. To illustrate treatment verification, a simple treatment plan was delivered to a phantom and the measured EPID dose distribution compared with the planned dose. The mean absolute source position error in the plane parallel to the EPID, for dwells measured at 50, 100, and 150 mm source to detector distances (SDD), was determined to be 0.26 mm. The resolution of the z coordinate (perpendicular distance from detector plane) is SDD dependent with 95% confidence intervals of ± 0.1, ± 0.5, and ± 2.0 mm at SDDs of 50, 100, and 150 mm, respectively. The response of the EPID is highly linear to dose rate. The EPID exhibits an over-response to low energy incident photons and this nonlinearity is incorporated into the dose calibration procedure. A distance (spectral) dependent dose rate calibration procedure has been developed. The difference between

  12. Paddle-based rotating-shield brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yunlong; Xu, Weiyu; Flynn, Ryan T.

    Purpose: The authors present a novel paddle-based rotating-shield brachytherapy (P-RSBT) method, whose radiation-attenuating shields are formed with a multileaf collimator (MLC), consisting of retractable paddles, to achieve intensity modulation in high-dose-rate brachytherapy. Methods: Five cervical cancer patients using an intrauterine tandem applicator were considered to assess the potential benefit of the P-RSBT method. The P-RSBT source used was a 50 kV electronic brachytherapy source (Xoft Axxent™). The paddles can be retracted independently to form multiple emission windows around the source for radiation delivery. The MLC was assumed to be rotatable. P-RSBT treatment plans were generated using the asymmetric dose–volume optimizationmore » with smoothness control method [Liu et al., Med. Phys. 41(11), 111709 (11pp.) (2014)] with a delivery time constraint, different paddle sizes, and different rotation strides. The number of treatment fractions (fx) was assumed to be five. As brachytherapy is delivered as a boost for cervical cancer, the dose distribution for each case includes the dose from external beam radiotherapy as well, which is 45 Gy in 25 fx. The high-risk clinical target volume (HR-CTV) doses were escalated until the minimum dose to the hottest 2 cm{sup 3} (D{sub 2cm{sup 3}}) of either the rectum, sigmoid colon, or bladder reached their tolerance doses of 75, 75, and 90 Gy{sub 3}, respectively, expressed as equivalent doses in 2 Gy fractions (EQD2 with α/β = 3 Gy). Results: P-RSBT outperformed the two other RSBT delivery techniques, single-shield RSBT (S-RSBT) and dynamic-shield RSBT (D-RSBT), with a properly selected paddle size. If the paddle size was angled at 60°, the average D{sub 90} increases for the delivery plans by P-RSBT on the five cases, compared to S-RSBT, were 2.2, 8.3, 12.6, 11.9, and 9.1 Gy{sub 10}, respectively, with delivery times of 10, 15, 20, 25, and 30 min/fx. The increases in HR-CTV D{sub 90}, compared to D

  13. Dose distribution verification for GYN brachytherapy using EBT Gafchromic film and TG-43 calculation.

    PubMed

    Gholami, Somayeh; Mirzaei, Hamid Reza; Jabbary Arfaee, Ali; Jaberi, Ramin; Nedaie, Hassan Ali; Rabi Mahdavi, Seied; Rajab Bolookat, Eftekhar; Meigooni, Ali S

    2016-01-01

    Verification of dose distributions for gynecological (GYN) brachytherapy implants using EBT Gafchromic film. One major challenge in brachytherapy is to verify the accuracy of dose distributions calculated by a treatment planning system. A new phantom was designed and fabricated using 90 slabs of 18 cm × 16 cm × 0.2 cm Perspex to accommodate a tandem and Ovoid assembly, which is normally used for GYN brachytherapy treatment. This phantom design allows the use of EBT Gafchromic films for dosimetric verification of GYN implants with a cobalt-60 HDR system or a LDR Cs-137 system. Gafchromic films were exposed using a plan that was designed to deliver 1.5 Gy of dose to 0.5 cm distance from the lateral surface of ovoids from a pair of ovoid assembly that was used for treatment vaginal cuff. For a quantitative analysis of the results for both LDR and HDR systems, the measured dose values at several points of interests were compared with the calculated data from a commercially available treatment planning system. This planning system was utilizing the TG-43 formalism and parameters for calculation of dose distributions around a brachytherapy implant. The results of these investigations indicated that the differences between the calculated and measured data at different points were ranging from 2.4% to 3.8% for the LDR Cs-137 and HDR Co-60 systems, respectively. The EBT Gafchromic films combined with the newly designed phantom could be utilized for verification of the dose distributions around different GYN implants treated with either LDR or HDR brachytherapy procedures.

  14. High-dose-rate (HDR) brachytherapy for the treatment of benign obstructive endobronchial granulation tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madu, Chika N.; Machuzak, Michael S.; Sterman, Daniel H.

    Background: Severe airway obstruction can occur in the setting of benign granulation tissue forming at bronchial anastomotic sites after lung transplantation in up to 20% of patients. Many of these benign lesions respond to stent placement, laser ablation, or balloon bronchoplasty. However, in certain cases, proliferation of granulation tissue may persist despite all therapeutic attempts. This study describes a series of refractory patients treated with high-dose-rate (HDR) brachytherapy for benign proliferation of granulation tissue, causing airway compromise. Methods and Materials: Between April 2002 and June 2005, 5 patients with significant airway compromise from recurrent granulation tissue were treated with HDRmore » brachytherapy. All patients had previously failed to maintain a patent airway despite multiple bronchoscopic interventions. Treatment was delivered using an HDR brachytherapy afterloader with {sup 192}Ir. Dose prescription was to a depth of 1 cm. All patients were treated weekly, with total doses ranging from 10 Gy to 21 Gy in two to three fractions. Results: The median follow-up was 12 months. All patients experienced a reduction in therapeutic bronchoscopic procedures after HDR brachytherapy compared with the pretreatment period. With the exception of possible radiation-induced bronchitis in 1 patient, there were no other treatment related complications. At the time of this report, 2 patients have died and the other 3 are alive with marked symptomatic improvement and reduced bronchoscopic procedures. Conclusion: High-dose-rate brachytherapy is an effective treatment for benign proliferation of granulation tissue causing airway obstruction. The early response to therapy is encouraging and further follow-up is necessary to determine long-term durability and late effects.« less

  15. Outcomes and Control Rates for I-125 Plaque Brachytherapy for Uveal Melanoma: A Community-Based Institutional Experience

    PubMed Central

    Cook, Taylor

    2014-01-01

    Purpose. To evaluate our community-based institutional experience with plaque brachytherapy for uveal melanomas with a focus on local control rates, factors impacting disease progression, and dosimetric parameters impacting treatment toxicity. Methods and Materials. Our institution was retrospectively reviewed from 1996 to 2011; all patients who underwent plaque brachytherapy for uveal melanoma were included. Follow-up data were collected regarding local control, distant metastases, and side effects from treatment. Analysis was performed on factors impacting treatment outcomes and treatment toxicity. Results. A total of 107 patients underwent plaque brachytherapy, of which 88 had follow-up data available. Local control at 10 years was 94%. Freedom from progression (FFP) and overall survival at 10 years were 83% and 79%, respectively. On univariate analysis, there were no tumor or dosimetric treatment characteristics that were found to have a prognostic impact on FFP. Brachytherapy treatment was well tolerated, with clinically useful vision (>20/200) maintained in 64% of patients. Statistically significant dosimetric relationships were established with cataract, glaucoma, and retinopathy development (greatest P = 0.05). Conclusions. Treatment with plaque brachytherapy demonstrates excellent outcomes in a community-based setting. It is well tolerated and should remain a standard of care for COMS medium sized tumors. PMID:24734198

  16. Novel use of ViewRay MRI guidance for high-dose-rate brachytherapy in the treatment of cervical cancer.

    PubMed

    Ko, Huaising C; Huang, Jessie Y; Miller, Jessica R; Das, Rupak K; Wallace, Charles R; De Costa, Anna-Maria A; Francis, David M; Straub, Margaret R; Anderson, Bethany M; Bradley, Kristin A

    To characterize image quality and feasibility of using ViewRay MRI (VR)-guided brachytherapy planning for cervical cancer. Cervical cancer patients receiving intracavitary brachytherapy with tandem and ovoids, planned using 0.35T VR MRI at our institution, were included in this series. The high-risk clinical target volume (HR-CTV), visible gross tumor volume, bladder, sigmoid, bowel, and rectum contours for each fraction of brachytherapy were evaluated for dosimetric parameters. Typically, five brachytherapy treatments were planned using the T2 sequence on diagnostic MRI for the first and third fractions, and a noncontrast true fast imaging with steady-state precession sequence on VR or CT scan for the remaining fractions. Most patients received 5.5 Gy × 5 fractions using high-dose-rate Ir-192 following 45 Gy of whole-pelvis radiotherapy. The plan was initiated at 5.5 Gy to point A and subsequently optimized and prescribed to the HR-CTV. The goal equivalent dose in 2 Gy fractions for the combined external beam and brachytherapy dose was 85 Gy. Soft-tissue visualization using contrast-to-noise ratios to distinguish normal tissues from tumor at their interface was compared between diagnostic MRI, CT, and VR. One hundred and forty-two fractions of intracavitary brachytherapy were performed from April 2015 to January 2017 on 29 cervical cancer patients, ranging from stages IB1 to IVA. The median HR-CTV was 27.78 cc, with median D 90 HR-CTV of 6.1 Gy. The median time from instrument placement to start of treatment using VR was 65 min (scan time 2 min), compared to 105 min using diagnostic MRI (scan time 11 min) (t-test, p < 0.01). The contrast-to-noise ratio of tumor to cervix in both diagnostic MRI and VR had significantly higher values compared to CT (ANOVA and t-tests, p < 0.01). We report the first clinical use of VR-guided brachytherapy. Time to treatment using this approach was shorter compared to diagnostic MRI. VR also provided significant

  17. Brachytherapy Using Elastin-Like Polypeptides with (131)I Inhibit Tumor Growth in Rabbits with VX2 Liver Tumor.

    PubMed

    Liu, Xinpei; Shen, Yiming; Zhang, Xuqian; Lin, Rui; Jia, Qiang; Chang, Yixiang; Liu, Wenge; Liu, Wentian

    2016-10-01

    Brachytherapy is a targeted type of radiotherapy utilized in the treatment of cancers. Elastin-like polypeptides are a unique class of genetically engineered peptide polymers that have several attractive properties for brachytherapy. To explore the feasibility and application of brachytherapy for VX2 liver tumor using elastin-like polypeptides with (131)I so as to provide reliable experimental evidence for a new promising treatment of liver cancer. Elastin-like polypeptide as carrier was labeled with (131)I using the iodogen method. Ten eligible rabbits with VX2 liver tumor were randomly divided into the treatment group (n = 5) and control group (n = 5). The treatment group received brachytherapy using elastin-like polypeptide with (131)I, and in the control group, elastin-like polypeptide was injected into the VX2 liver tumor as a control. Periodic biochemical and imaging surveillances were required to assess treatment efficacy. The stability of elastin-like polypeptide with (131)I in vitro was maintained at over 96.8 % for 96 h. Biochemistry and imaging indicated brachytherapy using elastin-like polypeptide with (131)I for liver tumor can improve liver function and inhibit tumor growth (P < 0.05). Elastin-like polypeptide can be an ideal carrier of (131)I and have high labeling efficiency, radiochemical purity and stability. Brachytherapy using elastin-like polypeptide with (131)I for liver tumor is a useful therapy that possesses high antitumor efficacy advantages.

  18. Sexual function and quality of life in gynecological cancer pre- and post-short-term brachytherapy: a prospective study.

    PubMed

    Zomkowski, Kamilla; Toryi, Ariana Machado; Sacomori, Cinara; Dias, Mirella; Sperandio, Fabiana Flores

    2016-10-01

    To evaluate the sexual function and quality of life pre- and post-gynecological cancer treatment with high-dose rate brachytherapy in the short term. This is a descriptive and prospective study involving 20 women diagnosed with gynecological cancer aged between 18 and 70 years, resident in Florianopolis and the surrounding region. We used the Quality of Life Questionnaire Core-30 (QLQ-C30) 3.0 to assess quality of life pre- and post-brachytherapy treatment and the Female Sexual Function Index (FSFI) to assess sexual function. Regarding quality of life, significant worsening was observed for the items loss of appetite (p = 0.002) and diarrhea (p = 0.045) from pre- to post-brachytherapy treatment, whereas constipation (p = 0.013) improved. For sexual function, the statistical difference was found exclusively in the domain of lubrication reduction (p = 0.046). Only nine women were sexually active before and after brachytherapy treatment. There was a worsening of quality of life in comparing pre- and post-evaluations related to gastrointestinal symptoms over a period equivalent to 40 days. Regarding sexual function, lack of lubrication was identified in short-term post-gynecological cancer brachytherapy.

  19. WE-F-201-00: Practical Guidelines for Commissioning Advanced Brachytherapy Dose Calculation Algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2015-06-15

    With the recent introduction of heterogeneity correction algorithms for brachytherapy, the AAPM community is still unclear on how to commission and implement these into clinical practice. The recently-published AAPM TG-186 report discusses important issues for clinical implementation of these algorithms. A charge of the AAPM-ESTRO-ABG Working Group on MBDCA in Brachytherapy (WGMBDCA) is the development of a set of well-defined test case plans, available as references in the software commissioning process to be performed by clinical end-users. In this practical medical physics course, specific examples on how to perform the commissioning process are presented, as well as descriptions of themore » clinical impact from recent literature reporting comparisons of TG-43 and heterogeneity-based dosimetry. Learning Objectives: Identify key clinical applications needing advanced dose calculation in brachytherapy. Review TG-186 and WGMBDCA guidelines, commission process, and dosimetry benchmarks. Evaluate clinical cases using commercially available systems and compare to TG-43 dosimetry.« less

  20. [Basic principles and results of brachytherapy in gynecological oncology].

    PubMed

    Kanaev, S V; Turkevich, V G; Baranov, S B; Savel'eva, V V

    2014-01-01

    The fundamental basics of contact radiation therapy (brachytherapy) for gynecological cancer are presented. During brachytherapy the principles of conformal radiotherapy should be implemented, the aim of which is to sum the maximum possible dose of radiation to the tumor and decrease the dose load in adjacent organs and tissues, which allows reducing the frequency of radiation damage at treatment of primary tumors. It is really feasible only on modern technological level, thanks to precision topometry preparation, optimal computer dosimetrical and radiobiological planning of each session and radiotherapy in general. Successful local and long-term results of the contact radiation therapy for cancer of cervix and endometrium are due to optimal anatomical and topometrical ratio of the tumor localization, radioactive sources, and also physical and radiobiological laws of distribution and effects of ionizing radiation, the dose load accounting rules.

  1. Survey of brachytherapy practice in the United States: a report of the Clinical Research Committee of the American Endocurietherapy Society.

    PubMed

    Nag, S; Owen, J B; Farnan, N; Pajak, T F; Martinez, A; Porter, A; Blasko, J; Harrison, L B

    1995-01-01

    To obtain reliable data on the extent of the brachytherapy practice in the United States by conducting a comprehensive survey of all facilities. The Clinical Research Committee of the AES surveyed all 1321 radiation oncology facilities identified in the Patterns of Care Study (PCS) of the American College of Radiology (ACR). Multiple mailings and follow-up were made to obtain a high response rate. Survey responders and nonresponders were compared using chi-square tests. Summary statistics were reported. Of the 1321 facilities, 1054 responded (80%). Hospital-based and larger facilities had a statistically significant higher rate of response. Brachytherapy was being performed at 819 facilities (the median number of procedures = 21-50). Two hundred and two facilities did no brachytherapy. The common isotopes used were 137Cs (705 facilities), 192Ir (585 facilities), 125I (236 facilities), and 131I (194 facilities). The common brachytherapy techniques used were intracavitary (751 facilities), interstitial (536 facilities), intraluminal (310 facilities), and plaques (148 facilities). Remote afterloaded brachytherapy was used at 205 centers as follows: high dose rate (HDR) (164), medium dose rate (MDR) (5), and low dose rate (LDR) (36). Computerized dosimetry was most commonly used (790 facilities), followed by Patterson-Parker (104 facilities) and Quimby (72 facilities). The common sites treated were cervix (701 facilities), endometrium (565 facilities), head and neck (354 facilities), and lung (344 facilities). Data regarding brachytherapy practice has been obtained from a large percentage (80%) of all facilities in the United States. The majority (78-81%) of radiation oncology facilities perform brachytherapy; however, its use is restricted to gynecological implants in many of these centers. The results from this survey will be used to develop a pattern of care study and data registry in brachytherapy.

  2. Brachytherapy Combined With Surgery for Conservative Treatment of Children With Bladder Neck and/or Prostate Rhabdomyosarcoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chargari, Cyrus, E-mail: cyrus.chargari@gustaveroussy.fr; Institut de Recherche Biomédicale des Armées, Bretigny-sur-Orge; French Military Health Service Academy, Ecole du Val-de-Grâce, Paris

    Purpose: To report the results of a conservative strategy based on partial surgery combined with brachytherapy in a prospective cohort of children with bladder–prostate rhabdomyosarcoma (BP RMS). Methods and Materials: We prospectively documented the outcome of children treated in our department between 1991 and 2015 for BP RMS and undergoing a multimodal approach combining conservative surgery (partial cystectomy and/or partial prostatectomy) and perioperative interstitial low-dose-rate or pulse-dose-rate brachytherapy. Before brachytherapy, children had received chemotherapy with modalities depending on their risk group of treatment. Results: A total of 100 patients were identified, with a median age of 28 months (range, 5.6 months-14more » years). According to the Intergroup Rhabdomyosarcoma Study (IRS) group, 84 were IRS-III, and 12 were IRS-IV tumors. Four patients were treated at relapse. The median number of chemotherapy cycles before local therapy was 6 (range, 4-13). After surgery, 63 patients had a macroscopic tumor residuum. Five patients underwent a brachytherapy boost before pelvic external beam radiation therapy because of nodal involvement, and 95 had exclusive brachytherapy. Median follow-up was 64 months (range, 6 months-24.5 years). Five-year disease-free and overall survival rates were 84% (95% confidence interval 80%-88%) and 91% (95% confidence interval 87%-95%), respectively. At last follow-up most survivors presented with only mild to moderate genitourinary sequelae and a normal diurnal urinary continence. Five patients required a secondary total cystectomy: 3 for a nonfunctional bladder and 2 for relapse. Conclusion: Brachytherapy is effective as part of a conservative strategy for BP RMS, with a relatively low delayed toxicity as compared with previously published studies using external beam radiation therapy. Longer follow-up is required to ensure that the functional results are maintained over time.« less

  3. A fully actuated robotic assistant for MRI-guided prostate biopsy and brachytherapy

    NASA Astrophysics Data System (ADS)

    Li, Gang; Su, Hao; Shang, Weijian; Tokuda, Junichi; Hata, Nobuhiko; Tempany, Clare M.; Fischer, Gregory S.

    2013-03-01

    Intra-operative medical imaging enables incorporation of human experience and intelligence in a controlled, closed-loop fashion. Magnetic resonance imaging (MRI) is an ideal modality for surgical guidance of diagnostic and therapeutic procedures, with its ability to perform high resolution, real-time, high soft tissue contrast imaging without ionizing radiation. However, for most current image-guided approaches only static pre-operative images are accessible for guidance, which are unable to provide updated information during a surgical procedure. The high magnetic field, electrical interference, and limited access of closed-bore MRI render great challenges to developing robotic systems that can perform inside a diagnostic high-field MRI while obtaining interactively updated MR images. To overcome these limitations, we are developing a piezoelectrically actuated robotic assistant for actuated percutaneous prostate interventions under real-time MRI guidance. Utilizing a modular design, the system enables coherent and straight forward workflow for various percutaneous interventions, including prostate biopsy sampling and brachytherapy seed placement, using various needle driver configurations. The unified workflow compromises: 1) system hardware and software initialization, 2) fiducial frame registration, 3) target selection and motion planning, 4) moving to the target and performing the intervention (e.g. taking a biopsy sample) under live imaging, and 5) visualization and verification. Phantom experiments of prostate biopsy and brachytherapy were executed under MRI-guidance to evaluate the feasibility of the workflow. The robot successfully performed fully actuated biopsy sampling and delivery of simulated brachytherapy seeds under live MR imaging, as well as precise delivery of a prostate brachytherapy seed distribution with an RMS accuracy of 0.98mm.

  4. Adjuvant vaginal brachytherapy as a part of management in early endometrial cancer.

    PubMed

    Kellas-Ślęczka, Sylwia; Wojcieszek, Piotr; Białas, Brygida

    2012-12-01

    Endometrial cancer is the most frequent cancer of female genital tract. Metro- and menorrhagia or postmenopausal bleeding results in its early presentation. It allows radical treatment. However, controversies remain on surgery coverage or adjuvant therapies in early endometrial women cancer. Optimal management should minimize intervention instead of aggressive approach, as showed by recent studies. There is a role for brachytherapy as an adjuvant irradiation. Crucial publications including PORTEC-1, GOG 99, MRC ASTEC, ASTEC/EN.5, PORTEC-2 or Italian lymphadenectomy trial are discussed. Moreover, there is attention paid on adjuvant vaginal brachytherapy analyses for the past fifteen years.

  5. Adjuvant vaginal brachytherapy as a part of management in early endometrial cancer

    PubMed Central

    Wojcieszek, Piotr; Białas, Brygida

    2012-01-01

    Endometrial cancer is the most frequent cancer of female genital tract. Metro- and menorrhagia or postmenopausal bleeding results in its early presentation. It allows radical treatment. However, controversies remain on surgery coverage or adjuvant therapies in early endometrial women cancer. Optimal management should minimize intervention instead of aggressive approach, as showed by recent studies. There is a role for brachytherapy as an adjuvant irradiation. Crucial publications including PORTEC-1, GOG 99, MRC ASTEC, ASTEC/EN.5, PORTEC-2 or Italian lymphadenectomy trial are discussed. Moreover, there is attention paid on adjuvant vaginal brachytherapy analyses for the past fifteen years. PMID:23378855

  6. Does brachytherapy of the prostate affect sperm quality and/or fertility in younger men?

    PubMed

    Mydlo, Jack H; Lebed, Brett

    2004-01-01

    Sperm banking prior to surgical procedures which may affect fertility, such as retroperitoneal lymph node dissection, has been well documented. However, such procedures are usually performed in young men. With older men marrying later in life, or remarrying, we wanted to investigate the effects of radiation on prostate cancer patients who wanted to have children afterwards. We encountered several patients with prostate cancer who decided to undergo brachytherapy and were planning to have more children. We performed a search using PubMed and Ovid for the period 1966-2001 using the key words "fertility", "sperm banking", "radiation effects", "prostate cancer" and "brachytherapy". Of the four young patients we encountered who underwent brachytherapy, we found no significant change in semen parameters post-therapy, and three of them were able to father a child subsequently without any deleterious side-effects. It has been demonstrated in several reports that external-beam radiation therapy is associated with decreased spermatogenesis due to Leydig cell dysfunction and decreased serum testosterone, as well as having a direct effect on spermatogonia. However, there is a scarcity of literature discussing the effects of prostate brachytherapy on spermatogenesis as the patients involved are usually older and usually do not desire to father any more children. As I has a half-life of 60 days, we used an exposure of 10 mR/h at the symphysis pubis and used integration to find the total dose exposed to the testis as follows: Limits 14 400 to 0, S 10e (-In2/1440.Tdt) where T = 14 400 and 20.75 R = 20.75 cGy. Therefore, the total dose was 20.75 cGy x 0.91 = 18.88 cGy. This value is considered too low to have any significant effect on testicular tissues. We speculate that the effects of prostate brachytherapy on spermatogenesis in prostate cancer patients are minimal. However, due to the half-life of I, we recommend that these patients should wait for at least 3-4 months before

  7. High-dose-rate intraluminal brachytherapy prior to external radiochemotherapy in locally advanced esophageal cancer: preliminary results

    PubMed Central

    Safaei, Afsaneh Maddah; Ghalehtaki, Reza; Khanjani, Nezhat; Farazmand, Borna; Babaei, Mohammad

    2017-01-01

    Purpose Dysphagia is a common initial presentation in locally advanced esophageal cancer and negatively impacts patient quality of life and treatment compliance. To induce fast relief of dysphagia in patients with potentially operable esophageal cancer high-dose-rate (HDR) brachytherapy was applied prior to definitive radiochemotherapy. Material and methods In this single arm phase II clinical trial between 2013 to 2014 twenty patients with locally advanced esophageal cancer (17 squamous cell and 3 adenocarcinoma) were treated with upfront 10 Gy HDR brachytherapy, followed by 50.4 Gy external beam radiotherapy (EBRT) and concurrent chemotherapy with cisplatin/5-fluorouracil. Results Tumor response, as measured by endoscopy and/or computed tomography scan, revealed complete remission in 16 and partial response in 4 patients (overall response rate 100%). Improvement of dysphagia was induced by brachytherapy within a few days and maintained up to the end of treatment in 80% of patients. No differences in either response rate or dysphagia resolution were found between squamous cell and adenocarcinoma histology. The grade 2 and 3 acute pancytopenia or bicytopenia reported in 4 patients, while sub-acute adverse effects with painful ulceration was seen in five patients, occurring after a median of 2 months. A perforation developed in one patient during the procedure of brachytherapy that resolved successfully with immediate surgery. Conclusions Brachytherapy before EBRT was a safe and effective procedure to induce rapid and durable relief from dysphagia, especially when combined with EBRT. PMID:28344601

  8. A gEUD-based inverse planning technique for HDR prostate brachytherapy: Feasibility study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giantsoudi, D.; Department of Radiation Oncology, Francis H. Burr Proton Therapy Center, Boston, Massachusetts 02114; Baltas, D.

    2013-04-15

    Purpose: The purpose of this work was to study the feasibility of a new inverse planning technique based on the generalized equivalent uniform dose for image-guided high dose rate (HDR) prostate cancer brachytherapy in comparison to conventional dose-volume based optimization. Methods: The quality of 12 clinical HDR brachytherapy implants for prostate utilizing HIPO (Hybrid Inverse Planning Optimization) is compared with alternative plans, which were produced through inverse planning using the generalized equivalent uniform dose (gEUD). All the common dose-volume indices for the prostate and the organs at risk were considered together with radiobiological measures. The clinical effectiveness of the differentmore » dose distributions was investigated by comparing dose volume histogram and gEUD evaluators. Results: Our results demonstrate the feasibility of gEUD-based inverse planning in HDR brachytherapy implants for prostate. A statistically significant decrease in D{sub 10} or/and final gEUD values for the organs at risk (urethra, bladder, and rectum) was found while improving dose homogeneity or dose conformity of the target volume. Conclusions: Following the promising results of gEUD-based optimization in intensity modulated radiation therapy treatment optimization, as reported in the literature, the implementation of a similar model in HDR brachytherapy treatment plan optimization is suggested by this study. The potential of improved sparing of organs at risk was shown for various gEUD-based optimization parameter protocols, which indicates the ability of this method to adapt to the user's preferences.« less

  9. On the Development of a Miniature Neutron Generator for the Brachytherapy Treatment of Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forman, L.

    Brachytherapy refers to application of an irradiation source within a tumor. {sup 252}Cf needles used in brachytherapy have been successfully applied to treatment of some of the most virulent cancers but it is doubtful that it will be widely used because of difficulty in dealing with unwanted dose (source cannot be turned off) and in adhering to stringent NRC regulations that have been exacerbated in our post 911 environment. We have been working on the development of a miniature neutron generator with the reaction target placed at the end of a needle (tube) for brachytherapy applications. Orifice geometries are mostmore » amenable, e.g. rectum and cervix, but interstitial use is possible with microsurgery. This paper dicusses the results of a 30 watt DD neutron generator SBU project that demonstrates that sufficient hydrogen isotope current can be delivered down a small diameter needle required for a DT neutron treatment device, and, will summarize the progress of building a commercial device pursued by the All Russian Institute for Automatics (VNIIA) supported by the DOE's Industrial Proliferation Prevention Program (IPP). It is known that most of the fast neutron (FN) beam cancer treatment facilities have been closed down. It appears that the major limitation in the use of FN beams has been damage to healthy tissue, which is relatively insensitive to photons, but this problem is alleviated by brachytherapy. Moreover, recent clinical results indicate that fast neutrons in the boost mode are most highly effective in treating large, hypoxic, and rapidly repopulating diseases. It appears that early boost application of FN may halt angiogenesis (development and repair of tumor vascular system) and shrink the tumor resulting in lower hypoxia. The boost brachytherapy application of a small, low cost neutron generator holds promise of significant contribution to the treatment of cancer.« less

  10. Monte Carlo dose calculations for high-dose-rate brachytherapy using GPU-accelerated processing.

    PubMed

    Tian, Z; Zhang, M; Hrycushko, B; Albuquerque, K; Jiang, S B; Jia, X

    2016-01-01

    Current clinical brachytherapy dose calculations are typically based on the Association of American Physicists in Medicine Task Group report 43 (TG-43) guidelines, which approximate patient geometry as an infinitely large water phantom. This ignores patient and applicator geometries and heterogeneities, causing dosimetric errors. Although Monte Carlo (MC) dose calculation is commonly recognized as the most accurate method, its associated long computational time is a major bottleneck for routine clinical applications. This article presents our recent developments of a fast MC dose calculation package for high-dose-rate (HDR) brachytherapy, gBMC, built on a graphics processing unit (GPU) platform. gBMC-simulated photon transport in voxelized geometry with physics in (192)Ir HDR brachytherapy energy range considered. A phase-space file was used as a source model. GPU-based parallel computation was used to simultaneously transport multiple photons, one on a GPU thread. We validated gBMC by comparing the dose calculation results in water with that computed TG-43. We also studied heterogeneous phantom cases and a patient case and compared gBMC results with Acuros BV results. Radial dose function in water calculated by gBMC showed <0.6% relative difference from that of the TG-43 data. Difference in anisotropy function was <1%. In two heterogeneous slab phantoms and one shielded cylinder applicator case, average dose discrepancy between gBMC and Acuros BV was <0.87%. For a tandem and ovoid patient case, good agreement between gBMC and Acruos BV results was observed in both isodose lines and dose-volume histograms. In terms of the efficiency, it took ∼47.5 seconds for gBMC to reach 0.15% statistical uncertainty within the 5% isodose line for the patient case. The accuracy and efficiency of a new GPU-based MC dose calculation package, gBMC, for HDR brachytherapy make it attractive for clinical applications. Copyright © 2016 American Brachytherapy Society. Published by

  11. Water equivalency evaluation of PRESAGE® dosimeters for dosimetry of Cs-137 and Ir-192 brachytherapy sources

    NASA Astrophysics Data System (ADS)

    Gorjiara, Tina; Hill, Robin; Kuncic, Zdenka; Baldock, Clive

    2010-11-01

    A major challenge in brachytherapy dosimetry is the measurement of steep dose gradients. This can be achieved with a high spatial resolution three dimensional (3D) dosimeter. PRESAGE® is a polyurethane based dosimeter which is suitable for 3D dosimetry. Since an ideal dosimeter is radiologically water equivalent, we have investigated the relative dose response of three different PRESAGE® formulations, two with a lower chloride and bromide content than original one, for Cs-137 and Ir-192 brachytherapy sources. Doses were calculated using the EGSnrc Monte Carlo package. Our results indicate that PRESAGE® dosimeters are suitable for relative dose measurement of Cs-137 and Ir-192 brachytherapy sources and the lower halogen content PRESAGE® dosimeters are more water equivalent than the original formulation.

  12. SU-E-T-564: Multi-Helix Rotating Shield Brachytherapy for Cervical Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dadkhah, H; Wu, X; Flynn, R

    Purpose: To present a novel and practical brachytherapy technique, called multi-helix rotating shield brachytherapy (H-RSBT), for the precise positioning of a partial shield in a curved applicator. H-RSBT enables RSBT delivery using only translational motion of the radiation source/shield combination. H-RSBT overcomes the challenges associated with previously proposed RSBT approaches based on a serial (S-RSBT) step-and-shoot delivery technique, which required independent translational and rotational motion. Methods: A Fletcher-type applicator, compatible with the combination of a Xoft Axxent™ electronic brachytherapy source and a 0.5 mm thick tungsten shield, is proposed. The wall of the applicator contains six evenly-spaced helical keyways thatmore » rigidly define the emission direction of the shield as a function of depth. The shield contains three protruding keys and is attached to the source such that it rotates freely. S-RSBT and H-RSBT treatment plans with 180° and 45° azimuthal emission angles were generated for five cervical cancer patients representative of a wide range of high-risk clinical target volume (HR-CTV) shapes and applicator positions. The number of beamlets used in the treatment planning process was nearly constant for S-RSBT and H-RSBT by using dwell positions separated by 5 and 1.7 mm, respectively, and emission directions separated by 22.5° and 60°, respectively. For all the treatment plans the EQD2 of the HR-CTV was escalated until the EQD{sub 2cc} tolerance of either the bladder, rectum, or sigmoid colon was reached. Results: Treatment times for H-RSBT tended to be shorter than for S-RSBT, with changes of −38.47% to 1.12% with an average of −8.34%. The HR-CTV D{sub 90} changed by −8.81% to 2.08% with an average of −2.46%. Conclusion: H-RSBT is a mechanically feasible technique in the curved applicators needed for cervical cancer brachytherapy. S-RSBT and H-RSBT dose distributions were clinically equivalent for all patients

  13. Inorganic scintillation detectors based on Eu-activated phosphors for 192Ir brachytherapy

    PubMed Central

    Kertzscher, Gustavo; Beddar, Sam

    2017-01-01

    The availability of real-time treatment verification during high-dose-rate (HDR) brachytherapy is currently limited. Therefore, we studied the luminescence properties of the widely commercially available scintillators using the inorganic materials Eu-activated phosphors Y2O3:Eu, YVO4:Eu, Y2O2S:Eu, and Gd2O2S:Eu to determine whether they could be used to accurately and precisely verify HDR brachytherapy doses in real time. The suitability for HDR brachytherapy of inorganic scintillation detectors (ISDs) based on the 4 Eu-activated phosphors in powder form was determined based on experiments with a 192Ir HDR brachytherapy source. The scintillation intensities of the phosphors were 16 to 134 times greater than that of the commonly used organic plastic scintillator BCF-12. High signal intensities were achieved with an optimized packing density of the phosphor mixture and with a shortened fiber-optic cable. The influence of contaminating Cerenkov and fluorescence light induced in the fiber-optic cable (stem signal) was adequately suppressed by inserting between the fiber-optic cable and the photodetector a 25-nm band-pass filter centered at the emission peak. The spurious photoluminescence signal induced by the stem signal was suppressed by placing a long-pass filter between the scintillation detector volume and the fiber-optic cable. The time-dependent luminescence properties of the phosphors were quantified by measuring the non-constant scintillation during irradiation and the afterglow after the brachytherapy source had retracted. We demonstrated that a mixture of Y2O3:Eu and YVO4:Eu suppressed the time-dependence of the ISDs and that the time-dependence of Y2O2S:Eu and Gd2O2S:Eu introduced large measurement inaccuracies. We conclude that ISDs based on a mixture of Y2O3:Eu and YVO4:Eu are promising candidates for accurate and precise real-time verification technology for HDR BT that is cost effective and straightforward to manufacture. Widespread dissemination of

  14. Inorganic scintillation detectors based on Eu-activated phosphors for 192Ir brachytherapy

    NASA Astrophysics Data System (ADS)

    Kertzscher, Gustavo; Beddar, Sam

    2017-06-01

    The availability of real-time treatment verification during high-dose-rate (HDR) brachytherapy is currently limited. Therefore, we studied the luminescence properties of the widely commercially available scintillators using the inorganic materials Eu-activated phosphors Y2O3:Eu, YVO4:Eu, Y2O2S:Eu, and Gd2O2S:Eu to determine whether they could be used to accurately and precisely verify HDR brachytherapy doses in real time. The suitability for HDR brachytherapy of inorganic scintillation detectors (ISDs) based on the 4 Eu-activated phosphors in powder form was determined based on experiments with a 192Ir HDR brachytherapy source. The scintillation intensities of the phosphors were 16-134 times greater than that of the commonly used organic plastic scintillator BCF-12. High signal intensities were achieved with an optimized packing density of the phosphor mixture and with a shortened fiber-optic cable. The influence of contaminating Cerenkov and fluorescence light induced in the fiber-optic cable (stem signal) was adequately suppressed by inserting between the fiber-optic cable and the photodetector a 25 nm band-pass filter centered at the emission peak. The spurious photoluminescence signal induced by the stem signal was suppressed by placing a long-pass filter between the scintillation detector volume and the fiber-optic cable. The time-dependent luminescence properties of the phosphors were quantified by measuring the non-constant scintillation during irradiation and the afterglow after the brachytherapy source had retracted. We demonstrated that a mixture of Y2O3:Eu and YVO4:Eu suppressed the time-dependence of the ISDs and that the time-dependence of Y2O2S:Eu and Gd2O2S:Eu introduced large measurement inaccuracies. We conclude that ISDs based on a mixture of Y2O3:Eu and YVO4:Eu are promising candidates for accurate and precise real-time verification technology for HDR BT that is cost effective and straightforward to manufacture. Widespread dissemination of this

  15. Artificial neural network based gynaecological image-guided adaptive brachytherapy treatment planning correction of intra-fractional organs at risk dose variation.

    PubMed

    Jaberi, Ramin; Siavashpour, Zahra; Aghamiri, Mahmoud Reza; Kirisits, Christian; Ghaderi, Reza

    2017-12-01

    Intra-fractional organs at risk (OARs) deformations can lead to dose variation during image-guided adaptive brachytherapy (IGABT). The aim of this study was to modify the final accepted brachytherapy treatment plan to dosimetrically compensate for these intra-fractional organs-applicators position variations and, at the same time, fulfilling the dosimetric criteria. Thirty patients with locally advanced cervical cancer, after external beam radiotherapy (EBRT) of 45-50 Gy over five to six weeks with concomitant weekly chemotherapy, and qualified for intracavitary high-dose-rate (HDR) brachytherapy with tandem-ovoid applicators were selected for this study. Second computed tomography scan was done for each patient after finishing brachytherapy treatment with applicators in situ. Artificial neural networks (ANNs) based models were used to predict intra-fractional OARs dose-volume histogram parameters variations and propose a new final plan. A model was developed to estimate the intra-fractional organs dose variations during gynaecological intracavitary brachytherapy. Also, ANNs were used to modify the final brachytherapy treatment plan to compensate dosimetrically for changes in 'organs-applicators', while maintaining target dose at the original level. There are semi-automatic and fast responding models that can be used in the routine clinical workflow to reduce individually IGABT uncertainties. These models can be more validated by more patients' plans to be able to serve as a clinical tool.

  16. Artificial neural network based gynaecological image-guided adaptive brachytherapy treatment planning correction of intra-fractional organs at risk dose variation

    PubMed Central

    Jaberi, Ramin; Aghamiri, Mahmoud Reza; Kirisits, Christian; Ghaderi, Reza

    2017-01-01

    Purpose Intra-fractional organs at risk (OARs) deformations can lead to dose variation during image-guided adaptive brachytherapy (IGABT). The aim of this study was to modify the final accepted brachytherapy treatment plan to dosimetrically compensate for these intra-fractional organs-applicators position variations and, at the same time, fulfilling the dosimetric criteria. Material and methods Thirty patients with locally advanced cervical cancer, after external beam radiotherapy (EBRT) of 45-50 Gy over five to six weeks with concomitant weekly chemotherapy, and qualified for intracavitary high-dose-rate (HDR) brachytherapy with tandem-ovoid applicators were selected for this study. Second computed tomography scan was done for each patient after finishing brachytherapy treatment with applicators in situ. Artificial neural networks (ANNs) based models were used to predict intra-fractional OARs dose-volume histogram parameters variations and propose a new final plan. Results A model was developed to estimate the intra-fractional organs dose variations during gynaecological intracavitary brachytherapy. Also, ANNs were used to modify the final brachytherapy treatment plan to compensate dosimetrically for changes in ‘organs-applicators’, while maintaining target dose at the original level. Conclusions There are semi-automatic and fast responding models that can be used in the routine clinical workflow to reduce individually IGABT uncertainties. These models can be more validated by more patients’ plans to be able to serve as a clinical tool. PMID:29441094

  17. MO-A-BRB-02: Considerations and Issues in Electronic Charting for Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, S.

    2015-06-15

    The process of converting to an electronic chart for radiation therapy can be daunting. It requires a dedicated committee to first research and choose appropriate software, to review the entire documentation policy and flow of the clinic, to convert this system to electronic form or if necessary, redesign the system to more easily conform to the electronic process. Those making the conversion and those who already use electronic charting would benefit from the shared experience of those who have been through the process in the past. Therefore TG262 was convened to provide guidance on electronic charting for external beam radiationmore » therapy and brachytherapy. This course will present the results of an internal survey of task group members on EMR practices in External Beam Radiation Therapy as well as discuss important issues in EMR development and structure for both EBRT and brachytherapy. Learning Objectives: Be familiarized with common practices and pitfalls in development and maintenance of an electronic chart in Radiation Oncology Be familiarized with important issues related to electronic charting in External Beam Radiation Therapy Be familiarized with important issues related to electronic charting in Brachytherapy.« less

  18. MO-FG-210-01: Commissioning An US System for Brachytherapy: An Overview of Physics, Instrumentation, and Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Z.

    Ultrasound (US) is one of the most widely used imaging modalities in medical practice. Since US imaging offers real-time imaging capability, it has becomes an excellent option to provide image guidance for brachytherapy (IGBT). (1) The physics and the fundamental principles of US imaging are presented, and the typical steps required to commission an US system for IGBT is provided for illustration. (2) Application of US for prostate HDR brachytherapy, including partial prostate treatments using MR-ultrasound co-registration to enable a focused treatment on the disease within the prostate is also presented. Prostate HDR with US image guidance planning can benefitmore » from real time visualization of the needles, and fusion of the ultrasound images with T2 weighted MR allows the focusing of the treatment to the specific areas of disease within the prostate, so that the entire gland need not be treated. Finally, (3) ultrasound guidance for an eye plaque program is presented. US can be a key component of placement and QA for episcleral plaque brachytherapy for ocular cancer, and the UCLA eye plaque program with US for image guidance is presented to demonstrate the utility of US verification of plaque placement in improving the methods and QA in episcleral plaque brachytherapy. Learning Objectives: To understand the physics of an US system and the necessary aspects of commissioning US for image guided brachytherapy (IGBT). To understand real time planning of prostate HDR using ultrasound, and its application in partial prostate treatments using MR-ultrasound fusion to focus treatment on disease within the prostate. To understand the methods and QA in applying US for localizing the target and the implant during a episcleral plaque brachytherapy procedures.« less

  19. MO-FG-210-03: Intraoperative Ultrasonography-Guided Positioning of Plaque Brachytherapy in the Treatment of Choroidal Melanoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamb, J.

    2015-06-15

    Ultrasound (US) is one of the most widely used imaging modalities in medical practice. Since US imaging offers real-time imaging capability, it has becomes an excellent option to provide image guidance for brachytherapy (IGBT). (1) The physics and the fundamental principles of US imaging are presented, and the typical steps required to commission an US system for IGBT is provided for illustration. (2) Application of US for prostate HDR brachytherapy, including partial prostate treatments using MR-ultrasound co-registration to enable a focused treatment on the disease within the prostate is also presented. Prostate HDR with US image guidance planning can benefitmore » from real time visualization of the needles, and fusion of the ultrasound images with T2 weighted MR allows the focusing of the treatment to the specific areas of disease within the prostate, so that the entire gland need not be treated. Finally, (3) ultrasound guidance for an eye plaque program is presented. US can be a key component of placement and QA for episcleral plaque brachytherapy for ocular cancer, and the UCLA eye plaque program with US for image guidance is presented to demonstrate the utility of US verification of plaque placement in improving the methods and QA in episcleral plaque brachytherapy. Learning Objectives: To understand the physics of an US system and the necessary aspects of commissioning US for image guided brachytherapy (IGBT). To understand real time planning of prostate HDR using ultrasound, and its application in partial prostate treatments using MR-ultrasound fusion to focus treatment on disease within the prostate. To understand the methods and QA in applying US for localizing the target and the implant during a episcleral plaque brachytherapy procedures.« less

  20. Failure modes and effects analysis for ocular brachytherapy.

    PubMed

    Lee, Yongsook C; Kim, Yongbok; Huynh, Jason Wei-Yeong; Hamilton, Russell J

    The aim of the study was to identify potential failure modes (FMs) having a high risk and to improve our current quality management (QM) program in Collaborative Ocular Melanoma Study (COMS) ocular brachytherapy by undertaking a failure modes and effects analysis (FMEA) and a fault tree analysis (FTA). Process mapping and FMEA were performed for COMS ocular brachytherapy. For all FMs identified in FMEA, risk priority numbers (RPNs) were determined by assigning and multiplying occurrence, severity, and lack of detectability values, each ranging from 1 to 10. FTA was performed for the major process that had the highest ranked FM. Twelve major processes, 121 sub-process steps, 188 potential FMs, and 209 possible causes were identified. For 188 FMs, RPN scores ranged from 1.0 to 236.1. The plaque assembly process had the highest ranked FM. The majority of FMs were attributable to human failure (85.6%), and medical physicist-related failures were the most numerous (58.9% of all causes). After FMEA, additional QM methods were included for the top 10 FMs and 6 FMs with severity values > 9.0. As a result, for these 16 FMs and the 5 major processes involved, quality control steps were increased from 8 (50%) to 15 (93.8%), and major processes having quality assurance steps were increased from 2 to 4. To reduce high risk in current clinical practice, we proposed QM methods. They mainly include a check or verification of procedures/steps and the use of checklists for both ophthalmology and radiation oncology staff, and intraoperative ultrasound-guided plaque positioning for ophthalmology staff. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  1. Efficacy of phosphorus-32 brachytherapy without external-beam radiation for long-term tumor control in patients with craniopharyngioma.

    PubMed

    Ansari, Shaheryar F; Moore, Reilin J; Boaz, Joel C; Fulkerson, Daniel H

    2016-04-01

    OBJECT Radioactive phosphorus-32 (P32) has been used as brachytherapy for craniopharyngiomas with the hope of providing local control of enlarging tumor cysts. Brachytherapy has commonly been used as an adjunct to the standard treatment of surgery and external-beam radiation (EBR). Historically, multimodal treatment, including EBR, has shown tumor control rates as high as 70% at 10 years after treatment. However, EBR is associated with significant long-term risks, including visual deficits, endocrine dysfunction, and cognitive decline. Theoretically, brachytherapy may provide focused local radiation that controls or shrinks a symptomatic cyst without exposing the patient to the risks of EBR. For this study, the authors reviewed their experiences with craniopharyngioma patients treated with P32 brachytherapy as the primary treatment without EBR. The authors reviewed these patients' records to evaluate whether this strategy effectively controls tumor growth, thus avoiding the need for further surgery or EBR. METHODS The authors performed a retrospective review of pediatric patients treated for craniopharyngioma between 1997 and 2004. This was the time period during which the authors' institution had a relatively high use of P32 for treatment of cystic craniopharyngioma. All patients who had surgery and injection of P32 without EBR were identified. The patient records were analyzed for complications, cyst control, need for further surgery, and need for future EBR. RESULTS Thirty-eight patients were treated for craniopharyngioma during the study period. Nine patients (23.7%) were identified who had surgery (resection or biopsy) with P32 brachytherapy but without initial EBR. These 9 patients represented the study group. For 1 patient (11.1%), there was a complication with the brachytherapy procedure. Five patients (55.5%) required subsequent surgery. Seven patients (77.7%) required subsequent EBR for tumor growth. The mean time between the injection of P32 and

  2. Development of an adjoint sensitivity field-based treatment-planning technique for the use of newly designed directional LDR sources in brachytherapy.

    PubMed

    Chaswal, V; Thomadsen, B R; Henderson, D L

    2012-02-21

    The development and application of an automated 3D greedy heuristic (GH) optimization algorithm utilizing the adjoint sensitivity fields for treatment planning to assess the advantage of directional interstitial prostate brachytherapy is presented. Directional and isotropic dose kernels generated using Monte Carlo simulations based on Best Industries model 2301 I-125 source are utilized for treatment planning. The newly developed GH algorithm is employed for optimization of the treatment plans for seven interstitial prostate brachytherapy cases using mixed sources (directional brachytherapy) and using only isotropic sources (conventional brachytherapy). All treatment plans resulted in V100 > 98% and D90 > 45 Gy for the target prostate region. For the urethra region, the D10(Ur), D90(Ur) and V150(Ur) and for the rectum region the V100cc, D2cc, D90(Re) and V90(Re) all are reduced significantly when mixed sources brachytherapy is used employing directional sources. The simulations demonstrated that the use of directional sources in the low dose-rate (LDR) brachytherapy of the prostate clearly benefits in sparing the urethra and the rectum sensitive structures from overdose. The time taken for a conventional treatment plan is less than three seconds, while the time taken for a mixed source treatment plan is less than nine seconds, as tested on an Intel Core2 Duo 2.2 GHz processor with 1GB RAM. The new 3D GH algorithm is successful in generating a feasible LDR brachytherapy treatment planning solution with an extra degree of freedom, i.e. directionality in very little time.

  3. Development of an adjoint sensitivity field-based treatment-planning technique for the use of newly designed directional LDR sources in brachytherapy

    NASA Astrophysics Data System (ADS)

    Chaswal, V.; Thomadsen, B. R.; Henderson, D. L.

    2012-02-01

    The development and application of an automated 3D greedy heuristic (GH) optimization algorithm utilizing the adjoint sensitivity fields for treatment planning to assess the advantage of directional interstitial prostate brachytherapy is presented. Directional and isotropic dose kernels generated using Monte Carlo simulations based on Best Industries model 2301 I-125 source are utilized for treatment planning. The newly developed GH algorithm is employed for optimization of the treatment plans for seven interstitial prostate brachytherapy cases using mixed sources (directional brachytherapy) and using only isotropic sources (conventional brachytherapy). All treatment plans resulted in V100 > 98% and D90 > 45 Gy for the target prostate region. For the urethra region, the D10Ur, D90Ur and V150Ur and for the rectum region the V100cc, D2cc, D90Re and V90Re all are reduced significantly when mixed sources brachytherapy is used employing directional sources. The simulations demonstrated that the use of directional sources in the low dose-rate (LDR) brachytherapy of the prostate clearly benefits in sparing the urethra and the rectum sensitive structures from overdose. The time taken for a conventional treatment plan is less than three seconds, while the time taken for a mixed source treatment plan is less than nine seconds, as tested on an Intel Core2 Duo 2.2 GHz processor with 1GB RAM. The new 3D GH algorithm is successful in generating a feasible LDR brachytherapy treatment planning solution with an extra degree of freedom, i.e. directionality in very little time.

  4. Perioperative Interstitial High-Dose-Rate Brachytherapy for the Treatment of Recurrent Keloids: Feasibility and Early Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Ping, E-mail: ping.jiang@uksh.de; Baumann, René; Dunst, Juergen

    Purpose: To prospectively evaluate high-dose-rate brachytherapy in the treatment of therapy-resistant keloids and report first results, with emphasis on feasibility and early treatment outcome. Methods and Materials: From 2009 to 2014, 24 patients with 32 recurrent keloids were treated with immediate perioperative high-dose-rate brachytherapy; 3 patients had been previously treated with adjuvant external beam radiation therapy and presented with recurrences in the pretreated areas. Two or more different treatment modalities had been tried in all patients and had failed to achieve remission. After (re-)excision of the keloids, a single brachytherapy tube was placed subcutaneously before closing the wound. The target volumemore » covered the scar in total length. Brachytherapy was given in 3 fractions with a single dose of 6 Gy in 5 mm tissue depth. The first fraction was given within 6 hours after surgery, the other 2 fractions on the first postoperative day. Thus, a total dose of 18 Gy in 3 fractions was administered within 36 hours after the resection. Results: The treatment was feasible in all patients. No procedure-related complications (eg, secondary infections) occurred. Nineteen patients had keloid-related symptoms before treatment like pain and pruritus; disappearance of symptoms was noticed in all patients after treatment. After a median follow-up of 29.4 months (range, 7.9-72.4 months), 2 keloid recurrences and 2 mildly hypertrophied scars were observed. The local control rate was 94%. Pigmentary abnormalities were detected in 3 patients, and an additional 6 patients had a mild delay in the wound-healing process. Conclusions: The early results of this study prove the feasibility and the efficacy of brachytherapy for the prevention of keloids. The results also suggest that brachytherapy may be advantageous in the management of high-risk keloids or as salvage treatment for failure after external beam therapy.« less

  5. Endoresection with adjuvant ruthenium brachytherapy for selected uveal melanoma patients - the Tuebingen experience.

    PubMed

    Süsskind, Daniela; Dürr, Carina; Paulsen, Frank; Kaulich, Theodor; Bartz-Schmidt, Karl U

    2017-12-01

    To evaluate the treatment of selected patients with uveal melanoma with endoresection and adjuvant ruthenium brachytherapy. Thirty-five patients with uveal melanoma not suitable for ruthenium plaque monotherapy were treated with endoresection and adjuvant ruthenium brachytherapy between January 2001 and October 2013. Recurrence-free survival, globe retention, course of visual acuity (VA), occurrence of therapy-related complications and metastasis-free and overall survival were analysed retrospectively. Eight patients (22.9%) had a tumour recurrence after a median follow-up of 49.5 months (range: 21-134 months). Enucleation was necessary in eight patients. Thirty-two patients (91%) had a loss of VA with a median loss of nine lines (range: 0 to -39 lines); VA was stable in three patients and no patients had a gain in VA. Four patients (11.4%) developed radiation retinopathy. Metastases were detected in seven patients (20.0%) during follow-up. The occurrence of metastasis was significantly associated with monosomy 3 (p < 0.0001). Twenty-four patients (68.6%) were alive at the end of follow-up. Five patients (14.3%) died because of uveal melanoma (UM) metastasis. Endoresection with adjuvant ruthenium brachytherapy is an option for selected patients with UM who cannot be treated with brachytherapy as monotherapy. About two-thirds of eyes can be retained long term without recurrences. Visual acuity cannot be maintained in most cases, and may even decrease considerably. Radiation complications are comparatively rare and not a significant problem. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  6. Plastic optical fibre sensor for in-vivo radiation monitoring during brachytherapy

    NASA Astrophysics Data System (ADS)

    Woulfe, P.; Sullivan, F. J.; Lewis, E.; O'Keeffe, S.

    2015-09-01

    An optical fibre sensor is presented for applications in real-time in-vivo monitoring of the radiation dose a cancer patient receives during seed implantation in Brachytherapy. The sensor is based on radioluminescence whereby radiation sensitive scintillation material is embedded in the core of a 1mm plastic optical fibre. Three scintillation materials are investigated: thallium-doped caesium iodide (CsI:Tl), terbium-doped gadolinium oxysulphide (Gd2O2S:Tb) and europium-doped lanthanum oxysulphide (La2O2S:Eu). Terbium-doped gadolinium oxysulphide was identified as being the most suitable scintillator and further testing demonstrates its measureable response to different activities of Iodine-125, the radio-active source commonly used in Brachytherapy for treating prostate cancer.

  7. AAPM and GEC-ESTRO guidelines for image-guided robotic brachytherapy: report of Task Group 192.

    PubMed

    Podder, Tarun K; Beaulieu, Luc; Caldwell, Barrett; Cormack, Robert A; Crass, Jostin B; Dicker, Adam P; Fenster, Aaron; Fichtinger, Gabor; Meltsner, Michael A; Moerland, Marinus A; Nath, Ravinder; Rivard, Mark J; Salcudean, Tim; Song, Danny Y; Thomadsen, Bruce R; Yu, Yan

    2014-10-01

    In the last decade, there have been significant developments into integration of robots and automation tools with brachytherapy delivery systems. These systems aim to improve the current paradigm by executing higher precision and accuracy in seed placement, improving calculation of optimal seed locations, minimizing surgical trauma, and reducing radiation exposure to medical staff. Most of the applications of this technology have been in the implantation of seeds in patients with early-stage prostate cancer. Nevertheless, the techniques apply to any clinical site where interstitial brachytherapy is appropriate. In consideration of the rapid developments in this area, the American Association of Physicists in Medicine (AAPM) commissioned Task Group 192 to review the state-of-the-art in the field of robotic interstitial brachytherapy. This is a joint Task Group with the Groupe Européen de Curiethérapie-European Society for Radiotherapy & Oncology (GEC-ESTRO). All developed and reported robotic brachytherapy systems were reviewed. Commissioning and quality assurance procedures for the safe and consistent use of these systems are also provided. Manual seed placement techniques with a rigid template have an estimated in vivo accuracy of 3-6 mm. In addition to the placement accuracy, factors such as tissue deformation, needle deviation, and edema may result in a delivered dose distribution that differs from the preimplant or intraoperative plan. However, real-time needle tracking and seed identification for dynamic updating of dosimetry may improve the quality of seed implantation. The AAPM and GEC-ESTRO recommend that robotic systems should demonstrate a spatial accuracy of seed placement ≤1.0 mm in a phantom. This recommendation is based on the current performance of existing robotic brachytherapy systems and propagation of uncertainties. During clinical commissioning, tests should be conducted to ensure that this level of accuracy is achieved. These tests should

  8. AAPM and GEC-ESTRO guidelines for image-guided robotic brachytherapy: Report of Task Group 192

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Podder, Tarun K., E-mail: tarun.podder@uhhospitals.org; Beaulieu, Luc; Caldwell, Barrett

    In the last decade, there have been significant developments into integration of robots and automation tools with brachytherapy delivery systems. These systems aim to improve the current paradigm by executing higher precision and accuracy in seed placement, improving calculation of optimal seed locations, minimizing surgical trauma, and reducing radiation exposure to medical staff. Most of the applications of this technology have been in the implantation of seeds in patients with early-stage prostate cancer. Nevertheless, the techniques apply to any clinical site where interstitial brachytherapy is appropriate. In consideration of the rapid developments in this area, the American Association of Physicistsmore » in Medicine (AAPM) commissioned Task Group 192 to review the state-of-the-art in the field of robotic interstitial brachytherapy. This is a joint Task Group with the Groupe Européen de Curiethérapie-European Society for Radiotherapy and Oncology (GEC-ESTRO). All developed and reported robotic brachytherapy systems were reviewed. Commissioning and quality assurance procedures for the safe and consistent use of these systems are also provided. Manual seed placement techniques with a rigid template have an estimated in vivo accuracy of 3–6 mm. In addition to the placement accuracy, factors such as tissue deformation, needle deviation, and edema may result in a delivered dose distribution that differs from the preimplant or intraoperative plan. However, real-time needle tracking and seed identification for dynamic updating of dosimetry may improve the quality of seed implantation. The AAPM and GEC-ESTRO recommend that robotic systems should demonstrate a spatial accuracy of seed placement ≤1.0 mm in a phantom. This recommendation is based on the current performance of existing robotic brachytherapy systems and propagation of uncertainties. During clinical commissioning, tests should be conducted to ensure that this level of accuracy is achieved. These

  9. American Society for Radiation Oncology (ASTRO) and American College of Radiology (ACR) Practice Guideline for the Performance of High-Dose-Rate Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, Beth A.; Demanes, D. Jeffrey; Ibbott, Geoffrey S.

    2011-03-01

    High-Dose-Rate (HDR) brachytherapy is a safe and efficacious treatment option for patients with a variety of different malignancies. Careful adherence to established standards has been shown to improve the likelihood of procedural success and reduce the incidence of treatment-related morbidity. A collaborative effort of the American College of Radiology (ACR) and American Society for Therapeutic Radiation Oncology (ASTRO) has produced a practice guideline for HDR brachytherapy. The guideline defines the qualifications and responsibilities of all the involved personnel, including the radiation oncologist, physicist and dosimetrists. Review of the leading indications for HDR brachytherapy in the management of gynecologic, thoracic, gastrointestinal,more » breast, urologic, head and neck, and soft tissue tumors is presented. Logistics with respect to the brachytherapy implant procedures and attention to radiation safety procedures and documentation are presented. Adherence to these practice guidelines can be part of ensuring quality and safety in a successful HDR brachytherapy program.« less

  10. High-dose-rate interstitial brachytherapy for the treatment of high-volume locally recurrent endometrial carcinoma.

    PubMed

    Huang, Kitty; D'Souza, David; Patil, Nikhilesh; Velker, Vikram; Leung, Eric; Stitt, Larry; Whiston, Frances; Sugimoto, Akira; McGee, Jacob; Prefontaine, Michel

    2016-01-01

    Limited therapeutic options are available for the treatment of locally recurrent endometrial carcinoma. Our objective was to report an institutional experience using interstitial brachytherapy (IBT) to treat significant recurrent endometrial carcinoma, including previously irradiated disease. Between December 2004 and September 2012, 40 patients with high-volume locally recurrent endometrial cancer were treated by high-dose-rate IBT (± external beam radiation therapy EBRT). Sixteen patients had prior radiotherapy: EBRT alone (n = 5), intracavitary brachytherapy alone (n = 3), or EBRT with intracavitary brachytherapy boost (n = 8). Actuarial outcome rates were calculated using the Kaplan-Meier method and compared using the log-rank test. Median followup interval was 18 months. Median disease-free interval was 61 months. Actuarial local control, progression-free survival (PFS), and overall survival were 74% and 60%, 70% and 51%, and 83% and 72% at 12 and 24 months, respectively. p-Values for local control, progression-free survival, and overall survival between patient who had prior RT (n = 16) to no prior RT (n = 24) were p = 0.38, 0.32, and 0.90, respectively. Acute toxicities include Grade 1-2 pain (5%), genitourinary (7%), gastrointestinal (12%), soft tissue (5%), and dermatologic (12%). Four patients observed late Grade 3-4 toxicities, including rectal bleeding/fistula and soft tissue necrosis. High-dose-rate IBT is an effective treatment for locally recurrent endometrial carcinoma with an acceptable toxicity profile. Outcomes are similar between previously irradiated and nonirradiated patients. In women who have received prior radiotherapy and are often considered for palliative treatment, interstitial brachytherapy is a potentially curative option. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  11. A brachytherapy photon radiation quality index Q(BT) for probe-type dosimetry.

    PubMed

    Quast, Ulrich; Kaulich, Theodor W; Álvarez-Romero, José T; Carlsson Tedgren, Sa; Enger, Shirin A; Medich, David C; Mourtada, Firas; Perez-Calatayud, Jose; Rivard, Mark J; Zakaria, G Abu

    2016-06-01

    In photon brachytherapy (BT), experimental dosimetry is needed to verify treatment plans if planning algorithms neglect varying attenuation, absorption or scattering conditions. The detector's response is energy dependent, including the detector material to water dose ratio and the intrinsic mechanisms. The local mean photon energy E¯(r) must be known or another equivalent energy quality parameter used. We propose the brachytherapy photon radiation quality indexQ(BT)(E¯), to characterize the photon radiation quality in view of measurements of distributions of the absorbed dose to water, Dw, around BT sources. While the external photon beam radiotherapy (EBRT) radiation quality index Q(EBRT)(E¯)=TPR10(20)(E¯) is not applicable to BT, the authors have applied a novel energy dependent parameter, called brachytherapy photon radiation quality index, defined as Q(BT)(E¯)=Dprim(r=2cm,θ0=90°)/Dprim(r0=1cm,θ0=90°), utilizing precise primary absorbed dose data, Dprim, from source reference databases, without additional MC-calculations. For BT photon sources used clinically, Q(BT)(E¯) enables to determine the effective mean linear attenuation coefficient μ¯(E) and thus the effective energy of the primary photons Eprim(eff)(r0,θ0) at the TG-43 reference position Pref(r0=1cm,θ0=90°), being close to the mean total photon energy E¯tot(r0,θ0). If one has calibrated detectors, published E¯tot(r) and the BT radiation quality correction factor [Formula: see text] for different BT radiation qualities Q and Q0, the detector's response can be determined and Dw(r,θ) measured in the vicinity of BT photon sources. This novel brachytherapy photon radiation quality indexQ(BT) characterizes sufficiently accurate and precise the primary photon's penetration probability and scattering potential. Copyright © 2016. Published by Elsevier Ltd.

  12. Uveal Melanoma Regression after Brachytherapy: Relationship with Chromosome 3 Monosomy Status.

    PubMed

    Salvi, Sachin M; Aziz, Hassan A; Dar, Suhail; Singh, Nakul; Hayden-Loreck, Brandy; Singh, Arun D

    2017-07-01

    The objective was to evaluate the relationship between the regression rate of ciliary body melanoma and choroidal melanoma after brachytherapy and chromosome 3 monosomy status. We conducted a prospective and consecutive case series of patients who underwent biopsy and brachytherapy for ciliary/choroidal melanoma. Tumor biopsy performed at the time of radiation plaque placement was analyzed with fluorescence in situ hybridization to determine the percentage of tumor cells with chromosome 3 monosomy. The regression rate was calculated as the percent change in tumor height at months 3, 6, and 12. The relationship between regression rate and tumor location, initial tumor height, and chromosome 3 monosomy (percentage) was assessed by univariate linear regression (R version 3.1.0). Of the 75 patients included in the study, 8 had ciliary body melanoma, and 67 were choroidal melanomas. The mean tumor height at the time of diagnosis was 5.2 mm (range: 1.90-13.00). The percentage composition of chromosome 3 monosomy ranged from 0-20% (n = 35) to 81-100% (n = 40). The regression of tumor height at months 3, 6, and 12 did not statistically correlate with tumor location (ciliary or choroidal), initial tumor height, or chromosome 3 monosomy (percentage). The regression rate of choroidal melanoma following brachytherapy did not correlate with chromosome 3 monosomy status.

  13. Dose reduction in LDR brachytherapy by implanted prostate gold fiducial markers.

    PubMed

    Landry, Guillaume; Reniers, Brigitte; Lutgens, Ludy; Murrer, Lars; Afsharpour, Hossein; de Haas-Kock, Danielle; Visser, Peter; van Gils, Francis; Verhaegen, Frank

    2012-03-01

    The dosimetric impact of gold fiducial markers (FM) implanted prior to external beam radiotherapy of prostate cancer on low dose rate (LDR) brachytherapy seed implants performed in the context of combined therapy was investigated. A virtual water phantom was designed containing a single FM. Single and multi source scenarios were investigated by performing Monte Carlo dose calculations, along with the influence of varying orientation and distance of the FM with respect to the sources. Three prostate cancer patients treated with LDR brachytherapy for a recurrence following external beam radiotherapy with implanted FM were studied as surrogate cases to combined therapy. FM and brachytherapy seeds were identified on post implant CT scans and Monte Carlo dose calculations were performed with and without FM. The dosimetric impact of the FM was evaluated by quantifying the amplitude of dose shadows and the volume of cold spots. D(90) was reported based on the post implant CT prostate contour. Large shadows are observed in the single source-FM scenarios. As expected from geometric considerations, the shadows are dependent on source-FM distance and orientation. Large dose reductions are observed at the distal side of FM, while at the proximal side a dose enhancement is observed. In multisource scenarios, the importance of shadows appears mitigated, although FM at the periphery of the seed distribution caused underdosage (brachytherapy seed implant dose distributions. Therefore, reduced tumor control could be expected from FM implanted in tumors, although our results are too limited to draw conclusions

  14. A case-cohort study of recurrent salivary adenoid cystic carcinoma after iodine 125 brachytherapy and resection treatment.

    PubMed

    Li, Bin-bin; Xie, Xiao-Yan; Jia, Sheng-Nan

    2015-02-01

    Recurrent adenoid cystic carcinoma (rAdCC) can be challenging to be treated with brachytherapy, although brachytherapy is safe and effective in treating head and neck cancers. Patients of adenoid cystic carcinoma (AdCC), who underwent resection and iodine 125 ((125)I) radioactive seed implantation, were recruited for this study. Clinical data, surgical details of resection and seed implantation, histologic characteristics, and prognosis were studied. There were 16 rAdCC cases among 140 cases of AdCC treated with brachytherapy and resection. The mean follow-up duration for the recurrent cases was 61 months. The 3-year local control rate of rAdCC was 51.6%, and the overall disease-specific survival rate was 49.4%. Eight patients showed distant metastasis (50%, 8/16). The histologic grades of 10 rAdCCs were upgraded (62.5%, 10/16).Two cases displayed sarcomatous transformation after brachytherapy (1.4%, 2/140). Although the overall local control rate and survival rate were relatively favorable, some rAdCCs with an aggressive phenotype appeared to respond poorly to (125)I seed implantation. Preventive adjuvant chemotherapy should be prescribed for these rAdCCs. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. A multicentre 'end to end' dosimetry audit for cervix HDR brachytherapy treatment.

    PubMed

    Palmer, Antony L; Diez, Patricia; Gandon, Laura; Wynn-Jones, Andrea; Bownes, Peter; Lee, Chris; Aird, Edwin; Bidmead, Margaret; Lowe, Gerry; Bradley, David; Nisbet, Andrew

    2015-02-01

    To undertake the first multicentre fully 'end to end' dosimetry audit for HDR cervix brachytherapy, comparing planned and delivered dose distributions around clinical treatment applicators, with review of local procedures. A film-dosimetry audit was performed at 46 centres, including imaging, applicator reconstruction, treatment planning and delivery. Film dose maps were calculated using triple-channel dosimetry and compared to RTDose data from treatment planning systems. Deviations between plan and measurement were quantified at prescription Point A and using gamma analysis. Local procedures were also discussed. The mean difference between planned and measured dose at Point A was -0.6% for plastic applicators and -3.0% for metal applicators, at standard uncertainty 3.0% (k=1). Isodose distributions agreed within 1mm over a dose range 2-16Gy. Mean gamma passing rates exceeded 97% for plastic and metal applicators at 3% (local) 2mm criteria. Two errors were found: one dose normalisation error and one applicator library misaligned with the imaged applicator. Suggestions for quality improvement were also made. The concept of 'end to end' dosimetry audit for HDR brachytherapy has been successfully implemented in a multicentre environment, providing evidence that a high level of accuracy in brachytherapy dosimetry can be achieved. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Suitability of point kernel dose calculation techniques in brachytherapy treatment planning

    PubMed Central

    Lakshminarayanan, Thilagam; Subbaiah, K. V.; Thayalan, K.; Kannan, S. E.

    2010-01-01

    Brachytherapy treatment planning system (TPS) is necessary to estimate the dose to target volume and organ at risk (OAR). TPS is always recommended to account for the effect of tissue, applicator and shielding material heterogeneities exist in applicators. However, most brachytherapy TPS software packages estimate the absorbed dose at a point, taking care of only the contributions of individual sources and the source distribution, neglecting the dose perturbations arising from the applicator design and construction. There are some degrees of uncertainties in dose rate estimations under realistic clinical conditions. In this regard, an attempt is made to explore the suitability of point kernels for brachytherapy dose rate calculations and develop new interactive brachytherapy package, named as BrachyTPS, to suit the clinical conditions. BrachyTPS is an interactive point kernel code package developed to perform independent dose rate calculations by taking into account the effect of these heterogeneities, using two regions build up factors, proposed by Kalos. The primary aim of this study is to validate the developed point kernel code package integrated with treatment planning computational systems against the Monte Carlo (MC) results. In the present work, three brachytherapy applicators commonly used in the treatment of uterine cervical carcinoma, namely (i) Board of Radiation Isotope and Technology (BRIT) low dose rate (LDR) applicator and (ii) Fletcher Green type LDR applicator (iii) Fletcher Williamson high dose rate (HDR) applicator, are studied to test the accuracy of the software. Dose rates computed using the developed code are compared with the relevant results of the MC simulations. Further, attempts are also made to study the dose rate distribution around the commercially available shielded vaginal applicator set (Nucletron). The percentage deviations of BrachyTPS computed dose rate values from the MC results are observed to be within plus/minus 5.5% for

  17. Review of clinical brachytherapy uncertainties: Analysis guidelines of GEC-ESTRO and the AAPM☆

    PubMed Central

    Kirisits, Christian; Rivard, Mark J.; Baltas, Dimos; Ballester, Facundo; De Brabandere, Marisol; van der Laarse, Rob; Niatsetski, Yury; Papagiannis, Panagiotis; Hellebust, Taran Paulsen; Perez-Calatayud, Jose; Tanderup, Kari; Venselaar, Jack L.M.; Siebert, Frank-André

    2014-01-01

    Background and purpose A substantial reduction of uncertainties in clinical brachytherapy should result in improved outcome in terms of increased local control and reduced side effects. Types of uncertainties have to be identified, grouped, and quantified. Methods A detailed literature review was performed to identify uncertainty components and their relative importance to the combined overall uncertainty. Results Very few components (e.g., source strength and afterloader timer) are independent of clinical disease site and location of administered dose. While the influence of medium on dose calculation can be substantial for low energy sources or non-deeply seated implants, the influence of medium is of minor importance for high-energy sources in the pelvic region. The level of uncertainties due to target, organ, applicator, and/or source movement in relation to the geometry assumed for treatment planning is highly dependent on fractionation and the level of image guided adaptive treatment. Most studies to date report the results in a manner that allows no direct reproduction and further comparison with other studies. Often, no distinction is made between variations, uncertainties, and errors or mistakes. The literature review facilitated the drafting of recommendations for uniform uncertainty reporting in clinical BT, which are also provided. The recommended comprehensive uncertainty investigations are key to obtain a general impression of uncertainties, and may help to identify elements of the brachytherapy treatment process that need improvement in terms of diminishing their dosimetric uncertainties. It is recommended to present data on the analyzed parameters (distance shifts, volume changes, source or applicator position, etc.), and also their influence on absorbed dose for clinically-relevant dose parameters (e.g., target parameters such as D90 or OAR doses). Publications on brachytherapy should include a statement of total dose uncertainty for the entire

  18. Health-Related Quality of Life up to Six Years After {sup 125}I Brachytherapy for Early-Stage Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roeloffzen, Ellen M.A., E-mail: E.M.A.Roeloffzen@UMCUtrecht.n; Lips, Irene M.; Gellekom, Marion P.R. van

    2010-03-15

    Purpose: Health-related quality of life (HRQOL) after prostate brachytherapy has been extensively described in published reports but hardly any long-term data are available. The aim of the present study was to prospectively assess long-term HRQOL 6 years after {sup 125}I prostate brachytherapy. Methods and Materials: A total of 127 patients treated with {sup 125}I brachytherapy for early-stage prostate cancer between December 2000 and June 2003 completed a HRQOL questionnaire at five time-points: before treatment and 1 month, 6 months, 1 year, and 6 years after treatment. The questionnaire included the RAND-36 generic health survey, the cancer-specific European Organization for Researchmore » and Treatment of Cancer core questionnaire (EORTCQLQ-C30), and the tumor-specific EORTC prostate cancer module (EORTC-PR25). A change in a score of >=10 points was considered clinically relevant. Results: Overall, the HRQOL at 6 years after {sup 125}I prostate brachytherapy did not significantly differ from baseline. Although a statistically significant deterioration in HRQOL at 6 years was seen for urinary symptoms, bowel symptoms, pain, physical functioning, and sexual activity (p <.01), most changes were not clinically relevant. A statistically significant improvement at 6 years was seen for mental health, emotional functioning, and insomnia (p <.01). The only clinically relevant changes were seen for emotional functioning and sexual activity. Conclusion: This is the first study presenting prospective HRQOL data up to 6 years after {sup 125}I prostate brachytherapy. HRQOL scores returned to approximately baseline values at 1 year and remained stable up to 6 years after treatment. {sup 125}I prostate brachytherapy did not adversely affect patients' long-term HRQOL.« less

  19. Study of dose calculation on breast brachytherapy using prism TPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fendriani, Yoza; Haryanto, Freddy

    2015-09-30

    PRISM is one of non-commercial Treatment Planning System (TPS) and is developed at the University of Washington. In Indonesia, many cancer hospitals use expensive commercial TPS. This study aims to investigate Prism TPS which been applied to the dose distribution of brachytherapy by taking into account the effect of source position and inhomogeneities. The results will be applicable for clinical Treatment Planning System. Dose calculation has been implemented for water phantom and CT scan images of breast cancer using point source and line source. This study used point source and line source and divided into two cases. On the firstmore » case, Ir-192 seed source is located at the center of treatment volume. On the second case, the source position is gradually changed. The dose calculation of every case performed on a homogeneous and inhomogeneous phantom with dimension 20 × 20 × 20 cm{sup 3}. The inhomogeneous phantom has inhomogeneities volume 2 × 2 × 2 cm{sup 3}. The results of dose calculations using PRISM TPS were compared to literature data. From the calculation of PRISM TPS, dose rates show good agreement with Plato TPS and other study as published by Ramdhani. No deviations greater than ±4% for all case. Dose calculation in inhomogeneous and homogenous cases show similar result. This results indicate that Prism TPS is good in dose calculation of brachytherapy but not sensitive for inhomogeneities. Thus, the dose calculation parameters developed in this study were found to be applicable for clinical treatment planning of brachytherapy.« less

  20. Magnetic resonance spectroscopy-guided transperineal prostate biopsy and brachytherapy for recurrent prostate cancer.

    PubMed

    Barnes, Agnieszka Szot; Haker, Steven J; Mulkern, Robert V; So, Minna; D'Amico, Anthony V; Tempany, Clare M

    2005-12-01

    Brachytherapy targeted to the peripheral zone with magnetic resonance imaging (MRI) guidance is a prostate cancer treatment option with potentially fewer complications than other treatments. Follow-up MRI when failure is suspected is, however, difficult because of radiation-induced changes. Furthermore, MR spectroscopy (MRS) is compromised by susceptibility artifacts from radioactive seeds in the peripheral zone. We report a case in which combined MRI/MRS was useful for the detection of prostate cancer in the transitional zone in patients previously treated with MR-guided brachytherapy. We propose that MRI/MRS can help detect recurrent prostate cancer, guide prostate biopsy, and help manage salvage treatment decisions.

  1. Alpha 1-Adrenoceptor Blocker May Improve Not Only Voiding But Also Storage Lower Urinary Tract Symptoms Caused by 125I Brachytherapy for Prostate Cancer

    PubMed Central

    Aoki, Yoshitaka; Ito, Hideaki; Miwa, Yoshiji; Akino, Hironobu; Shioura, Hiroki; Kimura, Hirohiko; Yokoyama, Osamu

    2014-01-01

    Purpose. To assess changes in lower urinary tract symptoms (LUTS) within 1 year after brachytherapy in patients receiving alpha 1-adrenoceptor antagonists. Methods. We retrospectively evaluated 116 patients who underwent 125I prostate brachytherapy in our institute. Seventy-one patients were treated with a combination of external beam radiation therapy and brachytherapy. Alpha 1-adrenoceptor antagonists were prescribed to all patients after brachytherapy. International Prostate Symptom Score (IPSS) forms and postvoid residual urine volume were recorded at all follow-up visits. Results. Forty-nine patients were given tamsulosin hydrochloride, 32 were given silodosin hydrochloride, and 35 were given naftopidil for up to 6 months after seed implantation. Patients given tamsulosin or naftopidil tended to show a higher peak IPSS and slower recovery to baseline values than those given silodosin. The patients given naftopidil showed an insufficient recovery in storage symptoms in naftopidil group in comparison with tamsulosin group at 3 months and with silodosin group at 6 and 9 months. Conclusions. In the management of LUT after brachytherapy, silodosin may provide a more favorable improvement. Silodosin and tamsulosin may have an advantage in improving not only voiding but also storage lower urinary tract symptoms after brachytherapy. PMID:25006516

  2. Dosimetric impact of contouring and image registration variability on dynamic 125I prostate brachytherapy.

    PubMed

    Westendorp, Hendrik; Surmann, Kathrin; van de Pol, Sandrine M G; Hoekstra, Carel J; Kattevilder, Robert A J; Nuver, Tonnis T; Moerland, Marinus A; Slump, Cornelis H; Minken, André W

    The quality of permanent prostate brachytherapy can be increased by addition of imaging modalities in the intraoperative procedure. This addition involves image registration, which inherently has inter- and intraobserver variabilities. We sought to quantify the inter- and intraobserver variabilities in geometry and dosimetry for contouring and image registration and analyze the results for our dynamic 125 I brachytherapy procedure. Five observers contoured 11 transrectal ultrasound (TRUS) data sets three times and 11 CT data sets one time. The observers registered 11 TRUS and MRI data sets to cone beam CT (CBCT) using fiducial gold markers. Geometrical and dosimetrical inter- and intraobserver variabilities were assessed. For the contouring study, structures were subdivided into three parts along the craniocaudal axis. We analyzed 165 observations. Interobserver geometrical variability for prostate was 1.1 mm, resulting in a dosimetric variability of 1.6% for V 100 and 9.3% for D 90 . The geometric intraobserver variability was 0.6 mm with a V 100 of 0.7% and D 90 of 1.1%. TRUS-CBCT registration showed an interobserver variability in V 100 of 2.0% and D 90 of 3.1%. Intraobserver variabilities were 0.9% and 1.6%, respectively. For MRI-CBCT registration, V 100 and D 90 were 1.3% and 2.1%. Intraobserver variabilities were 0.7% and 1.1% for the same. Prostate dosimetry is affected by interobserver contouring and registration variability. The observed variability is smaller than underdosages that are adapted during our dynamic brachytherapy procedure. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  3. CT-image-based conformal brachytherapy of breast cancer. The significance of semi-3-D and 3-D treatment planning.

    PubMed

    Polgár, C; Major, T; Somogyi, A; Takácsi-Nagy, Z; Mangel, L C; Forrai, G; Sulyok, Z; Fodor, J; Németh, G

    2000-03-01

    To compare the conventional 2-D, the simulator-guided semi-3-D and the recently developed CT-guided 3-D brachytherapy treatment planning in the interstitial radiotherapy of breast cancer. In 103 patients with T1-2, N0-1 breast cancer the tumor bed was clipped during breast conserving surgery. Fifty-two of them received boost brachytherapy after 46 to 50 Gy teletherapy and 51 patients were treated with brachytherapy alone via flexible implant tubes. Single, double and triple plane implant was used in 6, 89 and 8 cases, respectively. The dose of boost brachytherapy and sole brachytherapy prescribed to dose reference points was 3 times 4.75 Gy and 7 times 5.2 Gy, respectively. The positions of dose reference points varied according to the level (2-D, semi-3-D and 3-D) of treatment planning performed. The treatment planning was based on the 3-D reconstruction of the surgical clips, implant tubes and skin points. In all cases the implantations were planned with a semi-3-D technique aided by simulator. In 10 cases a recently developed CT-guided 3-D planning system was used. The semi-3-D and 3-D treatment plans were compared to hypothetical 2-D plans using dose-volume histograms and dose non-uniformity ratios. The values of mean central dose, mean skin dose, minimal clip dose, proportion of underdosaged clips and mean target surface dose were evaluated. The accuracy of tumor bed localization and the conformity of planning target volume and treated volume were also analyzed in each technique. With the help of conformal semi-3-D and 3-D brachytherapy planning we could define reference dose points, active source positions and dwell times individually. This technique decreased the mean skin dose with 22.2% and reduced the possibility of geographical miss. We could achieve the best conformity between the planning target volume and the treated volume with the CT-image based 3-D treatment planning, at the cost of worse dose homogeneity. The mean treated volume was reduced by 25

  4. Dosimetric equivalence of nonstandard HDR brachytherapy catheter patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunha, J. A. M.; Hsu, I-C.; Pouliot, J.

    2009-01-15

    Purpose: To determine whether alternative high dose rate prostate brachytherapy catheter patterns can result in similar or improved dose distributions while providing better access and reducing trauma. Materials and Methods: Standard prostate cancer high dose rate brachytherapy uses a regular grid of parallel needle positions to guide the catheter insertion. This geometry does not easily allow the physician to avoid piercing the critical structures near the penile bulb nor does it provide position flexibility in the case of pubic arch interference. This study used CT datasets with 3 mm slice spacing from ten previously treated patients and digitized new cathetersmore » following three hypothetical catheter patterns: conical, bi-conical, and fireworks. The conical patterns were used to accommodate a robotic delivery using a single entry point. The bi-conical and fireworks patterns were specifically designed to avoid the critical structures near the penile bulb. For each catheter distribution, a plan was optimized with the inverse planning algorithm, IPSA, and compared with the plan used for treatment. Irrelevant of catheter geometry, a plan must fulfill the RTOG-0321 dose criteria for target dose coverage (V{sub 100}{sup Prostate}>90%) and organ-at-risk dose sparing (V{sub 75}{sup Bladder}<1 cc, V{sub 75}{sup Rectum}<1 cc, V{sub 125}{sup Urethra}<<1 cc). Results: The three nonstandard catheter patterns used 16 nonparallel, straight divergent catheters, with entry points in the perineum. Thirty plans from ten patients with prostate sizes ranging from 26 to 89 cc were optimized. All nonstandard patterns fulfilled the RTOG criteria when the clinical plan did. In some cases, the dose distribution was improved by better sparing the organs-at-risk. Conclusion: Alternative catheter patterns can provide the physician with additional ways to treat patients previously considered unsuited for brachytherapy treatment (pubic arch interference) and facilitate robotic guidance

  5. Modelling second malignancy risks from low dose rate and high dose rate brachytherapy as monotherapy for localised prostate cancer.

    PubMed

    Murray, Louise; Mason, Joshua; Henry, Ann M; Hoskin, Peter; Siebert, Frank-Andre; Venselaar, Jack; Bownes, Peter

    2016-08-01

    To estimate the risks of radiation-induced rectal and bladder cancers following low dose rate (LDR) and high dose rate (HDR) brachytherapy as monotherapy for localised prostate cancer and compare to external beam radiotherapy techniques. LDR and HDR brachytherapy monotherapy plans were generated for three prostate CT datasets. Second cancer risks were assessed using Schneider's concept of organ equivalent dose. LDR risks were assessed according to a mechanistic model and a bell-shaped model. HDR risks were assessed according to a bell-shaped model. Relative risks and excess absolute risks were estimated and compared to external beam techniques. Excess absolute risks of second rectal or bladder cancer were low for both LDR (irrespective of the model used for calculation) and HDR techniques. Average excess absolute risks of rectal cancer for LDR brachytherapy according to the mechanistic model were 0.71 per 10,000 person-years (PY) and 0.84 per 10,000 PY respectively, and according to the bell-shaped model, were 0.47 and 0.78 per 10,000 PY respectively. For HDR, the average excess absolute risks for second rectal and bladder cancers were 0.74 and 1.62 per 10,000 PY respectively. The absolute differences between techniques were very low and clinically irrelevant. Compared to external beam prostate radiotherapy techniques, LDR and HDR brachytherapy resulted in the lowest risks of second rectal and bladder cancer. This study shows both LDR and HDR brachytherapy monotherapy result in low estimated risks of radiation-induced rectal and bladder cancer. LDR resulted in lower bladder cancer risks than HDR, and lower or similar risks of rectal cancer. In absolute terms these differences between techniques were very small. Compared to external beam techniques, second rectal and bladder cancer risks were lowest for brachytherapy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Exclusive low-dose-rate brachytherapy in 279 patients with T2N0 mobile tongue carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourgier, Celine; Coche-Dequeant, Bernard; Fournier, Charles

    2005-10-01

    Purpose: To evaluate the therapeutic results obtained with {sup 192}Ir low-dose-rate interstitial brachytherapy in T2N0 mobile tongue carcinoma. Patients and Methods: Between December 1979 and January 1998, 279 patients with T2N0 mobile tongue carcinoma were treated by exclusive low-dose-rate brachytherapy, with or without neck dissection. {sup 192}Ir brachytherapy was performed according to the 'Paris system' with a median total dose of 60 Gy (median dose rate, 0.5 Gy/h). Results: Overall survival was 74.3% and 46.6% at 2 and 5 years. Local control was 79.1% at 2 years and regional control, respectively, 75.9% and 69.5% at 2 and 5 years (Kaplan-Meiermore » method). Systematic dissection revealed 44.6% occult node metastases, and histologic lymph node involvement was identified as the main significant factor for survival. Complication rate was 16.5% (Grade 3, 2.9%). Half of the patients presented previous and/or successive malignant tumor (ear-nose-throat, esophagus, or bronchus). Conclusion: Exclusive low-dose-rate brachytherapy is an effective treatment for T2 tongue carcinoma. Regional control and survival are excellent in patients undergoing systematic neck dissection, which is mandatory in our experience because of a high rate of occult lymph node metastases.« less

  7. Implementation of image-guided brachytherapy (IGBT) for patients with uterine cervix cancer: a tumor volume kinetics approach.

    PubMed

    Carvalho, Heloisa de Andrade; Mendez, Lucas Castro; Stuart, Silvia Radwanski; Guimarães, Roger Guilherme Rodrigues; Ramos, Clarissa Cerchi Angotti; de Paula, Lucas Assad; de Sales, Camila Pessoa; Chen, André Tsin Chih; Blasbalg, Roberto; Baroni, Ronaldo Hueb

    2016-08-01

    To evaluate tumor shrinking kinetics in order to implement image-guided brachytherapy (IGBT) for the treatment of patients with cervix cancer. This study has prospectively evaluated tumor shrinking kinetics of thirteen patients with uterine cervix cancer treated with combined chemoradiation. Four high dose rate brachytherapy fractions were delivered during the course of pelvic external beam radiation therapy (EBRT). Magnetic resonance imaging (MRI) exams were acquired at diagnosis (D), first (B1), and third (B3) brachytherapy fractions. Target volumes (GTV and HR-CTV) were calculated by both the ellipsoid formula (VE) and MRI contouring (VC), which were defined by a consensus between at least two radiation oncologists and a pelvic expert radiologist. Most enrolled patients had squamous cell carcinoma and FIGO stage IIB disease, and initiated brachytherapy after the third week of pelvic external beam radiation. Gross tumor volume volume reduction from diagnostic MRI to B1 represented 61.9% and 75.2% of the initial volume, when measured by VE and VC, respectively. Only a modest volume reduction (15-20%) was observed from B1 to B3. The most expressive tumor shrinking occurred in the first three weeks of oncological treatment and was in accordance with gynecological examination. These findings may help in IGBT implementation.

  8. Implementation of image-guided brachytherapy (IGBT) for patients with uterine cervix cancer: a tumor volume kinetics approach

    PubMed Central

    Mendez, Lucas Castro; Stuart, Silvia Radwanski; Guimarães, Roger Guilherme Rodrigues; Ramos, Clarissa Cerchi Angotti; de Paula, Lucas Assad; de Sales, Camila Pessoa; Chen, André Tsin Chih; Blasbalg, Roberto; Baroni, Ronaldo Hueb

    2016-01-01

    Purpose To evaluate tumor shrinking kinetics in order to implement image-guided brachytherapy (IGBT) for the treatment of patients with cervix cancer. Material and methods This study has prospectively evaluated tumor shrinking kinetics of thirteen patients with uterine cervix cancer treated with combined chemoradiation. Four high dose rate brachytherapy fractions were delivered during the course of pelvic external beam radiation therapy (EBRT). Magnetic resonance imaging (MRI) exams were acquired at diagnosis (D), first (B1), and third (B3) brachytherapy fractions. Target volumes (GTV and HR-CTV) were calculated by both the ellipsoid formula (VE) and MRI contouring (VC), which were defined by a consensus between at least two radiation oncologists and a pelvic expert radiologist. Results Most enrolled patients had squamous cell carcinoma and FIGO stage IIB disease, and initiated brachytherapy after the third week of pelvic external beam radiation. Gross tumor volume volume reduction from diagnostic MRI to B1 represented 61.9% and 75.2% of the initial volume, when measured by VE and VC, respectively. Only a modest volume reduction (15-20%) was observed from B1 to B3. Conclusions The most expressive tumor shrinking occurred in the first three weeks of oncological treatment and was in accordance with gynecological examination. These findings may help in IGBT implementation. PMID:27648083

  9. A Spanner in the works: the use of a new temporary urethral stent to relieve bladder outflow obstruction after prostate brachytherapy.

    PubMed

    Henderson, Alastair; Laing, Robert W; Langley, Stephen E M

    2002-01-01

    Assessment of the Spanner, a new temporary urethral stent to relieve bladder outflow obstruction and urinary symptoms after brachytherapy. Five patients with unusually severe urinary morbidity after (125)I brachytherapy were recruited. The mean time after implant was 40 days (range 25-90). Spanner intraprostatic stents were introduced using topical anesthetic without complication. All patients were able to void spontaneously with no post-void residual volume of urine. The flow rates increased in all cases (p=0.03) and the International Prostate Symptom Scores were significantly improved after stent insertion in all patients (p=0.03). All patients experienced some degree of pain or dysuria during stent use. Bladder outflow obstruction was effectively treated with the Spanner intraprostatic stent, however pain limited the use of the device in the early post-brachytherapy patient group. Pharmacotherapy, stent design modification, or smaller stent diameter may increase the utility of stents after brachytherapy.

  10. Australasian brachytherapy audit: results of the 'end-to-end' dosimetry pilot study.

    PubMed

    Haworth, Annette; Wilfert, Lisa; Butler, Duncan; Ebert, Martin A; Todd, Stephen; Bucci, Joseph; Duchesne, Gillian M; Joseph, David; Kron, Tomas

    2013-08-01

    We present the results of a pilot study to test the feasibility of a brachytherapy dosimetry audit. The feasibility study was conducted at seven sites from four Australian states in both public and private centres. A purpose-built cylindrical water phantom was imaged using the local imaging protocol and a treatment plan was generated to deliver 1 Gy to the central (1 of 3) thermoluminescent dosimeter (TLD) from six dwell positions. All centres completed the audit, consisting of three consecutive irradiations, within a 2-h time period, with the exception of one centre that uses a pulsed dose rate brachytherapy unit. All TLD results were within 4.5% of the predicted value, with the exception of one subset where the dwell position step size was incorrectly applied. While the limited data collected in the study demonstrated considerable heterogeneity in clinical practice, the study proved a brachytherapy dosimetry audit to be feasible. Future studies should include verification of source strength using a Standard Dosimetry Laboratory calibrated chamber, a phantom that more closely mimics the clinical situation, a more comprehensive review of safety and quality assurance (QA) procedures including source dwell time and position accuracy, and a review of patient treatment QA procedures such as applicator position verification. © 2013 The Authors. Journal of Medical Imaging and Radiation Oncology © 2013 The Royal Australian and New Zealand College of Radiologists.

  11. 18 years' experience with high dose rate strontium-90 brachytherapy of small to medium sized posterior uveal melanoma.

    PubMed

    van Ginderdeuren, R; van Limbergen, E; Spileers, W

    2005-10-01

    To analyse local tumour control, radiation related complications, visual acuity, enucleation rate, and survival after brachytherapy of small to medium sized choroidal melanoma (CM) with a high dose rate (HDR) strontium-90 (Sr-90) applicator. From 1983 until 2000, 98 eyes with CM were treated with Sr-90 brachytherapy. The main outcome measures were actuarial rates of the patients' survival, ocular conservation rate, tumour regression, complication rates, and preservation of visual acuity. End point rates were estimated using Kaplan-Meier analysis. The median follow up time was 6.7 years (0.5-18.8 years). Actuarial melanoma free patient survival rate was 85% (SE 4.8%) after 18 years. Actuarial rate of ocular conservation and complete tumour regression was 90% (SE 3.8%) after 15 years. In 93% local tumour control was achieved, 88% showed a stable scar. Recurrence of the tumour on the border caused enucleation of six eyes (7%). In three cases (4%) retinal detachment was the end point. No cases of optic atrophy or of sight impairing retinopathy outside the treated area were found. Actuarial rate of preservation of visual acuity of 1/10 was 65% at 5 years and 45% at 15 years of follow up (SE 5.9% and 8.8%). Sr-90 brachytherapy is as effective as iodine or ruthenium brachytherapy for small to medium sized CM but causes fewer complications. The preservation of vision is better than with all other described radioisotopes. HDR Sr-90 brachytherapy can therefore safely be recommended for small to medium sized CM.

  12. 18 Years’ experience with high dose rate strontium-90 brachytherapy of small to medium sized posterior uveal melanoma

    PubMed Central

    van Ginderdeuren, R; van Limbergen, E; Spileers, W

    2005-01-01

    Aim: To analyse local tumour control, radiation related complications, visual acuity, enucleation rate, and survival after brachytherapy of small to medium sized choroidal melanoma (CM) with a high dose rate (HDR) strontium-90 (Sr-90) applicator. Methods: From 1983 until 2000, 98 eyes with CM were treated with Sr-90 brachytherapy. The main outcome measures were actuarial rates of the patients’ survival, ocular conservation rate, tumour regression, complication rates, and preservation of visual acuity. End point rates were estimated using Kaplan-Meier analysis. Results: The median follow up time was 6.7 years (0.5–18.8 years). Actuarial melanoma free patient survival rate was 85% (SE 4.8%) after 18 years. Actuarial rate of ocular conservation and complete tumour regression was 90% (SE 3.8%) after 15 years. In 93% local tumour control was achieved, 88% showed a stable scar. Recurrence of the tumour on the border caused enucleation of six eyes (7%). In three cases (4%) retinal detachment was the end point. No cases of optic atrophy or of sight impairing retinopathy outside the treated area were found. Actuarial rate of preservation of visual acuity of 1/10 was 65% at 5 years and 45% at 15 years of follow up (SE 5.9% and 8.8%). Conclusions: Sr-90 brachytherapy is as effective as iodine or ruthenium brachytherapy for small to medium sized CM but causes fewer complications. The preservation of vision is better than with all other described radioisotopes. HDR Sr-90 brachytherapy can therefore safely be recommended for small to medium sized CM. PMID:16170122

  13. Cable attachment for a radioactive brachytherapy source capsule

    DOEpatents

    Gross, Ian G; Pierce, Larry A

    2006-07-18

    In cancer brachytherapy treatment, a small californium-252 neutron source capsule is attached to a guide cable using a modified crimping technique. The guide cable has a solid cylindrical end, and the attachment employs circumferential grooves micromachined in the solid cable end. The attachment was designed and tested, and hardware fabricated for use inside a radioactive hot cell. A welding step typically required in other cable attachments is avoided.

  14. Testicular transposition in children undergoing brachytherapy for bladder and/or prostate rhabdomyosarcoma.

    PubMed

    de Lambert, Guenolee; Chargari, Cyrus; Minard-Colin, Véronique; Haie-Meder, Christine; Guérin, Florent; Martelli, Hélène

    2018-04-13

    Fertility preservation is a major goal in treatment of children with cancer. We describe a new technique of testicular transposition (TT) in patients treated with pulse-dose-rate (PDR) brachytherapy as part of the multimodal conservative treatment of bladder neck and/or prostate rhabdomyosarcoma (BP RMS). Medical records of consecutive patients treated between September 2016 and August 2017 were studied. These patients underwent a TT performed during BP RMS surgery by the same suprapubic incision. The external oblique aponeurosis was not incised. The spermatic cord was mobilized up to the external inguinal ring, and the gubernaculum attachments were severed from the scrotum. The testis was then flipped over with care taken to avoid injury of the vessels or the vas, wrapped in a silicone material and sutured under the abdominal skin with a transfixing stitch facing the anterior superior iliac spine. At the end of brachytherapy, the testis was relocated in the scrotum and during the same general anesthesia, plastic tubes and stents were removed. Surgical outcome and dosimetric parameters were examined. Eight patients were identified. Median age was 24 months (range 11-80 months). All had embryonal BP RMS and received chemotherapy according to RMS 2005 protocol prior to local treatment. All patients underwent conservative surgery followed by brachytherapy (60 Gy) and had testicular transposition of one testis. None had surgical complications. After converting doses to biologically equivalent doses in 2-Gy fractions (EQD2), the dose delivered to 75% of the transposed testis was 1.5 GyEQD2 (1-3 GyEQD2), versus 5.4 GyEQD2 (3.9-9.4 Gy EQD2) for the untransposed testis (p < 0.001). Testicular transposition is feasible in order to potentially preserve fertility and future quality of life in children undergoing brachytherapy for BP RMS. Level IV Treatment Study: Case Study with no Comparison Group. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. SU-E-T-366: Clinical Implementation of MR-Guided Vaginal Cylinder Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owrangi, A; Jolly, S; Balter, J

    2014-06-01

    Purpose: To evaluate the accuracy of MR-based vaginal brachytherapy source localization using an in-house MR-visible marker versus the alignment of an applicator model to MR images. Methods: Three consecutive patients undergoing vaginal HDR brachytherapy with a plastic cylinder were scanned with both CT and MRI (including T1- and T2- weighted images). An MR-visible source localization marker, consisting of a sealed thin catheter filled with either water (for T2 contrast) or Gd-doped water (for T1 contrast), was assembled shortly before scanning. Clinically, the applicator channel was digitized on CT with an x-ray marker. To evaluate the efficacy of MR-based applicator reconstruction,more » each MR image volume was aligned locally to the CT images based on the region containing the cylinder. Applicator digitization was performed on the MR images using (1) the MR visible marker and (2) alignment of an applicator surface model from Varian's Brachytherapy Planning software to the MRI images. Resulting source positions were compared with the original CT digitization. Results: Although the source path was visualized by the MR marker, the applicator tip proved difficult to identify due to challenges in achieving a watertight seal. This resulted in observed displacements of the catheter tip, at times >1cm. Deviations between the central source positions identified via aligning the applicator surface model to MR and using the xray marker on CT ranged from 0.07 – 0.19 cm and 0.07 – 0.20 cm on T1- weighted and T2-weighted images, respectively. Conclusion: Based on the current study, aligning the applicator model to MRI provides a practical, current approach to perform MR-based brachytherapy planning. Further study is needed to produce catheters with reliably and reproducibly identifiable tips. Attempts are being made to improve catheter seals, as well as to increase the viscosity of the contrast material to decrease fluid mobility inside the catheter.« less

  16. Dose rate calculations around 192Ir brachytherapy sources using a Sievert integration model

    NASA Astrophysics Data System (ADS)

    Karaiskos, P.; Angelopoulos, A.; Baras, P.; Rozaki-Mavrouli, H.; Sandilos, P.; Vlachos, L.; Sakelliou, L.

    2000-02-01

    The classical Sievert integral method is a valuable tool for dose rate calculations around brachytherapy sources, combining simplicity with reasonable computational times. However, its accuracy in predicting dose rate anisotropy around 192 Ir brachytherapy sources has been repeatedly put into question. In this work, we used a primary and scatter separation technique to improve an existing modification of the Sievert integral (Williamson's isotropic scatter model) that determines dose rate anisotropy around commercially available 192 Ir brachytherapy sources. The proposed Sievert formalism provides increased accuracy while maintaining the simplicity and computational time efficiency of the Sievert integral method. To describe transmission within the materials encountered, the formalism makes use of narrow beam attenuation coefficients which can be directly and easily calculated from the initially emitted 192 Ir spectrum. The other numerical parameters required for its implementation, once calculated with the aid of our home-made Monte Carlo simulation code, can be used for any 192 Ir source design. Calculations of dose rate and anisotropy functions with the proposed Sievert expression, around commonly used 192 Ir high dose rate sources and other 192 Ir elongated source designs, are in good agreement with corresponding accurate Monte Carlo results which have been reported by our group and other authors.

  17. Brachytherapy for conservative treatment of invasive penile carcinoma in older patients: Single institution experience.

    PubMed

    Escande, Alexandre; Maroun, Pierre; Dumas, Isabelle; Schernberg, Antoine; Bossi, Alberto; De Crevoisier, Renaud; Deutsch, Eric; Haie-Meder, Christine; Chargari, Cyrus

    2018-05-01

    No study has examined the possibility to perform an organ sparing strategy in older patients with penile carcinoma, and amputation is frequently proposed. We report our experience of interstitial brachytherapy for the conservative treatment of penile carcinoma confined to the glans in patients aged of 70years and more. A total of 55 patients candidates to conservative brachytherapy were identified. Median age was 73.8years (range: 70-95years). Patients underwent a circumcision then 3-4weeks later, an interstitial brachytherapy was delivered, median dose of 65Gy (range 55-74Gy). Salvage surgery was discussed in patients with histological confirmation of residual/relapsed tumor. With median follow-up of 9.0years, eight patients (14.5%) experienced a relapse, including five patients with local relapse. Three patients with local relapse only underwent salvage penile surgery, including two partial glansectomies and one total penectomy, and were in second complete remission at last follow-up. Among 55 patients analyzed for late side effects, seven patients (13.0%) presented pain or ulceration, 12 (22.2%) experienced urethral or meatal stenosis requiring at least one dilatation, two patients (3.7%) experienced both ulcerations and urethral complication. Three patients (5.5%) needed partial glansectomy for focal necrosis. At five years, estimated overall survival rate was 74.5% (95%CI: 62.0-87.0%) and local relapse free rate was 91.0% (95%CI: 82.6-99.4%). Brachytherapy is feasible in selected older patients with penile carcinoma, with efficacy and toxicity rates comparable to that of other series in younger patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Effect of tissue composition on dose distribution in brachytherapy with various photon emitting sources

    PubMed Central

    Ghorbani, Mahdi; Salahshour, Fateme; Haghparast, Abbas; Knaup, Courtney

    2014-01-01

    Purpose The aim of this study is to compare the dose in various soft tissues in brachytherapy with photon emitting sources. Material and methods 103Pd, 125I, 169Yb, 192Ir brachytherapy sources were simulated with MCNPX Monte Carlo code, and their dose rate constant and radial dose function were compared with the published data. A spherical phantom with 50 cm radius was simulated and the dose at various radial distances in adipose tissue, breast tissue, 4-component soft tissue, brain (grey/white matter), muscle (skeletal), lung tissue, blood (whole), 9-component soft tissue, and water were calculated. The absolute dose and relative dose difference with respect to 9-component soft tissue was obtained for various materials, sources, and distances. Results There was good agreement between the dosimetric parameters of the sources and the published data. Adipose tissue, breast tissue, 4-component soft tissue, and water showed the greatest difference in dose relative to the dose to the 9-component soft tissue. The other soft tissues showed lower dose differences. The dose difference was also higher for 103Pd source than for 125I, 169Yb, and 192Ir sources. Furthermore, greater distances from the source had higher relative dose differences and the effect can be justified due to the change in photon spectrum (softening or hardening) as photons traverse the phantom material. Conclusions The ignorance of soft tissue characteristics (density, composition, etc.) by treatment planning systems incorporates a significant error in dose delivery to the patient in brachytherapy with photon sources. The error depends on the type of soft tissue, brachytherapy source, as well as the distance from the source. PMID:24790623

  19. American Society for Therapeutic Radiology and Oncology (ASTRO) Emerging Technology Committee Report on Electronic Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Catherine C., E-mail: cpark@radonc.ucsf.ed; Yom, Sue S.; Podgorsak, Matthew B.

    The development of novel technologies for the safe and effective delivery of radiation is critical to advancing the field of radiation oncology. The Emerging Technology Committee of the American Society for Therapeutic Radiology and Oncology appointed a Task Group within its Evaluation Subcommittee to evaluate new electronic brachytherapy methods that are being developed for, or are already in, clinical use. The Task Group evaluated two devices, the Axxent Electronic Brachytherapy System by Xoft, Inc. (Fremont, CA), and the Intrabeam Photon Radiosurgery Device by Carl Zeiss Surgical (Oberkochen, Germany). These devices are designed to deliver electronically generated radiation, and because ofmore » their relatively low energy output, they do not fall under existing regulatory scrutiny of radioactive sources that are used for conventional radioisotope brachytherapy. This report provides a descriptive overview of the technologies, current and future projected applications, comparison of competing technologies, potential impact, and potential safety issues. The full Emerging Technology Committee report is available on the American Society for Therapeutic Radiology and Oncology Web site.« less

  20. Magnetic resonance imaging for planning intracavitary brachytherapy for the treatment of locally advanced cervical cancer.

    PubMed

    Oñate Miranda, M; Pinho, D F; Wardak, Z; Albuquerque, K; Pedrosa, I

    2016-01-01

    Cervical cancer is the third most common gynecological cancer. Its treatment depends on tumor staging at the time of diagnosis, and a combination of chemotherapy and radiotherapy is the treatment of choice in locally advanced cervical cancers. The combined use of external beam radiotherapy and brachytherapy increases survival in these patients. Brachytherapy enables a larger dose of radiation to be delivered to the tumor with less toxicity for neighboring tissues with less toxicity for neighboring tissues compared to the use of external beam radiotherapy alone. For years, brachytherapy was planned exclusively using computed tomography (CT). The recent incorporation of magnetic resonance imaging (MRI) provides essential information about the tumor and neighboring structures making possible to better define the target volumes. Nevertheless, MRI has limitations, some of which can be compensated for by fusing CT and MRI. Fusing the images from the two techniques ensures optimal planning by combining the advantages of each technique. Copyright © 2015 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  1. American Society for Therapeutic Radiology and Oncology (ASTRO) Emerging Technology Committee report on electronic brachytherapy.

    PubMed

    Park, Catherine C; Yom, Sue S; Podgorsak, Matthew B; Harris, Eleanor; Price, Robert A; Bevan, Alison; Pouliot, Jean; Konski, Andre A; Wallner, Paul E

    2010-03-15

    The development of novel technologies for the safe and effective delivery of radiation is critical to advancing the field of radiation oncology. The Emerging Technology Committee of the American Society for Therapeutic Radiology and Oncology appointed a Task Group within its Evaluation Subcommittee to evaluate new electronic brachytherapy methods that are being developed for, or are already in, clinical use. The Task Group evaluated two devices, the Axxent Electronic Brachytherapy System by Xoft, Inc. (Fremont, CA), and the Intrabeam Photon Radiosurgery Device by Carl Zeiss Surgical (Oberkochen, Germany). These devices are designed to deliver electronically generated radiation, and because of their relatively low energy output, they do not fall under existing regulatory scrutiny of radioactive sources that are used for conventional radioisotope brachytherapy. This report provides a descriptive overview of the technologies, current and future projected applications, comparison of competing technologies, potential impact, and potential safety issues. The full Emerging Technology Committee report is available on the American Society for Therapeutic Radiology and Oncology Web site. Copyright 2010. Published by Elsevier Inc.

  2. Harmony search optimization for HDR prostate brachytherapy

    NASA Astrophysics Data System (ADS)

    Panchal, Aditya

    In high dose-rate (HDR) prostate brachytherapy, multiple catheters are inserted interstitially into the target volume. The process of treating the prostate involves calculating and determining the best dose distribution to the target and organs-at-risk by means of optimizing the time that the radioactive source dwells at specified positions within the catheters. It is the goal of this work to investigate the use of a new optimization algorithm, known as Harmony Search, in order to optimize dwell times for HDR prostate brachytherapy. The new algorithm was tested on 9 different patients and also compared with the genetic algorithm. Simulations were performed to determine the optimal value of the Harmony Search parameters. Finally, multithreading of the simulation was examined to determine potential benefits. First, a simulation environment was created using the Python programming language and the wxPython graphical interface toolkit, which was necessary to run repeated optimizations. DICOM RT data from Varian BrachyVision was parsed and used to obtain patient anatomy and HDR catheter information. Once the structures were indexed, the volume of each structure was determined and compared to the original volume calculated in BrachyVision for validation. Dose was calculated using the AAPM TG-43 point source model of the GammaMed 192Ir HDR source and was validated against Varian BrachyVision. A DVH-based objective function was created and used for the optimization simulation. Harmony Search and the genetic algorithm were implemented as optimization algorithms for the simulation and were compared against each other. The optimal values for Harmony Search parameters (Harmony Memory Size [HMS], Harmony Memory Considering Rate [HMCR], and Pitch Adjusting Rate [PAR]) were also determined. Lastly, the simulation was modified to use multiple threads of execution in order to achieve faster computational times. Experimental results show that the volume calculation that was

  3. Complications associated with brachytherapy alone or with laser in lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khanavkar, B.; Stern, P.; Alberti, W.

    1991-05-01

    Relatively little has been reported about destruction through brachytherapy of mucosa-perforating and extraluminary tumors with probable large vessel involvement causing major hemorrhagic or fistular complications. We report 12 patients subjected to laser and brachytherapy for centrally occluding lung cancer, whom we have periodically followed up from June 1986 until they died. Although all laser procedures were free from complications, necrotic cavitation in five cases, two of which were accompanied by large bronchoesophageal fistulas, and massive fatal hemoptysis occurred in six. Minor complications included radiation mucositis (two), noncritical mucosal scarring (two), and cough (four). Characteristics that will identify patients at riskmore » of developing fatal hemoptysis and fistulas should be better defined by imaging and endoscopic techniques. In such cases, modifying the protocol or using alternative procedures should be considered. Minor complications, such as cough, can be avoided by using topical steroid therapy (eg, beclomethasone dipropionate).« less

  4. The effects of metallic implants on electroporation therapies: feasibility of irreversible electroporation for brachytherapy salvage.

    PubMed

    Neal, Robert E; Smith, Ryan L; Kavnoudias, Helen; Rosenfeldt, Franklin; Ou, Ruchong; Mclean, Catriona A; Davalos, Rafael V; Thomson, Kenneth R

    2013-12-01

    Electroporation-based therapies deliver brief electric pulses into a targeted volume to destabilize cellular membranes. Nonthermal irreversible electroporation (IRE) provides focal ablation with effects dependent on the electric field distribution, which changes in heterogeneous environments. It should be determined if highly conductive metallic implants in targeted regions, such as radiotherapy brachytherapy seeds in prostate tissue, will alter treatment outcomes. Theoretical and experimental models determine the impact of prostate brachytherapy seeds on IRE treatments. This study delivered IRE pulses in nonanimal, as well as in ex vivo and in vivo tissue, with and in the absence of expired radiotherapy seeds. Electrical current was measured and lesion dimensions were examined macroscopically and with magnetic resonance imaging. Finite-element treatment simulations predicted the effects of brachytherapy seeds in the targeted region on electrical current, electric field, and temperature distributions. There was no significant difference in electrical behavior in tissue containing a grid of expired radiotherapy seeds relative to those without seeds for nonanimal, ex vivo, and in vivo experiments (all p > 0.1). Numerical simulations predict no significant alteration of electric field or thermal effects (all p > 0.1). Histology showed cellular necrosis in the region near the electrodes and seeds within the ablation region; however, there were no seeds beyond the ablation margins. This study suggests that electroporation therapies can be implemented in regions containing small metallic implants without significant changes to electrical and thermal effects relative to use in tissue without the implants. This supports the ability to use IRE as a salvage therapy option for brachytherapy.

  5. Clinical outcome of high-dose-rate interstitial brachytherapy in vulvar cancer: A single institutional experience.

    PubMed

    Mahantshetty, Umesh; Naga, Pushpa; Engineer, Reena; Sastri, Supriya; Ghadi, Yogesh; Upreti, Udita; Somesan, Vijaya; Kadam, Sudarshan; Kohle, Satish; Deshpande, Deepak; Shrivastava, Shyam Kishore

    With an aim to evaluate and report high dose date interstitial brachytherapy (HDR-ISBT) in vulvar cancers, we undertook this retrospective analysis. Histologically proven vulvar cancers treated with HDR-ISBT between 2001 and 2016 were analyzed. Radiotherapy details, clinical outcome in terms of local control rates, survivals, and toxicities were evaluated. A total of 38 patients received HDR-ISBT, with definitive radiation in 29 (76.3%), adjuvant postoperative in six (15.8%) and salvage radiation in three (7.9%) patients. Of them, 29 patients received brachytherapy boost and nine patients ISBT alone. BT procedure included freehand plastic tube technique in 23 (single [n = 5] or multiple plane [n = 18]), 13 patients with template based and two patients combined approach. Patients with brachytherapy alone received median EQD2 of 38.4 Gy 10 (35.5-46.7 Gy 10 ), as boost received median 23.3 Gy 10 (13-37.3 Gy 10 ). At 3-month post-treatment response evaluation, 30 patients achieved clinically complete response, two patients partial response and six maintained postoperative status. With a median follow-up of 30 months, 29 (76.3%) were disease free, and 9 (23.7%) patients had relapsed disease with four patients expired due to disease and two died of other causes. The 5-year overall survival, disease free survival, and local control rates were 82%, 51%, and 77%, respectively. HDR-ISBT in vulvar cancer is a feasible and a viable option with acceptable and comparable outcomes. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  6. SU-E-T-786: Utility of Gold Wires to Optimize Intensity Modulation Capacity of a Novel Directional Modulated Brachytherapy Tandem Applicator for Image Guided Cervical Cancer Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, D; Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario; Safigholi, H

    2015-06-15

    Purpose: To evaluate the impact of using gold wires to differentially fill various channels on plan quality compared with conventional T&R applicator, inside a novel directional modulated brachytherapy (DMBT) tandem applicator for cervical cancer brachytherapy. Materials and Methods: The novel DMBT tandem applicator has a 5.4-mm diameter MR-compatible tungsten alloy enclosed in a 0.3-mm thick plastic tubing that wraps around the tandem. To modulate the radiation intensity, 6 symmetric peripheral holes of 1.3-mm diameter are grooved along the tungsten alloy rod. These grooved holes are differentially filled with gold wires to generate various degrees of directional beams. For example, threemore » different fill patterns of 1) all void, 2) all filled except the hole containing the 192-Ir source, and 3) two adjacent holes to the 192-Ir source filled were Monte Carlo simulated. The resulting 3D dose distributions were imported into an in-house-coded inverse optimization planning system to generate HDR brachytherapy clinical plans for 19 patient cases. All plans generated were normalized to the same D90 as the clinical plans and D2cc doses of OARs were evaluated. Prescription ranged between 15 and 17.5Gy. Results: In general, the plans in case 1) resulted in the highest D2cc doses for the OARs with 11.65±2.30Gy, 7.47±3.05Gy, and 9.84±2.48Gy for bladder, rectum, and sigmoid, respectively, although the differences were small. For the case 2), D2cc doses were 11.61±2.29Gy, 7.41±3.07Gy, and 9.75±2.45Gy, respectively. And, for the case 3), D2cc doses were 11.60±2.28Gy, 7.41±3.05Gy, and 9.74±2.45Gy, respectively. Difference between 1) and 2) cases were small with the average D2cc difference of <0.64%. Difference between 1) and 3) cases were even smaller with the average D2cc difference of <0.1%. Conclusions: There is a minimal clinical benefit by differentially filling grooved holes in the novel DMBT tandem applicator for image guided cervical cancer brachytherapy.« less

  7. Selective perturbation of in vivo linear energy transfer using high- Z vaginal applicators for Cf-252 brachytherapy

    NASA Astrophysics Data System (ADS)

    Rivard, M. J.; Evans, K. E.; Leal, L. C.; Kirk, B. L.

    2004-01-01

    Californium-252 ( 252Cf) brachytherapy sources emit both neutrons and photons, and have the potential to vastly improve the current standard-of-practice for brachytherapy. While hydrogenous materials readily attenuate the 252Cf fission energy neutrons, high- Z materials are utilized to attenuate the 252Cf gamma-rays. These differences in shielding materials may be exploited when treating with a vaginal applicator to possibly improve patient survival through perturbation of the in vivo linear energy transfer radiation.

  8. Sci-Thur PM – Brachytherapy 06: 3D Printed Surface Applicators for High Dose Rate Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clarke, Scott; Yewondwossen, Mammo; Robar, James

    Purpose: The purpose of this work is to develop a new applicator for administering high dose rate (HDR) brachytherapy using 3D printing technology. Primary advantages of using a 3D printed applicator will be to offer a more streamlined approach for therapists and patients while achieving better conformity, reproducibility, and patient specific applicators. Methods: A phantom study was conducted to measure the effectiveness of a 3D printed surface applicator by analyzing tumours on three locations of the body: the foot, nose, and scalp. The applicator was designed using Eclipse and further modified using Blender to create the catheter tunnels before beingmore » printed on a Lulzbot Taz 5 3D printer. A radiation plan was made using Oncentra Brachytherapy for a control treatment option using Freiburg Flaps and one with the novel method of a 3D printed applicator. A comparative analysis was made using D90, D100, V100, V150, and V200 Results: The 3D printed applicator showed comparable dose coverage with significant improvements on highly irregular surfaces when analyzed against a plan made using Freiburg Flaps. Although both plans exhibited complete tumour coverage, the 3D applicator showed improvements in D90 and V150 and the 3D applicator had a dose homogeneity index (DHI) of 0.99 compared to a DHI of 0.97 for the control. Therapist prep time also dropped significantly due to the lack of need for a thermoplastic mesh. Conclusions: 3D printed applicators for treatment of superficial sites proved to offer more patient convenience, less prep time, better conformity and tighter margins.« less

  9. Sci—Fri PM: Topics — 08: The Role and Benefits of Electromagnetic Needle-Tracking Technologies in Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beaulieu, L.; Racine, E.; Boutaleb, S.

    In modern brachytherapy, application of large doses of ionizing radiation in a limited number of fractions is frequent. Furthermore, as with any surgical procedures, brachytherapy is subject to learning curve effects. In this context, there could be advantages of integrating real-time tracking of needles/catheters to existing protocols given the recent prominent advances in tracking technologies. In this work, we review the use of an electromagnetic tracking system (EMTS) based on the second generation Aurora® Planar Field Generator (Northern Digital Inc) and custom design needles (Philips Healthcare) for brachytherapy applications. The position and orientation information is obtained from 5 degrees ofmore » freedom sensors. Basic system performance characterization is performed in well-controlled conditions to establish accuracy and reproducibility as well as potential interference from standard brachytherapy equipment. The results show that sensor locations can be tracked to within 0.04mm (la) when located within 26cm of the generator. Orientation accuracy of the needle remained within ±1° in the same region, but rose quickly at larger distances. The errors on position and orientation strongly dependent the sensor position in the characterization volume (500×500×500mm{sup 3}). The presence of an ultrasound probe was shown to have negligible effects on tracking accuracy. The use of EMTS for automatic catheter/applicator reconstruction was also explored. Reconstruction time was less than 10 sec/channel and tips identification was within 0.69±0.29mm of the reference values. Finally, we demonstrate that hollow needle designs with special EM adaptation also allow for real-time seed drop position estimation. In phantom experiments showed that drop positions were on average within 1.6±0.9mm of the reference position measured from μCT. Altogether, EMTS offer promising benefits in a wide range of brachytherapy applications.« less

  10. Novel high dose rate lip brachytherapy technique to improve dose homogeneity and reduce toxicity by customized mold.

    PubMed

    Feldman, Jon; Appelbaum, Limor; Sela, Mordechay; Voskoboinik, Ninel; Kadouri, Sarit; Weinberger, Jeffrey; Orion, Itzhak; Meirovitz, Amichay

    2014-12-23

    The purpose of this study is to describe a novel brachytherapy technique for lip Squamous Cell Carcinoma, utilizing a customized mold with embedded brachytherapy sleeves, which separates the lip from the mandible, and improves dose homogeneity. Seven patients with T2 lip cancer treated with a "sandwich" technique of High Dose Rate (HDR) brachytherapy to the lip, consisting of interstitial catheters and a customized mold with embedded catheters, were reviewed for dosimetry and outcome using 3D planning. Dosimetric comparison was made between the "sandwich" technique to "classic" - interstitial catheters only plan. We compared dose volume histograms for Clinical Tumor Volume (CTV), normal tissue "hot spots" and mandible dose. We are reporting according to the ICRU 58 and calculated the Conformal Index (COIN) to show the advantage of our technique. The seven patients (ages 36-81 years, male) had median follow-up of 47 months. Four patients received Brachytherapy and External Beam Radiation Therapy, 3 patients received brachytherapy alone. All achieved local control, with excellent esthetic and functional results. All patients are disease free. The Customized Mold Sandwich technique (CMS) reduced the high dose region receiving 150% (V150) by an average of 20% (range 1-47%), The low dose region (les then 90% of the prescribed dose) improved by 73% in average by using the CMS technique. The COIN value for the CMS was in average 0.92 as opposed to 0.88 for the interstitial catheter only. All differences (excluding the low dose region) were statistically significant. The CMS technique significantly reduces the high dose volume and increases treatment homogeneity. This may reduce the potential toxicity to the lip and adjacent mandible, and results in excellent tumor control, cosmetic and functionality.

  11. Precision grid and hand motion for accurate needle insertion in brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGill, Carl S.; Schwartz, Jonathon A.; Moore, Jason Z.

    2011-08-15

    Purpose: In prostate brachytherapy, a grid is used to guide a needle tip toward a preplanned location within the tissue. During insertion, the needle deflects en route resulting in target misplacement. In this paper, 18-gauge needle insertion experiments into phantom were performed to test effects of three parameters, which include the clearance between the grid hole and needle, the thickness of the grid, and the needle insertion speed. Measurement apparatus that consisted of two datum surfaces and digital depth gauge was developed to quantify needle deflections. Methods: The gauge repeatability and reproducibility (GR and R) test was performed on themore » measurement apparatus, and it proved to be capable of measuring a 2 mm tolerance from the target. Replicated experiments were performed on a 2{sup 3} factorial design (three parameters at two levels) and analysis included averages and standard deviation along with an analysis of variance (ANOVA) to find significant single and two-way interaction factors. Results: Results showed that grid with tight clearance hole and slow needle speed increased precision and accuracy of needle insertion. The tight grid was vital to enhance precision and accuracy of needle insertion for both slow and fast insertion speed; additionally, at slow speed the tight, thick grid improved needle precision and accuracy. Conclusions: In summary, the tight grid is important, regardless of speed. The grid design, which shows the capability to reduce the needle deflection in brachytherapy procedures, can potentially be implemented in the brachytherapy procedure.« less

  12. Estimation of whole-body radiation exposure from brachytherapy for oral cancer using a Monte Carlo simulation

    PubMed Central

    Ozaki, Y.; Kaida, A.; Miura, M.; Nakagawa, K.; Toda, K.; Yoshimura, R.; Sumi, Y.; Kurabayashi, T.

    2017-01-01

    Abstract Early stage oral cancer can be cured with oral brachytherapy, but whole-body radiation exposure status has not been previously studied. Recently, the International Commission on Radiological Protection Committee (ICRP) recommended the use of ICRP phantoms to estimate radiation exposure from external and internal radiation sources. In this study, we used a Monte Carlo simulation with ICRP phantoms to estimate whole-body exposure from oral brachytherapy. We used a Particle and Heavy Ion Transport code System (PHITS) to model oral brachytherapy with 192Ir hairpins and 198Au grains and to perform a Monte Carlo simulation on the ICRP adult reference computational phantoms. To confirm the simulations, we also computed local dose distributions from these small sources, and compared them with the results from Oncentra manual Low Dose Rate Treatment Planning (mLDR) software which is used in day-to-day clinical practice. We successfully obtained data on absorbed dose for each organ in males and females. Sex-averaged equivalent doses were 0.547 and 0.710 Sv with 192Ir hairpins and 198Au grains, respectively. Simulation with PHITS was reliable when compared with an alternative computational technique using mLDR software. We concluded that the absorbed dose for each organ and whole-body exposure from oral brachytherapy can be estimated with Monte Carlo simulation using PHITS on ICRP reference phantoms. Effective doses for patients with oral cancer were obtained. PMID:28339846

  13. In vivo dosimeters for HDR brachytherapy: a comparison of a diamond detector, MOSFET, TLD, and scintillation detector.

    PubMed

    Lambert, Jamil; Nakano, Tatsuya; Law, Sue; Elsey, Justin; McKenzie, David R; Suchowerska, Natalka

    2007-05-01

    The large dose gradients in brachytherapy necessitate a detector with a small active volume for accurate dosimetry. The dosimetric performance of a novel scintillation detector (BrachyFOD) is evaluated and compared to three commercially available detectors, a diamond detector, a MOSFET, and LiF TLDs. An 192Ir HDR brachytherapy source is used to measure the depth dependence, angular dependence, and temperature dependence of the detectors. Of the commercially available detectors, the diamond detector was found to be the most accurate, but has a large physical size. The TLDs cannot provide real time readings and have depth dependent sensitivity. The MOSFET used in this study was accurate to within 5% for distances of 20 to 50 mm from the 192Ir source in water but gave errors of 30%-40% for distances greater than 50 mm from the source. The BrachyFOD was found to be accurate to within 3% for distances of 10 to 100 mm from an HDR 192Ir brachytherapy source in water. It has an angular dependence of less than 2% and the background signal created by Cerenkov radiation and fluorescence of the plastic optical fiber is insignificant compared to the signal generated in the scintillator. Of the four detectors compared in this study the BrachyFOD has the most favorable combination of characteristics for dosimetry in HDR brachytherapy.

  14. Dose rate in brachytherapy using after-loading machine: pulsed or high-dose rate?

    PubMed

    Hannoun-Lévi, J-M; Peiffert, D

    2014-10-01

    Since February 2014, it is no longer possible to use low-dose rate 192 iridium wires due to the end of industrial production of IRF1 and IRF2 sources. The Brachytherapy Group of the French society of radiation oncology (GC-SFRO) has recommended switching from iridium wires to after-loading machines. Two types of after-loading machines are currently available, based on the dose rate used: pulsed-dose rate or high-dose rate. In this article, we propose a comparative analysis between pulsed-dose rate and high-dose rate brachytherapy, based on biological, technological, organizational and financial considerations. Copyright © 2014 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  15. Real-time computed tomography dosimetry during ultrasound-guided brachytherapy for prostate cancer.

    PubMed

    Kaplan, Irving D; Meskell, Paul; Oldenburg, Nicklas E; Saltzman, Brian; Kearney, Gary P; Holupka, Edward J

    2006-01-01

    Ultrasound-guided implantation of permanent radioactive seeds is a treatment option for localized prostate cancer. Several techniques have been described for the optimal placement of the seeds in the prostate during this procedure. Postimplantation dosimetric calculations are performed after the implant. Areas of underdosing can only be corrected with either an external beam boost or by performing a second implant. We demonstrate the feasibility of performing computed tomography (CT)-based postplanning during the ultrasound-guided implant and subsequently correcting for underdosed areas. Ultrasound-guided brachytherapy is performed on a modified CT table with general anesthesia. The postplanning CT scan is performed after the implant, while the patient is still under anesthesia. Additional seeds are implanted into "cold spots," and the resultant dosimetry confirmed with CT. Intraoperative postplanning was successfully performed. Dose-volume histograms demonstrated adequate dose coverage during the initial implant, but on detailed analysis, for some patients, areas of underdosing were observed either at the apex or the peripheral zone. Additional seeds were implanted to bring these areas to prescription dose. Intraoperative postplanning is feasible during ultrasound-guided brachytherapy for prostate cancer. Although the postimplant dose-volume histograms for all patients, before the implantation of additional seeds, were adequate according to the American Brachytherapy Society criteria, specific critical areas can be underdosed. Additional seeds can then be implanted to optimize the dosimetry and reduce the risk of underdosing areas of cancer.

  16. Dosimetric intercomparison of permanent Ho-166 seed's implants and HDR Ir-192 brachytherapy in breast cancer.

    PubMed

    de Campos, Tarcisio Passos Ribeiro; Nogueira, Luciana Batista; Trindade, Bruno; Cuperschmid, Ethel Mizrahy

    2016-01-01

    To provide a comparative dosimetric analysis of permanent implants of Ho(166)-seeds and temporary HDR Ir(192)-brachytherapy through computational simulation. Brachytherapy with Ir(192)-HDR or LDR based on temporary wires or permanent radioactive seed implants can be used as dose reinforcement for breast radiation therapy. Permanent breast implants have not been a practical clinical routine; although, I(125) and Pd(103)-seeds have already been reported. Biodegradable Ho(166)-ceramic-seeds have been addressed recently. Simulations of implants of nine Ho(166)-seeds and equivalent with HDR Ir(192)-brachytherapy were elaborated in MCNP5, shaped in a computational multivoxel simulator which reproduced a female thorax phantom. Spatial dose rate distributions and dose-volume histograms were generated. Protocol's analysis involving exposure time, seed's activities and dose were performed. Permanent Ho(166)-seed implants presented a maximum dose rate per unit of contained activity (MDR) of 1.1601 μGy h(-1) Bq(-1); and, a normalized MDR in standard points (8 mm, equidistant to 03-seeds - SP1, 10 mm - SP2) of 1.0% (SP1) and 0.5% (SP2), respectively. Ir(192)-brachytherapy presented MDR of 4.3945 × 10(-3) μGy h(-1) Bq(-1); and, 30% (SP1), and 20% (SP2). Therefore, seed's implant activities of 333 MBq (Ho(166)) and 259 GBq (Ir(192)) produced prescribed doses of 58 Gy (SP1; 5d) and 56 Gy (SP1, 5 fractions, 6 min), respectively. Breast Ho(166)-implants of 37-111 MBq are attractive due to the high dose rate near 6-10 mm from seeds, equivalent to Ir(192)-brachytherapy of 259 GBq (3 fractions, 6 min) providing similar dose in standard points at a week; however, with spatial dose distribution better confined. The seed positioning can be adjusted for controlling the breast tumor, in stages I and II, in flat and deep tumors, without any breast volumetric limitation.

  17. Vibro-acoustography with 1.75D ultrasound array transducer for detection and localization of permanent prostate brachytherapy seeds: ex vivo study

    NASA Astrophysics Data System (ADS)

    Mehrmohammadi, Mohammad; Alizad, Azra; Kinnick, Randall R.; Davis, Brian J.; Fatemi, Mostafa

    2013-03-01

    Effective brachytherapy procedures require precise placement of radioactive seeds in the prostate. Currently, transrectal ultrasound (TRUS) imaging is one of the main intraoperative imaging modalities to assist physicians in placement of brachytherapy seeds. However, the seed detection rate with TRUS is poor mainly because ultrasound imaging is highly sensitive to variations in seed orientation. The purpose of this study is to investigate the abilities of a new acoustic radiation force imaging modality, vibro-acoustography (VA), equipped with a 1.75D array transducer and implemented on a customized clinical ultrasound scanner, to image and localize brachytherapy seeds in prostatic tissue. To perform experiments, excised cadaver prostate specimens were implanted with dummy brachytherapy seeds, and embedded in tissue mimicking gel to simulate the properties of the surrounding soft tissues. The samples were scanned using the VA system and the resulting VA signals were used to reconstruct VA images at several depths inside the tissue. To further evaluate the performance of VA in detecting seeds, X-ray computed tomography (CT) images of the same tissue sample, were obtained and used as a gold-standard to compare the number of seeds detected by the two methods. Our results indicate that VA is capable of imaging of brachytherapy seeds with accuracy and high contrast, and can detect a large percentage of the seeds implanted within the tissue samples.

  18. What to Know about Brachytherapy (A Type of Internal Radiation Therapy)

    MedlinePlus

    ... understand what was going to happen.” About the treatment: ■ ■ Brachytherapy uses radiation to destroy cancer cells and shrink tumors. ■ ■ The ... may have. These differ depending on where the radiation is ... starting treatment. During treatment: ■ ■ Your doctor will place a small ...

  19. Optimisation techniques in vaginal cuff brachytherapy.

    PubMed

    Tuncel, N; Garipagaoglu, M; Kizildag, A U; Andic, F; Toy, A

    2009-11-01

    The aim of this study was to explore whether an in-house dosimetry protocol and optimisation method are able to produce a homogeneous dose distribution in the target volume, and how often optimisation is required in vaginal cuff brachytherapy. Treatment planning was carried out for 109 fractions in 33 patients who underwent high dose rate iridium-192 (Ir(192)) brachytherapy using Fletcher ovoids. Dose prescription and normalisation were performed to catheter-oriented lateral dose points (dps) within a range of 90-110% of the prescribed dose. The in-house vaginal apex point (Vk), alternative vaginal apex point (Vk'), International Commission on Radiation Units and Measurements (ICRU) rectal point (Rg) and bladder point (Bl) doses were calculated. Time-position optimisations were made considering dps, Vk and Rg doses. Keeping the Vk dose higher than 95% and the Rg dose less than 85% of the prescribed dose was intended. Target dose homogeneity, optimisation frequency and the relationship between prescribed dose, Vk, Vk', Rg and ovoid diameter were investigated. The mean target dose was 99+/-7.4% of the prescription dose. Optimisation was required in 92 out of 109 (83%) fractions. Ovoid diameter had a significant effect on Rg (p = 0.002), Vk (p = 0.018), Vk' (p = 0.034), minimum dps (p = 0.021) and maximum dps (p<0.001). Rg, Vk and Vk' doses with 2.5 cm diameter ovoids were significantly higher than with 2 cm and 1.5 cm ovoids. Catheter-oriented dose point normalisation provided a homogeneous dose distribution with a 99+/-7.4% mean dose within the target volume, requiring time-position optimisation.

  20. The Effects of Metallic Implants on Electroporation Therapies: Feasibility of Irreversible Electroporation for Brachytherapy Salvage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neal, Robert E., E-mail: robert.neal@alfred.org.au; Smith, Ryan L., E-mail: ryan.smith@wbrc.org.au; Kavnoudias, Helen, E-mail: H.Kavnoudias@alfred.org.au

    2013-12-15

    Purpose: Electroporation-based therapies deliver brief electric pulses into a targeted volume to destabilize cellular membranes. Nonthermal irreversible electroporation (IRE) provides focal ablation with effects dependent on the electric field distribution, which changes in heterogeneous environments. It should be determined if highly conductive metallic implants in targeted regions, such as radiotherapy brachytherapy seeds in prostate tissue, will alter treatment outcomes. Theoretical and experimental models determine the impact of prostate brachytherapy seeds on IRE treatments. Materials and Methods: This study delivered IRE pulses in nonanimal, as well as in ex vivo and in vivo tissue, with and in the absence of expiredmore » radiotherapy seeds. Electrical current was measured and lesion dimensions were examined macroscopically and with magnetic resonance imaging. Finite-element treatment simulations predicted the effects of brachytherapy seeds in the targeted region on electrical current, electric field, and temperature distributions. Results: There was no significant difference in electrical behavior in tissue containing a grid of expired radiotherapy seeds relative to those without seeds for nonanimal, ex vivo, and in vivo experiments (all p > 0.1). Numerical simulations predict no significant alteration of electric field or thermal effects (all p > 0.1). Histology showed cellular necrosis in the region near the electrodes and seeds within the ablation region; however, there were no seeds beyond the ablation margins. Conclusion: This study suggests that electroporation therapies can be implemented in regions containing small metallic implants without significant changes to electrical and thermal effects relative to use in tissue without the implants. This supports the ability to use IRE as a salvage therapy option for brachytherapy.« less

  1. External radiotherapy and brachytherapy in the management of extrahepatic and intrahepatic cholangiocarcinoma: available evidence.

    PubMed

    Sahai, Puja; Kumar, Senthil

    2017-08-01

    This review aims to summarize the currently available evidence for the role of external radiotherapy and brachytherapy in the management of cholangiocarcinoma. High locoregional disease recurrence rates after surgical resection alone for both the extrahepatic cholangiocarcinoma (EHCC) and intrahepatic cholangiocarcinoma (IHCC) provide a rationale for using adjuvant radiotherapy with chemotherapy. We performed a literature search related to radiotherapy in cholangiocarcinoma published between 2000 and 2016. The role of radiation is discussed in the adjuvant, neoadjuvant, definitive and the palliative setting. Evidence from Phase II trials have demonstrated efficacy of adjuvant chemoradiation in combination with chemotherapy in EHCC. Locally advanced cholangiocarcinoma may be treated with neoadjuvant chemoradiotherapy. In the case of downsizing, assessment for resection may be considered. Brachytherapy offers dose escalation after external radiotherapy. Selected unresectable cases of cholangiocarcinoma may be considered for stereotactic body radiation therapy with neoadjuvant and/or concurrent chemotherapy. Liver transplantation is a treatment option in selected patients with EHCC and IHCC after neoadjuvant chemoradiation. Stenting in combination with palliative external radiotherapy and/or brachytherapy provides improved stent patency and survival. Newer advanced radiation techniques provide a scope for achieving better disease control with reduced morbidity. Effective multimodality treatment incorporating radiotherapy is the way forward for improving survival in patients with cholangiocarcinoma.

  2. MO-A-BRC-00: TG167: Clinical Recommendations for Innovative Brachytherapy Devices and Applicators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Although a multicenter, Phase III, prospective, randomized trial is the gold standard for evidence-based medicine, it is rarely used to evaluate innovative radiotherapy devices because of many practical and ethical reasons. It is usually sufficient to compare the dose distributions and dose rates for determining equivalence of the innovative device to an existing one. Thus, quantitative evaluation of the dosimetric characteristics of an innovative brachytherapy device or application is a critical part in which physicists are actively involved. The physicist’s role, along with physician colleagues, in this process is highlighted for innovative products or applications and includes evaluation of 1)more » dosimetric considerations for clinical implementation (including calibrations, dose calculations, and radiobiological aspects) to comply with existing societal dosimetric prerequisites for sources in routine clinical use, 2) risks and benefits from regulatory and safety perspectives, and 3) resource assessment and preparedness. Further, calibration methods should be traceable to a primary standards dosimetry laboratory such as NIST in the U.S. or to other primary standards dosimetry laboratory located elsewhere. Clinical users should follow standards as approved by their country’s regulatory agencies that approved such a brachytherapy device. Integration of this system into the medical source calibration infrastructure of secondary standard dosimetry laboratories such as the ADCLs is encouraged before a source is introduced into widespread routine clinical use. The AAPM and GEC-ESTRO have developed guidelines for the safe and consistent application of brachytherapy using innovative brachytherapy devices and applications. The current report covers regulatory approvals, calibration, dose calculations, radiobiological issues, and overall safety concerns that should be addressed during the commissioning stage preceding clinical use. These guidelines are based on

  3. Automated construction of an intraoperative high-dose-rate treatment plan library for the Varian brachytherapy treatment planning system.

    PubMed

    Deufel, Christopher L; Furutani, Keith M; Dahl, Robert A; Haddock, Michael G

    2016-01-01

    The ability to create treatment plans for intraoperative high-dose-rate (IOHDR) brachytherapy is limited by lack of imaging and time constraints. An automated method for creation of a library of high-dose-rate brachytherapy plans that can be used with standard planar applicators in the intraoperative setting is highly desirable. Nonnegative least squares algebraic methods were used to identify dwell time values for flat, rectangular planar applicators. The planar applicators ranged in length and width from 2 cm to 25 cm. Plans were optimized to deliver an absorbed dose of 10 Gy to three different depths from the patient surface: 0 cm, 0.5 cm, and 1.0 cm. Software was written to calculate the optimized dwell times and insert dwell times and positions into a .XML plan template that can be imported into the Varian brachytherapy treatment planning system. The user may import the .XML template into the treatment planning system in the intraoperative setting to match the patient applicator size and prescribed treatment depth. A total of 1587 library plans were created for IOHDR brachytherapy. Median plan generation time was approximately 1 minute per plan. Plan dose was typically 100% ± 1% (mean, standard deviation) of the prescribed dose over the entire length and width of the applicator. Plan uniformity was best for prescription depths of 0 cm and 0.5 cm from the patient surface. An IOHDR plan library may be created using automated methods. Thousands of plan templates may be optimized and prepared in a few hours to accommodate different applicator sizes and treatment depths and reduce treatment planning time. The automated method also enforces dwell time symmetry for symmetrical applicator geometries, which simplifies quality assurance. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  4. Estimation of whole-body radiation exposure from brachytherapy for oral cancer using a Monte Carlo simulation.

    PubMed

    Ozaki, Y; Watanabe, H; Kaida, A; Miura, M; Nakagawa, K; Toda, K; Yoshimura, R; Sumi, Y; Kurabayashi, T

    2017-07-01

    Early stage oral cancer can be cured with oral brachytherapy, but whole-body radiation exposure status has not been previously studied. Recently, the International Commission on Radiological Protection Committee (ICRP) recommended the use of ICRP phantoms to estimate radiation exposure from external and internal radiation sources. In this study, we used a Monte Carlo simulation with ICRP phantoms to estimate whole-body exposure from oral brachytherapy. We used a Particle and Heavy Ion Transport code System (PHITS) to model oral brachytherapy with 192Ir hairpins and 198Au grains and to perform a Monte Carlo simulation on the ICRP adult reference computational phantoms. To confirm the simulations, we also computed local dose distributions from these small sources, and compared them with the results from Oncentra manual Low Dose Rate Treatment Planning (mLDR) software which is used in day-to-day clinical practice. We successfully obtained data on absorbed dose for each organ in males and females. Sex-averaged equivalent doses were 0.547 and 0.710 Sv with 192Ir hairpins and 198Au grains, respectively. Simulation with PHITS was reliable when compared with an alternative computational technique using mLDR software. We concluded that the absorbed dose for each organ and whole-body exposure from oral brachytherapy can be estimated with Monte Carlo simulation using PHITS on ICRP reference phantoms. Effective doses for patients with oral cancer were obtained. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  5. Brachytherapy after salvage surgery in cases with large isolated cervical recurrence of squamous cell carcinoma in the previously irradiated neck.

    PubMed

    Miroir, Jessica; Biau, Julian; Saroul, Nicolas; Moreira, Jean-François; Russier, Marc; Lapeyre, Michel

    2016-09-01

    Perioperative brachytherapy after salvage surgery is a therapeutic option in patients with cervical relapse of a primary, controlled, previously irradiated head and neck squamous cell carcinoma. The purpose of this study was to analyze the outcome of this treatment. Between 2008 and 2013, 8 patients underwent cervical brachytherapy after neck dissection. The mean node size was 5.5 cm. Recurrence occurred in an irradiated field (median dose, 50 Gy). Brachytherapy was performed with (192) iridium and dosimetry in accord with the rules of the Paris system. The dose was 60 to 62.7 Gy on the reference isodose. The mean follow-up was 17 months. The median overall survival (OS) was 12 months. The OS was 19% at 2 years and 0% at 5 years. A grade 5 postoperative adverse event occurred in 1 patient. At 6 months, all patients had a grade 3 neck soft tissue fibrosis. One patient had a lethal hemorrhage at 56 months. Brachytherapy is toxic in this population with poor OS. © 2016 Wiley Periodicals, Inc. Head Neck 38: E2490-E2494, 2016. © 2016 Wiley Periodicals, Inc.

  6. In vivo dose verification method in catheter based high dose rate brachytherapy.

    PubMed

    Jaselskė, Evelina; Adlienė, Diana; Rudžianskas, Viktoras; Urbonavičius, Benas Gabrielis; Inčiūra, Arturas

    2017-12-01

    In vivo dosimetry is a powerful tool for dose verification in radiotherapy. Its application in high dose rate (HDR) brachytherapy is usually limited to the estimation of gross errors, due to inability of the dosimetry system/ method to record non-uniform dose distribution in steep dose gradient fields close to the radioactive source. In vivo dose verification in interstitial catheter based HDR brachytherapy is crucial since the treatment is performed inserting radioactive source at the certain positions within the catheters that are pre-implanted into the tumour. We propose in vivo dose verification method for this type of brachytherapy treatment which is based on the comparison between experimentally measured and theoretical dose values calculated at well-defined locations corresponding dosemeter positions in the catheter. Dose measurements were performed using TLD 100-H rods (6 mm long, 1 mm diameter) inserted in a certain sequences into additionally pre-implanted dosimetry catheter. The adjustment of dosemeter positioning in the catheter was performed using reconstructed CT scans of patient with pre-implanted catheters. Doses to three Head&Neck and one Breast cancer patient have been measured during several randomly selected treatment fractions. It was found that the average experimental dose error varied from 4.02% to 12.93% during independent in vivo dosimetry control measurements for selected Head&Neck cancer patients and from 7.17% to 8.63% - for Breast cancer patient. Average experimental dose error was below the AAPM recommended margin of 20% and did not exceed the measurement uncertainty of 17.87% estimated for this type of dosemeters. Tendency of slightly increasing average dose error was observed in every following treatment fraction of the same patient. It was linked to the changes of theoretically estimated dosemeter positions due to the possible patient's organ movement between different treatment fractions, since catheter reconstruction was

  7. Regression Patterns of Iris Melanoma after Palladium-103 (103Pd) Plaque Brachytherapy.

    PubMed

    Chaugule, Sonal S; Finger, Paul T

    2017-07-01

    To evaluate the patterns of regression of iris melanoma after treatment with palladium-103 ( 103 Pd) plaque brachytherapy. Retrospective, nonrandomized, interventional case series. Fifty patients with primary malignant melanoma of the iris. Palladium-103 plaque brachytherapy. Changes in tumor size, pigmentation, and vascularity; incidence of iris neovascularization; and radiation-related complications. The mean age in the case series was 61.2±14.9 years. The mean tumor thickness was 1.4±0.6 mm. According to the American Joint Committee on Cancer, eighth edition, staging criteria for iris melanoma, 21 tumors (42%) were T1a, 5 tumors (10%) were T1b, and 24 tumors (48%) were T2a. The tumor was melanotic in 37 cases (74%) and amelanotic in 13 cases (26%); of these, 13 tumors (26%) showed variable pigmentation. After brachytherapy, mean tumor thickness decreased to 0.9±0.2 mm. Pigmentation increased in 32 tumors (64%), decreased in 11 tumors (22%), and was unchanged in 6 tumors (12%). For intrinsic vascularity (n = 19), 12 tumors (63%) showed decrease and 7 tumors (37%) showed complete resolution. Appearance of ectropion uveae showed diminution in 15 tumors (43%); newly present corectopia was observed in 6 patients (12%). On high-frequency ultrasound imaging, of the 42 tumors (84%) with low to moderate internal reflectivity, 30 tumors (60%) showed an increase in internal reflectivity on regression. Iris stromal atrophy was noted in 26 patients (52%), progression or new-onset cataract was noted in 22 patients (44%), neovascular glaucoma was noted in 1 patient (2%), and there were no cases of corneal opacity. There was no clinical evidence (0%) of radiation-induced retinopathy, maculopathy, or optic neuropathy. Mean follow-up in this series was 5.2 years (range, 0.5-17 years). The most common findings related to iris melanoma regression after 103 Pd plaque brachytherapy included decreased intrinsic tumor vascularity, increased tumor pigmentation, and decreased tumor

  8. [Usefulness of urethral endoprosthesis in the management of urinary retention after brachytherapy for localized prostate cancer].

    PubMed

    Kerkeni, W; Chahwan, C; Lenormand, C; Dubray, B; Benyoucef, A; Pfister, C

    2014-03-01

    Brachytherapy is a possible treatment for localized low risk prostate cancer. Although this option is minimally invasive, some side effects may occur. Acute retention of urine (ARU) has been observed in 5% to 22% of cases and can be prevented in most cases by alpha-blocker treatment. Several alternatives have been reported in the literature for the management of ARU following brachytherapy: prolonged suprapubic catheterization, transurethral resection of the prostate and also intermittent self-catheterization. The authors report an original endoscopic approach, using urethral endoprosthesis, with a satisfactory voiding status. Copyright © 2013. Published by Elsevier Masson SAS.

  9. Long-Term Outcomes of Alternative Brachytherapy Techniques for Early Prostate Cancer

    DTIC Science & Technology

    2007-01-01

    Oncol 2003;21:3979-86. 15. Whitmore WF, Jr., Hilaris B, Grabstald H. Retropubic implantation to iodine 125 in the treatment of prostatic cancer. J...brachytherapy and external beam irradiation for clinically localized, high-risk prostatic carcinoma. Int J Radiat Oncol Biol Phys 1996;35:875-9. 29. Stock RG

  10. Prognostic Importance of Small Prostate Size in Men Receiving Definitive Prostate Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taira, Al V.; Merrick, Gregory S., E-mail: gmerrick@urologicresearchinstitute.org; Galbreath, Robert W.

    Purpose: To assess whether small prostate size is an adverse prognostic factor in men undergoing brachytherapy in the same manner in which it seems to be for men undergoing radical prostatectomy. Methods and Materials: From April 1995 to June 2008, 2024 patients underwent brachytherapy by a single brachytherapist. Median follow-up was 7.4 years. The role of small prostate size ({<=}20 cm{sup 3}) as a prognostic factor for biochemical progression-free survival, cause-specific survival, and all-cause mortality was investigated. The differences in survival between men with small and larger prostates were compared using Kaplan-Meier curves and log-rank tests. Results: Median prostate sizemore » for the entire cohort was 32.7 cm{sup 3}. For the 167 men with small prostates, median prostate size was 17.4 cm{sup 3}. There was no difference in biochemical progression-free survival (95.2% vs 96.2%, P=.603), cause-specific survival (97.7% vs 98.3%, P=.546), or all-cause mortality (78.0% vs 77.2%, P=.838) at 10 years for men with small prostates compared with men with larger prostates. On univariate and multivariate analysis, small prostate size was not associated with any of the primary outcome measures. Conclusion: Men with small prostates treated with brachytherapy have excellent outcomes and are at no higher risk of treatment failure than men with larger glands. High-quality implants with adequate margins seem sufficient to address the increased adverse risk factors associated with small prostate size.« less

  11. NEW ULTRA-WIDE-FIELD ANGIOGRAPHIC GRADING SCHEME FOR RADIATION RETINOPATHY AFTER IODINE-125 BRACHYTHERAPY FOR UVEAL MELANOMA.

    PubMed

    McCannel, Tara A; Kim, EunAh; Kamrava, Mitchell; Lamb, James; Caprioli, Joseph; Yang, Dong; McCannel, Colin A

    2017-10-06

    Radiation retinopathy remains incompletely characterized and may cause severe vision loss. Ultra-wide-field fluorescein angiography provides a pan-fundus view of vascular alterations caused by radiation treatment and may predict visual and ocular outcomes. We have developed a grading scheme to describe pan-fundus severity and to predict the progression of radiation retinopathy in patients treated for uveal melanoma with iodine-125 brachytherapy. A retrospective review of patients treated with standard iodine-125 brachytherapy for uveal melanoma at the Ophthalmic Oncology Center at the University of California, Los Angeles, who had undergone both baseline and postbrachytherapy ultra-wide-field fluorescein angiography. A grading scheme was devised based on observations of vascular leakage, retinal perfusion status, and retinal proliferation. The correlation of grade severity with patient characteristics, tumor features, visual acuity, optical coherence tomography findings, and neovascular glaucoma was measured with chi-square and one-way analysis of variance analyses. Sixty-seven patients were identified for review. Consistent wide-field angiographic patterns after brachytherapy were observed and graded as follows: Grade 0: normal; Grade 1: late foveal leakage; Grade 2: late peripheral leakage; Grade 3: presence of nonperfusion; and Grade 4: retinal neovascularization. Six eyes (8.9%) were Grade 0; 16 (23.8%) were Grade 1; 25 (37.3%) were Grade 2; 16 (23.4%) were Grade 3; and 4 (6.0%) were Grade 4. Higher grade radiation severity correlated significantly with duration of follow-up (P < 0.02); younger age (P = 0.035); worse visual acuity (P = 0.001); cystoid macular edema or atrophy on optical coherence tomography (P < 0.0001); and neovascular glaucoma (P = 0.003). Wide-field fluorescein angiography revealed distinct fundus-wide patterns of vascular damage, which were progressive in nature in eyes treated with iodine-125 brachytherapy for uveal melanoma and correlated

  12. An electronic brachytherapy technique for treating squamous cell carcinoma in situ of the digit: a case report.

    PubMed

    Arterbery, V Elayne; Watson, Alice C

    2013-04-15

    Squamous cell carcinoma in situ of the digit presents a complex management problem, which is usually treated with surgery or radiation or topical agents. The outcome of the surgical treatment can be an undesirable cosmetic result and loss of function. We report a unique Electronic Brachytherapy technique to treat the digit, which uses a 50 Kv miniaturized X-ray source with specialized applicators. A 62-year-old African-American male was presented with a 12-month history of gradual darkening of the dorsal-distal middle left finger. Examination revealed a hyper pigmented scaly patch on the proximal to lateral nail fold of the L 3rd finger, nail dystrophy, and vertical split in the lateral section of the nail. The patient underwent evaluation of the lesion by Plastic Surgery with the removal of the lateral nail and a nail bed biopsy. Pathology revealed squamous cell carcinoma in situ with a possible focal positive, deep margin. The patient deliberated over surgical opinions, and eventually decided on radiation. A high dose rate Electronic Brachytherapy system using the XOFT Accent controller delivered dose of 4000 cGy in eight fractions, twice weekly, with at least 48 hours between fractions and treatment prescribed to a depth of 0 to 2 mm. The Xoft unit has specialized skin applicators that permit superficial treatment. Parameters assessed included the efficacy, cosmetic results feasibility, and acute safety of the Electronic Brachytherapy technique. The patient exhibited moderate redness, hyperpigmentation erythema, desquamation, and Grade 1 to 2 edema acutely (following radiation), which resolved within 1 month of the treatment. Electronic brachytherapy treatment delivery took about 6 minutes, and the total procedure time was about 15 minutes. At the median follow-up of one year, the area revealed excellent cosmesis, and there was no infection or fat necrosis, desquamation, no cancer recurrence, and no evidence of fibrosis at the last follow-up. This suggests

  13. A novel method for vaginal cylinder treatment planning: a seamless transition to 3D brachytherapy

    PubMed Central

    Wu, Vincent; Wang, Zhou; Patil, Sachin

    2012-01-01

    Purpose Standard treatment plan libraries are often used to ensure a quick turn-around time for vaginal cylinder treatments. Recently there is increasing interest in transitioning from conventional 2D radiograph based brachytherapy to 3D image based brachytherapy, which has resulted in a substantial increase in treatment planning time and decrease in patient through-put. We describe a novel technique that significantly reduces the treatment planning time for CT-based vaginal cylinder brachytherapy. Material and methods Oncentra MasterPlan TPS allows multiple sets of data points to be classified as applicator points which has been harnessed in this method. The method relies on two hard anchor points: the first dwell position in a catheter and an applicator configuration specific dwell position as the plan origin and a soft anchor point beyond the last active dwell position to define the axis of the catheter. The spatial location of various data points on the applicator's surface and at 5 mm depth are stored in an Excel file that can easily be transferred into a patient CT data set using window operations and then used for treatment planning. The remainder of the treatment planning process remains unaffected. Results The treatment plans generated on the Oncentra MasterPlan TPS using this novel method yielded results comparable to those generated on the Plato TPS using a standard treatment plan library in terms of treatment times, dwell weights and dwell times for a given optimization method and normalization points. Less than 2% difference was noticed between the treatment times generated between both systems. Using the above method, the entire planning process, including CT importing, catheter reconstruction, multiple data point definition, optimization and dose prescription, can be completed in ~5–10 minutes. Conclusion The proposed method allows a smooth and efficient transition to 3D CT based vaginal cylinder brachytherapy planning. PMID:23349650

  14. Brachytherapy next generation: robotic systems

    PubMed Central

    Popescu, Tiberiu; Kacsó, Alex Cristian; Pisla, Doina

    2015-01-01

    In a field dominated by external beam radiation therapy (EBRT), both the therapeutic and technical possibilities of brachytherapy (BT) are underrated, shadowed by protons and intensity modulated radiotherapy. Decreasing expertise and indications, as well as increasing lack of specific BT training for radiation therapy (RT) residents led to the real need of shortening its learning curve and making it more popular. Developing robotic BT devices can be a way to mitigate the above issues. There are many teams working at custom-made robotic BT platforms to perfect and overcome the limitations of the existing systems. This paper provides a picture of the current state-of-the-art in robotic assisted BT, as it also conveys the author's solution to the problem, a parallel robot that uses CT-guidance. PMID:26816510

  15. Calibration of Photon Sources for Brachytherapy

    NASA Astrophysics Data System (ADS)

    Rijnders, Alex

    Source calibration has to be considered an essential part of the quality assurance program in a brachytherapy department. Not only it will ensure that the source strength value used for dose calculation agrees within some predetermined limits to the value stated on the source certificate, but also it will ensure traceability to international standards. At present calibration is most often still given in terms of reference air kerma rate, although calibration in terms of absorbed dose to water would be closer to the users interest. It can be expected that in a near future several standard laboratories will be able to offer this latter service, and dosimetry protocols will have to be adapted in this way. In-air measurement using ionization chambers (e.g. a Baldwin—Farmer ionization chamber for 192Ir high dose rate HDR or pulsed dose rate PDR sources) is still considered the method of choice for high energy source calibration, but because of their ease of use and reliability well type chambers are becoming more popular and are nowadays often recommended as the standard equipment. For low energy sources well type chambers are in practice the only equipment available for calibration. Care should be taken that the chamber is calibrated at the standard laboratory for the same source type and model as used in the clinic, and using the same measurement conditions and setup. Several standard laboratories have difficulties to provide these calibration facilities, especially for the low energy seed sources (125I and 103Pd). Should a user not be able to obtain properly calibrated equipment to verify the brachytherapy sources used in his department, then at least for sources that are replaced on a regular basis, a consistency check program should be set up to ensure a minimal level of quality control before these sources are used for patient treatment.

  16. Long-Term Results of Brachytherapy With Temporary Iodine-125 Seeds in Children With Low-Grade Gliomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korinthenberg, Rudolf, E-mail: rudolf.korinthenberg@uniklinik-freiburg.d; Neuburger, Daniela; Trippel, Michael

    Purpose: To retrospectively review the results of temporary I-125 brachytherapy in 94 children and adolescents with low-grade glioma. Methods and Materials: Treatment was performed in progressive tumors roughly spherical in shape with a diameter of up to 5 cm, including 79 astrocytomas, 5 oligodendrogliomas, 4 oligoastrocytomas, 1 ependymoma, and 5 other tumors. Location was suprasellar/chiasmal in 44, thalamic/basal ganglia in 18, hemispheric in 15, midbrain/pineal region in 13, and lower brainstem in 3. Initially, 8% of patients were free of symptoms, 47% were symptomatic but not disabled, and 30% were slightly, 6% moderately, and 3% severely disabled. Results: 5- andmore » 10-year survival was 97% and 92%. The response to I-125 brachytherapy over the long term was estimated after a median observation period of 38.4 (range, 6.4-171.0) months. At that time, 4 patients were in complete, 27 in partial, and 18 in objective remission; 15 showed stable and 30 progressive tumors. Treatment results did not correlate with age, sex, histology, tumor size, location, or demarcation of the tumor. Secondary treatment became necessary in 36 patients, including 19 who underwent repeated I-125 brachytherapy. At final follow-up, the number of symptom-free patients had risen to 21%. Thirty-eight percent showed symptoms without functional impairment, 19% were slightly and 11% moderately disabled, and only 4% were severely disabled. Conclusions: Response rates similar to those of conventional radiotherapy or chemotherapy can be anticipated with I-125 brachytherapy in tumors of the appropriate size and shape. We believe it to be a useful contribution to the treatment of low-grade gliomas in children.« less

  17. Reference air kerma rate calibration system for high dose rate Ir-192 brachytherapy sources in Taiwan

    NASA Astrophysics Data System (ADS)

    Chu, Wei-Han; Yuan, Ming-Chen; Lee, Jeng-Hung; Lin, Yi-Chun

    2017-11-01

    Ir-192 sources are widely used in brachytherapy and the number of treatments is around seven thousand for the use of the high dose rate (HDR) Ir-192 brachytherapy source per year in Taiwan. Due to its physical half-life of 73.8 days, the source should be replaced four times per year to maintain the HDR treatment mode (DDEP, 2005; Coursey et al., 1992). When doing this work, it must perform the source dose trace to assure the dose accuracy. To establish the primary measurement standard of reference air kerma rate(RAKR) for the HDR Ir-192 brachytherapy sources in Taiwan, the Institute of Nuclear Energy Research (INER) fabricated a dual spherical graphite-walled cavity ionization chambers system to directly measure the RAKR of the Ir-192 brachytherapy source. In this system, the ion-charge was accumulated by the two ionization chambers and after correction for the ion recombination, temperature, atmosphere pressure, room scattering, graphite-wall attenuation, air attenuation, source decay, stem effect, and so on. The RAKR of the Ir-192 source was obtained in the ambient conditions of 22 °C and one atmosphere. The measurement uncertainty of the system was around 0.92% in 96% confidence level (k=2.0). To verify the accuracy of the result, the source calibration comparison has been made at the National Radiation Standard Laboratory (NRSL) of INER and Physikalisch-Technische Bundesanstalt (PTB, Germany) in 2015. The ratio of the measurement results between INER and PTB, INER/PTB, was 0.998±0.027 (k=2) which showed good consistency and the performance of the system was verified.

  18. Definition of medical event is to be based on the total source strength for evaluation of permanent prostate brachytherapy: A report from the American Society for Radiation Oncology.

    PubMed

    Nag, Subir; Demanes, D Jeffrey; Hagan, Michael; Rivard, Mark J; Thomadsen, Bruce R; Welsh, James S; Williamson, Jeffrey F

    2011-10-01

    The Nuclear Regulatory Commission deems it to be a medical event (ME) if the total dose delivered differs from the prescribed dose by 20% or more. A dose-based definition of ME is not appropriate for permanent prostate brachytherapy as it generates too many spurious MEs and thereby creates unnecessary apprehension in patients, and ties up regulatory bodies and the licensees in unnecessary and burdensome investigations. A more suitable definition of ME is required for permanent prostate brachytherapy. The American Society for Radiation Oncology (ASTRO) formed a working group of experienced clinicians to review the literature, assess the validity of current regulations, and make specific recommendations about the definition of an ME in permanent prostate brachytherapy. The working group found that the current definition of ME in §35.3045 as "the total dose delivered differs from the prescribed dose by 20 percent or more" was not suitable for permanent prostate brachytherapy since the prostate volume (and hence the resultant calculated prostate dose) is dependent on the timing of the imaging, the imaging modality used, the observer variability in prostate contouring, the planning margins used, inadequacies of brachytherapy treatment planning systems to calculate tissue doses, and seed migration within and outside the prostate. If a dose-based definition for permanent implants is applied strictly, many properly executed implants would be improperly classified as an ME leading to a detrimental effect on brachytherapy. The working group found that a source strength-based criterion, of >20% of source strength prescribed in the post-procedure written directive being implanted outside the planning target volume is more appropriate for defining ME in permanent prostate brachytherapy. ASTRO recommends that the definition of ME for permanent prostate brachytherapy should not be dose based but should be based upon the source strength (air-kerma strength) administered.

  19. Incidence of Secondary Cancer Development After High-Dose Intensity-Modulated Radiotherapy and Image-Guided Brachytherapy for the Treatment of Localized Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zelefsky, Michael J., E-mail: Zelefskm@mskcc.org; Housman, Douglas M.; Pei Xin

    2012-07-01

    Purpose: To report the incidence and excess risk of second malignancy (SM) development compared with the general population after external beam radiotherapy (EBRT) and brachytherapy to treat prostate cancer. Methods and Materials: Between 1998 and 2001, 1,310 patients with localized prostate cancer were treated with EBRT (n = 897) or brachytherapy (n = 413). We compared the incidence of SMs in our patients with that of the general population extracted from the National Cancer Institute's Surveillance, Epidemiology, and End Results data set combined with the 2000 census data. Results: The 10-year likelihood of SM development was 25% after EBRT andmore » 15% after brachytherapy (p = .02). The corresponding 10-year likelihood for in-field SM development in these groups was 4.9% and 1.6% (p = .24). Multivariate analysis showed that EBRT vs. brachytherapy and older age were the only significant predictors for the development of all SMs (p = .037 and p = .030), with a trend for older patients to develop a SM. The increased incidence of SM for EBRT patients was explained by the greater incidence of skin cancer outside the radiation field compared with that after brachytherapy (10.6% and 3.3%, respectively, p = .004). For the EBRT group, the 5- and 10-year mortality rate was 1.96% and 5.1% from out-of field cancer, respectively; for in-field SM, the corresponding mortality rates were 0.1% and 0.7%. Among the brachytherapy group, the 5- and 10-year mortality rate related to out-of field SM was 0.8% and 2.7%, respectively. Our observed SM rates after prostate RT were not significantly different from the cancer incidence rates in the general population. Conclusions: Using modern sophisticated treatment techniques, we report low rates of in-field bladder and rectal SM risks after prostate cancer RT. Furthermore, the likelihood of mortality secondary to a SM was unusual. The greater rate of SM observed with EBRT vs. brachytherapy was related to a small, but significantly

  20. Applicability of Glass Dosimeters for In-vivo Dosimetry in Brachytherapy

    NASA Astrophysics Data System (ADS)

    Moon, Sun Young; Son, Jaeman; Yoon, Myonggeun; Jeang, EunHee; Lim, Young Kyung; Chung, Weon Kyu; Kim, Dong Wook

    2018-06-01

    During brachytherapy, confirming the dose delivered is very important in order to prevent radiation-associated side effects. Therefore, we aimed to confirm the accuracy of dose delivery near the source by inserting glass dosimeters within the applicator. We created an alternative pelvic phantom with the same shape and internal structures as the usual patient. In addition, we created a tandem for insertion of the glass dosimeters and measured the dose near the source by inserting the glass dosimeters into the tandem and evaluating the accuracy of the dwell position and time through the dose near the source. Errors between the values obtained from the five glass dosimeters and the values from the treatment planning system were -6.27, -2.1, -4.18, 6.31, and -0.39%, respectively. The mean error was 3.85%. This value was acceptable considering that the error of the glass dosimeter itself is approximately 3%. Even though a complement of the applicator and the error calibration is required in order to apply this technique clinically, we believe that radiation accidents and overdoses can be prevented through in-vivo dosimetry using a glass dosimeter for brachytherapy.

  1. SU-E-T-547: Rotating Shield Brachytherapy (RSBT) for Cervical Cancer.

    PubMed

    Yang, W; Kim, Y; Liu, Y; Wu, X; Flynn, R

    2012-06-01

    To assess rotating shield brachytherapy (RSBT) delivered with the electronic brachytherapy (eBT) source comparing to intracavitary (IC) and intracavitary plus supplemental interstitial brachytherapy (IC+IS BT) delivered with conventional isotope radiation source. IC, IC+IS and RSBT plan was simulated for 5 patients with advanced cervical cancer (>40cc). One BT plan for each patient (fraction 1) guided by magnetic resonance imaging (MRI) was used in our treatment planning system (TPS). A bio- and MRI-compatible polycarbonate (Makrolon Rx3158) intrauterine applicator was simulated for IC and RSBT, and the vienna applicator was simulated for IC+IS BT. 192Ir was used as the radiation source of IC and IC+IS BT; Xoft AxxentTM eBT source was used for RSBT. A 0.5 mm thick tungsten shield was used for RS-BT with different azimuthal and zenith angles. The total dose for each plan was escalated as the external beam radiation therapy (EBRT) plus BT times fraction number (5 in our case). RSBT and IC+IS BT had higher dose conformity in terms of D90 than IC BT for all the patients. The advantage of RSBT over IC+IS BT was dependent on the shield emission angle, tumor shape and tandem applicator location. The delivery time of RSBT was increased as finer emission angle was selected. RSBT is a less-invasive potential alternative to conventional IC and IC+IS BT for treating bulky (>40cc) cervical cancer. RSBT can provide better treatment outcome with clinically acceptable increased delivery time if proper emission angle is selected based on the tumor shape and tandem applicator location. supported in part by NSF grants CCF-0830402 and CCF-0844765; and the NIH grant K25-CA123112, and American Cancer Society seed grant (IRG-77-004-31). © 2012 American Association of Physicists in Medicine.

  2. Customized vaginal vault brachytherapy with computed tomography imaging-derived applicator prototyping.

    PubMed

    Wiebe, Ericka; Easton, Harry; Thomas, Gillian; Barbera, Lisa; D'Alimonte, Laura; Ravi, Ananth

    2015-01-01

    A novel customized vaginal brachytherapy mould technique has been developed for clinical use. This image-guided technique provides a brachytherapy applicator solution for irregular vaginal vault configuration and/or a wide vaginal apex relative to the vaginal introitus that would be sub-optimally treated with standard cylinders. The customized vaginal applicator is generated by the following process: CT images are obtained with contrast-soaked vaginal packing in situ to highlight unique anatomical detail. A 3-dimensional digital model is developed from the images and subsequently converted into a custom applicator with the use of stereolithography, which is an additive manufacturing technique whereby layers 50-100 μm thick of resin are deposited and polymerized using a laser to create intricate 3-dimensional objects. The density of the applicator and the dose delivered using the custom applicator were both measured to ensure accurate dosimetry. The CT-based densities of a clinical vaginal cylinder and the cylinder generated using stereolithography were 1.29 ± 0.06 g/cm(3) vs 1.28 ± 0.01 g/cm(3), respectively. The mean measured dose from a representative stereolithographed applicator normalized to dose measured for a single plastic catheter was 99.8 ± 4.2%. In patient dosimetric results indicate improved coverage of the lateral aspect of vaginal vault with the custom cylinder relative to the standard cylinder; 700 cGy vs 328 cGy, respectively, at a representative lateral vaginal dose point, while simultaneously achieving relatively narrow dose distribution in the anterior/posterior direction. Stereolithographic applicator production was available within a clinically acceptable timeframe, and its clinical feasibility and utility has been demonstrated. Copyright © 2015 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  3. The Application of Elliptic Cylindrical Phantom in Brachytherapy Dosimetric Study of HDR 192Ir Source

    NASA Astrophysics Data System (ADS)

    Ahn, Woo Sang; Park, Sung Ho; Jung, Sang Hoon; Choi, Wonsik; Do Ahn, Seung; Shin, Seong Soo

    2014-06-01

    The purpose of this study is to determine the radial dose function of HDR 192Ir source based on Monte Carlo simulation using elliptic cylindrical phantom, similar to realistic shape of pelvis, in brachytherapy dosimetric study. The elliptic phantom size and shape was determined by analysis of dimensions of pelvis on CT images of 20 patients treated with brachytherapy for cervical cancer. The radial dose function obtained using the elliptic cylindrical water phantom was compared with radial dose functions for different spherical phantom sizes, including the Williamsion's data loaded into conventional planning system. The differences in the radial dose function for the different spherical water phantoms increase with radial distance, r, and the largest differences in the radial dose function appear for the smallest phantom size. The radial dose function of the elliptic cylindrical phantom significantly decreased with radial distance in the vertical direction due to different scatter condition in comparison with the Williamson's data. Considering doses to ICRU rectum and bladder points, doses to reference points can be underestimated up to 1-2% at the distance from 3 to 6 cm. The radial dose function in this study could be used as realistic data for calculating the brachytherapy dosimetry for cervical cancer.

  4. High Dose Rate Brachytherapy in Two 9 Gy Fractions in the Treatment of Locally Advanced Cervical Cancer - a South Indian Institutional Experience.

    PubMed

    Ghosh, Saptarshi; Rao, Pamidimukkala Bramhananda; Kotne, Sivasankar

    2015-01-01

    Although 3D image based brachytherapy is currently the standard of treatment in cervical cancer, most of the centres in developing countries still practice orthogonal intracavitary brachytherapy due to financial constraints. The quest for optimum dose and fractionation schedule in high dose rate (HDR) intracavitary brachytherapy (ICBT) is still ongoing. While the American Brachytherapy Society recommends four to eight fractions of each less than 7.5 Gy, there are some studies demonstrating similar efficacy and comparable toxicity with higher doses per fraction. To assess the treatment efficacy and late complications of HDR ICBT with 9 Gy per fraction in two fractions. This is a prospective institutional study in Southern India carried on from 1st June 2012 to 31st July 2014. In this period, 76 patients of cervical cancer satisfying our inclusion criteria were treated with concurrent chemo-radiation following ICBT with 9 Gy per fraction in two fractions, five to seven days apart. The median follow-up period in the study was 24 months (range 10.6 - 31.2 months). The 2 year actuarial local control rate, disease-free survival and overall survival were 88.1%, 84.2% and 81.8% respectively. Although 38.2% patients suffered from late toxicity, only 3 patients had grade III late toxicity. In our experience, HDR brachytherapy with 9 Gy per fraction in two fractions is an effective dose fractionation for the treatment of cervical cancer with acceptable toxicity.

  5. A randomized trial of the effect of training in relaxation and guided imagery techniques in improving psychological and quality-of-life indices for gynecologic and breast brachytherapy patients.

    PubMed

    León-Pizarro, Concha; Gich, Ignasi; Barthe, Emma; Rovirosa, Angeles; Farrús, Blanca; Casas, Francesc; Verger, Eugènia; Biete, Albert; Craven-Bartle, Jordi; Sierra, Jordi; Arcusa, Angeles

    2007-11-01

    The randomized study aimed to determine the efficacy of psychological intervention consisting of relaxation and guided imagery to reduce anxiety and depression in gynecologic and breast cancer patients undergoing brachytherapy during hospitalization. Sixty-six patients programmed to receive brachytherapy in two hospitals in Barcelona (Spain) were included in this study. The patients were randomly allocated to either the study group (n=32) or the control group (n=34). Patients in both groups received training regarding brachytherapy, but only study group patients received training in relaxation and guided imagery. After collection of sociodemographic data, all patients were given a set of questionnaires on anxiety and depression: the Hospital Anxiety and Depression Scale (HADS), and on quality of life: Cuestionario de Calidad de Vida QL-CA-AFex (CCV), prior to, during and after brachytherapy. The study group demonstrated a statistically significant reduction in anxiety (p=0.008), depression (p=0.03) and body discomfort (p=0.04) compared with the control group. The use of relaxation techniques and guided imagery is effective in reducing the levels of anxiety, depression and body discomfort in patients who must remain isolated while undergoing brachytherapy. This simple and inexpensive intervention enhances the psychological wellness in patients undergoing brachytherapy.State: This study has passed Ethical Committee review.

  6. Radiobiological equivalent of low/high dose rate brachytherapy and evaluation of tumor and normal responses to the dose.

    PubMed

    Manimaran, S

    2007-06-01

    The aim of this study was to compare the biological equivalent of low-dose-rate (LDR) and high-dose-rate (HDR) brachytherapy in terms of the more recent linear quadratic (LQ) model, which leads to theoretical estimation of biological equivalence. One of the key features of the LQ model is that it allows a more systematic radiobiological comparison between different types of treatment because the main parameters alpha/beta and micro are tissue-specific. Such comparisons also allow assessment of the likely change in the therapeutic ratio when switching between LDR and HDR treatments. The main application of LQ methodology, which focuses on by increasing the availability of remote afterloading units, has been to design fractionated HDR treatments that can replace existing LDR techniques. In this study, with LDR treatments (39 Gy in 48 h) equivalent to 11 fractions of HDR irradiation at the experimental level, there are increasing reports of reproducible animal models that may be used to investigate the biological basis of brachytherapy and to help confirm theoretical predictions. This is a timely development owing to the nonavailability of sufficient retrospective patient data analysis. It appears that HDR brachytherapy is likely to be a viable alternative to LDR only if it is delivered without a prohibitively large number of fractions (e.g., fewer than 11). With increased scientific understanding and technological capability, the prospect of a dose equivalent to HDR brachytherapy will allow greater utilization of the concepts discussed in this article.

  7. Vision Loss Following Episcleral Brachytherapy for Uveal Melanoma: Development of a Vision Prognostication Tool.

    PubMed

    Aziz, Hassan A; Singh, Nakul; Bena, James; Wilkinson, Allan; Singh, Arun D

    2016-06-01

    Vision loss following episcleral brachytherapy for uveal melanoma is difficult to predict for individual patients. To generate a risk calculator for vision loss following episcleral brachytherapy for uveal melanoma. A retrospective review of data was conducted at a multispecialty tertiary care center in Cleveland, Ohio. All patients with primary ciliary body or choroidal melanoma treated with iodine 125 or ruthenium 106 episcleral brachytherapy between January 1, 2004, and December 30, 2013, were included. Univariate and multivariable Cox proportional hazards were used to determine the influence of baseline patient factors on vision loss. Kaplan-Meier curves (log-rank analyses) were used to estimate freedom from vision loss. Bootstrap resampling was performed to bias correct this estimate. Vision loss (to visual acuity [VA] worse than 20/50 and worse than 20/200). A total of 311 patients were included in the study, with a mean (SD) age of 62 (14.7) years at start of treatment and a median follow-up of 36 months (interquartile range, 18-60 months). At presentation, VA was better than or equal to 20/50 in 199 patients (64%) and better than or equal to 20/200 in 289 patients (93%). By Kaplan-Meier analysis, VA less than 20/200 at 3 years was not associated with sex, diabetes, systemic hypertension, or hypercholesterolemia but was associated with history of ocular comorbidities, type of isotope (ruthenium 106 or iodine 125), and initial VA ( >20/50 or <20/50). By multivariable analysis, age (hazard ratio [HR], 0.97; 95% CI, 0.94-1.00; P = .06), largest basal diameter (HR, 1.25; 95% CI, 1.16-1.34; P = <.001), total radiation dose to the fovea (HR, 1.03; 95% CI, 1.01-1.04; P = .001) and optic disc (HR, 1.01; 95% CI, 1.00-1.01; P = .005), and initial VA worse than 20/50 (HR, 1.85; 95% CI, 1.20-2.85; P = .005) were predictive of vision loss to a VA of less than 20/200. The concordance index for the full data set was 0.77. Using these data, an online

  8. LDR brachytherapy: can low dose rate hypersensitivity from the "inverse" dose rate effect cause excessive cell killing to peripherial connective tissues and organs?

    PubMed

    Leonard, B E; Lucas, A C

    2009-02-01

    Examined here are the possible effects of the "inverse" dose rate effect (IDRE) on low dose rate (LDR) brachytherapy. The hyper-radiosensitivity and induced radioresistance (HRS/IRR) effect benefits cell killing in radiotherapy, and IDRE and HRS/IRR seem to be generated from the same radioprotective mechanisms. We have computed the IDRE excess cell killing experienced in LDR brachytherapy using permanent seed implants. We conclude, firstly, that IDRE is a dose rate-dependent manifestation of HRS/IRR. Secondly, the presence of HRS/IRR or IDRE in a cell species or tissue must be determined by direct dose-response measurements. Thirdly, a reasonable estimate is that 50-80% of human adjoining connective and organ tissues experience IDRE from permanent implanted LDR brachytherapy. If IDRE occurs for tissues at point A for cervical cancer, the excess cell killing will be about a factor of 3.5-4.0 if the initial dose rate is 50-70 cGy h(-1). It is greater for adjacent tissues at lower dose rates and higher for lower initial dose rates at point A. Finally, higher post-treatment complications are observed in LDR brachytherapy, often for unknown reasons. Some of these are probably a result of IDRE excess cell killing. Measurements of IDRE need be performed for connective and adjacent organ tissues, i.e. bladder, rectum, urinary tract and small bowels. The measured dose rate-dependent dose responses should extended to <10 cGy h(-1) and involve multiple patients to detect patient variability. Results may suggest a preference for high dose rate brachytherapy or LDR brachytherapy without permanent retention of the implant seeds (hence the dose rates in peripheral tissues and organs remain above IDRE thresholds).

  9. Interfraction patient motion and implant displacement in prostate high dose rate brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, C. D.; Kron, T.; Leahy, M.

    Purpose: To quantify movement of prostate cancer patients undergoing treatment, using an in-house developed motion sensor in order to determine a relationship between patient movement and high dose rate (HDR) brachytherapy implant displacement. Methods: An electronic motion sensor was developed based on a three axis accelerometer. HDR brachytherapy treatment for prostate is delivered at this institution in two fractions 24 h apart and 22 patients were monitored for movement over the interval between fractions. The motion sensors functioned as inclinometers, monitoring inclination of both thighs, and the inclination and roll of the abdomen. The implanted HDR brachytherapy catheter set wasmore » assessed for displacement relative to fiducial markers in the prostate. Angle measurements and angle differences over a 2 s time base were binned, and the standard deviations of the resulting frequency distributions used as a metric for patient motion in each monitored axis. These parameters were correlated to measured catheter displacement using regression modeling. Results: The mean implant displacement was 12.6 mm in the caudal direction. A mean of 19.95 h data was recorded for the patient cohort. Patients generally moved through a limited range of angles with a mean of the exception of two patients who spent in excess of 2 h lying on their side. When tested for a relationship between movement in any of the four monitored axes and the implant displacement, none was significant. Conclusions: It is not likely that patient movement influences HDR prostate implant displacement. There may be benefits to patient comfort if nursing protocols were relaxed to allow patients greater freedom to move while the implant is in situ.« less

  10. Dosimetric Effects of Air Pockets Around High-Dose Rate Brachytherapy Vaginal Cylinders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, Susan, E-mail: srichardson@radonc.wustl.ed; Palaniswaamy, Geethpriya; Grigsby, Perry W.

    2010-09-01

    Purpose: Most physicians use a single-channel vaginal cylinder for postoperative endometrial cancer brachytherapy. Recent published data have identified air pockets between the vaginal cylinders and the vaginal mucosa. The purpose of this research was to evaluate the incidence, size, and dosimetric effects of these air pockets. Methods and Materials: 25 patients receiving postoperative vaginal cuff brachytherapy with a high-dose rate vaginal cylinders were enrolled in this prospective data collection study. Patients were treated with 6 fractions of 200 to 400 cGy per fraction prescribed at 5 mm depth. Computed tomography simulation for brachytherapy treatment planning was performed for each fraction.more » The quantity, volume, and dosimetric impact of the air pockets surrounding the cylinder were quantified. Results: In 25 patients, a total of 90 air pockets were present in 150 procedures (60%). Five patients had no air pockets present during any of their treatments. The average number of air pockets per patient was 3.6, with the average total air pocket volume being 0.34 cm{sup 3} (range, 0.01-1.32 cm{sup 3}). The average dose reduction to the vaginal mucosa at the air pocket was 27% (range, 9-58%). Ten patients had no air pockets on their first fraction but air pockets occurred in subsequent fractions. Conclusion: Air pockets between high-dose rate vaginal cylinder applicators and the vaginal mucosa are present in the majority of fractions of therapy, and their presence varies from patient to patient and fraction to fraction. The existence of air pockets results in reduced radiation dose to the vaginal mucosa.« less

  11. Improving the treatment planning and delivery process of Xoft electronic skin brachytherapy.

    PubMed

    Manger, Ryan; Rahn, Douglas; Hoisak, Jeremy; Dragojević, Irena

    2018-05-14

    To develop an improved Xoft electronic skin brachytherapy process and identify areas of further improvement. A multidisciplinary team conducted a failure modes and effects analysis (FMEA) by developing a process map and a corresponding list of failure modes. The failure modes were scored for their occurrence, severity, and detectability, and a risk priority number (RPN) was calculated for each failure mode as the product of occurrence, severity, and detectability. Corrective actions were implemented to address the higher risk failure modes, and a revised process was generated. The RPNs of the failure modes were compared between the initial process and final process to assess the perceived benefits of the corrective actions. The final treatment process consists of 100 steps and 114 failure modes. The FMEA took approximately 20 person-hours (one physician, three physicists, and two therapists) to complete. The 10 most dangerous failure modes had RPNs ranging from 336 to 630. Corrective actions were effective at addressing most failure modes (10 riskiest RPNs ranging from 189 to 310), yet the RPNs were higher than those published for alternative systems. Many of these high-risk failure modes remained due to hardware design limitations. FMEA helps guide process improvement efforts by emphasizing the riskiest steps. Significant risks are apparent when using a Xoft treatment unit for skin brachytherapy due to hardware limitations such as the lack of several interlocks, a short source lifespan, and variability in source output. The process presented in this article is expected to reduce but not eliminate these risks. Copyright © 2018 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  12. Physics-aspects of dose accuracy in high dose rate (HDR) brachytherapy: source dosimetry, treatment planning, equipment performance and in vivo verification techniques

    PubMed Central

    Bradley, David; Nisbet, Andrew

    2012-01-01

    This study provides a review of recent publications on the physics-aspects of dosimetric accuracy in high dose rate (HDR) brachytherapy. The discussion of accuracy is primarily concerned with uncertainties, but methods to improve dose conformation to the prescribed intended dose distribution are also noted. The main aim of the paper is to review current practical techniques and methods employed for HDR brachytherapy dosimetry. This includes work on the determination of dose rate fields around brachytherapy sources, the capability of treatment planning systems, the performance of treatment units and methods to verify dose delivery. This work highlights the determinants of accuracy in HDR dosimetry and treatment delivery and presents a selection of papers, focusing on articles from the last five years, to reflect active areas of research and development. Apart from Monte Carlo modelling of source dosimetry, there is no clear consensus on the optimum techniques to be used to assure dosimetric accuracy through all the processes involved in HDR brachytherapy treatment. With the exception of the ESTRO mailed dosimetry service, there is little dosimetric audit activity reported in the literature, when compared with external beam radiotherapy verification. PMID:23349649

  13. Physics-aspects of dose accuracy in high dose rate (HDR) brachytherapy: source dosimetry, treatment planning, equipment performance and in vivo verification techniques.

    PubMed

    Palmer, Antony; Bradley, David; Nisbet, Andrew

    2012-06-01

    This study provides a review of recent publications on the physics-aspects of dosimetric accuracy in high dose rate (HDR) brachytherapy. The discussion of accuracy is primarily concerned with uncertainties, but methods to improve dose conformation to the prescribed intended dose distribution are also noted. The main aim of the paper is to review current practical techniques and methods employed for HDR brachytherapy dosimetry. This includes work on the determination of dose rate fields around brachytherapy sources, the capability of treatment planning systems, the performance of treatment units and methods to verify dose delivery. This work highlights the determinants of accuracy in HDR dosimetry and treatment delivery and presents a selection of papers, focusing on articles from the last five years, to reflect active areas of research and development. Apart from Monte Carlo modelling of source dosimetry, there is no clear consensus on the optimum techniques to be used to assure dosimetric accuracy through all the processes involved in HDR brachytherapy treatment. With the exception of the ESTRO mailed dosimetry service, there is little dosimetric audit activity reported in the literature, when compared with external beam radiotherapy verification.

  14. Postoperative Strontium-90 Brachytherapy in the Prevention of Keloids: Results and Prognostic Factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viani, Gustavo A.; Stefano, Eduardo J.; Afonso, Sergio L.

    2009-04-01

    Purpose: The aim of this study was to evaluate the results of keloidectomy and strontium 90 brachytherapy in the prevention of keloid recurrence following excision and to identify outcome and the prognostic factors that predict keloid recurrence after irradiation. Methods and Materials: Data of 612 patients with 892 keloids treated between 1992 and 2006 were evaluated retrospectively. Brachytherapy was performed using a Sr-90Y surface applicator. Total dose was 20 Gy in 10 fractions. Results: With a median follow-up of 61 months, the overall recurrence-free response rate for all keloids was 87.6%. Multivariate analysis revealed the following prognostic factors for recurrence:more » keloid size > 5 cm (p < 0.0001), burn scars as the keloid etiology (p < 0.0001), and previous treatment (p < 0.0001). Outcome was not found to be significantly related to the interval between surgery and radiotherapy, sex, or age. Pruritus and skin reddening were the most common symptoms of keloids, but all signs and symptoms abated with time after treatment. Cosmetic results from the keloid treatment were considered good or excellent in 70.6% of the patients. Conclusion: Our study findings show that excision plus Sr-90 brachytherapy is effective in the eradication of keloids. Sr-90 radiotherapy (20 Gy in 10 fractions) achieved a similar local control rate, as have higher doses per fraction in other series. It also resulted in a good cosmetic rate and relief of symptoms. Our data further suggest that the initiation of postoperative irradiation within hours of surgical excision is not important to therapeutic outcome.« less

  15. Postoperative strontium-90 brachytherapy in the prevention of keloids: results and prognostic factors.

    PubMed

    Viani, Gustavo A; Stefano, Eduardo J; Afonso, Sergio L; De Fendi, Ligia I

    2009-04-01

    The aim of this study was to evaluate the results of keloidectomy and strontium 90 brachytherapy in the prevention of keloid recurrence following excision and to identify outcome and the prognostic factors that predict keloid recurrence after irradiation. Data of 612 patients with 892 keloids treated between 1992 and 2006 were evaluated retrospectively. Brachytherapy was performed using a Sr-90Y surface applicator. Total dose was 20 Gy in 10 fractions. With a median follow-up of 61 months, the overall recurrence-free response rate for all keloids was 87.6%. Multivariate analysis revealed the following prognostic factors for recurrence: keloid size > 5 cm (p < 0.0001), burn scars as the keloid etiology (p < 0.0001), and previous treatment (p < 0.0001). Outcome was not found to be significantly related to the interval between surgery and radiotherapy, sex, or age. Pruritus and skin reddening were the most common symptoms of keloids, but all signs and symptoms abated with time after treatment. Cosmetic results from the keloid treatment were considered good or excellent in 70.6% of the patients. Our study findings show that excision plus Sr-90 brachytherapy is effective in the eradication of keloids. Sr-90 radiotherapy (20 Gy in 10 fractions) achieved a similar local control rate, as have higher doses per fraction in other series. It also resulted in a good cosmetic rate and relief of symptoms. Our data further suggest that the initiation of postoperative irradiation within hours of surgical excision is not important to therapeutic outcome.

  16. A failure modes and effects analysis study for gynecologic high-dose-rate brachytherapy.

    PubMed

    Mayadev, Jyoti; Dieterich, Sonja; Harse, Rick; Lentz, Susan; Mathai, Mathew; Boddu, Sunita; Kern, Marianne; Courquin, Jean; Stern, Robin L

    2015-01-01

    To improve the quality of our gynecologic brachytherapy practice and reduce reportable events, we performed a process analysis after the failure modes and effects analysis (FMEA). The FMEA included a multidisciplinary team specifically targeting the tandem and ring brachytherapy procedure. The treatment process was divided into six subprocesses and failure modes (FMs). A scoring guideline was developed based on published FMEA studies and assigned through team consensus. FMs were ranked according to overall and severity scores. FM ranking >5% of the highest risk priority number (RPN) score was selected for in-depth analysis. The efficiency of each existing quality assurance to detect each FM was analyzed. We identified 170 FMs, and 99 were scored. RPN scores ranged from 1 to 192. Of the 13 highest-ranking FMs with RPN scores >80, half had severity scores of 8 or 9, with no mode having severity of 10. Of these FM, the originating process steps were simulation (5), treatment planning (5), treatment delivery (2), and insertion (1). Our high-ranking FM focused on communication and the potential for applicator movement. Evaluation of the efficiency and the comprehensiveness of our quality assurance program showed coverage of all but three of the top 49 FMs ranked by RPN. This is the first reported FMEA process for a comprehensive gynecologic brachytherapy procedure overview. We were able to identify FMs that could potentially and severely impact the patient's treatment. We continue to adjust our quality assurance program based on the results of our FMEA analysis. Published by Elsevier Inc.

  17. Optimization for high-dose-rate brachytherapy of cervical cancer with adaptive simulated annealing and gradient descent.

    PubMed

    Yao, Rui; Templeton, Alistair K; Liao, Yixiang; Turian, Julius V; Kiel, Krystyna D; Chu, James C H

    2014-01-01

    To validate an in-house optimization program that uses adaptive simulated annealing (ASA) and gradient descent (GD) algorithms and investigate features of physical dose and generalized equivalent uniform dose (gEUD)-based objective functions in high-dose-rate (HDR) brachytherapy for cervical cancer. Eight Syed/Neblett template-based cervical cancer HDR interstitial brachytherapy cases were used for this study. Brachytherapy treatment plans were first generated using inverse planning simulated annealing (IPSA). Using the same dwell positions designated in IPSA, plans were then optimized with both physical dose and gEUD-based objective functions, using both ASA and GD algorithms. Comparisons were made between plans both qualitatively and based on dose-volume parameters, evaluating each optimization method and objective function. A hybrid objective function was also designed and implemented in the in-house program. The ASA plans are higher on bladder V75% and D2cc (p=0.034) and lower on rectum V75% and D2cc (p=0.034) than the IPSA plans. The ASA and GD plans are not significantly different. The gEUD-based plans have higher homogeneity index (p=0.034), lower overdose index (p=0.005), and lower rectum gEUD and normal tissue complication probability (p=0.005) than the physical dose-based plans. The hybrid function can produce a plan with dosimetric parameters between the physical dose-based and gEUD-based plans. The optimized plans with the same objective value and dose-volume histogram could have different dose distributions. Our optimization program based on ASA and GD algorithms is flexible on objective functions, optimization parameters, and can generate optimized plans comparable with IPSA. Copyright © 2014 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  18. Clinical outcomes from an innovative protocol using serial ultrasound imaging and a single MR image to guide brachytherapy for locally advanced cervix cancer.

    PubMed

    van Dyk, Sylvia; Narayan, Kailash; Bernshaw, David; Kondalsamy-Chennakesavan, Srinivas; Khaw, Pearly; Lin, Ming Yin; Schneider, Michal

    The aim of this study was to report clinical outcomes in a series of patients who underwent serial ultrasound and a single MRI to plan and verify intracavitary brachytherapy. Data for patients who were referred for curative intent radiotherapy for International Federation of Gynecology and Obstetrics (FIGO) Stage 1-1V cervix cancer between January 2007 and March 2012 were analyzed. All patients received external beam radiotherapy with concurrent chemotherapy and sequential high-dose rate brachytherapy. Brachytherapy was planned and verified using serial ultrasound imaging and a single MRI. Data from 191 patients were available for analyses. The median (range) followup time was 5.08 (0.25-8.25) years. Five-year local control, failure-free survival, cancer-specific survival, and overall survival were 86%, 57.3%, 70% and 63%, respectively. Mean (standard deviation) combined external beam radiotherapy and brachytherapy target doses, equivalent to doses in 2 Gy fractions were 80.4 Gy10 (3.89), median (range) 80 (49-96) Gy10. Grade 3 or greater gastrointestinal, genitourinary, or vaginal late toxicity occurred in 3%, 1.6%, and 2% of patients, respectively. Survival, patterns of failure, and late complication rates were similar to published series of MRI/CT-based brachytherapy practices. This large study demonstrates that favorable treatment outcomes can be obtained using a pragmatic and innovative combination of ultrasound and MR imaging. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  19. MRI-Guided High–Dose-Rate Intracavitary Brachytherapy for Treatment of Cervical Cancer: The University of Pittsburgh Experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill, Beant S.; Kim, Hayeon; Houser, Christopher J.

    2015-03-01

    Purpose: Image-based brachytherapy is increasingly used for gynecologic malignancies. We report early outcomes of magnetic resonance imaging (MRI)-guided brachytherapy. Methods and Materials: Consecutive patient cases with FIGO stage IB1 to IVA cervical cancer treated at a single institution were retrospectively reviewed. All patients received concurrent cisplatin with external beam radiation therapy along with interdigitated high–dose-rate intracavitary brachytherapy. Computed tomography or MRI was completed after each application, the latter acquired for at least 1 fraction. High-risk clinical target volume (HRCTV) and organs at risk were identified by Groupe Européen de Curiethérapie and European SocieTy for Radiotherapy and Oncology guidelines. Doses weremore » converted to equivalent 2-Gy doses (EQD{sub 2}) with planned HRCTV doses of 75 to 85 Gy. Results: From 2007 to 2013, 128 patients, median 52 years of age, were treated. Predominant characteristics included stage IIB disease (58.6%) with a median tumor size of 5 cm, squamous histology (82.8%), and no radiographic nodal involvement (53.1%). Most patients (67.2%) received intensity modulated radiation therapy (IMRT) at a median dose of 45 Gy, followed by a median brachytherapy dose of 27.5 Gy (range, 25-30 Gy) in 5 fractions. At a median follow up of 24.4 months (range, 2.1-77.2 months), estimated 2-year local control, disease-free survival, and cancer-specific survival rates were 91.6%, 81.8%, and 87.6%, respectively. Predictors of local failure included adenocarcinoma histology (P<.01) and clinical response at 3 months (P<.01). Among the adenocarcinoma subset, receiving HRCTV D{sub 90} EQD{sub 2} ≥84 Gy was associated with improved local control (2-year local control rate 100% vs 54.5%, P=.03). Grade 3 or greater gastrointestinal or genitourinary late toxicity occurred at a 2-year actuarial rate of 0.9%. Conclusions: This study constitutes one of the largest reported series of MRI

  20. One-year results from clinical practice of epimacular strontium-90 brachytherapy for the treatment of subfoveal choroidal neovascularization secondary to AMD.

    PubMed

    Zur, Dinah; Loewenstein, Anat; Barak, Adiel

    2015-03-01

    To evaluate clinical feasibility, safety, and efficacy of epiretinal strontium-90 brachytherapy in subfoveal choroidal neovascularization (CNV) due to age-related macular degeneration (AMD) in eyes unresponsive to repeated anti-VEGF injections. A retrospective, single-center study on patients treated with strontium-90 brachytherapy for CNV secondary to neovascular AMD. Patients underwent pars plana vitrectomy with a single 24 Gy dose brachytherapy. They were re-treated with anti-VEGF injections on an as-needed basis if subretinal or intraretinal fluid was detected on optical coherence tomography imaging. Twenty-two patients were treated, and 20 completed 12 months of follow-up. Ten patients maintained stable vision, eight gained vision, and two lost more than three Snellen lines. The mean best corrected visual acuity change from baseline was -8 ± 5.7 letters. A mean of 5.5 ± 4.4 anti-VEGF injections were administered throughout 12 months. Epimacular brachytherapy is feasible in clinical practice. While some patients benefit from the treatment and need significantly fewer as-needed injections, others appear not to react to irradiation treatment after 1 year of follow-up. Larger numbers of patients are needed to evaluate therapeutic efficacy and to determine which patients can benefit from combined radiation and anti-VEGF therapy. Copyright 2015, SLACK Incorporated.

  1. Low-dose rate prostate brachytherapy is well tolerated in patients with a history of inflammatory bowel disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, Christopher A.; Cesaretti, Jamie A.; Stone, Nelson N.

    2006-10-01

    Purpose: We report on the follow-up of 24 patients with a prior history of inflammatory bowel disease (IBD) treated with brachytherapy for early-stage prostate cancer. Methods and Materials: Twenty-four patients with a history of inflammatory bowel disease (17 with ulcerative colitis (UC), 7 with Crohn's disease [CD]) underwent prostate brachytherapy between 1992 and 2004. Fifteen patients were treated with I-125 implantation and 6 patients were treated with Pd-103 alone or in combination with 45 Gy external beam radiation. Charts were reviewed for all patients, and all living patients were contacted by phone. National Cancer Institute common toxicity scores for proctitismore » were assigned to all patients. Actuarial risk of late toxicity was calculated by the Kaplan-Meier method. Statistical analysis was performed using SPSS software. Follow-up ranged from 3 to 126 months (median, 48.5 months; mean, 56.8 months). Results: None of the patients experienced Grade 3 or 4 rectal toxicity. Four patients experienced Grade 2 late rectal toxicity. The 5-year actuarial freedom from developing late Grade 2 rectal toxicity was 81%. At a median follow-up of 48.5 months, 23 patients were alive and had no evidence of disease with a median prostate-specific antigen for the sample of 0.1 ng/mL (range, <0.05-0.88 ng/mL). One patient died of other causes unrelated to his prostate cancer. Conclusions: Prostate brachytherapy is well tolerated in patients with a history of controlled IBD. Therefore, brachytherapy should be considered a viable therapeutic option in this patient population.« less

  2. SU-F-T-17: A Feasibility Study for the Transit Dosimetry with a Glass Dosimeter in Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, S; Yoon, M; Chung, W

    Purpose: Confirming the dose delivered to a patient is important to make sure the treatment quality and safety of the radiotherapy. Measuring a transit dose of the patient during the radiotherapy could be an interesting way to confirm the patient dose. In this study, we evaluated the feasibility of the transit dosimetry with a glass dosimeter in brachytherapy. Methods: We made a phantom that inserted the glass dosimeters and placed under patient lying on a couch for cervix cancer brachytherapy. The 18 glass dosimeters were placed in the phantom arranged 6 per row. A point putting 1cm vertically from themore » source was prescribed as 500.00 cGy. Solid phantoms of 0, 2, 4, 6, 8, 10 cm were placed between the source and the glass dosimeter. The transit dose was measured each thickness using the glass dosimeters and compared with a treatment planning system (TPS). Results: When the transit dose was smaller than 10 cGy, the average of the differences between measured values and calculated values by TPS was 0.50 cGy and the standard deviation was 0.69 cGy. If the transit dose was smaller than 100 cGy, the average of the error was 1.67 ± 4.01 cGy. The error to a point near the prescription point was −14.02 cGy per 500.00 cGy of the prescription dose. Conclusion: The distances from the sources to skin of the patient generally are within 10 cm for cervix cancer cases in brachytherapy. The results of this preliminary study showed the probability of the glass dosimeter as the transit dosimeter in brachytherapy.« less

  3. A study of optimization techniques in HDR brachytherapy for the prostate

    NASA Astrophysics Data System (ADS)

    Pokharel, Ghana Shyam

    Several studies carried out thus far are in favor of dose escalation to the prostate gland to have better local control of the disease. But optimal way of delivery of higher doses of radiation therapy to the prostate without hurting neighboring critical structures is still debatable. In this study, we proposed that real time high dose rate (HDR) brachytherapy with highly efficient and effective optimization could be an alternative means of precise delivery of such higher doses. This approach of delivery eliminates the critical issues such as treatment setup uncertainties and target localization as in external beam radiation therapy. Likewise, dosimetry in HDR brachytherapy is not influenced by organ edema and potential source migration as in permanent interstitial implants. Moreover, the recent report of radiobiological parameters further strengthen the argument of using hypofractionated HDR brachytherapy for the management of prostate cancer. Firstly, we studied the essential features and requirements of real time HDR brachytherapy treatment planning system. Automating catheter reconstruction with fast editing tools, fast yet accurate dose engine, robust and fast optimization and evaluation engine are some of the essential requirements for such procedures. Moreover, in most of the cases we performed, treatment plan optimization took significant amount of time of overall procedure. So, making treatment plan optimization automatic or semi-automatic with sufficient speed and accuracy was the goal of the remaining part of the project. Secondly, we studied the role of optimization function and constraints in overall quality of optimized plan. We have studied the gradient based deterministic algorithm with dose volume histogram (DVH) and more conventional variance based objective functions for optimization. In this optimization strategy, the relative weight of particular objective in aggregate objective function signifies its importance with respect to other objectives

  4. Anode optimization for miniature electronic brachytherapy X-ray sources using Monte Carlo and computational fluid dynamic codes

    PubMed Central

    Khajeh, Masoud; Safigholi, Habib

    2015-01-01

    A miniature X-ray source has been optimized for electronic brachytherapy. The cooling fluid for this device is water. Unlike the radionuclide brachytherapy sources, this source is able to operate at variable voltages and currents to match the dose with the tumor depth. First, Monte Carlo (MC) optimization was performed on the tungsten target-buffer thickness layers versus energy such that the minimum X-ray attenuation occurred. Second optimization was done on the selection of the anode shape based on the Monte Carlo in water TG-43U1 anisotropy function. This optimization was carried out to get the dose anisotropy functions closer to unity at any angle from 0° to 170°. Three anode shapes including cylindrical, spherical, and conical were considered. Moreover, by Computational Fluid Dynamic (CFD) code the optimal target-buffer shape and different nozzle shapes for electronic brachytherapy were evaluated. The characterization criteria of the CFD were the minimum temperature on the anode shape, cooling water, and pressure loss from inlet to outlet. The optimal anode was conical in shape with a conical nozzle. Finally, the TG-43U1 parameters of the optimal source were compared with the literature. PMID:26966563

  5. A new optimization method using a compressed sensing inspired solver for real-time LDR-brachytherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Guthier, C.; Aschenbrenner, K. P.; Buergy, D.; Ehmann, M.; Wenz, F.; Hesser, J. W.

    2015-03-01

    This work discusses a novel strategy for inverse planning in low dose rate brachytherapy. It applies the idea of compressed sensing to the problem of inverse treatment planning and a new solver for this formulation is developed. An inverse planning algorithm was developed incorporating brachytherapy dose calculation methods as recommended by AAPM TG-43. For optimization of the functional a new variant of a matching pursuit type solver is presented. The results are compared with current state-of-the-art inverse treatment planning algorithms by means of real prostate cancer patient data. The novel strategy outperforms the best state-of-the-art methods in speed, while achieving comparable quality. It is able to find solutions with comparable values for the objective function and it achieves these results within a few microseconds, being up to 542 times faster than competing state-of-the-art strategies, allowing real-time treatment planning. The sparse solution of inverse brachytherapy planning achieved with methods from compressed sensing is a new paradigm for optimization in medical physics. Through the sparsity of required needles and seeds identified by this method, the cost of intervention may be reduced.

  6. A new optimization method using a compressed sensing inspired solver for real-time LDR-brachytherapy treatment planning.

    PubMed

    Guthier, C; Aschenbrenner, K P; Buergy, D; Ehmann, M; Wenz, F; Hesser, J W

    2015-03-21

    This work discusses a novel strategy for inverse planning in low dose rate brachytherapy. It applies the idea of compressed sensing to the problem of inverse treatment planning and a new solver for this formulation is developed. An inverse planning algorithm was developed incorporating brachytherapy dose calculation methods as recommended by AAPM TG-43. For optimization of the functional a new variant of a matching pursuit type solver is presented. The results are compared with current state-of-the-art inverse treatment planning algorithms by means of real prostate cancer patient data. The novel strategy outperforms the best state-of-the-art methods in speed, while achieving comparable quality. It is able to find solutions with comparable values for the objective function and it achieves these results within a few microseconds, being up to 542 times faster than competing state-of-the-art strategies, allowing real-time treatment planning. The sparse solution of inverse brachytherapy planning achieved with methods from compressed sensing is a new paradigm for optimization in medical physics. Through the sparsity of required needles and seeds identified by this method, the cost of intervention may be reduced.

  7. Commissioning of a well type chamber for HDR and LDR brachytherapy applications: a review of methodology and outcomes.

    PubMed

    Mukwada, Godfrey; Neveri, Gabor; Alkhatib, Zaid; Waterhouse, David K; Ebert, Martin

    2016-03-01

    For safe and accurate dose delivery in brachytherapy, associated equipment is subject to commissioning and ongoing quality assurance (QA). Many centres depend on the use of a well-type chamber ('well chamber') for performing brachytherapy dosimetry. Documentation of well chamber commissioning is scarce despite the important role the chamber plays in the whole brachytherapy QA process. An extensive and structured commissioning of the HDR 1000 plus well chamber (Standard Imaging Inc, Middleton WI) for HDR and LDR dosimetry was undertaken at Sir Charles Gairdner Hospital. The methodology and outcomes of this commissioning is documented and presented as a guideline to others involved in brachytherapy. The commissioning tests described include mechanical integrity, leakage current, directional dependence, response, length of uniform response, the influence of insert holders, ion collection efficiency, polarity effect, accuracy of measured air kerma strength (S(K)) or reference air kerma rate (K(R)) and baseline setting (for ongoing constancy checks). For the HDR 1000 plus well chamber, some of the insert holders modify the response curve. The measured sweet length was 2.5 cm which is within 0.5% of that specified by the manufacturer. Correction for polarity was negligible (0.9999) and ion recombination was small (0.9994). Directional dependence was small (less than 0.2%) and leakage current was negligible. The measured K(R) for (192)Ir agreed within 0.11% compared with a second well chamber of similar model and was within 0.5% of that determined via a free-in-air measurement method. Routine constancy checks over a year agreed with the baseline within 0.4%.

  8. A dosimetric comparison of {sup 169}Yb versus {sup 192}Ir for HDR prostate brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lymperopoulou, G.; Papagiannis, P.; Sakelliou, L.

    2005-12-15

    For the purpose of evaluating the use of {sup 169}Yb for prostate High Dose Rate brachytherapy (HDR), a hypothetical {sup 169}Yb source is assumed with the exact same design of the new microSelectron source replacing the {sup 192}Ir active core by pure {sup 169}Yb metal. Monte Carlo simulation is employed for the full dosimetric characterization of both sources and results are compared following the AAPM TG-43 dosimetric formalism. Monte Carlo calculated dosimetry results are incorporated in a commercially available treatment planning system (SWIFT{sup TM}), which features an inverse treatment planning option based on a multiobjective dose optimization engine. The qualitymore » of prostate HDR brachytherapy using the real {sup 192}Ir and hypothetical {sup 169}Yb source is compared in a comprehensive analysis of different prostate implants in terms of the multiobjective dose optimization solutions as well as treatment quality indices such as Dose Volume Histograms (DVH) and the Conformal Index (COIN). Given that scattering overcompensates for absorption in intermediate photon energies and distances in the range of interest to prostate HDR brachytherapy, {sup 169}Yb proves at least equivalent to {sup 192}Ir irrespective of prostate volume. This has to be evaluated in view of the shielding requirements for the {sup 169}Yb energies that are minimal relative to that for {sup 192}Ir.« less

  9. Monte Carlo calculated doses to treatment volumes and organs at risk for permanent implant lung brachytherapy

    NASA Astrophysics Data System (ADS)

    Sutherland, J. G. H.; Furutani, K. M.; Thomson, R. M.

    2013-10-01

    Iodine-125 (125I) and Caesium-131 (131Cs) brachytherapy have been used with sublobar resection to treat stage I non-small cell lung cancer and other radionuclides, 169Yb and 103Pd, are considered for these treatments. This work investigates the dosimetry of permanent implant lung brachytherapy for a range of source energies and various implant sites in the lung. Monte Carlo calculated doses are calculated in a patient CT-derived computational phantom using the EGsnrc user-code BrachyDose. Calculations are performed for 103Pd, 125I, 131Cs seeds and 50 and 100 keV point sources for 17 implant positions. Doses to treatment volumes, ipsilateral lung, aorta, and heart are determined and compared to those determined using the TG-43 approach. Considerable variation with source energy and differences between model-based and TG-43 doses are found for both treatment volumes and organs. Doses to the heart and aorta generally increase with increasing source energy. TG-43 underestimates the dose to the heart and aorta for all implants except those nearest to these organs where the dose is overestimated. Results suggest that model-based dose calculations are crucial for selecting prescription doses, comparing clinical endpoints, and studying radiobiological effects for permanent implant lung brachytherapy.

  10. Primary radiotherapy for carcinoma of the endometrium using external beam radiotherapy and single line source brachytherapy.

    PubMed

    Churn, M; Jones, B

    1999-01-01

    A small proportion of patients with adenocarcinoma of the endometrium are inoperable by virtue of severe concurrent medical conditions, gross obesity or advanced stage disease. They can be treated with primary radiotherapy with either curative or palliative intent. We report 37 such patients treated mainly with a combination of external beam radiotherapy and intracavitary brachytherapy using a single line source technique. The 5-year disease-specific survival for nonsurgically staged patients was 68.4% for FIGO Stages I and II and 33.3% for Stages III and IV. The incidence of late morbidity was acceptably low. Using the Franco-Italian Glossary, there was 27.0% grade 1 but no grade 2-4 bladder toxicity. For the rectum the rates were 18.9% grade 1, 5.4% grade 2, 2.7% grade 3, and no grade 4 toxicity. Methods of optimizing the dose distribution of the brachytherapy by means of variation of treatment length, radioactive source positions, and prescription point according to tumour bulk and individual anatomy are discussed. The biologically equivalent doses (BED) for combined external beam radiotherapy and brachytherapy were calculated to be in the range of 78-107 Gy(3) or 57-75 Gy(10) at point 'A' and appear adequate for the control of Stage I cancers.

  11. High-dose-rate brachytherapy – a novel treatment approach for primary clear cell adenocarcinoma of male urethra

    PubMed Central

    Lewis, Shirley; Pal, Mahendra; Bakshi, Ganesh; Ghadi, Yogesh G.; Menon, Santosh; Murthy, Vedang

    2015-01-01

    The incidence of male urethral cancer is rare with age preponderance of 50 to 60 years. The standard management approach is surgery. Here, we present a novel treatment approach for male urethral cancer. Thirty-six year old male, case of primary clear cell adenocarcinoma of urethra who refused surgery, underwent cystoscopic assisted intraluminal HDR brachytherapy. Patient received a dose of 36 Gy in 9 fractions (4 Gy per fraction) followed by a boost of 24 Gy in 6 fractions. At 11 months post treatment, disease is well controlled with no post treatment toxicity so far. Intraluminal brachytherapy seems to be an effective novel treatment for male urethral cancer. PMID:26207115

  12. Determination of the intrinsic energy dependence of LiF:Mg,Ti thermoluminescent dosimeters for 125I and 103Pd brachytherapy sources relative to 60Co.

    PubMed

    Reed, J L; Rasmussen, B E; Davis, S D; Micka, J A; Culberson, W S; DeWerd, L A

    2014-12-01

    To determine the intrinsic energy dependence of LiF:Mg,Ti thermoluminescent dosimeters (TLD-100) for (125)I and (103)Pd brachytherapy sources relative to (60)Co. LiF:Mg,Ti TLDs were irradiated with low-energy brachytherapy sources and with a (60)Co teletherapy source. The brachytherapy sources measured were the Best 2301 (125)I seed, the OncoSeed 6711 (125)I seed, and the Best 2335 (103)Pd seed. The TLD light output per measured air-kerma strength was determined for the brachytherapy source irradiations, and the TLD light output per air kerma was determined for the (60)Co irradiations. Monte Carlo (MC) simulations were used to calculate the dose-to-TLD rate per air-kerma strength for the brachytherapy source irradiations and the dose to TLD per air kerma for the (60)Co irradiations. The measured and MC-calculated results for all irradiations were used to determine the TLD intrinsic energy dependence for (125)I and (103)Pd relative to (60)Co. The relative TLD intrinsic energy dependences (relative to (60)Co) and associated uncertainties (k = 1) were determined to be 0.883 ± 1.3%, 0.870 ± 1.4%, and 0.871 ± 1.5% for the Best 2301 seed, OncoSeed 6711 seed, and Best 2335 seed, respectively. The intrinsic energy dependence of TLD-100 is dependent on photon energy, exhibiting changes of 13%-15% for (125)I and (103)Pd sources relative to (60)Co. TLD measurements of absolute dose around (125)I and (103)Pd brachytherapy sources should explicitly account for the relative TLD intrinsic energy dependence in order to improve dosimetric accuracy.

  13. Applications of tissue heterogeneity corrections and biologically effective dose volume histograms in assessing the doses for accelerated partial breast irradiation using an electronic brachytherapy source.

    PubMed

    Shi, Chengyu; Guo, Bingqi; Cheng, Chih-Yao; Eng, Tony; Papanikolaou, Nikos

    2010-09-21

    A low-energy electronic brachytherapy source (EBS), the model S700 Axxent x-ray device developed by Xoft Inc., has been used in high dose rate (HDR) intracavitary accelerated partial breast irradiation (APBI) as an alternative to an Ir-192 source. The prescription dose and delivery schema of the electronic brachytherapy APBI plan are the same as the Ir-192 plan. However, due to its lower mean energy than the Ir-192 source, an EBS plan has dosimetric and biological features different from an Ir-192 source plan. Current brachytherapy treatment planning methods may have large errors in treatment outcome prediction for an EBS plan. Two main factors contribute to the errors: the dosimetric influence of tissue heterogeneities and the enhancement of relative biological effectiveness (RBE) of electronic brachytherapy. This study quantified the effects of these two factors and revisited the plan quality of electronic brachytherapy APBI. The influence of tissue heterogeneities is studied by a Monte Carlo method and heterogeneous 'virtual patient' phantoms created from CT images and structure contours; the effect of RBE enhancement in the treatment outcome was estimated by biologically effective dose (BED) distribution. Ten electronic brachytherapy APBI cases were studied. The results showed that, for electronic brachytherapy cases, tissue heterogeneities and patient boundary effect decreased dose to the target and skin but increased dose to the bones. On average, the target dose coverage PTV V(100) reduced from 95.0% in water phantoms (planned) to only 66.7% in virtual patient phantoms (actual). The actual maximum dose to the ribs is 3.3 times higher than the planned dose; the actual mean dose to the ipsilateral breast and maximum dose to the skin were reduced by 22% and 17%, respectively. Combining the effect of tissue heterogeneities and RBE enhancement, BED coverage of the target was 89.9% in virtual patient phantoms with RBE enhancement (actual BED) as compared to 95

  14. Applications of tissue heterogeneity corrections and biologically effective dose volume histograms in assessing the doses for accelerated partial breast irradiation using an electronic brachytherapy source

    NASA Astrophysics Data System (ADS)

    Shi, Chengyu; Guo, Bingqi; Cheng, Chih-Yao; Eng, Tony; Papanikolaou, Nikos

    2010-09-01

    A low-energy electronic brachytherapy source (EBS), the model S700 Axxent™ x-ray device developed by Xoft Inc., has been used in high dose rate (HDR) intracavitary accelerated partial breast irradiation (APBI) as an alternative to an Ir-192 source. The prescription dose and delivery schema of the electronic brachytherapy APBI plan are the same as the Ir-192 plan. However, due to its lower mean energy than the Ir-192 source, an EBS plan has dosimetric and biological features different from an Ir-192 source plan. Current brachytherapy treatment planning methods may have large errors in treatment outcome prediction for an EBS plan. Two main factors contribute to the errors: the dosimetric influence of tissue heterogeneities and the enhancement of relative biological effectiveness (RBE) of electronic brachytherapy. This study quantified the effects of these two factors and revisited the plan quality of electronic brachytherapy APBI. The influence of tissue heterogeneities is studied by a Monte Carlo method and heterogeneous 'virtual patient' phantoms created from CT images and structure contours; the effect of RBE enhancement in the treatment outcome was estimated by biologically effective dose (BED) distribution. Ten electronic brachytherapy APBI cases were studied. The results showed that, for electronic brachytherapy cases, tissue heterogeneities and patient boundary effect decreased dose to the target and skin but increased dose to the bones. On average, the target dose coverage PTV V100 reduced from 95.0% in water phantoms (planned) to only 66.7% in virtual patient phantoms (actual). The actual maximum dose to the ribs is 3.3 times higher than the planned dose; the actual mean dose to the ipsilateral breast and maximum dose to the skin were reduced by 22% and 17%, respectively. Combining the effect of tissue heterogeneities and RBE enhancement, BED coverage of the target was 89.9% in virtual patient phantoms with RBE enhancement (actual BED) as compared to 95

  15. SU-E-P-05: Electronic Brachytherapy: A Physics Perspective On Field Implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pai, S; Ayyalasomayajula, S; Lee, S

    2015-06-15

    Purpose: We want to summarize our experience implementing a successful program of electronic brachytherapy at several dermatology clinics with the help of a cloud based software to help us define the key program parameters and capture physics QA aspects. Optimally developed software helps the physicist in peer review and qualify the physical parameters. Methods: Using the XOFT™ Axxent™ electronic brachytherapy system in conjunction with a cloud-based software, a process was setup to capture and record treatments. It was implemented initially at about 10 sites in California. For dosimetric purposes, the software facilitated storage of the physics parameters of surface applicatorsmore » used in treatment and other source calibration parameters. In addition, the patient prescription, pathology and other setup considerations were input by radiation oncologist and the therapist. This facilitated physics planning of the treatment parameters and also independent check of the dwell time. From 2013–2014, nearly1500 such calculation were completed by a group of physicists. A total of 800 patients with multiple lesions have been treated successfully during this period. The treatment log files have been uploaded and documented in the software which facilitated physics peer review of treatments per the standards in place by AAPM and ACR. Results: The program model was implemented successfully at multiple sites. The cloud based software allowed for proper peer review and compliance of the program at 10 clinical sites. Dosimtery was done on 800 patients and executed in a timely fashion to suit the clinical needs. Accumulated physics data in the software from the clinics allows for robust analysis and future development. Conclusion: Electronic brachytherapy implementation experience from a quality assurance perspective was greatly enhanced by using a cloud based software. The comprehensive database will pave the way for future developments to yield superior physics

  16. A medical image-based graphical platform -- features, applications and relevance for brachytherapy.

    PubMed

    Fonseca, Gabriel P; Reniers, Brigitte; Landry, Guillaume; White, Shane; Bellezzo, Murillo; Antunes, Paula C G; de Sales, Camila P; Welteman, Eduardo; Yoriyaz, Hélio; Verhaegen, Frank

    2014-01-01

    Brachytherapy dose calculation is commonly performed using the Task Group-No 43 Report-Updated protocol (TG-43U1) formalism. Recently, a more accurate approach has been proposed that can handle tissue composition, tissue density, body shape, applicator geometry, and dose reporting either in media or water. Some model-based dose calculation algorithms are based on Monte Carlo (MC) simulations. This work presents a software platform capable of processing medical images and treatment plans, and preparing the required input data for MC simulations. The A Medical Image-based Graphical platfOrm-Brachytherapy module (AMIGOBrachy) is a user interface, coupled to the MCNP6 MC code, for absorbed dose calculations. The AMIGOBrachy was first validated in water for a high-dose-rate (192)Ir source. Next, dose distributions were validated in uniform phantoms consisting of different materials. Finally, dose distributions were obtained in patient geometries. Results were compared against a treatment planning system including a linear Boltzmann transport equation (LBTE) solver capable of handling nonwater heterogeneities. The TG-43U1 source parameters are in good agreement with literature with more than 90% of anisotropy values within 1%. No significant dependence on the tissue composition was observed comparing MC results against an LBTE solver. Clinical cases showed differences up to 25%, when comparing MC results against TG-43U1. About 92% of the voxels exhibited dose differences lower than 2% when comparing MC results against an LBTE solver. The AMIGOBrachy can improve the accuracy of the TG-43U1 dose calculation by using a more accurate MC dose calculation algorithm. The AMIGOBrachy can be incorporated in clinical practice via a user-friendly graphical interface. Copyright © 2014 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  17. Salvage brachytherapy for local recurrences of prostate cancer treated previously with radiotherapy.

    PubMed

    Gawkowska-Suwinska, Marzena; Fijałkowski, Marek; Białas, Brygida; Szlag, Marta; Kellas-Ślęczka, Sylwia; Nowicka, Elżbieta; Behrendt, Katarzyna; Plewicki, Grzegorz; Smolska-Ciszewska, Beata; Giglok, Monika; Zajusz, Aleksander; Owczarek, Grzegorz

    2009-12-01

    The aim of the study was to analyze early effects and toxicity of salvage high dose rate brachytherapy for local recurrences of adenocarcinoma of the prostate after external beam radiotherapy (EBRT). In MCS Memorial Institute of Oncology in Gliwice a research programme on salvage HDR brachytherapy for local recurrences of prostate cancer treated previously with EBRT has been ongoing since February 2008. The treatment consisted of 3 fractions of 10 Gy each given every 14 days. Maximal urethral doses were constrained to be ≤ 120% of the prescribed dose. Maximal bladder and rectum doses were constrained to be ≤ 70% of the prescribed dose. Fifteen eligible patients were treated and analyzed from February 2008. All patients completed the treatment without major complications. The most common early complications were: macroscopic haematuria, pain in lower part of the abdomen, and transient dysuria. During the first week after the procedure a transient increase in IPSS score was noticed. The Foley catheter was removed on day 2 to 5. No complications after spinal anaesthesia were observed. Acute toxicity according to EORTC/RTOG was low. For bladder EORTC/RTOG score ranged from 0 to 2. Only in two patients grade 1 toxicity for rectum was observed. The follow-up ranged from 3 to 9 months. In one patient grade 2 rectal toxicity was observed, and one had urethral stricture. Other patients did not have any other significant late toxicity of the treatment. Two patients developed bone metastases. Salvage brachytherapy for localized prostate cancer (3 × 10 Gy every 14 days) seems to be a safe and well tolerated procedure. A significant decline in prostate-specific antigen (PSA) level is seen in patients with hormone-responsive cancer. Long-term efficiency and toxicity of the procedure are yet to be established.

  18. SU-F-T-61: Treatment Planning Observations for the CivaSheet Directional Brachytherapy Device Using VariSeed 9.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivard, MJ; Rothley, DJ

    2016-06-15

    Purpose: The VariSeed 9.0 brachytherapy TPS is recently available and has new features such as ability to rotate a brachytherapy source away from normal to the imaging plane. Consequently, a dosimetric analysis was performed for a directional brachytherapy source (CivaSheet) with tests of this functionality and experiences from clinical treatment planning were documented. These observations contribute to safe, practical, and accurate use of such new software features. Methods: Several tests were established to evaluate the new rotational feature, specific to the CivaSheet for the first patients treated using this new brachytherapy device. These included suitability of imaging slice-thickness and in-planemore » resolution, window/level adjustments for brachytherapy source visualization, commissioning the source physical length for performing rotations, and using different planar and 3D window views to identify source orientation. Additional CivaSheet-specific tests were performed to determine the dosimetric influence on target coverage: changing the source tilt angle, source positioning in the treatment plan based on the CivaSheet rectangular array of CivaDots, and influence of prescription depth on the necessary treatment margin for adequate target coverage. Results: Higher imaging-resolution produced better accuracy for source orientation and positioning, with sub-millimeter CT slice-thickness and in-plane resolution preferred. Source rotation was possible only in sagittal or coronal views. The process for validating source orientation required iteratively altering rotations then checking them in the 3D view, which was cumbersome given the absence of quantitative plan documentation to indicate orientation. Given the small Pd-103 source size, influence of source tilt within 30° was negligible for <1.0 cm. Influence of source position was important when the source was positioned in/out of the adjacent source plane, causing changes of 15%, 7%, and 3% at depths of

  19. Reduction in radiation exposure to nursing personnel with the use of remote afterloading brachytherapy devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigsby, P.W.; Perez, C.A.; Eichling, J.

    The radiation exposure to nursing personnel from patients with brachytherapy implants on a large brachytherapy service were reviewed. Exposure to nurses, as determined by TLD monitors, indicates a 7-fold reduction in exposure after the implementation of the use of remote afterloading devices. Quarterly TLD monitor data for six quarters prior to the use of remote afterloading devices demonstrate an average projected annual dose equivalent to the nurses of 152 and 154 mrem (1.5 mSv). After the implementation of the remote afterloading devices, the quarterly TLD monitor data indicate an average dose equivalent per nurse of 23 and 19 mrem (0.2more » mSv). This is an 87% reduction in exposure to nurses with the use of these devices (p less than 0.01).« less

  20. Adaptation of the CVT algorithm for catheter optimization in high dose rate brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poulin, Eric; Fekete, Charles-Antoine Collins; Beaulieu, Luc

    2013-11-15

    Purpose: An innovative, simple, and fast method to optimize the number and position of catheters is presented for prostate and breast high dose rate (HDR) brachytherapy, both for arbitrary templates or template-free implants (such as robotic templates).Methods: Eight clinical cases were chosen randomly from a bank of patients, previously treated in our clinic to test our method. The 2D Centroidal Voronoi Tessellations (CVT) algorithm was adapted to distribute catheters uniformly in space, within the maximum external contour of the planning target volume. The catheters optimization procedure includes the inverse planning simulated annealing algorithm (IPSA). Complete treatment plans can then bemore » generated from the algorithm for different number of catheters. The best plan is chosen from different dosimetry criteria and will automatically provide the number of catheters and their positions. After the CVT algorithm parameters were optimized for speed and dosimetric results, it was validated against prostate clinical cases, using clinically relevant dose parameters. The robustness to implantation error was also evaluated. Finally, the efficiency of the method was tested in breast interstitial HDR brachytherapy cases.Results: The effect of the number and locations of the catheters on prostate cancer patients was studied. Treatment plans with a better or equivalent dose distributions could be obtained with fewer catheters. A better or equal prostate V100 was obtained down to 12 catheters. Plans with nine or less catheters would not be clinically acceptable in terms of prostate V100 and D90. Implantation errors up to 3 mm were acceptable since no statistical difference was found when compared to 0 mm error (p > 0.05). No significant difference in dosimetric indices was observed for the different combination of parameters within the CVT algorithm. A linear relation was found between the number of random points and the optimization time of the CVT algorithm. Because

  1. Iodine 125 Brachytherapy With Vitrectomy and Silicone Oil in the Treatment of Uveal Melanoma: 1-to-1 Matched Case-Control Series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCannel, Tara A., E-mail: TMcCannel@jsei.ucla.edu; McCannel, Colin A.

    Purpose: We initially reported the radiation-attenuating effect of silicone oil 1000 centistokes for iodine 125. The purpose of this report was to compare the clinical outcomes in case patients who had iodine 125 brachytherapy with vitrectomy and silicone oil 1000 centistokes with the outcomes in matched control patients who underwent brachytherapy alone. Methods and Materials: Consecutive patients with uveal melanoma who were treated with iodine 125 plaque brachytherapy and vitrectomy with silicone oil with minimum 1-year follow-up were included. Control patients who underwent brachytherapy alone were matched for tumor size, location, and sex. Baseline patient and tumor characteristics and tumor response tomore » radiation, final visual acuity, macular status, central macular thickness by ocular coherence tomography (OCT), cataract progression, and metastasis at last follow-up visit were compared. Surgical complications were also determined. Results: Twenty case patients met the inclusion criteria. The average follow-up time was 22.1 months in case patients and 19.4 months in control patients. The final logMAR vision was 0.81 in case patients and 1.1 in control patients (P=.071); 8 case patients and 16 control patients had abnormal macular findings (P=.011); and the average central macular thickness by OCT was 293.2 μm in case patients and 408.5 μm in control patients (P=.016). Eleven case patients (55%) and 1 control patient (5%) had required cataract surgery at last follow-up (P=.002). Four patients in the case group and 1 patient in the control group experienced metastasis (P=.18). Among the cases, intraoperative retinal tear occurred in 3 patients; total serous retinal detachment and macular hole developed in 1 case patient each. There was no case of rhegmatogenous retinal detachment, treatment failure, or local tumor dissemination in case patients or control patients. Conclusions: With up to 3 years of clinical follow-up, silicone oil during

  2. TU-AB-201-03: A Robot for the Automated Delivery of An Electromagnetic Tracking Sensor for the Localization of Brachytherapy Catheters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Don, S; Cormack, R; Viswanathan, A

    Purpose: To present a programmable robotic system for the accurate and fast deployment of an electromagnetic (EM) sensor for brachytherapy catheter localization. Methods: A robotic system for deployment of an EM sensor was designed and built. The system was programmed to increment the sensor position at specified time and space intervals. Sensor delivery accuracy was measured in a phantom using the localization of the EM sensor and tested in different environmental conditions. Accuracy was tested by measuring the distance between the physical locations reached by the sensor (measured by the EM tracker) and the intended programmed locations. Results: The systemmore » consisted of a stepper motor connected to drive wheels (that grip the cable to move the sensor) and a series of guides to connect to a brachytherapy transfer tube, all controlled by a programmable Arduino microprocessor. The total cost for parts was <$300. The positional accuracy of the sensor location was within 1 mm of the expected position provided by the motorized guide system. Acquisition speed to localize a brachytherapy catheter with 20 cm of active length was 10 seconds. The current design showed some cable slip and warping depending on environment temperature. Conclusion: The use of EM tracking for the localization of brachytherapy catheters has been previously demonstrated. Efficient data acquisition and artifact reduction requires fast and accurate deployment of an EM sensor in consistent, repeatable patterns, which cannot practically be achieved manually. The design of an inexpensive, programmable robot allowing for the precise deployment of stepping patterns was presented, and a prototype was built. Further engineering is necessary to ensure that the device provides efficient independent localization of brachytherapy catheters. This research was funded by the Kaye Family Award.« less

  3. Dose escalation using conformal high-dose-rate brachytherapy improves outcome in unfavorable prostate cancer.

    PubMed

    Martinez, Alvaro A; Gustafson, Gary; Gonzalez, José; Armour, Elwood; Mitchell, Chris; Edmundson, Gregory; Spencer, William; Stromberg, Jannifer; Huang, Raywin; Vicini, Frank

    2002-06-01

    To overcome radioresistance for patients with unfavorable prostate cancer, a prospective trial of pelvic external beam irradiation (EBRT) interdigitated with dose-escalating conformal high-dose-rate (HDR) prostate brachytherapy was performed. Between November 1991 and August 2000, 207 patients were treated with 46 Gy pelvic EBRT and increasing HDR brachytherapy boost doses (5.50-11.5 Gy/fraction) during 5 weeks. The eligibility criteria were pretreatment prostate-specific antigen level >or=10.0 ng/mL, Gleason score >or=7, or clinical Stage T2b or higher. Patients were divided into 2 dose levels, low-dose biologically effective dose <93 Gy (58 patients) and high-dose biologically effective dose >93 Gy (149 patients). No patient received hormones. We used the American Society for Therapeutic Radiology and Oncology definition for biochemical failure. The median age was 69 years. The mean follow-up for the group was 4.4 years, and for the low and high-dose levels, it was 7.0 and 3.4 years, respectively. The actuarial 5-year biochemical control rate was 74%, and the overall, cause-specific, and disease-free survival rate was 92%, 98%, and 68%, respectively. The 5-year biochemical control rate for the low-dose group was 52%; the rate for the high-dose group was 87% (p <0.001). Improvement occurred in the cause-specific survival in favor of the brachytherapy high-dose level (p = 0.014). On multivariate analysis, a low-dose level, higher Gleason score, and higher nadir value were associated with increased biochemical failure. The Radiation Therapy Oncology Group Grade 3 gastrointestinal/genitourinary complications ranged from 0.5% to 9%. The actuarial 5-year impotency rate was 51%. Pelvic EBRT interdigitated with transrectal ultrasound-guided real-time conformal HDR prostate brachytherapy boost is both a precise dose delivery system and a very effective treatment for unfavorable prostate cancer. We demonstrated an incremental beneficial effect on biochemical control and

  4. Body Mass Index and Prostate-Specific Antigen Failure Following Brachytherapy for Localized Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Efstathiou, Jason A.; Skowronski, Rafi Y.; Coen, John J.

    2008-08-01

    Purpose: Increasing body mass index (BMI) is associated with prostate-specific antigen (PSA) failure after radical prostatectomy and external beam radiation therapy (EBRT). We investigated whether BMI is associated with PSA failure in men treated with brachytherapy for clinically localized prostate cancer. Patients and Methods: Retrospective analyses were conducted on 374 patients undergoing brachytherapy for stage T1c-T2cNXM0 prostate cancer from 1996-2001. Forty-nine patients (13%) received supplemental EBRT and 131 (35%) received androgen deprivation therapy (ADT). Height and weight data were available for 353 (94%). Cox regression analyses were performed to evaluate the relationship between BMI and PSA failure (nadir + 2more » ng/ml definition). Covariates included age, race, preimplantation PSA, Gleason score, T category, percent of prescription dose to 90% of the prostate, use of supplemental EBRT, and ADT. Results: Median age, PSA, and BMI were 66 years (range, 42-80 years), 5.7 ng/ml (range, 0.4-22.6 ng/ml), and 27.1 kg/m{sup 2} (range, 18.2-53.6 kg/m{sup 2}), respectively. After a median follow-up of 6.0 years (range, 3.0-10.2 years), there were 76 PSA recurrences. The BMI was not associated with PSA failure. Six-year PSA failure rates were 30.2% for men with BMI less than 25 kg/m{sup 2}, 19.5% for BMI of 25 or greater to less than 30 kg/m{sup 2}, and 14.4% for BMI of 30 kg/m{sup 2} or greater (p = 0.19). Results were similar when BMI was analyzed as a continuous variable, using alternative definitions of PSA failure, and excluding patients treated with EBRT and/or ADT. In multivariate analyses, only baseline PSA was significantly associated with shorter time to PSA failure (adjusted hazard ratio, 1.12; 95% confidence interval, 1.05-1.20; p 0.0006). Conclusions: Unlike after surgery or EBRT, BMI is not associated with PSA failure in men treated with brachytherapy for prostate cancer. This raises the possibility that brachytherapy may be a preferred

  5. Predictors of Toxicity After Image-guided High-dose-rate Interstitial Brachytherapy for Gynecologic Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Larissa J.; Viswanathan, Akila N., E-mail: aviswanathan@lroc.harvard.edu

    2012-12-01

    Purpose: To identify predictors of grade 3-4 complications and grade 2-4 rectal toxicity after three-dimensional image-guided high-dose-rate (HDR) interstitial brachytherapy for gynecologic cancer. Methods and Materials: Records were reviewed for 51 women (22 with primary disease and 29 with recurrence) treated with HDR interstitial brachytherapy. A single interstitial insertion was performed with image guidance by computed tomography (n = 43) or magnetic resonance imaging (n = 8). The median delivered dose in equivalent 2-Gy fractions was 72.0 Gy (45 Gy for external-beam radiation therapy and 24 Gy for brachytherapy). Toxicity was reported according to the Common Toxicity Criteria for Adversemore » Events. Actuarial toxicity estimates were calculated by the Kaplan-Meier method. Results: At diagnosis, the median patient age was 62 years and the median tumor size was 3.8 cm. The median D90 and V100 were 71.4 Gy and 89.5%; the median D2cc for the bladder, rectum, and sigmoid were 64.6 Gy, 61.0 Gy, and 52.7 Gy, respectively. The actuarial rates of all grade 3-4 complications at 2 years were 20% gastrointestinal, 9% vaginal, 6% skin, 3% musculoskeletal, and 2% lymphatic. There were no grade 3-4 genitourinary complications and no grade 5 toxicities. Grade 2-4 rectal toxicity was observed in 10 patients, and grade 3-4 complications in 4; all cases were proctitis with the exception of 1 rectal fistula. D2cc for rectum was higher for patients with grade 2-4 (68 Gy vs 57 Gy for grade 0-1, P=.03) and grade 3-4 (73 Gy vs 58 Gy for grade 0-2, P=.02) rectal toxicity. The estimated dose that resulted in a 10% risk of grade 2-4 rectal toxicity was 61.8 Gy (95% confidence interval, 51.5-72.2 Gy). Discussion: Image-guided HDR interstitial brachytherapy results in acceptable toxicity for women with primary or recurrent gynecologic cancer. D2cc for the rectum is a reliable predictor of late rectal complications. Three-dimensional-based treatment planning should be performed to

  6. Effect of postoperative brachytherapy and external beam radiotherapy on functional outcomes of immediate facial nerve repair after radical parotidectomy.

    PubMed

    Hontanilla, Bernardo; Qiu, Shan-Shan; Marré, Diego

    2014-01-01

    There is much controversy regarding the effect of radiotherapy on facial nerve regeneration. However, the effect of brachytherapy has not been studied. Fifty-three patients underwent total parotidectomy of which 13 were radical with immediate facial nerve repair with sural nerve grafts. Six patients (group 1) did not receive adjuvant treatment whereas 7 patients (group 2) received postoperative brachytherapy plus radiotherapy. Functional outcomes were compared using Facial Clima. Mean percentage of blink recovery was 92.6 ± 4.2 for group 1 and 90.7 ± 5.2 for group 2 (p = .37). Mean percentage of commissural excursion restoration was 78.1 ± 3.5 for group 1 and 74.9 ± 5.9 for group 2 (p = .17). Mean time from surgery to first movement was 5.7 ± 0.9 months for group 1 and 6.3 ± 0.5 months for group 2 (p = .15). Brachytherapy plus radiotherapy does not affect the functional outcomes of immediate facial nerve repair with nerve grafts. Copyright © 2013 Wiley Periodicals, Inc.

  7. Nanoparticle-based brachytherapy spacers for delivery of localized combined chemoradiation therapy.

    PubMed

    Kumar, Rajiv; Belz, Jodi; Markovic, Stacey; Jadhav, Tej; Fowle, William; Niedre, Mark; Cormack, Robert; Makrigiorgos, Mike G; Sridhar, Srinivas

    2015-02-01

    In radiation therapy (RT), brachytherapy-inert source spacers are commonly used in clinical practice to achieve high spatial accuracy. These implanted devices are critical technical components of precise radiation delivery but provide no direct therapeutic benefits. Here we have fabricated implantable nanoplatforms or chemoradiation therapy (INCeRT) spacers loaded with silica nanoparticles (SNPs) conjugated containing a drug, to act as a slow-release drug depot for simultaneous localized chemoradiation therapy. The spacers are made of poly(lactic-co-glycolic) acid (PLGA) as matrix and are physically identical in size to the commercially available brachytherapy spacers (5 mm × 0.8 mm). The silica nanoparticles, 250 nm in diameter, were conjugated with near infrared fluorophore Cy7.5 as a model drug, and the INCeRT spacers were characterized in terms of size, morphology, and composition using different instrumentation techniques. The spacers were further doped with an anticancer drug, docetaxel. We evaluated the in vivo stability, biocompatibility, and biodegradation of these spacers in live mouse tissues. The electron microscopy studies showed that nanoparticles were distributed throughout the spacers. These INCeRT spacers remained stable and can be tracked by the use of optical fluorescence. In vivo optical imaging studies showed a slow diffusion of nanoparticles from the spacer to the adjacent tissue in contrast to the control Cy7.5-PLGA spacer, which showed rapid disintegration in a few days with a burst release of Cy7.5. The docetaxel spacers showed suppression of tumor growth in contrast to control mice over 16 days. The imaging with the Cy7.5 spacer and therapeutic efficacy with docetaxel spacers supports the hypothesis that INCeRT spacers can be used for delivering the drugs in a slow, sustained manner in conjunction with brachytherapy, in contrast to the rapid clearance of the drugs when administered systemically. The results demonstrate that these spacers

  8. Nanoparticle-Based Brachytherapy Spacers for Delivery of Localized Combined Chemoradiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Rajiv, E-mail: r.kumar@neu.edu; Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts; Belz, Jodi

    Purpose: In radiation therapy (RT), brachytherapy-inert source spacers are commonly used in clinical practice to achieve high spatial accuracy. These implanted devices are critical technical components of precise radiation delivery but provide no direct therapeutic benefits. Methods and Materials: Here we have fabricated implantable nanoplatforms or chemoradiation therapy (INCeRT) spacers loaded with silica nanoparticles (SNPs) conjugated containing a drug, to act as a slow-release drug depot for simultaneous localized chemoradiation therapy. The spacers are made of poly(lactic-co-glycolic) acid (PLGA) as matrix and are physically identical in size to the commercially available brachytherapy spacers (5 mm × 0.8 mm). The silica nanoparticles, 250 nm in diameter,more » were conjugated with near infrared fluorophore Cy7.5 as a model drug, and the INCeRT spacers were characterized in terms of size, morphology, and composition using different instrumentation techniques. The spacers were further doped with an anticancer drug, docetaxel. We evaluated the in vivo stability, biocompatibility, and biodegradation of these spacers in live mouse tissues. Results: The electron microscopy studies showed that nanoparticles were distributed throughout the spacers. These INCeRT spacers remained stable and can be tracked by the use of optical fluorescence. In vivo optical imaging studies showed a slow diffusion of nanoparticles from the spacer to the adjacent tissue in contrast to the control Cy7.5-PLGA spacer, which showed rapid disintegration in a few days with a burst release of Cy7.5. The docetaxel spacers showed suppression of tumor growth in contrast to control mice over 16 days. Conclusions: The imaging with the Cy7.5 spacer and therapeutic efficacy with docetaxel spacers supports the hypothesis that INCeRT spacers can be used for delivering the drugs in a slow, sustained manner in conjunction with brachytherapy, in contrast to the rapid clearance of the drugs when

  9. Impact of dosimetric and clinical parameters on clinical side effects in cervix cancer patients treated with 3D pulse-dose-rate intracavitary brachytherapy.

    PubMed

    Levitchi, Mihai; Charra-Brunaud, Claire; Quetin, Philippe; Haie-Meder, Christine; Kerr, Christine; Castelain, Bernard; Delannes, Martine; Thomas, Laurence; Desandes, Emmanuel; Peiffert, Didier

    2012-06-01

    To assess the association between dosimetric/clinical parameters and gastrointestinal/urinary grade 2-4 side effects in cervix cancer patients treated with 3D pulse dose rate brachytherapy. Three hundred and fifty-two patients received brachytherapy associated with external-beam radiotherapy (EBRT) for 266 of them; 236 patients underwent surgery. The doses for the most exposed 2, and 0.1 cm(3) (D(2cc) and D(0.1cc)) volumes of the rectum and bladder as well as bladder ICRU point dose (D(ICRU)) were converted into isoeffective doses in 2-Gy fractions. The clinical parameters analyzed were: age, smoking habits, arteritis, diabetes, previous pelvic surgery, FIGO stage, nodal status, pathology, pelvic surgery, EBRT and chemotherapy. Side effects were prospectively assessed using the CTCAEv3.0. Cutoff dose levels were defined separately for patients treated with EBRT and brachytherapy (Group 1) and with preoperative brachytherapy (Group 2). The median follow-up was 23.4months. In Group 1 a significant predictive value of rectum D(0.1cc) and D(2cc), bladder D(0.1cc) and D(ICRU) for gastrointestinal and urinary toxicity was found using as cutoff 83, 68, 109 and 68Gy(α)(/)(β)(3). In Group 2 a significant predictive value of bladder D(0.1cc), D(2cc) and D(ICRU) for urinary toxicity was found using as cutoff 141, 91 and 67Gy(α)(/)(β)(3), but not for the rectum D(0.1cc) and D(2cc); smoking had a significant predictive value on urinary toxicity. For patients treated with brachytherapy and EBRT, rectum D(0.1cc) and D(2cc) and bladder D(0.1cc) and D(ICRU) had a predictive value for toxicity. For patients treated with preoperative brachytherapy, bladder D(0.1cc), D(2cc) and D(ICRU) and smoking had a predictive value for urinary toxicity. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. High-risk CTV delineation for cervix brachytherapy: Application of GEC-ESTRO guidelines in Australia and New Zealand.

    PubMed

    Vinod, Shalini K; Lim, Karen; Bell, Lauren; Veera, Jacqueline; Ohanessian, Lucy; Juresic, Ewa; Borok, Nira; Chan, Phillip; Chee, Raphael; Do, Viet; Govindarajulu, Geetha; Sridharan, Swetha; Johnson, Carol; Moses, Daniel; Van Dyk, Sylvia; Holloway, Lois

    2017-02-01

    Image-based brachytherapy for cervical cancer using MRI has been implemented in Australia and New Zealand. The aims of this study were to measure variability in High-risk CTV (HR-CTV) delineation and evaluate dosimetric consequences of this. Nine radiation oncologists, one radiation therapist and two radiologists contoured HR-CTV on 3T MRI datasets from ten consecutive patients undergoing cervical brachytherapy at a single institution. Contour comparisons were performed using the Dice Similarity Coefficient (DSC) and Mean Absolute Surface Distance (MASD). Two reference contours were created for brachytherapy planning: a Simultaneous Truth and Performance Level Estimation (STAPLE) and a consensus contour (CONSENSUS). Optimized plans (8 Gy) for both these contours were applied to individual participant's contours to assess D90 and D100 coverage of HR CTV. To compare variability in dosimetry, relative standard deviation (rSD) was calculated. Good concordance (mean DSC≥0.7, MASD≤5 mm) was achieved in 8/10 cases when compared to the STAPLE reference and 6/10 cases when compared to the CONSENSUS reference. Greatest variation was visually seen in the cranio-caudal direction. The average mean rSD across all patients was 27% and 34% for the STAPLE HR-CTV D90 and D100, respectively, and 28% and 35% for the CONSENSUS HR-CTV D90 and D100. Delineation uncertainty resulted in an average dosimetric uncertainty of ±1.5-1.6 Gy per fraction based on an 8 Gy prescribed fraction. Delineation of HR-CTV for cervical cancer brachytherapy was consistent amongst observers, suggesting similar interpretation of GEC-ESTRO guidelines. Despite the good concordance, there was dosimetric variation noted, which could be clinically significant. © 2016 The Royal Australian and New Zealand College of Radiologists.

  11. Young Men Have Equivalent Biochemical Outcomes Compared With Older Men After Treatment With Brachytherapy for Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burri, Ryan J.; Ho, Alice Y.; Forsythe, Kevin

    Purpose: To evaluate retrospectively the biochemical outcomes of young men treated with low-dose-rate brachytherapy for prostate cancer. Methods and Materials: From 1990 to 2005, 1,665 men with clinically localized prostate cancer were treated with low-dose-rate brachytherapy {+-} hormone therapy (HT) {+-} external beam radiotherapy and underwent {>=}2 years of follow-up. Patients were stratified on the basis of age: {<=}60 (n = 378) and >60 years (n = 1,287). Biochemical failure was defined as a prostate-specific antigen (PSA) nadir plus 2 ng/mL. Univariate and multivariate analyses were used to determine the association of variables with freedom from biochemical failure (FFbF). Results:more » Median follow-up was 68 months (range, 24-180) for men {<=}60 years and 66 months (range, 24-200) for men >60. For the entire group, the actuarial 5- and 8-year FFbF rates were 94% and 88%, respectively. Men {<=}60 demonstrated similar 5- and 8-year FFbF (95% and 92%) compared with men >60 (93% and 87%; p = 0.071). A larger percent of young patients presented with low-risk disease; lower clinical stage, Gleason score (GS), and pretreatment PSA values; were treated after 1997; did not receive any HT; and had a high biologic effective dose (BED) of radiation (all ps <0.001). On multivariate analysis, PSA (p = 0.001), GS (p = 0.005), and BED (p < 0.001) were significantly associated with FFbF, but age was not (p = 0.665). Conclusion: Young men achieve excellent 5- and 8-year biochemical control rates that are comparable to those of older men after prostate brachytherapy. Young age should not be a deterrent when considering brachytherapy as a primary treatment option for clinically localized prostate cancer.« less

  12. A retrospective analysis of rectal and bladder dose for gynecological brachytherapy treatments with GZP6 HDR afterloading system.

    PubMed

    Bahreyni Toossi, Mohammad Taghi; Ghorbani, Mahdi; Makhdoumi, Yasha; Taheri, Mojtaba; Homaee Shandiz, Fatemeh; Zahed Anaraki, Siavash; Soleimani Meigooni, Ali

    2012-01-01

    The aim of this work is to evaluate rectal and bladder dose for the patients treated for gynecological cancers. The GZP6 high dose rate brachytherapy system has been recently introduced to a number of radiation therapy departments in Iran, for treatment of various tumor sites such as cervix and vagina. Our analysis was based on dose measurements for 40 insertions in 28 patients, treated by a GZP6 unit between June 2009 and November 2010. Treatments consisted of combined teletherapy and intracavitary brachytherapy. In vivo dosimetry was performed with TLD-400 chips and TLD-100 microcubes in the rectum and bladder. The average of maximum rectal and bladder dose values were found to be 7.62 Gy (range 1.72-18.55 Gy) and 5.17 Gy (range 0.72-15.85 Gy), respectively. It has been recommended by the ICRU that the maximum dose to the rectum and bladder in intracavitary treatment of vaginal or cervical cancer should be lower than 80% of the prescribed dose to point A in the Manchester system. In this study, of the total number of 40 insertions, maximum rectal dose in 29 insertions (72.5% of treatment sessions) and maximum bladder dose in 18 insertions (45% of treatments sessions) were higher than 80% of the prescribed dose to the point of dose prescription. In vivo dosimetry for patients undergoing treatment by GZP6 brachytherapy system can be used for evaluation of the quality of brachytherapy treatments by this system. This information could be used as a base for developing the strategy for treatment of patients treated with GZP6 system.

  13. Energy-based dosimetry of low-energy, photon-emitting brachytherapy sources

    NASA Astrophysics Data System (ADS)

    Malin, Martha J.

    Model-based dose calculation algorithms (MBDCAs) for low-energy, photon-emitting brachytherapy sources have advanced to the point where the algorithms may be used in clinical practice. Before these algorithms can be used, a methodology must be established to verify the accuracy of the source models used by the algorithms. Additionally, the source strength metric for these algorithms must be established. This work explored the feasibility of verifying the source models used by MBDCAs by measuring the differential photon fluence emitted from the encapsulation of the source. The measured fluence could be compared to that modeled by the algorithm to validate the source model. This work examined how the differential photon fluence varied with position and angle of emission from the source, and the resolution that these measurements would require for dose computations to be accurate to within 1.5%. Both the spatial and angular resolution requirements were determined. The techniques used to determine the resolution required for measurements of the differential photon fluence were applied to determine why dose-rate constants determined using a spectroscopic technique disagreed with those computed using Monte Carlo techniques. The discrepancy between the two techniques had been previously published, but the cause of the discrepancy was not known. This work determined the impact that some of the assumptions used by the spectroscopic technique had on the accuracy of the calculation. The assumption of isotropic emission was found to cause the largest discrepancy in the spectroscopic dose-rate constant. Finally, this work improved the instrumentation used to measure the rate at which energy leaves the encapsulation of a brachytherapy source. This quantity is called emitted power (EP), and is presented as a possible source strength metric for MBDCAs. A calorimeter that measured EP was designed and built. The theoretical framework that the calorimeter relied upon to measure EP

  14. Can IMRT or Brachytherapy Reduce Dysphagia Associated With Chemoradiotherapy of Head and Neck Cancer? The Michigan and Rotterdam Experiences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisbruch, Avraham; Levendag, Peter C.; Feng, Felix Y.

    Purpose: Dysphagia is a major late complication of intensive chemoradiotherapy of head and neck cancer. The initial clinical results of intensity-modulated radiotherapy (IMRT), or brachytherapy, planned specifically to reduce dysphagia are presented. Patients and Methods: Previous research at Michigan University has suggested that the pharyngeal constrictors and glottic and supraglottic larynx are likely structures whose damage by chemo-RT causes dysphagia and aspiration. In a prospective Michigan trial, 36 patients with oropharyngeal (n = 31) or nasopharyngeal (n = 5) cancer underwent chemo-IMRT. IMRT cost functions included sparing noninvolved pharyngeal constrictors and the glottic and supraglottic larynx. After a review ofmore » published studies, the retropharyngeal nodes at risk were defined as the lateral, but not the medial, retropharyngeal nodes, which facilitated sparing of the swallowing structures. In Rotterdam, 77 patients with oropharyngeal cancer were treated with IMRT, three dimensional RT, or conventional RT; also one-half received brachytherapy. The dysphagia endpoints included videofluoroscopy and observer-assessed scores at Michigan and patient-reported quality-of-life instruments in both studies. Results: In both studies, the doses to the upper and middle constrictors correlated highly with the dysphagia endpoints. In addition, doses to the glottic and supraglottic larynx were significant in the Michigan series. In the Rotterdam series, brachytherapy (which reduced the doses to the swallowing structures) was the only significant factor on multivariate analysis. Conclusion: The dose-response relationships for the swallowing structures found in these studies suggest that reducing their doses, using either IMRT aimed at their sparing, or brachytherapy, might achieve clinical gains in dysphagia.« less

  15. Impact of point A asymmetry on local control and survival for low dose-rate (LDR) brachytherapy in cervical cancer.

    PubMed

    Opfermann, Krisha J; Wahlquist, Amy; Watkins, John; Kohler, Matthew; Jenrette, Joseph

    2012-03-01

    To evaluate whether Point A asymmetry in low dose-rate (LDR) brachytherapy is associated with local control (LC), disease-free survival (DFS) and/or overall survival (OS). A retrospective analysis of disease control and survival outcomes was conducted for patients who underwent LDR brachytherapy for advanced cervical cancer. Institutional protocol entailed concurrent chemotherapy and whole pelvis radiotherapy (WPRT) over 5 weeks, followed by placement of Fletcher-Suit tandem and colpostat applicators at weeks 6 and 8. Objective Point A doses, 80-85 Gy, were accomplished by placement of Cesium-137 (Cs-137) sources. Cox proportional hazards regression models were used to assess associations between disease control and survival endpoints with variables of interest. The records of 50 patients with FIGO stage IB1-IVA cervical cancer undergoing LDR brachytherapy at our institution were identified. Thirty of these patients had asymmetry > 2.5%, and 11 patients had asymmetry > 5%. At a median survivor follow-up of 20.25 months, 15 patients had experienced disease failure (including 5 cervical/vaginal apex only failures and 2 failures encompassing the local site). Right/left dose asymmetry at Point A was associated with statistically significantly inferior LC (p = 0.035) and inferior DFS (p = 0.011) for patients with mean Point A dose of > 80 Gy. Insufficient evidence existed to conclude an association with OS. LDR brachytherapy may be associated with clinically significant dose asymmetry. The present study demonstrates that patients with Point A asymmetry have a higher risk of failure for DFS and LC.

  16. Impact of point A asymmetry on local control and survival for low dose-rate (LDR) brachytherapy in cervical cancer

    PubMed Central

    Wahlquist, Amy; Watkins, John; Kohler, Matthew; Jenrette, Joseph

    2012-01-01

    Purpose To evaluate whether Point A asymmetry in low dose-rate (LDR) brachytherapy is associated with local control (LC), disease-free survival (DFS) and/or overall survival (OS). Material and methods A retrospective analysis of disease control and survival outcomes was conducted for patients who underwent LDR brachytherapy for advanced cervical cancer. Institutional protocol entailed concurrent chemotherapy and whole pelvis radiotherapy (WPRT) over 5 weeks, followed by placement of Fletcher-Suit tandem and colpostat applicators at weeks 6 and 8. Objective Point A doses, 80-85 Gy, were accomplished by placement of Cesium-137 (Cs-137) sources. Cox proportional hazards regression models were used to assess associations between disease control and survival endpoints with variables of interest. Results The records of 50 patients with FIGO stage IB1-IVA cervical cancer undergoing LDR brachytherapy at our institution were identified. Thirty of these patients had asymmetry > 2.5%, and 11 patients had asymmetry > 5%. At a median survivor follow-up of 20.25 months, 15 patients had experienced disease failure (including 5 cervical/vaginal apex only failures and 2 failures encompassing the local site). Right/left dose asymmetry at Point A was associated with statistically significantly inferior LC (p = 0.035) and inferior DFS (p = 0.011) for patients with mean Point A dose of > 80 Gy. Insufficient evidence existed to conclude an association with OS. Conclusions LDR brachytherapy may be associated with clinically significant dose asymmetry. The present study demonstrates that patients with Point A asymmetry have a higher risk of failure for DFS and LC. PMID:23346133

  17. Optically Stimulated Luminescent Dosimetry for High Dose Rate Brachytherapy

    PubMed Central

    Tien, Christopher Jason; Ebeling, Robert; Hiatt, Jessica R.; Curran, Bruce; Sternick, Edward

    2012-01-01

    Purpose: The objective was to determine whether optically stimulated luminescent dosimeters (OSLDs) were appropriate for in vivo measurements in high dose rate brachytherapy. In order to make this distinction, three dosimetric characteristics were tested: dose linearity, dose rate dependence, and angular dependence. The Landauer nanoDot™ OSLDs were chosen due to their popularity and their availability commercially. Methods: To test the dose linearity, each OSLD was placed at a constant location and the dwell time was varied. Next, in order to test the dose rate dependence, each OSLD was placed at different OLSD-to-source distances and the dwell time was held constant. A curved geometry was created using a circular Accuboost® applicator in order to test angular dependence. Results: The OSLD response remained linear for high doses and was independent of dose rate. For doses up to 600 cGy, the linear coefficient of determination was 0.9988 with a response of 725 counts per cGy. The angular dependence was significant only in “edge-on” scenarios. Conclusion: OSLDs are conveniently read out using commercially available readers. OSLDs can be re-read and serve as a permanent record for clinical records or be annealed using conventional fluorescent light. Lastly, OSLDs are produced commercially for $5 each. Due to these convenient features, in conjunction with the dosimetric performance, OSLDs should be considered a clinically feasible and attractive tool for in vivo HDR brachytherapy measurements. PMID:22888476

  18. MR-based source localization for MR-guided HDR brachytherapy

    NASA Astrophysics Data System (ADS)

    Beld, E.; Moerland, M. A.; Zijlstra, F.; Viergever, M. A.; Lagendijk, J. J. W.; Seevinck, P. R.

    2018-04-01

    For the purpose of MR-guided high-dose-rate (HDR) brachytherapy, a method for real-time localization of an HDR brachytherapy source was developed, which requires high spatial and temporal resolutions. MR-based localization of an HDR source serves two main aims. First, it enables real-time treatment verification by determination of the HDR source positions during treatment. Second, when using a dummy source, MR-based source localization provides an automatic detection of the source dwell positions after catheter insertion, allowing elimination of the catheter reconstruction procedure. Localization of the HDR source was conducted by simulation of the MR artifacts, followed by a phase correlation localization algorithm applied to the MR images and the simulated images, to determine the position of the HDR source in the MR images. To increase the temporal resolution of the MR acquisition, the spatial resolution was decreased, and a subpixel localization operation was introduced. Furthermore, parallel imaging (sensitivity encoding) was applied to further decrease the MR scan time. The localization method was validated by a comparison with CT, and the accuracy and precision were investigated. The results demonstrated that the described method could be used to determine the HDR source position with a high accuracy (0.4–0.6 mm) and a high precision (⩽0.1 mm), at high temporal resolutions (0.15–1.2 s per slice). This would enable real-time treatment verification as well as an automatic detection of the source dwell positions.

  19. Enhanced Ultrasound Visualization of Brachytherapy Seeds by a Novel Magnetically Induced Motion Imaging Method

    DTIC Science & Technology

    2007-04-01

    We report our progress in developing Magnetically Induced Motion Imaging (MIMI) for unambiguous identification and localization brachytherapy seeds ...tail artifacts in segmented seed images. The second is a method for joining ends of seeds in segmented seed images based on the phase of the detected

  20. Introduction of a hybrid treatment delivery system used for quality assurance in multi-catheter interstitial brachytherapy

    NASA Astrophysics Data System (ADS)

    Kallis, Karoline; Kreppner, Stephan; Lotter, Michael; Fietkau, Rainer; Strnad, Vratislav; Bert, Christoph

    2018-05-01

    Multi-catheter interstitial brachytherapy (iBT) is a treatment option for breast cancer patients after breast conserving surgery. Typically, only a few additional quality interventions after the first irradiation have been introduced to ensure the planned treatment delivery. Therefore, the purpose of this study is to show the possibilities of an electromagnetic tracking (EMT) system integrated into the afterloader for quality assurance (QA) in high-dose rate (HDR) iBT of patients with breast cancer. The hybrid afterloader system equipped with an electromagnetic sensor was used for all phantom and patient measurements. Phantom measurements were conducted to estimate the quality of different evaluation schemes. After a coherent point drift registration of the EMT traces to the reconstructed catheters based on computed tomograms the dwell positions (DP) were defined. Different fitting and interpolation methods were analyzed for the reconstruction of DPs. All estimated DPs were compared to the DPs defined in treatment planning. Until now, the implant geometry of 20 patients treated with HDR brachytherapy was acquired and explored. Regarding the reconstruction techniques, both fitting and interpolation were able to detect manually introduced shifts and swaps. Nonetheless, interpolation showed superior results (RMSE  =  1.27 mm), whereas fitting seemed to be more stable to distortion and motion. The EMT system proved to be beneficial for QA in brachytherapy and furthermore, clinical feasibility was proven.

  1. Evaluation of Delivery Costs for External Beam Radiation Therapy and Brachytherapy for Locally Advanced Cervical Cancer Using Time-Driven Activity-Based Costing.

    PubMed

    Bauer-Nilsen, Kristine; Hill, Colin; Trifiletti, Daniel M; Libby, Bruce; Lash, Donna H; Lain, Melody; Christodoulou, Deborah; Hodge, Constance; Showalter, Timothy N

    2018-01-01

    To evaluate the delivery costs, using time-driven activity-based costing, and reimbursement for definitive radiation therapy for locally advanced cervical cancer. Process maps were created to represent each step of the radiation treatment process and included personnel, equipment, and consumable supplies used to deliver care. Personnel were interviewed to estimate time involved to deliver care. Salary data, equipment purchasing information, and facilities costs were also obtained. We defined the capacity cost rate (CCR) for each resource and then calculated the total cost of patient care according to CCR and time for each resource. Costs were compared with 2016 Medicare reimbursement and relative value units (RVUs). The total cost of radiation therapy for cervical cancer was $12,861.68, with personnel costs constituting 49.8%. Brachytherapy cost $8610.68 (66.9% of total) and consumed 423 minutes of attending radiation oncologist time (80.0% of total). External beam radiation therapy cost $4055.01 (31.5% of total). Personnel costs were higher for brachytherapy than for the sum of simulation and external beam radiation therapy delivery ($4798.73 vs $1404.72). A full radiation therapy course provides radiation oncologists 149.77 RVUs with intensity modulated radiation therapy or 135.90 RVUs with 3-dimensional conformal radiation therapy, with total reimbursement of $23,321.71 and $16,071.90, respectively. Attending time per RVU is approximately 4-fold higher for brachytherapy (5.68 minutes) than 3-dimensional conformal radiation therapy (1.63 minutes) or intensity modulated radiation therapy (1.32 minutes). Time-driven activity-based costing was used to calculate the total cost of definitive radiation therapy for cervical cancer, revealing that brachytherapy delivery and personnel resources constituted the majority of costs. However, current reimbursement policy does not reflect the increased attending physician effort and delivery costs of brachytherapy. We

  2. New National Air-Kerma Standard for Low-Energy Electronic Brachytherapy Sources

    PubMed Central

    Seltzer, Stephen M; O’Brien, Michelle; Mitch, Michael G

    2014-01-01

    The new primary standard for low-energy electronic brachytherapy sources for the United States is described. These miniature x-ray tubes are inserted in catheters for interstitial radiation therapy and operate at tube potentials of up to about 50 kV. The standard is based on the realization of the air kerma produced by the x-ray beam at a reference distance in air of 50 cm. PMID:26601044

  3. Dosimetric variations due to interfraction organ deformation in cervical cancer brachytherapy.

    PubMed

    Kobayashi, Kazuma; Murakami, Naoya; Wakita, Akihisa; Nakamura, Satoshi; Okamoto, Hiroyuki; Umezawa, Rei; Takahashi, Kana; Inaba, Koji; Igaki, Hiroshi; Ito, Yoshinori; Shigematsu, Naoyuki; Itami, Jun

    2015-12-01

    We quantitatively estimated dosimetric variations due to interfraction organ deformation in multi-fractionated high-dose-rate brachytherapy (HDRBT) for cervical cancer using a novel surface-based non-rigid deformable registration. As the number of consecutive HDRBT fractions increased, simple addition of dose-volume histogram parameters significantly overestimated the dose, compared with distribution-based dose addition. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  4. ``In Vivo'' Dosimetry in High Dose Rate Brachytherapy for Cervical Cancer Treatments

    NASA Astrophysics Data System (ADS)

    González-Azcorra, S. A.; Mota-García, A.; Poitevín-Chacón, M. A.; Santamaría-Torruco, B. J.; Rodríguez-Ponce, M.; Herrera-Martínez, F. P.; Gamboa de Buen, I.; Ruíz-Trejo, C.; Buenfil, A. E.

    2008-08-01

    In this prospective study, rectal dose was measured "in vivo" using TLD-100 crystals (3×3×1 mm3), and it has been compared to the prescribed dose. Measurements were performed in patients with cervical cancer classified in FIGO stages IB-IIIB and treated with high dose rate brachytherapy (HDR BT) at the Instituto Nacional de Cancerología (INCan).

  5. Intra-operative Localization of Brachytherapy Implants Using Intensity-based Registration

    PubMed Central

    KarimAghaloo, Z.; Abolmaesumi, P.; Ahmidi, N.; Chen, T.K.; Gobbi, D. G.; Fichtinger, G.

    2010-01-01

    In prostate brachytherapy, a transrectal ultrasound (TRUS) will show the prostate boundary but not all the implanted seeds, while fluoroscopy will show all the seeds clearly but not the boundary. We propose an intensity-based registration between TRUS images and the implant reconstructed from uoroscopy as a means of achieving accurate intra-operative dosimetry. The TRUS images are first filtered and compounded, and then registered to the uoroscopy model via mutual information. A training phantom was implanted with 48 seeds and imaged. Various ultrasound filtering techniques were analyzed, and the best results were achieved with the Bayesian combination of adaptive thresholding, phase congruency, and compensation for the non-uniform ultrasound beam profile in the elevation and lateral directions. The average registration error between corresponding seeds relative to the ground truth was 0.78 mm. The effect of false positives and false negatives in ultrasound were investigated by masking true seeds in the uoroscopy volume or adding false seeds. The registration error remained below 1.01 mm when the false positive rate was 31%, and 0.96 mm when the false negative rate was 31%. This fully automated method delivers excellent registration accuracy and robustness in phantom studies, and promises to demonstrate clinically adequate performance on human data as well. Keywords: Prostate brachytherapy, Ultrasound, Fluoroscopy, Registration. PMID:21152376

  6. Shifting brachytherapy monotherapy case mix toward intermediate-risk prostate cancer.

    PubMed

    Muralidhar, Vinayak; Mahal, Brandon A; Ziehr, David R; Chen, Yu-Wei; Nezolosky, Michelle D; Viswanathan, Vidya B; Beard, Clair J; Devlin, Phillip M; Martin, Neil E; Orio, Peter F; Nguyen, Paul L

    2015-01-01

    The relative use of brachytherapy (BT) for prostate cancer has declined in recent years. In this setting, we sought to determine whether the case mix of BT monotherapy-treated men has changed over time in terms of risk group composition. The Surveillance, Epidemiology, and End Results database was used to identify 30,939 patients diagnosed with prostate adenocarcinoma between 2004 and 2011 who received BT monotherapy. The case mix of BT monotherapy patients was calculated by patient risk group and year of diagnosis. Between 2004 and 2011, the use of BT monotherapy declined overall. The relative percentage of men undergoing BT with low-risk disease declined by 4.5%, whereas the relative percentage of patients with intermediate-risk disease increased by 4.7%. Non-white patients and those from poorer counties did not show shifts in the risk group makeup of BT monotherapy patients, whereas white patients and those from wealthier counties did. Although fewer patients with prostate cancer are undergoing BT monotherapy, men with intermediate-risk disease comprised a significantly larger portion of the BT case mix in 2011 compared with 2004. Future research efforts by brachytherapists should be directed toward improving BT technique, optimizing radiation doses, and obtaining long-term followup data for patients with intermediate-risk prostate cancer. Copyright © 2015 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  7. Reduced dose to urethra and rectum with the use of variable needle spacing in prostate brachytherapy: a potential role for robotic technology.

    PubMed

    Vyas, Shilpa; Le, Yi; Zhang, Zhe; Armour, Woody; Song, Daniel Y

    2015-08-01

    Several robotic delivery systems for prostate brachytherapy are under development or in pre-clinical testing. One of the features of robotic brachytherapy is the ability to vary spacing of needles at non-fixed intervals. This feature may play an important role in prostate brachytherapy, which is traditionally template-based with fixed needle spacing of 0.5 cm. We sought to quantify potential reductions in the dose to urethra and rectum by utilizing variable needle spacing, as compared to fixed needle spacing. Transrectal ultrasound images from 10 patients were used by 3 experienced planners to create 120 treatment plans. Each planner created 4 plan variations per patient with respect to needle positions: (125)I fixed spacing, (125)I variable spacing, (103)Pd fixed spacing, and (103)Pd variable spacing. The primary planning objective was to achieve a prostate V100 of 100% while minimizing dose to urethra and rectum. All plans met the objective of achieving prostate V100 of 100%. Combined results for all plans show statistically significant improvements in all assessed dosimetric variables for urethra (Umax, Umean, D30, D5) and rectum (Rmax, Rmean, RV100) when using variable spacing. The dose reductions for mean and maximum urethra dose using variable spacing had p values of 0.011 and 0.024 with (103)Pd, and 0.007 and 0.029 with (125)I plans. Similarly dose reductions for mean and maximum rectal dose using variable spacing had p values of 0.007 and 0.052 with (103)Pd, and 0.012 and 0.037 with (125)I plans. The variable needle spacing achievable by the use of robotics in prostate brachytherapy allows for reductions in both urethral and rectal planned doses while maintaining prostate dose coverage. Such dosimetric advantages have the potential in translating to significant clinical benefits with the use of robotic brachytherapy.

  8. Predictive factors and management of rectal bleeding side effects following prostate cancer brachytherapy.

    PubMed

    Price, Jeremy G; Stone, Nelson N; Stock, Richard G

    2013-08-01

    To report on the incidence, nature, and management of rectal toxicities following individual or combination brachytherapy following treatment for prostate cancer over a 17-year period. We also report the patient and treatment factors predisposing to acute ≥ grade 2 proctitis. A total of 2752 patients were treated for prostate cancer between October 1990 and April 2007 with either low-dose-rate brachytherapy alone or in combination with androgen depletion therapy (ADT) or external beam radiation therapy (EBRT) and were followed for a median of 5.86 years (minimum 1.0 years; maximum 19.19 years). We investigated the 10-year incidence, nature, and treatment of acute and chronic rectal toxicities following BT. Using univariate, and multivariate analyses, we determined the treatment and comorbidity factors predisposing to rectal toxicities. We also outline the most common and effective management for these toxicities. Actuarial risk of ≥ grade 2 rectal bleeding was 6.4%, though notably only 0.9% of all patients required medical intervention to manage this toxicity. The majority of rectal bleeding episodes (72%) occurred within the first 3 years following placement of BT seeds. Of the 27 patients requiring management for their rectal bleeding, 18 underwent formalin treatment and nine underwent cauterization. Post-hoc univariate statistical analysis revealed that coronary artery disease (CAD), biologically effective dose, rectal volume receiving 100% of the prescription dose (RV100), and treatment modality predict the likelihood of grade ≥2 rectal bleeding. Only CAD, treatment type, and RV100 fit a Cox regression multivariate model. Low-dose-rate prostate brachytherapy is very well tolerated and rectal bleeding toxicities are either self-resolving or effectively managed by medical intervention. Treatment planning incorporating adjuvant ADT while minimizing RV100 has yielded the best toxicity-free survival following BT. Copyright © 2013 Elsevier Inc. All rights

  9. Predictive Factors and Management of Rectal Bleeding Side Effects Following Prostate Cancer Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, Jeremy G.; Stone, Nelson N.; Stock, Richard G., E-mail: Richard.Stock@mountsinai.org

    2013-08-01

    Purpose: To report on the incidence, nature, and management of rectal toxicities following individual or combination brachytherapy following treatment for prostate cancer over a 17-year period. We also report the patient and treatment factors predisposing to acute ≥grade 2 proctitis. Methods and Materials: A total of 2752 patients were treated for prostate cancer between October 1990 and April 2007 with either low-dose-rate brachytherapy alone or in combination with androgen depletion therapy (ADT) or external beam radiation therapy (EBRT) and were followed for a median of 5.86 years (minimum 1.0 years; maximum 19.19 years). We investigated the 10-year incidence, nature, andmore » treatment of acute and chronic rectal toxicities following BT. Using univariate, and multivariate analyses, we determined the treatment and comorbidity factors predisposing to rectal toxicities. We also outline the most common and effective management for these toxicities. Results: Actuarial risk of ≥grade 2 rectal bleeding was 6.4%, though notably only 0.9% of all patients required medical intervention to manage this toxicity. The majority of rectal bleeding episodes (72%) occurred within the first 3 years following placement of BT seeds. Of the 27 patients requiring management for their rectal bleeding, 18 underwent formalin treatment and nine underwent cauterization. Post-hoc univariate statistical analysis revealed that coronary artery disease (CAD), biologically effective dose, rectal volume receiving 100% of the prescription dose (RV100), and treatment modality predict the likelihood of grade ≥2 rectal bleeding. Only CAD, treatment type, and RV100 fit a Cox regression multivariate model. Conclusions: Low-dose-rate prostate brachytherapy is very well tolerated and rectal bleeding toxicities are either self-resolving or effectively managed by medical intervention. Treatment planning incorporating adjuvant ADT while minimizing RV100 has yielded the best toxicity-free survival

  10. Prostate-specific antigen density is predictive of outcome in suboptimal prostate seed brachytherapy.

    PubMed

    Benzaquen, David; Delouya, Guila; Ménard, Cynthia; Barkati, Maroie; Taussky, Daniel

    In prostate seed brachytherapy, a D 90 of <130 Gy is an accepted predictive factor for biochemical failure (BF). We studied whether there is a subpopulation that does not need additional treatment after a suboptimal permanent seed brachytherapy implantation. A total of 486 patients who had either BF or a minimum followup of 48 months without BF were identified. BF was defined according to the Phoenix definition (nadir prostate-specific antigen + 2). Univariate and multivariate analyses were performed, adjusting for known prognostic factors such as D 90 and prostate-specific antigen density (PSAD) of ≥0.15 ng/mL/cm 3 , to evaluate their ability to predict BF. Median followup for patients without BF was 72 months (interquartile range 56-96). BF-free recurrence rate at 5 years was 95% and at 8 years 88%. In univariate analysis, PSAD and cancer of the prostate risk assessment score were predictive of BF. On multivariate analysis, none of the factors remained significant. The best prognosis had patients with a low PSAD (<0.15 ng/mL/cm 3 ) and an optimal implant at 30 days after implantation (as defined by D 90  ≥ 130 Gy) compared to patients with both factors unfavorable (p = 0.006). A favorable PSAD was associate with a good prognosis, independently of the D 90 (<130 Gy vs. ≥130 Gy, p = 0.7). Patients with a PSAD of <0.15 ng/mL/cm 3 have little risk of BF, even in the case of a suboptimal implant. These results need to be validated in other patients' cohorts. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  11. A retrospective analysis of rectal and bladder dose for gynecological brachytherapy treatments with GZP6 HDR afterloading system

    PubMed Central

    Bahreyni Toossi, Mohammad Taghi; Ghorbani, Mahdi; Makhdoumi, Yasha; Taheri, Mojtaba; Homaee Shandiz, Fatemeh; Zahed Anaraki, Siavash; Soleimani Meigooni, Ali

    2012-01-01

    Aim The aim of this work is to evaluate rectal and bladder dose for the patients treated for gynecological cancers. Background The GZP6 high dose rate brachytherapy system has been recently introduced to a number of radiation therapy departments in Iran, for treatment of various tumor sites such as cervix and vagina. Materials and methods Our analysis was based on dose measurements for 40 insertions in 28 patients, treated by a GZP6 unit between June 2009 and November 2010. Treatments consisted of combined teletherapy and intracavitary brachytherapy. In vivo dosimetry was performed with TLD-400 chips and TLD-100 microcubes in the rectum and bladder. Results The average of maximum rectal and bladder dose values were found to be 7.62 Gy (range 1.72–18.55 Gy) and 5.17 Gy (range 0.72–15.85 Gy), respectively. It has been recommended by the ICRU that the maximum dose to the rectum and bladder in intracavitary treatment of vaginal or cervical cancer should be lower than 80% of the prescribed dose to point A in the Manchester system. In this study, of the total number of 40 insertions, maximum rectal dose in 29 insertions (72.5% of treatment sessions) and maximum bladder dose in 18 insertions (45% of treatments sessions) were higher than 80% of the prescribed dose to the point of dose prescription. Conclusion In vivo dosimetry for patients undergoing treatment by GZP6 brachytherapy system can be used for evaluation of the quality of brachytherapy treatments by this system. This information could be used as a base for developing the strategy for treatment of patients treated with GZP6 system. PMID:24377037

  12. Gold nanoparticle‐based brachytherapy enhancement in choroidal melanoma using a full Monte Carlo model of the human eye

    PubMed Central

    Vaez‐zadeh, Mehdi; Masoudi, S. Farhad; Rahmani, Faezeh; Knaup, Courtney; Meigooni, Ali S.

    2015-01-01

    The effects of gold nanoparticles (GNPs) in 125I brachytherapy dose enhancement on choroidal melanoma are examined using the Monte Carlo simulation technique. Usually, Monte Carlo ophthalmic brachytherapy dosimetry is performed in a water phantom. However, here, the compositions of human eye have been considered instead of water. Both human eye and water phantoms have been simulated with MCNP5 code. These simulations were performed for a fully loaded 16 mm COMS eye plaque containing 13 125I seeds. The dose delivered to the tumor and normal tissues have been calculated in both phantoms with and without GNPs. Normally, the radiation therapy of cancer patients is designed to deliver a required dose to the tumor while sparing the surrounding normal tissues. However, as the normal and cancerous cells absorbed dose in an almost identical fashion, the normal tissue absorbed radiation dose during the treatment time. The use of GNPs in combination with radiotherapy in the treatment of tumor decreases the absorbed dose by normal tissues. The results indicate that the dose to the tumor in an eyeball implanted with COMS plaque increases with increasing GNPs concentration inside the target. Therefore, the required irradiation time for the tumors in the eye is decreased by adding the GNPs prior to treatment. As a result, the dose to normal tissues decreases when the irradiation time is reduced. Furthermore, a comparison between the simulated data in an eye phantom made of water and eye phantom made of human eye composition, in the presence of GNPs, shows the significance of utilizing the composition of eye in ophthalmic brachytherapy dosimetry Also, defining the eye composition instead of water leads to more accurate calculations of GNPs radiation effects in ophthalmic brachytherapy dosimetry. PACS number: 87.53.Jw, 87.85.Rs, 87.10.Rt PMID:26699318

  13. DNA-PKcs Expression Is a Predictor of Biochemical Recurrence After Permanent Iodine 125 Interstitial Brachytherapy for Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molina, Sarah; Department of Radiation Oncology, CHU/Université de Poitiers, Poitiers; Guerif, Stéphane

    Purpose: Predictive factors for biochemical recurrence (BCR) in localized prostate cancer (PCa) after brachytherapy are insufficient to date. Cellular radiosensitivity depends on DNA double-strand breaks, mainly repaired by the nonhomologous end-joining (NHEJ) system. We analyzed whether the expression of NHEJ proteins can predict BCR in patients treated by brachytherapy for localized PCa. Methods and Materials: From 983 PCa cases treated by brachytherapy between March 2000 and March 2012, 167 patients with available biopsy material suitable for in situ analysis were included in the study. The median follow-up time was 47 months. Twenty-nine patients experienced BCR. All slides were reviewed to reassessmore » the Gleason score. Expression of the key NHEJ proteins DNA-PKcs, Ku70, and Ku80, and the proliferation marker Ki67, was studied by immunohistochemistry performed on tissue microarrays. Results: The Gleason scores after review (P=.06) tended to be associated with BCR when compared with the score initially reported (P=.74). Both the clinical stage (P=.02) and the pretreatment prostate-specific antigen level (P=.01) were associated with biochemical failure. Whereas the expression of Ku80 and Ki67 were not predictive of relapse, positive DNA-PKcs nuclear staining (P=.003) and higher Ku70 expression (P=.05) were associated with BCR. On multivariate analysis, among pretreatment variables, only DNA-PKcs (P=.03) and clinical stage (P=.02) remained predictive of recurrence. None of the patients without palpable PCa and negative DNA-PKcs expression experienced biochemical failure, compared with 32% of men with palpable and positive DNA-PKcs staining that recurred. Conclusions: Our results suggest that DNA-PKcs could be a predictive marker of BCR after brachytherapy, and this might be a useful tool for optimizing the choice of treatment in low-risk PCa patients.« less

  14. Applying gold nanoparticles as tumor-vascular disrupting agents during brachytherapy: estimation of endothelial dose enhancement

    NASA Astrophysics Data System (ADS)

    Ngwa, Wilfred; Makrigiorgos, G. Mike; Berbeco, Ross I.

    2010-11-01

    Tumor vascular disrupting agents (VDAs) represent a promising approach to the treatment of cancer, in view of the tumor vasculature's pivotal role in tumor survival, growth and metastasis. VDAs targeting the tumor's dysmorphic endothelial cells can cause selective and rapid occlusion of the tumor vasculature, leading to tumor cell death from ischemia and extensive hemorrhagic necrosis. In this study, the potential for applying gold nanoparticles (AuNPs) as VDAs, during brachytherapy, is examined. Analytic calculations based on the electron energy loss formula of Cole were carried out to estimate the endothelial dose enhancement caused by radiation-induced photo/Auger electrons originating from AuNPs targeting the tumor endothelium. The endothelial dose enhancement factor (EDEF), representing the ratio of the dose to the endothelium with and without gold nanoparticles was calculated for different AuNP local concentrations, and endothelial cell thicknesses. Four brachytherapy sources were investigated, I-125, Pd-103, Yb-169, as well as 50 kVp x-rays. The results reveal that, even at relatively low intra-vascular AuNP concentrations, ablative dose enhancement to tumor endothelial cells due to photo/Auger electrons from the AuNPs can be achieved. Pd-103 registered the highest EDEF values of 7.4-271.5 for local AuNP concentrations ranging from 7 to 350 mg g-1, respectively. Over the same concentration range, I-125, 50 kVp and Yb-169 yielded values of 6.4-219.9, 6.3-214.5 and 4.0-99.7, respectively. Calculations of the EDEF as a function of endothelial cell thickness showed that lower energy sources like Pd-103 reach the maximum EDEF at smaller thicknesses. The results also reveal that the highest contribution to the EDEF comes from Auger electrons, apparently due to their shorter range. Overall, the data suggest that ablative dose enhancement to tumor endothelial cells can be achieved by applying tumor vasculature-targeted AuNPs as adjuvants to brachytherapy, with lower

  15. Collision-kerma conversion between dose-to-tissue and dose-to-water by photon energy-fluence corrections in low-energy brachytherapy.

    PubMed

    Giménez-Alventosa, Vicent; Antunes, Paula C G; Vijande, Javier; Ballester, Facundo; Pérez-Calatayud, José; Andreo, Pedro

    2017-01-07

    The AAPM TG-43 brachytherapy dosimetry formalism, introduced in 1995, has become a standard for brachytherapy dosimetry worldwide; it implicitly assumes that charged-particle equilibrium (CPE) exists for the determination of absorbed dose to water at different locations, except in the vicinity of the source capsule. Subsequent dosimetry developments, based on Monte Carlo calculations or analytical solutions of transport equations, do not rely on the CPE assumption and determine directly the dose to different tissues. At the time of relating dose to tissue and dose to water, or vice versa, it is usually assumed that the photon fluence in water and in tissues are practically identical, so that the absorbed dose in the two media can be related by their ratio of mass energy-absorption coefficients. In this work, an efficient way to correlate absorbed dose to water and absorbed dose to tissue in brachytherapy calculations at clinically relevant distances for low-energy photon emitting seeds is proposed. A correction is introduced that is based on the ratio of the water-to-tissue photon energy-fluences. State-of-the art Monte Carlo calculations are used to score photon fluence differential in energy in water and in various human tissues (muscle, adipose and bone), which in all cases include a realistic modelling of low-energy brachytherapy sources in order to benchmark the formalism proposed. The energy-fluence based corrections given in this work are able to correlate absorbed dose to tissue and absorbed dose to water with an accuracy better than 0.5% in the most critical cases (e.g. bone tissue).

  16. Collision-kerma conversion between dose-to-tissue and dose-to-water by photon energy-fluence corrections in low-energy brachytherapy

    NASA Astrophysics Data System (ADS)

    Giménez-Alventosa, Vicent; Antunes, Paula C. G.; Vijande, Javier; Ballester, Facundo; Pérez-Calatayud, José; Andreo, Pedro

    2017-01-01

    The AAPM TG-43 brachytherapy dosimetry formalism, introduced in 1995, has become a standard for brachytherapy dosimetry worldwide; it implicitly assumes that charged-particle equilibrium (CPE) exists for the determination of absorbed dose to water at different locations, except in the vicinity of the source capsule. Subsequent dosimetry developments, based on Monte Carlo calculations or analytical solutions of transport equations, do not rely on the CPE assumption and determine directly the dose to different tissues. At the time of relating dose to tissue and dose to water, or vice versa, it is usually assumed that the photon fluence in water and in tissues are practically identical, so that the absorbed dose in the two media can be related by their ratio of mass energy-absorption coefficients. In this work, an efficient way to correlate absorbed dose to water and absorbed dose to tissue in brachytherapy calculations at clinically relevant distances for low-energy photon emitting seeds is proposed. A correction is introduced that is based on the ratio of the water-to-tissue photon energy-fluences. State-of-the art Monte Carlo calculations are used to score photon fluence differential in energy in water and in various human tissues (muscle, adipose and bone), which in all cases include a realistic modelling of low-energy brachytherapy sources in order to benchmark the formalism proposed. The energy-fluence based corrections given in this work are able to correlate absorbed dose to tissue and absorbed dose to water with an accuracy better than 0.5% in the most critical cases (e.g. bone tissue).

  17. CT-guided brachytherapy of prostate cancer: reduction of effective dose from X-ray examination

    NASA Astrophysics Data System (ADS)

    Sanin, Dmitriy B.; Biryukov, Vitaliy A.; Rusetskiy, Sergey S.; Sviridov, Pavel V.; Volodina, Tatiana V.

    2014-03-01

    Computed tomography (CT) is one of the most effective and informative diagnostic method. Though the number of CT scans among all radiographic procedures in the USA and European countries is 11% and 4% respectively, CT makes the highest contribution to the collective effective dose from all radiographic procedures, it is 67% in the USA and 40% in European countries [1-5]. Therefore it is necessary to understand the significance of dose value from CT imaging to a patient . Though CT dose from multiple scans and potential risk is of great concern in pediatric patients, this applies to adults as well. In this connection it is very important to develop optimal approaches to dose reduction and optimization of CT examination. International Commission on Radiological Protection (ICRP) in its publications recommends radiologists to be aware that often CT image quality is higher than it is necessary for diagnostic confidence[6], and there is a potential to reduce the dose which patient gets from CT examination [7]. In recent years many procedures, such as minimally invasive surgery, biopsy, brachytherapy and different types of ablation are carried out under guidance of computed tomography [6;7], and during a procedures multiple CT scans focusing on a specific anatomic region are performed. At the Clinics of MRRC different types of treatment for patients with prostate cancer are used, incuding conformal CT-guided brachytherapy, implantation of microsources of I into the gland under guidance of spiral CT [8]. So, the purpose of the study is to choose optimal method to reduce radiation dose from CT during CT-guided prostate brachytherapy and to obtain the image of desired quality.

  18. Development of a Pneumatic Robot for MRI-guided Transperineal Prostate Biopsy and Brachytherapy: New Approaches

    PubMed Central

    Song, Sang-Eun; Cho, Nathan B.; Fischer, Gregory; Hata, Nobuhito; Tempany, Clare; Fichtinger, Gabor; Iordachita, Iulian

    2011-01-01

    Magnetic Resonance Imaging (MRI) guided prostate biopsy and brachytherapy has been introduced in order to enhance the cancer detection and treatment. For the accurate needle positioning, a number of robotic assistants have been developed. However, problems exist due to the strong magnetic field and limited workspace. Pneumatically actuated robots have shown the minimum distraction in the environment but the confined workspace limits optimal robot design and thus controllability is often poor. To overcome the problem, a simple external damping mechanism using timing belts was sought and a 1-DOF mechanism test result indicated sufficient positioning accuracy. Based on the damping mechanism and modular system design approach, a new workspace-optimized 4-DOF parallel robot was developed for the MRI-guided prostate biopsy and brachytherapy. A preliminary evaluation of the robot was conducted using previously developed pneumatic controller and satisfying results were obtained. PMID:21399734

  19. A Monte Carlo investigation of lung brachytherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Sutherland, J. G. H.; Furutani, K. M.; Thomson, R. M.

    2013-07-01

    Iodine-125 (125I) and Caesium-131 (131Cs) brachytherapy have been used in conjunction with sublobar resection to reduce the local recurrence of stage I non-small cell lung cancer compared with resection alone. Treatment planning for this procedure is typically performed using only a seed activity nomogram or look-up table to determine seed strand spacing for the implanted mesh. Since the post-implant seed geometry is difficult to predict, the nomogram is calculated using the TG-43 formalism for seeds in a planar geometry. In this work, the EGSnrc user-code BrachyDose is used to recalculate nomograms using a variety of tissue models for 125I and 131Cs seeds. Calculated prescription doses are compared to those calculated using TG-43. Additionally, patient CT and contour data are used to generate virtual implants to study the effects that post-implant deformation and patient-specific tissue heterogeneity have on perturbing nomogram-derived dose distributions. Differences of up to 25% in calculated prescription dose are found between TG-43 and Monte Carlo calculations with the TG-43 formalism underestimating prescription doses in general. Differences between the TG-43 formalism and Monte Carlo calculated prescription doses are greater for 125I than for 131Cs seeds. Dose distributions are found to change significantly based on implant deformation and tissues surrounding implants for patient-specific virtual implants. Results suggest that accounting for seed grid deformation and the effects of non-water media, at least approximately, are likely required to reliably predict dose distributions in lung brachytherapy patients.

  20. Dose verification of eye plaque brachytherapy using spectroscopic dosimetry.

    PubMed

    Jarema, T; Cutajar, D; Weaver, M; Petasecca, M; Lerch, M; Kejda, A; Rosenfeld, A

    2016-09-01

    Eye plaque brachytherapy has been developed and refined for the last 80 years, demonstrating effective results in the treatment of ocular malignancies. Current dosimetry techniques for eye plaque brachytherapy (such as TLD- and film-based techniques) are time consuming and cannot be used prior to treatment in a sterile environment. The measurement of the expected dose distribution within the eye, prior to insertion within the clinical setting, would be advantageous, as any errors in source loading will lead to an erroneous dose distribution and inferior treatment outcomes. This study investigated the use of spectroscopic dosimetry techniques for real-time quality assurance of I-125 based eye plaques, immediately prior to insertion. A silicon detector based probe, operating in spectroscopy mode was constructed, containing a small (1 mm(3)) silicon detector, mounted within a ceramic holder, all encapsulated within a rubber sheath to prevent water infiltration of the electronics. Preliminary tests of the prototype demonstrated that the depth dose distribution through the central axis of an I-125 based eye plaque may be determined from AAPM Task Group 43 recommendations to a deviation of 6 % at 3 mm depth, 7 % at 5 mm depth, 1 % at 10 mm depth and 13 % at 20 mm depth, with the deviations attributed to the construction of the probe. A new probe design aims to reduce these discrepancies, however the concept of spectroscopic dosimetry shows great promise for use in eye plaque quality assurance in the clinical setting.

  1. The use of nomograms in LDR-HDR prostate brachytherapy.

    PubMed

    Pujades, Ma Carmen; Camacho, Cristina; Perez-Calatayud, Jose; Richart, José; Gimeno, Jose; Lliso, Françoise; Carmona, Vicente; Ballester, Facundo; Crispín, Vicente; Rodríguez, Silvia; Tormo, Alejandro

    2011-09-01

    The common use of nomograms in Low Dose Rate (LDR) permanent prostate brachytherapy (BT) allows to estimate the number of seeds required for an implant. Independent dosimetry verification is recommended for each clinical dosimetry in BT. Also, nomograms can be useful for dose calculation quality assurance and they could be adapted to High Dose Rate (HDR). This work sets nomograms for LDR and HDR prostate-BT implants, which are applied to three different institutions that use different implant techniques. Patients treated throughout 2010 till April 2011 were considered for this study. This example was chosen to be the representative of the latest implant techniques and to ensure consistency in the planning. A sufficient number of cases for both BT modalities, prescription dose and different work methodology (depending on the institution) were taken into account. The specific nomograms were built using the correlation between the prostate volume and some characteristic parameters of each BT modality, such as the source Air Kerma Strength, number of implanted seeds in LDR or total radiation time in HDR. For each institution and BT modality, nomograms normalized to the prescribed dose were obtained and fitted to a linear function. The parameters of the adjustment show a good agreement between data and the fitting. It should be noted that for each institution these linear function parameters are different, indicating that each centre should construct its own nomograms. Nomograms for LDR and HDR prostate brachytherapy are simple quality assurance tools, specific for each institution. Nevertheless, their use should be complementary to the necessary independent verification.

  2. Air core detectors for Cerenkov-free scintillation dosimetry of brachytherapy β-sources.

    PubMed

    Eichmann, Marion; Thomann, Benedikt

    2017-09-01

    Plastic scintillation detectors are used for dosimetry in small radiation fields with high dose gradients, e.g., provided by β-emitting sources like 106 Ru/ 106 Rh eye plaques. A drawback is a background signal caused by Cerenkov radiation generated by electrons passing the optical fibers (light guides) of this dosimetry system. Common approaches to correct for the Cerenkov signal are influenced by uncertainties resulting from detector positioning and calibration procedures. A different approach to avoid any correction procedure is to suppress the Cerenkov signal by replacing the solid core optical fiber with an air core light guide, previously shown for external beam therapy. In this study, the air core concept is modified and applied to the requirements of dosimetry in brachytherapy, proving its usability for measuring water energy doses in small radiation fields. Three air core detectors with different air core lengths are constructed and their performance in dosimetry for brachytherapy β-sources is compared with a standard two-fiber system, which uses a second fiber for Cerenkov correction. The detector systems are calibrated with a 90 Sr/ 90 Y secondary standard and tested for their angular dependence as well as their performance in depth dose measurements of 106 Ru/ 106 Rh sources. The signal loss relative to the standard detector increases with increasing air core length to a maximum value of 58.3%. At the same time, however, the percentage amount of Cerenkov light in the total signal is reduced from at least 12.1% to a value below 1.1%. There is a linear correlation between induced dose and measured signal current. The air core detectors determine the dose rates for 106 Ru/ 106 Rh sources without any form of correction for the Cerenkov signal. The air core detectors show advantages over the standard two-fiber system especially when measuring in radiation fields with high dose gradients. They can be used as simple one-fiber systems and allow for an almost

  3. SU-E-T-205: Improving Quality Assurance of HDR Brachytherapy: Verifying Agreement Between Planned and Delivered Dose Distributions Using DICOM RTDose and Advanced Film Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmer, A L; University of Surrey, Guildford, Surrey; Bradley, D A

    Purpose: HDR brachytherapy is undergoing significant development, and quality assurance (QA) checks must keep pace. Current recommendations do not adequately verify delivered against planned dose distributions: This is particularly relevant for new treatment planning system (TPS) calculation algorithms (non TG-43 based), and an era of significant patient-specific plan optimisation. Full system checks are desirable in modern QA recommendations, complementary to device-centric individual tests. We present a QA system incorporating TPS calculation, dose distribution export, HDR unit performance, and dose distribution measurement. Such an approach, more common in external beam radiotherapy, has not previously been reported in the literature for brachytherapy.more » Methods: Our QA method was tested at 24 UK brachytherapy centres. As a novel approach, we used the TPS DICOM RTDose file export to compare planned dose distribution with that measured using Gafchromic EBT3 films placed around clinical brachytherapy treatment applicators. Gamma analysis was used to compare the dose distributions. Dose difference and distance to agreement were determined at prescription Point A. Accurate film dosimetry was achieved using a glass compression plate at scanning to ensure physically-flat films, simultaneous scanning of known dose films with measurement films, and triple-channel dosimetric analysis. Results: The mean gamma pass rate of RTDose compared to film-measured dose distributions was 98.1% at 3%(local), 2 mm criteria. The mean dose difference, measured to planned, at Point A was -0.5% for plastic treatment applicators and -2.4% for metal applicators, due to shielding not accounted for in TPS. The mean distance to agreement was 0.6 mm. Conclusion: It is recommended to develop brachytherapy QA to include full-system verification of agreement between planned and delivered dose distributions. This is a novel approach for HDR brachytherapy QA. A methodology using advanced film

  4. Combination of Permanent Interstitial 125I-Seed Brachytherapy and Surgery for the Treatment of Large Hepatocellular Carcinoma

    PubMed Central

    Li, Xiaogang; Li, Bo; Yang, Rong; Luo, Kaiyuan

    2017-01-01

    The treatment methods available for large primary hepatocellular carcinomas (diameter >5 cm) are inadequate. Here, we report the successful management of 80 cases of large hepatocellular carcinoma, using a combination of custom-designed permanent interstitial iodine-125 seed brachytherapy and palliative surgery. Patients were enrolled in the study between 2011 and 2014. All patients underwent surgical treatment along with permanent interstitial iodine-125 seed brachytherapy; for the latter, patients received minimum doses covering 90% of the target (D90 s) of iodine-125 seeds ranging from 100 to 160 Gy (median: 110 Gy). All patients received 6 cycles of chemotherapy and were followed up at 6, 12, 24, and 36 months postoperatively. The clinical symptom remission rate was 95.3% (61 of 64). Alanine aminotransferase and aspartate aminotransferase levels decreased to normal in 80% (50 of 60) and 75% of the patients (45 of 60), respectively. The posttreatment alpha-fetoprotein levels decreased by 50% in 80% of the patients (40 of 50). The effective therapy rates were 80% (76 of 95) for 95 tumor nodules (diameters 5-10 cm) and 78.6% (33 of 42) for 42 tumor nodules (diameters >10 cm). The 3-year disease-free survival rate was 66.6%. Palliative surgery plus permanent interstitial iodine-125 seed brachytherapy appears to be a reasonable therapeutic alternative for large hepatocellular carcinoma. PMID:28585493

  5. Intra-operative 3D guidance and edema detection in prostate brachytherapy using a non-isocentric C-arm

    PubMed Central

    Jain, A.; Deguet, A.; Iordachita, I.; Chintalapani, G.; Vikal, S.; Blevins, J.; Le, Y.; Armour, E.; Burdette, C.; Song, D.; Fichtinger, G.

    2015-01-01

    Purpose Brachytherapy (radioactive seed insertion) has emerged as one of the most effective treatment options for patients with prostate cancer, with the added benefit of a convenient outpatient procedure. The main limitation in contemporary brachytherapy is faulty seed placement, predominantly due to the presence of intra-operative edema (tissue expansion). Though currently not available, the capability to intra-operatively monitor the seed distribution, can make a significant improvement in cancer control. We present such a system here. Methods Intra-operative measurement of edema in prostate brachytherapy requires localization of inserted radioactive seeds relative to the prostate. Seeds were reconstructed using a typical non-isocentric C-arm, and exported to a commercial brachytherapy treatment planning system. Technical obstacles for 3D reconstruction on a non-isocentric C-arm include pose-dependent C-arm calibration; distortion correction; pose estimation of C-arm images; seed reconstruction; and C-arm to TRUS registration. Results In precision-machined hard phantoms with 40–100 seeds and soft tissue phantoms with 45–87 seeds, we correctly reconstructed the seed implant shape with an average 3D precision of 0.35 mm and 0.24 mm, respectively. In a DoD Phase-1 clinical trial on six patients with 48–82 planned seeds, we achieved intra-operative monitoring of seed distribution and dosimetry, correcting for dose inhomogeneities by inserting an average of over four additional seeds in the six enrolled patients (minimum 1; maximum 9). Additionally, in each patient, the system automatically detected intra-operative seed migration induced due to edema (mean 3.84 mm, STD 2.13 mm, Max 16.19 mm). Conclusions The proposed system is the first of a kind that makes intra-operative detection of edema (and subsequent re-optimization) possible on any typical non-isocentric C-arm, at negligible additional cost to the existing clinical installation. It achieves a

  6. MO-AB-BRA-02: Modeling Nanoparticle-Eluting Spacer Degradation During Brachytherapy Application with in Situ Dose-Painting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boateng, F; Ngwa, W; Harvard Medical School, Boston, MA

    Purpose: Brachytherapy application with in situ dose-painting using gold nanoparticles (GNP) released from GNP-loaded brachytherapy spacers has been proposed as an innovative approach to increase therapeutic efficacy during brachytherapy. This work investigates the dosimetric impact of slow versus burst release of GNP from next generation biodegradable spacers. Methods: Mathematical models were developed based on experimental data to study the release of GNP from a spacer designed with FDA approved poly(lactic-co-glycolic acid) (PLGA) polymer. The diffusion controlled released process and PLGA polymer degradation kinetics was incorporated in the calculations for the first time. An in vivo determined diffusion coefficient was usedmore » for determining the concentration profiles and corresponding dose enhancement based on initial GNP-loading concentrations of 7 mg/g. Results: The results showed that there is significant delay before the concentration profile of GNP diffusion in the tumor is similar to that when burst release is assumed as in previous studies. For example, in the case of burst release after spacer administration, it took up to 25 days for all the GNP to be released from the spacer using diffusion controlled release process only. However, it took up to 45 days when a combined model for both diffusion and polymer degradation processes was used. Based on the tumor concentration profiles, a significant dose enhancement factor (DEF >20%), could be attained at a tumor distances of 5 mm from a spacer loaded with 10 nm GNP sizes. Conclusion: The results highlight the need to take the slow release of GNP from spacers and factors such as biodegradation of polymers into account in research development of GNP-eluting spacers for brachytherapy applications with in-situ dose-painting using gold nanoparticles. The findings suggest that I-125 may be the more appropriate for such applications given the relatively longer half-live compared to other radioisotopes

  7. Ruthenium brachytherapy for uveal melanoma - single institution experience.

    PubMed

    Rospond-Kubiak, Iwona; Wróblewska-Zierhoffer, Marta; Twardosz-Pawlik, Hanna; Kocięcki, Jarosław

    2017-12-01

    The aim of this study was to report on results of uveal melanoma treatment with ruthenium-106 ( 106 Ru) brachytherapy with long-term follow-up, in terms of local tumor control, eye retention rate, radiation retinopathy, and patients' survival. Medical records of patients treated with ruthenium plaque due to uveal melanoma at the Department of Ophthalmology, Poznan University of Medical Sciences, Poland, between 1994 and 2014 were retrospectively reviewed. We identified 126 patients: 53 men, 73 women, mean age 60.04 years (range, 21-89). The largest basal diameter ranged from 4.04 mm to 18.9 mm (median, 10.67 mm), tumor height was 1.9 mm to 7.42 mm (median, 4.8 mm). Median scleral radiation dose was 570 Gy (range, 235-1,500 Gy), median apical dose 100 Gy (range, 60-129 Gy). Median follow-up was 66.5 months (range, 2-261 months). We noted a total of 19 (15%) recurrences. The actuarial rate of recurrence was 9.5% at 3 years, and 13.5% at 5 years postoperatively. Nine (7%) eye globes were lost, median time to enucleation was 5 years. The eye retention rate at 5 years was 92.7% and 81% at 10 years. Forty-three (34%) patients died before the end of the study, 24 (19%) of them due to metastatic disease. Metastatic death was related to: tumor size and TNM stage at presentation ( p = 0.002 vs. p = 0.0006, respectively) but not to age, gender, and plaque dosimetry. 106 Ru brachytherapy is an effective, globe sparing treatment that provides good tumor control and a high rate of survival. However, some ocular complications tend to appear late post-treatment, and therefore long-term follow-up is advised.

  8. Should helical tomotherapy replace brachytherapy for cervical cancer? Case report.

    PubMed

    Hsieh, Chen-Hsi; Wei, Ming-Chow; Hsu, Yao-Peng; Chong, Ngot-Swan; Chen, Yu-Jen; Hsiao, Sheng-Mou; Hsieh, Yen-Ping; Wang, Li-Ying; Shueng, Pei-Wei

    2010-11-23

    Stereotactic body radiation therapy (SBRT) administered via a helical tomotherapy (HT) system is an effective modality for treating lung cancer and metastatic liver tumors. Whether SBRT delivered via HT is a feasible alternative to brachytherapy in treatment of locally advanced cervical cancer in patients with unusual anatomic configurations of the uterus has never been studied. A 46-year-old woman presented with an 8-month history of abnormal vaginal bleeding. Biopsy revealed squamous cell carcinoma of the cervix. Magnetic resonance imaging (MRI) showed a cervical tumor with direct invasion of the right parametrium, bilateral hydronephrosis, and multiple uterine myomas. International Federation of Gynecology and Obstetrics (FIGO) stage IIIB cervical cancer was diagnosed. Concurrent chemoradiation therapy (CCRT) followed by SBRT delivered via HT was administered instead of brachytherapy because of the presence of multiple uterine myomas with bleeding tendency. Total abdominal hysterectomy was performed after 6 weeks of treatment because of the presence of multiple uterine myomas. Neither pelvic MRI nor results of histopathologic examination at X-month follow-up showed evidence of tumor recurrence. Only grade 1 nausea and vomiting during treatment were noted. Lower gastrointestinal bleeding was noted at 14-month follow-up. No fistula formation and no evidence of haematological, gastrointestinal or genitourinary toxicities were noted on the most recent follow-up. CCRT followed by SBRT appears to be an effective and safe modality for treatment of cervical cancer. Larger-scale studies are warranted.

  9. A dosimetric uncertainty analysis for photon-emitting brachytherapy sources: Report of AAPM Task Group No. 138 and GEC-ESTRO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeWerd, Larry A.; Ibbott, Geoffrey S.; Meigooni, Ali S.

    2011-02-15

    This report addresses uncertainties pertaining to brachytherapy single-source dosimetry preceding clinical use. The International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in Measurement (GUM) and the National Institute of Standards and Technology (NIST) Technical Note 1297 are taken as reference standards for uncertainty formalism. Uncertainties in using detectors to measure or utilizing Monte Carlo methods to estimate brachytherapy dose distributions are provided with discussion of the components intrinsic to the overall dosimetric assessment. Uncertainties provided are based on published observations and cited when available. The uncertainty propagation from the primary calibration standard through transfer to the clinicmore » for air-kerma strength is covered first. Uncertainties in each of the brachytherapy dosimetry parameters of the TG-43 formalism are then explored, ending with transfer to the clinic and recommended approaches. Dosimetric uncertainties during treatment delivery are considered briefly but are not included in the detailed analysis. For low- and high-energy brachytherapy sources of low dose rate and high dose rate, a combined dosimetric uncertainty <5% (k=1) is estimated, which is consistent with prior literature estimates. Recommendations are provided for clinical medical physicists, dosimetry investigators, and source and treatment planning system manufacturers. These recommendations include the use of the GUM and NIST reports, a requirement of constancy of manufacturer source design, dosimetry investigator guidelines, provision of the lowest uncertainty for patient treatment dosimetry, and the establishment of an action level based on dosimetric uncertainty. These recommendations reflect the guidance of the American Association of Physicists in Medicine (AAPM) and the Groupe Europeen de Curietherapie-European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) for their members and may also be

  10. A dosimetric uncertainty analysis for photon-emitting brachytherapy sources: Report of AAPM Task Group No. 138 and GEC-ESTRO

    PubMed Central

    DeWerd, Larry A.; Ibbott, Geoffrey S.; Meigooni, Ali S.; Mitch, Michael G.; Rivard, Mark J.; Stump, Kurt E.; Thomadsen, Bruce R.; Venselaar, Jack L. M.

    2011-01-01

    This report addresses uncertainties pertaining to brachytherapy single-source dosimetry preceding clinical use. The International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in Measurement (GUM) and the National Institute of Standards and Technology (NIST) Technical Note 1297 are taken as reference standards for uncertainty formalism. Uncertainties in using detectors to measure or utilizing Monte Carlo methods to estimate brachytherapy dose distributions are provided with discussion of the components intrinsic to the overall dosimetric assessment. Uncertainties provided are based on published observations and cited when available. The uncertainty propagation from the primary calibration standard through transfer to the clinic for air-kerma strength is covered first. Uncertainties in each of the brachytherapy dosimetry parameters of the TG-43 formalism are then explored, ending with transfer to the clinic and recommended approaches. Dosimetric uncertainties during treatment delivery are considered briefly but are not included in the detailed analysis. For low- and high-energy brachytherapy sources of low dose rate and high dose rate, a combined dosimetric uncertainty <5% (k=1) is estimated, which is consistent with prior literature estimates. Recommendations are provided for clinical medical physicists, dosimetry investigators, and source and treatment planning system manufacturers. These recommendations include the use of the GUM and NIST reports, a requirement of constancy of manufacturer source design, dosimetry investigator guidelines, provision of the lowest uncertainty for patient treatment dosimetry, and the establishment of an action level based on dosimetric uncertainty. These recommendations reflect the guidance of the American Association of Physicists in Medicine (AAPM) and the Groupe Européen de Curiethérapie–European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) for their members and may also be used

  11. A dosimetric uncertainty analysis for photon-emitting brachytherapy sources: report of AAPM Task Group No. 138 and GEC-ESTRO.

    PubMed

    DeWerd, Larry A; Ibbott, Geoffrey S; Meigooni, Ali S; Mitch, Michael G; Rivard, Mark J; Stump, Kurt E; Thomadsen, Bruce R; Venselaar, Jack L M

    2011-02-01

    This report addresses uncertainties pertaining to brachytherapy single-source dosimetry preceding clinical use. The International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in Measurement (GUM) and the National Institute of Standards and Technology (NIST) Technical Note 1297 are taken as reference standards for uncertainty formalism. Uncertainties in using detectors to measure or utilizing Monte Carlo methods to estimate brachytherapy dose distributions are provided with discussion of the components intrinsic to the overall dosimetric assessment. Uncertainties provided are based on published observations and cited when available. The uncertainty propagation from the primary calibration standard through transfer to the clinic for air-kerma strength is covered first. Uncertainties in each of the brachytherapy dosimetry parameters of the TG-43 formalism are then explored, ending with transfer to the clinic and recommended approaches. Dosimetric uncertainties during treatment delivery are considered briefly but are not included in the detailed analysis. For low- and high-energy brachytherapy sources of low dose rate and high dose rate, a combined dosimetric uncertainty <5% (k=1) is estimated, which is consistent with prior literature estimates. Recommendations are provided for clinical medical physicists, dosimetry investigators, and source and treatment planning system manufacturers. These recommendations include the use of the GUM and NIST reports, a requirement of constancy of manufacturer source design, dosimetry investigator guidelines, provision of the lowest uncertainty for patient treatment dosimetry, and the establishment of an action level based on dosimetric uncertainty. These recommendations reflect the guidance of the American Association of Physicists in Medicine (AAPM) and the Groupe Européen de Curiethérapie-European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) for their members and may also be used as

  12. Determination of spatial dose distribution in UCC treatments with LDR brachytherapy using Monte Carlo methods.

    PubMed

    Benites-Rengifo, Jorge Luis; Vega-Carrillo, Hector Rene

    2018-05-19

    Using Monte Carlos methods, with the MCNP5 code, a gynecological phantom and a vaginal cylinder were modeled. The spatial distribution of absorbed dose rates in Uterine Cervical Cancer treatment through low dose rate brachytherapy was determined. A liquid water gynecology computational phantom, including a vaginal cylinder applicator made of Lucite, was designed. The applicator has a linear array of four radioactive sources of Cesium 137. Around the vaginal cylinder, 13 water spherical cells of 0.5 cm-diameter were modeled to calculate absorbed dose emulating the procedure made by the treatment planning system. The gamma-ray fluence distribution was estimated, as well as the absorbed doses resulting approximately symmetrical for cells located at upper and lower of vaginal cylinder. Obtained results allow the use of the radioactive decay law to determine dose rate for Uterine Cervical Cancer using low dose rate brachytherapy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Determination of the intrinsic energy dependence of LiF:Mg,Ti thermoluminescent dosimeters for {sup 125}I and {sup 103}Pd brachytherapy sources relative to {sup 60}Co

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, J. L., E-mail: jlreed2@wisc.edu; Micka, J. A.; Culberson, W. S.

    Purpose: To determine the intrinsic energy dependence of LiF:Mg,Ti thermoluminescent dosimeters (TLD-100) for {sup 125}I and {sup 103}Pd brachytherapy sources relative to {sup 60}Co. Methods: LiF:Mg,Ti TLDs were irradiated with low-energy brachytherapy sources and with a {sup 60}Co teletherapy source. The brachytherapy sources measured were the Best 2301 {sup 125}I seed, the OncoSeed 6711 {sup 125}I seed, and the Best 2335 {sup 103}Pd seed. The TLD light output per measured air-kerma strength was determined for the brachytherapy source irradiations, and the TLD light output per air kerma was determined for the {sup 60}Co irradiations. Monte Carlo (MC) simulations were usedmore » to calculate the dose-to-TLD rate per air-kerma strength for the brachytherapy source irradiations and the dose to TLD per air kerma for the {sup 60}Co irradiations. The measured and MC-calculated results for all irradiations were used to determine the TLD intrinsic energy dependence for {sup 125}I and {sup 103}Pd relative to {sup 60}Co. Results: The relative TLD intrinsic energy dependences (relative to {sup 60}Co) and associated uncertainties (k = 1) were determined to be 0.883 ± 1.3%, 0.870 ± 1.4%, and 0.871 ± 1.5% for the Best 2301 seed, OncoSeed 6711 seed, and Best 2335 seed, respectively. Conclusions: The intrinsic energy dependence of TLD-100 is dependent on photon energy, exhibiting changes of 13%–15% for {sup 125}I and {sup 103}Pd sources relative to {sup 60}Co. TLD measurements of absolute dose around {sup 125}I and {sup 103}Pd brachytherapy sources should explicitly account for the relative TLD intrinsic energy dependence in order to improve dosimetric accuracy.« less

  14. High Intensity Focused Ultrasound (HIFU) as a Salvage Treatment for Recurrent Prostate Cancer after Brachytherapy — a Feasibility Study

    NASA Astrophysics Data System (ADS)

    Chapman, Alexander T.; Rivens, Ian H.; Thompson, Alan C.; ter Haar, Gail R.

    2007-05-01

    HIFU may be an effective salvage treatment for patients who develop local recurrence after permanent low-dose brachytherapy. It has been suggested that the presence of seeds in the prostate may obstruct the HIFU beam or alter the heating characteristics of the prostate tissue. Acoustic field measurements were made using a membrane hydrophone and lesioning experiments were carried out in ex vivo bovine liver. These revealed a significant effect of the seeds on the HIFU focal region as well as a reduction in lesion length when seeds were placed in a pre-focal position. Further work is needed to evaluate the full effects of implanted brachytherapy seeds on the clinical delivery of HIFU.

  15. Improved radial dose function estimation using current version MCNP Monte-Carlo simulation: Model 6711 and ISC3500 125I brachytherapy sources.

    PubMed

    Duggan, Dennis M

    2004-12-01

    Improved cross-sections in a new version of the Monte-Carlo N-particle (MCNP) code may eliminate discrepancies between radial dose functions (as defined by American Association of Physicists in Medicine Task Group 43) derived from Monte-Carlo simulations of low-energy photon-emitting brachytherapy sources and those from measurements on the same sources with thermoluminescent dosimeters. This is demonstrated for two 125I brachytherapy seed models, the Implant Sciences Model ISC3500 (I-Plant) and the Amersham Health Model 6711, by simulating their radial dose functions with two versions of MCNP, 4c2 and 5.

  16. TU-D-201-00: Use of End-Of-Life Brachytherapy Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2015-06-15

    Brachytherapy devices and software are designed to last for a certain period of time. Due to a number of considerations, such as material factors, wear-and-tear, backwards compatibility, and others, they all reach a date when they are no longer supported by the manufacturer. Most of these products have a limited duration for their use, and the information is provided to the user at time of purchase. Because of issues or concerns determined by the manufacturer, certain products are retired sooner than the anticipated date, and the user is immediately notified. In these situations, the institution is facing some difficult choices:more » remove these products from the clinic or perform tests and continue their usage. Both of these choices come with a financial burden: replacing the product or assuming a potential medicolegal liability. This session will provide attendees with the knowledge and tools to make better decisions when facing these issues. Learning Objectives: Understand the meaning of “end-of-life or “life expectancy” for brachytherapy devices and software Review items (devices and software) affected by “end-of-life” restrictions Learn how to effectively formulate “end-of-life” policies at your institution Learn about possible implications of “end-of-life” policy Review other possible approaches to “end-of-life” issue.« less

  17. Detection and correction of patient movement in prostate brachytherapy seed reconstruction

    NASA Astrophysics Data System (ADS)

    Lam, Steve T.; Cho, Paul S.; Marks, Robert J., II; Narayanan, Sreeram

    2005-05-01

    Intraoperative dosimetry of prostate brachytherapy can help optimize the dose distribution and potentially improve clinical outcome. Evaluation of dose distribution during the seed implant procedure requires the knowledge of 3D seed coordinates. Fluoroscopy-based seed localization is a viable option. From three x-ray projections obtained at different gantry angles, 3D seed positions can be determined. However, when local anaesthesia is used for prostate brachytherapy, the patient movement during fluoroscopy image capture becomes a practical problem. If uncorrected, the errors introduced by patient motion between image captures would cause seed mismatches. Subsequently, the seed reconstruction algorithm would either fail to reconstruct or yield erroneous results. We have developed an algorithm that permits detection and correction of patient movement that may occur between fluoroscopy image captures. The patient movement is decomposed into translational shifts along the tabletop and rotation about an axis perpendicular to the tabletop. The property of spatial invariance of the co-planar imaging geometry is used for lateral movement correction. Cranio-caudal movement is corrected by analysing the perspective invariance along the x-ray axis. Rotation is estimated by an iterative method. The method can detect and correct for the range of patient movement commonly seen in the clinical environment. The algorithm has been implemented for routine clinical use as the preprocessing step for seed reconstruction.

  18. Image-based multichannel vaginal cylinder brachytherapy for the definitive treatment of gynecologic malignancies in the vagina.

    PubMed

    Gebhardt, Brian J; Vargo, John A; Kim, Hayeon; Houser, Christopher J; Glaser, Scott M; Sukumvanich, Paniti; Olawaiye, Alexander B; Kelley, Joseph L; Edwards, Robert P; Comerci, John T; Courtney-Brooks, Madeleine; Beriwal, Sushil

    2018-06-18

    Brachytherapy is integral to vaginal cancer treatment and is typically delivered using an intracavitary single-channel vaginal cylinder (SCVC) or an interstitial brachytherapy (ISBT) applicator. Multi-channel vaginal cylinder (MCVC) applicators allow for improved organ-at-risk (OAR) sparing compared to SCVC while maintaining target coverage. We present clinical outcomes of patients treated with image-based high dose-rate (HDR) brachytherapy using a MCVC. Sixty patients with vaginal cancer (27% primary vaginal and 73% recurrence from other primaries) were treated with combination external beam radiotherapy (EBRT) and image-based HDR brachytherapy utilizing a MCVC if residual disease thickness was 7 mm or less after EBRT. All pts received 3D image-based BT to a total equivalent dose of 70-80 Gy. The median high-risk clinical target volume was 24.4 cm 3 (interquartile range [IQR], 14.1), with a median dose to 90% of 77.2 Gy (IQR, 2.8). After a median follow-up of 45 months (range, 11-78), the 4-year local-regional control, distant control, DFS, and OS rates were 92.6%, 76.1%, 64.0%, and 67.2%, respectively. The 4-year LRC rates were similar between the primary vaginal (92%) and recurrent (93%) groups (p = 0.290). Pts with lymph node positive disease had a lower rate of distant control at 4 years (22.7% vs. 89.0%, p < 0.001). There were no Grade 3 or higher acute complications. The 4-year rate of late Grade 3 or higher toxicity was 2.7%. Clinical outcomes of pts with primary and recurrent vaginal cancer treated definitively in a systematic manner with combination EBRT with image-guided HDR BT utilizing a MCVC applicator demonstrate high rates of local control and low rates of severe morbidity. The MCVC technique allows interstitial implantation to be avoided in select pts with ≤7 mm residual disease thickness following EBRT while maintaining excellent clinical outcomes with extended 4-year follow-up in this rare malignancy. Copyright © 2018

  19. Reduced dose to urethra and rectum with the use of variable needle spacing in prostate brachytherapy: a potential role for robotic technology

    PubMed Central

    Vyas, Shilpa; Le, Yi; Zhang, Zhe; Armour, Woody

    2015-01-01

    Purpose Several robotic delivery systems for prostate brachytherapy are under development or in pre-clinical testing. One of the features of robotic brachytherapy is the ability to vary spacing of needles at non-fixed intervals. This feature may play an important role in prostate brachytherapy, which is traditionally template-based with fixed needle spacing of 0.5 cm. We sought to quantify potential reductions in the dose to urethra and rectum by utilizing variable needle spacing, as compared to fixed needle spacing. Material and methods Transrectal ultrasound images from 10 patients were used by 3 experienced planners to create 120 treatment plans. Each planner created 4 plan variations per patient with respect to needle positions: 125I fixed spacing, 125I variable spacing, 103Pd fixed spacing, and 103Pd variable spacing. The primary planning objective was to achieve a prostate V100 of 100% while minimizing dose to urethra and rectum. Results All plans met the objective of achieving prostate V100 of 100%. Combined results for all plans show statistically significant improvements in all assessed dosimetric variables for urethra (Umax, Umean, D30, D5) and rectum (Rmax, Rmean, RV100) when using variable spacing. The dose reductions for mean and maximum urethra dose using variable spacing had p values of 0.011 and 0.024 with 103Pd, and 0.007 and 0.029 with 125I plans. Similarly dose reductions for mean and maximum rectal dose using variable spacing had p values of 0.007 and 0.052 with 103Pd, and 0.012 and 0.037 with 125I plans. Conclusions The variable needle spacing achievable by the use of robotics in prostate brachytherapy allows for reductions in both urethral and rectal planned doses while maintaining prostate dose coverage. Such dosimetric advantages have the potential in translating to significant clinical benefits with the use of robotic brachytherapy. PMID:26622227

  20. SU-E-J-233: Effect of Brachytherapy Seed Artifacts in T2 and Proton Density Maps in MR Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mashouf, S; University of Toronto, Dept of Radiation Oncology, Toronto, Ontario; Fatemi-Ardekani, A

    Purpose: This study aims at investigating the influence of brachytherapy seeds on T2 and proton density (PD) maps generated from MR images. Proton density maps can be used to extract water content. Since dose absorbed in tissue surrounding low energy brachytherapy seeds are highly influenced by tissue composition, knowing the water content is a first step towards implementing a heterogeneity correction algorithm using MR images. Methods: An LDR brachytherapy (IsoAid Advantage Pd-103) seed was placed in the middle of an agar-based gel phantom and imaged using a 3T Philips MR scanner with a 168-channel head coil. A multiple echo sequencemore » with TE=20, 40, 60, 80, 100 (ms) with large repetition time (TR=6259ms) was used to extract T2 and PD maps. Results: Seed artifacts were considerably reduced on T2 maps compared to PD maps. The variation of PD around the mean was obtained as −97% to 125% (±1%) while for T2 it was recorded as −71% to 24% (±1%). Conclusion: PD maps which are required for heterogeneity corrections are susceptible to artifacts from seeds. Seed artifacts on T2 maps, however, are significantly reduced due to not being sensitive to B0 field variation.« less

  1. Dermo beta brachytherapy with 188-Re in squamous cell carcinoma of the penis: a new therapy.

    PubMed

    Carrozzo, Anna Maria; Sedda, Antioco Franco; Muscardin, Luca; Donati, Pietro; Cipriani, Cesidio

    2013-04-01

    Squamous cell carcinoma of the penis (SCCP) is the most common penis neoplasia, favoured by phimosis, HPV infection and scleroatrophic lichen. The classic therapy is surgical with anatomic demolition, which often causes important psychological problems. Other non-demolitive therapies can be utilized, such as radiotherapy, brachytherapy and topical medical treatment. We propose a new non-invasive therapy called "Dermo beta brachytherapy (DBBT) with 188-Re" in which a synthetic inert resin-matrix containing a radioactive beta-emitting isotope is applied on the surface of the tumor lesion. A total of 15 patients with a histologically confirmed diagnosis of SCCP were enrolled for treatment (DBBT). Of the 15 patients, 12 healed, 1 was lost at follow-up and 2 did not respond to therapy. The results indicate that DBBT is an effective treatment for SCC of the penis, sparing the anatomical integrity of the organ, and allowing normal sexual activity.

  2. Treatment of conjunctival lymphomas by beta-ray brachytherapy using a strontium-90-yttrium-90 applicator.

    PubMed

    Regueiro, C A; Valcárcel, F J; Romero, J; de la Torre, A

    2002-12-01

    We reviewed the outcome of the 10 patients (13 eyes) with localized, biopsy-proven, low-grade lymphoma of the conjunctiva treated at our Department between 1988 and 1997. All patients were treated by beta-ray brachytherapy using a bidirectional 90Sr-90Y ophthalmic applicator (Applicator SIA 2, Amersham plc). Total doses, prescribed at the surface of the applicator, varied between 40 Gy and 80 Gy. With a median follow-up of 78 months (range: 14 to 146 months), seven patients remained with no evidence of relapse (67.5% 10 year disease free survival). Local control was achieved in 10 out of 13 eyes (76.9%). Two of the three local relapses were marginal. One of these three patients also developed a metachronous lymphoma in the contralateral conjunctiva. These three patients underwent a second course of brachytherapy with 90Sr/90Y and remained free of second relapse 109, 68 and 33 months after salvage therapy. No cases of systemic relapse were observed. Late (LENT-SOMA) complications were of grade 2 in five eyes, of grade 3 in one eye and of grade 4 in one eye. Late complications of grade 2 or higher were observed in one out of five patients (20%) treated with doses lower or equal to 50 Gy and in six out of eight patients (75%) treated with doses higher than 50 Gy (P=0.086). Our data indicates that beta-ray brachytherapy was ultimately able to control most conjunctival lymphomas but carried a risk of late complications and marginal relapses that was possibly higher than the rates reported for other radiotherapy techniques.

  3. Surface applicator of a miniature X-ray tube for superficial electronic brachytherapy of skin cancer.

    PubMed

    Kim, Hyun Nam; Lee, Ju Hyuk; Park, Han Beom; Kim, Hyun Jin; Cho, Sung Oh

    2018-01-01

    We designed and fabricated a surface applicator of a novel carbon nanotube (CNT)-based miniature X-ray tube for the use in superficial electronic brachytherapy of skin cancer. To investigate the effectiveness of the surface applicator, the performance of the applicator was numerically and experimentally analyzed. The surface applicator consists of a graphite flattening filter and an X-ray shield. A Monte Carlo radiation transport code, MCNP6, was used to optimize the geometries of both the flattening filter and the shield so that X-rays are generated uniformly over the desired region. The performance of the graphite filter was compared with that of conventional aluminum (Al) filters of different geometries using the numerical simulations. After fabricating a surface applicator, the X-ray spatial distribution was measured to evaluate the performance of the applicator. The graphite filter shows better spatial dose uniformity and less dose distortion than Al filters. Moreover, graphite allows easy fabrication of the flattening filter due to its low X-ray attenuation property, which is particularly important for low-energy electronic brachytherapy. The applicator also shows that no further X-ray shielding is required for the application because unwanted X-rays are completely protected. As a result, highly uniform X-ray dose distribution was achieved from the miniature X-ray tube mounted with the surface applicators. The measured values of both flatness and symmetry were less than 5% and the measured penumbra values were less than 1 mm. All these values satisfy the currently accepted tolerance criteria for radiation therapy. The surface applicator exhibits sufficient performance capability for their application in electronic brachytherapy of skin cancers. © 2017 American Association of Physicists in Medicine.

  4. The use of nomograms in LDR-HDR prostate brachytherapy

    PubMed Central

    Camacho, Cristina; Perez-Calatayud, Jose; Richart, José; Gimeno, Jose; Lliso, Françoise; Carmona, Vicente; Ballester, Facundo; Crispín, Vicente; Rodríguez, Silvia; Tormo, Alejandro

    2011-01-01

    Purpose The common use of nomograms in Low Dose Rate (LDR) permanent prostate brachytherapy (BT) allows to estimate the number of seeds required for an implant. Independent dosimetry verification is recommended for each clinical dosimetry in BT. Also, nomograms can be useful for dose calculation quality assurance and they could be adapted to High Dose Rate (HDR). This work sets nomograms for LDR and HDR prostate-BT implants, which are applied to three different institutions that use different implant techniques. Material and methods Patients treated throughout 2010 till April 2011 were considered for this study. This example was chosen to be the representative of the latest implant techniques and to ensure consistency in the planning. A sufficient number of cases for both BT modalities, prescription dose and different work methodology (depending on the institution) were taken into account. The specific nomograms were built using the correlation between the prostate volume and some characteristic parameters of each BT modality, such as the source Air Kerma Strength, number of implanted seeds in LDR or total radiation time in HDR. Results For each institution and BT modality, nomograms normalized to the prescribed dose were obtained and fitted to a linear function. The parameters of the adjustment show a good agreement between data and the fitting. It should be noted that for each institution these linear function parameters are different, indicating that each centre should construct its own nomograms. Conclusions Nomograms for LDR and HDR prostate brachytherapy are simple quality assurance tools, specific for each institution. Nevertheless, their use should be complementary to the necessary independent verification. PMID:23346120

  5. Accuracy Evaluation of Oncentra™ TPS in HDR Brachytherapy of Nasopharynx Cancer Using EGSnrc Monte Carlo Code.

    PubMed

    Hadad, K; Zohrevand, M; Faghihi, R; Sedighi Pashaki, A

    2015-03-01

    HDR brachytherapy is one of the commonest methods of nasopharyngeal cancer treatment. In this method, depending on how advanced one tumor is, 2 to 6 Gy dose as intracavitary brachytherapy is prescribed. Due to high dose rate and tumor location, accuracy evaluation of treatment planning system (TPS) is particularly important. Common methods used in TPS dosimetry are based on computations in a homogeneous phantom. Heterogeneous phantoms, especially patient-specific voxel phantoms can increase dosimetric accuracy. In this study, using CT images taken from a patient and ctcreate-which is a part of the DOSXYZnrc computational code, patient-specific phantom was made. Dose distribution was plotted by DOSXYZnrc and compared with TPS one. Also, by extracting the voxels absorbed dose in treatment volume, dose-volume histograms (DVH) was plotted and compared with Oncentra™ TPS DVHs. The results from calculations were compared with data from Oncentra™ treatment planning system and it was observed that TPS calculation predicts lower dose in areas near the source, and higher dose in areas far from the source relative to MC code. Absorbed dose values in the voxels also showed that TPS reports D90 value is 40% higher than the Monte Carlo method. Today, most treatment planning systems use TG-43 protocol. This protocol may results in errors such as neglecting tissue heterogeneity, scattered radiation as well as applicator attenuation. Due to these errors, AAPM emphasized departing from TG-43 protocol and approaching new brachytherapy protocol TG-186 in which patient-specific phantom is used and heterogeneities are affected in dosimetry.

  6. Poster - 09: A MATLAB-based Program for Automated Quality Assurance of a Prostate Brachytherapy Ultrasound System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poon, Justin; Sabondjian, Eric; Sankreacha, Raxa

    Purpose: A robust Quality Assurance (QA) program is essential for prostate brachytherapy ultrasound systems due to the importance of imaging accuracy during treatment and planning. Task Group 128 of the American Association of Physicists in Medicine has recommended a set of QA tests covering grayscale visibility, depth of penetration, axial and lateral resolution, distance measurement, area measurement, volume measurement, and template/electronic grid alignment. Making manual measurements on the ultrasound system can be slow and inaccurate, so a MATLAB program was developed for automation of the described tests. Methods: Test images were acquired using a BK Medical Flex Focus 400 ultrasoundmore » scanner and 8848 transducer with the CIRS Brachytherapy QA Phantom – Model 045A. For each test, the program automatically segments the inputted image(s), makes the appropriate measurements, and indicates if the test passed or failed. The program was tested by analyzing two sets of images, where the measurements from the first set were used as baseline values. Results: The program successfully analyzed the images for each test and determined if any action limits were exceeded. All tests passed – the measurements made by the program were consistent and met the requirements outlined by Task Group 128. Conclusions: The MATLAB program we have developed can be used for automated QA of an ultrasound system for prostate brachytherapy. The GUI provides a user-friendly way to analyze images without the need for any manual measurement, potentially removing intra- and inter-user variability for more consistent results.« less

  7. Accuracy Evaluation of Oncentra™ TPS in HDR Brachytherapy of Nasopharynx Cancer Using EGSnrc Monte Carlo Code

    PubMed Central

    Hadad, K.; Zohrevand, M.; Faghihi, R.; Sedighi Pashaki, A.

    2015-01-01

    Background HDR brachytherapy is one of the commonest methods of nasopharyngeal cancer treatment. In this method, depending on how advanced one tumor is, 2 to 6 Gy dose as intracavitary brachytherapy is prescribed. Due to high dose rate and tumor location, accuracy evaluation of treatment planning system (TPS) is particularly important. Common methods used in TPS dosimetry are based on computations in a homogeneous phantom. Heterogeneous phantoms, especially patient-specific voxel phantoms can increase dosimetric accuracy. Materials and Methods In this study, using CT images taken from a patient and ctcreate-which is a part of the DOSXYZnrc computational code, patient-specific phantom was made. Dose distribution was plotted by DOSXYZnrc and compared with TPS one. Also, by extracting the voxels absorbed dose in treatment volume, dose-volume histograms (DVH) was plotted and compared with Oncentra™ TPS DVHs. Results The results from calculations were compared with data from Oncentra™ treatment planning system and it was observed that TPS calculation predicts lower dose in areas near the source, and higher dose in areas far from the source relative to MC code. Absorbed dose values in the voxels also showed that TPS reports D90 value is 40% higher than the Monte Carlo method. Conclusion Today, most treatment planning systems use TG-43 protocol. This protocol may results in errors such as neglecting tissue heterogeneity, scattered radiation as well as applicator attenuation. Due to these errors, AAPM emphasized departing from TG-43 protocol and approaching new brachytherapy protocol TG-186 in which patient-specific phantom is used and heterogeneities are affected in dosimetry. PMID:25973408

  8. Poster — Thur Eve — 40: Automated Quality Assurance for Remote-Afterloading High Dose Rate Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Anthony; Ravi, Ananth

    2014-08-15

    High dose rate (HDR) remote afterloading brachytherapy involves sending a small, high-activity radioactive source attached to a cable to different positions within a hollow applicator implanted in the patient. It is critical that the source position within the applicator and the dwell time of the source are accurate. Daily quality assurance (QA) tests of the positional and dwell time accuracy are essential to ensure that the accuracy of the remote afterloader is not compromised prior to patient treatment. Our centre has developed an automated, video-based QA system for HDR brachytherapy that is dramatically superior to existing diode or film QAmore » solutions in terms of cost, objectivity, positional accuracy, with additional functionalities such as being able to determine source dwell time and transit time of the source. In our system, a video is taken of the brachytherapy source as it is sent out through a position check ruler, with the source visible through a clear window. Using a proprietary image analysis algorithm, the source position is determined with respect to time as it moves to different positions along the check ruler. The total material cost of the video-based system was under $20, consisting of a commercial webcam and adjustable stand. The accuracy of the position measurement is ±0.2 mm, and the time resolution is 30 msec. Additionally, our system is capable of robustly verifying the source transit time and velocity (a test required by the AAPM and CPQR recommendations), which is currently difficult to perform accurately.« less

  9. 360-degree 3D transvaginal ultrasound system for high-dose-rate interstitial gynaecological brachytherapy needle guidance

    NASA Astrophysics Data System (ADS)

    Rodgers, Jessica R.; Surry, Kathleen; D'Souza, David; Leung, Eric; Fenster, Aaron

    2017-03-01

    Treatment for gynaecological cancers often includes brachytherapy; in particular, in high-dose-rate (HDR) interstitial brachytherapy, hollow needles are inserted into the tumour and surrounding area through a template in order to deliver the radiation dose. Currently, there is no standard modality for visualizing needles intra-operatively, despite the need for precise needle placement in order to deliver the optimal dose and avoid nearby organs, including the bladder and rectum. While three-dimensional (3D) transrectal ultrasound (TRUS) imaging has been proposed for 3D intra-operative needle guidance, anterior needles tend to be obscured by shadowing created by the template's vaginal cylinder. We have developed a 360-degree 3D transvaginal ultrasound (TVUS) system that uses a conventional two-dimensional side-fire TRUS probe rotated inside a hollow vaginal cylinder made from a sonolucent plastic (TPX). The system was validated using grid and sphere phantoms in order to test the geometric accuracy of the distance and volumetric measurements in the reconstructed image. To test the potential for visualizing needles, an agar phantom mimicking the geometry of the female pelvis was used. Needles were inserted into the phantom and then imaged using the 3D TVUS system. The needle trajectories and tip positions in the 3D TVUS scan were compared to their expected values and the needle tracks visualized in magnetic resonance images. Based on this initial study, 360-degree 3D TVUS imaging through a sonolucent vaginal cylinder is a feasible technique for intra-operatively visualizing needles during HDR interstitial gynaecological brachytherapy.

  10. Dosimetric study of a brachytherapy treatment of esophagus with Brazilian 192Ir sources using an anthropomorphic phantom

    NASA Astrophysics Data System (ADS)

    Neves, Lucio P.; Santos, William S.; Gorski, Ronan; Perini, Ana P.; Maia, Ana F.; Caldas, Linda V. E.; Orengo, Gilberto

    2014-11-01

    Several radioisotopes are produced at Instituto de Pesquisas Energéticas e Nucleares for the use in medical treatments, including the activation of 192Ir sources. These sources are suitable for brachytherapy treatments, due to their low or high activity, depending on the concentration of 192Ir, easiness to manufacture, small size, stable daughter products and the possibility of re-utilization. They may be used for the treatment of prostate, cervix, head and neck, skin, breast, gallbladder, uterus, vagina, lung, rectum, and eye cancer treatment. In this work, the use of some 192Ir sources was studied for the treatment of esophagus cancer, especially the dose determination of important structures, such as those on the mediastinum. This was carried out utilizing a FASH anthropomorphic phantom and the MCNP5 Monte Carlo code to transport the radiation through matter. It was possible to observe that the doses at lungs, breast, esophagus, thyroid and heart were the highest, which was expected due to their proximity to the source. Therefore, the data are useful to assess the representative dose specific to brachytherapy treatments on the esophagus for radiation protection purposes. The use of brachytherapy sources was studied for the treatment of esophagus cancer. FASH anthropomorphic phantom and MCNP5 Monte Carlo code were employed. The doses at lungs, breast, esophagus, thyroid and heart were the highest. The data is useful to assess the representative doses of treatments on the esophagus.

  11. Time-resolved in vivo luminescence dosimetry for online error detection in pulsed dose-rate brachytherapy.

    PubMed

    Andersen, Claus E; Nielsen, Søren Kynde; Lindegaard, Jacob Christian; Tanderup, Kari

    2009-11-01

    The purpose of this study is to present and evaluate a dose-verification protocol for pulsed dose-rate (PDR) brachytherapy based on in vivo time-resolved (1 s time resolution) fiber-coupled luminescence dosimetry. Five cervix cancer patients undergoing PDR brachytherapy (Varian GammaMed Plus with 192Ir) were monitored. The treatments comprised from 10 to 50 pulses (1 pulse/h) delivered by intracavitary/interstitial applicators (tandem-ring systems and/or needles). For each patient, one or two dosimetry probes were placed directly in or close to the tumor region using stainless steel or titanium needles. Each dosimeter probe consisted of a small aluminum oxide crystal attached to an optical fiber cable (1 mm outer diameter) that could guide radioluminescence (RL) and optically stimulated luminescence (OSL) from the crystal to special readout instrumentation. Positioning uncertainty and hypothetical dose-delivery errors (interchanged guide tubes or applicator movements from +/-5 to +/-15 mm) were simulated in software in order to assess the ability of the system to detect errors. For three of the patients, the authors found no significant differences (P>0.01) for comparisons between in vivo measurements and calculated reference values at the level of dose per dwell position, dose per applicator, or total dose per pulse. The standard deviations of the dose per pulse were less than 3%, indicating a stable dose delivery and a highly stable geometry of applicators and dosimeter probes during the treatments. For the two other patients, the authors noted significant deviations for three individual pulses and for one dosimeter probe. These deviations could have been due to applicator movement during the treatment and one incorrectly positioned dosimeter probe, respectively. Computer simulations showed that the likelihood of detecting a pair of interchanged guide tubes increased by a factor of 10 or more for the considered patients when going from integrating to time

  12. TU-AB-201-01: A Comprehensive Planning Comparison Study Between a Novel Direction Modulated Brachytherapy Tandem Applicator and Conventional T&R Applicator for Image Guided Cervical Cancer Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, D; Liu, Z; University of California, San Diego, La Jolla, CA

    2015-06-15

    Purpose: To demonstrate that utilization of a novel, intensity modulation capable, direction modulated brachytherapy (DMBT) tandem applicator can improve plan quality compared with conventional T&R applicator during an image guided cervical cancer brachytherapy. Methods: 45 cervical cancer patients treated with PDR brachytherapy were reviewed. Of them, a) 27 were treated using T&R only, b) 9 were treated using T&R with needles attached to the ring, and c) the remaining 9 were treated using T&R with needles attached to the ring (AN) as well as additional free-hand-loaded needles (FN). The DMBT tandem design has 6 peripheral holes of 1.3-mm diameter, groovedmore » along a nonmagnetic tungsten alloy rod, enclosed in a plastic sheath with total 6.0-mm diameter. An in-house-coded inverse planning system was used for planning DMBT and T&R cases. All typical clinical constraints including OAR dose limits, dwell times, and loading patterns were respected. For the DMBT and T&R applicators, the plans were optimized with the same conventional ring in place, but repeatedly planned with and without AN/FN needles. All generated plans were normalized to the same D90 of the clinically treated plans. Results: For the plans in category a), DMBT generally outperformed T&R with average reduction in D2cc of −2.39%, −5.21%, and −2.69% for bladder, rectum, and sigmoid, respectively. For the plans in category b) and c), DMBT generally outperformed T&R if the same needles in AN/FN were utilized in both cases with average reduction in D2cc of −1.82%, −3.40%, and −6.04%, respectively. For the cases where the needles were not utilized for both applicators, an average D2cc reduction of −7.45%, −7.61%, and 17.47% were observed, respectively. Conclusions: Under the same clinical conditions, with/without needles, the DMBT applicator tends to generate more favorable plans compared with the conventional T&R applicator, and hence, is a promising technology.« less

  13. MCNP modelling of vaginal and uterine applicators used in intracavitary brachytherapy and comparison with radiochromic film measurements

    NASA Astrophysics Data System (ADS)

    Ceccolini, E.; Gerardy, I.; Ródenas, J.; van Dycke, M.; Gallardo, S.; Mostacci, D.

    Brachytherapy is an advanced cancer treatment that is minimally invasive, minimising radiation exposure to the surrounding healthy tissues. Microselectron© Nucletron devices with 192Ir source can be used for gynaecological brachytherapy, in patients with vaginal or uterine cancer. Measurements of isodose curves have been performed in a PMMA phantom and compared with Monte Carlo calculations and TPS (Plato software of Nucletron BPS 14.2) evaluation. The isodose measurements have been performed with radiochromic films (Gafchromic EBT©). The dose matrix has been obtained after digitalisation and use of a dose calibration curve obtained with a 6 MV photon beam provided by a medical linear accelerator. A comparison between the calculated and the measured matrix has been performed. The calculated dose matrix is obtained with a simulation using the MCNP5 Monte Carlo code (F4MESH tally).

  14. Targeting MRS-Defined Dominant Intraprostatic Lesions with Inverse-Planned High Dose Rate Brachytherapy

    DTIC Science & Technology

    2008-06-01

    brachytherapy treatment planning has been demonstrated. Using the inverse planning program IPSA , dose escalation of target regions with a higher tumor...algorithm (called IPSA ) was used to generate dose distributions for five different levels of DIL- boost, at least 110%, 120%, 130%, 140% and 150...and LDR, VI Last Generation Radiotherapy Course, São Paulo, Brazil, Oct. 19, 2006. Principles and Clinical Applications of IPSA ; Nucletron

  15. Evaluation of an active magnetic resonance tracking system for interstitial brachytherapy.

    PubMed

    Wang, Wei; Viswanathan, Akila N; Damato, Antonio L; Chen, Yue; Tse, Zion; Pan, Li; Tokuda, Junichi; Seethamraju, Ravi T; Dumoulin, Charles L; Schmidt, Ehud J; Cormack, Robert A

    2015-12-01

    In gynecologic cancers, magnetic resonance (MR) imaging is the modality of choice for visualizing tumors and their surroundings because of superior soft-tissue contrast. Real-time MR guidance of catheter placement in interstitial brachytherapy facilitates target coverage, and would be further improved by providing intraprocedural estimates of dosimetric coverage. A major obstacle to intraprocedural dosimetry is the time needed for catheter trajectory reconstruction. Herein the authors evaluate an active MR tracking (MRTR) system which provides rapid catheter tip localization and trajectory reconstruction. The authors assess the reliability and spatial accuracy of the MRTR system in comparison to standard catheter digitization using magnetic resonance imaging (MRI) and CT. The MRTR system includes a stylet with microcoils mounted on its shaft, which can be inserted into brachytherapy catheters and tracked by a dedicated MRTR sequence. Catheter tip localization errors of the MRTR system and their dependence on catheter locations and orientation inside the MR scanner were quantified with a water phantom. The distances between the tracked tip positions of the MRTR stylet and the predefined ground-truth tip positions were calculated for measurements performed at seven locations and with nine orientations. To evaluate catheter trajectory reconstruction, fifteen brachytherapy catheters were placed into a gel phantom with an embedded catheter fixation framework, with parallel or crossed paths. The MRTR stylet was then inserted sequentially into each catheter. During the removal of the MRTR stylet from within each catheter, a MRTR measurement was performed at 40 Hz to acquire the instantaneous stylet tip position, resulting in a series of three-dimensional (3D) positions along the catheter's trajectory. A 3D polynomial curve was fit to the tracked positions for each catheter, and equally spaced dwell points were then generated along the curve. High-resolution 3D MRI of the

  16. Evaluation of an active magnetic resonance tracking system for interstitial brachytherapy

    PubMed Central

    Wang, Wei; Viswanathan, Akila N.; Damato, Antonio L.; Chen, Yue; Tse, Zion; Pan, Li; Tokuda, Junichi; Seethamraju, Ravi T.; Dumoulin, Charles L.; Schmidt, Ehud J.; Cormack, Robert A.

    2015-01-01

    Purpose: In gynecologic cancers, magnetic resonance (MR) imaging is the modality of choice for visualizing tumors and their surroundings because of superior soft-tissue contrast. Real-time MR guidance of catheter placement in interstitial brachytherapy facilitates target coverage, and would be further improved by providing intraprocedural estimates of dosimetric coverage. A major obstacle to intraprocedural dosimetry is the time needed for catheter trajectory reconstruction. Herein the authors evaluate an active MR tracking (MRTR) system which provides rapid catheter tip localization and trajectory reconstruction. The authors assess the reliability and spatial accuracy of the MRTR system in comparison to standard catheter digitization using magnetic resonance imaging (MRI) and CT. Methods: The MRTR system includes a stylet with microcoils mounted on its shaft, which can be inserted into brachytherapy catheters and tracked by a dedicated MRTR sequence. Catheter tip localization errors of the MRTR system and their dependence on catheter locations and orientation inside the MR scanner were quantified with a water phantom. The distances between the tracked tip positions of the MRTR stylet and the predefined ground-truth tip positions were calculated for measurements performed at seven locations and with nine orientations. To evaluate catheter trajectory reconstruction, fifteen brachytherapy catheters were placed into a gel phantom with an embedded catheter fixation framework, with parallel or crossed paths. The MRTR stylet was then inserted sequentially into each catheter. During the removal of the MRTR stylet from within each catheter, a MRTR measurement was performed at 40 Hz to acquire the instantaneous stylet tip position, resulting in a series of three-dimensional (3D) positions along the catheter’s trajectory. A 3D polynomial curve was fit to the tracked positions for each catheter, and equally spaced dwell points were then generated along the curve. High

  17. SU-F-T-08: Brachytherapy Film Dosimetry in a Water Phantom for a Ring and Tandem HDR Applicator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, B; Grelewicz, Z; Kang, Z

    2016-06-15

    Purpose: The feasibility of dose measurement using new generation EBT3 film was explored in a water phantom for a ring and tandem HDR applicator for measurements tracking mucosal dose during cervical brachytherapy. Methods: An experimental fixture was assembled to position the applicator in a water phantom. Prior to measurement, calibration curves for EBT3 film in water and in solidwater were verified. EBT3 film was placed at different known locations around the applicator in the water tank. A CT scan of the phantom with applicator was performed using clinical protocol. A typical cervical cancer treatment plan was then generated by Oncentramore » brachytherapy planning system. A dose of 500 cGy was prescribed to point A (2 cm, 2 cm). Locations measured by film included the outer surface of the ring, measurement point A-m (2.2 cm, 2.2 cm), and profiles extending from point A-m parallel to the tandem. Three independent measurements were conducted. The doses recorded by film were carefully analyzed and compared with values calculated by the treatment planning system. Results: Assessment of the EBT3 films indicate that the dose at point A matches the values predicted by the planning system. Dose to the point A-m was 411.5 cGy, and the outer circumferential surface dose of the ring was between 500 and 1150 cGy. It was found that from the point A-m, the dose drops 60% within 4.5 cm on the line parallel to the tandem. The measurement doses agree with the treatment planning system. Conclusion: Use of EBT3 film is feasible for in-water measurements for brachytherapy. A carefully machined apparatus will likely improve measurement accuracy. In a typical plan, our study found that the ring surface dose can be 2.5 times larger than the point A prescription dose. EBT3 film can be used to monitor mucosal dose in brachytherapy treatments.« less

  18. Simulation evaluation of NIST air-kerma rate calibration standard for electronic brachytherapy.

    PubMed

    Hiatt, Jessica R; Rivard, Mark J; Hughes, H Grady

    2016-03-01

    Dosimetry for the model S700 50 kV electronic brachytherapy (eBT) source (Xoft, Inc., a subsidiary of iCAD, San Jose, CA) was simulated using Monte Carlo (MC) methods by Rivard et al. ["Calculated and measured brachytherapy dosimetry parameters in water for the Xoft Axxent x-ray source: An electronic brachytherapy source," Med. Phys. 33, 4020-4032 (2006)] and recently by Hiatt et al. ["A revised dosimetric characterization of the model S700 electronic brachytherapy source containing an anode-centering plastic insert and other components not included in the 2006 model," Med. Phys. 42, 2764-2776 (2015)] with improved geometric characterization. While these studies examined the dose distribution in water, there have not previously been reports of the eBT source calibration methods beyond that recently reported by Seltzer et al. ["New national air-kerma standard for low-energy electronic brachytherapy sources," J. Res. Natl. Inst. Stand. Technol. 119, 554-574 (2014)]. Therefore, the motivation for the current study was to provide an independent determination of air-kerma rate at 50 cm in air K̇air(d=50 cm) using MC methods for the model S700 eBT source. Using CAD information provided by the vendor and disassembled sources, an MC model was created for the S700 eBT source. Simulations were run using the mcnp6 radiation transport code for the NIST Lamperti air ionization chamber according to specifications by Boutillon et al. ["Comparison of exposure standards in the 10-50 kV x-ray region," Metrologia 5, 1-11 (1969)], in air without the Lamperti chamber, and in vacuum without the Lamperti chamber. K̇air(d=50 cm) was determined using the *F4 tally with NIST values for the mass energy-absorption coefficients for air. Photon spectra were evaluated over 2 π azimuthal sampling for polar angles of 0° ≤ θ ≤ 180° every 1°. Volume averaging was averted through tight radial binning. Photon energy spectra were determined over all polar angles in both air and vacuum using

  19. Posttraumatic Stress Disorder After High-Dose-Rate Brachytherapy for Cervical Cancer With 2 Fractions in 1 Application Under Spinal/Epidural Anesthesia: Incidence and Risk Factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirchheiner, Kathrin, E-mail: kathrin.kirchheiner@meduniwien.ac.at; Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna; Czajka-Pepl, Agnieszka

    Purpose: To investigate the psychological consequences of high-dose-rate brachytherapy with 2 fractions in 1 application under spinal/epidural anesthesia in the treatment of locally advanced cervical cancer. Methods and Materials: In 50 patients with locally advanced cervical cancer, validated questionnaires were used for prospective assessment of acute and posttraumatic stress disorder (ASD/PTSD) (Impact of Event Scale–Revision), anxiety/depression (Hospital Anxiety and Depression Scale), quality of life (European Organization for Research and Treatment of Cancer Quality of Life Questionnaire Core 30/Cervical Cancer 24), physical functioning (World Health Organization performance status), and pain (visual analogue scale), before and during treatment and 1 week and 3 monthsmore » after treatment. Qualitative interviews were recorded in open format for content analysis. Results: Symptoms of ASD occurred in 30% of patients 1 week after treatment; and of PTSD in 41% 3 months after treatment in association with this specific brachytherapy procedure. Pretreatment predictive variables explain 82% of the variance of PTSD symptoms. Helpful experiences were the support of the treatment team, psychological support, and a positive attitude. Stressful factors were pain, organizational problems during treatment, and immobility between brachytherapy fractions. Conclusions: The specific brachytherapy procedure, as performed in the investigated mono-institutional setting with 2 fractions in 1 application under spinal/epidural anesthesia, bears a considerable risk of traumatization. The source of stress seems to be not the brachytherapy application itself but the maintenance of the applicator under epidural anesthesia in the time between fractions. Patients at risk may be identified before treatment, to offer targeted psycho-social support. The patients' open reports regarding helpful experiences are an encouraging feedback for the treatment team; the reported stressful

  20. SU-E-J-215: Towards MR-Only Image Guided Identification of Calcifications and Brachytherapy Seeds: Application to Prostate and Breast LDR Implant Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elzibak, A; Fatemi-Ardekani, A; Soliman, A

    Purpose: To identify and analyze the appearance of calcifications and brachytherapy seeds on magnitude and phase MRI images and to investigate whether they can be distinguished from each other on corrected phase images for application to prostate and breast low dose rate (LDR) implant dosimetry. Methods: An agar-based gel phantom containing two LDR brachytherapy seeds (Advantage Pd-103, IsoAid, 0.8mm diameter, 4.5mm length) and two spherical calcifications (large: 7mm diameter and small: 4mm diameter) was constructed and imaged on a 3T Philips MR scanner using a 16-channel head coil and a susceptibility weighted imaging (SWI) sequence (2mm slices, 320mm FOV, TR/more » TE= 26.5/5.3ms, 15 degree flip angle). The phase images were unwrapped and corrected using a 32×32, 2D Hanning high pass filter to remove background phase noise. Appearance of the seeds and calcifications was assessed visually and quantitatively using Osirix (http://www.osirix-viewer.com/). Results: As expected, calcifications and brachytherapy seeds appeared dark (hypointense) relative to the surrounding gel on the magnitude MRI images. The diameter of each seed without the surrounding artifact was measured to be 0.1 cm on the magnitude image, while diameters of 0.79 and 0.37 cm were measured for the larger and smaller calcifications, respectively. On the corrected phase images, the brachytherapy seeds and the calcifications appeared bright (hyperintense). The diameter of the seeds was larger on the phase images (0.17 cm) likely due to the dipole effect. Conclusion: MRI has the best soft tissue contrast for accurate organ delineation leading to most accurate implant dosimetry. This work demonstrated that phase images can potentially be useful in identifying brachytherapy seeds and calcifications in the prostate and breast due to their bright appearance, which helps in their visualization and quantification for accurate dosimetry using MR-only. Future work includes optimizing phase filters to best

  1. SU-E-T-635: Process Mapping of Eye Plaque Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huynh, J; Kim, Y

    Purpose: To apply a risk-based assessment and analysis technique (AAPM TG 100) to eye plaque brachytherapy treatment of ocular melanoma. Methods: The role and responsibility of personnel involved in the eye plaque brachytherapy is defined for retinal specialist, radiation oncologist, nurse and medical physicist. The entire procedure was examined carefully. First, major processes were identified and then details for each major process were followed. Results: Seventy-one total potential modes were identified. Eight major processes (corresponding detailed number of modes) are patient consultation (2 modes), pretreatment tumor localization (11), treatment planning (13), seed ordering and calibration (10), eye plaque assembly (10),more » implantation (11), removal (11), and deconstruction (3), respectively. Half of the total modes (36 modes) are related to physicist while physicist is not involved in processes such as during the actual procedure of suturing and removing the plaque. Conclusion: Not only can failure modes arise from physicist-related procedures such as treatment planning and source activity calibration, but it can also exist in more clinical procedures by other medical staff. The improvement of the accurate communication for non-physicist-related clinical procedures could potentially be an approach to prevent human errors. More rigorous physics double check would reduce the error for physicist-related procedures. Eventually, based on this detailed process map, failure mode and effect analysis (FMEA) will identify top tiers of modes by ranking all possible modes with risk priority number (RPN). For those high risk modes, fault tree analysis (FTA) will provide possible preventive action plans.« less

  2. Propagation of registration uncertainty during multi-fraction cervical cancer brachytherapy

    NASA Astrophysics Data System (ADS)

    Amir-Khalili, A.; Hamarneh, G.; Zakariaee, R.; Spadinger, I.; Abugharbieh, R.

    2017-10-01

    Multi-fraction cervical cancer brachytherapy is a form of image-guided radiotherapy that heavily relies on 3D imaging during treatment planning, delivery, and quality control. In this context, deformable image registration can increase the accuracy of dosimetric evaluations, provided that one can account for the uncertainties associated with the registration process. To enable such capability, we propose a mathematical framework that first estimates the registration uncertainty and subsequently propagates the effects of the computed uncertainties from the registration stage through to the visualizations, organ segmentations, and dosimetric evaluations. To ensure the practicality of our proposed framework in real world image-guided radiotherapy contexts, we implemented our technique via a computationally efficient and generalizable algorithm that is compatible with existing deformable image registration software. In our clinical context of fractionated cervical cancer brachytherapy, we perform a retrospective analysis on 37 patients and present evidence that our proposed methodology for computing and propagating registration uncertainties may be beneficial during therapy planning and quality control. Specifically, we quantify and visualize the influence of registration uncertainty on dosimetric analysis during the computation of the total accumulated radiation dose on the bladder wall. We further show how registration uncertainty may be leveraged into enhanced visualizations that depict the quality of the registration and highlight potential deviations from the treatment plan prior to the delivery of radiation treatment. Finally, we show that we can improve the transfer of delineated volumetric organ segmentation labels from one fraction to the next by encoding the computed registration uncertainties into the segmentation labels.

  3. Toward endobronchial Ir-192 high-dose-rate brachytherapy therapeutic optimization

    NASA Astrophysics Data System (ADS)

    Gay, H. A.; Allison, R. R.; Downie, G. H.; Mota, H. C.; Austerlitz, C.; Jenkins, T.; Sibata, C. H.

    2007-06-01

    A number of patients with lung cancer receive either palliative or curative high-dose-rate (HDR) endobronchial brachytherapy. Up to a third of patients treated with endobronchial HDR die from hemoptysis. Rather than accept hemoptysis as an expected potential consequence of HDR, we have calculated the radial dose distribution for an Ir-192 HDR source, rigorously examined the dose and prescription points recommended by the American Brachytherapy Society (ABS), and performed a radiobiological-based analysis. The radial dose rate of a commercially available Ir-192 source was calculated with a Monte Carlo simulation. Based on the linear quadratic model, the estimated palliative, curative and blood vessel rupture radii from the center of an Ir-192 source were obtained for the ABS recommendations and a series of customized HDR prescriptions. The estimated radius at risk for blood vessel perforation for the ABS recommendations ranges from 7 to 9 mm. An optimized prescription may in some situations reduce this radius to 4 mm. The estimated blood perforation radius is generally smaller than the palliative radius. Optimized and individualized endobronchial HDR prescriptions are currently feasible based on our current understanding of tumor and normal tissue radiobiology. Individualized prescriptions could minimize complications such as fatal hemoptysis without sacrificing efficacy. Fiducial stents, HDR catheter centering or spacers and the use of CT imaging to better assess the relationship between the catheter and blood vessels promise to be useful strategies for increasing the therapeutic index of this treatment modality. Prospective trials employing treatment optimization algorithms are needed.

  4. Error Analysis of non-TLD HDR Brachytherapy Dosimetric Techniques

    NASA Astrophysics Data System (ADS)

    Amoush, Ahmad

    The American Association of Physicists in Medicine Task Group Report43 (AAPM-TG43) and its updated version TG-43U1 rely on the LiF TLD detector to determine the experimental absolute dose rate for brachytherapy. The recommended uncertainty estimates associated with TLD experimental dosimetry include 5% for statistical errors (Type A) and 7% for systematic errors (Type B). TG-43U1 protocol does not include recommendation for other experimental dosimetric techniques to calculate the absolute dose for brachytherapy. This research used two independent experimental methods and Monte Carlo simulations to investigate and analyze uncertainties and errors associated with absolute dosimetry of HDR brachytherapy for a Tandem applicator. An A16 MicroChamber* and one dose MOSFET detectors† were selected to meet the TG-43U1 recommendations for experimental dosimetry. Statistical and systematic uncertainty analyses associated with each experimental technique were analyzed quantitatively using MCNPX 2.6‡ to evaluate source positional error, Tandem positional error, the source spectrum, phantom size effect, reproducibility, temperature and pressure effects, volume averaging, stem and wall effects, and Tandem effect. Absolute dose calculations for clinical use are based on Treatment Planning System (TPS) with no corrections for the above uncertainties. Absolute dose and uncertainties along the transverse plane were predicted for the A16 microchamber. The generated overall uncertainties are 22%, 17%, 15%, 15%, 16%, 17%, and 19% at 1cm, 2cm, 3cm, 4cm, and 5cm, respectively. Predicting the dose beyond 5cm is complicated due to low signal-to-noise ratio, cable effect, and stem effect for the A16 microchamber. Since dose beyond 5cm adds no clinical information, it has been ignored in this study. The absolute dose was predicted for the MOSFET detector from 1cm to 7cm along the transverse plane. The generated overall uncertainties are 23%, 11%, 8%, 7%, 7%, 9%, and 8% at 1cm, 2cm, 3cm

  5. Optimization in Radiation Therapy: Applications in Brachytherapy and Intensity Modulated Radiation Therapy

    NASA Astrophysics Data System (ADS)

    McGeachy, Philip David

    Over 50% of cancer patients require radiation therapy (RT). RT is an optimization problem requiring maximization of the radiation damage to the tumor while minimizing the harm to the healthy tissues. This dissertation focuses on two main RT optimization problems: 1) brachytherapy and 2) intensity modulated radiation therapy (IMRT). The brachytherapy research involved solving a non-convex optimization problem by creating an open-source genetic algorithm optimizer to determine the optimal radioactive seed distribution for a given set of patient volumes and constraints, both dosimetric- and implant-based. The optimizer was tested for a set of 45 prostate brachytherapy patients. While all solutions met the clinical standards, they also benchmarked favorably with those generated by a standard commercial solver. Compared to its compatriot, the salient features of the generated solutions were: slightly reduced prostate coverage, lower dose to the urethra and rectum, and a smaller number of needles required for an implant. Historically, IMRT requires modulation of fluence while keeping the photon beam energy fixed. The IMRT-related investigation in this thesis aimed at broadening the solution space by varying photon energy. The problem therefore involved simultaneous optimization of photon beamlet energy and fluence, denoted by XMRT. Formulating the problem as convex, linear programming was applied to obtain solutions for optimal energy-dependent fluences, while achieving all clinical objectives and constraints imposed. Dosimetric advantages of XMRT over single-energy IMRT in the improved sparing of organs at risk (OARs) was demonstrated in simplified phantom studies. The XMRT algorithm was improved to include clinical dose-volume constraints and clinical studies for prostate and head and neck cancer patients were investigated. Compared to IMRT, XMRT provided improved dosimetric benefit in the prostate case, particularly within intermediate- to low-dose regions (≤ 40 Gy

  6. Time-driven activity-based cost comparison of prostate cancer brachytherapy and intensity-modulated radiation therapy.

    PubMed

    Dutta, Sunil W; Bauer-Nilsen, Kristine; Sanders, Jason C; Trifiletti, Daniel M; Libby, Bruce; Lash, Donna H; Lain, Melody; Christodoulou, Deborah; Hodge, Constance; Showalter, Timothy N

    To evaluate the delivery cost of frequently used radiotherapy options offered to patients with intermediate- to high-risk prostate cancer using time-driven activity-based costing and compare the results with Medicare reimbursement and relative value units (RVUs). Process maps were created to represent each step of prostate radiotherapy treatment at our institution. Salary data, equipment purchase costs, and consumable costs were factored into the cost analysis. The capacity cost rate was determined for each resource and calculated for each treatment option from initial consultation to its completion. Treatment options included low-dose-rate brachytherapy (LDR-BT), combined high-dose-rate brachytherapy single fraction boost with 25-fraction intensity-modulated radiotherapy (HDR-BT-IMRT), moderately hypofractionated 28-fraction IMRT, conventionally fractionated 39-fraction IMRT, and conventionally fractionated (2 Gy/fraction) 23-fraction pelvis irradiation with 16-fraction prostate boost. The total cost to deliver LDR-BT, HDR-BT-IMRT, moderately hypofractionated 28-fraction IMRT, conventionally fractionated 39-fraction IMRT, conventionally fractionated 39-fraction IMRT, and conventionally fractionated (2 Gy/fraction) 23-fraction pelvis irradiation with 16-fraction prostate boost was $2719, $6517, $4173, $5507, and $5663, respectively. Total reimbursement for each course was $3123, $10,156, $7862, $9725, and $10,377, respectively. Radiation oncology attending time was 1.5-2 times higher for treatment courses incorporating BT. Attending radiation oncologist's time consumed per RVU was higher with BT (4.83 and 2.56 minutes per RVU generated for LDR-BT and HDR-BT-IMRT, respectively) compared to without BT (1.41-1.62 minutes per RVU). Time-driven activity-based costing analysis identified higher delivery costs associated with prostate BT compared with IMRT alone. In light of recent guidelines promoting BT for intermediate- to high-risk disease, re-evaluation of payment

  7. Pretreatment Nomogram to Predict the Risk of Acute Urinary Retention After I-125 Prostate Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roeloffzen, Ellen M., E-mail: e.m.a.roeloffzen@umcutrecht.nl; Vulpen, Marco van; Battermann, Jan J.

    Purpose: Acute urinary retention (AUR) after iodine-125 (I-125) prostate brachytherapy negatively influences long-term quality of life and therefore should be prevented. We aimed to develop a nomogram to preoperatively predict the risk of AUR. Methods: Using the preoperative data of 714 consecutive patients who underwent I-125 prostate brachytherapy between 2005 and 2008 at our department, we modeled the probability of AUR. Multivariate logistic regression analysis was used to assess the predictive ability of a set of pretreatment predictors and the additional value of a new risk factor (the extent of prostate protrusion into the bladder). The performance of the finalmore » model was assessed with calibration and discrimination measures. Results: Of the 714 patients, 57 patients (8.0%) developed AUR after implantation. Multivariate analysis showed that the combination of prostate volume, IPSS score, neoadjuvant hormonal treatment and the extent of prostate protrusion contribute to the prediction of AUR. The discriminative value (receiver operator characteristic area, ROC) of the basic model (including prostate volume, International Prostate Symptom Score, and neoadjuvant hormonal treatment) to predict the development of AUR was 0.70. The addition of prostate protrusion significantly increased the discriminative power of the model (ROC 0.82). Calibration of this final model was good. The nomogram showed that among patients with a low sum score (<18 points), the risk of AUR was only 0%-5%. However, in patients with a high sum score (>35 points), the risk of AUR was more than 20%. Conclusion: This nomogram is a useful tool for physicians to predict the risk of AUR after I-125 prostate brachytherapy. The nomogram can aid in individualized treatment decision-making and patient counseling.« less

  8. A radiopaque polymer hydrogel used as a fiducial marker in gynecologic-cancer patients receiving brachytherapy

    PubMed Central

    Bair, Ryan J.; Bair, Eric; Viswanathan, Akila N.

    2016-01-01

    PURPOSE We assessed a novel Food and Drug Administration–approved hydrogel, synthesized as absorbable iodinated particles, in gynecologic-cancer patients undergoing computed tomography (CT) or magnetic resonance (MR) based brachytherapy after external beam radiation. METHODS AND MATERIALS Nineteen patients underwent CT-guided (n = 13) or MR-guided (n = 6) brachytherapy for gynecologic cancers. Seventy-seven hydrogel injections were placed. The hydrogel material was injected into gross residual disease and/or key anatomic landmarks in amounts ranging from 0.1 to 0.4 mL. The visibility of the tracer was scored on CT and on MR images using a 5-point scoring scale. A Cohen’s kappa statistic was calculated to assess interobserver agreement. To assess the unadjusted effects of baseline parameters on hydrogel visibility, we modeled visibility using a linear mixed-effect model. RESULTS Injections were without complication. The kappa statistic was 0.77 (95% confidence interval [CI], 0.68–0.87). The volume of hydrogel injected was significantly associated with visibility on both CT (p = 0.032) and magnetic resonance imaging (p = 0.016). We analyzed visibility by location, controlling for amount. A 0.1-cc increase in volume injected was associated with increases of 0.54 (95% CI = 0.05–1.03) in the CT visibility score and 0.83 (95% CI = 0.17–1.49) in the MR visibility score. Injection of 0.4 cc or more was required for unequivocal visibility on CT or MR. No statistically significant correlation was found between tumor type, tumor location, or anatomical location of injection and visibility on either CT or magnetic resonance imaging. CONCLUSIONS In this first report of an injectable radiopaque hydrogel, targets were visualized to assist with three-dimensional–based brachytherapy in gynecologic malignancies. This marker has potential for several applications, is easy to inject and visualize, and caused no acute complications. PMID:26481393

  9. PSA Nadir of <0.5 ng/mL Following Brachytherapy for Early-Stage Prostate Adenocarcinoma is Associated With Freedom From Prostate-Specific Antigen Failure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ko, Eric C.; Stone, Nelson N.; Department of Urology, Mount Sinai Medical Center, New York, NY

    2012-06-01

    Purpose: Because limited information exists regarding whether the rate or magnitude of PSA decline following brachytherapy predicts long-term clinical outcomes, we evaluated whether achieving a prostate-specific antigen (PSA) nadir (nPSA) <0.5 ng/mL following brachytherapy is associated with decreased PSA failure and/or distant metastasis. Methods and Materials: We retrospectively analyzed our database of early-stage prostate adenocarcinoma patients who underwent brachytherapy, excluding those receiving androgen-deprivation therapy and those with <2 years follow-up. Median and mean pretreatment PSA were 6 ng/mL and 7.16 ng/mL, respectively. By clinical stage, 775 were low risk ({<=}T2a), 126 were intermediate risk (T2b), and 20 were high riskmore » (>T2b). By Gleason score, 840 were low risk ({<=}6), 71 were intermediate risk (7), and 10 were high risk (>7). Patients were treated with brachytherapy only (I-125, n = 779, or Pd-103, n = 47), or brachytherapy + external-beam radiation therapy (n = 95). Median follow-up was 6.3 years. We noted whether nPSA <0.5 ng/mL was achieved and the time to achieve this nadir and tested for associations with pretreatment risk factors. We also determined whether this PSA endpoint was associated with decreased PSA failure or distant metastasis. Results: Absence of high-risk factors in clinical stage ({<=}T2b), Gleason score ({<=}7), and pretreatment PSA ({<=}20 ng/mL) was significantly associated with achieving nPSA <0.5 ng/mL. By Kaplan-Meier analysis, patients achieving nPSA <0.5 ng/mL had significantly higher long-term freedom from biochemical failure (FFBF) than nonresponders (5-year FFBF: 95.2 {+-} 0.8% vs. 71.5 {+-} 6.7%; p < 0.0005). Among responders, those who achieved nPSA <0.5 ng/mL in {<=}5 years had higher FFBF than those requiring >5 years (5-year FFBF: 96.7 {+-} 0.7% vs. 80.8 {+-} 4.6%; p < 0.0005). On multivariate analysis, patients who achieved nPSA <0.5 ng/mL in {<=}5 years had significantly higher FFBF than other

  10. PSA nadir of <0.5 ng/mL following brachytherapy for early-stage prostate adenocarcinoma is associated with freedom from prostate-specific antigen failure.

    PubMed

    Ko, Eric C; Stone, Nelson N; Stock, Richard G

    2012-06-01

    Because limited information exists regarding whether the rate or magnitude of PSA decline following brachytherapy predicts long-term clinical outcomes, we evaluated whether achieving a prostate-specific antigen (PSA) nadir (nPSA) <0.5 ng/mL following brachytherapy is associated with decreased PSA failure and/or distant metastasis. We retrospectively analyzed our database of early-stage prostate adenocarcinoma patients who underwent brachytherapy, excluding those receiving androgen-deprivation therapy and those with <2 years follow-up. Median and mean pretreatment PSA were 6 ng/mL and 7.16 ng/mL, respectively. By clinical stage, 775 were low risk (≤ T2a), 126 were intermediate risk (T2b), and 20 were high risk (>T2b). By Gleason score, 840 were low risk (≤ 6), 71 were intermediate risk (7), and 10 were high risk (>7). Patients were treated with brachytherapy only (I-125, n = 779, or Pd-103, n = 47), or brachytherapy + external-beam radiation therapy (n = 95). Median follow-up was 6.3 years. We noted whether nPSA <0.5 ng/mL was achieved and the time to achieve this nadir and tested for associations with pretreatment risk factors. We also determined whether this PSA endpoint was associated with decreased PSA failure or distant metastasis. Absence of high-risk factors in clinical stage (≤ T2b), Gleason score (≤ 7), and pretreatment PSA (≤ 20 ng/mL) was significantly associated with achieving nPSA <0.5 ng/mL. By Kaplan-Meier analysis, patients achieving nPSA <0.5 ng/mL had significantly higher long-term freedom from biochemical failure (FFBF) than nonresponders (5-year FFBF: 95.2 ± 0.8% vs. 71.5 ± 6.7%; p < 0.0005). Among responders, those who achieved nPSA <0.5 ng/mL in ≤ 5 years had higher FFBF than those requiring >5 years (5-year FFBF: 96.7 ± 0.7% vs. 80.8 ± 4.6%; p < 0.0005). On multivariate analysis, patients who achieved nPSA <0.5 ng/mL in ≤ 5 years had significantly higher FFBF than other patients. Pretreatment risk factors (clinical tumor

  11. The difference of scoring dose to water or tissues in Monte Carlo dose calculations for low energy brachytherapy photon sources.

    PubMed

    Landry, Guillaume; Reniers, Brigitte; Pignol, Jean-Philippe; Beaulieu, Luc; Verhaegen, Frank

    2011-03-01

    The goal of this work is to compare D(m,m) (radiation transported in medium; dose scored in medium) and D(w,m) (radiation transported in medium; dose scored in water) obtained from Monte Carlo (MC) simulations for a subset of human tissues of interest in low energy photon brachytherapy. Using low dose rate seeds and an electronic brachytherapy source (EBS), the authors quantify the large cavity theory conversion factors required. The authors also assess whether ap plying large cavity theory utilizing the sources' initial photon spectra and average photon energy induces errors related to spatial spectral variations. First, ideal spherical geometries were investigated, followed by clinical brachytherapy LDR seed implants for breast and prostate cancer patients. Two types of dose calculations are performed with the GEANT4 MC code. (1) For several human tissues, dose profiles are obtained in spherical geometries centered on four types of low energy brachytherapy sources: 125I, 103Pd, and 131Cs seeds, as well as an EBS operating at 50 kV. Ratios of D(w,m) over D(m,m) are evaluated in the 0-6 cm range. In addition to mean tissue composition, compositions corresponding to one standard deviation from the mean are also studied. (2) Four clinical breast (using 103Pd) and prostate (using 125I) brachytherapy seed implants are considered. MC dose calculations are performed based on postimplant CT scans using prostate and breast tissue compositions. PTV D90 values are compared for D(w,m) and D(m,m). (1) Differences (D(w,m)/D(m,m)-1) of -3% to 70% are observed for the investigated tissues. For a given tissue, D(w,m)/D(m,m) is similar for all sources within 4% and does not vary more than 2% with distance due to very moderate spectral shifts. Variations of tissue composition about the assumed mean composition influence the conversion factors up to 38%. (2) The ratio of D90(w,m) over D90(m,m) for clinical implants matches D(w,m)/D(m,m) at 1 cm from the single point sources, Given

  12. Quality assurance for high dose rate brachytherapy treatment planning optimization: using a simple optimization to verify a complex optimization

    NASA Astrophysics Data System (ADS)

    Deufel, Christopher L.; Furutani, Keith M.

    2014-02-01

    As dose optimization for high dose rate brachytherapy becomes more complex, it becomes increasingly important to have a means of verifying that optimization results are reasonable. A method is presented for using a simple optimization as quality assurance for the more complex optimization algorithms typically found in commercial brachytherapy treatment planning systems. Quality assurance tests may be performed during commissioning, at regular intervals, and/or on a patient specific basis. A simple optimization method is provided that optimizes conformal target coverage using an exact, variance-based, algebraic approach. Metrics such as dose volume histogram, conformality index, and total reference air kerma agree closely between simple and complex optimizations for breast, cervix, prostate, and planar applicators. The simple optimization is shown to be a sensitive measure for identifying failures in a commercial treatment planning system that are possibly due to operator error or weaknesses in planning system optimization algorithms. Results from the simple optimization are surprisingly similar to the results from a more complex, commercial optimization for several clinical applications. This suggests that there are only modest gains to be made from making brachytherapy optimization more complex. The improvements expected from sophisticated linear optimizations, such as PARETO methods, will largely be in making systems more user friendly and efficient, rather than in finding dramatically better source strength distributions.

  13. Three-dimensional dosimetric considerations from different point A definitions in cervical cancer low-dose-rate brachytherapy

    PubMed Central

    Chen, Ting; Kim, Leonard H.; Nelson, Carl; Gabel, Molly; Narra, Venkat; Haffty, Bruce; Yue, Ning J.

    2013-01-01

    Purpose To investigate the dosimetric difference due to the different point A definitions in cervical cancer low-dose-rate (LDR) intracavitary brachytherapy. Material and methods Twenty CT-based LDR brachytherapy plans of 11 cervical patients were retrospectively reviewed. Two plans with point As following the modified Manchester system which defines point A being 2 cm superior to the cervical os along the tandem and 2 cm lateral (Aos), and the American Brachytherapy Society (ABS) guideline definition in which the point A is 2 cm superior to the vaginal fornices instead of os (Aovoid) were generated. Using the same source strength, two plans prescribed the same dose to Aos and Aovoid. Dosimetric differences between plans including point A dose rate, treatment volume encompassed by the prescription isodose line (TV), and dose rate of 2 cc of the rectum and bladder to the prescription dose were measured. Results On average Aovoid was 8.9 mm superior to Aos along the tandem direction with a standard deviation of 5.4 mm. With the same source strength and arrangement, Aos dose rate was 19% higher than Aovoid dose rate. The average TV(Aovoid) was 118.0 cc, which was 30% more than the average TV(Aos) of 93.0 cc. D2cc/D(Aprescribe) increased from 51% to 60% for rectum, and increased from 89% and 106% for bladder, if the prescription point changed from Aos to Aovoid. Conclusions Different point A definitions lead to significant dose differences. Careful consideration should be given when changing practice from one point A definition to another, to ensure dosimetric and clinical equivalency from the previous clinical experiences. PMID:24474971

  14. Development of 3D ultrasound needle guidance for high-dose-rate interstitial brachytherapy of gynaecological cancers

    NASA Astrophysics Data System (ADS)

    Rodgers, J.; Tessier, D.; D'Souza, D.; Leung, E.; Hajdok, G.; Fenster, A.

    2016-04-01

    High-dose-rate (HDR) interstitial brachytherapy is often included in standard-of-care for gynaecological cancers. Needles are currently inserted through a perineal template without any standard real-time imaging modality to assist needle guidance, causing physicians to rely on pre-operative imaging, clinical examination, and experience. While two-dimensional (2D) ultrasound (US) is sometimes used for real-time guidance, visualization of needle placement and depth is difficult and subject to variability and inaccuracy in 2D images. The close proximity to critical organs, in particular the rectum and bladder, can lead to serious complications. We have developed a three-dimensional (3D) transrectal US system and are investigating its use for intra-operative visualization of needle positions used in HDR gynaecological brachytherapy. As a proof-of-concept, four patients were imaged with post-insertion 3D US and x-ray CT. Using software developed in our laboratory, manual rigid registration of the two modalities was performed based on the perineal template's vaginal cylinder. The needle tip and a second point along the needle path were identified for each needle visible in US. The difference between modalities in the needle trajectory and needle tip position was calculated for each identified needle. For the 60 needles placed, the mean trajectory difference was 3.23 +/- 1.65° across the 53 visible needle paths and the mean difference in needle tip position was 3.89 +/- 1.92 mm across the 48 visible needles tips. Based on the preliminary results, 3D transrectal US shows potential for the development of a 3D US-based needle guidance system for interstitial gynaecological brachytherapy.

  15. The novel nomogram of Gleason sum upgrade: possible application for the eligible criteria of low dose rate brachytherapy.

    PubMed

    Budäus, Lars; Graefen, Markus; Salomon, Georg; Isbarn, Hendrik; Lughezzani, Giovanni; Sun, Maxine; Chun, Felix K H; Schlomm, Thorsten; Steuber, Thomas; Haese, Alexander; Koellermann, Jens; Sauter, Guido; Fisch, Margit; Heinzer, Hans; Huland, Hartwig; Karakiewicz, Pierre I

    2010-10-01

    To examine the rate of Gleason sum upgrading (GSU) from a sum of 6 to a Gleason sum of ≥7 in patients undergoing radical prostatectomy (RP), who fulfilled the recommendations for low dose rate brachytherapy (Gleason sum 6, prostate-specific antigen ≤10 ng/mL, clinical stage ≤T2a and prostate volume ≤50 mL), and to test the performance of an existing nomogram for prediction of GSU in this specific cohort of patients. The analysis focused on 414 patients, who fulfilled the European Society for Therapeutic Radiation and Oncology and American Brachytherapy Society criteria for low dose rate brachytherapy (LD-BT) and underwent a 10-core prostate biopsy followed by RP. The rate of GSU was tabulated and the ability of available clinical and pathological parameters for predicting GSU was tested. Finally, the performance of an existing GSU nomogram was explored. The overall rate of GSU was 35.5%. When applied to LD-BT candidates, the existing nomogram was 65.8% accurate versus 70.8% for the new nomogram. In decision curve analysis tests, the new nomogram fared substantially better than the assumption that no patient is upgraded and better than the existing nomogram. GSU represents an important issue in LD-BT candidates. The new nomogram might improve patient selection for LD-BT and cancer control outcome by excluding patients with an elevated probability of GSU. © 2010 The Japanese Urological Association.

  16. Correction factors for ionization chamber measurements with the ‘Valencia’ and ‘large field Valencia’ brachytherapy applicators

    NASA Astrophysics Data System (ADS)

    Gimenez-Alventosa, V.; Gimenez, V.; Ballester, F.; Vijande, J.; Andreo, P.

    2018-06-01

    Treatment of small skin lesions using HDR brachytherapy applicators is a widely used technique. The shielded applicators currently available in clinical practice are based on a tungsten-alloy cup that collimates the source-emitted radiation into a small region, hence protecting nearby tissues. The goal of this manuscript is to evaluate the correction factors required for dose measurements with a plane-parallel ionization chamber typically used in clinical brachytherapy for the ‘Valencia’ and ‘large field Valencia’ shielded applicators. Monte Carlo simulations have been performed using the PENELOPE-2014 system to determine the absorbed dose deposited in a water phantom and in the chamber active volume with a Type A uncertainty of the order of 0.1%. The average energies of the photon spectra arriving at the surface of the water phantom differ by approximately 10%, being 384 keV for the ‘Valencia’ and 343 keV for the ‘large field Valencia’. The ionization chamber correction factors have been obtained for both applicators using three methods, their values depending on the applicator being considered. Using a depth-independent global chamber perturbation correction factor and no shift of the effective point of measurement yields depth-dose differences of up to 1% for the ‘Valencia’ applicator. Calculations using a depth-dependent global perturbation factor, or a shift of the effective point of measurement combined with a constant partial perturbation factor, result in differences of about 0.1% for both applicators. The results emphasize the relevance of carrying out detailed Monte Carlo studies for each shielded brachytherapy applicator and ionization chamber.

  17. Effect of family history on outcomes in patients treated with definitive brachytherapy for clinically localized prostate cancer.

    PubMed

    Peters, Christopher A; Stock, Richard G; Blacksburg, Seth R; Stone, Nelson N

    2009-01-01

    To determine the impact familial prostate cancer has on prognosis in men treated with brachytherapy for clinically localized prostate cancer. A total of 1,738 consecutive patients with prostate cancer (cT1-3, N0/X, M0) received low-dose-rate brachytherapy alone or in combination with external beam radiation therapy or hormone ablation from 1992 to 2005. The primary end-point was freedom from biochemical failure (FFBF) using the Phoenix definition. Minimum follow-up was 2 years and the median follow-up was 60 months (range, 24-197 months). A total of 187 of 1,738 men (11%) had a family history of prostate cancer in a first-degree relative. For the low-risk patients, both groups had similar actuarial 5-year FFBF (97.2% vs. 95.5%, p = 0.516). For intermediate-risk patients, there was a trend toward improved biochemical control in men positive for family history (5-yr FFBF 100% vs. 93.6%, p = 0.076). For the high-risk patients, men with a positive family history had similar 5-year FFBF (92.8% vs. 85.2%, p = 0.124). On multivariate analysis, family history was not significant; use of hormones, high biologic effective dose, initial prostate-specific antigen value, and Gleason score were the significant variables predicting biochemical control. This is the first study to examine the relationship of familial prostate cancer and outcomed in men treated with brachytherapy alone or in combination therapy. Men with a positive family history have clinicopathologic characteristics and biochemical outcomes similar to those with sporadic disease.

  18. Monte-Carlo based assessment of MAGIC, MAGICAUG, PAGATUG and PAGATAUG polymer gel dosimeters for ovaries and uterus organ dosimetry in brachytherapy, nuclear medicine and Tele-therapy.

    PubMed

    Adinehvand, Karim; Rahatabad, Fereidoun Nowshiravan

    2018-06-01

    Calculation of 3D dose distribution during radiotherapy and nuclear medicine helps us for better treatment of sensitive organs such as ovaries and uterus. In this research, we investigate two groups of normoxic dosimeters based on meta-acrylic acid (MAGIC and MAGICAUG) and polyacrylamide (PAGATUG and PAGATAUG) for brachytherapy, nuclear medicine and Tele-therapy in their sensitive and critical role as organ dosimeters. These polymer gel dosimeters are compared with soft tissue while irradiated by different energy photons in therapeutic applications. This comparison has been simulated by Monte-Carlo based MCNPX code. ORNL phantom-Female has been used to model the critical organs of kidneys, ovaries and uterus. Right kidney is proposed to be the source of irradiation and another two organs are exposed to this irradiation. Effective atomic numbers of soft tissue, MAGIC, MAGICAUG, PAGATUG and PAGATAUG are 6.86, 7.07, 6.95, 7.28, and 7.07 respectively. Results show the polymer gel dosimeters are comparable to soft tissue for using in nuclear medicine and Tele-therapy. Differences between gel dosimeters and soft tissue are defined as the dose responses. This difference is less than 4.1%, 22.6% and 71.9% for Tele-therapy, nuclear medicine and brachytherapy respectively. The results approved that gel dosimeters are the best choice for ovaries and uterus in nuclear medicine and Tele-therapy respectively. Due to the slight difference between the effective atomic numbers of these polymer gel dosimeters and soft tissue, these polymer gels are not suitable for brachytherapy since the dependence of photon interaction to atomic number, for low energy brachytherapy, had been so effective. Also this dependence to atomic number, decrease for photoelectric and increase for Compton. Therefore polymer gel dosimeters are not a good alternative to soft tissue replacement in brachytherapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Long-Term Results of a Randomized Trial in Locally Advanced Rectal Cancer: No Benefit From Adding a Brachytherapy Boost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appelt, Ane L., E-mail: ane.lindegaard.appelt@rsyd.dk; Faculty of Health Sciences, University of Southern Denmark, Odense; Vogelius, Ivan R.

    Purpose/Objective(s): Mature data on tumor control and survival are presented from a randomized trial of the addition of a brachytherapy boost to long-course neoadjuvant chemoradiation therapy (CRT) for locally advanced rectal cancer. Methods and Materials: Between March 2005 and November 2008, 248 patients with T3-4N0-2M0 rectal cancer were prospectively randomized to either long-course preoperative CRT (50.4 Gy in 28 fractions, per oral tegafur-uracil and L-leucovorin) alone or the same CRT schedule plus a brachytherapy boost (10 Gy in 2 fractions). The primary trial endpoint was pathologic complete response (pCR) at the time of surgery; secondary endpoints included overall survival (OS), progression-free survivalmore » (PFS), and freedom from locoregional failure. Results: Results for the primary endpoint have previously been reported. This analysis presents survival data for the 224 patients in the Danish part of the trial. In all, 221 patients (111 control arm, 110 brachytherapy boost arm) had data available for analysis, with a median follow-up time of 5.4 years. Despite a significant increase in tumor response at the time of surgery, no differences in 5-year OS (70.6% vs 63.6%, hazard ratio [HR] = 1.24, P=.34) and PFS (63.9% vs 52.0%, HR=1.22, P=.32) were observed. Freedom from locoregional failure at 5 years were 93.9% and 85.7% (HR=2.60, P=.06) in the standard and in the brachytherapy arms, respectively. There was no difference in the prevalence of stoma. Explorative analysis based on stratification for tumor regression grade and resection margin status indicated the presence of response migration. Conclusions: Despite increased pathologic tumor regression at the time of surgery, we observed no benefit on late outcome. Improved tumor regression does not necessarily lead to a relevant clinical benefit when the neoadjuvant treatment is followed by high-quality surgery.« less

  20. Long term results of a randomized trial in locally advanced rectal cancer: No benefit from adding a brachytherapy boost

    PubMed Central

    Appelt, Ane L; Vogelius, Ivan R; Pløen, John; Rafaelsen, Søren R; Lindebjerg, Jan; Havelund, Birgitte M; Bentzen, Søren M; Jakobsen, Anders

    2014-01-01

    Purpose/Objective(s) Mature data on tumor control and survival are presented from a randomized trial of the addition of a brachytherapy boost to long-course neoadjuvant chemoradiation (CRT) for locally advanced rectal cancer. Methods and Materials Between March 2005 and November 2008, 248 patients withT3-4N0-2M0 rectal cancer were prospectively randomized to either long-course preoperative CRT (50.4Gy in 28 fractions, peroral UFT and L-leucovorin) alone or the same CRT schedule plus a brachytherapy boost (10Gy in 2 fractions). Primary trial endpoint was pathological complete response (pCR) at time of surgery; secondary endpoints included overall survival (OS), progression-free survival (PFS) and freedom from locoregional failure. Results Results for the primary endpoint have previously been reported. This analysis presents survival data for the 224 patients in the Danish part of the trial. 221 patients (111 control arm, 110 brachytherapy boost arm) had data available for analysis, with a median follow-up of 5.4 years. Despite a significant increase in tumor response at the time of surgery, no differences in 5-year OS (70.6% vs 63.6%, HR=1.24, p=0.34) and PFS (63.9% vs 52.0%, HR=1.22, p=0.32) were observed. Freedom from locoregional failure at 5 years were 93.9% and 85.7% (HR=2.60, 1.00–6.73, p=0.06) in the standard and in the brachytherapy arm, respectively. There was no difference in the prevalence of stoma. Explorative analysis based on stratification for tumor regression grade and resection margin status indicated the presence of response migration. Conclusions Despite increased pathological tumor regression at the time of surgery, we observed no benefit on late outcome. Improved tumor regression does not necessarily lead to a relevant clinical benefit when the neoadjuvant treatment is followed by high-quality surgery. PMID:25015203

  1. Absorbed dose calculations in a brachytherapy pelvic phantom using the Monte Carlo method

    PubMed Central

    Rodríguez, Miguel L.; deAlmeida, Carlos E.

    2002-01-01

    Monte Carlo calculations of the absorbed dose at various points of a brachytherapy anthropomorphic phantom are presented. The phantom walls and internal structures are made of polymethylmethacrylate and its external shape was taken from a female Alderson phantom. A complete Fletcher‐Green type applicator with the uterine tandem was fixed at the bottom of the phantom reproducing a typical geometrical configuration as that attained in a gynecological brachytherapy treatment. The dose rate produced by an array of five 137Cs CDC‐J type sources placed in the applicator colpostats and the uterine tandem was evaluated by Monte Carlo simulations using the code penelope at three points: point A, the rectum, and the bladder. The influence of the applicator in the dose rate was evaluated by comparing Monte Carlo simulations of the sources alone and the sources inserted in the applicator. Differences up to 56% in the dose may be observed for the two cases in the planes including the rectum and bladder. The results show a reduction of the dose of 15.6%, 14.0%, and 5.6% in the rectum, bladder, and point A respectively, when the applicator wall and shieldings are considered. PACS number(s): 87.53Jw, 87.53.Wz, 87.53.Vb, 87.66.Xa PMID:12383048

  2. Dose heterogeneity correction for low-energy brachytherapy sources using dual-energy CT images

    NASA Astrophysics Data System (ADS)

    Mashouf, S.; Lechtman, E.; Lai, P.; Keller, B. M.; Karotki, A.; Beachey, D. J.; Pignol, J. P.

    2014-09-01

    Permanent seed implant brachytherapy is currently used for adjuvant radiotherapy of early stage prostate and breast cancer patients. The current standard for calculation of dose around brachytherapy sources is based on the AAPM TG-43 formalism, which generates the dose in a homogeneous water medium. Recently, AAPM TG-186 emphasized the importance of accounting for tissue heterogeneities. We have previously reported on a methodology where the absorbed dose in tissue can be obtained by multiplying the dose, calculated by the TG-43 formalism, by an inhomogeneity correction factor (ICF). In this work we make use of dual energy CT (DECT) images to extract ICF parameters. The advantage of DECT over conventional CT is that it eliminates the need for tissue segmentation as well as assignment of population based atomic compositions. DECT images of a heterogeneous phantom were acquired and the dose was calculated using both TG-43 and TG-43 × \\text{ICF} formalisms. The results were compared to experimental measurements using Gafchromic films in the mid-plane of the phantom. For a seed implant configuration of 8 seeds spaced 1.5 cm apart in a cubic structure, the gamma passing score for 2%/2 mm criteria improved from 40.8% to 90.5% when ICF was applied to TG-43 dose distributions.

  3. Dosimetric comparison between intra-cavitary breast brachytherapy techniques for accelerated partial breast irradiation and a novel stereotactic radiotherapy device for breast cancer: GammaPod™

    NASA Astrophysics Data System (ADS)

    Ödén, Jakob; Toma-Dasu, Iuliana; Yu, Cedric X.; Feigenberg, Steven J.; Regine, William F.; Mutaf, Yildirim D.

    2013-07-01

    The GammaPod™ device, manufactured by Xcision Medical Systems, is a novel stereotactic breast irradiation device. It consists of a hemispherical source carrier containing 36 Cobalt-60 sources, a tungsten collimator with two built-in collimation sizes, a dynamically controlled patient support table and a breast immobilization cup also functioning as the stereotactic frame for the patient. The dosimetric output of the GammaPod™ was modelled using a Monte Carlo based treatment planning system. For the comparison, three-dimensional (3D) models of commonly used intra-cavitary breast brachytherapy techniques utilizing single lumen and multi-lumen balloon as well as peripheral catheter multi-lumen implant devices were created and corresponding 3D dose calculations were performed using the American Association of Physicists in Medicine Task Group-43 formalism. Dose distributions for clinically relevant target volumes were optimized using dosimetric goals set forth in the National Surgical Adjuvant Breast and Bowel Project Protocol B-39. For clinical scenarios assuming similar target sizes and proximity to critical organs, dose coverage, dose fall-off profiles beyond the target and skin doses at given distances beyond the target were calculated for GammaPod™ and compared with the doses achievable by the brachytherapy techniques. The dosimetric goals within the protocol guidelines were fulfilled for all target sizes and irradiation techniques. For central targets, at small distances from the target edge (up to approximately 1 cm) the brachytherapy techniques generally have a steeper dose fall-off gradient compared to GammaPod™ and at longer distances (more than about 1 cm) the relation is generally observed to be opposite. For targets close to the skin, the relative skin doses were considerably lower for GammaPod™ than for any of the brachytherapy techniques. In conclusion, GammaPod™ allows adequate and more uniform dose coverage to centrally and peripherally

  4. Evaluation of an active magnetic resonance tracking system for interstitial brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wei, E-mail: wwang21@partners.org; Viswanathan, Akila N.; Damato, Antonio L.

    2015-12-15

    Purpose: In gynecologic cancers, magnetic resonance (MR) imaging is the modality of choice for visualizing tumors and their surroundings because of superior soft-tissue contrast. Real-time MR guidance of catheter placement in interstitial brachytherapy facilitates target coverage, and would be further improved by providing intraprocedural estimates of dosimetric coverage. A major obstacle to intraprocedural dosimetry is the time needed for catheter trajectory reconstruction. Herein the authors evaluate an active MR tracking (MRTR) system which provides rapid catheter tip localization and trajectory reconstruction. The authors assess the reliability and spatial accuracy of the MRTR system in comparison to standard catheter digitization usingmore » magnetic resonance imaging (MRI) and CT. Methods: The MRTR system includes a stylet with microcoils mounted on its shaft, which can be inserted into brachytherapy catheters and tracked by a dedicated MRTR sequence. Catheter tip localization errors of the MRTR system and their dependence on catheter locations and orientation inside the MR scanner were quantified with a water phantom. The distances between the tracked tip positions of the MRTR stylet and the predefined ground-truth tip positions were calculated for measurements performed at seven locations and with nine orientations. To evaluate catheter trajectory reconstruction, fifteen brachytherapy catheters were placed into a gel phantom with an embedded catheter fixation framework, with parallel or crossed paths. The MRTR stylet was then inserted sequentially into each catheter. During the removal of the MRTR stylet from within each catheter, a MRTR measurement was performed at 40 Hz to acquire the instantaneous stylet tip position, resulting in a series of three-dimensional (3D) positions along the catheter’s trajectory. A 3D polynomial curve was fit to the tracked positions for each catheter, and equally spaced dwell points were then generated along the curve

  5. In-air calibration of an HDR 192Ir brachytherapy source using therapy ion chambers.

    PubMed

    Patel, Narayan Prasad; Majumdar, Bishnu; Vijiyan, V; Hota, Pradeep K

    2005-01-01

    The Gammamed Plus 192Ir high dose rate brachytherapy sources were calibrated using the therapy level ionization chambers (0.1 and 0.6 cc) and the well-type chamber. The aim of the present study was to assess the accuracy and suitability of use of the therapy level chambers for in-air calibration of brachytherapy sources in routine clinical practice. In a calibration procedure using therapy ion chambers, the air kerma was measured at several distances from the source in a specially designed jig. The room scatter correction factor was determined by superimposition method based on the inverse square law. Various other correction factors were applied on measured air kerma values at multiple distances and mean value was taken to determine the air kerma strength of the source. The results from four sources, the overall mean deviation between measured and quoted source strength by manufacturers was found -2.04% (N = 18) for well-type chamber. The mean deviation for the 0.6 cc chamber with buildup cap was found -1.48 % (N = 19) and without buildup cap was 0.11% (N = 22). The mean deviation for the 0.1 cc chamber was found -0.24% (N = 27). Result shows that probably the excess ionization in case of 0.6 cc therapy ion chamber without buildup cap was estimated about 2.74% and 1.99% at 10 and 20 cm from the source respectively. Scattered radiation measured by the 0.1 cc and 0.6 cc chamber at 10 cm measurement distance was about 1.1% and 0.33% of the primary radiation respectively. The study concludes that the results obtained with therapy level ionization chambers were extremely reproducible and in good agreement with the results of the well-type ionization chamber and source supplier quoted value. The calibration procedure with therapy ionization chambers is equally competent and suitable for routine calibration of the brachytherapy sources.

  6. Brachytherapy with Intratumoral Injections of Radiometal-Labeled Polymers That Thermoresponsively Self-Aggregate in Tumor Tissues.

    PubMed

    Sano, Kohei; Kanada, Yuko; Kanazaki, Kengo; Ding, Ning; Ono, Masahiro; Saji, Hideo

    2017-09-01

    Brachytherapy is a type of radiotherapy wherein titanium capsules containing therapeutic radioisotopes are implanted within tumor tissues, enabling high-dose radioirradiation to tumor tissues around the seeds. Although marked therapeutic effects have been demonstrated, brachytherapy needs a complicated implantation technique under general anesthesia and the seeds could migrate to other organs. The aim of this study was to establish a novel brachytherapy using biocompatible, injectable thermoresponsive polymers (polyoxazoline [POZ]) labeled with 90 Y, which can self-aggregate above a specific transition temperature (Tt), resulting in long-term intratumoral retention of radioactivity and therapeutic effect. Therefore, we evaluated the tumor retention of radiolabeled POZ derivatives and their therapeutic effects. Methods: Using oxazoline derivatives with ethyl (Et), isopropyl (Isp), and propyl (Pr) side chains, we synthesized EtPOZ, IspPOZ, Isp-PrPOZ (heteropolymer), and PrPOZ and measured their characteristic Tts. The intratumoral retention of 111 In-labeled POZ was evaluated until 7 d after injection in nude mice bearing PC-3 human prostate cancer. The intratumoral localization of 111 In-labeled POZ derivatives was investigated by an autoradiographic study. Furthermore, a therapeutic study using 90 Y-labeled Isp-PrPOZ was performed, and tumor growth and survival rate were evaluated. Results: The Tts of EtPOZ, IspPOZ, Isp-PrPOZ, and PrPOZ (∼20 kDa) were greater than 70°C, 34°C, 25°C, and 19°C, respectively. In the intratumoral injection study, Isp-PrPOZ and PrPOZ (2,000 μM) with Tts lower than tumor temperature (33.5°C under anesthesia) showed a significantly higher retention of radioactivity at 1 d after injection (73.6% and 73.9%, respectively) than EtPOZ (5.6%) and IspPOZ (15.8%). Even at low injected dose (100 μM), Isp-PrPOZ exhibited high retention (68.3% at 1 d). The high level of radioactivity of Isp-PrPOZ was retained in the tumor 7 d after injection

  7. Gold nanoparticle-aided brachytherapy with vascular dose painting: estimation of dose enhancement to the tumor endothelial cell nucleus.

    PubMed

    Ngwa, Wilfred; Makrigiorgos, G Mike; Berbeco, Ross I

    2012-01-01

    Theoretical microdosimetry at the subcellular level is employed in this study to estimate the dose enhancement to tumor endothelial cell nuclei, caused by radiation-induced photo/Auger electrons originating from gold nanoparticles (AuNPs) targeting the tumor endothelium, during brachytherapy. A tumor vascular endothelial cell (EC) is modeled as a slab of 2 μm (thickness) × 10 μm (length) × 10 μm (width). The EC contains a nucleus of 5 μm diameter and thickness of 0.5-1 μm, corresponding to nucleus size 5%-10% of cellular volume, respectively. Analytic calculations based on the electron energy loss formula of Cole were carried out to estimate the dose enhancement to the nucleus caused by photo/Auger electrons from AuNPs attached to the exterior surface of the EC. The nucleus dose enhancement factor (nDEF), representing the ratio of the dose to the nucleus with and without the presence of gold nanoparticles was calculated for different AuNP local concentrations. The investigated concentration range considers the potential for significantly higher local concentration near the EC due to preferential accumulation of AuNP in the tumor vasculature. Four brachytherapy sources: I-125, Pd-103, Yb-169, and 50 kVp x-rays were investigated. For nucleus size of 10% of the cellular volume and AuNP concentrations ranging from 7 to 140 mg/g, brachytherapy sources Pd-103, I-125, 50 kVp, and Yb-169 yielded nDEF values of 5.6-73, 4.8-58.3, 4.7-56.6, and 3.2-25.8, respectively. Meanwhile, for nucleus size 5% of the cellular volume in the same concentration range, Pd-103, I-125, 50 kVp, and Yb-169 yielded nDEF values of 6.9-79.2, 5.1-63.2, 5.0-61.5, and 3.3-28.3, respectively. The results predict that a substantial dose boost to the nucleus of endothelial cells can be achieved by applying tumor vasculature-targeted AuNPs in combination with brachytherapy. Such vascular dose boosts could induce tumor vascular shutdown, prompting extensive tumor cell death.

  8. Solid state TL detectors for in vivo dosimetry in brachytherapy.

    PubMed

    Gambarini, G; Borroni, M; Grisotto, S; Maucione, A; Cerrotta, A; Fallai, C; Carrara, M

    2012-12-01

    In vivo dosimetry provides information about the actual dose delivered to the patient treated with radiotherapy and can be adopted within a routinary treatment quality assurance protocol. Aim of this study was to evaluate the feasibility of performing in vivo rectal dosimetry by placing thermoluminescence detectors directly on the transrectal ultrasound probe adopted for on-line treatment planning of high dose rate brachytherapy boosts of prostate cancer patients. A suitable protocol for TLD calibration has been set up. In vivo measurements resulted to be in good agreement with the calculated doses, showing that the proposed method is feasible and returns accurate results. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. High-dose rate brachytherapy in the treatment of carcinoma of uterine cervix: twenty-year experience with cobalt after-loading system.

    PubMed

    Mosalaei, A; Mohammadianpanah, M; Omidvari, S; Ahmadloo, N

    2006-01-01

    This retrospective analysis aims to report results of patients with cancer of uterine cervix treated with external-beam radiotherapy (EBR) and high-dose rate (HDR) brachytherapy, using manual treatment planning. From 1975 to 1995, 237 patients with FIGO stages IIB-IVA and mean age of 54.31 years were treated. EBR dose to the whole pelvis was 50 Gy in 25 fractions. Brachytherapy with HDR after-loading cobalt source (Cathetron) was performed following EBR completion with a dose of 30 Gy in three weekly fractions of 10 Gy to point A. Survival, local control, and genitourinary and gastrointestinal complications were assessed. In a median follow-up of 60.2 months, the 10-year overall and disease-free survival rate was 62.4%. Local recurrence was seen in 12.2% of patients. Distant metastases to the lymph nodes, peritoneum, lung, liver, and bone occurred in 25.3% of patients. Less than 6% of patients experienced severe genitourinary and/or gastrointestinal toxicity that were relieved by surgical intervention. No treatment-related mortality was seen. This series suggests that 50 Gy to the whole pelvis together with three fractions of 10 Gy to point A with HDR brachytherapy is an effective fractionation schedule in the treatment of locally advanced cancer of cervix. To decrease the complications, newer devices and treatment planning may be beneficial.

  10. Systematic analysis of the scatter environment in clinical intra-operative high dose rate (IOHDR) brachytherapy

    NASA Astrophysics Data System (ADS)

    Oh, Moonseong

    Most brachytherapy planning systems are based on a dose calculation algorithm that assumes an infinite scatter environment surrounding the target volume and applicator. In intra-operative high dose rate brachytherapy (IOHDR) where treatment catheters are typically laid either directly on a tumor bed or within applicators that may have little or no scatter material above them, the lack of scatter from one side of the applicator can result in serious underdosage during treatment. Therefore, full analyses of the physical processes such as the photoelectric effect, Rayleigh, and Compton scattering that contribute to dosimetric errors have to be investigated and documented to result in more accurate treatment delivery to patients undergoing IOHDR procedures. Monte Carlo simulation results showed the Compton scattering effect is about 40 times more probable than photoelectric effect for the treated areas of single source, 4 x 4, and 2 x 4 cm2. Also, the dose variations with and without photoelectric effect were 0.3 ˜ 0.7%, which are within the uncertainty in Monte Carlo simulations. Also, Monte Carlo simulation studies were done to verify the following experimental results for quantification of dosimetric errors in clinical IOHDR brachytherapy. The first experimental study was performed to quantify the inaccuracy in clinical dose delivery due to the incomplete scatter conditions inherent in IOHDR brachytherapy. Treatment plans were developed for 3 different treatment surface areas (4 x 4, 7 x 7, 12 x 12 cm2), each with prescription points located at 3 distances (0.5 cm, 1.0 cm, and 1.5 cm) from the source dwell positions. Measurements showed that the magnitude of the underdosage varies from about 8% to 13% of the prescription dose as the prescription depth is increased from 0.5 cm to 1.5 cm. This treatment error was found to be independent of the irradiated area and strongly dependent on the prescription distance. The study was extended to confirm the underdosage for

  11. Monte Carlo dosimetric characterization of the Flexisource Co-60 high-dose-rate brachytherapy source using PENELOPE.

    PubMed

    Almansa, Julio F; Guerrero, Rafael; Torres, Javier; Lallena, Antonio M

    60 Co sources have been commercialized as an alternative to 192 Ir sources for high-dose-rate (HDR) brachytherapy. One of them is the Flexisource Co-60 HDR source manufactured by Elekta. The only available dosimetric characterization of this source is that of Vijande et al. [J Contemp Brachytherapy 2012; 4:34-44], whose results were not included in the AAPM/ESTRO consensus document. In that work, the dosimetric quantities were calculated as averages of the results obtained with the Geant4 and PENELOPE Monte Carlo (MC) codes, though for other sources, significant differences have been quoted between the values obtained with these two codes. The aim of this work is to perform the dosimetric characterization of the Flexisource Co-60 HDR source using PENELOPE. The MC simulation code PENELOPE (v. 2014) has been used. Following the recommendations of the AAPM/ESTRO report, the radial dose function, the anisotropy function, the air-kerma strength, the dose rate constant, and the absorbed dose rate in water have been calculated. The results we have obtained exceed those of Vijande et al. In particular, the absorbed dose rate constant is ∼0.85% larger. A similar difference is also found in the other dosimetric quantities. The effect of the electrons emitted in the decay of 60 Co, usually neglected in this kind of simulations, is significant up to the distances of 0.25 cm from the source. The systematic and significant differences we have found between PENELOPE results and the average values found by Vijande et al. point out that the dosimetric characterizations carried out with the various MC codes should be provided independently. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  12. Design and dosimetric characteristics of a new endocavitary contact radiotherapy system using an electronic brachytherapy source.

    PubMed

    Richardson, Susan; Garcia-Ramirez, Jose; Lu, Wei; Myerson, Robert J; Parikh, Parag

    2012-11-01

    To present design aspects and acceptance tests performed for clinical implementation of electronic brachytherapy treatment of early stage rectal adenocarcinoma. A dosimetric comparison is made between the historically used Philips RT-50 unit and the newly developed Axxent(®) Model S700 electronic brachytherapy source manufactured by Xoft (iCad, Inc.). Two proctoscope cones were manufactured by ElectroSurgical Instruments (ESI). Two custom surface applicators were manufactured by Xoft and were designed to fit and interlock with the proctoscope cones from ESI. Dose rates, half value layers (HVL), and percentage depth dose (PDD) measurements were made with the Xoft system and compared to historical RT-50 data. A description of the patient treatment approach and exposure rates during the procedure is also provided. The electronic brachytherapy system has a lower surface dose rate than the RT-50. The dose rate to water on the surface from the Xoft system is approximately 2.1 Gy∕min while the RT-50 is 10-12 Gy∕min. However, treatment times with Xoft are still reasonable. The HVLs and PDDs between the two systems were comparable resulting in similar doses to the target and to regions beyond the target. The exposure rate levels around a patient treatment were acceptable. The standard uncertainty in the dose rate to water on the surface is approximately ±5.2%. The Philips RT-50 unit is an out-of-date radiotherapy machine that is no longer manufactured with limited replacement parts. The use of a custom-designed proctoscope and Xoft surface applicators allows delivery of a well-established treatment with the ease of a modern radiotherapy device. While the dose rate is lower with the use of Xoft, the treatment times are still reasonable. Additionally, personnel may stand farther away from the Xoft radiation source, thus potentially reducing radiation exposure to the operator and other personnel.

  13. WE-G-BRA-09: Microsphere Brachytherapy Failure Mode and Effects Analysis in a Dual-Vendor Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Younge, K C; Lee, C I; Feng, M

    2015-06-15

    Purpose: To improve the safety and quality of a dual-vendor microsphere brachytherapy program with failure mode and effects analysis (FMEA). Methods: A multidisciplinary team including physicists, dosimetrists, a radiation oncologist, an interventional radiologist, and radiation safety personnel performed an FMEA for our dual-vendor microsphere brachytherapy program employing SIR-Spheres (Sirtex Medical Limited, Australia) and Theraspheres (BTG, England). We developed a program process tree and step-by-step instructions which were used to generate a comprehensive list of failure modes. These modes were then ranked according to severity, occurrence rate, and detectability. Risk priority numbers (RPNs) were calculated by multiplying these three scores together.more » Three different severity scales were created: one each for harmful effects to the patient, staff, or the institution. Each failure mode was ranked on one or more of these scales. Results: The group identified 164 failure modes for the microsphere program. 113 of these were ranked using the patient severity scale, 52 using the staff severity scale, and 50 using the institution severity scale. The highest ranked items on the patient severity scale were an error in the automated dosimetry worksheet (RPN = 297.5), and the incorrect target specified on the planning study (RPN = 135). Some failure modes ranked differently between vendors, especially those corresponding to dose vial preparation because of the different methods used. Based on our findings, we made several improvements to our QA program, including documentation to easily identify which product is being used, an additional hand calculation during planning, and reorganization of QA steps before treatment delivery. We will continue to periodically review and revise the FMEA. Conclusion: We have applied FMEA to our dual-vendor microsphere brachytherapy program to identify potential key weaknesses in the treatment chain. Our FMEA results were used

  14. Quality Assurance of Multifractionated Pelvic Interstitial Brachytherapy for Postoperative Recurrences of Cervical Cancers: A Prospective Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, Pragya; Chopra, Supriya, E-mail: schopra@actrec.gov.in; Engineer, Reena

    2012-03-15

    Purpose: To evaluate three-dimensional needle displacements during multifractionated interstitial brachytherapy (BT) for cervical cancers. Methods and Materials: Patients scheduled to undergo pelvic interstitial BT for postoperative and or postradiation vault recurrences were included from November 2009 to December 2010. All procedures were performed under spinal anesthesia. Postprocedure BT planning CT scans were obtained with patients in supine position with arms on the chest (interslice thickness of 3 mm). Thereafter, verification CT was repeated at every alternate fraction. Needle displacements were measured in reference to a relocatable bony point. The mean cranial, caudal, anteroposterior, and mediolateral displacements were recorded. Statistical significancemore » of mean interfraction displacements was evaluated with Wilcoxon Test. Results: Twenty patients were included. Seventeen received boost BT (20 Gy/5 fractions/3 days) after external radiation, three received radical BT alone (36 Gy/9 fractions/5-8 days). An average of three scans (range, 2-3) were available per patient, and 357 needle displacements were analyzed. For the entire study cohort, the average of mean needle displacement was 2.5 mm (range, 0-7.4), 17.4 mm (range, 0-27.9), 1.7 mm (range, 0-6.7), 2.1 mm (range, 0-9.5), 1.7 mm (range, 0-9.3), and 0.6 mm (range, 0-7.8) in cranial, caudal, anterior, posterior, right, and left directions, respectively. The mean displacement in the caudal direction was higher between Days 1 and 2 than that between Days 2 and 3 (13.4 mm vs. 3.8 mm; p = 0.01). The average caudal displacements were no different between reirradiation and boost cohort (15.2 vs. 17.8 mm). Conclusions: Clinically significant caudal displacements occur during multifractionated pelvic brachytherapy. Optimal margins need to be incorporated while preplanning brachytherapy to account for interfraction displacements.« less

  15. Combining transrectal ultrasound and CT for image-guided adaptive brachytherapy of cervical cancer: Proof of concept.

    PubMed

    Nesvacil, Nicole; Schmid, Maximilian P; Pötter, Richard; Kronreif, Gernot; Kirisits, Christian

    To investigate the feasibility of a treatment planning workflow for three-dimensional image-guided cervix cancer brachytherapy, combining volumetric transrectal ultrasound (TRUS) for target definition with CT for dose optimization to organs at risk (OARs), for settings with no access to MRI. A workflow for TRUS/CT-based volumetric treatment planning was developed, based on a customized system including ultrasound probe, stepper unit, and software for image volume acquisition. A full TRUS/CT-based workflow was simulated in a clinical case and compared with MR- or CT-only delineation. High-risk clinical target volume was delineated on TRUS, and OARs were delineated on CT. Manually defined tandem/ring applicator positions on TRUS and CT were used as a reference for rigid registration of the image volumes. Treatment plan optimization for TRUS target and CT organ volumes was performed and compared to MRI and CT target contours. TRUS/CT-based contouring, applicator reconstruction, image fusion, and treatment planning were feasible, and the full workflow could be successfully demonstrated. The TRUS/CT plan fulfilled all clinical planning aims. Dose-volume histogram evaluation of the TRUS/CT-optimized plan (high-risk clinical target volume D 90 , OARs D 2cm³ for) on different image modalities showed good agreement between dose values reported for TRUS/CT and MRI-only reference contours and large deviations for CT-only target parameters. A TRUS/CT-based workflow for full three-dimensional image-guided cervix brachytherapy treatment planning seems feasible and may be clinically comparable to MRI-based treatment planning. Further development to solve challenges with applicator definition in the TRUS volume is required before systematic applicability of this workflow. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  16. The use of tetrahedral mesh geometries in Monte Carlo simulation of applicator based brachytherapy dose distributions

    NASA Astrophysics Data System (ADS)

    Paiva Fonseca, Gabriel; Landry, Guillaume; White, Shane; D'Amours, Michel; Yoriyaz, Hélio; Beaulieu, Luc; Reniers, Brigitte; Verhaegen, Frank

    2014-10-01

    Accounting for brachytherapy applicator attenuation is part of the recommendations from the recent report of AAPM Task Group 186. To do so, model based dose calculation algorithms require accurate modelling of the applicator geometry. This can be non-trivial in the case of irregularly shaped applicators such as the Fletcher Williamson gynaecological applicator or balloon applicators with possibly irregular shapes employed in accelerated partial breast irradiation (APBI) performed using electronic brachytherapy sources (EBS). While many of these applicators can be modelled using constructive solid geometry (CSG), the latter may be difficult and time-consuming. Alternatively, these complex geometries can be modelled using tessellated geometries such as tetrahedral meshes (mesh geometries (MG)). Recent versions of Monte Carlo (MC) codes Geant4 and MCNP6 allow for the use of MG. The goal of this work was to model a series of applicators relevant to brachytherapy using MG. Applicators designed for 192Ir sources and 50 kV EBS were studied; a shielded vaginal applicator, a shielded Fletcher Williamson applicator and an APBI balloon applicator. All applicators were modelled in Geant4 and MCNP6 using MG and CSG for dose calculations. CSG derived dose distributions were considered as reference and used to validate MG models by comparing dose distribution ratios. In general agreement within 1% for the dose calculations was observed for all applicators between MG and CSG and between codes when considering volumes inside the 25% isodose surface. When compared to CSG, MG required longer computation times by a factor of at least 2 for MC simulations using the same code. MCNP6 calculation times were more than ten times shorter than Geant4 in some cases. In conclusion we presented methods allowing for high fidelity modelling with results equivalent to CSG. To the best of our knowledge MG offers the most accurate representation of an irregular APBI balloon applicator.

  17. High-Dose-Rate Brachytherapy for Non-Small-Cell Lung Carcinoma: A Retrospective Study of 226 Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aumont-le Guilcher, Maud; Prevost, Bernard; Sunyach, Marie Pierre

    Purpose: To evaluate the efficacy and toxicity of high-dose-rate (HDR) brachytherapy in patients with inoperable endobronchial carcinoma. Methods and Materials: We retrospectively reviewed the records (April 1991-May 2004) of patients with non-small-cell carcinoma, with no extrabronchial spread on computed tomography scans, who underwent HDR brachytherapy because of contraindications to surgery and external beam radiation therapy. Kaplan-Meier survival curves were compared by the log-rank test. Prognostic factors were analyzed by multivariate analysis. Results: 226 patients (223 men, 3 women, mean age: 62.2 years (range, 40-84)) were included. Of those, 217 (97%) had squamous cell carcinoma (Tis/T1/T2/Tx: 60/153/9/4). Dose was prescribed atmore » 1 cm from the radius (24-35 Gy in 4-6 fractions). Mean follow-up was 30.4 months (range, 9-116). Complete endoscopic response rate was 93.6% at 3 months. One hundred twenty-eight patients (56%) died of intercurrent disease (n = 45), local failure (n = 36), metastasis (n = 10), local failure and metastasis (n = 11), complications (n = 13), and other causes (n = 12). The 2-year and 5-year survival rates were, respectively, 57% and 29% (overall) (median, 28.6 months), 81% and 56% (cancer-specific), and 68% and 50% (local disease-free). Acute toxicity included pneumothorax (1.5%) and mucosal inflammation (10%). Late complications were hemoptysis (6.6% with 5% of fatalities), bronchitis (19.5%), and necrosis (3.5%). In multivariate analysis, a distal tumor location and the use of two catheters were associated with improved local disease-free survival (p = 0.003 and p = 0.007, respectively) and a distal tumor location with improved overall survival (p = 0.0001). Conclusions: This large retrospective study confirms that HDR brachytherapy is an efficient and safe treatment in patients with inoperable endobronchial carcinoma.« less

  18. 3D-printed surface mould applicator for high-dose-rate brachytherapy

    NASA Astrophysics Data System (ADS)

    Schumacher, Mark; Lasso, Andras; Cumming, Ian; Rankin, Adam; Falkson, Conrad B.; Schreiner, L. John; Joshi, Chandra; Fichtinger, Gabor

    2015-03-01

    In contemporary high-dose-rate brachytherapy treatment of superficial tumors, catheters are placed in a wax mould. The creation of current wax models is a difficult and time consuming proces.The irradiation plan can only be computed post-construction and requires a second CT scan. In case no satisfactory dose plan can be created, the mould is discarded and the process is repeated. The objective of this work was to develop an automated method to replace suboptimal wax moulding. We developed a method to design and manufacture moulds that guarantee to yield satisfactory dosimetry. A 3D-printed mould with channels for the catheters designed from the patient's CT and mounted on a patient-specific thermoplastic mesh mask. The mould planner was implemented as an open-source module in the 3D Slicer platform. Series of test moulds were created to accommodate standard brachytherapy catheters of 1.70mm diameter. A calibration object was used to conclude that tunnels with a diameter of 2.25mm, minimum 12mm radius of curvature, and 1.0mm open channel gave the best fit for this printer/catheter combination. Moulds were created from the CT scan of thermoplastic mesh masks of actual patients. The patient-specific moulds have been visually verified to fit on the thermoplastic meshes. The masks were visually shown to fit onto the thermoplastic meshes, next the resulting dosimetry will have to be compared with treatment plans and dosimetry achieved with conventional wax moulds in order to validate our 3D printed moulds.

  19. Adjuvant Vaginal Brachytherapy for Early Stage Endometrial Cancer: A Comprehensive Review

    PubMed Central

    Harkenrider, Matthew M; Block, Alec M; Alektiar, Kaled M; Gaffney, David K; Jones, Ellen; Klopp, Ann; Viswanathan, Akila N; Small, William

    2017-01-01

    This article aims to review the risk stratification of endometrial cancer, treatment rationale, outcomes, treatment planning, and treatment recommendations of vaginal brachytherapy (VBT) in the post-operative management of endometrial cancer patients. The authors performed a thorough review of the literature and reference pertinent articles pertaining to the aims of this review. Adjuvant VBT for early stage endometrial cancer patients results in very low rates of vaginal recurrence (0–3.1%) with low rates of late toxicity which are primarily vaginal in nature. PORTEC-2 supports that VBT results in non-inferior rates of vaginal recurrence compared to external beam radiotherapy (EBRT) for the treatment of high-intermediate risk patients. VBT as a boost following EBRT, in combination with chemotherapy, and for high-risk histologies have shown excellent results as well though randomized data do not exist supporting VBT boost. There are many different applicators, dose-fractionation schedules, and treatment planning techniques which all result in favorable clinical outcomes and low rates of toxicity. Recommendations have been published by the American Brachytherapy Society and the American Society of Radiation Oncology to help guide practitioners in the use of VBT. Data support that patients and physicians both prefer joint decision-making regarding the use of VBT, and patients often desire additional treatment for a marginal benefit in risk of recurrence. Discussions regarding adjuvant therapy for endometrial cancer are best performed in a multi-disciplinary setting and patients should be counseled properly regarding the risks and benefits of adjuvant therapy. PMID:27260082

  20. Defining the value of magnetic resonance imaging in prostate brachytherapy using time-driven activity-based costing.

    PubMed

    Thaker, Nikhil G; Orio, Peter F; Potters, Louis

    Magnetic resonance imaging (MRI) simulation and planning for prostate brachytherapy (PBT) may deliver potential clinical benefits but at an unknown cost to the provider and healthcare system. Time-driven activity-based costing (TDABC) is an innovative bottom-up costing tool in healthcare that can be used to measure the actual consumption of resources required over the full cycle of care. TDABC analysis was conducted to compare patient-level costs for an MRI-based versus traditional PBT workflow. TDABC cost was only 1% higher for the MRI-based workflow, and utilization of MRI allowed for cost shifting from other imaging modalities, such as CT and ultrasound, to MRI during the PBT process. Future initiatives will be required to follow the costs of care over longer periods of time to determine if improvements in outcomes and toxicities with an MRI-based approach lead to lower resource utilization and spending over the long-term. Understanding provider costs will become important as healthcare reform transitions to value-based purchasing and other alternative payment models. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  1. Towards clinical application of RayStretch for heterogeneity corrections in LDR permanent 125I prostate brachytherapy.

    PubMed

    Hueso-González, Fernando; Ballester, Facundo; Perez-Calatayud, Jose; Siebert, Frank-André; Vijande, Javier

    RayStretch is a simple algorithm proposed for heterogeneity corrections in low-dose-rate brachytherapy. It is built on top of TG-43 consensus data, and it has been validated with Monte Carlo (MC) simulations. In this study, we take a real clinical prostate implant with 71 125 I seeds as reference and we apply RayStretch to analyze its performance in worst-case scenarios. To do so, we design two cases where large calcifications are located in the prostate lobules. RayStretch resilience under various calcification density values is also explored. Comparisons against MC calculations are performed. Dose-volume histogram-related parameters like prostate D 90 , rectum D 2cc , or urethra D 10 obtained with RayStretch agree within a few percent with the detailed MC results for all cases considered. The robustness and compatibility of RayStretch with commercial treatment planning systems indicate its applicability in clinical practice for dosimetric corrections in prostate calcifications. Its use during intraoperative ultrasound planning is foreseen. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  2. A Prospective Quasi-Randomized Comparison of Intraoperatively Built Custom-Linked Seeds Versus Loose Seeds for Prostate Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishiyama, Hiromichi, E-mail: hishiyam@kitasato-u.ac.jp; Satoh, Takefumi; Kawakami, Shogo

    Purpose: To compare dosimetric parameters, seed migration rates, operation times, and acute toxicities of intraoperatively built custom-linked (IBCL) seeds with those of loose seeds for prostate brachytherapy. Methods and Materials: Participants were 140 patients with low or intermediate prostate cancer prospectively allocated to an IBCL seed group (n=74) or a loose seed group (n=66), using quasirandomization (allocated by week of the month). All patients underwent prostate brachytherapy using an interactive plan technique. Computed tomography and plain radiography were performed the next day and 1 month after brachytherapy. The primary endpoint was detection of a 5% difference in dose to 90% ofmore » prostate volume on postimplant computed tomography 1 month after treatment. Seed migration was defined as a seed position >1 cm from the cluster of other seeds on radiography. A seed dropped into the seminal vesicle was also defined as a migrated seed. Results: Dosimetric parameters including the primary endpoint did not differ significantly between groups, but seed migration rate was significantly lower in the IBCL seed group (0%) than in the loose seed group (55%; P<.001). Mean operation time was slightly but significantly longer in the IBCL seed group (57 min) than in the loose seed group (50 min; P<.001). No significant differences in acute toxicities were seen between groups (median follow-up, 9 months). Conclusions: This prospective quasirandomized control trial showed no dosimetric differences between IBCL seed and loose seed groups. However, a strong trend toward decreased postimplant seed migration was shown in the IBCL seed group.« less

  3. Application of a color scanner for 60Co high dose rate brachytherapy dosimetry with EBT radiochromic film

    PubMed Central

    Ghorbani, Mahdi; Toossi, Mohammad Taghi Bahreyni; Mowlavi, Ali Asghar; Roodi, Shahram Bayani; Meigooni, Ali Soleimani

    2012-01-01

    Background. The aim of this study is to evaluate the performance of a color scanner as a radiochromic film reader in two dimensional dosimetry around a high dose rate brachytherapy source. Materials and methods A Microtek ScanMaker 1000XL film scanner was utilized for the measurement of dose distribution around a high dose rate GZP6 60Co brachytherapy source with GafChromic® EBT radiochromic films. In these investigations, the non-uniformity of the film and scanner response, combined, as well as the films sensitivity to scanner’s light source was evaluated using multiple samples of films, prior to the source dosimetry. The results of these measurements were compared with the Monte Carlo simulated data using MCNPX code. In addition, isodose curves acquired by radiochromic films and Monte Carlo simulation were compared with those provided by the GZP6 treatment planning system. Results Scanning of samples of uniformly irradiated films demonstrated approximately 2.85% and 4.97% nonuniformity of the response, respectively in the longitudinal and transverse directions of the film. Our findings have also indicated that the film response is not affected by the exposure to the scanner’s light source, particularly in multiple scanning of film. The results of radiochromic film measurements are in good agreement with the Monte Carlo calculations (4%) and the corresponding dose values presented by the GZP6 treatment planning system (5%). Conclusions The results of these investigations indicate that the Microtek ScanMaker 1000XL color scanner in conjunction with GafChromic EBT film is a reliable system for dosimetric evaluation of a high dose rate brachytherapy source. PMID:23411947

  4. SU-G-201-01: An Automated Treatment Plan Quality Assurance Program for High-Dose Rate (HDR) Brachytherapy with a VaginalCylinder Applicator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Y; Tan, J; Jiang, S

    Purpose: Plan specific quality assurance (QA) is an important step in high dose rate (HDR) brachytherapy to ensure the integrity of a treatment plan. The conventional approach is to assemble a set of plan screen-captures in a document and have an independent plan-checker to verify it. Not only is this approach cumbersome and time-consuming, using a document also limits the items that can be verified, hindering plan quality and patient safety. We have initiated efforts to develop a web-based HDR brachytherapy QA system called AutoBrachy QA, for comprehensive and efficient QA. This abstract reports a new plugin in this systemmore » for the QA of a cylinder HDR brachytherapy treatment. Methods: A cylinder plan QA module was developed using Python. It was plugged into our AutoBrachy QA system. This module extracted information from CT images and treatment plan. Image processing techniques were employed to obtain geometric parameters, e.g. cylinder diameter. A comprehensive set of eight geometrical and eight dosimetric features of the plan were validated against user specified planning parameter, such as prescription value, treatment depth and length, etc. A PDF document was generated, consisting of a summary QA sheet with all the QA results, as well as images showing plan details. Results: The cylinder QA program has been implemented in our clinic. To date, it has been used in 11 patient cases and was able to successfully perform QA tests in all of them. The QA program reduced the average plan QA time from 7 min using conventional manual approach to 0.5 min. Conclusion: Being a new module in our AutoBrachy QA system, an automated treatment plan QA module for cylinder HDR brachytherapy has been successfully developed and clinically implemented. This module improved clinical workflow and plan integrity compared to the conventional manual approach.« less

  5. Brachytherapy dosimetry of 125I and 103Pd sources using an updated cross section library for the MCNP Monte Carlo transport code.

    PubMed

    Bohm, Tim D; DeLuca, Paul M; DeWerd, Larry A

    2003-04-01

    Permanent implantation of low energy (20-40 keV) photon emitting radioactive seeds to treat prostate cancer is an important treatment option for patients. In order to produce accurate implant brachytherapy treatment plans, the dosimetry of a single source must be well characterized. Monte Carlo based transport calculations can be used for source characterization, but must have up to date cross section libraries to produce accurate dosimetry results. This work benchmarks the MCNP code and its photon cross section library for low energy photon brachytherapy applications. In particular, we calculate the emitted photon spectrum, air kerma, depth dose in water, and radial dose function for both 125I and 103Pd based seeds and compare to other published results. Our results show that MCNP's cross section library differs from recent data primarily in the photoelectric cross section for low energies and low atomic number materials. In water, differences as large as 10% in the photoelectric cross section and 6% in the total cross section occur at 125I and 103Pd photon energies. This leads to differences in the dose rate constant of 3% and 5%, and differences as large as 18% and 20% in the radial dose function for the 125I and 103Pd based seeds, respectively. Using a partially updated photon library, calculations of the dose rate constant and radial dose function agree with other published results. Further, the use of the updated photon library allows us to verify air kerma and depth dose in water calculations performed using MCNP's perturbation feature to simulate updated cross sections. We conclude that in order to most effectively use MCNP for low energy photon brachytherapy applications, we must update its cross section library. Following this update, the MCNP code system will be a very effective tool for low energy photon brachytherapy dosimetry applications.

  6. Retrospective Analysis of Local Control and Cosmetic Outcome of 147 Periorificial Carcinomas of the Face Treated With Low-Dose Rate Interstitial Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ducassou, Anne, E-mail: anned40@hotmail.com; David, Isabelle; Filleron, Thomas

    2011-11-01

    Purpose: Skin cancer is the most common malignancy in white populations. We evaluated the local cure rate and cosmetic outcome of patients with basal cell carcinoma (BCC) or squamous cell carcinoma (SCC) of the face treated with low-dose rate brachytherapy. Methods and Materials: Between February 1990 and May 2000, 147 facial carcinomas in 132 patients were treated by {sup 192}Ir wire implantation. Side effects of brachytherapy were noted. Follow-up was 2 years or more. Locoregional recurrence-free survival (LRFS) and overall survival were recorded. Group A included patients treated by primary brachytherapy, and Group B included those treated after recurrence. Results:more » A total of 121 carcinomas were BCCs (82.3%) and 26 were SCCs (17.7%); the median tumor size was 10 mm. Of the tumors, 86 (58.5%) were in men and 61 (41.5%) were in women; the median age was 71 years. Group A comprised 116 lesions (78.9%), and Group B, 31 (21.1%). There were 17 relapses (11.6%) after a median follow-up of 72 months: 12 local, 4 nodal, and 1 local and nodal. Locoregional-free survival was 96.6% at 2 years and 87.3% at 5 years. Five-year LRFS was 82.6% in men and 93.3% in women (p = 0.027). After adjustment for gender, LRFS was better after primary treatment than after recurrence (hasard ratio HR, 2.91; 95% confidence interval, 1.06-8.03; p = 0.039). Five-year LRFS was 90.4% for BCC and 70.8% for SCC (p = 0.03). There were no Grade 3 complications. Conclusions: Low-dose rate brachytherapy offers good local control and cosmetic outcome in patients with periorificial skin carcinomas, with no Grade 3 complications. Brchytherapy is more efficient when used as primary treatment.« less

  7. SU-E-T-378: Evaluation of An Analytical Model for the Inter-Seed Attenuation Effect in 103-Pd Multi-Seed Implant Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safigholi, H; Soliman, A; Song, W

    Purpose: Brachytherapy treatment planning systems based on TG-43 protocol calculate the dose in water and neglects the heterogeneity effect of seeds in multi-seed implant brachytherapy. In this research, the accuracy of a novel analytical model that we propose for the inter-seed attenuation effect (ISA) for 103-Pd seed model is evaluated. Methods: In the analytical model, dose perturbation due to the ISA effect for each seed in an LDR multi-seed implant for 103-Pd is calculated by assuming that the seed of interest is active and the other surrounding seeds are inactive. The cumulative dosimetric effect of all seeds is then summedmore » using the superposition principle. The model is based on pre Monte Carlo (MC) simulated 3D kernels of the dose perturbations caused by the ISA effect. The cumulative ISA effect due to multiple surrounding seeds is obtained by a simple multiplication of the individual ISA effect by each seed, the effect of which is determined by the distance from the seed of interest. This novel algorithm is then compared with full MC water-based simulations (FMCW). Results: The results show that the dose perturbation model we propose is in excellent agreement with the FMCW values for a case with three seeds separated by 1 cm. The average difference of the model and the FMCW simulations was less than 8%±2%. Conclusion: Using the proposed novel analytical ISA effect model, one could expedite the corrections due to the ISA dose perturbation effects during permanent seed 103-Pd brachytherapy planning with minimal increase in time since the model is based on multiplications and superposition. This model can be applied, in principle, to any other brachytherapy seeds. Further work is necessary to validate this model on a more complicated geometry as well.« less

  8. Exeresis and Brachytherapy as Salvage Treatment for Local Recurrence After Conservative Treatment for Breast Cancer: Results of a Ten-Year Pilot Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guix, Benjamin, E-mail: bguix@imor.or; Lejarcegui, Jose Antonio; Tello, Jose Ignacio

    2010-11-01

    Purpose: To analyze the long-term results of a pilot study assessing excision and brachytherapy as salvage treatment for local recurrence after conservative treatment of breast cancer. Methods and Materials: Between December 1990 and March 2001, 36 patients with breast-only recurrence less than 3 cm in diameter after conservative treatment for Stage I or II breast carcinoma were treated with local excision followed by high-dose rate brachytherapy implants (30 Gy in 12 fractions over a period of 5 days). No patient was lost to follow-up. Special attention was paid to local, regional, or distant recurrences; survival; cosmesis; and early and latemore » side effects. Results: All patients completed treatment. During follow-up (range, 1-13 years), 8 patients presented metastases (2 regional and 6 distant) as their first site of failure, 1 had a differed local recurrence, and 1 died of the disease. Actuarial results at 10 years were as follows: local control, 89.4%; disease-free survival, 64.4%; and survival, 96.7%. Cosmetic results were satisfactory in 90.4%. No patient had Grade 3 or 4 early or late complications. Of the 11 patients followed up for at least 10 years, all but 1 still had their breast in place at the 10-year stage. Conclusions: High-dose rate brachytherapy is a safe, effective treatment for small-size, low-risk local recurrence after local excision in conservatively treated patients. The dose of 30 Gy of high-dose rate brachytherapy (12 fractions over a period of 5 days twice daily) was well tolerated. The excellent results support the use of breast preservation as salvage treatment in selected patients with local recurrence after conservative treatment for breast cancer.« less

  9. Race and survival following brachytherapy-based treatment for men with localized or locally advanced adenocarcinoma of the prostate.

    PubMed

    Winkfield, Karen M; Chen, Ming-Hui; Dosoretz, Daniel E; Salenius, Sharon A; Katin, Michael; Ross, Rudi; D'Amico, Anthony V

    2011-11-15

    We investigated whether race was associated with risk of death following brachytherapy-based treatment for localized prostate cancer, adjusting for age, cardiovascular comorbidity, treatment, and established prostate cancer prognostic factors. The study cohort was composed of 5,360 men with clinical stage T1-3N0M0 prostate cancer who underwent brachytherapy-based treatment at 20 centers within the 21st Century Oncology consortium. Cox regression multivariable analysis was used to evaluate the risk of death in African-American and Hispanic men compared to that in Caucasian men, adjusting for age, pretreatment prostate-specific antigen (PSA) level, Gleason score, clinical T stage, year and type of treatment, median income, and cardiovascular comorbidities. After a median follow-up of 3 years, there were 673 deaths. African-American and Hispanic races were significantly associated with an increased risk of all-cause mortality (ACM) (adjusted hazard ratio, 1.77 and 1.79; 95% confidence intervals, 1.3-2.5 and 1.2-2.7; p < 0.001 and p = 0.005, respectively). Other factors significantly associated with an increased risk of death included age (p < 0.001), Gleason score of 8 to 10 (p = 0.04), year of brachytherapy (p < 0.001), and history of myocardial infarction treated with stent or coronary artery bypass graft (p < 0.001). After adjustment for prostate cancer prognostic factors, age, income level, and revascularized cardiovascular comorbidities, African-American and Hispanic races were associated with higher ACM in men with prostate cancer. Additional causative factors need to be identified. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Race and Survival Following Brachytherapy-Based Treatment for Men With Localized or Locally Advanced Adenocarcinoma of the Prostate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winkfield, Karen M., E-mail: kwinkfield@partners.org; Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts; Chen Minghui

    2011-11-15

    Purpose: We investigated whether race was associated with risk of death following brachytherapy-based treatment for localized prostate cancer, adjusting for age, cardiovascular comorbidity, treatment, and established prostate cancer prognostic factors. Methods: The study cohort was composed of 5,360 men with clinical stage T1-3N0M0 prostate cancer who underwent brachytherapy-based treatment at 20 centers within the 21st Century Oncology consortium. Cox regression multivariable analysis was used to evaluate the risk of death in African-American and Hispanic men compared to that in Caucasian men, adjusting for age, pretreatment prostate-specific antigen (PSA) level, Gleason score, clinical T stage, year and type of treatment, medianmore » income, and cardiovascular comorbidities. Results: After a median follow-up of 3 years, there were 673 deaths. African-American and Hispanic races were significantly associated with an increased risk of all-cause mortality (ACM) (adjusted hazard ratio, 1.77 and 1.79; 95% confidence intervals, 1.3-2.5 and 1.2-2.7; p < 0.001 and p = 0.005, respectively). Other factors significantly associated with an increased risk of death included age (p < 0.001), Gleason score of 8 to 10 (p = 0.04), year of brachytherapy (p < 0.001), and history of myocardial infarction treated with stent or coronary artery bypass graft (p < 0.001). Conclusions: After adjustment for prostate cancer prognostic factors, age, income level, and revascularized cardiovascular comorbidities, African-American and Hispanic races were associated with higher ACM in men with prostate cancer. Additional causative factors need to be identified.« less

  11. [Low-dose rate brachytherapy with locally integrated beta emitters after internal urethrotomy. A pilot project using an animal model].

    PubMed

    Weidlich, P; Adam, C; Sroka, R; Lanzl, I; Assmann, W; Stief, C

    2007-09-01

    The treatment of urethral strictures represents an unsolved urological problem. The effect of a (32)P-coated urethral catheter in the sense of low-dose rate brachytherapy to modulate wound healing will be analyzed in an animal experiment. Unfortunately it is not possible to present any results because this is being studied for the first time and there are no experiences with low-dose rate brachytherapy and this form of application in the lower urinary tract. Furthermore the animal experiment will only start in the near future. Both decade-long experiences with radiotherapy to treat benign diseases and our own results of previous studies in otolaryngology and ophthalmology let us expect a significantly lower formation of urethral strictures after internal urethrotomy. This study will contribute to improving the treatment of urethral strictures as demanded in previous papers.

  12. An overview of interstitial brachytherapy and hyperthermia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, B.B.; Harney, J.

    Interstitial thermoradiotherapy, an experimental cancer treatment that combines interstitial radiation implants (brachytherapy) and interstitial hyperthermia, is in the early stages of investigation. In accordance with the procedure used in a current national trial protocol, a 60-minute hyperthermia treatment is administered after catheters are placed into the tumor area while the patient is under general anesthesia. This is immediately followed by loading of radioactive Iridium-192 seeds into the catheters for a defined period of time. Once the prescribed radiation dose is delivered, the radioactive sources are removed and a second, 60-minute hyperthermia treatment is administered. Clinical trials with hyperthermia in combinationmore » with radiation have increased in recent years. Nurses caring for these patients need to become more knowledgeable about this investigational therapy. This paper provides an overview of the biologic rationale for this therapy, as well as a description of the delivery method and clinical application. Specific related nursing interventions are defined in a nursing protocol.23 references.« less

  13. [Implants with 32P-foils for LDR-brachytherapy of benign stenosis in urology and gastroenterology].

    PubMed

    Assmann, Walter; Becker, Ricarda; Otto, Henrike; Bader, Markus; Clemente, Lucas; Reinhardt, Sabine; Schäfer, Claus; Schirra, Jörg; Uschold, Stephanie; Welzmüller, Andreas; Sroka, Ronald

    2013-02-01

    For LDR-brachytherapy, a limited number of implant geometries and materials are available. To avoid wound healing related hyper-proliferation (stenosis, keloids) a novel radioactive foil system was developed based on beta emitting (32)P, which can be easily integrated in existing implants such as urethral catheters or bile duct stents. As substrate material for these foils PEEK (polyetherethercetone) was chosen because of its radiation hardness during neutron activation of (32)P. The activity was determined by liquid scintillation counting and gamma spectroscopy, dose distributions were measured with scintillation detectors and radiochromic films. The correlation between activity and dose was checked by Monte-Carlo-simulations (Geant4). Prototypes of the (32)P-implants have shown in wash-out tests the required tightness for sealed radioactive sources. In animal tests on urethra and bile duct, the uncomplicated and save application of (32)P-foils mounted on standard implants has been demonstrated, which is almost unchanged due to the simple radiation protection with plexiglass. This concept of radioactive implants with integrated (32)P-foils could extend essentially the application possibilities of LDR-brachytherapy. Copyright © 2012. Published by Elsevier GmbH.

  14. 10 CFR 35.2067 - Records of leaks tests and inventory of sealed sources and brachytherapy sources.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Records of leaks tests and inventory of sealed sources and... MATERIAL Records § 35.2067 Records of leaks tests and inventory of sealed sources and brachytherapy sources. (a) A licensee shall retain records of leak tests required by § 35.67(b) for 3 years. The records...

  15. Intra-operative 3D guidance in prostate brachytherapy using a non-isocentric C-arm.

    PubMed

    Jain, A; Deguet, A; Iordachita, I; Chintalapani, G; Blevins, J; Le, Y; Armour, E; Burdette, C; Song, D; Fichtinger, G

    2007-01-01

    Intra-operative guidance in Transrectal Ultrasound (TRUS) guided prostate brachytherapy requires localization of inserted radioactive seeds relative to the prostate. Seeds were reconstructed using a typical C-arm, and exported to a commercial brachytherapy system for dosimetry analysis. Technical obstacles for 3D reconstruction on a non-isocentric C-arm included pose-dependent C-arm calibration; distortion correction; pose estimation of C-arm images; seed reconstruction; and C-arm to TRUS registration. In precision-machined hard phantoms with 40-100 seeds, we correctly reconstructed 99.8% seeds with a mean 3D accuracy of 0.68 mm. In soft tissue phantoms with 45-87 seeds and clinically realistic 15 degrees C-arm motion, we correctly reconstructed 100% seeds with an accuracy of 1.3 mm. The reconstructed 3D seed positions were then registered to the prostate segmented from TRUS. In a Phase-1 clinical trial, so far on 4 patients with 66-84 seeds, we achieved intra-operative monitoring of seed distribution and dosimetry. We optimized the 100% prescribed iso-dose contour by inserting an average of 3.75 additional seeds, making intra-operative dosimetry possible on a typical C-arm, at negligible additional cost to the existing clinical installation.

  16. [A new applicator with regulatable air bag designed for intracavitary brachytherapy of nasopharyngeal carcinoma].

    PubMed

    Zhang, Ning; Wei, Guang-Yu; Tan, Yi-Chang; Huang, Ze-Li; Li, Shao-En; Lu, Zhi-Qian

    2004-10-01

    Nasopharynx applicator used in intracavitary brachytherapy plays an important role in the radiotherapy of nasopharyngeal carcinoma (NPC), its quality affects the efficiency of treatment. This study was to design a new applicator for clinical use. An inexpensive, reusable, and flexible latex nasopharynx applicator was designed. An air bag was placed at 15 mm from the foreside of the applicator, clung to the tube. The edge of air bag is tangent to the axis of tube. When the bag was full of air, the tube would hunch reversely,close to nasopharyngeal vault. After introduced into nasopharynx through middle nasal meatus, the applicator could be fixed in suitable position by its rotation, and air bag regulation, and confirmed its position by simulation. A total of 221 patients with NPC were treated with external beam radiation therapy in our hospital, and boosted HDR brachytherapy using this new applicator. The response rate was 92.6% in the primary tumor group (200/216), and 100% in the recurrent tumor group (5/5). Mucosal necrosis in the posterior or anterior wall of nasopharynx occurred in 5 patients, 8 patients experienced nasal congestion and nasal synechia. This new nasopharynx applicator is easy to operate, painless, and well dosage-distributed. Mucosal necrosis is likely due to higher fractional dose.

  17. A technical evaluation of the Nucletron FIRST system: conformance of a remote afterloading brachytherapy seed implantation system to manufacturer specifications and AAPM Task Group report recommendations.

    PubMed

    Rivard, Mark J; Evans, Dee-Ann Radford; Kay, Ian

    2005-01-01

    The Fully Integrated Real-time Seed Treatment (FIRST) system by Nucletron has been available in Europe since November 2001 and is being used more and more in Canada and the United States. Like the conventional transrectal ultrasound implant procedure, the FIRST system utilizes an ultrasound probe, needles, and brachytherapy seeds. However, this system is unique in that it (1) utilizes a low-dose-rate brachytherapy seed remote afterloader (the seedSelectron), (2) utilizes 3D image reconstruction acquired from electromechanically controlled, nonstepping rotation of the ultrasound probe, (3) integrates the control of a remote afterloader with electromechanical control of the ultrasound probe for integrating the clinical procedure into a single system, and (4) automates the transfer of planning information and seed delivery to improve quality assurance and radiation safety. This automated delivery system is specifically intended to address reproducibility and accuracy of seed positioning during implantation. The FIRST computer system includes two software environments: SPOT PRO and seedSelectron; both are used to facilitate treatment planning and brachytherapy seed implantation from beginning to completion of the entire procedure. In addition to these features, the system is reported to meet certain product specifications for seed delivery positioning accuracy and reproducibility, seed calibration accuracy and reliability, and brachytherapy dosimetry calculations. Consequently, a technical evaluation of the FIRST system was performed to determine adherence to manufacturer specifications and to the American Association of Physicists in Medicine (AAPM) Task Group Reports 43, 53, 56, 59, and 64 and recommendations of the American Brachytherapy Society (ABS). The United States Nuclear Regulatory Commission (NRC) has recently added Licensing Guidance for the seedSelectron system under 10 CFR 35.1000. Adherence to licensing guidance is made by referencing applicable AAPM

  18. SU-C-16A-04: Dosimetric Validation of a Partially-Shielded Gd-153 Brachytherapy Concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, X; Adams, Q; Flynn, R

    Purpose: To demonstrate by measurement that using partially shielded Gd-153 sources for rotating-shield brachytherapy (RSBT) is feasible. RSBT is a potentially superior alternative to conventional high-dose-rate brachytherapy and provides the opportunity to dramatically improve tumor dose conformity for the treatment of, for example, prostate cancer. Methods: A custom-built, stainless steel encapsulated 150 mCi Gd-153 capsule with an outer length of 12.8 mm, outer diameter of 2.10 mm, active length of 9.98 mm, and active diameter of 1.53 mm was used. A partially shielded catheter was constructed with a 500 μm platinum shield and a 500 μm aluminum emission window, bothmore » with 180° azimuthal coverage. An acrylic phantom was constructed to measure the dose distributions from the shielded catheter in the transverse plane using Gafchromic EBT3 films. Film calibration curves were generated from 50, 70, and 100 kVp x-ray beams with NIST-traceable air kerma values to account for energy variation. Results: The transmission ratios of platinum to aluminum shielding at 1 cm off-axis are 7.5% and 7.6% for Monte Carlo (MCNP5) predicted and experimental results, respectively. The predicted/measured relative dose rates at 1 cm, 2 cm and 3 cm off-axis through the Al window were 100%/92.9%, 28.6%/27.0% and 13.8%/12.7%, respectively. Through the Pt shield, the predicted/measured relative dose rates were 7.5%/7.1%, 3.8%/3.0% and 2.4%/1.7%, respectively. Conclusion: Using partially-shielded Gd-153 sources for RSBT is a promising approach to improving brachytherapy dose distributions. The next step in making Gd-153 based RSBT a reality is developing a Gd-153 source that is small enough such that the source, shield, and catheter all fit within a 16 gauge needle, which has a 1.65 mm diameter. University of Iowa Research Foundation.« less

  19. Interstitial rotating shield brachytherapy for prostate cancer.

    PubMed

    Adams, Quentin E; Xu, Jinghzu; Breitbach, Elizabeth K; Li, Xing; Enger, Shirin A; Rockey, William R; Kim, Yusung; Wu, Xiaodong; Flynn, Ryan T

    2014-05-01

    To present a novel needle, catheter, and radiation source system for interstitial rotating shield brachytherapy (I-RSBT) of the prostate. I-RSBT is a promising technique for reducing urethra, rectum, and bladder dose relative to conventional interstitial high-dose-rate brachytherapy (HDR-BT). A wire-mounted 62 GBq(153)Gd source is proposed with an encapsulated diameter of 0.59 mm, active diameter of 0.44 mm, and active length of 10 mm. A concept model I-RSBT needle/catheter pair was constructed using concentric 50 and 75 μm thick nickel-titanium alloy (nitinol) tubes. The needle is 16-gauge (1.651 mm) in outer diameter and the catheter contains a 535 μm thick platinum shield. I-RSBT and conventional HDR-BT treatment plans for a prostate cancer patient were generated based on Monte Carlo dose calculations. In order to minimize urethral dose, urethral dose gradient volumes within 0-5 mm of the urethra surface were allowed to receive doses less than the prescribed dose of 100%. The platinum shield reduced the dose rate on the shielded side of the source at 1 cm off-axis to 6.4% of the dose rate on the unshielded side. For the case considered, for the same minimum dose to the hottest 98% of the clinical target volume (D(98%)), I-RSBT reduced urethral D(0.1cc) below that of conventional HDR-BT by 29%, 33%, 38%, and 44% for urethral dose gradient volumes within 0, 1, 3, and 5 mm of the urethra surface, respectively. Percentages are expressed relative to the prescription dose of 100%. For the case considered, for the same urethral dose gradient volumes, rectum D(1cc) was reduced by 7%, 6%, 6%, and 6%, respectively, and bladder D(1cc) was reduced by 4%, 5%, 5%, and 6%, respectively. Treatment time to deliver 20 Gy with I-RSBT was 154 min with ten 62 GBq (153)Gd sources. For the case considered, the proposed(153)Gd-based I-RSBT system has the potential to lower the urethral dose relative to HDR-BT by 29%-44% if the clinician allows a urethral dose gradient volume of 0

  20. Long-term outcomes of high-dose-rate brachytherapy for intermediate- and high-risk prostate cancer with a median follow-up of 10 years.

    PubMed

    Yaxley, John W; Lah, Kevin; Yaxley, Julian P; Gardiner, Robert A; Samaratunga, Hema; MacKean, James

    2017-07-01

    To evaluate the long-term outcomes of high-dose-rate (HDR) brachytherapy for patients with intermediate- and high-risk prostate cancer. We retrospectively analysed a prospective longitudinal cohort database including a single-surgeon series of 507 consecutive men treated with external beam radiotherapy and an HDR prostate brachytherapy boost between August 2000 and December 2009. The risk factors used were based on the D'Amico classification. We measured the incidence of no biochemical evidence of disease (bNED) based on the Phoenix definition of failure (nadir PSA + 2 ng/mL). We also reviewed the incidence of urethral stricture in this cohort. With minimum and median follow-ups of 6 and 10.3 years, respectively, the bNED rates for men with intermediate- and high risk disease were 93.3% and 74.2%, respectively, at 5 years and 86.9% and 56.1%, respectively, at 10 years. The 10-year bNED rate for men with only one intermediate-risk factor was 94%, whereas for patients with all three high-risk factors it was 39.5%. The overall urethral stricture rate was 13.6%. Before 2005, the urethral stricture rate was 28.9% and after January 2005 it was 4.2%. For the 271 men with a minimum follow-up of 10 years the actuarial 10-year prostate cancer-specific survival rate was 90.8% and the actuarial overall survival rate was 86.7%. For men with intermediate- or high-risk prostate cancer features, who are considered not suitable for, or wish to avoid a radical prostatectomy, HDR prostate brachytherapy remains an appropriate treatment option. From December 2004, prevention strategies decreased the risk of post-brachytherapy urethral strictures. © 2016 The Authors BJU International © 2016 BJU International Published by John Wiley & Sons Ltd.

  1. Favorable Preliminary Outcomes for Men With Low- and Intermediate-risk Prostate Cancer Treated With 19-Gy Single-fraction High-dose-rate Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krauss, Daniel J., E-mail: dkrauss@beaumont.edu; Ye, Hong; Martinez, Alvaro A.

    Purpose: To report the toxicity and preliminary clinical outcomes of a prospective trial evaluating 19-Gy, single-fraction high-dose-rate (HDR) brachytherapy for men with low- and intermediate-risk prostate cancer. Methods and Materials: A total of 63 patients were treated according to an institutional review board-approved prospective study of single-fraction HDR brachytherapy. Eligible patients had tumor stage ≤T2a, prostate-specific antigen level ≤15 ng/mL, and Gleason score ≤7. Patients with a prostate gland volume >50 cm{sup 3} and baseline American Urologic Association symptom score >12 were ineligible. Patients underwent transrectal ultrasound-guided transperineal implantation of the prostate, followed by single-fraction HDR brachytherapy. Treatment was delivered using {sup 192}Irmore » to a dose of 19 Gy prescribed to the prostate, with no additional margin applied. Results: Of the 63 patients, 58 had data available for analysis. Five patients had withdrawn consent during the follow-up period. The median follow-up period was 2.9 years (range 0.3-5.2). The median age was 61.4 years. The median gland volume at treatment was 34.8 cm{sup 3}. Of the 58 patients, 91% had T1 disease, 71% had Gleason score ≤6 (29% with Gleason score 7), and the median pretreatment prostate-specific antigen level was 5.1 ng/mL. The acute and chronic grade 2 genitourinary toxicity incidence was 12.1% and 10.3%, respectively. No grade 3 urinary toxicity occurred. No patients experienced acute rectal toxicity grade ≥2, and 2 experienced grade ≥2 chronic gastrointestinal toxicity. Three patients experienced biochemical failure, yielding a 3-year cumulative incidence estimate of 6.8%. Conclusions: Single-fraction HDR brachytherapy is well-tolerated, with favorable preliminary biochemical and clinical disease control rates.« less

  2. Individualized 3D scanning and printing for non-melanoma skin cancer brachytherapy: a financial study for its integration into clinical workflow.

    PubMed

    Arenas, Meritxell; Sabater, Sebastià; Sintas, Andreu; Arguís, Monica; Hernández, Víctor; Árquez, Miguel; López, Iolanda; Rovirosa, Àngeles; Puig, Doménec

    2017-06-01

    Skin cancer is the most common tumor in the population. There are different therapeutic modalities. Brachytherapy is one of the techniques used, in which it is necessary to build customized moulds for some patients. Currently, these moulds are made by hand using rudimentary techniques. We present a new procedure based on 3D printing and the analysis of the clinical workflow. Moulds can be made either by hand or by automated 3D printing. For making moulds by hand, a patient's alginate negative is created and, from that, the gypsum cast and customized moulds are made by hand from the patient's negative template. The new process is based on 3D printing. The first step is to take a 3D scan of the surface of the patient and then, 3D modelling software is used to obtain an accurate anatomical reconstruction of the treatment area. We present the clinical workflow using 3D scanning and printing technology, comparing its costs with the usual custom handmade mould protocol. The time spent for the new process is 6.25 hours, in contrast to the time spent for the conventional process, which is 9.5 hours. We found a 34% reduction in time required to create a mould for brachytherapy treatment. The labor cost of the conventional process is 211.5 vs. 152.5 hours, so the reduction is 59 hours. There is also a 49.5% reduction in the financial costs, mostly due to lack of need of a computed tomography (CT) scan of the gypsum and the mould. 3D scanning and printing offers financial benefits and reduces the clinical workload. As the present project demonstrates, through the application of 3D printing technologies, the costs and time spent during the process in the clinical workload in brachytherapy treatment are reduced. Overall, 3D printing is a promising technique for brachytherapy that might be well received in the community.

  3. SU-E-T-55: Biological Equivalent Dose (BED) Comparison Between Permanent Interstitial Brachytherapy and Conventional External Beam Radiotherapy for Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, X; Rahimian, J; Cosmatos, H

    2014-06-01

    Purpose: The goal of this research is to calculate and compare the Biological Equivalent Dose (BED) between permanent prostate Iodine-125 implant brachytherapy as monotherapy with the BED of conventional external beam radiation therapy (EBRT). Methods: A retrospective study of 605 patients treated with Iodine-125 seed implant was performed in which physician A treated 274 patients and physician B treated 331 patients. All the Brachytherapy treatment plans were created using VariSeed 8 planning system. The Iodine-125 seed source activities and loading patterns varied slightly between the two physicians. The prescription dose is 145 Gy to PTV for each patient. The BEDmore » and Tumor Control Probability (TCP) were calculated based on the TG 137 formulas. The BED for conventional EBRT of the prostate given in our institution in 2Gy per fraction for 38 fractions was calculated and compared. Results: Physician A treated 274 patients with an average BED of 123.92±0.87 Gy and an average TCP of 99.20%; Physician B treated 331 patients with an average BED of 124.87±1.12 Gy and an average TCP of 99.30%. There are no statistically significant differences (T-Test) between the BED and TCP values calculated for these two group patients.The BED of the patients undergoing conventional EBRT is calculated to be 126.92Gy. The BED of the patients treated with permanent implant brachytherapy and EBRT are comparable. Our BED and TCP values are higher than the reported values by TG 137 due to higher Iodine-125 seed activity used in our institution. Conclusion: We calculated the BED,a surrogate of the biological response to a permanent prostate brachytherapy using TG 137 formulas and recommendation. The TCP of better than 99% is calculated for these patients. A clinical outcome study of these patients correlating the BED and TCP values with PSA and Gleason Levels as well as patient survival is warranted.« less

  4. Plaque Brachytherapy for Uveal Melanoma: A Vision Prognostication Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Niloufer; Khan, Mohammad K.; Bena, James

    Purpose: To generate a vision prognostication model after plaque brachytherapy for uveal melanoma. Methods and Materials: All patients with primary single ciliary body or choroidal melanoma treated with iodine-125 or ruthenium-106 plaque brachytherapy between January 1, 2005, and June 30, 2010, were included. The primary endpoint was loss of visual acuity. Only patients with initial visual acuity better than or equal to 20/50 were used to evaluate visual acuity worse than 20/50 at the end of the study, and only patients with initial visual acuity better than or equal to 20/200 were used to evaluate visual acuity worse than 20/200more » at the end of the study. Factors analyzed were sex, age, cataracts, diabetes, tumor size (basal dimension and apical height), tumor location, and radiation dose to the tumor apex, fovea, and optic disc. Univariate and multivariable Cox proportional hazards were used to determine the influence of baseline patient factors on vision loss. Kaplan-Meier curves (log rank analysis) were used to estimate freedom from vision loss. Results: Of 189 patients, 92% (174) were alive as of February 1, 2011. At presentation, visual acuity was better than or equal to 20/50 and better than or equal to 20/200 in 108 and 173 patients, respectively. Of these patients, 44.4% (48) had post-treatment visual acuity of worse than 20/50 and 25.4% (44) had post-treatment visual acuity worse than 20/200. By multivariable analysis, increased age (hazard ratio [HR] of 1.01 [1.00-1.03], P=.05), increase in tumor height (HR of 1.35 [1.22-1.48], P<.001), and a greater total dose to the fovea (HR of 1.01 [1.00-1.01], P<.001) were predictive of vision loss. This information was used to develop a nomogram predictive of vision loss. Conclusions: By providing a means to predict vision loss at 3 years after treatment, our vision prognostication model can be an important tool for patient selection and treatment counseling.« less

  5. Is modern external beam radiotherapy with androgen deprivation therapy still a viable alternative for prostate cancer in an era of robotic surgery and brachytherapy: a comparison of Australian series.

    PubMed

    Wilcox, Shea William; Aherne, Noel J; McLachlan, Craig Steven; McKay, Michael J; Last, Andrew J; Shakespeare, Thomas P

    2015-02-01

    We compare the results of modern external-beam radiotherapy (EBRT), using combined androgen deprivation and dose-escalated intensity-modulated radiotherapy with MRI-CT fusion and daily image guidance with fiducial markers (DE-IG-IMRT), with recently published Australian series of brachytherapy and surgery. Five-year actuarial biochemical disease-free survival (bDFS), metastasis-free survival (MFS) and prostate cancer-specific survival (PCaSS) were calculated for 675 patients treated with DE-IG-IMRT and androgen deprivation therapy (ADT). Patients had intermediate-risk (IR) and high-risk (HR) disease. A search was conducted identifying Australian reports from 2005 onwards of IR and HR patients treated with surgery or brachytherapy, reporting actuarial outcomes at 3 years or later. With a median follow-up of 59 months, our 5-year bDFS was 93.3% overall: 95.5% for IR and 91.3% for HR disease. MFS was 96.9% overall (99.0% IR, 94.9% HR), and PCaSS was 98.8% overall (100% IR, 97.7% HR). Prevalence of Grade 2 genitourinary and gastrointestinal toxicity at 5 years was 1.3% and 1.6%, with 0.3% Grade 3 genitourinary toxicity and no Grade 3 gastrointestinal toxicity. Eight reports of brachytherapy and surgery were identified. The HDR brachytherapy series' median 5-year bDFS was 82.5%, MFS 90.0% and PCaSS 97.9%. One surgical series reported 5-year bDFS of 65.5% for HR patients. One LDR series reported 5-year bDFS of 85% for IR patients. Modern EBRT is at least as effective as modern Australian surgical and brachytherapy techniques. All patients considering treatment for localised prostate cancer should be referred to a radiation oncologist to discuss EBRT as an equivalent option. © 2015 The Royal Australian and New Zealand College of Radiologists.

  6. Use of cone-beam imaging to correct for catheter displacement in high dose-rate prostate brachytherapy.

    PubMed

    Holly, Rick; Morton, Gerard C; Sankreacha, Raxa; Law, Niki; Cisecki, Thomas; Loblaw, D Andrew; Chung, Hans T

    2011-01-01

    To determine the magnitude of catheter displacement between time of planning and time of treatment delivery for patients undergoing high dose-rate (HDR) brachytherapy, the dosimetric impact of catheter displacement, and the ability to improve dosimetry by catheter readjustment. Twenty consecutive patients receiving single fraction HDR brachytherapy underwent kilovoltage cone-beam CT in the treatment room before treatment. If catheter displacement was apparent, catheters were adjusted and imaging repeated. Both sets of kilovoltage cone-beam CT image sets were coregistered off-line with the CT data set used for planning with rigid fusion of anatomy based on implanted fiducials. Catheter displacement was measured on both sets of images and dosimetry calculated. Mean internal displacement of catheters was 11mm. This would have resulted in a decrease in mean volume receiving 100% of prescription dose (V(100)) from the planned 97.6% to 77.3% (p<0.001), a decrease of the mean dose to 90% of the prostate (D(90)) from 110.5% to 72.9% (p<0.001), and increase in dose to 10% of urethra (urethra D(10)) from 118% to 125% (p=0.0094). Each 1cm of catheter displacement resulted in a 20% decrease in V(100) and 36% decrease in D(90). Catheter readjustment resulted in a final treated mean V(100) of 90.2% and D(90) of 97.4%, both less than planned. Mean urethra D(10) remained higher at126% (p=0.0324). Significantly, internal displacement of HDR catheters commonly occurs between time of CT planning and treatment delivery, even when only a single fraction is used. The adverse effects on dosimetry can be partly corrected by readjustment of catheter position. Copyright © 2011 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  7. Prospective Clinical Trial of Bladder Filling and Three-Dimensional Dosimetry in High-Dose-Rate Vaginal Cuff Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, Alexandra J.; Cormack, Robert A.; Lee, Hang

    2008-11-01

    Purpose: To investigate the effect of bladder filling on dosimetry and to determine the best bladder dosimetric parameter for vaginal cuff brachytherapy. Methods and Materials: In this prospective clinical trial, a total of 20 women underwent vaginal cylinder high-dose-rate brachytherapy. The bladder was full for Fraction 2 and empty for Fraction 3. Dose-volume histogram and dose-surface histogram values were generated for the bladder, rectum, and urethra. The midline maximal bladder point (MBP) and the midline maximal rectal point were recorded. Paired t tests, Pearson correlations, and regression analyses were performed. Results: The volume and surface area of the irradiated bladdermore » were significantly smaller when the bladder was empty than when full. Of the several dose-volume histogram and dose-surface histogram parameters evaluated, the bladder maximal dose received by 2 cm{sup 3} of tissue, volume of bladder receiving {>=}50% of the dose, volume of bladder receiving {>=}70% of the dose, and surface area of bladder receiving {>=}50% of the dose significantly predicted for the difference between the empty vs. full filling state. The volume of bladder receiving {>=}70% of the dose and the maximal dose received by 2 cm{sup 3} of tissue correlated significantly with the MBP. Bladder filling did not alter the volume or surface area of the rectum irradiated. However, an empty bladder did result in the nearest point of bowel being significantly closer to the vaginal cylinder than when the bladder was full. Conclusions: Patients undergoing vaginal cuff brachytherapy treated with an empty bladder have a lower bladder dose than those treated with a full bladder. The MBP correlated well with the volumetric assessments of bladder dose and provided a noninvasive method for reporting the MBP dose using three-dimensional imaging. The MBP can therefore be used as a surrogate for complex dosimetry in the clinic.« less

  8. A quality assurance device for measuring afterloader performance and transit dose for nasobiliary high-dose-rate brachytherapy.

    PubMed

    Deufel, Christopher L; Mullins, John P; Zakhary, Mark J

    2018-05-17

    Nasobiliary high-dose-rate (HDR) brachytherapy has emerged as an effective tool to boost the radiation dose for patients with unresectable perihilar cholangiocarcinoma. This work describes a quality assurance (QA) tool for measuring the HDR afterloader's performance, including the transit dose, when the source wire travels through a tortuous nasobiliary catheter path. The nasobiliary QA device was designed to mimic the anatomical path of a nasobiliary catheter, including the nasal, stomach, duodenum, and bile duct loops. Two of these loops, the duodenum and bile duct loops, have adjustable radii of curvature, resulting in the ability to maximize stress on the source wire in transit. The device was used to measure the performance over time for the HDR afterloader and the differences between intraluminal catheter lots. An upper limit on the transit dose was also measured using radiochromic film and compared with a simple theoretical model. The QA device was capable of detecting performance variations among nasobiliary catheter lots and following radioactive source replacement. The transit dose from a nasobiliary treatment increased by up to one order of magnitude when the source wire encountered higher than normal friction. Three distinct travel speeds of the source wire were observed: 5.2, 17.4, and 54.7 cm/s. The maximum transit dose was 0.3 Gy at a radial distance of 5 mm from a 40.3 kU 192 Ir source. The source wire encounters substantially greater friction when it navigates through the nasobiliary brachytherapy catheter. A QA tool that mimics the nasal, stomach, duodenum, and bile duct loops may be used to evaluate transit dose and the afterloader's performance over time. Copyright © 2018 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  9. Quality assurance in MR image guided adaptive brachytherapy for cervical cancer: Final results of the EMBRACE study dummy run.

    PubMed

    Kirisits, Christian; Federico, Mario; Nkiwane, Karen; Fidarova, Elena; Jürgenliemk-Schulz, Ina; de Leeuw, Astrid; Lindegaard, Jacob; Pötter, Richard; Tanderup, Kari

    2015-12-01

    Upfront quality assurance (QA) is considered essential when starting a multicenter clinical trial in radiotherapy. Despite the long experience gained for external beam radiotherapy (EBRT) trials, there are only limited audit QA methods for brachytherapy (BT) and none include the specific aspects of image guided adaptive brachytherapy (IGABT). EMBRACE is a prospective multicenter trial aiming to assess the impact of (MRI)-based IGABT in locally advanced cervical cancer. An EMBRACE dummy run was designed to identify sources and magnitude of uncertainties and errors considered important for the evaluation of clinical, and dosimetric parameters and their relation to outcome. Contouring, treatment planning and dose reporting was evaluated and scored with a categorical scale of 1-10. Active feedback to centers was provided to improve protocol compliance and reporting. A second dummy run was required in case of major deviations (score <7) for any item. Overall 27/30 centers passed the dummy run. 16 centers had to repeat the dummy run in order to clarify major inconsistencies to the protocol. The most pronounced variations were related to contouring for both EBRT and BT. Centers with experience in IGABT (>30 cases) had better performance as compared to centers with limited experience. The comprehensive dummy run designed for the EMBRACE trial has been a feasible tool for QA in IGABT of cervix cancer. It should be considered for future IGABT trials and could serve as the basis for continuous quality checks for brachytherapy centers. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. A novel method for accurate needle-tip identification in trans-rectal ultrasound-based high-dose-rate prostate brachytherapy.

    PubMed

    Zheng, Dandan; Todor, Dorin A

    2011-01-01

    In real-time trans-rectal ultrasound (TRUS)-based high-dose-rate prostate brachytherapy, the accurate identification of needle-tip position is critical for treatment planning and delivery. Currently, needle-tip identification on ultrasound images can be subject to large uncertainty and errors because of ultrasound image quality and imaging artifacts. To address this problem, we developed a method based on physical measurements with simple and practical implementation to improve the accuracy and robustness of needle-tip identification. Our method uses measurements of the residual needle length and an off-line pre-established coordinate transformation factor, to calculate the needle-tip position on the TRUS images. The transformation factor was established through a one-time systematic set of measurements of the probe and template holder positions, applicable to all patients. To compare the accuracy and robustness of the proposed method and the conventional method (ultrasound detection), based on the gold-standard X-ray fluoroscopy, extensive measurements were conducted in water and gel phantoms. In water phantom, our method showed an average tip-detection accuracy of 0.7 mm compared with 1.6 mm of the conventional method. In gel phantom (more realistic and tissue-like), our method maintained its level of accuracy while the uncertainty of the conventional method was 3.4mm on average with maximum values of over 10mm because of imaging artifacts. A novel method based on simple physical measurements was developed to accurately detect the needle-tip position for TRUS-based high-dose-rate prostate brachytherapy. The method demonstrated much improved accuracy and robustness over the conventional method. Copyright © 2011 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  11. HDR and LDR Brachytherapy in the Treatment of Lip Cancer: the Experience of the Catalan Institute of Oncology.

    PubMed

    Ayerra, Arrate Querejeta; Mena, Estefanía Palacios; Fabregas, Joan Pera; Miguelez, Cristina Gutiérrez; Guedea, Ferran

    2010-03-01

    Lip cancer can be treated by surgery, external radiotherapy, and/or brachytherapy (BT). In recent years, BT has become increasingly favored for this type of cancer. The aim of the present study was to analyze local control and survival of patients treated at our institution between July 1989 and June 2008. We performed a retrospective study of 121 patients (109 males and 12 females) who underwent lip cancer brachytherapy from July 1989 to June 2008. Median age was 67 years and median follow-up was 31.8 months (range 20-188 months). Out of 121 patients, 100 (82.6%) were treated with low dose rate (LDR) BT while the remaining 21 patients (17.4%) received high dose rate (HDR) BT. The most common cell type was squamous cell carcinoma (115 cases; 95%) and most tumors were located on the lower lip (107 patients; 88.4%). Most cases were either stage T1 (62 patients; 51.2%), or T2 (44 cases; 36.4%). After 15 years of follow-up, overall survival was 89.5%, cause-specific survival 97.8%, and disease-free survival 86.6%. Local, regional, and distant control at 15 years were 90%, 92%, and 98.8%, respectively. Grade 3 mucosal toxicity was observed in 23% of patients treated with LDR compared to 33% of HDR patients, and grade 4 mucosal toxicity in 9% versus 0% in the HDR group. Our findings confirm that brachytherapy is an effective treatment for lip cancer. The results from our series are in line with those published elsewhere. Based on our limited data, HDR appears to be equally as good as LDR, although this needs to be confirmed by further studies.

  12. Clinical implementation and failure mode and effects analysis of HDR skin brachytherapy using Valencia and Leipzig surface applicators.

    PubMed

    Sayler, Elaine; Eldredge-Hindy, Harriet; Dinome, Jessie; Lockamy, Virginia; Harrison, Amy S

    2015-01-01

    The planning procedure for Valencia and Leipzig surface applicators (VLSAs) (Nucletron, Veenendaal, The Netherlands) differs substantially from CT-based planning; the unfamiliarity could lead to significant errors. This study applies failure modes and effects analysis (FMEA) to high-dose-rate (HDR) skin brachytherapy using VLSAs to ensure safety and quality. A multidisciplinary team created a protocol for HDR VLSA skin treatments and applied FMEA. Failure modes were identified and scored by severity, occurrence, and detectability. The clinical procedure was then revised to address high-scoring process nodes. Several key components were added to the protocol to minimize risk probability numbers. (1) Diagnosis, prescription, applicator selection, and setup are reviewed at weekly quality assurance rounds. Peer review reduces the likelihood of an inappropriate treatment regime. (2) A template for HDR skin treatments was established in the clinic's electronic medical record system to standardize treatment instructions. This reduces the chances of miscommunication between the physician and planner as well as increases the detectability of an error. (3) A screen check was implemented during the second check to increase detectability of an error. (4) To reduce error probability, the treatment plan worksheet was designed to display plan parameters in a format visually similar to the treatment console display, facilitating data entry and verification. (5) VLSAs are color coded and labeled to match the electronic medical record prescriptions, simplifying in-room selection and verification. Multidisciplinary planning and FMEA increased detectability and reduced error probability during VLSA HDR brachytherapy. This clinical model may be useful to institutions implementing similar procedures. Copyright © 2015 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  13. [Late complications of choroidal melanoma brachytherapy and possibility of their prevention].

    PubMed

    Brovkina, A F; Khionidi, Y N

    2018-01-01

    Complications and the frequency of their occurrence as the criteria of eye preservation after brachytherapy (BT) are presented in literature with inconsistencies due to the assessment being done after varied follow-up periods (1 month to 5-10 years). The evaluation of complications occurring after applying radioiodine can be found in literature. The complications after BT beta particle emitting ophthalmic applicators are seldom discussed in articles. to examine the frequency of complications, the characteristics of their development after choroidal melanoma (CM) brachytherapy with ruthenium ophthalmic applicators (OA) during long-term follow-up and determine the possibility of their prevention. Characteristics of postradiation period after BT were studied in 200 patients with CM (200 eyes). Among them, 127 patients were treated by authors of this study, 73 were provided treatment by other specialized medical facilities in Moscow. The study involved 84 male and 116 female patients aged 56.14±12.8 in average. The follow-up periods spanned 2 to 39 years (mean length 9.84±6.16 years). BT was done only with ruthenium OA (beta radiation) manufactured in Russian. Follow-up period after BT for 83% of patients was 5 years. Complications occurred in 68.5% of patients. Complications were found in 74.63% of patients with CM localized pre-equatorially and in 65.4% of patients with CM localized in the posterior part of the eye. Complications associated with radiation-induced injuries in crystalline lens, retina and choroidal blood vessels were more frequent. The frequency of complications depends on the size of CM and its localization. Complications were the least frequent in patients with CM thickness of 5 mm or less.

  14. Poster - Thur Eve - 03: LDR to HDR: RADPOS applications in brachytherapy.

    PubMed

    Cherpak, A J; Cygler, J E; Kertzscher, G; E, C; Perry, G

    2012-07-01

    The RADPOS in vivo dosimetry system combines an electromagnetic positioning sensor and either one or five MOSFET dosimeters. The feasibility of using the system for quality control has been explored for a range of radiotherapy treatment techniques including most recently transperineal interstitial permanent prostate brachytherapy and high dose rate (HDR) treatments. Dose and position information was collected by a RADPOS array detector inside a Foley catheter within patients' urethra during permanent seed implantation. Ten patients were studied, and average displacement during implantation was Δr = (1.4-5.1) mm, with movements up to 9.7 mm due to the removal of the transrectal ultrasound probe. Maximum integral dose in the prostatic urethra ranged from 110-195 Gy, and it was found that the dose can change up to 63 cGy (62.0%) depending on whether the rectal probe is in place. For HDR, a RADPOS detector was first calibrated with an Ir-192 source. A treatment was then simulated using a total of 50 dwell positions in 5 catheters in an acrylic phantom. Dwell positions ranged from 1 to 10 cm away from the RADPOS detector and dose was measured for each source position. An average calibration coefficient of 0.74±0.11 cGy/mV was calculated for the detector and the average absolute difference between measured values and expected dose was 0.7±5.4 cGy (5±20%). The demonstrated accuracy of RADPOS dose measurements along with its ability to simultaneously measure displacement makes it a powerful tool for brachytherapy treatments, where high dose gradients can present unique in vivo dosimetry challenges. © 2012 American Association of Physicists in Medicine.

  15. Is there a subset of patients with recurrent cancer in the vagina who are not candidates for interstitial brachytherapy that can be treated with multichannel vaginal brachytherapy using graphic optimization?

    PubMed

    Singh, Deepinder P; Bylund, Kevin C; Matloubieh, Ahmad; Mazloom, Ali; Gray, Alexander; Sidhu, Ravinder; Barrette, Lucille; Chen, Yuhchyau

    2015-04-01

    To evaluate recurrent vaginal cancer treated with vaginal brachytherapy (VBT) using graphic optimization in patients not amenable to surgery and interstitial brachytherapy (ISBT). We retrospectively reviewed the records of 5 patients with recurrent cancer in the vagina that were deemed not to be good candidates for ISBT implant because of medical reasons. All patients received computed tomography/magnetic resonance imaging (CT/MRI) based evaluation in addition to a detailed clinical examination, and were noted to have recurrent nodules in the vagina with size ranging from 10-25 mm. Four of the 5 patients had recurrent disease in the vaginal apex, whereas one patient had recurrence in the lateral vaginal wall. Subsequently, all patients were treated with external beam radiation therapy (EBRT) followed by multichannel vaginal cylinder (MVC)-based VBT using graphic optimization for shaping the isodose to improve the clinical target volume (CTV) coverage, as well as to spare the organs at risk (OAR). The dose to the bladder and rectum with regard to 0.1 cc, 1 cc, and 2 cc were recorded. Median age of the patients was 78 years (range 58-86 years). Thickness of the lesions before VBT ranged from 6-15 mm. All patients were followed up with MRI at 3 months. All patients but one demonstrated complete clinical/ radiological response of the tumor. No patient had any grade III/IV toxicity at 24 months. MVC-based VBT using graphic optimization is safe and yields favorable results if used judiciously.

  16. [Role of the technician in a brachytherapy department].

    PubMed

    Bélot-Cheval, V; Lemoine, L; Cuisinier, C; Gensse, M-C; Lasbareilles, O

    2013-04-01

    The role of the technician in a brachytherapy department is essential for the cohesion of the treatment team made up of the radiation oncologist, the physicist, and the technician. He/she collaborates in the different treatment steps such as taking care of the patients, training of the professionals and research studies in collaboration with the team. He participates in all steps of the treatment such as preparation, technician's consultation, catheters/templates and radioactives sources implant, dose distribution analysis and treatment. He looks after the management of planning, radioactive sources and chemist's equipments. He takes part in the training of the junior technician, and support doctors and physicists in different studies. The procedure writing and the presentation of professional practices are also part of the technician task. Copyright © 2013 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  17. Design and implementation of a film dosimetry audit tool for comparison of planned and delivered dose distributions in high dose rate (HDR) brachytherapy

    NASA Astrophysics Data System (ADS)

    Palmer, Antony L.; Lee, Chris; Ratcliffe, Ailsa J.; Bradley, David; Nisbet, Andrew

    2013-10-01

    A novel phantom is presented for ‘full system’ dosimetric audit comparing planned and delivered dose distributions in HDR gynaecological brachytherapy, using clinical treatment applicators. The brachytherapy applicator dosimetry test object consists of a near full-scatter water tank with applicator and film supports constructed of Solid Water, accommodating any typical cervix applicator. Film dosimeters are precisely held in four orthogonal planes bisecting the intrauterine tube, sampling dose distributions in the high risk clinical target volume, points A and B, bladder, rectum and sigmoid. The applicator position is fixed prior to CT scanning and through treatment planning and irradiation. The CT data is acquired with the applicator in a near clinical orientation to include applicator reconstruction in the system test. Gamma analysis is used to compare treatment planning system exported RTDose grid with measured multi-channel film dose maps. Results from two pilot audits are presented, using Ir-192 and Co-60 HDR sources, with a mean gamma passing rate of 98.6% using criteria of 3% local normalization and 3 mm distance to agreement (DTA). The mean DTA between prescribed dose and measured film dose at point A was 1.2 mm. The phantom was funded by IPEM and will be used for a UK national brachytherapy dosimetry audit.

  18. Design and implementation of a film dosimetry audit tool for comparison of planned and delivered dose distributions in high dose rate (HDR) brachytherapy.

    PubMed

    Palmer, Antony L; Lee, Chris; Ratcliffe, Ailsa J; Bradley, David; Nisbet, Andrew

    2013-10-07

    A novel phantom is presented for 'full system' dosimetric audit comparing planned and delivered dose distributions in HDR gynaecological brachytherapy, using clinical treatment applicators. The brachytherapy applicator dosimetry test object consists of a near full-scatter water tank with applicator and film supports constructed of Solid Water, accommodating any typical cervix applicator. Film dosimeters are precisely held in four orthogonal planes bisecting the intrauterine tube, sampling dose distributions in the high risk clinical target volume, points A and B, bladder, rectum and sigmoid. The applicator position is fixed prior to CT scanning and through treatment planning and irradiation. The CT data is acquired with the applicator in a near clinical orientation to include applicator reconstruction in the system test. Gamma analysis is used to compare treatment planning system exported RTDose grid with measured multi-channel film dose maps. Results from two pilot audits are presented, using Ir-192 and Co-60 HDR sources, with a mean gamma passing rate of 98.6% using criteria of 3% local normalization and 3 mm distance to agreement (DTA). The mean DTA between prescribed dose and measured film dose at point A was 1.2 mm. The phantom was funded by IPEM and will be used for a UK national brachytherapy dosimetry audit.

  19. The role of brachytherapy and Cutting Balloon angioplasty in the current treatment of stent restenosis.

    PubMed

    Bonan, Raoul

    2004-09-01

    The Gamma I, START and INHIBIT trials conclusively demonstrate the feasibility, safety and efficacy of intracoronary radiation as the treatment of choice for stent restenosis. Further reports confirm this finding and extend the indications. Vascular brachytherapy should be made available for all patients with diffuse stent restenosis. Specific devices such as cutting balloons may improve the procedure but does not seem to have an impact alone on the evolution.

  20. SU-G-201-17: Verification of Dose Distributions From High-Dose-Rate Brachytherapy Ir-192 Source Using a Multiple-Array-Diode-Detector (MapCheck2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harpool, K; De La Fuente Herman, T; Ahmad, S

    Purpose: To investigate quantitatively the accuracy of dose distributions for the Ir-192 high-dose-rate (HDR) brachytherapy source calculated by the Brachytherapy-Planning system (BPS) and measured using a multiple-array-diode-detector in a heterogeneous medium. Methods: A two-dimensional diode-array-detector system (MapCheck2) was scanned with a catheter and the CT-images were loaded into the Varian-Brachytherapy-Planning which uses TG-43-formalism for dose calculation. Treatment plans were calculated for different combinations of one dwell-position and varying irradiation times and different-dwell positions and fixed irradiation time with the source placed 12mm from the diode-array plane. The calculated dose distributions were compared to the measured doses with MapCheck2 delivered bymore » an Ir-192-source from a Nucletron-Microselectron-V2-remote-after-loader. The linearity of MapCheck2 was tested for a range of dwell-times (2–600 seconds). The angular effect was tested with 30 seconds irradiation delivered to the central-diode and then moving the source away in increments of 10mm. Results: Large differences were found between calculated and measured dose distributions. These differences are mainly due to absence of heterogeneity in the dose calculation and diode-artifacts in the measurements. The dose differences between measured and calculated due to heterogeneity ranged from 5%–12% depending on the position of the source relative to the diodes in MapCheck2 and different heterogeneities in the beam path. The linearity test of the diode-detector showed 3.98%, 2.61%, and 2.27% over-response at short irradiation times of 2, 5, and 10 seconds, respectively, and within 2% for 20 to 600 seconds (p-value=0.05) which depends strongly on MapCheck2 noise. The angular dependency was more pronounced at acute angles ranging up to 34% at 5.7 degrees. Conclusion: Large deviations between measured and calculated dose distributions for HDR-brachytherapy with Ir-192 may

  1. High Dose-Rate Intracavitary Brachytherapy for Cervical Carcinomas With Lower Vaginal Infiltration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kazumoto, Tomoko; Kato, Shingo; Tabushi, Katsuyoshi

    2007-11-15

    Purpose: This report presents the clinical applications of an automated treatment-planning program of high-dose-rate intracavitary brachytherapy (HDR-ICBT) for advanced uterine cervical cancer infiltrating the parametrium and the lower vagina. Methods and Materials: We adopted HDR-ICBT under optimized dose distribution for 22 cervical cancer patients with tumor infiltration of the lower half of the vagina. All patients had squamous cell carcinoma with International Federation of Gynecology and Obstetrics clinical stages IIB-IVA. After whole pelvic external beam irradiation with a median dose of 30.6 Gy, a conventional ICBT was applied as 'pear-shaped' isodose curve. Then 3-4 more sessions per week of thismore » new method of ICBT were performed. With a simple determination of the treatment volume, the cervix-parametrium, and the lower vagina were covered automatically and simultaneously by this program, that was designated as 'utero-vaginal brachytherapy'. The mean follow-up period was 87.4 months (range, 51.8-147.9 months). Results: Isodose curve for this program was 'galaxy-shaped'. Five-year local-progression-free survival and overall survival rates were 90.7% and 81.8%, respectively. Among those patients with late complications higher than Grade 2 Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer morbidity score, only one (4.5%) developed severe proctitis. Conclusions: Because of the favorable treatment outcomes, this treatment-planning program with a simplified target-volume based dosimetry was proposed for cervical cancer with lower vaginal infiltration.« less

  2. American College of Radiology-American Brachytherapy Society practice parameter for electronically generated low-energy radiation sources.

    PubMed

    Devlin, Phillip M; Gaspar, Laurie E; Buzurovic, Ivan; Demanes, D Jeffrey; Kasper, Michael E; Nag, Subir; Ouhib, Zoubir; Petit, Joshua H; Rosenthal, Seth A; Small, William; Wallner, Paul E; Hartford, Alan C

    This collaborative practice parameter technical standard has been created between the American College of Radiology and American Brachytherapy Society to guide the usage of electronically generated low energy radiation sources (ELSs). It refers to the use of electronic X-ray sources with peak voltages up to 120 kVp to deliver therapeutic radiation therapy. The parameter provides a guideline for utilizing ELS, including patient selection and consent, treatment planning, and delivery processes. The parameter reviews the published clinical data with regard to ELS results in skin, breast, and other cancers. This technical standard recommends appropriate qualifications of the involved personnel. The parameter reviews the technical issues relating to equipment specifications as well as patient and personnel safety. Regarding suggestions for educational programs with regard to this parameter,it is suggested that the training level for clinicians be equivalent to that for other radiation therapies. It also suggests that ELS must be done using the same standards of quality and safety as those in place for other forms of radiation therapy. Copyright © 2017 American Brachytherapy Society and American College of Radiology. Published by Elsevier Inc. All rights reserved.

  3. Combination of biodegradable stent placement and single-dose brachytherapy is associated with an unacceptably high complication rate in the treatment of dysphagia from esophageal cancer.

    PubMed

    Hirdes, Meike M C; van Hooft, Jeanin E; Wijrdeman, Harm K; Hulshof, Maarten C C M; Fockens, Paul; Reerink, Onne; van Oijen, Martijn G H; van der Tweel, Ingeborg; Vleggaar, Frank P; Siersema, Peter D

    2012-08-01

    For the palliative treatment of dysphagia, esophageal stent placement provides immediate improvement, whereas brachytherapy offers better long-term relief. To evaluate safety and efficacy of concurrent brachytherapy and biodegradable stent placement. Prospective, single-arm study. Two tertiary-care referral centers. Nineteen consecutive patients with significant dysphagia resulting from unresectable esophageal cancer, with a life expectancy of more than 3 months. Single-dose brachytherapy (12 Gy) on day 1 followed by biodegradable stent placement on day 2. Intervention-related major complications (determined by an expert panel) and dysphagia. Nineteen patients (13 men, median age 66 years [interquartile range (IQR) 59-71] years) were included; 7 patients (37%) also received palliative chemotherapy. After inclusion of 19 patients, the study was ended prematurely because the safety threshold was exceeded. In total, 28 major complications occurred in 17 patients (89%). In 9 patients (47%), major complications were determined intervention-related (severe retrosternal pain with or without vomiting [n = 6], hematemesis [n = 1], recurrent dysphagia [n = 2]. Dysphagia scores decreased significantly from a median of 3 (IQR 3-4) to a median of 1 (IQR 0-3) after 1 month (P < .001). Despite adequate luminal patency in 17 patients (89%), normal diet could not be tolerated in 7 patients (37%) because of retrosternal pain and vomiting. Lack of routine endoscopy or contrast esophagram to evaluate recurrent dysphagia during follow-up. Despite restoration of luminal patency, a combined treatment of brachytherapy and biodegradable stent placement cannot be recommended for the palliative treatment of esophageal cancer because of an unacceptably high intervention-related major complication rate. Copyright © 2012 American Society for Gastrointestinal Endoscopy. Published by Mosby, Inc. All rights reserved.

  4. In vivo measurements for high dose rate brachytherapy with optically stimulated luminescent dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Renu; Jursinic, Paul A.

    2013-07-15

    MV x-rays if 6 MV x-rays were used for OSLD calibration. The limitations of the treatment planning algorithm must be understood, especially for surface dose measurements. Use of in vivo dosimetry for HDR brachytherapy treatments is feasible and has the potential to detect and prevent gross errors. In vivo HDR brachytherapy should be included as part of the QA for a HDR brachytherapy program.« less

  5. [Guidelines for external radiotherapy and brachytherapy: introduction to the 2nd edition. Société française de radiothérapie oncologique (SFRO)].

    PubMed

    Mahé, M-A; Barillot, I; Chauvet, B

    2014-10-01

    In 2007, a first edition was published with the objective to produce guidelines for optimization, harmonization and homogenization of practices in external radiation therapy in France. The second edition, including brachytherapy, has the same objective and takes into account recent technologic improvements (intensity modulation radiation therapy, stereotactic radiotherapy, and 3-dimension brachytherapy) and recent results of the literature. The first part is about daily use of general principles (quality, security, image-guided radiation therapy) and the second is to describe each step of treatment of main cancers. Copyright © 2014 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  6. Focal application of low-dose-rate brachytherapy for prostate cancer: a pilot study

    PubMed Central

    Spadinger, Ingrid T.; Salcudean, Septimiu E.; Kozlowski, Piotr; Chang, Silvia D.; Ng, Tony; Lobo, Julio; Nir, Guy; Moradi, Hamid; Peacock, Michael; Morris, W. James

    2017-01-01

    Purpose To evaluate the feasibility and to report the early outcomes of focal treatment of prostate cancer using low-dose-rate brachytherapy (LDR-PB). Material and methods Seventeen patients were screened with multi-parametric magnetic resonance imaging (mpMRI), 14 of whom proceeded to receive trans-perineal template mapping biopsy (TTMB). Focal LDR-PB was performed on five eligible patients using dual air kerma strength treatment plans based on planning target volumes derived from cancer locations and determined by TTMB. Patient follow-up includes prostate specific antigen (PSA) measurements, urinary and sexual function questionnaires, repeated imaging and TTMB at specific intervals post-treatment. Results Feasibility of focal LDR-PB was shown and short-term outcomes are promising. While the detection rate of tumors, a majority of which were low grade GS 3 + 3, was found to be low on mpMRI (sensitivity of 37.5%), our results suggest the potential of mpMRI in detecting the presence of higher grade (GS ≥ 3 + 4), and bilateral disease indicating its usefulness as a screening tool for focal LDR-PB. Conclusions Low-dose-rate brachytherapy is a favorable ablation option for focal treatment of prostate cancer, requiring minimal modification to the standard (whole gland) LDR-PB treatment, and appears to have a more favorable side effect profile. Further investigation, in the form of a larger study, is needed to assess the methods used and the long-term outcomes of focal LDR-PB. PMID:28725242

  7. A simplified analytical dose calculation algorithm accounting for tissue heterogeneity for low-energy brachytherapy sources.

    PubMed

    Mashouf, Shahram; Lechtman, Eli; Beaulieu, Luc; Verhaegen, Frank; Keller, Brian M; Ravi, Ananth; Pignol, Jean-Philippe

    2013-09-21

    The American Association of Physicists in Medicine Task Group No. 43 (AAPM TG-43) formalism is the standard for seeds brachytherapy dose calculation. But for breast seed implants, Monte Carlo simulations reveal large errors due to tissue heterogeneity. Since TG-43 includes several factors to account for source geometry, anisotropy and strength, we propose an additional correction factor, called the inhomogeneity correction factor (ICF), accounting for tissue heterogeneity for Pd-103 brachytherapy. This correction factor is calculated as a function of the media linear attenuation coefficient and mass energy absorption coefficient, and it is independent of the source internal structure. Ultimately the dose in heterogeneous media can be calculated as a product of dose in water as calculated by TG-43 protocol times the ICF. To validate the ICF methodology, dose absorbed in spherical phantoms with large tissue heterogeneities was compared using the TG-43 formalism corrected for heterogeneity versus Monte Carlo simulations. The agreement between Monte Carlo simulations and the ICF method remained within 5% in soft tissues up to several centimeters from a Pd-103 source. Compared to Monte Carlo, the ICF methods can easily be integrated into a clinical treatment planning system and it does not require the detailed internal structure of the source or the photon phase-space.

  8. Relative dosimetrical verification in high dose rate brachytherapy using two-dimensional detector array IMatriXX

    PubMed Central

    Manikandan, A.; Biplab, Sarkar; David, Perianayagam A.; Holla, R.; Vivek, T. R.; Sujatha, N.

    2011-01-01

    For high dose rate (HDR) brachytherapy, independent treatment verification is needed to ensure that the treatment is performed as per prescription. This study demonstrates dosimetric quality assurance of the HDR brachytherapy using a commercially available two-dimensional ion chamber array called IMatriXX, which has a detector separation of 0.7619 cm. The reference isodose length, step size, and source dwell positional accuracy were verified. A total of 24 dwell positions, which were verified for positional accuracy gave a total error (systematic and random) of –0.45 mm, with a standard deviation of 1.01 mm and maximum error of 1.8 mm. Using a step size of 5 mm, reference isodose length (the length of 100% isodose line) was verified for single and multiple catheters of same and different source loadings. An error ≤1 mm was measured in 57% of tests analyzed. Step size verification for 2, 3, 4, and 5 cm was performed and 70% of the step size errors were below 1 mm, with maximum of 1.2 mm. The step size ≤1 cm could not be verified by the IMatriXX as it could not resolve the peaks in dose profile. PMID:21897562

  9. Comparison of TG-43 and TG-186 in breast irradiation using a low energy electronic brachytherapy source.

    PubMed

    White, Shane A; Landry, Guillaume; Fonseca, Gabriel Paiva; Holt, Randy; Rusch, Thomas; Beaulieu, Luc; Verhaegen, Frank; Reniers, Brigitte

    2014-06-01

    The recently updated guidelines for dosimetry in brachytherapy in TG-186 have recommended the use of model-based dosimetry calculations as a replacement for TG-43. TG-186 highlights shortcomings in the water-based approach in TG-43, particularly for low energy brachytherapy sources. The Xoft Axxent is a low energy (<50 kV) brachytherapy system used in accelerated partial breast irradiation (APBI). Breast tissue is a heterogeneous tissue in terms of density and composition. Dosimetric calculations of seven APBI patients treated with Axxent were made using a model-based Monte Carlo platform for a number of tissue models and dose reporting methods and compared to TG-43 based plans. A model of the Axxent source, the S700, was created and validated against experimental data. CT scans of the patients were used to create realistic multi-tissue/heterogeneous models with breast tissue segmented using a published technique. Alternative water models were used to isolate the influence of tissue heterogeneity and backscatter on the dose distribution. Dose calculations were performed using Geant4 according to the original treatment parameters. The effect of the Axxent balloon applicator used in APBI which could not be modeled in the CT-based model, was modeled using a novel technique that utilizes CAD-based geometries. These techniques were validated experimentally. Results were calculated using two dose reporting methods, dose to water (Dw,m) and dose to medium (Dm,m), for the heterogeneous simulations. All results were compared against TG-43-based dose distributions and evaluated using dose ratio maps and DVH metrics. Changes in skin and PTV dose were highlighted. All simulated heterogeneous models showed a reduced dose to the DVH metrics that is dependent on the method of dose reporting and patient geometry. Based on a prescription dose of 34 Gy, the average D90 to PTV was reduced by between ~4% and ~40%, depending on the scoring method, compared to the TG-43 result. Peak

  10. Vaginal dose de-escalation in image guided adaptive brachytherapy for locally advanced cervical cancer.

    PubMed

    Mohamed, Sandy; Lindegaard, Jacob Christian; de Leeuw, Astrid A C; Jürgenliemk-Schulz, Ina; Kirchheiner, Kathrin; Kirisits, Christian; Pötter, Richard; Tanderup, Kari

    2016-09-01

    Vaginal stenosis is a major problem following radiotherapy in cervical cancer. We investigated a new dose planning strategy for vaginal dose de-escalation (VDD). Fifty consecutive locally advanced cervical cancer patients without lower or middle vaginal involvement at diagnosis from 3 institutions were analysed. External beam radiotherapy was combined with MRI-guided brachytherapy. VDD was obtained by decreasing dwell times in ovoid/ring and increasing dwell times in tandem/needles. The aim was to maintain the target dose (D90 of HR-CTV⩾85Gy EQD2) while reducing the dose to the surface of the vagina to <140% of the physical fractional brachytherapy dose corresponding to a total EQD2 of 85Gy. The mean vaginal loading (ovoid/ring) was reduced from 51% to 33% of the total loading with VDD, which significantly reduced the dose to the vaginal dose points (p<0.001) without compromising the target dose. The dose to the ICRU recto-vaginal point was reduced by a mean of 4±4Gy EQD2 (p<0.001), while doses to bladder and rectum (D 2cm 3 ) were reduced by 2±2Gy and 3±2Gy, respectively (p<0.001). VDD significantly reduces dose to the upper vagina which is expected to result in reduction of vaginal stenosis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Brachytherapy in early prostate cancer--early experience.

    PubMed

    Jose, B O; Bailen, J L; Albrink, F H; Steinbock, G S; Cornett, M S; Benson, D C; Schmied, W K; Medley, R N; Spanos, W J; Paris, K J; Koerner, P D; Gatenby, R A; Wilson, D L; Meyer, R

    1999-01-01

    Use of brachytherapy with radioactive seeds in the management of early prostate cancer is commonly used in the United States. The early experience has been reported from the prostate treatment centers in Seattle for the last 10 years. In this manuscript we are reporting our early experience of 150 radioactive seed implantations in early stage prostate cancer using either Iodine 125 or Palladium 103 seeds. The average age of the patient is 66 years and the median Gleason score is 5.4 with a median PSA of 6. A brief description of the evolution of the treatment of prostate cancer as well as the preparation for the seed implantation using the volume study with ultrasound of the prostate, pubic arch study using CT scan of the pelvis and the complete planning using the treatment planning computers are discussed. We also have described the current technique which is used in our experience based on the Seattle guidelines. We plan a follow-up report with the results of the studies with longer follow-up.

  12. Monte Carlo Determination of Dosimetric Parameters of a New (125)I Brachytherapy Source According to AAPM TG-43 (U1) Protocol.

    PubMed

    Baghani, Hamid Reza; Lohrabian, Vahid; Aghamiri, Mahmoud Reza; Robatjazi, Mostafa

    2016-03-01

    (125)I is one of the important sources frequently used in brachytherapy. Up to now, several different commercial models of this source type have been introduced to the clinical radiation oncology applications. Recently, a new source model, IrSeed-125, has been added to this list. The aim of the present study is to determine the dosimetric parameters of this new source model based on the recommendations of TG-43 (U1) protocol using Monte Carlo simulation. The dosimetric characteristics of Ir-125 including dose rate constant, radial dose function, 2D anisotropy function and 1D anisotropy function were determined inside liquid water using MCNPX code and compared to those of other commercially available iodine sources. The dose rate constant of this new source was found to be 0.983+0.015 cGyh-1U-1 that was in good agreement with the TLD measured data (0.965 cGyh-1U-1). The 1D anisotropy function at 3, 5, and 7 cm radial distances were obtained as 0.954, 0.953 and 0.959, respectively. The results of this study showed that the dosimetric characteristics of this new brachytherapy source are comparable with those of other commercially available sources. Furthermore, the simulated parameters were in accordance with the previously measured ones. Therefore, the Monte Carlo calculated dosimetric parameters could be employed to obtain the dose distribution around this new brachytherapy source based on TG-43 (U1) protocol.

  13. Commissioning of a grid-based Boltzmann solver for cervical cancer brachytherapy treatment planning with shielded colpostats.

    PubMed

    Mikell, Justin K; Klopp, Ann H; Price, Michael; Mourtada, Firas

    2013-01-01

    We sought to commission a gynecologic shielded colpostat analytic model provided from a treatment planning system (TPS) library. We have reported retrospectively the dosimetric impact of this applicator model in a cohort of patients. A commercial TPS with a grid-based Boltzmann solver (GBBS) was commissioned for (192)Ir high-dose-rate (HDR) brachytherapy for cervical cancer with stainless steel-shielded colpostats. Verification of the colpostat analytic model was verified using a radiograph and vendor schematics. MCNPX v2.6 Monte Carlo simulations were performed to compare dose distributions around the applicator in water with the TPS GBBS dose predictions. Retrospectively, the dosimetric impact was assessed over 24 cervical cancer patients' HDR plans. Applicator (TPS ID #AL13122005) shield dimensions were within 0.4 mm of the independent shield dimensions verification. GBBS profiles in planes bisecting the cap around the applicator agreed with Monte Carlo simulations within 2% at most locations; differing screw representations resulted in differences of up to 9%. For the retrospective study, the GBBS doses differed from TG-43 as follows (mean value ± standard deviation [min, max]): International Commission on Radiation units [ICRU]rectum (-8.4 ± 2.5% [-14.1, -4.1%]), ICRUbladder (-7.2 ± 3.6% [-15.7, -2.1%]), D2cc-rectum (-6.2 ± 2.6% [-11.9, -0.8%]), D2cc-sigmoid (-5.6 ± 2.6% [-9.3, -2.0%]), and D2cc-bladder (-3.4 ± 1.9% [-7.2, -1.1%]). As brachytherapy TPSs implement advanced model-based dose calculations, the analytic applicator models stored in TPSs should be independently validated before clinical use. For this cohort, clinically meaningful differences (>5%) from TG-43 were observed. Accurate dosimetric modeling of shielded applicators may help to refine organ toxicity studies. Copyright © 2013 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  14. WE-FG-BRA-02: Docetaxel Eluting Brachytherapy Spacers for Local Chemo-Radiation Therapy in Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belz, J; Kumar, R; Sridhar, S

    Purpose: We propose an innovative combinatorial treatment strategy of Local ChemoRadiation Therapy (LCRT) using a sustained drug delivery platform in the form of a spacer to locally radio-sensitize the prostate with Docetaxel (DTX) enabling a synergistic cure with the use of lower radiation doses. These biodegradable spacers are physically similar to the inert spacers routinely used in prostate brachytherapy but are now loaded with formulations of DTX. Methods: Spacers were loaded with ∼500µg Docetaxel (DTX) for prostate cancer studies. The implants were characterized in vitro using SEM and HPLC. The release kinetic studies were carried out in buffer (pH 6.0)more » at 37°C. Subcutaneous PC3 tumors were xenografted in nude mice. Prostate cancer studies were done with and without radiation using SARRP at 5Gy, 10Gy, and 15Gy. Drug-loaded implants were injected once intratumorally using an 18G brachytherapy needle. Results: The release study in vitro showed a highly sustained release for multiple weeks at therapeutically relevant doses. The monotherapy with local DTX spacer showed sustained tumor inhibition compared to empty implants and an equivalent DTX dose given systemically. At 40 days, 89% survival was observed for mice treated with DTX implants compared with 0% in all other treatment groups. The combined treatment with local DTX spacer and radiation (10Gy) showed the highest degree of tumor suppression (significant tumor growth inhibition by day 90). The control mice showed continuous tumor growth and were scarified by day 56. Groups of mice treated with DTX-spacer or radiation alone showed initial tumor suppression but growth continued after day 60. A larger experiment is ongoing. Conclusion: This approach provides localized delivery of the chemotherapeutic sensitizer directly to the tumor and avoids the toxicities associated with both brachytherapy and current systemic delivery of docetaxel. Sustained release of DTX is an effective chemotherapy option

  15. Comparison of organ doses for patients undergoing balloon brachytherapy of the breast with HDR 192Ir or electronic sources using Monte Carlo simulations in a heterogeneous human phantom1

    PubMed Central

    Mille, Matthew M.; Xu, X. George; Rivard, Mark J.

    2010-01-01

    Purpose: Accelerated partial breast irradiation via interstitial balloon brachytherapy is a fast and effective treatment method for certain early stage breast cancers. The radiation can be delivered using a conventional high-dose rate (HDR) 192Ir gamma-emitting source or a novel electronic brachytherapy (eBx) source which uses lower energy x rays that do not penetrate as far within the patient. A previous study [A. Dickler, M. C. Kirk, N. Seif, K. Griem, K. Dowlatshahi, D. Francescatti, and R. A. Abrams, “A dosimetric comparison of MammoSite high-dose-rate brachytherapy and Xoft Axxent electronic brachytherapy,” Brachytherapy 6, 164–168 (2007)] showed that the target dose is similar for HDR 192Ir and eBx. This study compares these sources based on the dose received by healthy organs and tissues away from the treatment site. Methods: A virtual patient with left breast cancer was represented by a whole-body, tissue-heterogeneous female voxel phantom. Monte Carlo methods were used to calculate the dose to healthy organs in a virtual patient undergoing balloon brachytherapy of the left breast with HDR 192Ir or eBx sources. The dose-volume histograms for a few organs which received large doses were also calculated. Additional simulations were performed with all tissues in the phantom defined as water to study the effect of tissue inhomogeneities. Results: For both HDR 192Ir and eBx, the largest mean organ doses were received by the ribs, thymus gland, left lung, heart, and sternum which were close to the brachytherapy source in the left breast. eBx yielded mean healthy organ doses that were more than a factor of ∼1.4 smaller than for HDR 192Ir for all organs considered, except for the three closest ribs. Excluding these ribs, the average and median dose-reduction factors were ∼28 and ∼11, respectively. The volume distribution of doses in nearby soft tissue organs that were outside the PTV were also improved with eBx. However, the maximum dose to the closest

  16. Intermediate-term results of image-guided brachytherapy and high-technology external beam radiotherapy in cervical cancer: Chiang Mai University experience.

    PubMed

    Tharavichitkul, Ekkasit; Chakrabandhu, Somvilai; Wanwilairat, Somsak; Tippanya, Damrongsak; Nobnop, Wannapha; Pukanhaphan, Nantaka; Galalae, Razvan M; Chitapanarux, Imjai

    2013-07-01

    To evaluate the outcomes of image-guided brachytherapy combined with 3D conformal or intensity modulated external beam radiotherapy (3D CRT/IMRT) in cervical cancer at Chiang Mai University. From 2008 to 2011, forty-seven patients with locally advanced cervical cancer were enrolled in this study. All patients received high-technology (3D CRT/IMRT) whole pelvic radiotherapy with a total dose of 45-46 Gy plus image-guided High-Dose-Rate intracavitary brachytherapy 6.5-7 Gy × 4 fractions to a High-Risk Clinical Target Volume (HR-CTV) according to GEC-ESTRO recommendations. The dose parameters of the HR-CTV for bladder, rectum and sigmoid colon were recorded, as well as toxicity profiles. In addition, the endpoints for local control, disease-free, metastasis-free survival and overall survival were calculated. At the median follow-up time of 26 months, the local control, disease-free survival, and overall survival rates were 97.9%, 85.1%, and 93.6%, respectively. The mean dose of HR-CTV, bladder, rectum and sigmoid were 93.1, 88.2, 69.6, and 72 Gy, respectively. In terms of late toxicity, the incidence of grade 3-4 bladder and rectum morbidity was 2.1% and 2.1%, respectively. A combination of image-guided brachytherapy and IMRT/3D CRT showed very promising results of local control, disease-free survival, metastasis-free survival and overall survival rates. It also caused a low incidence of grade 3-4 toxicity in treated study patients. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. SU-F-T-65: AutomaticTreatment Planning for High-Dose Rate (HDR) Brachytherapy with a VaginalCylinder Applicator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Y; Tan, J; Jiang, S

    Purpose: High dose rate (HDR) brachytherapy treatment planning is conventionally performed in a manual fashion. Yet it is highly desirable to perform computerized automated planning to improve treatment planning efficiency, eliminate human errors, and reduce plan quality variation. The goal of this research is to develop an automatic treatment planning tool for HDR brachytherapy with a cylinder applicator for vaginal cancer. Methods: After inserting the cylinder applicator into the patient, a CT scan was acquired and was loaded to an in-house developed treatment planning software. The cylinder applicator was automatically segmented using image-processing techniques. CTV was generated based on user-specifiedmore » treatment depth and length. Locations of relevant points (apex point, prescription point, and vaginal surface point), central applicator channel coordinates, and dwell positions were determined according to their geometric relations with the applicator. Dwell time was computed through an inverse optimization process. The planning information was written into DICOM-RT plan and structure files to transfer the automatically generated plan to a commercial treatment planning system for plan verification and delivery. Results: We have tested the system retrospectively in nine patients treated with vaginal cylinder applicator. These cases were selected with different treatment prescriptions, lengths, depths, and cylinder diameters to represent a large patient population. Our system was able to generate treatment plans for these cases with clinically acceptable quality. Computation time varied from 3–6 min. Conclusion: We have developed a system to perform automated treatment planning for HDR brachytherapy with a cylinder applicator. Such a novel system has greatly improved treatment planning efficiency and reduced plan quality variation. It also served as a testbed to demonstrate the feasibility of automatic HDR treatment planning for more complicated cases.« less

  18. Endocavity Ultrasound Hyperthermia for Locally Advanced Cervical Cancer: Patient-specific Modeling, Experimental Verification, and Combination with HDR Brachytherapy

    NASA Astrophysics Data System (ADS)

    Wootton, Jeffery; Chen, Xin; Prakash, Punit; Juang, Titania; Diederich, Chris

    2010-03-01

    The feasibility of targeted hyperthermia delivery by an intrauterine ultrasound applicator to patient-specific treatment volumes in conjunction with HDR brachytherapy was investigated using theory and experiment. 30 HDR brachytherapy treatment plans were inspected to define hyperthermia treatment volumes (HTVs) based on tumor and radiation target volumes. Several typical cases were imported into a patient-specific treatment planning platform that optimized acoustic output power from an endocavity multisectored tubular array to conform temperature and thermal dose to HTVs. Perfusion was within a clinical range of 0.5-3 kg m-3 s-1. Applicators were constructed with 1-3 elements at 6.5-8 MHz with 90°-360° sectoring and 25-35 mm heating length housed in a water-cooled PET catheter. Acoustic output was compared to heating in ex vivo tissue assessed with implanted thermometry. Radiation attenuation through the device was measured in an ionization chamber. The HTV extends 2-4 cm in diameter and 2-4 cm in length. The bladder and rectum can be within 10-12 mm. HTV targets can be covered with temperature clouds >41° and thermal dose t43>5 min with 45° C maximum temperature and rectal temperature <41.5° C. Sectored applicators preferentially direct energy laterally into the parametrium to limit heating of rectum and bladder. Interstitial brachytherapy catheters within the HTV could be used for thermal feedback during HT treatment. Temperature distributions in phantom show preferential heating within sectors and align well with acoustic output. Heating control along the device length and in angle is evident. A 4-6% reduction in radiation transmission through the transducers was observed, which could likely be compensated for in planning. Patient-specific modeling and experimental heating demonstrated 3-D conformal heating capabilities of endocavity ultrasound applicators.

  19. Establishing High-Quality Prostate Brachytherapy Using a Phantom Simulator Training Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thaker, Nikhil G.; Kudchadker, Rajat J.; Swanson, David A.

    2014-11-01

    Purpose: To design and implement a unique training program that uses a phantom-based simulator to teach the process of prostate brachytherapy (PB) quality assurance and improve the quality of education. Methods and Materials: Trainees in our simulator program were practicing radiation oncologists, radiation oncology residents, and fellows of the American Brachytherapy Society. The program emphasized 6 core areas of quality assurance: patient selection, simulation, treatment planning, implant technique, treatment evaluation, and outcome assessment. Using the Iodine 125 ({sup 125}I) preoperative treatment planning technique, trainees implanted their ultrasound phantoms with dummy seeds (ie, seeds with no activity). Pre- and postimplant dosimetric parametersmore » were compared and correlated using regression analysis. Results: Thirty-one trainees successfully completed the simulator program during the period under study. The mean phantom prostate size, number of seeds used, and total activity were generally consistent between trainees. All trainees met the V100 >95% objective both before and after implantation. Regardless of the initial volume of the prostate phantom, trainees' ability to cover the target volume with at least 100% of the dose (V100) was not compromised (R=0.99 pre- and postimplant). However, the V150 had lower concordance (R=0.37) and may better reflect heterogeneity control of the implant process. Conclusions: Analysis of implants from this phantom-based simulator shows a high degree of consistency between trainees and uniformly high-quality implants with respect to parameters used in clinical practice. This training program provides a valuable educational opportunity that improves the quality of PB training and likely accelerates the learning curve inherent in PB. Prostate phantom implantation can be a valuable first step in the acquisition of the required skills to safely perform PB.« less

  20. Use of Ruthenium-106 Brachytherapy for Iris Melanoma: The Scottish Experience.

    PubMed

    Agraval, Umiya; Sobti, Manvi; Russell, Heather C; Lockington, David; Ritchie, Diana; Cauchi, Paul; Kemp, Ewan G; Chadha, Vikas

    2018-01-01

    To analyse long-term outcomes of ruthenium-106 ( 106 Ru) plaque brachytherapy for the treatment of iris melanoma. We retrospectively reviewed medical records of 19 consecutive patients with pure iris melanoma treated with 106 Ru plaque brachytherapy between 1998 and 2016 at the Scottish Ophthalmic Oncology Service, Glasgow. The iris melanoma was treated with a ruthenium plaque placed on the corneal surface to deliver a surface dose of 555 Gy. We analysed vision preservation, local tumour control, radiation-related complications, eye retention rates, symptomatic metastasis and melanoma-related mortality. The mean largest basal diameter of the lesions was 3.50±1.42 mm (range 1.6-6.5 mm), and the mean maximum height was 1.47±0.65 mm (range 0.7-2.8 mm). The tumour control and eye retention were 100% at a mean follow-up of 62 months (range 6-195 months). A 62% reduction in tumour height was observed on ultrasonography. Complications included cataract (68%), dry eye (47%), uveitis (37%) and scleral thinning (5%). At the final follow-up visit, the mean loss of Snellen visual acuity was 1.11±2.90 lines and vision of 6/9 or better was maintained in 53% of patients. None of the patients had evidence of symptomatic metastasis (non-imaged) or melanoma-related mortality. 106 Ru plaque treatment for iris melanoma was highly effective a high tumour control, no tumour recurrences and a relatively a low complication rate. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.