Science.gov

Sample records for braid nebula star

  1. A WIDE-FIELD NARROWBAND OPTICAL SURVEY OF THE BRAID NEBULA STAR FORMATION REGION IN CYGNUS OB7

    SciTech Connect

    Magakian, Tigran Yu.; Nikogossian, Elena H.; Movsessian, Tigran; Aspin, Colin; Pyo, Tae-Soo; Khanzadyan, Tigran; Smith, Michael D.; Mitchison, Sharon; Davis, Chris J.; Beck, Tracy L.; Moriarty-Schieven, Gerald H. E-mail: elena@bao.sci.am E-mail: pyo@subaru.naoj.org E-mail: smm23@kent.ac.uk E-mail: c.davis@jach.hawaii.edu E-mail: gerald.schieven@nrc-cnrc.gc.ca

    2010-03-15

    We study the population of Herbig-Haro (HH) flows and jets in an area of Cygnus OB7 designated the Braid Nebula star formation region. This complex forms part of the L 1003 dark cloud, and hosts two FU Orionis (FUor)-like objects as well as several other active young stars. To trace outflow activity and to relate both known and newly discovered flows to young star hosts we intercompare new, deep, narrowband H{alpha} and [S II] optical images taken on the Subaru 8 m Telescope on Mauna Kea, Hawaii. Our images show that there is considerable outflow and jet activity in this region suggesting the presence of an extensive young star population. We confirm that both of the FUor-like objects drive extensive HH flows and document further members of the flows in both objects. The L 1003 star formation complex is a highly kinematically active region with young stars in several different stages of evolution. We trace collimated outflows from numerous young stars although the origin of some HH objects remains elusive.

  2. The Orion nebula star cluster

    NASA Technical Reports Server (NTRS)

    Panek, R. J.

    1982-01-01

    Photography through filters which suppress nebular light reveal a clustering of faint red stars centered on the Trapezium, this evidences a distinct cluster within the larger OB1 association. Stars within about 20 ft of trapezium comprise the Orion Nebula star cluster are considered. Topics discussed re: (1) extinction by dust grains; (2) photometric peculiarities; (3) spectroscopic peculiarities; (4) young variables; (5) the distribution and motion of gas within the cluster.

  3. Stars in the Tarantula Nebula

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the most active starburst region in the local universe lies a cluster of brilliant, massive stars, known to astronomers as Hodge 301. Hodge 301, seen in the lower right hand corner of this image, lives inside the Tarantula Nebula in our galactic neighbor, the Large Magellanic Cloud. This star cluster is not the brightest, or youngest, or most populous star cluster in the Tarantula Nebula, that honor goes to the spectacular R136. In fact, Hodge 301 is almost 10 times older than the young cluster R136. But age has its advantages; many of the stars in Hodge 301 are so old that they have exploded as supernovae. These exploded stars are blasting material out into the surrounding region at speeds of almost 200 miles per second. This high speed ejecta are plowing into the surrounding Tarantula Nebula, shocking and compressing the gas into a multitude of sheets and filaments, seen in the upper left portion of the picture. Hodge 301 contains three red supergiants - stars that are close to the end of their evolution and are about to go supernova, exploding and sending more shocks into the Tarantula. Also present near the center of the image are small, dense gas globules and dust columns where new stars are being formed today, as part of the overall ongoing star formation throughout the Tarantula region.

  4. 'Peony Nebula' Star Settles for Silver Medal

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Poster Version Movie

    If our galaxy, the Milky Way, were to host its own version of the Olympics, the title for the brightest known star would go to a massive star called Eta Carina. However, a new runner-up now the second-brightest star in our galaxy has been discovered in the galaxy's dusty and frenzied interior. This image from NASA's Spitzer Space Telescope shows the new silver medalist, circled in the inset above, in the central region of our Milky Way.

    Dubbed the 'Peony nebula' star, this blazing ball of gas shines with the equivalent light of 3.2 million suns. The reigning champ, Eta Carina, produces the equivalent of 4.7 million suns worth of light though astronomers say these estimates are uncertain, and it's possible that the Peony nebula star could be even brighter than Eta Carina.

    If the Peony star is so bright, why doesn't it stand out more in this view? The answer is dust. This star is located in a very dusty region jam packed with stars. In fact, there could be other super bright stars still hidden deep in the stellar crowd. Spitzer's infrared eyes allowed it to pierce the dust and assess the Peony nebula star's true brightness. Likewise, infrared data from the European Southern Observatory's New Technology Telescope in Chile were integral in calculating the Peony nebula star's luminosity.

    The Peony nebula, which surrounds the Peony nebular star, is the reddish cloud of dust in and around the white circle.

    The movie begins by showing a stretch of the dusty and frenzied central region of our Milky Way galaxy. It then zooms in to reveal the 'Peony nebula' star the new second-brightest star in the Milky Way, discovered in part by NASA's Spitzer Space Telescope.

    This is a three-color composite showing infrared observations from two Spitzer instruments. Blue represents 3.6-micron light and green shows light of 8 microns, both

  5. BRAID

    SciTech Connect

    2010-11-01

    BRAID is a rewriting system for translating abstract intermediate descriptions into light-weight, "pay only for what you need" middleware wrappers. Initial capabilities will focus on language interoperability, remote method invocation (RMI), and interface contract enforcement wrappers from Scientific Interface Definition Language (SIDL) specifications. Language interoperability will be provided for software written in C, C++, Fortran, Java, and Python, as was done with Babel, but also a subset of PGAS/HPCS languages, such as Chapel, UPC, and X10. Interface contract enforcement wrappers will initially be supported in a subset of those languages.

  6. BRAID

    Energy Science and Technology Software Center (ESTSC)

    2010-11-01

    BRAID is a rewriting system for translating abstract intermediate descriptions into light-weight, "pay only for what you need" middleware wrappers. Initial capabilities will focus on language interoperability, remote method invocation (RMI), and interface contract enforcement wrappers from Scientific Interface Definition Language (SIDL) specifications. Language interoperability will be provided for software written in C, C++, Fortran, Java, and Python, as was done with Babel, but also a subset of PGAS/HPCS languages, such as Chapel, UPC, andmore » X10. Interface contract enforcement wrappers will initially be supported in a subset of those languages.« less

  7. Binary stars in the Orion Nebula Cluster

    NASA Astrophysics Data System (ADS)

    Köhler, R.; Petr-Gotzens, M. G.; McCaughrean, M. J.; Bouvier, J.; Duchêne, G.; Quirrenbach, A.; Zinnecker, H.

    2006-11-01

    We report on a high-spatial-resolution survey for binary stars in the periphery of the Orion Nebula Cluster, at 5-15 arcmin (0.65-2 pc) from the cluster center. We observed 228 stars with adaptive optics systems, in order to find companions at separations of 0.13 arcsec-1.12 arcsec (60-500 AU), and detected 13 new binaries. Combined with the results of Petr (1998), we have a sample of 275 objects, about half of which have masses from the literature and high probabilities to be cluster members. We used an improved method to derive the completeness limits of the observations, which takes into account the elongated point spread function of stars at relatively large distances from the adaptive optics guide star. The multiplicity of stars with masses >2 M⊙ is found to be significantly larger than that of low-mass stars. The companion star frequency of low-mass stars is comparable to that of main-sequence M-dwarfs, less than half that of solar-type main-sequence stars, and 3.5 to 5 times lower than in the Taurus-Auriga and Scorpius-Centaurus star-forming regions. We find the binary frequency of low-mass stars in the periphery of the cluster to be the same or only slightly higher than for stars in the cluster core (<3 arcmin from θ^1C Ori). This is in contrast to the prediction of the theory that the low binary frequency in the cluster is caused by the disruption of binaries due to dynamical interactions. There are two ways out of this dilemma: Either the initial binary frequency in the Orion Nebula Cluster was lower than in Taurus-Auriga, or the Orion Nebula Cluster was originally much denser and dynamically more active.

  8. Binary Stars in the Orion Nebula Cluster

    NASA Astrophysics Data System (ADS)

    Köhler, Rainer; Petr-Gotzens, Monika G.; McCaughrean, Mark J.; Bouvier, Jerome; Duchêne, Gaspard; Quirrenbach, Andreas; Zinnecker, Hans

    2007-08-01

    We report on a high-spatial-resolution survey for binary stars in the periphery of the Orion Nebula Cluster, at 5 - 15 arcmin (0.65 - 2 pc) from the cluster center. We observed 228 stars with adaptive optics systems, in order to find companions at separations of 0.13 - 1.12 arcsec (60 - 500 AU), and detected 13 new binaries. Combined with the results of Petr (1998), we have a sample of 275 objects, about half of which have masses from the literature and high probabilities to be cluster members. We used an improved method to derive the completeness limits of the observations, which takes into account the elongated point spread function of stars at relatively large distances from the adaptive optics guide star. The multiplicity of stars with masses >2 Msun is found to be significantly larger than that of low-mass stars. The companion star frequency of low-mass stars is comparable to that of main-sequence M-dwarfs, less than half that of solar-type main-sequence stars, and 3.5 to 5 times lower than in the Taurus-Auriga and Scorpius-Centaurus star-forming regions. We find the binary frequency of low-mass stars in the periphery of the cluster to be the same or only slightly higher than for stars in the cluster core (<3 arcmin from θ1C Ori). This is in contrast to the prediction of the theory that the low binary frequency in the cluster is caused by the disruption of binaries due to dynamical interactions. There are two ways out of this dilemma: Either the initial binary frequency in the Orion Nebula Cluster was lower than in Taurus-Auriga, or the Orion Nebula Cluster was originally much denser and dynamically more active.

  9. Shell nebulae around luminous evolved stars

    NASA Technical Reports Server (NTRS)

    Dufour, Reginald J.

    1989-01-01

    Shell nebulae around luminous Population I Wolf-Rayet, Of, and P-Cygni stars are astrophysically interesting since they are indicators of pre-supernova mass loss and how such massive stars prepare their surrounding interstellar medium prior to explosion. Some twenty-odd such nebulae are known, for which detailed study of their morphological and spectroscopic characteristics have only begun in this decade. In this paper, some of these characteristics are reviewed in general, and new observations are reported. Emphasis has been placed on several 'prototype 'objects (NGC 7635, NGC 2359, NGC 6888, and the Eta Carinae condensations) to illustrate the varied massive-star mass-loss, the physics of their winds and shell ejecta, and related nucleosynthesis effects in the compositions of the winds and shells.

  10. Al-Sufi's Investigation of Stars, Star Clusters and Nebulae

    NASA Astrophysics Data System (ADS)

    Hafez, Ihsan; Stephenson, F. R.; Orchiston, W.

    2011-01-01

    The distinguished Arabic astronomer, Al-Sufi (AD 903-986) is justly famous for his Book of the Fixed Stars, an outstanding Medieval treatise on astronomy that was assembled in 964. Developed from Ptolemy's Algamest, but based upon al-Sufi's own stellar observations, the Book of the Fixed Stars has been copied down through the ages, and currently 35 copies are known to exist in various archival repositories around the world. Among other things, this major work contains 55 astronomical tables, plus star charts for 48 constellations. For the first time a long-overdue English translation of this important early work is in active preparation. In this paper we provide biographical material about Al-Sufi and the contents of his Book of the Fixed Stars, before examining his novel stellar magnitude system, and his listing of star clusters and nebulae (including the first-ever mention of the Great Nebula in Andromeda).

  11. Temperature Scale of Central Stars Planetary Nebulae

    NASA Technical Reports Server (NTRS)

    Kruk, Jeffry

    2005-01-01

    The goal of this project was to gain new insight into both the true temperatures of the central stars of planetary nebulae and their evolutionary histories. The temperature scale of the hottest central stars of planetary nebulae is poorly known. The temperature diagnostics available at visible wavelengths are not useful for these very hot stars, or suffer from as-yet unresolved systematic uncertainties. However, the combination of FUSE FUV spectra and HST NUV spectra allows precise temperature determinations by utilizing ionization balances of C III, C IV and O V, O VI lines. The sample comprises hot hydrogen-rich central stars covering the hottest phase of post-AGB evolution (T_eff greater than 70,000K). The spectra were analyzed with fully metal line blanketed NLTE model atmospheres in order to determine T_eff, surface gravity, and chemical composition. In addition to the temperature scale, the spectra help address the question of metal abundances at the surface of these stars. Depending on the particular star, the metal abundances are either dominated by ongoing diffusion processes or they originate from dredge-up phases during previous AGB evolution. The sample was selected so as to include objects that were expected to exhibit both processes, in order to assess their relative importance and to gain insight into the evolutionary history of the stars. The objects that show qualitatively a metal abundance pattern which points at dredge-up phases, can be used to quantitatively check against abundance predictions of stellar evolution theory. The other objects, where gravitational diffusion and radiative acceleration determine the photospheric metal abundances, will be used to check our NLTE models which for the first time include diffusion processes self-consistently.

  12. Bipolar nebulae and mass loss from red giant stars

    NASA Technical Reports Server (NTRS)

    Cohen, M.

    1985-01-01

    Observations of several bipolar nebulae are used to learn something of the nature of mass loss from the probable red-giant progenitors of these nebulae. Phenomena discussed are: (1) probable GL 2688's optical molecular emissions; (2) newly discovered very high velocity knots along the axis of OH 0739 - 14, which reveal evidence for mass ejections of + or 300 km/s from the M9 III star embedded in this nebula; (3) the bipolar structure of three extreme carbon stars, and the evidence for periodic mass ejection in IRC + 30219, also at high speed (about 80 km/s); and (4) the curious cool TiO-rich region above Parsamian 13, which may represent the very recent shedding of photospheric material from a cool, oxygen-rich giant. Several general key questions about bipolar nebulae that relate to the process of mass loss from their progenitor stars are raised.

  13. Weak magnetic fields in central stars of planetary nebulae?

    NASA Astrophysics Data System (ADS)

    Steffen, M.; Hubrig, S.; Todt, H.; Schöller, M.; Hamann, W.-R.; Sandin, C.; Schönberner, D.

    2014-10-01

    Context. It is not yet clear whether magnetic fields play an essential role in shaping planetary nebulae (PNe), or whether stellar rotation alone and/or a close binary companion, stellar or substellar, can account for the variety of the observed nebular morphologies. Aims: In a quest for empirical evidence verifying or disproving the role of magnetic fields in shaping planetary nebulae, we follow up on previous attempts to measure the magnetic field in a representative sample of PN central stars. Methods: We obtained low-resolution polarimetric spectra with FORS 2 installed on the Antu telescope of the VLT for a sample of 12 bright central stars of PNe with different morphologies, including two round nebulae, seven elliptical nebulae, and three bipolar nebulae. Two targets are Wolf-Rayet type central stars. Results: For the majority of the observed central stars, we do not find any significant evidence for the existence of surface magnetic fields. However, our measurements may indicate the presence of weak mean longitudinal magnetic fields of the order of 100 Gauss in the central star of the young elliptical planetary nebula IC 418 as well as in the Wolf-Rayet type central star of the bipolar nebula Hen 2-113 and the weak emission line central star of the elliptical nebula Hen 2-131. A clear detection of a 250 G mean longitudinal field is achieved for the A-type companion of the central star of NGC 1514. Some of the central stars show a moderate night-to-night spectrum variability, which may be the signature of a variable stellar wind and/or rotational modulation due to magnetic features. Conclusions: Since our analysis indicates only weak fields, if any, in a few targets of our sample, we conclude that strong magnetic fields of the order of kG are not widespread among PNe central stars. Nevertheless, simple estimates based on a theoretical model of magnetized wind bubbles suggest that even weak magnetic fields below the current detection limit of the order of 100

  14. Estimating the Binary Fraction of Central Stars of Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Douchin, Dimitri

    2015-01-01

    Planetary nebulae are the end-products of intermediate-mass stars evolution, following a phase of expansion of their atmospheres at the end of their lives. Observationally, it has been estimated that 80% of them have non-spherical shapes. Such a high fraction is puzzling and has occupied the planetary nebula community for more than 30 years. One scenario that would allow to justify the observed shapes is that a comparable fraction of the progenitors of central stars of planetary nebula (CSPN) are not single, but possess a companion. The shape of the nebulae would then be the result of an interaction with this companion. The high fraction of non-spherical planetary nebulae would thus imply a high fraction of binary central stars of planetary nebulae, making binarity a preferred channel for planetary nebula formation. After presenting the current state of knowledge regarding planetary nebula formation and shaping and reviewing the diverse efforts to find binaries in planetary nebulae, I present my work to detect a near-infrared excess that would be the signature of the presence of cool companions. The first part of the project consists in the analysis of data and photometry acquired and conducted by myself. The second part details an attempt to make use of archived datasets: the Sloan Digital Sky Survey Data Release 7 optical survey and the extended database assembled by Frew (2008). I also present results from a radial velocity analysis of VLT/UVES spectra for 14 objects aiming to the detection of spectroscopic companions. Finally I give details of the analysis of optical photometry data from our observations associated to the detection of companions around central stars of planetary nebulae using the photometric variability technique. The main result of this thesis is from the near-infrared excess studies which I combine with previously published data. I conclude that if the detected red and NIR flux excess is indicative of a stellar companion then the binary

  15. MULTIPLE GENERATIONS OF STARS IN THE TARANTULA NEBULA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In the most active starburst region in the local universe lies a cluster of brilliant, massive stars, known to astronomers as Hodge 301. Hodge 301, seen in the lower right hand corner of this image, lives inside the Tarantula Nebula in our galactic neighbor, the Large Magellanic Cloud. This star cluster is not the brightest, or youngest, or most populous star cluster in the Tarantula Nebula -- that honor goes to the spectacular R136. In fact, Hodge 301 is almost 10 times older than the young cluster R136. But age has its advantages; many of the stars in Hodge 301 are so old that they have exploded as supernovae. These exploded stars are blasting material out into the surrounding region at speeds of almost 200 miles per second. This high speed ejecta are plowing into the surrounding Tarantula Nebula, shocking and compressing the gas into a multitude of sheets and filaments, seen in the upper left portion of the picture. Note for your calendar; Hodge 301 contains three red supergiants - stars that are close to the end of their evolution and are about to go supernova, exploding and sending more shocks into the Tarantula. Also present near the center of the image are small, dense gas globules and dust columns where new stars are being formed today, as part of the overall ongoing star formation throughout the Tarantula region. Credit: Hubble Heritage Team (AURA/STScI/NASA)

  16. AN INFRARED CENSUS OF STAR FORMATION IN THE HORSEHEAD NEBULA

    SciTech Connect

    Bowler, Brendan P.; Waller, William H.; Megeath, S. Thomas; Patten, Brian M.; Tamura, Motohide E-mail: william.waller@tufts.edu E-mail: bpatten@nsf.gov

    2009-03-15

    At {approx} 400 pc, the Horsehead Nebula (B33) is the closest radiatively sculpted pillar to the Sun, but the state and extent of star formation in this structure is not well understood. We present deep near-infrared (IRSF/SIRIUS JHK {sub S}) and mid-infrared (Spitzer/IRAC) observations of the Horsehead Nebula to characterize the star-forming properties of this region and to assess the likelihood of triggered star formation. Infrared color-color and color-magnitude diagrams are used to identify young stars based on infrared excess emission and positions to the right of the zero-age main sequence, respectively. Of the 45 sources detected at both near- and mid-infrared wavelengths, three bona fide and five candidate young stars are identified in this 7' x 7' region. Two bona fide young stars have flat infrared spectral energy distributions and are located at the western irradiated tip of the pillar. The spatial coincidence of the protostars at the leading edge of this elephant trunk is consistent with the radiation-driven implosion model of triggered star formation. There is no evidence, however, for sequential star formation within the immediate {approx} 1.'5 (0.17 pc) region from the cloud/H II region interface.

  17. A simple way to model nebulae with distributed ionizing stars

    NASA Astrophysics Data System (ADS)

    Jamet, L.; Morisset, C.

    2008-04-01

    Aims: This work is a follow-up of a recent article by Ercolano et al. that shows that, in some cases, the spatial dispersion of the ionizing stars in a given nebula may significantly affect its emission spectrum. The authors found that the dispersion of the ionizing stars is accompanied by a decrease in the ionization parameter, which at least partly explains the variations in the nebular spectrum. However, they did not research how other effects associated to the dispersion of the stars may contribute to those variations. Furthermore, they made use of a unique and simplified set of stellar populations. The scope of the present article is to assess whether the variation in the ionization parameter is the dominant effect in the dependence of the nebular spectrum on the distribution of its ionizing stars. We examined this possibility for various regimes of metallicity and age. We also investigated a way to model the distribution of the ionizing sources so as to bypass expensive calculations. Methods: We wrote a code able to generate random stellar populations and to compute the emission spectra of their associated nebulae through the widespread photoionization code cloudy. This code can process two kinds of spatial distributions of the stars: one where all the stars are concentrated at one point, and one where their separation is such that their Strömgren spheres do not overlap. Results: We found that, in most regimes of stellar population ages and gas metallicities, the dependence of the ionization parameter on the distribution of the stars is the dominant factor in the variation of the main nebular diagnostics with this distribution. We derived a method to mimic those effects with a single calculation that makes use of the common assumptions of a central source and a spherical nebula, in the case of constant density objects. This represents a computation time saving by a factor of at least several dozen in the case of H ii regions ionized by massive clusters.

  18. Wolf-Rayet central stars of planetary nebulae

    NASA Astrophysics Data System (ADS)

    Todt, H.; Hamann, W.-R.

    A significant number of the central stars of planetary nebulae (CSPNe) are hydrogen-deficient, showing a chemical composition of helium, carbon, and oxygen. Most of them exhibit Wolf-Rayet-like emission line spectra, similar to those of the massive WC Pop I stars, and are therefore classified as of spectral type [WC]. In the last years, CSPNe of other Wolf-Rayet spectral subtypes have been identified, namely PB 8, which is of spectral type [WN/C], and IC 4663 and Abell 48, which are of spectral type [WN]. We review spectral analyses of Wolf-Rayet type central stars of different evolutionary stages and discuss the results in the context of stellar evolution. Especially we consider the question of a common evolutionary channel for [WC] stars. The constraints on the formation of [WN] or [WC/N] subtype stars will also be addressed.

  19. The First Three Catalogues of Southern Star Clusters and Nebulae

    NASA Astrophysics Data System (ADS)

    Cozens, Glen; Orchiston, W.; Walsh, A.

    2011-01-01

    Nicolas de la Caille, James Dunlop and John Herschel compiled the first three catalogues of southern star clusters and nebulae. Lacaille catalogued 42 objects from Cape Town, South Africa, in 1751 and 1752. Dunlop catalogued 629 objects from Parramatta, Australia, in 1826 and Herschel catalogued 1708 objects between 1834 and 1838 from Cape Town. Many of these objects had not been seen before; In this paper we discuss the new discoveries and the accuracy of the positions supplied by Lacaille, Dunlop and Herschel. Half of Dunlop's 629 objects turned out to be asterisms and faint double stars.

  20. The chemical composition of Galactic ring nebulae around massive stars

    NASA Astrophysics Data System (ADS)

    Esteban, C.; Mesa-Delgado, A.; Morisset, C.; García-Rojas, J.

    2016-08-01

    We present deep spectra of ring nebulae associated with Wolf-Rayet (WR) and O-type stars: NGC 6888, G2.4+1.4, RCW 58, S 308, NGC 7635 and RCW 52. The data have been taken with the 10m Gran Telescopio Canarias and the 6.5m Clay Telescope. We extract spectra of several apertures in some of the objects. We derive C$^{++}$ and O$^{++}$ abundances from faint recombination lines in NGC 6888 and NGC 7635, permitting to derive their C/H and C/O ratios and estimate the abundance discrepancy factor (ADF) of O$^{++}$. The ADFs are larger than the typical ones of normal HII regions but similar to those found in the ionised gas of star-forming dwarf galaxies. We find that chemical abundances are rather homogeneous in the nebulae where we have spectra of several apertures: NGC 6888, NGC 7635 and G2.4+1.4. We obtain very high values of electron temperature in a peripheral zone of NGC 6888, finding that shock excitation can reproduce its spectral properties. We find that all the objects associated with WR stars show N enrichment. Some of them also show He enrichment and O deficiency as well as a lower Ne/O than expected, this may indicate the strong action of the ON and NeNa cycles. We have compared the chemical composition of NGC 6888, G2.4+1.4, RCW 58 and S 308 with the nucleosynthesis predicted by stellar evolution models of massive stars. We find that non-rotational models of stars of initial masses between 25 and 40 solar masses seem to reproduce the observed abundance ratios of most of the nebulae.

  1. The chemical composition of Galactic ring nebulae around massive stars

    NASA Astrophysics Data System (ADS)

    Esteban, C.; Mesa-Delgado, A.; Morisset, C.; García-Rojas, J.

    2016-08-01

    We present deep spectra of ring nebulae associated with Wolf-Rayet (WR) and O-type stars: NGC 6888, G2.4+1.4, RCW 58, S 308, NGC 7635 and RCW 52. The data have been taken with the 10m Gran Telescopio Canarias and the 6.5m Clay Telescope. We extract spectra of several apertures in some of the objects. We derive C2+ and O2+ abundances from faint recombination lines in NGC 6888 and NGC 7635, permitting to derive their C/H and C/O ratios and estimate the abundance discrepancy factor (ADF) of O2+. The ADFs are larger than the typical ones of normal H II regions but similar to those found in the ionized gas of star-forming dwarf galaxies. We find that chemical abundances are rather homogeneous in the nebulae where we have spectra of several apertures: NGC 6888, NGC 7635 and G2.4+1.4. We obtain very high values of electron temperature in a peripheral zone of NGC 6888, finding that shock excitation can reproduce its spectral properties. We find that all the objects associated with WR stars show N enrichment. Some of them also show He enrichment and O deficiency as well as a lower Ne/O than expected, this may indicate the strong action of the ON and NeNa cycles. We have compared the chemical composition of NGC 6888, G2.4+1.4, RCW 58 and S 308 with the nucleosynthesis predicted by stellar evolution models of massive stars. We find that non-rotational models of stars of initial masses between 25 and 40 M⊙ seem to reproduce the observed abundance ratios of most of the nebulae.

  2. Ring Planetary Nebulae Ejected from Close Binary Stars

    NASA Astrophysics Data System (ADS)

    Bond, H. E.; Ciardullo, R.; Webbink, R.

    1996-12-01

    We report photometric observations of the central stars of three planetary nebulae (PNe) which appear to be thin circular rings. All three central stars have proven to be close binaries, from CCD observations made at the CTIO and KPNO 0.9-m telescopes. The southern-hemisphere PN Sp 1 is a nearly perfect circular ring. Its central star has a light curve which is a low-amplitude sinusoid with a period of 2.9 days, suggesting a reflection effect in a binary system seen nearly pole-on. We therefore suggested (Bond & Livio, ApJ 355, 568, 1990) that the nebula must be a true toroidal annulus, likewise seen nearly pole-on. SuWt 2 is another southern PN, which appears as a thin ellipse. If it were an Sp 1-like PN, seen almost edge-on, and also ejected from a close binary, we might hope to detect actual stellar eclipses. This has proven to be the case: the central star is an eclipsing binary with a period of 4.8 days. WeBo 1 is a northern PN recently discovered by Webbink and Bond. Morphologically the nebula is extremely similar to SuWt 2, in being an almost mathematically perfect ellipse. Recent observations at KPNO reveal that its central star is also a close binary, with a sinusoidal light curve and a period of approximately 5 days. It is thus becoming clear that some close binaries can undergo a common-envelope interaction that results in a much shorter orbital period accompanied by ejection of a thin nebular ring. Parallels with other objects, including SN 1987A, should be explored.

  3. New Hα Stars, HHL Objects, and a Cometary Nebula

    NASA Astrophysics Data System (ADS)

    Melikian, N. D.; Karapetian, A. A.

    2001-04-01

    Preliminary results of observations of a region containing known H stars are presented. The observations were made on the 2.6-m telescope of the V. A. Ambartsumian Byurakan Astrophysical Observatory in August 2000. A VAGR integral field spectrograph was used in the observations. The size of the region studied is about 6×11 arcmin. Besides the two already known, five new H stars and five HHL objects were discovered in this region. One of these stars coincides with the well-known object RNO 127. One infrared and one cometary nebula were discovered. The presence of so many peculiar objects in a region of such size suggests that it is one of the youngest star-forming regions.

  4. HUBBLE FINDS AN HOURGLASS NEBULA AROUND A DYING STAR

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is an image of MyCn18, a young planetary nebula located about 8,000 light-years away, taken with the Wide Field and Planetary Camera 2 (WFPC2) aboard NASA's Hubble Space Telescope (HST). This Hubble image reveals the true shape of MyCn18 to be an hourglass with an intricate pattern of 'etchings' in its walls. This picture has been composed from three separate images taken in the light of ionized nitrogen (represented by red), hydrogen (green), and doubly-ionized oxygen (blue). The results are of great interest because they shed new light on the poorly understood ejection of stellar matter which accompanies the slow death of Sun-like stars. In previous ground-based images, MyCn18 appears to be a pair of large outer rings with a smaller central one, but the fine details cannot be seen. According to one theory for the formation of planetary nebulae, the hourglass shape is produced by the expansion of a fast stellar wind within a slowly expanding cloud which is more dense near its equator than near its poles. What appears as a bright elliptical ring in the center, and at first sight might be mistaken for an equatorially dense region, is seen on closer inspection to be a potato shaped structure with a symmetry axis dramatically different from that of the larger hourglass. The hot star which has been thought to eject and illuminate the nebula, and therefore expected to lie at its center of symmetry, is clearly off center. Hence MyCn18, as revealed by Hubble, does not fulfill some crucial theoretical expectations. Hubble has also revealed other features in MyCn18 which are completely new and unexpected. For example, there is a pair of intersecting elliptical rings in the central region which appear to be the rims of a smaller hourglass. There are the intricate patterns of the etchings on the hourglass walls. The arc-like etchings could be the remnants of discrete shells ejected from the star when it was younger (e.g. as seen in the Egg Nebula), flow instabilities, or

  5. Improved spectral descriptions of planetary nebulae central stars

    NASA Astrophysics Data System (ADS)

    Weidmann, W. A.; Méndez, R. H.; Gamen, R.

    2015-07-01

    Context. At least 492 central stars of Galactic planetary nebulae (CSPNs) have been assigned spectral types. Since many CSPNs are faint, these classification efforts are frequently made at low spectral resolution. However, the stellar Balmer absorption lines are contaminated with nebular emission; therefore in many cases a low-resolution spectrum does not enable the determination of the H abundance in the CSPN photosphere. Whether or not the photosphere is H deficient is arguably the most important fact we should expect to extract from the CSPN spectrum, and should be the basis for an adequate spectral classification system. Aims: Our purpose is to provide accurate spectral classifications and contribute to the knowledge of central stars of planetary nebulae and stellar evolution. Methods: We have obtained and studied higher quality spectra of CSPNs described in the literature as weak emission-line star (WELS). We provide descriptions of 19 CSPN spectra. These stars had been previously classified at low spectral resolution. We used medium-resolution spectra taken with the Gemini Multi-Object Spectrograph (GMOS). We provide spectral types in the Morgan-Keenan (MK) system whenever possible. Results: Twelve stars in our sample appear to have normal H rich photospheric abundances, and five stars remain unclassified. The rest (two) are most probably H deficient. Of all central stars described by other authors as WELS, we find that at least 26% of them are, in fact, H rich O stars, and at least 3% are H deficient. This supports the suggestion that the denomination WELS should not be taken as a spectral type, because, as a WELS is based on low-resolution spectra, it cannot provide enough information about the photospheric H abundance.

  6. Magnetic fields around AGB stars and Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Vlemmings, W. H. T.

    2014-08-01

    Stars with a mass up to a few solar masses are one of the main contributors to the enrichment of the interstellar medium in dust and heavy elements. However, while significant progress has been made, the process of the mass-loss responsible for this enrichment is still not exactly known and forces beyond radiation pressure might be required. Often, the mass lost in the last phases of the stars life will become a spectacular planetary nebula. The shaping process of often strongly a-spherical PNe is equally elusive. Both binaries and magnetic fields have been suggested to be possible agents although a combination of both might also be a natural explanation. Here I review the current evidence for magnetic fields around AGB and post-AGB stars pre-Planetary Nebulae and PNe themselves. Magnetic fields appear to be ubiquitous in the envelopes of apparently single stars, challenging current ideas on its origin, although we have found that binary companions could easily be hidden from view. There are also strong indications of magnetically collimated outflows from post-AGB/pre-PNe objects supporting a significant role in shaping the circumstellar envelope.

  7. The nebula around the post-AGB star 89 Herculis

    NASA Astrophysics Data System (ADS)

    Bujarrabal, V.; van Winckel, H.; Neri, R.; Alcolea, J.; Castro-Carrizo, A.; Deroo, P.

    2007-06-01

    Aims:We aim to study the structure of the nebula around the post-AGB, binary star 89 Her. The presence of a rotating disk around this star had been proposed but not been yet confirmed by observations. Methods: We present high-resolution PdBI maps of CO J=2-1 and 1-0. Properties of the nebula are directly derived from the data and model fitting. We also present N-band interferometric data on the extent of the hot dust emission, obtained with the VLTI. Results: Two nebular components are found: (a) an extended hour-glass-like structure, with expansion velocities of 7 km s-1 and a total mass 3× 10-3 M{⊙}, and (b) an unresolved very compact component, smaller than 0.4 arcsec and with a low total velocity dispersion of 5 km s-1. We cannot determine the velocity field in the compact component, but we argue that it can hardly be in expansion, since this would require too recent and too sudden an ejection of mass. On the other hand, assuming that this component is a Keplerian disk, we derive disk properties that are compatible with expectations for such a structure; in particular, the size of the rotating gas disk should be very similar to the extent of the hot dust component from our VLTI data. Assuming that the equator of the extended nebula coincides with the binary orbital plane, we provide new results on the companion star mass and orbit. Based on observations carried out with the IRAM Plateau de Bure Interferometer, as well as on observations of the Belgian Guaranteed time on VISA (ESO). IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).

  8. Star Formation in Lynds Dark Nebulae

    NASA Astrophysics Data System (ADS)

    Johnson, Chelen H.; Bemis, G. E.; Paulsen, K. M.; Yueh, N. J.; Rebull, L. M.; DeWolf, C.; DeWolf, T.; Brock, S.; Boerna, J.; Schaefers, J.; McDonald, D. W.; McDonald, J.; Troudt, B.; Wilkinson, B.; Guastella, P.; Peter, A.; Wassmer, W.; Haber, R.; Scaramucci, A.; Spuck, T. S.; Butchart, J.; Holcomb, A.; Karns, B.; Kennedy, S.; Siegel, R.; Weiser, S.; Connelley, M.

    2009-01-01

    Our team observed two Lynds clouds (LDN 425 and LDN 981) using the Spitzer Space Telescope IRAC (3.6, 4.5, 5.8, and 8 microns), and MIPS (24 microns). A preliminary literature search provided IRAS data indicating star formation may be taking place in LDN 425 and LDN 981. The goals of this project were to further explore the known young stellar objects (YSOs) in the two clouds and to search for additional embedded YSOs. In this poster we present our observational methods and the results of our observations including SEDs, color-color diagrams, and color composite images. This research was made possible through the Spitzer Space Telescope Research Program for Teachers and Students and was funded by the Spitzer Science Center (SSC) and the National Optical Astronomy Observatory (NOAO). Please see our companion education posters by McDonald et al. titled "Spitzer - Hot and Colorful Student Activities" and Guastella et al. entitled "Research Based Astronomy in The Secondary Classroom: Lessons Developed for Investigating YSOs Using APT, Excel, and MOPEX".

  9. Star Formation in Giant Complexes: the Cat's Paw Nebula

    NASA Astrophysics Data System (ADS)

    Ascenso, Joana; Wolk, Scott; Lombardi, Marco; Alves, João; Rathborne, Jill; Forbrich, Jan; Leibundgut, Bruno; Hilker, Michael

    2013-07-01

    NGC 6334, the Cat's Paw Nebula, is a 106 M⊙ molecular cloud, one of the most massive known clouds in the Galaxy. It hosts the youngest massive cluster complex within 2 kpc of the Sun, and is therefore an ideal laboratory to investigate the onset and early evolution of star formation in an environment comparable to that of massive, extra-galactic complexes. Using multi-wavelength data, we are conducting the most sensitive and most complete characterization of this unique region to date.

  10. Central stars of planetary nebulae: New spectral classifications and catalogue

    NASA Astrophysics Data System (ADS)

    Weidmann, W. A.; Gamen, R.

    2011-02-01

    Context. There are more than 3000 confirmed and probable known Galactic planetary nebulae (PNe), but central star spectroscopic information is available for only 13% of them. Aims: We undertook a spectroscopic survey of central stars of PNe at low resolution and compiled a large list of central stars for which information was dispersed in the literature. Methods: We observed 45 PNs using the 2.15 m telescope at Casleo, Argentina. Results: We present a catalogue of 492 confirmed and probable CSPN and provide a preliminary spectral classification for 45 central star of PNe. This revises previous values of the proportion of CSPN with atmospheres poor in hydrogen in at least 30% of cases and provide statistical information that allows us to infer the origin of H-poor stars. Based on data collected at the Complejo Astronómico El Leoncito (CASLEO), which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina y Universidades Nacionales de La Plata, Córdoba y San Juan, Argentina.

  11. Hubble Finds an Hourglass Nebula Around a Dying Star

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Taken by the Wide Field Planetary Camera 2 (WFPC2) of the Hubble Space Telescope (HST), this image of MyCn18, a young planetary nebula located about 8,000 light-years away, reveals its true shape to be an hourglass with an intricate pattern of 'etchings' in its walls. The arc-like etchings could be the remnants of discrete shells ejected from the star when it was younger, flow instabilities, or could result from the action of a narrow beam of matter impinging on the hourglass walls. According to one theory on the formation of planetary nebulae, the hourglass shape is produced by the expansion of a fast stellar wind within a slowly expanding cloud, which is denser near its equator than near its poles. Hubble has also revealed other features in MyCn18 which are completely new and unexpected. For example, there is a pair of intersecting elliptical rings in the central region which appear to be the rims of a smaller hourglass. This picture has been composed from three separate images taken in the light of ionized nitrogen (represented by red), hydrogen (green) and doubly-ionized oxygen (blue). The results are of great interest because they shed new light on the poorly understood ejection of stellar matter which accompanies the slow death of sun-like stars. An unseen companion star and accompanying gravitational effects may well be necessary in order to explain the structure of MyCn18. The Marshall Space Flight Center (MSFC) had responsibility for design, development, and construction of the HST.

  12. Hydrogen-deficient Central Stars of Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Todt, H.; Kniazev, A. Y.; Gvaramadze, V. V.; Hamann, W.-R.; Pena, M.; Graefener, G.; Buckley, D.; Crause, L.; Crawford, S. M.; Gulbis, A. A. S.; Hettlage, C.; Hooper, E.; Husser, T.-O.; Kotze, P.; Loaring, N.; Nordsieck, K. H.; O'Donoghue, D.; Pickering, T.; Potter, S.; Romero-Colmenero, E.; Vaisanen, P.; Williams, T.; Wolf, M.

    2015-06-01

    A significant number of the central stars of planetary nebulae (CSPNe) are hydrogen-deficient and are considered as the progenitors of H-deficient white dwarfs. Almost all of these H-deficient CSPNe show a chemical composition of helium, carbon, and oxygen. Most of them exhibit Wolf-Rayet-like emission line spectra and are therefore classified as of spectral type [WC]. In the last years, CSPNe of other Wolf-Rayet spectral subtypes have been identified, namely PB 8 (spectral type [WN/WC]), IC 4663 and Abell 48 (spectral type [WN]). We performed spectral analyses for a number of Wolf-Rayet type central stars of different evolutionary stages with the help of our Potsdam Wolf-Rayet (PoWR) model code for expanding atmospheres to determine relevant stellar parameters. The results of our recent analyses will be presented in the context of stellar evolution and white dwarf formation. Especially the problems of a uniform evolutionary channel for [WC] stars as well as constraints to the formation of [WN] or [WN/WC] subtype stars will be addressed.

  13. The Investigation of Stars, Star Clusters and Nebulae in 'Abd al-Rahman-Sufi's Book of the Fixed Stars

    NASA Astrophysics Data System (ADS)

    Hafez, Ihsan; Stephenson, F. Richard; Orchiston, Wayne

    'Abd al-Rahān al-Sūfī (AD 903-986) is justly famous for his Book of the Fixed Stars. This is an outstanding Medieval treatise on astronomy that was written in AD 964. This work was developed from Ptolemy's Almagest, but was based upon al-Sūfī's own stellar observations. The Book of the Fixed Stars has been copied down through the ages, and currently 35 copies are known to exist in various archival repositories around the world. In this paper we begin with a brief introduction to the Book of the Fixed Stars and provide biographical material about al-Sūfī before reviewing his investigation of stars, star clusters, nebulae and galaxies in his book. We examine al-Sūfī's novel stellar magnitude system, his comments on star colours, and stars mentioned in his book but not in the Almagest. We conclude with a listing of star clusters, nebulae and galaxies, including the earliest-known mention of the Great Nebula in Andromeda.

  14. Dusty disks around central stars of planetary nebulae

    SciTech Connect

    Clayton, Geoffrey C.; De Marco, Orsola; Nordhaus, Jason; Green, Joel; Rauch, Thomas; Werner, Klaus; Chu, You-Hua E-mail: orsola@science.mq.edu.au E-mail: joel@astro.as.utexas.edu E-mail: werner@astro.uni-tuebingen.de

    2014-06-01

    Only a few percent of cool, old white dwarfs (WDs) have infrared excesses interpreted as originating in small hot disks due to the infall and destruction of single asteroids that come within the star's Roche limit. Infrared excesses at 24 μm were also found to derive from the immediate vicinity of younger, hot WDs, most of which are still central stars of planetary nebulae (CSPNe). The incidence of CSPNe with this excess is 18%. The Helix CSPN, with a 24 μm excess, has been suggested to have a disk formed from collisions of Kuiper belt-like objects (KBOs). In this paper, we have analyzed an additional sample of CSPNe to look for similar infrared excesses. These CSPNe are all members of the PG 1159 class and were chosen because their immediate progenitors are known to often have dusty environments consistent with large dusty disks. We find that, overall, PG 1159 stars do not present such disks more often than other CSPNe, although the statistics (five objects) are poor. We then consider the entire sample of CSPNe with infrared excesses and compare it to the infrared properties of old WDs, as well as cooler post-asymptotic giant branch (AGB) stars. We conclude with the suggestion that the infrared properties of CSPNe more plausibly derive from AGB-formed disks rather than disks formed via the collision of KBOs, although the latter scenario cannot be ruled out. Finally, there seems to be an association between CSPNe with a 24 μm excess and confirmed or possible binarity of the central star.

  15. Single rotating stars and the formation of bipolar planetary nebula

    SciTech Connect

    García-Segura, G.; Villaver, E.; Langer, N.; Yoon, S.-C.; Manchado, A.

    2014-03-10

    We have computed new stellar evolution models that include the effects of rotation and magnetic torques under different hypotheses. The goal is to test whether a single star can sustain the rotational velocities needed in the envelope for magnetohydrodynamical(MHD) simulations to shape bipolar planetary nebulae (PNe) when high mass-loss rates take place. Stellar evolution models with main sequence masses of 2.5 and 5 M {sub ☉} and initial rotational velocities of 250 km s{sup –1} have been followed through the PNe formation phase. We find that stellar cores have to be spun down using magnetic torques in order to reproduce the rotation rates observed for white dwarfs. During the asymptotic giant branch phase and beyond, the magnetic braking of the core has a practically null effect on increasing the rotational velocity of the envelope since the stellar angular momentum is efficiently removed by the wind. We have also tested the best possible case scenarios in rather non-physical contexts to give enough angular momentum to the envelope. We find that we cannot get the envelope of a single star to rotate at the speeds needed for MHD simulations to form bipolar PNe. We conclude that single stellar rotators are unlikely to be the progenitors of bipolar PNe under the current MHD model paradigm.

  16. Radio Stars or Radio Nebulae? - The Uncertainties of 1953

    NASA Astrophysics Data System (ADS)

    Sullivan, W. T., III

    1997-12-01

    By the early 1950s radio astronomers in England and Australia had assembled a handful of catalogues giving flux densities (at 100 MHz) and positions for a total of about 200 radio sources. But only a half dozen of these sources had suggested optical identifications and there raged a debate as to whether the radio sources as a whole were galactic or extragalactic. Furthermore, what was the relationship between these discrete radio sources and the strong galactic background radiation? Could a consistent model be constructed in which the background was the integrated radiation from the weaker members of the detected population? This paper aims to convey the uncertainty of astronomers in 1953. The primary data emanated from the surveys of Ryle, Smith and Elsmore (1950), Bolton, Stanley and Slee (1950), Mills (1952), and Hanbury Brown and Hazard (1953). Quoted position uncertainties were typically 0.5 to 2 degrees; even more discouraging, in overlapping regions the surveys seldom agreed. Optical identifications were rare and of varying degrees of acceptance, and in any case were about evenly split between galaxies (e.g., M31, Cyg A, Vir A) and galactic objects (e.g., Tau A = the Crab nebula, Cas A). And why were so many bright galaxies and gaseous nebulae not detected in the radio? Were there two classes of source, as suggested by Bernard Mills? If the bulk of the sources were extragalactic, what was their source of prodigious radio luminosity and why was it so much larger than the Milky Way's? If the background consisted of radio stars with a Population II distribution, was there also an isotropic extragalactic background component, as modelled by Jan Oort and Gart Westerhout (1950)? What in fact was the radiation mechanism for the sources and the background - free-free (but of what optical thickness?), synchrotron (but did the cosmic ray electrons exist?), or something else?

  17. Evolution of Planetary Nebulae with WR-type Central Stars

    NASA Astrophysics Data System (ADS)

    Danehkar, Ashkbiz

    2014-04-01

    This thesis presents a study of the kinematics, physical conditions and chemical abundances for a sample of Galactic planetary nebulae (PNe) with Wolf-Rayet (WR) and weak emission-line stars (wels), based on optical integral field unit (IFU) spectroscopy obtained with the Wide Field Spectrograph (WiFeS) on the Australian National University 2.3 telescope at Siding Spring Observatory, and complemented by spectra from the literature. PNe surrounding WR-type stars constitute a particular study class for this study. A considerable fraction of currently well-identified central stars of PNe exhibit 'hydrogen-deficient' fast expanding atmospheres characterized by a large mass-loss rate. Most of them were classified as the carbon-sequence and a few of them as the nitrogen-sequence of the WR-type stars. What are less clear are the physical mechanisms and evolutionary paths that remove the hydrogen-rich outer layer from these degenerate cores, and transform it into a fast stellar wind. The aim of this thesis is to determine kinematic structure, density distribution, thermal structure and elemental abundances for a sample of PNe with different hydrogen-deficient central stars, which might provide clues about the origin and formation of their hydrogen-deficient stellar atmospheres. Hα and [N II] emission features have been used to determine kinematic structures. Based on spatially resolved observations of these emission lines, combined with archival Hubble Space Telescope imaging for compact PNe, morphological structures of these PNe have been determined. Comparing the velocity maps from the IFU spectrograph with those provided by morpho-kinematic models allowed disentangling of the different morphological components of most PNe, apart from the compact objects. The results indicate that these PNe have axisymmetric morphologies, either bipolar or elliptical. In many cases, the associated kinematic maps for PNe around hot WR-type stars also show the presence of so-called fast

  18. Discovering Massive Runaway Stars with Infrared Bowshock Nebulae: Identifying Twelve New Early-Type Stars using SMOG

    NASA Astrophysics Data System (ADS)

    Chick, William T.; Andrews, Julian E.; Kobulnicky, Henry A.; Povich, Matthew S.; Dale, Daniel A.; Munari, Stephan; Olivier, Grace M.; Schurhammer, Danielle; Sorber, Rebecca L.; Wernke, Heather N.

    2016-01-01

    Massive O and B type stars are crucial to the evolution of the interstellar medium, dominating the production of ionizing radiation, mechanical energy, and heavy elements. However, due to their short lives and relative scarcity, these stars are some of the least well understood and are difficult to locate outside of large star forming regions. A small but significant fraction of these massive stars have been observed to be high-velocity runaway stars moving rapidly away from their origin. When these stars encounter nebular gas they create characteristic arc-shaped bowshocks of heated compressed dust and gas. Using the distinct infrared emission morphology of the hot dust, these bowshock nebulae are predicted to give the location of the massive early type stars.Visual inspection of 24-micron band images from the Spitzer Mapping of the Outer Galaxy (SMOG) revealed 12 new bowshock nebula candidates. Follow up optical spectroscopy from the Wyoming Infrared Observatory confirmed that all 12 of the associated stellar sources are early-type stars. Combined with related results from visual searches for bowshock nebulae using WISE and Spitzer surveys in the inner Galaxy, we have identified over 85 new early type bowshock supporting stellar sources, a 95% success rate. We conclude that morphological selection of arc-shared infrared nebulae with a symmetrically placed star is an efficient way to discover early type stars.This work is supported by the National Science Foundation under grants AST-1063146 (REU), AST-1411851 (RUI), and AST-1412845.

  19. Analysis of the WN star WR 102c, its WR nebula, and the associated cluster of massive stars in the Sickle Nebula

    NASA Astrophysics Data System (ADS)

    Steinke, M.; Oskinova, L. M.; Hamann, W.-R.; Sander, A.; Liermann, A.; Todt, H.

    2016-04-01

    Context. The massive Wolf-Rayet type star WR 102c is located near the Quintuplet Cluster, one of the three massive star clusters in the Galactic centre region. Previous studies indicated that WR 102c may have a dusty circumstellar nebula and is among the main ionising sources of the Sickle Nebula associated with the Quintuplet Cluster. Aims: The goals of our study are to derive the stellar parameters of WR 102c from the analysis of its spectrum and to investigate its stellar and nebular environment. Methods: We obtained observations with the ESO VLT integral field spectrograph SINFONI in the K-band, extracted the stellar spectra, and analysed them by means of stellar atmosphere models. Results: Our new analysis supersedes the results previously reported for WR 102c. We significantly decrease its bolometric luminosity and hydrogen content. We detect four early OB type stars close to WR 102c. These stars have radial velocities similar to that of WR 102c. We suggest that together with WR 102c these stars belong to a distinct star cluster with a total mass of ~ 1000 M⊙. We identify a new WR nebula around WR 102c in the SINFONI map of the diffuse Brγ emission and in the HST Paα images. The Brγ line at different locations is not significantly broadened and similar to the width of nebular emission elsewhere in the H ii region around WR 102c. Conclusions: The massive star WR 102c located in the Galactic centre region resides in a star cluster containing additional early-type stars. The stellar parameters of WR 102c are typical for hydrogen-free WN6 stars. We identify a nebula surrounding WR 102c that has a morphology similar to other nebulae around hydrogen-free WR stars, and propose that the formation of this nebula is linked to interaction of the fast stellar wind with the matter ejected at a previous evolutionary stage of WR 102c. The scientific results reported in this article are based on observations obtained during the ESO VLT program 383.D-0323(A).

  20. DISCOVERY OF TWIN WOLF-RAYET STARS POWERING DOUBLE RING NEBULAE

    SciTech Connect

    Mauerhan, Jon C.; Wachter, Stefanie; Van Dyk, Schuyler D.; Hoard, D. W.; Morris, Patrick W.

    2010-11-20

    We have spectroscopically discovered a pair of twin, nitrogen-type, hydrogen-rich, Wolf-Rayet stars (WN8-9h) that are both surrounded by circular, mid-infrared-bright nebulae detected with the Spitzer Space Telescope and MIPS instrument. The emission is probably dominated by a thermal continuum from cool dust, but also may contain contributions from atomic line emission. There is no counterpart at shorter Spitzer/IRAC wavelengths, indicating a lack of emission from warm dust. The two nebulae are probably wind-swept stellar ejecta released by the central stars during a prior evolutionary phase. The nebulae partially overlap on the sky and we speculate on the possibility that they are in the early stage of a collision. Two other evolved massive stars have also been identified within the area subtended by the nebulae, including a carbon-type Wolf-Rayet star (WC8) and an O7-8 III-I star, the latter of which appears to be embedded in one of the larger WN8-9h nebulae. The derived distances to these stars imply that they are coeval members of an association lying 4.9 {+-} 1.2 kpc from Earth, near the intersection of the Galaxy's Long Bar and the Scutum-Centaurus spiral arm. This new association represents an unprecedented display of complex interactions between multiple stellar winds, outflows, and the radiation fields of evolved massive stars.

  1. The Variable Central Star of Planetary Nebula NGC2346

    NASA Astrophysics Data System (ADS)

    Kohoutek, L.

    1983-06-01

    NGC 2346, known already to Sir William Herschel, has been classified as a planetary nebula by R. Minkowski (1946) on the basis of its appearance on direct photographs. Morphologically it POssesses a distinct axial symmetry and belongs to the class of bipolar nebulae

  2. Physical parameters for 12 planetary nebulae and their central stars in the Magellanic Clouds

    NASA Technical Reports Server (NTRS)

    Aller, Lawrence H.; Keyes, Charles D.; Maran, Stephen P.; Gull, Theodore R.; Michalitsianos, Andrew G.; Stecher, Theodore P.

    1987-01-01

    Nebular and central star parameters and elemental abundances of C, N, O, Ne, S, and Ar are presented for the planetary nebulae N2, N5, N43, N54, and N67 in the SMC and P2, P7, P9, P25, P33, and P40 in the LMC. The nebular chemical compositions are affected by nuclear processes in the precursor stars, which may not have been sufficiently massive to synthesize Ne, S, or Ar, which appear to be deficient with respect to their solar abundances by factors of roughly four and five for the LMC and SMC, respectively. Even after excluding nebulae formed by stars in which O apparently was destroyed by nuclear processes, O depletion in the LMC and SMC nebulae is significantly greater than in galactic planetaries. The estimated masses of the 12 remnant central stars range from 0.58 to 0.71 solar mass.

  3. IUE low-dispersion spectra of four luminous stars in symmetric nebulae

    NASA Technical Reports Server (NTRS)

    Johnson, H. M.

    1980-01-01

    The stars and nebulae are HD 56925 in NGC 2359, + 60 deg 2522 in NGC 7635, AG Car in its nebula, and 209 BAC in M1-67. A discussion of known properties of these systems precedes the IUE data, which are tabulated with types and identifications of significant line features and velocities of ultraviolet-displaced absorption features. Weaver et al.'s theory of the interaction of a stellar wind with the ambient interstellar medium is applied to the combined observational data. This gives a table of self-consistent values for stellar terminal wind velocity, rate of mass loss, and wind power; nebular mass, radius, expansion velocity, and age; also ambient interstellar density and mass swept up from the interstellar medium by the wind. The relatively infrequent occurrence of such symmetric nebulae around young, massive stars is possibly related to the short lifetimes of the nebulae in comparison with stellar evolution lifetimes.

  4. Planetary nebulae: understanding the physical and chemical evolution of dying stars.

    PubMed

    Weinberger, R; Kerber, F

    1997-05-30

    Planetary nebulae are one of the few classes of celestial objects that are active in every part of the electromagnetic spectrum. These fluorescing and often dusty expanding gaseous envelopes were recently found to be quite complex in their dynamics and morphology, but refined theoretical models can account for these discoveries. Great progress was also made in understanding the mechanisms that shape the nebulae and the spectra of their central stars. In addition, applications for planetary nebulae have been worked out; for example, they have been used as standard candles for long-range distances and as tracers of the enigmatic dark matter. PMID:9161999

  5. IUE low-dispersion spectra of six luminous stars in symmetric nebulae

    NASA Technical Reports Server (NTRS)

    Johnson, H. M.

    1982-01-01

    The stars and nebulae are HD 156738 and HDE 319703A, respectively centered in a pair of symmetric nebulae among the NGC 6334 group, AG Car in its nebula, HDE 250550 in nebula 8 of a catalog by Herbig, 209 BAC in Ml-67, and HD 89358 in NGC 3199. These include two O stars, two WN stars, an unstable B supergiant, and a ZAMS B star. Four of them are additions to a previous similar study, and the information about AG CAR and 209 BAC/Ml-67 is extended from that study. The objects are interpreted with Weaver et al.'s (1977) theory of the interaction of a stellar wind with the ambient interstellar medium, except where the short lifetime of the HDE 250550 nebula has forestalled such analysis. Spectral line identifications and types, and several parameters of mass loss, are tabulated. When the present mass loss rates are compared with previous results from other methods, there is an outstanding difference only for WN stars, since 1-3 x 10 to the -7th solar masses/year is derived here.

  6. Central Stars of Planetary Nebulae in the LMC

    NASA Technical Reports Server (NTRS)

    Bianchi, Luciana

    2004-01-01

    In FUSE cycle 2's program B001 we studied Central Stars of Planetary Nebulae (CSPN) in the Large Magellanic Could. All FUSE observations have been successfully completed and have been reduced, analyzed and published. The analysis and the results are summarized below. The FUSE data were reduced using the latest available version of the FUSE calibration pipeline (CALFUSE v2.2.2). The flux of these LMC post-AGB objects is at the threshold of FUSE's sensitivity, and thus special care in the background subtraction was needed during the reduction. Because of their faintness, the targets required many orbit-long exposures, each of which typically had low (target) count-rates. Each calibrated extracted sequence was checked for unacceptable count-rate variations (a sign of detector drift), misplaced extraction windows, and other anomalies. All the good calibrated exposures were combined using FUSE pipeline routines. The default FUSE pipeline attempts to model the background measured off-target and subtracts it from the target spectrum. We found that, for these faint objects, the background appeared to be over-estimated by this method, particularly at shorter wavelengths (i.e., < 1000 A). We therefore tried two other reductions. In the first method, subtraction of the measured background is turned off and and the background is taken to be the model scattered-light scaled by the exposure time. In the second one, the first few steps of the pipeline were run on the individual exposures (correcting for effects unique to each exposure such as Doppler shift, grating motions, etc). Then the photon lists from the individual exposures were combined, and the remaining steps of the pipeline run on the combined file. Thus, more total counts for both the target and background allowed for a better extraction.

  7. The emerging planetary nebula CRL 618 and its unsettled central star(s)

    SciTech Connect

    Balick, B.; Riera, A.; Raga, A.; Velázquez, P. F.; Kwitter, K. B. E-mail: angels.riera@upc.edu E-mail: pablo@nucleares.unam.mx

    2014-11-01

    We report deep long-slit emission-line spectra, the line flux ratios, and Doppler profile shapes of various bright optical lines. The low-ionization lines (primarily [N I], [O I], [S II], and [N II]) originate in shocked knots, as reported by many previous observers. Dust-scattered lines of higher ionization are seen throughout the lobes but do not peak in the knots. Our analysis of these line profiles and the readily discernible stellar continuum shows that (1) the central star is an active symbiotic (whose spectrum resembles the central stars of highly bipolar and young planetary nebulae such as M2-9 and Hen2-437) whose compact companion shows a WC8-type spectrum, (2) extended nebular lines of [O III] and He I originate in the heavily obscured nuclear H II region, and (3) the Balmer lines observed throughout the lobes are dominated by reflected Hα emission from the symbiotic star. Comparing our line ratios with those observed historically shows that (1) the [O III]/Hβ and He I/Hβ ratios have been steadily rising by large amounts throughout the nebula, (2) the Hα/Hβ ratio is steadily decreasing while Hγ/Hβ remains nearly constant, and (3) the low-ionization line ratios formed in the shocked knots have been in decline in different ways at various locations. We show that the first two of these results might be expected if the symbiotic central star has been active and if its bright Hα line has faded significantly in the past 20 years.

  8. The Emerging Planetary Nebula CRL 618 and its Unsettled Central Star(s)

    NASA Astrophysics Data System (ADS)

    Balick, B.; Riera, A.; Raga, A.; Kwitter, K. B.; Velázquez, P. F.

    2014-11-01

    We report deep long-slit emission-line spectra, the line flux ratios, and Doppler profile shapes of various bright optical lines. The low-ionization lines (primarily [N I], [O I], [S II], and [N II]) originate in shocked knots, as reported by many previous observers. Dust-scattered lines of higher ionization are seen throughout the lobes but do not peak in the knots. Our analysis of these line profiles and the readily discernible stellar continuum shows that (1) the central star is an active symbiotic (whose spectrum resembles the central stars of highly bipolar and young planetary nebulae such as M2-9 and Hen2-437) whose compact companion shows a WC8-type spectrum, (2) extended nebular lines of [O III] and He I originate in the heavily obscured nuclear H II region, and (3) the Balmer lines observed throughout the lobes are dominated by reflected Hα emission from the symbiotic star. Comparing our line ratios with those observed historically shows that (1) the [O III]/Hβ and He I/Hβ ratios have been steadily rising by large amounts throughout the nebula, (2) the Hα/Hβ ratio is steadily decreasing while Hγ/Hβ remains nearly constant, and (3) the low-ionization line ratios formed in the shocked knots have been in decline in different ways at various locations. We show that the first two of these results might be expected if the symbiotic central star has been active and if its bright Hα line has faded significantly in the past 20 years.

  9. Central Stars of Planetary Nebulae in the SMC

    NASA Technical Reports Server (NTRS)

    Bianchi, Luciana

    2004-01-01

    In FUSE cycle 3's program C056 we studied four Central Stars of Planetary Nebulae (CSPN) in the Small Magellanic Could. All FUSE observations have been successfully completed and have been reduced and analyzed. The observation of one object (SMP SMC 5) appeared to be off-target and no useful stellar flux was gathered. For another observation (SMP SMC 1) the voltage problems resulted in the loss of data from one of the SiC detectors, but we were still able to analyze the remaining data. The analysis and the results are summarized below. The FUSE data were reduced using the latest available version of the FUSE calibration pipeline (CALFUSE v2.4). The flux of these SMC post-AGB objects is at the threshold of FUSE S sensitivity, and the targets required many orbit-long exposures, each of which typically had low (target) count-rates. The background subtraction required special care during the reduction, and was done in a similar manner to our FUSE cycle 2 BOO1 objects. The resulting calibrated data from the different channels were compared in the overlapping regions for consistency. The final combined, extracted spectra of each target was then modeled to determine the stellar and nebular parameters. The FUSE spectra, combined with archival HST spectra, have been analyzed using stellar atmospheres codes such as TLUSTY and CMFGEN to derive photospheric and wind parameters of the central stars, and with ISM models to determine the amount and temperature of the surrounding atomic and molecular hydrogen. We have combined these results with those of our cycle 4 (D034) program (CSPN of the LMC) in Herald & Bianchi 2004a (paper in preparation, will be submitted to ApJ in June 2004). Two of the three SMC objects analyzed were found to have significantly lower stellar temperatures than had been predicted using nebular photoionization models, indicating either a hotter ionizing companion or the existence of strong shocks in the nebular environment. The analysis also revealed that

  10. The Herschel view of the nebula around the luminous blue variable star AG Carinae

    NASA Astrophysics Data System (ADS)

    Vamvatira-Nakou, C.; Hutsemékers, D.; Royer, P.; Cox, N. L. J.; Nazé, Y.; Rauw, G.; Waelkens, C.; Groenewegen, M. A. T.

    2015-06-01

    Far-infrared Herschel PACS imaging and spectroscopic observations of the nebula around the luminous blue variable (LBV) star AG Car have been obtained along with optical imaging in the Hα+[ N ii ] filter. In the infrared light, the nebula appears as a clumpy ring shell that extends up to 1.2 pc with an inner radius of 0.4 pc. It coincides with the Hα nebula, but extends further out. Dust modeling of the nebula was performed and indicates the presence of large grains. The dust mass is estimated to be ~0.2 M⊙. The infrared spectrum of the nebula consists of forbidden emission lines over a dust continuum. Apart from ionized gas, these lines also indicate the existence of neutral gas in a photodissociation region that surrounds the ionized region. The abundance ratios point towards enrichment by processed material. The total mass of the nebula ejected from the central star amounts to ~15 M⊙, assuming a dust-to-gas ratio typical of LBVs. The abundances and the mass-loss rate were used to constrain the evolutionary path of the central star and the epoch at which the nebula was ejected, with the help of available evolutionary models. This suggests an ejection during a cool LBV phase for a star of ~55 M⊙ with little rotation. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Based in part on observations collected at the European Southern Observatory, La Silla, Chile.Appendices are available in electronic form at http://www.aanda.org

  11. Nothing to Hide -- An X-ray Survey of Star Formation Activity in the Pipe Nebula

    NASA Astrophysics Data System (ADS)

    Forbrich, Jan; Posselt, Bettina; Lada, Charles J.; Covey, Kevin

    2009-09-01

    The Pipe Nebula, a large nearby molecular cloud, lacks obvious signposts of star formation in all but one of more than 130 dust extinction cores that have been identified within it. In a recent mid-infrared survey using Spitzer-MIPS to cover 13 square degrees, we have established that the star formation efficiency for the entire cloud is only ˜0.06%. The mid-infrared data are most sensitive for the earliest evolutionary stages of Young Stellar Objects (YSOs), covering class I protostars and typical class II sources (classical T Tauri stars). X-ray observations allow us to extend our survey to constrain any population of classical and weak-line T Tauri stars. In a first step, we use the ROSAT All-Sky Survey to constrain any overall T Tauri star population of the Pipe Nebula. Due to the fact that the Pipe Nebula is at a distance of only 130 pc, the ROSAT survey is already quite sensitive. Assuming a typical level of extinction, the completeness for G- and K-type stars is estimated to be about 50%. Subsequently, we use XMM-Newton observations pointed at three high-extinction regions within the Pipe Nebula to analyze these areas at higher sensitivity. These three regions are Barnard 59, the only core with ongoing star formation, the ``ring'' (i.e., the highest extinction region in the ``bowl'' of the Pipe), and Barnard 68. We additionally analyze the YSOs of Barnard 59 in the radio continuum to constrain high-energy processes. Overall, our results corroborate our previous Spitzer result that the star formation efficiency of the Pipe Nebula is very low.

  12. Central stars of planetary nebulae. II. New OB-type and emission-line stars

    NASA Astrophysics Data System (ADS)

    Weidmann, W. A.; Gamen, R.

    2011-07-01

    Context. There are more than 3000 confirmed and probably known Galactic planetary nebulae (PNe), but central star spectroscopic information is available for only 13% of them. Aims: We have undertaken a spectroscopic survey of the central stars in PNe to identify their spectral types. Methods: We performed spectroscopic observations at low resolution with the 2-m telescope at CASLEO, Argentina. Results: We present the spectra of 46 central stars of PNe, most of them are OB-type and emission-line stars. Based on data collected at the Complejo Astronómico El Leoncito (CASLEO), which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina y Universidades Nacionales de La Plata, Córdoba y San Juan, Argentina.The reduced spectra (FITS files) are available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/531/A172

  13. The Cocoon nebula and its ionizing star: do stellar and nebular abundances agree?

    NASA Astrophysics Data System (ADS)

    García-Rojas, J.; Simón-Díaz, S.; Esteban, C.

    2014-11-01

    Context. Main-sequence massive stars embedded in an H ii region should have the same chemical abundances as the surrounding nebular gas+dust. The Cocoon nebula (IC 5146), a close-by Galactic H ii region ionized by a narrow line B0.5 V single star (BD+46 3474), is an ideal target to compare nebular and stellar abundances in detail in the same Galactic region. Aims: We investigate the chemical content of oxygen and other elements in the Cocoon nebula from two different points of view: an empirical analysis of the nebular spectrum, and a detailed spectroscopic analysis of the associated early B-type star using state-of-the-art stellar atmosphere modeling. By comparing the stellar and nebular abundances, we aim to indirectly address the long-standing problem of the discrepancy found between abundances obtained from collisionally excited lines and optical recombination lines in photoionized nebulae. Methods: We collected long-slit spatially resolved spectroscopy of the Cocoon nebula and a high-resolution optical spectrum of the ionizing star. Standard nebular techniques along with updated atomic data were used to compute the physical conditions and gaseous abundances of O, N, and S in eight apertures extracted across a semidiameter of the nebula. We performed a self-consistent spectroscopic abundance analysis of BD+46 3474 based on the atmosphere code FASTWIND to determine the stellar parameters and Si, O, and N abundances. Results: The Cocoon nebula and its ionizing star, located at a distance of 800±80 pc, have a chemical composition very similar to the Orion nebula and other B-type stars in the solar vicinity. This result agrees with the high degree of homogeneity of the present-day composition of the solar neighborhood (up to 1.5 Kpc from the Sun) as derived from the study of the local cold-gas interstellar medium. The comparison of stellar and nebular collisionally excited line abundances in the Cocoon nebula indicates that O and N gas+dust nebular values agree

  14. Evolution of Planetary Nebulae with WR-type Central Stars

    NASA Astrophysics Data System (ADS)

    Danehkar, Ashkbiz

    2014-04-01

    This thesis presents a study of the kinematics, physical conditions and chemical abundances for a sample of Galactic planetary nebulae (PNe) with Wolf-Rayet (WR) and weak emission-line stars (wels), based on optical integral field unit (IFU) spectroscopy obtained with the Wide Field Spectrograph (WiFeS) on the Australian National University 2.3 telescope at Siding Spring Observatory, and complemented by spectra from the literature. PNe surrounding WR-type stars constitute a particular study class for this study. A considerable fraction of currently well-identified central stars of PNe exhibit 'hydrogen-deficient' fast expanding atmospheres characterized by a large mass-loss rate. Most of them were classified as the carbon-sequence and a few of them as the nitrogen-sequence of the WR-type stars. What are less clear are the physical mechanisms and evolutionary paths that remove the hydrogen-rich outer layer from these degenerate cores, and transform it into a fast stellar wind. The aim of this thesis is to determine kinematic structure, density distribution, thermal structure and elemental abundances for a sample of PNe with different hydrogen-deficient central stars, which might provide clues about the origin and formation of their hydrogen-deficient stellar atmospheres. Hα and [N II] emission features have been used to determine kinematic structures. Based on spatially resolved observations of these emission lines, combined with archival Hubble Space Telescope imaging for compact PNe, morphological structures of these PNe have been determined. Comparing the velocity maps from the IFU spectrograph with those provided by morpho-kinematic models allowed disentangling of the different morphological components of most PNe, apart from the compact objects. The results indicate that these PNe have axisymmetric morphologies, either bipolar or elliptical. In many cases, the associated kinematic maps for PNe around hot WR-type stars also show the presence of so-called fast

  15. Optical Spectroscopy of X-Ray-selected Young Stars in the Carina Nebula

    NASA Astrophysics Data System (ADS)

    Vaidya, Kaushar; Chen, Wen-Ping; Lee, Hsu-Tai

    2015-12-01

    We present low-resolution optical spectra for 29 X-ray sources identified as either massive star candidates or low-mass pre-main-sequence (PMS) star candidates in the clusters Trumpler 16 and Trumpler 14 of the Carina Nebula. Spectra of two more objects (one with an X-ray counterpart, and one with no X-ray counterpart), not originally our targets, but found close (˜3″) to two of our targets, are presented as well. Twenty early-type stars, including an O8 star, seven B1-B2 stars, two B3 stars, a B5 star, and nine emission-line stars, are identified. Eleven T Tauri stars, including eight classical T Tauri stars (CTTSs) and three weak-lined T Tauri stars, are identified. The early-type stars in our sample are more reddened compared to the previously known OB stars of the region. The Chandra hardness ratios of our T Tauri stars are found to be consistent with the Chandra hardness ratios of T Tauri stars of the Orion Nebula Cluster. Most early-type stars are found to be nonvariable in X-ray emission, except the B2 star J104518.81-594217.9, the B3 star J104507.84-594134.0, and the Ae star J104424.76-594555.0, which are possible X-ray variables. J104452.20-594155.1, a CTTS, is among the brightest and the hardest X-ray sources in our sample, appears to be a variable, and shows a strong X-ray flare. The mean optical and near-infrared photometric variability in the V and Ks bands, of all sources, is found to be ˜0.04 and 0.05 mag, respectively. The T Tauri stars show significantly larger mean variation, ˜0.1 mag, in the Ks band. The addition of one O star and seven B1-B2 stars reported here contributes to an 11% increase of the known OB population in the observed field. The 11 T Tauri stars are the first ever confirmed low-mass PMS stars in the Carina Nebula region.

  16. Dynamos in asymptotic-giant-branch stars as the origin of magnetic fields shaping planetary nebulae.

    PubMed

    Blackman, E G; Frank, A; Markiel, J A; Thomas, J H; Van Horn, H M

    2001-01-25

    Planetary nebulae are thought to be formed when a slow wind from the progenitor giant star is overtaken by a subsequent fast wind generated as the star enters its white dwarf stage. A shock forms near the boundary between the winds, creating the relatively dense shell characteristic of a planetary nebula. A spherically symmetric wind will produce a spherically symmetric shell, yet over half of known planetary nebulae are not spherical; rather, they are elliptical or bipolar in shape. A magnetic field could launch and collimate a bipolar outflow, but the origin of such a field has hitherto been unclear, and some previous work has even suggested that a field could not be generated. Here we show that an asymptotic-giant-branch (AGB) star can indeed generate a strong magnetic field, having as its origin a dynamo at the interface between the rapidly rotating core and the more slowly rotating envelope of the star. The fields are strong enough to shape the bipolar outflows that produce the observed bipolar planetary nebulae. Magnetic braking of the stellar core during this process may also explain the puzzlingly slow rotation of most white dwarf stars. PMID:11206538

  17. A far-infrared emission feature in carbon-rich stars and planetary nebulae

    NASA Technical Reports Server (NTRS)

    Forrest, W. J.; Houck, J. R.; Mccarthy, J. F.

    1981-01-01

    The 16-30 micron spectra of several carbon stars and the planetary nebulae IC 418 and NGC 6572 have been obtained using the NASA C-141 Kuiper Airborne Observatory. A newly observed emission feature appears in the spectrum of IRC +10216 and several other carbon stars at wavelengths greater than 24 microns. The feature is interpreted as resulting from a solid-state resonance in the dust grains which have condensed around these stars. A similar feature appears in the spectra of IC 418 and NGC 6572, implying that the same type of dust is present. Since the dust probably condensed from a carbon-rich gas, this indicates an evolutionary link between carbon stars and these planetary nebulae. No identification for the grain material has been found, but some clues are apparent which could aid in the identification.

  18. A survey of nebulae around Galactic Wolf-Rayet stars in the southern sky, 1

    NASA Technical Reports Server (NTRS)

    Marston, A. P.; Chu, Y.-H.; Garcia-Segura, G.

    1994-01-01

    Images are presented from the first half of a survey of all Galactic Wolf-Rayet stars in the catalog of van der Hucht et al. (1981) residing in the southern skies. Previous surveys used only existing broad-band photographic plates. Encouraged by successes using CCD imaging with interference filters of the LMC and northern Galaxy (Miller & Chu 1993), we have expanded the survey to the southern hemisphere. In the first half of our southern survey, H alpha and (O III) narrow-band CCD images of fields centered on known Wolf-Rayet stars have indicated the existence of six new ring nebulae as well as revealing previously unobserved morphological features in the known ring nebulae. An example of this is an almost perfect ring of (O III) emission residing interior to the previously observed H alpha filaments of the Wolf-Rayet ring nebulae RCW 104. Our surveys to date indicate that 21% of all Wolf-Rayet stars have ring nebulae, with WN-type Wolf-Rayet stars having a greater likelihood for an associated ring.

  19. A Survey for hot Central Stars of Planetary Nebulae I. Methods and First Results

    NASA Astrophysics Data System (ADS)

    Kanarek, Graham C.; Shara, Michael M.; Faherty, Jacqueline K.; Zurek, David; Moffat, Anthony F. J.

    2016-03-01

    We present the results of initial spectrographic followup with the Very Large Telescope (UT3, Melipal) for Ks ≥ 14 Galactic plane C IV emission-line candidates in the near-infrared (NIR). These 7 faint stars all display prominent He I and/or C IV emission lines characteristic of a carbon-rich Wolf-Rayet star. They have NIR colours which are much too blue to be those of distant, classical WR stars. The magnitudes and colours are compatible with those expected for central stars of planetary nebulae, and are likely to come from massive progenitor populations. Our survey has identified thousands of such candidates.

  20. A survey of nebulae around galactic wolf-rayet stars in the southern sky, 2.

    NASA Technical Reports Server (NTRS)

    Marston, A. P.; Yocum, D. R.; Garcia-Segura, G.; Chu, Y.-H.

    1994-01-01

    We present the second half of a charge coupled device (CCD) narrow-band imaging survey of galactic Wolf-Rayet stars located in the southern hemisphere as listed by van der Hucht et al. (1981). Images of 50 Wolf-Rayet stars were taken using a wide-field CCD and narrowband interference filters centered on H alpha and (O III) 5007 A wavelengths. The first half of the survey (Marston, Chu, & Garcia-Segura 1993, hereafter Paper I) revealed six new ring nebulae residing around Wolf-Rayet stars. Here we reveal a possible 11 new rings and the existence of multiple rings associated with two previously known nebula, RCW 118 and G2.4+1.4 and around the stars WR 16 and WR 43. Combining our results with those of Miller & Chu (1993) and Paper I, 92% of the van der Hucht catalog of Wolf-Rayet stars have now been surveyed. Of the 38 possible ring nebulae found in our surveys to date, 22 reside around WN subtype Wolf-Rayet stars, 13 around WC stars, one around a triplet of Wolf-Rayet stars and one around a WO star (WR 102). One ring exists around a WN/WC star (WR 98). A bias toward rings being observed around W-R + OB binaries is noted. Such pairings are generally bright, and the detection of a ring around them may merely be a function of their combined luminosity. Several Wolf-Rayet stars are shown to be surrounded by multiple rings (two or three) which suggests that a number of ejections of stellar material have taken place during their evolution.

  1. OT2_jsokolos_1: The Origin and Nature of the Emission Nebulae around Symbiotic Stars

    NASA Astrophysics Data System (ADS)

    Sokoloski, J.

    2011-09-01

    There is much controversy concerning the ionized nebula that produces the radio through FIR emission from symbiotic stars. The goal of the proposed Herschel observations is to test two popular models for this emission; whether it is produced by a wind from the red giant that is photoionized by Lyman continuum photons from the hot WD (STB) or it comes from plasma that is shock heated as the winds from the two stars collide by constraining the submm SED and measuring the free-free turnover frequency of the ionised component. These two models predict distinctly different shapes for the submm portion of the SED and different dependence of the turnover frequency on binary separation. Thus, submm photometry of a diverse sample of symbiotic stars with know binary parameters that only Herschel can perform is an ideal way to quantitatively test and discriminate between these models (as well as motivate new ones). In terms of astrophysical significance, determining the origin of the radio-through-FIR emission from symbiotic stars has implications for the nature and geometry of mass transfer in wide binaries, mass loss from accreting compact objects, the shaping of asymmetric nebulae around binary stars (including binary planetary nebulae), and the likelihood that symbiotic stars can explode as type Ia supernovae.

  2. The Puzzle of the Narrow Brackett Lines in Super Star Cluster Nebulae

    NASA Astrophysics Data System (ADS)

    Turner, J. L.; Beck, S. C.; Crosthwaite, L. P.; Meier, D. S.

    2001-12-01

    We have high resolution (R ~ 25000) spectra of Brackett recombination line emission from nebulae surrounding young, optically obscured super star clusters in the process of formation. We used the NIRSPEC spectrometer on the Keck Telescope for these observations. We detected Brackett γ emission from nebulae in NGC 660, He 2-10, II Zw 40, and M83. The slit positions were the locations of bright radio nebulae (Carral et al. 1990, ApJ, 362, 434; Turner & Ho 1994, ApJ, 421, 122; Kobulnicky & Johnson, 1999, ApJ, 527, 154; and Beck et al. 2001, in prep.) The Brackett γ intensities confirm that these bright and compact radio sources are indeed HII regions, or ``supernebulae" surrounding young clusters containing several thousand O stars, and potentially millions of cluster stars. The Brackett γ linewidths are in general remarkably small for the sizes and inferred masses of the clusters. Although there is some evidence for cluster winds, we suggest that these nebulae may be graviationally bound, as seems to be the case for the supernebula in NGC 5253 (Turner et al. 2001, submitted.) This research is supported by NSF grant AST-0071276 to J.L.T., the Israel Academy Center for Multi-Wavelength Astronomy Grant to S.C.B., and Sigma Xi Grants-in-Aid of Research to L.P.C. and D.S.M.

  3. The disappearance of eclipses in the central star of the planetary nebula NGC 2346

    NASA Astrophysics Data System (ADS)

    Hao, Xiang-Liang

    1991-12-01

    Results are presented from photographic observations carried out between 1981 and 1987 of the central star in the NGC 2346 planetary nebula, the AGK -0 deg 695 star. It was found that, starting at the end of 1981, there occurred several large-amplitude eclipses which continued for several years, after which the amplitude began to decrease rapidly, from about 4 mag in 1984 to about 1.1 mag in 1986, and was finally reduced to about 0.4-mag fluctuations in 1987. It is suggested that the cause of the unexpected eclipses in NGC 2346 was an ejection of matter from hot regions of the surface of the sdO star. As the ejected matter encountered the cold cloud around the nebula, it was cooled to dust particles, forming an optically thick cloudlets spread over the binary orbit.

  4. Post Asymptotic Giant Branch and Central Stars of Planetary Nebulae in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Weston, Simon

    2012-01-01

    Post asymptotic giant branch (post-AGB) stars, central stars of planetary nebulae (CSPNe) and planetary nebulae (PNe) are important phases of stellar evolution as the material they feedback is the seed of subsequent star formation in a galaxy. The majority of low and intermediate mass stars are expected to evolve through these channels, however, it is uncertain how many actually do, and at what rate. The Galactic halo, with its older population, provides a direct test of evolutionary models for low mass stars. Birthrate estimates of PNe are uncertain and worse still, are in contradiction with accepted white dwarf (WD) birthrate estimates. Much of the uncertainty stems from the lack of complete samples and poorly determined distance estimates. New surveys such as the Sloan Digital Sky Survey (SDSS), Galaxy Evolutionary Explorer (GALEX) and the INT Photometric Ha Survey (IPHAS) have discovered many new PNe and have observed the far edges of the Galaxy. Improved methods of determining distances to CSPNe are presented here, using model atmospheres, evolutionary tracks and high resolution reddening maps utilising these revolutionary surveys. Locating the CSPN is non-trivial particularly for evolved PNe, as they are extended with their central star often displaced from the centre of the nebula. Therefore, photometric criteria are required to locate the CSPN in the nebula's field. Synthetic photometry of the CSPNe is derived from spectral energy distributions (SEDs) computed from a grid of model atmospheres covering the parameter range of CSPNe. The SEDs are convolved with filter transmission curves to compute synthetic magnitudes for a given photometric system which are then calibrated with standard stars and WDs. A further project borne out of a search for luminous central stars of faint PNe, resulted in a systematic search for post-AGB stars in the Galactic halo. In this work, new candidate halo post-AGB stars are discovered from a search through the SDSS spectroscopic

  5. A new Wolf-Rayet star and its circumstellar nebula in Aquila

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Kniazev, A. Y.; Hamann, W.-R.; Berdnikov, L. N.; Fabrika, S.; Valeev, A. F.

    2010-04-01

    We report the discovery of a new Wolf-Rayet star in Aquila via detection of its circumstellar nebula (reminiscent of ring nebulae associated with late WN stars) using the Spitzer Space Telescope archival data. Our spectroscopic follow-up of the central point source associated with the nebula showed that it is a WN7h star (we named it WR121b). We analysed the spectrum of WR121b by using the Potsdam Wolf-Rayet model atmospheres, obtaining a stellar temperature of ~=50kK. The stellar wind composition is dominated by helium with ~20 per cent of hydrogen. The stellar spectrum is highly reddened [E(B - V) = 2.85mag]. Adopting an absolute magnitude of Mv = -5.7, the star has a luminosity of logL/Lsolar = 5.75 and a mass-loss rate of 10-4.7Msolaryr-1, and resides at a distance of 6.3kpc. We searched for a possible parent cluster of WR121b and found that this star is located at ~=1° from the young star cluster embedded in the giant HII region W43 (containing a WN7+a/OB? star - WR121a). We also discovered a bow shock around the O9.5III star ALS9956, located at from the cluster. We discuss the possibility that WR121b and ALS9956 are runaway stars ejected from the cluster in W43. Based on observations collected at the German-Spanish Astronomical Center, Calar Alto, jointly operated by the Max-Planck-Institut für Astronomie Heidelberg and the Instituto de Astrofísica de Andalucía (CSIC). E-mail: vgvaram@mx.iki.rssi.ru (VVG); akniazev@saao.ac.za (AYK); wrh@astro.physik.uni-potsdam.de (WRH); berdnik@sai.msu.ru (LNB); fabrika@sao.ru (SF); azamat@sao.ru (AFV)

  6. Outflows, dusty cores, and a burst of star formation in the North America and Pelican nebulae

    SciTech Connect

    Bally, John; Ginsburg, Adam; Probst, Ron; Reipurth, Bo; Shirley, Yancy L.; Stringfellow, Guy S. E-mail: aginsburg@eso.org E-mail: reipurth@ifa.hawaii.edu E-mail: Guy.Stringfellow@colorado.edu

    2014-12-01

    We present observations of near-infrared 2.12 μm molecular hydrogen outflows emerging from 1.1 mm dust continuum clumps in the North America and Pelican Nebula (NAP) complex selected from the Bolocam Galactic Plane Survey (BGPS). Hundreds of individual shocks powered by over 50 outflows from young stars are identified, indicating that the dusty molecular clumps surrounding the NGC 7000/IC 5070/W80 H II region are among the most active sites of ongoing star formation in the solar vicinity. A spectacular X-shaped outflow, MHO 3400, emerges from a young star system embedded in a dense clump more than a parsec from the ionization front associated with the Pelican Nebula (IC 5070). Suspected to be a binary, the source drives a pair of outflows with orientations differing by 80°. Each flow exhibits S-shaped symmetry and multiple shocks indicating a pulsed and precessing jet. The 'Gulf of Mexico', located south of the North America Nebula (NGC 7000), contains a dense cluster of molecular hydrogen objects (MHOs), Herbig-Haro (HH) objects, and over 300 young stellar objects (YSOs), indicating a recent burst of star formation. The largest outflow detected thus far in the North America and Pelican Nebula complex, the 1.6 parsec long MHO 3417 flow, emerges from a 500 M {sub ☉} BGPS clump and may be powered by a forming massive star. Several prominent outflows such as MHO 3427 appear to be powered by highly embedded YSOs only visible at λ > 70 μm. An 'activity index' formed by dividing the number of shocks by the mass of the cloud containing their source stars is used to estimate the relative evolutionary states of Bolocam clumps. Outflows can be used as indicators of the evolutionary state of clumps detected in millimeter and submillimeter dust continuum surveys.

  7. Extinction-independent determination of temperatures for central stars of planetary nebulae

    NASA Astrophysics Data System (ADS)

    Grewing, M.; Neri, R.

    1990-09-01

    A method to determine temperatures for central stars of planetary nebulae from ultraviolet color indices which are essentially extinction-independent is described and applied. Using a standard extinction law (Seaton, 1979) and assuming that the continuum emission from the nuclei of planetary nebulae can be approximated by black-body distributions, It is shown that the color indices m(1225-1475) -m(1910-2140), m(1225-1475) -m(2195-2395), and m(1475-1725) -m(1738-1951) satisfy the condition of extinction independence for EB-V between the values of 0 and 1.0 for all temperatures T between 20,000 and 100,000 K within an accuracy of a few percent. Using data retrieved from the Unified Low Dispersion Archive of the IUE database for 40 planetary nebulae, their UV color indices were determined, and, from these, their color temperatures were found.

  8. X-Ray Outburst from Young Star in McNeil's Nebula

    NASA Astrophysics Data System (ADS)

    2004-07-01

    Observations with NASA's Chandra X-ray Observatory captured an X-ray outburst from a young star, revealing a probable scenario for the intermittent brightening of the recently discovered McNeil's Nebula. It appears the interaction between the young star's magnetic field and an orbiting disk of gas can cause dramatic, episodic increases in the light from the star and disk, illuminating the surrounding gas. "The story of McNeil's Nebula is a wonderful example of the importance of serendipity in science," said Joel Kastner of the Rochester Institute of Technology in Rochester, New York, lead author of a paper in the July 22 issue of Nature describing the X-ray results. "Visible-light images were made of this region several months before Jay McNeil made his discovery, so it could be determined approximately when and by how much the star flared up to produce McNeil's Nebula." The small nebula, which lies in the constellation Orion about 1300 light years from Earth, was discovered with a 3-inch telescope by McNeil, an amateur astronomer from Paducah, Kentucky, in January 2004. In November 2002, a team led by Ted Simon of the Institute for Astronomy in Hawaii had observed the star-rich region with Chandra in search of young, X-ray emitting stars, and had detected several objects. Optical and infrared astronomers had, as part of independent surveys, also observed the region about a year later, in 2003. After the announcement of McNeil's discovery, optical, infrared and X-ray astronomers rushed to observe the region again. They found that a young star buried in the nebula had flared up, and was illuminating the nebula. This star was coincident with one of the X-ray sources discovered earlier by Simon. Chandra observations obtained by Kastner's group just after the optical outburst showed that the source had brightened fifty-fold in X-rays when compared to Simon's earlier observation. The visible-light eruption provides evidence that the cause of the X-ray outburst is the

  9. Near infrared photometric and optical spectroscopic study of 22 low mass star clusters embedded in nebulae

    NASA Astrophysics Data System (ADS)

    Soares, J. B.; Bica, E.; Ahumada, A. V.; Clariá, J. J.

    2008-02-01

    Aims:Among the star clusters in the Galaxy, those embedded in nebulae represent the youngest group, which has only recently been explored. The analysis of a sample of 22 candidate embedded stellar systems in reflection nebulae and/or HII environments is presented. Methods: We employed optical spectroscopic observations of stars in the directions of the clusters carried out at CASLEO (Argentina) together with near infrared photometry from the 2MASS catalogue. Our analysis is based on source surface density, colour-colour diagrams and on theoretical pre-main sequence isochrones. We take into account the field star contamination by carrying out a statistical subtraction. Results: The studied objects have the characteristics of low mass systems. We derive their fundamental parameters. Most of the cluster ages are younger than 2 Myr. The studied embedded stellar systems in reflection nebulae and/or HII region complexes do not have stars of spectral types earlier than B. The total stellar masses locked in the clusters are in the range 20-220 M⊙. They are found to be gravitationally unstable and are expected to dissolve in a timescale of a few Myr. Based on observations made at Complejo Astronómico El Leoncito, which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba and San Juan, Argentina.

  10. The Nature and Frequency of Outflows from Stars in the Central Orion Nebula Cluster

    NASA Astrophysics Data System (ADS)

    O'Dell, C. R.; Ferland, G. J.; Henney, W. J.; Peimbert, M.; García-Díaz, Ma. T.; Rubin, Robert H.

    2015-10-01

    Recent Hubble Space Telescope images have allowed the determination with unprecedented accuracy of motions and changes of shocks within the inner Orion Nebula. These originate from collimated outflows from very young stars, some within the ionized portion of the nebula and others within the host molecular cloud. We have doubled the number of Herbig-Haro objects known within the inner Orion Nebula. We find that the best-known Herbig-Haro shocks originate from relatively few stars, with the optically visible X-ray source COUP 666 driving many of them. While some isolated shocks are driven by single collimated outflows, many groups of shocks are the result of a single stellar source having jets oriented in multiple directions at similar times. This explains the feature that shocks aligned in opposite directions in the plane of the sky are usually blueshifted because the redshifted outflows pass into the optically thick photon-dominated region behind the nebula. There are two regions from which optical outflows originate for which there are no candidate sources in the SIMBAD database. Based on observations at the San Pedro Martir Observatory operated by the Universidad Nacional Autónoma de México.

  11. Herschel imaging and spectroscopy of the nebula around the luminous blue variable star WRAY 15-751

    NASA Astrophysics Data System (ADS)

    Vamvatira-Nakou, C.; Hutsemékers, D.; Royer, P.; Nazé, Y.; Magain, P.; Exter, K.; Waelkens, C.; Groenewegen, M. A. T.

    2013-09-01

    We have obtained far-infrared Herschel-PACS imaging and spectroscopic observations of the nebular environment of the luminous blue variable (LBV) WRAY 15-751. The far-infrared images clearly show that the main, dusty nebula is a shell of radius 0.5 pc and width 0.35 pc extending outside the Hα nebula. Furthermore, these images reveal a second, bigger and fainter dust nebula that is observed for the first time. Both nebulae lie in an empty cavity, very likely the remnant of the O-star wind bubble formed when the star was on the main sequence. The kinematic ages of the nebulae are calculated to be about 2 × 104 and 8 × 104 years, and we estimated that each nebula contains ~0.05 M⊙ of dust. Modeling of the inner nebula indicates a Fe-rich dust. The far-infrared spectrum of the main nebula revealed forbidden emission lines coming from ionized and neutral gas. Our study shows that the main nebula consists of a shell of ionized gas surrounded by a thin photodissociation region illuminated by an "average" early-B star. We derive the abundance ratios N/O = 1.0 ± 0.4 and C/O = 0.4 ± 0.2, which indicate a mild N/O enrichment. From both the ionized and neutral gas components we estimate that the inner shell contains 1.7 ± 0.6 M⊙ of gas. Assuming a similar dust-to-gas ratio for the outer nebula, the total mass ejected by WRAY 15-751 amounts to 4 ± 2 M⊙. The measured abundances, masses and kinematic ages of the nebulae were used to constrain the evolution of the star and the epoch at which the nebulae were ejected. Our results point to an ejection of the nebulae during the red super-giant (RSG) evolutionary phase of an ~40 M⊙ star. The multiple shells around the star suggest that the mass-loss was not a continuous ejection but rather a series of episodes of extreme mass-loss. Our measurements are compatible with the recent evolutionary tracks computed for an ~40 M⊙ star with little rotation. They support the O-BSG-RSG-YSG-LBV filiation and the idea that high

  12. The origin of the Crab Nebula and the electron capture supernova in 8-10 M solar mass stars

    NASA Technical Reports Server (NTRS)

    Nomoto, K.

    1981-01-01

    The chemical composition of the Crab Nebula is compared with several presupernova models. The small carbon and oxygen abundances in the helium-rich nebula are consistent with only the presupernova model of the star whose main sequence mass was MMS approximately 8-9.5 M. More massive stars contain too much carbon in the helium layer and smaller mass stars do not leave neutron stars. The progenitor star of the Crab Nebula lost appreciable part of the hydrogen-rich envelope before the hydrogen-rich and helium layers were mixed by convection. Finally it exploded as the electron capture supernova; the O+Ne+Mg core collapsed to form a neutron star and only the extended helium-rich envelope was ejected by the weak shock wave.

  13. DETECTION OF THE CENTRAL STAR OF THE PLANETARY NEBULA NGC 6302

    SciTech Connect

    Szyszka, C.; Walsh, J. R.; Zijlstra, Albert A.; Tsamis, Y. G.

    2009-12-10

    NGC 6302 is one of the highest ionization planetary nebulae (PNe) known and shows emission from species with ionization potential > 300 eV. The temperature of the central star must be > 200,000 K to photoionize the nebula, and has been suggested to be up to approx400,000 K. On account of the dense dust and molecular disk, the central star has not convincingly been directly imaged until now. NGC 6302 was imaged in six narrowband filters by Wide Field Camera 3 on the Hubble Space Telescope as part of the Servicing Mission 4 Early Release Observations. The central star is directly detected for the first time, and is situated at the nebula center on the foreground side of the tilted equatorial disk. The magnitudes of the central star have been reliably measured in two filters (F469N and F673N). Assuming a hot blackbody, the reddening has been measured from the (4688-6766 A) color and a value of c = 3.1, A{sub v} = 6.6 mag determined. A G-K main-sequence binary companion can be excluded. The position of the star on the H-R diagram suggests a fairly massive PN central star of about 0.64 M {sub sun} close to the white dwarf cooling track. A fit to the evolutionary tracks for (T, L, t) = (200,000 K, 2000 L {sub sun}, 2200 yr), where t is the nebular age, is obtained; however, the luminosity and temperature remain uncertain. The model tracks predict that the star is rapidly evolving, and fading at a rate of almost 1% per year. Future observations could test this prediction.

  14. The Bizarre Spectral Variability of Central Stars of Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    De Marco, Orsola; Wortel, S.; Bond, Howard E.; Harmer, Dianne

    2007-06-01

    A radial velocity (RV) survey to detect central stars in binary systems was carried out between 2002 and 2004. De Marco et al. (2004) reported that 10 out of 11 monitored stars exhibited strong RV variability, but periods were not detected. Since other mechanisms, such as wind variability, can cause apparent RV variations, we monitored 4 of the 10 RV-variable stars at echelle resolutions to determine the origin of the variability. Although RV changes are confirmed for all four stars, none of them can be ascribed to binarity at this time. However, only for IC4593 is wind variability able to explain most (though not all) spectral variability. For BD+332642, no wind and no pulsations appear to be the origin of the RV changes. Finally, M1-77 and M2-54, both known to be irregular photometric variables, exhibit dramatic RV and line shape variability of the hydrogen and HeI absorption lines, as well as large RV variability of weaker lines, which do not change in shape. There is no satisfactory explanation of this variability, though a combination of wind variability and pulsations is still the best guess at what makes these stars so variable. We suggest that luminous central stars are ill suited to detect spectroscopic binaries, because winds (and possibly pulsations) are pervasive and would mask even strong periodicities. It it likely that a sample of intrinsically faint central stars would more readily yield binary information.

  15. The Guitar nebula - A bow shock from a slow-spin, high-velocity neutron star

    NASA Technical Reports Server (NTRS)

    Cordes, James M.; Romani, Roger W.; Lundgren, Scott C.

    1993-01-01

    The discovery is reported of a prominent nebula produced by the motion of a high-velocity pulsar, PSR 2224 + 65, through partially neutral gas. The pulsar's transverse speed of over about 800 km/s makes it arguably the fastest known star in the Galaxy and guarantees that it will ultimately escape the Galactic potential well. A deep H-alpha image reveals a bright head and a giant limb-brightened 'body' whose variable width suggests that the ambient interstellar gas has density variations on length scales less than 0.1 pc. Thermalization of shock energy occurs at a rate of about 0.01 times the pulsar's spindown loss rate. These observations provide some insights into the likelihood of finding shocks around other pulsars and the use of nebulae to find high-velocity neutron stars either not acting as pulsars or with their radiation beamed away from the earth.

  16. The NuSTAR Program for Pulsar-wind Nebulae

    NASA Astrophysics Data System (ADS)

    Madsen, Kristin; An, H.; Boggs, S. E.; Craig, W. W.; Freyer, C.; Grefenstette, B.; Hailey, C. J.; Humensky, B.; Jakobsen, S.; Kaspi, V.; Lopez, L. A.; Miyasaka, H.; Mori, K.; Nynka, M.; Pivovaroff, M.; Reynolds, S. P.; Kitaguchi, T.; Westergaard, N. J.; Wik, D. R.; Zoglauer, A.; Christensen, F.; Harrison, F.; Stern, D.; Zhang, W.; NuSTAR Team

    2013-01-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR), successfully launched in June 2012, is the first telescope to bring the the hard X-ray (3 to 79 keV) sky into focus. NuSTAR's combination of sensitivity and angular resolution enable it, for the first time, to study the morphology of pulsar wind nebuale (PWNe) above 10 keV. PWNe exhibit particles accelerated in pulsar magnetospheres and/or at relativistic wind- termination shocks; as those particles propagate out and suffer radiative and adiabatic losses, their synchrotron radiation contains morphological and spectral clues to the nature of particle acceleration and propagation. NuSTAR's hard x-ray band coupled with its imaging capabilities will address these questions, and in this poster we present NuSTAR plans for observing PWNe as well as preliminary results from the most famous PWN; the Crab.

  17. Star Formation in the Molecular Cloud Associated with the Monkey Head Nebula: Sequential or Spontaneous?

    NASA Astrophysics Data System (ADS)

    Chibueze, J. O.; Imura, K.; Omodaka, T.; Handa, T.; Nagayama, T.; Fujisawa, K.; Sunada, K.; Nakano, M.; Kamezaki, T.; Yamaguchi, Y.

    2013-03-01

    We mapped the NH3 (1,1), (2,2), and (3,3) lines of the molecular cloud associated with the Monkey Head Nebula (MHN) with 1'.6 angular resolution using Kashima 34 m telescope. Its kinetic temperature distribution was contrary to what is expected for a molecular cloud at the edge of an expanding H II region and suggested that the massive star associated with S252A compact HII region formed spontaneously rather than through a sequential process.

  18. The spectrum of HM Sagittae: A planetary nebula excited by a Wolf-Rayet star

    NASA Technical Reports Server (NTRS)

    Brown, L. W.; Feibelman, W. A.; Hobbs, R. W.; Mccracken, C. W.

    1977-01-01

    A total of image tube spectrograms of HM Sagittae were obtained. More than 70 emission lines, including several broad emission features, were identified. An analysis of the spectra indicates that HM Sagittae is a planetary nebula excited by a Wolf-Rayet star. The most conspicuous Wolf-Rayet feature is that attributed to a blend of C III at 4650 A and He II at 4686 A.

  19. An Analysis and Classification of Dying AGB Stars Transitioning to Pre-Planetary Nebulae

    NASA Technical Reports Server (NTRS)

    Blake, Adam C.

    2011-01-01

    The principal objective of the project is to understand part of the life and death process of a star. During the end of a star's life, it expels its mass at a very rapid rate. We want to understand how these Asymptotic Giant Branch (AGB) stars begin forming asymmetric structures as they start evolving towards the planetary nebula phase and why planetary nebulae show a very large variety of non-round geometrical shapes. To do this, we analyzed images of just-forming pre-planetary nebula from Hubble surveys. These images were run through various image correction processes like saturation correction and cosmic ray removal using in-house software to bring out the circumstellar structure. We classified the visible structure based on qualitative data such as lobe, waist, halo, and other structures. Radial and azimuthal intensity cuts were extracted from the images to quantitatively examine the circumstellar structure and measure departures from the smooth spherical outflow expected during most of the AGB mass-loss phase. By understanding the asymmetrical structure, we hope to understand the mechanisms that drive this stellar evolution.

  20. Photoevaporation of Disks Around Young Stars: Application to Ultracompact HII Regions, Proplyds, and the Solar Nebula

    NASA Technical Reports Server (NTRS)

    Hollenbach, David; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Young massive stars produce sufficient Lyman continuum photon luminosity to significantly affect the structure and evolution of the accretion disks surrounding them. A nearly static, ionized, isothermal 10' K atmosphere forms above the neutral disk, creating a photoevaporative flow from the outer parts of the disk. The resulting slow (10-50 km/s) ionized outflow, which persists for greater than or approximately 10(exp 5) years for disk masses M(sub d) to approximately 0.3M(sub *), may explain the observational characteristics of many ultracompact HII regions. We compare model results to the observed radio free-free spectra and luminosities of ultracompact HII regions and to the interesting source MWC349, which is observed to produce hydrogen masers. We also apply the results to the early solar nebula to explain the the dispersal of the solar nebula and the differences in hydrogen content in the giant planets. Finally, we model the small bright objects ("proplyds") observed in the Orion Nebula as disks around young, low mass stars which axe externally illuminated by the UV photons from the nearby massive star theta(sup 1)C.

  1. Discovery of a [WO] central star in the planetary nebula Th 2-A

    NASA Astrophysics Data System (ADS)

    Weidmann, W. A.; Gamen, R.; Díaz, R. J.; Niemela, V. S.

    2008-09-01

    Context: About 2500 planetary nebulae are known in our Galaxy but only 224 have central stars with reported spectral types in the Strasbourg-ESO Catalogue of Galactic Planetary Nebulae (Acker et al. 1992; Acker et al. 1996). Aims: We have started an observational program aiming to increase the number of PN central stars with spectral classification. Methods: By means of spectroscopy and high resolution imaging, we identify the position and true nature of the central star. We carried out low resolution spectroscopic observations at CASLEO telescope, complemented with medium resolution spectroscopy performed at Gemini South and Magellan telescopes. Results: As a first outcome of this survey, we present for the first time the spectra of the central star of the PN Th 2-A. These spectra show emission lines of ionized C and O, typical in Wolf-Rayet stars. Conclusions: We identify the position of that central star, which is not the brightest one of the visual central pair. We classify it as of type [WO 3]pec, which is consistent with the high excitation and dynamical age of the nebula. Based on data collected at (i) the Complejo Astronómico El Leoncito (CASLEO), which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina y Universidades Nacionales de La Plata, Córdoba y San Juan, Argentina; (ii) the 6.5 m Magellan Telescopes at Las Campanas Observatory, Chile; (iii) the 8 m Gemini South Telescope, Chile.

  2. A GRAND VIEW OF THE BIRTH OF 'HEFTY' STARS - 30 DORADUS NEBULA MONTAGE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This picture, taken in visible light with the Hubble Space Telescope's Wide Field and Planetary Camera 2 (WFPC2), represents a sweeping view of the 30 Doradus Nebula. But Hubble's infrared camera - the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) - has probed deeper into smaller regions of this nebula to unveil the stormy birth of massive stars. The montages of images in the upper left and upper right represent this deeper view. Each square in the montages is 15.5 light-years (19 arcseconds) across. The brilliant cluster R136, containing dozens of very massive stars, is at the center of this image. The infrared and visible-light views reveal several dust pillars that point toward R136, some with bright stars at their tips. One of them, at left in the visible-light image, resembles a fist with an extended index finger pointing directly at R136. The energetic radiation and high-speed material emitted by the massive stars in R136 are responsible for shaping the pillars and causing the heads of some of them to collapse, forming new stars. The infrared montage at upper left is enlarged in an accompanying image. Credits for NICMOS montages: NASA/Nolan Walborn (Space Telescope Science Institute, Baltimore, Md.) and Rodolfo Barba' (La Plata Observatory, La Plata, Argentina) Credits for WFPC2 image: NASA/John Trauger (Jet Propulsion Laboratory, Pasadena, Calif.) and James Westphal (California Institute of Technology, Pasadena, Calif.)

  3. IRAS 03063+5735: A BOWSHOCK NEBULA POWERED BY AN EARLY B STAR

    SciTech Connect

    Kobulnicky, Henry A.; Lundquist, Michael J.; Bhattacharjee, Anirban; Kerton, C. R. E-mail: mlundqui@uwyo.edu E-mail: kerton@iastate.edu

    2012-03-15

    Mid-infrared images from the Spitzer Space Telescope Galactic Legacy Infrared MidPlane Survey Extraordinaire program reveal that the infrared source IRAS 03063+5735 is a bowshock nebula produced by an early B star, 2MASS 03101044+5747035. We present new optical spectra of this star, classify it as a B1.5 V, and determine a probable association with a molecular cloud complex at V{sub LSR} = -38 to -42 km s{sup -1} in the outer Galaxy near l = 140.{sup 0}59, b = -0.{sup 0}250. On the basis of spectroscopic parallax, we estimate a distance of 4.0 {+-} 1 kpc to both the bowshock nebula and the molecular complex. One plausible scenario is that this is a high-velocity runaway star impinging upon a molecular cloud. We identify the H II region and stellar cluster associated with IRAS 03064+5638 at a projected distance of 64 pc as one plausible birth site. The spectrophotometric distance and linkage to a molecular feature provides another piece of data helping to secure the ill-determined rotation curve in the outer Galaxy. As a by-product of spectral typing this star, we present empirical spectral diagnostic diagrams suitable for approximate spectral classification of O and B stars using He lines in the little-used yellow-red portion of the optical spectrum.

  4. Star formation in Taurus Auriga Perseus and the California nebula

    NASA Astrophysics Data System (ADS)

    Toth, L. Viktor; Zahorecz, Sarolta; Doi, Yasuo; Onishi, Toshikazu

    2015-08-01

    Star formation and interstellar medium (ISM) structure were investigated in the Taurus, Auriga, Perseus and California nearby star forming regions. Properties of the ISM was derived using the Planck Early Cold Core (ECC) catalogue, AKARI FIR all sky maps and the Osaka-1.85m CO survey.The clustering of the clumps was studied by identifying groups with the Minimum Spanning Tree method of Cartwright & Whitworth. Majority of the ECC objects are in groups, 16 of them in the Taurus region. We calculated dust temperature and hydrogen column density, mass, and turbulent energy of all the ECC clumps.Mid- and far-infrared point sources of the region were characterized to describe the star formation properties of the ECC clumps based on 2MASS, WISE, and AKARI FIS photometric catalogues. As many as 6000 sources were classified to young stellar object (YSO) evolutionary classes based on their bolometric temperatures, and the mid-IR slopes of their spectral energy distribution (SED). A detailed analysis with SED fitting was performed for 585 far-infrared sources. Only ~ 10 % of those have so far known YSO associations in the Simbad database. About 50% of the ECC clumps are actively star forming, significantly more, than estimated previously.

  5. The origin of extended interstellar shells around Wolf-Rayet stars having bright optical ring nebulae

    NASA Technical Reports Server (NTRS)

    Nichols, J. S.; Fesen, R. A.

    1994-01-01

    Investigations of the interstellar environment around Wolf-Rayet (WR) stars have lead to the discovery of extended shells of gas and dust 50-100 pc in diameter in the lines of sight toward three WR stars. In this paper, several origins for these extended shells are discussed. While positional coincidences cannot be excluded, the locations of the WR stars near the projected centers of the shells, the detection of only shortward-shifted, high-velocity UV absorption line components in their IUE spectra, plus commonality of some WR star properties which are rare in the general WR star population suggest some casual connections between the WR stars and formation of interstellar shells. To access whether the high-velocity UV interstellar absorption lines are a frequent phenomenon related to WR stellar winds, we present a survey of such features in all WR stars observed with IUE through 1991. Of 35 stars studied, only four are found to have components with velocity displacements greater than 45 km/s which are not attributable to previously identified OB association superbubbles. The means a surprising 82% of non-OB association WR stars show no evidence of high-velocity gas in their lines of sight at IUE's spectral resolution, suggesting that high-velocity interstellar absorption lines are not a common consequence of Wolf-Rayet star stellar winds alone. We review the properties of three WR stars (HD 50896, HD 96548, and HD 192163) which may reside inside extended interstellar shells and find that they are similar in terms of spectral class (WN5-8), presence of an optical ring nebula, and reported photometric variability. Evaluation of possible origins of the extended shells suggests these three stars are in a post X-ray binary stage of high-mass binary star evolution. If this is correct, then the large interstellar shells detected might be evidence of either supernova remnant shells generated by the explosion of the binary's primary star, or non-conservative mass transfer

  6. The peculiar O6f star HD 148937 and the symmetrically surrounding nebulae

    NASA Technical Reports Server (NTRS)

    Johnson, H. M.

    1972-01-01

    The ultraviolet continuum of the star is observed and, after standard reddening corrections are applied, it is found to be hotter than a model 05 V star. The Of star and its two companions are photometered around wavelength 4640, 4686, and 4861 A. The results confirm Westerlund's (1960) absolute visual magnitude of about -6 for the Of star and confirm his rejection of NGC 6164-5 as a planetary nebula. Peculiarities of the system of nebular shells around HD 148937, of which NGC 6164-5 are the innermost, are discussed with reference to radiofrequency data. A standard extrapolation from the optical flux density of NGC 6164-5 predicts a detectable radio source but it does not appear in the relevant surveys.

  7. The spectrum of the central star of the planetary nebula in M22

    NASA Technical Reports Server (NTRS)

    Harrington, J. P.; Paltoglou, George

    1993-01-01

    New optical observations of the central star of the planetary nebula IRAS 18333-2357 in the globular cluster M22 show lines of H I, He II, C IV, N IV, and N V. The spectrum closely resembles the sdO star KS 292, which has surface abundances enhanced by products of hydrogen shell burning and helium burning, and an effective temperature of 75,000 K. The lines of C in IRAS 18333-2357 seem somewhat stronger than in KS 292, and the lines of N are considerably stronger. The presence of substantial hydrogen is surprising in view of the hydrogen-poor nature of the nebular ejecta. If IRAS 18333-2357 is as hot as its analog, its luminosity is about 14,000 lunar luminosity. This value is higher than that theoretically expected for single-star evolution of M22 cluster stars.

  8. Detail of the star WR124 and the surrounding nebula M1-67.

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The massive, hot central star is known as a Wolf-Rayet star. This extremely rare and short-lived class of super-hot star is going through a violent, transitional phase characterized by the fierce ejection of mass. The blobs may result from the furious stellar wind that does not flow smoothly into space but has instabilities which make it clumpy. This black and white image was made in the light of atomic hydrogen. The contrast has been increased to emphasize the fine detail in the nebula near the central star. Credit: Yves Grosdidier (University of Montreal and Observatoire de Strasbourg), Anthony Moffat (Universitie de Montreal), Gilles Joncas (Universite Laval), Agnes Acker (Observatoire de Strasbourg), and NASA

  9. High Resolution Radio Observations of the Nebulae of Luminous Blue Variable Stars

    NASA Astrophysics Data System (ADS)

    Mercer, Allison; Chizek, M.; Lang, C. C.; Figer, D. F.; Najarro, P.

    2006-12-01

    Luminous Blue Variable (LBV) stars represent an important, but short-lived, evolutionary phase of massive stars marked by extreme mass-loss events. The ejecta from these events appear as associated LBV nebulae (LBVN). Radio observations of the LBVN can provide insight into previous and current mass loss rates of the star, as well as the details of expansion into the surrounding ISM. Here, we report new multi-frequency, multi-configuration Very Large Array (VLA) observations of seven Galactic LBVN. We present preliminary 8.5 and 22.5 GHz results on LBVN sources AFGL2298, NaSt1, G79.29+0.46, G26.47+0.02, the Galactic Center Pistol Star, Galactic Center FMM362 and LBV 1806-20. These high-resolution observations reveal structure in the LBVN.

  10. Hyperspectral Imagers for the Study of Massive Star Nebulae

    NASA Astrophysics Data System (ADS)

    Drissen, L.; Alarie, A.; Martin, T.; Spiomm/Sitelle Team

    2012-12-01

    We present two wide-field imaging Fourier transform spectrometers built by our team to study the interstellar medium around massive stars in the Milky Way and nearby galaxies. SpIOMM, attached to the Mont Mégantic 1.6-m telescope, is capable of obtaining the visible spectrum of every source of light in a 12 arcminute field of view, with a spectral resolution ranging from R = 1 (wide-band image) to R = 25 000, resulting in about a million spectra with a spatial resolution of one arcsecond. SITELLE will be a similar instrument attached to the Canada-France-Hawaii telescope, and will be in operation in early 2013. We illustrate SpIOMM's capabilities to study the interactions between massive stars and their environment.

  11. Galactic ring nebulae associated with Wolf-Rayet stars. VI. NGC 3199, anon (MR 26), RCW 58, and RCW 104

    SciTech Connect

    Chu, Y.

    1982-03-15

    We have obtained narrow-band interference filter photographs and high resolution Fabry-Perot spectra for four galactic ring nebulae associated with Wolf-Rayet stars: NGC 3199, anon (MR 26), RCW 58, and RCW 104. All of these four nebulae show interaction between the stellar wind and the ambient interstellar medium. NGC 3199, anon (MR 26), and RCW 104 are classified as W-type nebulae. RCW 58, having a prominent ring of stellar ejecta, is classified as an E-type nebula. For most W-type nebulae, the kinetic energy in the shell is only about 1% of the total mechanical energy input from the stellar wind, while the ratio of the shell momentum to the total momentum injected by the stellar wind is about 0.5 and apparently increases with the nebular age.

  12. The Rapid Evolution of the Exciting Star of the Stingray Nebula

    NASA Technical Reports Server (NTRS)

    Reindl, N.; Rauch, T.; Parthasarathy, M.; Werner, K.; Kruk, J.W.; Hamann, W. R.; Sander, A.; Todt, H.

    2014-01-01

    Context: SAO244567, the exciting star of the Stingray nebula, is rapidly evolving. Previous analyses suggested that it has heated up from an effective temperature of about 21 kK in 1971 to over 50 kK in the 1990s. Canonical post-asymptotic giant branch evolution suggests a relatively high mass while previous analyses indicate a low-mass star. Aims: A comprehensive model-atmosphere analysis of UV and optical spectra taken during 1988-2006 should reveal the detailed temporal evolution of its atmospheric parameters and provide explanations for the unusually fast evolution. Methods: Fitting line profiles from static and expanding non-LTE model atmospheres to the observed spectra allowed us to study the temporal change of effective temperature, surface gravity, mass-loss rate, and terminal wind velocity. In addition, we determined the chemical composition of the atmosphere. Results: We find that the central star has steadily increased its effective temperature from 38 kK in 1988 to a peak value of 60 kK in 2002. During the same time, the star was contracting, as concluded from an increase in surface gravity from log g = 4.8 to 6.0 and a drop in luminosity. Simultaneously, the mass-loss rate declined from log(M/M (solar mass) yr (exp -1)) = -9.0 to -11.6 and the terminal wind velocity increased from v (infinity) = 1800 km s (exp -1) to 2800 km s (exp -1). Since around 2002, the star stopped heating and has cooled down again to 55 kK by 2006. It has a largely solar surface composition with the exception of slightly subsolar carbon, phosphorus, and sulfur. The results are discussed by considering different evolutionary scenarios. Conclusions: The position of SAO244567 in the log T (sub eff) -log g plane places the star in the region of sdO stars. By comparison with stellar-evolution calculations, we confirm that SAO244567 must be a low-mass star (M < 0.55 solar mass). However, the slow evolution of the respective stellar evolutionary models is in strong contrast to the

  13. C/O and N/O ratios in planetary nebulae with [WC] central stars

    NASA Astrophysics Data System (ADS)

    García-Rojas, J.; Peña, M.; Delgado-Inglada, G.; García-Hernández, D. A.; Morisset, C.

    2014-04-01

    Planetary nebulae (PNe) around [WR] central stars (WRPNe) constitute a particular photoionized nebula class, representing about 10-15% of the PNe with known progenitor. We have studied 14 of them, detecting a large number of optical recombination lines (ORLs) from different ions of O and C (O+, O++, C++, C+3). This allows us to determine the C/O ratio, which is of paramount importance to constraint stellar evolution models. We have compared the obtained N/O and C/O ratios obtained with those derived from stellar evolution models, and we estimate that about half of our PNe have progenitors with initial masses similar to or larger than 4 Msun . These results are consistent with the results obtained from an independent analysis by Górny & García-Hernández (2014).

  14. Herschel observations of the nebula M1-67 around the Wolf-Rayet star WR 124

    NASA Astrophysics Data System (ADS)

    Vamvatira-Nakou, C.; Hutsemékers, D.; Royer, P.; Waelkens, C.; Groenewegen, M. A. T.; Barlow, M. J.

    2016-04-01

    Infrared Herschel imaging and spectroscopic observations of the nebula M1-67 around the Wolf-Rayet star WR 124 have been obtained along with optical imaging observations. The infrared images reveal a clumpy dusty nebula that extends up to 1 pc. The comparison with the optical images shows that the ionized gas nebula coincides with the dust nebula, the dust and the gas being mixed together. A photodissociation region is revealed from the infrared spectroscopic analysis. The analysis of the infrared spectrum of the nebula, where forbidden emission lines of ionized elements were detected, showed that the nebula consists of mildly processed material with the calculated abundance number ratios being N/O = 1.0 ± 0.5 and C/O = 0.46 ± 0.27. Based on a radiative transfer model, the dust mass of the nebula was estimated to be 0.22 M⊙ with a population of large grains being necessary to reproduce the observations. The comparison of the mass-loss rate and the abundance ratios to theoretical models of stellar evolution led to the conclusion that the nebular ejection took place during a RSG/YSG evolutionary phase of a central star with an initial mass of 32 M⊙. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Based in part on observations collected at the European Southern Observatory, La Silla, Chile.

  15. THE CHANDRA PLANETARY NEBULA SURVEY (ChanPlaNS). III. X-RAY EMISSION FROM THE CENTRAL STARS OF PLANETARY NEBULAE

    SciTech Connect

    Montez, R. Jr.; Kastner, J. H.; Freeman, M.; and others

    2015-02-10

    We present X-ray spectral analysis of 20 point-like X-ray sources detected in Chandra Planetary Nebula Survey observations of 59 planetary nebulae (PNe) in the solar neighborhood. Most of these 20 detections are associated with luminous central stars within relatively young, compact nebulae. The vast majority of these point-like X-ray-emitting sources at PN cores display relatively ''hard'' (≥0.5 keV) X-ray emission components that are unlikely to be due to photospheric emission from the hot central stars (CSPN). Instead, we demonstrate that these sources are well modeled by optically thin thermal plasmas. From the plasma properties, we identify two classes of CSPN X-ray emission: (1) high-temperature plasmas with X-ray luminosities, L {sub X}, that appear uncorrelated with the CSPN bolometric luminosity, L {sub bol} and (2) lower-temperature plasmas with L {sub X}/L {sub bol} ∼ 10{sup –7}. We suggest these two classes correspond to the physical processes of magnetically active binary companions and self-shocking stellar winds, respectively. In many cases this conclusion is supported by corroborative multiwavelength evidence for the wind and binary properties of the PN central stars. By thus honing in on the origins of X-ray emission from PN central stars, we enhance the ability of CSPN X-ray sources to constrain models of PN shaping that invoke wind interactions and binarity.

  16. The Chandra Planetary Nebula Survey (ChanPlaNS). III. X-Ray Emission from the Central Stars of Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Montez, R., Jr.; Kastner, J. H.; Balick, B.; Behar, E.; Blackman, E.; Bujarrabal, V.; Chu, Y.-H.; Corradi, R. L. M.; De Marco, O.; Frank, A.; Freeman, M.; Frew, D. J.; Guerrero, M. A.; Jones, D.; Lopez, J. A.; Miszalski, B.; Nordhaus, J.; Parker, Q. A.; Sahai, R.; Sandin, C.; Schonberner, D.; Soker, N.; Sokoloski, J. L.; Steffen, M.; Toalá, J. A.; Ueta, T.; Villaver, E.; Zijlstra, A.

    2015-02-01

    We present X-ray spectral analysis of 20 point-like X-ray sources detected in Chandra Planetary Nebula Survey observations of 59 planetary nebulae (PNe) in the solar neighborhood. Most of these 20 detections are associated with luminous central stars within relatively young, compact nebulae. The vast majority of these point-like X-ray-emitting sources at PN cores display relatively "hard" (>=0.5 keV) X-ray emission components that are unlikely to be due to photospheric emission from the hot central stars (CSPN). Instead, we demonstrate that these sources are well modeled by optically thin thermal plasmas. From the plasma properties, we identify two classes of CSPN X-ray emission: (1) high-temperature plasmas with X-ray luminosities, L X, that appear uncorrelated with the CSPN bolometric luminosity, L bol and (2) lower-temperature plasmas with L X/L bol ~ 10-7. We suggest these two classes correspond to the physical processes of magnetically active binary companions and self-shocking stellar winds, respectively. In many cases this conclusion is supported by corroborative multiwavelength evidence for the wind and binary properties of the PN central stars. By thus honing in on the origins of X-ray emission from PN central stars, we enhance the ability of CSPN X-ray sources to constrain models of PN shaping that invoke wind interactions and binarity.

  17. The central star of the planetary nebula Abell 78

    NASA Technical Reports Server (NTRS)

    Kaler, J. B.; Feibelman, W. A.

    1984-01-01

    The ultraviolet spectrum of the nucleus of Abell 78, one of the two planetaries known to contain zones of nearly pure helium, is studied. The line spectrum and wind velocities are examined, the determination of interstellar extinction for assessing circumstellar dust is improved, and the temperature, luminosity, and core mass are derived. The results for A78 are compared with results for A30, and it is concluded that the dust distributions around the two central stars are quite different. The temperature of the A78 core is not as high as previously believed, and almost certainly lies between 67,000 K and 130,000 K. The most likely temperature range is 77,000-84,000 K. The core mass lies between 0.56 and 0.70 solar mass, with the most likely values between 0.56 and 0.58 solar mass.

  18. Rotational velocities of single and binary O-type stars in the Tarantula Nebula

    NASA Astrophysics Data System (ADS)

    Ramírez-Agudelo, O. H.; Sana, H.; de Koter, A.; Simón-Díaz, S.; de Mink, S. E.; Tramper, F.; Dufton, P. L.; Evans, C. J.; Gräfener, G.; Herrero, A.; Langer, N.; Lennon, D. J.; Maíz Apellániz, J.; Markova, N.; Najarro, F.; Puls, J.; Taylor, W. D.; Vink, J. S.

    2015-01-01

    Rotation is a key parameter in the evolution of massive stars, affecting their evolution, chemical yields, ionizing photon budget, and final fate. We determined the projected rotational velocity, υ e sin i, of ~330 O-type objects, i.e. ~210 spectroscopic single stars and ~110 primaries in binary systems, in the Tarantula nebula or 30 Doradus (30 Dor) region. The observations were taken using VLT/FLAMES and constitute the largest homogeneous dataset of multi-epoch spectroscopy of O-type stars currently available. The most distinctive feature of the υ e sin i distributions of the presumed-single stars and primaries in 30 Dor is a low-velocity peak at around 100 km s-1. Stellar winds are not expected to have spun-down the bulk of the stars significantly since their arrival on the main sequence and therefore the peak in the single star sample is likely to represent the outcome of the formation process. Whereas the spin distribution of presumed-single stars shows a well developed tail of stars rotating more rapidly than 300 km s-1, the sample of primaries does not feature such a high-velocity tail. The tail of the presumed-single star distribution is attributed for the most part - and could potentially be completely due - to spun-up binary products that appear as single stars or that have merged. This would be consistent with the lack of such post-interaction products in the binary sample, that is expected to be dominated by pre-interaction systems. The peak in this distribution is broader and is shifted toward somewhat higher spin rates compared to the distribution of presumed-single stars. Systems displaying large radial velocity variations, typical for short period systems, appear mostly responsible for these differences.

  19. Spitzer Observations of Young Stars in the Witch Head Nebula (IC2118)

    NASA Astrophysics Data System (ADS)

    Spuck, T. S.; Bowser, D. H., II; Ehrhart, B. R.; Maranto, A. R.; Greer, M. T.; Preis, J. V.; Weston, P. D.; Rebull, L. M.; Roelofsen, T. E.; Sepulveda, B.; Hughes, A. S.; Sharma, N. D.; Weehler, C. R.; Herrera, J. M.

    2005-12-01

    Two high-Galactic latitude molecular clouds (HLC) in the region of IC 2118, the Witch Head Nebula, appear to be forming stars (Kun et al. 2004). Star formation in HLCs, while rare, may be the origin of some of the apparently isolated T Tauri stars revealed by ROSAT. At only ˜210 pc away, the clouds in IC 2118 are thought to be excited by Rigel. Kun et al. (2004) reported the discovery of several T Tauri stars in this region and estimated their ages to be 2.5 Myr. We observed a ˜15'}×15{' region centered on the head of the northernmost cloud with Spitzer, using IRAC (3.6, 4.5, 5.8, and 8 microns) and MIPS (24, 70, and 160 microns). We have approximately quadrupled the number of known or suspected young objects in this region. In this poster, we will present color-color plots and SEDs of these stars, and we will compare the properties of these stars to those of other star-forming regions. These observations are part of the Spitzer Space Telescope Research Program for Teachers and Students, so these data are also being used for educational purposes; please see our companion educational poster by Weehler et al.

  20. A BUTTERFLY-SHAPED 'PAPILLON' NEBULA YIELDS SECRETS OF MASSIVE STAR BIRTH

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A NASA Hubble Space Telescope view of a turbulent cauldron of starbirth, called N159, taking place 170,000 light-years away in our satellite galaxy, the Large Magellanic Cloud (LMC). Torrential stellar winds from hot newborn massive stars within the nebula sculpt ridges, arcs, and filaments in the vast cloud, which is over 150 light-years across. A rare type of compact ionized 'blob' is resolved for the first time to be a butterfly-shaped or 'Papillon' (French for 'butterfly') nebula, buried in the center of the maelstrom of glowing gases and dark dust. The unprecedented details of the structure of the Papillon, itself less than 2 light-years in size (about 2 arcseconds in the sky), are seen in the inset. A possible explanation of this bipolar shape is the outflow of gas from massive stars (over 10 times the mass of our sun) hidden in the central absorption zone. Such stars are so hot that their radiation pressure halts the infall of gas and directs it away from the stars in two opposite directions. Presumably, a dense equatorial disk formed by matter still trying to fall in onto the stars focuses the outstreaming matter into the bipolar directions. This observation is part of a search for young massive stars in the LMC. Rare are the cases where we can see massive stars so early after their birth. The red in this true-color image is from the emission of hydrogen and the yellow from high excitation ionized oxygen. The picture was taken on September 5, 1998 with the Wide Field Planetary Camera 2. The Hubble observations of the Papillon nebula were conducted by the European astronomers Mohammad Heydari-Malayeri (Paris Observatory, France) and co-investigators Michael Rosa (Space Telescope-European Coordinating Facility, European Southern Observatory, Germany), Vassilis Charmandaris (Paris Observatory), Lise Deharveng (Marseille Observatory, France), and Hans Zinnecker (Astrophysical Institute, Potsdam, Germany). Their work is submitted for publication in the European

  1. The Transformation of an AGB Star to a Planetary Nebula: How the Journey Begins

    NASA Astrophysics Data System (ADS)

    Sahai, Raghvendra; Blumenfeld, C.; Morris, M.; S'anchez Contreras, C.; Claussen, M.

    2010-01-01

    We report the results from an HST imaging survey of a sample of late AGB stars with a detected history of extensive past mass-loss, i.e., those in which this process has now come to an end. The goal of this survey is to identify and characterise the earliest stages of the process that transforms these objects, first into bipolar or multipolar pre-planetary nebulae (PPNe), and then into similarly-shaped planetary nebulae. Since the cessation of mass-loss leads to the lack of hot dust close to the star, their thermal emission at short ( 25 micron) wavelengths, is expected to be lower than that for typical AGB stars. We have therefore used the IRAS 25 to 12 micron flux ratio, F25/F12 > 0.33 (but < 0.67 in order to exclude PPNe), to select a list of 60 such ``nascent pre-planetary nebulae" (or nPPNe); 48 were imaged in our SNAPshot imaging program. We found compact, but non-stellar, morphologies in about a quarter of our observed sample. The remaining objects are either unresolved, or only marginally resolved. Aspherical structure is seen in the resolved objects. The aspherical structure in nPPNe is different from that observed in PPNe, which generally show limb-brightened, roughly equal-sized lobes on both sides of the center. In contrast, only one-sided structures are seen in our survey nPPNe. In some objects, a diffuse, round, halo is also seen, representing the undisturbed AGB mass-loss envelope. A few sources show discrete circular (partial) arc-like features. The discovery of the one-side collimated features, together with detailed earlier studies of a few nPPNe (e.g. V Hya, IRC+10216), supports the hypothesis that the mechanism for creating the large-scale density inhomogeneties are high velocity outflows carving the AGB mass-loss envelope from the inside out.

  2. Propagation of Highly Efficient Star Formation in the North American Nebula (NGC 7000)

    NASA Astrophysics Data System (ADS)

    Toujima, Hideyuki; Handa, Toshihiro; Omodaka, Toshihiro; Nagayama, Takumi; Kobayashi, Hideyuki; Koyama, Yasuhiro

    2013-03-01

    We mapped the molecular cloud associated with the North American Nebula in the NH3 lines and the H2O maser using the Kashima 34-m telescope. The line ratio shows the molecular gas is cold. For the clumps and subclumps in the cloud we also estimate the star forming efficiency (SFE). The east end of the cloud shows the highest SEF, 0.62, and the other end is the lowest, 0.06. The 3 dimensional structure derived using the published Hα map suggests the east end is in the HII region and it should be a reason why the SFE is high there.

  3. When Asymmetric Cosmic Bubbles Betray a Difficult Marriage: the Study of Binary Central Stars of Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Boffin, H. M. J.; Miszalski, B.

    2011-09-01

    Planetary Nebulae represent a powerful window into the evolution of low-intermediate mass stars that have undergone extensive mass-loss. The nebula manifests itself in an extremely wide variety of shapes, but exactly how the mass lost is shaped into such a diverse range of morphologies is still highly uncertain despite over thirty years of vigorous debate. Binaries have long been thought to offer a solution to this vexing problem. Now, thanks to recent surveys and improved observing strategies, it appears clearly that a binary channel, in particular common-envelope (CE) evolution, is responsible for a large fraction of planetary nebulae. Moreover, as planetary nebulae are just “fresh out of the oven” compared to other post-CE systems, they provide invaluable contributions to the study of common-envelope evolution and to the formation of jets in binary systems. Our studies have also started to identify strong links between binarity and morphology, including a high proportion of bipolar nebulae and rings of low ionisation filaments resembling SN 1987A. Equally important are the newly found binary CSPN with intermediate periods, which appear linked to chemically peculiar stars whose composition was modified by binary evolution. Their study may also reveal much information on mass and angular momentum transfer processes in binary stars. Here we show examples of four PNe for which we have discovered their binary nature, including the discovery of a rare case of a barium-rich cool central star.

  4. Chandra Reveals a Compact Nebula Created by a Shooting Neutron Star

    NASA Astrophysics Data System (ADS)

    2000-06-01

    In one of its most bizarre images yet, NASA's Chandra X-ray Observatory shows the details of a compact nebula that resembles a gigantic cosmic crossbow. The nebula, located in the Vela supernova remnant, is created as a rapidly rotating neutron star, or pulsar, spins out rings and jets of high-energy particles while shooting through space. "What is fascinating is that the jets from the pulsar are directed exactly along the direction of the pulsar's motion," said Dr. George Pavlov of Penn State University, University Park today at the 196th national meeting of the American Astronomical Society in Rochester, New York. "The southern jet looks like a rocket exhaust!" The X-ray jet can be traced all the way in to the neutron star, and an inner ring is seen for the first time. This ring is thought to represent a shock wave due to matter rushing away from the neutron star. More focused flows at the neutron star's polar regions produce jets of particles that blast away at near the speed of light. Pavlov explained that shortly after the star exploded, jets with unequal thrust along the poles of the neutron star could have accelerated it like a rocket. The neutron star is enveloped in a cloud of high-energy particles emitting X rays as they spiral around magnetic field lines. This cloud, or nebula, is embedded in a much larger cloud produced by the supernova and has a swept-back, cometary shape because of its motion through the larger cloud. The dramatic bow-like structure at the leading edge of the nebula is perpendicular to the jets and has the appearance of a cosmic crossbow with the jets as the arrows. This bow and the smaller one inside it, are thought to be the near edges of tilted rings of X-ray emission from high-energy particles produced by the central neutron star. The neutron star-ring-jet system, which resulted from an explosion in the constellation Vela ten thousand or more years ago, is similar to the remarkable structure observed by Chandra in the Crab Nebula

  5. New models for the evolution of post-asymptotic giant branch stars and central stars of planetary nebulae

    NASA Astrophysics Data System (ADS)

    Miller Bertolami, Marcelo Miguel

    2016-04-01

    Context. The post-asymptotic giant branch (AGB) phase is arguably one of the least understood phases of the evolution of low- and intermediate- mass stars. The two grids of models presently available are based on outdated micro- and macrophysics and do not agree with each other. Studies of the central stars of planetary nebulae (CSPNe) and post-AGB stars in different stellar populations point to significant discrepancies with the theoretical predictions of post-AGB models. Aims: We study the timescales of post-AGB and CSPNe in the context of our present understanding of the micro- and macrophysics of stars. We want to assess whether new post-AGB models, based on the latter improvements in TP-AGB modeling, can help us to understand the discrepancies between observation and theory and within theory itself. In addition, we aim to understand the impact of the previous AGB evolution for post-AGB phases. Methods: We computed a grid of post-AGB full evolutionary sequences that include all previous evolutionary stages from the zero age main sequence to the white dwarf phase. We computed models for initial masses between 0.8 and 4 M⊙ and for a wide range of initial metallicities (Z0 = 0.02, 0.01, 0.001, 0.0001). This allowed us to provide post-AGB timescales and properties for H-burning post-AGB objects with masses in the relevant range for the formation of planetary nebulae (~0.5-0.8 M⊙). We included an updated treatment of the constitutive microphysics and included an updated description of the mixing processes and winds that play a key role during the thermal pulses (TP) on the AGB phase. Results: We present a new grid of models for post-AGB stars that take into account the improvements in the modeling of AGB stars in recent decades. These new models are particularly suited to be inputs in studies of the formation of planetary nebulae and for the determination of the properties of CSPNe from their observational parameters. We find post-AGB timescales that are at

  6. The WO stars. II. Long slit spectroscopy of the G2.4+1.4 nebula around Sand 4.

    NASA Astrophysics Data System (ADS)

    Polcaro, V. F.; Rossi, C.; Norci, L.; Viotti, R.

    1995-11-01

    We have investigated the association of the massive, evolved WO star Sand 4 (WR 102) with the peculiar diffuse nebula G2.4+1.4 in which it is embedded. Long slit spectra at four different positions were used to study many regions of the nebula and to derive their physical parameters. From the Hα/Hβ ratio a mean E_B-V_=1.25 is derived, with regions of enhanced reddening around Sand 4, and, possibly, at the NE knot of the nebula. We find that the electron density varies from less than 100 to 900cm^-2^. The ionization largely changes from one region to another, reaching a maximum at the bright arc north of Sand 4. Regions of strong He II λ468.6 emission are found to the east and 4" west of Sand 4. Some of the knots of which the nebula is composed appear overabundant in He, with He/H up to >0.2. Two regions of the nebula present a marked nitrogen anomaly. We suggest that some regions of the nebula, to the NE and to the west might be the shock front which should have been generated by enhanced mass loss during a previous LBV phase of the star, which is presently forming a partially hidden ring-like structure. The variable helium and nitrogen enrichment of the nebula is tentatively linked with the evolutionary history of Sand 4, in the framework of the present-day evolutionary models of very high mass stars. We also suggest that the successive mass loss phases of the central star are associated with an evolutionary path in the He/H, N^+^/S^+^ diagram. The final fate of Sand 4 should be a type Ib supernova, embedded in a ring-like nebular structure, such as that observed in the Kepler SNR.

  7. A molecular line survey of a sample of AGB stars and planetary nebulae

    NASA Astrophysics Data System (ADS)

    Smith, C. L.; Zijlstra, A. A.; Fuller, G. A.

    2015-11-01

    A millimeter molecular line survey of three carbon-rich asymptotic giant branch stars and two oxygen-rich planetary nebulae has been carried out over the frequency range 80.5-115.5 GHz. 68 different transitions were detected in the data from 27 different molecular species. The hyperfine structure of C2H and C13CH has been fitted to constrain the optical depth of their transitions. All other transitions have been constrained on the basis of their line profile shapes. Rotation temperatures and column densities have been calculated for all possible species, with adaptations to the methods applied in order to account for the hyperfine structure of various transitions. From the column densities, carbon, silicon and sulphur isotopic ratios have been determined. The results corroborate IRAS 15194-5115 as a J-type star, whilst excluding IRAS 15082-4808 and IRAS 07454-7112 as such.

  8. Infrared dust features of late-type stars and planetary nebulae

    NASA Technical Reports Server (NTRS)

    Glaccum, W.

    1995-01-01

    The author presents 16-65 micron spectra of late-type stars and proto-planetary nebulae (PPN) obtained with the Goddard 24-channel spectrophotometer from the Kuiper Airborne Observatory (KAO). The spectra of these objects contain most of the 9-13 known dust features, all discovered from the KAO, at wavelengths greater than 22 microns. The 8-100 micron spectra of a few representative objects are modeled with simple grains selected from a wide range of candidate solids. Hot sapphire is the most likely source of the 13 micron feature found in some M and MS star. Likely candidates for other features include ice, sulfides, and crystalline silicates. Also presented is a review of grain candidate materials for which optical properties in the far infrared have been measured, and a list of those for which measurements are needed.

  9. On the terminal velocities of winds in central stars of planetary nebulae

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.

    1986-01-01

    The theory of radiatively driven stellar winds is applied to the central stars of planetary nebulae, and the predicted relation between escape velocity and terminal velocity of the wind is assessed. Ultraviolet spectra obtained with IUE indicate that the terminal velocities of winds from planetary nuclei, which range from 600 to 3600 km/sec, are strongly correlated with stellar temperature. The theory of radiative winds predicts that the terminal velocity of the wind = T(1.2), the constant of proportionality being a function of stellar mass and line-force parameter, alpha. Given a mass of 0.60 solar mass for central stars with winds, the line-force parameter alpha = 0.70, a value higher than Abbott's predictions, alpha = 0.61 (1982).

  10. Far-Ultraviolet Temperature Diagnostics for Hot Central Stars of Planetary Nebulae

    NASA Technical Reports Server (NTRS)

    Sonneborn, G.; Ipin, R. C.; Herald, J.

    2007-01-01

    The effective temperature of hot central stars of planetary nebulae is usually determined from the ratios of optical He II lines. However, far-ultraviolet spectra from the FUSE satellite of several hot (T(sub eff) > 70,000 K) hydrogen-rich central stars have stellar features that imply a significantly hotter effective temperature than that determined from He II. There are many stellar features in the long wavelength portion of the FUSE spectrum. These include O VI 1146-47, F VI 1039.5, FeVII 1118.6, 1141.4, FeVI 1120.9, 1131.5, and NiVI 1124.2, 1148.2. The strong FVI 1139.5 line is of interest because of the large overabundance (over 100X solar) of F in some PG1159 stars reported recently by Werner et al. (2005). Modeling these spectral features may provide an method for measuring the effective temperature of these stars independent of the He II lines. An example of HD 200516, the central star of NGC 7009 (T(sub eff)= 82000 K from He II vs 95000 K from Far-W metal lines) is presented.

  11. Discovering Massive Runaway Stars with Infrared Bow Shock Nebulae: First Results

    NASA Astrophysics Data System (ADS)

    Andrews, Julian E.; Povich, Matthew S.; Kobulnicky, Henry A.; Chick, William T.; Dale, Daniel A.; Munari, Stephan; Olivier, Grace M.; Schurhammer, Danielle; Sorber, Rebecca L.; Wernke, Heather N.

    2016-01-01

    We have searched the plane of the Milky Way for candidate 22 μm and 24 μm infrared bow shock nebulae using the Wide-Field Infrared Survey Explorer (WISE) All-Sky Data Release and Spitzer GLIMPSE mosaic images. Infrared bow shocks driven by massive, OB stars can provide new constraints on stellar mass-loss rates and reveal new runaway late O- and early B-type stars. Candidate infrared bow shocks identified in this search were chosen using the criteria of a mostly symmetric arc-like morphology with the arc being bright in only 22 or 24 μm along with an apparent driving star associated with the bow shock in line with its axis of symmetry. Preliminary visible spectroscopic observations of candidate bow shock driving stars obtained using the Longslit Spectrograph at the Wyoming Infrared Observatory (WIRO) reveal that these visual inspections yield a 95% success rate of finding late O- or early B-type stars.This work is supported by the National Science Foundation under grants AST-1063146 (REU), AST-1411851 (RUI), and AST-1412845.

  12. The post-common envelope central stars of the planetary nebulae Henize 2-155 and Henize 2-161

    NASA Astrophysics Data System (ADS)

    Jones, D.; Boffin, H. M. J.; Rodríguez-Gil, P.; Wesson, R.; Corradi, R. L. M.; Miszalski, B.; Mohamed, S.

    2015-08-01

    We present a study of Hen 2-155 and Hen 2-161, two planetary nebulae which bear striking morphological similarities to other planetary nebulae known to host close-binary central stars. Both central stars are revealed to be photometric variables while spectroscopic observations confirm that Hen 2-155 is host to a double-eclipsing, post-common-envelope system with an orbital period of 3h33m making it one of the shortest period binary central stars known. The observations of Hen 2-161 are found to be consistent with a post-common-envelope binary of period ~1 day. A detailed model of the central star of Hen 2-155 is produced, showing the nebular progenitor to be a hot, post-AGB remnant of approximately 0.62 M⊙, consistent with the age of the nebula, and the secondary star to be an M dwarf whose radius is almost twice the expected zero age main sequence radius for its mass. In spite of the small numbers, all main-sequence companions, of planetary nebulae central stars, to have had their masses and radii constrained by both photometric and spectroscopic observations have also been found to display this "inflation". The cause of the "inflation" is uncertain but is probably related to rapid accretion, immediately before the recent common-envelope phase, to which the star has not yet thermally adjusted. The chemical composition of both nebulae is also analysed, showing both to display elevated abundance discrepancy factors. This strengthens the link between elevated abundance discrepancy factors and close binarity in the nebular progenitor. Full Tables 2-5, and 7 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/580/A19

  13. BD-22deg3467, a DAO-type Star Exciting the Nebula Abell 35

    NASA Technical Reports Server (NTRS)

    Ziegler, M.; Rauch, T.; Werner, K.; Koppen, J.; Kruk, J. W.

    2013-01-01

    Spectral analyses of hot, compact stars with non-local thermodynamical equilibrium (NLTE) model-atmosphere techniques allow the precise determination of photospheric parameters such as the effective temperature (T(sub eff)), the surface gravity (log g), and the chemical composition. The derived photospheric metal abundances are crucial constraints for stellar evolutionary theory. Aims. Previous spectral analyses of the exciting star of the nebula A35, BD-22deg3467, were based on He+C+N+O+Si+Fe models only. For our analysis, we use state-of-the-art fully metal-line blanketed NLTE model atmospheres that consider opacities of 23 elements from hydrogen to nickel. We aim to identify all observed lines in the ultraviolet (UV) spectrum of BD-22deg3467 and to determine the abundances of the respective species precisely. Methods. For the analysis of high-resolution and high signal-to-noise ratio (S/N) far-ultraviolet (FUSE) and UV (HST/STIS) observations, we combined stellar-atmosphere models and interstellar line-absorption models to fully reproduce the entire observed UV spectrum. Results. The best agreement with the UV observation of BD-22deg3467 is achieved at T(sub eff) = 80 +/- 10 kK and log g = 7.2 +/- 0.3. While T(sub eff) of previous analyses is verified, log g is significantly lower. We re-analyzed lines of silicon and iron (1/100 and about solar abundances, respectively) and for the first time in this star identified argon, chromium, manganese, cobalt, and nickel and determined abundances of 12, 70, 35, 150, and 5 times solar, respectively. Our results partially agree with predictions of diffusion models for DA-type white dwarfs. A combination of photospheric and interstellar line-absorption models reproduces more than 90% of the observed absorption features. The stellar mass is M approx. 0.48 Solar Mass. Conclusions. BD.22.3467 may not have been massive enough to ascend the asymptotic giant branch and may have evolved directly from the extended horizontal branch

  14. BD-22°3467, a DAO-type star exciting the nebula Abell 35

    NASA Astrophysics Data System (ADS)

    Ziegler, M.; Rauch, T.; Werner, K.; Köppen, J.; Kruk, J. W.

    2012-12-01

    Context. Spectral analyses of hot, compact stars with non-local thermodynamical equilibrium (NLTE) model-atmosphere techniques allow the precise determination of photospheric parameters such as the effective temperature (Teff), the surface gravity (log g), and the chemical composition. The derived photospheric metal abundances are crucial constraints for stellar evolutionary theory. Aims: Previous spectral analyses of the exciting star of the nebula A 35, BD-22°3467, were based on He+C+N+O+Si+Fe models only. For our analysis, we use state-of-the-art fully metal-line blanketed NLTE model atmospheres that consider opacities of 23 elements from hydrogen to nickel. We aim to identify all observed lines in the ultraviolet (UV) spectrum of BD-22°3467 and to determine the abundances of the respective species precisely. Methods: For the analysis of high-resolution and high signal-to-noise ratio (S/N) far-ultraviolet (FUSE) and UV (HST/STIS) observations, we combined stellar-atmosphere models and interstellar line-absorption models to fully reproduce the entire observed UV spectrum. Results: The best agreement with the UV observation of BD-22°3467 is achieved at Teff = 80 ± 10 kK and log g = 7.2 ± 0.3. While Teff of previous analyses is verified, log g is significantly lower. We re-analyzed lines of silicon and iron (1/100 and about solar abundances, respectively) and for the first time in this star identified argon, chromium, manganese, cobalt, and nickel and determined abundances of 12, 70, 35, 150, and 5 times solar, respectively. Our results partially agree with predictions of diffusion models for DA-type white dwarfs. A combination of photospheric and interstellar line-absorption models reproduces more than 90% of the observed absorption features. The stellar mass is M ≈ 0.48 M⊙. Conclusions.BD-22°3467 may not have been massive enough to ascend the asymptotic giant branch and may have evolved directly from the extended horizontal branch to the white dwarf

  15. Binary Central Stars of Planetary Nebulae Discovered through Photometric Variability. IV. The Central Stars of HaTr 4 and Hf 2-2

    NASA Astrophysics Data System (ADS)

    Hillwig, Todd C.; Bond, Howard E.; Frew, David J.; Schaub, S. C.; Bodman, Eva H. L.

    2016-08-01

    We explore the photometrically variable central stars of the planetary nebulae HaTr 4 and Hf 2-2. Both have been classified as close binary star systems previously based on their light curves alone. Here, we present additional arguments and data confirming the identification of both as close binaries with an irradiated cool companion to the hot central star. We include updated light curves, orbital periods, and preliminary binary modeling for both systems. We also identify for the first time the central star of HaTr 4 as an eclipsing binary. Neither system has been well studied in the past, but we utilize the small amount of existing data to limit possible binary parameters, including system inclination. These parameters are then compared to nebular parameters to further our knowledge of the relationship between binary central stars of planetary nebulae and nebular shaping and ejection.

  16. Nucleosynthesis Predictions for Intermediate-Mass AGB Stars: Comparison to Observations of Type I Planetary Nebulae

    NASA Technical Reports Server (NTRS)

    Karakas, Amanda I.; vanRaai, Mark A.; Lugaro, Maria; Sterling, Nicholas C.; Dinerstein, Harriet L.

    2008-01-01

    Type I planetary nebulae (PNe) have high He/H and N/O ratios and are thought to be descendants of stars with initial masses of approx. 3-8 Stellar Mass. These characteristics indicate that the progenitor stars experienced proton-capture nucleosynthesis at the base of the convective envelope, in addition to the slow neutron capture process operating in the He-shell (the s-process). We compare the predicted abundances of elements up to Sr from models of intermediate-mass asymptotic giant branch (AGB) stars to measured abundances in Type I PNe. In particular, we compare predictions and observations for the light trans-iron elements Se and Kr, in order to constrain convective mixing and the s-process in these stars. A partial mixing zone is included in selected models to explore the effect of a C-13 pocket on the s-process yields. The solar-metallicity models produce enrichments of [(Se, Kr)/Fe] less than or approx. 0.6, consistent with Galactic Type I PNe where the observed enhancements are typically less than or approx. 0.3 dex, while lower metallicity models predict larger enrichments of C, N, Se, and Kr. O destruction occurs in the most massive models but it is not efficient enough to account for the greater than or approx. 0.3 dex O depletions observed in some Type I PNe. It is not possible to reach firm conclusions regarding the neutron source operating in massive AGB stars from Se and Kr abundances in Type I PNe; abundances for more s-process elements may help to distinguish between the two neutron sources. We predict that only the most massive (M grester than or approx.5 Stellar Mass) models would evolve into Type I PNe, indicating that extra-mixing processes are active in lower-mass stars (3-4 Stellar Mass), if these stars are to evolve into Type I PNe.

  17. X-ray Emission from Hot Bubbles in nebulae around Evolved Stars

    NASA Astrophysics Data System (ADS)

    Toalá Sánz, Jesús Alberto

    This thesis presents an observational and numerical study on the X-ray emission related to the formation and evolution from hot bubbles in nebulae around evolved stars. The observational part of this study consists mainly in observations obtained from the X-ray satellites X-ray Multi Mirror Mission (XMM-Newton) and Chandra X-ray Observatory (CXO). We have made use of optical, infrared, and ultraviolet observations that have complemented our results and analysis. These observations have allowed us to study the Wolf-Rayet (WR) nebulae S 308 and NGC 6888 and that around the WR star WR 16. We have also studied the planetary nebulae (PNe) NGC 6543 and Abell 78 (A 78). The X-ray telescopes, XMM-Newton and CXO, have allowed us to study the distribution and physical characteristics of the hot and diffuse gas in the WR nebulae S 308 and NGC 6888 with exquisite detail. Even though the CXO observations do not map entirely NGC 6888, we are able to estimate global parameters of the X-ray emission making use of ROSAT observations. Previous observations performed with were hampered by Suzaku, ROSAT, and ASCA were hampered by a large number of point sources in the line of sight of the nebulae. S 308 was observed with XMM-Newton with four pointings. We have made use of the most up-to-date tools for the analysis of soft and diffuse X-ray emission (the ESAS tasks). We found that in both nebulae the hot gas has a plasma temperature of 1-1.5×10^6 K and it is delineated by the [O III] emission and not the Hα as stated in previous studies. A notable difference between these two WR nebulae is that S 308 has a limb-brightened morphology in the distribution of its hot gas, while NGC 6888 displays three maxima. We have studied the WR nebula around WR 16 with archived XMM-Newton observations. Even though it was expected that diffuse X-ray emission should be detected from a spherical, non-disrupted WR nebula, by comparison with S 308 and NGC 6888, we are not able to detect such emission

  18. The rapid evolution of the exciting star of the Stingray nebula

    NASA Astrophysics Data System (ADS)

    Reindl, N.; Rauch, T.; Parthasarathy, M.; Werner, K.; Kruk, J. W.; Hamann, W.-R.; Sander, A.; Todt, H.

    2014-05-01

    Context. SAO 244567, the exciting star of the Stingray nebula, is rapidly evolving. Previous analyses suggested that it has heated up from an effective temperature of about 21 kK in 1971 to over 50 kK in the 1990s. Canonical post-asymptotic giant branch evolution suggests a relatively high mass while previous analyses indicate a low-mass star. Aims: A comprehensive model-atmosphere analysis of UV and optical spectra taken during 1988-2006 should reveal the detailed temporal evolution of its atmospheric parameters and provide explanations for the unusually fast evolution. Methods: Fitting line profiles from static and expanding non-LTE model atmospheres to the observed spectra allowed us to study the temporal change of effective temperature, surface gravity, mass-loss rate, and terminal wind velocity. In addition, we determined the chemical composition of the atmosphere. Results: We find that the central star has steadily increased its effective temperature from 38 kK in 1988 to a peak value of 60 kK in 2002. During the same time, the star was contracting, as concluded from an increase in surface gravity from log g = 4.8 to 6.0 and a drop in luminosity. Simultaneously, the mass-loss rate declined from log (Ṁ/M⊙ yr-1) = -9.0 to -11.6 and the terminal wind velocity increased from v∞ = 1800 km s-1 to 2800 km s-1. Since around 2002, the star stopped heating and has cooled down again to 55 kK by 2006. It has a largely solar surface composition with the exception of slightly subsolar carbon, phosphorus, and sulfur. The results are discussed by considering different evolutionary scenarios. Conclusions: The position of SAO 244567 in the log Teff-log g plane places the star in the region of sdO stars. By comparison with stellar-evolution calculations, we confirm that SAO 244567 must be a low-mass star (M< 0.55 M⊙). However, the slow evolution of the respective stellar evolutionary models is in strong contrast to the observed fast evolution and the young planetary

  19. GT2_proyer_3: Unveiling the evolutionary paths of the most massive stars through the study of their ejected nebulae

    NASA Astrophysics Data System (ADS)

    Royer, P.

    2011-05-01

    Several important questions remain open regarding the latest stages of evolution of the most massive stars, in particular regarding the exact evolutionary paths between the various subtypes of O stars, LBVs and Wolf-Rayet stars, and the mass-loss history of these objects throughout their lives. In the framework of the MESS GTKP+GT1, we have obtained or will obtain PACS imaging of 9 massive star nebulae of various types (LBV, LBV candidate, OF/WN, Of?p, WR) and PACS spectroscopy of 4 of them. In this short follow-up proposal we want to obtain PACS line spectroscopy for 3 peculiar massive and evolved objects for which spectroscopy is lacking. In particular, these observations will allow to determine the elemental abundances in the nebulae as well as the mass of the neutral gas using the fine structure lines formed in the ionized gas and in the photo-dissociation region respectively.

  20. Chandra Finds X-ray Star Bonanza in the Orion Nebula

    NASA Astrophysics Data System (ADS)

    2000-01-01

    NASA's Chandra X-ray Observatory has resolved nearly a thousand faint X-ray-emitting stars in a single observation of young stars in the Orion Nebula. The discovery--the richest field of X-ray sources ever obtained in the history of X-ray astronomy--will be presented on Friday, January 14, at the 195th national meeting of the American Astronomical Society in Atlanta, Georgia. The Orion region is a dense congregation of about 2,000 very young stars formed during the past few million years. The discovery of such a wealth of X-ray stars in the closest massive star-forming region to Earth (only 1,500 light years away) is expected to have a profound impact on our understanding of star formation and evolution. "We've detected X-rays from so many fantastic objects, such as very young massive stars and stars so small that they may evolve into brown dwarfs," said Gordon Garmire, Evan Pugh Professor at Penn State University, University Park. "Chandra's superb angular resolution has resolved this dense cluster of stars with arcsecond accuracy and unsurpassed sensitivity." Garmire leads the team using Chandra's ACIS detector, the Advanced CCD Imaging Spectrometer, conceived and developed for NASA by Penn State University and the Massachusetts Institute of Technology. The brilliant Orion region has awed humankind for millennia. The most massive and brightest of these nascent stars are in the Orion Trapezium, which illuminates the Orion Nebula, also known as Messier 42. The Trapezium and its luminous gas can be seen with the unaided eye in the winter sky in the "sword" of the Orion constellation. Young stars, such as those found in Orion, are known to be much brighter in X-rays than middle-aged stars such as the Sun. The elevated X-ray emission is thought to arise from violent flares in strong magnetic fields near the surfaces of young stars. The Sun itself was probably thousands of times brighter in X-rays during its first few million years. Although the enhanced magnetic

  1. POPULATION I WOLF-RAYET RUNAWAY STARS: THE CASE OF WR124 AND ITS EXPANDING NEBULA M1-67

    SciTech Connect

    Marchenko, S. V.; Moffat, A. F. J.; Crowther, P. A. E-mail: moffat@astro.umontreal.c

    2010-11-20

    In 1997 and 2008 we used the WFPC2 camera on board the Hubble Space Telescope to obtain two sets of narrow-band H{alpha} images of the runaway Wolf-Rayet (WR) star WR 124 surrounded by its nebula M1-67. This two-epoch imaging provides an expansion parallax and thus a practically assumption-free geometric distance to the nebula, d = 3.35 {+-} 0.67 kpc. Combined with the global velocity distribution in the ejected nebula, this confirms the extreme runaway status of WR 124. WR stars embedded within such ejection nebulae at the point of core collapse would produce different supernova characteristics from those expected for stars surrounded by wind-filled cavities. In galaxies with extremely low ambient metallicity, Z {<=} 10{sup -3} Z {sub sun}, {gamma}-ray bursts originating from fast-moving runaway WR stars may produce afterglows which appear to be coming from regions with a relatively homogeneous circumburst medium.

  2. Photometric and spectroscopic study of low mass embedded star clusters in reflection nebulae

    NASA Astrophysics Data System (ADS)

    Soares, J. B.; Bica, E.; Ahumada, A. V.; Clariá, J. J.

    2005-02-01

    An analysis of the candidate embedded stellar systems in the reflection nebulae vdBH-RN 26, vdBH-RN} 38, vdBH-RN} 53a, GGD 20, ESO 95-RN 18 and NGC 6595 is presented. Optical spectroscopic data from CASLEO (Argentina) in conjunction with near infrared photometry from the 2MASS Point Source Catalogue were employed. The analysis is based on source surface density, colour-colour and colour-magnitude diagrams together with theoretical pre-main sequence isochrones. We take into account the field population affecting the analysis by carrying out a statistical subtraction. The fundamental parameters for the stellar systems were derived. The resulting ages are in the range 1-4 Myr and the objects are dominated by pre-main sequence stars. The observed masses locked in the clusters are less than 25 M⊙. The studied systems have no stars of spectral types earlier than B, indicating that star clusters do not necessarily evolve through an HII region phase. The relatively small locked mass combined with the fact that they are not numerous in catalogues suggests that these low mass clusters are not important donors of stars to the field populations. Based on observations made at Complejo Astronómico El Leoncito, which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba and San Juan, Argentina.

  3. Chemical Abundances of the Planetary Nebula IC 4634 and Its Central Star

    NASA Technical Reports Server (NTRS)

    Hyung, S.; Aller, L. H.; Feibelman, W. A.

    1999-01-01

    We have measured the spectral line intensities of the metal poor planetary nebula IC 4634. Using a photo-ionization model calculation, we try to fit the the optical and UV region spectra, i.e., Hamilton Echelle and IUE observations. From direct images, one expects complicated density variations, but the model predicts a range in densities that may be smaller than actually exist. We find N(sub epsilon) approximates 5000 /cubic meter. In spite of the geometrical complexity of the S shaped double-lobed structure, the simple photoionization model with a spherical symmetry can fit most emission lines, fairly well. The derived chemical composition has been compared with previous estimates and also with the Sun - The metallicity in IC 4634 appears to be lower than in the Sun or the average planetary nebula. The most likely temperature of the central ionizing source of IC 4634 appears to be about 55,000 K. We find a central star mass of about 0.55 Solar Mass from comparison with theoretical evolutionary tracks.

  4. Alternative methods for determination of the temperature of central stars of planetary nebulae

    NASA Astrophysics Data System (ADS)

    Elizalde, Flavio

    1992-03-01

    This work presents the formulation and application of three methods for determining the temperature of central stars in planetary nebulae. The methods are based on global spectroscopic indices for comparing objects with models. The spectroscopic data are taken from the literature, while models were calculated with the CLOUDY code. The three methods are: the Ir method compares the ratio of helium to hydrogen lines; the S-N1/2 method generalizes the energy balance method for different metalicity classes and different gas densities; the TIN method makes a direct comparison between the spectroscopic indices of the model and the object, minimizing their differences. In this method the chemical abundances of the main elements are calculated. The Ir method was applied to 78 objects; the S-N1/2 method was applied to 85 objects while the TIN method was used upon 8 nebulae. The results are discussed and compared to other determinations in the literature. One of the main conclusions is that only about half of the objects are optically thick. Finally, future developments and applications are suggested.

  5. The discovery and characterisation of binary central stars in planetary nebulae

    NASA Astrophysics Data System (ADS)

    Jones, David

    2016-07-01

    Close binary central stars of planetary nebulae are key in constraining the poorly- understood common-envelope phase of evolution, which in turn is critical in understanding the formation of a wide-range of astrophysical phenomena (including cataclysmic variables, low-mass X-ray binaries and supernovae type Ia). Here, I present the results of our on-going, targeted search for close-binaries in planetary nebulae which has led to the discovery of more than ten new central binaries in just the last few years (almost the same as the total discovered during the 1980s and 1990s together). This success has been rooted in the targeted selection of objects for study, based on morphological features deemed typical of binarity, as well as novel observing strategies (including the employment of narrow-band filters for photometry to minimise nebular contamination), both of which are discussed. These new discoveries coupled with the painstaking characterisation of both newly discovered systems and those from the literature mean that we are now in a position to begin to probe the poorly understood common-envelope phase.

  6. AGB stars as a source of short-lived radioactive nuclei in the solar nebula

    NASA Technical Reports Server (NTRS)

    Wasserburg, G. J.; Gallino, R.; Busso, M.; Raiteri, C. M.

    1993-01-01

    The purpose is to estimate the possible contribution of some short-lived nuclei to the early solar nebula from asymptotic giant branch (AGB) sources. Low mass (1 to 3 solar mass) AGB stars appear to provide a site for synthesis of the main s process component for solar system material with an exponential distribution of neutron irradiations varies as exp(-tau/tau(sub 0)) (where tau is the time integrated neutron flux with a mean neutron exposure tau(sub 0)) for solar abundances with tau(sub 0) = 0.28 mb(sup -1). Previous workers estimated the synthesis of key short-lived nuclei which might be produced in AGB stars. While these calculations exhibit the basic characteristics of nuclei production by neutron exposure, there is need for a self-consistent calculation that follows AGB evolution and takes into account the net production from a star and dilution with the cloud medium. Many of the general approaches and the conclusions arrived at were presented earlier by Cameron. The production of nuclei for a star of 1.5 solar mass during the thermal pulsing of the AGB phase was evaluated. Calculations were done for a series of thermal pulses with tau(sub 0) = 0.12 and 0.28 mb(sup -1). These pulses involve s nucleosynthesis in the burning shell at the base of the He zone followed by the ignition of the H burning shell at the top of the He zone. After about 10-15 cycles the abundances of the various nuclei in the He zone become constant. Computations of the abundances of all nuclei in the He zone were made following Gallino. The mass of the solar nebula was considered to consist of some initial material of approximately solar composition plus some contributions from AGB stars. The ratios of the masses required from the AGB He burning zone to the ISM necessary to produce the observed value of Pd-107/Pd-108 in the early solar system were calculated and this dilution factor was applied to all other relevant nuclei.

  7. Butterfly Nebula

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Hubble Space Telescope's Wide Field and Planetary Camera 2 (WFPC2) is back at work, capturing this image of the 'butterfly wing'- shaped nebula, NGC 2346. The nebula is about 2,000 light-years away from Earth in the direction of the constellation Monoceros. It represents the spectacular 'last gasp' of a binary star system at the nebula's center. The image was taken on March 6, 1997 as part of the recommissioning of the Hubble Space Telescope's previously installed scientific instruments following the successful servicing of the HST by NASA shuttle astronauts in February. WFPC2 was installed in HST during the servicing mission in 1993. At the center of the nebula lies a pair of stars that are so close together that they orbit around each other every 16 days. This is so close that, even with Hubble, the pair of stars cannot be resolved into its two components. One component of this binary is the hot core of a star that has ejected most of its outer layers, producing the surrounding nebula. Astronomers believe that this star, when it evolved and expanded to become a red giant, actually swallowed its companion star in an act of stellar cannibalism. The resulting interaction led to a spiraling together of the two stars, culminating in ejection of the outer layers of the red giant. Most of the outer layers were ejected into a dense disk, which can still be seen in the Hubble image, surrounding the central star. Later the hot star developed a fast stellar wind. This wind, blowing out into the surrounding disk, has inflated the large, wispy hourglass-shaped wings perpendicular to the disk. These wings produce the butterfly appearance when seen in projection. The total diameter of the nebula is about one-third of a light-year, or 2 trillion miles.

  8. Upper limits to the magnetic field in central stars of planetary nebulae

    SciTech Connect

    Asensio Ramos, A.; Martínez González, M. J.; Manso Sainz, R.; Corradi, R. L. M.; Leone, F.

    2014-06-01

    More than about 20 central stars of planetary nebulae (CSPNs) have been observed spectropolarimetrically, yet no clear, unambiguous signal of the presence of a magnetic field in these objects has been found. We perform a statistical (Bayesian) analysis of all the available spectropolarimetric observations of CSPN to constrain the magnetic fields in these objects. Assuming that the stellar field is dipolar and that the dipole axis of the objects is oriented randomly (isotropically), we find that the dipole magnetic field strength is smaller than 400 G with 95% probability using all available observations. The analysis introduced allows integration of future observations to further constrain the parameters of the distribution, and it is general, so that it can be easily applied to other classes of magnetic objects. We propose several ways to improve the upper limits found here.

  9. Ultraviolet Fe VII absorption and Fe II emission lines of central stars of planetary nebulae

    NASA Technical Reports Server (NTRS)

    Cheng, Kwang-Ping; Feibelman, Walter A.; Bruhweiler, Frederick C.

    1991-01-01

    The SWP camera of the IUE satellite was used in the high-dispersion mode to search for Fe VII absorption and Fe II high-excitation emission lines in five additional very hot central stars of planetary nebulae. Some of the Fe VII lines were detected at 1208, 1239, and 1332 A in all the objects of this program, LT 5, NGC 6058, NGC 7094, A43, and Lo 1 (= K1-26), as well as some of the Fe II emission lines at A 1360, 1776, 1869, 1881, 1884, and 1975 A. Two additional objects, NGC 2867 and He 2-131, were obtained from the IUE archive and were evaluated. The present study probably exhausts the list of candidates that are sufficiently bright and hot to be reached with the high-dispersion mode of the IUE.

  10. International ultraviolet explorer spectral atlas of planetary nebulae, central stars, and related objects

    NASA Technical Reports Server (NTRS)

    Feibelman, Walter A.; Oliversen, Nancy A.; Nicholsbohlin, Joy; Garhart, Matthew P.

    1988-01-01

    The International Ultraviolet Explorer (IUE) archives contain a wealth of information on high quality ultraviolet spectra of approximately 180 planetary nebulae, their central stars, and related objects. Selected are representative low-dispersion IUE spectra in the range 1200 to 3200 A for 177 objects arranged by Right Ascension (RA) for this atlas. For most entries, the combined short wavelength (SWP) (1200to 1900) and long wavelength (LWR) (or LWP, 1900 to 3200 A) regions are shown on 30 cm by 10 cm Calcomp plots on a uniform scale to facilitate intercomparison of the spectra. Each calibrated spectrum is also shown on an expanded vertical scale to bring out some of the weaker features.

  11. The pulsating central star of the planetary nebula Kohoutek 1-16

    NASA Astrophysics Data System (ADS)

    Grauer, A. D.; Bond, H. E.

    1984-02-01

    High-speed photometry of the central star of the planetary nebula Kohoutek 1-16 shows it to be a low-amplitude pulsating variable. The dominant period is 28.3 minutes, with a semiamplitude that is usually about 0.01 mag. However, several additional periods sometimes appear in power spectra computed from light curves, and on two occasions a rapid drop into, or emergence from, a state in which no detectable variations were present was observed. Such 'mode switching' is typical of some of the ZZ Ceti-type white dwarf nonradial pulsators, but, at effective temperatures higher than 80,000 K, K1-16 is much too hot to be a ZZ Ceti variable. Spectroscopically and photometrically, the central star of K1-16 closely resembles the previously known hot pulsator PG 1159-035; these two objects represent a new pulsational instability mechanism for extremely hot degenerate or predegenerate stars. It is predicted that the evolutionary contraction of K1-16 will lead to a period decrease so rapid that it should be detectable over an interval of about 2 yr.

  12. Episodic mass loss from the hydrogen-deficient central star of the planetary nebula Longmore 4

    SciTech Connect

    Bond, Howard E.

    2014-09-01

    A spectacular transient mass-loss episode from the extremely hot, hydrogen-deficient central star of the planetary nebula (PN) Longmore 4 (Lo 4) was discovered in 1992 by Werner et al. During that event, the star temporarily changed from its normal PG 1159 spectrum to that of an emission-line low-luminosity early-type Wolf-Rayet [WCE] star. After a few days, Lo 4 reverted to its normal, predominantly absorption-line PG 1159 type. To determine whether such events recur, and if so how often, I monitored the optical spectrum of Lo 4 from early 2003 to early 2012. Out of 81 spectra taken at random dates, 4 of them revealed mass-loss outbursts similar to that seen in 1992. This indicates that the episodes recur approximately every 100 days (if the recurrence rate has been approximately constant and the duration of a typical episode is ∼5 days), and that the star is in a high-mass-loss state about 5% of the time. Since the enhanced stellar wind is hydrogen-deficient, it arises from the photosphere and is unlikely to be related to phenomena such as a binary or planetary companion or infalling dust. I speculate on plausible mechanisms for these unique outbursts, including the possibility that they are related to the non-radial GW Vir-type pulsations exhibited by Lo 4. The central star of the PN NGC 246 has stellar parameters similar to those of Lo 4, and it is also a GW Vir-type pulsator with similar pulsation periods. I obtained 167 spectra of NGC 246 between 2003 and 2011, but no mass ejections were found.

  13. Episodic Mass Loss from the Hydrogen-deficient Central Star of the Planetary Nebula Longmore 4

    NASA Astrophysics Data System (ADS)

    Bond, Howard E.

    2014-09-01

    A spectacular transient mass-loss episode from the extremely hot, hydrogen-deficient central star of the planetary nebula (PN) Longmore 4 (Lo 4) was discovered in 1992 by Werner et al. During that event, the star temporarily changed from its normal PG 1159 spectrum to that of an emission-line low-luminosity early-type Wolf-Rayet [WCE] star. After a few days, Lo 4 reverted to its normal, predominantly absorption-line PG 1159 type. To determine whether such events recur, and if so how often, I monitored the optical spectrum of Lo 4 from early 2003 to early 2012. Out of 81 spectra taken at random dates, 4 of them revealed mass-loss outbursts similar to that seen in 1992. This indicates that the episodes recur approximately every 100 days (if the recurrence rate has been approximately constant and the duration of a typical episode is ~5 days), and that the star is in a high-mass-loss state about 5% of the time. Since the enhanced stellar wind is hydrogen-deficient, it arises from the photosphere and is unlikely to be related to phenomena such as a binary or planetary companion or infalling dust. I speculate on plausible mechanisms for these unique outbursts, including the possibility that they are related to the non-radial GW Vir-type pulsations exhibited by Lo 4. The central star of the PN NGC 246 has stellar parameters similar to those of Lo 4, and it is also a GW Vir-type pulsator with similar pulsation periods. I obtained 167 spectra of NGC 246 between 2003 and 2011, but no mass ejections were found. Based on observations with the 1.5 m telescope operated by the SMARTS Consortium at Cerro Tololo Interamerican Observatory.

  14. Candidate X-ray-emitting OB Stars in the Carina Nebula Identified Via Infrared Spectral Energy Distributions

    NASA Astrophysics Data System (ADS)

    Povich, Matthew S.; Townsley, Leisa K.; Broos, Patrick S.; Gagné, Marc; Babler, Brian L.; Indebetouw, Rémy; Majewski, Steven R.; Meade, Marilyn R.; Getman, Konstantin V.; Robitaille, Thomas P.; Townsend, Richard H. D.

    2011-05-01

    We report the results of a new survey of massive, OB stars throughout the Carina Nebula using the X-ray point source catalog provided by the Chandra Carina Complex Project (CCCP) in conjunction with infrared (IR) photometry from the Two Micron All-Sky Survey and the Spitzer Space Telescope Vela-Carina survey. Mid-IR photometry is relatively unaffected by extinction, hence it provides strong constraints on the luminosities of OB stars, assuming that their association with the Carina Nebula, and hence their distance, is confirmed. We fit model stellar atmospheres to the optical (UBV) and IR spectral energy distributions (SEDs) of 182 OB stars with known spectral types and measure the bolometric luminosity and extinction for each star. We find that the extinction law measured toward the OB stars has two components: AV = 1-1.5 mag produced by foreground dust with a ratio of total-to-selective absorption RV = 3.1 plus a contribution from local dust with RV > 4.0 in the Carina molecular clouds that increases as AV increases. Using X-ray emission as a strong indicator of association with Carina, we identify 94 candidate OB stars with L bol >~ 104 L sun by fitting their IR SEDs. If the candidate OB stars are eventually confirmed by follow-up spectroscopic observations, the number of cataloged OB stars in the Carina Nebula will increase by ~50%. Correcting for incompleteness due to OB stars falling below the L bol cutoff or the CCCP detection limit, these results potentially double the size of the young massive stellar population.

  15. Problems for the WELS classification of planetary nebula central stars: self-consistent nebular modelling of four candidates

    NASA Astrophysics Data System (ADS)

    Basurah, Hassan M.; Ali, Alaa; Dopita, Michael A.; Alsulami, R.; Amer, Morsi A.; Alruhaili, A.

    2016-05-01

    We present integral field unit (IFU) spectroscopy and self-consistent photoionization modelling for a sample of four southern Galactic planetary nebulae (PNe) with supposed weak emission-line central stars. The Wide Field Spectrograph on the ANU 2.3 m telescope has been used to provide IFU spectroscopy for NGC 3211, NGC 5979, My 60, and M 4-2 covering the spectral range of 3400-7000 Å. All objects are high-excitation non-Type I PNe, with strong He II emission, strong [Ne V] emission, and weak low-excitation lines. They all appear to be predominantly optically thin nebulae excited by central stars with Teff > 105 K. Three PNe of the sample have central stars which have been previously classified as weak emission-line stars (WELS), and the fourth also shows the characteristic recombination lines of a WELS. However, the spatially resolved spectroscopy shows that rather than arising in the central star, the C IV and N III recombination line emission is distributed in the nebula, and in some cases concentrated in discrete nebular knots. This may suggest that the WELS classification is spurious, and that, rather, these lines arise from (possibly chemically enriched) pockets of nebular gas. Indeed, from careful background subtraction we were able to identify three of the sample as being hydrogen rich O(H)-Type. We have constructed fully self-consistent photoionization models for each object. This allows us to independently determine the chemical abundances in the nebulae, to provide new model-dependent distance estimates, and to place the central stars on the Hertzsprung-Russell diagram. All four PNe have similar initial mass (1.5 < M/M⊙ < 2.0) and are at a similar evolutionary stage.

  16. The Light and Dark Face of a Star-Forming Nebula

    NASA Astrophysics Data System (ADS)

    2010-03-01

    Today, ESO is unveiling an image of the little known Gum 19, a faint nebula that, in the infrared, appears dark on one half and bright on the other. On one side hot hydrogen gas is illuminated by a supergiant blue star called V391 Velorum. New star formation is taking place within the ribbon of luminous and dark material that brackets V391 Velorum's left in this perspective. After many millennia, these fledgling stars, coupled with the explosive demise of V391 Velorum as a supernova, will likely alter Gum 19's present Janus-like appearance. Gum 19 is located in the direction of the constellation Vela (the Sail) at a distance of approximately 22 000 light years. The Gum 19 moniker derives from a 1955 publication by the Australian astrophysicist Colin S. Gum that served as the first significant survey of so-called HII (read "H-two") regions in the southern sky. HII refers to hydrogen gas that is ionised, or energised to the extent that the hydrogen atoms lose their electrons. Such regions emit light at well-defined wavelengths (or colours), thereby giving these cosmic clouds their characteristic glow. And indeed, much like terrestrial clouds, the shapes and textures of these HII regions change as time passes, though over the course of eons rather than before our eyes. For now, Gum 19 has somewhat of a science fiction-esque, "rip in spacetime" look to it in this image, with a narrow, near-vertical bright region slashing across the nebula. Looking at it, you could possibly see a resemblance to a two-toned angelfish or an arrow with a darkened point. This new image of the evocative Gum 19 object was captured by an infrared instrument called SOFI, mounted on ESO's New Technology Telescope (NTT) that operates at the La Silla Observatory in Chile. SOFI stands for Son of ISAAC, after the "father" instrument, ISAAC, that is located at ESO's Very Large Telescope observatory at Paranal to the north of La Silla. Observing this nebula in the infrared allows astronomers to see

  17. Detection of O VII Lambda 1522 in IUE Spectra of Planetary Nebula Nuclei and Other Hot Stars

    NASA Technical Reports Server (NTRS)

    Feibelman, Walter A.

    1999-01-01

    We present the first detection of O VII lambda 1522 emission or absorption from archival IUE spectra in 14 planetary nebula nuclei and three PG 1159-type stars. The n = 5 approaching 6 transition of O VII was determined by Kruk & Werner and observed by them in the spectrum of the very hot PG 1159-type star H1504+65 from data obtained with the Hopkins Ultraviolet Telescope (HUT). Emission-line fluxes or absorption equivalent widths as well as radial velocities for the program stars are presented. The precise rest wavelength for the 5 approaching 6 transition requires further investigation.

  18. A GRAND VIEW OF THE BIRTH OF 'HEFTY' STARS - 30 DORADUS NEBULA DETAILS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These are two views of a highly active region of star birth located northeast of the central cluster, R136, in 30 Doradus. The orientation and scale are identical for both views. The top panel is a composite of images in two colors taken with the Hubble Space Telescope's visible-light camera, the Wide Field and Planetary Camera 2 (WFPC2). The bottom panel is a composite of pictures taken through three infrared filters with Hubble's Near Infrared Camera and Multi-Object Spectrometer (NICMOS). In both cases the colors of the displays were chosen to correlate with the nebula's and stars' true colors. Seven very young objects are identified with numbered arrows in the infrared image. Number 1 is a newborn, compact cluster dominated by a triple system of 'hefty' stars. It has formed within the head of a massive dust pillar pointing toward R136. The energetic outflows from R136 have shaped the pillar and triggered the collapse of clouds within its summit to form the new stars. The radiation and outflows from these new stars have in turn blown off the top of the pillar, so they can be seen in the visible-light as well as the infrared image. Numbers 2 and 3 also pinpoint newborn stars or stellar systems inside an adjacent, bright-rimmed pillar, likewise oriented toward R136. These objects are still immersed within their natal dust and can be seen only as very faint, red points in the visible-light image. They are, however, among the brightest objects in the infrared image, since dust does not block infrared light as much as visible light. Thus, numbers 2 and 3 and number 1 correspond respectively to two successive stages in the birth of massive stars. Number 4 is a very red star that has just formed within one of several very compact dust clouds nearby. Number 5 is another very young triple-star system with a surrounding cluster of fainter stars. They also can be seen in the visible-light picture. Most remarkable are the glowing patches numbered 6 and 7, which astronomers

  19. The structure, dynamics, and star formation rate of the Orion nebula cluster

    SciTech Connect

    Da Rio, Nicola; Tan, Jonathan C.; Jaehnig, Karl

    2014-11-01

    The spatial morphology and dynamical status of a young, still-forming stellar cluster provide valuable clues to the conditions during the star formation event and the processes that regulated it. We analyze the Orion Nebula Cluster (ONC), utilizing the latest censuses of its stellar content and membership estimates over a large wavelength range. We determine the center of mass of the ONC and study the radial dependence of angular substructure. The core appears rounder and smoother than the outskirts, which is consistent with a higher degree of dynamical processing. At larger distances, the departure from circular symmetry is mostly driven by the elongation of the system, with very little additional substructure, indicating a somewhat evolved spatial morphology or an expanding halo. We determine the mass density profile of the cluster, which is well fitted by a power law that is slightly steeper than a singular isothermal sphere. Together with the interstellar medium density, which is estimated from average stellar extinction, the mass content of the ONC is insufficient by a factor ∼1.8 to reproduce the observed velocity dispersion from virialized motions, in agreement with previous assessments that the ONC is moderately supervirial. This may indicate recent gas dispersal. Based on the latest estimates for the age spread in the system and our density profiles, we find that at the half-mass radius, 90% of the stellar population formed within ∼5-8 free-fall times (t {sub ff}). This implies a star formation efficiency per t {sub ff} of ε{sub ff} ∼ 0.04-0.07 (i.e., relatively slow and inefficient star formation rates during star cluster formation).

  20. SAO 244567 - A post-AGB star which has turned into a planetary nebula within the last 40 years

    NASA Astrophysics Data System (ADS)

    Parthasarathy, M.; Garcia-Lario, P.; Pottasch, S. R.; Manchado, A.; Clavel, J.; de Martino, D.; van de Steene, G. C. M.; Sahu, K. C.

    1993-01-01

    SAO 244567 (Hen 1357 = CPD -59 deg 6926 = IRAS 17119-5926) is an IRAS source with far infrared colors and flux distribution similar to those of planetary nebulae. The IUE ultraviolet spectra obtained in July 1988 and April 1992 show nebular emission lines, and also the changes in the spectra suggest the formation of the planetary nebula and the rapid evolution of the central star. The optical spectrum of this star obtained by Henize around 1950 shows only the H-alpha line in emission, while the most recent one, obtained in 1990 shows strong forbidden emission lines corresponding to a low excitation and young planetary nebula. The IUE ultraviolet spectra show evidence for the presence of stellar wind and mass loss. The stellar lines show P-Cygni type profiles and the terminal velocity of the stellar wind is about - 3000 km/s. The spectral type of the central star is O8 V. The presence of a detached cold dust shell (125 K), high galactic latitude and abundances suggest that SAO 244567 has recently evolved from a low or intermediate mass progenitor star which has ejected its outer envelope during the AGB stage of evolution and is rapidly evolving towards hotter spectral types.

  1. Rapid photometric and spectroscopic evolution of the young planetary nebula Hen 3-1357 and its central star SAO 244567

    NASA Astrophysics Data System (ADS)

    Arkhipova, V. P.; Ikonnikova, N. P.; Kniazev, A. Yu.; Rajoelimanana, Andry

    2013-03-01

    We present the results of spectroscopic and photometric observations for the young compact planetary nebula Hen 3-1357 and its central star SAO 244567. High-resolution spectroscopy has allowed the expansion velocity of the nebula, V exp = 8.4 ± 1.5 km s-1, and the heliocentric velocity of the object, V r = +12.6 ± 1.7 km s-1, to be determined. The gas shell parameters ( N e , T e ), the extinction in the H β line, and the O, N, Ne, Ar, S, Cl, He, and C abundances have been determined from low-resolution spectra taken in 1992 and 2011. We have found significant changes in the relative intensities of forbidden lines in the spectrum of Hen 3-1357 within the last 20 years: the low-excitation [O I], [O II], and [N II] lines became stronger relative to H β by a factor of ˜2, while the [O III] lines weakened by a factor of ˜ 2, suggesting a decrease in the excitation class of the nebula. The V-band photometry performed under the ASAS-3 program revealed a decline in the yearly mean brightness of SAO 244 567 from 2001 to 2009 by 0_.^m 5 and rapid variability with an amplitude of a few tenths of a magnitude. Published observational data in a wide spectral range, from the near ultraviolet to the radio band, suggest an appreciable weakening of the flux from the star and the nebula.

  2. Spot Modeling of T Tauri Stars in the Orion Nebula Cluster

    NASA Astrophysics Data System (ADS)

    Lin, L.; Herbst, W.

    2002-05-01

    We present the results of spot modeling analysis of 409 T Tauri stars in the Orion Nebula Cluster. Light curves are available from data obtained by Herbst, Bailer-Jones & Mundt (ApJ 554, L197) using the Wide Field Imager on the MPG/ESO 2.2 m telescope at La Silla, Chile. The spot model is adapted from Dorren (ApJ 320, 756) and employs the simplifying assumption of a single spot with circular shape. We fit the light curves using the Levenberg-Marquardt least squares minimization technique and infer the spot latitude, spot size, and the inclination of the stellar rotation axis to the line of sight. A Monte Carlo technique is used to obtain confidence limits on these parameters. We circumvent the issue of parameter degeneracy (which results from a coupling of inclination and spot latitude) in a statistical way by assuming randomly oriented stellar rotation axes. Our results provide new evidence in support of the existence of large, high latitude spots on these stars, as has been observed on other WTTS using Doppler imaging, and as is predicted by recent theory. Some results of an extension of our modeling to allow for two spots in opposite hemispheres will also be presented. This work was supported by a grant from NASA through its Origins program and by the Christian A. Johnson apprenticeship program of Wesleyan University.

  3. Star Formation in the Molecular Cloud Associated with the Monkey Head Nebula: Sequential or Spontaneous?

    NASA Astrophysics Data System (ADS)

    Chibueze, James O.; Imura, Kenji; Omodaka, Toshihiro; Handa, Toshihiro; Nagayama, Takumi; Fujisawa, Kenta; Sunada, Kazuyoshi; Nakano, Makoto; Kamezaki, Tatsuya; Yamaguchi, Yoshiyuki; Sekido, Mamoru

    2013-01-01

    We mapped the (1,1), (2,2), and (3,3) lines of NH3 toward the molecular cloud associated with the Monkey Head Nebula (MHN) with a 1.'6 angular resolution using a Kashima 34 m telescope operated by the National Institute of Information and Communications Technology (NICT). The kinetic temperature of the molecular gas is 15-30 K in the eastern part and 30-50 K in the western part. The warmer gas is confined to a small region close to the compact H II region S252A. The cooler gas is extended over the cloud even near the extended H II region, the MHN. We made radio continuum observations at 8.4 GHz using the Yamaguchi 32 m radio telescope. The resultant map shows no significant extension from the Hα image. This means that the molecular cloud is less affected by the MHN, suggesting that the molecular cloud did not form by the expanding shock of the MHN. Although the spatial distribution of the Wide-field Infrared Survey Explorer and Two Micron All Sky Survey point sources suggests that triggered low- and intermediate-mass star formation took place locally around S252A, but the exciting star associated with it should be formed spontaneously in the molecular cloud.

  4. STAR FORMATION IN THE MOLECULAR CLOUD ASSOCIATED WITH THE MONKEY HEAD NEBULA: SEQUENTIAL OR SPONTANEOUS?

    SciTech Connect

    Chibueze, James O.; Imura, Kenji; Omodaka, Toshihiro; Handa, Toshihiro; Kamezaki, Tatsuya; Yamaguchi, Yoshiyuki; Nagayama, Takumi; Sunada, Kazuyoshi; Fujisawa, Kenta; Nakano, Makoto; Sekido, Mamoru

    2013-01-01

    We mapped the (1,1), (2,2), and (3,3) lines of NH{sub 3} toward the molecular cloud associated with the Monkey Head Nebula (MHN) with a 1.'6 angular resolution using a Kashima 34 m telescope operated by the National Institute of Information and Communications Technology (NICT). The kinetic temperature of the molecular gas is 15-30 K in the eastern part and 30-50 K in the western part. The warmer gas is confined to a small region close to the compact H II region S252A. The cooler gas is extended over the cloud even near the extended H II region, the MHN. We made radio continuum observations at 8.4 GHz using the Yamaguchi 32 m radio telescope. The resultant map shows no significant extension from the H{alpha} image. This means that the molecular cloud is less affected by the MHN, suggesting that the molecular cloud did not form by the expanding shock of the MHN. Although the spatial distribution of the Wide-field Infrared Survey Explorer and Two Micron All Sky Survey point sources suggests that triggered low- and intermediate-mass star formation took place locally around S252A, but the exciting star associated with it should be formed spontaneously in the molecular cloud.

  5. They Might Be Giants: Confirming Candidate OB Stars While Netting a Large Sample of Massive Star Spectra in the Great Nebula in Carina

    NASA Astrophysics Data System (ADS)

    Povich, Matthew S.; McSwain, M. Virginia

    2013-02-01

    We propose one night of observations with the AAOmega instrument on the Anglo-Australian Telescope to obtain spectra of a large sample of massive stars in the Great Nebula in Carina, the nearest analog of extragalactic starburst regions. Our targets include >100 spectroscopically classified OB stars plus 55 candidate OB stars that we recently identified via X-ray emission and infrared (IR) spectral energy distributions (SEDs). These observations will confirm or reject individual candidate OB stars as massive members of the Carina Nebula stellar population, a vital test for our methodology that will pave the way to discovering new massive stars in other regions. Determining the nature of the candidate OB stars is critical to any census of the massive stellar population in Carina, impacting our understanding of the energetics and stellar initial mass function in this well-studied region. We will employ spectral modeling and broadband optical-IR SED fitting to derive physical properties (e.g. temperature, bolometric luminosity, surface gravity, and mass) of the known OB stars and those newly-confirmed candidate OB stars with high (ga100) signal-to- noise spectra.

  6. Water Fountains in the Sky: Streaming Water Jets from Aging Star Provide Clues to Planetary-Nebula Formation

    NASA Astrophysics Data System (ADS)

    2002-06-01

    Astronomers using the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope have found that an aging star is spewing narrow, rotating streams of water molecules into space, like a jerking garden hose that has escaped its owner's grasp. The discovery may help resolve a longstanding mystery about how the stunningly beautiful objects called planetary nebulae are formed. Artist's Conception of W43A. Artist's conception of W43A, with the aging star surrounded by a disk of material and a precessing, twisted jet of molecules streaming away from it in two directions. Credit: Kirk Woellert/National Science Foundation. The astronomers used the VLBA, operated by the National Radio Astronomy Observatory, to study a star called W43A. W43A is about 8,500 light-years from Earth in the direction of the constellation Aquila, the eagle. This star has come to the end of its normal lifetime and, astronomers believe, is about to start forming a planetary nebula, a shell of brightly glowing gas lit by the hot ember into which the star will collapse. "A prime mystery about planetary nebulae is that many are not spherical even though the star from which they are ejected is a sphere," said Phillip Diamond, director of the MERLIN radio observatory at Jodrell Bank in England, and one of the researchers using the VLBA. "The spinning jets of water molecules we found coming from this star may be one mechanism for producing the structures seen in many planetary nebulae," he added. The research team, led by Hiroshi Imai of Japan's National Astronomical Observatory (now at the Joint Institute for VLBI in Europe, based in the Netherlands), also includes Kumiko Obara of the Mizusawa Astrogeodynamics Observatory and Kagoshima University; Toshihiro Omodaka, also of Kagoshima University; and Tetsuo Sasao of the Japanese National Astronomical Observatory. The scientists reported their findings in the June 20 issue of the scientific journal Nature. As stars similar to our Sun

  7. G2.4 + 1.4, a supernova remnant or ring nebula around a peculiar star

    NASA Technical Reports Server (NTRS)

    Johnson, H. M.

    1975-01-01

    G2.4 + 1.4 is a probable nonthermal radio source and an optical nebula which appears to be a supernova remnant (SNR). It also contains an O VI sequence star of great excitation. We present new radiofrequency-continuum and (nil) H 92 alpha observations, optical spectroscopy, and Fabry-Perot scanner observations of the nebula. The object distance (possibly 5 kpc), origin of gas kinematics (possibly SNR expansion), and mode of excitation of the gas (possibly photoexcitation and/or shock wave) remain uncertain. We discuss the possible roles of the O VI star as 'runaway' in an SNR, as a source of photoexcitation, and as an ejector of a 'counterfeit' SNR.

  8. The Interstellar Extinction Towards the Milky Way Bulge with Planetary Nebulae, Red Clump, and RR Lyrae Stars

    NASA Astrophysics Data System (ADS)

    Nataf, David M.

    2016-06-01

    I review the literature covering the issue of interstellar extinction towards the Milky Way bulge, with emphasis placed on findings from planetary nebulae, RR Lyrae, and red clump stars. I also report on observations from HI gas and globular clusters. I show that there has been substantial progress in this field in recent decades, most particularly from red clump stars. The spatial coverage of extinction maps has increased by a factor ~ 100 × in the past 20 yr, and the total-to-selective extinction ratios reported have shifted by ~ 20-25%, indicative of the improved accuracy and separately, of a steeper-than-standard extinction curve. Problems remain in modelling differential extinction, explaining anomalies involving the planetary nebulae, and understanding the difference between bulge extinction coefficients and `standard' literature values.

  9. Probing interstellar extinction in the Tarantula Nebula with red giant stars

    NASA Astrophysics Data System (ADS)

    De Marchi, Guido; Panagia, N.; Girardi, L.; Sabbi, E.

    2014-01-01

    We have studied the properties of the interstellar extinction in a field of 3‧ × 3‧ located about 6‧ SW of 30 Doradus in the Large Magellanic Cloud (LMC). The observations with with the WFPC 2 camera on board the Hubble Space Telescope in the U, B, V , I and H bands show the presence of patchy extinction in this field. In particular, the colour-magnitude diagram (CMD) reveals an elongated stellar sequence, running almost parallel to the main sequence (MS), which is in reality made up of stars belonging to the red giant clump (RC) and spread across the CMD by the considerable and uneven extinction in this region. This allows us to derive in a quantitative way both the extinction law in the range 3 000-8 000 Å and the values of the absolute extinction towards more than 100 objects, thereby setting statistically significant constraints on the properties of the extinction in this area. We find an extinction curve considerably flatter than the standard Galactic one and than those derived before towards a sample of sight lines in the LMC. The value of RV = 5.6 that we find implies that in this region large grains dominate. Comparing the extinction towards the individual RC stars and a similar number of stars in the upper MS reveals that the latter span a narrower range of E(B - V) values, contrary to what has been found elsewhere in the LMC. We are now extending these studies to 30 Doradus itself and to a large portion of the Tarantula nebula using existing HST observations at ultraviolet, optical and near infrared wavelengths.

  10. Variability of the planetary nebula NGC 6572 and its central star during the interval covered by optical observations

    NASA Astrophysics Data System (ADS)

    Arkhipova, V. P.; Kostyakova, E. B.; Burlak, M. A.; Esipov, V. F.; Ikonnikova, N. P.

    2014-10-01

    Estimates of relative line intensities available in the literature and integrated H β fluxes of the planetary nebula NGC 6572 during the time covered by optical observations (1938-2013) are compared to search for possible variations. Line intensities measured from observations obtained at the Crimean Station of the Sternberg Astronomical Institute in 2013 are presented, as well as previously unpublished photographic spectroscopic data obtained 1972-2005. Our analysis of all the available data shows that the line intensities do not vary within the observational uncertainties, with the possible exception of the [OIII] 4959 and 5007 Å lines, which show a tendency for their intensity increase with time. This can be interpreted as a manifestation of a temperature increase of the central star, or radial stratification of the [OIII] emission in the nebula, with the latter explanation being less probable. However, stratification is clearly visible in the [OII] and [NII] line intensities. The integrated H β flux is most probably constant at F(H β) = (1.50 ± 0.03) × 10-10 erg cm-2 s-1. A refined estimate of the interstellar extinction toward NGC 6572 has been obtained from radio and optical data, c(H β) = 0.42 ± 0.03. The MAST spectroscopy data were used to derive the central star's UBV magnitudes in 2004. Integrated photoelectric UBV observations of the nebula and central star for 1971-2005 are presented.

  11. Wolf-Rayet nebulae

    NASA Astrophysics Data System (ADS)

    Chu, You-Hua

    2016-07-01

    Since the discovery of nebulae around Wolf-Rayet (WR) stars in the 1960s, it has been established that WR stars are massive stars at advanced evolutionary stages and that their surrounding nebulae result from the interactions between the stellar mass loss and the ambient interstellar medium. Surveys of WR nebulae have been made in the Galaxy, Magellanic Clouds, and other nearby galaxies in the Local Group. Some WR nebulae exhibit He II λ4686 line emission, indicating stellar effective temperatures of 90 — 100 x 103 K. The shocked fast stellar winds from WR nebulae have been detected in soft X-rays, but theoretical models have not been able to reproduce the observed X-ray spectral properties. Elemental abundances of WR nebulae consisting of synthesized stellar material can constrain stellar evolution models, but high-dispersion spectra are needed to kinematically separate the expanding shell of a WR nebula and the background interstellar medium for accurate abundance analyses.

  12. Core-halo age gradients and star formation in the Orion Nebula and NGS 2024 young stellar clusters

    SciTech Connect

    Getman, Konstantin V.; Feigelson, Eric D.; Kuhn, Michael A.

    2014-06-01

    We analyze age distributions of two nearby rich stellar clusters, the NGC 2024 (Flame Nebula) and Orion Nebula cluster (ONC) in the Orion molecular cloud complex. Our analysis is based on samples from the MYStIX survey and a new estimator of pre-main sequence (PMS) stellar ages, Age{sub JX} , derived from X-ray and near-infrared photometric data. To overcome the problem of uncertain individual ages and large spreads of age distributions for entire clusters, we compute median ages and their confidence intervals of stellar samples within annular subregions of the clusters. We find core-halo age gradients in both the NGC 2024 cluster and ONC: PMS stars in cluster cores appear younger and thus were formed later than PMS stars in cluster peripheries. These findings are further supported by the spatial gradients in the disk fraction and K-band excess frequency. Our age analysis is based on Age{sub JX} estimates for PMS stars and is independent of any consideration of OB stars. The result has important implications for the formation of young stellar clusters. One basic implication is that clusters form slowly and the apparent age spreads in young stellar clusters, which are often controversial, are (at least in part) real. The result further implies that simple models where clusters form inside-out are incorrect and more complex models are needed. We provide several star formation scenarios that alone or in combination may lead to the observed core-halo age gradients.

  13. New Galactic Planetary Nebulae and the role of Central Star Binarity

    NASA Astrophysics Data System (ADS)

    Miszalski, B.

    2009-09-01

    The Galactic population of planetary nebulae (PNe) offers great potential in improving our understanding of many astrophysical problems on both large and small scales. They are revealed out to large distances by their bright emission line spectra from which their radial velocities and chemical abundances can be measured. As members of the old stellar population, PNe are particularly abundant towards the Galactic bulge where their kinematics are a valuable, relatively unbiased tracer of the dynamics of the region. Chemical abundance variations may also be traced by PNe to place constraints on chemodynamical models of the Galaxy. On much smaller scales their central stars (CSPN) are a powerful window into the poorly understood late stages of binary stellar evolution. The capacity of PNe to perform these studies is critically dependent on the size of the population. The current Galactic population of PNe was substantially increased by the Macquarie/AAO/Strasbourg Halpha (MASH) PNe catalogue. A supplement to MASH, the MASH-II catalogue, is presented with more than 360 new Galactic PNe found after a thorough search of all 233 AAO/UKST SuperCOSMOS Halpha Survey fields in digital format. Novel, semi-automated data processing and multi-wavelength visualisation techniques are developed to maximise the sensitivity of the search. MASH-II PNe are notable for being either small, star-like PNe of relatively high surface brightness, or very large, extremely low surface brightness PNe. Over 90% of the catalogue is confirmed spectroscopically during extensive observing campaigns and the catalogue is available via the VizieR catalogue service at the Centre de Donn´ees Astronomiques de Strasbourg (CDS). This thesis is based on the exploitation of the MASH and MASH-II PNe catalogues that have provided the largest and most representative sample of PNe towards the Galactic bulge. This offers a unique opportunity to contribute towards two different, largely unexplored research domains

  14. Compact planetary nebulae in the Galactic disk: Analysis of the central stars

    NASA Astrophysics Data System (ADS)

    Moreno-Ibáñez, Manuel; Villaver, Eva; Shaw, Richard A.; Stanghellini, Letizia

    2016-09-01

    Context. We have obtained multi-wavelength observations of compact Galactic planetary nebulae (PNe) to probe post-asymptotic giant branch (AGB) evolution from the onset of nebular ejection. Here we analyze new observations from HST to derive the masses and evolutionary status of their central stars (CSs). Aims: Our objective here is to derive the masses of the CSs hosted by compact PNe in order to better understand the relationship between the CS properties and those of the surrounding nebulae. We also compare this sample with others we obtained using the same technique in different metallicity environments: the Large and Small Magellanic Clouds. Methods: This paper is based on HST/WFC3 images of 51 targets obtained in a snapshot survey (GO-11657). The high spatial resolution of HST allows us to resolve these compact PNe and distinguish the CS emission from that of their surrounding PNe. We derive CS bolometric luminosities and effective temperatures using the Zanstra technique, from a combination of HST photometry and ground-based spectroscopic data. The targets were imaged through the filters F200LP, F350LP, and F814W from which we derive Johnson V and I magnitudes. We infer CS masses by placing the stars on a temperature-luminosity diagram and compare their location with the best available, single star post-AGB evolutionary tracks. Results: We present new, unique photometric measurements of 50 CSs, and we derive effective temperatures and luminosities for most of them. Central star masses for 23 targets were derived with the evolutionary track technique; the remaining masses were indeterminate most likely because of underestimates of the stellar temperature, or because of substantial errors in the adopted statistical distances to these objects. We expect these problems will be largely overcome when the Gaia distance catalog becomes available. We find that objects with the higher ratios of Zanstra temperatures T(H i)/T( He ii ) tend to have lower-mass progenitors

  15. X-RAY EMISSION FROM THE BINARY CENTRAL STARS OF THE PLANETARY NEBULAE HFG 1, DS 1, AND LOTR 5

    SciTech Connect

    Montez, Rodolfo; Kastner, Joel H.; De Marco, Orsola; Chu, You-Hua

    2010-10-01

    Close binary systems undergoing mass transfer or common envelope interactions can account for the morphological properties of some planetary nebulae. The search for close binary companions in planetary nebulae is hindered by the difficulty of detecting cool, late-type, main-sequence companions in binary systems with hot pre-white-dwarf primaries. However, models of binary planetary nebula progenitor systems predict that mass accretion or tidal interactions can induce rapid rotation in the companion, leading to X-ray-emitting coronae. To test such models, we have searched for, and detected, X-ray emission from three binary central stars within planetary nebulae: the post-common envelope close binaries in HFG 1 and DS 1 consisting of O-type subdwarfs with late-type, main-sequence companions and the binary system in LoTr 5 consisting of O-type subdwarf and rapidly rotating, late-type giant companion. The X-ray emission in each case is best characterized by spectral models consisting of two optically thin thermal plasma components with characteristic temperatures of {approx}10 MK and 15-40 MK and total X-ray luminosities {approx}10{sup 30} erg s{sup -1}. We consider the possible origin of the X-ray emission from these binary systems and conclude that the most likely origin is, in each case, a corona around the late-type companion, as predicted by models of interacting binaries.

  16. SPITZER SEARCH FOR DUST DISKS AROUND CENTRAL STARS OF PLANETARY NEBULAE

    SciTech Connect

    Bilikova, Jana; Chu Youhua; Gruendl, Robert A.; Su, Kate Y. L.; De Marco, Orsola

    2012-05-01

    Two types of dust disks have been discovered around white dwarfs (WDs): small dust disks within the Roche limits of their WDs and large dust disks around hot WDs extending to radial distances of 10-10{sup 2} AU. The majority of the latter WDs are central stars of planetary nebulae (CSPNs). We have therefore used archival Spitzer Infrared Array Camera (IRAC) and Multiband Imaging Photometer for Spitzer (MIPS) observations of PNs to search for CSPNs with IR excesses and to make a comparative investigation of dust disks around stars at different evolutionary stages. We have examined available images of 72 resolved PNs in the Spitzer archive and found 56 of them large enough for the CSPN to be resolved from the PN. Among these, only 42 CSPNs are visible in IRAC and/or MIPS images and selected for photometric measurements. From the spectral energy distributions (SEDs) of these CSPNs, we find 19 cases with clear IR excess. Of these, seven are [WC]-type stars, two have apparent visual companions that account for the observed excess emission, two are symbiotic CSPNs, and in eight cases the IR excess originates from an extended emitter, likely a dust disk. For some of these CSPNs, we have acquired follow-up Spitzer MIPS images, Infrared Spectrograph spectra, and Gemini NIRI and Michelle spectroscopic observations. The SEDs and spectra show a great diversity in the emission characteristics of the IR excesses, which may imply different mechanisms responsible for the excess emission. For CSPNs whose IR excesses originate from dust continuum, the most likely dust production mechanisms are (1) breakup of bodies in planetesimal belts through collisions and (2) formation of circumstellar dust disks through binary interactions. A better understanding of post-asymptotic giant branch binary evolution as well as debris disk evolution along with its parent star is needed to distinguish between these different origins. Future observations to better establish the physical parameters of

  17. Spitzer Search for Dust Disks around Central Stars of Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Bilíková, Jana; Chu, You-Hua; Gruendl, Robert A.; Su, Kate Y. L.; De Marco, Orsola

    2012-05-01

    Two types of dust disks have been discovered around white dwarfs (WDs): small dust disks within the Roche limits of their WDs and large dust disks around hot WDs extending to radial distances of 10-102 AU. The majority of the latter WDs are central stars of planetary nebulae (CSPNs). We have therefore used archival Spitzer Infrared Array Camera (IRAC) and Multiband Imaging Photometer for Spitzer (MIPS) observations of PNs to search for CSPNs with IR excesses and to make a comparative investigation of dust disks around stars at different evolutionary stages. We have examined available images of 72 resolved PNs in the Spitzer archive and found 56 of them large enough for the CSPN to be resolved from the PN. Among these, only 42 CSPNs are visible in IRAC and/or MIPS images and selected for photometric measurements. From the spectral energy distributions (SEDs) of these CSPNs, we find 19 cases with clear IR excess. Of these, seven are [WC]-type stars, two have apparent visual companions that account for the observed excess emission, two are symbiotic CSPNs, and in eight cases the IR excess originates from an extended emitter, likely a dust disk. For some of these CSPNs, we have acquired follow-up Spitzer MIPS images, Infrared Spectrograph spectra, and Gemini NIRI and Michelle spectroscopic observations. The SEDs and spectra show a great diversity in the emission characteristics of the IR excesses, which may imply different mechanisms responsible for the excess emission. For CSPNs whose IR excesses originate from dust continuum, the most likely dust production mechanisms are (1) breakup of bodies in planetesimal belts through collisions and (2) formation of circumstellar dust disks through binary interactions. A better understanding of post-asymptotic giant branch binary evolution as well as debris disk evolution along with its parent star is needed to distinguish between these different origins. Future observations to better establish the physical parameters of the

  18. Rotating Stars and the Formation of Bipolar Planetary Nebulae. II. Tidal Spin-up

    NASA Astrophysics Data System (ADS)

    García-Segura, G.; Villaver, E.; Manchado, A.; Langer, N.; Yoon, S.-C.

    2016-06-01

    We present new binary stellar evolution models that include the effects of tidal forces, rotation, and magnetic torques with the goal of testing planetary nebulae (PNs) shaping via binary interaction. We explore whether tidal interaction with a companion can spin-up the asymptotic giant brach (AGB) envelope. To do so, we have selected binary systems with main-sequence masses of 2.5 M ⊙ and 0.8 M ⊙ and evolve them allowing initial separations of 5, 6, 7, and 8 au. The binary stellar evolution models have been computed all the way to the PNs formation phase or until Roche lobe overflow (RLOF) is reached, whatever happens first. We show that with initial separations of 7 and 8 au, the binary avoids entering into RLOF, and the AGB star reaches moderate rotational velocities at the surface (∼3.5 and ∼2 km s‑1, respectively) during the inter-pulse phases, but after the thermal pulses it drops to a final rotational velocity of only ∼0.03 km s‑1. For the closest binary separations explored, 5 and 6 au, the AGB star reaches rotational velocities of ∼6 and ∼4 km s‑1, respectively, when the RLOF is initiated. We conclude that the detached binary models that avoid entering the RLOF phase during the AGB will not shape bipolar PNs, since the acquired angular momentum is lost via the wind during the last two thermal pulses. This study rules out tidal spin-up in non-contact binaries as a sufficient condition to form bipolar PNs.

  19. An analysis of the first three catalogues of southern star clusters and nebulae

    NASA Astrophysics Data System (ADS)

    Cozens, Glendyn John

    2008-06-01

    of the Lacaille and Herschel catalogues. In order to identify and compare the catalogues, positions given for an object by each astronomer were precessed to J2000.0 coordinates. These modern positions for an object could then be plotted onto modern photographic star atlases and digital images of the sky, to determine the accuracy of the original positions. Analysis of the three non-stellar catalogues included the determination of the radial distance of each object from its "correct" position and diagrams of both difference in Right Ascension and difference in Declination against Right Ascension and Declination, in order to identify any trends. Each catalogue contained some copy or printing errors, but these were omitted from the statistical calculations performed. The results for the three catalogues, from the astrometric perspective, showed that the Herschel catalogue contained the most accurate positions, followed closely by the Lacaille catalogue with no obvious or systematic trends in their inaccuracies. In contrast, the Dunlop catalogue showed some clear trends in the positional inaccuracies which, regardless of mitigating circumstances, to some extent warranted John Herschel's criticism. Finally an examination of the completeness of each catalogue was undertaken to determine the thoroughness of each astronomer. Firstly the effective aperture and theoretical magnitude limit for each telescope was calculated. Next the non-stellar objects were grouped into five types, open clusters, globular clusters, diffuse nebulae, planetary nebulae and galaxies, and a single working magnitude limit was found for each catalogue. A number of indicators were used to determine the working magnitude limit. The number of faint objects of each type which were seen, and the number of bright objects which were missed by the three astronomers, was assessed. In both the Dunlop and Herschel catalogues galaxies gave the best indicator of the working magnitude limit. Globular clusters

  20. Horsehead nebula

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Rising from a sea of dust and gas like a giant seahorse, the Horsehead nebula is one of the most photographed objects in the sky. NASA's Hubble Space Telescope took a close-up look at this heavenly icon, revealing the cloud's intricate structure. This detailed view of the horse's head is being released to celebrate the orbiting observatory's eleventh anniversary. Produced by the Hubble Heritage Project, this picture is a testament to the Horsehead's popularity. Internet voters selected this object for the orbiting telescope to view.

    The Horsehead, also known as Barnard 33, is a cold, dark cloud of gas and dust, silhouetted against the bright nebula, IC 434. The bright area at the top left edge is a young star still embedded in its nursery of gas and dust. But radiation from this hot star is eroding the stellar nursery. The top of the nebula also is being sculpted by radiation from a massive star located out of Hubble's field of view.

    Only by chance does the nebula roughly resemble the head of a horse. Its unusual shape was first discovered on a photographic plate in the late 1800s. Located in the constellation Orion, the Horsehead is a cousin of the famous pillars of dust and gas known as the Eagle nebula. Both tower-like nebulas are cocoons of young stars.

    The Horsehead nebula lies just south of the bright star Zeta Orionis, which is easily visible to the unaided eye as the left-hand star in the line of three that form Orion's Belt. Amateur astronomers often use the Horsehead as a test of their observing skills; it is known as one of the more difficult objects to see visually in an amateur-sized telescope.

    The magnificent extent of the Horsehead is best appreciated in a new wide-field image of the nebula being released today by the National Optical Astronomy Observatory, taken by Travis Rector with the National Science Foundation's 0.9 meter telescope at Kitt Peak National Observatory near Tucson, AZ.

    This popular celestial target was the clear

  1. An X-ray outburst from the rapidly accreting young star that illuminates McNeil's nebula.

    PubMed

    Kastner, J H; Richmond, M; Grosso, N; Weintraub, D A; Simon, T; Frank, A; Hamaguchi, K; Ozawa, H; Henden, A

    2004-07-22

    Young, low-mass stars are luminous X-ray sources whose powerful X-ray flares may exert a profound influence over the process of planet formation. The origin of the X-ray emission is uncertain. Although many (or perhaps most) recently formed, low-mass stars emit X-rays as a consequence of solar-like coronal activity, it has also been suggested that X-ray emission may be a direct result of mass accretion onto the forming star. Here we report X-ray imaging spectroscopy observations which reveal a factor approximately 50 increase in the X-ray flux from a young star that is at present undergoing a spectacular optical/infrared outburst (this star illuminates McNeil's nebula). The outburst seems to be due to the sudden onset of a phase of rapid accretion. The coincidence of a surge in X-ray brightness with the optical/infrared eruption demonstrates that strongly enhanced high-energy emission from young stars can occur as a consequence of high accretion rates. We suggest that such accretion-enhanced X-ray emission from erupting young stars may be short-lived, because intense star-disk magnetospheric interactions are quenched rapidly by the subsequent flood of new material onto the star. PMID:15269761

  2. The Eagle Nebula's fingers - pointers to the earliest stages of star formation?

    NASA Astrophysics Data System (ADS)

    White, G. J.; Nelson, R. P.; Holland, W. S.; Robson, E. I.; Greaves, J. S.; McCaughrean, M. J.; Pilbratt, G. L.; Balser, D. S.; Oka, T.; Sakamoto, S.; Hasegawa, T.; McCutcheon, W. H.; Matthews, H. E.; Fridlund, C. V. M.; Tothill, N. F. H.; Huldtgren, M.; Deane, J. R.

    1999-02-01

    Molecular line, millimetre/submillimetre continuum, and mid-IR observations are reported of the opaque fingers which cross the Eagle Nebula. The fingers are surprisingly warm when viewed in the CO J= 3-2 lines, with kinetic temperatures approaching 60 K, although the lines are relatively narrow. Most of the mass in the fingers is concentrated in cores which lie at the tips of the fingers, and contain from ~ 10 to 60 Msun, representing 55-80% of the mass of the individual fingers. The integrated mass contained in the three fingers and the nearby extended material is ~ 200 Msun. The velocity fields of the gas are complex and the material is very clumpy. The best evidence for coherent velocity structure is seen running along the central finger, which has a velocity gradient ~ 1.7 km s(-1) pc(-1) . The fingers contain several embedded submm continuum cores, with the most intense located at the tips of the fingers. The continuum spectra of these cores shows that they are much cooler, Tdust ~ 20 K, than Tgas ~ 60 K of their respective fingers. A simple thermal and chemical model of a finger was developed to study the physical environment, which takes into account the external UV illumination ( ~ 1700 G_0), and the chemical and thermal structure of a finger. The model predictions are consistent with all of the available observations. The fingers appear to have been formed after primordial dense clumps in the original cloud were irradiated by the light of its OB stars. These clumps then shielded material lying behind from the photoevaporative dispersal of the cloud, and facilitated the formation of the finger structures. The cores in the tips of the fingers appear to be at a very early stage of pre-protostellar development: there are no embedded infrared sources or molecular outflows present. The pressure inside the cores is just less than that of the surrounding gas, allowing them to be compressed by the external pressure. The cores are probably just starting the final

  3. Rotten Egg nebula: the magnetic field of a binary evolved star

    NASA Astrophysics Data System (ADS)

    Leal-Ferreira, M. L.; Vlemmings, W. H. T.; Diamond, P. J.; Kemball, A.; Amiri, N.; Desmurs, J.-F.

    2012-04-01

    Context. Most of the planetary nebulae (PNe) observed are not spherical. The loss of spherical symmetry occurs somewhere between the asymptotic giant branch (AGB) phase and the PNe phase. The cause of this change of morphology is not yet well understood, but magnetic fields are one of the possible agents. The origin of the magnetic field remains to be determined, and potentially requires the presence of a massive companion to the AGB star. Therefore, further detections of the magnetic field around evolved stars, and in particular those thought to be part of a binary system, are crucial to improve our understanding of the origin and role of magnetism during the late stages of stellar evolution. One such binary is the pre-PN OH231.8+4.2, around which a magnetic field has previously been detected in the OH maser region of the outer circumstellar envelope. Aims: We aim to detect and infer the properties of the magnetic field of the pre-PN OH231.8+4.2 in the H2O maser region that probes the region close to the central star. This source is a confirmed binary with collimated outflows and an envelope containing several maser species. Methods: In this work we observed the 61,6-52,3 H2O maser rotational transition to determine its linear and circular polarization. As a result of Zeeman splitting, the properties of the magnetic field can be derived from maser polarization analysis. The H2O maser emissions of OH231.8+4.2 are located within the inner regions of the source (at a few tens of AU). Results: We detected 30 H2O maser features around OH231.8+4.2. The masers occur in two distinct regions that are moving apart with a velocity on the sky of 2.3 mas/year. Taking into account the inclination angle of the source with the line of sight, this corresponds to an average separation velocity of 21 km s-1. Based on the velocity gradient of the maser emission, the masers appear to be dragged along the direction of the nebula jet. Linear polarization is present in three of the

  4. Stingray Nebula

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This Wide Field and Planetary Camera 2 image captures the infancy of the Stingray nebula (Hen-1357), the youngest known planetary nebula. In this image, the bright central star is in the middle of the green ring of gas. Its companion star is diagonally above it at 10 o'clock. A spur of gas (green) is forming a faint bridge to the companion star due to gravitational attraction. The image also shows a ring of gas (green) surrounding the central star, with bubbles of gas to the lower left and upper right of the ring. The wind of material propelled by radiation from the hot central star has created enough pressure to blow open holes in the ends of the bubbles, allowing gas to escape. The red curved lines represent bright gas that is heated by a 'shock' caused when the central star's wind hits the walls of the bubbles. The nebula is as large as 130 solar systems, but, at its distance of 18,000 light-years, it appears only as big as a dime viewed a mile away. The Stingray is located in the direction of the southern constellation Ara (the Altar). The colors shown are actual colors emitted by nitrogen (red), oxygen (green), and hydrogen (blue).

  5. Water Fountains in the Sky: Streaming Water Jets from Aging Star Provide Clues to Planetary-Nebula Formation

    NASA Astrophysics Data System (ADS)

    2002-06-01

    Astronomers using the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope have found that an aging star is spewing narrow, rotating streams of water molecules into space, like a jerking garden hose that has escaped its owner's grasp. The discovery may help resolve a longstanding mystery about how the stunningly beautiful objects called planetary nebulae are formed. Artist's Conception of W43A. Artist's conception of W43A, with the aging star surrounded by a disk of material and a precessing, twisted jet of molecules streaming away from it in two directions. Credit: Kirk Woellert/National Science Foundation. The astronomers used the VLBA, operated by the National Radio Astronomy Observatory, to study a star called W43A. W43A is about 8,500 light-years from Earth in the direction of the constellation Aquila, the eagle. This star has come to the end of its normal lifetime and, astronomers believe, is about to start forming a planetary nebula, a shell of brightly glowing gas lit by the hot ember into which the star will collapse. "A prime mystery about planetary nebulae is that many are not spherical even though the star from which they are ejected is a sphere," said Phillip Diamond, director of the MERLIN radio observatory at Jodrell Bank in England, and one of the researchers using the VLBA. "The spinning jets of water molecules we found coming from this star may be one mechanism for producing the structures seen in many planetary nebulae," he added. The research team, led by Hiroshi Imai of Japan's National Astronomical Observatory (now at the Joint Institute for VLBI in Europe, based in the Netherlands), also includes Kumiko Obara of the Mizusawa Astrogeodynamics Observatory and Kagoshima University; Toshihiro Omodaka, also of Kagoshima University; and Tetsuo Sasao of the Japanese National Astronomical Observatory. The scientists reported their findings in the June 20 issue of the scientific journal Nature. As stars similar to our Sun

  6. Tibetan Braid

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On October 13, 2000, the Expedition 3 crew of the International Space Station, high over Tibet, took this interesting photo of the Brahmaputra River. This mighty Asian river carves a narrow west-east valley between the Tibetan Plateau to the north and the Himalaya Mountains to the south, as it rushes eastward for more than 1500 km in southwestern China. This 15-km stretch is situated about 35 km south of the ancient Tibetan capital of Lhasa where the river flow becomes intricately braided as it works and reworks its way through extensive deposits of erosional material. This pattern is indicative of a combination heavy sediment discharge from tributaries and reduction of the river's flow from either a change in gradient or perhaps even climate conditions over the watershed. The light color of the deposits and the milky color of the water is attributed to presence of glacial 'flour,' the fine material created by erosion from glaciers. Besides erosion by water and ice, this scene also depicts features created by wind. Note the delicate field of dunes on the alluvial fan toward the right edge of the image. The riverbed here is at an elevation of over 3,500 m, and with the long west-east extent of this barren valley, strong, persistent westerly winds also move and shape these deposits. Photos such as this one bring immediate visual understanding and appreciation of natural processes in some of the most remote locations on Earth. Image ISS003-E-6632, was provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth.

  7. NON-DETECTION OF MAGNETIC FIELDS IN THE CENTRAL STARS OF THE PLANETARY NEBULAE NGC 1360 AND LSS 1362

    SciTech Connect

    Leone, Francesco; Privitera, Giovanni; Martinez Gonzalez, MarIa J.; Corradi, Romano L. M.; Sainz, Rafael Manso

    2011-04-20

    The presence of magnetic fields is an attractive hypothesis for shaping planetary nebulae (PNe). We report on observations of the central star of the two PNe NGC 1360 and LSS 1326. We performed spectroscopy on circularly polarized light with the Focal Reducer and Low Dispersion Spectrograph at the Very Large Telescope of the European Southern Observatory. Contrary to previous reports, we find that the effective magnetic field, which is the average over the visible stellar disk of longitudinal components of the magnetic fields, is null within errors for both stars. We conclude that direct evidence of magnetic fields on the central stars of PNe is still missing-either the magnetic field is much weaker (<600 G) than previously reported, or more complex (thus leading to cancellations), or both. Certainly, indirect evidence (e.g., MASER emission) fully justify further efforts to point out the strength and morphology of such magnetic fields.

  8. A highly abnormal massive star mass function in the Orion Nebula cluster and the dynamical decay of trapezium systems

    NASA Astrophysics Data System (ADS)

    Pflamm-Altenburg, J.; Kroupa, P.

    2006-11-01

    The Orion Nebula cluster (ONC) appears to be unusual on two grounds: the observed constellation of the OB stars of the entire ONC and its Trapezium at its centre implies a time-scale problem given the age of the Trapezium, and an initial mass function (IMF) problem for the whole OB star population in the ONC. Given the estimated crossing time of the Trapezium, it ought to have totally dynamically decayed by now. Furthermore, by combining the lower limit of the ONC mass with a standard IMF it emerges that the ONC should have formed at least about 40 stars heavier than 5 Msolar while only 10 are observed. Using the N-body experiments we (i) confirm the expected instability of the Trapezium and (ii) show that beginning with a compact OB-star configuration of about 40 stars both the number of observed OB stars after 1 Myr within 1 pc radius and a compact trapezium configuration can be reproduced. These two empirical constraints thus support our estimate of 40 initial OB stars in the cluster. Interestingly, a more-evolved version of the ONC resembles the Upper Scorpius OB association. The N-body experiments are performed with the new C-code CATENA by integrating the equations of motion using the chain-multiple-regularization method. In addition, we present a new numerical formulation of the IMF.

  9. HuDo 1 and HuBi 1: two planetary nebulae ionized by cool [WC] central stars

    NASA Astrophysics Data System (ADS)

    Peña, M.

    2005-10-01

    As part of our spectroscopic survey of planetary nebulae with [WC] nuclei (Peña et al. 2001), low- and high-resolution spectra of the planetary nebulae HuDo 1 (PNG 060.4+01.5, PM1-310) and HuBi 1 (PNG 012.2+04.9, PM1-188) were secured and analyzed. Both objects are ionized by very late [WC] central stars. We found that the objects belong to the galactic disk, with heliocentric radial velocities of -12 km s-1 (HuDo 1) and 57 km s-1 (HuBi1). Both objects are heavily extinguished showing a logarithmic reddening, c(Hβ), of 2.04 for HuDo 1 and 1.22 for HuBi 1. Our data cover a wide wavelength range; therefore we obtained several plasma line ratios to estimate physical conditions and abundances. The derived electron temperature and density for HuBi 1 are 9,400±1,500 K and 800 cm-3. This density is very low for a nebula around a [WC]-late star. HuDo 1 has Ne = 3300 cm-3. We find log(O/H)+12 = 8.43 and 8.57, and N/O = 0.2 and 0.1 for HuDo 1 and HuBi 1 respectively, typical of disk PNe. Intense nebular He I recombination lines are detected for HuBi 1, this being the only PN excited by a very late [WC] star showing such an emission. The He+ abundance derived for HuBi 1 is 0.11, which is indicating a large He enhancement in HuBi 1. >From the analysis of the stellar emission lines a [WC 10] spectral type is derived for both stars. This is consistent with a stellar temperature of about 30,000 K, although the HuBi 1 central star should be slightly hotter for providing the large amount of He0 ionizing photons required to explain the nebular He I lines. Nebular and stellar parameters of HuDo 1 and HuBi 1 can be compared with those of other [WC 10] objects, such as M 4-18, He 2-113 and CPD-5608031. >From this, we can conclude that, in spite of the fact that all the objects have the same spectral type, the central stars of HuDo 1 and HuBi 1 should be intrinsically fainter, and consequently of lower mass. This is an additional evidence showing that stars of different masses can go

  10. The star fish twins: Two young planetary nebulae with extreme multipolar morphology

    NASA Technical Reports Server (NTRS)

    Sahai, R.

    2000-01-01

    We present alpha images of two objects, He 2-47 and M1-37, obtained during a Hubble Space Telescope imaging survey of young planetary nebulae (PNs) selected on the basis of their low-excitation characteristics.

  11. Evidence for a bipolar nebula around the peculiar B(e) star HD 45677 from ultraviolet spectropolarimetry

    NASA Technical Reports Server (NTRS)

    Schulte-Ladbeck, R. E.; Shepherd, D. S.; Nordsieck, K. H.; Code, A. D.; Anderson, C. M.; Babler, B. L.; Bjorkman, K. S.; Clayton, G. C.; Magalhaes, A. M.; Meade, M. R.

    1992-01-01

    We report the first ultraviolet spectropolarimetry of the peculiar B-type emission-line star with infrared excess HD 45677. The observations were obtained during the 1990 December Astro-l space shuttle mission with the Wisconsin Ultraviolet Photo-Polarimeter Experiment, and cover the spectral range 1400-3220 A. We also present the first optical spectropolarimetry, extending from the atmospheric cutoff to about 7600 A. The observed UV/optical linear polarization displays a strong increase toward shorter wavelengths indicative of scattering by circumstellar dust. The position angle of the intrinsic polarization flips by 90 deg in the near-UV as expected from a bipolar reflection nebula.

  12. Two Years of Chandra Observations: Neutron Stars and Pulsars with Emphasis on the Pulsar in the Crab Nebula

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; Six, N. Frank (Technical Monitor)

    2002-01-01

    The Chandra X-Ray Observatory is entering its third year of operation. The Observatory, the premiere x-ray telescope for high-resolution imaging, has exceeded all expectations. The sub-arc second angular resolution together with other instrumental capabilities has allowed for new insights into the understanding of compact x-ray emitting objects including neutron stars and pulsars. We briefly review the Chandra Program and the first two years of observation with emphasis on these interesting objects. We detail the results of our observations of the pulsar in the Crab Nebula including the first continuum spectrum that is virtually uncontaminated by any dust-scattered radiation.

  13. Parameters of Selected Central Stars of Planetary Nebulae from Consistent Optical and UV Spectral Analysis

    NASA Astrophysics Data System (ADS)

    Kaschinski, Cornelius Bernhard

    Low mass stars have zero age main sequence masses of roughly 0.8-8.0 solar masses. Once their H and He source is depleted, low mass stars reaching the tip of the asymptotic giant branch (AGB) eject their envelopes becoming Central Stars of Planetary Nebulae (CSPNs). In the main part of this thesis we investigate the stellar parameters of a selected samples of CSPNS in order to further examine the validity of the commonly accepted core mass-luminosity relation of CSPNs. The necessity of such a critical examination was highlighted by a mismatch between the derived stellar parameters from hydrodynamical self-consistent UV analysis and those from a plane-parallel model fit to photospheric H and He absorption lines. The consistently derived masses from the UV analysis showed a wider spread than the masses derived from the optical analysis, which were obtained using theoretical post-AGB evolutionary tracks. This investigation was carried out using the non-local thermodynamic equilibrium atmosphere code "WM-basic", which has been previously used as the basis for the earlier consistent UV analysis performed on the sample of selected CSPNs. First, we improved the code by implementing the Stark broadening effect, so as to model optical H and He lines simultaneously along with the UV spectrum. This allowed a self-consistent re-analysis of the most and least massive of the CSPNs sampled. Using the UV parameter set we then reproduced not only the observed UV spectra but also produced optical line profiles which are nearly identical to those from optical stellar parameter models. The consistent models using the optical parameter set reproduce neither spectrum accurately. The lack of consistency between stellar and wind parameters of the optical parameter set is also evident from a different approach based on an investigation of the dynamical wind parameters. In a subsequent study, we further improved the WM-basic code by implementing the treatment of clumping. The strength of

  14. A search for water maser emission toward obscured post-AGB star and planetary nebula candidates

    NASA Astrophysics Data System (ADS)

    Gómez, J. F.; Rizzo, J. R.; Suárez, O.; Palau, A.; Miranda, L. F.; Guerrero, M. A.; Ramos-Larios, G.; Torrelles, J. M.

    2015-06-01

    Context. Water maser emission at 22 GHz is a useful probe for studying the transition between the nearly spherical mass loss in the asymptotic giant branch (AGB) to a collimated one in the post-AGB phase. In their turn, collimated jets in the post-AGB phase could determine the shape of planetary nebulae once photoionization starts. Aims: We intend to find new cases of post-AGB stars and planetary nebulae (PNe) with water maser emission, including some especially interesting and rare types: water fountains (evolved objects with high velocity collimated jets traced by water masers) or water-maser-emitting PNe. Since previous studies have shown a higher detection rate of water maser emission in evolved objects that are optically obscured, we selected a sample that contains a significant fraction of post-AGB and young PN candidate sources showing signs of strong obscuration. Methods: We searched for water maser emission in 133 evolved objects using the radio telescopes in Robledo de Chavela, Parkes, and Green Bank. Results: We detected water maser emission in 15 sources of our sample, of which seven are reported here for the first time (IRAS 13483-5905, IRAS 14249-5310, IRAS 15408-5413, IRAS 17021-3109, IRAS 17348-2906, IRAS 17393-2727, and IRAS 18361-1203). We identified three water fountain candidates: IRAS 17291-2147, with a total velocity spread of ≃96 km s-1 in its water maser components and two sources (IRAS 17021-3109 and IRAS 17348-2906) that show water maser emission whose velocity lies outside the velocity range covered by OH masers. We have also identified IRAS 17393-2727 as a possible new water-maser-emitting PN. Conclusions: The detection rate is higher in obscured objects (14%) than in those with optical counterparts (7%), which is consistent with previous results. Water maser emission seems to be common in objects that are bipolar in the near-IR (43% detection rate in such sources). The water maser spectra of water fountain candidates like IRAS 17291

  15. Spatio-kinematic modelling of Abell 65, a double-shelled planetary nebula with a binary central star

    NASA Astrophysics Data System (ADS)

    Huckvale, L.; Prouse, B.; Jones, D.; Lloyd, M.; Pollacco, D.; López, J. A.; O'Brien, T. J.; Sabin, L.; Vaytet, N. M. H.

    2013-09-01

    We present the first detailed spatio-kinematical analysis and modelling of the planetary nebula Abell 65, which is known to host a post-common envelope, binary, central star system. As such, this object is of great interest in studying the link between nebular morphology and central star binarity. [O III]5007 Å and Hα+[N II]6584 Å longslit spectra and imagery of Abell 65 were obtained with the Manchester Échelle Spectrometer on the 2.1-m telescope at the San Pedro Martír Observatory (MES-SPM). Further [O III]5007 Å longslit spectra were obtained with the Ultraviolet and Visual Échelle Spectrograph on the Very Large Telescope (VLT-UVES). These data were used to develop a spatio-kinematical model for the [O III]5007 Å emission from Abell 65. A `best-fitting' model was found by comparing synthetic spectra and images rendered from the model to the data. The model comprises an outer shell and an inner shell, with kinematical ages of 15000 ± 5000 yr kpc-1 and 8000 ± 3000 yr kpc-1, respectively. Both shells have peanut-shaped bipolar structures with symmetry axes at inclinations of (55 ± 10)° (to the line of sight) for the outer shell and (68 ± 10)° for the inner shell. The near alignment between the nebular shells and the binary orbital inclination [of (68 ± 2)°] is strongly indicative that the binary is responsible for shaping the nebula. Abell 65 is one of a growing number of planetary nebulae (seven to date, including Abell 65 itself) for which observations and modelling support the shaping influence of a central binary.

  16. The rapid evolution of the central star of the Stingray Nebula — latest news from the HST

    NASA Astrophysics Data System (ADS)

    Reindl, Nicole; Rauch, Thomas; Miller Bertolami, Marcelo M.; Werner, Klaus

    2016-07-01

    SAO 244567 is an unusually fast evolving star. Within twenty years only, it had turned from a B-type supergiant into the central star of the Stingray Nebula. Space- and ground-based observations obtained over the last decades have revealed that its spectrum changes noticeably over just a few years, showing stellar evolution in real time. The low mass of SAO 244567 is, however, in strong contradiction with canonical post-asymptotic giant branch evolution. Thus, its fast evolution has been a mystery for decades. We present preliminary results of the non-LTE spectral analyis of the recently obtained HST/COS observations, which finally allow us to shed light on the evolutionary history of this extraordinary object.

  17. The Dust Properties of Hot R Coronae Borealis Stars and a Wolf-Rayet Central Star of a Planetary Nebula: In Search of the Missing Link

    NASA Technical Reports Server (NTRS)

    Clayton, Geoffrey C.; De Marco, O.; Whitney, B. A.; Babler, B.; Gallagher, J. S.; Nordhaus, J.; Speck, A. K.; Wolff, M. J.; Freeman, W. R.; Camp, K. A.; Lawson, W. A.; Roman-Duval, J.; Misselt, K. A.; Meade, M.; Sonneborn, G.; Matsuura, M.; Meixner, M.

    2012-01-01

    We present new Spitzer IIRS spectra of two hot R Coronae Borealis (RCB) stars, one in the Galaxy,V348 Sgr, and one lying in the Large Magellanic Cloud, HV 2671. These two objects constitute a link between the RCB stars and the [WCL] class of central stars of planetary nebula (CSPNe) that has little or no hydrogen in their atmospheres such as CPD -560 8032. HV 2671 and V348 Sgr are members of a rare subclass that has significantly higher effective temperatures than most RCB stars, but sharing the traits of hydrogen deficiency and dust formation that define the cooler RCB stars. The [WC] CSPNe star, CPD -560 8032, displays evidence for dual-dust chemistry showing both PAHs and crystalline silicates in its mid-IR spectrum. HV 2671 shows strong PAH emission but shows no sign of having crystalline silicates. The spectrum of V348 Sgr is very different from those of CPD -56deg 8032 and HV 2671. The PAH emission seen strongly in the other two stars is only weakly present. Instead, the spectrum is dominated by a broad emission centered at about 8.5 microns. This feature is not identified with either PAHs or silicates. Several other novae and post-asymptotic giant branch stars show similar features in their IR spectra. The mid-IR spectrum of CPD -56deg 8032 shows emission features associated with C60 . The other two stars do not show evidence for C60. The nature of the dust around these stars does not help us in establishing further links that may indicate a common origin.

  18. X-ray emission and the incidence of magnetic fields in the massive stars of the Orion Nebula Cluster

    NASA Astrophysics Data System (ADS)

    Petit, V.; Wade, G. A.; Montmerle, T.; Drissen, L.; Grosso, N.; Menard, F.

    Magnetic fields have been frequently invoked as a likely source of variability and confinement of the winds of massive stars. To date, the only magnetic field detected in O-type stars are those of θ1 Ori C (HD 37022; Donati et al. 2002), the brightest and most massive member of the Orion Nebula Cluster (ONC), and HD 191612 (Donati et al. 2006). Notably, θ1 Ori C is an intense X-ray emitter, and the source of these X-rays is thought to be strong shocks occurring in its magnetically-confined wind (Babel & Montmerle 1997a, Donati et al. 2002). Recently, Stelzer et al. (2005) have found significant X-ray emission from all massive stars in the ONC. Periodic rotational modulation in X-rays and other indicators suggested that θ1 Ori C may be but one of many magnetic B- and O-type stars in this star-forming region. In 2005B we carried out sensitive ESPaDOnS observations to search for direct evidence of such fields, detecting unambiguous Zeeman signatures in two objects.

  19. Embedded star clusters and the formation of the Oort cloud. II. The effect of the primordial solar nebula

    NASA Astrophysics Data System (ADS)

    Brasser, R.; Duncan, M. J.; Levison, H. F.

    2007-11-01

    This paper deals with Oort cloud formation while the Sun was in an embedded cluster and surrounded by its primordial nebula. This work is a continuation of Brasser et al. [Brasser, R., Duncan, M., Levison, H., 2006. Icarus 184, 59-82], building on the model presented therein, and adding the aerodynamic drag and gravitational potential of the primordial solar nebula. Results are presented of numerical simulations of comets subject to the gravitational influence of the Sun, Jupiter, Saturn, star cluster and primordial solar nebula; some of the simulations included the gravitational influence of Uranus and Neptune as well. The primordial solar nebula was approximated by the minimum-mass Hayashi model [Hayashi, C., Nakozawa, K., Nakagawa, Y., 1985. In: Black, D.C., Matthews, M.S. (Eds.). Protostars and Planets II. Univ. of Arizona Press, Tucson, AZ] whose inner and outer radii have been truncated at various distances from the Sun. A comet size of 1.7 km was used for most of our simulations. In all of our simulations, the density of the primordial solar nebula decayed exponentially with an e-folding time of 2 Myr. It turns out that when the primordial solar nebula extends much beyond Saturn or Neptune, virtually no material will end up in the Oort cloud (OC) during this phase. Instead, the majority of the material will be on circular orbits inside of Jupiter if the inner edge of the disk is well inside Jupiter's orbit. If the disk's inner edge is beyond Jupiter's orbit, most comets end up on orbits in exterior mean-motion resonances with Saturn when Uranus and Neptune are not present. In those cases where the outer edge of the disk is close to Saturn or Neptune, the fraction of material that ends up in the subsequently formed OC is much less than that found in Brasser et al. [Brasser, R., Duncan, M., Levison, H., 2006. Icarus 184, 59-82] for the same cluster densities. This implies that for comets of roughly 2 km in size, the presence of the primordial solar nebula

  20. Spitzer Space Telescope observations of the Carina nebula: the steady march of feedback-driven star formation

    NASA Astrophysics Data System (ADS)

    Smith, Nathan; Povich, Matthew S.; Whitney, Barbara A.; Churchwell, Ed; Babler, Brian L.; Meade, Marilyn R.; Bally, John; Gehrz, Robert D.; Robitaille, Thomas P.; Stassun, Keivan G.

    2010-08-01

    We report the first results of imaging the Carina nebula (NGC 3372) with the Infrared Array Camera (IRAC) onboard the Spitzer Space Telescope, providing a photometry catalogue of over 44000 point sources as well as a catalogue of over 900 candidate young stellar objects (YSOs) based on fits to their spectral energy distributions (SEDs). We discuss several aspects of the extended emission, including the structure of dozens of dust pillars that result when a clumpy molecular cloud is shredded by feedback from massive stars. There are surprisingly few of the `extended green objects' (EGOs) that are normally taken as signposts of outflow activity in Spitzer data, and not one of the dozens of Herbig-Haro jets detected optically are seen as EGOs. EGOs are apparently poor tracers of outflow activity in strongly irradiated environments, due to the effects of massive star feedback. A population of `extended red objects' tends to be found around late O-type and early B-type stars, some with clear bow-shock morphology. These are dusty shocks where stellar winds collide with photoevaporative flows off nearby clouds. Finally, the relative distributions of O-type stars, small star clusters and subclusters of YSOs as compared to the dust pillars show that while some YSOs are located within dust pillars, many more stars and YSOs reside just outside pillar heads. We suggest that pillars are transient phenomena, part of a continuous outwardly propagating wave of star formation driven by feedback from massive stars. As the pillars are destroyed, they leave newly formed stars in their wake, and these are then subsumed into the young OB association. The YSOs are found predominantly in the cavity between pillars and massive stars, arguing that their formation was in fact triggered. Altogether, the current generation of YSOs shows no strong deviation from a normal initial mass function (IMF). The number of YSOs is consistent with a roughly constant star-formation rate over the past ~3

  1. Light Variations of the Anomalous Central Star of Planetary Nebula Sh 2-71

    NASA Astrophysics Data System (ADS)

    Mikulášek, Z.; Skopal, A.; Zejda, M.; Pejcha, O.; Kohoutek, L.; Motl, D.; Vittone, A. A.; Errico, L.

    2007-03-01

    We present an analysis of light variations in UBV (RI)_{C} of the anomalous object in the center of planetary nebula Sh 2-71. We refined the linear ephemeris of the light maxima to JD_{max}=2449862.0+68.101(E-96), but also identified long-term, obviously non-periodic variations. The latter manifest themselves in large O-C shifts, a variable profile of light curves (hereafter LC) and changes in the mean brightness of the object. Our spectroscopic observations suggested the presence of a superdense nebula in the center of Sh 2-71.

  2. Resilient Braided Rope Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor); Kren, Lawrence A. (Inventor)

    1996-01-01

    A resilient braided rope seal for use in high temperature applications. The resilient braided rope seal includes a center core of fibers, a resilient 5 member overbraided by at least one layer of braided sheath fibers tightly packed together. The resilient member adds significant stiffness to the seal while maintaining resiliency. Furthermore, the seal permanent set and hysteresis are greatly reduced. Finally, improved load capabilities are provided.

  3. Irradiated interfaces in the Ara OB1, Carina, Eagle Nebula, and Cyg OB2 massive star formation regions

    NASA Astrophysics Data System (ADS)

    Hartigan, P.; Palmer, J.; Cleeves, L. I.

    2012-12-01

    Regions of massive star formation offer some of the best and most easily-observed examples of radiation hydrodynamics. Boundaries where fully-ionized H II regions transition to neutral/molecular photodissociation regions (PDRs) are of particular interest because marked temperature and density contrasts across the boundaries lead to evaporative flows and fluid dynamical instabilities that can evolve into spectacular pillar-like structures. When detached from their parent clouds, pillars become ionized globules that often harbor one or more young stars. H2 molecules at the interface between a PDR and an H II region absorb ultraviolet light from massive stars, and the resulting fluoresced infrared emission lines are an ideal way to trace this boundary independent of obscuring dust. This paper presents H2 images of four regions of massive star formation that illustrate different types of PDR boundaries. The Ara OB1 star formation region contains a striking long wall that has several wavy structures which are present in H2, but the emission is not particularly bright because the ambient UV fluxes are relatively low. In contrast, the Carina star formation region shows strong H2 fluorescence both along curved walls and at the edges of spectacular pillars that in some cases have become detached from their parent clouds. The less-spectacular but more well-known Eagle Nebula has two regions that have strong fluorescence in addition to its pillars. While somewhat older than the other regions, Cyg OB2 has the highest number of massive stars of the regions surveyed and contains many isolated, fluoresced globules that have head-tail morphologies which point towards the sources of ionizing radiation. These images provide a collection of potential astrophysical analogs that may relate to ablated interfaces observed in laser experiments of radiation hydrodynamics.

  4. Braid Floer homology

    NASA Astrophysics Data System (ADS)

    van den Berg, J. B.; Ghrist, R.; Vandervorst, R. C.; Wójcik, W.

    2015-09-01

    Area-preserving diffeomorphisms of a 2-disc can be regarded as time-1 maps of (non-autonomous) Hamiltonian flows on R / Z ×D2. The periodic flow-lines define braid (conjugacy) classes, up to full twists. We examine the dynamics relative to such braid classes and define a new invariant for such classes, the BRAID FLOER HOMOLOGY. This refinement of Floer homology, originally used for the Arnol'd Conjecture, yields a Morse-type forcing theory for periodic points of area-preserving diffeomorphisms of the 2-disc based on braiding. Contributions of this paper include (1) a monotonicity lemma for the behavior of the nonlinear Cauchy-Riemann equations with respect to algebraic lengths of braids; (2) establishment of the topological invariance of the resulting braid Floer homology; (3) a shift theorem describing the effect of twisting braids in terms of shifting the braid Floer homology; (4) computation of examples; and (5) a forcing theorem for the dynamics of Hamiltonian disc maps based on braid Floer homology.

  5. Identifying Massive Runaway Stars by Detecting Infrared Bowshock Nebula: Four OB Stars and a New Massive Early-B Binary System

    NASA Astrophysics Data System (ADS)

    Sorber, Rebecca L.; Rebecca L. Sorber, Henry A. Kobulnicky, Daniel A. Dale, Matthew S. Povich, William T. Chick, Heather N. Wernke, Julian E. Andrews, Stephan Munari, Grace M. Olivier, Danielle Schurhammer

    2016-01-01

    Though the main sequence evolution of OB type stars is relatively well known, the mass loss rates for these stars are still highly uncertain. Some OB stars are gravitationally ejected from their birth sites, traveling at speeds of 30 km/s or more which results in a prominent bowshock nebulae. We identified OB bowshock candidates at low Galactic latitudes by visual inspection of the Wide-field Infrared Survey Explorer (WISE) 22-micron images. Each candidate was observed using the Longslit Spectrograph at the Wyoming Infrared Observatory (WIRO) 2.3 meter telescope. We present here the results from observing four such candidates, and all four are confirmed as early type stars: GO92.3191+0.0591 (B1V) (aka ALS11826), GO86.551014-1.0873935 (B2V; a probable short-period binary), G076.6921-2.4071 (B5V), and G075.5711-0.2558 (B0V) (aka HD 194303). These results enlarge the sample of candidate runaway massive stars hosting bowshocks and provide a promising sample of such objects for studying stellar mass loss. This work is supported by the National Science Foundation Grants AST-1063146 (REU), AST-1411851 (RUI), and AST-1412845.

  6. Star formation in Carina OB1: Observations of a giant molecular cloud associated with the eta Carinae Nebula

    NASA Technical Reports Server (NTRS)

    Grabelsky, D. A.; Cohen, R. S.; Thaddeus, P.

    1987-01-01

    A giant molecular cloud associated with the eta Carinae nebula was fully mapped in CO with the Columbia Millimeter-Wave Telescope at Cerro Tololo. The cloud comples has a mass of roughly 700,000 solar mass and extends about 140 pc along the Galactic plane, with the giant Carina HII region situated at one end of the complex. Clear evidence of interaction between the HII region and the molecular cloud is found in the relative motions of the ionized gas, the molecular gas, and the dust; simple energy and momentum considerations suggest that the HII region is responsible for the observed motion of a cloud fragment. The molecular cloud complex appears to be the parent material of the entire Car OB1 Association which, in addition to the young clusters in the Carine nebula, includes the generally older cluster NGC 3325, NGC 3293, and IC 2581. The overall star formation efficiency in the cloud complex is estimated to be approximately 0.02.

  7. THE DUST PROPERTIES OF TWO HOT R CORONAE BOREALIS STARS AND A WOLF-RAYET CENTRAL STAR OF A PLANETARY NEBULA: IN SEARCH OF A POSSIBLE LINK

    SciTech Connect

    Clayton, Geoffrey C.; Gallagher, J. S.; Freeman, W. R.; Camp, K. A. E-mail: wfreem2@lsu.edu

    2011-08-15

    We present new Spitzer/IRS spectra of two hot R Coronae Borealis (RCB) stars, one in the Galaxy, V348 Sgr, and one lying in the Large Magellanic Cloud, HV 2671. These two objects may constitute a link between the RCB stars and the late Wolf-Rayet ([WCL]) class of central stars of planetary nebulae (CSPNe), such as CPD -56{sup 0} 8032, that has little or no hydrogen in their atmospheres. HV 2671 and V348 Sgr are members of a rare subclass that has significantly higher effective temperatures than most RCB stars, but shares the traits of hydrogen deficiency and dust formation that define the cooler RCB stars. The [WC] CSPN star, CPD -56{sup 0} 8032, displays evidence of dual-dust chemistry showing both polycyclic aromatic hydrocarbons (PAHs) and crystalline silicates in its mid-IR spectrum. HV 2671 shows strong PAH emission but no sign of having crystalline silicates. The spectrum of V348 Sgr is very different from that of CPD -56{sup 0} 8032 and HV 2671. The PAH emission seen strongly in the other two stars is not present. Instead, the spectrum is dominated by a broad emission centered at about 8.2 {mu}m. This feature is not identified with either PAHs or silicates. Several other cool RCB stars, novae, and post-asymptotic giant branch stars show similar features in their IR spectra. The mid-IR spectrum of CPD -56{sup 0} 8032 shows emission features that may be associated with C{sub 60}. The other two stars do not show evidence of C{sub 60}. The different nature of the dust around these stars does not help us in establishing further links that may indicate a common origin. HV 2671 has also been detected by Herschel/PACS and SPIRE. V348 Sgr and CPD -56{sup 0} 8032 have been detected by AKARI/Far-Infrared Surveyor. These data were combined with Spitzer, IRAS, Two Micron All Sky Survey, and other photometry to produce their spectral energy distributions (SEDs) from the visible to the far-IR. Monte Carlo radiative transfer modeling was used to study the circumstellar dust

  8. Resilient Braided Rope Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor); Kren, Lawrence A. (Inventor)

    2000-01-01

    A resilient braided rope seal for use in high temperature applications includes a center core of fibers. a resilient canted spring member supporting the core and at least one layer of braided sheath fibers tightly packed together overlying the spring member. The seal provides both improved load bearing and resiliency. Permanent set and hysteresis are greatly reduced.

  9. (F)UV spectral analysis of 15 extremely hot, hydrogen-rich central stars of planetary nebulae

    NASA Astrophysics Data System (ADS)

    Ziegler, Marc; Rauch, Thomas; Werner, Klaus; Kruk, Jeffrey W.

    2012-08-01

    We present results of a (F)UV spectral analysis of 15 hot, hydrogen-rich central stars of planetary nebulae (CSPNe) of DAO-type (A 7, A 31, A 35, A 39, NGC 3587, NGC 6720, NGC 6853, NGC 7293, PuWe 1, Sh 2-174) and O(H)-type (A 36, Lo 1, LSS 1362, NGC 1360, NGC 4361). The sample covers a wide range of parameters (T eff ~ 70-130 kK, log g = 5.4-7.4). It represents different stages of post-AGB evolution. The derived stellar parameters are crucial constraints for AGB nucleosynthesis and stellar evolutionary calculations. Detailed spectral analyses using fully line-blanketed NLTE model atmospheres including 23 elements from hydrogen to nickel are performed. Additional modeling of the ISM line absorption enables to unambigiously identify nearly all observed lines and to improve both, the photospheric as well as the ISM model.

  10. SWIFT/UVOT PHOTOMETRY OF THE PLANETARY NEBULA WeBo 1: UNMASKING A FAINT HOT COMPANION STAR

    SciTech Connect

    Siegel, Michael H.; Hoversten, Erik; Stark, Michele; Bond, Howard E.; Breeveld, Alice A. E-mail: hoversten@swift.psu.edu E-mail: bond@stsci.edu

    2012-08-15

    We present an analysis of over 150 ks of data on the planetary nebula WeBo 1 (PN G135.6+01.0) obtained with the Swift Ultraviolet Optical Telescope (UVOT). The central object of this nebula has previously been described as a late-type K giant barium star with a possible hot companion, most likely a young pre-white dwarf. UVOT photometry shows that while the optical photometry is consistent with a large cool object, the near-ultraviolet (NUV) photometry shows far more UV flux than could be produced by any late-type object. Using model stellar atmospheres and a comparison to UVOT photometry for the pre-white dwarf PG 1159-035, we find that the companion has a temperature of at least 40,000 K and a radius of, at most, 0.056 R{sub Sun }. While the temperature and radius are consistent with a hot compact stellar remnant, they are lower and larger, respectively, than expected for a typical young pre-white dwarf. This likely indicates a deficiency in the assumed UV extinction curve. We find that higher temperatures more consistent with expectations for a pre-white dwarf can be derived if the foreground dust has a strong 'blue bump' at 2175 A and a lower R{sub V}. Our results demonstrate the ability of Swift to both uncover and characterize hot hidden companion stars and to constrain the UV extinction properties of foreground dust based solely on UVOT photometry.

  11. THE INTEGRATED DIFFUSE X-RAY EMISSION OF THE CARINA NEBULA COMPARED TO OTHER MASSIVE STAR-FORMING REGIONS

    SciTech Connect

    Townsley, Leisa K.; Broos, Patrick S.; Chu, You-Hua; Gruendl, Robert A.; Oey, M. S.; Pittard, Julian M.

    2011-05-01

    The Chandra Carina Complex Project (CCCP) has shown that the Carina Nebula displays bright, spatially-complex soft diffuse X-ray emission. Here, we 'sum up' the CCCP diffuse emission work by comparing the global morphology and spectrum of Carina's diffuse X-ray emission to other famous sites of massive star formation with pronounced diffuse X-ray emission: M17, NGC 3576, NGC 3603, and 30 Doradus. All spectral models require at least two diffuse thermal plasma components to achieve adequate spectral fits, a softer component with kT = 0.2-0.6 keV and a harder component with kT = 0.5-0.9 keV. In several cases these hot plasmas appear to be in a state of non-equilibrium ionization that may indicate recent and current strong shocks. A cavity north of the embedded giant H II region NGC 3576 is the only region studied here that exhibits hard diffuse X-ray emission; this emission appears to be nonthermal and is likely due to a recent cavity supernova, as evidenced by a previously-known pulsar and a newly-discovered pulsar wind nebula also seen in this cavity. All of these targets exhibit X-ray emission lines that are not well modeled by variable-abundance thermal plasmas and that might be attributed to charge exchange at the shock between the hot, tenuous, X-ray-emitting plasma and cold, dense molecular material; this is likely evidence for dust destruction at the many hot/cold interfaces that characterize massive star-forming regions.

  12. Studies of bipolar nebulae. VII - The exciting star of OH 0739-14 /equals OH 231.8 plus 4.2/

    NASA Technical Reports Server (NTRS)

    Cohen, M.

    1981-01-01

    A spectral classification for the exciting star of the bipolar reflection nebula OH 0739-14, which has also been observed to be an OH/H2O maser source, is obtained from the spectrum of the nebulosity in the range 6000-9000 A. Spectrophotometry of the visible nebula was obtained with the Cassegrain image-tube scanner on the Lick Observatory 3-m telescope at a resolution of approximately 7 A. The red spectrum is found to be distinguished by TiO absorption at the bandheads at 8206, 8303, 8432, 8442 and 8452 A and VO in the 7400 and 7900 A regions. On the basis of the depths of these bandheads and the K I 7699 A and Ca II infrared triplet, OH 0739-14 is determined to be of spectral type M9 III. The underlying star thus represents the coolest known star to occur in a bipolar system.

  13. Discovering Massive Runaway Stars with Infrared Bow Shock Nebulae: Four New OB Runaway Candidate Stars Found in WISE Atlas Images

    NASA Astrophysics Data System (ADS)

    Olivier, Grace M.; Kobulnicky, Henry A.; Povich, Matthew S.; Chick, William T.; Dale, Daniel A.; Andrews, Julian E.; Munari, Stephan; Schurhammer, Danielle; Sorber, Rebecca; Wernke, Heather N.

    2016-01-01

    Determining the mass loss rates of massive stars is an important unsolved problem in astronomy because mass loss dictates the evolutionary track of the star and its fate. One way to measure mass loss rates is through studying the infrared bow shocks from massive O and B type stars. These stars form bow shocks because they have been expelled from their birth regions and are moving at high velocities through the ISM. The stars we studied in this project were discovered by searching the Wide-Field Infrared Survey Explorer (WISE) 22 μm atlas. Using the Longslit Spectrograph at the Wyoming Infrared Observatory (WIRO) we observed each star to obtain a spectrum. Spectral types were then fit to these stars, the stars: G073.6200+1.8522 (B0V), G074.3117+1.0041 (O9V), G059.9225-1.9671 (B3V), and G063.1263+0.3327 (B5V). The spectral types of these stars agree with the predicted range of late-O to early-B type stars. These spectral types will be used to determine temperature, stellar wind velocities, space velocities, and other fundamental quantities that can be used to study stellar mass loss. This work is supported by the National Science Foundation under grants AST-1063146 (REU), AST-1411851 (RUI), and AST-1412845.

  14. Asymptotic Giant Branch stars as a source of short-lived radioactive nuclei in the solar nebula

    NASA Technical Reports Server (NTRS)

    Wasserburg, G. J.; Busso, M.; Gallino, R.; Raiteri, C. M.

    1994-01-01

    We carried out a theoretical evaluation of the contribution of Asymptotic Giant Branch (AGB) stars to some short-lived (10(exp 6) less than or equal to Tau-bar less than or equal to 2 x 10(exp 7) yr) isotopes in the Interstellar Medium (ISM) and in the early solar system using stellar model calculations for thermally pulsing evolutionary phases of low-mass stars. The yields of s-process nuclei in the convective He-shell for different neutron exposures tau(sub 0) were obtained, and AGB stars were shown to produce several radioactive nuclei (especially Pd-107, Pb-205, Fe-60, Zr-93, Tc-99, Cs-135, and Hf-182) in diferent amounts. Assuming either contamination of the solar nebula from a single AGB star or models for continuous injection and mixing from many stars into the ISM, we calculate the ratios of radioactive to stable nuclei at the epoch of the Sun's formation. The dilution factor between the AGB ejecta and the early solar system matter is obtained by matching the observed Pd-107/Pd-108 and depends on the value of tau(sub 0). It is found that small masses M(sub He) of He-shell material (10(exp -4)-10(exp -7) solar mass) enriched in s-process nuclei are sufficient to contaminate 1 solar mass of the ISM to produce the Pd-107 found in the early solar system. Predictions are made for all of the other radioactive isotopes. The optimal model to explain several observed radioactive species at different states of the proto-solar nebula involves a single AGB star with a low neutron exposure (tau(sub 0) = 0.03 mbarn(sup -1)) which contaminated the cloud with a dilution factor of M(sub He)/solar mass approximately 1.5 x 10(exp -4). This will also contribute newly synthesized stable s-process nuclei in the amount of approximately 10(exp -4) of their abundances already present in the proto-solar cloud. Variations in the degree of homogenization (approximately 30%) of the injected material may account for some of the small general isotopic anomalies found in meteorites. It is

  15. Doradus Nebula

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A panoramic view of a vast, sculpted area of gas and dust where thousands of stars are being born has been captured by NASA's Hubble Space Telescope.

    The image, taken by Hubble's Wide Field and Planetary Camera 2, is online at http://oposite.stsci.edu/pubinfo/pr/2001/21 and http://www.jpl.nasa.gov/images/wfpc . The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif.

    The photo offers an unprecedented, detailed view of the entire inner region of the fertile, star-forming 30 Doradus Nebula. The mosaic picture shows that ultraviolet radiation and high-speed material unleashed by the stars in the cluster, called R136 (the large blue blob left of center), are weaving a tapestry of creation and destruction, triggering the collapse of looming gas and dust clouds and forming pillar-like structures that incubate newborn stars.

    The 30 Doradus Nebula is in the Large Magellanic Cloud, a satellite galaxy of the Milky Way located 170,000 light-years from Earth. Nebulas like 30 Doradus are signposts of recent star birth. High-energy ultraviolet radiation from young, hot, massive stars in R136 causes surrounding gaseous material to glow. Previous Hubble telescope observations showed that R136 contains several dozen of the most massive stars known, each about 100 times the mass of the Sun and about 10 times as hot. These stellar behemoths formed about 2 million years ago.

    The stars in R136 produce intense 'stellar winds,' streams of material traveling at several million miles an hour. These winds push the gas away from the cluster and compress the inner regions of the surrounding gas and dust clouds (seen in the image as the pinkish material). The intense pressure triggers the collapse of parts of the clouds, producing a new star formation around the central cluster. Most stars in the nursery are not visible because they are still encased in cocoons of gas and dust.

    This mosaic image of 30 Doradus consists of five overlapping

  16. Ant nebula

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A new Hubble Space Telescope image of a celestial object called the Ant Nebula may shed new light on the future demise of our Sun. The image is available at http://www.jpl.nasa.gov/pictures/wfpc .

    The nebula, imaged on July 20, 1997, and June 30, 1998, by Hubble's Wide Field and Planetary Camera 2, was observed by Drs. Raghvendra Sahai and John Trauger of NASA's Jet Propulsion Laboratory, Pasadena, Calif.; Bruce Balick of the University of Washington in Seattle; and Vincent Icke of Leiden University in the Netherlands. JPL designed and built the camera.

    The Ant Nebula, whose technical name is Mz3, resembles the head and thorax of an ant when observed with ground-based telescopes. The new Hubble image, with 10 times the resolution revealing 100 times more detail, shows the 'ant's' body as a pair of fiery lobes protruding from a dying, Sun- like star. The Ant Nebula is located between 3,000 and 6,000 light years from Earth in the southern constellation Norma.

    The image challenges old ideas about what happens to dying stars. This observation, along with other pictures of various remnants of dying stars called planetary nebulae, shows that our Sun's fate will probably be much more interesting, complex and dramatic than astronomers previously believed.

    Although the ejection of gas from the dying star in the Ant Nebula is violent, it does not show the chaos one might expect from an ordinary explosion, but instead shows symmetrical patterns. One possibility is that the central star has a closely orbiting companion whose gravitational tidal forces shape the outflowing gas. A second possibility is that as the dying star spins, its strong magnetic fields are wound up into complex shapes like spaghetti in an eggbeater. Electrically charged winds, much like those in our Sun's solar wind but millions of times denser and moving at speeds up to 1,000 kilometers per second (more than 600 miles per second) from the star, follow the twisted field lines on their way

  17. Discussing the low fraction of disk-bearing T Tauri stars discovered near to the Sh2-296 nebula

    NASA Astrophysics Data System (ADS)

    Gregorio-Hetem, Jane

    2015-08-01

    A multiband study has been developed by our team in the direction of young star clusters associated to the Sh2-296 nebula aiming to unveil the star formation history of this galactic molecular cloud that shows a mixing of different age stellar groups. A sample of 58 pre-main sequence stars has been recently discovered by us in this region (Fernandes et al. 2015, MNRAS in press), based on optical spectral features. Only 41% of the sample shows evidence of IR excess revealing the presence of circumstellar disks. It is interesting to note that the targets were revealed by their strong X-ray emission, typically found in T Tauri stars (TTs) (Santos-Silva et al. 2015, in preparation) . In this case, it would be expected a larger number of disk-bearing stars and also the fraction of circumstellar emission (fc = Ldisk/Ltotal ) should be more significant in these objects. However, we verified that only 12% of the sample has fc > 30%. This low fraction is quite rare compared to most young star-forming regions, suggesting that some external factor has accelerated the disc dissipation. In the present work we explore the circumstellar structure of a subsample of 8 TTs associated to Sh2-296. The TTs were selected on the basis of their high circumstellar emission, which is estimated by SED fitting that uses near- to mid-IR data extracted from available catalogues (WISE, AKARI, MSX). The circumstellar characteristics are confronted to interstellar environment by comparing the stellar spatial distribution with 12CO maps (Nanten Survey, Fukui et al. ). Most of the TTs are projected against moderate molecular emission (33 Jy), but some of them are found in regions of lower levels of gas distribution (3.8 Jy). The similarities and differences found among the studied objects are discussed in order to better understand the formation and evolution of protostellar disks of the selected sample and their role in the star formation scenario nearby Sh2-296

  18. A SEARCH FOR STAR-DISK INTERACTION AMONG THE STRONGEST X-RAY FLARING STARS IN THE ORION NEBULA CLUSTER

    SciTech Connect

    Aarnio, Alicia N.; Stassun, Keivan G.; Matt, Sean P.

    2010-07-01

    The Chandra Orion Ultradeep Project observed hundreds of young, low-mass stars undergoing highly energetic X-ray flare events. The 32 most powerful cases have been previously modeled with the result that the magnetic structures responsible for these flares can be many stellar radii in extent. In this paper, we model the observed spectral energy distributions (SEDs) of these 32 stars in order to determine, in detail for each star, whether there is circumstellar disk material situated in sufficient proximity to the stellar surface for interaction with the large magnetic loops inferred from the observed X-ray flares. Our SEDs span the wavelength range 0.3-8 {mu}m (plus 24 {mu}m for some stars), allowing us to constrain the presence of dusty circumstellar material out to {approx_gt}10 AU from the stellar surface in most cases. For 24 of the 32 stars in our sample the available data are sufficient to constrain the location of the inner edge of the dusty disks. Six of these (25%) have SEDs consistent with inner disks within reach of the observed magnetic loops. Another four stars may have gas disks interior to the dust disk and extending within reach of the magnetic loops, but we cannot confirm this with the available data. The remaining 14 stars (58%) appear to have no significant disk material within reach of the large flaring loops. Thus, up to {approx}40% of the sample stars exhibit energetic X-ray flares that possibly arise from a magnetic star-disk interaction, and the remainder are evidently associated with extremely large, free-standing magnetic loops anchored only to the stellar surface.

  19. Identification of the nebula G70.7 + 1.2 as a bow shock powered by a pulsar/Be-star binary

    NASA Technical Reports Server (NTRS)

    Kulkarni, S. R.; Vogel, S. N.; Wang, Z.; Wood, D. O. S.

    1992-01-01

    New data are presented here that firmly establish the nonthermal nature of the radio emission from the enigmatic radio and optical nebula G70.7 + 1.2. H-alpha and forbidden O I Fabry-Perot observations are used to argue that the extended optical emission from the nebula arises from a bow shock powered by a mass-losing luminous star moving supersonically through dense gas. The strong nonthermal radio emission from the object is then explained as the shocked relativistic wind from a pulsar, which is proposed here as a companion to the Be star. The coincidence of the optical and radio emission requires the pulsar and stellar winds to be mixed together. The system has a large overall velocity of about 60 km/s which is inexplicable in all other models but which is typical of binary pulsars.

  20. Spitzer Observations of Young Stars in IC2118, the Witch Head Nebula

    NASA Astrophysics Data System (ADS)

    Guieu, Sylvain; Rebull, L. M.; Stauffer, J. R.; Vrba, F.; Noriega-Crespo, A.; Roelofsen Moody, T.; Sepulveda, B.; Spuck, T.; Weehler, C.; Maranto, A.; Penprase, B.

    2010-01-01

    We have used Spitzer infrared photometry, combined with complementary optical photometry, to conduct a census of young stellar objects in IC2118. IC2118 is most likely an example of triggered star formation, where the trigger is the Trapezium and/or the Orion-Eridanus superbubble. The characterization of YSOs in these clouds helps us to understand the process of triggered star formation in comparison to cloud-collapse star formation, specifically how the star formation efficiency, the initial mass function and the statistical circumstellar properties differ for this two formation modes. In this poster we present how we used IRAC (3.6, 4.5, 5.8, and 8 microns), MIPS (24, 70, and 160 microns) and UVRcIc photometry to discover 6 new YSOs showing infrared excess, and we discuss the characteristics of the total of 11 (including our new 6) YSOs in IC2118.

  1. Grids of synthetic spectra for H-poor central stars of planetary nebulae (CSPNe)

    NASA Astrophysics Data System (ADS)

    Keller, Graziela R.; Bianchi, Luciana; Herald, James E.; Maciel, Walter J.

    2012-08-01

    We present comprehensive grids of model spectra from far-UV to IR, covering the parameter space of [WC] (Keller et al. 2011) and PG1159 stars. Models are calculated with the CMFGEN code, accounting for non-LTE, line blanketing, wind, clumping, and including ions previously neglected. The grids are available at http://dolomiti.pha.jhu.edu/planetarynebulae.html. We used them to analyse UV and far-UV spectra of NGC6905's and NGC5189's central stars.

  2. Analysis of chemical abundances in planetary nebulae with [WC] central stars. I. Line intensities and physical conditions

    NASA Astrophysics Data System (ADS)

    García-Rojas, J.; Peña, M.; Morisset, C.; Mesa-Delgado, A.; Ruiz, M. T.

    2012-02-01

    Context. Planetary nebulae (PNe) around Wolf-Rayet [WR] central stars ([WR]PNe) constitute a particular photoionized nebula class that represents about 10% of the PNe with classified central stars. Aims: We analyse deep high-resolution spectrophotometric data of 12 [WR] PNe. This sample of [WR]PNe represents the most extensive analysed so far, at such high spectral resolution. We aim to select the optimal physical conditions in the nebulae to be used in ionic abundance calculations that will be presented in a forthcoming paper. Methods: We acquired spectra at Las Campanas Observatory with the 6.5-m telescope and the Magellan Inamori Kyocera (MIKE) spectrograph, covering a wavelength range from 3350 Å to 9400 Å. The spectra were exposed deep enough to detect, with signal-to-noise ratio higher than three, the weak optical recombination lines (ORLs) of O ii, C ii, and other species. We detect and identify about 2980 emission lines, which, to date, is the most complete set of spectrophotometric data published for this type of objects. From our deep data, numerous diagnostic line ratios for Te and ne are determined from collisionally excited lines (CELs), ORLs, and continuum measurements (H i Paschen continuum in particular). Results: Densities are closely described by the average of all determined values for objects with ne < 104 cm-3, and by ne([Cl iii]) for the densest objects. For some objects, ne([Ar iv]) is adopted as the characteristic density of the high ionization zone. For Te, we adopt a three-zone ionization scheme, where the low ionization zone is characterised by Te([N ii]), the medium ionization zone by Te([O iii]), and the highest ionization one by Te([Ar iv]) when available. We compute Te from the H i Paschen discontinuity and from He i lines. For each object, Te(H i) is, in general, consistent with Te derived from CELs, although it has a very large error. Values of Te(He i) are systematically lower than the Te derived from CELs. When comparing Te(H i

  3. Central Star Properties and C-N-O Abundances in Eight Galactic Planetary Nebulae from New HST/STIS Observations

    NASA Astrophysics Data System (ADS)

    Henry, Richard B. C.; Balick, Bruce; Dufour, Reginald J.; Kwitter, Karen B.; Shaw, Richard A.; Corradi, Romano

    2015-01-01

    We present detailed photoionization models of eight Galactic planetary nebulae (IC2165, IC3568, NGC2440, NGC3242, NGC5315, NGC5882, NGC7662, & PB6) based on recently obtained HST STIS spectra. Our interim goal is to infer Teff, luminosity, and current and progenitor masses for each central star, while the ultimate goal is to constrain published stellar evolution models which predict nebular CNO abundances. The models were produced by using the code CLOUDY to match closely the measured line strengths derived from high-quality HST STIS spectra (see poster by Dufour et al., this session) extending in wavelength from 1150-10270 Angstroms. The models assumed a blackbody SED. Variable input parameters included Teff, a radially constant nebular density, a filling factor, and elemental abundances. For the eight PNs we found a birth mass range of 1.5-2.9 Msun, a range in log(L/Lsun) of 3.10-3.88, and a Teff range of 51-150k K. Finally, we compare CNO abundances of the eight successful models with PN abundances of these same elements that are predicted by published stellar evolution models. We gratefully acknowledge generous support from NASA through grants related to the Cycle 19 program GO12600.

  4. Effective Temperatures and Elemental Abundances of Central Stars of Planetary Nebulae via Non Local Thermal Equilibrium Modeling.

    NASA Astrophysics Data System (ADS)

    Quigley, Mark Francis

    Effective temperatures, gravities, and surface abundances are determined for five central stars of planetary nebulae (CSPN): NGC 6826, NGC 2392, IC 2149, IC 4593, and IC 418. These stellar parameters are obtained by reproducing high resolution International Ultraviolet Explorer (IUE) spectra (1200-1680A), using atmospheric models which assume conditions of non-local thermodynamic equilibrium. In a preliminary study, absorption features are identified for the standard white subdwarf stars BD+28 ^circ4211 and BD+75 ^circ325, and B0 main sequence standard star Tau Sco, which exhibit effective temperatures (T _{rm eff}) of 80,000K, 55,000K, and 30,000K, respectively. Using the atomic data tables of Kurucz, and those of Ekberg and Johansson, over 98% of the absorption features in high resolution IUE spectra (1150-1990A) are identified. Analysis of the identifications shows that the UV spectra of these stars, similar in temperature to CSPN, are dominated by iron and nickel. The results of a comparative study of the high resolution UV spectra (1150-1980A) spectra of fifteen CSPN (36,000K <= T_{ rm eff} <= 130,000K) are also presented. Measurement of the terminal velocities of the stellar wind P Cygni profiles exhibited by the resonance lines of N V (1240A), Si IV (1390, 1400A), and C IV (1550A) yields estimates of stellar mass and radius. A grid of plane parallel model atmospheres in hydrostatic and statistical equilibrium is calculated, using complete linearization/accelerated lambda iteration hybrid algorithms. The major constituents of the atmospheres, hydrogen, helium, carbon, nitrogen, and oxygen, are treated non-local thermal equilibrium. Using these models, the spectra of the five coolest CSPN are reproduced over the wavelength region 1200-1680A, thus yielding estimates of the effective temperature, gravity, and surface abundances. For each atomic species, the total opacity is calculated, using atmospheres of identical composition and constant luminosity. Analysis

  5. Classical T Tauri stars with VPHAS+ - I. H α and u-band accretion rates in the Lagoon Nebula M8

    NASA Astrophysics Data System (ADS)

    Kalari, V. M.; Vink, J. S.; Drew, J. E.; Barentsen, G.; Drake, J. J.; Eislöffel, J.; Martín, E. L.; Parker, Q. A.; Unruh, Y. C.; Walton, N. A.; Wright, N. J.

    2015-10-01

    We estimate the accretion rates of 235 Classical T Tauri star (CTTS) candidates in the Lagoon Nebula using ugri H α photometry from the VST Photometric H α survey+. Our sample consists of stars displaying H α excess, the intensity of which is used to derive accretion rates. For a subset of 87 stars, the intensity of the u-band excess is also used to estimate accretion rates. We find the mean variation in accretion rates measured using H α and u-band intensities to be ˜0.17 dex, agreeing with previous estimates (0.04-0.4 dex) but for a much larger sample. The spatial distribution of CTTS align with the location of protostars and molecular gas suggesting that they retain an imprint of the natal gas fragmentation process. Strong accretors are concentrated spatially, while weak accretors are more distributed. Our results do not support the sequential star-forming processes suggested in the literature.

  6. Braiding light quanta

    NASA Astrophysics Data System (ADS)

    Iadecola, Thomas; Schuster, Thomas; Chamon, Claudio

    The possibility that anyons -- quantum particles other than fermions or bosons -- can emerge in condensed matter systems has motivated generations of physicists. In addition to being of fundamental scientific importance, so-called non-Abelian anyons are particularly sought-after for potential applications to quantum computing. However, experimental evidence of anyons in electronic systems remains inconclusive. We propose to demonstrate non-Abelian braiding by injecting coherent states of light into ``topological guided modes'' in specially-fabricated photonic waveguide arrays. These modes are photonic analogues of topological zero modes in electronic systems. Light traveling inside spatially well-separated topological guided modes can be braided, leading to the accumulation of non-Abelian phases. We propose an optical interference experiment to probe this non-Abelian braiding directly. T.I. is supported by a National Science Foundation Graduate Research Fellowship under Grant No. DGE-1247312.

  7. Second outburst phase of a young eruptive star V1647 Orionis (McNeil's nebula)

    NASA Astrophysics Data System (ADS)

    Ninan, J. P.; Ojha, D. K.; Mallick, K. K.; Ghosh, S. K.; Joshi, J. S.

    2013-06-01

    Young low mass stars still embedded in dust and molecular gas pass through a stage of outbursts. These outbursts are due to sudden increase in accretion rate from the inner disc. V1647 Orionis underwent an FU Ori kind of outburst in 2004 and returned to its pre-outburst phase in early 2006. Within just 2 years it again underwent a second outburst in 2008; such an event is rarely seen in FU Ori type of outburst. We therefore followed the source in its second outburst phase from 2-m Himalayan Chandra Telescope (HCT) and 2-m IUCAA Girawali Observatory (IGO) Telescope. Our optical and near-infrared (NIR) photometric data show that the source is undergoing a slow but steady dimming of ˜ 0.3 - 0.5 mag since the recent second outburst. It seems that the observed properties of the outburst of V1647 Ori are different from both the EX Ori and FU Ori type of outbursts, and suggest that this star probably represents a new type of eruptive young star, to be different from both FU Ori and EX Ori classes.

  8. Shuttle plate braiding machine

    NASA Technical Reports Server (NTRS)

    Huey, Jr., Cecil O. (Inventor)

    1994-01-01

    A method and apparatus for moving yarn in a selected pattern to form a braided article. The apparatus includes a segmented grid of stationary support elements and a plurality of shuttles configured to carry yarn. The shuttles are supported for movement on the grid assembly and each shuttle includes a retractable plunger for engaging a reciprocating shuttle plate that moves below the grid assembly. Such engagement at selected times causes the shuttles to move about the grid assembly in a selected pattern to form a braided article of a particular geometry.

  9. Short- and Long-Term Radio Variability of Young Stars in The Orion Nebula Cluster and Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Rivilla, V. M.; Chandler, C. J.; Sanz-Forcada, J.; Jiménez-Serra, I.; Forbrich, J.; Martín-Pintado, J.

    2015-08-01

    We have used the Karl G. Jansky Very Large Array (VLA) to carry out multi-epoch radio continuum monitoring of the Orion Nebula Cluster (ONC) and the background Orion Molecular Cloud (OMC; 3 epochs at Q band and 11 epochs at Ka band). Our new observations reveal the presence of 19 radio sources, mainly concentrated in the Trapezium Cluster and the Orion Hot Core (OHC) regions. With the exception of the Becklin-Neugebauer object and source C (which we identify here as dust emission associated with a proplyd) the sources all show radio variability between the different epochs. We have found tentative evidence of variability in the emission from the massive object related to source I. Our observations also confirm radio flux density variations of a factor >2 on timescales of hours to days in five sources. One of these flaring sources, OHC-E, has been detected for the first time. We conclude that the radio emission can be attributed to two different components: (i) highly variable (flaring) non-thermal radio gyrosynchrotron emission produced by electrons accelerated in the magnetospheres of pre-main-sequence low-mass stars and (ii) thermal emission due to free-free radiation from ionized gas and/or heated dust around embedded massive objects and proplyds. Combining our sample with other radio monitoring at 8.3 GHz and the X-ray catalog provided by Chandra, we have studied the properties of the entire sample of radio/X-ray stars in the ONC/OMC region (51 sources). We have found several hints of a relation between the X-ray activity and the mechanisms responsible for (at least some fraction of) the radio emission. We have estimated a radio flaring rate of ˜0.14 flares day-1 in the dense stellar cluster embedded in the OHC region. This suggests that radio flares are more common events during the first stages of stellar evolution than previously thought. The advent of improved sensitivity with the new VLA and ALMA will dramatically increase the number of stars in young

  10. BINARY CENTRAL STARS OF PLANETARY NEBULAE DISCOVERED THROUGH PHOTOMETRIC VARIABILITY. II. MODELING THE CENTRAL STARS OF NGC 6026 AND NGC 6337

    SciTech Connect

    Hillwig, Todd C.; Bond, Howard E.; Afsar, Melike; De Marco, Orsola

    2010-08-15

    Close-binary central stars of planetary nebulae (CSPNe) provide an opportunity to explore the evolution of PNe, their shaping, and the evolution of binary systems undergoing a common-envelope phase. Here, we present the results of time-resolved photometry of the binary central stars (CSs) of the PNe NGC 6026 and NGC 6337 as well as time-resolved spectroscopy of the CS of NGC 6026. The results of a period analysis give an orbital period of 0.528086(4) days for NGC 6026 and a photometric period of 0.1734742(5) days for NGC 6337. In the case of NGC 6337, it appears that the photometric period reflects the orbital period and that the variability is the result of the irradiated hemisphere of a cool companion. The inclination of the thin PN ring is nearly face-on. Our modeled inclination range for the close central binary includes nearly face-on alignments and provides evidence for a direct binary-nebular shaping connection. For NGC 6026, however, the radial-velocity curve shows that the orbital period is twice the photometric period. In this case, the photometric variability is due to an ellipsoidal effect in which the CS nearly fills its Roche lobe and the companion is most likely a hot white dwarf. NGC 6026 then is the third PN with a confirmed central binary where the companion is compact. Based on the data and modeling using a Wilson-Devinney code, we discuss the physical parameters of the two systems and how they relate to the known sample of close-binary CSs, which comprise 15%-20% of all PNe.

  11. The Ring Nebula

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The NASA Hubble Space Telescope has captured the sharpest view yet of the most famous of all planetary nebulae, the Ring Nebula (M57). In this October 1998 image, the telescope has looked down a barrel of gas cast off by a dying star thousands of years ago. This photo reveals elongated dark clumps of material embedded in the gas at the edge of the nebula; the dying central star floating in a blue haze of hot gas. The nebula is about a light-year in diameter and is located some 2,000 light-years from Earth in the direction of the constellation Lyra. The colors are approximately true colors. The color image was assembled from three black-and-white photos taken through different color filters with the Hubble telescope's Wide Field and Planetary Camera 2. Blue isolates emission from very hot helium, which is located primarily close to the hot central star. Green represents ionized oxygen, which is located farther from the star. Red shows ionized nitrogen, which is radiated from the coolest gas, located farthest from the star. The gradations of color illustrate how the gas glows because it is bathed in ultraviolet radiation from the remnant central star, whose surface temperature is a white-hot 216,000 degrees Fahrenheit (120,000 degrees Celsius).

  12. Planetary nebulae

    NASA Astrophysics Data System (ADS)

    Gieseking, F.

    1983-02-01

    The first planetary nebula (PN) was discovered by Darquier in 1779. In 1981, a compilation of galactic PN listed a total of 1455 objects. Outside the Milky Way Galaxy, PN are currently known in the Magellanic Clouds and in several members of the local group of galaxies. The PN have a rich emission-line spectrum, which makes it possible to recognize them at large distances. A central stellar object can be observed within the nebula. In 1927, spectral lines at 4959 A and 5007 A emitted by the PN could finally be identified as 'forbidden lines' of O(++). The life expectancy of a PN, estimated on the basis of the observed expansion rate, is only about 30,000 years. The PN have a number of interesting characteristics which are partly related to the high effective temperature and luminosity of the central stars, the presence of a particle system under extreme physical conditions, and the stellar material provided by the PN for the interstellar medium. Attention is given to the determination of the distance of PN, the Shklovsky distances, and two mysterious aspects related to the spectrum

  13. The Formation of a Planetary Nebula.

    ERIC Educational Resources Information Center

    Harpaz, Amos

    1991-01-01

    Proposes a scenario to describe the formation of a planetary nebula, a cloud of gas surrounding a very hot compact star. Describes the nature of a planetary nebula, the number observed to date in the Milky Way Galaxy, and the results of research on a specific nebula. (MDH)

  14. The Trifid Nebula: Stellar Sibling Rivalry

    NASA Technical Reports Server (NTRS)

    2001-01-01

    A zoom into the Trifid Nebula starts with ground-based observations and ends with a Hubble Space Telescope (HST) image. Another HST image shows star formation in the nebula and the video concludes with a ground-based image of the Trifid Nebula.

  15. The binary fraction of planetary nebula central stars - II. A larger sample and improved technique for the infrared excess search

    NASA Astrophysics Data System (ADS)

    Douchin, Dimitri; De Marco, Orsola; Frew, D. J.; Jacoby, G. H.; Jasniewicz, G.; Fitzgerald, M.; Passy, Jean-Claude; Harmer, D.; Hillwig, Todd; Moe, Maxwell

    2015-04-01

    There is no conclusive explanation of why ˜80 per cent of planetary nebulae (PNe) are non-spherical. In the Binary Hypothesis, a binary interaction is a preferred channel to form a non-spherical PN. A fundamental step to corroborate or disprove the Binary Hypothesis is to estimate the binary fraction of central stars of PNe (CSPNe) and compare it with a prediction based on the binary fraction of the progenitor, main-sequence population. In this paper, the second in a series, we search for spatially unresolved I- and J-band flux excess in an extended sample of 34 CSPN by a refined measurement technique with a better quantification of the uncertainties. The detection rate of I- (J-)band flux excess is 32 ± 16 per cent (50 ± 24 per cent). This result is very close to what was obtained in Paper I with a smaller sample. We account conservatively for unobserved cool companions down to brown dwarf luminosities, increasing these fractions to 40 ± 20 per cent (62 ± 30 per cent). This step is very sensitive to the adopted brightness limit of our survey. Accounting for visual companions increases the binary fraction to 46 ± 23 per cent (71 ± 34 per cent). These figures are lower than in Paper I. The error bars are better quantified, but still unacceptably large. Taken at face value, the current CSPN binary fraction is in line with the main-sequence progenitor population binary fraction. However, including white dwarfs companions could increase this fraction by as much as 13 (21) per cent points.

  16. A Smoking Gun in the Carina Nebula

    NASA Technical Reports Server (NTRS)

    Hamaguchi, Kenji; Corcoran, Michael F.; Ezoe, Yuichiro; Townsley, Leisa; Broos, Patrick; Gruendl, Robert; Vaidya, Kaushar; White, Stephen M.; Petre, Rob; Chu, You-Hua

    2009-01-01

    The Carina Nebula is one of thc youngest, most active sites of massive star formation in our Galaxy. In this nebula, we have discovered a bright X-ray source that has persisted for approx.30 years. The soft X-ray spectrum. consistent with kT approx.130 eV blackbody radiation with mild extinction, and no counterpart in the near- and mid-infrared wavelengths indicate that it is a, approx. 10(exp 6)-year-old neutron star housed in the Carina Nebula. Current star formation theory does not suggest that the progenitor of the neutron star and massive stars in the Carina Nebula, in particular (eta)Car, are coeval. This result demonstrates that the Carina Nebula experienced at least two major episodes of massive star formation. The neutron star would be responsible for remnants of high energy activity seen in multiple wavelengths.

  17. A Tactile Carina Nebula

    NASA Astrophysics Data System (ADS)

    Grice, Noreen A.; Mutchler, M.

    2010-01-01

    Astronomy was once considered a science restricted to fully sighted participants. But in the past two decades, accessible books with large print/Braille and touchable pictures have brought astronomy and space science to the hands and mind's eye of students, regardless of their visual ability. A new universally-designed tactile image featuring the Hubble mosaic of the Carina Nebula is being presented at this conference. The original dataset was obtained with Hubble's Advanced Camera for Surveys (ACS) hydrogen-alpha filter in 2005. It became an instant icon after being infused with additional color information from ground-based CTIO data, and released as Hubble's 17th anniversary image. Our tactile Carina Nebula promotes multi-mode learning about the entire life-cycle of stars, which is dramatically illustrated in this Hubble mosaic. When combined with descriptive text in print and Braille, the visual and tactile components seamlessly reach both sighted and blind populations. Specific touchable features of the tactile image identify the shapes and orientations of objects in the Carina Nebula that include star-forming regions, jets, pillars, dark and light globules, star clusters, shocks/bubbles, the Keyhole Nebula, and stellar death (Eta Carinae). Visit our poster paper to touch the Carina Nebula!

  18. Empirical near-infrared colors for low-mass stars and brown dwarfs in the Orion Nebula Cluster. An empirical near-infrared isochrone at ~1 Myr

    NASA Astrophysics Data System (ADS)

    Scandariato, G.; Da Rio, N.; Robberto, M.; Pagano, I.; Stassun, K.

    2012-09-01

    Context. Current atmospheric and evolutionary models for low-mass stars and brown dwarfs rely on approximate assumptions on the physics of the stellar structure and the atmospheric radiative transfer. This leads to biased theoretical predictions on the photospheric spectral energy distributions of these system, especially when applied to low surface gravity objects such as pre-main sequence (PMS) stars, and affects the derivation of stellar parameters from photometric data. Aims: Our main goal is to correct the biases present in the theoretical predictions for the near-IR photometry of low-mass PMS stars. Using empirical intrinsic IR colors, we assess the accuracy of current synthetic spectral libraries and evolutionary models. We investigate how the uncertainty in the intrinsic colors associated with different PMS models affect the derivation of the initial mass function of young clusters from near-IR photometry. Methods: We consider a sample of ~300 PMS stars in the Orion Nebula Cluster (age ≃ 1 Myr) with well measured luminosities, temperatures and photospheric JHKS photometry. This sample is used as a benchmark for testing both atmospheric and evolutionary theoretical models. Results: By analyzing the photospheric colors of our sample of young stars, we find that the synthetic JHKS photometry provided by theoretical spectral templates for late spectral types (>K6) are accurate at the level of ~0.2 mag, while colors are accurate at ≲ 0.1 mag. We tabulate the intrinsic photospheric colors, appropriate for the Orion Nebula Cluster, in the range K6-M8.5. They can be conveniently used as templates for the intrinsic colors of other young (age ≲ 5 Myr) stellar clusters. Conclusions: The theoretically-predicted JHKS magnitudes of young late type stars do not accurately reproduce the intrinsic ones of the Orion Nebula Cluster members. An empirical correction of the atmospheric templates can fix the discrepancies between expected and observed colors. Still, other

  19. FAR-INFRARED IMAGING OF POST-ASYMPTOTIC GIANT BRANCH STARS AND (PROTO)-PLANETARY NEBULAE WITH THE AKARI FAR-INFRARED SURVEYOR

    SciTech Connect

    Cox, N. L. J.; Garcia-Hernandez, D. A.; Manchado, A.

    2011-04-15

    By tracing the distribution of cool dust in the extended envelopes of post-asymptotic giant branch stars and (proto)-planetary nebulae ((P)PNe), we aim to recover, or constrain, the mass-loss history experienced by these stars in their recent past. The Far-Infrared Surveyor (FIS) instrument on board the AKARI satellite was used to obtain far-infrared maps for a selected sample of post-AGB stars and (P)PNe. We derived flux densities (aperture photometry) for 13 post-AGB stars and (P)PNe at four far-infrared wavelengths (65, 90, 140, and 160 {mu}m). Radial (azimuthally averaged) profiles are used to investigate the presence of extended emission from cool dust. No (detached) extended emission is detected for any target in our sample at levels significant with respect to background and cirrus emission. Only IRAS 21046+4739 reveals tentative excess emission between 30'' and 130''. Estimates of the total dust and gas mass from the obtained maps indicate that the envelope masses of these stars should be large in order to be detected with the AKARI FIS. Imaging with higher sensitivity and higher spatial resolution is needed to detect and resolve, if present, any cool compact or extended emission associated with these evolved stars.

  20. Atomic hydrogen in planetary nebulae

    NASA Technical Reports Server (NTRS)

    Schneider, Stephen E.; Silverglate, Peter R.; Altschuler, Daniel R.; Giovanardi, Carlo

    1987-01-01

    The authors searched for neutral atomic hydrogen associated with 22 planetary nebulae and three evolved stars in the 21 cm line at the Arecibo Observatory. Objects whose radial velocities permitted discrimination from Galactic H I were chosen for observation. Hydrogen was detected in absorption from IC 4997. From the measurements new low limits are derived to the mass of atomic hydrogen associated with the undetected nebulae. Radio continuum observations were also made of several of the nebulae at 12.6 cm. The authors reexamine previous measurements of H I in planetary nebulae, and present the data on a consistent footing. The question of planetary nebula distances is considered at length. Finally, implications of the H I measurements for nebular evolution are discussed and it is suggested that atomic hydrogen seen in absorption was expelled from the progenitor star during the final 1000 yr prior to the onset of ionization.

  1. The Orion Nebula

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This spectacular color panorama of the center the Orion nebula is one of the largest pictures ever assembled from individual images taken with NASA's Hubble Space Telescope. The picture, seamlessly composited from a mosaic of 15 separate fields, covers an area of sky about five percent the area covered by the full Moon. The seemingly infinite tapestry of rich detail revealed by Hubble shows a churning turbulent star factory set within a maelstrom of flowing, luminescent gas. Though this 2.5 light-years wide view is still a small portion of the entire nebula, it includes almost all of the light from the bright glowing clouds of gas and a star cluster associated with the nebula. The mosaic reveals at least 153 glowing protoplanetary disks (first discovered with the Hubble in 1992, and dubbed 'proplyds') that are believed to be embryonic solar systems that will eventually form planets. (Our solar system has long been considered the relic of just such a disk that formed around the newborn Sun). The proplyds that are closest to the Trapezium stars (image center) are shedding some of their gas and dust. The pressure of starlight from the hottest stars forms 'tails' which act like wind vanes pointing away from the Trapezium. These tails result from the light from the star pushing the dust and gas away from the outside layers of the proplyds. In addition to the luminescent proplyds, seven disks are silhouetted against the bright background of the nebula. Located 1,500 light-years away, along our spiral arm of the Milky Way, the Orion nebula is located in the middle of the sword region of the constellation Orion the Hunter, which dominates the early winter evening sky at northern latitudes.

  2. The Cat's Eye Nebula

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This NASA Hubble Space Telescope image shows one of the most complex planetary nebulae ever seen, NGC 6543, nicknamed the 'Cat's Eye Nebula.' Hubble reveals surprisingly intricate structures including concentric gas shells, jets of high-speed gas and unusual shock-induced knots of gas. Estimated to be 1,000 years old, the nebula is a visual 'fossil record' of the dynamics and late evolution of a dying star. A preliminary interpretation suggests that the star might be a double-star system. The suspected companion star also might be responsible for a pair of high-speed jets of gas that lie at right angles to this equatorial ring. If the companion were pulling in material from a neighboring star, jets escaping along the companion's rotation axis could be produced. These jets would explain several puzzling features along the periphery of the gas lobes. Like a stream of water hitting a sand pile, the jets compress gas ahead of them, creating the 'curlicue' features and bright arcs near the outer edge of the lobes. The twin jets are now pointing in different directions than these features. This suggests the jets are wobbling, or precessing, and turning on and off episodically. This color picture, taken with the Wide Field Planetary Camera-2, is a composite of three images taken at different wavelengths. (red, hydrogen-alpha; blue, neutral oxygen, 6300 angstroms; green, ionized nitrogen, 6584 angstroms). The image was taken on September 18, 1994. NGC 6543 is 3,000 light- years away in the northern constellation Draco. The term planetary nebula is a misnomer; dying stars create these cocoons when they lose outer layers of gas. The process has nothing to do with planet formation, which is predicted to happen early in a star's life.

  3. Modelling the cometary structure of the planetary nebula HFG1 based on the evolution of its binary central star V664 Cas

    NASA Astrophysics Data System (ADS)

    Chiotellis, A.; Boumis, P.; Nanouris, N.; Meaburn, J.; Dimitriadis, G.

    2016-03-01

    HFG1 is the first well-observed planetary nebula (PN) which reveals a cometary-like structure. Its main morphological features consist of a bow-shaped shell, which surrounds the central star, accompanied by a long collimated tail. In this study, we perform two-dimensional hydrodynamic simulations modelling the formation of HFG1 from the interaction of the local ambient medium with the mass outflows of its asymptotic giant branch (AGB) progenitor star. We attribute the cometary appearance of HFG1 to the systemic motion of the PN with respect to the local ambient medium. Due to its vital importance, we re-estimate the distance of HFG1 by modelling the spectral energy distribution of its central star, V664 Cas, and we find a distance of 490 ± 50 pc. Our simulations show that none of our models with time invariant stellar wind and ambient medium properties are able to reproduce simultaneously the extended bow shock and the collimated tail observed in HFG1. Given this, we increase the complexity of our modelling considering that the stellar wind is time variable. The wind description is based on the predictions of the AGB and post-AGB evolution models. Testing a grid of models, we find that the properties of HFG1 are best reproduced by the mass outflows of a 3 M⊙ AGB star. Such a scenario is consistent with the current observed properties of V664 Cas primary star, an O-type subdwarf, and bridges the evolutionary history of HFG1 central star with the observables of the PN. We discuss the implications of our study in the understanding of the evolution of AGB/post-AGB stars towards the formation of O-type subdwarfs surrounded by PNe.

  4. Braids, shuffles and symmetrizers

    NASA Astrophysics Data System (ADS)

    Isaev, A. P.; Ogievetsky, O. V.

    2009-07-01

    Multiplicative analogues of the shuffle elements of the braid group rings are introduced; in local representations they give rise to certain graded associative algebras (b-shuffle algebras). For the Hecke and BMW algebras, the (anti)-symmetrizers have simple expressions in terms of the multiplicative shuffles. The (anti)-symmetrizers can be expressed in terms of the highest multiplicative 1-shuffles (for the Hecke and BMW algebras) and in terms of the highest additive 1-shuffles (for the Hecke algebras). The spectra and multiplicities of eigenvalues of the operators of the multiplication by the multiplicative and additive 1-shuffles are examined. Dedicated to the memory of Aleosha Zamolodchikov.

  5. High-speed Bullet Ejections during the AGB-to-Planetary Nebula Transition: HST Observations of the Carbon Star, V Hydrae

    NASA Astrophysics Data System (ADS)

    Sahai, R.; Scibelli, S.; Morris, M. R.

    2016-08-01

    The well-studied carbon star, V Hya, showing evidence for high-speed, collimated outflows and dense equatorial structures, is a key object in the study of the poorly understood transition of AGB stars into aspherical planetary nebulae. Using the Space Telescope Imaging Spectrograph instrument on board the Hubble Space Telescope, we have obtained high spatial-resolution long-slit optical spectra of V Hya that show high-velocity emission in [S ii] and [Fe ii] lines. Our data set, spanning three epochs spaced apart by a year during each of two periods (in 2002–2004 and 2011–2013), shows that V Hya ejects high-speed (˜200–250 {km} {{{s}}}-1) bullets once every ˜8.5 years. The ejection axis flip–flops around a roughly eastern direction, both in and perpendicular to the sky-plane, and the radial velocities of the ejecta also vary in concert between low and high values. We propose a model in which the bullet ejection is associated with the periastron passage of a binary companion in an eccentric orbit around V Hya with an orbital period of ˜8.5 years. The flip–flop phenomenon is likely the result of collimated ejection from an accretion disk (produced by gravitational capture of material from the primary) that is warped and precessing, and/or that has a magnetic field that is misaligned with that of the companion or the primary star. We show how a previously observed 17 year period in V Hya’s light-cycle can also be explained in our model. Additionally, we describe how the model proposed here can be extended to account for multipolar nebulae.

  6. High-speed Bullet Ejections during the AGB-to-Planetary Nebula Transition: HST Observations of the Carbon Star, V Hydrae

    NASA Astrophysics Data System (ADS)

    Sahai, R.; Scibelli, S.; Morris, M. R.

    2016-08-01

    The well-studied carbon star, V Hya, showing evidence for high-speed, collimated outflows and dense equatorial structures, is a key object in the study of the poorly understood transition of AGB stars into aspherical planetary nebulae. Using the Space Telescope Imaging Spectrograph instrument on board the Hubble Space Telescope, we have obtained high spatial-resolution long-slit optical spectra of V Hya that show high-velocity emission in [S ii] and [Fe ii] lines. Our data set, spanning three epochs spaced apart by a year during each of two periods (in 2002–2004 and 2011–2013), shows that V Hya ejects high-speed (∼200–250 {km} {{{s}}}-1) bullets once every ∼8.5 years. The ejection axis flip–flops around a roughly eastern direction, both in and perpendicular to the sky-plane, and the radial velocities of the ejecta also vary in concert between low and high values. We propose a model in which the bullet ejection is associated with the periastron passage of a binary companion in an eccentric orbit around V Hya with an orbital period of ∼8.5 years. The flip–flop phenomenon is likely the result of collimated ejection from an accretion disk (produced by gravitational capture of material from the primary) that is warped and precessing, and/or that has a magnetic field that is misaligned with that of the companion or the primary star. We show how a previously observed 17 year period in V Hya’s light-cycle can also be explained in our model. Additionally, we describe how the model proposed here can be extended to account for multipolar nebulae.

  7. A carbon dwarf wearing a Necklace: first proof of accretion in a post-common-envelope binary central star of a planetary nebula with jets

    NASA Astrophysics Data System (ADS)

    Miszalski, Brent; Boffin, Henri M. J.; Corradi, Romano L. M.

    2013-01-01

    The formation of collimated outflows or jets in planetary nebulae (PNe) is not well understood. There is no evidence for active accretion discs in PNe, making it difficult to decide which of the several proposed jet formation scenarios may be correct. A handful of wide binary central stars of PNe are known to have accreted carbon and slow neutron capture (s-process) enhanced material, the immediate progenitors of barium stars; however, no close binary analogues are known to have passed through a common-envelope (CE) phase. Here we present spectroscopy of the Necklace taken near light-curve minimum that for the first time reveals a carbon-rich (C/O > 1) companion, a carbon dwarf, in a post-CE central star. As unevolved stars do not produce carbon, the chemical enhancement of the secondary can only be explained by accretion from the primary. Accretion most likely happened prior to the CE phase via wind accretion as not enough material can be accreted during the short CE phase. The pair of jets in the Necklace, which are observed to be older than the PN, are therefore likely to have been launched from an accretion disc around the companion during this early accretion phase. This discovery adds significant weight to the emerging scenario that jets in post-CE PNe are primarily launched by an accretion disc around a main-sequence companion before the CE phase.

  8. Stars and star systems

    NASA Astrophysics Data System (ADS)

    Martynov, D. Ia.

    Topics examined include close binary systems, supernovae and their remnants, variable stars, young star groups (e.g., clusters and associations), spherical star clusters, and planetary nebulae. Also considered are the interstellar medium and star formation, systems of galaxies, and current problems in cosmology.

  9. Ghost Head Nebula

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Looking like a colorful holiday card, a new image from NASA's Hubble Space Telescope reveals a vibrant green and red nebula far from Earth.

    The image of NGC 2080, taken by Hubble's Wide Field and Planetary Camera 2, designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif., is available online at http://www.jpl.nasa.gov/images/wfpc . Images like this help astronomers investigate star formation in nebulas.

    NGC 2080, nicknamed 'The Ghost Head Nebula,' is one of a chain of star-forming regions lying south of the 30 Doradus nebula in the Large Magellanic Cloud. 30 Doradus is the largest star-forming complex in the local group of galaxies. This 'enhanced color' picture is composed of three narrow-band-filter images obtained by Hubble on March 28, 2000.

    The red and blue light come from regions of hydrogen gas heated by nearby stars. The green light on the left comes from glowing oxygen. The energy to illuminate the green light is supplied by a powerful stellar wind, a stream of high-speed particles coming from a massive star just outside the image. The central white region is a combination of all three emissions and indicates a core of hot, massive stars in this star-formation region. Intense emission from these stars has carved a bowl-shaped cavity in surrounding gas.

    In the white region, the two bright areas (the 'eyes of the ghost') - named A1 (left) and A2 (right) -- are very hot, glowing 'blobs' of hydrogen and oxygen. The bubble in A1 is produced by the hot, intense radiation and powerful stellar wind from one massive star. A2 contains more dust and several hidden, massive stars. The massive stars in A1 and A2 must have formed within the last 10,000 years, since their natal gas shrouds are not yet disrupted by the powerful radiation of the newborn stars.

    The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract with the Goddard Space Flight Center

  10. Binaries discovered by the SPY survey. VI. Discovery of a low mass companion to the hot subluminous planetary nebula central star EGB 5 - a recently ejected common envelope?

    NASA Astrophysics Data System (ADS)

    Geier, S.; Napiwotzki, R.; Heber, U.; Nelemans, G.

    2011-04-01

    Hot subdwarf B stars (sdBs) in close binary systems are assumed to be formed via common envelope ejection. According to theoretical models, the amount of energy and angular momentum deposited in the common envelope scales with the mass of the companion. That low mass companions near or below the core hydrogen-burning limit are able to trigger the ejection of this envelope is well known. The currently known systems have very short periods ≃0.1-0.3 d. Here we report the discovery of a low mass companion (M2 > 0.14 M⊙) orbiting the sdB star and central star of a planetary nebula EGB 5 with an orbital period of 16.5 d at a minimum separation of 23 R⊙. Its long period is only just consistent with the energy balance prescription of the common envelope. The marked difference between the short and long period systems will provide strong constraints on the common envelope phase, in particular if the masses of the sdB stars can be measured accurately. Due to selection effects, the fraction of sdBs with low mass companions and similar or longer periods may be quite high. Low mass stellar and substellar companions may therefore play a significant role for the still unclear formation of hot subdwarf stars. Furthermore, the nebula around EGB 5 may be the remnant of the ejected common envelope making this binary a unique system to study this short und poorly understood phase of binary evolution. Based on observations at the Paranal Observatory of the European Southern Observatory for programmes No. 167.H-0407(A) and 71.D-0383(A). Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC). Some of the data used in this work were obtained at the William Herschel Telescope (WHT) operated by the Isaac Newton Group of Telescopes (ING).

  11. The chemical composition of TS 01, the most oxygen-deficient planetary nebula. AGB nucleosynthesis in a metal-poor binary star

    NASA Astrophysics Data System (ADS)

    Stasińska, G.; Morisset, C.; Tovmassian, G.; Rauch, T.; Richer, M. G.; Peña, M.; Szczerba, R.; Decressin, T.; Charbonnel, C.; Yungelson, L.; Napiwotzki, R.; Simón-Díaz, S.; Jamet, L.

    2010-02-01

    The planetary nebula TS 01 (also called PN G 135.9+55.9 or SBS 1150+599A) with its record-holding low oxygen abundance and its double degenerate close binary core (period 3.9 h) is an exceptional object located in the Galactic halo. We have secured observational data in a complete wavelength range to pin down the abundances of half a dozen elements in the nebula. The abundances are obtained via detailed photoionization modelling which takes into account all the observational constraints (including geometry and aperture effects) using the pseudo-3D photoionization code Cloudy_3D. The spectral energy distribution of the ionizing radiation is taken from appropriate model atmospheres. Incidentally we find from the new observational constraints that both stellar components contribute to the ionization: the “cool” one provides the bulk of hydrogen ionization, while the “hot” one is responsible for the presence of the most highly charged ions, which explains why previous attempts to model the nebula experienced difficulties. The nebular abundances of C, N, O, and Ne are found to be 1/3.5, 1/4.2, 1/70, and 1/11 of the solar value respectively, with uncertainties of a factor 2. Thus the extreme O deficiency of this object is confirmed. The abundances of S and Ar are less than 1/30 of solar. The abundance of He relative to H is 0.089 ± 0.009. Standard models of stellar evolution and nucleosynthesis cannot explain the abundance pattern observed in the nebula. To obtain an extreme oxygen deficiency in a star whose progenitor has an initial mass of about 1 M⊙ requires an additional mixing process, which can be induced by stellar rotation and/or by the presence of the close companion. We have computed a stellar model with an initial mass of 1 M⊙, appropriate metallicity, and initial rotation of 100 km s-1, and find that rotation greatly improves the agreement between the predicted and observed abundances. Based on observations obtained at the Canada

  12. LkH-alpha 101 - The stellar wind, the surrounding nebula, and an associated radio star cluster

    NASA Technical Reports Server (NTRS)

    Becker, Robert H.; White, Richard L.

    1988-01-01

    Radio observations of LkH-alpha 101 have been taken to determine the characteristics of the stellar wind from the central star as well as to image the surrounding nebulosity. They also revealed the presence of a high concentration of weak compact radio sources in the neighborhood of LkH-alpha 101, four of which have optical stellar counterparts. Spectra of three of the stars indicate two T Tauri stars and a highly obscured B star.

  13. Infrared Observations of Ongoing Star Formation in the 30 Doradus Nebula and a Comparison with Hubble Space Telescope WFPC 2 Images

    NASA Astrophysics Data System (ADS)

    Rubio, Mónica; Barbá, Rodolfo H.; Walborn, Nolan R.; Probst, Ronald G.; García, Jorge; Roth, Miguel R.

    1998-10-01

    Intercomparisons of ground-based IR continuum and H_2 images with Hubble Space Telescope WFPC2 images of the 30 Dor Nebula reveal detailed structural relationships, which provide new information about current star formation there. Numerous stellar IR sources have been discovered in or near the bright nebular filaments west and northeast of R136; their locations are intimately connected with the nebular microstructures, as well as with early O stars in dense nebular knots whose optical spectral classifications indicate extreme youth. The H_2 emission predominates in the dust clouds beyond the bright nebulosity and IR sources with respect to R136. The emerging picture suggests that a new stellar generation is being triggered by the energetic activity of the massive central cluster in the remanent interstellar material around its periphery. 30 Dor will likely evolve into a giant shell H ii region similar to N11 in the LMC, containing an older association inside an evacuated central cavity, which is surrounded by H ii regions ionized by a younger population. Such ``two-stage starbursts'' may be characteristic of massive-star formation on this scale. Based in part on observations with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS 5-26555.

  14. Properties of young clusters near reflection nebulae

    NASA Technical Reports Server (NTRS)

    Sellgren, K.

    1983-01-01

    Near infrared observations in the reflection nebulae NGC 7023, 2023, and 2068 are used to study clusters of young stars found associated with these nebulae. At least 30% to 60% of these stars are pre-main sequence objects, as indicated by their infrared excesses, hydrogen line emission, or irregular variability. The spatial distributions and observed luminosity functions of these young open clusters are derived, and the inferred mass function and star formation efficiencies are discussed.

  15. Cable Braid Electromagnetic Penetration Model.

    SciTech Connect

    Warne, Larry K.; Langston, William L.; Basilio, Lorena I.; Johnson, W. A.

    2015-06-01

    The model for penetration of a wire braid is rigorously formulated. Integral formulas are developed from energy principles and reciprocity for both self and transfer immittances in terms of potentials for the fields. The detailed boundary value problem for the wire braid is also setup in a very efficient manner; the braid wires act as sources for the potentials in the form of a sequence of line multipoles with unknown coefficients that are determined by means of conditions arising from the wire surface boundary conditions. Approximations are introduced to relate the local properties of the braid wires to a simplified infinite periodic planar geometry. This is used in a simplified application of reciprocity to be able to treat nonuniform coaxial geometries including eccentric interior coaxial arrangements and an exterior ground plane.

  16. Caught in the Act: Imaging the Disk and Outflows in V Hya, a carbon-rich AGB star in transition to a Bipolar Pre-Planetary Nebula

    NASA Astrophysics Data System (ADS)

    Sahai, Raghvendra; Rajagopal, Jayadev; Morris, Mark; Hinkle, Kenneth H.; Joyce, Richard R.

    2015-01-01

    The carbon star V Hya is experiencing heavy mass loss as it undergoes the transition from AGB star to a bipolar pre-planetary nebula (PPN). V Hya is possibly the earliest object known in this brief phase, which is so short that few nearby stars are likely to be caught in the act. Using STIS/HST we discovered a high velocity (>200 km/s) blob that was ejected very recently from near (<0.3 arcsec) the star and measured its proper motion. We found time-variable high-velocity absorption features in the CO 4.6 micron vibration-rotation lines from a multi-epoch study - modelling shows that these are produced in compact clumps of outflowing gas with significant temperature gradients. Millimeter wave interferometry with 3.5 arcsec resolution shows that the high-velocity outflow is collimated and bipolar. The STIS data and recent mid-infrared interferometry also suggest the presence of a small (<0.55 arcsec size) circumstellar disk.We report new observations to investigate V Hya's high-velocity outflow and disk with STIS (HST) and GPI (Gemini South). Our STIS data show that the high-velocity outflow emission has weakened significantly over a 12-year period. Our Y-band coronagraphic polarimetric imaging with GPI reveals the presence of an inclined disk in scattered light, aligned roughly north-south, i.e., orthogonal to the high-velocity outflow. We discuss the implications of these results for the disk/outflow system in V Hya in particular, and in nascent PPNe, in general.

  17. A Smoking Gun in the Carina Nebula

    NASA Astrophysics Data System (ADS)

    Hamaguchi, Kenji; Corcoran, M. F.; Ezoe, Y.; Townsley, L.; Broos, P.; Gruendl, R.; Vaidya, K.; White, S. M.; Strohmayer, T.; Petre, R.; Chu, Y.-H.

    2009-09-01

    Massive stars are born from giant molecular clouds along with many lower mass stars, forming a stellar cluster or association. They dominate the pressure of the interstellar gas through their strong UV radiation, stellar winds and, ultimately, supernova explosions at the end of their life. These processes help the formation of the next generation of stars, but this trigger of star formation is not yet well understood. The Carina Nebula is one of the youngest, most active sites of massive star formation in our Galaxy. In this nebula, we have discovered a bright X-ray source that has persisted for ˜30 years. The soft X-ray spectrum, consistent with a kT ˜128 eV blackbody with mild extinction, and no counterpart in the optical and infrared wavelengths indicate that it is a 106 year-old neutron star. Current star formation theory does not allow the progenitor of the neutron star and the other massive stars in the Carina Nebula (in particular Eta Carinae) to be coeval. This result suggests that the Carina Nebula experienced at least two episodes of massive star formation. The neutron star may be responsible for part or all of the diffuse X-ray emission which permeates the Nebula.

  18. A Smoking Gun in the Carina Nebula

    NASA Astrophysics Data System (ADS)

    Hamaguchi, Kenji; Corcoran, Michael F.; Ezoe, Yuichiro; Townsley, Leisa; Broos, Patrick; Gruendl, Robert A.; Vaidya, Kaushar; White, Stephen M.; Strohmayer, Tod; Petre, Rob; Chu, You-Hua

    2010-07-01

    Massive stars are born from giant molecular clouds along with many lower mass stars, forming a stellar cluster or association. They dominate the pressure of the interstellar gas through their strong UV radiation, stellar winds and, ultimately, supernova explosions at the end of their life. These processes help the formation of the next generation of stars, but this trigger of star formation is not yet well understood. The Carina Nebula is one of the youngest, most active sites of massive star formation in our Galaxy. In this nebula, we have discovered a bright X-ray source that has persisted for ~30 years. The soft X-ray spectrum, consistent with a kT~128 eV lackbody with mild extinction, and no counterpart in the optical and infrared wavelengths indicate that it is a 106 year-old neutron star. Current star formation theory does not allow the progenitor of the neutron star and the other massive stars in the Carina Nebula (in particular η Carinae) to be coeval. This result suggests that the Carina Nebula experienced at least two episodes of massive star formation. The neutron star may be responsible for part or all of the diffuse X-ray emission which permeates the Nebula.

  19. Owl Nebula (M97, NGC 3587)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    A planetary nebula in the constellation Ursa Major, position RA 11 h 14.8 m, dec. +55° 01'. The Owl is 3' across and gets its name from two adjacent dark patches that have the appearance of large eyes. The nebula is eleventh magnitude, and the central star is a faint magnitude 16....

  20. The Twin Jet Nebula

    NASA Technical Reports Server (NTRS)

    1997-01-01

    M2-9 is a striking example of a 'butterfly' or a bipolar planetary nebula. Another more revealing name might be the 'Twin Jet Nebula.' If the nebula is sliced across the star, each side of it appears much like a pair of exhausts from jet engines. Indeed, because of the nebula's shape and the measured velocity of the gas, in excess of 200 miles per second, astronomers believe that the description as a super-super-sonic jet exhaust is quite apt. This is much the same process that takes place in a jet engine: The burning and expanding gases are deflected by the engine walls through a nozzle to form long, collimated jets of hot air at high speeds. M2-9 is 2,100 light-years away in the constellation Ophiucus. The observation was taken Aug. 2, 1997 by the Hubble telescope's Wide Field and Planetary Camera 2. In this image, neutral oxygen is shown in red, once-ionized nitrogen in green, and twice-ionized oxygen in blue.

  1. Revisiting the Orion Nebula

    NASA Astrophysics Data System (ADS)

    2004-06-01

    Orion the Hunter is perhaps the best-known constellation in the sky, well placed in the winter for observers in both the northern and southern hemispheres, and instantly recognisable. Just below Orion's belt (three distinctive stars in a row), the hilt of his sword holds a great jewel in the sky, the beautiful Orion Nebula. Bright enough to be seen with the naked eye, the nebula, also known as Messier 42, is a wide complex of gas and dust, illuminated by several massive and hot stars at its core, the famous Trapezium stars. For astronomers, Orion is surely one of the most important constellations, as it contains one of the nearest and most active stellar nurseries in the Milky Way, the galaxy in which we live. Here tens of thousands of new stars have formed within the past ten million years or so - a very short span of time in astronomical terms. For comparison: our own Sun is now 4,600 million years old and has not yet reached half-age. Reduced to a human time-scale, star formation in Orion would have been going on for just one month as compared to the Sun's 40 years. In fact, located at a distance of 1500 light years, the Orion Nebula plays such an important role in astrophysics that it can be argued that our understanding of star formation is for a large part based on the Orion Nebula. It is thus no surprise that the Orion Nebula is one of the most studied objects in the night sky (see for example the various related ESO Press Photos and Releases: ESO Press Photo 03a/98, ESO Press Photos 03a-d/01, ESO Press Photos 12a-e/01, ESO Press Release 14/01,...). The richness of the stellar cluster inside the Orion Nebula makes it an ideal, and unique, target for high resolution and wide-field imaging. Following some pioneering work made a few years ago, an international team of astronomers [1], led by Massimo Robberto (European Space Agency and Space Telescope Science Institute), used the Wide Field Imager (WFI), a 67-million pixel digital camera that is installed at the

  2. 3-D Flyover Visualization of Veil Nebula

    NASA Video Gallery

    This 3-D visualization flies across a small portion of the Veil Nebula as photographed by the Hubble Space Telescope. This region is a small part of a huge expanding remnant from a star that explod...

  3. Evolution in a Braided Loop Ensemble

    NASA Video Gallery

    This braided loop has several loops near the 'base' that appear to be unwinding with significant apparent outflow. This is evidence of untwisting, and the braided structure also seeming to unwind w...

  4. Morphometric comparison of braided Martian channels and some braided terrestrial features

    NASA Technical Reports Server (NTRS)

    Trevena, A. S.; Picard, M. D.

    1978-01-01

    Large channels on the Martian surface have been variously attributed to erosional, volcanic, and tectonic processes. Morphometric information shows that large braided Martian channels and islands between those channels are similar in their dimensions to channels and islands of large braided fluvial features on earth. The information also suggests that braided fractures in solid materials are fundamentally different in morphometry from braided channels of earth and Mars. Braided tension fractures have characteristically low braiding indices and are much narrower than their irregularly shaped 'midchannel' islands. Terrestrial and Martian channels, in contrast, have high braiding indices, and they are wider than their streamlined midchannel islands. Braided volcanic features are known from the earth and the moon, but the absence of volcanic constructs near the large braided channels on Mars indicates that volcanic origin is unlikely. The morphometric information suggests that braided Martian channels are probably of fluvial origin.

  5. The Tarantula Nebula

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA's new Spitzer Space Telescope, formerly known as the Space Infrared Telescope Facility, has captured in stunning detail the spidery filaments and newborn stars of the Tarantula Nebula, a rich star-forming region also known as 30 Doradus. This cloud of glowing dust and gas is located in the Large Magellanic Cloud, the nearest galaxy to our own Milky Way, and is visible primarily from the Southern Hemisphere. This image of an interstellar cauldron provides a snapshot of the complex physical processes and chemistry that govern the birth - and death - of stars.

    At the heart of the nebula is a compact cluster of stars, known as R136, which contains very massive and young stars. The brightest of these blue supergiant stars are up to 100 times more massive than the Sun, and are at least 100,000 times more luminous. These stars will live fast and die young, at least by astronomical standards, exhausting their nuclear fuel in a few million years.

    The Spitzer Space Telescope image was obtained with an infrared array camera that is sensitive to invisible infrared light at wavelengths that are about ten times longer than visible light. In this four-color composite, emission at 3.6 microns is depicted in blue, 4.5 microns in green, 5.8 microns in orange, and 8.0 microns in red. The image covers a region that is three-quarters the size of the full moon.

    The Spitzer observations penetrate the dust clouds throughout the Tarantula to reveal previously hidden sites of star formation. Within the luminescent nebula, many holes are also apparent. These voids are produced by highly energetic winds originating from the massive stars in the central star cluster. The structures at the edges of these voids are particularly interesting. Dense pillars of gas and dust, sculpted by the stellar radiation, denote the birthplace of future generations of stars.

    The Spitzer image provides information about the composition of the material at the edges of the voids. The surface layers

  6. Quantum Supergroups V. Braid Group Action

    NASA Astrophysics Data System (ADS)

    Clark, Sean; Hill, David

    2016-05-01

    We construct a braid group action on quantum covering groups. We further use this action to construct a PBW basis for the positive half in finite type which is pairwise-orthogonal under the inner product. This braid group action is induced by operators on the integrable modules; however, these operators satisfy spin braid relations.

  7. The Search for Low-mass Companions of B Stars in the Carina Nebula Cluster Trumpler 16

    NASA Astrophysics Data System (ADS)

    Evans, Nancy Remage; DeGioia-Eastwood, Kathleen; Gagné, Marc; Townsley, Leisa; Broos, Patrick; Wolk, Scott; Nazé, Yaël; Corcoran, Michael; Oskinova, Lida; Moffat, Anthony F. J.; Wang, Junfeng; Walborn, Nolan R.

    2011-05-01

    We have developed lists of likely B3-A0 stars (called "late B" stars) in the young cluster Trumpler 16. The following criteria were used: location within 3' of η Car, an appropriate V and B - V combination, and proper motion (where available). Color and magnitude cuts have been made assuming an E(B - V) = 0.55 mag ± 0.1, which is a good approximation close to the center of Trumpler 16. These lists have been cross-correlated with X-ray sources found in the Chandra Carina Complex Project. Previous studies have shown that only very rarely (if at all) do late main-sequence B stars produce X-rays. We present evidence that the X-ray-detected sources are binaries with low-mass companions, since stars less massive than 1.4 M sun are strong X-ray sources at the age of the cluster. Both the median X-ray energies and X-ray luminosities of these sources are in good agreement with values for typical low-mass coronal X-ray sources. We find that 39% of the late B stars based on a list with proper motions have low-mass companions. Similarly, 32% of a sample without proper motions have low-mass companions. We discuss the X-ray detection completeness. These results on low-mass companions of intermediate-mass stars are complementary to spectroscopic and interferometric results and probe new parameter space of low-mass companions at all separations. They do not support a steeply rising distribution of mass ratios to low masses for intermediate-mass (5 M sun) primaries, such as would be found by random pairing from the initial mass function. Based on observations made with the Chandra X-ray Observatory.

  8. The peculiar isolated neutron star in the Carina Nebula. Deep XMM-Newton and ESO-VLT observations of 2XMM J104608.7-594306

    NASA Astrophysics Data System (ADS)

    Pires, A. M.; Motch, C.; Turolla, R.; Schwope, A.; Pilia, M.; Treves, A.; Popov, S. B.; Janot-Pacheco, E.

    2012-08-01

    While fewer in number than the dominant rotation-powered radio pulsar population, peculiar classes of isolated neutron stars (INSs) - which include magnetars, the ROSAT-discovered "Magnificent Seven" (M7), rotating radio transients (RRATs), and central compact objects in supernova remnants (CCOs) - represent a key element in understanding the neutron star phenomenology. We report the results of an observational campaign to study the properties of the source 2XMM J104608.7-594306, a newly discovered thermally emitting INS. The evolutionary state of the neutron star is investigated by means of deep dedicated observations obtained with the XMM-Newton Observatory, the ESO Very Large Telescope, as well as publicly available γ-ray data from the Fermi Space Telescope and the AGILE Mission. The observations confirm previous expectations and reveal a unique type of object. The source, which is likely within the Carina Nebula (NH = 2.6 × 1021 cm-2), has a spectrum that is both thermal and soft, with kT∞ = 135 eV. Non-thermal (magnetospheric) emission is not detected down to 1% (3σ, 0.1-12 keV) of the source luminosity. Significant deviations (absorption features) from a simple blackbody model are identified in the spectrum of the source around energies 0.6 keV and 1.35 keV. While the former deviation is likely related to a local oxygen overabundance in the Carina Nebula, the latter can only be accounted for by an additional spectral component, which is modelled as a Gaussian line in absorption with EW = 91 eV and σ = 0.14 keV (1σ). Furthermore, the optical counterpart is fainter than mV = 27 (2σ) and no γ-ray emission is significantly detected by either the Fermi or AGILE missions. Very interestingly, while these characteristics are remarkably similar to those of the M7 or the only RRAT so far detected in X-rays, which all have spin periods of a few seconds, we found intriguing evidence of very rapid rotation, P = 18.6 ms, at the 4σ confidence level. We interpret

  9. The Stingray nebula: watching the rapid evolution of a newly born planetary nebula.

    NASA Astrophysics Data System (ADS)

    Bobrowsky, M.; Sahu, K. C.; Parthasarathy, M.; García-Lario, Pedro

    The formation and early evolution of planetary nebulae represent one of the most poorly understood phases of stellar evolution ( Kwok, 1987; Maddox, 1995). One of the youngest, the Stingray Nebula (He3-1357) ( Henize, 1967; Henize, 1976), shows all the tell-tale signs of a newly born planetary nebula: it has become ionized only within the past few decades ( Parthasarathy et al., 1993); the mass-loss from the central star has ceased within the past few years; and the central star is becoming hotter and fainter as expected from a star on its way to becoming a DA white dwarf ( Parthasarathy et al., 1995). The Stingray Nebula thus provides the ideal laboratory for examining the early structure and evolution of this class of objects. Images of the Stingray Nebula, obtained with the Hubble Space Telescope, show for the first time that its multiple expulsions of matter are focused by an equatorial ring and bubbles of gas located on opposite sides of the ring ( Bobrowsky et al., 1995). The position angle of the outflows has changed, possibly as a result of precessional motion induced by the presence of a companion star. This is consistent with the precessing jet model by Livio & Pringle (1996). Indeed, we have reported the discovery of a companion star in the Stingray Nebula ( Bobrowsky et al., 1998). Finally, we present evidence of the companion star dynamically distorting the gas in this newly-born planetary nebula.

  10. SERENDIPITOUS DETECTION OF X-RAY EMISSION FROM THE HOT BORN-AGAIN CENTRAL STAR OF THE PLANETARY NEBULA K 1-16

    SciTech Connect

    Montez, Rodolfo Jr.; Kastner, Joel H. E-mail: jhk@cis.rit.edu

    2013-03-20

    We report the serendipitous detection of point-like X-ray emission from the hot, PG1159-type central star of the planetary nebula (CSPN) K 1-16 by the XMM-Newton and Chandra X-Ray Observatories. The CSPN lies superimposed on a galaxy cluster that includes an X-ray-bright quasar, but we have successfully isolated the CSPN X-ray emission from the strong diffuse background contributed by the quasar and intracluster gas. We have modeled the XMM-Newton and Chandra X-ray data, taking advantage of the contrasting detection efficiencies of the two observatories to better constrain the low-energy spectral response of Chandra's Advanced CCD Imaging Spectrometer. We find that the CSPN X-ray spectrum is well characterized by the combination of a non-local thermodynamic equilibrium model atmosphere with T{sub *} {approx} 135 kK and a carbon-rich, optically thin thermal plasma with T{sub X} {approx} 1 MK. These results for X-ray emission from the K 1-16 CSPN, combined with those obtained for other PG1159-type objects, lend support to the 'born-again' scenario for Wolf-Rayet and PG1159 CSPNe, wherein a late helium shell flash dredges up carbon-rich intershell material and ejects this material into the circumstellar environment.