Science.gov

Sample records for brain diseases metabolic

  1. Metabolic profiling of Alzheimer's disease brains

    NASA Astrophysics Data System (ADS)

    Inoue, Koichi; Tsutsui, Haruhito; Akatsu, Hiroyasu; Hashizume, Yoshio; Matsukawa, Noriyuki; Yamamoto, Takayuki; Toyo'Oka, Toshimasa

    2013-08-01

    Alzheimer's disease (AD) is an irreversible, progressive brain disease and can be definitively diagnosed after death through an examination of senile plaques and neurofibrillary tangles in several brain regions. It is to be expected that changes in the concentration and/or localization of low-molecular-weight molecules are linked to the pathological changes that occur in AD, and determining their identity would provide valuable information regarding AD processes. Here, we propose definitive brain metabolic profiling using ultra-performance liquid chromatography coupled with electrospray time-of-flight mass spectrometry analysis. The acquired data were subjected to principal components analysis to differentiate the frontal and parietal lobes of the AD/Control groups. Significant differences in the levels of spermine and spermidine were identified using S-plot, mass spectra, databases and standards. Based on the investigation of the polyamine metabolite pathway, these data establish that the downstream metabolites of ornithine are increased, potentially implicating ornithine decarboxylase activity in AD pathology.

  2. Triheptanoin improves brain energy metabolism in patients with Huntington disease

    PubMed Central

    Adanyeguh, Isaac Mawusi; Rinaldi, Daisy; Henry, Pierre-Gilles; Caillet, Samantha; Valabregue, Romain; Durr, Alexandra

    2015-01-01

    Objective: Based on our previous work in Huntington disease (HD) showing improved energy metabolism in muscle by providing substrates to the Krebs cycle, we wished to obtain a proof-of-concept of the therapeutic benefit of triheptanoin using a functional biomarker of brain energy metabolism validated in HD. Methods: We performed an open-label study using 31P brain magnetic resonance spectroscopy (MRS) to measure the levels of phosphocreatine (PCr) and inorganic phosphate (Pi) before (rest), during (activation), and after (recovery) a visual stimulus. We performed 31P brain MRS in 10 patients at an early stage of HD and 13 controls. Patients with HD were then treated for 1 month with triheptanoin after which they returned for follow-up including 31P brain MRS scan. Results: At baseline, we confirmed an increase in Pi/PCr ratio during brain activation in controls—reflecting increased adenosine triphosphate synthesis—followed by a return to baseline levels during recovery (p = 0.013). In patients with HD, we validated the existence of an abnormal brain energy profile as previously reported. After 1 month, this profile remained abnormal in patients with HD who did not receive treatment. Conversely, the MRS profile was improved in patients with HD treated with triheptanoin for 1 month with the restoration of an increased Pi/PCr ratio during visual stimulation (p = 0.005). Conclusion: This study suggests that triheptanoin is able to correct the bioenergetic profile in the brain of patients with HD at an early stage of the disease. Classification of evidence: This study provides Class III evidence that, for patients with HD, treatment with triheptanoin for 1 month restores an increased MRS Pi/PCr ratio during visual stimulation. PMID:25568297

  3. Systematic analysis of transcription-level effects of neurodegenerative diseases on human brain metabolism by a newly reconstructed brain-specific metabolic network

    PubMed Central

    Sertbaş, Mustafa; Ülgen, Kutlu; Çakır, Tunahan

    2014-01-01

    Network-oriented analysis is essential to identify those parts of a cell affected by a given perturbation. The effect of neurodegenerative perturbations in the form of diseases of brain metabolism was investigated by using a newly reconstructed brain-specific metabolic network. The developed stoichiometric model correctly represents healthy brain metabolism, and includes 630 metabolic reactions in and between astrocytes and neurons, which are controlled by 570 genes. The integration of transcriptome data of six neurodegenerative diseases (Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, multiple sclerosis, schizophrenia) with the model was performed to identify reporter features specific and common for these diseases, which revealed metabolites and pathways around which the most significant changes occur. The identified metabolites are potential biomarkers for the pathology of the related diseases. Our model indicated perturbations in oxidative stress, energy metabolism including TCA cycle and lipid metabolism as well as several amino acid related pathways, in agreement with the role of these pathways in the studied diseases. The computational prediction of transcription factors that commonly regulate the reporter metabolites was achieved through binding-site analysis. Literature support for the identified transcription factors such as USF1, SP1 and those from FOX families are known from the literature to have regulatory roles in the identified reporter metabolic pathways as well as in the neurodegenerative diseases. In essence, the reconstructed brain model enables the elucidation of effects of a perturbation on brain metabolism and the illumination of possible machineries in which a specific metabolite or pathway acts as a regulatory spot for cellular reorganization. PMID:25061554

  4. Preserved pontine glucose metabolism in Alzheimer disease: A reference region for functional brain image (PET) analysis

    SciTech Connect

    Minoshima, Satoshi; Frey, K.A.; Foster, N.L.; Kuhl, D.W.

    1995-07-01

    Our goal was to examine regional preservation of energy metabolism in Alzheimer disease (AD) and to evaluate effects of PET data normalization to reference regions. Regional metabolic rates in the pons, thalamus, putamen, sensorimotor cortex, visual cortex, and cerebellum (reference regions) were determined stereotaxically and examined in 37 patients with probable AD and 22 normal controls based on quantitative {sup 18}FDG-PET measurements. Following normalization of metabolic rates of the parietotemporal association cortex and whole brain to each reference region, distinctions of the two groups were assessed. The pons showed the best preservation of glucose metabolism in AD. Other reference regions showed relatively preserved metabolism compared with the parietotemporal association cortex and whole brain, but had significant metabolic reduction. Data normalization to the pons not only enhanced statistical significance of metabolic reduction in the parietotemporal association cortex, but also preserved the presence of global cerebral metabolic reduction indicated in analysis of the quantitative data. Energy metabolism in the pons in probable AD is well preserved. The pons is a reliable reference for data normalization and will enhance diagnostic accuracy and efficiency of quantitative and nonquantitative functional brain imaging. 39 refs., 2 figs., 3 tabs.

  5. Graded perturbations of metabolism in multiple regions of human brain in Alzheimer's disease: Snapshot of a pervasive metabolic disorder

    PubMed Central

    Xu, Jingshu; Begley, Paul; Church, Stephanie J.; Patassini, Stefano; Hollywood, Katherine A.; Jüllig, Mia; Curtis, Maurice A.; Waldvogel, Henry J.; Faull, Richard L.M.; Unwin, Richard D.; Cooper, Garth J.S.

    2016-01-01

    Alzheimer's disease (AD) is an age-related neurodegenerative disorder that displays pathological characteristics including senile plaques and neurofibrillary tangles. Metabolic defects are also present in AD-brain: for example, signs of deficient cerebral glucose uptake may occur decades before onset of cognitive dysfunction and tissue damage. There have been few systematic studies of the metabolite content of AD human brain, possibly due to scarcity of high-quality brain tissue and/or lack of reliable experimental methodologies. Here we sought to: 1) elucidate the molecular basis of metabolic defects in human AD-brain; and 2) identify endogenous metabolites that might guide new approaches for therapeutic intervention, diagnosis or monitoring of AD. Brains were obtained from nine cases with confirmed clinical/neuropathological AD and nine controls matched for age, sex and post-mortem delay. Metabolite levels were measured in post-mortem tissue from seven regions: three that undergo severe neuronal damage (hippocampus, entorhinal cortex and middle-temporal gyrus); three less severely affected (cingulate gyrus, sensory cortex and motor cortex); and one (cerebellum) that is relatively spared. We report a total of 55 metabolites that were altered in at least one AD-brain region, with different regions showing alterations in between 16 and 33 metabolites. Overall, we detected prominent global alterations in metabolites from several pathways involved in glucose clearance/utilization, the urea cycle, and amino-acid metabolism. The finding that potentially toxigenic molecular perturbations are widespread throughout all brain regions including the cerebellum is consistent with a global brain disease process rather than a localized effect of AD on regional brain metabolism. PMID:26957286

  6. Graded perturbations of metabolism in multiple regions of human brain in Alzheimer's disease: Snapshot of a pervasive metabolic disorder.

    PubMed

    Xu, Jingshu; Begley, Paul; Church, Stephanie J; Patassini, Stefano; Hollywood, Katherine A; Jüllig, Mia; Curtis, Maurice A; Waldvogel, Henry J; Faull, Richard L M; Unwin, Richard D; Cooper, Garth J S

    2016-06-01

    Alzheimer's disease (AD) is an age-related neurodegenerative disorder that displays pathological characteristics including senile plaques and neurofibrillary tangles. Metabolic defects are also present in AD-brain: for example, signs of deficient cerebral glucose uptake may occur decades before onset of cognitive dysfunction and tissue damage. There have been few systematic studies of the metabolite content of AD human brain, possibly due to scarcity of high-quality brain tissue and/or lack of reliable experimental methodologies. Here we sought to: 1) elucidate the molecular basis of metabolic defects in human AD-brain; and 2) identify endogenous metabolites that might guide new approaches for therapeutic intervention, diagnosis or monitoring of AD. Brains were obtained from nine cases with confirmed clinical/neuropathological AD and nine controls matched for age, sex and post-mortem delay. Metabolite levels were measured in post-mortem tissue from seven regions: three that undergo severe neuronal damage (hippocampus, entorhinal cortex and middle-temporal gyrus); three less severely affected (cingulate gyrus, sensory cortex and motor cortex); and one (cerebellum) that is relatively spared. We report a total of 55 metabolites that were altered in at least one AD-brain region, with different regions showing alterations in between 16 and 33 metabolites. Overall, we detected prominent global alterations in metabolites from several pathways involved in glucose clearance/utilization, the urea cycle, and amino-acid metabolism. The finding that potentially toxigenic molecular perturbations are widespread throughout all brain regions including the cerebellum is consistent with a global brain disease process rather than a localized effect of AD on regional brain metabolism. PMID:26957286

  7. Metabolite mapping reveals severe widespread perturbation of multiple metabolic processes in Huntington's disease human brain.

    PubMed

    Patassini, Stefano; Begley, Paul; Xu, Jingshu; Church, Stephanie J; Reid, Suzanne J; Kim, Eric H; Curtis, Maurice A; Dragunow, Mike; Waldvogel, Henry J; Snell, Russell G; Unwin, Richard D; Faull, Richard L M; Cooper, Garth J S

    2016-09-01

    Huntington's disease (HD) is a genetically-mediated neurodegenerative disorder wherein the aetiological defect is a mutation in the Huntington's gene (HTT), which alters the structure of the huntingtin protein (Htt) through lengthening of its polyglutamine tract, thus initiating a cascade that ultimately leads to premature death. However, neurodegeneration typically manifests in HD only in middle age, and mechanisms linking the causative mutation to brain disease are poorly understood. Brain metabolism is severely perturbed in HD, and some studies have indicated a potential role for mutant Htt as a driver of these metabolic aberrations. Here, our objective was to determine the effects of HD on brain metabolism by measuring levels of polar metabolites in regions known to undergo varying degrees of damage. We performed gas-chromatography/mass spectrometry-based metabolomic analyses in a case-control study of eleven brain regions in short post-mortem-delay human tissue from nine well-characterized HD patients and nine matched controls. In each patient, we measured metabolite content in representative tissue-samples from eleven brain regions that display varying degrees of damage in HD, thus identifying the presence and abundance of 63 different metabolites from several molecular classes, including carbohydrates, amino acids, nucleosides, and neurotransmitters. Robust alterations in regional brain-metabolite abundances were observed in HD patients: these included changes in levels of small molecules that play important roles as intermediates in the tricarboxylic-acid and urea cycles, and amino-acid metabolism. Our findings point to widespread disruption of brain metabolism and indicate a complex phenotype beyond the gradient of neuropathologic damage observed in HD brain. PMID:27267344

  8. Metabolic Profiling and Phenotyping of Central Nervous System Diseases: Metabolites Bring Insights into Brain Dysfunctions.

    PubMed

    Dumas, Marc-Emmanuel; Davidovic, Laetitia

    2015-09-01

    Metabolic phenotyping corresponds to the large-scale quantitative and qualitative analysis of the metabolome i.e., the low-molecular weight <1 KDa fraction in biological samples, and provides a key opportunity to advance neurosciences. Proton nuclear magnetic resonance and mass spectrometry are the main analytical platforms used for metabolic profiling, enabling detection and quantitation of a wide range of compounds of particular neuro-pharmacological and physiological relevance, including neurotransmitters, secondary messengers, structural lipids, as well as their precursors, intermediates and degradation products. Metabolic profiling is therefore particularly indicated for the study of central nervous system by probing metabolic and neurochemical profiles of the healthy or diseased brain, in preclinical models or in human samples. In this review, we introduce the analytical and statistical requirements for metabolic profiling. Then, we focus on key studies in the field of metabolic profiling applied to the characterization of animal models and human samples of central nervous system disorders. We highlight the potential of metabolic profiling for pharmacological and physiological evaluation, diagnosis and drug therapy monitoring of patients affected by brain disorders. Finally, we discuss the current challenges in the field, including the development of systems biology and pharmacology strategies improving our understanding of metabolic signatures and mechanisms of central nervous system diseases. PMID:25616565

  9. Brain metabolic stress and neuroinflammation at the basis of cognitive impairment in Alzheimer’s disease

    PubMed Central

    De Felice, Fernanda G.; Lourenco, Mychael V.

    2015-01-01

    Brain metabolic dysfunction is known to influence brain activity in several neurological disorders, including Alzheimer’s disease (AD). In fact, deregulation of neuronal metabolism has been postulated to play a key role leading to the clinical outcomes observed in AD. Besides deficits in glucose utilization in AD patients, recent evidence has implicated neuroinflammation and endoplasmic reticulum (ER) stress as components of a novel form of brain metabolic stress that develop in AD and other neurological disorders. Here we review findings supporting this novel paradigm and further discuss how these mechanisms seem to participate in synapse and cognitive impairments that are germane to AD. These deleterious processes resemble pathways that act in peripheral tissues leading to insulin resistance and glucose intolerance, in an intriguing molecular connection linking AD to diabetes. The discovery of detailed mechanisms leading to neuronal metabolic stress may be a key step that will allow the understanding how cognitive impairment develops in AD, thereby offering new avenues for effective disease prevention and therapeutic targeting. PMID:26042036

  10. Brain metabolic dysfunction at the core of Alzheimer’s disease

    PubMed Central

    de la Monte, Suzanne M.; Tong, Ming

    2015-01-01

    Growing evidence supports the concept that Alzheimer’s disease (AD) is fundamentally a metabolic disease with molecular and biochemical features that correspond with diabetes mellitus and other peripheral insulin resistance disorders. Brain insulin/IGF resistance and its consequences can readily account for most of the structural and functional abnormalities in AD. However, disease pathogenesis is complicated by the fact that AD can occur as a separate disease process, or arise in association with systemic insulin resistance diseases, including diabetes, obesity, and non-alcoholic fatty liver disease. Whether primary or secondary in origin, brain insulin/IGF resistance initiates a cascade of neurodegeneration that is propagated by metabolic dysfunction, increased oxidative and ER stress, neuro-inflammation, impaired cell survival, and dysregulated lipid metabolism. These injurious processes compromise neuronal and glial functions, reduce neurotransmitter homeostasis, and cause toxic oligomeric pTau and (amyloid beta peptide of amyloid beta precursor protein) AβPP-Aβ fibrils and insoluble aggregates (neurofibrillary tangles and plaques) to accumulate in brain. AD progresses due to: (1) activation of a harmful positive feedback loop that progressively worsens the effects of insulin resistance; and (2) the formation of ROS- and RNS-related lipid, protein, and DNA adducts that permanently damage basic cellular and molecular functions. Epidemiologic data suggest that insulin resistance diseases, including AD, are exposure-related in etiology. Furthermore, experimental and lifestyle trend data suggest chronic low-level nitrosamine exposures are responsible. These concepts offer opportunities to discover and implement new treatments and devise preventive measures to conquer the AD and other insulin resistance disease epidemics. PMID:24380887

  11. Comparison of clinical types of Wilson's disease and glucose metabolism in extrapyramidal motor brain regions.

    PubMed

    Hermann, W; Barthel, H; Hesse, S; Grahmann, F; Kühn, H-J; Wagner, A; Villmann, T

    2002-07-01

    In Wilson's disease a disturbed glucose metabolism especially in striatal and cerebellar areas has been reported. This is correlated with the severity of extrapyramidal motor symptoms (EPS). These findings are only based on a small number of patients. Up to now it is unknown whether EPS are caused by various patterns of disturbed basal ganglia glucose metabolism. We investigated 37 patients and 9 normal volunteers to characterize the disturbed glucose metabolism in Wilson's disease more precisely. The glucose metabolism was determined in 5 cerebellar and cerebral areas (putamen, caput nuclei caudati, cerebellum, midbrain and thalamic area) by using (18)F-Fluorodesoxyglucose-Positron-Emission-Tomography ( [(18)F]FDG-PET). The database was evaluated by a cluster analysis. Additionally, the severity extrapyramidal motor symptoms were judged by a clinical score system. Three characteristic patterns of glucose metabolism in basal ganglia were obtained. Two of them may be assigned to patients with neurological symptoms whereas the third cluster corresponds to most patients without EPS or normal volunteers. The clusters can be identified by characteristic consumption rates in this 5 brain areas. The severity of EPS can not clearly be assigned to one of the clusters with disturbed glucose metabolism. However, the most severe cases are characterized by the lowest consumption in the striatal area. When there is marked improvement of EPS impaired glucose consumption reveals a persistent brain lesion. Finally, the neurological symptoms in Wilson's disease are caused by (at least) two different patterns of disturbed glucose metabolism in basal ganglia and cerebellum. The severity of EPS seems to be determined by a disturbed consumption in the striatal area. PMID:12140675

  12. Glucose Metabolic Brain Networks in Early-Onset vs. Late-Onset Alzheimer's Disease

    PubMed Central

    Chung, Jinyong; Yoo, Kwangsun; Kim, Eunjoo; Na, Duk L.; Jeong, Yong

    2016-01-01

    Objective: Early-onset Alzheimer's disease (EAD) shows distinct features from late-onset Alzheimer's disease (LAD). To explore the characteristics of EAD, clinical, neuropsychological, and functional imaging studies have been conducted. However, differences between EAD and LAD are not clear, especially in terms of brain connectivity and networks. In this study, we investigated the differences in metabolic connectivity between EAD and LAD by adopting graph theory measures. Methods: We analyzed 18F-fluorodeoxyglucose-positron emission tomography (FDG-PET) images to investigate the distinct features of metabolic connectivity between EAD and LAD. Using metabolic connectivity and graph theory analysis, metabolic network differences between LAD and EAD were explored. Results: Results showed the decreased connectivity centered in the cingulate gyri and occipital regions in EAD, whereas decreased connectivity in the occipital and temporal regions as well as increased connectivity in the supplementary motor area were observed in LAD when compared with age-matched control groups. Global efficiency and clustering coefficients were decreased in EAD but not in LAD. EAD showed progressive network deterioration as a function of disease severity and clinical dementia rating (CDR) scores, mainly in terms of connectivity between the cingulate gyri and occipital regions. Global efficiency and clustering coefficients were also decreased along with disease severity. Conclusion: These results indicate that EAD and LAD have distinguished features in terms of metabolic connectivity, with EAD demonstrating more extensive and progressive deterioration. PMID:27445800

  13. Sex differences in metabolic aging of the brain: insights into female susceptibility to Alzheimer's disease.

    PubMed

    Zhao, Liqin; Mao, Zisu; Woody, Sarah K; Brinton, Roberta D

    2016-06-01

    Despite recent advances in the understanding of clinical aspects of sex differences in Alzheimer's disease (AD), the underlying mechanisms, for instance, how sex modifies AD risk and why the female brain is more susceptible to AD, are not clear. The purpose of this study is to elucidate sex disparities in brain aging profiles focusing on 2 major areas-energy and amyloid metabolism-that are most significantly affected in preclinical development of AD. Total RNA isolated from hippocampal tissues of both female and male 129/C57BL/6 mice at ages of 6, 9, 12, or 15 months were comparatively analyzed by custom-designed Taqman low-density arrays for quantitative real-time polymerase chain reaction detection of a total of 182 genes involved in a broad spectrum of biological processes modulating energy production and amyloid homeostasis. Gene expression profiles revealed substantial differences in the trajectory of aging changes between female and male brains. In female brains, 44.2% of genes were significantly changed from 6 months to 9 months and two-thirds showed downregulation. In contrast, in male brains, only 5.4% of genes were significantly altered at this age transition. Subsequent changes in female brains were at a much smaller magnitude, including 10.9% from 9 months to 12 months and 6.1% from 12 months to 15 months. In male brains, most changes occurred from 12 months to 15 months and the majority were upregulated. Furthermore, gene network analysis revealed that clusterin appeared to serve as a link between the overall decreased bioenergetic metabolism and increased amyloid dyshomeostasis associated with the earliest transition in female brains. Together, results from this study indicate that: (1) female and male brains follow profoundly dissimilar trajectories as they age; (2) female brains undergo age-related changes much earlier than male brains; (3) early changes in female brains signal the onset of a hypometabolic phenotype at risk for AD. These

  14. Brain Cholesterol Metabolism and Its Defects: Linkage to Neurodegenerative Diseases and Synaptic Dysfunction.

    PubMed

    Petrov, A M; Kasimov, M R; Zefirov, A L

    2016-01-01

    Cholesterol is an important constituent of cell membranes and plays a crucial role in the compartmentalization of the plasma membrane and signaling. Brain cholesterol accounts for a large proportion of the body's total cholesterol, existing in two pools: the plasma membranes of neurons and glial cells and the myelin membranes . Cholesterol has been recently shown to be important for synaptic transmission, and a link between cholesterol metabolism defects and neurodegenerative disorders is now recognized. Many neurodegenerative diseases are characterized by impaired cholesterol turnover in the brain. However, at which stage the cholesterol biosynthetic pathway is perturbed and how this contributes to pathogenesis remains unknown. Cognitive deficits and neurodegeneration may be associated with impaired synaptic transduction. Defects in cholesterol biosynthesis can trigger dysfunction of synaptic transmission. In this review, an overview of cholesterol turnover under physiological and pathological conditions is presented (Huntington's, Niemann-Pick type C diseases, Smith-Lemli-Opitz syndrome). We will discuss possible mechanisms by which cholesterol content in the plasma membrane influences synaptic processes. Changes in cholesterol metabolism in Alzheimer's disease, Parkinson's disease, and autistic disorders are beyond the scope of this review and will be summarized in our next paper. PMID:27099785

  15. Brain Cholesterol Metabolism and Its Defects: Linkage to Neurodegenerative Diseases and Synaptic Dysfunction

    PubMed Central

    Petrov, A. M.; Kasimov, M. R.; Zefirov, A. L.

    2016-01-01

    Cholesterol is an important constituent of cell membranes and plays a crucial role in the compartmentalization of the plasma membrane and signaling. Brain cholesterol accounts for a large proportion of the body’s total cholesterol, existing in two pools: the plasma membranes of neurons and glial cells and the myelin membranes . Cholesterol has been recently shown to be important for synaptic transmission, and a link between cholesterol metabolism defects and neurodegenerative disorders is now recognized. Many neurodegenerative diseases are characterized by impaired cholesterol turnover in the brain. However, at which stage the cholesterol biosynthetic pathway is perturbed and how this contributes to pathogenesis remains unknown. Cognitive deficits and neurodegeneration may be associated with impaired synaptic transduction. Defects in cholesterol biosynthesis can trigger dysfunction of synaptic transmission. In this review, an overview of cholesterol turnover under physiological and pathological conditions is presented (Huntington’s, Niemann-Pick type C diseases, Smith-Lemli-Opitz syndrome). We will discuss possible mechanisms by which cholesterol content in the plasma membrane influences synaptic processes. Changes in cholesterol metabolism in Alzheimer’s disease, Parkinson’s disease, and autistic disorders are beyond the scope of this review and will be summarized in our next paper. PMID:27099785

  16. Brain Diseases

    MedlinePlus

    ... know what causes some brain diseases, such as Alzheimer's disease. The symptoms of brain diseases vary widely depending on the specific problem. In some cases, damage is permanent. In other cases, treatments such as surgery, medicines, or physical therapy can correct the source of the problem or ...

  17. A disease-specific metabolic brain network associated with corticobasal degeneration.

    PubMed

    Niethammer, Martin; Tang, Chris C; Feigin, Andrew; Allen, Patricia J; Heinen, Lisette; Hellwig, Sabine; Amtage, Florian; Hanspal, Era; Vonsattel, Jean Paul; Poston, Kathleen L; Meyer, Philipp T; Leenders, Klaus L; Eidelberg, David

    2014-11-01

    Corticobasal degeneration is an uncommon parkinsonian variant condition that is diagnosed mainly on clinical examination. To facilitate the differential diagnosis of this disorder, we used metabolic brain imaging to characterize a specific network that can be used to discriminate corticobasal degeneration from other atypical parkinsonian syndromes. Ten non-demented patients (eight females/two males; age 73.9 ± 5.7 years) underwent metabolic brain imaging with (18)F-fluorodeoxyglucose positron emission tomography for atypical parkinsonism. These individuals were diagnosed clinically with probable corticobasal degeneration. This diagnosis was confirmed in the three subjects who additionally underwent post-mortem examination. Ten age-matched healthy subjects (five females/five males; age 71.7 ± 6.7 years) served as controls for the imaging studies. Spatial covariance analysis was applied to scan data from the combined group to identify a significant corticobasal degeneration-related metabolic pattern that discriminated (P < 0.001) the patients from the healthy control group. This pattern was characterized by bilateral, asymmetric metabolic reductions involving frontal and parietal cortex, thalamus, and caudate nucleus. These pattern-related changes were greater in magnitude in the cerebral hemisphere opposite the more clinically affected body side. The presence of this corticobasal degeneration-related metabolic topography was confirmed in two independent testing sets of patient and control scans, with elevated pattern expression (P < 0.001) in both disease groups relative to corresponding normal values. We next determined whether prospectively computed expression values for this pattern accurately discriminated corticobasal degeneration from multiple system atrophy and progressive supranuclear palsy (the two most common atypical parkinsonian syndromes) on a single case basis. Based upon this measure, corticobasal degeneration was successfully distinguished from

  18. Brain energy metabolism and dopaminergic function in Huntington's disease measured in vivo using positron emission tomography

    SciTech Connect

    Leenders, K.L.; Frackowiak, R.S.; Quinn, N.; Marsden, C.D.

    1986-01-01

    A 48-year-old man with typical Huntington's disease was investigated with computed tomography (CT) and positron emission tomography. Regional cerebral blood flow, oxygen extraction, oxygen and glucose utilization, L-Dopa uptake, and dopamine (D2) receptor binding were measured using several positron-labelled tracers. CT showed slight atrophy of the head of caudate but no cortical atrophy, although distinct frontal lobe dysfunction was present on psychometric testing. Oxygen and glucose metabolism and cerebral blood flow were decreased in the striata and to a lesser extent in frontal cortex. Cerebral blood flow was in the low normal range throughout the remainder of the brain. A normal metabolic ratio was found in all regions, since the changes in glucose utilization paralleled those in oxygen consumption. The capacity of the striatum to store dopamine as assessed by L-( YF)-fluorodopa uptake was normal, but dopamine (D2) receptor binding was decreased when compared to normal subjects.

  19. Glucose Metabolism during Resting State Reveals Abnormal Brain Networks Organization in the Alzheimer’s Disease and Mild Cognitive Impairment

    PubMed Central

    Martínez-Montes, Eduardo

    2013-01-01

    This paper aims to study the abnormal patterns of brain glucose metabolism co-variations in Alzheimer disease (AD) and Mild Cognitive Impairment (MCI) patients compared to Normal healthy controls (NC) using the Alzheimer Disease Neuroimaging Initiative (ADNI) database. The local cerebral metabolic rate for glucose (CMRgl) in a set of 90 structures belonging to the AAL atlas was obtained from Fluro-Deoxyglucose Positron Emission Tomography data in resting state. It is assumed that brain regions whose CMRgl values are significantly correlated are functionally associated; therefore, when metabolism is altered in a single region, the alteration will affect the metabolism of other brain areas with which it interrelates. The glucose metabolism network (represented by the matrix of the CMRgl co-variations among all pairs of structures) was studied using the graph theory framework. The highest concurrent fluctuations in CMRgl were basically identified between homologous cortical regions in all groups. Significant differences in CMRgl co-variations in AD and MCI groups as compared to NC were found. The AD and MCI patients showed aberrant patterns in comparison to NC subjects, as detected by global and local network properties (global and local efficiency, clustering index, and others). MCI network’s attributes showed an intermediate position between NC and AD, corroborating it as a transitional stage from normal aging to Alzheimer disease. Our study is an attempt at exploring the complex association between glucose metabolism, CMRgl covariations and the attributes of the brain network organization in AD and MCI. PMID:23894356

  20. Homeostatic adaptations in brain energy metabolism in mouse models of Huntington disease

    PubMed Central

    Tkac, Ivan; Henry, Pierre-Gilles; Zacharoff, Lori; Wedel, Michael; Gong, Wuming; Deelchand, Dinesh K; Li, Tongbin; Dubinsky, Janet M

    2012-01-01

    Impairment of energy metabolism is a key feature of Huntington disease (HD). Recently, we reported longitudinal neurochemical changes in R6/2 mice measured by in-vivo proton magnetic resonance spectroscopy (1H MRS; Zacharoff et al, 2012). Here, we present similar 1H MRS measurements at an early stage in the milder Q111 mouse model. In addition, we measured the concentration of ATP and inorganic phosphate (Pi), key energy metabolites not accessible with 1H MRS, using 31P MRS both in Q111 and in R6/2 mice. Significant changes in striatal creatine and phosphocreatine were observed in Q111 mice at 6 weeks relative to control, and these changes were largely reversed at 13 weeks. No significant change was detected in ATP concentration, in either HD mouse, compared with control. Calculated values of [ADP], phosphorylation potential, relative rate of ATP synthase (v/Vmax(ATP)), and relative rate of creatine kinase (v/Vmax(CK)) were calculated from the measured data. ADP concentration and v/Vmax(ATP) were increased in Q111 mice at 6 weeks, and returned close to normal at 13 weeks. In contrast, these parameters were normal in R6/2 mice. These results suggest that early changes in brain energy metabolism are followed by compensatory shifts to maintain energetic homeostasis from early ages through manifest disease. PMID:22805874

  1. Brain metabolism and Alzheimer's disease: the prospect of a metabolite-based therapy.

    PubMed

    Thomas, S C; Alhasawi, A; Appanna, V P; Auger, C; Appanna, V D

    2015-01-01

    The brain is one of the most energy-demanding organs in the body. It has evolved intricate metabolic networks to fulfill this need and utilizes a variety of substrates to generate ATP, the universal energy currency. Any disruption in the supply of energy results in various abnormalities including Alzheimer's disease (AD), a condition with markedly diminished cognitive ability. Astrocytes are an important participant in maintaining the cerebral ATP budget. However, under oxidative stress induced by numerous factors including aluminum toxicity, the ability of astroctyes to generate ATP is impaired due to dysfunctional mitochondria. This leads to globular, glycolytic, lipogenic and ATP-deficient astrocytes, cerebral characteristics common in AD patients. The reversal of these perturbations by such natural metabolites as pyruvate, α-ketoglutarate, acetoacetate and L-carnitine provides valuable therapeutic cues against AD. PMID:25560817

  2. Identification of elevated urea as a severe, ubiquitous metabolic defect in the brain of patients with Huntington's disease.

    PubMed

    Patassini, Stefano; Begley, Paul; Reid, Suzanne J; Xu, Jingshu; Church, Stephanie J; Curtis, Maurice; Dragunow, Mike; Waldvogel, Henry J; Unwin, Richard D; Snell, Russell G; Faull, Richard L M; Cooper, Garth J S

    Huntington's disease (HD) is a neurodegenerative disorder wherein the aetiological defect is a mutation in the Huntington's gene (HTT), which alters the structure of the huntingtin protein through the lengthening of a polyglutamine tract and initiates a cascade that ultimately leads to dementia and premature death. However, neurodegeneration typically manifests in HD only in middle age, and processes linking the causative mutation to brain disease are poorly understood. Here, our objective was to elucidate further the processes that cause neurodegeneration in HD, by measuring levels of metabolites in brain regions known to undergo varying degrees of damage. We applied gas-chromatography/mass spectrometry-based metabolomics in a case-control study of eleven brain regions in short post-mortem-delay human tissue from nine well-characterized HD patients and nine controls. Unexpectedly, a single major abnormality was evident in all eleven brain regions studied across the forebrain, midbrain and hindbrain, namely marked elevation of urea, a metabolite formed in the urea cycle by arginase-mediated cleavage of arginine. Urea cycle activity localizes primarily in the liver, where it functions to incorporate protein-derived amine-nitrogen into urea for recycling or urinary excretion. It also occurs in other cell-types, but systemic over-production of urea is not known in HD. These findings are consistent with impaired local urea regulation in brain, by up-regulation of synthesis and/or defective clearance. We hypothesize that defective brain urea metabolism could play a substantive role in the pathogenesis of neurodegeneration, perhaps via defects in osmoregulation or nitrogen metabolism. Brain urea metabolism is therefore a target for generating novel monitoring/imaging strategies and/or therapeutic interventions aimed at ameliorating the impact of HD in patients. PMID:26522227

  3. Brain glucose metabolism is associated with hormone level in Cushing's disease: A voxel-based study using FDG-PET.

    PubMed

    Liu, Shuai; Wang, Yinyan; Xu, Kaibin; Ping, Fan; Wang, Renzhi; Li, Fang; Cheng, Xin

    2016-01-01

    Chronic exposure to elevated levels of glucocorticoids can exert a neurotoxic effect in patients, possibly manifesting as molecular imaging alterations in patients. The aim of this study was to investigate the potential association between brain metabolism and elevated hormone level using (18)F-fluorodeoxyglucose positron emission tomography. We retrospectively enrolled 92 consecutive patients with confirmed diagnosis of Cushing's disease. A voxel-based analysis was performed to investigate the association between cerebral (18)F-fluorodeoxyglucose uptake and serum cortisol level. Relatively impaired metabolism of specific brain regions correlated with serum cortisol level was found. Specifically, notable correlations were found in the hippocampus, amygdala, and cerebellum, regions considered to be involved in the regulation and central action of glucocorticoids. Moreover, some hormone-associated regions were found in the frontal and occipital cortex, possibly mediating the cognitive changes seen in Cushing's disease. Our findings link patterns of perturbed brain metabolism relates to individual hormone level, thus presenting a substrate for cognitive disturbances seen in Cushing's disease patients, as well as in other conditions with abnormal cortisol levels. PMID:27622138

  4. Region-specific metabolic alterations in the brain of the APP/PS1 transgenic mice of Alzheimer's disease.

    PubMed

    González-Domínguez, Raúl; García-Barrera, Tamara; Vitorica, Javier; Gómez-Ariza, José Luis

    2014-12-01

    Alzheimer's disease (AD) is the most common neurodegenerative disorder worldwide, but its etiology is still not completely understood. The identification of underlying pathological mechanisms is becoming increasingly important for the discovery of biomarkers and therapies, for which metabolomics presents a great potential. In this work, we studied metabolic alterations in different brain regions of the APP/PS1 mice by using a high-throughput metabolomic approach based on the combination of gas chromatography-mass spectrometry and ultra-high performance liquid chromatography-mass spectrometry. Multivariate statistics showed that metabolomic perturbations are widespread, affecting mainly the hippocampus and the cortex, but are also present in regions not primarily associated with AD such as the striatum, cerebellum and olfactory bulbs. Multiple metabolic pathways could be linked to the development of AD-type disorders in this mouse model, including abnormal purine metabolism, bioenergetic failures, dyshomeostasis of amino acids and disturbances in membrane lipids, among others. Interestingly, region-specific alterations were observed for some of the potential markers identified, associated with abnormal fatty acid composition of phospholipids and sphingomyelins, or differential regulation of neurotransmitter amino acids (e.g. glutamate, glycine, serine, N-acetyl-aspartate), not previously described to our knowledge. Therefore, these findings could provide a new insight into brain pathology in Alzheimer's disease. PMID:25281826

  5. Brain Diseases

    MedlinePlus

    The brain is the control center of the body. It controls thoughts, memory, speech, and movement. It regulates the function of many organs. When the brain is healthy, it works quickly and automatically. However, ...

  6. Data set of interactomes and metabolic pathways of proteins differentially expressed in brains with Alzheimer׳s disease.

    PubMed

    Minjarez, Benito; Calderón-González, Karla Grisel; Valero Rustarazo, Ma Luz; Herrera-Aguirre, María Esther; Labra-Barrios, María Luisa; Rincon-Limas, Diego E; Sánchez Del Pino, Manuel M; Mena, Raul; Luna-Arias, Juan Pedro

    2016-06-01

    Alzheimer׳s disease is one of the main causes of dementia in the elderly and its frequency is on the rise worldwide. It is considered the result of complex interactions between genetic and environmental factors, being many of them unknown. Therefore, there is a dire necessity for the identification of novel molecular players for the understanding of this disease. In this data article we determined the protein expression profiles of whole protein extracts from cortex regions of brains from patients with Alzheimer׳s disease in comparison to a normal brain. We identified 721 iTRAQ-labeled polypeptides with more than 95% in confidence. We analyzed all proteins that changed in their expression level and located them in the KEGG metabolic pathways, as well as in the mitochondrial complexes of the electron transport chain and ATP synthase. In addition, we analyzed the over- and sub-expressed polypeptides through IPA software, specifically Core I and Biomarkers I modules. Data in this article is related to the research article "Identification of proteins that are differentially expressed in brains with Alzheimer's disease using iTRAQ labeling and tandem mass spectrometry" (Minjarez et al., 2016) [1]. PMID:27257613

  7. Cystamine metabolism and brain transport properties: clinical implications for neurodegenerative diseases.

    PubMed

    Bousquet, Mélanie; Gibrat, Claire; Ouellet, Mélissa; Rouillard, Claude; Calon, Frédéric; Cicchetti, Francesca

    2010-09-01

    Cystamine has shown significant neuroprotective properties in preclinical studies of Parkinson's disease (PD) and Huntington's disease (HD). Cysteamine, its FDA-approved reduced form, is scheduled to be tested for clinical efficacy in HD patients. Here, we studied the key cystamine metabolites, namely cysteamine, hypotaurine and taurine, as well as cysteine, in order to identify which one is more distinctively responsible for the neuroprotective action of cystamine. After a single administration of cystamine (10, 50 or 200 mg/kg), naïve mice were perfused with phosphate-buffered saline (PBS) at 1, 3, 12, 24 or 48 h post-injection and brain and plasma samples were analyzed by two distinct HPLC methods. Although plasma levels remained under the detection threshold, significant increases in cysteamine brain levels were detected with the 50 and 200 mg/kg doses in mice perfused 1 and 3 h following cystamine injection. To further assess cysteamine as the candidate molecule for pre-clinical and clinical trials in PD, we evaluated its capacity to cross the blood brain barrier. Using an in situ cerebral perfusion technique, we determined that the brain transport coefficient (Clup) of cysteamine (259 μM) was 0.15 ± 0.02 μL/g/s and was increased up to 0.34 ± 0.07 μL/g/s when co-perfused in the presence of cysteine. Taken together, these results strongly suggest that cysteamine is the neuroactive metabolite of cystamine and may further support its therapeutic use in neurodegenerative diseases, particularly in HD and PD. PMID:20569301

  8. Brain metabolic changes in Hodgkin disease patients following diagnosis and during the disease course: An 18F-FDG PET/CT study

    PubMed Central

    CHIARAVALLOTI, AGOSTINO; PAGANI, MARCO; CANTONETTI, MARIA; DI PIETRO, BARBARA; TAVOLOZZA, MARIO; TRAVASCIO, LAURA; DI BIAGIO, DANIELE; DANIELI, ROBERTA; SCHILLACI, ORAZIO

    2015-01-01

    The aim of the present study was to investigate brain glucose metabolism in patients with Hodgkin disease (HD) after diagnosis and during chemotherapy treatment. Following the administration of first-line doxorubicin, bleomycin, vinblastine and dacarbazine (ABVD) chemotherapy, 74 HD patients underwent 18F-fluoro-2-deoxy-D-glucose (18F-FDG) positron emission tomography (PET)/computed tomography brain scans, both baseline (PET0) and interim (PET2) at the Department of Biomedicine and Prevention, University of Rome Tor Vergata (Rome, Italy). Fifty-seven patients were further evaluated 15±6 days after four additional cycles (PET6). Furthermore, a control group (CG) of 40 chemotherapy-naïve subjects was enrolled. Differences in brain 18F-FDG uptake between the CG, PET0, PET2 and PET6 scans were analyzed using statistical parametric mapping. Compared with the PET0 and CG scans, the PET2 scan demonstrated a higher metabolic activity in Brodmann area (BA) 39, and a metabolic reduction in BA 11 bilaterally and in left BA 32. All of these changes disappeared at PET6. The results of the present study indicate that ABVD chemotherapy has a limited impact on brain metabolism. PMID:25621038

  9. Imaging Brain Metabolism and Pathology in Alzheimer’s Disease with Positron Emission Tomography

    PubMed Central

    Shokouhi, S; Claassen, D; Riddle, WR

    2014-01-01

    Current Positron Emission Tomography (PET) biomarkers for Alzheimer’s disease (AD) assess either neuronal function, or associated pathological features of this common neurodegenerative disease. The most widely accepted clinical PET tool for AD is 18-fluorodeoxyglucose PET (FDG-PET), which measures cerebral metabolic glucose utilization rate (CMRglc). FDG-PET is a marker of synaptic activity, neuronal function, and neuronal metabolic activity. AD is characterized by a distinct pattern of hypometabolism, as seen with the FDG images. This pattern can show variability across different subjects and is present before a patient is demented, specifically in amnestic mild cognitive impairment a clinical diagnosis defined as an intermediate state from normal aging to dementia. In addition to FDG PET, novel PET approaches assess known pathological hallmarks of AD including extracellular amyloid-beta plaques (Aβ) and intracellular neurofibrillary tangles composed of tau fibrils. Already, amyloid PET imaging is a tool that allows in vivo imaging of extracellular beta-amyloid levels. Efforts to bring tau imaging into clinical use continue, but this approach is hampered by the intracellular nature of tau protein deposition, subsequent weak radiotracer binding, and low image contrast. Several new candidate probes for tau-specific PET imaging are currently available but have not found their way into broad clinical applications. This study gives an overview of the most recent PET-based neuroimaging techniques for AD. We place special emphasis on PET data analysis and interpretation techniques, as well as radiochemistry for imaging metabolism and assessing Aβ and tau pathology. PMID:25343059

  10. Multiple genetic imaging study of the association between cholesterol metabolism and brain functional alterations in individuals with risk factors for Alzheimer's disease

    PubMed Central

    Bai, Feng; Yuan, Yonggui; Shi, Yongmei; Zhang, Zhijun

    2016-01-01

    Alzheimer's disease (AD) is a clinically and genetically heterogeneous neurodegenerative disease. Genes involved in cholesterol metabolism may play a role in the pathological changes of AD. However, the imaging genetics-based endophenotypes derived from polymorphisms in multiple functionally related genes are unclear in individuals with risk factors for AD. Forty-three amnestic mild cognitive impairment (aMCI) subjects and 30 healthy controls underwent resting-state functional magnetic resonance imaging (fMRI) measurements of brain topological organization. Thirty-three previously suggested tagging single nucleotide polymorphisms (SNPs) from 12 candidate genes in the cholesterol metabolism pathway were further investigated. A cholesterol metabolism pathway gene-based imaging genetics approach was then utilized to investigate disease-related differences between the groups based on genotype-by-aMCI interactions. The cholesterol metabolism pathway genes exerted widespread effects on the cortico-subcortical-cerebellar spontaneous brain activity. Meanwhile, left lateralization of global brain connectivity was associated with cholesterol metabolism pathway genes. The APOE rs429358 variation significantly influenced the brain network characteristics, affecting the activation of nodes as well as the connectivity of edges in aMCI subjects. The cholesterol metabolism pathway gene-based imaging genetics approach may provide new opportunities to understand the mechanisms underlying AD and suggested that APOE rs429358 is a core genetic variation that is associated with disease-related differences in brain function. PMID:26985771

  11. Brain Metabolic Dysfunction in Capgras Delusion During Alzheimer's Disease: A Positron Emission Tomography Study.

    PubMed

    Jedidi, H; Daury, N; Capa, R; Bahri, M A; Collette, F; Feyers, D; Bastin, C; Maquet, P; Salmon, E

    2015-11-01

    Capgras delusion is characterized by the misidentification of people and by the delusional belief that the misidentified persons have been replaced by impostors, generally perceived as persecutors. Since little is known regarding the neural correlates of Capgras syndrome, the cerebral metabolic pattern of a patient with probable Alzheimer's disease (AD) and Capgras syndrome was compared with those of 24-healthy elderly participants and 26 patients with AD without delusional syndrome. Comparing the healthy group with the AD group, the patient with AD had significant hypometabolism in frontal and posterior midline structures. In the light of current neural models of face perception, our patients with Capgras syndrome may be related to impaired recognition of a familiar face, subserved by the posterior cingulate/precuneus cortex, and impaired reflection about personally relevant knowledge related to a face, subserved by the dorsomedial prefrontal cortex. PMID:23813791

  12. Metabolic liver disease.

    PubMed

    McKiernan, Pat

    2012-06-01

    Diagnosis of metabolic liver disease requires a high level of diagnostic suspicion. Diet is usually the primary treatment for metabolic liver disease. Where indicated, liver transplantation provides lifelong functional correction of liver-based metabolic defects. Liver cell therapy warrants further study for the future treatment of metabolic liver disease. All families should receive genetic advice and pre-emptive management of future affected siblings. PMID:22521124

  13. Impaired PLP-dependent metabolism in brain samples from Huntington disease patients and transgenic R6/1 mice.

    PubMed

    Sorolla, M Alba; Rodríguez-Colman, María José; Vall-Llaura, Núria; Vived, Celia; Fernández-Nogales, Marta; Lucas, José J; Ferrer, Isidre; Cabiscol, Elisa

    2016-06-01

    Oxidative stress has been described as important to Huntington disease (HD) progression. In a previous HD study, we identified several carbonylated proteins, including pyridoxal kinase and antiquitin, both of which are involved in the metabolism of pyridoxal 5´-phosphate (PLP), the active form of vitamin B6. In the present study, pyridoxal kinase levels were quantified and showed to be decreased both in HD patients and a R6/1 mouse model, compared to control samples. A metabolomic analysis was used to analyze metabolites in brain samples of HD patients and R6/1 mice, compared to control samples using mass spectrometry. This technique allowed detection of increased concentrations of pyridoxal, the substrate of pyridoxal kinase. In addition, PLP, the product of the reaction, was decreased in striatum from R6/1 mice. Furthermore, glutamate and cystathionine, both substrates of PLP-dependent enzymes were increased in HD. This reinforces the hypothesis that PLP synthesis is impaired, and could explain some alterations observed in the disease. Together, these results identify PLP as a potential therapeutic agent. PMID:26666246

  14. UCB Transplant of Inherited Metabolic Diseases With Administration of Intrathecal UCB Derived Oligodendrocyte-Like Cells

    ClinicalTrials.gov

    2016-07-27

    Adrenoleukodystrophy; Batten Disease; Mucopolysaccharidosis II; Leukodystrophy, Globoid Cell; Leukodystrophy, Metachromatic; Neimann Pick Disease; Pelizaeus-Merzbacher Disease; Sandhoff Disease; Tay-Sachs Disease; Brain Diseases, Metabolic, Inborn

  15. Metabolic drift in the aging brain

    PubMed Central

    Ivanisevic, Julijana; Stauch, Kelly L.; Petrascheck, Michael; Benton, H. Paul; Epstein, Adrian A.; Fang, Mingliang; Gorantla, Santhi; Tran, Minerva; Hoang, Linh; Kurczy, Michael E.; Boska, Michael D.; Gendelman, Howard E.; Fox, Howard S.; Siuzdak, Gary

    2016-01-01

    Brain function is highly dependent upon controlled energy metabolism whose loss heralds cognitive impairments. This is particularly notable in the aged individuals and in age-related neurodegenerative diseases. However, how metabolic homeostasis is disrupted in the aging brain is still poorly understood. Here we performed global, metabolomic and proteomic analyses across different anatomical regions of mouse brain at different stages of its adult lifespan. Interestingly, while severe proteomic imbalance was absent, global-untargeted metabolomics revealed an energy metabolic drift or significant imbalance in core metabolite levels in aged mouse brains. Metabolic imbalance was characterized by compromised cellular energy status (NAD decline, increased AMP/ATP, purine/pyrimidine accumulation) and significantly altered oxidative phosphorylation and nucleotide biosynthesis and degradation. The central energy metabolic drift suggests a failure of the cellular machinery to restore metabostasis (metabolite homeostasis) in the aged brain and therefore an inability to respond properly to external stimuli, likely driving the alterations in signaling activity and thus in neuronal function and communication. PMID:27182841

  16. Reduced levels of dopamine and altered metabolism in brains of HPRT knock-out rats: a new rodent model of Lesch-Nyhan Disease.

    PubMed

    Meek, Stephen; Thomson, Alison J; Sutherland, Linda; Sharp, Matthew G F; Thomson, Julie; Bishop, Valerie; Meddle, Simone L; Gloaguen, Yoann; Weidt, Stefan; Singh-Dolt, Karamjit; Buehr, Mia; Brown, Helen K; Gill, Andrew C; Burdon, Tom

    2016-01-01

    Lesch-Nyhan disease (LND) is a severe neurological disorder caused by loss-of-function mutations in the gene encoding hypoxanthine phosphoribosyltransferase (HPRT), an enzyme required for efficient recycling of purine nucleotides. Although this biochemical defect reconfigures purine metabolism and leads to elevated levels of the breakdown product urea, it remains unclear exactly how loss of HPRT activity disrupts brain function. As the rat is the preferred rodent experimental model for studying neurobiology and diseases of the brain, we used genetically-modified embryonic stem cells to generate an HPRT knock-out rat. Male HPRT-deficient rats were viable, fertile and displayed normal caged behaviour. However, metabolomic analysis revealed changes in brain biochemistry consistent with disruption of purine recycling and nucleotide metabolism. Broader changes in brain biochemistry were also indicated by increased levels of the core metabolite citrate and reduced levels of lipids and fatty acids. Targeted MS/MS analysis identified reduced levels of dopamine in the brains of HPRT-deficient animals, consistent with deficits noted previously in human LND patients and HPRT knock-out mice. The HPRT-deficient rat therefore provides a new experimental platform for future investigation of how HPRT activity and disruption of purine metabolism affects neural function and behaviour. PMID:27185277

  17. Reduced levels of dopamine and altered metabolism in brains of HPRT knock-out rats: a new rodent model of Lesch-Nyhan Disease

    PubMed Central

    Meek, Stephen; Thomson, Alison J.; Sutherland, Linda; Sharp, Matthew G. F.; Thomson, Julie; Bishop, Valerie; Meddle, Simone L.; Gloaguen, Yoann; Weidt, Stefan; Singh-Dolt, Karamjit; Buehr, Mia; Brown, Helen K.; Gill, Andrew C.; Burdon, Tom

    2016-01-01

    Lesch-Nyhan disease (LND) is a severe neurological disorder caused by loss-of-function mutations in the gene encoding hypoxanthine phosphoribosyltransferase (HPRT), an enzyme required for efficient recycling of purine nucleotides. Although this biochemical defect reconfigures purine metabolism and leads to elevated levels of the breakdown product urea, it remains unclear exactly how loss of HPRT activity disrupts brain function. As the rat is the preferred rodent experimental model for studying neurobiology and diseases of the brain, we used genetically-modified embryonic stem cells to generate an HPRT knock-out rat. Male HPRT-deficient rats were viable, fertile and displayed normal caged behaviour. However, metabolomic analysis revealed changes in brain biochemistry consistent with disruption of purine recycling and nucleotide metabolism. Broader changes in brain biochemistry were also indicated by increased levels of the core metabolite citrate and reduced levels of lipids and fatty acids. Targeted MS/MS analysis identified reduced levels of dopamine in the brains of HPRT-deficient animals, consistent with deficits noted previously in human LND patients and HPRT knock-out mice. The HPRT-deficient rat therefore provides a new experimental platform for future investigation of how HPRT activity and disruption of purine metabolism affects neural function and behaviour. PMID:27185277

  18. Inflammasomes and metabolic disease.

    PubMed

    Henao-Mejia, Jorge; Elinav, Eran; Thaiss, Christoph A; Flavell, Richard A

    2014-01-01

    Innate immune response pathways and metabolic pathways are evolutionarily conserved throughout species and are fundamental to survival. As such, the regulation of whole-body and cellular metabolism is intimately integrated with immune responses. However, the introduction of new variables to this delicate evolutionarily conserved physiological interaction can lead to deleterious consequences for organisms as a result of inappropriate immune responses. In recent decades, the prevalence and incidence of metabolic diseases associated with obesity have dramatically increased worldwide. As a recently acquired human characteristic, obesity has exposed the critical role of innate immune pathways in multiple metabolic pathophysiological processes. Here, we review recent evidence that highlights inflammasomes as critical sensors of metabolic perturbations in multiple tissues and their role in the progression of highly prevalent metabolic diseases. PMID:24274736

  19. Metabolic drift in the aging brain.

    PubMed

    Ivanisevic, Julijana; Stauch, Kelly L; Petrascheck, Michael; Benton, H Paul; Epstein, Adrian A; Fang, Mingliang; Gorantla, Santhi; Tran, Minerva; Hoang, Linh; Kurczy, Michael E; Boska, Michael D; Gendelman, Howard E; Fox, Howard S; Siuzdak, Gary

    2016-05-01

    Brain function is highly dependent upon controlled energy metabolism whose loss heralds cognitive impairments. This is particularly notable in the aged individuals and in age-related neurodegenerative diseases. However, how metabolic homeostasis is disrupted in the aging brain is still poorly understood. Here we performed global, metabolomic and proteomic analyses across different anatomical regions of mouse brain at different stages of its adult lifespan. Interestingly, while severe proteomic imbalance was absent, global-untargeted metabolomics revealed an energymetabolic drift or significant imbalance in core metabolite levels in aged mouse brains. Metabolic imbalance was characterized by compromised cellular energy status (NAD decline, increased AMP/ATP, purine/pyrimidine accumulation) and significantly altered oxidative phosphorylation and nucleotide biosynthesis and degradation. The central energy metabolic drift suggests a failure of the cellular machinery to restore metabostasis (metabolite homeostasis) in the aged brain and therefore an inability to respond properly to external stimuli, likely driving the alterations in signaling activity and thus in neuronal function and communication. PMID:27182841

  20. [Traumatic disease and metabolism].

    PubMed

    Deriabin, I I; Nasonkin, O S; Nemchenko, N S; Gol'm, N P; Zimina, Z P

    1984-06-01

    The authors have established that the traumatic disease is accompanied by phasic nonspecific changes of metabolism correlating with the trauma severity as well as with its specific features and outcomes. Within the first 3-7 days catabolic processes are found to prevail and metabolic acidosis develop. Later, anabolic processes become activated in the non-complicated course of the disease. Normalization of most biochemical processes is accomplished within 15-21 days. More pronounced and prolonged disturbances of metabolism are observed in complications and lethal outcomes. PMID:6474706

  1. Elevation of brain glucose and polyol-pathway intermediates with accompanying brain-copper deficiency in patients with Alzheimer's disease: metabolic basis for dementia.

    PubMed

    Xu, Jingshu; Begley, Paul; Church, Stephanie J; Patassini, Stefano; McHarg, Selina; Kureishy, Nina; Hollywood, Katherine A; Waldvogel, Henry J; Liu, Hong; Zhang, Shaoping; Lin, Wanchang; Herholz, Karl; Turner, Clinton; Synek, Beth J; Curtis, Maurice A; Rivers-Auty, Jack; Lawrence, Catherine B; Kellett, Katherine A B; Hooper, Nigel M; Vardy, Emma R L C; Wu, Donghai; Unwin, Richard D; Faull, Richard L M; Dowsey, Andrew W; Cooper, Garth J S

    2016-01-01

    Impairment of brain-glucose uptake and brain-copper regulation occurs in Alzheimer's disease (AD). Here we sought to further elucidate the processes that cause neurodegeneration in AD by measuring levels of metabolites and metals in brain regions that undergo different degrees of damage. We employed mass spectrometry (MS) to measure metabolites and metals in seven post-mortem brain regions of nine AD patients and nine controls, and plasma-glucose and plasma-copper levels in an ante-mortem case-control study. Glucose, sorbitol and fructose were markedly elevated in all AD brain regions, whereas copper was correspondingly deficient throughout (all P < 0.0001). In the ante-mortem case-control study, by contrast, plasma-glucose and plasma-copper levels did not differ between patients and controls. There were pervasive defects in regulation of glucose and copper in AD brain but no evidence for corresponding systemic abnormalities in plasma. Elevation of brain glucose and deficient brain copper potentially contribute to the pathogenesis of neurodegeneration in AD. PMID:27276998

  2. Elevation of brain glucose and polyol-pathway intermediates with accompanying brain-copper deficiency in patients with Alzheimer’s disease: metabolic basis for dementia

    PubMed Central

    Xu, Jingshu; Begley, Paul; Church, Stephanie J.; Patassini, Stefano; McHarg, Selina; Kureishy, Nina; Hollywood, Katherine A.; Waldvogel, Henry J.; Liu, Hong; Zhang, Shaoping; Lin, Wanchang; Herholz, Karl; Turner, Clinton; Synek, Beth J.; Curtis, Maurice A.; Rivers-Auty, Jack; Lawrence, Catherine B.; Kellett, Katherine A. B.; Hooper, Nigel M.; Vardy, Emma R. L. C.; Wu, Donghai; Unwin, Richard D.; Faull, Richard L. M.; Dowsey, Andrew W.; Cooper, Garth J. S.

    2016-01-01

    Impairment of brain-glucose uptake and brain-copper regulation occurs in Alzheimer’s disease (AD). Here we sought to further elucidate the processes that cause neurodegeneration in AD by measuring levels of metabolites and metals in brain regions that undergo different degrees of damage. We employed mass spectrometry (MS) to measure metabolites and metals in seven post-mortem brain regions of nine AD patients and nine controls, and plasma-glucose and plasma-copper levels in an ante-mortem case-control study. Glucose, sorbitol and fructose were markedly elevated in all AD brain regions, whereas copper was correspondingly deficient throughout (all P < 0.0001). In the ante-mortem case-control study, by contrast, plasma-glucose and plasma-copper levels did not differ between patients and controls. There were pervasive defects in regulation of glucose and copper in AD brain but no evidence for corresponding systemic abnormalities in plasma. Elevation of brain glucose and deficient brain copper potentially contribute to the pathogenesis of neurodegeneration in AD. PMID:27276998

  3. Is obesity a brain disease?

    PubMed

    Shefer, Gabi; Marcus, Yonit; Stern, Naftali

    2013-12-01

    That the brain is involved in the pathogenesis and perpetuation of obesity is broadly self-intuitive, but traditional evaluation of this relationship has focused on psychological and environment-dependent issues, often referred to as the "it's all in the head" axiom. Here we review evidence that excessive nutrition or caloric flux, regardless of its primary trigger, elicits a biological trap which imprints aberrant energy control circuits that tend to worsen with the accumulation of body fat. Structural and functional changes in the brain can be recognized, such as hypothalamic inflammation and gliosis, reduction in brain volume, reduced regional blood flow or diminished hippocampal size. Such induced changes collectively translate into a vicious cycle of deranged metabolic control and cognitive deficits, some of which can be traced back even to childhood or adolescence. Much like other components of the obese state, brain disease is inseparable from obesity itself and requires better recognition to allow future therapeutic targeting. PMID:23911925

  4. Ketone body metabolism and cardiovascular disease

    PubMed Central

    Cotter, David G.; Schugar, Rebecca C.

    2013-01-01

    Ketone bodies are metabolized through evolutionarily conserved pathways that support bioenergetic homeostasis, particularly in brain, heart, and skeletal muscle when carbohydrates are in short supply. The metabolism of ketone bodies interfaces with the tricarboxylic acid cycle, β-oxidation of fatty acids, de novo lipogenesis, sterol biosynthesis, glucose metabolism, the mitochondrial electron transport chain, hormonal signaling, intracellular signal transduction pathways, and the microbiome. Here we review the mechanisms through which ketone bodies are metabolized and how their signals are transmitted. We focus on the roles this metabolic pathway may play in cardiovascular disease states, the bioenergetic benefits of myocardial ketone body oxidation, and prospective interactions among ketone body metabolism, obesity, metabolic syndrome, and atherosclerosis. Ketone body metabolism is noninvasively quantifiable in humans and is responsive to nutritional interventions. Therefore, further investigation of this pathway in disease models and in humans may ultimately yield tailored diagnostic strategies and therapies for specific pathological states. PMID:23396451

  5. Diseases of Phenylalanine Metabolism

    PubMed Central

    Parker, Charles E.

    1979-01-01

    Continuing investigation of the system that hydroxylates phenylalanine to tyrosine has led to new insights into diseases associated with the malfunction of this system. Good evidence has confirmed that phenylketonuria (PKU) is not caused by a simple lack of phenylalanine hydroxylase. Dihydropteridine reductase deficiency as well as defects in biopterin metabolism may also cause the clinical features of phenylketonuria. Furthermore, these diseases do not respond to the standard treatment for phenylketonuria. PMID:388868

  6. Metabolic signatures of Huntington's disease (HD): (1)H NMR analysis of the polar metabolome in post-mortem human brain.

    PubMed

    Graham, Stewart F; Kumar, Praveen K; Bjorndahl, Trent; Han, BeomSoo; Yilmaz, Ali; Sherman, Eric; Bahado-Singh, Ray O; Wishart, David; Mann, David; Green, Brian D

    2016-09-01

    Huntington's disease (HD) is an autosomal neurodegenerative disorder affecting approximately 5-10 persons per 100,000 worldwide. The pathophysiology of HD is not fully understood but the age of onset is known to be highly dependent on the number of CAG triplet repeats in the huntingtin gene. Using (1)H NMR spectroscopy this study biochemically profiled 39 brain metabolites in post-mortem striatum (n=14) and frontal lobe (n=14) from HD sufferers and controls (n=28). Striatum metabolites were more perturbed with 15 significantly affected in HD cases, compared with only 4 in frontal lobe (p<0.05; q<0.3). The metabolite which changed most overall was urea which decreased 3.25-fold in striatum (p<0.01). Four metabolites were consistently affected in both brain regions. These included the neurotransmitter precursors tyrosine and l-phenylalanine which were significantly depleted by 1.55-1.58-fold and 1.48-1.54-fold in striatum and frontal lobe, respectively (p=0.02-0.03). They also included l-leucine which was reduced 1.54-1.69-fold (p=0.04-0.09) and myo-inositol which was increased 1.26-1.37-fold (p<0.01). Logistic regression analyses performed with MetaboAnalyst demonstrated that data obtained from striatum produced models which were profoundly more sensitive and specific than those produced from frontal lobe. The brain metabolite changes uncovered in this first (1)H NMR investigation of human HD offer new insights into the disease pathophysiology. Further investigations of striatal metabolite disturbances are clearly warranted. PMID:27288730

  7. Altered brain arginine metabolism in schizophrenia.

    PubMed

    Liu, P; Jing, Y; Collie, N D; Dean, B; Bilkey, D K; Zhang, H

    2016-01-01

    Previous research implicates altered metabolism of l-arginine, a versatile amino acid with a number of bioactive metabolites, in the pathogenesis of schizophrenia. The present study, for we believe the first time, systematically compared the metabolic profile of l-arginine in the frontal cortex (Brodmann's area 8) obtained post-mortem from schizophrenic individuals and age- and gender-matched non-psychiatric controls (n=20 per group). The enzyme assays revealed no change in total nitric oxide synthase (NOS) activity, but significantly increased arginase activity in the schizophrenia group. Western blot showed reduced endothelial NOS protein expression and increased arginase II protein level in the disease group. High-performance liquid chromatography and liquid chromatography/mass spectrometric assays confirmed significantly reduced levels of γ-aminobutyric acid (GABA), but increased agmatine concentration and glutamate/GABA ratio in the schizophrenia cases. Regression analysis indicated positive correlations between arginase activity and the age of disease onset and between l-ornithine level and the duration of illness. Moreover, cluster analyses revealed that l-arginine and its main metabolites l-citrulline, l-ornithine and agmatine formed distinct groups, which were altered in the schizophrenia group. The present study provides further evidence of altered brain arginine metabolism in schizophrenia, which enhances our understanding of the pathogenesis of schizophrenia and may lead to the future development of novel preventions and/or therapeutics for the disease. PMID:27529679

  8. [Metabolic bone disease osteomalacia].

    PubMed

    Reuss-Borst, M A

    2014-05-01

    Osteomalacia is a rare disorder of bone metabolism leading to reduced bone mineralization. Underlying vitamin D deficiency and a disturbed phosphate metabolism (so-called hypophosphatemic osteomalacia) can cause the disease. Leading symptoms are dull localized or generalized bone pain, muscle weakness and cramps as well as increased incidence of falls. Rheumatic diseases, such as polymyalgia rheumatica, rheumatoid arthritis, myositis and fibromyalgia must be considered in the differential diagnosis. Alkaline phosphatase (AP) is typically elevated in osteomalacia while serum phosphate and/or 25-OH vitamin D3 levels are reduced. The diagnosis of osteomalacia can be confirmed by an iliac crest bone biopsy. Histological correlate is reduced or deficient mineralization of the newly synthesized extracellular matrix. Treatment strategies comprise supplementation of vitamin D and calcium and for patients with intestinal malabsorption syndromes vitamin D and calcium are also given parenterally. In renal phosphate wasting syndromes substitution of phosphate is the treatment of choice, except for tumor-induced osteomalacia when removal of the tumor leads to a cure in most cases. PMID:24811356

  9. Socially responsive effects of brain oxidative metabolism on aggression

    PubMed Central

    Li-Byarlay, Hongmei; Rittschof, Clare C.; Massey, Jonathan H.; Pittendrigh, Barry R.; Robinson, Gene E.

    2014-01-01

    Despite ongoing high energetic demands, brains do not always use glucose and oxygen in a ratio that produces maximal ATP through oxidative phosphorylation. In some cases glucose consumption exceeds oxygen use despite adequate oxygen availability, a phenomenon known as aerobic glycolysis. Although metabolic plasticity seems essential for normal cognition, studying its functional significance has been challenging because few experimental systems link brain metabolic patterns to distinct behavioral states. Our recent transcriptomic analysis established a correlation between aggression and decreased whole-brain oxidative phosphorylation activity in the honey bee (Apis mellifera), suggesting that brain metabolic plasticity may modulate this naturally occurring behavior. Here we demonstrate that the relationship between brain metabolism and aggression is causal, conserved over evolutionary time, cell type-specific, and modulated by the social environment. Pharmacologically treating honey bees to inhibit complexes I or V in the oxidative phosphorylation pathway resulted in increased aggression. In addition, transgenic RNAi lines and genetic manipulation to knock down gene expression in complex I in fruit fly (Drosophila melanogaster) neurons resulted in increased aggression, but knockdown in glia had no effect. Finally, honey bee colony-level social manipulations that decrease individual aggression attenuated the effects of oxidative phosphorylation inhibition on aggression, demonstrating a specific effect of the social environment on brain function. Because decreased neuronal oxidative phosphorylation is usually associated with brain disease, these findings provide a powerful context for understanding brain metabolic plasticity and naturally occurring behavioral plasticity. PMID:25092297

  10. Effects of donepezil on brain morphometric and metabolic changes in patients with Alzheimer's disease: A DARTEL-based VBM and (1)H-MRS.

    PubMed

    Moon, Chung-Man; Kim, Byeong-Chae; Jeong, Gwang-Woo

    2016-09-01

    A few studies have performed on the brain morphometric changes over the whole brain structure following donepezil treatment in patients with Alzheimer's disease (AD). We evaluated the gray matter (GM) and white matter (WM) volume alterations and cellular metabolic changes in patients with AD before and after donepezil treatment, and further to reveal the correlations of the scores of various neuropsychological scales with the volumetric and metabolic changes. Twenty-one subjects comprising of 11 patients with AD and 10 age-matched healthy controls participated in this study. All of the patients participated in the follow-up study 24weeks following donepezil treatment. In this study, a combination of voxel-based morphometry (VBM) and proton magnetic resonance spectroscopy ((1)H-MRS) was used to assess the brain morphometric and metabolic alterations in AD. In the GM volumetric analysis, both of the untreated and treated patients with donepezil showed significantly reduced volumes in the hippocampus (Hip), parahippocampal gyrus (PHG), precuneus (PCu) and middle frontal gyrus compared with healthy controls. However, donepezil-treated patients showed significantly increased volumes in the Hip, PCu, fusiform gyrus and caudate nucleus compared to untreated patients. In the WM volumetric analysis, untreated and treated patients showed significant volume reductions in the posterior limb of internal capsule (PLIC), cerebral peduncle of the midbrain and PHG compared to healthy controls. However, there was no significant WM morphological change after donepezil treatment in patients with AD. In MRS study, untreated patients with AD showed decreased N-acetylaspartate/creatine (NAA/Cr) and increased myo-inositol (mI)/Cr compared to healthy controls, while treated patients showed only decreased NAA/Cr in the same comparison. However, the treated patients showed simultaneously increased NAA/Cr and decreased mI/Cr and choline (Cho)/Cr ratios compared to untreated patients. This

  11. Cerebral metabolic adaptation and ketone metabolism after brain injury

    PubMed Central

    Prins, Mayumi L

    2010-01-01

    The developing central nervous system has the capacity to metabolize ketone bodies. It was once accepted that on weaning, the ‘post-weaned/adult’ brain was limited solely to glucose metabolism. However, increasing evidence from conditions of inadequate glucose availability or increased energy demands has shown that the adult brain is not static in its fuel options. The objective of this review is to summarize the body of literature specifically regarding cerebral ketone metabolism at different ages, under conditions of starvation and after various pathologic conditions. The evidence presented supports the following findings: (1) there is an inverse relationship between age and the brain’s capacity for ketone metabolism that continues well after weaning; (2) neuroprotective potentials of ketone administration have been shown for neurodegenerative conditions, epilepsy, hypoxia/ischemia, and traumatic brain injury; and (3) there is an age-related therapeutic potential for ketone as an alternative substrate. The concept of cerebral metabolic adaptation under various physiologic and pathologic conditions is not new, but it has taken the contribution of numerous studies over many years to break the previously accepted dogma of cerebral metabolism. Our emerging understanding of cerebral metabolism is far more complex than could have been imagined. It is clear that in addition to glucose, other substrates must be considered along with fuel interactions, metabolic challenges, and cerebral maturation. PMID:17684514

  12. Insights into Brain Glycogen Metabolism: THE STRUCTURE OF HUMAN BRAIN GLYCOGEN PHOSPHORYLASE.

    PubMed

    Mathieu, Cécile; de la Sierra-Gallay, Ines Li; Duval, Romain; Xu, Ximing; Cocaign, Angélique; Léger, Thibaut; Woffendin, Gary; Camadro, Jean-Michel; Etchebest, Catherine; Haouz, Ahmed; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2016-08-26

    Brain glycogen metabolism plays a critical role in major brain functions such as learning or memory consolidation. However, alteration of glycogen metabolism and glycogen accumulation in the brain contributes to neurodegeneration as observed in Lafora disease. Glycogen phosphorylase (GP), a key enzyme in glycogen metabolism, catalyzes the rate-limiting step of glycogen mobilization. Moreover, the allosteric regulation of the three GP isozymes (muscle, liver, and brain) by metabolites and phosphorylation, in response to hormonal signaling, fine-tunes glycogenolysis to fulfill energetic and metabolic requirements. Whereas the structures of muscle and liver GPs have been known for decades, the structure of brain GP (bGP) has remained elusive despite its critical role in brain glycogen metabolism. Here, we report the crystal structure of human bGP in complex with PEG 400 (2.5 Å) and in complex with its allosteric activator AMP (3.4 Å). These structures demonstrate that bGP has a closer structural relationship with muscle GP, which is also activated by AMP, contrary to liver GP, which is not. Importantly, despite the structural similarities between human bGP and the two other mammalian isozymes, the bGP structures reveal molecular features unique to the brain isozyme that provide a deeper understanding of the differences in the activation properties of these allosteric enzymes by the allosteric effector AMP. Overall, our study further supports that the distinct structural and regulatory properties of GP isozymes contribute to the different functions of muscle, liver, and brain glycogen. PMID:27402852

  13. Evaluation of blood-brain barrier transport and CNS drug metabolism in diseased and control brain after intravenous L-DOPA in a unilateral rat model of Parkinson's disease

    PubMed Central

    2012-01-01

    Background Changes in blood-brain barrier (BBB) functionality have been implicated in Parkinson's disease. This study aimed to investigate BBB transport of L-DOPA transport in conjunction with its intra-brain conversion, in both control and diseased cerebral hemispheres in the unilateral rat rotenone model of Parkinson's disease. Methods In Lewis rats, at 14 days after unilateral infusion of rotenone into the medial forebrain bundle, L-DOPA was administered intravenously (10, 25 or 50 mg/kg). Serial blood samples and brain striatal microdialysates were analysed for L-DOPA, and the dopamine metabolites DOPAC and HVA. Ex-vivo brain tissue was analyzed for changes in tyrosine hydroxylase staining as a biomarker for Parkinson's disease severity. Data were analysed by population pharmacokinetic analysis (NONMEM) to compare BBB transport of L-DOPA in conjunction with the conversion of L-DOPA into DOPAC and HVA, in control and diseased cerebral hemisphere. Results Plasma pharmacokinetics of L-DOPA could be described by a 3-compartmental model. In rotenone responders (71%), no difference in L-DOPA BBB transport was found between diseased and control cerebral hemisphere. However, in the diseased compared with the control side, basal microdialysate levels of DOPAC and HVA were substantially lower, whereas following L-DOPA administration their elimination rates were higher. Conclusions Parkinson's disease-like pathology, indicated by a huge reduction of tyrosine hydroxylase as well as by substantially reduced levels and higher elimination rates of DOPAC and HVA, does not result in changes in BBB transport of L-DOPA. Taking the results of this study and that of previous ones, it can be concluded that changes in BBB functionality are not a specific characteristic of Parkinson's disease, and cannot account for the decreased benefit of L-DOPA at later stages of Parkinson's disease. PMID:22316420

  14. Diagnosis of metabolic bone disease

    SciTech Connect

    Grech, P.; Martin, T.J.; Barrington, N.A.; Ell, P.J.

    1986-01-01

    This book presents a reference on the radiologic evaluation, features, and differential diagnosis of metabolic diseases involving the whole skeleton, calcium deficiencies resulting from pharmacologic agents, and bone changes related to endocrine disturbances. It also stresses how radiology, nuclear medicine, and biochemistry - either alone or in concert - contribute to clinical diagnosis. It covers renal bone disease, Paget's disease, hyperphosphatasia, extraskeletal mineralization, metabolic bone disorders related to malnutrition, tumors, plus radionuclide studies including materials and methods.

  15. Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo

    NASA Astrophysics Data System (ADS)

    Yao, Junjie; Xia, Jun; Maslov, Konstantin; Avanaki, Mohammadreza R. N.; Tsytsarev, Vassiliy; Demchenko, Alexei V.; Wang, Lihong V.

    2013-03-01

    To control the overall action of the body, brain consumes a large amount of energy in proportion to its volume. In humans and many other species, the brain gets most of its energy from oxygen-dependent metabolism of glucose. An abnormal metabolic rate of glucose and/or oxygen usually reflects a diseased status of brain, such as cancer or Alzheimer's disease. We have demonstrated the feasibility of imaging mouse brain metabolism using photoacoustic computed tomography (PACT), a fast, noninvasive and functional imaging modality with optical contrast and acoustic resolution. Brain responses to forepaw stimulations were imaged transdermally and transcranially. 2-NBDG, which diffuses well across the blood-brain-barrier, provided exogenous contrast for photoacoustic imaging of glucose response. Concurrently, hemoglobin provided endogenous contrast for photoacoustic imaging of hemodynamic response. Glucose and hemodynamic responses were quantitatively unmixed by using two-wavelength measurements. We found that glucose uptake and blood perfusion around the somatosensory region of the contralateral hemisphere were both increased by stimulations, indicating elevated neuron activity. The glucose response amplitude was about half that of the hemodynamic response. While the glucose response area was more homogenous and confined within the somatosensory region, the hemodynamic response area showed a clear vascular pattern and spread about twice as wide as that of the glucose response. The PACT of mouse brain metabolism was validated by high-resolution open-scalp OR-PAM and fluorescence imaging. Our results demonstrate that 2-NBDG-enhanced PACT is a promising tool for noninvasive studies of brain metabolism.

  16. Maturation of metabolic connectivity of the adolescent rat brain

    PubMed Central

    Choi, Hongyoon; Choi, Yoori; Kim, Kyu Wan; Kang, Hyejin; Hwang, Do Won; Kim, E Edmund; Chung, June-Key; Lee, Dong Soo

    2015-01-01

    Neuroimaging has been used to examine developmental changes of the brain. While PET studies revealed maturation-related changes, maturation of metabolic connectivity of the brain is not yet understood. Here, we show that rat brain metabolism is reconfigured to achieve long-distance connections with higher energy efficiency during maturation. Metabolism increased in anterior cerebrum and decreased in thalamus and cerebellum during maturation. When functional covariance patterns of PET images were examined, metabolic networks including default mode network (DMN) were extracted. Connectivity increased between the anterior and posterior parts of DMN and sensory-motor cortices during maturation. Energy efficiency, a ratio of connectivity strength to metabolism of a region, increased in medial prefrontal and retrosplenial cortices. Our data revealed that metabolic networks mature to increase metabolic connections and establish its efficiency between large-scale spatial components from childhood to early adulthood. Neurodevelopmental diseases might be understood by abnormal reconfiguration of metabolic connectivity and efficiency. DOI: http://dx.doi.org/10.7554/eLife.11571.001 PMID:26613413

  17. Diet-Induced Metabolic Disturbances As Modulators of Brain Homeostasis

    PubMed Central

    Zhang, Le; Bruce-Keller, Annadora J.; Dasuri, Kalavathi; Nguyen, AnhThao; Liu, Dr Ying; Keller, Jeffrey N.

    2009-01-01

    A number of metabolic disturbances occur in response to the consumption of a high fat Western diet. Such metabolic disturbances can include the progressive development of hyperglycemia, hyperinsulemia, obesity, metabolic syndrome, and diabetes. Cumulatively, diet-induced disturbance in metabolism are known to promote increased morbidity and negatively impact life expectancy through a variety of mechanisms. While the impact of metabolic disturbances on the hepatic, endocrine, and cardiovascular systems are well established there remains a noticeable void in understanding the basis by which the central nervous system (CNS) becomes altered in response to diet-induced metabolic dysfunction. In particular, it remains to be fully elucidated which established features of diet-induced pathogenesis (observed in non-CNS tissues) are recapitulated in the brain, and identification as to whether the observed changes in the brain are a direct or indirect effect of peripheral metabolic disturbances. This review will focus on each of these key issues and identify some critical experimental questions which remain to be elucidated experimentally, as well as provide an outline of our current understanding for how diet-induced alterations in metabolism may impact the brain during aging and age-related diseases of the nervous system. PMID:18926905

  18. Metabolic correlates of hominid brain evolution.

    PubMed

    Leonard, William R; Robertson, Marcia L; Snodgrass, J Josh; Kuzawa, Christopher W

    2003-09-01

    Large brain sizes in humans have important metabolic consequences as humans expend a relatively larger proportion of their resting energy budget on brain metabolism than other primates or non-primate mammals. The high costs of large human brains are supported, in part, by diets that are relatively rich in energy and other nutrients. Among living primates, the relative proportion of metabolic energy allocated to the brain is positively correlated with dietary quality. Humans fall at the positive end of this relationship, having both a very high quality diet and a large brain size. Greater encephalization also appears to have consequences for aspects of body composition. Comparative primate data indicate that humans are 'under-muscled', having relatively lower levels of skeletal muscle than other primate species of similar size. Conversely, levels of body fatness are relatively high in humans, particularly in infancy. These greater levels of body fatness and reduced levels of muscle mass allow human infants to accommodate the growth of their large brains in two important ways: (1) by having a ready supply of stored energy to 'feed the brain', when intake is limited and (2) by reducing the total energy costs of the rest of the body. Paleontological evidence indicates that the rapid brain evolution observed with the emergence of Homo erectus at approximately 1.8 million years ago was likely associated with important changes in diet and body composition. PMID:14527625

  19. Patterns of Brain Injury in Inborn Errors of Metabolism

    PubMed Central

    Gropman, Andrea L.

    2013-01-01

    Many inborn errors of metabolism (IEMs) are associated with irreversible brain injury. For many, it is unclear how metabolite intoxication or substrate depletion accounts for the specific neurologic findings observed. IEM-associated brain injury patterns are characterized by whether the process involves gray matter, white matter, or both, and beyond that, whether subcortical or cortical gray matter nuclei are involved. Despite global insults, IEMs may result in selective injury to deep gray matter nuclei or white matter. This manuscript reviews the neuro-imaging patterns of neural injury in selected disorders of metabolism involving small molecule and macromolecular disorders (ie, Phenylketonuria, urea cycle disorders, and maple syrup urine disease) and discusses the contribution of diet and nutrition to the prevention or exacerbation of injury in selected inborn metabolic disorders. Where known, a review of the roles of individual differences in blood–brain permeability and transport mechanisms in the etiology of these disorders will be discussed. PMID:23245553

  20. Lysophosphatidylinositol Signalling and Metabolic Diseases.

    PubMed

    Arifin, Syamsul A; Falasca, Marco

    2016-01-01

    Metabolism is a chemical process used by cells to transform food-derived nutrients, such as proteins, carbohydrates and fats, into chemical and thermal energy. Whenever an alteration of this process occurs, the chemical balance within the cells is impaired and this can affect their growth and response to the environment, leading to the development of a metabolic disease. Metabolic syndrome, a cluster of several metabolic risk factors such as abdominal obesity, insulin resistance, high cholesterol and high blood pressure, and atherogenic dyslipidaemia, is increasingly common in modern society. Metabolic syndrome, as well as other diseases, such as diabetes, obesity, hyperlipidaemia and hypertension, are associated with abnormal lipid metabolism. Cellular lipids are the major component of cell membranes; they represent also a valuable source of energy and therefore play a crucial role for both cellular and physiological energy homeostasis. In this review, we will focus on the physiological and pathophysiological roles of the lysophospholipid mediator lysophosphatidylinositol (LPI) and its receptor G-protein coupled receptor 55 (GPR55) in metabolic diseases. LPI is a bioactive lipid generated by phospholipase A (PLA) family of lipases which is believed to play an important role in several diseases. Indeed LPI can affect various functions such as cell growth, differentiation and motility in a number of cell-types. Recently published data suggest that LPI plays an important role in different physiological and pathological contexts, including a role in metabolism and glucose homeostasis. PMID:26784247

  1. Lysophosphatidylinositol Signalling and Metabolic Diseases

    PubMed Central

    Arifin, Syamsul A.; Falasca, Marco

    2016-01-01

    Metabolism is a chemical process used by cells to transform food-derived nutrients, such as proteins, carbohydrates and fats, into chemical and thermal energy. Whenever an alteration of this process occurs, the chemical balance within the cells is impaired and this can affect their growth and response to the environment, leading to the development of a metabolic disease. Metabolic syndrome, a cluster of several metabolic risk factors such as abdominal obesity, insulin resistance, high cholesterol and high blood pressure, and atherogenic dyslipidaemia, is increasingly common in modern society. Metabolic syndrome, as well as other diseases, such as diabetes, obesity, hyperlipidaemia and hypertension, are associated with abnormal lipid metabolism. Cellular lipids are the major component of cell membranes; they represent also a valuable source of energy and therefore play a crucial role for both cellular and physiological energy homeostasis. In this review, we will focus on the physiological and pathophysiological roles of the lysophospholipid mediator lysophosphatidylinositol (LPI) and its receptor G-protein coupled receptor 55 (GPR55) in metabolic diseases. LPI is a bioactive lipid generated by phospholipase A (PLA) family of lipases which is believed to play an important role in several diseases. Indeed LPI can affect various functions such as cell growth, differentiation and motility in a number of cell-types. Recently published data suggest that LPI plays an important role in different physiological and pathological contexts, including a role in metabolism and glucose homeostasis. PMID:26784247

  2. Disease-Specific Probabilistic Brain Atlases.

    PubMed

    Thompson, Paul; Mega, Michael S; Toga, Arthur W

    2000-06-11

    Atlases of the human brain, in health and disease, provide a comprehensive framework for understanding brain structure and function. The complexity and variability of brain structure, especially in the gyral patterns of the human cortex, present challenges in creating standardized brain atlases that reflect the anatomy of a population. This paper introduces the concept of a population-based, disease-specific brain atlas that can reflect the unique anatomy and physiology of a particular clinical subpopulation. Based on well-characterized patient groups, disease-specific atlases contain thousands of structure models, composite maps, average templates, and visualizations of structural variability, asymmetry and group-specific differences. They correlate the structural, metabolic, molecular and histologic hallmarks of the disease. Rather than simply fusing information from multiple subjects and sources, new mathematical strategies are introduced to resolve group-specific features not apparent in individual scans. High-dimensional elastic mappings, based on covariant partial differential equations, are developed to encode patterns of cortical variation. In the resulting brain atlas, disease-specific features and regional asymmetries emerge that are not apparent in individual anatomies. The resulting probabilistic atlas can identify patterns of altered structure and function, and can guide algorithms for knowledge-based image analysis, automated image labeling, tissue classification, data mining and functional image analysis. PMID:19424457

  3. Disease-Specific Probabilistic Brain Atlases

    PubMed Central

    Thompson, Paul; Mega, Michael S.; Toga, Arthur W.

    2009-01-01

    Atlases of the human brain, in health and disease, provide a comprehensive framework for understanding brain structure and function. The complexity and variability of brain structure, especially in the gyral patterns of the human cortex, present challenges in creating standardized brain atlases that reflect the anatomy of a population. This paper introduces the concept of a population-based, disease-specific brain atlas that can reflect the unique anatomy and physiology of a particular clinical subpopulation. Based on well-characterized patient groups, disease-specific atlases contain thousands of structure models, composite maps, average templates, and visualizations of structural variability, asymmetry and group-specific differences. They correlate the structural, metabolic, molecular and histologic hallmarks of the disease. Rather than simply fusing information from multiple subjects and sources, new mathematical strategies are introduced to resolve group-specific features not apparent in individual scans. High-dimensional elastic mappings, based on covariant partial differential equations, are developed to encode patterns of cortical variation. In the resulting brain atlas, disease-specific features and regional asymmetries emerge that are not apparent in individual anatomies. The resulting probabilistic atlas can identify patterns of altered structure and function, and can guide algorithms for knowledge-based image analysis, automated image labeling, tissue classification, data mining and functional image analysis. PMID:19424457

  4. [Cerebral microdialysis. Brain metabolism monitoring].

    PubMed

    Esteban Jarque, Encarna; Expósito Mozas, Lourdes; Olalla Martín, Mercedes; Alvarez Alvarez, Irene

    2002-09-01

    This is a novel technique which provides information about all the happenings going on in the brain and which helps to better interpret the complete physiologic pathology of a patient suffering from serious cranial encephalitic trauma. The authors describe how to put this technique into practice, what materials are necessary to do so, and what conclusions may be obtained from biochemical analysis. PMID:13677751

  5. Expression of microRNA-34a in Alzheimer's disease brain targets genes linked to synaptic plasticity, energy metabolism, and resting state network activity.

    PubMed

    Sarkar, S; Jun, S; Rellick, S; Quintana, D D; Cavendish, J Z; Simpkins, J W

    2016-09-01

    Polygenetic risk factors and reduced expression of many genes in late-onset Alzheimer's disease (AD) impedes identification of a target(s) for disease-modifying therapies. We identified a single microRNA, miR-34a that is over expressed in specific brain regions of AD patients as well as in the 3xTg-AD mouse model. Specifically, increased miR-34a expression in the temporal cortex region compared to age matched healthy control correlates with severity of AD pathology. miR-34a over expression in patient's tissue and forced expression in primary neuronal culture correlates with concurrent repression of its target genes involved in synaptic plasticity, oxidative phosphorylation and glycolysis. The repression of oxidative phosphorylation and glycolysis related proteins correlates with reduced ATP production and glycolytic capacity, respectively. We also found that miR-34a overexpressed neurons secrete miR-34a containing exosomes that are taken up by neighboring neurons. Furthermore, miR-34a targets dozens of genes whose expressions are known to be correlated with synchronous activity in resting state functional networks. Our analysis of human genomic sequences from the tentative promoter of miR-34a gene shows the presence of NFκB, STAT1, c-Fos, CREB and p53 response elements. Together, our results raise the possibilities that pathophysiology-induced activation of specific transcription factor may lead to increased expression of miR-34a gene and miR-34a mediated concurrent repression of its target genes in neural networks may result in dysfunction of synaptic plasticity, energy metabolism, and resting state network activity. Thus, our results provide insights into polygenetic AD mechanisms and disclose miR-34a as a potential therapeutic target for AD. PMID:27235866

  6. Vitamin C in Health and Disease: Its Role in the Metabolism of Cells and Redox State in the Brain.

    PubMed

    Figueroa-Méndez, Rodrigo; Rivas-Arancibia, Selva

    2015-01-01

    Ever since Linus Pauling published his studies, the effects of vitamin C have been surrounded by contradictory results. This may be because its effects depend on a number of factors such as the redox state of the body, the dose used, and also on the tissue metabolism. This review deals with vitamin C pharmacokinetics and its participation in neurophysiological processes, as well as its role in the maintenance of redox balance. The distribution and the concentration of vitamin C in the organs depend on the ascorbate requirements of each and on the tissue distribution of sodium-dependent vitamin C transporter 1 and 2 (SVCT1 and SVCT2). This determines the specific distribution pattern of vitamin C in the body. Vitamin C is involved in the physiology of the nervous system, including the support and the structure of the neurons, the processes of differentiation, maturation, and neuronal survival; the synthesis of catecholamine, and the modulation of neurotransmission. This antioxidant interacts with self-recycling mechanisms, including its participation in the endogenous antioxidant system. We conclude that the pharmacokinetic properties of ascorbate are related to the redox state and its functions and effects in tissues. PMID:26779027

  7. Vitamin C in Health and Disease: Its Role in the Metabolism of Cells and Redox State in the Brain

    PubMed Central

    Figueroa-Méndez, Rodrigo; Rivas-Arancibia, Selva

    2015-01-01

    Ever since Linus Pauling published his studies, the effects of vitamin C have been surrounded by contradictory results. This may be because its effects depend on a number of factors such as the redox state of the body, the dose used, and also on the tissue metabolism. This review deals with vitamin C pharmacokinetics and its participation in neurophysiological processes, as well as its role in the maintenance of redox balance. The distribution and the concentration of vitamin C in the organs depend on the ascorbate requirements of each and on the tissue distribution of sodium-dependent vitamin C transporter 1 and 2 (SVCT1 and SVCT2). This determines the specific distribution pattern of vitamin C in the body. Vitamin C is involved in the physiology of the nervous system, including the support and the structure of the neurons, the processes of differentiation, maturation, and neuronal survival; the synthesis of catecholamine, and the modulation of neurotransmission. This antioxidant interacts with self-recycling mechanisms, including its participation in the endogenous antioxidant system. We conclude that the pharmacokinetic properties of ascorbate are related to the redox state and its functions and effects in tissues. PMID:26779027

  8. Urinary Biomarkers of Brain Diseases

    PubMed Central

    An, Manxia; Gao, Youhe

    2016-01-01

    Biomarkers are the measurable changes associated with a physiological or pathophysiological process. Unlike blood, urine is not subject to homeostatic mechanisms. Therefore, greater fluctuations could occur in urine than in blood, better reflecting the changes in human body. The roadmap of urine biomarker era was proposed. Although urine analysis has been attempted for clinical diagnosis, and urine has been monitored during the progression of many diseases, particularly urinary system diseases, whether urine can reflect brain disease status remains uncertain. As some biomarkers of brain diseases can be detected in the body fluids such as cerebrospinal fluid and blood, there is a possibility that urine also contain biomarkers of brain diseases. This review summarizes the clues of brain diseases reflected in the urine proteome and metabolome. PMID:26751805

  9. Metabolic brain imaging correlated with clinical features of brain tumors

    SciTech Connect

    Alavi, J.; Alavi, A.; Dann, R.; Kushner, M.; Chawluk, J.; Powlis, W.; Reivich, M.

    1985-05-01

    Nineteen adults with brain tumors have been studied with positron emission tomography utilizing FDG. Fourteen had biopsy proven cerebral malignant glioma, one each had meningioma, hemangiopericytoma, primitive neuroectodermal tumor (PNET), two had unbiopsied lesions, and one patient had an area of biopsy proven radiation necrosis. Three different patterns of glucose metabolism are observed: marked increase in metabolism at the site of the known tumor in (10 high grade gliomas and the PNET), lower than normal metabolism at the tumor (in 1 grade II glioma, 3 grade III gliomas, 2 unbiopsied low density nonenhancing lesions, and the meningioma), no abnormality (1 enhancing glioma, the hemangiopericytoma and the radiation necrosis.) The metabolic rate of the tumor or the surrounding brain did not appear to be correlated with the history of previous irradiation or chemotherapy. Decreased metabolism was frequently observed in the rest of the affected hemisphere and in the contralateral cerebellum. Tumors of high grade or with enhancing CT characteristics were more likely to show increased metabolism. Among the patients with proven gliomas, survival after PETT scan tended to be longer for those with low metabolic activity tumors than for those with highly active tumors. The authors conclude that PETT may help to predict the malignant potential of tumors, and may add useful clinical information to the CT scan.

  10. Transgenerational Inheritance of Metabolic Disease

    PubMed Central

    Stegemann, Rachel; Buchner, David A.

    2015-01-01

    Metabolic disease encompasses several disorders including obesity, type 2 diabetes, and dyslipidemia. Recently, the incidence of metabolic disease has drastically increased, driven primarily by a worldwide obesity epidemic. Transgenerational inheritance remains controversial, but has been proposed to contribute to human metabolic disease risk based on a growing number of proof-of-principle studies in model organisms ranging from C. elegans to M. musculus to S. scrofa. Collectively, these studies demonstrate that heritable risk is epigenetically transmitted from parent to offspring over multiple generations in the absence of a continued exposure to the triggering stimuli. A diverse assortment of initial triggers can induce transgenerational inheritance including high-fat or high-sugar diets, low-protein diets, various toxins, and ancestral genetic variants. Although the mechanistic basis underlying the transgenerational inheritance of disease risk remains largely unknown, putative molecules mediating transmission include small RNAs, histone modifications, and DNA methylation. Due to the considerable impact of metabolic disease on human health, it is critical to better understand the role of transgenerational inheritance of metabolic disease risk to open new avenues for therapeutic intervention and improve upon the current methods for clinical diagnoses and treatment. PMID:25937492

  11. Cerebral Lactate Metabolism After Traumatic Brain Injury.

    PubMed

    Patet, Camille; Suys, Tamarah; Carteron, Laurent; Oddo, Mauro

    2016-04-01

    Cerebral energy dysfunction has emerged as an important determinant of prognosis following traumatic brain injury (TBI). A number of studies using cerebral microdialysis, positron emission tomography, and jugular bulb oximetry to explore cerebral metabolism in patients with TBI have demonstrated a critical decrease in the availability of the main energy substrate of brain cells (i.e., glucose). Energy dysfunction induces adaptations of cerebral metabolism that include the utilization of alternative energy resources that the brain constitutively has, such as lactate. Two decades of experimental and human investigations have convincingly shown that lactate stands as a major actor of cerebral metabolism. Glutamate-induced activation of glycolysis stimulates lactate production from glucose in astrocytes, with subsequent lactate transfer to neurons (astrocyte-neuron lactate shuttle). Lactate is not only used as an extra energy substrate but also acts as a signaling molecule and regulator of systemic and brain glucose use in the cerebral circulation. In animal models of brain injury (e.g., TBI, stroke), supplementation with exogenous lactate exerts significant neuroprotection. Here, we summarize the main clinical studies showing the pivotal role of lactate and cerebral lactate metabolism after TBI. We also review pilot interventional studies that examined exogenous lactate supplementation in patients with TBI and found hypertonic lactate infusions had several beneficial properties on the injured brain, including decrease of brain edema, improvement of neuroenergetics via a "cerebral glucose-sparing effect," and increase of cerebral blood flow. Hypertonic lactate represents a promising area of therapeutic investigation; however, larger studies are needed to further examine mechanisms of action and impact on outcome. PMID:26898683

  12. [Motor neuron disease: metabolic evaluation].

    PubMed

    Godoy, J M; Skacel, M; Balassiano, S L; Neves, J R

    1992-03-01

    The authors studied serum and urinary calcium and phosphorus levels, as well as abnormalities on the spine of 30 patients with motor neuron disease. The authors believe in multifactorial aspects in the pathogenesis of motor neuron disease, calling special attention to toxic and metabolic factors. PMID:1307483

  13. Mitochondrial Morphology in Metabolic Diseases

    PubMed Central

    Galloway, Chad A.

    2013-01-01

    Abstract Significance: Mitochondria are the cellular energy-producing organelles and are at the crossroad of determining cell life and death. As such, the function of mitochondria has been intensely studied in metabolic disorders, including diabetes and associated maladies commonly grouped under all-inclusive pathological condition of metabolic syndrome. More recently, the altered metabolic profiles and function of mitochondria in these ailments have been correlated with their aberrant morphologies. This review describes an overview of mitochondrial fission and fusion machineries, and discusses implications of mitochondrial morphology and function in these metabolic maladies. Recent Advances: Mitochondria undergo frequent morphological changes, altering the mitochondrial network organization in response to environmental cues, termed mitochondrial dynamics. Mitochondrial fission and fusion mediate morphological plasticity of mitochondria and are controlled by membrane-remodeling mechanochemical enzymes and accessory proteins. Growing evidence suggests that mitochondrial dynamics play an important role in diabetes establishment and progression as well as associated ailments, including, but not limited to, metabolism–secretion coupling in the pancreas, nonalcoholic fatty liver disease progression, and diabetic cardiomyopathy. Critical Issues: While mitochondrial dynamics are intimately associated with mitochondrial bioenergetics, their cause-and-effect correlation remains undefined in metabolic diseases. Future Directions: The involvement of mitochondrial dynamics in metabolic diseases is in its relatively early stages. Elucidating the role of mitochondrial dynamics in pathological metabolic conditions will aid in defining the intricate form–function correlation of mitochondria in metabolic pathologies and should provide not only important clues to metabolic disease progression, but also new therapeutic targets. Antioxid. Redox Signal. 19, 415–430. PMID:22793999

  14. Competition between the Brain and Testes under Selenium-Compromised Conditions: Insight into Sex Differences in Selenium Metabolism and Risk of Neurodevelopmental Disease

    PubMed Central

    Kremer, Penny M.; Hashimoto, Ann C.; Torres, Daniel J.; Byrns, China N.; Williams, Christopher S.; Berry, Marla J.

    2015-01-01

    Selenium (Se) is essential for both brain development and male fertility. Male mice lacking two key genes involved in Se metabolism (Scly−/−Sepp1−/− mice), selenoprotein P (Sepp1) and Sec lyase (Scly), develop severe neurological dysfunction, neurodegeneration, and audiogenic seizures that manifest beginning in early adulthood. We demonstrate that prepubescent castration of Scly−/−Sepp1−/− mice prevents behavioral deficits, attenuates neurodegeneration, rescues maturation of GABAergic inhibition, and increases brain selenoprotein levels. Moreover, castration also yields similar neuroprotective benefits to Sepp1−/− and wild-type mice challenged with Se-deficient diets. Our data show that, under Se-compromised conditions, the brain and testes compete for Se utilization, with concomitant effects on neurodevelopment and neurodegeneration. SIGNIFICANCE STATEMENT Selenium is an essential trace element that promotes male fertility and brain function. Herein, we report that prepubescent castration provides neuroprotection by increasing selenium-dependent antioxidant activity in the brain, revealing a competition between the brain and testes for selenium utilization. These findings provide novel insight into the interaction of sex and oxidative stress upon the developing brain and have potentially significant implications for the prevention of neurodevelopmental disorders characterized by aberrant excitatory/inhibitory balance, such as schizophrenia and epilepsy. PMID:26586820

  15. Cellular metabolism and disease: what do metabolic outliers teach us?

    PubMed Central

    DeBerardinis, Ralph J.; Thompson, Craig B.

    2012-01-01

    An understanding of metabolic pathways based solely on biochemistry textbooks would underestimate the pervasive role of metabolism in essentially every aspect of biology. It is evident from recent work that many human diseases involve abnormal metabolic states – often genetically programmed – that perturb normal physiology and lead to severe tissue dysfunction. Understanding these metabolic outliers is now a crucial frontier in disease-oriented research. This review discusses the broad impact of metabolism in cellular function, how modern concepts of metabolism can inform our understanding of common diseases like cancer, and considers the prospects of developing new metabolic approaches to disease treatment. PMID:22424225

  16. Triglyceride Metabolism and Hepatic Diseases.

    PubMed

    Fernandez-Mejia, Emptyyn Y

    2013-09-11

    Triglycerides participate in key metabolic functions such as energy storage, thermal insulation and as deposit for essential and non-essential fatty acids that can be used as precursors for the synthesis of structural and functional phospholipids. The liver is a central organ in the regulation of triglyceride metabolism, and it participates in triglyceride synthesis, export, uptake and oxidation. The metabolic syndrome and associated diseases are among the main concerns of public health worldwide. One of the metabolic syndrome components is impaired triglyceride metabolism. Diseases associated with the metabolic syndrome promote the appearance of hepatic alterations e.g., non-alcoholic steatosis, steatohepatitis, fibrosis, cirrhosis and cancer. In this article, we review the molecular actions involved in impaired triglyceride metabolism and its association with hepatic diseases. We discuss mechanisms that reconcile the chronic inflammation and insulin resistance, and new concepts on the role of intestinal micro-flora permeability and proliferation in fatty liver etiology. We also describe the participation of oxidative stress in the progression of events leading from steatosis to steatohepatitis and fibrosis. Finally, we provide information regarding the mechanisms that link fatty acid accumulation during steatosis with changes in growth factors and cytokines that lead to the development of neoplasticcells. One of the main medical concerns vis-à-vishepatic diseases is the lack of symptoms at the onset of the illness and, as result, its late diagnosis. The understandings of the molecular mechanisms that underlie hepatic diseases could help design strategies towards establishing markers for their accurate and timely diagnosis. PMID:24032513

  17. Celiac disease and metabolic bone disease.

    PubMed

    Xing, Yanming; Morgan, Sarah L

    2013-01-01

    Celiac disease is a common autoimmune gastrointestinal disorder affecting multiple organs, precipitated in genetically vulnerable persons by the ingestion of gluten. Gluten is poorly digested and is presented to the intestinal mucosa as a large polypeptide. Binding to human leukocyte antigen-DQ2 and human leukocyte antigen-DQ8 molecules on antigen-presenting cells stimulates cellular and humeral immune reactions. Although common serological tests are available to diagnose celiac disease, the diagnosis of celiac disease is often delayed or missed because of lack of recognition as the disease presentation in adults is highly variable and may be asymptomatic. Celiac disease is a common secondary cause of metabolic bone disease and delayed treatment with gluten-free diet affects bone mineral density and fracture risk, so it is crucial to diagnose and treat celiac disease promptly. In this article, we will review recent studies of celiac disease in adults and provide practical, easily accessible information for busy clinicians. PMID:24090646

  18. Human ApoE Isoforms Differentially Modulate Glucose and Amyloid Metabolic Pathways in Female Brain: Evidence of the Mechanism of Neuroprotection by ApoE2 and Implications for Alzheimer's Disease Prevention and Early Intervention.

    PubMed

    Keeney, Jeriel Thomas-Richard; Ibrahimi, Shaher; Zhao, Liqin

    2015-01-01

    Three major genetic isoforms of apolipoprotein E (ApoE), ApoE2, ApoE3, and ApoE4, exist in humans and lead to differences in susceptibility to Alzheimer's disease (AD). This study investigated the impact of human ApoE isoforms on brain metabolic pathways involved in glucose utilization and amyloid-β (Aβ) degradation, two major areas that are significantly perturbed in preclinical AD. Hippocampal RNA samples from middle-aged female mice with targeted human ApoE2, ApoE3, and ApoE4 gene replacement were comparatively analyzed with a qRT-PCR custom array for the expression of 85 genes involved in insulin/insulin-like growth factor (Igf) signaling. Consistent with its protective role against AD, ApoE2 brain exhibited the most metabolically robust profile among the three ApoE genotypes. When compared to ApoE2 brain, both ApoE3 and ApoE4 brains exhibited markedly reduced levels of Igf1, insulin receptor substrates (Irs), and facilitated glucose transporter 4 (Glut4), indicating reduced glucose uptake. Additionally, ApoE4 brain exhibited significantly decreased Pparg and insulin-degrading enzyme (Ide), indicating further compromised glucose metabolism and Aβ dysregulation associated with ApoE4. Protein analysis showed significantly decreased Igf1, Irs, and Glut4 in ApoE3 brain, and Igf1, Irs, Glut4, Pparg, and Ide in ApoE4 brain compared to ApoE2 brain. These data provide the first documented evidence that human ApoE isoforms differentially affect brain insulin/Igf signaling and downstream glucose and amyloid metabolic pathways, illustrating a potential mechanism for their differential risk in AD. A therapeutic strategy that enhances brain insulin/Igf1 signaling activity to a more robust ApoE2-like phenotype favoring both energy production and amyloid homeostasis holds promise for AD prevention and early intervention. PMID:26402005

  19. Metabolic Alterations Associated to Brain Dysfunction in Diabetes

    PubMed Central

    Duarte, João M. N

    2015-01-01

    From epidemiological studies it is known that diabetes patients display increased risk of developing dementia. Moreover, cognitive impairment and Alzheimer’s disease (AD) are also accompanied by impaired glucose homeostasis and insulin signalling. Although there is plenty of evidence for a connection between insulin-resistant diabetes and AD, definitive linking mechanisms remain elusive. Cerebrovascular complications of diabetes, alterations in glucose homeostasis and insulin signalling, as well as recurrent hypoglycaemia are the factors that most likely affect brain function and structure. While difficult to study in patients, the mechanisms by which diabetes leads to brain dysfunction have been investigated in experimental models that display phenotypes of the disease. The present article reviews the impact of diabetes and AD on brain structure and function, and discusses recent findings from translational studies in animal models that link insulin resistance to metabolic alterations that underlie brain dysfunction. Such modifications of brain metabolism are likely to occur at early stages of neurodegeneration and impact regional neurochemical profiles and constitute non-invasive biomarkers detectable by magnetic resonance spectroscopy (MRS). PMID:26425386

  20. In Alzheimer’s Disease, 6-Month Treatment with GLP-1 Analog Prevents Decline of Brain Glucose Metabolism: Randomized, Placebo-Controlled, Double-Blind Clinical Trial

    PubMed Central

    Gejl, Michael; Gjedde, Albert; Egefjord, Lærke; Møller, Arne; Hansen, Søren B.; Vang, Kim; Rodell, Anders; Brændgaard, Hans; Gottrup, Hanne; Schacht, Anna; Møller, Niels; Brock, Birgitte; Rungby, Jørgen

    2016-01-01

    In animal models, the incretin hormone GLP-1 affects Alzheimer’s disease (AD). We hypothesized that treatment with GLP-1 or an analog of GLP-1 would prevent accumulation of Aβ and raise, or prevent decline of, glucose metabolism (CMRglc) in AD. In this 26-week trial, we randomized 38 patients with AD to treatment with the GLP-1 analog liraglutide (n = 18), or placebo (n = 20). We measured Aβ load in brain with tracer [11C]PIB (PIB), CMRglc with [18F]FDG (FDG), and cognition with the WMS-IV scale (ClinicalTrials.gov NCT01469351). The PIB binding increased significantly in temporal lobe in placebo and treatment patients (both P = 0.04), and in occipital lobe in treatment patients (P = 0.04). Regional and global increases of PIB retention did not differ between the groups (P ≥ 0.38). In placebo treated patients CMRglc declined in all regions, significantly so by the following means in precuneus (P = 0.009, 3.2 μmol/hg/min, 95% CI: 5.45; 0.92), and in parietal (P = 0.04, 2.1 μmol/hg/min, 95% CI: 4.21; 0.081), temporal (P = 0.046, 1.54 μmol/hg/min, 95% CI: 3.05; 0.030), and occipital (P = 0.009, 2.10 μmol/hg/min, 95% CI: 3.61; 0.59) lobes, and in cerebellum (P = 0.04, 1.54 μmol/hg/min, 95% CI: 3.01; 0.064). In contrast, the GLP-1 analog treatment caused a numerical but insignificant increase of CMRglc after 6 months. Cognitive scores did not change. We conclude that the GLP-1 analog treatment prevented the decline of CMRglc that signifies cognitive impairment, synaptic dysfunction, and disease evolution. We draw no firm conclusions from the Aβ load or cognition measures, for which the study was underpowered. PMID:27252647

  1. Genetic disorders of thyroid metabolism and brain development

    PubMed Central

    Kurian, Manju A; Jungbluth, Heinz

    2014-01-01

    Normal thyroid metabolism is essential for human development, including the formation and functioning of the central and peripheral nervous system. Disorders of thyroid metabolism are increasingly recognized within the spectrum of paediatric neurological disorders. Both hypothyroid and hyperthyroid disease states (resulting from genetic and acquired aetiologies) can lead to characteristic neurological syndromes, with cognitive delay, extrapyramidal movement disorders, neuropsychiatric symptoms, and neuromuscular manifestations. In this review, the neurological manifestations of genetic disorders of thyroid metabolism are outlined, with particular focus on Allan-Herndon-Dudley syndrome and benign hereditary chorea. We report in detail the clinical features, major neurological and neuropsychiatric manifestations, molecular genetic findings, disease mechanisms, and therapeutic strategies for these emerging genetic ‘brain-thyroid’ disorders. PMID:24665922

  2. Metabolic Syndrome and Urologic Diseases

    PubMed Central

    Gorbachinsky, Ilya; Akpinar, Haluk; Assimos, Dean G

    2010-01-01

    Metabolic syndrome (MetS) is a complex entity consisting of multiple interrelated factors including insulin resistance, central adiposity, dyslipidemia, endothelial dysfunction and atherosclerotic disease, low-grade inflammation, and in males, low testosterone levels. MetS has been linked to a number of urologic diseases including nephrolithiasis, benign prostatic hyperplasia and lower urinary tract symptoms, erectile dysfunction, male infertility, female incontinence, and prostate cancer. This article reviews the relationships between MetS and these entities. Urologists need to be cognizant of the impact that MetS has on urologic diseases as well as on overall patient health. PMID:21234260

  3. Deregulation of sphingolipid metabolism in Alzheimer's disease

    PubMed Central

    He, Xingxuan; Huang, Yu; Li, Bin; Gong, Cheng-Xing; Schuchman, Edward H.

    2010-01-01

    Abnormal sphingolipid metabolism has been previously reported in Alzheimer's disease (AD). To extend these findings, several sphingolipids and sphingolipid hydrolases were analyzed in brain samples from AD patients and age-matched normal individuals. We found a pattern of elevated acid sphingomyelinase (ASM) and acid ceramidase (AC) expression in AD, leading to a reduction in sphingomyelin and elevation of ceramide. More sphingosine also was found in the AD brains, although sphingosine-1-phosphate (S1P) levels were reduced. Notably, significant correlations were observed between the brain ASM and S1P levels and the levels of amyloid beta peptide (Aβ) and phosphorylated tau protein. Based on these findings, neuronal cell cultures were treated with Aβ oligomers, which were found to activate ASM, increase ceramide, and induce apoptosis. Pre-treatment of the neurons with purified, recombinant AC prevented the cells from undergoing Aβ-induced apoptosis. We propose that ASM activation is an important pathological event leading to AD, perhaps due to Aβ deposition. The downstream consequences of ASM activation are elevated ceramide, activation of ceramidases, and production of sphingosine. The reduced levels of S1P in the AD brain, together with elevated ceramide, likely contribute to the disease pathogenesis. PMID:18547682

  4. Glucose Metabolism: A Sweet Relief of Alzheimer's Disease.

    PubMed

    Duran-Aniotz, Claudia; Hetz, Claudio

    2016-09-12

    Patients and individuals at risk for Alzheimer's disease show reduced glucose metabolism in the brain. A new study takes advantage of a fly model of Alzheimer's disease to demonstrate that enhancing glucose uptake in neurons has strong neuroprotective effects involving improved proteostasis. PMID:27623263

  5. In Vivo NMR Studies of the Brain with Hereditary or Acquired Metabolic Disorders.

    PubMed

    Sherry, Erica B; Lee, Phil; Choi, In-Young

    2015-12-01

    Metabolic disorders, whether hereditary or acquired, affect the brain, and abnormalities of the brain are related to cellular integrity; particularly in regard to neurons and astrocytes as well as interactions between them. Metabolic disturbances lead to alterations in cellular function as well as microscopic and macroscopic structural changes in the brain with diabetes, the most typical example of metabolic disorders, and a number of hereditary metabolic disorders. Alternatively, cellular dysfunction and degeneration of the brain lead to metabolic disturbances in hereditary neurological disorders with neurodegeneration. Nuclear magnetic resonance (NMR) techniques allow us to assess a range of pathophysiological changes of the brain in vivo. For example, magnetic resonance spectroscopy detects alterations in brain metabolism and energetics. Physiological magnetic resonance imaging (MRI) detects accompanying changes in cerebral blood flow related to neurovascular coupling. Diffusion and T1/T2-weighted MRI detect microscopic and macroscopic changes of the brain structure. This review summarizes current NMR findings of functional, physiological and biochemical alterations within a number of hereditary and acquired metabolic disorders in both animal models and humans. The global view of the impact of these metabolic disorders on the brain may be useful in identifying the unique and/or general patterns of abnormalities in the living brain related to the pathophysiology of the diseases, and identifying future fields of inquiry. PMID:26610379

  6. Alterations of lipid metabolism in Wilson disease

    PubMed Central

    2011-01-01

    Introduction Wilson disease (WD) is an inherited disorder of human copper metabolism, characterised by accumulation of copper predominantly in the liver and brain, leading to severe hepatic and neurological disease. Interesting findings in animal models of WD (Atp7b-/- and LEC rats) showed altered lipid metabolism with a decrease in the amount of triglycerides and cholesterol in the serum. However, serum lipid profile has not been investigated in large human WD patient cohorts to date. Patients and Methods This cohort study involved 251 patients examined at the Heidelberg and Dresden (Germany) University Hospitals. Patients were analysed on routine follow-up examinations for serum lipid profile, including triglycerides, cholesterol, high density lipoprotein (HDL) and low density lipoprotein (LDL). Data on these parameters at time of diagnosis were retrieved by chart review where available. For statistical testing, patients were subgrouped by sex, manifestation (hepatic, neurological, mixed and asymptomatic) and treatment (D-penicillamine, trientine, zinc or combination). Results A significant difference in total serum cholesterol was found in patients with hepatic symptoms, which diminished under therapy. No alterations were observed for HDL, LDL and triglycerides. Conclusion Contradictory to previous reports using WD animal models (Atp7b-/- and LEC rats), the most obvious alteration in our cohort was a lower serum cholesterol level in hepatic-affected patients, which might be related to liver injury. Our data suggested unimpaired cholesterol metabolism in Wilson disease under therapy, independent of the applied medical treatment. PMID:21595966

  7. Sirtuin and metabolic kidney disease

    PubMed Central

    Wakino, Shu; Hasegawa, Kazuhiro; Itoh, Hiroshi

    2015-01-01

    Sirtuin is a nicotinamide adenine dinucleotide–dependent deacetylase. One of its isoforms, Sirt1, is a key molecule in glucose, lipid, and energy metabolism. The renal protective effects of Sirt1 are found in various models of renal disorders with metabolic impairment, such as diabetic nephropathy. Protective effects include the maintenance of glomerular barrier function, anti–fibrosis effects, anti–oxidative stress effects, and regulation of mitochondria function and energy metabolism. Various target molecules subject to direct deacetylation or epigenetic gene regulation have been identified as effectors of the renal protective function of sirtuin. Recently, it was demonstrated that Sirt1 expression decreases in proximal tubules before albuminuria in a mouse model of diabetic nephropathy, and that albuminuria is suppressed in proximal tubule–specific mice overexpressing Sirt1. These findings suggest that decreased Sirt1 expression in proximal tubular cells causes abnormal nicotine metabolism and reduces the supply of nicotinamide mononucleotide from renal tubules to glomeruli. This further decreases expression of Sirt1 in glomerular podocytes and increases expression of a tight junction protein, claudin-1, which results in albuminuria. Activators of the sirtuin family of proteins, including resveratrol, may be important in the development of new therapeutic strategies for treating metabolic kidney diseases, including diabetic nephropathy. PMID:26083654

  8. Energy metabolism in neuronal/glial induction and in iPSC models of brain disorders.

    PubMed

    Mlody, Barbara; Lorenz, Carmen; Inak, Gizem; Prigione, Alessandro

    2016-04-01

    The metabolic switch associated with the reprogramming of somatic cells to pluripotency has received increasing attention in recent years. However, the impact of mitochondrial and metabolic modulation on stem cell differentiation into neuronal/glial cells and related brain disease modeling still remains to be fully addressed. Here, we seek to focus on this aspect by first addressing brain energy metabolism and its inter-cellular metabolic compartmentalization. We then review the findings related to the mitochondrial and metabolic reconfiguration occurring upon neuronal/glial specification from pluripotent stem cells (PSCs). Finally, we provide an update of the PSC-based models of mitochondria-related brain disorders and discuss the challenges and opportunities that may exist on the road to develop a new era of brain disease modeling and therapy. PMID:26877213

  9. Characterization of Behavioral, Neuropathological, Brain Metabolic and Key Molecular Changes in zQ175 Knock-In Mouse Model of Huntington’s Disease

    PubMed Central

    Jiang, Mali; Jin, Jing; Hou, Zhipeng; Zheng, Jennifer; Zhang, Jiangyang; Duan, Wenzhen

    2016-01-01

    Huntington’s disease (HD) is caused by an expansion of the trinucleotide poly (CAG) tract located in exon 1 of the huntingtin (Htt) gene leading to progressive neurodegeneration in selected brain regions, and associated functional impairments in motor, cognitive, and psychiatric domains. Since the discovery of the gene mutation that causes the disease, mouse models have been developed by different strategies. Recently, a new model, the zQ175 knock-in (KI) line, was developed in an attempt to have the Htt gene in a context and causing a phenotype that more closely mimics HD in humans. The behavioral phenotype was characterized across the independent laboratories and important features reminiscent of human HD are observed in zQ175 mice. In the current study, we characterized the zQ175 model housed in an academic laboratory under reversed dark-light cycle, including motor function, in vivo longitudinal structural MRI imaging for brain volume, MRS for striatal metabolites, neuropathology, as well as a panel of key disease marker proteins in the striatum at different ages. Our results suggest that homozygous zQ175 mice exhibited significant brain atrophy before the motor deficits and brain metabolite changes. Altered striatal medium spiny neuronal marker, postsynaptic marker protein and complement component C1qC also characterized zQ175 mice. Our results confirmed that the zQ175 KI model is valuable in understanding of HD-like pathophysiology and evaluation of potential therapeutics. Our data also provide suggestions to select appropriate outcome measurements in preclinical studies using the zQ175 mice. PMID:26859386

  10. Brain PET in the Diagnosis of Alzheimer’s Disease

    PubMed Central

    Marcus, Charles; Mena, Esther; Subramaniam, Rathan M.

    2015-01-01

    Objectives The aim of this article was to review the current role of brain PET in the diagnosis of Alzheimer dementia. The characteristic patterns of glucose metabolism on brain FDG-PET can help in differentiating Alzheimer’s disease from other causes of dementia such as frontotemporal dementia and dementia of Lewy body. Amyloid brain PET may exclude significant amyloid deposition and thus Alzheimer’s disease in appropriate clinical setting. Conclusions FDG-PET and amyloid PET imaging are valuable in the assessment of patients with Alzheimer’s disease. PMID:25199063

  11. ANOXEMIA AND BRAIN DISEASE

    PubMed Central

    Courville, Cyril B.

    1953-01-01

    The author advances the concept that anoxemia, either in its general or restricted form, or both, is probably responsible for a considerable portion of “degenerative diseases,” whose etiologic delineation has not yet been traced. It is necessary, he believes, to enlarge greatly the comprehension of the disordered circulatory states to include oxygen want and thereby account for a number of conditions hitherto considered to be of unknown cause. More than this, he finds in oxygen want an explanation of the mechanism of a number of individual lesions or details of lesions otherwise not well understood. The author believes it is very likely that an understanding of cerebral anoxia in its ultimate ramifications will open still wider doors to the understanding of certain clinical syndromes the cause of which remains obscure. PMID:13082421

  12. Muscle-Eye-Brain Disease

    PubMed Central

    Shenoy, Anant M.; Markowitz, Jennifer A.; Bonnemann, Carsten G.; Krishnamoorthy, Kalpathy; Bossler, Aaron D.; Tseng, Brian S.

    2010-01-01

    A term female infant was evaluated for global developmental delay, hypotonia, hyporeflexia, diffuse weakness including facial muscles, and visual impairment with optic nerve hypoplasia. In the absence of family history or perinatal concerns, an extensive investigation was performed, including lab studies, muscle biopsy, brain MRI and focused genetic testing. This revealed elevated serum CK, a structurally abnormal brain, and a dystrophic-appearing muscle biopsy with evidence of a glycosylation defect in the alpha-dystroglycan complex. Of the 6 known related genes, testing of the POMGnT1 gene showed three heterozygous missense mutations. Thus her history, examination, biopsy specimen, imaging, laboratory, and genetic studies are all consistent with the diagnosis of Muscle-Eye-Brain (MEB) disease. MEB is one of an emerging spectrum of congenital disorders that involve both central and peripheral nervous systems, described further in this case report. PMID:20215985

  13. Thyroid hormone’s role in regulating brain glucose metabolism and potentially modulating hippocampal cognitive processes

    PubMed Central

    Jahagirdar, V; McNay, EC

    2012-01-01

    Cognitive performance is dependent on adequate glucose supply to the brain. Insulin, which regulates systemic glucose metabolism, has been recently shown both to regulate hippocampal metabolism and to be a mandatory component of hippocampally-mediated cognitive performance. Thyroid hormones (TH) regulate systemic glucose metabolism and may also be involved in regulation of brain glucose metabolism. Here we review potential mechanisms for such regulation. Importantly, TH imbalance is often encountered in combination with metabolic disorders, such as diabetes, and may cause additional metabolic dysregulation and hence worsening of disease states. TH’s potential as a regulator of brain glucose metabolism is heightened by interactions with insulin signaling, but there have been relatively few studies on this topic or on the actions of TH in a mature brain. This review discusses evidence for mechanistic links between TH, insulin, cognitive function, and brain glucose metabolism, and suggests that TH is a good candidate to be a modulator of memory processes, likely at least in part by modulation of central insulin signaling and glucose metabolism. PMID:22437199

  14. Brain capillaries in Alzheimer's disease.

    PubMed

    Baloyannis, Stavros J

    2015-01-01

    Alzheimer's disease is the most common cause of irreversible dementia, affecting mostly the presenile and senile age, shaping a tragic profile in the epilogue of the life of the suffering people. Due to the severity and the social impact of the disease an ongoing research activity is in climax nowadays, associated with many legal, social, ethical, humanitarian, philosophical and economic considerations. From the neuropathological point of view the disease is characterized by dendritic pathology, loss of synapses and dendritic spines, affecting mostly selective neuronal networks of critical importance for memory and cognition, such as the basal forebrain cholinergic system, the medial temporal regions, the hippocampus and many neocortical association areas. Tau pathology consisted of intracellular accumulation of neurofibrillary tangles of hyperphosphorilated tau protein and accumulation of Aβ-peptide's deposits, defined as neuritic plaques, are the principal neuropathological diagnostic criteria of the disease. The neurotoxic properties of the oligomerics of the Aβ-peptide and tau mediated neurodegeneration are among the main causative factors of impaired synaptic plasticity, neuronal loss, dendritic alterations and tremendous synaptic loss. The gradual degeneration of the organelles, particularly mitochondria, smooth endoplasmic reticulum and Golgi apparatus, visualized clearly by electron microscopy (EM), emphasize the importance of the oxidative stress and amyloid toxicity in the pathogenetic cascade of the disease. The vascular factor may be an important component of the whole spectrum of the pathogenesis of AD. It is of substantial importance the concept that the structural alterations of the brain capillaries, may contribute in the pathology of AD, given that the disruption of the BBB may induce exacerbation of AD pathology, by promoting inflammation around the blood capillaries and in the neuropile space diffusely. From the morphological point of view

  15. New insights into coupling and uncoupling of cerebral blood flow and metabolism in the brain

    PubMed Central

    Venkat, Poornima; Chopp, Michael; Chen, Jieli

    2016-01-01

    The brain has high metabolic and energy needs and requires continuous cerebral blood flow (CBF), which is facilitated by a tight coupling between neuronal activity, CBF, and metabolism. Upon neuronal activation, there is an increase in energy demand, which is then met by a hemodynamic response that increases CBF. Such regional CBF increase in response to neuronal activation is observed using neuroimaging techniques such as functional magnetic resonance imaging and positron emission tomography. The mechanisms and mediators (eg, nitric oxide, astrocytes, and ion channels) that regulate CBF-metabolism coupling have been extensively studied. The neurovascular unit is a conceptual model encompassing the anatomical and metabolic interactions between the neurons, vascular components, and glial cells in the brain. It is compromised under disease states such as stroke, diabetes, hypertension, dementias, and with aging, all of which trigger a cascade of inflammatory responses that exacerbate brain damage. Hence, tight regulation and maintenance of neurovascular coupling is central for brain homeostasis. This review article also discusses the waste clearance pathways in the brain such as the glymphatic system. The glymphatic system is a functional waste clearance pathway that removes metabolic wastes and neurotoxins from the brain along paravascular channels. Disruption of the glymphatic system burdens the brain with accumulating waste and has been reported in aging as well as several neurological diseases. PMID:27374823

  16. New insights into coupling and uncoupling of cerebral blood flow and metabolism in the brain.

    PubMed

    Venkat, Poornima; Chopp, Michael; Chen, Jieli

    2016-06-30

    The brain has high metabolic and energy needs and requires continuous cerebral blood flow (CBF), which is facilitated by a tight coupling between neuronal activity, CBF, and metabolism. Upon neuronal activation, there is an increase in energy demand, which is then met by a hemodynamic response that increases CBF. Such regional CBF increase in response to neuronal activation is observed using neuroimaging techniques such as functional magnetic resonance imaging and positron emission tomography. The mechanisms and mediators (eg, nitric oxide, astrocytes, and ion channels) that regulate CBF-metabolism coupling have been extensively studied. The neurovascular unit is a conceptual model encompassing the anatomical and metabolic interactions between the neurons, vascular components, and glial cells in the brain. It is compromised under disease states such as stroke, diabetes, hypertension, dementias, and with aging, all of which trigger a cascade of inflammatory responses that exacerbate brain damage. Hence, tight regulation and maintenance of neurovascular coupling is central for brain homeostasis. This review article also discusses the waste clearance pathways in the brain such as the glymphatic system. The glymphatic system is a functional waste clearance pathway that removes metabolic wastes and neurotoxins from the brain along paravascular channels. Disruption of the glymphatic system burdens the brain with accumulating waste and has been reported in aging as well as several neurological diseases. PMID:27374823

  17. Opportunities for genetic improvement of metabolic diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Metabolic disorders are disturbances to one or more of the metabolic processes in dairy cattle. Dysfunction of any of these processes is associated with the manifestation of metabolic diseases or disorders. In this review, data recording, incidences, genetic parameters, predictors and status of gene...

  18. [Nutritional and metabolic aspects of neurological diseases].

    PubMed

    Planas Vilà, Mercè

    2014-01-01

    The central nervous system regulates food intake, homoeostasis of glucose and electrolytes, and starts the sensations of hunger and satiety. Different nutritional factors are involved in the pathogenesis of several neurological diseases. Patients with acute neurological diseases (traumatic brain injury, cerebral vascular accident hemorrhagic or ischemic, spinal cord injuries, and cancer) and chronic neurological diseases (Alzheimer's Disease and other dementias, amyotrophic lateral sclerosis, Parkinson's Disease) increase the risk of malnutrition by multiple factors related to nutrient ingestion, abnormalities in the energy expenditure, changes in eating behavior, gastrointestinal changes, and by side effects of drugs administered. Patients with acute neurological diseases have in common the presence of hyper metabolism and hyper catabolism both associated to a period of prolonged fasting mainly for the frequent gastrointestinal complications, many times as a side effect of drugs administered. During the acute phase, spinal cord injuries presented a reduction in the energy expenditure but an increase in the nitrogen elimination. In order to correct the negative nitrogen balance increase intakes is performed with the result of a hyper alimentation that should be avoided due to the complications resulting. In patients with chronic neurological diseases and in the acute phase of cerebrovascular accident, dysphagia could be present which also affects intakes. Several chronic neurological diseases have also dementia, which lead to alterations in the eating behavior. The presence of malnutrition complicates the clinical evolution, increases muscular atrophy with higher incidence of respiratory failure and less capacity to disphagia recuperation, alters the immune response with higher rate of infections, increases the likelihood of fractures and of pressure ulcers, increases the incapacity degree and is an independent factor to increase mortality. The periodic nutritional

  19. Prenatal diagnosis of inherited metabolic diseases.

    PubMed Central

    Diukman, R; Goldberg, J D

    1993-01-01

    Advances in the prenatal diagnosis of inherited metabolic disease have provided new reproductive options to at-risk couples. These advances have occurred in both sampling techniques and methods of analysis. In this review we present an overview of the currently available prenatal diagnostic approaches for the diagnosis of metabolic disease in a fetus. Images PMID:8236980

  20. Molecular anatomy of the gut-brain axis revealed with transgenic technologies: implications in metabolic research

    PubMed Central

    Udit, Swalpa; Gautron, Laurent

    2013-01-01

    Neurons residing in the gut-brain axis remain understudied despite their important role in coordinating metabolic functions. This lack of knowledge is observed, in part, because labeling gut-brain axis neurons and their connections using conventional neuroanatomical methods is inherently challenging. This article summarizes genetic approaches that enable the labeling of distinct populations of gut-brain axis neurons in living laboratory rodents. In particular, we review the respective strengths and limitations of currently available genetic and viral approaches that permit the marking of gut-brain axis neurons without the need for antibodies or conventional neurotropic tracers. Finally, we discuss how these methodological advances are progressively transforming the study of the healthy and diseased gut-brain axis in the context of its role in chronic metabolic diseases, including diabetes and obesity. PMID:23914153

  1. Large-scale in silico modeling of metabolic interactions between cell types in the human brain.

    PubMed

    Lewis, Nathan E; Schramm, Gunnar; Bordbar, Aarash; Schellenberger, Jan; Andersen, Michael P; Cheng, Jeffrey K; Patel, Nilam; Yee, Alex; Lewis, Randall A; Eils, Roland; König, Rainer; Palsson, Bernhard Ø

    2010-12-01

    Metabolic interactions between multiple cell types are difficult to model using existing approaches. Here we present a workflow that integrates gene expression data, proteomics data and literature-based manual curation to model human metabolism within and between different types of cells. Transport reactions are used to account for the transfer of metabolites between models of different cell types via the interstitial fluid. We apply the method to create models of brain energy metabolism that recapitulate metabolic interactions between astrocytes and various neuron types relevant to Alzheimer's disease. Analysis of the models identifies genes and pathways that may explain observed experimental phenomena, including the differential effects of the disease on cell types and regions of the brain. Constraint-based modeling can thus contribute to the study and analysis of multicellular metabolic processes in the human tissue microenvironment and provide detailed mechanistic insight into high-throughput data analysis. PMID:21102456

  2. Metabolic Flux and Compartmentation Analysis in the Brain In vivo

    PubMed Central

    Lanz, Bernard; Gruetter, Rolf; Duarte, João M. N.

    2013-01-01

    Through significant developments and progresses in the last two decades, in vivo localized nuclear magnetic resonance spectroscopy (MRS) became a method of choice to probe brain metabolic pathways in a non-invasive way. Beside the measurement of the total concentration of more than 20 metabolites, 1H MRS can be used to quantify the dynamics of substrate transport across the blood-brain barrier by varying the plasma substrate level. On the other hand, 13C MRS with the infusion of 13C-enriched substrates enables the characterization of brain oxidative metabolism and neurotransmission by incorporation of 13C in the different carbon positions of amino acid neurotransmitters. The quantitative determination of the biochemical reactions involved in these processes requires the use of appropriate metabolic models, whose level of details is strongly related to the amount of data accessible with in vivo MRS. In the present work, we present the different steps involved in the elaboration of a mathematical model of a given brain metabolic process and its application to the experimental data in order to extract quantitative brain metabolic rates. We review the recent advances in the localized measurement of brain glucose transport and compartmentalized brain energy metabolism, and how these reveal mechanistic details on glial support to glutamatergic and GABAergic neurons. PMID:24194729

  3. Altered Lipid Metabolism in Brain Injury and Disorders

    PubMed Central

    Adibhatla, Rao Muralikrishna; Hatcher, J. F.

    2008-01-01

    Deregulated lipid metabolism may be of particular importance for CNS injuries and disorders, as this organ has the highest lipid concentration next to adipose tissue. Atherosclerosis (a risk factor for ischemic stroke) results from accumulation of LDL-derived lipids in the arterial wall. Pro-inflammatory cytokines (TNF-α and IL-1), secretory phospholipase A2 IIA and lipoprotein-PLA2 are implicated in vascular inflammation. These inflammatory responses promote atherosclerotic plaques, formation and release of the blood clot that can induce ischemic stroke. TNF-α and IL-1 alter lipid metabolism and stimulate production of eicosanoids, ceramide, and reactive oxygen species that potentiate CNS injuries and certain neurological disorders. Cholesterol is an important regulator of lipid organization and the precursor for neurosteroid biosynthesis. Low levels of neurosteroids were related to poor outcome in many brain pathologies. Apolipoprotein E is the principal cholesterol carrier protein in the brain, and the gene encoding the variant Apolipoprotein E4 is a significant risk factor for Alzheimer's disease. Parkinson's disease is to some degree caused by lipid peroxidation due to phospholipases activation. Niemann-Pick diseases A and B are due to acidic sphingomyelinase deficiency, resulting in sphingomyelin accumulation, while Niemann-Pick disease C is due to mutations in either the NPC1 or NPC2 genes, resulting in defective cholesterol transport and cholesterol accumulation. Multiple sclerosis is an autoimmune inflammatory demyelinating condition of the CNS. Inhibiting phospholipase A2 attenuated the onset and progression of experimental autoimmune encephalomyelitis. The endocannabinoid system is hypoactive in Huntington's disease. Ethyl-eicosapetaenoate showed promise in clinical trials. Amyotrophic lateral sclerosis causes loss of motorneurons. Cyclooxygenase-2 inhibition reduced spinal neurodegeneration in amyotrophic lateral sclerosis transgenic mice

  4. Metabolic costs and evolutionary implications of human brain development.

    PubMed

    Kuzawa, Christopher W; Chugani, Harry T; Grossman, Lawrence I; Lipovich, Leonard; Muzik, Otto; Hof, Patrick R; Wildman, Derek E; Sherwood, Chet C; Leonard, William R; Lange, Nicholas

    2014-09-01

    The high energetic costs of human brain development have been hypothesized to explain distinctive human traits, including exceptionally slow and protracted preadult growth. Although widely assumed to constrain life-history evolution, the metabolic requirements of the growing human brain are unknown. We combined previously collected PET and MRI data to calculate the human brain's glucose use from birth to adulthood, which we compare with body growth rate. We evaluate the strength of brain-body metabolic trade-offs using the ratios of brain glucose uptake to the body's resting metabolic rate (RMR) and daily energy requirements (DER) expressed in glucose-gram equivalents (glucosermr% and glucoseder%). We find that glucosermr% and glucoseder% do not peak at birth (52.5% and 59.8% of RMR, or 35.4% and 38.7% of DER, for males and females, respectively), when relative brain size is largest, but rather in childhood (66.3% and 65.0% of RMR and 43.3% and 43.8% of DER). Body-weight growth (dw/dt) and both glucosermr% and glucoseder% are strongly, inversely related: soon after birth, increases in brain glucose demand are accompanied by proportionate decreases in dw/dt. Ages of peak brain glucose demand and lowest dw/dt co-occur and subsequent developmental declines in brain metabolism are matched by proportionate increases in dw/dt until puberty. The finding that human brain glucose demands peak during childhood, and evidence that brain metabolism and body growth rate covary inversely across development, support the hypothesis that the high costs of human brain development require compensatory slowing of body growth rate. PMID:25157149

  5. Brain-Reactive Antibodies and Disease

    PubMed Central

    Diamond, B.; Honig, G.; Mader, S.; Brimberg, L.; Volpe, B.T.

    2015-01-01

    Autoimmune diseases currently affect 5–7% of the world's population; in most diseases there are circulating autoantibodies. Brain-reactive antibodies are present in approximately 2–3% of the general population but do not usually contribute to brain pathology. These antibodies penetrate brain tissue only early in development or under pathologic conditions. This restriction on their pathogenicity and the lack of correlation between serum titers and brain pathology have, no doubt, contributed to a delayed appreciation of the contribution of autoantibodies in diseases of the central nervous system. Nonetheless, it is increasingly clear that antibodies can cause damage in the brain and likely initiate or aggravate multiple neurologic conditions; brain-reactive antibodies contribute to symptomatology in autoimmune disease, infectious disease, and malignancy. PMID:23516983

  6. Bariatric surgery: the indications in metabolic disease.

    PubMed

    Neff, K J; le Roux, C W

    2014-01-01

    As well as the pronounced effect on body mass index (BMI), bariatric surgery is increasingly recognized as being associated with improvements in morbidity and mortality in a range of conditions, from airways disease to cancer. In metabolic disease, the impact of bariatric surgery is particularly obvious with marked improvements in glycemic control in patients with type 2 diabetes mellitus, to the point of effecting diabetes remission in some. Hypertension and dyslipidemia, key components of the metabolic syndrome, also respond to bariatric surgery. Despite the increasing evidence of benefit in metabolic disease, the major national guidelines for selecting candidates for bariatric surgery retain their emphasis on body weight. In these guidelines, a BMI ≥35 kg/m(2) is needed to indicate surgery, even in those with profound metabolic disturbance. The recent International Diabetes Federation guidelines have identified the need to reorientate our focus from BMI to metabolic disease. In this review, we examine the developing indications for the use of bariatric surgery in metabolic disease. We will focus on type 2 diabetes mellitus and the metabolic syndrome. Within this, we will outline the data for using bariatric surgery as metabolic surgery, including those with a BMI <35 kg/m(2). PMID:23838610

  7. Mental Illness And Brain Disease.

    PubMed

    Bedrick, Jeffrey D

    2014-01-01

    It has become common to say psychiatric illnesses are brain diseases. This reflects a conception of the mental as being biologically based, though it is also thought that thinking of psychiatric illness this way will reduce the stigma attached to psychiatric illness. If psychiatric illnesses are brain diseases, however, it is not clear why psychiatry should not collapse into neurology, and some argue for this course. Others try to maintain a distinction by saying that neurology deals with abnormalities of neural structure while psychiatry deals with specific abnormalities of neural functioning. It is not clear that neurologists would accept this division, nor that they should. I argue that if we take seriously the notion that psychiatric illnesses are mental illnesses we can draw a more defensible boundary between psychiatry and neurology. As mental illnesses, psychiatric illnesses must have symptoms that affect our mental capacities and that the sufferer is capable of being aware of, even if they are not always self-consciously aware of them. Neurological illnesses, such as stroke or multiple sclerosis, may be diagnosed even if they are silent, just as the person may not be aware of having high blood pressure or may suffer a silent myocardial infarction. It does not make sense to speak of panic disorder if the person has never had a panic attack, however, or of bipolar disorder in the absence of mood swings. This does not mean psychiatric illnesses are not biologically based. Mental illnesses are illnesses of persons, whereas other illnesses are illnesses of biological individuals. PMID:26444362

  8. Mapping Metabolic Brain Activity in Three Models of Hepatic Encephalopathy

    PubMed Central

    Méndez, Marta; Fidalgo, Camino; Aller, María Ángeles; Arias, Jaime; Arias, Jorge L.

    2013-01-01

    Cirrhosis is a common disease in Western countries. Liver failure, hyperammonemia, and portal hypertension are the main factors that contribute to human cirrhosis that frequently leads to a neuropsychiatric disorder known as hepatic encephalopathy (HE). In this study, we examined the differential contribution of these leading factors to the oxidative metabolism of diverse brain limbic system regions frequently involved in memory process by histochemical labelling of cytochrome oxidase (COx). We have analyzed cortical structures such as the infralimbic and prelimbic cotices, subcortical structures such as hippocampus and ventral striatum, at thalamic level like the anterodorsal, anteroventral, and mediodorsal thalamus, and, finally, the hypothalamus, where the mammillary nuclei (medial and lateral) were measured. The severest alteration is found in the model that mimics intoxication by ammonia, followed by the thioacetamide-treated group and the portal hypertension group. No changes were found at the mammillary bodies for any of the experimental groups. PMID:23573412

  9. Circadian rhythms in liver metabolism and disease

    PubMed Central

    Ferrell, Jessica M.; Chiang, John Y.L.

    2015-01-01

    Mounting research evidence demonstrates a significant negative impact of circadian disruption on human health. Shift work, chronic jet lag and sleep disturbances are associated with increased incidence of metabolic syndrome, and consequently result in obesity, type 2 diabetes and dyslipidemia. Here, these associations are reviewed with respect to liver metabolism and disease. PMID:26579436

  10. Circadian rhythms in liver metabolism and disease.

    PubMed

    Ferrell, Jessica M; Chiang, John Y L

    2015-03-01

    Mounting research evidence demonstrates a significant negative impact of circadian disruption on human health. Shift work, chronic jet lag and sleep disturbances are associated with increased incidence of metabolic syndrome, and consequently result in obesity, type 2 diabetes and dyslipidemia. Here, these associations are reviewed with respect to liver metabolism and disease. PMID:26579436

  11. Brain glucose metabolism during hypoglycemia in type 1 diabetes: insights from functional and metabolic neuroimaging studies.

    PubMed

    Rooijackers, Hanne M M; Wiegers, Evita C; Tack, Cees J; van der Graaf, Marinette; de Galan, Bastiaan E

    2016-02-01

    Hypoglycemia is the most frequent complication of insulin therapy in patients with type 1 diabetes. Since the brain is reliant on circulating glucose as its main source of energy, hypoglycemia poses a threat for normal brain function. Paradoxically, although hypoglycemia commonly induces immediate decline in cognitive function, long-lasting changes in brain structure and cognitive function are uncommon in patients with type 1 diabetes. In fact, recurrent hypoglycemia initiates a process of habituation that suppresses hormonal responses to and impairs awareness of subsequent hypoglycemia, which has been attributed to adaptations in the brain. These observations sparked great scientific interest into the brain's handling of glucose during (recurrent) hypoglycemia. Various neuroimaging techniques have been employed to study brain (glucose) metabolism, including PET, fMRI, MRS and ASL. This review discusses what is currently known about cerebral metabolism during hypoglycemia, and how findings obtained by functional and metabolic neuroimaging techniques contributed to this knowledge. PMID:26521082

  12. Metabolic costs and evolutionary implications of human brain development

    PubMed Central

    Kuzawa, Christopher W.; Chugani, Harry T.; Grossman, Lawrence I.; Lipovich, Leonard; Muzik, Otto; Hof, Patrick R.; Wildman, Derek E.; Sherwood, Chet C.; Leonard, William R.; Lange, Nicholas

    2014-01-01

    The high energetic costs of human brain development have been hypothesized to explain distinctive human traits, including exceptionally slow and protracted preadult growth. Although widely assumed to constrain life-history evolution, the metabolic requirements of the growing human brain are unknown. We combined previously collected PET and MRI data to calculate the human brain’s glucose use from birth to adulthood, which we compare with body growth rate. We evaluate the strength of brain–body metabolic trade-offs using the ratios of brain glucose uptake to the body’s resting metabolic rate (RMR) and daily energy requirements (DER) expressed in glucose-gram equivalents (glucosermr% and glucoseder%). We find that glucosermr% and glucoseder% do not peak at birth (52.5% and 59.8% of RMR, or 35.4% and 38.7% of DER, for males and females, respectively), when relative brain size is largest, but rather in childhood (66.3% and 65.0% of RMR and 43.3% and 43.8% of DER). Body-weight growth (dw/dt) and both glucosermr% and glucoseder% are strongly, inversely related: soon after birth, increases in brain glucose demand are accompanied by proportionate decreases in dw/dt. Ages of peak brain glucose demand and lowest dw/dt co-occur and subsequent developmental declines in brain metabolism are matched by proportionate increases in dw/dt until puberty. The finding that human brain glucose demands peak during childhood, and evidence that brain metabolism and body growth rate covary inversely across development, support the hypothesis that the high costs of human brain development require compensatory slowing of body growth rate. PMID:25157149

  13. Drosophila melanogaster as a Model Organism of Brain Diseases

    PubMed Central

    Jeibmann, Astrid; Paulus, Werner

    2009-01-01

    Drosophila melanogaster has been utilized to model human brain diseases. In most of these invertebrate transgenic models, some aspects of human disease are reproduced. Although investigation of rodent models has been of significant impact, invertebrate models offer a wide variety of experimental tools that can potentially address some of the outstanding questions underlying neurological disease. This review considers what has been gleaned from invertebrate models of neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, metabolic diseases such as Leigh disease, Niemann-Pick disease and ceroid lipofuscinoses, tumor syndromes such as neurofibromatosis and tuberous sclerosis, epilepsy as well as CNS injury. It is to be expected that genetic tools in Drosophila will reveal new pathways and interactions, which hopefully will result in molecular based therapy approaches. PMID:19333415

  14. Metabolic Disturbances in Diseases with Neurological Involvement

    PubMed Central

    Duarte, João M. N.; Schuck, Patrícia F.; Wenk, Gary L.; Ferreira, Gustavo C.

    2014-01-01

    Degeneration of specific neuronal populations and progressive nervous system dysfunction characterize neurodegenerative diseases, including Alzheimer’s disease and Parkinson’s disease. These findings are also reported in inherited diseases such as phenylketonuria and glutaric aciduria type I. The involvement of mitochondrial dysfunction in these diseases was reported, elicited by genetic alterations, exogenous toxins or buildup of toxic metabolites. In this review we shall discuss some metabolic alterations related to the pathophysiology of diseases with neurological involvement and aging process. These findings may help identifying early disease biomarkers and lead to more effective therapies to improve the quality of life of the patients affected by these devastating illnesses. PMID:25110608

  15. Brain energy metabolism in Alzheimer's disease: 99mTc-HMPAO SPECT imaging during verbal fluency and role of astrocytes in the cellular mechanism of 99mTc-HMPAO retention.

    PubMed

    Slosman, D O; Ludwig, C; Zerarka, S; Pellerin, L; Chicherio, C; de Ribaupierre, A; Annoni, J M; Bouras, C; Herrmann, F; Michel, J P; Giacobini, E; Magistretti, P J

    2001-10-01

    The central hypothesis of the study which has been carried out as part of the NRP38 program, is that perturbations of brain energy metabolism are critically involved in the neurodegeneration occurring in Alzheimer's disease (AD) and that they may correlate with early cognitive dysfunctioning. In the present multidisciplinary study we set out to monitor brain energy metabolism using FDG-PET and HMPAO-SPECT imaging in a cohort of individuals over 65 years of age, drawn from the general population. HMPAO-SPECT imaging, which is a simpler and more widely accessible imaging procedure than FDG-PET, was performed under basal conditions and during the performance of a cognitive task (verbal fluency test). Three groups were studied. Two groups (groups I and II) included individuals age 65 or more, with no cognitive impairment and carrying an APOE4 positive or APOE4 negative phenotype, respectively; a third group (group III) included patients with clinical signs of AD. Each subject entering the study underwent an FDG-PET, an HMPAO-SPECT and an extensive battery of neuropsychological tests which assess various aspects of cognitive functioning, with a strong emphasis on working memory, divided attention and executive functions. A total of 101 participants were submitted to brain imaging and neuropsychological testing. Among these, 60 participants received the same set of imaging and neuropsychological tasks 24-36 months after the first set (phase II). In this article, we present a preliminary analysis performed on ten subjects from groups I and II and nine subjects from group III: activation (verbal fluency task) induced a specific pattern of increase in HMPAO retention (including BA 9/10, BA 18 bilaterally and right BA 17). In contrast to controls, in nine AD subjects no significant differences in HMPAO retention were observed when comparing activation and basal conditions. The cellular and molecular mechanisms that underlie the retention of HMPAO, the tracer used for single

  16. Metabolic correlates of subthalamic nucleus activity in Parkinson's disease.

    PubMed

    Lin, Tanya P; Carbon, Maren; Tang, Chengke; Mogilner, Alon Y; Sterio, Djordje; Beric, Aleksandar; Dhawan, Vijay; Eidelberg, David

    2008-05-01

    Overactivity of subthalamic nucleus (STN) neurons is a consistent feature of Parkinson's disease (PD) and is a target of therapy for this disorder. However, the relationship of STN firing rate to regional brain function is not known. We scanned 17 PD patients with (18)F-fluorodeoxyglucose (FDG) PET to measure resting glucose metabolism before the implantation of STN deep brain stimulation electrodes. Spontaneous STN firing rates were recorded during surgery and correlated with preoperative regional glucose metabolism on a voxel-by-voxel basis. We also examined the relationship between firing rate and the activity of metabolic brain networks associated with the motor and cognitive manifestations of the disease. Mean firing rates were 47.2 +/- 6.1 and 48.7 +/- 8.5 Hz for the left and right hemispheres, respectively. These measures correlated (P < 0.007) with glucose metabolism in the putamen and globus pallidus, which receive projections from this structure. Significant correlations (P < 0.0005) were also evident in the primary motor (BA4) and dorsolateral prefrontal (BA46/10) cortical areas. The activity of both the motor (P < 0.0001) and the cognitive (P < 0.006) PD-related metabolic networks was elevated in these patients. STN firing rates correlated with the activity of the former (P < 0.007) but not the latter network (P = 0.39). The findings suggest that the functional pathways associated with motor disability in PD are linked to the STN firing rate. These pathways are likely to mediate the clinical benefit that is seen following targeted STN interventions for this disease. PMID:18400841

  17. Effects of diabetes on brain metabolism--is brain glycogen a significant player?

    PubMed

    Sickmann, Helle M; Waagepetersen, Helle S

    2015-02-01

    Brain glycogen, being an intracellular glucose reservoir, contributes to maintain energy and neurotransmitter homeostasis under physiological as well as pathological conditions. Under conditions with a disturbance in systemic glucose metabolism such as in diabetes, the supply of glucose to the brain may be affected and have important impacts on brain metabolism and neurotransmission. This also implies that brain glycogen may serve an essential role in the diabetic state to sustain appropriate brain function. There are two main types of diabetes; type 1 and type 2 diabetes and both types may be associated with brain impairments e.g. cognitive decline and dementia. It is however, not clear how these impairments on brain function are linked to alterations in brain energy and neurotransmitter metabolism. In this review, we will illuminate how rodent diabetes models have contributed to a better understanding of how brain energy and neurotransmitter metabolism is affected in diabetes. There will be a particular focus on the role of brain glycogen to support glycolytic and TCA cycle activity as well as glutamate-glutamine cycle in type 1 and type 2 diabetes. PMID:24771109

  18. Targeting energy metabolism in brain cancer: review and hypothesis

    PubMed Central

    Seyfried, Thomas N; Mukherjee, Purna

    2005-01-01

    Malignant brain tumors are a significant health problem in children and adults and are often unmanageable. As a metabolic disorder involving the dysregulation of glycolysis and respiration, malignant brain cancer is potentially manageable through changes in metabolic environment. A radically different approach to brain cancer management is proposed that combines metabolic control analysis with the evolutionarily conserved capacity of normal cells to survive extreme shifts in physiological environment. In contrast to malignant brain tumors that are largely dependent on glycolysis for energy, normal neurons and glia readily transition to ketone bodies (β-hydroxybutyrate) for energy in vivo when glucose levels are reduced. The bioenergetic transition from glucose to ketone bodies metabolically targets brain tumors through integrated anti-inflammatory, anti-angiogenic, and pro-apoptotic mechanisms. The approach focuses more on the genomic flexibility of normal cells than on the genomic defects of tumor cells and is supported from recent studies in orthotopic mouse brain tumor models and in human pediatric astrocytoma treated with dietary energy restriction and the ketogenic diet. PMID:16242042

  19. Reproducibility of regional brain metabolic responses to lorazepam

    SciTech Connect

    Wang, G.J.; Volkow, N.D.; Overall, J. |

    1996-10-01

    Changes in regional brain glucose metabolism in response to benzodiazepine agonists have been used as indicators of benzodiazepine-GABA receptor function. The purpose of this study was to assess the reproducibility of these responses. Sixteen healthy right-handed men underwent scanning with PET and [{sup 18}F]fluorodeoxyglucose (FDG) twice: before placebo and before lorazepam (30 {mu}g/kg). The same double FDG procedure was repeated 6-8 wk later on the men to assess test-retest reproducibility. The regional absolute brain metabolic values obtained during the second evaluation were significantly lower than those obtained from the first evaluation regardless of condition (p {le} 0.001). Lorazepam significantly and consistently decreased both whole-brain metabolism and the magnitude. The regional pattern of the changes were comparable for both studies (12.3% {plus_minus} 6.9% and 13.7% {plus_minus} 7.4%). Lorazepam effects were the largest in the thalamus (22.2% {plus_minus} 8.6% and 22.4% {plus_minus} 6.9%) and occipital cortex (19% {plus_minus} 8.9% and 21.8% {plus_minus} 8.9%). Relative metabolic measures were highly reproducible both for pharmacolgic and replication condition. This study measured the test-retest reproducibility in regional brain metabolic responses, and although the global and regional metabolic values were significantly lower for the repeated evaluation, the response to lorazepam was highly reproducible. 1613 refs., 3 figs., 3 tabs.

  20. Cancer as a mitochondrial metabolic disease

    PubMed Central

    Seyfried, Thomas N.

    2015-01-01

    Cancer is widely considered a genetic disease involving nuclear mutations in oncogenes and tumor suppressor genes. This view persists despite the numerous inconsistencies associated with the somatic mutation theory. In contrast to the somatic mutation theory, emerging evidence suggests that cancer is a mitochondrial metabolic disease, according to the original theory of Otto Warburg. The findings are reviewed from nuclear cytoplasm transfer experiments that relate to the origin of cancer. The evidence from these experiments is difficult to reconcile with the somatic mutation theory, but is consistent with the notion that cancer is primarily a mitochondrial metabolic disease. PMID:26217661

  1. The "selfish brain" hypothesis for metabolic abnormalities in bipolar disorder and schizophrenia.

    PubMed

    Mansur, Rodrigo Barbachan; Brietzke, Elisa

    2012-09-01

    Metabolic abnormalities are frequent in patients with schizophrenia and bipolar disorder (BD), leading to a high prevalence of diabetes and metabolic syndrome in this population. Moreover, mortality rates among patients are higher than in the general population, especially due to cardiovascular diseases. Several neurobiological systems involved in energy metabolism have been shown to be altered in both illnesses; however, the cause of metabolic abnormalities and how they relate to schizophrenia and BD pathophysiology are still largely unknown. The "selfish brain" theory is a recent paradigm postulating that, in order to maintain its own energy supply stable, the brain modulates energy metabolism in the periphery by regulation of both allocation and intake of nutrients. We hypothesize that the metabolic alterations observed in these disorders are a result of an inefficient regulation of the brain energy supply and its compensatory mechanisms. The selfish brain theory can also expand our understanding of stress adaptation and neuroprogression in schizophrenia and BD, and, overall, can have important clinical implications for both illnesses. PMID:25923003

  2. The metabolism of malate by cultured rat brain astrocytes

    SciTech Connect

    McKenna, M.C.; Tildon, J.T.; Couto, R.; Stevenson, J.H.; Caprio, F.J. )

    1990-12-01

    Since malate is known to play an important role in a variety of functions in the brain including energy metabolism, the transfer of reducing equivalents and possibly metabolic trafficking between different cell types; a series of biochemical determinations were initiated to evaluate the rate of 14CO2 production from L-(U-14C)malate in rat brain astrocytes. The 14CO2 production from labeled malate was almost totally suppressed by the metabolic inhibitors rotenone and antimycin A suggesting that most of malate metabolism was coupled to the electron transport system. A double reciprocal plot of the 14CO2 production from the metabolism of labeled malate revealed biphasic kinetics with two apparent Km and Vmax values suggesting the presence of more than one mechanism of malate metabolism in these cells. Subsequent experiments were carried out using 0.01 mM and 0.5 mM malate to determine whether the addition of effectors would differentially alter the metabolism of high and low concentrations of malate. Effectors studied included compounds which could be endogenous regulators of malate metabolism and metabolic inhibitors which would provide information regarding the mechanisms regulating malate metabolism. Both lactate and aspartate decreased 14CO2 production from malate equally. However, a number of effectors were identified which selectively altered the metabolism of 0.01 mM malate including aminooxyacetate, furosemide, N-acetylaspartate, oxaloacetate, pyruvate and glucose, but had little or no effect on the metabolism of 0.5 mM malate. In addition, alpha-ketoglutarate and succinate decreased 14CO2 production from 0.01 mM malate much more than from 0.5 mM malate. In contrast, a number of effectors altered the metabolism of 0.5 mM malate more than 0.01 mM. These included methionine sulfoximine, glutamate, malonate, alpha-cyano-4-hydroxycinnamate and ouabain.

  3. Energy metabolism of the developing brain

    SciTech Connect

    Abrams, R.M.; Hutchison, A.A.

    1985-04-01

    Cerebral metabolism in utero and in the neonatal period remains incompletely understood. A major investigative technique uses /sup 14/C deoxyglucose. Species differences, behavioral states and gestational age all have an impact. Hormonal and sensory stimuli have potential influences. The use of this new investigative technique in the human will allow detailed study of the effects of a variety of pathophysiologic events and possibly of drug therapy on cerebral glucose metabolism.

  4. Effects of brain amyloid deposition and reduced glucose metabolism on the default mode of brain function in normal aging.

    PubMed

    Kikuchi, Mitsuru; Hirosawa, Tetsu; Yokokura, Masamichi; Yagi, Shunsuke; Mori, Norio; Yoshikawa, Etsuji; Yoshihara, Yujiro; Sugihara, Genichi; Takebayashi, Kiyokazu; Iwata, Yasuhide; Suzuki, Katsuaki; Nakamura, Kazuhiko; Ueki, Takatoshi; Minabe, Yoshio; Ouchi, Yasuomi

    2011-08-01

    Brain β-amyloid (Aβ) deposition during normal aging is highlighted as an initial pathogenetic event in the development of Alzheimer's disease. Many recent brain imaging studies have focused on areas deactivated during cognitive tasks [the default mode network (DMN), i.e., medial frontal gyrus/anterior cingulate cortex and precuneus/posterior cingulate cortex], where the strength of functional coordination was more or less affected by cerebral Aβ deposits. In the present positron emission tomography study, to investigate whether regional glucose metabolic alterations and Aβ deposits seen in nondemented elderly human subjects (n = 22) are of pathophysiological importance in changes of brain hemodynamic coordination in DMN during normal aging, we measured cerebral glucose metabolism with [(18)F]FDG, Aβ deposits with [(11)C]PIB, and regional cerebral blood flow during control and working memory tasks by H(2)(15)O on the same day. Data were analyzed using both region of interest and statistical parametric mapping. Our results indicated that the amount of Aβ deposits was negatively correlated with hemodynamic similarity between medial frontal and medial posterior regions, and the lower similarity was associated with poorer working memory performance. In contrast, brain glucose metabolism was not related to this medial hemodynamic similarity. These findings suggest that traceable Aβ deposition, but not glucose hypometabolism, in the brain plays an important role in occurrence of neuronal discoordination in DMN along with poor working memory in healthy elderly people. PMID:21813680

  5. Changes in brain oxidative metabolism induced by water maze training.

    PubMed

    Conejo, N M; González-Pardo, H; Vallejo, G; Arias, J L

    2007-03-16

    Although the hippocampus has been shown to be essential for spatial memory, the contribution of associated brain regions is not well established. Wistar rats were trained to find a hidden escape platform in the water maze during eight days. Following training, the oxidative metabolism in different brain regions was evaluated using cytochrome oxidase histochemistry. Metabolic activations were found in the prelimbic cortex, cornu ammonis (CA) 1 subfield of the dorsal hippocampus and the anterior thalamic nuclei, relative to yoked swim controls and naïve rats. In addition, many cross-correlations in brain metabolism were observed among the latter regions. These results support the implication of a hippocampal-prefrontal-thalamic system to spatial memory in rats. PMID:17222984

  6. Small molecules and Alzheimer's disease: misfolding, metabolism and imaging.

    PubMed

    Patel, Viharkumar; Zhang, Xueli; Tautiva, Nicolas A; Nyabera, Akwe N; Owa, Opeyemi O; Baidya, Melvin; Sung, Hee Chang; Taunk, Pardeep S; Abdollahi, Shahrzad; Charles, Stacey; Gonnella, Rachel A; Gadi, Nikhita; Duong, Karen T; Fawver, Janelle N; Ran, Chongzhao; Jalonen, Tuula O; Murray, Ian V J

    2015-01-01

    Small molecule interactions with amyloid proteins have had a huge impact in Alzheimer's disease (AD), especially in three specific areas: amyloid folding, metabolism and brain imaging. Amyloid plaque amelioration or prevention have, until recently, driven drug development, and only a few drugs have been advanced for use in AD. Amyloid proteins undergo misfolding and oligomerization via intermediates, eventually forming protease resistant amyloid fibrils. These fibrils accumulate to form the hallmark amyloid plaques and tangles of AD. Amyloid binding compounds can be grouped into three categories, those that: i) prevent or reverse misfolding, ii) halt misfolding or trap intermediates, and iii) accelerate the formation of stable and inert amyloid fibrils. Such compounds include hydralazine, glycosaminoglycans, curcumin, beta sheet breakers, catecholamines, and ATP. The versatility of amyloid binding compounds suggests that the amyloid structure may serve as a scaffold for the future development of sensors to detect such compounds. Metabolic dysfunction is one of the earliest pathological features of AD. In fact, AD is often referred to as type 3 diabetes due to the presence of insulin resistance in the brain. A recent study indicates that altering metabolism improves cognitive function. While metabolic reprogramming is one therapeutic avenue for AD, it is more widely used in some cancer therapies. FDA approved drugs such as metformin, dichloroacetic acid (DCA), and methylene blue can alter metabolism. These drugs can therefore be potentially applied in alleviating metabolic dysfunction in AD. Brain imaging has made enormous strides over the past decade, offering a new window to the mind. Recently, there has been remarkable development of compounds that have the ability to image both types of pathological amyloids: tau and amyloid beta. We have focused on the low cost, simple to use, near infrared fluorescence (NIRF) imaging probes for amyloid beta (Aβ), with

  7. Brain microsomal metabolism of phencyclidine in male and female rats.

    PubMed

    Laurenzana, E M; Owens, S M

    1997-05-01

    These studies examined the microsomal brain metabolism of phencyclidine (PCP) in male and female Sprague-Dawley rats. Several monohydroxylated metabolites of PCP were detected including cis- and trans-1-(1-phenyl-4-hydroxycyclohexyl)piperidine (c-PPC and t-PPC) and 1-(1-phenylcyclohexyl)-4-hydroxypiperidine (PCHP). The in vitro formation of these metabolites required NADPH and was inhibited by carbon monoxide. c-PPC was formed in the male and female brain microsomes at rates of 7.1 +/- 1.3 and 5.7 +/- 1.1 fmol/min per mg, respectively, while t-PPC was formed at rates of 16.2 +/- 3.3 and 16.5 +/- 4.2 fmol/min per mg. PCHP had the highest formation rate at 50.7 +/- 8.9 and 48.2 +/- 8.8 fmol/min per mg, respectively. Although previous studies with rat liver microsomes find higher levels of PCP metabolism in male rats and the formation of an irreversibly bound metabolite in male rats, the present study of brain metabolism found no sex differences in brain metabolism. The formation of PCP metabolites in male rat livers is at least partially mediated by the male-specific isozyme CYP2C11, and possibly CYP2D1. Nevertheless, the formation of the major brain metabolite, PCHP, was not inhibited by an anti-CYP2C11 or an anti-CYP2D6 antibody. However, PCHP formation was inhibited by drug inhibitors of CYP2D1-mediated metabolism, suggesting the involvement of a CYP2D isoform. These data indicate brain metabolism of PCP is significant, but unlike the liver it is not sexually dimorphic. PMID:9187340

  8. Hepatic diseases related to triglyceride metabolism.

    PubMed

    Aguilera-Méndez, Asdrubal; Álvarez-Delgado, Carolina; Hernández-Godinez, Daniel; Fernandez-Mejia, Cristina

    2013-10-01

    Triglycerides participate in key metabolic functions such as energy storage, thermal insulation and as deposit for essential and non-essential fatty acids that can be used as precursors for the synthesis of structural and functional phospholipids. The liver is a central organ in the regulation of triglyceride metabolism, and it participates in triglyceride synthesis, export, uptake and oxidation. The metabolic syndrome and associated diseases are among the main concerns of public health worldwide. One of the metabolic syndrome components is impaired triglyceride metabolism. Diseases associated with the metabolic syndrome promote the appearance of hepatic alterations e.g., non-alcoholic steatosis, steatohepatitis, fibrosis, cirrhosis and cancer. In this article, we review the molecular actions involved in impaired triglyceride metabolism and its association with hepatic diseases. We discuss mechanisms that reconcile the chronic inflammation and insulin resistance, and new concepts on the role of intestinal micro-flora permeability and proliferation in fatty liver etiology. We also describe the participation of oxidative stress in the progression of events leading from steatosis to steatohepatitis and fibrosis. Finally, we provide information regarding the mechanisms that link fatty acid accumulation during steatosis with changes in growth factors and cytokines that lead to the development of neoplastic cells. One of the main medical concerns vis-a-vis hepatic diseases is the lack of symptoms at the onset of the illness and, as result, its late diagnosis. The understandings of the molecular mechanisms that underlie hepatic diseases could help design strategies towards establishing markers for their accurate and timely diagnosis. PMID:24059726

  9. Brain Diseases - Multiple Languages: MedlinePlus

    MedlinePlus

    ... Supplements Videos & Tools You Are Here: Home → Multiple Languages → All Health Topics → Brain Diseases URL of this page: https://medlineplus.gov/languages/braindiseases.html Other topics A-Z A B ...

  10. Brain Diseases - Multiple Languages: MedlinePlus

    MedlinePlus

    ... Supplements Videos & Tools You Are Here: Home → Multiple Languages → All Health Topics → Brain Diseases URL of this page: https://www.nlm.nih.gov/medlineplus/languages/braindiseases.html Other topics A-Z A B ...

  11. Brain lactate metabolism: the discoveries and the controversies

    PubMed Central

    Dienel, Gerald A

    2012-01-01

    Potential roles for lactate in the energetics of brain activation have changed radically during the past three decades, shifting from waste product to supplemental fuel and signaling molecule. Current models for lactate transport and metabolism involving cellular responses to excitatory neurotransmission are highly debated, owing, in part, to discordant results obtained in different experimental systems and conditions. Major conclusions drawn from tabular data summarizing results obtained in many laboratories are as follows: Glutamate-stimulated glycolysis is not an inherent property of all astrocyte cultures. Synaptosomes from the adult brain and many preparations of cultured neurons have high capacities to increase glucose transport, glycolysis, and glucose-supported respiration, and pathway rates are stimulated by glutamate and compounds that enhance metabolic demand. Lactate accumulation in activated tissue is a minor fraction of glucose metabolized and does not reflect pathway fluxes. Brain activation in subjects with low plasma lactate causes outward, brain-to-blood lactate gradients, and lactate is quickly released in substantial amounts. Lactate utilization by the adult brain increases during lactate infusions and strenuous exercise that markedly increase blood lactate levels. Lactate can be an ‘opportunistic', glucose-sparing substrate when present in high amounts, but most evidence supports glucose as the major fuel for normal, activated brain. PMID:22186669

  12. Inflammatory cause of metabolic syndrome via brain stress and NF-κB.

    PubMed

    Cai, Dongsheng; Liu, Tiewen

    2012-02-01

    Metabolic syndrome, a network of medical disorders that greatly increase the risk for developing metabolic and cardiovascular diseases, has reached epidemic levels in many areas of today's world. Despite this alarming medicare situation, scientific understandings on the root mechanisms of metabolic syndrome are still limited, and such insufficient knowledge contributes to the relative lack of effective treatments or preventions for related diseases. Recent interdisciplinary studies from neuroendocrinology and neuroimmunology fields have revealed that overnutrition can trigger intracellular stresses to cause inflammatory changes mediated by molecules that control innate immunity. This type of nutrition-related molecular inflammation in the central nervous system, particularly in the hypothalamus, can form a common pathogenic basis for the induction of various metabolic syndrome components such as obesity, insulin resistance, and hypertension. Proinflammatory NF-κB pathway has been revealed as a key molecular system for pathologic induction of brain inflammation, which translates overnutrition and resulting intracellular stresses into central neuroendocrine and neural dysregulations of energy, glucose, and cardiovascular homeostasis, collectively leading to metabolic syndrome. This article reviews recent research advances in the neural mechanisms of metabolic syndrome and related diseases from the perspective of pathogenic induction by intracellular stresses and NF-κB pathway of the brain. PMID:22328600

  13. Gender and metabolic differences of gallstone diseases

    PubMed Central

    Sun, Hui; Tang, Hong; Jiang, Shan; Zeng, Li; Chen, En-Qiang; Zhou, Tao-You; Wang, You-Juan

    2009-01-01

    AIM: To investigate the risk factors for gallstone disease in the general population of Chengdu, China. METHODS: This study was conducted at the West China Hospital. Subjects who received a physical examination at this hospital between January and December 2007 were included. Body mass index, blood pressure, fasting plasma glucose, serum lipid and lipoproteins concentrations were analyzed. Gallstone disease was diagnosed by ultrasound or on the basis of a history of cholecystectomy because of gallstone disease. Unconditional logistic regression analysis was used to investigate the risk factors for gallstone disease, and the Chi-square test was used to analyze differences in the incidence of metabolic disorders between subjects with and without gallstone disease. RESULTS: A total of 3573 people were included, 10.7% (384/3573) of whom had gallstone diseases. Multiple logistic regression analysis indicated that the incidence of gallstone disease in subjects aged 40-64 or ≥ 65 years was significantly different from that in those aged 18-39 years (P < 0.05); the incidence was higher in women than in men (P < 0.05). In men, a high level of fasting plasma glucose was obvious in gallstone disease (P < 0.05), and in women, hypertriglyceridemia or obesity were significant in gallstone disease (P < 0.05). CONCLUSION: We assume that age and sex are profoundly associated with the incidence of gallstone disease; the metabolic risk factors for gallstone disease were different between men and women. PMID:19370788

  14. Ethanol effects on rat brain phosphoinositide metabolism

    SciTech Connect

    Huang, H.M.

    1987-01-01

    An increase in acidic phospholipids in brain plasma and synaptic plasma membranes upon chronic ethanol administration was observed. Chronic ethanol administration resulted in an increase in {sup 32}P{sub i} incorporation into the acidic phospholipids in synaptosomes. Postdecapitative ischemic treatment resulted rapid degradation of poly-PI in rat brain. However, there was a rapid appearance of IP{sub 2} in ethanol group which indicated a more rapid turnover of IP{sub 3} in the ethanol-treated rats. Carbachol stimulated accumulation of labeled inositol phosphates in brain slices and synaptosomes. Carbachol-stimulated release of IP and IP{sub 2} was calcium dependent and was inhibited by EGTA and atropine. Adenosine triphosphates and 1 mM further enhanced carbachol-induced formation of IP and IP{sub 2}, but showed an increase and a decrease in IP{sub 3} at 1 mM and 0.01 mM, respectively. Guanosine triphosphate at 0.1 mM did not change in labeled IP, but there was a significant increase in labeled IP{sub 2} and decrease in IP{sub 3}. Mn and CMP greatly enhanced incorporation of ({sup 3}H)-inositol into PI, but not into poly-PI labeling in brain synaptosomes. Incubation of brain synaptosomes resulted in a Ca{sup 2+}, time-dependent release of labeled IP. However, the pool of PI labeled through this pathway is not susceptible to carbachol stimulation. When saponin permeabilized synaptosomal preparations were incubated with ({sup 3}H)-inositol-PI or ({sup 14}C)-arachidonoyl-PI, ATP enhanced the formation of labeled IP and DG.

  15. Metabolic bone disease in gut diseases.

    PubMed

    Lipkin, E W

    1998-06-01

    A wide spectrum of gastrointestinal illnesses impairs bone health and can result in bone pain, demineralization, and fracture. This article summarizes current knowledge of the skeletal pathology exhibited in patients with diseases of the liver, biliary tree, pancreas, and bowel. Mechanisms responsible for these syndromes and treatment options are discussed. This article enhances the practicing gastroenterologist's knowledge of the implications of gastrointestinal illness for bone. PMID:9650030

  16. Cyclooxygenase-2 Mediates Anandamide Metabolism in the Mouse Brain

    PubMed Central

    Kaczocha, Martin

    2010-01-01

    Cyclooxygenase-2 (COX-2) mediates inflammation and contributes to neurodegeneration. Best known for its pathological up-regulation, COX-2 is also constitutively expressed within the brain and mediates synaptic transmission through prostaglandin synthesis. Along with arachidonic acid, COX-2 oxygenates the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol in vitro. Inhibition of COX-2 enhances retrograde signaling in the hippocampus, suggesting COX-2 mediates endocannabinoid tone in healthy brain. The degree to which COX-2 may regulate endocannabinoid metabolism in vivo is currently unclear. Therefore, we explored the effect of COX-2 inhibition on [3H]AEA metabolism in mouse brain. Although AEA is hydrolyzed primarily by fatty acid amide hydrolase (FAAH), ex vivo autoradiography revealed that COX-2 inhibition by nimesulide redirected [3H]AEA substrate from COX-2 to FAAH in the cortex, hippocampus, thalamus, and periaqueductal gray. These data indicate that COX-2 possesses the capacity to metabolize AEA in vivo and can compete with FAAH for AEA in several brain regions. Temporal fluctuations in COX-2 expression were observed in the brain, with an increase in COX-2 protein and mRNA in the hippocampus at midnight compared with noon. COX-2 immunolocalization was robust in the hippocampus and several cortical regions. Although most regions exhibited no temporal changes in COX-2 immunolocalization, increased numbers of immunoreactive cells were detected at midnight in layers II and III of the somatosensory and visual cortices. These temporal variations in COX-2 distribution reduced the enzyme's contribution toward [3H]AEA metabolism in the somatosensory cortex at midnight. Taken together, our findings establish COX-2 as a mediator of regional AEA metabolism in mouse brain. PMID:20702753

  17. Metabolomics reveals metabolic biomarkers of Crohn's disease

    SciTech Connect

    Jansson, J.K.; Willing, B.; Lucio, M.; Fekete, A.; Dicksved, J.; Halfvarson, J.; Tysk, C.; Schmitt-Kopplin, P.

    2009-06-01

    The causes and etiology of Crohn's disease (CD) are currently unknown although both host genetics and environmental factors play a role. Here we used non-targeted metabolic profiling to determine the contribution of metabolites produced by the gut microbiota towards disease status of the host. Ion Cyclotron Resonance Fourier Transform Mass Spectrometry (ICR-FT/MS) was used to discern the masses of thousands of metabolites in fecal samples collected from 17 identical twin pairs, including healthy individuals and those with CD. Pathways with differentiating metabolites included those involved in the metabolism and or synthesis of amino acids, fatty acids, bile acids and arachidonic acid. Several metabolites were positively or negatively correlated to the disease phenotype and to specific microbes previously characterized in the same samples. Our data reveal novel differentiating metabolites for CD that may provide diagnostic biomarkers and/or monitoring tools as well as insight into potential targets for disease therapy and prevention.

  18. Metabolic bone disease and parenteral nutrition.

    PubMed

    Hamilton, Cynthia; Seidner, Douglas L

    2004-08-01

    Metabolic bone disease (MBD) is abnormal bone metabolism and includes the common disorders of osteoporosis and osteomalacia, which can develop in patients receiving long-term parenteral nutrition (PN). Patients who require long-term PN have significant gastrointestinal failure and malabsorption, which is generally caused by severe inflammatory bowel disease, intestinal ischemia, or malignancy. The exact cause of MBD in long-term PN patients is unknown, but its origin is thought to be multifactorial, with factors including underlying disease, effect of medications used to treat this disease (eg, corticosteroids), and various components of the PN solution. Caring for patients on long-term PN requires routine assessment and monitoring for MBD. Appropriate adjustments of the PN solution can help reduce the risk for developing PN-associated MBD and in some instances improve bone mineral density. Recent developments in pharmacologic treatment for osteoporosis show promise for patients with MBD receiving PN. PMID:15245704

  19. Metabolic therapy: a new paradigm for managing malignant brain cancer.

    PubMed

    Seyfried, Thomas N; Flores, Roberto; Poff, Angela M; D'Agostino, Dominic P; Mukherjee, Purna

    2015-01-28

    Little progress has been made in the long-term management of glioblastoma multiforme (GBM), considered among the most lethal of brain cancers. Cytotoxic chemotherapy, steroids, and high-dose radiation are generally used as the standard of care for GBM. These procedures can create a tumor microenvironment rich in glucose and glutamine. Glucose and glutamine are suggested to facilitate tumor progression. Recent evidence suggests that many GBMs are infected with cytomegalovirus, which could further enhance glucose and glutamine metabolism in the tumor cells. Emerging evidence also suggests that neoplastic macrophages/microglia, arising through possible fusion hybridization, can comprise an invasive cell subpopulation within GBM. Glucose and glutamine are major fuels for myeloid cells, as well as for the more rapidly proliferating cancer stem cells. Therapies that increase inflammation and energy metabolites in the GBM microenvironment can enhance tumor progression. In contrast to current GBM therapies, metabolic therapy is designed to target the metabolic malady common to all tumor cells (aerobic fermentation), while enhancing the health and vitality of normal brain cells and the entire body. The calorie restricted ketogenic diet (KD-R) is an anti-angiogenic, anti-inflammatory and pro-apoptotic metabolic therapy that also reduces fermentable fuels in the tumor microenvironment. Metabolic therapy, as an alternative to the standard of care, has the potential to improve outcome for patients with GBM and other malignant brain cancers. PMID:25069036

  20. 13C NMR spectroscopy applications to brain energy metabolism

    PubMed Central

    Rodrigues, Tiago B.; Valette, Julien; Bouzier-Sore, Anne-Karine

    2013-01-01

    13C nuclear magnetic resonance (NMR) spectroscopy is the method of choice for studying brain metabolism. Indeed, the most convincing data obtained to decipher metabolic exchanges between neurons and astrocytes have been obtained using this technique, thus illustrating its power. It may be difficult for non-specialists, however, to grasp thefull implication of data presented in articles written by spectroscopists. The aim of the review is, therefore, to provide a fundamental understanding of this topic to facilitate the non-specialists in their reading of this literature. In the first part of this review, we present the metabolic fate of 13C-labeled substrates in the brain in a detailed way, including an overview of some general neurochemical principles. We also address and compare the various spectroscopic strategies that can be used to study brain metabolism. Then, we provide an overview of the 13C NMR experiments performed to analyze both intracellular and intercellular metabolic fluxes. More particularly, the role of lactate as a potential energy substrate for neurons is discussed in the light of 13C NMR data. Finally, new perspectives and applications offered by 13C hyperpolarization are described. PMID:24367329

  1. Pathways of Polyunsaturated Fatty Acid Utilization: Implications for Brain Function in Neuropsychiatric Health and Disease

    PubMed Central

    Liu, Joanne J.; Green, Pnina; Mann, J. John; Rapoport, Stanley I.; Sublette, M. Elizabeth

    2014-01-01

    Essential polyunsaturated fatty acids (PUFAs) have profound effects on brain development and function. Abnormalities of PUFA status have been implicated in neuropsychiatric diseases such as major depression, bipolar disorder, schizophrenia, Alzheimer’s disease, and attention deficit hyperactivity disorder. Pathophysiologic mechanisms could involve not only suboptimal PUFA intake, but also metabolic and genetic abnormalities, defective hepatic metabolism, and problems with diffusion and transport. This article provides an overview of physiologic factors regulating PUFA utilization, highlighting their relevance to neuropsychiatric disease. PMID:25498862

  2. Structural brain lesions in inflammatory bowel disease

    PubMed Central

    Dolapcioglu, Can; Dolapcioglu, Hatice

    2015-01-01

    Central nervous system (CNS) complications or manifestations of inflammatory bowel disease deserve particular attention because symptomatic conditions can require early diagnosis and treatment, whereas unexplained manifestations might be linked with pathogenic mechanisms. This review focuses on both symptomatic and asymptomatic brain lesions detectable on imaging studies, as well as their frequency and potential mechanisms. A direct causal relationship between inflammatory bowel disease (IBD) and asymptomatic structural brain changes has not been demonstrated, but several possible explanations, including vasculitis, thromboembolism and malnutrition, have been proposed. IBD is associated with a tendency for thromboembolisms; therefore, cerebrovascular thromboembolism represents the most frequent and grave CNS complication. Vasculitis, demyelinating conditions and CNS infections are among the other CNS manifestations of the disease. Biological agents also represent a risk factor, particularly for demyelination. Identification of the nature and potential mechanisms of brain lesions detectable on imaging studies would shed further light on the disease process and could improve patient care through early diagnosis and treatment. PMID:26600970

  3. A model for lupus brain disease

    PubMed Central

    Diamond, Betty; Volpe, Bruce T.

    2015-01-01

    Summary Systemic lupus erythematosus is an autoimmune disease characterized by antibodies that bind target autoantigens in multiple organs in the body. In peripheral organs, immune complexes engage the complement cascade, recruiting blood-borne inflammatory cells and initiating tissue inflammation. Immune complex-mediated activation of Fc receptors on infiltrating blood-borne cells and tissue resident cells amplifies an inflammatory cascade with resulting damage to tissue function, ultimately leading to tissue destruction. This pathophysiology appears to explain tissue injury throughout the body, except in the central nervous system. This review addresses a paradigm we have developed for autoantibody-mediated brain damage. This paradigm suggests that antibody-mediated brain disease does not depend on immune complex formation but rather on antibody-mediated alterations in neuronal activation and survival. Moreover, antibodies only access brain tissue when blood-brain barrier integrity is impaired, leading to a lack of concurrence of brain disease and tissue injury in other organs. We discuss the implications of this model for lupus and for identifying other antibodies that may contribute to brain disease. PMID:22725954

  4. Phosphatidylserine in the Brain: Metabolism and Function

    PubMed Central

    Kim, Hee-Yong; Huang, Bill X.; Spector, Arthur A.

    2014-01-01

    Phosphatidylserine (PS) is the major anionic phospholipid class particularly enriched in the inner leaflet of the plasma membrane in neural tissues. PS is synthesized from phosphatidylcholine or phosphatidylethanolamine by exchanging the base head group with serine in reactions are catalyzed by phosphatidylserine synthase 1 and phosphatidylserine synthase 2 located in the endoplasmic reticulum. Activation of Akt, Raf-1 and protein kinase C signaling, which supports neuronal survival and differentiation, requires interaction of these proteins with PS localized in the cytoplasmic leaflet of the plasma membrane. Furthermore, neurotransmitter release by exocytosis and a number of synaptic receptors and proteins are modulated by PS present in the neuronal membranes. Brain is highly enriched with docosahexaenoic acid (DHA), and brain PS has a high DHA content. By promoting PS synthesis, DHA can uniquely expand the PS pool in neuronal membranes and thereby influence PS-dependent signaling and protein function. Ethanol decreases DHA-promoted PS synthesis and accumulation in neurons, which may contribute to the deleterious effects of ethanol intake. Improvement of some memory functions has been observed in cognitively impaired subjects as a result of PS supplementation, but the mechanism is unclear. PMID:24992464

  5. MAGNETIC RESONANCE IMAGING FINDINGS IN SMALL RUMINANTS WITH BRAIN DISEASE.

    PubMed

    Ertelt, Katrin; Oevermann, Anna; Precht, Christina; Lauper, Josiane; Henke, Diana; Gorgas, Daniela

    2016-03-01

    Brain disease is an important cause of neurologic deficits in small ruminants, however few MRI features have been described. The aim of this retrospective, case series study was to describe MRI characteristics in a group of small ruminants with confirmed brain disease. A total of nine small ruminants (six sheep and three goats) met inclusion criteria. All had neurologic disorders localized to the brain and histopathologic confirmation. In animals with toxic-metabolic diseases, there were bilaterally symmetric MRI lesions affecting either the gray matter (one animal with polioencephalomalacia) or the white matter (two animals with enterotoxemia). In animals with suppurative inflammation, asymmetric focal brainstem lesions were present (two animals with listeric encephalitis), or lesions typical of an intra-axial (one animal) or dural abscess (one animal), respectively. No MRI lesions were detected in one animal with suspected viral cerebellitis and one animal with parasitic migration tracts. No neoplastic or vascular lesions were identified in this case series. Findings from the current study supported the use of MRI for diagnosing brain diseases in small ruminants. PMID:26776819

  6. Brain magnetic resonance imaging in suspected extrapyramidal cerebral palsy: observations in distinguishing genetic-metabolic from acquired causes.

    PubMed

    Hoon, A H; Reinhardt, E M; Kelley, R I; Breiter, S N; Morton, D H; Naidu, S B; Johnston, M V

    1997-08-01

    Experienced clinicians recognize that some children who appear to have static cerebral palsy (CP) actually have underlying genetic-metabolic disorders. We report a series of patients with motor disorders seen in children with extrapyramidal CP in whom brain magnetic resonance imaging abnormalities provided important diagnostic clues in distinguishing genetic-metabolic disorders from other causes. One cause of static extrapyramidal CP, hypoxic-ischemic encephalopathy at the end of a term gestation, produces a characteristic pattern of hyperintense signal and atrophy in the putamen and thalamus. Other signal abnormalities and atrophy in the putamen, globus pallidus, or caudate can point to genetic-metabolic diseases, including disorders of mitochondrial and organic acid metabolism. Progress in understanding and treating genetic diseases of the developing brain makes it essential to diagnose disorders that masquerade as static CP. Brain magnetic resonance imaging is a useful diagnostic tool in the initial evaluation of children who appear to have CP. PMID:9290610

  7. IMAGING BRAIN SIGNAL TRANSDUCTION AND METABOLISM VIA ARACHIDONIC AND DOCOSAHEXAENOIC ACID IN ANIMALS AND HUMANS

    PubMed Central

    Basselin, Mireille; Ramadan, Epolia; Rapoport, Stanley I.

    2012-01-01

    The polyunsaturated fatty acids (PUFAs), arachidonic acid (AA, 20:4n-6) and docosahexaenoic acid (DHA, 22:6n-3), important second messengers in brain, are released from membrane phospholipid following receptor-mediated activation of specific phospholipase A2 (PLA2) enzymes. We developed an in vivo method in rodents using quantitative autoradiography to image PUFA incorporation into brain from plasma, and showed that their incorporation rates equal their rates of metabolic consumption by brain. Thus, quantitative imaging of unesterified plasma AA or DHA incorporation into brain can be used as a biomarker of brain PUFA metabolism and neurotransmission. We have employed our method to image and quantify effects of mood stabilizers on brain AA/DHA incorporation during neurotransmission by muscarinic M1,3,5, serotonergic 5-HT2A/2C, dopaminergic D2-like (D2, D3, D4) or glutamatergic N-methyl-D-aspartic acid (NMDA) receptors, and effects of inhibition of acetylcholinesterase, of selective serotonin and dopamine reuptake transporter inhibitors, of neuroinflammation (HIV-1 and lipopolysaccharide) and excitotoxicity, and in genetically modified rodents. The method has been extended for the use with positron emission tomography (PET), and can be employed to determine how human brain AA/DHA signaling and consumption are influenced by diet, aging, disease and genetics. PMID:22178644

  8. Electroacupuncture Treatment Improves Learning-Memory Ability and Brain Glucose Metabolism in a Mouse Model of Alzheimer's Disease: Using Morris Water Maze and Micro-PET.

    PubMed

    Jiang, Jing; Gao, Kai; Zhou, Yuan; Xu, Anping; Shi, Suhua; Liu, Gang; Li, Zhigang

    2015-01-01

    Introduction. Alzheimer's disease (AD) causes progressive hippocampus dysfunctions leading to the impairment of learning and memory ability and low level of uptake rate of glucose in hippocampus. What is more, there is no effective treatment for AD. In this study, we evaluated the beneficial and protective effects of electroacupuncture in senescence-accelerated mouse prone 8 (SAMP8). Method. In the electroacupuncture paradigm, electroacupuncture treatment was performed once a day for 15 days on 7.5-month-old SAMP8 male mice. In the normal control paradigm and AD control group, 7.5-month-old SAMR1 male mice and SAMP8 male mice were grabbed and bandaged while electroacupuncture group therapy, in order to ensure the same treatment conditions, once a day, 15 days. Results. From the Morris water maze (MWM) test, we found that the treatment of electroacupuncture can improve the spatial learning and memory ability of SAMP8 mouse, and from the micro-PET test, we proved that after the electroacupuncture treatment the level of uptake rate of glucose in hippocampus was higher than normal control group. Conclusion. These results suggest that the treatment of electroacupuncture may provide a viable treatment option for AD. PMID:25821477

  9. Electroacupuncture Treatment Improves Learning-Memory Ability and Brain Glucose Metabolism in a Mouse Model of Alzheimer's Disease: Using Morris Water Maze and Micro-PET

    PubMed Central

    Jiang, Jing; Gao, Kai; Zhou, Yuan; Xu, Anping; Shi, Suhua; Liu, Gang; Li, Zhigang

    2015-01-01

    Introduction. Alzheimer's disease (AD) causes progressive hippocampus dysfunctions leading to the impairment of learning and memory ability and low level of uptake rate of glucose in hippocampus. What is more, there is no effective treatment for AD. In this study, we evaluated the beneficial and protective effects of electroacupuncture in senescence-accelerated mouse prone 8 (SAMP8). Method. In the electroacupuncture paradigm, electroacupuncture treatment was performed once a day for 15 days on 7.5-month-old SAMP8 male mice. In the normal control paradigm and AD control group, 7.5-month-old SAMR1 male mice and SAMP8 male mice were grabbed and bandaged while electroacupuncture group therapy, in order to ensure the same treatment conditions, once a day, 15 days. Results. From the Morris water maze (MWM) test, we found that the treatment of electroacupuncture can improve the spatial learning and memory ability of SAMP8 mouse, and from the micro-PET test, we proved that after the electroacupuncture treatment the level of uptake rate of glucose in hippocampus was higher than normal control group. Conclusion. These results suggest that the treatment of electroacupuncture may provide a viable treatment option for AD. PMID:25821477

  10. Metabolic Bone Disease in Primary Biliary Cirrhosis.

    PubMed

    Glass, Lisa M; Su, Grace Li-Chun

    2016-06-01

    Primary biliary cirrhosis (PBC) is a liver-specific autoimmune disease that primarily affects women (female-to-male ratio, 10:1) between 40 and 60 years of age. Metabolic bone disease is a common complication of PBC, affecting 14% to 52% of patients, depending on the duration and severity of liver disease. The osteoporosis seen in PBC seems mainly due to low bone formation, although increased bone resorption may contribute. Treatment of osteoporosis consists primarily of antiresorptive agents. Additional large prospective, long-term studies in patients with PBC are needed to determine efficacy in improving bone density as well as reducing fracture risk. PMID:27261902

  11. Robust gene dysregulation in Alzheimer's disease brains.

    PubMed

    Feng, Xuemei; Bai, Zhouxian; Wang, Jiajia; Xie, Bin; Sun, Jiya; Han, Guangchun; Song, Fuhai; Crack, Peter J; Duan, Yong; Lei, Hongxing

    2014-01-01

    The brain transcriptome of Alzheimer's disease (AD) reflects the prevailing disease mechanism at the gene expression level. However, thousands of genes have been reported to be dysregulated in AD brains in existing studies, and the consistency or discrepancy among these studies has not been thoroughly examined. Toward this end, we conducted a comprehensive survey of the brain transcriptome datasets for AD and other neurological diseases. We first demonstrated that the frequency of observed dysregulation in AD was highly correlated with the reproducibility of the dysregulation. Based on this observation, we selected 100 genes with the highest frequency of dysregulation to illustrate the core perturbation in AD brains. The dysregulation of these genes was validated in several independent datasets for AD. We further identified 12 genes with strong correlation of gene expression with disease progression. The relevance of these genes to disease progression was also validated in an independent dataset. Interestingly, we found a transcriptional "cushion" for these 100 genes in the less vulnerable visual cortex region, which may be a critical component of the protection mechanism for less vulnerable brain regions. To facilitate the research in this field, we have provided the expression information of ~8000 relevant genes on a publicly accessible web server AlzBIG (http://alz.big.ac.cn). PMID:24662101

  12. Brain oscillations in neuropsychiatric disease.

    PubMed

    Başar, Erol

    2013-09-01

    The term "brain (or neural) oscillations" refers to the rhythmic and/or repetitive electrical activity generated spontaneously and in response to stimuli by neural tissue in the central nervous system. The importance of brain oscillations in sensory-cognitive processes has become increasingly evident. It has also become clear that event-related oscillations are modified in many types of neuropathology, in particular in cognitive impairment. This review discusses methods such as evoked/event-related oscillations and spectra, coherence analysis, and phase locking. It gives examples of applications of essential methods and concepts in bipolar disorder that provide a basis for fundamental notions regarding neurophysiologic biomarkers in cognitive impairment. The take-home message is that in the development of diagnostic and pharmacotherapeutic strategies, neurophysiologic data should be analyzed in a framework that uses a multiplicity of methods and frequency bands. PMID:24174901

  13. Robust Brain Hyperglycemia during General Anesthesia: Relationships with Metabolic Brain Inhibition and Vasodilation

    PubMed Central

    Bola, R. Aaron; Kiyatkin, Eugene A.

    2016-01-01

    Glucose is the main energetic substrate for the metabolic activity of brain cells and its proper delivery into the extracellular space is essential for maintaining normal neural functions. Under physiological conditions, glucose continuously enters the extracellular space from arterial blood via gradient-dependent facilitated diffusion governed by the GLUT-1 transporters. Due to this gradient-dependent mechanism, glucose levels rise in the brain after consumption of glucose-containing foods and drinks. Glucose entry is also accelerated due to local neuronal activation and neuro-vascular coupling, resulting in transient hyperglycemia to prevent any metabolic deficit. Here, we explored another mechanism that is activated during general anesthesia and results in significant brain hyperglycemia. By using enzyme-based glucose biosensors we demonstrate that glucose levels in the nucleus accumbens (NAc) strongly increase after iv injection of Equthesin, a mixture of chloral hydrate and sodium pentobarbital, which is often used for general anesthesia in rats. By combining electrochemical recordings with brain, muscle, and skin temperature monitoring, we show that the gradual increase in brain glucose occurring during the development of general anesthesia tightly correlate with decreases in brain-muscle temperature differentials, suggesting that this rise in glucose is related to metabolic inhibition. While the decreased consumption of glucose by brain cells could contribute to the development of hyperglycemia, an exceptionally strong positive correlation (r = 0.99) between glucose rise and increases in skin-muscle temperature differentials was also found, suggesting the strong vasodilation of cerebral vessels as the primary mechanism for accelerated entry of glucose into brain tissue. Our present data could explain drastic differences in basal glucose levels found in awake and anesthetized animal preparations. They also suggest that glucose entry into brain tissue could be

  14. Robust Brain Hyperglycemia during General Anesthesia: Relationships with Metabolic Brain Inhibition and Vasodilation.

    PubMed

    Bola, R Aaron; Kiyatkin, Eugene A

    2016-01-01

    Glucose is the main energetic substrate for the metabolic activity of brain cells and its proper delivery into the extracellular space is essential for maintaining normal neural functions. Under physiological conditions, glucose continuously enters the extracellular space from arterial blood via gradient-dependent facilitated diffusion governed by the GLUT-1 transporters. Due to this gradient-dependent mechanism, glucose levels rise in the brain after consumption of glucose-containing foods and drinks. Glucose entry is also accelerated due to local neuronal activation and neuro-vascular coupling, resulting in transient hyperglycemia to prevent any metabolic deficit. Here, we explored another mechanism that is activated during general anesthesia and results in significant brain hyperglycemia. By using enzyme-based glucose biosensors we demonstrate that glucose levels in the nucleus accumbens (NAc) strongly increase after iv injection of Equthesin, a mixture of chloral hydrate and sodium pentobarbital, which is often used for general anesthesia in rats. By combining electrochemical recordings with brain, muscle, and skin temperature monitoring, we show that the gradual increase in brain glucose occurring during the development of general anesthesia tightly correlate with decreases in brain-muscle temperature differentials, suggesting that this rise in glucose is related to metabolic inhibition. While the decreased consumption of glucose by brain cells could contribute to the development of hyperglycemia, an exceptionally strong positive correlation (r = 0.99) between glucose rise and increases in skin-muscle temperature differentials was also found, suggesting the strong vasodilation of cerebral vessels as the primary mechanism for accelerated entry of glucose into brain tissue. Our present data could explain drastic differences in basal glucose levels found in awake and anesthetized animal preparations. They also suggest that glucose entry into brain tissue could be

  15. Effect of acute thioacetamide administration on rat brain phospholipid metabolism

    SciTech Connect

    Osada, J.; Aylagas, H.; Miro-Obradors, M.J.; Arce, C.; Palacios-Alaiz, E.; Cascales, M. )

    1990-09-01

    Brain phospholipid composition and the ({sup 32}P)orthophosphate incorporation into brain phospholipids of control and rats treated for 3 days with thioacetamide were studied. Brain phospholipid content, phosphatidylcholine, phosphatidylethanolamine, lysolecithin and phosphatidic acid did not show any significant change by the effect of thioacetamide. In contrast, thioacetamide induced a significant decrease in the levels of phosphatidylserine, sphingomyelin, phosphatidylinositol and diphosphatidylglycerol. After 75 minutes of intraperitoneal label injection, specific radioactivity of all the above phospholipids with the exception of phosphatidylethanolamine and phosphatidylcholine significantly increased. After 13 hours of isotope administration the specific radioactivity of almost all studied phospholipid classes was elevated, except for phosphatidic acid, the specific radioactivity of which did not change and for diphosphatidylglycerol which showed a decrease in specific radioactivity. These results suggest that under thioacetamide treatment brain phospholipids undergo metabolic transformations that may contribute to the hepatic encephalopathy induced by thioacetamide.

  16. Does acute caffeine ingestion alter brain metabolism in young adults?

    PubMed

    Xu, Feng; Liu, Peiying; Pekar, James J; Lu, Hanzhang

    2015-04-15

    Caffeine, as the most commonly used stimulant drug, improves vigilance and, in some cases, cognition. However, the exact effect of caffeine on brain activity has not been fully elucidated. Because caffeine has a pronounced vascular effect which is independent of any neural effects, many hemodynamics-based methods such as fMRI cannot be readily applied without a proper calibration. The scope of the present work is two-fold. In Study 1, we used a recently developed MRI technique to examine the time-dependent changes in whole-brain cerebral metabolic rate of oxygen (CMRO2) following the ingestion of 200mg caffeine. It was found that, despite a pronounced decrease in CBF (p<0.001), global CMRO2 did not change significantly. Instead, the oxygen extraction fraction (OEF) was significantly elevated (p=0.002) to fully compensate for the reduced blood supply. Using the whole-brain finding as a reference, we aim to investigate whether there are any regional differences in the brain's response to caffeine. Therefore, in Study 2, we examined regional heterogeneities in CBF changes following the same amount of caffeine ingestion. We found that posterior brain regions such as posterior cingulate cortex and superior temporal regions manifested a slower CBF reduction, whereas anterior brain regions including dorsolateral prefrontal cortex and medial frontal cortex showed a faster rate of decline. These findings have a few possible explanations. One is that caffeine may result in a region-dependent increase or decrease in brain activity, resulting in an unaltered average brain metabolic rate. The other is that caffeine's effect on vasculature may be region-specific. Plausibility of these explanations is discussed in the context of spatial distribution of the adenosine receptors. PMID:25644657

  17. Enhanced regional brain metabolic responses to benzodiazepines in cocaine abusers

    SciTech Connect

    Volkow, N.D.; Wang, G.J.; Fowler, J.S.

    1997-05-01

    While dopamine (DA) appears to be crucial for cocaine reinforcement, its involvement in cocaine addiction is much less clear. Using PET we have shown persistent reductions in striatal DA D2 receptors (which arc predominantly located on GABA cells) in cocaine abusers. This finding coupled to GABA`s role as an effector for DA led us to investigate if there were GABAergic abnormalities in cocaine abusers. In this study we measured regional brain metabolic responses to lorazepam, to indirectly assess GABA function (benzodiazepines facilitate GABAergic neurotransmission). Methods: The experimental subjects consisted of 12 active cocaine abusers and 32 age matched controls. Each subject underwent two PET FDG scans obtained within 1 week of each other. The first FDG scan was obtained after administration of placebo (3 cc of saline solution) given 40-50 minutes prior to FDG; and the second after administration of lorazepam (30 {mu}g/kg) given 40-50 minutes prior to FDG. The subjects were blind to the drugs received. Results: Lorazepam-induced sleepiness was significantly greater in abusers than in controls (p<0.001). Lorazepam-induced decreases in brain glucose metabolism were significantly larger in cocaine abusers than in controls. Whereas in controls whole brain metabolism decreased 13{+-}7 %, in cocaine abusers it decreased 21{+-}13 % (p < 0.05). Lorazepam-induced decrements in regional metabolism were significantly larger in striatum (p < 0.0 1), thalamus (p < 0.01) and cerebellum (p < 0.005) of cocaine abusers than of controls (ANOVA diagnosis by condition (placebo versus lorazepam) interaction effect). The only brain region for which the absolute metabolic changes-induced by lorazepam in cocaine abusers were equivalent to those in controls was the orbitofrontal cortex. These results document an accentuated sensitivity to benzodiazepines in cocaine abusers which is compatible with disrupted GABAergic function in these patients.

  18. Metabolic connectivity mapping reveals effective connectivity in the resting human brain.

    PubMed

    Riedl, Valentin; Utz, Lukas; Castrillón, Gabriel; Grimmer, Timo; Rauschecker, Josef P; Ploner, Markus; Friston, Karl J; Drzezga, Alexander; Sorg, Christian

    2016-01-12

    Directionality of signaling among brain regions provides essential information about human cognition and disease states. Assessing such effective connectivity (EC) across brain states using functional magnetic resonance imaging (fMRI) alone has proven difficult, however. We propose a novel measure of EC, termed metabolic connectivity mapping (MCM), that integrates undirected functional connectivity (FC) with local energy metabolism from fMRI and positron emission tomography (PET) data acquired simultaneously. This method is based on the concept that most energy required for neuronal communication is consumed postsynaptically, i.e., at the target neurons. We investigated MCM and possible changes in EC within the physiological range using "eyes open" versus "eyes closed" conditions in healthy subjects. Independent of condition, MCM reliably detected stable and bidirectional communication between early and higher visual regions. Moreover, we found stable top-down signaling from a frontoparietal network including frontal eye fields. In contrast, we found additional top-down signaling from all major clusters of the salience network to early visual cortex only in the eyes open condition. MCM revealed consistent bidirectional and unidirectional signaling across the entire cortex, along with prominent changes in network interactions across two simple brain states. We propose MCM as a novel approach for inferring EC from neuronal energy metabolism that is ideally suited to study signaling hierarchies in the brain and their defects in brain disorders. PMID:26712010

  19. Metabolic connectivity mapping reveals effective connectivity in the resting human brain

    PubMed Central

    Riedl, Valentin; Utz, Lukas; Castrillón, Gabriel; Grimmer, Timo; Rauschecker, Josef P.; Drzezga, Alexander; Sorg, Christian

    2016-01-01

    Directionality of signaling among brain regions provides essential information about human cognition and disease states. Assessing such effective connectivity (EC) across brain states using functional magnetic resonance imaging (fMRI) alone has proven difficult, however. We propose a novel measure of EC, termed metabolic connectivity mapping (MCM), that integrates undirected functional connectivity (FC) with local energy metabolism from fMRI and positron emission tomography (PET) data acquired simultaneously. This method is based on the concept that most energy required for neuronal communication is consumed postsynaptically, i.e., at the target neurons. We investigated MCM and possible changes in EC within the physiological range using “eyes open” versus “eyes closed” conditions in healthy subjects. Independent of condition, MCM reliably detected stable and bidirectional communication between early and higher visual regions. Moreover, we found stable top-down signaling from a frontoparietal network including frontal eye fields. In contrast, we found additional top-down signaling from all major clusters of the salience network to early visual cortex only in the eyes open condition. MCM revealed consistent bidirectional and unidirectional signaling across the entire cortex, along with prominent changes in network interactions across two simple brain states. We propose MCM as a novel approach for inferring EC from neuronal energy metabolism that is ideally suited to study signaling hierarchies in the brain and their defects in brain disorders. PMID:26712010

  20. Metabolic therapy: lessons from liver diseases.

    PubMed

    Garcia-Ruiz, Carmen; Marí, Montserrat; Colell, Anna; Morales, Albert; Fernandez-Checa, Jose C

    2011-12-01

    Fatty liver disease is one of most prevalent metabolic liver diseases, which includes alcoholic (ASH) and nonalcoholic steatohepatitis (NASH). Its initial stage is characterized by fat accumulation in the liver, that can progress to steatohepatitis, a stage of the disease in which steatosis is accompanied by inflammation, hepatocellular death, oxidative stress and fibrosis. Recent evidence in experimental models as well as in patients with steatohepatitis have uncovered a role for cholesterol and sphingolipids, particularly ceramide, in the transition from steatosis to steatohepatitis, insulin resistance and hence disease progression. Cholesterol accumulation and its trafficking to mitochondria sensitizes fatty liver to subsequent hits including inflammatory cytokines, such as TNF/Fas, in a pathway involving ceramide generation by acidic sphingomyelinase (ASMase). Thus, targeting both cholesterol and/or ASMase may represent a novel therapeutic approach of relevance in ASH and NASH, two of the most common forms of liver diseases worldwide. PMID:21933146

  1. Human brain disease recreated in mice

    SciTech Connect

    Marx, J.

    1990-12-14

    In the early 1980s, neurologist Stanley Prusiner suggested that scrapie, an apparently infectious degenerative brain disease of sheep, could be transmitted by prions, infectious particles made just of protein - and containing no nucleic acids. But prion research has come a long way since then. In 1985, the cloning of the gene encoding the prion protein proved that it does in fact exist. And the gene turned out to be widely expressed in the brains of higher organisms, a result suggesting that the prion protein has a normal brain function that can somehow be subverted, leading to brain degeneration. Then studies done during the past 2 years suggested that specific mutations in the prion gene might cause two similar human brain diseases, Gerstmann-Straeussler-Scheinker syndrome (GSS) and Creutzfelt-Jakob disease. Now, Prusiner's group at the University of California, San Francisco, has used genetic engineering techniques to recreate GSS by transplanting the mutated prion gene into mice. Not only will the animal model help neurobiologists answer the many remaining questions about prions and how they work, but it may also shed some light on other neurodegenerative diseases as well.

  2. Unpredictable Chronic Stress Alters Adenosine Metabolism in Zebrafish Brain.

    PubMed

    Zimmermann, F F; Altenhofen, S; Kist, L W; Leite, C E; Bogo, M R; Cognato, G P; Bonan, C D

    2016-05-01

    Stress is considered a risk factor for several human disorders. Despite the broad knowledge of stress responses in mammals, data on the relationship between unpredictable chronic stress (UCS) and its effects on purinergic signaling are limited. ATP hydrolysis by ectonucleotidases is an important source of adenosine, and adenosine deaminase (ADA) contributes to the control of the nucleoside concentrations. Considering that some stress models could affect signaling systems, the objective of this study was to investigate whether UCS alters ectonucleotidase and ADA pathway in zebrafish brain. Additionally, we analyzed ATP metabolism as well as ada1, ada2.1, ada2.2, adaL, and adaasi gene expression in zebrafish brain. Our results have demonstrated that UCS did not alter ectonucleotidase and soluble ADA activities. However, ecto-ADA activity was significantly decreased (26.8%) in brain membranes of animals exposed to UCS when compared to the control group. Quantitative reverse transcription PCR (RT-PCR) analysis did not show significant changes on ADA gene expression after the UCS exposure. The brain ATP metabolism showed a marked increase in adenosine levels (ADO) in animals exposed to UCS. These data suggest an increase on extracellular adenosine levels in zebrafish brain. Since this nucleoside has neuromodulatory and anxiolytic effects, changes in adenosine levels could play a role in counteracting the stress, which could be related to a compensatory mechanism in order to restore the homeostasis. PMID:26081145

  3. The effects of hyperammonemia in learning and brain metabolic activity.

    PubMed

    Arias, Natalia; Fidalgo, Camino; Felipo, Vicente; Arias, Jorge L

    2014-03-01

    Ammonia is thought to be central in the development of hepatic encephalopathy. However, the specific relation of ammonia with brain energy depletions and learning has not been studied. Our work attempts to reproduce an increase in rat cerebral ammonia level, study the hyperamonemic animals' performance of two learning tasks, an allocentric (ALLO) and a cue guided (CG) task, and elucidate the contribution of hyperammonemia to the differential energy requirements of the brain limbic system regions involved in these tasks. To assess these goals, four groups of animals were used: a control (CHA) CG group (n = 10), a CHA ALLO group (n = 9), a hyperammonemia (HA) CG group (n = 7), and HA ALLO group (n = 8). Oxidative metabolism of the target brain regions were assessed by histochemical labelling of cytochrome oxidase (C.O.). The behavioural results revealed that the hyperammonemic rats were not able to reach the behavioural criterion in either of the two tasks, in contrast to the CHA groups. The metabolic brain consumption revealed increased C.O. activity in the anterodorsal thalamus when comparing the HA ALLO group with the CHA ALLO group. Significant differences between animals trained in the CG task were observed in the prelimbic, infralimbic, parietal, entorhinal and perirhinal cortices, the anterolateral and anteromedial striatum, and the basolateral and central amygdala. Our findings may provide fresh insights to reveal how the differential damage to the brain limbic structures involved in these tasks differs according to the degree of task difficulty. PMID:24415107

  4. Regional brain metabolism in a murine systemic lupus erythematosus model.

    PubMed

    Vo, An; Volpe, Bruce T; Tang, Chris C; Schiffer, Wynne K; Kowal, Czeslawa; Huerta, Patricio T; Uluğ, Aziz M; Dewey, Stephen L; Eidelberg, David; Diamond, Betty

    2014-08-01

    Systemic lupus erythematosus (SLE) is characterized by multiorgan inflammation, neuropsychiatric disorders (NPSLE), and anti-nuclear antibodies. We previously identified a subset of anti-DNA antibodies (DNRAb) cross-reactive with the N-methyl-D-aspartate receptor, present in 30% to 40% of patients, able to enhance excitatory post-synaptic potentials and trigger neuronal apoptosis. DNRAb+ mice exhibit memory impairment or altered fear response, depending on whether the antibody penetrates the hippocampus or amygdala. Here, we used 18F-fluorodeoxyglucose (FDG) microPET to plot changes in brain metabolism after regional blood-brain barrier (BBB) breach. In DNRAb+ mice, metabolism declined at the site of BBB breach in the first 2 weeks and increased over the next 2 weeks. In contrast, DNRAb- mice exhibited metabolic increases in these regions over the 4 weeks after the insult. Memory impairment was present in DNRAb+ animals with hippocampal BBB breach and altered fear conditioning in DNRAb+ mice with amygdala BBB breach. In DNRAb+ mice, we observed an inverse relationship between neuron number and regional metabolism, while a positive correlation was observed in DNRAb- mice. These findings suggest that local metabolic alterations in this model take place through different mechanisms with distinct time courses, with important implications for the interpretation of imaging data in SLE subjects. PMID:24824914

  5. Regional brain glucose metabolism in patients with brain tumors before and after radiotherapy

    SciTech Connect

    Wang, G.J.; Volkow, N.D.; Lau, Y.H.

    1994-05-01

    This study was performed to measure regional glucose metabolism in nonaffected brain regions of patients with primary or metastatic brain tumors. Seven female and four male patients (mean age 51.5{plus_minus}14.0 years old) were compared with eleven age and sex matched normal subjects. None of the patients had hydrocephalus and/or increased intracranial pressure. Brain glucose metabolism was measured using FDG-PET scan. Five of the patients were reevaluated one week after receiving radiation treatment (RT) to the brain. Patients were on Decadron and/or Dilantin at the time of both scan. PET images were analyzed with a template of 115 nonoverlapping regions of interest and then grouped into eight gray matter regions on each hemisphere. Brain regions with tumors and edema shown in MR imaging were excluded. Z scores were used to compare individual patients` regional values with those of normal subjects. The number of regional values with Z scores of less than - 3.0 were considered abnormal and were quantified. The mean global glucose metabolic rate (mean of all regions) in nonaffected brain regions of patients was significantly lower than that of normal controls (32.1{plus_minus}9.0 versus 44.8{plus_minus}6.3 {mu}mol/100g/min, p<0.001). Analyses of individual subjects revealed that none of the controls and 8 of the 11 patients had at least one abnormal region. In these 8 patients the regions which were abnormal were most frequently localized in right (n=5) and left occipital (n=6) and right orbital frontal cortex (n=7) whereas the basal ganglia was not affected. Five of the patients who had repeated scans following RT showed decrements in tumor metabolism (41{plus_minus}20.5%) and a significant increase in whole brain metabolism (8.6{plus_minus}5.3%, p<0.001). The improvement in whole brain metabolism after RT suggests that the brain metabolic decrements in the patients were related to the presence of tumoral tissue and not just a medication effect.

  6. Endogenously Nitrated Proteins in Mouse Brain: Links To Neurodegenerative Disease

    SciTech Connect

    Sacksteder, Colette A.; Qian, Weijun; Knyushko, Tanya V.; Wang, Haixing H.; Chin, Mark H.; Lacan, Goran; Melega, William P.; Camp, David G.; Smith, Richard D.; Smith, Desmond J.; Squier, Thomas C.; Bigelow, Diana J.

    2006-07-04

    Increased nitrotyrosine modification of proteins has been documented in multiple pathologies in a variety of tissue types; emerging evidence suggests its additional role in redox regulation of normal metabolism. In order to identify proteins sensitive to nitrating conditions in vivo, a comprehensive proteomic dataset identifying 7,792 proteins from whole mouse brain, generated by LC/LC-MS/MS analyses, was used to identify nitrated proteins. This analysis resulted in identification of 31 unique nitrotyrosine sites within 29 different proteins. Over half of the nitrated proteins identified have been reported to be involved in Parkinson's disease, Alzheimer's disease, or other neurodegenerative disorders. Similarly, nitrotyrosine immunoblots of whole brain homogenates show that treatment of mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), an experimental model of Parkinson's disease, induces increased nitration of the same protein bands observed to be nitrated in brains of untreated animals. Comparing sequences and available high resolution structures around nitrated tyrosines with those of unmodified sites indicates a preference of nitration in vivo for surface accessible tyrosines in loops, characteristics consistent with peroxynitrite-induced tyrosine modification. More striking is the five-fold greater nitration of tyrosines having nearby basic sidechains, suggesting electrostatic attraction of basic groups with the negative charge of peroxynitrite. Together, these results suggest that elevated peroxynitrite generation plays a role in neurodegenerative changes in the brain and provides a predictive tool of functionally important sites of nitration.

  7. Does acute caffeine ingestion alter brain metabolism in young adults?

    PubMed Central

    Xu, Feng; Liu, Peiying; Pekar, James J.; Lu, Hanzhang

    2015-01-01

    Caffeine, as the most commonly used stimulant drug, improves vigilance and, in some cases, cognition. However, the exact effect of caffeine on brain activity has not been fully elucidated. Because caffeine has a pronounced vascular effect which is independent of any neural effects, many hemodynamics-based methods such as fMRI cannot be readily applied without a proper calibration. The scope of the present work is two-fold. In Study 1, we used a recently developed MRI technique to examine the time-dependent changes in whole-brain cerebral metabolic rate of oxygen (CMRO2) following the ingestion of 200mg caffeine. It was found that, despite a pronounced decrease in CBF (p<0.001), global CMRO2 did not change significantly. Instead, the oxygen extraction fraction (OEF) was significantly elevated (p=0.002) to fully compensate for the reduced blood supply. Using the whole-brain finding as a reference, we aim to investigate whether there are any regional differences in the brain’s response to caffeine. Therefore, in Study 2, we examined regional heterogeneities in CBF changes following the same amount of caffeine ingestion. We found that posterior brain regions such as posterior cingulate cortex and superior temporal regions manifested a slower CBF reduction, whereas anterior brain regions including dorsolateral prefrontal cortex and medial frontal cortex showed a faster rate of decline. These findings have a few possible explanations. One is that caffeine may result in a region-dependent increase or decrease in brain activity, resulting in an unaltered average brain metabolic rate. The other is that caffeine’s effect on vasculature may be region-specific. Plausibility of these explanations is discussed in the context of spatial distribution of the adenosine receptors. PMID:25644657

  8. The rationale for deep brain stimulation in Alzheimer's disease.

    PubMed

    Mirzadeh, Zaman; Bari, Ausaf; Lozano, Andres M

    2016-07-01

    Alzheimer's disease is a major worldwide health problem with no effective therapy. Deep brain stimulation (DBS) has emerged as a useful therapy for certain movement disorders and is increasingly being investigated for treatment of other neural circuit disorders. Here we review the rationale for investigating DBS as a therapy for Alzheimer's disease. Phase I clinical trials of DBS targeting memory circuits in Alzheimer's disease patients have shown promising results in clinical assessments of cognitive function, neurophysiological tests of cortical glucose metabolism, and neuroanatomical volumetric measurements showing reduced rates of atrophy. These findings have been supported by animal studies, where electrical stimulation of multiple nodes within the memory circuit have shown neuroplasticity through stimulation-enhanced hippocampal neurogenesis and improved performance in memory tasks. The precise mechanisms by which DBS may enhance memory and cognitive functions in Alzheimer's disease patients and the degree of its clinical efficacy continue to be examined in ongoing clinical trials. PMID:26443701

  9. The Intestinal Microbiota in Metabolic Disease

    PubMed Central

    Woting, Anni; Blaut, Michael

    2016-01-01

    Gut bacteria exert beneficial and harmful effects in metabolic diseases as deduced from the comparison of germfree and conventional mice and from fecal transplantation studies. Compositional microbial changes in diseased subjects have been linked to adiposity, type 2 diabetes and dyslipidemia. Promotion of an increased expression of intestinal nutrient transporters or a modified lipid and bile acid metabolism by the intestinal microbiota could result in an increased nutrient absorption by the host. The degradation of dietary fiber and the subsequent fermentation of monosaccharides to short-chain fatty acids (SCFA) is one of the most controversially discussed mechanisms of how gut bacteria impact host physiology. Fibers reduce the energy density of the diet, and the resulting SCFA promote intestinal gluconeogenesis, incretin formation and subsequently satiety. However, SCFA also deliver energy to the host and support liponeogenesis. Thus far, there is little knowledge on bacterial species that promote or prevent metabolic disease. Clostridium ramosum and Enterococcus cloacae were demonstrated to promote obesity in gnotobiotic mouse models, whereas bifidobacteria and Akkermansia muciniphila were associated with favorable phenotypes in conventional mice, especially when oligofructose was fed. How diet modulates the gut microbiota towards a beneficial or harmful composition needs further research. Gnotobiotic animals are a valuable tool to elucidate mechanisms underlying diet–host–microbe interactions. PMID:27058556

  10. The Intestinal Microbiota in Metabolic Disease.

    PubMed

    Woting, Anni; Blaut, Michael

    2016-01-01

    Gut bacteria exert beneficial and harmful effects in metabolic diseases as deduced from the comparison of germfree and conventional mice and from fecal transplantation studies. Compositional microbial changes in diseased subjects have been linked to adiposity, type 2 diabetes and dyslipidemia. Promotion of an increased expression of intestinal nutrient transporters or a modified lipid and bile acid metabolism by the intestinal microbiota could result in an increased nutrient absorption by the host. The degradation of dietary fiber and the subsequent fermentation of monosaccharides to short-chain fatty acids (SCFA) is one of the most controversially discussed mechanisms of how gut bacteria impact host physiology. Fibers reduce the energy density of the diet, and the resulting SCFA promote intestinal gluconeogenesis, incretin formation and subsequently satiety. However, SCFA also deliver energy to the host and support liponeogenesis. Thus far, there is little knowledge on bacterial species that promote or prevent metabolic disease. Clostridium ramosum and Enterococcus cloacae were demonstrated to promote obesity in gnotobiotic mouse models, whereas bifidobacteria and Akkermansia muciniphila were associated with favorable phenotypes in conventional mice, especially when oligofructose was fed. How diet modulates the gut microbiota towards a beneficial or harmful composition needs further research. Gnotobiotic animals are a valuable tool to elucidate mechanisms underlying diet-host-microbe interactions. PMID:27058556

  11. Glutathione Metabolism and Parkinson’s Disease

    PubMed Central

    Smeyne, Michelle

    2013-01-01

    It has been established that oxidative stress, defined as the condition when the sum of free radicals in a cell exceeds the antioxidant capacity of the cell, contributes to the pathogenesis of Parkinson’s disease. Glutathione is a ubiquitous thiol tripeptide that acts alone, or in concert with enzymes within cells to reduce superoxide radicals, hydroxyl radicals and peroxynitrites. In this review, we examine the synthesis, metabolism and functional interactions of glutathione, and discuss how this relates to protection of dopaminergic neurons from oxidative damage and its therapeutic potential in Parkinson’s disease. PMID:23665395

  12. Lipoproteins and lipoprotein metabolism in periodontal disease

    PubMed Central

    Griffiths, Rachel; Barbour, Suzanne

    2010-01-01

    A growing body of evidence indicates that the incidence of atherosclerosis is increased in subjects with periodontitis – a chronic infection of the oral cavity. This article summarizes the evidence that suggests periodontitis shifts the lipoprotein profile to be more proatherogenic. LDL-C is elevated in periodontitis and most studies indicate that triglyceride levels are also increased. By contrast, antiatherogenic HDL tends to be low in periodontitis. Periodontal therapy tends to shift lipoprotein levels to a healthier profile and also reduces subclinical indices of atherosclerosis. In summary, periodontal disease alters lipoprotein metabolism in ways that could promote atherosclerosis and cardiovascular disease. PMID:20835400

  13. [Wounds in vascular and metabolic diseases].

    PubMed

    Leskovec, Nada Kecelj; Huljev, Dubravko; Matoh, Marijetka

    2012-10-01

    There are many causes of leg ulcer development; however, vascular etiology is most commonly involved. Venous or lymphatic causes underlay 80% and arterial or arteriovenous causes 20%-25% of cases. Over years, the prevalence of arteriovenous ulcers has increased due to the increased prevalence of peripheral arterial disease. Concerning metabolic reasons, diabetes is the most common underlying disease leading to ulcer formation, whereas calciphylaxis is a very rare one. In addition to the general principles of local ulcer therapy, additional therapy treating the cause of ulcer is necessary. Therapy of leg ulcers is manly interdisciplinary and should include a dermatologist, surgeon, internal medicine specialist, radiologist, general practitioner. PMID:23193829

  14. Addiction and the brain-disease fallacy.

    PubMed

    Satel, Sally; Lilienfeld, Scott O

    2013-01-01

    From Brainwashed: The Seductive Appeal of Mindless Neuroscience by Sally Satel and Scott Lilienfeld, copyright © 2013. Reprinted by permission of Basic Books, a member of The Perseus Books Group. The notion that addiction is a "brain disease" has become widespread and rarely challenged. The brain-disease model implies erroneously that the brain is necessarily the most important and useful level of analysis for understanding and treating addiction. This paper will explain the limits of over-medicalizing - while acknowledging a legitimate place for medication in the therapeutic repertoire - and why a broader perspective on the problems of the addicted person is essential to understanding addiction and to providing optimal care. In short, the brain-disease model obscures the dimension of choice in addiction, the capacity to respond to incentives, and also the essential fact people use drugs for reasons (as consistent with a self-medication hypothesis). The latter becomes obvious when patients become abstinent yet still struggle to assume rewarding lives in the realm of work and relationships. Thankfully, addicts can choose to recover and are not helpless victims of their own "hijacked brains." PMID:24624096

  15. Expensive Brains: “Brainy” Rodents have Higher Metabolic Rate

    PubMed Central

    Sobrero, Raúl; May-Collado, Laura J.; Agnarsson, Ingi; Hernández, Cristián E.

    2011-01-01

    Brains are the centers of the nervous system of animals, controlling the organ systems of the body and coordinating responses to changes in the ecological and social environment. The evolution of traits that correlate with cognitive ability, such as relative brain size is thus of broad interest. Brain mass relative to body mass (BM) varies among mammals, and diverse factors have been proposed to explain this variation. A recent study provided evidence that energetics play an important role in brain evolution (Isler and van Schaik, 2006). Using composite phylogenies and data drawn from multiple sources, these authors showed that basal metabolic rate (BMR) correlates with brain mass across mammals. However, no such relationship was found within rodents. Here we re-examined the relationship between BMR and brain mass within Rodentia using a novel species-level phylogeny. Our results are sensitive to parameter evaluation; in particular how species mass is estimated. We detect no pattern when applying an approach used by previous studies, where each species BM is represented by two different numbers, one being the individual that happened to be used for BMR estimates of that species. However, this approach may compromise the analysis. When using a single value of BM for each species, whether representing a single individual, or available species mean, our findings provide evidence that brain mass (independent of BM) and BMR are correlated. These findings are thus consistent with the hypothesis that large brains evolve when the payoff for increased brain mass is greater than the energetic cost they incur. PMID:21811456

  16. Histamine in neurotransmission and brain diseases.

    PubMed

    Nuutinen, Saara; Panula, Pertti

    2010-01-01

    Apart from its central role in the mediation of allergic reactions, gastric acid secretion and inflammation in the periphery, histamine serves an important function as a neurotransitter in the central nervous system. The histaminergic neurons originate from the tuberomamillary nucleus of the posterior hypothalamus and send projections to most parts of the brain. The central histamine system is involved in many brain functions such as arousal, control of pituitary hormone secretion, suppression ofeating and cognitive functions. The effects of neuronal histamine are mediated via G-protein-coupled H1-H4 receptors. The prominent role of histamine as a wake-promoting substance has drawn interest to treat sleep-wake disorders, especially narcolepsy, via modulation of H3 receptor function. Post mortem studies have revealed alterations in histaminergic system in neurological and psychiatric diseases. Brain histamine levels are decreased in Alzheimer's disease patients whereas abnormally high histamine concentrations are found in the brains of Parkinson's disease and schizophrenic patients. Low histamine levels are associated with convulsions and seizures. The release of histamine is altered in response to different types of brain injury: e.g. increased release of histamine in an ischemic brain trauma might have a role in the recovery from neuronal damage. Neuronal histamine is also involved in the pain perception. Drugs that increase brain and spinal histamine concentrations have antinociceptive properties. Histaminergic drugs, most importantly histamine H3 receptors ligands, have shown efficacy in many animal models of the above-mentioned disorders. Ongoing clinical trials will reveal the efficacy and safety of these drugs in the treatment of human patients. PMID:21618891

  17. Disturbed Tryptophan Metabolism in Cardiovascular Disease

    PubMed Central

    Mangge, H.; Stelzer, I.; Reininghaus, E.; Weghuber, D.; Postolache, T.T.; Fuchs, D.

    2016-01-01

    Atherosclerosis (AS), a major pathologic consequence of obesity, is the main etiological factor of cardiovascular disease (CVD), which is the most common cause of death in the western world. A systemic chronic low grade immune-mediated inflammation (scLGI) is substantially implicated in AS and its consequences. In particular, pro-inflammatory cytokines play a major role, with Th1-type cytokine interferon-γ (IFN-γ) being a key mediator. Among various other molecular and cellular effects, IFN- γ activates the enzyme indoleamine 2,3-dioxygenase (IDO) in monocyte-derived macrophages, dendritic, and other cells, which, in turn, decreases serum levels of the essential amino acid tryptophan (TRP). Thus, people with CVD often have increased serum kynurenine to tryptophan ratios (KYN/TRP), a result of an increased TRP breakdown. Importantly, increased KYN/TRP is associated with a higher likelihood of fatal cardiovascular events. A scLGI with increased production of the proinflammatory adipokine leptin, in combination with IFN-γ and interleukin-6 (IL-6), represents another central link between obesity, AS, and CVD. Leptin has also been shown to contribute to Th1-type immunity shifting, with abdominal fat being thus a direct contributor to KYN/TRP ratio. However, TRP is not only an important source for protein production but also for the generation of one of the most important neurotransmitters, 5-hydroxytryptamine (serotonin), by the tetrahydrobiopterin-dependent TRP 5-hydroxylase. In prolonged states of scLGI, availability of free serum TRP is strongly diminished, affecting serotonin synthesis, particularly in the brain. Additionally, accumulation of neurotoxic KYN metabolites such as quinolinic acid produced by microglia, can contribute to the development of depression via NMDA glutamatergic stimulation. Depression had been reported to be associated with CVD endpoints, but it most likely represents only a secondary loop connecting excess adipose tissue, scLGI and

  18. Salivary Biomarkers in Pediatric Metabolic Disease Research.

    PubMed

    Hartman, Mor-Li; Goodson, J Max; Barake, Roula; Alsmadi, Osama; Al-Mutawa, Sabiha; Ariga, Jitendra; Soparkar, Pramod; Behbehani, Jawad; Behbehani, Kazem

    2016-03-01

    The increasing prevalence of childhood obesity and obesity-related metabolic disorders is now considered a global pandemic. The main goal of the pediatric obesity research community is to identify children who are at risk of becoming obese before their body mass index rises above age norms. To do so, we must identify biomarkers of metabolic health and immunometabolism that can be used for large-scale screening and diagnosis initiatives among at-risk children. Because blood sampling is often unacceptable to both parents and children when there is no direct benefit to the child, as in a community-based research study, there is a clear need for a low-risk, non-invasive sampling strategy. Salivary analysis is now well recognized as a likely candidate for this purpose. In this review, we discuss the physiologic role of saliva and its strengths and limitations as a fluid for biomarker discovery, obesity screening, metabolic disease diagnosis, and response monitoring after interventions. We also describe the current state of the salivary biomarker field as it pertains to metabolic research, with a special emphasis on studies conducted in children and adolescents. Finally, we look forward to technological developments, such as salivary "omics" and point of service diagnostic devices, which have the potential to accelerate the pace of research and discovery in this vitally important field. PMID:27116847

  19. Brain imaging of neurovascular dysfunction in Alzheimer's disease.

    PubMed

    Montagne, Axel; Nation, Daniel A; Pa, Judy; Sweeney, Melanie D; Toga, Arthur W; Zlokovic, Berislav V

    2016-05-01

    Neurovascular dysfunction, including blood-brain barrier (BBB) breakdown and cerebral blood flow (CBF) dysregulation and reduction, are increasingly recognized to contribute to Alzheimer's disease (AD). The spatial and temporal relationships between different pathophysiological events during preclinical stages of AD, including cerebrovascular dysfunction and pathology, amyloid and tau pathology, and brain structural and functional changes remain, however, still unclear. Recent advances in neuroimaging techniques, i.e., magnetic resonance imaging (MRI) and positron emission tomography (PET), offer new possibilities to understand how the human brain works in health and disease. This includes methods to detect subtle regional changes in the cerebrovascular system integrity. Here, we focus on the neurovascular imaging techniques to evaluate regional BBB permeability (dynamic contrast-enhanced MRI), regional CBF changes (arterial spin labeling- and functional-MRI), vascular pathology (structural MRI), and cerebral metabolism (PET) in the living human brain, and examine how they can inform about neurovascular dysfunction and vascular pathophysiology in dementia and AD. Altogether, these neuroimaging approaches will continue to elucidate the spatio-temporal progression of vascular and neurodegenerative processes in dementia and AD and how they relate to each other. PMID:27038189

  20. Altered brain energetics induces mitochondrial fission arrest in Alzheimer's Disease.

    PubMed

    Zhang, Liang; Trushin, Sergey; Christensen, Trace A; Bachmeier, Benjamin V; Gateno, Benjamin; Schroeder, Andreas; Yao, Jia; Itoh, Kie; Sesaki, Hiromi; Poon, Wayne W; Gylys, Karen H; Patterson, Emily R; Parisi, Joseph E; Diaz Brinton, Roberta; Salisbury, Jeffrey L; Trushina, Eugenia

    2016-01-01

    Altered brain metabolism is associated with progression of Alzheimer's Disease (AD). Mitochondria respond to bioenergetic changes by continuous fission and fusion. To account for three dimensional architecture of the brain tissue and organelles, we applied 3-dimensional electron microscopy (3D EM) reconstruction to visualize mitochondrial structure in the brain tissue from patients and mouse models of AD. We identified a previously unknown mitochondrial fission arrest phenotype that results in elongated interconnected organelles, "mitochondria-on-a-string" (MOAS). Our data suggest that MOAS formation may occur at the final stages of fission process and was not associated with altered translocation of activated dynamin related protein 1 (Drp1) to mitochondria but with reduced GTPase activity. Since MOAS formation was also observed in the brain tissue of wild-type mice in response to hypoxia or during chronological aging, fission arrest may represent fundamental compensatory adaptation to bioenergetic stress providing protection against mitophagy that may preserve residual mitochondrial function. The discovery of novel mitochondrial phenotype that occurs in the brain tissue in response to energetic stress accurately detected only using 3D EM reconstruction argues for a major role of mitochondrial dynamics in regulating neuronal survival. PMID:26729583

  1. Physical activity, brain plasticity, and Alzheimer's disease.

    PubMed

    Erickson, Kirk I; Weinstein, Andrea M; Lopez, Oscar L

    2012-11-01

    In this review we summarize the epidemiological, cross-sectional, and interventional studies examining the association between physical activity and brain volume, function, and risk for Alzheimer's disease. The epidemiological literature provides compelling evidence that greater amounts of physical activity are associated with a reduced risk of dementia in late life. In addition, randomized interventions using neuroimaging tools have reported that participation in physical activity increases the size of prefrontal and hippocampal brain areas, which may lead to a reduction in memory impairments. Consistent with these findings, longitudinal studies using neuroimaging tools also find that the volume of prefrontal and hippocampal brain areas are larger in individuals who engaged in more physical activity earlier in life. We conclude from this review that there is convincing evidence that physical activity has a consistent and robust association with brain regions implicated in age-related cognitive decline and Alzheimer's disease. In addition to summarizing this literature we provide recommendations for future research on physical activity and brain health. PMID:23085449

  2. Addiction and the Brain-Disease Fallacy

    PubMed Central

    Satel, Sally; Lilienfeld, Scott O.

    2014-01-01

    From Brainwashed: The Seductive Appeal of Mindless Neuroscience by Sally Satel and Scott Lilienfeld, copyright © 2013. Reprinted by permission of Basic Books, a member of The Perseus Books Group. The notion that addiction is a “brain disease” has become widespread and rarely challenged. The brain-disease model implies erroneously that the brain is necessarily the most important and useful level of analysis for understanding and treating addiction. This paper will explain the limits of over-medicalizing – while acknowledging a legitimate place for medication in the therapeutic repertoire – and why a broader perspective on the problems of the addicted person is essential to understanding addiction and to providing optimal care. In short, the brain-disease model obscures the dimension of choice in addiction, the capacity to respond to incentives, and also the essential fact people use drugs for reasons (as consistent with a self-medication hypothesis). The latter becomes obvious when patients become abstinent yet still struggle to assume rewarding lives in the realm of work and relationships. Thankfully, addicts can choose to recover and are not helpless victims of their own “hijacked brains.” PMID:24624096

  3. Phosphatidylethanolamine Metabolism in Health and Disease.

    PubMed

    Calzada, Elizabeth; Onguka, Ouma; Claypool, Steven M

    2016-01-01

    Phosphatidylethanolamine (PE) is the second most abundant glycerophospholipid in eukaryotic cells. The existence of four only partially redundant biochemical pathways that produce PE, highlights the importance of this essential phospholipid. The CDP-ethanolamine and phosphatidylserine decarboxylase pathways occur in different subcellular compartments and are the main sources of PE in cells. Mammalian development fails upon ablation of either pathway. Once made, PE has diverse cellular functions that include serving as a precursor for phosphatidylcholine and a substrate for important posttranslational modifications, influencing membrane topology, and promoting cell and organelle membrane fusion, oxidative phosphorylation, mitochondrial biogenesis, and autophagy. The importance of PE metabolism in mammalian health has recently emerged following its association with Alzheimer's disease, Parkinson's disease, nonalcoholic liver disease, and the virulence of certain pathogenic organisms. PMID:26811286

  4. Cerebral Whipple's disease. Diagnosis by brain biopsy.

    PubMed

    Johnson, L; Diamond, I

    1980-10-01

    Whipple's disease, a multisystem chronic granulomatous disease treatable by antibiotics, usually presents clinically with gastrointestinal or joint symptoms. Usually, the diagnosis is substantiated by small intestinal biopsy. This shows diastase-resistant periodic-acid-Schiff-(PAS)-positive inclusions in the cytoplasm of macrophages within the lamina propria. By electron microscopy, this PAS-positive material consists of 1.5 X 0.2-mum bacilli and fine fibrillar material within macrophage phagolysosomes. Rarely, Whipple's disease presents clinically as a primary neurologic disease without gastrointestinal symptoms. Because untreated cerebral Whipple's disease usually progresses rapidly to death, it is imperative to establish the diagnosis promptly. This report describes a case of cerebral Whipple's disease without gastrointestinal symptoms that was diagnosed early by light-and electron-microscopic study of brain biopsy material. PMID:6158859

  5. Mitochondrial Energy Metabolism and Redox Signaling in Brain Aging and Neurodegeneration

    PubMed Central

    Yin, Fei; Boveris, Alberto

    2014-01-01

    Abstract Significance: The mitochondrial energy-transducing capacity is essential for the maintenance of neuronal function, and the impairment of energy metabolism and redox homeostasis is a hallmark of brain aging, which is particularly accentuated in the early stages of neurodegenerative diseases. Recent Advances: The communications between mitochondria and the rest of the cell by energy- and redox-sensitive signaling establish a master regulatory device that controls cellular energy levels and the redox environment. Impairment of this regulatory devise is critical for aging and the early stages of neurodegenerative diseases. Critical Issues: This review focuses on a coordinated metabolic network—cytosolic signaling, transcriptional regulation, and mitochondrial function—that controls the cellular energy levels and redox status as well as factors which impair this metabolic network during brain aging and neurodegeneration. Future Directions: Characterization of mitochondrial function and mitochondria-cytosol communications will provide pivotal opportunities for identifying targets and developing new strategies aimed at restoring the mitochondrial energy-redox axis that is compromised in brain aging and neurodegeneration. Antioxid. Redox Signal. 20, 353–371. PMID:22793257

  6. Emerging roles for brain drug-metabolizing cytochrome P450 enzymes in neuropsychiatric conditions and responses to drugs.

    PubMed

    Toselli, Francesca; Dodd, Peter R; Gillam, Elizabeth M J

    2016-08-01

    P450s in the human brain were originally considered unlikely to contribute significantly to the clearance of drugs and other xenobiotic chemicals, since their overall expression was a small fraction of that found in the liver. However, it is now recognized that P450s play substantial roles in the metabolism of both exogenous and endogenous chemicals in the brain, but in a highly cell type- and region-specific manner, in line with the greater functional heterogeneity of the brain compared to the liver. Studies of brain P450 expression and the characterization of the catalytic activity of specific forms expressed as recombinant enzymes have suggested possible roles for xenobiotic-metabolizing P450s in the brain. It is now possible to confirm these roles through the use of intracerebroventricular administration of selective P450 inhibitors in animal models, coupled with brain sampling techniques to measure drug concentrations in vivo, and modern neuroimaging techniques. The purpose of this review is to discuss the evidence behind the functional importance of P450s from the "xenobiotic-metabolizing" families, CYP1, CYP2 and CYP3 in the brain. Approaches used to define the quantitative and qualitative significance of these P450s in determining tissue-specific levels of xenobiotics in brain will be considered. Finally, the possible roles of these enzymes in brain biochemistry will be examined in light of the demonstrated activity of these enzymes in vitro and the association of particular P450 forms with disease states. PMID:27498925

  7. Brain Metabolism Correlates of the Free and Cued Selective Reminding Test in Mild Cognitive Impairment.

    PubMed

    Caffarra, Paolo; Ghetti, Caterina; Ruffini, Livia; Spallazzi, Marco; Spotti, Annamaria; Barocco, Federica; Guzzo, Caterina; Marchi, Massimo; Gardini, Simona

    2016-01-01

    Free and Cued Selective Reminding Test (FCSRT) measures immediate and delayed episodic memory and cueing sensitivity and is suitable to detect prodromal Alzheimer's disease (AD). The present study aimed at investigating the segregation effect of FCSRT scores on brain metabolism of memory-related structures, usually affected by AD pathology, in the Mild Cognitive Impairment (MCI) stage. A cohort of forty-eight MCI patients underwent FCSRT and 18F-FDG-PET. Multiple regression analysis showed that Immediate Free Recall correlated with brain metabolism in the bilateral anterior cingulate and delayed free recall with the left anterior cingulate and medial frontal gyrus, whereas semantic cueing sensitivity with the left posterior cingulate. FCSRT in MCI is associated with neuro-functional activity of specific regions of memory-related structures connected to hippocampal formation, such as the cingulate cortex, usually damaged in AD. PMID:26836012

  8. APOE-by-sex interactions on brain structure and metabolism in healthy elderly controls

    PubMed Central

    de Leon, Mony J; Alcolea, Daniel; Pegueroles, Jordi; Montal, Victor; Carmona-Iragui, María; Sala, Isabel; Sánchez-Saudinos, María-Belén; Antón-Aguirre, Sofía; Morenas-Rodríguez, Estrella; Camacho, Valle; Falcón, Carles; Pavía, Javier; Ros, Domènec; Clarimón, Jordi; Blesa, Rafael; Lleó, Alberto; Fortea, Juan

    2015-01-01

    Background The APOE effect on Alzheimer Disease (AD) risk is stronger in women than in men but its mechanisms have not been established. We assessed the APOE-by-sex interaction on core CSF biomarkers, brain metabolism and structure in healthy elderly control individuals (HC). Methods Cross-sectional study. HC from the Alzheimer’s Disease Neuroimaging Initiative with available CSF (n = 274) and/or 3T-MRI (n = 168) and/or a FDG-PET analyses (n = 328) were selected. CSF amyloid-β1–42 (Aβ1–42), total-tau (t-tau) and phospho-tau (p-tau181p) levels were measured by Luminex assays. We analyzed the APOE-by-sex interaction on the CSF biomarkers in an analysis of covariance (ANCOVA). FDG uptake was analyzed by SPM8 and cortical thickness (CTh) was measured by FreeSurfer. FDG and CTh difference maps were derived from interaction and group analyses. Results APOE4 carriers had lower CSF Aβ1–42 and higher CSF p-tau181p values than non-carriers, but there was no APOE-by-sex interaction on CSF biomarkers. The APOE-by-sex interaction on brain metabolism and brain structure was significant. Sex stratification showed that female APOE4 carriers presented widespread brain hypometabolism and cortical thinning compared to female non-carriers whereas male APOE4 carriers showed only a small cluster of hypometabolism and regions of cortical thickening compared to male non-carriers. Conclusions The impact of APOE4 on brain metabolism and structure is modified by sex. Female APOE4 carriers show greater hypometabolism and atrophy than male carriers. This APOE-by-sex interaction should be considered in clinical trials in preclinical AD where APOE4 status is a selection criterion. PMID:26397226

  9. [Metabolic effects of mexidol in complex treatment of chronic brain ischemia].

    PubMed

    Demchenko, E Iu; Kulakova, N V; Semiglazova, T A; Golovacheva, A B; Borodulina, E V; Udut, V V

    2008-01-01

    Patients with a chronic brain ischemia of stages I-II on the background of hypertension and/or cerebral atherosclerosis are characterized by energy insufficiency of the metabolism, as estimated by the activity of succinate dehydrogenase in peripheral blood lymphocytes. Within the framework of randomized comparative investigation of the efficiency of actovegin and mexidol in the complex therapy of a chronic brain ischemia, positive dynamics in reduction of the clinical semiology, restoration of cognitive processes in the brain, and reduction of the expression of subjective manifestations of the disease is established. On this background, the administration of mexidol led to restoration of the energy exchange due to substrate effects of the Krebs cycle intermediates present in its structure. PMID:19140508

  10. Carotid body, insulin, and metabolic diseases: unraveling the links.

    PubMed

    Conde, Sílvia V; Sacramento, Joana F; Guarino, Maria P; Gonzalez, Constancio; Obeso, Ana; Diogo, Lucilia N; Monteiro, Emilia C; Ribeiro, Maria J

    2014-01-01

    The carotid bodies (CB) are peripheral chemoreceptors that sense changes in arterial blood O2, CO2, and pH levels. Hypoxia, hypercapnia, and acidosis activate the CB, which respond by increasing the action potential frequency in their sensory nerve, the carotid sinus nerve (CSN). CSN activity is integrated in the brain stem to induce a panoply of cardiorespiratory reflexes aimed, primarily, to normalize the altered blood gases, via hyperventilation, and to regulate blood pressure and cardiac performance, via sympathetic nervous system (SNS) activation. Besides its role in the cardiorespiratory control the CB has been proposed as a metabolic sensor implicated in the control of energy homeostasis and, more recently, in the regulation of whole body insulin sensitivity. Hypercaloric diets cause CB overactivation in rats, which seems to be at the origin of the development of insulin resistance and hypertension, core features of metabolic syndrome and type 2 diabetes. Consistent with this notion, CB sensory denervation prevents metabolic and hemodynamic alterations in hypercaloric feed animal. Obstructive sleep apnea (OSA) is another chronic disorder characterized by increased CB activity and intimately related with several metabolic and cardiovascular abnormalities. In this manuscript we review in a concise manner the putative pathways linking CB chemoreceptors deregulation with the pathogenesis of insulin resistance and arterial hypertension. Also, the link between chronic intermittent hypoxia (CIH) and insulin resistance is discussed. Then, a final section is devoted to debate strategies to reduce CB activity and its use for prevention and therapeutics of metabolic diseases with an emphasis on new exciting research in the modulation of bioelectronic signals, likely to be central in the future. PMID:25400585

  11. Carotid body, insulin, and metabolic diseases: unraveling the links

    PubMed Central

    Conde, Sílvia V.; Sacramento, Joana F.; Guarino, Maria P.; Gonzalez, Constancio; Obeso, Ana; Diogo, Lucilia N.; Monteiro, Emilia C.; Ribeiro, Maria J.

    2014-01-01

    The carotid bodies (CB) are peripheral chemoreceptors that sense changes in arterial blood O2, CO2, and pH levels. Hypoxia, hypercapnia, and acidosis activate the CB, which respond by increasing the action potential frequency in their sensory nerve, the carotid sinus nerve (CSN). CSN activity is integrated in the brain stem to induce a panoply of cardiorespiratory reflexes aimed, primarily, to normalize the altered blood gases, via hyperventilation, and to regulate blood pressure and cardiac performance, via sympathetic nervous system (SNS) activation. Besides its role in the cardiorespiratory control the CB has been proposed as a metabolic sensor implicated in the control of energy homeostasis and, more recently, in the regulation of whole body insulin sensitivity. Hypercaloric diets cause CB overactivation in rats, which seems to be at the origin of the development of insulin resistance and hypertension, core features of metabolic syndrome and type 2 diabetes. Consistent with this notion, CB sensory denervation prevents metabolic and hemodynamic alterations in hypercaloric feed animal. Obstructive sleep apnea (OSA) is another chronic disorder characterized by increased CB activity and intimately related with several metabolic and cardiovascular abnormalities. In this manuscript we review in a concise manner the putative pathways linking CB chemoreceptors deregulation with the pathogenesis of insulin resistance and arterial hypertension. Also, the link between chronic intermittent hypoxia (CIH) and insulin resistance is discussed. Then, a final section is devoted to debate strategies to reduce CB activity and its use for prevention and therapeutics of metabolic diseases with an emphasis on new exciting research in the modulation of bioelectronic signals, likely to be central in the future. PMID:25400585

  12. Brain glucose metabolism in an animal model of depression.

    PubMed

    Detka, J; Kurek, A; Kucharczyk, M; Głombik, K; Basta-Kaim, A; Kubera, M; Lasoń, W; Budziszewska, B

    2015-06-01

    An increasing number of data support the involvement of disturbances in glucose metabolism in the pathogenesis of depression. We previously reported that glucose and glycogen concentrations in brain structures important for depression are higher in a prenatal stress model of depression when compared with control animals. A marked rise in the concentrations of these carbohydrates and glucose transporters were evident in prenatally stressed animals subjected to acute stress and glucose loading in adulthood. To determine whether elevated levels of brain glucose are associated with a change in its metabolism in this model, we assessed key glycolytic enzymes (hexokinase, phosphofructokinase and pyruvate kinase), products of glycolysis, i.e., pyruvate and lactate, and two selected enzymes of the tricarboxylic acid cycle (pyruvate dehydrogenase and α-ketoglutarate dehydrogenase) in the hippocampus and frontal cortex. Additionally, we assessed glucose-6-phosphate dehydrogenase activity, a key enzyme in the pentose phosphate pathway (PPP). Prenatal stress increased the levels of phosphofructokinase, an important glycolytic enzyme, in the hippocampus and frontal cortex. However, prenatal stress had no effect on hexokinase or pyruvate kinase levels. The lactate concentration was elevated in prenatally stressed rats in the frontal cortex, and pyruvate levels remained unchanged. Among the tricarboxylic acid cycle enzymes, prenatal stress decreased the level of pyruvate dehydrogenase in the hippocampus, but it had no effect on α-ketoglutarate dehydrogenase. Like in the case of glucose and its transporters, also in the present study, differences in markers of glucose metabolism between control animals and those subjected to prenatal stress were not observed under basal conditions but in rats subjected to acute stress and glucose load in adulthood. Glucose-6-phosphate dehydrogenase activity was not reduced by prenatal stress but was found to be even higher in animals exposed to

  13. Phagocytic and metabolic reactions to chronically implanted metal brain electrodes.

    PubMed

    Babb, T L; Kupfer, W

    1984-11-01

    In order to study the biocompatibility of metal electrodes and insulations in the rat brain, eight different metal electrode types and two different insulations were implanted for 11, 35, 36, 37, or 63 days. Stainless steel and Nichrome were nontoxic metals, silver was toxic, and copper extremely toxic with phagocytosis active to 37 days of implantation. Active phagocytosis was easily detected by high glucose demand using 2-deoxy[14C]glucose (2-DG) autoradiography contrasted with normal 2-DG autoradiographs where phagocytes were present but not ingesting. Epoxylite, an epoxy-polyester varnish, was slightly more reactive in brain than polyimide but not statistically significant. In general, larger electrodes created more tissue reaction per se for as long as 37 days. These results suggested that a thin stainless-steel bipolar electrode will provide safe recording electrodes in either animal or human brain. The importance of these findings is that certain metals (silver, copper) cannot be used in the brain without producing necrosis and phagocytosis, whereas other metals (stainless steel, Nichrome) with varnish insulators (Epoxylite, polyimide) can be implanted without producing any detectable damage beyond that of the initial trauma and brief phagocytosis limited to the edge of the electrode track. Finally, the glucose metabolism autoradiographs differentiated active phagocytosis (copper) from inactive phagocytes (silver) when using long implants (37 days) of toxic metals. PMID:6489492

  14. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis.

    PubMed

    O'Mahony, S M; Clarke, G; Borre, Y E; Dinan, T G; Cryan, J F

    2015-01-15

    The brain-gut axis is a bidirectional communication system between the central nervous system and the gastrointestinal tract. Serotonin functions as a key neurotransmitter at both terminals of this network. Accumulating evidence points to a critical role for the gut microbiome in regulating normal functioning of this axis. In particular, it is becoming clear that the microbial influence on tryptophan metabolism and the serotonergic system may be an important node in such regulation. There is also substantial overlap between behaviours influenced by the gut microbiota and those which rely on intact serotonergic neurotransmission. The developing serotonergic system may be vulnerable to differential microbial colonisation patterns prior to the emergence of a stable adult-like gut microbiota. At the other extreme of life, the decreased diversity and stability of the gut microbiota may dictate serotonin-related health problems in the elderly. The mechanisms underpinning this crosstalk require further elaboration but may be related to the ability of the gut microbiota to control host tryptophan metabolism along the kynurenine pathway, thereby simultaneously reducing the fraction available for serotonin synthesis and increasing the production of neuroactive metabolites. The enzymes of this pathway are immune and stress-responsive, both systems which buttress the brain-gut axis. In addition, there are neural processes in the gastrointestinal tract which can be influenced by local alterations in serotonin concentrations with subsequent relay of signals along the scaffolding of the brain-gut axis to influence CNS neurotransmission. Therapeutic targeting of the gut microbiota might be a viable treatment strategy for serotonin-related brain-gut axis disorders. PMID:25078296

  15. Human Brain Glycogen Metabolism During and After Hypoglycemia

    PubMed Central

    Öz, Gülin; Kumar, Anjali; Rao, Jyothi P.; Kodl, Christopher T.; Chow, Lisa; Eberly, Lynn E.; Seaquist, Elizabeth R.

    2009-01-01

    OBJECTIVE We tested the hypotheses that human brain glycogen is mobilized during hypoglycemia and its content increases above normal levels (“supercompensates”) after hypoglycemia. RESEARCH DESIGN AND METHODS We utilized in vivo 13C nuclear magnetic resonance spectroscopy in conjunction with intravenous infusions of [13C]glucose in healthy volunteers to measure brain glycogen metabolism during and after euglycemic and hypoglycemic clamps. RESULTS After an overnight intravenous infusion of 99% enriched [1-13C]glucose to prelabel glycogen, the rate of label wash-out from [1-13C]glycogen was higher (0.12 ± 0.05 vs. 0.03 ± 0.06 μmol · g−1 · h−1, means ± SD, P < 0.02, n = 5) during a 2-h hyperinsulinemic-hypoglycemic clamp (glucose concentration 57.2 ± 9.7 mg/dl) than during a hyperinsulinemic-euglycemic clamp (95.3 ± 3.3 mg/dl), indicating mobilization of glucose units from glycogen during moderate hypoglycemia. Five additional healthy volunteers received intravenous 25–50% enriched [1-13C]glucose over 22–54 h after undergoing hyperinsulinemic-euglycemic (glucose concentration 92.4 ± 2.3 mg/dl) and hyperinsulinemic-hypoglycemic (52.9 ± 4.8 mg/dl) clamps separated by at least 1 month. Levels of newly synthesized glycogen measured from 4 to 80 h were higher after hypoglycemia than after euglycemia (P ≤ 0.01 for each subject), indicating increased brain glycogen synthesis after moderate hypoglycemia. CONCLUSIONS These data indicate that brain glycogen supports energy metabolism when glucose supply from the blood is inadequate and that its levels rebound to levels higher than normal after a single episode of moderate hypoglycemia in humans. PMID:19502412

  16. Celiac disease: A missed cause of metabolic bone disease

    PubMed Central

    Rastogi, Ashu; Bhadada, Sanjay K.; Bhansali, Anil; Kochhar, Rakesh; Santosh, Ramakrishnan

    2012-01-01

    Introduction: Celiac disease (CD) is a highly prevalent autoimmune disease. The symptoms of CD are varied and atypical, with many patients having no gastrointestinal symptoms. Metabolic bone disease (MBD) is a less recognized manifestation of CD associated with spectrum of musculoskeletal signs and symptoms, viz. bone pains, proximal muscle weakness, osteopenia, osteoporosis, and fracture. We here report five patients who presented with severe MBD as the only manifestation of CD. Materials and Methods: Records of 825 patients of CD diagnosed during 2002–2010 were retrospectively analyzed for clinical features, risk factors, signs, biochemical, and radiological parameters. Results: We were able to identify five patients (0.6%) of CD who had monosymptomatic presentation with musculoskeletal symptoms and signs in the form of bone pains, proximal myopathy, and fragility fractures without any gastrointestinal manifestation. All the five patients had severe MBD in the form of osteopenia, osteoporosis, and fragility fractures. Four of the five patients had additional risk factors such as antiepileptic drugs, chronic alcohol consumption, malnutrition, and associated vitamin D deficiency which might have contributed to the severity of MBD. Conclusion: Severe metabolic disease as the only presentation of CD is rare. Patients show significant improvement in clinical, biochemical, and radiological parameters with gluten-free diet, calcium, and vitamin D supplementation. CD should be looked for routinely in patients presenting with unexplained MBD. PMID:23087864

  17. Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism

    PubMed Central

    Roh, Eun; Song, Do Kyeong; Kim, Min-Seon

    2016-01-01

    Accumulated evidence from genetic animal models suggests that the brain, particularly the hypothalamus, has a key role in the homeostatic regulation of energy and glucose metabolism. The brain integrates multiple metabolic inputs from the periphery through nutrients, gut-derived satiety signals and adiposity-related hormones. The brain modulates various aspects of metabolism, such as food intake, energy expenditure, insulin secretion, hepatic glucose production and glucose/fatty acid metabolism in adipose tissue and skeletal muscle. Highly coordinated interactions between the brain and peripheral metabolic organs are critical for the maintenance of energy and glucose homeostasis. Defective crosstalk between the brain and peripheral organs contributes to the development of obesity and type 2 diabetes. Here we comprehensively review the above topics, discussing the main findings related to the role of the brain in the homeostatic regulation of energy and glucose metabolism. PMID:26964832

  18. Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism.

    PubMed

    Roh, Eun; Song, Do Kyeong; Kim, Min-Seon

    2016-01-01

    Accumulated evidence from genetic animal models suggests that the brain, particularly the hypothalamus, has a key role in the homeostatic regulation of energy and glucose metabolism. The brain integrates multiple metabolic inputs from the periphery through nutrients, gut-derived satiety signals and adiposity-related hormones. The brain modulates various aspects of metabolism, such as food intake, energy expenditure, insulin secretion, hepatic glucose production and glucose/fatty acid metabolism in adipose tissue and skeletal muscle. Highly coordinated interactions between the brain and peripheral metabolic organs are critical for the maintenance of energy and glucose homeostasis. Defective crosstalk between the brain and peripheral organs contributes to the development of obesity and type 2 diabetes. Here we comprehensively review the above topics, discussing the main findings related to the role of the brain in the homeostatic regulation of energy and glucose metabolism. PMID:26964832

  19. Nutrigenomic programming of cardiovascular and metabolic diseases.

    PubMed

    Ozanne, Susan

    2014-10-01

    Over twenty five years ago epidemiological studies revealed that there was a relationship between patterns of early growth and subsequent risk of diseases such as type 2 diabetes, cardiovascular disease and the metabolic syndrome. Studies of identical twins, individuals who were in utero during periods of famine, discordant siblings and animal models have provided strong evidence that the early environment plays an important role in mediating these relationships. Early nutrition is one such important environmental factor. The concept of early life programming is therefore widely accepted and the underlying mechanisms starting to emerge. These include: (1) Permanent structural changes in an organ due to exposure to suboptimal levels of essential hormones or nutrients during a critical period of development leading to permanent changes in tissue function (2) Persistent epigenetic changes such as DNA methylation and histone modifications and miRNAs leading to changes in gene expression. (3) Permanent effects on regulation of cellular ageing through increases in oxidative stress and mitochondrial dysfunction leading to DNA damage and telomere shortening. Further understanding of these processes will enable the development of preventative and intervention strategies to combat the burden of common diseases such as type 2 diabetes and cardiovascular disease. PMID:26461282

  20. Oxidative metabolism in YAC128 mouse model of Huntington's disease.

    PubMed

    Hamilton, James; Pellman, Jessica J; Brustovetsky, Tatiana; Harris, Robert A; Brustovetsky, Nickolay

    2015-09-01

    Alterations in oxidative metabolism are considered to be one of the major contributors to Huntington's disease (HD) pathogenesis. However, existing data about oxidative metabolism in HD are contradictory. Here, we investigated the effect of mutant huntingtin (mHtt) on oxidative metabolism in YAC128 mice. Both mHtt and wild-type huntingtin (Htt) were associated with mitochondria and the amount of bound Htt was four-times higher than the amount of bound mHtt. Percoll gradient-purified brain synaptic and non-synaptic mitochondria as well as unpurified brain, liver and heart mitochondria, isolated from 2- and 10-month-old YAC128 mice and age-matched WT littermates had similar respiratory rates. There was no difference in mitochondrial membrane potential or ADP and ATP levels. Expression of selected nuclear-encoded mitochondrial proteins in 2- and 10-month-old YAC128 and WT mice was similar. Cultured striatal and cortical neurons from YAC128 and WT mice had similar respiratory and glycolytic activities as measured with Seahorse XF24 analyzer in medium containing 10 mm glucose and 15 mm pyruvate. In the medium with 2.5 mm glucose, YAC128 striatal neurons had similar respiration, but slightly lower glycolytic activity. Striatal neurons had lower maximal respiration compared with cortical neurons. In vivo experiments with YAC128 and WT mice showed similar O2 consumption, CO2 release, physical activity, food consumption and fasted blood glucose. However, YAC128 mice were heavier and had more body fat compared with WT mice. Overall, our data argue against respiratory deficiency in YAC128 mice and, consequently, suggest that mitochondrial respiratory dysfunction is not essential for HD pathogenesis. PMID:26041817

  1. Dopaminergic correlates of metabolic network activity in Parkinson's disease.

    PubMed

    Holtbernd, Florian; Ma, Yilong; Peng, Shichun; Schwartz, Frank; Timmermann, Lars; Kracht, Lutz; Fink, Gereon R; Tang, Chris C; Eidelberg, David; Eggers, Carsten

    2015-09-01

    Parkinson's disease (PD) is associated with distinct metabolic covariance patterns that relate to the motor and cognitive manifestations of the disorder. It is not known, however, how the expression of these patterns relates to measurements of nigrostriatal dopaminergic activity from the same individuals. To explore these associations, we studied 106 PD subjects who underwent cerebral PET with both (18) F-fluorodeoxyglucose (FDG) and (18) F-fluoro-L-dopa (FDOPA). Expression values for the PD motor- and cognition-related metabolic patterns (PDRP and PDCP, respectively) were computed for each subject; these measures were correlated with FDOPA uptake on a voxel-by-voxel basis. To explore the relationship between dopaminergic function and local metabolic activity, caudate and putamen FDOPA PET signal was correlated voxel-wise with FDG uptake over the entire brain. PDRP expression correlated with FDOPA uptake in caudate and putamen (P < 0.001), while PDCP expression correlated with uptake in the anterior striatum (P < 0.001). While statistically significant, the correlations were only of modest size, accounting for less than 20% of the overall variation in these measures. After controlling for PDCP expression, PDRP correlations were significant only in the posterior putamen. Of note, voxel-wise correlations between caudate/putamen FDOPA uptake and whole-brain FDG uptake were significant almost exclusively in PDRP regions. Overall, the data indicate that PDRP and PDCP expression correlates significantly with PET indices of presynaptic dopaminergic functioning obtained in the same individuals. Even so, the modest size of these correlations suggests that in PD patients, individual differences in network activity cannot be explained solely by nigrostriatal dopamine loss. PMID:26037537

  2. Relationship of metabolic and endocrine parameters to brain glucose metabolism in older adults: do cognitively-normal older adults have a particular metabolic phenotype?

    PubMed

    Nugent, S; Castellano, C A; Bocti, C; Dionne, I; Fulop, T; Cunnane, S C

    2016-02-01

    Our primary objective in this study was to quantify whole brain and regional cerebral metabolic rates of glucose (CMRg) in young and older adults in order to determine age-normalized reference CMRg values for healthy older adults with normal cognition for age. Our secondary objectives were to--(i) report a broader range of metabolic and endocrine parameters including body fat composition that could form the basis for the concept of a 'metabolic phenotype' in cognitively normal, older adults, and (ii) to assess whether medications commonly used to control blood lipids, blood pressure or thyroxine affect CMRg values in older adults. Cognition assessed by a battery of tests was normal for age and education in both groups. Compared to the young group (25 years old; n = 34), the older group (72 years old; n = 41) had ~14% lower CMRg (μmol/100 g/min) specifically in the frontal cortex, and 18% lower CMRg in the caudate. Lower grey matter volume and cortical thickness was widespread in the older group. These differences in CMRg, grey matter volume and cortical thickness were present in the absence of any known evidence for prodromal Alzheimer's disease (AD). Percent total body fat was positively correlated with CMRg in many brain regions but only in the older group. Before and after controlling for body fat, HOMA2-IR was significantly positively correlated to CMRg in several brain regions in the older group. These data show that compared to a healthy younger adult, the metabolic phenotype of a cognitively-normal 72 year old person includes similar plasma glucose, insulin, cholesterol, triglycerides and TSH, higher hemoglobin A1c and percent body fat, lower CMRg in the superior frontal cortex and caudate, but the same CMRg in the hippocampus and white matter. Age-normalization of cognitive test results is standard practice and we would suggest that regional CMRg in cognitively healthy older adults should also be age-normalized. PMID:26364049

  3. Therapeutic targets of brain insulin resistance in sporadic Alzheimer's disease

    PubMed Central

    de la Monte, Suzanne M.

    2015-01-01

    Growing evidence supports roles for brain insulin and insulin-like growth factor (IGF) resistance and metabolic dysfunction in the pathogenesis of Alzheimer's disease (AD). Whether the underlying problem stems from a primary disorder of central nervous system (CNS) neurons and glia, or secondary effects of systemic diseases such as obesity, Type 2 diabetes, or metabolic syndrome, the end-results include impaired glucose utilization, mitochondrial dysfunction, increased oxidative stress, neuroinflammation, and the propagation of cascades that result in the accumulation of neurotoxic misfolded, aggregated, and ubiquitinated fibrillar proteins. This article reviews the roles of impaired insulin and IGF signaling to AD-associated neuronal loss, synaptic disconnection, tau hyperphosphorylation, amyloid-beta accumulation, and impaired energy metabolism, and discusses therapeutic strategies and lifestyle approaches that could be used to prevent, delay the onset, or reduce the severity of AD. Finally, it is critical to recognize that AD is heterogeneous and has a clinical course that fully develops over a period of several decades. Therefore, early and multi-modal preventive and treatment approaches should be regarded as essential. PMID:22201977

  4. Brain edema in diseases of different etiology.

    PubMed

    Adeva, María M; Souto, Gema; Donapetry, Cristóbal; Portals, Manuel; Rodriguez, Alberto; Lamas, David

    2012-07-01

    Cerebral edema is a potentially life-threatening complication shared by diseases of different etiology, such as diabetic ketoacidosis, acute liver failure, high altitude exposure, dialysis disequilibrium syndrome, and salicylate intoxication. Pulmonary edema is also habitually present in these disorders, indicating that the microcirculatory disturbance causing edema is not confined to the brain. Both cerebral and pulmonary subclinical edema may be detected before it becomes clinically evident. Available evidence suggests that tissue hypoxia or intracellular acidosis is a commonality occurring in all of these disorders. Tissue ischemia induces physiological compensatory mechanisms to ensure cell oxygenation and carbon dioxide removal from tissues, including hyperventilation, elevation of red blood cell 2,3-bisphosphoglycerate content, and capillary vasodilatation. Clinical, laboratory, and necropsy findings in these diseases confirm the occurrence of low plasma carbon dioxide partial pressure, increased erythrocyte 2,3-bisphosphoglycerate concentration, and capillary vasodilatation with increased vascular permeability in all of them. Baseline tissue hypoxia or intracellular acidosis induced by the disease may further deteriorate when tissue oxygen requirement is no longer matched to oxygen delivery resulting in massive capillary vasodilatation with increased vascular permeability and plasma fluid leakage into the interstitial compartment leading to edema affecting the brain, lung, and other organs. Causative factors involved in the progression from physiological adaptation to devastating clinical edema are not well known and may include uncontrolled disease, malfunctioning adaptive responses, or unknown factors. The role of carbon monoxide and local nitric oxide production influencing tissue oxygenation is unclear. PMID:22579570

  5. Immune regulation of metabolic homeostasis in health and disease

    PubMed Central

    Brestoff, Jonathan R.; Artis, David

    2015-01-01

    Obesity is an increasingly prevalent disease worldwide. While genetic and environmental factors are known to regulate the development of obesity and associated metabolic diseases, emerging studies indicate that innate and adaptive immune cell responses in adipose tissue have critical roles in the regulation of metabolic homeostasis. In the lean state, type 2 cytokine-associated immune cell responses predominate in white adipose tissue and protect against weight gain and insulin resistance through direct effects on adipocytes and elicitation of beige adipose. In obesity, these metabolically beneficial immunologic pathways become dysregulated, and adipocytes and other factors initiate metabolically deleterious type 1 inflammation that impairs glucose metabolism. This review discusses our current understanding of the functions of different types of adipose tissue, how immune cells regulate adipocyte function and metabolic homeostasis in the context of health and disease, and highlights the potential of targeting immuno-metabolic pathways as a therapeutic strategy to treat obesity and associated diseases. PMID:25815992

  6. S-adenosylmethionine metabolism and liver disease

    PubMed Central

    Mato, José M; Martínez-Chantar, M Luz; Lu, Shelly C

    2014-01-01

    Methionine is an essential amino acid that is metabolized mainly by the liver where it is converted to S-adenosylmethionine (SAMe) by the enzyme methionine adenosyltransferase. Although all mammalian cells synthesize SAMe, the liver is where the bulk of SAMe is generated as it is the organ where about 50% of all dietary methionine is metabolized. SAMe is mainly needed for methylation of a large variety of substrates (DNA, proteins, lipids and many other small molecules) and polyamine synthesis, so if the concentration of SAMe falls below a certain level or rises too much the normal function of the liver will be also affected. There are physiological conditions that can affect the hepatic content of SAMe. Consequently, to control these fluctuations, the rate at which the liver both synthesizes and catabolizes SAMe is tightly regulated. In mice, failure to do this can lead to fatty liver disease and to the development of hepatocellular carcinoma (HCC). Therefore, maintaining SAMe homeostasis may be a therapeutic target in nonalcoholic steatohepatitis, alcoholic- and non-alcoholic liver cirrhosis, and for the chemoprevention of HCC formation. PMID:23396728

  7. Invited review: Opportunities for genetic improvement of metabolic diseases.

    PubMed

    Pryce, J E; Parker Gaddis, K L; Koeck, A; Bastin, C; Abdelsayed, M; Gengler, N; Miglior, F; Heringstad, B; Egger-Danner, C; Stock, K F; Bradley, A J; Cole, J B

    2016-09-01

    Metabolic disorders are disturbances to one or more of the metabolic processes in dairy cattle. Dysfunction of any of these processes is associated with the manifestation of metabolic diseases or disorders. In this review, data recording, incidences, genetic parameters, predictors, and status of genetic evaluations were examined for (1) ketosis, (2) displaced abomasum, (3) milk fever, and (4) tetany, as these are the most prevalent metabolic diseases where published genetic parameters are available. The reported incidences of clinical cases of metabolic disorders are generally low (less than 10% of cows are recorded as having a metabolic disease per herd per year or parity/lactation). Heritability estimates are also low and are typically less than 5%. Genetic correlations between metabolic traits are mainly positive, indicating that selection to improve one of these diseases is likely to have a positive effect on the others. Furthermore, there may also be opportunities to select for general disease resistance in terms of metabolic stability. Although there is inconsistency in published genetic correlation estimates between milk yield and metabolic traits, selection for milk yield may be expected to lead to a deterioration in metabolic disorders. Under-recording and difficulty in diagnosing subclinical cases are among the reasons why interest is growing in using easily measurable predictors of metabolic diseases, either recorded on-farm by using sensors and milk tests or off-farm using data collected from routine milk recording. Some countries have already initiated genetic evaluations of metabolic disease traits and currently most of these use clinical observations of disease. However, there are opportunities to use clinical diseases in addition to predictor traits and genomic information to strengthen genetic evaluations for metabolic health in the future. PMID:27372587

  8. GSM mobile phone radiation suppresses brain glucose metabolism

    PubMed Central

    Kwon, Myoung Soo; Vorobyev, Victor; Kännälä, Sami; Laine, Matti; Rinne, Juha O; Toivonen, Tommi; Johansson, Jarkko; Teräs, Mika; Lindholm, Harri; Alanko, Tommi; Hämäläinen, Heikki

    2011-01-01

    We investigated the effects of mobile phone radiation on cerebral glucose metabolism using high-resolution positron emission tomography (PET) with the 18F-deoxyglucose (FDG) tracer. A long half-life (109 minutes) of the 18F isotope allowed a long, natural exposure condition outside the PET scanner. Thirteen young right-handed male subjects were exposed to a pulse-modulated 902.4 MHz Global System for Mobile Communications signal for 33 minutes, while performing a simple visual vigilance task. Temperature was also measured in the head region (forehead, eyes, cheeks, ear canals) during exposure. 18F-deoxyglucose PET images acquired after the exposure showed that relative cerebral metabolic rate of glucose was significantly reduced in the temporoparietal junction and anterior temporal lobe of the right hemisphere ipsilateral to the exposure. Temperature rise was also observed on the exposed side of the head, but the magnitude was very small. The exposure did not affect task performance (reaction time, error rate). Our results show that short-term mobile phone exposure can locally suppress brain energy metabolism in humans. PMID:21915135

  9. GSM mobile phone radiation suppresses brain glucose metabolism.

    PubMed

    Kwon, Myoung Soo; Vorobyev, Victor; Kännälä, Sami; Laine, Matti; Rinne, Juha O; Toivonen, Tommi; Johansson, Jarkko; Teräs, Mika; Lindholm, Harri; Alanko, Tommi; Hämäläinen, Heikki

    2011-12-01

    We investigated the effects of mobile phone radiation on cerebral glucose metabolism using high-resolution positron emission tomography (PET) with the (18)F-deoxyglucose (FDG) tracer. A long half-life (109 minutes) of the (18)F isotope allowed a long, natural exposure condition outside the PET scanner. Thirteen young right-handed male subjects were exposed to a pulse-modulated 902.4 MHz Global System for Mobile Communications signal for 33 minutes, while performing a simple visual vigilance task. Temperature was also measured in the head region (forehead, eyes, cheeks, ear canals) during exposure. (18)F-deoxyglucose PET images acquired after the exposure showed that relative cerebral metabolic rate of glucose was significantly reduced in the temporoparietal junction and anterior temporal lobe of the right hemisphere ipsilateral to the exposure. Temperature rise was also observed on the exposed side of the head, but the magnitude was very small. The exposure did not affect task performance (reaction time, error rate). Our results show that short-term mobile phone exposure can locally suppress brain energy metabolism in humans. PMID:21915135

  10. Dual Mechanism of Brain Injury and Novel Treatment Strategy in Maple Syrup Urine Disease

    ERIC Educational Resources Information Center

    Zinnanti, William J.; Lazovic, Jelena; Griffin, Kathleen; Skvorak, Kristen J.; Paul, Harbhajan S.; Homanics, Gregg E.; Bewley, Maria C.; Cheng, Keith C.; LaNoue, Kathryn F.; Flanagan, John M.

    2009-01-01

    Maple syrup urine disease (MSUD) is an inherited disorder of branched-chain amino acid metabolism presenting with life-threatening cerebral oedema and dysmyelination in affected individuals. Treatment requires life-long dietary restriction and monitoring of branched-chain amino acids to avoid brain injury. Despite careful management, children…

  11. Metabolic Profiling and Quantification of Neurotransmitters in Mouse Brain by Gas Chromatography-Mass Spectrometry.

    PubMed

    Jäger, Christian; Hiller, Karsten; Buttini, Manuel

    2016-01-01

    Metabolites are key mediators of cellular functions, and have emerged as important modulators in a variety of diseases. Recent developments in translational biomedicine have highlighted the importance of not looking at just one disease marker or disease inducing molecule, but at populations thereof to gain a global understanding of cellular function in health and disease. The goal of metabolomics is the systematic identification and quantification of metabolite populations. One of the most pressing issues of our times is the understanding of normal and diseased nervous tissue functions. To ensure high quality data, proper sample processing is crucial. Here, we present a method for the extraction of metabolites from brain tissue, their subsequent preparation for non-targeted gas chromatography-mass spectrometry (GC-MS) measurement, as well as giving some guidelines for processing of raw data. In addition, we present a sensitive screening method for neurotransmitters based on GC-MS in selected ion monitoring mode. The precise multi-analyte detection and quantification of amino acid and monoamine neurotransmitters can be used for further studies such as metabolic modeling. Our protocol can be applied to shed light on nervous tissue function in health, as well as neurodegenerative disease mechanisms and the effect of experimental therapeutics at the metabolic level. © 2016 by John Wiley & Sons, Inc. PMID:27584556

  12. In vivo metabolic labeling of sialoglycans in the mouse brain by using a liposome-assisted bioorthogonal reporter strategy.

    PubMed

    Xie, Ran; Dong, Lu; Du, Yifei; Zhu, Yuntao; Hua, Rui; Zhang, Chen; Chen, Xing

    2016-05-10

    Mammalian brains are highly enriched with sialoglycans, which have been implicated in brain development and disease progression. However, in vivo labeling and visualization of sialoglycans in the mouse brain remain a challenge because of the blood-brain barrier. Here we introduce a liposome-assisted bioorthogonal reporter (LABOR) strategy for shuttling 9-azido sialic acid (9AzSia), a sialic acid reporter, into the brain to metabolically label sialoglycoconjugates, including sialylated glycoproteins and glycolipids. Subsequent bioorthogonal conjugation of the incorporated 9AzSia with fluorescent probes via click chemistry enabled fluorescence imaging of brain sialoglycans in living animals and in brain sections. Newly synthesized sialoglycans were found to widely distribute on neuronal cell surfaces, in particular at synaptic sites. Furthermore, large-scale proteomic profiling identified 140 brain sialylated glycoproteins, including a wealth of synapse-associated proteins. Finally, by performing a pulse-chase experiment, we showed that dynamic sialylation is spatially regulated, and that turnover of sialoglycans in the hippocampus is significantly slower than that in other brain regions. The LABOR strategy provides a means to directly visualize and monitor the sialoglycan biosynthesis in the mouse brain and will facilitate elucidating the functional role of brain sialylation. PMID:27125855

  13. Localized proton magnetic resonance spectroscopy of the brain differentiates the inborn metabolic encephalopathies in children.

    PubMed

    Chabrol, B; Salvan, A M; Confort-Gouny, S; Vion-Dury, J; Cozzone, P J

    1995-09-01

    Localized brain proton magnetic resonance spectroscopy (MRS) has been performed using a STEAM (stimulated echo-acquisition mode) method with a short-echo time (20 ms) in 10 children suffering from different lysosomal diseases, 6 boys with X-linked adrenoleukodystrophy (X-ALD) and 5 healthy children. Metabolic data from localized spectra were processed by principal component analysis (PCA) of 7 metabolic variables recorded on the MR spectra. PCA allows to delineate different clusters corresponding to the 2 pathological groups which are separated from each other and from the control group. The position of each spectrum on the patient map correlates with the clinical data and to the evolution of the patients subjected to a follow-up. These results also confirm the metabolic features characterizing the pathologies of the lysosome (increase in inositol) and the peroxisome (increase in choline and free lipids). PCA constitutes an alternative to the classical statistical methods to analyze and compare metabolic modifications in small populations of patients and allows to identify the most critical parameters defining the organization of the pathological populations. This analysis clearly increases the discrimination among pathologies based on the metabolic profiles obtained by MRS. PMID:8521083

  14. Mapping Brain Metals to Evaluate Therapies for Neurodegenerative Disease

    PubMed Central

    Popescu, Bogdan Florin Gh; Nichol, Helen

    2013-01-01

    The brain is rich in metals and has a high metabolic rate, making it acutely vulnerable to the toxic effects of endogenously produced free radicals. The abundant metals, iron and copper, transfer single electrons as they cycle between their reduced (Fe2+, Cu1+) and oxidized (Fe3+, Cu2+) states making them powerful catalysts of reactive oxygen species (ROS) production. Even redox inert zinc, if present in excess, can trigger ROS production indirectly by altering mitochondrial function. While metal chelators seem to improve the clinical outcome of several neurodegenerative diseases, their mechanisms of action remain obscure and the effects of long-term use are largely unknown. Most chelators are not specific to a single metal and could alter the distribution of multiple metals in the brain, leading to unexpected consequences over the long-term. We show here how X-ray fluorescence will be a valuable tool to examine the effect of chelators on the distribution and amount of metals in the brain. PMID:20553312

  15. Periodontal disease: the influence of metabolic syndrome

    PubMed Central

    2012-01-01

    Metabolic syndrome (MetS) is a cluster of cardiovascular risk factors that include obesity, impaired glucose tolerance or diabetes, hyperinsulinemia, hypertension, and dyslipidemia. Recently, more attention has been reserved to the correlation between periodontitis and systemic health. MetS is characterized by oxidative stress, a condition in which the equilibrium between the production and the inactivation of reactive oxygen species (ROS) becomes disrupted. ROS have an essential role in a variety of physiological systems, but under a condition of oxidative stress, they contribute to cellular dysfunction and damage. Oxidative stress may act as a common link to explain the relationship between each component of MetS and periodontitis. All those conditions show increased serum levels of products derived from oxidative damage, promoting a proinflammatory state. Moreover, adipocytokines, produced by the fat cells of fat tissue, might modulate the balance between oxidant and antioxidant activities. An increased caloric intake involves a higher metabolic activity, which results in an increased production of ROS, inducing insulin resistance. At the same time, obese patients require more insulin to maintain blood glucose homeostasis – a state known as hyperinsulinemia, a condition that can evolve into type 2 diabetes. Oxidation products can increase neutrophil adhesion and chemotaxis, thus favoring oxidative damage. Hyperglycemia and an oxidizing state promote the genesis of advanced glycation end-products, which could also be implicated in the degeneration and damage of periodontal tissue. Thus, MetS, the whole of interconnected factors, presents systemic and local manifestations, such as cardiovascular disease and periodontitis, related by a common factor known as oxidative stress. PMID:23009606

  16. NLRP3 inflammasomes link inflammation and metabolic disease

    PubMed Central

    De Nardo, Dominic; Latz, Eicke

    2011-01-01

    A strong link between inflammation and metabolism is becoming increasingly evident. A number of recent landmark studies have implicated the activation of the NLRP3 inflammasome, an interleukin-1β family cytokine-activating protein complex, in a variety of metabolic diseases including obesity, atherosclerosis and type 2 diabetes. Here we review these new developments and discuss their implications for better understanding inflammation in metabolic disease and the prospects of targeting the NLRP3 inflammasome for therapeutic intervention. PMID:21733753

  17. Deep Brain Stimulation for Parkinson Disease

    PubMed Central

    Bronstein, Jeff M.; Tagliati, Michele; Alterman, Ron L.; Lozano, Andres M.; Volkmann, Jens; Stefani, Alessandro; Horak, Fay B.; Okun, Michael S.; Foote, Kelly D.; Krack, Paul; Pahwa, Rajesh; Henderson, Jaimie M.; Hariz, Marwan I.; Bakay, Roy A.; Rezai, Ali; Marks, William J.; Moro, Elena; Vitek, Jerrold L.; Weaver, Frances M.; Gross, Robert E.; DeLong, Mahlon R.

    2015-01-01

    Objective To provide recommendations to patients, physicians, and other health care providers on several issues involving deep brain stimulation (DBS) for Parkinson disease (PD). Data Sources and Study Selection An international consortium of experts organized, reviewed the literature, and attended the workshop. Topics were introduced at the workshop, followed by group discussion. Data Extraction and Synthesis A draft of a consensus statement was presented and further edited after plenary debate. The final statements were agreed on by all members. Conclusions (1) Patients with PD without significant active cognitive or psychiatric problems who have medically intractable motor fluctuations, intractable tremor, or intolerance of medication adverse effects are good candidates for DBS. (2) Deep brain stimulation surgery is best performed by an experienced neurosurgeon with expertise in stereotactic neurosurgery who is working as part of a interprofessional team. (3) Surgical complication rates are extremely variable, with infection being the most commonly reported complication of DBS. (4) Deep brain stimulation programming is best accomplished by a highly trained clinician and can take 3 to 6 months to obtain optimal results. (5) Deep brain stimulation improves levodopa-responsive symptoms, dyskinesia, and tremor; benefits seem to be long-lasting in many motor domains. (6) Subthalamic nuclei DBS may be complicated by increased depression, apathy, impulsivity, worsened verbal fluency, and executive dysfunction in a subset of patients. (7) Both globus pallidus pars interna and subthalamic nuclei DBS have been shown to be effective in addressing the motor symptoms of PD. (8) Ablative therapy is still an effective alternative and should be considered in a select group of appropriate patients. PMID:20937936

  18. Focally Elevated Creatine Detected in Amyloid Precursor Protein (APP) Transgenic Mice and Alzheimer Disease Brain Tissue

    SciTech Connect

    Gallant,M.; Rak, M.; Szeghalmi, A.; Del Bigio, M.; Westaway, D.; Yang, J.; Julian, R.; Gough, K.

    2006-01-01

    The creatine/phosphocreatine system, regulated by creatine kinase, plays an important role in maintaining energy balance in the brain. Energy metabolism and the function of creatine kinase are known to be affected in Alzheimer diseased brain and in cells exposed to the {beta}-amyloid peptide. We used infrared microspectroscopy to examine hippocampal, cortical, and caudal tissue from 21-89-week-old transgenic mice expressing doubly mutant (K670N/M671L and V717F) amyloid precursor protein and displaying robust pathology from an early age. Microcrystalline deposits of creatine, suggestive of perturbed energetic status, were detected by infrared microspectroscopy in all animals with advanced plaque pathology. Relatively large creatine deposits were also found in hippocampal sections from post-mortem Alzheimer diseased human brain, compared with hippocampus from non-demented brain. We therefore speculate that this molecule is a marker of the disease process.

  19. Brain Insulin Resistance at the Crossroads of Metabolic and Cognitive Disorders in Humans.

    PubMed

    Kullmann, Stephanie; Heni, Martin; Hallschmid, Manfred; Fritsche, Andreas; Preissl, Hubert; Häring, Hans-Ulrich

    2016-10-01

    Ever since the brain was identified as an insulin-sensitive organ, evidence has rapidly accumulated that insulin action in the brain produces multiple behavioral and metabolic effects, influencing eating behavior, peripheral metabolism, and cognition. Disturbances in brain insulin action can be observed in obesity and type 2 diabetes (T2D), as well as in aging and dementia. Decreases in insulin sensitivity of central nervous pathways, i.e., brain insulin resistance, may therefore constitute a joint pathological feature of metabolic and cognitive dysfunctions. Modern neuroimaging methods have provided new means of probing brain insulin action, revealing the influence of insulin on both global and regional brain function. In this review, we highlight recent findings on brain insulin action in humans and its impact on metabolism and cognition. Furthermore, we elaborate on the most prominent factors associated with brain insulin resistance, i.e., obesity, T2D, genes, maternal metabolism, normal aging, inflammation, and dementia, and on their roles regarding causes and consequences of brain insulin resistance. We also describe the beneficial effects of enhanced brain insulin signaling on human eating behavior and cognition and discuss potential applications in the treatment of metabolic and cognitive disorders. PMID:27489306

  20. The interneuron energy hypothesis: Implications for brain disease.

    PubMed

    Kann, Oliver

    2016-06-01

    Fast-spiking, inhibitory interneurons - prototype is the parvalbumin-positive (PV+) basket cell - generate action potentials at high frequency and synchronize the activity of numerous excitatory principal neurons, such as pyramidal cells, during fast network oscillations by rhythmic inhibition. For this purpose, fast-spiking, PV+ interneurons have unique electrophysiological characteristics regarding action potential kinetics and ion conductances, which are associated with high energy expenditure. This is reflected in the neural ultrastructure by enrichment with mitochondria and cytochrome c oxidase, indicating the dependence on oxidative phosphorylation for adenosine-5'-triphosphate (ATP) generation. The high energy expenditure is most likely required for membrane ion transport in dendrites and the extensive axon arbor as well as for presynaptic release of neurotransmitter, gamma-aminobutyric acid (GABA). Fast-spiking, PV+ interneurons are central for the emergence of gamma oscillations (30-100Hz) that provide a fundamental mechanism of complex information processing during sensory perception, motor behavior and memory formation in networks of the hippocampus and the neocortex. Conversely, shortage in glucose and oxygen supply (metabolic stress) and/or excessive formation of reactive oxygen and nitrogen species (oxidative stress) may render these interneurons to be a vulnerable target. Dysfunction in fast-spiking, PV+ interneurons might set a low threshold for impairment of fast network oscillations and thus higher brain functions. This pathophysiological mechanism might be highly relevant for cerebral aging as well as various acute and chronic brain diseases, such as stroke, vascular cognitive impairment, epilepsy, Alzheimer's disease and schizophrenia. PMID:26284893

  1. Proteomics analyses for the global proteins in the brain tissues of different human prion diseases.

    PubMed

    Shi, Qi; Chen, Li-Na; Zhang, Bao-Yun; Xiao, Kang; Zhou, Wei; Chen, Cao; Zhang, Xiao-Mei; Tian, Chan; Gao, Chen; Wang, Jing; Han, Jun; Dong, Xiao-Ping

    2015-04-01

    Proteomics changes of brain tissues have been described in different neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. However, the brain proteomics of human prion disease remains less understood. In the study, the proteomics patterns of cortex and cerebellum of brain tissues of sporadic Creutzfeldt-Jakob disease, fatal familial insomnia, and G114V genetic CJD were analyzed with isobaric tags for relative and absolute quantitation combined with multidimensional liquid chromatography and MS analysis, with the brains from three normal individuals as controls. Global protein profiling, significant pathway, and functional categories were analyzed. In total, 2287 proteins were identified with quantitative information both in cortex and cerebellum regions. Cerebellum tissues appeared to contain more up- and down-regulated proteins (727 proteins) than cortex regions (312 proteins) of Creutzfeldt-Jakob disease, fatal familial insomnia, and G114V genetic CJD. Viral myocarditis, Parkinson's disease, Alzheimer's disease, lysosome, oxidative phosphorylation, protein export, and drug metabolism-cytochrome P450 were the most commonly affected pathways of the three kinds of diseases. Almost coincident biological functions were identified in the brain tissues of the three diseases. In all, data here demonstrate that the brain tissues of Creutzfeldt-Jakob disease, fatal familial insomnia, and G114V genetic CJD have obvious proteomics changes at their terminal stages, which show the similarities not only among human prion diseases but also with other neurodegeneration diseases. This is the first study to provide a reference proteome map for human prion diseases and will be helpful for future studies focused on potential biomarkers for the diagnosis and therapy of human prion diseases. PMID:25616867

  2. Alzheimer's disease: Is this a brain specific diabetic condition?

    PubMed

    Rani, Vanita; Deshmukh, Rahul; Jaswal, Priya; Kumar, Puneet; Bariwal, Jitender

    2016-10-01

    Alzheimer's disease (AD) and type 2 diabetes (T2DM) are the two major health issues affecting millions of elderly people worldwide, with major impacts in the patient's daily life. Numerous studies have demonstrated that patients with diabetes have an increased risk of developing AD compared with healthy individuals. The principal biological mechanisms that associate with the progression of diabetes and AD are not completely understood. Impaired insulin signaling, uncontrolled glucose metabolism, oxidative stress, abnormal protein processing, and the stimulation of inflammatory pathways are common features to both AD and T2DM. In recent years brain specific abnormalities in insulin and insulin like growth factor (IGF) signaling considered as a major trigger involved in the etiopathogenesis of AD, showing T2DM like milieu. This review summarizes the pathways that might link diabetes and AD and the effect of diminished insulin. PMID:27235734

  3. Nerve growth factor metabolic dysfunction in Down’s syndrome brains

    PubMed Central

    Iulita, M. Florencia; Do Carmo, Sonia; Ower, Alison K.; Fortress, Ashley M.; Aguilar, Lisi Flores; Hanna, Michael; Wisniewski, Thomas; Granholm, Ann-Charlotte; Buhusi, Mona; Busciglio, Jorge

    2014-01-01

    Basal forebrain cholinergic neurons play a key role in cognition. This neuronal system is highly dependent on NGF for its synaptic integrity and the phenotypic maintenance of its cell bodies. Basal forebrain cholinergic neurons progressively degenerate in Alzheimer’s disease and Down’s syndrome, and their atrophy contributes to the manifestation of dementia. Paradoxically, in Alzheimer’s disease brains, the synthesis of NGF is not affected and there is abundance of the NGF precursor, proNGF. We have shown that this phenomenon is the result of a deficit in NGF’s extracellular metabolism that compromises proNGF maturation and exacerbates its subsequent degradation. We hypothesized that a similar imbalance should be present in Down’s syndrome. Using a combination of quantitative reverse transcription-polymerase chain reaction, enzyme-linked immunosorbent assay, western blotting and zymography, we investigated signs of NGF metabolic dysfunction in post-mortem brains from the temporal (n = 14), frontal (n = 34) and parietal (n = 20) cortex obtained from subjects with Down’s syndrome and age-matched controls (age range 31–68 years). We further examined primary cultures of human foetal Down’s syndrome cortex (17–21 gestational age weeks) and brains from Ts65Dn mice (12–22 months), a widely used animal model of Down’s syndrome. We report a significant increase in proNGF levels in human and mouse Down’s syndrome brains, with a concomitant reduction in the levels of plasminogen and tissue plasminogen activator messenger RNA as well as an increment in neuroserpin expression; enzymes that partake in proNGF maturation. Human Down’s syndrome brains also exhibited elevated zymogenic activity of MMP9, the major NGF-degrading protease. Our results indicate a failure in NGF precursor maturation in Down’s syndrome brains and a likely enhanced proteolytic degradation of NGF, changes which can compromise the trophic support of basal forebrain cholinergic

  4. [Bone and calcium metabolism in life-style related diseases].

    PubMed

    Kanazawa, Ippei; Sugimoto, Toshitsugu

    2016-03-01

    Accumulating evidence shows that life-style related diseases such as diabetes mellitus, hypertension, dyslipidemia are associated with bone and calcium metabolism. Patients with diabetes mellitus have increased fracture risks, independently of bone mineral density, with abnormality of parathyroid hormone secretion and impaired osteoblastic function. On the other hand, osteocalcin secreted from bone is reported to regulate glucose metabolism. Thus, bone, calcium and glucose metabolism may be deeply associated with each other. In this review, we describe the association between life-style related diseases, especially diabetes mellitus, and metabolism of bone and calcium. PMID:26923977

  5. Metabolic Effects of Obesity and Its Interaction with Endocrine Diseases.

    PubMed

    Clark, Melissa; Hoenig, Margarethe

    2016-09-01

    Obesity in pet dogs and cats is a significant problem in developed countries, and seems to be increasing in prevalence. Excess body fat has adverse metabolic consequences, including insulin resistance, altered adipokine secretion, changes in metabolic rate, abnormal lipid metabolism, and fat accumulation in visceral organs. Obese cats are predisposed to endocrine and metabolic disorders such as diabetes and hepatic lipidosis. A connection likely also exists between obesity and diabetes mellitus in dogs. No system has been developed to identify obese pets at greatest risk for development of obesity-associated metabolic diseases, and further study in this area is needed. PMID:27297495

  6. Dissociation between Brain Amyloid Deposition and Metabolism in Early Mild Cognitive Impairment

    PubMed Central

    Wu, Liyong; Rowley, Jared; Mohades, Sara; Leuzy, Antoine; Dauar, Marina Tedeschi; Shin, Monica; Fonov, Vladimir; Jia, Jianping; Gauthier, Serge; Rosa-Neto, Pedro

    2012-01-01

    Background The hypothetical model of dynamic biomarkers for Alzheimer’s disease (AD) describes high amyloid deposition and hypometabolism at the mild cognitive impairment (MCI) stage. However, it remains unknown whether brain amyloidosis and hypometabolism follow the same trajectories in MCI individuals. We used the concept of early MCI (EMCI) and late MCI (LMCI) as defined by the Alzheimer’s disease Neuroimaging Initiative (ADNI)-Go in order to compare the biomarker profile between EMCI and LMCI. Objectives To examine the global and voxel-based neocortical amyloid burden and metabolism among individuals who are cognitively normal (CN), as well as those with EMCI, LMCI and mild AD. Methods In the present study, 354 participants, including CN (n = 109), EMCI (n = 157), LMCI (n = 39) and AD (n = 49), were enrolled between September 2009 and November 2011 through ADNI-GO and ADNI-2. Brain amyloid load and metabolism were estimated using [18F]AV45 and [18F]fluorodeoxyglucose ([18F]FDG) PET, respectively. Uptake ratio images of [18F]AV45 and [18F]FDG were calculated by dividing the summed PET image by the median counts of the grey matter of the cerebellum and pons, respectively. Group differences of global [18F]AV45 and [18F]FDG were analyzed using ANOVA, while the voxel-based group differences were estimated using statistic parametric mapping (SPM). Results EMCI patients showed higher global [18F]AV45 retention compared to CN and lower uptake compared to LMCI. SPM detected higher [18F]AV45 uptake in EMCI compared to CN in the precuneus, posterior cingulate, medial and dorsal lateral prefrontal cortices, bilaterally. EMCI showed lower [18F]AV45 retention than LMCI in the superior temporal, inferior parietal, as well as dorsal lateral prefrontal cortices, bilaterally. Regarding to the global [18F]FDG, EMCI patients showed no significant difference from CN and a higher uptake ratio compared to LMCI. At the voxel level, EMCI showed higher metabolism in

  7. Traumatic Brain Injury Alters Methionine Metabolism: Implications for Pathophysiology

    PubMed Central

    Dash, Pramod K.; Hergenroeder, Georgene W.; Jeter, Cameron B.; Choi, H. Alex; Kobori, Nobuhide; Moore, Anthony N.

    2016-01-01

    Methionine is an essential proteinogenic amino acid that is obtained from the diet. In addition to its requirement for protein biosynthesis, methionine is metabolized to generate metabolites that play key roles in a number of cellular functions. Metabolism of methionine via the transmethylation pathway generates S-adenosylmethionine (SAM) that serves as the principal methyl (−CH3) donor for DNA and histone methyltransferases (MTs) to regulate epigenetic changes in gene expression. SAM is also required for methylation of other cellular proteins that serve various functions and phosphatidylcholine synthesis that participate in cellular signaling. Under conditions of oxidative stress, homocysteine (which is derived from SAM) enters the transsulfuration pathway to generate glutathione, an important cytoprotective molecule against oxidative damage. As both experimental and clinical studies have shown that traumatic brain injury (TBI) alters DNA and histone methylation and causes oxidative stress, we examined if TBI alters the plasma levels of methionine and its metabolites in human patients. Blood samples were collected from healthy volunteers (HV; n = 20) and patients with mild TBI (mTBI; GCS > 12; n = 20) or severe TBI (sTBI; GCS < 8; n = 20) within the first 24 h of injury. The levels of methionine and its metabolites in the plasma samples were analyzed by either liquid chromatography-mass spectrometry or gas chromatography-mass spectrometry (LC-MS or GC-MS). sTBI decreased the levels of methionine, SAM, betaine and 2-methylglycine as compared to HV, indicating a decrease in metabolism through the transmethylation cycle. In addition, precursors for the generation of glutathione, cysteine and glycine were also found to be decreased as were intermediate metabolites of the gamma-glutamyl cycle (gamma-glutamyl amino acids and 5-oxoproline). mTBI also decreased the levels of methionine, α-ketobutyrate, 2 hydroxybutyrate and glycine, albeit to lesser degrees than

  8. Traumatic Brain Injury Alters Methionine Metabolism: Implications for Pathophysiology.

    PubMed

    Dash, Pramod K; Hergenroeder, Georgene W; Jeter, Cameron B; Choi, H Alex; Kobori, Nobuhide; Moore, Anthony N

    2016-01-01

    Methionine is an essential proteinogenic amino acid that is obtained from the diet. In addition to its requirement for protein biosynthesis, methionine is metabolized to generate metabolites that play key roles in a number of cellular functions. Metabolism of methionine via the transmethylation pathway generates S-adenosylmethionine (SAM) that serves as the principal methyl (-CH3) donor for DNA and histone methyltransferases (MTs) to regulate epigenetic changes in gene expression. SAM is also required for methylation of other cellular proteins that serve various functions and phosphatidylcholine synthesis that participate in cellular signaling. Under conditions of oxidative stress, homocysteine (which is derived from SAM) enters the transsulfuration pathway to generate glutathione, an important cytoprotective molecule against oxidative damage. As both experimental and clinical studies have shown that traumatic brain injury (TBI) alters DNA and histone methylation and causes oxidative stress, we examined if TBI alters the plasma levels of methionine and its metabolites in human patients. Blood samples were collected from healthy volunteers (HV; n = 20) and patients with mild TBI (mTBI; GCS > 12; n = 20) or severe TBI (sTBI; GCS < 8; n = 20) within the first 24 h of injury. The levels of methionine and its metabolites in the plasma samples were analyzed by either liquid chromatography-mass spectrometry or gas chromatography-mass spectrometry (LC-MS or GC-MS). sTBI decreased the levels of methionine, SAM, betaine and 2-methylglycine as compared to HV, indicating a decrease in metabolism through the transmethylation cycle. In addition, precursors for the generation of glutathione, cysteine and glycine were also found to be decreased as were intermediate metabolites of the gamma-glutamyl cycle (gamma-glutamyl amino acids and 5-oxoproline). mTBI also decreased the levels of methionine, α-ketobutyrate, 2 hydroxybutyrate and glycine, albeit to lesser degrees than detected

  9. Physical Activity Protects the Human Brain against Metabolic Stress Induced by a Postprandial and Chronic Inflammation

    PubMed Central

    Pruimboom, Leo; Raison, Charles L.; Muskiet, Frits A. J.

    2015-01-01

    In recent years, it has become clear that chronic systemic low-grade inflammation is at the root of many, if not all, typically Western diseases associated with the metabolic syndrome. While much focus has been given to sedentary lifestyle as a cause of chronic inflammation, it is less often appreciated that chronic inflammation may also promote a sedentary lifestyle, which in turn causes chronic inflammation. Given that even minor increases in chronic inflammation reduce brain volume in otherwise healthy individuals, the bidirectional relationship between inflammation and sedentary behaviour may explain why humans have lost brain volume in the last 30,000 years and also intelligence in the last 30 years. We review evidence that lack of physical activity induces chronic low-grade inflammation and, consequently, an energy conflict between the selfish immune system and the selfish brain. Although the notion that increased physical activity would improve health in the modern world is widespread, here we provide a novel perspective on this truism by providing evidence that recovery of normal human behaviour, such as spontaneous physical activity, would calm proinflammatory activity, thereby allocating more energy to the brain and other organs, and by doing so would improve human health. PMID:26074674

  10. Nonalcoholic fatty liver disease: a precursor of the metabolic syndrome.

    PubMed

    Lonardo, Amedeo; Ballestri, Stefano; Marchesini, Giulio; Angulo, Paul; Loria, Paola

    2015-03-01

    The conventional paradigm of nonalcoholic fatty liver disease representing the "hepatic manifestation of the metabolic syndrome" is outdated. We identified and summarized longitudinal studies that, supporting the association of nonalcoholic fatty liver disease with either type 2 diabetes mellitus or metabolic syndrome, suggest that nonalcoholic fatty liver disease precedes the development of both conditions. Online Medical databases were searched, relevant articles were identified, their references were further assessed and tabulated data were checked. Although several cross-sectional studies linked nonalcoholic fatty liver disease to either diabetes and other components of the metabolic syndrome, we focused on 28 longitudinal studies which provided evidence for nonalcoholic fatty liver disease as a risk factor for the future development of diabetes. Moreover, additional 19 longitudinal reported that nonalcoholic fatty liver disease precedes and is a risk factor for the future development of the metabolic syndrome. Finally, molecular and genetic studies are discussed supporting the view that aetiology of steatosis and lipid intra-hepatocytic compartmentation are a major determinant of whether fatty liver is/is not associated with insulin resistance and metabolic syndrome. Data support the novel paradigm of nonalcoholic fatty liver disease as a strong determinant for the development of the metabolic syndrome, which has potentially relevant clinical implications for diagnosing, preventing and treating metabolic syndrome. PMID:25739820

  11. Adaptive deep brain stimulation in Parkinson's disease.

    PubMed

    Beudel, M; Brown, P

    2016-01-01

    Although Deep Brain Stimulation (DBS) is an established treatment for Parkinson's disease (PD), there are still limitations in terms of effectivity, side-effects and battery consumption. One of the reasons for this may be that not only pathological but also physiological neural activity can be suppressed whilst stimulating. For this reason, adaptive DBS (aDBS), where stimulation is applied according to the level of pathological activity, might be advantageous. Initial studies of aDBS demonstrate effectiveness in PD, but there are still many questions to be answered before aDBS can be applied clinically. Here we discuss the feedback signals and stimulation algorithms involved in adaptive stimulation in PD and sketch a potential road-map towards clinical application. PMID:26411502

  12. Drug Metabolism within the Brain Changes Drug Response: Selective Manipulation of Brain CYP2B Alters Propofol Effects

    PubMed Central

    Khokhar, Jibran Y; Tyndale, Rachel F

    2011-01-01

    Drug-metabolizing cytochrome P450 (CYPs) enzymes are expressed in the liver, as well as in extrahepatic tissues such as the brain. Here we show for the first time that drug metabolism by a CYP within the brain, illustrated using CYP2B and the anesthetic propofol (2, 6-diisopropylphenol, Diprivan), can meaningfully alter the pharmacological response to a CNS acting drug. CYP2B is expressed in the brains of animals and humans, and this CYP isoform is able to metabolize centrally acting substrates such as propofol, ecstasy, and serotonin. Rats were given intracerebroventricularly (i.c.v.) injections of vehicle, C8-xanthate, or 8-methoxypsoralen (CYP2B mechanism-based inhibitors) and then tested for sleep time following propofol (80 mg/kg intraperitoneally). Both inhibitors significantly increased sleep-time (1.8- to 2-fold) and brain propofol levels, while having no effect on plasma propofol levels. Seven days of nicotine treatment can induce the expression of brain, but not hepatic, CYP2B, and this induction reduced propofol sleep times by 2.5-fold. This reduction was reversed in a dose-dependent manner by i.c.v. injections of inhibitor. Sleep times correlated with brain (r=0.76, P=0.0009), but not plasma (r=0.24, P=0.39) propofol concentrations. Inhibitor treatments increased brain, but not plasma, propofol levels, and had no effect on hepatic enzyme activity. These data indicate that brain CYP2B can metabolize neuroactive substrates (eg, propofol) and can alter their pharmacological response. This has wider implications for localized CYP-mediated metabolism of drugs, neurotransmitters, and neurotoxins within the brain by this highly variable enzyme family and other CYP subfamilies expressed in the brain. PMID:21107310

  13. Experimental Periodontitis Results in Prediabetes and Metabolic Alterations in Brain, Liver and Heart: Global Untargeted Metabolomic Analyses

    PubMed Central

    Ilievski, Vladimir; Kinchen, Jason M; Prabhu, Ramya; Rim, Fadi; Leoni, Lara; Unterman, Terry G.; Watanabe, Keiko

    2016-01-01

    Results from epidemiological studies suggest that there is an association between periodontitis and prediabetes, however, causality is not known. The results from our previous studies suggest that induction of periodontitis leads to hyperinsulinemia glucose intolerance and insulin resistance, all hallmarks of prediabetes. However, global effects of periodontitis on critical organs in terms of metabolic alterations are unknown. We determined the metabolic effects of periodontitis on brain, liver, heart and plasma resulting from Porphyromonas gingivalis induced periodontitis in mice. Periodontitis was induced by oral application of the periodontal pathogen, Porphyromonas gingivalis for 22 weeks. Global untargeted biochemical profiles in samples from these organs/plasma were determined by liquid and gas chromatography/mass spectrometry and compared between controls and animals with periodontitis. Oral application of Porphyromonas gingivalis induced chronic periodontitis and hallmarks of prediabetes. The results of sample analyses indicated a number of changes in metabolic readouts, including changes in metabolites related to glucose and arginine metabolism, inflammation and redox homeostasis. Changes in biochemicals suggested subtle systemic effects related to periodontal disease, with increases in markers of inflammation and oxidative stress most prominent in the liver. Signs of changes in redox homeostasis were also seen in the brain and heart. Elevated bile acids in liver were suggestive of increased biosynthesis, which may reflect changes in liver function. Interestingly, signs of decreasing glucose availability were seen in the brain. In all three organs and plasma, there was a significant increase in the microbiome-derived bioactive metabolite 4-ethylphenylsulfate sulfate in animals with periodontitis. The results of metabolic profiling suggest that periodontitis/bacterial products alter metabolomic signatures of brain, heart, liver, and plasma in the

  14. Metabolic correction in microglia derived from Sandhoff disease model mice.

    PubMed

    Tsuji, Daisuke; Kuroki, Aya; Ishibashi, Yasuhiro; Itakura, Tomohiro; Itoh, Kohji

    2005-09-01

    Sandhoff disease is an autosomal recessive lysosomal storage disease caused by a defect of the beta-subunit gene (HEXB) associated with simultaneous deficiencies of beta-hexosaminidase A (HexA; alphabeta) and B (HexB; betabeta), and excessive accumulation of GM2 ganglioside (GM2) and oligosaccharides with N-acetylglucosamine (GlcNAc) residues at their non-reducing termini. Recent studies have shown the involvement of microglial activation in neuroinflammation and neurodegeneration of this disease. We isolated primary microglial cells from the neonatal brains of Sandhoff disease model mice (SD mice) produced by disruption of the murine Hex beta-subunit gene allele (Hexb-/-). The cells expressed microglial cell-specific ionized calcium binding adaptor molecule 1 (Iba1)-immunoreactivity (IR) and antigen recognized by Ricinus communis agglutinin lectin-120 (RCA120), but not glial fibrillary acidic protein (GFAP)-IR specific for astrocytes. They also demonstrated significant intracellular accumulation of GM2 and GlcNAc-oligosaccharides. We produced a lentiviral vector encoding for the murine Hex beta-subunit and transduced it into the microglia from SD mice with the recombinant lentivirus, causing elimination of the intracellularly accumulated GM2 and GlcNAc-oligosaccharides and secretion of Hex isozyme activities from the transduced SD microglial cells. Recomibinant HexA isozyme isolated from the conditioned medium of a Chinese hamster ovary (CHO) cell line simultaneously expressing the human HEXA (alpha-subunit) and HEXB genes was also found to be incorporated into the SD microglia via cell surface cation-independent mannose 6-phosphate receptor and mannose receptor to degrade the intracellularly accumulated GM2 and GlcNAc-oligosaccharides. These results suggest the therapeutic potential of recombinant lentivirus encoding the murine Hex beta-subunit and the human HexA isozyme (alphabeta heterodimer) for metabolic cross-correction in microglial cells involved in

  15. Cancer as a metabolic disease: implications for novel therapeutics.

    PubMed

    Seyfried, Thomas N; Flores, Roberto E; Poff, Angela M; D'Agostino, Dominic P

    2014-03-01

    Emerging evidence indicates that cancer is primarily a metabolic disease involving disturbances in energy production through respiration and fermentation. The genomic instability observed in tumor cells and all other recognized hallmarks of cancer are considered downstream epiphenomena of the initial disturbance of cellular energy metabolism. The disturbances in tumor cell energy metabolism can be linked to abnormalities in the structure and function of the mitochondria. When viewed as a mitochondrial metabolic disease, the evolutionary theory of Lamarck can better explain cancer progression than can the evolutionary theory of Darwin. Cancer growth and progression can be managed following a whole body transition from fermentable metabolites, primarily glucose and glutamine, to respiratory metabolites, primarily ketone bodies. As each individual is a unique metabolic entity, personalization of metabolic therapy as a broad-based cancer treatment strategy will require fine-tuning to match the therapy to an individual's unique physiology. PMID:24343361

  16. Cancer as a metabolic disease: implications for novel therapeutics

    PubMed Central

    Seyfried, Thomas N.

    2014-01-01

    Emerging evidence indicates that cancer is primarily a metabolic disease involving disturbances in energy production through respiration and fermentation. The genomic instability observed in tumor cells and all other recognized hallmarks of cancer are considered downstream epiphenomena of the initial disturbance of cellular energy metabolism. The disturbances in tumor cell energy metabolism can be linked to abnormalities in the structure and function of the mitochondria. When viewed as a mitochondrial metabolic disease, the evolutionary theory of Lamarck can better explain cancer progression than can the evolutionary theory of Darwin. Cancer growth and progression can be managed following a whole body transition from fermentable metabolites, primarily glucose and glutamine, to respiratory metabolites, primarily ketone bodies. As each individual is a unique metabolic entity, personalization of metabolic therapy as a broad-based cancer treatment strategy will require fine-tuning to match the therapy to an individual’s unique physiology. PMID:24343361

  17. Brain catecholamine metabolism in catechol-O-methyltransferase (COMT)-deficient mice.

    PubMed

    Huotari, Marko; Gogos, Joseph A; Karayiorgou, Maria; Koponen, Olli; Forsberg, Markus; Raasmaja, Atso; Hyttinen, Juha; Männistö, Pekka T

    2002-01-01

    Catechol-O-methyltransferase (COMT) catalyses the O-methylation of compounds having a catechol structure and its main function involves the elimination of biologically active or toxic catechols and their metabolites. By means of homologous recombination in embryonic stem cells, a strain of mice has been produced in which the gene encoding the COMT enzyme is disrupted. We report here the levels of catecholamines and their metabolites in striatal extracellular fluid in these mice as well as in homogenates from different parts of the brain, under normal conditions and after acute levodopa administration. In immunoblotting studies, COMT-knockout mice had no COMT protein in brain or kidney tissues but the amounts of catecholamine synthesizing and other metabolizing enzyme proteins were normal. Under normal conditions, COMT deficiency does not appear to affect significantly brain dopamine and noradrenaline levels in spite of relevant changes in their metabolites. This finding is consistent with previous pharmacological studies with COMT inhibitors and confirms the pivotal role of synaptic reuptake processes and monoamine oxidase-dependent metabolism in terminating the actions of catecholamines at nerve terminals. In contrast, when COMT-deficient mice are challenged with l-dihydroxyphenylalanine, they show an extensive accumulation of 3,4-dihydroxyphenylacetic acid and dihydroxyphenylglycol and even dopamine, revealing an important role for COMT under such situations. Notably, in some cases these changes appear to be Comt gene dosage-dependent, brain-region specific and sexually dimorphic. Our results may have implications for improving the treatment of Parkinson's disease and for understanding the contribution of the natural variation in COMT activity to psychiatric phenotypes. PMID:11849292

  18. Brain injury, neuroinflammation and Alzheimer's disease

    PubMed Central

    Breunig, Joshua J.; Guillot-Sestier, Marie-Victoire; Town, Terrence

    2013-01-01

    With as many as 300,000 United States troops in Iraq and Afghanistan having suffered head injuries (Miller, 2012), traumatic brain injury (TBI) has garnered much recent attention. While the cause and severity of these injuries is variable, severe cases can lead to lifelong disability or even death. While aging is the greatest risk factor for Alzheimer's disease (AD), it is now becoming clear that a history of TBI predisposes the individual to AD later in life (Sivanandam and Thakur, 2012). In this review article, we begin by defining hallmark pathological features of AD and the various forms of TBI. Putative mechanisms underlying the risk relationship between these two neurological disorders are then critically considered. Such mechanisms include precipitation and ‘spreading’ of cerebral amyloid pathology and the role of neuroinflammation. The combined problems of TBI and AD represent significant burdens to public health. A thorough, mechanistic understanding of the precise relationship between TBI and AD is of utmost importance in order to illuminate new therapeutic targets. Mechanistic investigations and the development of preclinical therapeutics are reliant upon a clearer understanding of these human diseases and accurate modeling of pathological hallmarks in animal systems. PMID:23874297

  19. The Co-Metabolism within the Gut-Brain Metabolic Interaction: Potential Targets for Drug Treatment and Design.

    PubMed

    Obrenovich, Mark; Flückiger, Rudolf; Sykes, Lorraine; Donskey, Curtis

    2016-01-01

    We know that within the complex mammalian gut is any number of metabolic biomes. The gut has been sometimes called the "second brain" within the "gut-brain axis". A more informative term would be the gut-brain metabolic interactome, which is coined here to underscore the relationship between the digestive system and cognitive function or dysfunction as the case may be. Co-metabolism between the host and the intestinal microbiota is essential for life's processes. How diet, lifestyle, antibiotics and other factors shape the gut microbiome constitutes a rapidly growing area of research. Conversely, the gut microbiome also affects mammalian systems. Metabolites of the gut-brain axis are potential targets for treatment and drug design since the interaction or biochemical interplay results in net metabolite production or end-products with either positive or negative effects on human health. This review explores the gut-brain metabolic interactome, with particular emphasis on drug design and treatment strategies and how commensal bacteria or their disruption lead to dysbiosis and the effect this has on neurochemistry. Increasing data indicate that the intestinal microbiome can affect neurobiology, from mental and even behavioral health to memory, depression, mood, anxiety, obesity, cravings and even the creation and maintenance of the blood brain barrier. PMID:26831263

  20. BOLD-based Techniques for Quantifying Brain Hemodynamic and Metabolic Properties – Theoretical Models and Experimental Approaches

    PubMed Central

    Yablonskiy, Dmitriy A.; Sukstanskii, Alexander L.; He, Xiang

    2012-01-01

    Quantitative evaluation of brain hemodynamics and metabolism, particularly the relationship between brain function and oxygen utilization, is important for understanding normal human brain operation as well as pathophysiology of neurological disorders. It can also be of great importance for evaluation of hypoxia within tumors of the brain and other organs. A fundamental discovery by Ogawa and co-workers of the BOLD (Blood Oxygenation Level Dependent) contrast opened a possibility to use this effect to study brain hemodynamic and metabolic properties by means of MRI measurements. Such measurements require developing theoretical models connecting MRI signal to brain structure and functioning and designing experimental techniques allowing MR measurements of salient features of theoretical models. In our review we discuss several such theoretical models and experimental methods for quantification brain hemodynamic and metabolic properties. Our review aims mostly at methods for measuring oxygen extraction fraction, OEF, based on measuring blood oxygenation level. Combining measurement of OEF with measurement of CBF allows evaluation of oxygen consumption, CMRO2. We first consider in detail magnetic properties of blood – magnetic susceptibility, MR relaxation and theoretical models of intravascular contribution to MR signal under different experimental conditions. Then, we describe a “through-space” effect – the influence of inhomogeneous magnetic fields, created in the extravascular space by intravascular deoxygenated blood, on the MR signal formation. Further we describe several experimental techniques taking advantage of these theoretical models. Some of these techniques - MR susceptometry, and T2-based quantification of oxygen OEF – utilize intravascular MR signal. Another technique – qBOLD – evaluates OEF by making use of through-space effects. In this review we targeted both scientists just entering the MR field and more experienced MR researchers

  1. Interorgan ammonia metabolism in health and disease: a surgeon's view.

    PubMed

    Souba, W W

    1987-01-01

    Ammonia is a toxic molecule that is the principal by-product of amino acid metabolism. Although the transport of ammonia in a nontoxic form protects the brain against high circulating levels, the interorgan transport of this molecule and the orchestration between tissues that has evolved is related primarily to the fact that the nitrogen molecule is an essential molecule for the maintenance of the body's nutrition economy and overall metabolic homeostasis. Efficient handling and disposal of ammonia requires a cooperative effort between tissues in order to maintain nitrogen homeostasis. The liver is the central organ of ammonia metabolism, but other organs also play a key role in the interorgan exchange of this molecule. Alterations in ammonia metabolism occur during critical illness. These changes are adaptive and are designed to maintain metabolic homeostasis. Interorgan cooperation in ammonia metabolism is necessary to insure the proper integration of the metabolic processes which contribute to and are essential for survival during critical illness. An understanding of these processes improves our knowledge of metabolic regulation and will lead to a rational approach to the nutritional and metabolic support provided to critically ill patients. PMID:3323556

  2. Fatty acid metabolism: Implications for diet, genetic variation, and disease

    PubMed Central

    Suburu, Janel; Gu, Zhennan; Chen, Haiqin; Chen, Wei; Zhang, Hao; Chen, Yong Q.

    2014-01-01

    Cultures across the globe, especially Western societies, are burdened by chronic diseases such as obesity, metabolic syndrome, cardiovascular disease, and cancer. Several factors, including diet, genetics, and sedentary lifestyle, are suspected culprits to the development and progression of these health maladies. Fatty acids are primary constituents of cellular physiology. Humans can acquire fatty acids by de novo synthesis from carbohydrate or protein sources or by dietary consumption. Importantly, regulation of their metabolism is critical to sustain balanced homeostasis, and perturbations of such can lead to the development of disease. Here, we review de novo and dietary fatty acid metabolism and highlight recent advances in our understanding of the relationship between dietary influences and genetic variation in fatty acid metabolism and their role in chronic diseases. PMID:24511462

  3. Quercetin in brain diseases: Potential and limits.

    PubMed

    Dajas, Federico; Abin-Carriquiry, Juan Andrés; Arredondo, Florencia; Blasina, Fernanda; Echeverry, Carolina; Martínez, Marcela; Rivera, Felicia; Vaamonde, Lucía

    2015-10-01

    Quercetin is a ubiquitous flavonoid present in beverages, food and plants that has been demonstrated to have a role in the prevention of neurodegenerative and cerebrovascular diseases. In neuronal culture, quercetin increases survival against oxidative insults. Antioxidation appears to be a necessary but not sufficient condition for its neuroprotective action and modulation of intracellular signaling and transcription factors, increasing the expression of antioxidant and pro survival proteins and modulating inflammation, appears as important for neuronal protection. Quercetin also regulates the activity of kinases, changing the phosphorylation state of target molecules, resulting in modulation of cellular function and gene expression. Concentrations of quercetin higher than 100 μM consistently show cytotoxic and apoptotic effects by its autoxidation and generation of toxic quinones. In vivo, results are controversial with some studies showing neuroprotection by quercetin and others not, requiring a drug delivery system or chronic treatments to show neuroprotective effects. The blood and brain bioavailability of free quercetin after ingestion is a complex and controversial process that produces final low concentrations, a fact that has led to suggestions that metabolites would be active by themselves and/or as pro-drugs that would release the active aglycone in the brain. Available studies show that in normal or low oxidative conditions, chronic treatments with quercetin contributes to re-establish the redox regulation of proteins, transcription factors and survival signaling cascades that promote survival. In the presence of highly oxidative conditions such as in an ischemic tissue, quercetin could become pro-oxidant and toxic. At present, evidence points to quercetin as a preventive molecule for neuropathology when administered in natural matrices such as vegetables and food. More research is needed to support its use as a lead compound in its free form in

  4. Brain polyphosphoinositide metabolism during focal ischemia in rat cortex

    SciTech Connect

    Lin, T.N.; Liu, T.H.; Xu, J.; Hsu, C.Y.; Sun, G.Y. )

    1991-04-01

    Using a rat model of stroke, we examined the effects of focal cerebral ischemia on the metabolism of polyphosphoinositides by injecting {sup 32}Pi into both the left and right cortices. After equilibration of the label for 2-3 hours, ischemia induced a significant decrease (p less than 0.001) in the concentrations of labeled phosphatidyl 4,5-bisphosphates (66-78%) and phosphatidylinositol 4-phosphate (64-67%) in the right middle cerebral artery cortex of four rats. The phospholipid labeling pattern in the left middle cerebral artery cortex, which sustained only mild ischemia and no permanent tissue damage, was not different from that of two sham-operated controls. However, when {sup 32}Pi was injected 1 hour after the ischemic insult, there was a significant decrease (p less than 0.01) in the incorporation of label into the phospholipids in both cortices of four ischemic rats compared with four sham-operated controls. Furthermore, differences in the phospholipid labeling pattern were observed in the left cortex compared with the sham-operated controls. The change in labeling pattern was attributed to the partial reduction in blood flow following ligation of the common carotid arteries. We provide a sensitive procedure for probing the effects of focal cerebral ischemia on the polyphosphoinositide signaling pathway in the brain, which may play an important role in the pathogenesis of tissue injury.

  5. Brain Metabolism during Hallucination-Like Auditory Stimulation in Schizophrenia

    PubMed Central

    Horga, Guillermo; Fernández-Egea, Emilio; Mané, Anna; Font, Mireia; Schatz, Kelly C.; Falcon, Carles; Lomeña, Francisco; Bernardo, Miguel; Parellada, Eduard

    2014-01-01

    Auditory verbal hallucinations (AVH) in schizophrenia are typically characterized by rich emotional content. Despite the prominent role of emotion in regulating normal perception, the neural interface between emotion-processing regions such as the amygdala and auditory regions involved in perception remains relatively unexplored in AVH. Here, we studied brain metabolism using FDG-PET in 9 remitted patients with schizophrenia that previously reported severe AVH during an acute psychotic episode and 8 matched healthy controls. Participants were scanned twice: (1) at rest and (2) during the perception of aversive auditory stimuli mimicking the content of AVH. Compared to controls, remitted patients showed an exaggerated response to the AVH-like stimuli in limbic and paralimbic regions, including the left amygdala. Furthermore, patients displayed abnormally strong connections between the amygdala and auditory regions of the cortex and thalamus, along with abnormally weak connections between the amygdala and medial prefrontal cortex. These results suggest that abnormal modulation of the auditory cortex by limbic-thalamic structures might be involved in the pathophysiology of AVH and may potentially account for the emotional features that characterize hallucinatory percepts in schizophrenia. PMID:24416328

  6. Pyruvate dehydrogenase complex: metabolic link to ischemic brain injury and target of oxidative stress.

    PubMed

    Martin, Erica; Rosenthal, Robert E; Fiskum, Gary

    The mammalian pyruvate dehydrogenase complex (PDHC) is a mitochondrial matrix enzyme complex (greater than 7 million Daltons) that catalyzes the oxidative decarboxylation of pyruvate to form acetyl CoA, nicotinamide adenine dinucleotide (the reduced form, NADH), and CO(2). This reaction constitutes the bridge between anaerobic and aerobic cerebral energy metabolism. PDHC enzyme activity and immunoreactivity are lost in selectively vulnerable neurons after cerebral ischemia and reperfusion. Evidence from experiments carried out in vitro suggests that reperfusion-dependent loss of activity is caused by oxidative protein modifications. Impaired enzyme activity may explain the reduced cerebral glucose and oxygen consumption that occurs after cerebral ischemia. This hypothesis is supported by the hyperoxidation of mitochondrial electron transport chain components and NAD(H) that occurs during reperfusion, indicating that NADH production, rather than utilization, is rate limiting. Additional support comes from the findings that immediate postischemic administration of acetyl-L-carnitine both reduces brain lactate/pyruvate ratios and improves neurologic outcome after cardiac arrest in animals. As acetyl-L-carnitine is converted to acetyl CoA, the product of the PDHC reaction, it follows that impaired production of NADH is due to reduced activity of either PDHC or one or more steps in glycolysis. Impaired cerebral energy metabolism and PDHC activity are associated also with neurodegenerative disorders including Alzheimer's disease and Wernicke-Korsakoff syndrome, suggesting that this enzyme is an important link in the pathophysiology of both acute brain injury and chronic neurodegeneration. PMID:15562436

  7. Pyruvate Dehydrogenase Complex: Metabolic Link to Ischemic Brain Injury and Target of Oxidative Stress

    PubMed Central

    Martin, Erica; Rosenthal, Robert E.; Fiskum, Gary

    2008-01-01

    The mammalian pyruvate dehydrogenase complex (PDHC) is a mitochondrial matrix enzyme complex (greater than 7 million Daltons) that catalyzes the oxidative decarboxylation of pyruvate to form acetyl CoA, nicotinamide adenine dinucleotide (the reduced form, NADH), and CO2. This reaction constitutes the bridge between anaerobic and aerobic cerebral energy metabolism. PDHC enzyme activity and immunoreactivity are lost in selectively vulnerable neurons after cerebral ischemia and reperfusion. Evidence from experiments carried out in vitro suggests that reperfusion-dependent loss of activity is caused by oxidative protein modifications. Impaired enzyme activity may explain the reduced cerebral glucose and oxygen consumption that occurs after cerebral ischemia. This hypothesis is supported by the hyperoxidation of mitochondrial electron transport chain components and NAD(H) that occurs during reperfusion, indicating that NADH production, rather than utilization, is rate limiting. Additional support comes from the findings that immediate postischemic administration of acetyl-l-carnitine both reduces brain lactate/pyruvate ratios and improves neurologic outcome after cardiac arrest in animals. As acetyl-l-carnitine is converted to acetyl CoA, the product of the PDHC reaction, it follows that impaired production of NADH is due to reduced activity of either PDHC or one or more steps in glycolysis. Impaired cerebral energy metabolism and PDHC activity are associated also with neurodegenerative disorders including Alzheimer's disease and Wernicke-Korsakoff syndrome, suggesting that this enzyme is an important link in the pathophysiology of both acute brain injury and chronic neurodegeneration. PMID:15562436

  8. Non-invasive measurement of brain glycogen by NMR spectroscopy and its application to the study of brain metabolism

    PubMed Central

    Tesfaye, Nolawit; Seaquist, Elizabeth R.; Öz, Gülin

    2011-01-01

    Glycogen is the reservoir for glucose in the brain. Beyond the general agreement that glycogen serves as an energy source in the central nervous system, its exact role in brain energy metabolism has yet to be elucidated. Experiments performed in cell and tissue culture and animals have shown that glycogen content is affected by several factors including glucose, insulin, neurotransmitters, and neuronal activation. The study of in vivo glycogen metabolism has been hindered by the inability to measure glycogen non-invasively, but in the past several years, the development of a non-invasive localized 13C nuclear magnetic resonance (NMR) spectroscopy method has enabled the study of glycogen metabolism in the conscious human. With this technique, 13C-glucose is administered intravenously and its incorporation into and wash-out from brain glycogen is tracked. One application of this method has been to the study of brain glycogen metabolism in humans during hypoglycemia: data have shown that mobilization of brain glycogen is augmented during hypoglycemia and, after a single episode of hypoglycemia, glycogen synthesis rate is increased, suggesting that glycogen stores rebound to levels greater than baseline. Such studies suggest glycogen may serve as a potential energy reservoir in hypoglycemia and may participate in the brain's adaptation to recurrent hypoglycemia and eventual development of hypoglycemia unawareness. Beyond this focused area of study, 13C NMR spectroscopy has a broad potential for application in the study of brain glycogen metabolism and carries the promise of a better understanding of the role of brain glycogen in diabetes and other conditions. PMID:21732401

  9. Reassessing the relationship between brain size, life history, and metabolism at the marsupial/placental dichotomy.

    PubMed

    Weisbecker, Vera; Goswami, Anjali

    2014-09-01

    A vigorous discussion surrounds the question as to what enables some mammals--including primates and cetaceans--to evolve large brains. We recently published a study suggesting that the radiation of marsupial mammals is highly relevant to this question because of the unique reproductive and metabolic traits within this clade. In particular, we controversially suggested that marsupial brain sizes are not systematically smaller than those of placentals, and that elevated basal metabolic rates (BMR) are not linked to larger marsupial brains. As our dataset was found to contain some erroneous body size data, derived from a published source, we here use an updated and corrected dataset and employ standard as well as phylogenetically corrected analyses to re-assess and elaborate on our original conclusions. Our proposal that marsupials are not systematically smaller-brained than placentals remains supported, particularly when the unusually large-brained placental clade, Primates, is excluded. Use of the new dataset not only confirms that high metabolic rates are not associated with larger brain size in marsupials, but we additionally find some support for a striking negative correlation between BMR and brain size. The best supported correlates of large brain size remain the reproductive traits of weaning age and litter size. These results support our suggestion that mammalian brain sizes (including, by inference, those of monotremes) are predominantly constrained by the ability of females to fuel the growth of their offspring's large brains, rather than by the maintenance requirements of the adult brain. PMID:25186933

  10. Acute alcohol intoxication decreases glucose metabolism but increases acetate uptake in the human brain.

    PubMed

    Volkow, Nora D; Kim, Sung Won; Wang, Gene-Jack; Alexoff, David; Logan, Jean; Muench, Lisa; Shea, Colleen; Telang, Frank; Fowler, Joanna S; Wong, Christopher; Benveniste, Helene; Tomasi, Dardo

    2013-01-01

    Alcohol intoxication results in marked reductions in brain glucose metabolism, which we hypothesized reflect not just its GABAergic enhancing effects but also the metabolism of acetate as an alternative brain energy source. To test this hypothesis we separately assessed the effects of alcohol intoxication on brain glucose and acetate metabolism using Positron Emission Tomography (PET). We found that alcohol intoxication significantly decreased whole brain glucose metabolism (measured with FDG) with the largest decrements in cerebellum and occipital cortex and the smallest in the thalamus. In contrast, alcohol intoxication caused a significant increase in [1-(11)C]acetate brain uptake (measured as standard uptake value, SUV), with the largest increases occurring in the cerebellum and the smallest in the thalamus. In heavy alcohol drinkers [1-(11)C]acetate brain uptake during alcohol challenge tended to be higher than in occasional drinkers (p<0.06) and the increases in [1-(11)C]acetate uptake in cerebellum with alcohol were positively associated with the reported amount of alcohol consumed (r=0.66, p<0.01). Our findings corroborate a reduction of brain glucose metabolism during intoxication and document an increase in brain acetate uptake. The opposite changes observed between regional brain metabolic decrements and regional increases in [1-(11)C]acetate uptake support the hypothesis that during alcohol intoxication the brain may rely on acetate as an alternative brain energy source and provides preliminary evidence that heavy alcohol exposures may facilitate the use of acetate as an energy substrate. These findings raise the question of the potential therapeutic benefits that increasing plasma acetate concentration (i.e. ketogenic diets) may have in alcoholics undergoing alcohol detoxification. PMID:22947541

  11. Neuropsychological, Metabolic, and GABAA Receptor Studies in Subjects with Repetitive Traumatic Brain Injury.

    PubMed

    Bang, Seong Ae; Song, Yoo Sung; Moon, Byung Seok; Lee, Byung Chul; Lee, Ho-Young; Kim, Jong-Min; Kim, Sang Eun

    2016-06-01

    Repetitive traumatic brain injury (rTBI) occurs as a result of mild and accumulative brain damage. A prototype of rTBI is chronic traumatic encephalopathy (CTE), which is a degenerative disease that occurs in patients with histories of multiple concussions or head injuries. Boxers have been the most commonly studied patient group because they may experience thousands of subconcussive hits over the course of a career. This study examined the consequences of rTBI with structural brain imaging and biomolecular imaging and investigated whether the neuropsychological features of rTBI were related to the findings of the imaging studies. Five retired professional boxers (mean age, 46.8 ± 3.19 years) and four age-matched controls (mean age, 48.5 ± 3.32 years) were studied. Cognitive-motor related functional impairment was assessed, and all subjects underwent neuropsychological evaluation and behavioral tasks, as well as structural brain imaging and functional-molecular imaging. In neuropsychological tests, boxers showed deficits in delayed retrieval of visuospatial memory and motor coordination, which had a meaningful relationship with biomolecular imaging results indicative of neuronal injury. Morphometric abnormalities were not found in professional boxers by structural magnetic resonance imaging (MRI). Glucose metabolism was impaired in frontal areas associated with cognitive dysfunction, similar to findings in Alzheimer's disease. Low binding potential (BP) of (18)F-flumazenil (FMZ) was found in the angular gyrus and temporal cortical regions, revealing neuronal deficits. These results suggested that cognitive impairment and motor dysfunction reflect chronic damage to neurons in professional boxers with rTBI. PMID:26414498

  12. Lysine metabolism in mammalian brain: an update on the importance of recent discoveries

    PubMed Central

    Hallen, André; Jamie, Joanne F.; Cooper, Arthur J. L.

    2013-01-01

    The lysine catabolism pathway differs in adult mammalian brain from that in extracerebral tissues. The saccharopine pathway is the predominant lysine degradative pathway in extracerebral tissues, whereas the pipecolate pathway predominates in adult brain. The two pathways converge at the level of Δ1-piperideine-6-carboxylate (P6C), which is in equilibrium with its open-chain aldehyde form, namely, α-aminoadipate δ-semialdehyde (AAS). A unique feature of the pipecolate pathway is the formation of the cyclic ketimine intermediate Δ1-piperideine-2-carboxylate (P2C) and its reduced metabolite l-pipecolate. A cerebral ketimine reductase (KR) has recently been identified that catalyzes the reduction of P2C to l-pipecolate. The discovery that this KR, which is capable of reducing not only P2C but also other cyclic imines, is identical to a previously well-described thyroid hormone-binding protein [μ-crystallin (CRYM)], may hold the key to understanding the biological relevance of the pipecolate pathway and its importance in the brain. The finding that the KR activity of CRYM is strongly inhibited by the thyroid hormone 3,5,3′-triiodothyronine (T3) has far-reaching biomedical and clinical implications. The interrelationship between tryptophan and lysine catabolic pathways is discussed in the context of shared degradative enzymes and also potential regulation by thyroid hormones. This review traces the discoveries of enzymes involved in lysine metabolism in mammalian brain. However, there still remain unanswered questions as regards the importance of the pipecolate pathway in normal or diseased brain, including the nature of the first step in the pathway and the relationship of the pipecolate pathway to the tryptophan degradation pathway. PMID:24043460

  13. Pregnancy in women with inherited metabolic disease

    PubMed Central

    2015-01-01

    An increasing number of women with rare inherited disorders of metabolism are becoming pregnant. Whilst, in general, outcomes for women and their children are good, there are issues that need to be considered. Due to the rarity of many conditions, there is limited specific guidance available on best management. Prepregnancy counselling with information on inheritance, options for reproduction, teratogenicity risk, potential impact on maternal health and long-term health of children should be offered. With appropriate specialist management, the teratogenic risk of conditions such as maternal phenylketonuria (PKU) can be eliminated, and the risk of metabolic decompensation in other disorders of intoxication or energy metabolism significantly reduced. Newer therapies, such as enzyme replacement therapy, appear to be safe in pregnancy, but specific advice should be sought. Multidisciplinary management, and close liaison between obstetricians and other specialists is required for women in whom there is cardiac, renal, respiratory, joint or other organ involvement.

  14. Medical Problems in Obstetrics: Inherited Metabolic Disease.

    PubMed

    Murphy, Elaine

    2015-07-01

    An increasing number of women with rare inherited disorders of metabolism are becoming pregnant. Although, in general, outcomes for women and their children are good, there are a number of issues that need to be considered. Currently, limited specific guidance on the management of these conditions in pregnancy is available. Prepregnancy counselling with information on inheritance, options for reproduction, teratogenicity risk, potential impact on maternal health and long-term health of children should be offered. With appropriate specialist management, the teratogenic risk of conditions such as maternal phenylketonuria (PKU) can be eliminated, and the risk of metabolic decompensation in disorders of energy metabolism or intoxication significantly reduced. Multidisciplinary management, and close liaison between obstetricians and other specialists, is required for those women in whom there is cardiac, renal, respiratory, joint or other organ involvement. PMID:26088792

  15. Bile Acid Signaling in Metabolic Disease and Drug Therapy

    PubMed Central

    Li, Tiangang

    2014-01-01

    Bile acids are the end products of cholesterol catabolism. Hepatic bile acid synthesis accounts for a major fraction of daily cholesterol turnover in humans. Biliary secretion of bile acids generates bile flow and facilitates hepatobiliary secretion of lipids, lipophilic metabolites, and xenobiotics. In the intestine, bile acids are essential for the absorption, transport, and metabolism of dietary fats and lipid-soluble vitamins. Extensive research in the last 2 decades has unveiled new functions of bile acids as signaling molecules and metabolic integrators. The bile acid–activated nuclear receptors farnesoid X receptor, pregnane X receptor, constitutive androstane receptor, vitamin D receptor, and G protein–coupled bile acid receptor play critical roles in the regulation of lipid, glucose, and energy metabolism, inflammation, and drug metabolism and detoxification. Bile acid synthesis exhibits a strong diurnal rhythm, which is entrained by fasting and refeeding as well as nutrient status and plays an important role for maintaining metabolic homeostasis. Recent research revealed an interaction of liver bile acids and gut microbiota in the regulation of liver metabolism. Circadian disturbance and altered gut microbiota contribute to the pathogenesis of liver diseases, inflammatory bowel diseases, nonalcoholic fatty liver disease, diabetes, and obesity. Bile acids and their derivatives are potential therapeutic agents for treating metabolic diseases of the liver. PMID:25073467

  16. Brain metabolism in autism. Resting cerebral glucose utilization rates as measured with positron emission tomography

    SciTech Connect

    Rumsey, J.M.; Duara, R.; Grady, C.; Rapoport, J.L.; Margolin, R.A.; Rapoport, S.I.; Cutler, N.R.

    1985-05-01

    The cerebral metabolic rate for glucose was studied in ten men (mean age = 26 years) with well-documented histories of infantile autism and in 15 age-matched normal male controls using positron emission tomography and (F-18) 2-fluoro-2-deoxy-D-glucose. Positron emission tomography was completed during rest, with reduced visual and auditory stimulation. While the autistic group as a whole showed significantly elevated glucose utilization in widespread regions of the brain, there was considerable overlap between the two groups. No brain region showed a reduced metabolic rate in the autistic group. Significantly more autistic, as compared with control, subjects showed extreme relative metabolic rates (ratios of regional metabolic rates to whole brain rates and asymmetries) in one or more brain regions.

  17. Gamma images in benign and metabolic bone diseases: volume 1

    SciTech Connect

    Sy, W.M.

    1981-01-01

    Volume 1 of ''Gamma images in benign and metabolic bone diseases'' comprises chapters devoted to: general remarks and considerations, radiopharmaceuticals, Paget disease, osteomyelitis, trauma, benign bone tumors, chronic renal dialysis, acute renal failure, osteomalacia and rickets, and osteoporosis. Although published in 1981, the most recent references in the book were 1978 and most are 1977 or earlier. One of the strongest aspects of the volume are tables which categorize diseases, pathophysiology of disease, and image abnormalities. (JMT)

  18. Decoding Alzheimer's disease from perturbed cerebral glucose metabolism: implications for diagnostic and therapeutic strategies.

    PubMed

    Chen, Zhichun; Zhong, Chunjiu

    2013-09-01

    Alzheimer's disease (AD) is an age-related devastating neurodegenerative disorder, which severely impacts on the global economic development and healthcare system. Though AD has been studied for more than 100 years since 1906, the exact cause(s) and pathogenic mechanism(s) remain to be clarified. Also, the efficient disease-modifying treatment and ideal diagnostic method for AD are unavailable. Perturbed cerebral glucose metabolism, an invariant pathophysiological feature of AD, may be a critical contributor to the pathogenesis of this disease. In this review, we firstly discussed the features of cerebral glucose metabolism in physiological and pathological conditions. Then, we further reviewed the contribution of glucose transportation abnormality and intracellular glucose catabolism dysfunction in AD pathophysiology, and proposed a hypothesis that multiple pathogenic cascades induced by impaired cerebral glucose metabolism could result in neuronal degeneration and consequently cognitive deficits in AD patients. Among these pathogenic processes, altered functional status of thiamine metabolism and brain insulin resistance are highly emphasized and characterized as major pathogenic mechanisms. Finally, considering the fact that AD patients exhibit cerebral glucose hypometabolism possibly due to impairments of insulin signaling and altered thiamine metabolism, we also discuss some potential possibilities to uncover diagnostic biomarkers for AD from abnormal glucose metabolism and to develop drugs targeting at repairing insulin signaling impairment and correcting thiamine metabolism abnormality. We conclude that glucose metabolism abnormality plays a critical role in AD pathophysiological alterations through the induction of multiple pathogenic factors such as oxidative stress, mitochondrial dysfunction, and so forth. To clarify the causes, pathogeneses and consequences of cerebral hypometabolism in AD will help break the bottleneck of current AD study in finding

  19. The eye and the skin in endocrine metabolic diseases.

    PubMed

    Urrets-Zavalía, Julio A; Espósito, Evangelina; Garay, Iliana; Monti, Rodolfo; Ruiz-Lascano, Alejandro; Correa, Leandro; Serra, Horacio M; Grzybowski, Andrzej

    2016-01-01

    The eye and skin may offer critical clues to the diagnosis of a varied spectrum of metabolic diseases from endocrine origin and their different stages of severity, such as diabetes mellitus and Graves disease. On the other hand, such entities may compromise the eye and visual function severely, and awareness of these possible associations is an important step in their diagnosis and management. A large number of less common endocrine diseases may also have significant ocular/visual or skin involvement. Often the etiologic relationship between the endocrine metabolic disease and the ocular compromise is unknown, but diverse pathogenetic mechanisms may act through a common pathologic pathway producing ocular damage, as occur in diabetic retinopathy. This review emphasizes the ocular and skin manifestations of different metabolic diseases of endocrine origin. PMID:26903183

  20. PET Radiotracers: crossing the blood-brain barrier and surviving metabolism

    PubMed Central

    Pike, Victor W.

    2009-01-01

    Radiotracers for imaging protein targets in living human brain with positron emission tomography (PET) are increasingly useful in clinical research and in drug development. Such radiotracers must fulfill many criteria, among which an ability to enter brain adequately and reversibly without contamination by troublesome radiometabolites is desirable for accurate measurement of the density of a target protein (e.g., neuroreceptor, transporter, enzyme or plaque). Candidate radiotracers may fail as a result of poor passive brain entry, rejection from brain by efflux transporters or undesirable metabolism. These issues are reviewed. Emerging PET radiotracers for measuring efflux transporter function, and new strategies for ameliorating radiotracer metabolism are discussed. A growing understanding of the molecular features affecting the brain penetration, metabolism and efflux transporter sensitivity of prospective radiotracers should ultimately lead to their more rational and efficient design, and also to their greater efficacy. PMID:19616318

  1. Childhood Brain Tumors, Residential Insecticide Exposure, and Pesticide Metabolism Genes

    PubMed Central

    Nielsen, Susan Searles; McKean-Cowdin, Roberta; Farin, Federico M.; Holly, Elizabeth A.; Preston-Martin, Susan; Mueller, Beth A.

    2010-01-01

    Background Insecticides that target the nervous system may play a role in the development of childhood brain tumors (CBTs). Constitutive genetic variation affects metabolism of these chemicals. Methods We analyzed population-based case–control data to examine whether CBT is associated with the functional genetic polymorphisms PON1C–108T, PON1Q192R, PON1L55M, BCHEA539T, FMO1C–9536A, FMO3E158K, ALDH3A1S134A, and GSTT1 (null). DNA was obtained from newborn screening archives for 201 cases and 285 controls, ≤ 10 years of age, and born in California or Washington State between 1978 and 1990. Conception-to-diagnosis home insecticide treatment history was ascertained by interview. Results We observed no biologically plausible main effects for any of the metabolic polymorphisms with CBT risk. However, we observed strong interactions between genotype and insecticide exposure during childhood. Among exposed children, CBT risk increased per PON1–108T allele [odds ratio (OR) = 1.8; 95% confidence interval (CI), 1.1–3.0] and FMO1–9536A (*6) allele (OR = 2.7; 95% CI, 1.2–5.9), whereas among children never exposed, CBT risk was not increased (PON1: OR = 0.7; 95% CI, 0.5–1.0, interaction p = 0.005; FMO1: OR = 1.0; 95% CI, 0.6–1.6, interaction p = 0.009). We observed a similar but statistically nonsignificant interaction between childhood exposure and BCHEA539T (interaction p = 0.08). These interactions were present among both Hispanic and non-Hispanic white children. Conclusion Based on known effects of these variants, these results suggest that exposure in childhood to organophosphorus and perhaps to carbamate insecticides in combination with a reduced ability to detoxify them may be associated with CBT. Confirmation in other studies is required. PMID:20056567

  2. Folate: metabolism, genes, polymorphisms and the associated diseases.

    PubMed

    Nazki, Fakhira Hassan; Sameer, Aga Syed; Ganaie, Bashir Ahmad

    2014-01-01

    Folate being an important vitamin of B Complex group in our diet plays an important role not only in the synthesis of DNA but also in the maintenance of methylation reactions in the cells. Folate metabolism is influenced by several processes especially its dietary intake and the polymorphisms of the associated genes involved. Aberrant folate metabolism, therefore, affects both methylation as well as the DNA synthesis processes, both of which have been implicated in the development of various diseases. This paper reviews the current knowledge of the processes involved in folate metabolism and consequences of deviant folate metabolism, particular emphasis is given to the polymorphic genes which have been implicated in the development of various diseases in humans, like vascular diseases, Down's syndrome, neural tube defects, psychiatric disorders and cancers. PMID:24091066

  3. Implication of hepatokines in metabolic disorders and cardiovascular diseases

    PubMed Central

    Jung, Tae Woo; Yoo, Hye Jin; Choi, Kyung Mook

    2016-01-01

    The liver is a central regulator of systemic energy homeostasis and has a pivotal role in glucose and lipid metabolism. Impaired gluconeogenesis and dyslipidemia are often observed in patients with nonalcoholic fatty liver disease (NAFLD). The liver is now recognized to be an endocrine organ that secretes hepatokines, which are proteins that regulate systemic metabolism and energy homeostasis. Hepatokines are known to contribute to the pathogenesis of metabolic syndrome, NAFLD, type 2 diabetes (T2DM), and cardiovascular diseases (CVDs). In this review, we focus on the roles of two major hepatokines, fetuin-A and fibroblast growth factor 21 (FGF21), as well as recently-redefined hepatokines, such as selenoprotein P, angiopoietin-like protein 4 (ANGPTL4), and leukocyte cell-derived chemotaxin 2 (LECT2). We also assess the biology and molecular mechanisms of hepatokines in the context of their potential as therapeutic targets for metabolic disorders and cardiovascular diseases. PMID:27051596

  4. Implication of hepatokines in metabolic disorders and cardiovascular diseases.

    PubMed

    Jung, Tae Woo; Yoo, Hye Jin; Choi, Kyung Mook

    2016-06-01

    The liver is a central regulator of systemic energy homeostasis and has a pivotal role in glucose and lipid metabolism. Impaired gluconeogenesis and dyslipidemia are often observed in patients with nonalcoholic fatty liver disease (NAFLD). The liver is now recognized to be an endocrine organ that secretes hepatokines, which are proteins that regulate systemic metabolism and energy homeostasis. Hepatokines are known to contribute to the pathogenesis of metabolic syndrome, NAFLD, type 2 diabetes (T2DM), and cardiovascular diseases (CVDs). In this review, we focus on the roles of two major hepatokines, fetuin-A and fibroblast growth factor 21 (FGF21), as well as recently-redefined hepatokines, such as selenoprotein P, angiopoietin-like protein 4 (ANGPTL4), and leukocyte cell-derived chemotaxin 2 (LECT2). We also assess the biology and molecular mechanisms of hepatokines in the context of their potential as therapeutic targets for metabolic disorders and cardiovascular diseases. PMID:27051596

  5. Brain metabolism is significantly impaired at blood glucose below 6 mM and brain glucose below 1 mM in patients with severe traumatic brain injury

    PubMed Central

    2010-01-01

    Introduction The optimal blood glucose target following severe traumatic brain injury (TBI) must be defined. Cerebral microdialysis was used to investigate the influence of arterial blood and brain glucose on cerebral glucose, lactate, pyruvate, glutamate, and calculated indices of downstream metabolism. Methods In twenty TBI patients, microdialysis catheters inserted in the edematous frontal lobe were dialyzed at 1 μl/min, collecting samples at 60 minute intervals. Occult metabolic alterations were determined by calculating the lactate- pyruvate (L/P), lactate- glucose (L/Glc), and lactate- glutamate (L/Glu) ratios. Results Brain glucose was influenced by arterial blood glucose. Elevated L/P and L/Glc were significantly reduced at brain glucose above 1 mM, reaching lowest values at blood and brain glucose levels between 6-9 mM (P < 0.001). Lowest cerebral glutamate was measured at brain glucose 3-5 mM with a significant increase at brain glucose below 3 mM and above 6 mM. While L/Glu was significantly increased at low brain glucose levels, it was significantly decreased at brain glucose above 5 mM (P < 0.001). Insulin administration increased brain glutamate at low brain glucose, but prevented increase in L/Glu. Conclusions Arterial blood glucose levels appear to be optimal at 6-9 mM. While low brain glucose levels below 1 mM are detrimental, elevated brain glucose are to be targeted despite increased brain glutamate at brain glucose >5 mM. Pathogenity of elevated glutamate appears to be relativized by L/Glu and suggests to exclude insulin- induced brain injury. PMID:20141631

  6. Abnormal Brain Iron Metabolism in Irp2 Deficient Mice Is Associated with Mild Neurological and Behavioral Impairments

    PubMed Central

    Zumbrennen-Bullough, Kimberly B.; Becker, Lore; Garrett, Lillian; Hölter, Sabine M.; Calzada-Wack, Julia; Mossbrugger, Ilona; Quintanilla-Fend, Leticia; Racz, Ildiko; Rathkolb, Birgit; Klopstock, Thomas; Wurst, Wolfgang; Zimmer, Andreas; Wolf, Eckhard; Fuchs, Helmut; Gailus-Durner, Valerie; de Angelis, Martin Hrabě; Romney, Steven J.; Leibold, Elizabeth A.

    2014-01-01

    Iron Regulatory Protein 2 (Irp2, Ireb2) is a central regulator of cellular iron homeostasis in vertebrates. Two global knockout mouse models have been generated to explore the role of Irp2 in regulating iron metabolism. While both mouse models show that loss of Irp2 results in microcytic anemia and altered body iron distribution, discrepant results have drawn into question the role of Irp2 in regulating brain iron metabolism. One model shows that aged Irp2 deficient mice develop adult-onset progressive neurodegeneration that is associated with axonal degeneration and loss of Purkinje cells in the central nervous system. These mice show iron deposition in white matter tracts and oligodendrocyte soma throughout the brain. A contrasting model of global Irp2 deficiency shows no overt or pathological signs of neurodegeneration or brain iron accumulation, and display only mild motor coordination and balance deficits when challenged by specific tests. Explanations for conflicting findings in the severity of the clinical phenotype, brain iron accumulation and neuronal degeneration remain unclear. Here, we describe an additional mouse model of global Irp2 deficiency. Our aged Irp2−/− mice show marked iron deposition in white matter and in oligodendrocytes while iron content is significantly reduced in neurons. Ferritin and transferrin receptor 1 (TfR1, Tfrc), expression are increased and decreased, respectively, in the brain from Irp2−/− mice. These mice show impairments in locomotion, exploration, motor coordination/balance and nociception when assessed by neurological and behavioral tests, but lack overt signs of neurodegenerative disease. Ultrastructural studies of specific brain regions show no evidence of neurodegeneration. Our data suggest that Irp2 deficiency dysregulates brain iron metabolism causing cellular dysfunction that ultimately leads to mild neurological, behavioral and nociceptive impairments. PMID:24896637

  7. Differential metabolism of 4-hydroxynonenal in liver, lung and brain of mice and rats

    SciTech Connect

    Zheng, Ruijin; Dragomir, Ana-Cristina; Mishin, Vladimir; Richardson, Jason R.; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2014-08-15

    The lipid peroxidation end-product 4-hydroxynonenal (4-HNE) is generated in tissues during oxidative stress. As a reactive aldehyde, it forms Michael adducts with nucleophiles, a process that disrupts cellular functioning. Liver, lung and brain are highly sensitive to xenobiotic-induced oxidative stress and readily generate 4-HNE. In the present studies, we compared 4-HNE metabolism in these tissues, a process that protects against tissue injury. 4-HNE was degraded slowly in total homogenates and S9 fractions of mouse liver, lung and brain. In liver, but not lung or brain, NAD(P)+ and NAD(P)H markedly stimulated 4-HNE metabolism. Similar results were observed in rat S9 fractions from these tissues. In liver, lung and brain S9 fractions, 4-HNE formed protein adducts. When NADH was used to stimulate 4-HNE metabolism, the formation of protein adducts was suppressed in liver, but not lung or brain. In both mouse and rat tissues, 4-HNE was also metabolized by glutathione S-transferases. The greatest activity was noted in livers of mice and in lungs of rats; relatively low glutathione S-transferase activity was detected in brain. In mouse hepatocytes, 4-HNE was rapidly taken up and metabolized. Simultaneously, 4-HNE-protein adducts were formed, suggesting that 4-HNE metabolism in intact cells does not prevent protein modifications. These data demonstrate that, in contrast to liver, lung and brain have a limited capacity to metabolize 4-HNE. The persistence of 4-HNE in these tissues may increase the likelihood of tissue injury during oxidative stress. - Highlights: • Lipid peroxidation generates 4-hydroxynonenal, a highly reactive aldehyde. • Rodent liver, but not lung or brain, is efficient in degrading 4-hydroxynonenal. • 4-hydroxynonenal persists in tissues with low metabolism, causing tissue damage.

  8. Brain glycogen—new perspectives on its metabolic function and regulation at the subcellular level

    PubMed Central

    Obel, Linea F.; Müller, Margit S.; Walls, Anne B.; Sickmann, Helle M.; Bak, Lasse K.; Waagepetersen, Helle S.; Schousboe, Arne

    2012-01-01

    Glycogen is a complex glucose polymer found in a variety of tissues, including brain, where it is localized primarily in astrocytes. The small quantity found in brain compared to e.g., liver has led to the understanding that brain glycogen is merely used during hypoglycemia or ischemia. In this review evidence is brought forward highlighting what has been an emerging understanding in brain energy metabolism: that glycogen is more than just a convenient way to store energy for use in emergencies—it is a highly dynamic molecule with versatile implications in brain function, i.e., synaptic activity and memory formation. In line with the great spatiotemporal complexity of the brain and thereof derived focus on the basis for ensuring the availability of the right amount of energy at the right time and place, we here encourage a closer look into the molecular and subcellular mechanisms underlying glycogen metabolism. Based on (1) the compartmentation of the interconnected second messenger pathways controlling glycogen metabolism (calcium and cAMP), (2) alterations in the subcellular location of glycogen-associated enzymes and proteins induced by the metabolic status and (3) a sequential component in the intermolecular mechanisms of glycogen metabolism, we suggest that glycogen metabolism in astrocytes is compartmentalized at the subcellular level. As a consequence, the meaning and importance of conventional terms used to describe glycogen metabolism (e.g., turnover) is challenged. Overall, this review represents an overview of contemporary knowledge about brain glycogen and its metabolism and function. However, it also has a sharp focus on what we do not know, which is perhaps even more important for the future quest of uncovering the roles of glycogen in brain physiology and pathology. PMID:22403540

  9. Mapping cortical change in Alzheimer's disease, brain development, and schizophrenia.

    PubMed

    Thompson, Paul M; Hayashi, Kiralee M; Sowell, Elizabeth R; Gogtay, Nitin; Giedd, Jay N; Rapoport, Judith L; de Zubicaray, Greig I; Janke, Andrew L; Rose, Stephen E; Semple, James; Doddrell, David M; Wang, Yalin; van Erp, Theo G M; Cannon, Tyrone D; Toga, Arthur W

    2004-01-01

    This paper describes algorithms that can identify patterns of brain structure and function associated with Alzheimer's disease, schizophrenia, normal aging, and abnormal brain development based on imaging data collected in large human populations. Extraordinary information can be discovered with these techniques: dynamic brain maps reveal how the brain grows in childhood, how it changes in disease, and how it responds to medication. Genetic brain maps can reveal genetic influences on brain structure, shedding light on the nature-nurture debate, and the mechanisms underlying inherited neurobehavioral disorders. Recently, we created time-lapse movies of brain structure for a variety of diseases. These identify complex, shifting patterns of brain structural deficits, revealing where, and at what rate, the path of brain deterioration in illness deviates from normal. Statistical criteria can then identify situations in which these changes are abnormally accelerated, or when medication or other interventions slow them. In this paper, we focus on describing our approaches to map structural changes in the cortex. These methods have already been used to reveal the profile of brain anomalies in studies of dementia, epilepsy, depression, childhood- and adult-onset schizophrenia, bipolar disorder, attention-deficit/hyperactivity disorder, fetal alcohol syndrome, Tourette syndrome, Williams syndrome, and in methamphetamine abusers. Specifically, we describe an image analysis pipeline known as cortical pattern matching that helps compare and pool cortical data over time and across subjects. Statistics are then defined to identify brain structural differences between groups, including localized alterations in cortical thickness, gray matter density (GMD), and asymmetries in cortical organization. Subtle features, not seen in individual brain scans, often emerge when population-based brain data are averaged in this way. Illustrative examples are presented to show the profound

  10. Extracellular Nucleotides in Exercise: Possible Effect on Brain Metabolism.

    ERIC Educational Resources Information Center

    Forrester, Tom

    1979-01-01

    A review of experiments which demonstrate the release of ATP from skeletal muscle, cardiac muscle, and active brain tissue. Effects of exogenously applied ATP to brain tissue are discussed in relation to whole body exercise. (Author/SA)

  11. Brain metabolic maps in Mild Cognitive Impairment predict heterogeneity of progression to dementia

    PubMed Central

    Cerami, Chiara; Della Rosa, Pasquale Anthony; Magnani, Giuseppe; Santangelo, Roberto; Marcone, Alessandra; Cappa, Stefano F.; Perani, Daniela

    2014-01-01

    [18F]FDG-PET imaging has been recognized as a crucial diagnostic marker in Mild Cognitive Impairment (MCI), supporting the presence or the exclusion of Alzheimer's Disease (AD) pathology. A clinical heterogeneity, however, underlies MCI definition. In this study, we aimed to evaluate the predictive role of single-subject voxel-based maps of [18F]FDG distribution generated through statistical parametric mapping (SPM) in the progression to different dementia subtypes in a sample of 45 MCI. Their scans were compared to a large normal reference dataset developed and validated for comparison at single-subject level. Additionally, Aβ42 and Tau CSF values were available in 34 MCI subjects. Clinical follow-up (mean 28.5 ± 7.8 months) assessed subsequent progression to AD or non-AD dementias. The SPM analysis showed: 1) normal brain metabolism in 14 MCI cases, none of them progressing to dementia; 2) the typical temporo-parietal pattern suggestive for prodromal AD in 15 cases, 11 of them progressing to AD; 3) brain hypometabolism suggestive of frontotemporal lobar degeneration (FTLD) subtypes in 7 and dementia with Lewy bodies (DLB) in 2 subjects (all fulfilled FTLD or DLB clinical criteria at follow-up); and 4) 7 MCI cases showed a selective unilateral or bilateral temporo-medial hypometabolism without the typical AD pattern, and they all remained stable. In our sample, objective voxel-based analysis of [18F]FDG-PET scans showed high predictive prognostic value, by identifying either normal brain metabolism or hypometabolic patterns suggestive of different underlying pathologies, as confirmed by progression at follow-up. These data support the potential usefulness of this SPM [18F]FDG PET analysis in the early dementia diagnosis and for improving subject selection in clinical trials based on MCI definition. PMID:25610780

  12. Prenatal alcohol exposure alters methyl metabolism and programs serotonin transporter and glucocorticoid receptor expression in brain.

    PubMed

    Ngai, Ying Fai; Sulistyoningrum, Dian C; O'Neill, Ryan; Innis, Sheila M; Weinberg, Joanne; Devlin, Angela M

    2015-09-01

    Prenatal alcohol exposure (PAE) programs the fetal hypothalamic-pituitary-adrenal (HPA) axis, resulting in HPA dysregulation and hyperresponsiveness to stressors in adulthood. Molecular mechanisms mediating these alterations are not fully understood. Disturbances in one-carbon metabolism, a source of methyl donors for epigenetic processes, contributes to alcoholic liver disease. We assessed whether PAE affects one-carbon metabolism (including Mtr, Mat2a, Mthfr, and Cbs mRNA) and programming of HPA function genes (Nr3c1, Nr3c2, and Slc6a4) in offspring from ethanol-fed (E), pair-fed (PF), and ad libitum-fed control (C) dams. At gestation day 21, plasma total homocysteine and methionine concentrations were higher in E compared with C dams, and E fetuses had higher plasma methionine concentrations and lower whole brain Mtr and Mat2a mRNA compared with C fetuses. In adulthood (55 days), hippocampal Mtr and Cbs mRNA was lower in E compared with C males, whereas Mtr, Mat2a, Mthfr, and Cbs mRNA were higher in E compared with C females. We found lower Nr3c1 mRNA and lower nerve growth factor inducible protein A (NGFI-A) protein in the hippocampus of E compared with PF females, whereas hippocampal Slc6a4 mRNA was higher in E than C males. By contrast, hypothalamic Slc6a4 mRNA was lower in E males and females compared with C offspring. This was accompanied by higher hypothalamic Slc6a4 mean promoter methylation in E compared with PF females. These findings demonstrate that PAE is associated with alterations in one-carbon metabolism and has long-term and region-specific effects on gene expression in the brain. These findings advance our understanding of mechanisms of HPA dysregulation associated with PAE. PMID:26180184

  13. An ex Vivo Model for Evaluating Blood-Brain Barrier Permeability, Efflux, and Drug Metabolism.

    PubMed

    Hellman, Karin; Aadal Nielsen, Peter; Ek, Fredrik; Olsson, Roger

    2016-05-18

    The metabolism of drugs in the brain is difficult to study in most species because of enzymatic instability in vitro and interference from peripheral metabolism in vivo. A locust ex vivo model that combines brain barrier penetration, efflux, metabolism, and analysis of the unbound fraction in intact brains was evaluated using known drugs. Clozapine was analyzed, and its major metabolites, clozapine N-oxide (CNO) and N-desmethylclozapine (NDMC), were identified and quantified. The back-transformation of CNO into clozapine observed in humans was also observed in locusts. In addition, risperidone, citalopram, fluoxetine, and haloperidol were studied, and one preselected metabolite for each drug was analyzed, identified, and quantified. Metabolite identification studies of clozapine and midazolam showed that the locust brain was highly metabolically active, and 18 and 14 metabolites, respectively, were identified. The unbound drug fraction of clozapine, NDMC, carbamazepine, and risperidone was analyzed. In addition, coadministration of drugs with verapamil or fluvoxamine was performed to evaluate drug-drug interactions in all setups. All findings correlated well with the data in the literature for mammals except for the stated fact that CNO is a highly blood-brain barrier permeant compound. Overall, the experiments indicated that invertebrates might be useful for screening of blood-brain barrier permeation, efflux, metabolism, and analysis of the unbound fraction of drugs in the brain in early drug discovery. PMID:26930271

  14. Test-retest reproducibility for regional brain metabolic responses to lorazepam

    SciTech Connect

    Wang, G.J.; Volkow, N.D.; Overall, J. |||

    1996-05-01

    Changes in regional brain glucose metabolism as assessed with PET and FDG in response to acute administration of benzodiazepine agonists have been used as indicators of benzodiazepine-GABA receptor function. The purpose of this study was to assess the reproducibility of these responses. Sixteen healthy right-handed men were scanned with positron emission tomography (PET) and [F-18] fluorodeoxyglucose (FDG) twice: prior to placebo and prior to lorazepam (30 {mu}g/kg). The same double FDG procedure was repeated 6-8 weeks later to assess test-retest reproducibility. The regional absolute brain metabolic values obtained during the second evaluation were significantly lower than those obtained for the first evaluation regardless of condition (p {le} 0.001). Lorazepam significantly and consistently decreased whole brain metabolism and the magnitude as well as the regional pattern of the changes was comparable for both studies (12.3 {plus_minus} 6.9% and 13.7 {plus_minus} 7.4%). Lorazepam effects were largest in thalamus (22.2 {plus_minus} 8.9%). Relative metabolic measures ROI/global were highly reproducible both for drug as well as replication condition. This is the first study to measure test-retest reproducibility in regional brain metabolic response to a pharmacological challenge. While the global and regional absolute metabolic values were significantly lower for the repeated evaluation, the regional brain metabolic response to lorazepam was highly reproducible.

  15. Purification and characterization of aspartate N-acetyltransferase: A critical enzyme in brain metabolism.

    PubMed

    Wang, Qinzhe; Zhao, Mojun; Parungao, Gwenn G; Viola, Ronald E

    2016-03-01

    Canavan disease (CD) is a neurological disorder caused by an interruption in the metabolism of N-acetylaspartate (NAA). Numerous mutations have been found in the enzyme that hydrolyzes NAA, and the catalytic activity of aspartoacylase is significantly impaired in CD patients. Recent studies have also supported an important role in CD for the enzyme that catalyzes the synthesis of NAA in the brain. However, previous attempts to study this enzyme had not succeeded in obtaining a soluble, stable and active form of this membrane-associated protein. We have now utilized fusion constructs with solubilizing protein partners to obtain an active and soluble form of aspartate N-acetyltransferase. Characterization of the properties of this enzyme has set the stage for the development of selective inhibitors that can lower the elevated levels of NAA that are observed in CD patients and potentially serve as a new treatment therapy. PMID:26550943

  16. Evidence for a membrane defect in Alzheimer disease brain

    NASA Technical Reports Server (NTRS)

    Nitsch, R. M.; Blusztajn, J. K.; Pittas, A. G.; Slack, B. E.; Growdon, J. H.; Wurtman, R. J.

    1992-01-01

    To determine whether neurodegeneration in Alzheimer disease brain is associated with degradation of structural cell membrane molecules, we measured tissue levels of the major membrane phospholipids and their metabolites in three cortical areas from postmortem brains of Alzheimer disease patients and matched controls. Among phospholipids, there was a significant (P less than 0.05) decrease in phosphatidylcholine and phosphatidylethanolamine. There were significant (P less than 0.05) decreases in the initial phospholipid precursors choline and ethanolamine and increases in the phospholipid deacylation product glycerophosphocholine. The ratios of glycerophosphocholine to choline and glycerophosphoethanolamine to ethanolamine were significantly increased in all examined Alzheimer disease brain regions. The activity of the glycerophosphocholine-degrading enzyme glycerophosphocholine choline-phosphodiesterase was normal in Alzheimer disease brain. There was a near stoichiometric relationship between the decrease in phospholipids and the increase of phospholipid catabolites. These data are consistent with increased membrane phospholipid degradation in Alzheimer disease brain. Similar phospholipid abnormalities were not detected in brains of patients with Huntington disease, Parkinson disease, or Down syndrome. We conclude that the phospholipid abnormalities described here are not an epiphenomenon of neurodegeneration and that they may be specific for the pathomechanism of Alzheimer disease.

  17. Effects of Cell Phone Radiofrequency Signal Exposure on Brain Glucos Metabolism

    SciTech Connect

    Volkow, N.D.; Wang, G.; Volkow, N.D.; Tomasi, D.; Wang, G.-J.; Vaska, P.; Fowler, J.S.; Telang, F.; Alexoff, D.; Logan, J.; Wong, C.

    2011-03-01

    The dramatic increase in use of cellular telephones has generated concern about possible negative effects of radiofrequency signals delivered to the brain. However, whether acute cell phone exposure affects the human brain is unclear. To evaluate if acute cell phone exposure affects brain glucose metabolism, a marker of brain activity. Randomized crossover study conducted between January 1 and December 31, 2009, at a single US laboratory among 47 healthy participants recruited from the community. Cell phones were placed on the left and right ears and positron emission tomography with ({sup 18}F)fluorodeoxyglucose injection was used to measure brain glucose metabolism twice, once with the right cell phone activated (sound muted) for 50 minutes ('on' condition) and once with both cell phones deactivated ('off' condition). Statistical parametric mapping was used to compare metabolism between on and off conditions using paired t tests, and Pearson linear correlations were used to verify the association of metabolism and estimated amplitude of radiofrequency-modulated electromagnetic waves emitted by the cell phone. Clusters with at least 1000 voxels (volume >8 cm{sup 3}) and P < .05 (corrected for multiple comparisons) were considered significant. Brain glucose metabolism computed as absolute metabolism ({micro}mol/100 g per minute) and as normalized metabolism (region/whole brain). Whole-brain metabolism did not differ between on and off conditions. In contrast, metabolism in the region closest to the antenna (orbitofrontal cortex and temporal pole) was significantly higher for on than off conditions (35.7 vs 33.3 {micro}mol/100 g per minute; mean difference, 2.4 [95% confidence interval, 0.67-4.2]; P = .004). The increases were significantly correlated with the estimated electromagnetic field amplitudes both for absolute metabolism (R = 0.95, P < .001) and normalized metabolism (R = 0.89; P < .001). In healthy participants and compared with no exposure, 50-minute

  18. Role of autophagy in metabolic syndrome-associated heart disease.

    PubMed

    Ren, Sidney Y; Xu, Xihui

    2015-02-01

    Metabolic syndrome is a constellation of multiple metabolic risk factors including abdominal obesity, glucose intolerance, insulin resistance, dyslipidemia and hypertension. Over the past decades, the prevalence of metabolic syndrome has increased dramatically, imposing a devastating, pandemic health threat. More importantly, individuals with metabolic syndrome are at an increased risk of diabetes mellitus and overall cardiovascular diseases. One of the common comorbidities of metabolic syndrome is heart anomalies leading to the loss of cardiomyocytes, cardiac dysfunction and ultimately heart failure. Up-to-date, a plethora of cell signaling pathways have been postulated for the pathogenesis of cardiac complications in obesity including lipotoxicity, inflammation, oxidative stress, apoptosis and sympathetic overactivation although the precise mechanism of action underscoring obesity-associated heart dysfunction remains elusive. Recent evidence has indicated a potential role of protein quality control in components of metabolic syndrome. Within the protein quality control system, the autophagy-lysosome pathway is an evolutionarily conserved pathway responsible for bulk degradation of large intracellular organelles and protein aggregates. Autophagy has been demonstrated to play an indispensible role in the maintenance of cardiac geometry and function under both physiological and pathological conditions. Accumulating studies have demonstrated that autophagy plays a pivotal role in the etiology of cardiac anomalies under obesity and metabolic syndrome. In this minireview, we will discuss on how autophagy is involved in the regulation of cardiac function in obesity and metabolic syndrome. This article is part of a Special Issue entitled: Autophagy and protein quality control in cardiometabolic diseases. PMID:24810277

  19. Alteration of glial-neuronal metabolic interactions in a mouse model of Alexander disease

    PubMed Central

    Meisingset, Tore Wergeland; Risa, Øystein; Brenner, Michael; Messing, Albee; Sonnewald, Ursula

    2010-01-01

    Alexander disease is a rare and usually fatal neurological disorder characterized by the abundant presence of protein aggregates in astrocytes. Most cases result from dominant missense de novo mutations in the gene encoding glial fibrillary acidic protein (GFAP), but how these mutations lead to aggregate formation and compromise function is not known. A transgenic mouse line (Tg73.7) over-expressing human GFAP produces astrocytic aggregates indistinguishable from those seen in the human disease, making them a model of this disorder. To investigate possible metabolic changes associated with Alexander disease Tg73.7 mice and controls were injected simultaneously with [1-13C]glucose to analyze neuronal metabolism and [1,2-13C]acetate to monitor astrocytic metabolism. Brain extracts were analyzed by 1H magnetic resonance spectroscopy (MRS) to quantify amounts of several key metabolites, and by 13C MRS to analyze amino acid neurotransmitter metabolism. In the cerebral cortex, reduced utilization of [1,2-13C]acetate was observed for synthesis of glutamine, glutamate, and GABA, and the concentration of the marker for neuronal mitochondrial metabolism, N-acetylaspartate (NAA), was decreased. This indicates impaired astrocytic and neuronal metabolism and decreased transfer of glutamine from astrocytes to neurons compared to control mice. In the cerebellum, glutamine and GABA content and labeling from [1-13C]glucose were increased. Evidence for brain edema was found in the increased amount of water and of the osmoregulators myo-inositol and taurine. It can be concluded that astrocyte – neuronal interactions were altered differently in distinct regions. PMID:20544858

  20. High-field proton magnetic resonance spectroscopy reveals metabolic effects of normal brain aging

    PubMed Central

    Harris, Janna L.; Yeh, Hung-Wen; Swerdlow, Russell H.; Choi, In-Young; Lee, Phil; Brooks, William M.

    2014-01-01

    Altered brain metabolism is likely to be an important contributor to normal cognitive decline and brain pathology in elderly individuals. To characterize the metabolic changes associated with normal brain aging, we used high-field proton magnetic resonance spectroscopy in vivo to quantify 20 neurochemicals in the hippocampus and sensorimotor cortex of young adult and aged rats. We found significant differences in the neurochemical profile of the aged brain when compared with younger adults, including lower aspartate, ascorbate, glutamate, and macromolecules, and higher glucose, myo-inositol, N-acetylaspartylglutamate, total choline, and glutamine. These neurochemical biomarkers point to specific cellular mechanisms that are altered in brain aging, such as bioenergetics, oxidative stress, inflammation, cell membrane turnover, and endogenous neuroprotection. Proton magnetic resonance spectroscopy may be a valuable translational approach for studying mechanisms of brain aging and pathology, and for investigating treatments to preserve or enhance cognitive function in aging. PMID:24559659

  1. EFFECTS OF CONTINUOUS-WAVE, PULSED, AND SINUSOIDAL-AMPLITUDE-MODULATED MICROWAVES ON BRAIN ENERGY METABOLISM

    EPA Science Inventory

    A comparison of the effects of continuous wave, sinusoidal-amplitude modulated, and pulsed square-wave-modulated 591-MHz microwave exposures on brain energy metabolism was made in male Sprague Dawley rats (175-225g). Brain NADH fluorescence, adensine triphosphate (ATP) concentrat...

  2. Brain Size and Cerebral Glucose Metabolic Rate in Nonspecific Retardation and Down Syndrome.

    ERIC Educational Resources Information Center

    Haier, Richard J.; And Others

    1995-01-01

    Brain size and cerebral glucose metabolic rate were determined for 10 individuals with mild mental retardation (MR), 7 individuals with Down syndrome (DS), and 10 matched controls. MR and DS groups both had brain volumes of about 80% compared to controls, with variance greatest within the MR group. (SLD)

  3. Adipokines in inflammation and metabolic disease

    PubMed Central

    Ouchi, Noriyuki; Parker, Jennifer L.; Lugus, Jesse J.; Walsh, Kenneth

    2012-01-01

    The worldwide epidemic of obesity has brought cons iderable attention to research aimed at understanding the biology of adipocytes (fat cells) and the events occurring in adipose tissue (fat) and in the bodies of obese individuals. Accumulating evidence indicates that obesity causes chronic low-grade inflammation and that this contributes to systemic metabolic dysfunction that is associated with obesity-linked disorders. Adipose tissue functions as a key endocrine organ by releasing multiple bioactive substances, known as adipose-derived secreted factors or adipokines, that have pro-inflammatory or anti-inflammatory activities. Dysregulated production or secretion of these adipokines owing to adipose tissue dysfunction can contribute to the pathogenesis of obesity-linked complications. In this Review, we focus on the role of adipokines in inflammatory responses and discuss their potential as regulators of metabolic function. PMID:21252989

  4. Metabolic profiling distinguishes three subtypes of Alzheimer's disease

    PubMed Central

    Bredesen, Dale E.

    2015-01-01

    The cause of Alzheimer's disease is incompletely defined, and no truly effective therapy exists. However, multiple studies have implicated metabolic abnormalities such as insulin resistance, hormonal deficiencies, and hyperhomocysteinemia. Optimizing metabolic parameters in a comprehensive way has yielded cognitive improvement, both in symptomatic and asymptomatic individuals. Therefore, expanding the standard laboratory evaluation in patients with dementia may be revealing. Here I report that metabolic profiling reveals three Alzheimer's disease subtypes. The first is inflammatory, in which markers such as hs-CRP and globulin:albumin ratio are increased. The second type is non-inflammatory, in which these markers are not increased, but other metabolic abnormalities are present. The third type is a very distinctive clinical entity that affects relatively young individuals, extends beyond the typical Alzheimer's disease initial distribution to affect the cortex widely, is characterized by early non-amnestic features such as dyscalculia and aphasia, is often misdiagnosed or labeled atypical Alzheimer's disease, typically affects ApoE4-negative individuals, and is associated with striking zinc deficiency. Given the involvement of zinc in multiple Alzheimer's-related metabolic processes, such as insulin resistance, chronic inflammation, ADAM10 proteolytic activity, and hormonal signaling, this syndrome of Alzheimer's-plus with low zinc (APLZ) warrants further metabolic, genetic, and epigenetic characterization. PMID:26343025

  5. Metabolic profiling distinguishes three subtypes of Alzheimer's disease.

    PubMed

    Bredesen, Dale E

    2015-08-01

    The cause of Alzheimer's disease is incompletely defined, and no truly effective therapy exists. However, multiple studies have implicated metabolic abnormalities such as insulin resistance, hormonal deficiencies, and hyperhomocysteinemia. Optimizing metabolic parameters in a comprehensive way has yielded cognitive improvement, both in symptomatic and asymptomatic individuals. Therefore, expanding the standard laboratory evaluation in patients with dementia may be revealing. Here I report that metabolic profiling reveals three Alzheimer's disease subtypes. The first is inflammatory, in which markers such as hs-CRP and globulin:albumin ratio are increased. The second type is non-inflammatory, in which these markers are not increased, but other metabolic abnormalities are present. The third type is a very distinctive clinical entity that affects relatively young individuals, extends beyond the typical Alzheimer's disease initial distribution to affect the cortex widely, is characterized by early non-amnestic features such as dyscalculia and aphasia, is often misdiagnosed or labeled atypical Alzheimer's disease, typically affects ApoE4-negative individuals, and is associated with striking zinc deficiency. Given the involvement of zinc in multiple Alzheimer's-related metabolic processes, such as insulin resistance, chronic inflammation, ADAM10 proteolytic activity, and hormonal signaling, this syndrome of Alzheimer's-plus with low zinc (APLZ) warrants further metabolic, genetic, and epigenetic characterization. PMID:26343025

  6. Modeling Metabolism and Disease in Bioarcheology.

    PubMed

    Qualls, Clifford; Appenzeller, Otto

    2015-01-01

    We examine two important measures that can be made in bioarcheology on the remains of human and vertebrate animals. These remains consist of bone, teeth, or hair; each shows growth increments and each can be assayed for isotope ratios and other chemicals in equal intervals along the direction of growth. In each case, the central data is a time series of measurements. The first important measures are spectral estimates in spectral analyses and linear system analyses; we emphasize calculation of periodicities and growth rates as well as the comparison of power in bands. A low frequency band relates to the autonomic nervous system (ANS) control of metabolism and thus provides information about the life history of the individual of archeological interest. Turning to nonlinear system analysis, we discuss the calculation of SM Pinus' approximate entropy (ApEn) for short or moderate length time series. Like the concept that regular heart R-R interval data may indicate lack of health, low values of ApEn may indicate disrupted metabolism in individuals of archeological interest and even that a tipping point in deteriorating metabolism may have been reached just before death. This adds to the list of causes of death that can be determined from minimal data. PMID:26347356

  7. Modeling Metabolism and Disease in Bioarcheology

    PubMed Central

    Qualls, Clifford; Appenzeller, Otto

    2015-01-01

    We examine two important measures that can be made in bioarcheology on the remains of human and vertebrate animals. These remains consist of bone, teeth, or hair; each shows growth increments and each can be assayed for isotope ratios and other chemicals in equal intervals along the direction of growth. In each case, the central data is a time series of measurements. The first important measures are spectral estimates in spectral analyses and linear system analyses; we emphasize calculation of periodicities and growth rates as well as the comparison of power in bands. A low frequency band relates to the autonomic nervous system (ANS) control of metabolism and thus provides information about the life history of the individual of archeological interest. Turning to nonlinear system analysis, we discuss the calculation of SM Pinus' approximate entropy (ApEn) for short or moderate length time series. Like the concept that regular heart R-R interval data may indicate lack of health, low values of ApEn may indicate disrupted metabolism in individuals of archeological interest and even that a tipping point in deteriorating metabolism may have been reached just before death. This adds to the list of causes of death that can be determined from minimal data. PMID:26347356

  8. Posterior Cingulate Glucose Metabolism, Hippocampal Glucose Metabolism, and Hippocampal Volume in Cognitively Normal, Late-Middle-Aged Persons at 3 Levels of Genetic Risk for Alzheimer Disease

    PubMed Central

    Protas, Hillary D.; Chen, Kewei; Langbaum, Jessica B. S.; Fleisher, Adam S.; Alexander, Gene E.; Lee, Wendy; Bandy, Daniel; de Leon, Mony J.; Mosconi, Lisa; Buckley, Shannon; Truran-Sacrey, Diana; Schuff, Norbert; Weiner, Michael W.; Caselli, Richard J.; Reiman, Eric M.

    2013-01-01

    Objective To characterize and compare measurements of the posterior cingulate glucose metabolism, the hippocampal glucose metabolism, and hippocampal volume so as to distinguish cognitively normal, late-middle-aged persons with 2, 1, or 0 copies of the apolipoprotein E (APOE) ε4 allele, reflecting 3 levels of risk for late-onset Alzheimer disease. Design Cross-sectional comparison of measurements of cerebral glucose metabolism using 18F-fluorodeoxy-glucose positron emission tomography and measurements of brain volume using magnetic resonance imaging in cognitively normal ε4 homozygotes, ε4 heterozygotes, and noncarriers. Setting Academic medical center. Participants A total of 31 ε4 homozygotes, 42 ε4 heterozygotes, and 76 noncarriers, 49 to 67 years old, matched for sex, age, and educational level. Main Outcome Measures The measurements of posterior cingulate and hippocampal glucose metabolism were characterized using automated region-of-interest algorithms and normalized for whole-brain measurements. The hippocampal volume measurements were characterized using a semiautomated algorithm and normalized for total intracranial volume. Results Although there were no significant differences among the 3 groups of participants in their clinical ratings, neuropsychological test scores, hippocampal volumes (P=.60), or hippocampal glucose metabolism measurements (P = .12), there were significant group differences in their posterior cingulate glucose metabolism measurements (P=.001). The APOE ε4 gene dose was significantly associated with posterior cingulate glucose metabolism (r=0.29, P=.0003), and this association was significantly greater than those with hippocampal volume or hippocampal glucose metabolism (P<.05, determined by use of pairwise Fisher z tests). Conclusions Although our findings may depend in part on the analysis algorithms used, they suggest that a reduction in posterior cingulate glucose metabolism precedes a reduction in hippocampal volume or

  9. Hyper-connectivity of functional networks for brain disease diagnosis.

    PubMed

    Jie, Biao; Wee, Chong-Yaw; Shen, Dinggang; Zhang, Daoqiang

    2016-08-01

    Exploring structural and functional interactions among various brain regions enables better understanding of pathological underpinnings of neurological disorders. Brain connectivity network, as a simplified representation of those structural and functional interactions, has been widely used for diagnosis and classification of neurodegenerative diseases, especially for Alzheimer's disease (AD) and its early stage - mild cognitive impairment (MCI). However, the conventional functional connectivity network is usually constructed based on the pairwise correlation among different brain regions and thus ignores their higher-order relationships. Such loss of high-order information could be important for disease diagnosis, since neurologically a brain region predominantly interacts with more than one other brain regions. Accordingly, in this paper, we propose a novel framework for estimating the hyper-connectivity network of brain functions and then use this hyper-network for brain disease diagnosis. Here, the functional connectivity hyper-network denotes a network where each of its edges representing the interactions among multiple brain regions (i.e., an edge can connect with more than two brain regions), which can be naturally represented by a hyper-graph. Specifically, we first construct connectivity hyper-networks from the resting-state fMRI (R-fMRI) time series by using sparse representation. Then, we extract three sets of brain-region specific features from the connectivity hyper-networks, and further exploit a manifold regularized multi-task feature selection method to jointly select the most discriminative features. Finally, we use multi-kernel support vector machine (SVM) for classification. The experimental results on both MCI dataset and attention deficit hyperactivity disorder (ADHD) dataset demonstrate that, compared with the conventional connectivity network-based methods, the proposed method can not only improve the classification performance, but also help

  10. Divided attention and metabolic brain dysfunction in mild dementia of the Alzheimer's type.

    PubMed

    Nestor, P G; Parasuraman, R; Haxby, J V; Grady, C L

    1991-01-01

    The relationship between reaction time (RT) measures under single-task and dual-task conditions and resting levels of brain metabolism, as measured by positron emission tomography (PET), was examined in patients with mild dementia of the Alzheimer type (DAT) and age- and educationally-matched controls. Slowing of RT in dual-task but not single-task conditions correlated with reductions in brain metabolism in right premotor and right parietal association areas only for the mild DAT patients. The results suggest a relation between divided attention deficits and metabolic dysfunction of right frontal and parietal lobes in mild DAT patients. PMID:1886681

  11. Cerebral glucose metabolic patterns in Alzheimer's disease. Effect of gender and age at dementia onset

    SciTech Connect

    Small, G.W.; Kuhl, D.E.; Riege, W.H.; Fujikawa, D.G.; Ashford, J.W.; Metter, E.J.; Mazziotta, J.C.

    1989-06-01

    No previous study of Alzheimer's disease has, to our knowledge, assessed the effect of both age at dementia onset and gender on cerebral glucose metabolic patterns. To this end, we used positron emission tomography (fludeoxyglucose F 18 method) to study 24 patients with clinical diagnoses of probable Alzheimer's disease. Comparisons of the 13 patients with early-onset dementia (less than 65 years of age) with the 11 patients with late-onset dementia (greater than 65 years of age) revealed significantly lower left parietal metabolic ratios (left posterior parietal region divided by the hemispheric average) in the early-onset group. The metabolic ratio of posterior parietal cortex divided by the relatively disease-stable average of caudate and thalamus also separated patients with early-onset dementia from those with late-onset dementia, but not men from women. Further comparisons between sexes showed that, in all brain regions studied, the 9 postmenopausal women had higher nonweighted mean metabolic rates than the 15 men from the same age group, with hemispheric sex differences of 9% on the right and 7% on the left. These results demonstrate decreased parietal ratios in early-onset dementia of Alzheimer's disease, independent of a gender effect.

  12. Gene co-expression networks shed light into diseases of brain iron accumulation

    PubMed Central

    Bettencourt, Conceição; Forabosco, Paola; Wiethoff, Sarah; Heidari, Moones; Johnstone, Daniel M.; Botía, Juan A.; Collingwood, Joanna F.; Hardy, John; Milward, Elizabeth A.; Ryten, Mina; Houlden, Henry

    2016-01-01

    Aberrant brain iron deposition is observed in both common and rare neurodegenerative disorders, including those categorized as Neurodegeneration with Brain Iron Accumulation (NBIA), which are characterized by focal iron accumulation in the basal ganglia. Two NBIA genes are directly involved in iron metabolism, but whether other NBIA-related genes also regulate iron homeostasis in the human brain, and whether aberrant iron deposition contributes to neurodegenerative processes remains largely unknown. This study aims to expand our understanding of these iron overload diseases and identify relationships between known NBIA genes and their main interacting partners by using a systems biology approach. We used whole-transcriptome gene expression data from human brain samples originating from 101 neuropathologically normal individuals (10 brain regions) to generate weighted gene co-expression networks and cluster the 10 known NBIA genes in an unsupervised manner. We investigated NBIA-enriched networks for relevant cell types and pathways, and whether they are disrupted by iron loading in NBIA diseased tissue and in an in vivo mouse model. We identified two basal ganglia gene co-expression modules significantly enriched for NBIA genes, which resemble neuronal and oligodendrocytic signatures. These NBIA gene networks are enriched for iron-related genes, and implicate synapse and lipid metabolism related pathways. Our data also indicates that these networks are disrupted by excessive brain iron loading. We identified multiple cell types in the origin of NBIA disorders. We also found unforeseen links between NBIA networks and iron-related processes, and demonstrate convergent pathways connecting NBIAs and phenotypically overlapping diseases. Our results are of further relevance for these diseases by providing candidates for new causative genes and possible points for therapeutic intervention. PMID:26707700

  13. Gene co-expression networks shed light into diseases of brain iron accumulation.

    PubMed

    Bettencourt, Conceição; Forabosco, Paola; Wiethoff, Sarah; Heidari, Moones; Johnstone, Daniel M; Botía, Juan A; Collingwood, Joanna F; Hardy, John; Milward, Elizabeth A; Ryten, Mina; Houlden, Henry

    2016-03-01

    Aberrant brain iron deposition is observed in both common and rare neurodegenerative disorders, including those categorized as Neurodegeneration with Brain Iron Accumulation (NBIA), which are characterized by focal iron accumulation in the basal ganglia. Two NBIA genes are directly involved in iron metabolism, but whether other NBIA-related genes also regulate iron homeostasis in the human brain, and whether aberrant iron deposition contributes to neurodegenerative processes remains largely unknown. This study aims to expand our understanding of these iron overload diseases and identify relationships between known NBIA genes and their main interacting partners by using a systems biology approach. We used whole-transcriptome gene expression data from human brain samples originating from 101 neuropathologically normal individuals (10 brain regions) to generate weighted gene co-expression networks and cluster the 10 known NBIA genes in an unsupervised manner. We investigated NBIA-enriched networks for relevant cell types and pathways, and whether they are disrupted by iron loading in NBIA diseased tissue and in an in vivo mouse model. We identified two basal ganglia gene co-expression modules significantly enriched for NBIA genes, which resemble neuronal and oligodendrocytic signatures. These NBIA gene networks are enriched for iron-related genes, and implicate synapse and lipid metabolism related pathways. Our data also indicates that these networks are disrupted by excessive brain iron loading. We identified multiple cell types in the origin of NBIA disorders. We also found unforeseen links between NBIA networks and iron-related processes, and demonstrate convergent pathways connecting NBIAs and phenotypically overlapping diseases. Our results are of further relevance for these diseases by providing candidates for new causative genes and possible points for therapeutic intervention. PMID:26707700

  14. What Metabolic Syndrome Contributes to Brain Outcomes in African American & Caucasian Cohorts.

    PubMed

    Lamar, Melissa; Rubin, Leah H; Ajilore, Olusola; Charlton, Rebecca; Zhang, Aifeng; Yang, Shaolin; Cohen, Jamie; Kumar, Anand

    2015-01-01

    Metabolic syndrome (MetS), i.e., meeting criteria for any three of the following: hyperglycemia, hypertension, hypertriglyceridemia, low high-density lipoprotein and/or abdominal obesity, is associated with negative health outcomes. For example, MetS negatively impacts cognition; however, less is known about incremental MetS risk, i.e., meeting 1 or 2 as opposed to 3 or more criteria. We hypothesized incremental MetS risk would negatively contribute to cognition and relevant neuroanatomy, e.g., memory and hippocampal volumes, and that this risk extends to affective functioning. 119 non-demented/non-depressed participants (age=60.1+12.9;~50% African American) grouped by incremental MetS risk-no (0 criteria met), low (1-2 criteria met), or high (3+ criteria met)-were compared across cognition, affect and relevant neuroanatomy using multivariable linear regressions. Exploratory analyses, stratified by race, consider the role of health disparities in disease severity of individual MetS component (e.g., actual blood pressure readings) on significant results from primary analyses. Incremental MetS risk contributed to depressive symptomatology (nolow=high) after controlling for age, race (n.s.) and IQ. Different indices of disease severity contributed to different aspects of brain structure and function by race providing empirical support for future studies of the impact distinct health disparities in vascular risk have on brain aging. MetS compromised mood, cognition and hippocampal structure with incremental risk applying to some but not all of these outcomes. Care providers may wish to monitor a broader spectrum of risk including components of MetS like blood pressure and cholesterol levels when considering brain-behavior relationships in adults from diverse populations. PMID:26239040

  15. Acute brain metabolic effects of cocaine in rhesus monkeys with a history of cocaine use.

    PubMed

    Henry, Porche' Kirkland; Murnane, Kevin S; Votaw, John R; Howell, Leonard L

    2010-12-01

    Cocaine addiction involves an escalation in drug intake which alters many brain functions. The present study documented cocaine-induced changes in brain metabolic activity as a function of cocaine self-administration history. Experimentally naive rhesus monkeys (N = 6) were given increasing access to cocaine under a fixed-ratio schedule of intravenous (i.v.) drug self-administration. PET imaging with F-18 labeled fluorodeoxyglucose (FDG) was used to measure acute intramuscular (i.m.) cocaine-induced changes in brain metabolism in the cocaine-naïve state, following 60 sessions under limited-access conditions (1 h/day), following 60 sessions under extended-access conditions (4 h/day), and following 4 weeks of drug withdrawal. In the cocaine-naïve state, cocaine-induced increases in brain metabolism were restricted to the prefrontal cortex. As cocaine exposure increased from limited to extended access, metabolic effects expanded throughout the frontal cortex and were induced within the striatum. Conversely, cocaine-induced activation was far less robust following withdrawal. The results highlight a progressive expansion of the metabolic effects of cocaine to include previously unaffected dopamine innervated brain regions as a consequence of cocaine self-administration history. The identification of brain regions progressively influenced by drug exposure may be highly relevant toward efforts to develop treatments for cocaine addiction. PMID:20680706

  16. Inflammation Meets Metabolic Disease: Gut Feeling Mediated by GLP-1

    PubMed Central

    Zietek, Tamara; Rath, Eva

    2016-01-01

    Chronic diseases, such as obesity and diabetes, cardiovascular, and inflammatory bowel diseases (IBD) share common features in their pathology. Metabolic disorders exhibit strong inflammatory underpinnings and vice versa, inflammation is associated with metabolic alterations. Next to cytokines and cellular stress pathways, such as the unfolded protein response (UPR), alterations in the enteroendocrine system are intersections of various pathologies. Enteroendocrine cells (EEC) have been studied extensively for their ability to regulate gastrointestinal motility, secretion, and insulin release by release of peptide hormones. In particular, the L-cell-derived incretin hormone glucagon-like peptide 1 (GLP-1) has gained enormous attention due to its insulinotropic action and relevance in the treatment of type 2 diabetes (T2D). Yet, accumulating data indicate a critical role for EEC and in particular for GLP-1 in metabolic adaptation and in orchestrating immune responses beyond blood glucose control. EEC sense the lamina propria and luminal environment, including the microbiota via receptors and transporters. Subsequently, mediating signals by secreting hormones and cytokines, EEC can be considered as integrators of metabolic and inflammatory signaling. This review focuses on L cell and GLP-1 functions in the context of metabolic and inflammatory diseases. The effects of incretin-based therapies on metabolism and immune system are discussed and the interrelation and common features of metabolic and immune-mediated disorders are highlighted. Moreover, it presents data on the impact of inflammation, in particular of IBD on EEC and discusses the potential role of the microbiota as link between nutrients, metabolism, immunity, and disease. PMID:27148273

  17. Metabolic disease in mental retardation: a study in Texas.

    PubMed

    Farrell, G; Johnson, R; Fabre, L; Farmer, R; Pellizzari, E; Stephenson, M

    1971-05-01

    Reported are the results of a study of patients admitted to the State Schools for the Mentally Retarded in Texas, over a two-year period from 1968-1970. Of 2029 cases, 185 were found on a detection battery screening to have possible metabolic disease. The report summarizes the findings on 93 cases studied in the metabolic ward at the Texas Research Institute. PMID:5173196

  18. Brain morphometric correlates of metabolic variables in HIV: the CHARTER study.

    PubMed

    Archibald, S L; McCutchan, J A; Sanders, C; Wolfson, T; Jernigan, T L; Ellis, R J; Ances, B M; Collier, A C; McArthur, J C; Morgello, S; Simpson, D M; Marra, C; Gelman, B B; Clifford, D B; Grant, I; Fennema-Notestine, C

    2014-12-01

    Obesity and other metabolic variables are associated with abnormal brain structural volumes and cognitive dysfunction in HIV-uninfected populations. Since individuals with HIV infection on combined antiretroviral therapy (CART) often have systemic metabolic abnormalities and changes in brain morphology and function, we examined associations among brain volumes and metabolic factors in the multisite CNS HIV AntiRetroviral Therapy Effects Research (CHARTER) cohort, cross-sectional study of 222 HIV-infected individuals. Metabolic variables included body mass index (BMI), total blood cholesterol (C), low- and high-density lipoprotein C (LDL-C and HDL-C), blood pressure, random blood glucose, and diabetes. MRI measured volumes of cerebral white matter, abnormal white matter, cortical and subcortical gray matter, and ventricular and sulcal CSF. Multiple linear regression models allowed us to examine metabolic variables separately and in combination to predict each regional volume. Greater BMI was associated with smaller cortical gray and larger white matter volumes. Higher total cholesterol (C) levels were associated with smaller cortex volumes; higher LDL-C was associated with larger cerebral white matter volumes, while higher HDL-C levels were associated with larger sulci. Higher blood glucose levels and diabetes were associated with more abnormal white matter. Multiple atherogenic metabolic factors contribute to regional brain volumes in HIV-infected, CART-treated patients, reflecting associations similar to those found in HIV-uninfected individuals. These risk factors may accelerate cerebral atherosclerosis and consequent brain alterations and cognitive dysfunction. PMID:25227933

  19. Relationship of impaired brain glucose metabolism to learning deficit in the senescence-accelerated mouse.

    PubMed

    Ohta, H; Nishikawa, H; Hirai, K; Kato, K; Miyamoto, M

    1996-10-11

    The relationship between brain glucose metabolism and learning deficit was examined in the senescence-accelerated-prone mouse (SAMP) 8, which has been proven to be a useful murine model of age-related behavioral disorders. SAMP8, 7 months old, exhibited marked learning impairment in the passive avoidance task, as compared with the control strain, senescence-accelerated-resistant mice (SAMR) 1. SAMP8 also exhibited a reduction in brain glucose metabolism, as indicated by a reduction in [14C]2-deoxyglucose accumulation in the brain following the intravenous injection impaired glucose metabolism correlated significantly with the learning impairment in all brain regions in SAMR1 and SAMP8. In the SAMP8, a significant correlation was observed in the posterior half of the cerebral cortex. These results suggest that the SAMP8 strain is a useful model of not only age-related behavioral disorders, but also glucose hypometabolism observed in aging and dementias. PMID:8905734

  20. Targeting xenobiotic receptors PXR and CAR for metabolic diseases.

    PubMed

    Gao, Jie; Xie, Wen

    2012-10-01

    The pregnane X receptor (PXR) and the constitutive androstane receptor (CAR) are two closely related and liver-enriched nuclear hormone receptors originally defined as xenobiotic receptors. Recently, an increasing body of evidence suggests that PXR and CAR also have endobiotic functions that impact glucose and lipid metabolism, as well as the pathogenesis of metabolic diseases. These new findings suggest that PXR and CAR not only regulate the transcription of drug-metabolizing enzymes and transporters, but also orchestrate energy metabolism and immune responses to accommodate stresses caused by xenobiotic exposures. The effectiveness of targeting PXR and CAR in the treatment of metabolic disorders, such as obesity, type 2 diabetes (T2D), dyslipidemia, and atherosclerosis, have been suggested in animal models. However, translation of these basic research results into clinical applications may require further investigation to determine the human relevance, and to obtain better understanding of the mechanisms through which PXR and CAR affect energy metabolism. Given a wide variety of natural or synthetic compounds that are PXR and CAR modulators, it is hoped that these two 'xenobiotic receptors' can be harnessed for therapeutic potentials in managing metabolic diseases. PMID:22889594

  1. How aluminum, an intracellular ROS generator promotes hepatic and neurological diseases: the metabolic tale.

    PubMed

    Han, Sungwon; Lemire, Joseph; Appanna, Varun P; Auger, Christopher; Castonguay, Zachary; Appanna, Vasu D

    2013-04-01

    Metal pollutants are a global health risk due to their ability to contribute to a variety of diseases. Aluminum (Al), a ubiquitous environmental contaminant is implicated in anemia, osteomalacia, hepatic disorder, and neurological disorder. In this review, we outline how this intracellular generator of reactive oxygen species (ROS) triggers a metabolic shift towards lipogenesis in astrocytes and hepatocytes. This Al-evoked phenomenon is coupled to diminished mitochondrial activity, anerobiosis, and the channeling of α-ketoacids towards anti-oxidant defense. The resulting metabolic reconfiguration leads to fat accumulation and a reduction in ATP synthesis, characteristics that are common to numerous medical disorders. Hence, the ability of Al toxicity to create an oxidative environment promotes dysfunctional metabolic processes in astrocytes and hepatocytes. These molecular events triggered by Al-induced ROS production are the potential mediators of brain and liver disorders. PMID:23463459

  2. A clinical perspective of obesity, metabolic syndrome and cardiovascular disease

    PubMed Central

    Lean, Mike EJ

    2016-01-01

    The metabolic syndrome is a condition characterized by a special constellation of reversible major risk factors for cardiovascular disease and type 2 diabetes. The main, diagnostic, components are reduced HDL-cholesterol, raised triglycerides, blood pressure and fasting plasma glucose, all of which are related to weight gain, specifically intra-abdominal/ectopic fat accumulation and a large waist circumference. Using internationally adopted arbitrary cut-off values for waist circumference, having metabolic syndrome doubles the risk of cardiovascular disease, but offers an effective treatment approach through weight management. Metabolic syndrome now affects 30–40% of people by age 65, driven mainly by adult weight gain, and by a genetic or epigenetic predisposition to intra-abdominal/ectopic fat accumulation related to poor intra-uterine growth. Metabolic syndrome is also promoted by a lack of subcutaneous adipose tissue, low skeletal muscle mass and anti-retroviral drugs. Reducing weight by 5–10%, by diet and exercise, with or without, anti-obesity drugs, substantially lowers all metabolic syndrome components, and risk of type 2 diabetes and cardiovascular disease. Other cardiovascular disease risk factors such as smoking should be corrected as a priority. Anti-diabetic agents which improve insulin resistance and reduce blood pressure, lipids and weight should be preferred for diabetic patients with metabolic syndrome. Bariatric surgery offers an alternative treatment for those with BMI ≥ 40 or 35–40 kg/m2 with other significant co-morbidity. The prevalence of the metabolic syndrome and cardiovascular disease is expected to rise along with the global obesity epidemic: greater emphasis should be given to effective early weight-management to reduce risk in pre-symptomatic individuals with large waists. PMID:26998259

  3. A clinical perspective of obesity, metabolic syndrome and cardiovascular disease.

    PubMed

    Han, Thang S; Lean, Mike Ej

    2016-01-01

    The metabolic syndrome is a condition characterized by a special constellation of reversible major risk factors for cardiovascular disease and type 2 diabetes. The main, diagnostic, components are reduced HDL-cholesterol, raised triglycerides, blood pressure and fasting plasma glucose, all of which are related to weight gain, specifically intra-abdominal/ectopic fat accumulation and a large waist circumference. Using internationally adopted arbitrary cut-off values for waist circumference, having metabolic syndrome doubles the risk of cardiovascular disease, but offers an effective treatment approach through weight management. Metabolic syndrome now affects 30-40% of people by age 65, driven mainly by adult weight gain, and by a genetic or epigenetic predisposition to intra-abdominal/ectopic fat accumulation related to poor intra-uterine growth. Metabolic syndrome is also promoted by a lack of subcutaneous adipose tissue, low skeletal muscle mass and anti-retroviral drugs. Reducing weight by 5-10%, by diet and exercise, with or without, anti-obesity drugs, substantially lowers all metabolic syndrome components, and risk of type 2 diabetes and cardiovascular disease. Other cardiovascular disease risk factors such as smoking should be corrected as a priority. Anti-diabetic agents which improve insulin resistance and reduce blood pressure, lipids and weight should be preferred for diabetic patients with metabolic syndrome. Bariatric surgery offers an alternative treatment for those with BMI ≥ 40 or 35-40 kg/m(2) with other significant co-morbidity. The prevalence of the metabolic syndrome and cardiovascular disease is expected to rise along with the global obesity epidemic: greater emphasis should be given to effective early weight-management to reduce risk in pre-symptomatic individuals with large waists. PMID:26998259

  4. Probing astrocyte metabolism in vivo: proton magnetic resonance spectroscopy in the injured and aging brain.

    PubMed

    Harris, Janna L; Choi, In-Young; Brooks, William M

    2015-01-01

    Following a brain injury, the mobilization of reactive astrocytes is part of a complex neuroinflammatory response that may have both harmful and beneficial effects. There is also evidence that astrocytes progressively accumulate in the normal aging brain, increasing in both number and size. These astrocyte changes in normal brain aging may, in the event of an injury, contribute to the exacerbated injury response and poorer outcomes observed in older traumatic brain injury (TBI) survivors. Here we present our view that proton magnetic resonance spectroscopy ((1)H-MRS), a neuroimaging approach that probes brain metabolism within a defined region of interest, is a promising technique that may provide insight into astrocyte metabolic changes in the injured and aging brain in vivo. Although (1)H-MRS does not specifically differentiate between cell types, it quantifies certain metabolites that are highly enriched in astrocytes (e.g., Myo-inositol, mlns), or that are involved in metabolic shuttling between astrocytes and neurons (e.g., glutamate and glutamine). Here we focus on metabolites detectable by (1)H-MRS that may serve as markers of astrocyte metabolic status. We review the physiological roles of these metabolites, discuss recent (1)H-MRS findings in the injured and aging brain, and describe how an astrocyte metabolite profile approach might be useful in clinical medicine and clinical trials. PMID:26578948

  5. Peripheral glucose metabolism and insulin sensitivity in Alzheimer's disease.

    PubMed

    Kilander, L; Boberg, M; Lithell, H

    1993-04-01

    Twenty-four patients with Alzheimer's disease and matched controls were examined with reference to metabolic parameters such as peripheral insulin and glucose metabolism, serum lipid concentrations and blood pressure levels. Blood glucose levels and insulin response were measured during an intravenous glucose tolerance test and peripheral insulin sensitivity was estimated with the hyperinsulinemic euglycemic clamp technique. There were no differences recorded between the two groups in glucose metabolism, triglyceride, cholesterol or HDL-cholesterol levels. The patients with Alzheimer's disease had significantly lower blood pressure levels, which partly could be explained by ongoing treatment with neuroleptics and antidepressives. Previous findings of higher insulin levels in Alzheimer's disease could not be verified. PMID:8503259

  6. [Application of precision medicine in obesity and metabolic disease surgery].

    PubMed

    Wang, Cunchuan; Gao, Zhiguang

    2016-01-01

    The U. S. A. president Obama called for a new initiative to fund precision medicine during his State of Union Address on January 20th, 2015, which meant that the human medicine enters a new era. The meaning of "precision medicine" is significantly similar to the concept of precision obesity and metabolic disease surgery, which was proposed by the author in early August 2011. Nowadays, obesity and metabolic disease surgery has been transformed from open surgery to laparoscopic surgery, the extensive mode to the precision mode. The key value concept is to minimize postoperative complication, minimize postoperative hospital stay and obtain the best effect of weight loss by accurate preoperative assessment, delicate operation, excellent postoperative management and scientific follow-up. The precision obesity and metabolic disease surgery has more development space in the future. PMID:26797833

  7. The metabolic syndrome as a concept of adipose tissue disease.

    PubMed

    Oda, Eiji

    2008-07-01

    The metabolic syndrome is a constellation of interrelated metabolic risk factors that appear to directly promote the development of diabetes and cardiovascular disease. However, in 2005, the American Diabetes Association and the European Association for the Study of Diabetes jointly stated that no existing definition of the metabolic syndrome meets the criteria of a syndrome, and there have been endless debates on the pros and cons of using the concept of this syndrome. The controversy may stem from confusion between the syndrome and obesity. Obesity is an epidemic, essentially contagious disease caused by an environment of excess nutritional energy and reinforced by deeply rooted social norms. The epidemic of obesity should be prevented or controlled by social and political means, similar to the approaches now being taken to combat global warming. The diagnosis of metabolic syndrome is useless for this public purpose. The purpose of establishing criteria for diagnosing metabolic syndrome is to find individuals who are at increased risk of diabetes and cardiovascular disease and who require specific therapy including diet and exercise. The syndrome may be an adipose tissue disease different from obesity; in that case, it would be characterized by inflammation clinically detected through systemic inflammatory markers such as high-sensitivity C-reactive protein and insulin resistance reflecting histological changes in adipose tissue. However, many problems in defining the optimal diagnostic criteria remain unresolved. PMID:18957797

  8. Metabolic aspects of adult patients with nonalcoholic fatty liver disease.

    PubMed

    Abenavoli, Ludovico; Milic, Natasa; Di Renzo, Laura; Preveden, Tomislav; Medić-Stojanoska, Milica; De Lorenzo, Antonino

    2016-08-21

    Nonalcoholic fatty liver disease (NAFLD) is a major cause of chronic liver disease and it encompasses a spectrum from simple steatosis to steatohepatitis, fibrosis, or cirrhosis. The mechanisms involved in the occurrence of NAFLD and its progression are probably due to a metabolic profile expressed within the context of a genetic predisposition and is associated with a higher energy intake. The metabolic syndrome (MS) is a cluster of metabolic alterations associated with an increased risk for the development of cardiovascular diseases and diabetes. NAFLD patients have more than one feature of the MS, and now they are considered the hepatic components of the MS. Several scientific advances in understanding the association between NAFLD and MS have identified insulin resistance (IR) as the key aspect in the pathophysiology of both diseases. In the multi parallel hits theory of NAFLD pathogenesis, IR was described to be central in the predisposition of hepatocytes to be susceptible to other multiple pathogenetic factors. The recent knowledge gained from these advances can be applied clinically in the prevention and management of NAFLD and its associated metabolic changes. The present review analyses the current literature and highlights the new evidence on the metabolic aspects in the adult patients with NAFLD. PMID:27610012

  9. Metabolic aspects of adult patients with nonalcoholic fatty liver disease

    PubMed Central

    Abenavoli, Ludovico; Milic, Natasa; Di Renzo, Laura; Preveden, Tomislav; Medić-Stojanoska, Milica; De Lorenzo, Antonino

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD) is a major cause of chronic liver disease and it encompasses a spectrum from simple steatosis to steatohepatitis, fibrosis, or cirrhosis. The mechanisms involved in the occurrence of NAFLD and its progression are probably due to a metabolic profile expressed within the context of a genetic predisposition and is associated with a higher energy intake. The metabolic syndrome (MS) is a cluster of metabolic alterations associated with an increased risk for the development of cardiovascular diseases and diabetes. NAFLD patients have more than one feature of the MS, and now they are considered the hepatic components of the MS. Several scientific advances in understanding the association between NAFLD and MS have identified insulin resistance (IR) as the key aspect in the pathophysiology of both diseases. In the multi parallel hits theory of NAFLD pathogenesis, IR was described to be central in the predisposition of hepatocytes to be susceptible to other multiple pathogenetic factors. The recent knowledge gained from these advances can be applied clinically in the prevention and management of NAFLD and its associated metabolic changes. The present review analyses the current literature and highlights the new evidence on the metabolic aspects in the adult patients with NAFLD. PMID:27610012

  10. Is lactate a volume transmitter of metabolic states of the brain?

    PubMed Central

    Bergersen, Linda H.; Gjedde, Albert

    2012-01-01

    We present the perspective that lactate is a volume transmitter of cellular signals in brain that acutely and chronically regulate the energy metabolism of large neuronal ensembles. From this perspective, we interpret recent evidence to mean that lactate transmission serves the maintenance of network metabolism by two different mechanisms, one by regulating the formation of cAMP via the lactate receptor GPR81, the other by adjusting the NADH/NAD+ redox ratios, both linked to the maintenance of brain energy turnover and possibly cerebral blood flow. The role of lactate as mediator of metabolic information rather than metabolic substrate answers a number of questions raised by the controversial oxidativeness of astrocytic metabolism and its contribution to neuronal function. PMID:22457647

  11. NAD+ metabolism in health and disease.

    PubMed

    Belenky, Peter; Bogan, Katrina L; Brenner, Charles

    2007-01-01

    Nicotinamide adenine dinucleotide (NAD(+)) is both a coenzyme for hydride-transfer enzymes and a substrate for NAD(+)-consuming enzymes, which include ADP-ribose transferases, poly(ADP-ribose) polymerases, cADP-ribose synthases and sirtuins. Recent results establish protective roles for NAD(+) that might be applicable therapeutically to prevent neurodegenerative conditions and to fight Candida glabrata infection. In addition, the contribution that NAD(+) metabolism makes to lifespan extension in model systems indicates that therapies to boost NAD(+) might promote some of the beneficial effects of calorie restriction. Nicotinamide riboside, the recently discovered nucleoside precursor of NAD(+) in eukaryotic systems, might have advantages as a therapy to elevate NAD(+) without inhibiting sirtuins, which is associated with high-dose nicotinamide, or incurring the unpleasant side-effects of high-dose nicotinic acid. PMID:17161604

  12. Obesity and Metabolic Disease After Childhood Cancer.

    PubMed

    Barnea, Dana; Raghunathan, Nirupa; Friedman, Danielle Novetsky; Tonorezos, Emily S

    2015-11-01

    As care for the childhood cancer patient has improved significantly, there is an increasing incidence of treatment-related late effects. Obesity and type 2 diabetes mellitus are common and significant metabolic conditions in some populations of adult survivors of childhood cancer. Results from the Childhood Cancer Survivor Study and other large cohorts of childhood cancer survivors reveal that long-term survivors of acute lymphoblastic leukemia and those who received total body irradiation or abdominal radiotherapy are at highest risk. The potential mechanisms for the observed increase in risk, including alterations in leptin and adiponectin, pancreatic insufficiency, poor dietary habits, sedentary lifestyle, and perhaps changes in the composition of the gut microbiota, are reviewed. Discussion of exercise and diet intervention studies shows that further research about the barriers to a healthy lifestyle and other interventions in childhood cancer survivors is warranted. PMID:26568532

  13. Endoplasmic Reticulum Stress and the Inflammatory Basis of Metabolic Disease

    PubMed Central

    Hotamisligil, Gökhan S.

    2010-01-01

    The endoplasmic reticulum (ER) is the major site in the cell for protein folding and trafficking and is central to many cellular functions. Failure of the ER's adaptive capacity results in activation of the unfolded protein response (UPR), which intersects with many different inflammatory and stress signaling pathways. These pathways are also critical in chronic metabolic diseases such as obesity, insulin resistance, and type 2 diabetes. The ER and related signaling networks are emerging as a potential site for the intersection of inflammation and metabolic disease. PMID:20303879

  14. Cardiovascular Disease Risk of Abdominal Obesity versus Metabolic Abnormalities

    PubMed Central

    Wildman, Rachel P.; McGinn, Aileen P.; Lin, Juan; Wang, Dan; Muntner, Paul; Cohen, Hillel W.; Reynolds, Kristi; Fonseca, Vivian; Sowers, MaryFran R.

    2011-01-01

    It remains unclear whether abdominal obesity increases cardiovascular disease (CVD) risk independent of the metabolic abnormalities which often accompany it. Therefore, the objective of the current study was to evaluate the independent effects of abdominal obesity versus metabolic syndrome and diabetes on the risk for incident coronary heart disease and stroke. The Framingham Offspring, Atherosclerosis Risk in Communities, and Cardiovascular Health studies were pooled to assess the independent effects of abdominal obesity (waist circumference >102 cm for men and >88 cm for women) versus metabolic syndrome (excluding the waist circumference criterion) and diabetes on risk for incident coronary heart disease and stroke in 20,298 men and women aged ≥45 years. The average follow-up was 8.3 (standard deviation 1.9) years. There were 1,766 CVD events. After adjustment for demographic factors, smoking, alcohol intake, number of metabolic syndrome components and diabetes, abdominal obesity was not significantly associated with an increased risk of CVD (hazard ratio [95% confidence interval] 1.09 [0.98, 1.20]). However, after adjustment for demographics, smoking, alcohol intake, and abdominal obesity, having 1–2 metabolic syndrome components, the metabolic syndrome, and diabetes were each associated with a significantly increased risk of CVD (2.12 [1.80, 2.50], 2.82 [1.92, 4.12] and 5.33 [3.37, 8.41], respectively). Although abdominal obesity is an important clinical tool for identification of individuals likely to possess metabolic abnormalities, these data suggest that the metabolic syndrome and diabetes are considerably more important prognostic indicators of CVD risk. PMID:20725064

  15. Addiction is Not a Brain Disease (and it Matters)

    PubMed Central

    Levy, Neil

    2013-01-01

    The claim that addiction is a brain disease is almost universally accepted among scientists who work on addiction. The claim’s attraction rests on two grounds: the fact that addiction seems to be characterized by dysfunction in specific neural pathways and the fact that the claim seems to the compassionate response to people who are suffering. I argue that neural dysfunction is not sufficient for disease: something is a brain disease only when neural dysfunction is sufficient for impairment. I claim that the neural dysfunction that is characteristic of addiction is not sufficient for impairment, because people who suffer from that dysfunction are impaired, sufficiently to count as diseased, only given certain features of their context. Hence addiction is not a brain disease (though it is often a disease, and it may always involve brain dysfunction). I argue that accepting that addiction is not a brain disease does not entail a moralizing attitude toward people who suffer as a result of addiction; if anything, it allows for a more compassionate, and more effective, response to addiction. PMID:23596425

  16. Turner's syndrome presenting as metabolic bone disease.

    PubMed

    Kamalanathan, Sadishkumar; Balachandran, Karthik; Ananthakrishnan, Ramesh; Hamide, Abdoul

    2012-07-01

    Turner's syndrome is a genetic disorder with a complete or partial absence of one X chromosome with characteristic phenotypic features. The prevalence of renal anomalies in turner syndrome is 30-40%. However, the renal function is usually normal. We report a case of Turner's syndrome presenting with chronic kidney disease and renal osteodystrophy. PMID:22837932

  17. Roles for Dysfunctional Sphingolipid Metabolism in Alzheimer’s Disease Neuropathogenesis

    PubMed Central

    Haughey, Norman J.; Bandaru, Veera V.R.; Bai, Mihyun; Mattson, Mark P.

    2010-01-01

    Sphingolipids in the membranes of neurons play important roles in signal transduction, either by modulating the localization and activation of membrane-associated receptors or by acting as precursors of bioactive lipid mediators. Activation of cytokine and neurotrophic factor receptors coupled to sphingomyelinases results in the generation of ceramides and gangliosides, which in turn, modify the structural and functional plasticity of neurons. In aging and neurodegenerative conditions such as Alzheimer’s disease (AD), there is increased membrane-associated oxidative stress and excessive production and accumulation of ceramides. Studies of brain tissue samples from human subjects, and of experimental models of the diseases, suggest that perturbed sphingomyelin metabolism is a pivotal event in the dysfunction and degeneration of neurons that occurs in AD and HIV dementia. Dietary and pharmacological interventions that target sphingolipid metabolism should be pursued for the prevention and treatment of neurodegenerative disorders. PMID:20452460

  18. Brain Insulin Resistance and Deficiency as Therapeutic Targets in Alzheimer's Disease

    PubMed Central

    de la Monte, Suzanne M

    2012-01-01

    Alzheimer's disease [AD] is the most common cause of dementia in North America. Despite 30+ years of intense investigation, the field lacks consensus regarding the etiology and pathogenesis of sporadic AD, and therefore we still do not know the best strategies for treating and preventing this debilitating and costly disease. However, growing evidence supports the concept that AD is fundamentally a metabolic disease with substantial and progressive derangements in brain glucose utilization and responsiveness to insulin and insulin-like growth factor [IGF] stimulation. Moreover, AD is now recognized to be heterogeneous in nature, and not solely the end-product of aberrantly processed, misfolded, and aggregated oligomeric amyloid-beta peptides and hyperphosphorylated tau. Other factors, including impairments in energy metabolism, increased oxidative stress, inflammation, insulin and IGF resistance, and insulin/IGF deficiency in the brain should be incorporated into all equations used to develop diagnostic and therapeutic approaches to AD. Herein, the contributions of impaired insulin and IGF signaling to AD-associated neuronal loss, synaptic disconnection, tau hyperphosphorylation, amyloid-beta accumulation, and impaired energy metabolism are reviewed. In addition, we discuss current therapeutic strategies and suggest additional approaches based on the hypothesis that AD is principally a metabolic disease similar to diabetes mellitus. Ultimately, our ability to effectively detect, monitor, treat, and prevent AD will require more efficient, accurate and integrative diagnostic tools that utilize clinical, neuroimaging, biochemical, and molecular biomarker data. Finally, it is imperative that future therapeutic strategies for AD abandon the concept of uni-modal therapy in favor of multi-modal treatments that target distinct impairments at different levels within the brain insulin/IGF signaling cascades. PMID:22329651

  19. Hypoxic and ischemic hypoxia exacerbate brain injury associated with metabolic encephalopathy in laboratory animals.

    PubMed Central

    Vexler, Z S; Ayus, J C; Roberts, T P; Fraser, C L; Kucharczyk, J; Arieff, A I

    1994-01-01

    Hypoxemia is a major comorbid factor for permanent brain damage in several metabolic encephalopathies. To determine whether hypoxia impairs brain adaptation to hyponatremia, worsening brain edema, we performed in vitro and in vivo studies in cats and rats with hyponatremia plus either ischemic or hypoxic hypoxia. Mortality with hypoxic hypoxia was 0%; with hyponatremia, 22%; and with hyponatremia+hypoxia, 100%. Hyponatremia in cats produced brain edema, with a compensatory decrease of brain sodium. Ischemic hypoxia also resulted in brain edema, but with elevation of brain sodium. However, when ischemic hypoxia was superimposed upon hyponatremia, there was elevation of brain sodium with further elevation of water. Outward sodium transport in cat cerebral cortex synaptosomes was measured via three major pathways through which brain osmolality can be decreased. After hyponatremia, sodium transport was significantly altered such that brain cell osmolality would decrease: 44% increase in Na(+)-K(+)-ATPase transport activity (ouabain inhibitable); 26% decrease in amiloride-sensitive sodium uptake. The change in veratridine-stimulated sodium uptake was not significant (P > 0.05). When ischemic hypoxia was superimposed upon hyponatremia, all of the cerebral adaptive changes induced by hyponatremia alone were eliminated. Thus, hypoxia combined with hyponatremia produces a major increase in brain edema and mortality, probably by eliminating the compensatory mechanisms of sodium transport initiated by hyponatremia that tend to minimize brain swelling. Images PMID:8282795

  20. Endothelial cell metabolism in normal and diseased vasculature.

    PubMed

    Eelen, Guy; de Zeeuw, Pauline; Simons, Michael; Carmeliet, Peter

    2015-03-27

    Higher organisms rely on a closed cardiovascular circulatory system with blood vessels supplying vital nutrients and oxygen to distant tissues. Not surprisingly, vascular pathologies rank among the most life-threatening diseases. At the crux of most of these vascular pathologies are (dysfunctional) endothelial cells (ECs), the cells lining the blood vessel lumen. ECs display the remarkable capability to switch rapidly from a quiescent state to a highly migratory and proliferative state during vessel sprouting. This angiogenic switch has long been considered to be dictated by angiogenic growth factors (eg, vascular endothelial growth factor) and other signals (eg, Notch) alone, but recent findings show that it is also driven by a metabolic switch in ECs. Furthermore, these changes in metabolism may even override signals inducing vessel sprouting. Here, we review how EC metabolism differs between the normal and dysfunctional/diseased vasculature and how it relates to or affects the metabolism of other cell types contributing to the pathology. We focus on the biology of ECs in tumor blood vessel and diabetic ECs in atherosclerosis as examples of the role of endothelial metabolism in key pathological processes. Finally, current as well as unexplored EC metabolism-centric therapeutic avenues are discussed. PMID:25814684

  1. Metabolic biomarkers for predicting cardiovascular disease

    PubMed Central

    Montgomery, Jana E; Brown, Jeremiah R

    2013-01-01

    Cardiac and peripheral vascular biomarkers are increasingly becoming targets of both research and clinical practice. As of 2008, cardiovascular-related medical care accounts for greater than 20% of all the economic costs of illness in the United States. In the age of burgeoning financial pressures on the entire health care system, never has it been more important to try to understand who is at risk for cardiovascular disease in order to prevent new events. In this paper, we will discuss the cost of cardiovascular disease to society, clarify the definition of and need for biomarkers, offer an example of a current biomarker, namely high-sensitivity C-reactive protein, and finally examine the approval process for utilizing these in clinical practice. PMID:23386789

  2. The collective therapeutic potential of cerebral ketone metabolism in traumatic brain injury

    PubMed Central

    Prins, Mayumi L.; Matsumoto, Joyce H.

    2014-01-01

    The postinjury period of glucose metabolic depression is accompanied by adenosine triphosphate decreases, increased flux of glucose through the pentose phosphate pathway, free radical production, activation of poly-ADP ribose polymerase via DNA damage, and inhibition of glyceraldehyde dehydrogenase (a key glycolytic enzyme) via depletion of the cytosolic NAD pool. Under these post-brain injury conditions of impaired glycolytic metabolism, glucose becomes a less favorable energy substrate. Ketone bodies are the only known natural alternative substrate to glucose for cerebral energy metabolism. While it has been demonstrated that other fuels (pyruvate, lactate, and acetyl-L-carnitine) can be metabolized by the brain, ketones are the only endogenous fuel that can contribute significantly to cerebral metabolism. Preclinical studies employing both pre- and postinjury implementation of the ketogenic diet have demonstrated improved structural and functional outcome in traumatic brain injury (TBI) models, mild TBI/concussion models, and spinal cord injury. Further clinical studies are required to determine the optimal method to induce cerebral ketone metabolism in the postinjury brain, and to validate the neuroprotective benefits of ketogenic therapy in humans. PMID:24721741

  3. Insulin Stimulates S100B Secretion and These Proteins Antagonistically Modulate Brain Glucose Metabolism.

    PubMed

    Wartchow, Krista Minéia; Tramontina, Ana Carolina; de Souza, Daniela F; Biasibetti, Regina; Bobermin, Larissa D; Gonçalves, Carlos-Alberto

    2016-06-01

    Brain metabolism is highly dependent on glucose, which is derived from the blood circulation and metabolized by the astrocytes and other neural cells via several pathways. Glucose uptake in the brain does not involve insulin-dependent glucose transporters; however, this hormone affects the glucose influx to the brain. Changes in cerebrospinal fluid levels of S100B (an astrocyte-derived protein) have been associated with alterations in glucose metabolism; however, there is no evidence whether insulin modulates glucose metabolism and S100B secretion. Herein, we investigated the effect of S100B on glucose metabolism, measuring D-(3)H-glucose incorporation in two preparations, C6 glioma cells and acute hippocampal slices, and we also investigated the effect of insulin on S100B secretion. Our results showed that: (a) S100B at physiological levels decreases glucose uptake, through the multiligand receptor RAGE and mitogen-activated protein kinase/ERK signaling, and (b) insulin stimulated S100B secretion via PI3K signaling. Our findings indicate the existence of insulin-S100B modulation of glucose utilization in the brain tissue, and may improve our understanding of glucose metabolism in several conditions such as ketosis, streptozotocin-induced dementia and pharmacological exposure to antipsychotics, situations that lead to changes in insulin signaling and extracellular levels of S100B. PMID:26875731

  4. Alzheimer's disease-like pathology has transient effects on the brain and blood metabolome.

    PubMed

    Pan, Xiaobei; Nasaruddin, Muhammad Bin; Elliott, Christopher T; McGuinness, Bernadette; Passmore, Anthony P; Kehoe, Patrick G; Hölscher, Christian; McClean, Paula L; Graham, Stewart F; Green, Brian D

    2016-02-01

    The pathogenesis of Alzheimer's disease (AD) is complex involving multiple contributing factors. The extent to which AD pathology affects the metabolome is still not understood nor is it known how disturbances change as the disease progresses. For the first time, we have profiled longitudinally (6, 8, 10, 12, and 18 months) both the brain and plasma metabolome of APPswe/PS1deltaE9 double transgenic and wild-type mice. A total of 187 metabolites were quantified using a targeted metabolomic methodology. Multivariate statistical analysis produced models that distinguished APPswe/PS1deltaE9 from wild-type mice at 8, 10, and 12 months. Metabolic pathway analysis found perturbed polyamine metabolism in both brain and blood plasma. There were other disturbances in essential amino acids, branched-chain amino acids, and also in the neurotransmitter serotonin. Pronounced imbalances in phospholipid and acylcarnitine homeostasis were evident in 2 age groups. AD-like pathology, therefore, affects greatly on both the brain and blood metabolomes, although there appears to be a clear temporal sequence whereby changes to brain metabolites precede those in blood. PMID:26827653

  5. Loss of brain function - liver disease

    MedlinePlus

    ... of chronic liver damage. Common causes of chronic liver disease in the United States are: Chronic hepatitis B ... hepatitis Bile duct disorders Some medicines Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) Once you have ...

  6. Alterations in the Vaginal Microbiome by Maternal Stress Are Associated With Metabolic Reprogramming of the Offspring Gut and Brain.

    PubMed

    Jašarević, Eldin; Howerton, Christopher L; Howard, Christopher D; Bale, Tracy L

    2015-09-01

    The neonate is exposed to the maternal vaginal microbiota during parturition, providing the primary source for normal gut colonization, host immune maturation, and metabolism. These early interactions between the host and microbiota occur during a critical window of neurodevelopment, suggesting early life as an important period of cross talk between the developing gut and brain. Because perturbations in the prenatal environment such as maternal stress increase neurodevelopmental disease risk, disruptions to the vaginal ecosystem could be a contributing factor in significant and long-term consequences for the offspring. Therefore, to examine the hypothesis that changes in the vaginal microbiome are associated with effects on the offspring gut microbiota and on the developing brain, we used genomic, proteomic and metabolomic technologies to examine outcomes in our mouse model of early prenatal stress. Multivariate modeling identified broad proteomic changes to the maternal vaginal environment that influence offspring microbiota composition and metabolic processes essential for normal neurodevelopment. Maternal stress altered proteins related to vaginal immunity and abundance of Lactobacillus, the prominent taxa in the maternal vagina. Loss of maternal vaginal Lactobacillus resulted in decreased transmission of this bacterium to offspring. Further, altered microbiota composition in the neonate gut corresponded with changes in metabolite profiles involved in energy balance, and with region- and sex-specific disruptions of amino acid profiles in the developing brain. Taken together, these results identify the vaginal microbiota as a novel factor by which maternal stress may contribute to reprogramming of the developing brain that may predispose individuals to neurodevelopmental disorders. PMID:26079804

  7. Drug metabolism alterations in nonalcoholic fatty liver disease

    PubMed Central

    Merrell, Matthew D.; Cherrington, Nathan J.

    2013-01-01

    Drug-metabolizing enzymes play a vital role in the elimination of the majority of therapeutic drugs. The major organ involved in drug metabolism is the liver. Chronic liver diseases have been identified as a potential source of significant interindividual variation in metabolism. Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the United States, affecting between 60 and 90 million Americans, yet the vast majority of NAFLD patients are undiagnosed. NAFLD encompasses a spectrum of pathologies, ranging from steatosis to nonalcoholic steatohepatitis and fibrosis. Numerous animal studies have investigated the effects of NAFLD on hepatic gene expression, observing significant alterations in mRNA, protein, and activity levels. Information on the effects of NAFLD in human patients is limited, though several significant investigations have recently been published. Significant alterations in the activity of drug-metabolizing enzymes may affect the clearance of therapeutic drugs, with the potential to result in adverse drug reactions. With the enormous prevalence of NAFLD, it is conceivable that every drug currently on the market is being given to patients with NAFLD. The current review is intended to present the results from both animal models and human patients, summarizing the observed alterations in the expression and activity of the phase I and II drug-metabolizing enzymes. PMID:21612324

  8. Pseudoxanthoma Elasticum is a Metabolic Disease

    PubMed Central

    Jiang, Qiujie; Endoh, Masayuki; Dibra, Florian; Wang, Krystle; Uitto, Jouni

    2011-01-01

    Pseudoxanthoma elasticum (PXE) is a pleiotropic multisystem disorder affecting skin, eyes, and the cardiovascular system with progressive pathological mineralization. It is caused by mutations in the ABCC6 gene expressed primarily in the liver and kidneys, and at very low levels, if at all, in tissues affected by PXE. A question has arisen regarding the pathomechanism of PXE, particularly the “metabolic” versus the “PXE cell” hypotheses. We examined a murine PXE model (Abcc6−/−) by transplanting muzzle skin from knock-out (KO) and wild-type (WT) mice onto the back of WT and KO mice using mineralization of the connective tissue capsule surrounding the vibrissae as an early phenotypic biomarker. Grafting of WT mouse muzzle skin onto the back of KO mice resulted in mineralization of vibrissae, while grafting KO mouse muzzle skin onto the WT mice did not. Thus, these findings implicate circulatory factors as a critical component of the mineralization process. This mouse grafting model supports the notion that PXE is a systemic metabolic disorder with secondary mineralization of connective tissues and that the mineralization process can be countered or even reversed by changes in the homeostatic milieu. PMID:18685618

  9. Blood-brain barrier proteomics: towards the understanding of neurodegenerative diseases.

    PubMed

    Karamanos, Yannis; Gosselet, Fabien; Dehouck, Marie-Pierre; Cecchelli, Roméo

    2014-11-01

    The blood-brain barrier (BBB) regulates the passage of endogenous and exogenous compounds and thus contributes to the brain homeostasis with the help of well-known proteins such as tight junction proteins, plasma membrane transporters and metabolic barrier proteins. In the last decade, proteomics have emerged as supplementary tools for BBB research. The development of proteomic technologies has provided several means to extend knowledge on the BBB and to investigate additional routes for the bypass of this barrier. Proteomics approaches have been used in vivo and also using in vitro BBB models to decipher the physiological characteristics and, under stress conditions, to understand the molecular mechanisms of brain diseases. This work has demonstrated that both quantitative global and targeted proteomics approaches are powerful and provide significant information on the brain microvessel endothelium. However, current knowledge is only partial and it is necessary to increase the studies using proteomics tools that will provide additional information concerning brain pathologies or BBB metabolism. Highly sensitive, accurate and specific protein quantification by quantitative targeted proteomics appears as an essential methodology for human BBB studies. PMID:25446619

  10. Sphingolipid Metabolism Correlates with Cerebrospinal Fluid Beta Amyloid Levels in Alzheimer’s Disease

    PubMed Central

    Fonteh, Alfred N.; Ormseth, Cora; Chiang, Jiarong; Cipolla, Matthew; Arakaki, Xianghong; Harrington, Michael G.

    2015-01-01

    Sphingolipids are important in many brain functions but their role in Alzheimer’s disease (AD) is not completely defined. A major limit is availability of fresh brain tissue with defined AD pathology. The discovery that cerebrospinal fluid (CSF) contains abundant nanoparticles that include synaptic vesicles and large dense core vesicles offer an accessible sample to study these organelles, while the supernatant fluid allows study of brain interstitial metabolism. Our objective was to characterize sphingolipids in nanoparticles representative of membrane vesicle metabolism, and in supernatant fluid representative of interstitial metabolism from study participants with varying levels of cognitive dysfunction. We recently described the recruitment, diagnosis, and CSF collection from cognitively normal or impaired study participants. Using liquid chromatography tandem mass spectrometry, we report that cognitively normal participants had measureable levels of sphingomyelin, ceramide, and dihydroceramide species, but that their distribution differed between nanoparticles and supernatant fluid, and further differed in those with cognitive impairment. In CSF from AD compared with cognitively normal participants: a) total sphingomyelin levels were lower in nanoparticles and supernatant fluid; b) levels of ceramide species were lower in nanoparticles and higher in supernatant fluid; c) three sphingomyelin species were reduced in the nanoparticle fraction. Moreover, three sphingomyelin species in the nanoparticle fraction were lower in mild cognitive impairment compared with cognitively normal participants. The activity of acid, but not neutral sphingomyelinase was significantly reduced in the CSF from AD participants. The reduction in acid sphingomylinase in CSF from AD participants was independent of depression and psychotropic medications. Acid sphingomyelinase activity positively correlated with amyloid β42 concentration in CSF from cognitively normal but not impaired

  11. Neurological diseases in relation to the blood–brain barrier

    PubMed Central

    Rosenberg, Gary A

    2012-01-01

    Disruption of the blood–brain barrier (BBB) has an important part in cellular damage in neurological diseases, including acute and chronic cerebral ischemia, brain trauma, multiple sclerosis, brain tumors, and brain infections. The neurovascular unit (NVU) forms the interface between the blood and brain tissues. During an injury, the cascade of molecular events ends in the final common pathway for BBB disruption by free radicals and proteases, which attack membranes and degrade the tight junction proteins in endothelial cells. Free radicals of oxygen and nitrogen and the proteases, matrix metalloproteinases and cyclooxgyenases, are important in the early and delayed BBB disruption as the neuroinflammatory response progresses. Opening of the BBB occurs in neurodegenerative diseases and contributes to the cognitive changes. In addition to the importance of the NVU in acute injury, angiogenesis contributes to the recovery process. The challenges to treatment of the brain diseases involve not only facilitating drug entry into the brain, but also understanding the timing of the molecular cascades to block the early NVU injury without interfering with recovery. This review will describe the molecular and cellular events associated with NVU disruption and potential strategies directed toward restoring its integrity. PMID:22252235

  12. Connectomics: a new paradigm for understanding brain disease.

    PubMed

    Fornito, Alex; Bullmore, Edward T

    2015-05-01

    In recent years, pathophysiological models of brain disorders have shifted from an emphasis on understanding pathology in specific brain regions to characterizing disturbances of interconnected neural systems. This shift has paralleled rapid advances in connectomics, a field concerned with comprehensively mapping the neural elements and inter-connections that constitute the brain. Magnetic resonance imaging (MRI) has played a central role in these efforts, as it allows relatively cost-effective in vivo assessment of the macro-scale architecture of brain network connectivity. In this paper, we provide a brief introduction to some of the basic concepts in the field and review how recent developments in imaging connectomics are yielding new insights into brain disease, with a particular focus on Alzheimer's disease and schizophrenia. Specifically, we consider how research into circuit-level, connectome-wide and topological changes is stimulating the development of new aetiopathological theories and biomarkers with potential for clinical translation. The findings highlight the advantage of conceptualizing brain disease as a result of disturbances in an interconnected complex system, rather than discrete pathology in isolated sub-sets of brain regions. PMID:24726580

  13. A Metabolic Study of Huntington’s Disease

    PubMed Central

    Kalliolia, Eirini; Ottolenghi, Chris; Hindmarsh, Peter; Hill, Nathan R.; Costelloe, Seán J.; Martin, Nicholas G.; Positano, Vincenzo; Watt, Hilary C.; Frost, Chris; Björkqvist, Maria; Warner, Thomas T.

    2016-01-01

    Background Huntington’s disease patients have a number of peripheral manifestations suggestive of metabolic and endocrine abnormalities. We, therefore, investigated a number of metabolic factors in a 24-hour study of Huntington’s disease gene carriers (premanifest and moderate stage II/III) and controls. Methods Control (n = 15), premanifest (n = 14) and stage II/III (n = 13) participants were studied with blood sampling over a 24-hour period. A battery of clinical tests including neurological rating and function scales were performed. Visceral and subcutaneous adipose distribution was measured using magnetic resonance imaging. We quantified fasting baseline concentrations of glucose, insulin, cholesterol, triglycerides, lipoprotein (a), fatty acids, amino acids, lactate and osteokines. Leptin and ghrelin were quantified in fasting samples and after a standardised meal. We assessed glucose, insulin, growth hormone and cortisol concentrations during a prolonged oral glucose tolerance test. Results We found no highly significant differences in carbohydrate, protein or lipid metabolism markers between healthy controls, premanifest and stage II/III Huntington’s disease subjects. For some markers (osteoprotegerin, tyrosine, lysine, phenylalanine and arginine) there is a suggestion (p values between 0.02 and 0.05) that levels are higher in patients with premanifest HD, but not moderate HD. However, given the large number of statistical tests performed interpretation of these findings must be cautious. Conclusions Contrary to previous studies that showed altered levels of metabolic markers in patients with Huntington’s disease, our study did not demonstrate convincing evidence of abnormalities in any of the markers examined. Our analyses were restricted to Huntington’s disease patients not taking neuroleptics, anti-depressants or other medication affecting metabolic pathways. Even with the modest sample sizes studied, the lack of highly significant results

  14. [Clinical applications of arterial spin labeling technique in brain diseases].

    PubMed

    Wang, Li; Zheng, Gang; Zhao, Tiezhu; Guo, Chao; Li, Lin; Lu, Guangming

    2013-02-01

    Arterial spin labeling (ASL) technique is a kind of perfusion functional magnetic resonance imaging method that is based on endogenous contrast, and it can measure cerebral blood flow (CBF) noninvasively. The ASL technique has advantages of noninvasiveness, simplicity and relatively lower costs so that it is more suitable for longitudinal studies compared with previous perfusion methods, such as positron emission tomography (PET), single photon emission computed tomography (SPECT), CT and the contrast agent based magnetic resonance perfusion imaging. This paper mainly discusses the current clinical applications of ASL in brain diseases as cerebrovascular diseases, brain tumors, Alzheimer's disease and epilepsy, etc. PMID:23488163

  15. Preserved brain metabolic activity at the age of 96 years.

    PubMed

    Apostolova, Ivayla; Lange, Catharina; Spies, Lothar; Ritter, Kerstin; Mäurer, Anja; Seybold, Joachim; Fiebach, Jochen B; Steinhagen-Thiessen, Elisabeth; Buchert, Ralph

    2016-09-01

    Loss of brain tissue becomes notable to cerebral magnetic resonance imaging (MRI) at age 30 years, and progresses more rapidly from mid 60s. The incidence of dementia increases exponentially with age, and is all too frequent in the oldest old (≥ 90 years of age), the fastest growing age group in many countries. However, brain pathology and cognitive decline are not inevitable, even at extremely old age (den Dunnen et al., 2008). PMID:27160670

  16. Brain Na(+), K(+)-ATPase Activity In Aging and Disease.

    PubMed

    de Lores Arnaiz, Georgina Rodríguez; Ordieres, María Graciela López

    2014-06-01

    Na(+)/K(+) pump or sodium- and potassium-activated adenosine 5'-triphosphatase (Na(+), K(+)-ATPase), its enzymatic version, is a crucial protein responsible for the electrochemical gradient across the cell membranes. It is an ion transporter, which in addition to exchange cations, is the ligand for cardenolides. This enzyme regulates the entry of K(+) with the exit of Na(+) from cells, being the responsible for Na(+)/K(+) equilibrium maintenance through neuronal membranes. This transport system couples the hydrolysis of one molecule of ATP to exchange three sodium ions for two potassium ions, thus maintaining the normal gradient of these cations in animal cells. Oxidative metabolism is very active in brain, where large amounts of chemical energy as ATP molecules are consumed, mostly required for the maintenance of the ionic gradients that underlie resting and action potentials which are involved in nerve impulse propagation, neurotransmitter release and cation homeostasis. Protein phosphorylation is a key process in biological regulation. At nervous system level, protein phosphorylation is the major molecular mechanism through which the function of neural proteins is modulted in response to extracellular signals, including the response to neurotransmitter stimuli. It is the major mechanism of neural plasticity, including memory processing. The phosphorylation of Na(+), K(+)-ATPase catalytic subunit inhibits enzyme activity whereas the inhibition of protein kinase C restores the enzyme activity. The dephosphorylation of neuronal Na(+), K(+)-ATPase is mediated by calcineurin, a serine / threonine phosphatase. The latter enzyme is involved in a wide range of cellular responses to Ca(2+) mobilizing signals, in the regulation of neuronal excitability by controlling the activity of ion channels, in the release of neurotransmitters and hormones, as well as in synaptic plasticity and gene transcription. In the present article evidence showing Na(+), K(+)-ATPase involvement

  17. Brain Na+, K+-ATPase Activity In Aging and Disease

    PubMed Central

    de Lores Arnaiz, Georgina Rodríguez; Ordieres, María Graciela López

    2014-01-01

    Na+/K+ pump or sodium- and potassium-activated adenosine 5’-triphosphatase (Na+, K+-ATPase), its enzymatic version, is a crucial protein responsible for the electrochemical gradient across the cell membranes. It is an ion transporter, which in addition to exchange cations, is the ligand for cardenolides. This enzyme regulates the entry of K+ with the exit of Na+ from cells, being the responsible for Na+/K+ equilibrium maintenance through neuronal membranes. This transport system couples the hydrolysis of one molecule of ATP to exchange three sodium ions for two potassium ions, thus maintaining the normal gradient of these cations in animal cells. Oxidative metabolism is very active in brain, where large amounts of chemical energy as ATP molecules are consumed, mostly required for the maintenance of the ionic gradients that underlie resting and action potentials which are involved in nerve impulse propagation, neurotransmitter release and cation homeostasis. Protein phosphorylation is a key process in biological regulation. At nervous system level, protein phosphorylation is the major molecular mechanism through which the function of neural proteins is modulted in response to extracellular signals, including the response to neurotransmitter stimuli. It is the major mechanism of neural plasticity, including memory processing. The phosphorylation of Na+, K+-ATPase catalytic subunit inhibits enzyme activity whereas the inhibition of protein kinase C restores the enzyme activity. The dephosphorylation of neuronal Na+, K+-ATPase is mediated by calcineurin, a serine / threonine phosphatase. The latter enzyme is involved in a wide range of cellular responses to Ca2+ mobilizing signals, in the regulation of neuronal excitability by controlling the activity of ion channels, in the release of neurotransmitters and hormones, as well as in synaptic plasticity and gene transcription. In the present article evidence showing Na+, K+-ATPase involvement in signaling pathways

  18. The metabolic syndrome and cardiovascular disease: Part I.

    PubMed

    Jiamsripong, Panupong; Mookadam, Martina; Honda, Tadaaki; Khandheria, Bijoy K; Mookadam, Farouk

    2008-01-01

    The metabolic syndrome is a constellation of metabolic risk factors and physical conditions that are accompanied by an enhanced propensity toward the development of type 2 diabetes, atherosclerosis, and cardiovascular disease. It presents a combination of atherosclerosis risk including atherogenic dyslipidemia, hypertension, elevated plasma glucose, hypercoagulability, and a proinflammatory state. The 2 major underlying risk factors for the metabolic syndrome are obesity and insulin resistance. Exacerbating factors are physical inactivity, advancing age, and endocrine and genetic factors. Associated hyperinsulinemia, hyperglycemia, and elevated adipokine levels (adipose cytokines) lead to vascular endothelial dysfunction, an abnormal lipid profile, hypertension, and vascular inflammation, all of which promote the development of atherosclerotic cardiovascular disease. In this 2-part series, the authors present an up-to-date and detailed systematic review of the literature on this important topic. PMID:18607151

  19. Assessing the Human Gut Microbiota in Metabolic Diseases

    PubMed Central

    Karlsson, Fredrik; Tremaroli, Valentina; Nielsen, Jens; Bäckhed, Fredrik

    2013-01-01

    Recent findings have demonstrated that the gut microbiome complements our human genome with at least 100-fold more genes. In contrast to our Homo sapiens–derived genes, the microbiome is much more plastic, and its composition changes with age and diet, among other factors. An altered gut microbiota has been associated with several diseases, including obesity and diabetes, but the mechanisms involved remain elusive. Here we discuss factors that affect the gut microbiome, how the gut microbiome may contribute to metabolic diseases, and how to study the gut microbiome. Next-generation sequencing and development of software packages have led to the development of large-scale sequencing efforts to catalog the human microbiome. Furthermore, the use of genetically engineered gnotobiotic mouse models may increase our understanding of mechanisms by which the gut microbiome modulates host metabolism. A combination of classical microbiology, sequencing, and animal experiments may provide further insights into how the gut microbiota affect host metabolism and physiology. PMID:24065795

  20. The impact of microglial activation on blood-brain barrier in brain diseases

    PubMed Central

    da Fonseca, Anna Carolina Carvalho; Matias, Diana; Garcia, Celina; Amaral, Rackele; Geraldo, Luiz Henrique; Freitas, Catarina; Lima, Flavia Regina Souza

    2014-01-01

    The blood-brain barrier (BBB), constituted by an extensive network of endothelial cells (ECs) together with neurons and glial cells, including microglia, forms the neurovascular unit (NVU). The crosstalk between these cells guarantees a proper environment for brain function. In this context, changes in the endothelium-microglia interactions are associated with a variety of inflammation-related diseases in brain, where BBB permeability is compromised. Increasing evidences indicate that activated microglia modulate expression of tight junctions, which are essential for BBB integrity and function. On the other hand, the endothelium can regulate the state of microglial activation. Here, we review recent advances that provide insights into interactions between the microglia and the vascular system in brain diseases such as infectious/inflammatory diseases, epilepsy, ischemic stroke and neurodegenerative disorders. PMID:25404894

  1. Incident Cardiovascular Disease Events in Metabolically Benign Obese Individuals

    PubMed Central

    Ogorodnikova, Alexandra D.; Kim, Mimi; McGinn, Aileen; Muntner, Paul; Khan, Unab I.; Wildman, Rachel P.

    2012-01-01

    OBJECTIVE While several studies have demonstrated a high prevalence of metabolically benign obesity, little is known about the incidence of cardiovascular disease (CVD) in this group. RESEARCH DESIGN AND METHODS Using pooled data from the Atherosclerosis Risk in Communities and Cardiovascular Health Studies, we assessed the association of metabolically benign obesity with incident CVD (coronary heart disease and stroke) using three existing definitions of metabolically benign obesity: (1) the ATP-III metabolic syndrome definition (≤2 of the ATP-III components, excluding waist), (2) the expanded ATP-III definition (≤1 of: the ATP-III components, HOMA-IR>75th percentile, systemic inflammation [WBC>75th percentile]), and (3) the insulin resistance (IR) based definition (sex-specific lowest quartile of the HOMA-IR distribution among non-diabetic obese). RESULTS The sample included 4,323 normal weight and 6,121 obese individuals. Among obese, 27.0%, 18.1%, and 20.4% were metabolically benign by the three definitions, respectively. CVD incidence among metabolically benign obese defined by the three definitions (mean follow-up 11.8 years) was 8.7%, 7.2%, and 10.3%, respectively, versus 7.9% in low-risk normal weight individuals. Multivariate-adjusted hazard ratios (95% CI) of incident CVD in metabolically benign obese compared to low-risk normal weight individuals were 1.24 (0.99-1.57), 1.16 (0.86-1.56), and 1.28 (1.01-1.62), respectively. CONCLUSIONS Regardless of the definition used, we observed a high prevalence of metabolically benign obesity. All three commonly used definitions were similar in terms of both classification and subsequent risk of CVD, with the expanded ATP-III criteria perhaps identifying the obese group at lowest risk of CVD. PMID:21799477

  2. Extracting regional brain patterns for classification of neurodegenerative diseases

    NASA Astrophysics Data System (ADS)

    Pulido, Andrea; Rueda, Andrea; Romero, Eduardo

    2013-11-01

    In structural Magnetic Resonance Imaging (MRI), neurodegenerative diseases generally present complex brain patterns that can be correlated with di erent clinical onsets of this pathologies. An objective method that aims to determine both global and local changes is not usually available in clinical practice, thus the interpretation of these images is strongly dependent on the radiologist's skills. In this paper, we propose a strategy which interprets the brain structure using a framework that highlights discriminant brain patterns for neurodegenerative diseases. This is accomplished by combining a probabilistic learning technique, which identi es and groups regions with similar visual features, with a visual saliency method that exposes relevant information within each region. The association of such patterns with a speci c disease is herein evaluated in a classi cation task, using a dataset including 80 Alzheimer's disease (AD) patients and 76 healthy subjects (NC). Preliminary results show that the proposed method reaches a maximum classi cation accuracy of 81.39%.

  3. Functional integration changes in regional brain glucose metabolism from childhood to adulthood.

    PubMed

    Trotta, Nicola; Archambaud, Frédérique; Goldman, Serge; Baete, Kristof; Van Laere, Koen; Wens, Vincent; Van Bogaert, Patrick; Chiron, Catherine; De Tiège, Xavier

    2016-08-01

    The aim of this study was to investigate the age-related changes in resting-state neurometabolic connectivity from childhood to adulthood (6-50 years old). Fifty-four healthy adult subjects and twenty-three pseudo-healthy children underwent [(18) F]-fluorodeoxyglucose positron emission tomography at rest. Using statistical parametric mapping (SPM8), age and age squared were first used as covariate of interest to identify linear and non-linear age effects on the regional distribution of glucose metabolism throughout the brain. Then, by selecting voxels of interest (VOI) within the regions showing significant age-related metabolic changes, a psychophysiological interaction (PPI) analysis was used to search for age-induced changes in the contribution of VOIs to the metabolic activity in other brain areas. Significant linear or non-linear age-related changes in regional glucose metabolism were found in prefrontal cortices (DMPFC/ACC), cerebellar lobules, and thalamo-hippocampal areas bilaterally. Decreases were found in the contribution of thalamic, hippocampal, and cerebellar regions to DMPFC/ACC metabolic activity as well as in the contribution of hippocampi to preSMA and right IFG metabolic activities. Increases were found in the contribution of the right hippocampus to insular cortex and of the cerebellar lobule IX to superior parietal cortex metabolic activities. This study evidences significant linear or non-linear age-related changes in regional glucose metabolism of mesial prefrontal, thalamic, mesiotemporal, and cerebellar areas, associated with significant modifications in neurometabolic connectivity involving fronto-thalamic, fronto-hippocampal, and fronto-cerebellar networks. These changes in functional brain integration likely represent a metabolic correlate of age-dependent effects on sensory, motor, and high-level cognitive functional networks. Hum Brain Mapp 37:3017-3030, 2016. © 2016 Wiley Periodicals, Inc. PMID:27133021

  4. Brain glucose metabolism in adults with ataxia-telangiectasia and their asymptomatic relatives.

    PubMed

    Volkow, Nora D; Tomasi, Dardo; Wang, Gene-Jack; Studentsova, Yana; Margus, Brad; Crawford, Thomas O

    2014-06-01

    Ataxia-telangiectasia is a recessive genetic disorder (ATM is the mutated gene) of childhood with severe motor impairments and whereas homozygotes manifest the disorder, heterozygotes are asymptomatic. Structural brain imaging and post-mortem studies in individuals with ataxia-telangiectasia have reported cerebellar atrophy; but abnormalities of motor control characteristic of extrapyramidal dysfunction suggest impairment of broader motor networks. Here, we investigated possible dysfunction in other brain areas in individuals with ataxia-telangiectasia and tested for brain changes in asymptomatic relatives to assess if heterozygocity affects brain function. We used positron emission tomography and (18)F-fluorodeoxyglucose to measure brain glucose metabolism (quantified as µmol/100 g/min), which serves as a marker of brain function, in 10 adults with ataxia-telangiectasia, 19 non-affected adult relatives (12 siblings, seven parents) and 29 age-matched healthy controls. Statistical parametric mapping and region of interest analyses were used to compare individuals with ataxia-telangiectasia, asymptomatic relatives, and unrelated controls. We found that participants with ataxia-telangiectasia had lower metabolism in cerebellar hemispheres (14%, P < 0.001), anterior vermis (40%, P < 0.001) and fusiform gyrus (20%, P < 0.001) compared with controls or siblings, and lower metabolism in hippocampus (12%, P = 0.05) compared with controls, and showed significant intersubject variability (decreases in vermis ranged from 18% to 60%). Participants with ataxia-telangiectasia also had higher metabolism in globus pallidus (16%, P = 0.05), which correlated negatively with motor performance. Asymptomatic relatives had lower metabolism in anterior vermis (12%; P = 0.01) and hippocampus (19%; P = 0.002) than controls. Our results indicate that, in addition to the expected decrease in cerebellar metabolism, participants with ataxia-telangiectasia had widespread changes in metabolic

  5. Astrocyte sodium signaling and neuro-metabolic coupling in the brain.

    PubMed

    Rose, C R; Chatton, J-Y

    2016-05-26

    At tripartite synapses, astrocytes undergo calcium signaling in response to release of neurotransmitters and this calcium signaling has been proposed to play a critical role in neuron-glia interaction. Recent work has now firmly established that, in addition, neuronal activity also evokes sodium transients in astrocytes, which can be local or global depending on the number of activated synapses and the duration of activity. Furthermore, astrocyte sodium signals can be transmitted to adjacent cells through gap junctions and following release of gliotransmitters. A main pathway for activity-related sodium influx into astrocytes is via high-affinity sodium-dependent glutamate transporters. Astrocyte sodium signals differ in many respects from the well-described glial calcium signals both in terms of their temporal as well as spatial distribution. There are no known buffering systems for sodium ions, nor is there store-mediated release of sodium. Sodium signals thus seem to represent rather direct and unbiased indicators of the site and strength of neuronal inputs. As such they have an immediate influence on the activity of sodium-dependent transporters which may even reverse in response to sodium signaling, as has been shown for GABA transporters for example. Furthermore, recovery from sodium transients through Na(+)/K(+)-ATPase requires a measurable amount of ATP, resulting in an activation of glial metabolism. In this review, we present basic principles of sodium regulation and the current state of knowledge concerning the occurrence and properties of activity-related sodium transients in astrocytes. We then discuss different aspects of the relationship between sodium changes in astrocytes and neuro-metabolic coupling, putting forward the idea that indeed sodium might serve as a new type of intracellular ion signal playing an important role in neuron-glia interaction and neuro-metabolic coupling in the healthy and diseased brain. PMID:25791228

  6. Metabolic disruption identified in the Huntington's disease transgenic sheep model.

    PubMed

    Handley, Renee R; Reid, Suzanne J; Patassini, Stefano; Rudiger, Skye R; Obolonkin, Vladimir; McLaughlan, Clive J; Jacobsen, Jessie C; Gusella, James F; MacDonald, Marcy E; Waldvogel, Henry J; Bawden, C Simon; Faull, Richard L M; Snell, Russell G

    2016-01-01

    Huntington's disease (HD) is a dominantly inherited, progressive neurodegenerative disorder caused by a CAG repeat expansion within exon 1 of HTT, encoding huntingtin. There are no therapies that can delay the progression of this devastating disease. One feature of HD that may play a critical role in its pathogenesis is metabolic disruption. Consequently, we undertook a comparative study of metabolites in our transgenic sheep model of HD (OVT73). This model does not display overt symptoms of HD but has circadian rhythm alterations and molecular changes characteristic of the early phase disease. Quantitative metabolite profiles were generated from the motor cortex, hippocampus, cerebellum and liver tissue of 5 year old transgenic sheep and matched controls by gas chromatography-mass spectrometry. Differentially abundant metabolites were evident in the cerebellum and liver. There was striking tissue-specificity, with predominantly amino acids affected in the transgenic cerebellum and fatty acids in the transgenic liver, which together may indicate a hyper-metabolic state. Furthermore, there were more strong pair-wise correlations of metabolite abundance in transgenic than in wild-type cerebellum and liver, suggesting altered metabolic constraints. Together these differences indicate a metabolic disruption in the sheep model of HD and could provide insight into the presymptomatic human disease. PMID:26864449

  7. Dietary Fiber, Microbiota and Obesity Related Metabolic Diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The presentation summarizes our research over the past 7 years on viscous soluble dietary fibers in animal models of obesity and metabolic diseases. We found that in addition to the well known cholesterol and glucose lowering ability of soluble fibers, viscous dietary fibers also prevent most of th...

  8. Optical diagnosis of a metabolic disease: cystinosis

    NASA Astrophysics Data System (ADS)

    Cinotti, Elisa; Perrot, Jean Luc; Labeille, Bruno; Espinasse, Marine; Ouerdane, Youcef; Boukenter, Aziz; Thuret, Gilles; Gain, Philippe; Campolmi, Nelly; Douchet, Catherine; Cambazard, Frédéric

    2013-04-01

    Nephropathic cystinosis (NC) is a rare autosomal recessive storage disease characterized by the lysosomal accumulation of cystine crystals throughout the body, particularly in blood cells, the cornea, skin, kidneys, the central nervous system, and the muscles. The skin and the cornea are the most accessible sites to explore, and in vivo reflectance confocal microscopy (IVCM) helps identify crystals in both but does not provide any information to help define their composition. Raman spectroscopy (RS) allows cystine to be easily recognized thanks to its characteristic signature with a band at 499 cm-1. Two dermatology confocal microscopes were used to visualize crystals in both the skin and the ocular surface of a cystinosis patient, and an ex vivo Raman examination of a skin biopsy and of the cornea was performed and removed during a corneal graft to confirm the cystine composition of the crystals. Recently, RS has been performed in vivo and coupled with IVCM. In the future, it is suggested that crystals in NC and other deposits in storage diseases could be identified with this noninvasive in vivo technique that combines IVCM to recognize the deposits and RS to confirm their chemical nature.

  9. 2-Methylcitric acid impairs glutamate metabolism and induces permeability transition in brain mitochondria.

    PubMed

    Amaral, Alexandre Umpierrez; Cecatto, Cristiane; Castilho, Roger Frigério; Wajner, Moacir

    2016-04-01

    Accumulation of 2-methylcitric acid (2MCA) is observed in methylmalonic and propionic acidemias, which are clinically characterized by severe neurological symptoms. The exact pathogenetic mechanisms of brain abnormalities in these diseases are poorly established and very little has been reported on the role of 2MCA. In the present work we found that 2MCA markedly inhibited ADP-stimulated and uncoupled respiration in mitochondria supported by glutamate, with a less significant inhibition in pyruvate plus malate respiring mitochondria. However, no alterations occurred when α-ketoglutarate or succinate was used as respiratory substrates, suggesting a defect on glutamate oxidative metabolism. It was also observed that 2MCA decreased ATP formation in glutamate plus malate or pyruvate plus malate-supported mitochondria. Furthermore, 2MCA inhibited glutamate dehydrogenase activity at concentrations as low as 0.5 mM. Kinetic studies revealed that this inhibitory effect was competitive in relation to glutamate. In contrast, assays of osmotic swelling in non-respiring mitochondria suggested that 2MCA did not significantly impair mitochondrial glutamate transport. Finally, 2MCA provoked a significant decrease in mitochondrial membrane potential and induced swelling in Ca(2+)-loaded mitochondria supported by different substrates. These effects were totally prevented by cyclosporine A plus ADP or ruthenium red, indicating induction of mitochondrial permeability transition. Taken together, our data strongly indicate that 2MCA behaves as a potent inhibitor of glutamate oxidation by inhibiting glutamate dehydrogenase activity and as a permeability transition inducer, disturbing mitochondrial energy homeostasis. We presume that 2MCA-induced mitochondrial deleterious effects may contribute to the pathogenesis of brain damage in patients affected by methylmalonic and propionic acidemias. We propose that brain glutamate oxidation is disturbed by 2-methylcitric acid (2MCA), which

  10. Addiction: Current Criticism of the Brain Disease Paradigm

    PubMed Central

    Hammer, Rachel; Dingel, Molly; Ostergren, Jenny; Partridge, Brad; McCormick, Jennifer; Koenig, Barbara A.

    2014-01-01

    To deepen understanding of efforts to consider addiction a “brain disease,” we review critical appraisals of the disease model in conjunction with responses from in-depth semistructured stakeholder interviews with (1) patients in treatment for addiction and (2) addiction scientists. Sixty-three patients (from five alcohol and/or nicotine treatment centers in the Midwest) and 20 addiction scientists (representing genetic, molecular, behavioral, and epidemiologic research) were asked to describe their understanding of addiction, including whether they considered addiction to be a disease. To examine the NIDA brain disease paradigm, our approach includes a review of current criticism from the literature, enhanced by the voices of key stakeholders. Many argue that framing addiction as a disease will enhance therapeutic outcomes and allay moral stigma. We conclude that it is not necessary, and may be harmful, to frame addiction as a disease. PMID:24693488

  11. Resting cerebral metabolism correlates with skin conductance and functional brain activation during fear conditioning.

    PubMed

    Linnman, Clas; Zeidan, Mohamed A; Pitman, Roger K; Milad, Mohammed R

    2012-02-01

    We investigated whether resting brain metabolism can be used to predict autonomic and neuronal responses during fear conditioning in 20 healthy humans. Regional cerebral metabolic rate for glucose was measured via positron emission tomography at rest. During conditioning, autonomic responses were measured via skin conductance, and blood oxygen level dependent signal was measured via functional magnetic resonance imaging. Resting dorsal anterior cingulate metabolism positively predicted differentially conditioned skin conductance responses. Midbrain and insula resting metabolism negatively predicted midbrain and insula functional reactivity, while dorsal anterior cingulate resting metabolism positively predicted midbrain functional reactivity. We conclude that resting metabolism in limbic areas can predict some aspects of psychophysiological and neuronal reactivity during fear learning. PMID:22207247

  12. Resting cerebral metabolism correlates with skin conductance and functional brain activation during fear conditioning

    PubMed Central

    Linnman, Clas; Zeidan, Mohamed A.; Pitman, Roger K; Milad, Mohammed R.

    2011-01-01

    We investigated whether resting brain metabolism can be used to predict autonomic and neuronal responses during fear conditioning in 20 healthy humans. Regional cerebral metabolic rate for glucose was measured via positron emission tomography at rest. During conditioning, autonomic responses were measured via skin conductance, and blood oxygen level dependent signal was measured via functional magnetic resonance imaging. Resting dorsal anterior cingulate metabolism positively predicted differentially conditioned skin conductance responses. Midbrain and insula resting metabolism negatively predicted midbrain and insula functional reactivity, while dorsal anterior cingulate resting metabolism positively predicted midbrain functional reactivity. We conclude that resting metabolism in limbic areas can predict some aspects of psychophysiological and neuronal reactivity during fear learning. PMID:22207247

  13. Brain metabolism and memory in age differentiated healthy adults

    SciTech Connect

    Riege, W.H.; Metter, E.J.; Kuhl, D.E.; Phelps, M.E.

    1984-01-01

    The (F-18)-fluorodeoxyglucose (FDG) scan method with positron emission tomography was used to determine age differences in factors underlying both the performances on 18 multivariate memory tests and the rates of cerebral glucose utilization in 9 left and 9 right hemispheric regions of 23 healthy adults in the age range of 27-78 years. Young persons below age 42 had higher scores than middle-aged (age 48-65 yrs) or old (age 66-78 yrs) persons on two of seven factors, reflecting memory for sequences of words or events together with metabolic indices of Broca's (and its mirror region) and Thalamic areas. Reliable correlations (critical r = 0.48, p<0.02) indicated that persons with high Superior Frontal and low Caudate-Thalamic metabolic measures were the same who performed well in tests of memory for sentences, story, designs, and complex patterns; while metabolic indices of Occipital and Posterior Temporal regions were correlated with the decision criteria adopted in testing. The mean metabolic ratio (b = -0.033, F = 5.47, p<0.03) and those of bilateral Broca's regions (b = -0.002, F = 13.65, p<0.001) significantly declined with age. The functional interrelation of frontal-subcortical metabolic ratios with memory processing was more prominent in younger persons under study and implicates decreasing thalamo-frontal interaction with age.

  14. Single-cell imaging tools for brain energy metabolism: a review

    PubMed Central

    San Martín, Alejandro; Sotelo-Hitschfeld, Tamara; Lerchundi, Rodrigo; Fernández-Moncada, Ignacio; Ceballo, Sebastian; Valdebenito, Rocío; Baeza-Lehnert, Felipe; Alegría, Karin; Contreras-Baeza, Yasna; Garrido-Gerter, Pamela; Romero-Gómez, Ignacio; Barros, L. Felipe

    2014-01-01

    Abstract. Neurophotonics comes to light at a time in which advances in microscopy and improved calcium reporters are paving the way toward high-resolution functional mapping of the brain. This review relates to a parallel revolution in metabolism. We argue that metabolism needs to be approached both in vitro and in vivo, and that it does not just exist as a low-level platform but is also a relevant player in information processing. In recent years, genetically encoded fluorescent nanosensors have been introduced to measure glucose, glutamate, ATP, NADH, lactate, and pyruvate in mammalian cells. Reporting relative metabolite levels, absolute concentrations, and metabolic fluxes, these sensors are instrumental for the discovery of new molecular mechanisms. Sensors continue to be developed, which together with a continued improvement in protein expression strategies and new imaging technologies, herald an exciting era of high-resolution characterization of metabolism in the brain and other organs. PMID:26157964

  15. Dietary inorganic nitrate: From villain to hero in metabolic disease?

    PubMed

    McNally, Ben; Griffin, Julian L; Roberts, Lee D

    2016-01-01

    Historically, inorganic nitrate was believed to be an inert by-product of nitric oxide (NO) metabolism that was readily excreted by the body. Studies utilising doses of nitrate far in excess of dietary and physiological sources reported potentially toxic and carcinogenic effects of the anion. However, nitrate is a significant component of our diets, with the majority of the anion coming from green leafy vegetables, which have been consistently shown to offer protection against obesity, type 2 diabetes and metabolic diseases. The discovery of a metabolic pathway in mammals, in which nitrate is reduced to NO, via nitrite, has warranted a re-examination of the physiological role of this small molecule. Obesity, type 2 diabetes and the metabolic syndrome are associated with a decrease in NO bioavailability. Recent research suggests that the nitrate-nitrite-NO pathway may be harnessed as a therapeutic to supplement circulating NO concentrations, with both anti-obesity and anti-diabetic effects, as well as improving vascular function. In this review, we examine the key studies that have led to the re-evaluation of the physiological function of inorganic nitrate, from toxic and carcinogenic metabolite, to a potentially important and beneficial agent in the treatment of metabolic disease. PMID:26227946

  16. Dietary inorganic nitrate: From villain to hero in metabolic disease?

    PubMed Central

    McNally, Ben; Griffin, Julian L.

    2015-01-01

    Historically, inorganic nitrate was believed to be an inert by‐product of nitric oxide (NO) metabolism that was readily excreted by the body. Studies utilising doses of nitrate far in excess of dietary and physiological sources reported potentially toxic and carcinogenic effects of the anion. However, nitrate is a significant component of our diets, with the majority of the anion coming from green leafy vegetables, which have been consistently shown to offer protection against obesity, type 2 diabetes and metabolic diseases. The discovery of a metabolic pathway in mammals, in which nitrate is reduced to NO, via nitrite, has warranted a re‐examination of the physiological role of this small molecule. Obesity, type 2 diabetes and the metabolic syndrome are associated with a decrease in NO bioavailability. Recent research suggests that the nitrate‐nitrite‐NO pathway may be harnessed as a therapeutic to supplement circulating NO concentrations, with both anti‐obesity and anti‐diabetic effects, as well as improving vascular function. In this review, we examine the key studies that have led to the re‐evaluation of the physiological function of inorganic nitrate, from toxic and carcinogenic metabolite, to a potentially important and beneficial agent in the treatment of metabolic disease. PMID:26227946

  17. Endothelial cell metabolism in normal and diseased vasculature

    PubMed Central

    Eelen, Guy; de Zeeuw, Pauline; Simons, Michael; Carmeliet, Peter

    2015-01-01

    Higher organisms rely on a closed cardiovascular circulatory system with blood vessels supplying vital nutrients and oxygen to distant tissues. Not surprisingly, vascular pathologies rank among the most life-threatening diseases. At the crux of most of these vascular pathologies are (dysfunctional) endothelial cells (ECs), the cells lining the blood vessel lumen. ECs display the remarkable capability to switch rapidly from a quiescent state to a highly migratory and proliferative state during vessel sprouting. This angiogenic switch has long been considered to be dictated by angiogenic growth factors (eg vascular endothelial growth factor; VEGF) and other signals (eg Notch) alone, but recent findings show that it is also driven by a metabolic switch in ECs. Furthermore, these changes in metabolism may even override signals inducing vessel sprouting. Here, we review how EC metabolism differs between the normal and dysfunctional/diseased vasculature and how it relates to or impacts the metabolism of other cell types contributing to the pathology. We focus on the biology of ECs in tumor blood vessel and diabetic ECs in atherosclerosis as examples of the role of endothelial metabolism in key pathological processes. Finally, current as well as unexplored ‘EC metabolism’-centric therapeutic avenues are discussed. PMID:25814684

  18. Metabolic syndrome and cardiovascular disease in South Asians.

    PubMed

    Eapen, Danny; Kalra, Girish L; Merchant, Nadya; Arora, Anjali; Khan, Bobby V

    2009-01-01

    This review discusses the prevalence of metabolic syndrome and cardiovascular disease in the South Asian population, evaluates conventional and emerging risk factors, and reinforces the need for ethnic-specific redefinition of guidelines used to diagnose metabolic syndrome. We reviewed recent and past literature using Ovid Medline and PubMed databases. South Asians represent one of the largest and fastest growing ethnic groups in the world. With this growth, a dramatic rise in the rates of acute myocardial infarction and diabetes is being seen in this population. Potential etiologies for this phenomenon include dietary westernization, poor lifestyle measures, adverse body fat patterning, and genetics. While traditional risk factors for diabetes and cardiovascular disease should not be overlooked, early metabolic syndrome has now been shown in the South Asian pediatric population, suggesting that "metabolic programming" and perinatal influences may likely play a substantial role. Health care practitioners must be aware that current guidelines used to identify individuals with metabolic syndrome are underestimating South Asian individuals at risk. New ethnic-specific guidelines and prevention strategies are discussed in this review and should be applied by clinicians to their South Asian patients. PMID:19756165

  19. Metabolic acceleration and the evolution of human brain size and life history.

    PubMed

    Pontzer, Herman; Brown, Mary H; Raichlen, David A; Dunsworth, Holly; Hare, Brian; Walker, Kara; Luke, Amy; Dugas, Lara R; Durazo-Arvizu, Ramon; Schoeller, Dale; Plange-Rhule, Jacob; Bovet, Pascal; Forrester, Terrence E; Lambert, Estelle V; Thompson, Melissa Emery; Shumaker, Robert W; Ross, Stephen R

    2016-05-19

    Humans are distinguished from the other living apes in having larger brains and an unusual life history that combines high reproductive output with slow childhood growth and exceptional longevity. This suite of derived traits suggests major changes in energy expenditure and allocation in the human lineage, but direct measures of human and ape metabolism are needed to compare evolved energy strategies among hominoids. Here we used doubly labelled water measurements of total energy expenditure (TEE; kcal day(-1)) in humans, chimpanzees, bonobos, gorillas and orangutans to test the hypothesis that the human lineage has experienced an acceleration in metabolic rate, providing energy for larger brains and faster reproduction without sacrificing maintenance and longevity. In multivariate regressions including body size and physical activity, human TEE exceeded that of chimpanzees and bonobos, gorillas and orangutans by approximately 400, 635 and 820 kcal day(-1), respectively, readily accommodating the cost of humans' greater brain size and reproductive output. Much of the increase in TEE is attributable to humans' greater basal metabolic rate (kcal day(-1)), indicating increased organ metabolic activity. Humans also had the greatest body fat percentage. An increased metabolic rate, along with changes in energy allocation, was crucial in the evolution of human brain size and life history. PMID:27144364

  20. Structural brain defects.

    PubMed

    Whitehead, Matthew T; Fricke, Stanley T; Gropman, Andrea L

    2015-06-01

    Up to 14% of patients with congenital metabolic disease may show structural brain abnormalities from perturbation of cell proliferation, migration, and/or organization. Most inborn errors of metabolism have a postnatal onset. Abnormalities from genetic disease processes have a prenatal onset. Energy impairment, substrate insufficiency, cell membrane receptor and cell signaling abnormalities, and toxic byproduct accumulation are associations between genetic disorders and structural brain anomalies. Collective imaging patterns of brain abnormalities can provide clues to the underlying etiology. We review selected metabolic diseases associated with brain malformations and highlight characteristic clinical and imaging manifestations that help narrow the differential diagnosis. PMID:26042908

  1. Metabolic correlates of pallidal neuronal activity in Parkinson's disease.

    PubMed

    Eidelberg, D; Moeller, J R; Kazumata, K; Antonini, A; Sterio, D; Dhawan, V; Spetsieris, P; Alterman, R; Kelly, P J; Dogali, M; Fazzini, E; Beric, A

    1997-08-01

    We have used [18F]fluorodeoxyglucose and PET to identify specific metabolic covariance patterns associated with Parkinson's disease and related disorders previously. Nonetheless, the physiological correlates of these abnormal patterns are unknown. In this study we used PET to measure resting state glucose metabolism in 42 awake unmedicated Parkinson's disease patients prior to unilateral stereotaxic pallidotomy for relief of symptoms. Spontaneous single unit activity of the internal segment of the globus pallidus (GPi) was recorded intraoperatively in the same patients under identical conditions. The first 24 patients (Group A) were scanned on an intermediate resolution tomograph (full width at half maximum, 8 mm); the subsequent 18 patients (Group B) were scanned on a higher resolution tomograph (full width half maximum, 4.2 mm). We found significant positive correlations between GPi firing rates and thalamic glucose metabolism in both patient groups (Group A: r = 0.41, P < 0.05; Group B: r = 0.69, P < 0.005). In Group B, pixel-based analysis disclosed a significant focus of physiological-metabolic correlation involving the ventral thalamus and the GPi (statistical parametric map: P < 0.05, corrected). Regional covariance analysis demonstrated that internal pallidal neuronal activity correlated significantly (r = 0.65, P < 0.005) with the expression of a unique network characterized by covarying pallidothalamic and brainstem metabolic activity. Our findings suggest that the variability in pallidal neuronal firing rates in Parkinson's disease patients is associated with individual differences in the metabolic activity of efferent projection systems. PMID:9278625

  2. Diabetes mellitus related bone metabolism and periodontal disease

    PubMed Central

    Wu, Ying-Ying; Xiao, E; Graves, Dana T

    2015-01-01

    Diabetes mellitus and periodontal disease are chronic diseases affecting a large number of populations worldwide. Changed bone metabolism is one of the important long-term complications associated with diabetes mellitus. Alveolar bone loss is one of the main outcomes of periodontitis, and diabetes is among the primary risk factors for periodontal disease. In this review, we summarise the adverse effects of diabetes on the periodontium in periodontitis subjects, focusing on alveolar bone loss. Bone remodelling begins with osteoclasts resorbing bone, followed by new bone formation by osteoblasts in the resorption lacunae. Therefore, we discuss the potential mechanism of diabetes-enhanced bone loss in relation to osteoblasts and osteoclasts. PMID:25857702

  3. Astroglial Contribution to Brain Energy Metabolism in Humans Revealed by 13C Nuclear Magnetic Resonance Spectroscopy: Elucidation of the Dominant Pathway for Neurotransmitter Glutamate Repletion and Measurement of Astrocytic Oxidative Metabolism

    PubMed Central

    Lebon, Vincent; Petersen, Kitt F.; Cline, Gary W.; Shen, Jun; Mason, Graeme F.; Dufour, Sylvie; Behar, Kevin L.; Shulman, Gerald I.; Rothman, Douglas L.

    2010-01-01

    Increasing evidence supports a crucial role for glial metabolism in maintaining proper synaptic function and in the etiology of neurological disease. However, the study of glial metabolism in humans has been hampered by the lack of noninvasive methods. To specifically measure the contribution of astroglia to brain energy metabolism in humans, we used a novel noninvasive nuclear magnetic resonance spectroscopic approach. We measured carbon 13 incorporation into brain glutamate and glutamine in eight volunteers during an intravenous infusion of [2-13C] acetate, which has been shown in animal models to be metabolized specifically in astroglia. Mathematical modeling of the three established pathways for neurotransmitter glutamate repletion indicates that the glutamate/glutamine neurotransmitter cycle between astroglia and neurons (0.32 ± 0.07 μmol · gm−1 · min−1) is the major pathway for neuronal glutamate repletion and that the astroglial TCA cycle flux (0.14 ± 0.06 μmol · gm−1 · min−1) accounts for ~14% of brain oxygen consumption. Up to 30% of the glutamine transferred to the neurons by the cycle may derive from replacement of oxidized glutamate by anaplerosis. The further application of this approach could potentially enlighten the role of astroglia in supporting brain glutamatergic activity and in neurological and psychiatric disease. PMID:11880482

  4. Genistein Improves Neuropathology and Corrects Behaviour in a Mouse Model of Neurodegenerative Metabolic Disease

    PubMed Central

    Langford-Smith, Kia J.; Langford-Smith, Alex; Brown, Jillian R.; Crawford, Brett E.; Vanier, Marie T.; Grynkiewicz, Grzegorz; Wynn, Rob F.; Wraith, J. Ed; Wegrzyn, Grzegorz; Bigger, Brian W.

    2010-01-01

    Background Neurodegenerative metabolic disorders such as mucopolysaccharidosis IIIB (MPSIIIB or Sanfilippo disease) accumulate undegraded substrates in the brain and are often unresponsive to enzyme replacement treatments due to the impermeability of the blood brain barrier to enzyme. MPSIIIB is characterised by behavioural difficulties, cognitive and later motor decline, with death in the second decade of life. Most of these neurodegenerative lysosomal storage diseases lack effective treatments. We recently described significant reductions of accumulated heparan sulphate substrate in liver of a mouse model of MPSIIIB using the tyrosine kinase inhibitor genistein. Methodology/Principal Findings We report here that high doses of genistein aglycone, given continuously over a 9 month period to MPSIIIB mice, significantly reduce lysosomal storage, heparan sulphate substrate and neuroinflammation in the cerebral cortex and hippocampus, resulting in correction of the behavioural defects observed. Improvements in synaptic vesicle protein expression and secondary storage in the cerebral cortex were also observed. Conclusions/Significance Genistein may prove useful as a substrate reduction agent to delay clinical onset of MPSIIIB and, due to its multimodal action, may provide a treatment adjunct for several other neurodegenerative metabolic diseases. PMID:21152017

  5. Energy Metabolism of the Brain, Including the Cooperation between Astrocytes and Neurons, Especially in the Context of Glycogen Metabolism.

    PubMed

    Falkowska, Anna; Gutowska, Izabela; Goschorska, Marta; Nowacki, Przemysław; Chlubek, Dariusz; Baranowska-Bosiacka, Irena

    2015-01-01

    Glycogen metabolism has important implications for the functioning of the brain, especially the cooperation between astrocytes and neurons. According to various research data, in a glycogen deficiency (for example during hypoglycemia) glycogen supplies are used to generate lactate, which is then transported to neighboring neurons. Likewise, during periods of intense activity of the nervous system, when the energy demand exceeds supply, astrocyte glycogen is immediately converted to lactate, some of which is transported to the neurons. Thus, glycogen from astrocytes functions as a kind of protection against hypoglycemia, ensuring preservation of neuronal function. The neuroprotective effect of lactate during hypoglycemia or cerebral ischemia has been reported in literature. This review goes on to emphasize that while neurons and astrocytes differ in metabolic profile, they interact to form a common metabolic cooperation. PMID:26528968

  6. Energy Metabolism of the Brain, Including the Cooperation between Astrocytes and Neurons, Especially in the Context of Glycogen Metabolism

    PubMed Central

    Falkowska, Anna; Gutowska, Izabela; Goschorska, Marta; Nowacki, Przemysław; Chlubek, Dariusz; Baranowska-Bosiacka, Irena

    2015-01-01

    Glycogen metabolism has important implications for the functioning of the brain, especially the cooperation between astrocytes and neurons. According to various research data, in a glycogen deficiency (for example during hypoglycemia) glycogen supplies are used to generate lactate, which is then transported to neighboring neurons. Likewise, during periods of intense activity of the nervous system, when the energy demand exceeds supply, astrocyte glycogen is immediately converted to lactate, some of which is transported to the neurons. Thus, glycogen from astrocytes functions as a kind of protection against hypoglycemia, ensuring preservation of neuronal function. The neuroprotective effect of lactate during hypoglycemia or cerebral ischemia has been reported in literature. This review goes on to emphasize that while neurons and astrocytes differ in metabolic profile, they interact to form a common metabolic cooperation. PMID:26528968

  7. Quantitative rates of brain glucose metabolism distinguish minimally conscious from vegetative state patients

    PubMed Central

    Stender, Johan; Kupers, Ron; Rodell, Anders; Thibaut, Aurore; Chatelle, Camille; Bruno, Marie-Aurélie; Gejl, Michael; Bernard, Claire; Hustinx, Roland; Laureys, Steven; Gjedde, Albert

    2015-01-01

    The differentiation of the vegetative or unresponsive wakefulness syndrome (VS/UWS) from the minimally conscious state (MCS) is an important clinical issue. The cerebral metabolic rate of glucose (CMRglc) declines when consciousness is lost, and may reveal the residual cognitive function of these patients. However, no quantitative comparisons of cerebral glucose metabolism in VS/UWS and MCS have yet been reported. We calculated the regional and whole-brain CMRglc of 41 patients in the states of VS/UWS (n=14), MCS (n=21) or emergence from MCS (EMCS, n=6), and healthy volunteers (n=29). Global cortical CMRglc in VS/UWS and MCS averaged 42% and 55% of normal, respectively. Differences between VS/UWS and MCS were most pronounced in the frontoparietal cortex, at 42% and 60% of normal. In brainstem and thalamus, metabolism declined equally in the two conditions. In EMCS, metabolic rates were indistinguishable from those of MCS. Ordinal logistic regression predicted that patients are likely to emerge into MCS at CMRglc above 45% of normal. Receiver-operating characteristics showed that patients in MCS and VS/UWS can be differentiated with 82% accuracy, based on cortical metabolism. Together these results reveal a significant correlation between whole-brain energy metabolism and level of consciousness, suggesting that quantitative values of CMRglc reveal consciousness in severely brain-injured patients. PMID:25294128

  8. Quantitative rates of brain glucose metabolism distinguish minimally conscious from vegetative state patients.

    PubMed

    Stender, Johan; Kupers, Ron; Rodell, Anders; Thibaut, Aurore; Chatelle, Camille; Bruno, Marie-Aurélie; Gejl, Michael; Bernard, Claire; Hustinx, Roland; Laureys, Steven; Gjedde, Albert

    2015-01-01

    The differentiation of the vegetative or unresponsive wakefulness syndrome (VS/UWS) from the minimally conscious state (MCS) is an important clinical issue. The cerebral metabolic rate of glucose (CMRglc) declines when consciousness is lost, and may reveal the residual cognitive function of these patients. However, no quantitative comparisons of cerebral glucose metabolism in VS/UWS and MCS have yet been reported. We calculated the regional and whole-brain CMRglc of 41 patients in the states of VS/UWS (n=14), MCS (n=21) or emergence from MCS (EMCS, n=6), and healthy volunteers (n=29). Global cortical CMRglc in VS/UWS and MCS averaged 42% and 55% of normal, respectively. Differences between VS/UWS and MCS were most pronounced in the frontoparietal cortex, at 42% and 60% of normal. In brainstem and thalamus, metabolism declined equally in the two conditions. In EMCS, metabolic rates were indistinguishable from those of MCS. Ordinal logistic regression predicted that patients are likely to emerge into MCS at CMRglc above 45% of normal. Receiver-operating characteristics showed that patients in MCS and VS/UWS can be differentiated with 82% accuracy, based on cortical metabolism. Together these results reveal a significant correlation between whole-brain energy metabolism and level of consciousness, suggesting that quantitative values of CMRglc reveal consciousness in severely brain-injured patients. PMID:25294128

  9. Cognitive and Brain Reserve in Prodromal Huntington Disease

    PubMed Central

    Bonner-Jackson, Aaron; Long, Jeffrey D.; Westervelt, Holly; Tremont, Geoffrey; Aylward, Elizabeth; Paulsen, Jane S.

    2013-01-01

    Background Huntington disease (HD) is associated with decline in cognition and progressive morphological changes in brain structures. Cognitive reserve may represent a mechanism by which disease-related decline may be delayed or slowed. The current study examined the relationship between cognitive reserve and longitudinal change in cognitive functioning and brain volumes among prodromal (gene expansion-positive) HD individuals. Methods Participants were genetically-confirmed individuals with prodromal HD enrolled in the PREDICT-HD study. Cognitive reserve was computed as the composite of performance on a lexical task estimating premorbid intellectual level, occupational status, and years of education. Linear mixed effects regression (LMER) was used to examine longitudinal changes on 4 cognitive measures and 3 brain volumes over approximately 6 years. Results Higher cognitive reserve was significantly associated with a slower rate of change on one cognitive measure (Trail Making Test, Part B) and slower rate of volume loss in two brain structures (caudate, putamen) for those estimated to be closest to motor disease onset. This relationship was not observed among those estimated to be further from motor disease onset. Conclusions Our findings demonstrate a relationship between cognitive reserve and both a measure of executive functioning and integrity of certain brain structures in prodromal HD individuals. PMID:23702309

  10. Cognitive reserve and brain reserve in prodromal Huntington's disease.

    PubMed

    Bonner-Jackson, Aaron; Long, Jeffrey D; Westervelt, Holly; Tremont, Geoffrey; Aylward, Elizabeth; Paulsen, Jane S

    2013-08-01

    Huntington disease (HD) is associated with decline in cognition and progressive morphological changes in brain structures. Cognitive reserve may represent a mechanism by which disease-related decline may be delayed or slowed. The current study examined the relationship between cognitive reserve and longitudinal change in cognitive functioning and brain volumes among prodromal (gene expansion-positive) HD individuals. Participants were genetically confirmed individuals with prodromal HD enrolled in the PREDICT-HD study. Cognitive reserve was computed as the composite of performance on a lexical task estimating premorbid intellectual level, occupational status, and years of education. Linear mixed effects regression (LMER) was used to examine longitudinal changes on four cognitive measures and three brain volumes over approximately 6 years. Higher cognitive reserve was significantly associated with a slower rate of change on one cognitive measure (Trail Making Test, Part B) and slower rate of volume loss in two brain structures (caudate, putamen) for those estimated to be closest to motor disease onset. This relationship was not observed among those estimated to be further from motor disease onset. Our findings demonstrate a relationship between cognitive reserve and both a measure of executive functioning and integrity of certain brain structures in prodromal HD individuals. PMID:23702309

  11. White Matter Lipids as a Ketogenic Fuel Supply in Aging Female Brain: Implications for Alzheimer's Disease.

    PubMed

    Klosinski, Lauren P; Yao, Jia; Yin, Fei; Fonteh, Alfred N; Harrington, Michael G; Christensen, Trace A; Trushina, Eugenia; Brinton, Roberta Diaz

    2015-12-01

    White matter degeneration is a pathological hallmark of neurodegenerative diseases including Alzheimer's. Age remains the greatest risk factor for Alzheimer's and the prevalence of age-related late onset Alzheimer's is greatest in females. We investigated mechanisms underlying white matter degeneration in an animal model consistent with the sex at greatest Alzheimer's risk. Results of these analyses demonstrated decline in mitochondrial respiration, increased mitochondrial hydrogen peroxide production and cytosolic-phospholipase-A2 sphingomyelinase pathway activation during female brain aging. Electron microscopic and lipidomic analyses confirmed myelin degeneration. An increase in fatty acids and mitochondrial fatty acid metabolism machinery was coincident with a rise in brain ketone bodies and decline in plasma ketone bodies. This mechanistic pathway and its chronologically phased activation, links mitochondrial dysfunction early in aging with later age development of white matter degeneration. The catabolism of myelin lipids to generate ketone bodies can be viewed as a systems level adaptive response to address brain fuel and energy demand. Elucidation of the initiating factors and the mechanistic pathway leading to white matter catabolism in the aging female brain provides potential therapeutic targets to prevent and treat demyelinating diseases such as Alzheimer's and multiple sclerosis. Targeting stages of disease and associated mechanisms will be critical. PMID:26844268

  12. White Matter Lipids as a Ketogenic Fuel Supply in Aging Female Brain: Implications for Alzheimer's Disease

    PubMed Central

    Klosinski, Lauren P.; Yao, Jia; Yin, Fei; Fonteh, Alfred N.; Harrington, Michael G.; Christensen, Trace A.; Trushina, Eugenia; Brinton, Roberta Diaz

    2015-01-01

    White matter degeneration is a pathological hallmark of neurodegenerative diseases including Alzheimer's. Age remains the greatest risk factor for Alzheimer's and the prevalence of age-related late onset Alzheimer's is greatest in females. We investigated mechanisms underlying white matter degeneration in an animal model consistent with the sex at greatest Alzheimer's risk. Results of these analyses demonstrated decline in mitochondrial respiration, increased mitochondrial hydrogen peroxide production and cytosolic-phospholipase-A2 sphingomyelinase pathway activation during female brain aging. Electron microscopic and lipidomic analyses confirmed myelin degeneration. An increase in fatty acids and mitochondrial fatty acid metabolism machinery was coincident with a rise in brain ketone bodies and decline in plasma ketone bodies. This mechanistic pathway and its chronologically phased activation, links mitochondrial dysfunction early in aging with later age development of white matter degeneration. The catabolism of myelin lipids to generate ketone bodies can be viewed as a systems level adaptive response to address brain fuel and energy demand. Elucidation of the initiating factors and the mechanistic pathway leading to white matter catabolism in the aging female brain provides potential therapeutic targets to prevent and treat demyelinating diseases such as Alzheimer's and multiple sclerosis. Targeting stages of disease and associated mechanisms will be critical. PMID:26844268

  13. Bone marrow transplantation in the prevention of intellectual disability due to inherited metabolic disease: ethical issues.

    PubMed

    Louhiala, P

    2009-07-01

    Many inherited metabolic diseases may lead to varying degrees of brain damage and thus also to intellectual disability. Bone marrow transplantation (BMT) has been used for over two decades as a form of secondary prevention to stop or reverse the progress of the disease process in some of these conditions. At the population level the impact of BMT on the prevalence of intellectual disability is minute, but at the individual level its impact on the prognosis of the disease and the well-being of the patient can be substantial. The dark side of BMT use is the burden of side effects, complications and transplantation-related mortality in less successful cases. The ethical issues involved in this therapy are discussed in this review. PMID:19567689

  14. Metabolism of acetyl-L-carnitine for energy and neurotransmitter synthesis in the immature rat brain

    PubMed Central

    Scafidi, Susanna; Fiskum, Gary; Lindauer, Steven L.; Bamford, Penelope; Shi, Da; Hopkins, Irene; McKenna, Mary C.

    2016-01-01

    Acetyl-L-carnitine (ALCAR) is an endogenous metabolic intermediate that facilitates the influx and efflux of acetyl groups across the mitochondrial inner membrane. Exogenously administered ALCAR has been used as a nutritional supplement and also as an experimental drug with reported neuroprotective properties and effects on brain metabolism. The aim of this study was to determine oxidative metabolism of ALCAR in the immature rat forebrain. Metabolism was studied in 21 day old rat brain at 15, 60 and 120 minutes after an intraperitoneal injection of [2-13C]acetyl-L-carnitine. The amount, pattern, and fractional enrichment of 13C-labeled metabolites were determined by ex vivo 13C-NMR spectroscopy. Metabolism of the acetyl moiety from [2-13C]ALCAR via the tricarboxylic acid (TCA) cycle led to incorporation of label into the C4, C3 and C2 positions of glutamate (GLU), glutamine (GLN) and GABA. Labeling patterns indicated that [2-13C]ALCAR was metabolized by both neurons and glia; however, the percent enrichment was higher in GLN and GABA than in GLU, demonstrating high metabolism in astrocytes and GABAergic neurons. Incorporation of label into the C3 position of alanine, both C3 and C2 of lactate, and the C1 and C5 positions of glutamate and glutamine demonstrated that [2-13C]ALCAR was actively metabolized via the pyruvate recycling pathway. The enrichment of metabolites with 13C from metabolism of ALCAR was highest in alanine C3 (10%) and lactate C3 (9%), with considerable enrichment in GABA C4 (8%), GLN C3 (~4%) and GLN C5 (5%). Overall, our 13C-NMR studies reveal that the acetyl moiety of ALCAR is metabolized for energy in both astrocytes and neurons and the label incorporated into the neurotransmitters glutamate and GABA. Cycling ratios showed prolonged cycling of carbon from the acetyl moiety of ALCAR in the TCA cycle. Labeling of compounds formed from metabolism of [2-13C]ALCAR via the pyruvate recycling pathway was higher than values reported for other

  15. Soluble epoxide hydrolase: A potential target for metabolic diseases.

    PubMed

    He, Jinlong; Wang, Chunjiong; Zhu, Yi; Ai, Ding

    2016-05-01

    Epoxyeicosatrienoic acids (EETs), important lipid mediators derived from arachidonic acid, have many beneficial effects in metabolic diseases, including atherosclerosis, hypertension, cardiac hypertrophy, diabetes, non-alcoholic fatty liver disease, and kidney disease. Epoxyeicosatrienoic acids can be further hydrolyzed to less active diols by the enzyme soluble epoxide hydrolase (sEH). Increasing evidence suggests that inhibition of sEH increases levels of EETs, which have anti-inflammatory effects and can prevent the development of hypertension, atherosclerosis, heart failure, fatty liver, and multiple organ fibrosis. Arachidonic acid is the most abundant omega-6 polyunsaturated fatty acid (PUFA) and shares the same set of enzymes with omega-3 PUFAs, such as docosahexaenoic acid and eicosapentaenoic acid. The omega-3 PUFAs and metabolites, such as regioisomeric epoxyeicosatetraenoic acids and epoxydocosapentaenoic acids, have been reported to have strong vasodilatory and anti-inflammatory effects. Therefore, sEH may be a potential therapeutic target for metabolic disorders. In this review, we focus on our and other recent studies of the functions of sEH, including the effects of its eicosanoid products from both omega-3 and omega-6 PUFAs, in various metabolic diseases. We also discuss the possible cellular and molecular mechanisms underlying the regulation of sEH. PMID:26621325

  16. metabolicMine: an integrated genomics, genetics and proteomics data warehouse for common metabolic disease research.

    PubMed

    Lyne, Mike; Smith, Richard N; Lyne, Rachel; Aleksic, Jelena; Hu, Fengyuan; Kalderimis, Alex; Stepan, Radek; Micklem, Gos

    2013-01-01

    Common metabolic and endocrine diseases such as diabetes affect millions of people worldwide and have a major health impact, frequently leading to complications and mortality. In a search for better prevention and treatment, there is ongoing research into the underlying molecular and genetic bases of these complex human diseases, as well as into the links with risk factors such as obesity. Although an increasing number of relevant genomic and proteomic data sets have become available, the quantity and diversity of the data make their efficient exploitation challenging. Here, we present metabolicMine, a data warehouse with a specific focus on the genomics, genetics and proteomics of common metabolic diseases. Developed in collaboration with leading UK metabolic disease groups, metabolicMine integrates data sets from a range of experiments and model organisms alongside tools for exploring them. The current version brings together information covering genes, proteins, orthologues, interactions, gene expression, pathways, ontologies, diseases, genome-wide association studies and single nucleotide polymorphisms. Although the emphasis is on human data, key data sets from mouse and rat are included. These are complemented by interoperation with the RatMine rat genomics database, with a corresponding mouse version under development by the Mouse Genome Informatics (MGI) group. The web interface contains a number of features including keyword search, a library of Search Forms, the QueryBuilder and list analysis tools. This provides researchers with many different ways to analyse, view and flexibly export data. Programming interfaces and automatic code generation in several languages are supported, and many of the features of the web interface are available through web services. The combination of diverse data sets integrated with analysis tools and a powerful query system makes metabolicMine a valuable research resource. The web interface makes it accessible to first

  17. metabolicMine: an integrated genomics, genetics and proteomics data warehouse for common metabolic disease research

    PubMed Central

    Lyne, Mike; Smith, Richard N; Lyne, Rachel; Aleksic, Jelena; Hu, Fengyuan; Kalderimis, Alex; Stepan, Radek; Micklem, Gos

    2013-01-01

    Common metabolic and endocrine diseases such as diabetes affect millions of people worldwide and have a major health impact, frequently leading to complications and mortality. In a search for better prevention and treatment, there is ongoing research into the underlying molecular and genetic bases of these complex human diseases, as well as into the links with risk factors such as obesity. Although an increasing number of relevant genomic and proteomic data sets have become available, the quantity and diversity of the data make their efficient exploitation challenging. Here, we present metabolicMine, a data warehouse with a specific focus on the genomics, genetics and proteomics of common metabolic diseases. Developed in collaboration with leading UK metabolic disease groups, metabolicMine integrates data sets from a range of experiments and model organisms alongside tools for exploring them. The current version brings together information covering genes, proteins, orthologues, interactions, gene expression, pathways, ontologies, diseases, genome-wide association studies and single nucleotide polymorphisms. Although the emphasis is on human data, key data sets from mouse and rat are included. These are complemented by interoperation with the RatMine rat genomics database, with a corresponding mouse version under development by the Mouse Genome Informatics (MGI) group. The web interface contains a number of features including keyword search, a library of Search Forms, the QueryBuilder and list analysis tools. This provides researchers with many different ways to analyse, view and flexibly export data. Programming interfaces and automatic code generation in several languages are supported, and many of the features of the web interface are available through web services. The combination of diverse data sets integrated with analysis tools and a powerful query system makes metabolicMine a valuable research resource. The web interface makes it accessible to first

  18. Circadian Disruption and Metabolic Disease: Findings from Animal Models

    PubMed Central

    Arble, Deanna Marie; Ramsey, Kathryn Moynihan; Bass, Joseph

    2010-01-01

    Social opportunities and work demands have caused humans to become increasingly active during the late evening hours, leading to a shift from the predominantly diurnal lifestyle of our ancestors to a more nocturnal one. This voluntarily decision to stay awake long into the evening hours leads to circadian disruption at the system, tissue, and cellular levels. These derangements are in turn associated with clinical impairments in metabolic processes and physiology. The use of animal models for circadian disruption provides an important opportunity to determine mechanisms by which disorganization in the circadian system can lead to metabolic dysfunction in response to genetic, environmental, and behavioral perturbations. Here we review recent key animal studies involving circadian disruption and discuss the possible translational implications of these studies for human health and particularly for the development of metabolic disease. PMID:21112026

  19. A high fat diet alters metabolic and bioenergetic function in the brain: A magnetic resonance spectroscopy study.

    PubMed

    Raider, Kayla; Ma, Delin; Harris, Janna L; Fuentes, Isabella; Rogers, Robert S; Wheatley, Joshua L; Geiger, Paige C; Yeh, Hung-Wen; Choi, In-Young; Brooks, William M; Stanford, John A

    2016-07-01

    Diet-induced obesity and associated metabolic effects can lead to neurological dysfunction and increase the risk of developing Alzheimer's disease (AD) and Parkinson's disease (PD). Despite these risks, the effects of a high-fat diet on the central nervous system are not well understood. To better understand the mechanisms underlying the effects of high fat consumption on brain regions affected by AD and PD, we used proton magnetic resonance spectroscopy ((1)H-MRS) to measure neurochemicals in the hippocampus and striatum of rats fed a high fat diet vs. normal low fat chow. We detected lower concentrations of total creatine (tCr) and a lower glutamate-to-glutamine ratio in the hippocampus of high fat rats. Additional effects observed in the hippocampus of high fat rats included higher N-acetylaspartylglutamic acid (NAAG), and lower myo-inositol (mIns) and serine (Ser) concentrations. Post-mortem tissue analyses revealed lower phosphorylated AMP-activated protein kinase (pAMPK) in the striatum but not in the hippocampus of high fat rats. Hippocampal pAMPK levels correlated significantly with tCr, aspartate (Asp), phosphoethanolamine (PE), and taurine (Tau), indicating beneficial effects of AMPK activation on brain metabolic and energetic function, membrane turnover, and edema. A negative correlation between pAMPK and glucose (Glc) indicates a detrimental effect of brain Glc on cellular energy response. Overall, these changes indicate alterations in neurotransmission and in metabolic and bioenergetic function in the hippocampus and in the striatum of rats fed a high fat diet. PMID:27125544

  20. Microvesicles/exosomes as potential novel biomarkers of metabolic diseases

    PubMed Central

    Müller, Günter

    2012-01-01

    Biomarkers are of tremendous importance for the prediction, diagnosis, and observation of the therapeutic success of common complex multifactorial metabolic diseases, such as type II diabetes and obesity. However, the predictive power of the traditional biomarkers used (eg, plasma metabolites and cytokines, body parameters) is apparently not sufficient for reliable monitoring of stage-dependent pathogenesis starting with the healthy state via its initiation and development to the established disease and further progression to late clinical outcomes. Moreover, the elucidation of putative considerable differences in the underlying pathogenetic pathways (eg, related to cellular/tissue origin, epigenetic and environmental effects) within the patient population and, consequently, the differentiation between individual options for disease prevention and therapy – hallmarks of personalized medicine – plays only a minor role in the traditional biomarker concept of metabolic diseases. In contrast, multidimensional and interdependent patterns of genetic, epigenetic, and phenotypic markers presumably will add a novel quality to predictive values, provided they can be followed routinely along the complete individual disease pathway with sufficient precision. These requirements may be fulfilled by small membrane vesicles, which are so-called exosomes and microvesicles (EMVs) that are released via two distinct molecular mechanisms from a wide variety of tissue and blood cells into the circulation in response to normal and stress/pathogenic conditions and are equipped with a multitude of transmembrane, soluble and glycosylphosphatidylinositol-anchored proteins, mRNAs, and microRNAs. Based on the currently available data, EMVs seem to reflect the diverse functional and dysfunctional states of the releasing cells and tissues along the complete individual pathogenetic pathways underlying metabolic diseases. A critical step in further validation of EMVs as biomarkers will rely on

  1. Multichannel optical brain imaging to separate cerebral vascular, tissue metabolic, and neuronal effects of cocaine

    NASA Astrophysics Data System (ADS)

    Ren, Hugang; Luo, Zhongchi; Yuan, Zhijia; Pan, Yingtian; Du, Congwu

    2012-02-01

    Characterization of cerebral hemodynamic and oxygenation metabolic changes, as well neuronal function is of great importance to study of brain functions and the relevant brain disorders such as drug addiction. Compared with other neuroimaging modalities, optical imaging techniques have the potential for high spatiotemporal resolution and dissection of the changes in cerebral blood flow (CBF), blood volume (CBV), and hemoglobing oxygenation and intracellular Ca ([Ca2+]i), which serves as markers of vascular function, tissue metabolism and neuronal activity, respectively. Recently, we developed a multiwavelength imaging system and integrated it into a surgical microscope. Three LEDs of λ1=530nm, λ2=570nm and λ3=630nm were used for exciting [Ca2+]i fluorescence labeled by Rhod2 (AM) and sensitizing total hemoglobin (i.e., CBV), and deoxygenated-hemoglobin, whereas one LD of λ1=830nm was used for laser speckle imaging to form a CBF mapping of the brain. These light sources were time-sharing for illumination on the brain and synchronized with the exposure of CCD camera for multichannel images of the brain. Our animal studies indicated that this optical approach enabled simultaneous mapping of cocaine-induced changes in CBF, CBV and oxygenated- and deoxygenated hemoglobin as well as [Ca2+]i in the cortical brain. Its high spatiotemporal resolution (30μm, 10Hz) and large field of view (4x5 mm2) are advanced as a neuroimaging tool for brain functional study.

  2. Saguenay Youth Study: a multi-generational approach to studying virtual trajectories of the brain and cardio-metabolic health.

    PubMed

    Paus, T; Pausova, Z; Abrahamowicz, M; Gaudet, D; Leonard, G; Pike, G B; Richer, L

    2015-02-01

    This paper provides an overview of the Saguenay Youth Study (SYS) and its parental arm. The overarching goal of this effort is to develop trans-generational models of developmental cascades contributing to the emergence of common chronic disorders, such as depression, addictions, dementia and cardio-metabolic diseases. Over the past 10 years, we have acquired detailed brain and cardio-metabolic phenotypes, and genome-wide genotypes, in 1029 adolescents recruited in a population with a known genetic founder effect. At present, we are extending this dataset to acquire comparable phenotypes and genotypes in the biological parents of these individuals. After providing conceptual background for this work (transactions across time, systems and organs), we describe briefly the tools employed in the adolescent arm of this cohort and highlight some of the initial accomplishments. We then outline in detail the phenotyping protocol used to acquire comparable data in the parents. PMID:25454417

  3. TDO as a therapeutic target in brain diseases.

    PubMed

    Yu, Cheng-Peng; Pan, Ze-Zheng; Luo, Da-Ya

    2016-08-01

    Tryptophan-2, 3-dioxygenase (TDO) is a heme-containing protein catalyzing the first reaction in the kynurenine pathway, which incorporates oxygen into the indole moiety of tryptophan and catalyzes it into kynurenine (KYN). The activation of TDO results in the depletion of tryptophan and the accumulation of kynurenine and its metabolites. These metabolites can affect the function of neurons and inhibit the proliferation of T cells. Increasing evidence demonstrates that TDO is a potential therapeutic target in the treatment of brain diseases as well as in the antitumor and transplant fields. Despite its growing popularity, there are few reviews only focusing on TDO. Hence, we herein review TDO by providing a comprehensive overview of TDO, including its biological functions as well as the evolution, structure and catalytic process of TDO. Additionally, this review will focus on the role of TDO in the pathology of three groups of brain diseases: Schizophrenia, Alzheimer's disease (AD) and Glioma. Finally, we will also provide an opinion regarding the future developmental directions of TDO in brain diseases, especially whether TDO has a potential role in other brain diseases as well as the development and applications of TDO inhibitors as treatments. PMID:27072164

  4. Metabolic Syndrome and Periodontal Disease Progression in Men.

    PubMed

    Kaye, E K; Chen, N; Cabral, H J; Vokonas, P; Garcia, R I

    2016-07-01

    Metabolic syndrome, a cluster of 3 or more risk factors for cardiovascular disease, is associated with periodontal disease, but few studies have been prospective in design. This study's aim was to determine whether metabolic syndrome predicts tooth loss and worsening of periodontal disease in a cohort of 760 men in the Department of Veterans Affairs Dental Longitudinal Study and Normative Aging Study who were followed up to 33 y from 1981 to 2013. Systolic and diastolic blood pressures were measured with a standard mercury sphygmomanometer. Waist circumference was measured in units of 0.1 cm following a normal expiration. Fasting blood samples were measured in duplicate for glucose, triglyceride, and high-density lipoprotein. Calibrated periodontists served as dental examiners. Periodontal outcome events on each tooth were defined as progression to predefined threshold levels of probing pocket depth (≥5 mm), clinical attachment loss (≥5 mm), mobility (≥0.5 mm), and alveolar bone loss (≥40% of the distance from the cementoenamel junction to the root apex, on radiographs). Hazards ratios (95% confidence intervals) of tooth loss or a periodontitis event were estimated from tooth-level extended Cox proportional hazards regression models that accounted for clustering of teeth within individuals and used time-dependent status of metabolic syndrome. Covariates included age, education, smoking status, plaque level, and initial level of the appropriate periodontal disease measure. Metabolic syndrome as defined by the International Diabetes Federation increased the hazards of tooth loss (1.39; 1.08 to 1.79), pocket depth ≥5 mm (1.37; 1.14 to 1.65), clinical attachment loss ≥5 mm (1.19; 1.00 to 1.41), alveolar bone loss ≥40% (1.25; 1.00 to 1.56), and tooth mobility ≥0.5 mm (1.43; 1.07 to 1.89). The number of positive metabolic syndrome conditions was also associated with each of these outcomes. These findings suggest that the metabolic disturbances that

  5. The association of the kynurenine pathway of tryptophan metabolism with acute brain dysfunction during critical illness*

    PubMed Central

    Adams Wilson, Jessica R.; Morandi, Alessandro; Girard, Timothy D.; Thompson, Jennifer L.; Boomershine, Chad S.; Shintani, Ayumi K.; Ely, E. Wesley; Pandharipande, Pratik P.

    2013-01-01

    Objectives Plasma tryptophan levels are associated with delirium in critically ill patients. Although tryptophan has been linked to the pathogenesis of other neurocognitive diseases through metabolism to neurotoxins via the kynurenine pathway, a role for kynurenine pathway activity in intensive care unit brain dysfunction (delirium and coma) remains unknown. This study examined the association between kynurenine pathway activity as determined by plasma kynurenine concentrations and kynurenine/tryptophan ratios and presence or absence of acute brain dysfunction (defined as delirium/coma-free days) in intensive care unit patients. Design, Setting, and Patients This was a prospective cohort study that utilized patient data and blood samples from the Maximizing Efficacy of Targeted Sedation and Reducing Neurologic Dysfunction trial, which compared sedation with dexmedetomidine vs. lorazepam in mechanically ventilated patients. Measurements and Main Results Baseline plasma kynurenine and tryptophan concentrations were measured using high-performance liquid chromatography with or without tandem mass spectrometry. Delirium was assessed daily using the Confusion Assessment Method for the Intensive Care Unit. Linear regression examined associations between kynurenine pathway activity and delirium/coma-free days after adjusting for sedative exposure, age, and severity of illness. Among 84 patients studied, median age was 60 yrs and Acute Physiology and Chronic Health Evaluation II score was 28.5. Elevated plasma kynurenine and kynurenine/tryptophan ratio were both independently associated with significantly fewer delirium/coma-free days (i.e., fewer days without acute brain dysfunction). Specifically, patients with plasma kynurenine or kynurenine/tryptophan ratios at the 75th percentile of our population had an average of 1.8 (95% confidence interval 0.6–3.1) and 2.1 (95% confidence interval 1.0–3.2) fewer delirium/coma-free days than those patients with values at the 25

  6. Altered lipid metabolism in Drosophila model of Huntington's disease.

    PubMed

    Aditi, Kumari; Shakarad, Mallikarjun N; Agrawal, Namita

    2016-01-01

    Huntington's disease (HD) is late-onset, progressive neurodegenerative disorder caused by expansion of polyglutamine (polyQ) repeat within Huntingtin (Htt) protein. In HD patients, energy-related manifestations such as modulation of weight during entire course of disease with energy deficit at terminal stage have been reported, however, underlying reason remains elusive till date. Lipids, carbohydrate and protein constitute a predominant fraction of body's energy reservoir and perturbation in their homeostasis may influence weight. To discern role of these energy molecules in weight alteration, we quantified them in an in vivo transgenic Drosophila model of HD. We document that diseased flies exhibit change in weight due to an altered lipid metabolism, as evident from considerably high lipid levels at the time of disease onset followed by a pathologic decline at end-stage. An alteration in intracellular lipid droplet size suggested altered cellular lipid turnover. Furthermore, diseased flies displayed substantial changes in carbohydrate and protein content. Interestingly, alteration in weight and lipid levels are independent of the feeding pattern in diseased condition and exhibit weak correlation with insulin-like peptide or adipokinetic hormone producing cells. We propose that therapeutic intervention aimed at restoring lipid levels and associated metabolic pathways may improve longevity and quality of patient's life. PMID:27506601

  7. Influence of metabolic syndrome on upper gastrointestinal disease.

    PubMed

    Sogabe, Masahiro; Okahisa, Toshiya; Kimura, Tetsuo; Okamoto, Koichi; Miyamoto, Hiroshi; Muguruma, Naoki; Takayama, Tetsuji

    2016-08-01

    A recent increase in the rate of obesity as a result of insufficient physical exercise and excess food consumption has been seen in both developed and developing countries throughout the world. Additionally, the recent increased number of obese individuals with lifestyle-related diseases associated with abnormalities in glucose metabolism, dyslipidemia, and hypertension, defined as metabolic syndrome (MS), has been problematic. Although MS has been highlighted as a risk factor for ischemic heart disease and arteriosclerotic diseases, it was also recently shown to be associated with digestive system disorders, including upper gastrointestinal diseases. Unlike high body weight and high body mass index, abdominal obesity with visceral fat accumulation is implicated in the onset of various digestive system diseases because excessive visceral fat accumulation may cause an increase in intra-abdominal pressure, inducing the release of various bioactive substances, known as adipocytokines, including tumor necrosis factor-α, interleukin-6, resistin, leptin, and adiponectin. This review article focuses on upper gastrointestinal disorders and their association with MS, including obesity, visceral fat accumulation, and the major upper gastrointestinal diseases. PMID:27372302

  8. Positron emission tomographic scan investigations of Huntington's disease: cerebral metabolic correlates of cognitive function

    SciTech Connect

    Berent, S.; Giordani, B.; Lehtinen, S.; Markel, D.; Penney, J.B.; Buchtel, H.A.; Starosta-Rubinstein, S.; Hichwa, R.; Young, A.B.

    1988-06-01

    Fifteen drug-free patients with early to mid-stage Huntington's disease (HD) were evaluated with positron emission tomographic (PET) scans of /sup 18/F-2-fluoro-2-deoxy-D-glucose uptake and quantitative measures of neurological function, learning, memory, and general intelligence. In comparison with a group of normal volunteers, the HD patients showed lower metabolism in both caudate (p less than 0.001) and putamen (p less than 0.001) on PET scans. A significant and positive relationship was found between neuropsychological measures of verbal learning and memory and caudate metabolism in the patient group but not in the normal group. Visual-spatial learning did not reflect a similar pattern, but performance intelligence quotient was positively related to both caudate and putamen metabolism in the HD group. Vocabulary level was unrelated to either brain structure. Discussion focuses on these and other observed brain-behavior relationships and on the implications of these findings for general behaviors such as those involved in coping and adaptation.

  9. Regulation of Brain Iron and Copper Homeostasis by Brain Barrier Systems: Implication in Neurodegenerative Diseases

    PubMed Central

    Zheng, Wei; Monnot, Andrew D.

    2011-01-01

    Iron (Fe) and copper (Cu) are essential to neuronal function; excess or deficiency of either is known to underlie the pathoetiology of several commonly known neurodegenerative disorders. This delicate balance of Fe and Cu in the central milieu is maintained by the brain barrier systems, i.e., the blood-brain barrier (BBB) between the blood and brain interstitial fluid and the blood- cerebrospinal fluid barrier (BCB) between the blood and cerebrospinal fluid (CSF). This review provides a concise description on the structural and functional characteristics of the brain barrier systems. Current understanding of Fe and Cu transport across the brain barriers is thoroughly examined, with major focuses on whether the BBB and BCB coordinate the direction of Fe and Cu fluxes between the blood and brain/CSF. In particular, the mechanism by which pertinent metal transporters in the barriers, such as the transferrin receptor (TfR), divalent metal transporter (DMT1), copper transporter (CTR1), ATP7A/B, and ferroportin (FPN), regulate metal movement across the barriers is explored. Finally, the detrimental consequences of dysfunctional metal transport by brain barriers, as a result of endogenous disorders or exogenous insults, are discussed. Understanding the regulation of Fe and Cu homeostasis in the central nervous system aids in the design of new drugs targeted on the regulatory proteins at the brain barriers for the treatment of metal’s deficiency or overload-related neurological diseases. PMID:22115751

  10. Regional brain stiffness changes across the Alzheimer's disease spectrum☆

    PubMed Central

    Murphy, Matthew C.; Jones, David T.; Jack, Clifford R.; Glaser, Kevin J.; Senjem, Matthew L.; Manduca, Armando; Felmlee, Joel P.; Carter, Rickey E.; Ehman, Richard L.; Huston, John

    2015-01-01

    Magnetic resonance elastography (MRE) is an MRI-based technique to noninvasively measure tissue stiffness. Currently well established for clinical use in the liver, MRE is increasingly being investigated to measure brain stiffness as a novel biomarker of a variety of neurological diseases. The purpose of this work was to apply a recently developed MRE pipeline to measure regional brain stiffness changes in human subjects across the Alzheimer's disease (AD) spectrum, and to gain insights into the biological processes underlying those stiffness changes by correlating stiffness with existing biomarkers of AD. The results indicate that stiffness changes occur mostly in the frontal, parietal and temporal lobes, in accordance with the known topography of AD pathology. Furthermore, stiffness in those areas correlates with existing imaging biomarkers of AD including hippocampal volumes and amyloid PET. Additional analysis revealed preliminary but significant evidence that the relationship between brain stiffness and AD severity is nonlinear and non-monotonic. Given that similar relationships have been observed in functional MRI experiments, we used task-free fMRI data to test the hypothesis that brain stiffness was sensitive to structural changes associated with altered functional connectivity. The analysis revealed that brain stiffness is significantly and positively correlated with default mode network connectivity. Therefore, brain stiffness as measured by MRE has potential to provide new and essential insights into the temporal dynamics of AD, as well as the relationship between functional and structural plasticity as it relates to AD pathophysiology. PMID:26900568

  11. Ghrelin action in the brain controls adipocyte metabolism

    PubMed Central

    Theander-Carrillo, Claudia; Wiedmer, Petra; Cettour-Rose, Philippe; Nogueiras, Ruben; Perez-Tilve, Diego; Pfluger, Paul; Castaneda, Tamara R.; Muzzin, Patrick; Schürmann, Annette; Szanto, Ildiko; Tschöp, Matthias H.; Rohner-Jeanrenaud, Françoise

    2006-01-01

    Many homeostatic processes, including appetite and food intake, are controlled by neuroendocrine circuits involving the CNS. The CNS also directly regulates adipocyte metabolism, as we have shown here by examining central action of the orexigenic hormone ghrelin. Chronic central ghrelin infusion resulted in increases in the glucose utilization rate of white and brown adipose tissue without affecting skeletal muscle. In white adipocytes, mRNA expression of various fat storage–promoting enzymes such as lipoprotein lipase, acetyl-CoA carboxylase α, fatty acid synthase, and stearoyl-CoA desaturase–1 was markedly increased, while that of the rate-limiting step in fat oxidation, carnitine palmitoyl transferase–1α, was decreased. In brown adipocytes, central ghrelin infusion resulted in lowered expression of the thermogenesis-related mitochondrial uncoupling proteins 1 and 3. These ghrelin effects were dose dependent, occurred independently from ghrelin-induced hyperphagia, and seemed to be mediated by the sympathetic nervous system. Additionally, the expression of some fat storage enzymes was decreased in ghrelin-deficient mice, which led us to conclude that central ghrelin is of physiological relevance in the control of cell metabolism in adipose tissue. These results unravel the existence of what we believe to be a new CNS-based neuroendocrine circuit regulating metabolic homeostasis of adipose tissue. PMID:16767221

  12. Peroxisome proliferator-activated receptors, metabolic syndrome and cardiovascular disease

    PubMed Central

    Azhar, Salman

    2011-01-01

    Metabolic syndrome (MetS) is a constellation of risk factors including insulin resistance, central obesity, dyslipidemia and hypertension that markedly increase the risk of Type 2 diabetes (T2DM) and cardiovascular disease (CVD). The peroxisome proliferators-activated receptor (PPAR) isotypes, PPARα, PPARδ/β and PPARγ are ligand-activated nuclear transcription factors, which modulate the expression of an array of genes that play a central role in regulating glucose, lipid and cholesterol metabolism, where imbalance can lead to obesity, T2DM and CVD. They are also drug targets, and currently, PPARα (fibrates) and PPARγ (thiazolodinediones) agonists are in clinical use for treating dyslipidemia and T2DM, respectively. These metabolic characteristics of the PPARs, coupled with their involvement in metabolic diseases, mean extensive efforts are underway worldwide to develop new and efficacious PPAR-based therapies for the treatment of additional maladies associated with the MetS. This article presents an overview of the functional characteristics of three PPAR isotypes, discusses recent advances in our understanding of the diverse biological actions of PPARs, particularly in the vascular system, and summarizes the developmental status of new single, dual, pan (multiple) and partial PPAR agonists for the clinical management of key components of MetS, T2DM and CVD. It also summarizes the clinical outcomes from various clinical trials aimed at evaluating the atheroprotective actions of currently used fibrates and thiazolodinediones. PMID:20932114

  13. Mechanistic modeling of aberrant energy metabolism in human disease

    PubMed Central

    Sangar, Vineet; Eddy, James A.; Simeonidis, Evangelos; Price, Nathan D.

    2012-01-01

    Dysfunction in energy metabolism—including in pathways localized to the mitochondria—has been implicated in the pathogenesis of a wide array of disorders, ranging from cancer to neurodegenerative diseases to type II diabetes. The inherent complexities of energy and mitochondrial metabolism present a significant obstacle in the effort to understand the role that these molecular processes play in the development of disease. To help unravel these complexities, systems biology methods have been applied to develop an array of computational metabolic models, ranging from mitochondria-specific processes to genome-scale cellular networks. These constraint-based (CB) models can efficiently simulate aspects of normal and aberrant metabolism in various genetic and environmental conditions. Development of these models leverages—and also provides a powerful means to integrate and interpret—information from a wide range of sources including genomics, proteomics, metabolomics, and enzyme kinetics. Here, we review a variety of mechanistic modeling studies that explore metabolic functions, deficiency disorders, and aberrant biochemical pathways in mitochondria and related regions in the cell. PMID:23112774

  14. Peroxisome proliferator-activated receptors, metabolic syndrome and cardiovascular disease.

    PubMed

    Azhar, Salman

    2010-09-01

    Metabolic syndrome (MetS) is a constellation of risk factors including insulin resistance, central obesity, dyslipidemia and hypertension that markedly increase the risk of Type 2 diabetes (T2DM) and cardiovascular disease (CVD). The peroxisome proliferators-activated receptor (PPAR) isotypes, PPARα, PPARδ/ß and PPARγ are ligand-activated nuclear transcription factors, which modulate the expression of an array of genes that play a central role in regulating glucose, lipid and cholesterol metabolism, where imbalance can lead to obesity, T2DM and CVD. They are also drug targets, and currently, PPARα (fibrates) and PPARγ (thiazolodinediones) agonists are in clinical use for treating dyslipidemia and T2DM, respectively. These metabolic characteristics of the PPARs, coupled with their involvement in metabolic diseases, mean extensive efforts are underway worldwide to develop new and efficacious PPAR-based therapies for the treatment of additional maladies associated with the MetS. This article presents an overview of the functional characteristics of three PPAR isotypes, discusses recent advances in our understanding of the diverse biological actions of PPARs, particularly in the vascular system, and summarizes the developmental status of new single, dual, pan (multiple) and partial PPAR agonists for the clinical management of key components of MetS, T2DM and CVD. It also summarizes the clinical outcomes from various clinical trials aimed at evaluating the atheroprotective actions of currently used fibrates and thiazolodinediones. PMID:20932114

  15. Evaluation of fasts for investigating hypoglycaemia or suspected metabolic disease.

    PubMed Central

    Morris, A A; Thekekara, A; Wilks, Z; Clayton, P T; Leonard, J V; Aynsley-Green, A

    1996-01-01

    AIM--To assess the value and safety of fasts for investigating hypoglycaemia or suspected metabolic disease. STUDY DESIGN--Review of all diagnostic fasts performed over a 2.5 year period. SETTING--The neonatal intensive care unit and programmed investigation unit at a tertiary referral centre for endocrinology and metabolic disease. RESULTS--138 diagnostic fasts were performed during the study period. Hypoglycaemia (< 2.6 mmol/l) occurred in 54 cases but in only four did the blood glucose concentration fall below 1.5 mmol/l. One patient became unwell as a result of a fast, but prompt treatment averted any sequelae. Specific endocrine or metabolic defects were identified in 30 cases, the most common being hyperinsulinism and beta-oxidation defects. CONCLUSIONS--Fasting is safe if conducted on an experienced unit with appropriate guidelines. It continues to provide useful information for diagnosis and management, particularly in cases of hyperinsulinism. Diagnoses should, however, be established by lower risk procedures whenever possible. Thus specimens for metabolic and endocrine studies should be obtained during the presenting episode and blood acylcarnitine species should be analysed prior to fasting. PMID:8869190

  16. Mitochondrial Sirtuins and Their Relationships with Metabolic Disease and Cancer

    PubMed Central

    Kumar, Surinder

    2015-01-01

    Abstract Significance: Maintenance of metabolic homeostasis is critical for cellular and organismal health. Proper regulation of mitochondrial functions represents a crucial element of overall metabolic homeostasis. Mitochondrial sirtuins (SIRT3, SIRT4, and SIRT5) play pivotal roles in promoting this homeostasis by regulating numerous aspects of mitochondrial metabolism in response to environmental stressors. Recent Advances: New work has illuminated multiple links between mitochondrial sirtuins and cancer. SIRT5 has been shown to regulate the recently described post-translational modifications succinyl-lysine, malonyl-lysine, and glutaryl-lysine. An understanding of these modifications is still in its infancy. Enumeration of SIRT3 and SIRT5 targets via advanced proteomic techniques promises to dramatically enhance insight into functions of these proteins. Critical Issues: In this review, we highlight the roles of mitochondrial sirtuins and their targets in cellular and organismal metabolic homeostasis. Furthermore, we discuss emerging roles for mitochondrial sirtuins in suppressing and/or promoting tumorigenesis, depending on the cellular and molecular context. Future Directions: Currently, hundreds of potential SIRT3 and SIRT5 molecular targets have been identified in proteomic experiments. Future studies will need to validate the major targets of these enzymes, and elucidate how acetylation and/or acylation modulate their functionality. A great deal of interest exists in targeting sirtuins pharmacologically; this endeavor will require development of sirtuin-specific modulators (activators and inhibitors) as potential treatments for cancer and metabolic disease. Antioxid. Redox Signal. 22, 1060–1077. PMID:25545135

  17. DIFFERENTIAL EFFECTS OF 200, 591, AND 2,450 MHZ RADIATION ON RAT BRAIN ENERGY METABOLISM

    EPA Science Inventory

    Three key compounds in brain metabolism have been measured during and after exposure to continuous wave radiofrequency radiation at 200, 591, and 2,450 MHz. Frequency-dependent changes have been found for all three compounds. Changes in NADH fluorescence have been measured on the...

  18. Glucose and oxygen metabolism after penetrating ballistic-like brain injury

    PubMed Central

    Gajavelli, Shyam; Kentaro, Shimoda; Diaz, Julio; Yokobori, Shoji; Spurlock, Markus; Diaz, Daniel; Jackson, Clayton; Wick, Alexandra; Zhao, Weizhao; Leung, Lai Y; Shear, Deborah; Tortella, Frank; Bullock, M Ross

    2015-01-01

    Traumatic brain injury (TBI) is a major cause of death and disability in all age groups. Among TBI, penetrating traumatic brain injuries (PTBI) have the worst prognosis and represent the leading cause of TBI-related morbidity and death. However, there are no specific drugs/interventions due to unclear pathophysiology. To gain insights we looked at cerebral metabolism in a PTBI rat model: penetrating ballistic-like brain injury (PBBI). Early after injury, regional cerebral oxygen tension and consumption significantly decreased in the ipsilateral cortex in the PBBI group compared with the control group. At the same time point, glucose uptake was significantly reduced globally in the PBBI group compared with the control group. Examination of Fluorojade B-stained brain sections at 24 hours after PBBI revealed an incomplete overlap of metabolic impairment and neurodegeneration. As expected, the injury core had the most severe metabolic impairment and highest neurodegeneration. However, in the peri-lesional area, despite similar metabolic impairment, there was lesser neurodegeneration. Given our findings, the data suggest the presence of two distinct zones of primary injury, of which only one recovers. We anticipate the peri-lesional area encompassing the PBBI ischemic penumbra, could be salvaged by acute therapies. PMID:25669903

  19. MANAGEMENT OF ENDOCRINE DISEASE: Metabolic effects of bariatric surgery.

    PubMed

    Corcelles, Ricard; Daigle, Christopher R; Schauer, Philip R

    2016-01-01

    Obesity is associated with an increased risk of type 2 diabetes, hypertension, dyslipidemia, cardiovascular disease, osteoarthritis, numerous cancers and increased mortality. It is estimated that at least 2.8 million adults die each year due to obesity-related cardiovascular disease. Increasing in parallel with the global obesity problem is metabolic syndrome, which has also reached epidemic levels. Numerous studies have demonstrated that bariatric surgery is associated with significant and durable weight loss with associated improvement of obesity-related comorbidities. This review aims to summarize the effects of bariatric surgery on the components of metabolic syndrome (hyperglycemia, hyperlipidemia and hypertension), weight loss, perioperative morbidity and mortality, and the long-term impact on cardiovascular risk and mortality. PMID:26340972

  20. Brain atrophy in Alzheimer's Disease and aging.

    PubMed

    Pini, Lorenzo; Pievani, Michela; Bocchetta, Martina; Altomare, Daniele; Bosco, Paolo; Cavedo, Enrica; Galluzzi, Samantha; Marizzoni, Moira; Frisoni, Giovanni B

    2016-09-01

    Thanks to its safety and accessibility, magnetic resonance imaging (MRI) is extensively used in clinical routine and research field, largely contributing to our understanding of the pathophysiology of neurodegenerative disorders such as Alzheimer's disease (AD). This review aims to provide a comprehensive overview of the main findings in AD and normal aging over the past twenty years, focusing on the patterns of gray and white matter changes assessed in vivo using MRI. Major progresses in the field concern the segmentation of the hippocampus with novel manual and automatic segmentation approaches, which might soon enable to assess also hippocampal subfields. Advancements in quantification of hippocampal volumetry might pave the way to its broader use as outcome marker in AD clinical trials. Patterns of cortical atrophy have been shown to accurately track disease progression and seem promising in distinguishing among AD subtypes. Disease progression has also been associated with changes in white matter tracts. Recent studies have investigated two areas often overlooked in AD, such as the striatum and basal forebrain, reporting significant atrophy, although the impact of these changes on cognition is still unclear. Future integration of different MRI modalities may further advance the field by providing more powerful biomarkers of disease onset and progression. PMID:26827786

  1. Regional metabolic correlates of surgical outcome following unilateral pallidotomy for Parkinson's disease.

    PubMed

    Eidelberg, D; Moeller, J R; Ishikawa, T; Dhawan, V; Spetsieris, P; Silbersweig, D; Stern, E; Woods, R P; Fazzini, E; Dogali, M; Beric, A

    1996-04-01

    Stereotaxic ventral pallidotomy has been employed in the symptomatic treatment of patients with advanced Parkinson's disease (PD). To understand the pathophysiology of clinical outcome following this procedure, we studied 10 PD patients (5 men and 5 women; mean age 60.0 +/- 6.1 years; mean Hoehn and Yahr stage 3.8 +/- 1.0) with quantitative 18F-fluorodeoxyglucose (FDG) and positron emission tomography (PET). All patients were scanned preoperatively; 8 of 10 patients were rescanned 6 to 8 months following surgery. Clinical performance was assessed off medications before and after surgery using standardized timed motor tasks. We found that preoperative lentiform metabolism correlated significantly with improvement in contralateral motor tasks at 1 week, 3 months, and 6 months following unilateral pallidotomy (p<0.03). Postoperatively, significant metabolic increases were noted in the primary motor cortex, lateral premotor cortex, and dorsolateral prefrontal cortex (p<0.01) of the hemisphere that underwent surgery. Improvement in contralateral limb motor performance correlated significantly with surgical declines in thalamic metabolism (p<0.01) and increases in lateral frontal metabolism (p<0.05). Principal components analysis disclosed a significant covariance pattern characterized by postoperative declines in ipsilateral lentiform and thalamic metabolism associated with bilateral increase in supplementary motor control metabolism. Subject scores for this pattern correlated significantly with improvements in both contralateral and ipsilateral limb performance (p<0.005). These results suggest that pallidotomy reduced the preoperative overaction of the inhibitory pallidothalamic projection. Clinical improvement may be associated with modulations in regional brain metabolism occurring remote from the lesion site. PMID:8619523

  2. Genetic variants in Alzheimer disease - molecular and brain network approaches.

    PubMed

    Gaiteri, Chris; Mostafavi, Sara; Honey, Christopher J; De Jager, Philip L; Bennett, David A

    2016-07-01

    Genetic studies in late-onset Alzheimer disease (LOAD) are aimed at identifying core disease mechanisms and providing potential biomarkers and drug candidates to improve clinical care of AD. However, owing to the complexity of LOAD, including pathological heterogeneity and disease polygenicity, extraction of actionable guidance from LOAD genetics has been challenging. Past attempts to summarize the effects of LOAD-associated genetic variants have used pathway analysis and collections of small-scale experiments to hypothesize functional convergence across several variants. In this Review, we discuss how the study of molecular, cellular and brain networks provides additional information on the effects of LOAD-associated genetic variants. We then discuss emerging combinations of these omic data sets into multiscale models, which provide a more comprehensive representation of the effects of LOAD-associated genetic variants at multiple biophysical scales. Furthermore, we highlight the clinical potential of mechanistically coupling genetic variants and disease phenotypes with multiscale brain models. PMID:27282653

  3. Theory of feedback controlled brain stimulations for Parkinson's disease

    NASA Astrophysics Data System (ADS)

    Sanzeni, A.; Celani, A.; Tiana, G.; Vergassola, M.

    2016-01-01

    Limb tremor and other debilitating symptoms caused by the neurodegenerative Parkinson's disease are currently treated by administering drugs and by fixed-frequency deep brain stimulation. The latter interferes directly with the brain dynamics by delivering electrical impulses to neurons in the subthalamic nucleus. While deep brain stimulation has shown therapeutic benefits in many instances, its mechanism is still unclear. Since its understanding could lead to improved protocols of stimulation and feedback control, we have studied a mathematical model of the many-body neural network dynamics controlling the dynamics of the basal ganglia. On the basis of the results obtained from the model, we propose a new procedure of active stimulation, that depends on the feedback of the network and that respects the constraints imposed by existing technology. We show by numerical simulations that the new protocol outperforms the standard ones for deep brain stimulation and we suggest future experiments that could further improve the feedback procedure.

  4. Metabolism of AM404 From Acetaminophen at Human Therapeutic Dosages in the Rat Brain

    PubMed Central

    Muramatsu, Shun; Shiraishi, Seiji; Miyano, Kanako; Sudo, Yuka; Toda, Akiko; Mogi, Masayuki; Hara, Mayumi; Yokoyama, Akinobu; Kawasaki, Yoshihiko; Taniguchi, Mikio; Uezono, Yasuhito

    2016-01-01

    Background: Acetaminophen, an analgesic and antipyretic drug, has been used clinically for more than a century. Previous studies showed that acetaminophen undergoes metabolic transformations to form an analgesic compound, N-(4-hydroxyphenyl) arachidonamide (AM404), in the rodent brain. However, these studies were performed with higher concentrations of acetaminophen than are used in humans. Objectives: The aim of the present study was to examine the metabolism of AM404 from acetaminophen in the rat brain at a concentration of 20 mg/kg, which is used in therapeutic practice in humans, and to compare the pharmacokinetics between them. Materials and Methods: We used rat brains to investigate the metabolism of AM404 from acetaminophen at concentrations (20 mg/kg) used in humans. In addition, we determined the mean pharmacokinetic parameters for acetaminophen and its metabolites, including AM404. Results: The maximum plasma concentrations of acetaminophen and AM404 in the rat brain were 15.8 µg/g and 150 pg/g, respectively, with corresponding AUC0-2h values of 8.96 μg hour/g and 117 pg hour/g. The tmax for both acetaminophen and AM404 was 0.25 hour. Conclusions: These data suggest that AM404’s concentration-time profile in the brain is similar to those of acetaminophen and its other metabolites. Measurement of blood acetaminophen concentration seems to reflect the concentration of the prospective bioactive substance, AM404. PMID:27110534

  5. Effect of MCI-186 on ischemia-induced changes in monoamine metabolism in rat brain.

    PubMed

    Oishi, R; Itoh, Y; Nishibori, M; Watanabe, T; Nishi, H; Saeki, K

    1989-11-01

    We examined the effects of MCI-186 (3-methyl-1-phenyl-2-pyrazolin-5-one), a novel free radical scavenger and an inhibitor of ischemia-induced brain edema, on monoamine metabolism in the brains of both normal and ischemic rats. In normal rats, 3 mg/kg i.v. MCI-186, a dose that prevents ischemic brain edema, had no significant effect on brain concentrations of dopamine, norepinephrine, 5-hydroxytryptamine, or their metabolites. After the injection of 5 microliters of 3% polyvinyl acetate into the left internal carotid artery, concentrations of 3,4-dihydroxyphenylacetic acid and homovanillic acid markedly increased, but that of norepinephrine decreased, in the left telencephalon of embolized rats compared with control rats injected with vehicle; the concentration of 5-hydroxyindoleacetic acid also increased slightly. These effects were maximal 2 hours after embolization. The turnover rate of dopamine between 6 and 8 hours after embolization was significantly higher but that of norepinephrine was slightly lower than that in vehicle-treated rats. When rats were treated with 3 mg/kg i.v. MCI-186 immediately after the injection of polyvinyl acetate, the embolization-induced changes in monoamine metabolism were less marked. Our results suggest that MCI-186 attenuates ischemia-induced changes in brain monoamine metabolism, probably due to its free radical scavenging action, although it has no marked effect in normal rats. PMID:2815191

  6. Refined Analysis of Brain Energy Metabolism Using In Vivo Dynamic Enrichment of 13C Multiplets

    PubMed Central

    Dehghani M., Masoumeh; Duarte, João M. N.; Kunz, Nicolas; Gruetter, Rolf

    2016-01-01

    Carbon-13 nuclear magnetic resonance spectroscopy in combination with the infusion of 13C-labeled precursors is a unique approach to study in vivo brain energy metabolism. Incorporating the maximum information available from in vivo localized 13C spectra is of importance to get broader knowledge on cerebral metabolic pathways. Metabolic rates can be quantitatively determined from the rate of 13C incorporation into amino acid neurotransmitters such as glutamate and glutamine using suitable mathematical models. The time course of multiplets arising from 13C-13C coupling between adjacent carbon atoms was expected to provide additional information for metabolic modeling leading to potential improvements in the estimation of metabolic parameters. The aim of the present study was to extend two-compartment neuronal/glial modeling to include dynamics of 13C isotopomers available from fine structure multiplets in 13C spectra of glutamate and glutamine measured in vivo in rats brain at 14.1 T, termed bonded cumomer approach. Incorporating the labeling time courses of 13C multiplets of glutamate and glutamine resulted in elevated precision of the estimated fluxes in rat brain as well as reduced correlations between them. PMID:26969691

  7. The brain at work: a cerebral metabolic manifestation of central fatigue?

    PubMed

    Dalsgaard, Mads K; Secher, Niels H

    2007-11-15

    Central fatigue refers to circumstances in which strength appears to be limited by the ability of the central nervous system to recruit motoneurons. Central fatigue manifests when the effort to contract skeletal muscles is intense and, thus, is aggravated when exercise is performed under stress, whereas it becomes attenuated following training. Central fatigue has not been explained, but the cerebral metabolic response to intense exercise, as to other modalities of cerebral activation, is a reduction in its "metabolic ratio" (MR), i.e., the brain's uptake of oxygen relative to that of carbohydrate. At rest the MR is close to 6 but during intense whole-body exercise it decreases to less than 3, with the uptake of lactate becoming as important as that of glucose. It remains debated what underlies this apparent inability of the brain to oxidize the carbohydrate taken up, but it may approach approximately 10 mmol glucose equivalents. In the case of exercise, a concomitant uptake of ammonium for formation of amino acids may account for only approximately 10% of this "extra" carbohydrate taken up. Also, accumulation of intermediates in metabolic pathways and compartmentalization of metabolism between astrocytes and neurons are avenues that have to be explored. Depletion of glycogen stores and subsequent supercompensation during periods of low neuronal activity may not only play a role but also link brain metabolism to its function. PMID:17394258

  8. Lactography as an approach to monitor glucose metabolism on-line in brain and muscle.

    PubMed

    Korf, J; de Boer, J

    1990-01-01

    1. Thus far metabolic processes in the intact animal (or man) have been studied either by the analysis of body fluids, of biopsies, of tissue obtained post mortem or by techniques, requiring dedicated and expensive equipment (such as positron emission tomography or magnetic resonance spectroscopy). 2. Here we describe a relatively simple and inexpensive technique, that can be applied in vivo to study metabolism in brain regions and muscle in the freely moving rat and in human peripheral tissue. 3. The method is based on microdialysis allowing continuous sampling from the extracellular space, the enzymatic conversion of lactate and the on-line detection of fluorescent NADH. 4. Examples of the application of our technique include the monitoring of lactate efflux from various brain regions of behaving animals under a variety of stress exposures, during ischemia or hypoxia and drug treatments. 5. The results indicate that in brain lactate is not exclusively formed under hypoxia and that neuronal activation leads also to lactate formation, possibly due to the compartmentation of both the involved enzymes and the energy metabolism. 6. The increase of lactate formation in contracting or ischemic muscle or during exercise could also be followed on-line in the rat, suggesting that our approach allows the continuous monitoring of anaerobic metabolism in man e.g. during traumatic or arteriosclerotic limb ischemia or lactic acidosis in shock states. 7. The principle of our approach can easily be adapted to other metabolites, thus enabling to monitor other metabolic pathways in vivo as well. PMID:2276411

  9. A computer model simulating human glucose absorption and metabolism in health and metabolic disease states

    PubMed Central

    Naftalin, Richard J.

    2016-01-01

    A computer model designed to simulate integrated glucose-dependent changes in splanchnic blood flow with small intestinal glucose absorption, hormonal and incretin circulation and hepatic and systemic metabolism in health and metabolic diseases e.g. non-alcoholic fatty liver disease, (NAFLD), non-alcoholic steatohepatitis, (NASH) and type 2 diabetes mellitus, (T2DM) demonstrates how when glucagon-like peptide-1, (GLP-1) is synchronously released into the splanchnic blood during intestinal glucose absorption, it stimulates superior mesenteric arterial (SMA) blood flow and by increasing passive intestinal glucose absorption, harmonizes absorption with its distribution and metabolism. GLP-1 also synergises insulin-dependent net hepatic glucose uptake (NHGU). When GLP-1 secretion is deficient post-prandial SMA blood flow is not increased and as NHGU is also reduced, hyperglycaemia follows. Portal venous glucose concentration is also raised, thereby retarding the passive component of intestinal glucose absorption.   Increased pre-hepatic sinusoidal resistance combined with portal hypertension leading to opening of intrahepatic portosystemic collateral vessels are NASH-related mechanical defects that alter the balance between splanchnic and systemic distributions of glucose, hormones and incretins.The model reveals the latent contribution of portosystemic shunting in development of metabolic disease. This diverts splanchnic blood content away from the hepatic sinuses to the systemic circulation, particularly during the glucose absorptive phase of digestion, resulting in inappropriate increases in insulin-dependent systemic glucose metabolism.  This hastens onset of hypoglycaemia and thence hyperglucagonaemia. The model reveals that low rates of GLP-1 secretion, frequently associated with T2DM and NASH, may be also be caused by splanchnic hypoglycaemia, rather than to intrinsic loss of incretin secretory capacity. These findings may have therapeutic implications on GLP

  10. Oestradiol modulation of serotonin reuptake transporter and serotonin metabolism in the brain of monkeys.

    PubMed

    Sánchez, M G; Morissette, M; Di Paolo, T

    2013-06-01

    Serotonin (5-hydroxytryptamine; 5-HT) is an important brain neurotransmitter that is implicated in mental and neurodegenerative diseases and is modulated by ovarian hormones. Nevertheless, the effect of oestrogens on 5-HT neurotransmission in the primate caudate nucleus, putamen and nucleus accumbens, which are major components of the basal ganglia, and the anterior cerebral cortex, mainly the frontal and cingulate gyrus, is not well documented. The present study evaluated 5-HT reuptake transporter (SERT) and 5-HT metabolism in these brain regions in response to 1-month treatment with 17β-oestradiol in short-term (1 month) ovariectomised (OVX) monkeys (Macaca fascicularis). SERT-specific binding was measured by autoradiography using the radioligand [³H]citalopram. Biogenic amine concentrations were quantified by high-performance liquid chromatography. 17β-Oestradiol increased SERT in the superior frontal cortex and in the anterior cingulate cortex, in the nucleus accumbens, and in subregions of the caudate nucleus of OVX monkeys. 17β-Oestradiol left [³H]citalopram-specific binding unchanged in the putamen, as well as the dorsal and medial raphe nucleus. 17β-Oestradiol treatment decreased striatal concentrations of the precursor of 5-HT, 5-hydroxytryptophan, and increased 5-HT, dopamine and 3-methoxytyramine concentrations in the nucleus accumbens, caudate nucleus and putamen, whereas the concentrations of the metabolites 5-hydroxyindoleacetic acid, 3,4-dihydroxyphenylacetic acid and homovanillic acid remained unchanged. No effect of 17β-oestradiol treatment was observed for biogenic amine concentrations in the cortical regions. A significant positive correlation was observed between [³H]citalopram-specific binding and 5-HT concentrations in the caudate nucleus, putamen and nucleus accumbens, suggesting their link. These results have translational value for women with low oestrogen, such as those in surgical menopause or perimenopause. PMID:23414342

  11. Brain imaging and brain function

    SciTech Connect

    Sokoloff, L.

    1985-01-01

    This book is a survey of the applications of imaging studies of regional cerebral blood flow and metabolism to the investigation of neurological and psychiatric disorders. Contributors review imaging techniques and strategies for measuring regional cerebral blood flow and metabolism, for mapping functional neural systems, and for imaging normal brain functions. They then examine the applications of brain imaging techniques to the study of such neurological and psychiatric disorders as: cerebral ischemia; convulsive disorders; cerebral tumors; Huntington's disease; Alzheimer's disease; depression and other mood disorders. A state-of-the-art report on magnetic resonance imaging of the brain and central nervous system rounds out the book's coverage.

  12. Anaplerotic diet therapy in inherited metabolic disease: therapeutic potential.

    PubMed

    Roe, Charles R; Mochel, Fanny

    2006-01-01

    Beginning with phenylketonuria, dietary therapy for inborn errors has focused primarily on the restriction of the precursor to an affected catabolic pathway in an attempt to limit the production of potential toxins. Anaplerotic therapy is based on the concept that there may exist an energy deficit in these diseases that might be improved by providing alternative substrate for both the citric acid cycle (CAC) and the electron transport chain for enhanced ATP production. This article focuses on this basic problem, as it may relate to most catabolic disorders, and provides our current experience involving inherited diseases of mitochondrial fat oxidation, glycogen storage, and pyruvate metabolism using the anaplerotic compound triheptanoin. The observations have led to a realization that 'inter-organ' signalling and 'nutrient sensors' such as adenylate monophosphate mediated-protein kinase (AMPK) and mTOR (mammalian target of rapamycin) appear to play a significant role in the intermediary metabolism of these diseases. Activated AMPK turns on catabolic pathways to augment ATP production while turning off synthetic pathways that consume ATP. Information is provided regarding the inter-organ requirements for more normal metabolic function during crisis and how anaplerotic therapy using triheptanoin, as a direct source of substrate to the CAC for energy production, appears to be a more successful approach to an improved quality of life for these patients. PMID:16763896

  13. Metabolic bone disease in home total parenteral nutrition.

    PubMed

    McCullough, M L; Hsu, N

    1987-07-01

    Home total parenteral nutrition (HTPN) is in its infancy but has proved to be lifesaving for patients unable to manage on enteral nutrition alone. However, this mode of nutrition therapy is not without problems. Aside from mechanical and other metabolic complications, a peculiar metabolic bone disease has been reported to occur in some HTPN recipients. The disease, characterized by abnormalities in calcium and phosphorus homeostasis, often results in osteomalacia, bone pain, and fractures. Reports of approximately 50 cases of metabolic bone disease have been published by centers in the United States and Canada. Factors that have been implicated as possible causes include infusion of excess vitamin D, aluminum, calcium, protein, or glucose; cyclic vs. continuous TPN administration; and the patient's previous nutritional state. Although removal of vitamin D or aluminum from the TPN solution and discontinuation of TPN altogether have been associated with improvement in symptoms, histology, and laboratory values, no single factor has been identified as the cause of this troubling phenomenon. PMID:3110249

  14. Dietary anaplerotic therapy improves peripheral tissue energy metabolism in patients with Huntington's disease

    PubMed Central

    Mochel, Fanny; Duteil, Sandrine; Marelli, Cécilia; Jauffret, Céline; Barles, Agnès; Holm, Janette; Sweetman, Lawrence; Benoist, Jean-François; Rabier, Daniel; Carlier, Pierre G; Durr, Alexandra

    2010-01-01

    We previously identified a systemic metabolic defect associated with early weight loss in patients with Huntington's disease (HD), suggesting a lack of substrates for the Krebs cycle. Dietary anaplerotic therapy with triheptanoin is used in clinical trials to promote energy production in patients with peripheral and brain Krebs cycle deficit, as its metabolites – C5 ketone bodies – cross the blood–brain barrier. We conducted a short-term clinical trial in six HD patients (UHDRS (Unified Huntington Disease Rating Scale)=33±13, 15–49) to monitor the tolerability of triheptanoin. We also assessed peripheral markers of short-term efficacy that were shown to be altered in the early stages of HD, that is, low serum IGF1 and 31P-NMR spectroscopy (NMRS) in muscle. At baseline, 31P-NMRS displayed two patients with end-exercise muscle acidosis despite a low work output. On day 2, the introduction of triheptanoin was well tolerated in all patients, and in particular, there was no evidence of mitochondrial overload from triheptanoin-derived metabolites. After 4 days of triheptanoin-enriched diet, muscle pH regulation was normalized in the two patients with pretreatment metabolic abnormalities. A significant increase in serum IGF1 was also observed in all patients (205±60 ng/ml versus 246±68 ng/ml, P=0.010). This study provides a rationale for extending our anaplerotic approach with triheptanoin in HD. PMID:20512158

  15. Dietary anaplerotic therapy improves peripheral tissue energy metabolism in patients with Huntington's disease.

    PubMed

    Mochel, Fanny; Duteil, Sandrine; Marelli, Cécilia; Jauffret, Céline; Barles, Agnès; Holm, Janette; Sweetman, Lawrence; Benoist, Jean-François; Rabier, Daniel; Carlier, Pierre G; Durr, Alexandra

    2010-09-01

    We previously identified a systemic metabolic defect associated with early weight loss in patients with Huntington's disease (HD), suggesting a lack of substrates for the Krebs cycle. Dietary anaplerotic therapy with triheptanoin is used in clinical trials to promote energy production in patients with peripheral and brain Krebs cycle deficit, as its metabolites - C5 ketone bodies - cross the blood-brain barrier. We conducted a short-term clinical trial in six HD patients (UHDRS (Unified Huntington Disease Rating Scale)=33+/-13, 15-49) to monitor the tolerability of triheptanoin. We also assessed peripheral markers of short-term efficacy that were shown to be altered in the early stages of HD, that is, low serum IGF1 and (31)P-NMR spectroscopy (NMRS) in muscle. At baseline, (31)P-NMRS displayed two patients with end-exercise muscle acidosis despite a low work output. On day 2, the introduction of triheptanoin was well tolerated in all patients, and in particular, there was no evidence of mitochondrial overload from triheptanoin-derived metabolites. After 4 days of triheptanoin-enriched diet, muscle pH regulation was normalized in the two patients with pretreatment metabolic abnormalities. A significant increase in serum IGF1 was also observed in all patients (205+/-60 ng/ml versus 246+/-68 ng/ml, P=0.010). This study provides a rationale for extending our anaplerotic approach with triheptanoin in HD. PMID:20512158

  16. Integrative neurobiology of metabolic diseases, neuroinflammation, and neurodegeneration

    PubMed Central

    van Dijk, Gertjan; van Heijningen, Steffen; Reijne, Aaffien C.; Nyakas, Csaba; van der Zee, Eddy A.; Eisel, Ulrich L. M.

    2015-01-01

    Alzheimer's disease (AD) is a complex, multifactorial disease with a number of leading mechanisms, including neuroinflammation, processing of amyloid precursor protein (APP) to amyloid β peptide, tau protein hyperphosphorylation, relocalization, and deposition. These mechanisms are propagated by obesity, the metabolic syndrome and type-2 diabetes mellitus. Stress, sedentariness, dietary overconsumption of saturated fat and refined sugars, and circadian derangements/disturbed sleep contribute to obesity and related metabolic diseases, but also accelerate age-related damage and senescence that all feed the risk of developing AD too. The complex and interacting mechanisms are not yet completely understood and will require further analysis. Instead of investigating AD as a mono- or oligocausal disease we should address the disease by understanding the multiple underlying mechanisms and how these interact. Future research therefore might concentrate on integrating these by “systems biology” approaches, but also to regard them from an evolutionary medicine point of view. The current review addresses several of these interacting mechanisms in animal models and compares them with clinical data giving an overview about our current knowledge and puts them into an integrated framework. PMID:26041981

  17. Studies on the control of 4-aminobutyrate metabolism in 'synaptosomal' and free rat brain mitochondria.

    PubMed Central

    Walsh, J M; Clark, J B

    1976-01-01

    1. The specific activities of 4-aminobutyrate aminotransferase (EC 2.6.1.19) and succinate semialdehyde dehydrogenase (EC 1.2.1.16) were significantly higher in brain mitochondria of non-synaptic origin (fraction M) than those derived from the lysis of synaptosomes (fraction SM2). 2. The metabolisms of 4-aminobutyrate in both 'free' (non-synaptic, fraction M) and 'synaptic' (fraction SM2) rat brain mitochondria was studied under various conditions. 3. It is proposed that 4-aminobutyrate enters both types of brain mitochondria by a non-carrier-mediated process. 4. The rate of 4-aminobutyrate metabolism was in all cases higher in the 'free' (fraction M) brain mitochondria than in the synaptic (fraction SM2) mitochondria, paralleling the differences in the specific activities of the 4-aminobutyrate-shunt enzymes. 5. The intramitochondrial concentration of 2-oxoglutarate appears to be an important controlling parameter in the rate of 4-aminobutyrate metabolism, since, although 2-oxoglutarate is required, high concentrations (2.5 mM) of extramitochondrial 2-oxoglutarate inhibit the formation of aspartate via the glutamate-oxaloacetate transaminase. 6. The redox state of the intramitochondrial NAD pool is also important in the control of 4-aminobutyrate metabolism; NADH exhibits competitive inhibition of 4-aminobutyrate metabolism by both mitochondrial populations with an apparent Ki of 102 muM. 7. Increased potassium concentrations stimulate 4-aminobutyrate metabolsim in the synaptic mitochondria but not in 'free' brain mitochondria. This is discussed with respect to the putative transmitter role of 4-aminobutyrate. PMID:188415

  18. Dynamic relationships between age, amyloid-β deposition, and glucose metabolism link to the regional vulnerability to Alzheimer's disease.

    PubMed

    Oh, Hwamee; Madison, Cindee; Baker, Suzanne; Rabinovici, Gil; Jagust, William

    2016-08-01

    SEE HANSSON AND GOURAS DOI101093/AWW146 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Although some brain regions such as precuneus and lateral temporo-parietal cortex have been shown to be more vulnerable to Alzheimer's disease than other areas, a mechanism underlying the differential regional vulnerability to Alzheimer's disease remains to be elucidated. Using fluorodeoxyglucose and Pittsburgh compound B positron emission tomography imaging glucose metabolism and amyloid-β deposition, we tested whether and how life-long changes in glucose metabolism relate to amyloid-β deposition and Alzheimer's disease-related hypometabolism. Nine healthy young adults (age range: 20-30), 96 cognitively normal older adults (age range: 61-96), and 20 patients with Alzheimer's disease (age range: 50-90) were scanned using fluorodeoxyglucose and Pittsburgh compound B positron emission tomography. Among cognitively normal older subjects, 32 were further classified as amyloid-positive, with 64 as amyloid-negative. To assess the contribution of glucose metabolism to the regional vulnerability to amyloid-β deposition, we defined the highest and lowest metabolic regions in young adults and examined differences in amyloid deposition between these regions across groups. Two-way analyses of variance were conducted to assess regional differences in age and amyloid-β-related changes in glucose metabolism. Multiple regressions were applied to examine the association between amyloid-β deposition and regional glucose metabolism. Both region of interest and whole-brain voxelwise analyses were conducted to complement and confirm the results derived from the other approach. Regional differences in glucose metabolism between the highest and lowest metabolism regions defined in young adults (T = 12.85, P < 0.001) were maintained both in Pittsburgh compound B-negative cognitively normal older subjects (T = 6.66, P < 0.001) and Pittsburgh compound B-positive cognitively normal older subjects (T

  19. The evaluation of insulin as a metabolic signal influencing behavior via the brain.

    PubMed

    Woods, S C; Chavez, M; Park, C R; Riedy, C; Kaiyala, K; Richardson, R D; Figlewicz, D P; Schwartz, M W; Porte, D; Seeley, R J

    1996-01-01

    The intent of this paper is to evaluate decreases of food intake and body weight that occur when a peptide is administered to an animal. Using the pancreatic hormone insulin as an example, the case is made that endogenous insulin is normally secreted in response to circulating nutrients as well as in proportion to the degree of adiposity. Hence, its levels in the blood are a reliable indicator of adiposity. A further case is then made demonstrating that insulin is transported through the blood-brain barrier into the brain, where it gains access to neurons containing specific insulin receptors that are important in the control of feeding and metabolism. Finally, experimentally-induced changes of insulin in the brain cause predictable changes of food intake and body weight. Given these observations, the question is then asked: since endogenous insulin, acting within the brain, appears to decrease food intake, can a decrease of food intake caused by exogenous insulin administered into the same area of the brain be ascribed to the same, naturally-occurring response system, or should it be attributed to malaise or a non-specific depression of behavior? Arguments are presented supporting the former position that exogenous insulin, when administered in small quantities directly into the brain, taps into the natural caloric/metabolic system and hence influences food intake and body weight. PMID:8622820

  20. Brain glycogen content and metabolism in subjects with type 1 diabetes and hypoglycemia unawareness.

    PubMed

    Öz, Gülin; Tesfaye, Nolawit; Kumar, Anjali; Deelchand, Dinesh K; Eberly, Lynn E; Seaquist, Elizabeth R

    2012-02-01

    Supercompensated brain glycogen may contribute to the development of hypoglycemia unawareness in patients with type 1 diabetes by providing energy for the brain during periods of hypoglycemia. Our goal was to determine if brain glycogen content is elevated in patients with type 1 diabetes and hypoglycemia unawareness. We used in vivo (13)C nuclear magnetic resonance spectroscopy in conjunction with [1-(13)C]glucose administration in five patients with type 1 diabetes and hypoglycemia unawareness and five age-, gender-, and body mass index-matched healthy volunteers to measure brain glycogen content and metabolism. Glucose and insulin were administered intravenously over ∼51 hours at a rate titrated to maintain a blood glucose concentration of 7 mmol/L. (13)C-glycogen levels in the occipital lobe were measured at ∼5, 8, 13, 23, 32, 37, and 50 hours, during label wash-in and wash-out. Newly synthesized glycogen levels were higher in controls than in patients (P<0.0001) for matched average blood glucose and insulin levels, which may be due to higher brain glycogen content or faster turnover in controls. Metabolic modeling indicated lower brain glycogen content in patients than in controls (P=0.07), implying that glycogen supercompensation does not contribute to the development of hypoglycemia unawareness in humans with type 1 diabetes. PMID:21971353

  1. Brain glycogen content and metabolism in subjects with type 1 diabetes and hypoglycemia unawareness

    PubMed Central

    Öz, Gülin; Tesfaye, Nolawit; Kumar, Anjali; Deelchand, Dinesh K; Eberly, Lynn E; Seaquist, Elizabeth R

    2012-01-01

    Supercompensated brain glycogen may contribute to the development of hypoglycemia unawareness in patients with type 1 diabetes by providing energy for the brain during periods of hypoglycemia. Our goal was to determine if brain glycogen content is elevated in patients with type 1 diabetes and hypoglycemia unawareness. We used in vivo 13C nuclear magnetic resonance spectroscopy in conjunction with [1-13C]glucose administration in five patients with type 1 diabetes and hypoglycemia unawareness and five age-, gender-, and body mass index-matched healthy volunteers to measure brain glycogen content and metabolism. Glucose and insulin were administered intravenously over ∼51 hours at a rate titrated to maintain a blood glucose concentration of 7 mmol/L. 13C-glycogen levels in the occipital lobe were measured at ∼5, 8, 13, 23, 32, 37, and 50 hours, during label wash-in and wash-out. Newly synthesized glycogen levels were higher in controls than in patients (P<0.0001) for matched average blood glucose and insulin levels, which may be due to higher brain glycogen content or faster turnover in controls. Metabolic modeling indicated lower brain glycogen content in patients than in controls (P=0.07), implying that glycogen supercompensation does not contribute to the development of hypoglycemia unawareness in humans with type 1 diabetes. PMID:21971353

  2. First demonstration that brain CYP2D-mediated opiate metabolic activation alters analgesia in vivo.

    PubMed

    Zhou, Kaidi; Khokhar, Jibran Y; Zhao, Bin; Tyndale, Rachel F

    2013-06-15

    The response to centrally acting drugs is highly variable between individuals and does not always correlate with plasma drug levels. Drug-metabolizing CYP enzymes in the brain may contribute to this variability by affecting local drug and metabolite concentrations. CYP2D metabolizes codeine to the active morphine metabolite. We investigated the effect of inhibiting brain, and not liver, CYP2D activity on codeine-induced analgesia. Rats received intracerebroventricular injections of CYP2D inhibitors (20 μg propranolol or 40 μg propafenone) or vehicle controls. Compared to vehicle-pretreated rats, inhibitor-pretreated rats had: (a) lower analgesia in the tail-flick test (p<0.05) and lower areas under the analgesia-time curve (p<0.02) within the first hour after 30 mg/kg subcutaneous codeine, (b) lower morphine concentrations and morphine to codeine ratios in the brain (p<0.02 and p<0.05, respectively), but not in plasma (p>0.6 and p>0.7, respectively), tested at 30 min after 30 mg/kg subcutaneous codeine, and (c) lower morphine formation from codeine ex vivo by brain membranes (p<0.04), but not by liver microsomes (p>0.9). Analgesia trended toward a correlation with brain morphine concentrations (p=0.07) and correlated with brain morphine to codeine ratios (p<0.005), but not with plasma morphine concentrations (p>0.8) or plasma morphine to codeine ratios (p>0.8). Our findings suggest that brain CYP2D affects brain morphine levels after peripheral codeine administration, and may thereby alter codeine's therapeutic efficacy, side-effect profile and abuse liability. Brain CYPs are highly variable due to genetics, environmental factors and age, and may therefore contribute to interindividual variation in the response to centrally acting drugs. PMID:23623752

  3. Longitudinal Metabolite Profiling of Cerebrospinal Fluid in Normal Pressure Hydrocephalus Links Brain Metabolism with Exercise-Induced VEGF Production and Clinical Outcome.

    PubMed

    Huang, He; Yang, Jun; Luciano, Mark; Shriver, Leah P

    2016-07-01

    Idiopathic normal pressure hydrocephalus is a neurological disease caused by abnormal cerebrospinal fluid flow and presents with symptoms such as dementia. Current therapy involves the removal of excess cerebrospinal fluid by shunting. Not all patients respond to this therapy and biomarkers are needed that could facilitate the characterization of patients likely to benefit from this treatment. Here, we measure brain metabolism in normal pressure hydrocephalus patients by performing a novel longitudinal metabolomic profiling study of cerebrospinal fluid. We find that the levels of brain metabolites correlate with clinical parameters, the amount of vascular endothelial growth factor in the cerebrospinal fluid, and environmental stimuli such as exercise. Metabolomic analysis of normal pressure hydrocephalus patients provides insight into changes in brain metabolism that accompany cerebrospinal fluid disorders and may facilitate the development of new biomarkers for this condition. PMID:27084769

  4. Metabolic bone disease in children : etiology and treatment options.

    PubMed

    Skowrońska-Jóźwiak, Elzbieta; Lorenc, Roman S

    2006-01-01

    Metabolic bone disease in children includes many hereditary and acquired conditions of diverse etiology that lead to disturbed metabolism of the bone tissue. Some of these processes primarily affect bone; others are secondary to nutritional deficiencies, a variety of chronic disorders, and/or treatment with some drugs. Some of these disorders are rare, but some present public health concerns (for instance, rickets) that have been well known for many years but still persist. The most important clinical consequences of bone metabolic diseases in the pediatric population include reduced linear growth, bone deformations, and non-traumatic fractures leading to bone pain, deterioration of motor development and disability. In this article, we analyze primary and secondary osteoporosis, rickets, osteomalacia (nutritional and hereditary vitamin D-dependent, hypophosphatemic and that due to renal tubular abnormalities), renal osteodystrophy, sclerosing bony disorders, and some genetic bone diseases (hypophosphatasia, fibrous dysplasia, skeletal dysplasia, juvenile Paget disease, familial expansile osteolysis, and osteoporosis pseudoglioma syndrome). Early identification and treatment of potential risk factors is essential for skeletal health in adulthood. In most conditions it is necessary to ensure an appropriate diet, with calcium and vitamin D, and an adequate amount of physical activity as a means of prevention. In secondary bone diseases, treatment of the primary disorder is crucial. Most genetic disorders await prospective gene therapies, while bone marrow transplantation has been attempted in other disorders. At present, affected patients are treated symptomatically, frequently by interdisciplinary teams. The role of exercise and pharmacologic therapy with calcium, vitamin D, phosphate, bisphosphonates, calcitonin, sex hormones, growth hormone, and thiazides is discussed. The perspectives on future therapy with insulin-like growth factor-1, new analogs of vitamin D

  5. The 2009 stock conference report: inflammation, obesity and metabolic disease.

    PubMed

    Hevener, A L; Febbraio, M A

    2010-09-01

    Obesity is linked with many deleterious health consequences and is associated with increased risk of chronic disease including type 2 diabetes, atherosclerosis and certain forms of cancer. Recent work has highlighted the impact of obesity to activate inflammatory gene networks and suggests a causal function of inflammation in the pathogenesis of the metabolic syndrome. Since 2005, when Dr Gokhan Hotamisligil chaired the fourth Stock Conference in Istanbul, Turkey, entitled 'Obesity and Inflammation', there has been an explosion of studies investigating the relationship between obesity, inflammation and substrate metabolism. The exuberance surrounding this field of research is exemplified by the body of work that has been published in these past 4 years, including over 1400 publications. During this time, several novel mechanisms relating to cellular inflammation have been uncovered including the role of the hematopoietic system, toll-like receptor activation, endoplasmic reticulum stress and very recently T-cell activation in obesity-induced insulin resistance. These discoveries have led us to rethink cellular nutrient sensing and its role in inflammation and metabolic disease. Despite burgeoning investigation in this field, there still remain a number of unanswered questions. This review that evolved from the 2009 Stock Conference summarizes current research and identifies the deficiencies in our understanding of this topic. The overall goal of this Stock Conference was to bring together leading investigators in the field of inflammation and obesity research in the hope of fostering new ideas, thus advancing the pursuit of novel therapeutic strategies to reduce disease risk and or better treat chronic disease including type 2 diabetes, cardiovascular disease and cancer. PMID:20002885

  6. Pituitary dysfunction in infective brain diseases

    PubMed Central

    Beatrice, Anne M.; Selvan, Chitra; Mukhopadhyay, Satinath

    2013-01-01

    Infectious diseases of the central nervous system (CNS) are increasingly being recognized as important causes of hypopituitarism. Although tuberculosis is the most common agent involved, non-mycobacterial agents like viruses, bacteria, fungus, and protozoa are important causes in our country. Involvement post infections could be due to a strategically located tuberculoma, or pituitary abscess, or meningoencephalitis. Although it might not be reasonable to screen all patients with CNS infections for hypopituitarism, awareness of the possibility and clinical follow-up for suggestive symptoms is required. PMID:24910821

  7. Metabolic alterations to the mucosal microbiota in inflammatory bowel disease

    PubMed Central

    Davenport, Michael; Poles, Jordan; Leung, Jacqueline M.; Wolff, Martin J.; Abidi, Wasif M.; Ullman, Thomas; Mayer, Lloyd; Cho, Ilseung; Loke, P'ng

    2014-01-01

    Background Inflammation during inflammatory bowel disease (IBD) may alter nutrient availability to adherent mucosal bacteria and impact their metabolic function. Microbial metabolites may regulate intestinal CD4+ T cell homeostasis. We investigated the relationship between inflammation and microbial function by inferred metagenomics of the mucosal microbiota from colonic pinch biopsies of IBD patients. Methods Paired pinch biopsy samples of known inflammation states were analyzed from UC (23), CD (21) and controls (24) by 16S ribosomal sequencing, histopathology and flow cytometry. PICRUSt was used to generate metagenomic data, and derive relative Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway abundance information. Leukocytes were isolated from paired biopsy samples and analyzed by multi-color flow cytometry. Active inflammation was defined by neutrophil infiltration into the epithelium Results Carriage of metabolic pathways in the mucosal microbiota was relatively stable among IBD patients despite large variations in individual bacterial community structures. However, microbial function was significantly altered in inflamed tissue of UC patients, with a reduction in carbohydrate and nucleotide metabolism in favor of increased lipid and amino acid metabolism. These differences were not observed in samples from CD patients. In CD, microbial lipid, carbohydrate, and amino acid metabolism was tightly correlated with frequency of CD4+Foxp3+ Tregs, whereas in UC these pathways were correlated with frequency of CD4+IL-22+ (TH22) cells. Conclusions Metabolic pathways of the mucosal microbiota in CD do not vary as much as UC with inflammation state, indicating a more systemic perturbation of host-bacteria interactions in CD compared to more localized dysfunction in UC. PMID:24583479

  8. Metabolic constraint imposes tradeoff between body size and number of brain neurons in human evolution

    PubMed Central

    Fonseca-Azevedo, Karina; Herculano-Houzel, Suzana

    2012-01-01

    Despite a general trend for larger mammals to have larger brains, humans are the primates with the largest brain and number of neurons, but not the largest body mass. Why are great apes, the largest primates, not also those endowed with the largest brains? Recently, we showed that the energetic cost of the brain is a linear function of its numbers of neurons. Here we show that metabolic limitations that result from the number of hours available for feeding and the low caloric yield of raw foods impose a tradeoff between body size and number of brain neurons, which explains the small brain size of great apes compared with their large body size. This limitation was probably overcome in Homo erectus with the shift to a cooked diet. Absent the requirement to spend most available hours of the day feeding, the combination of newly freed time and a large number of brain neurons affordable on a cooked diet may thus have been a major positive driving force to the rapid increased in brain size in human evolution. PMID:23090991

  9. ROS and Brain Diseases: The Good, the Bad, and the Ugly

    PubMed Central

    Popa-Wagner, Aurel; Mitran, Smaranda; Sivanesan, Senthilkumar; Chang, Edwin; Buga, Ana-Maria

    2013-01-01

    The brain is a major metabolizer of oxygen and yet has relatively feeble protective antioxidant mechanisms. This paper reviews the Janus-faced properties of reactive oxygen species. It will describe the positive aspects of moderately induced ROS but it will also outline recent research findings concerning the impact of oxidative and nitrooxidative stress on neuronal structure and function in neuropsychiatric diseases, including major depression. A common denominator of all neuropsychiatric diseases including schizophrenia and ADHD is an increased inflammatory response of the brain caused either by an exposure to proinflammatory agents during development or an accumulation of degenerated neurons, oxidized proteins, glycated products, or lipid peroxidation in the adult brain. Therefore, modulation of the prooxidant-antioxidant balance provides a therapeutic option which can be used to improve neuroprotection in response to oxidative stress. We also discuss the neuroprotective role of the nuclear factor erythroid 2-related factor (Nrf2) in the aged brain in response to oxidative stressors and nanoparticle-mediated delivery of ROS-scavenging drugs. The antioxidant therapy is a novel therapeutic strategy. However, the available drugs have pleiotropic actions and are not fully characterized in the clinic. Additional clinical trials are needed to assess the risks and benefits of antioxidant therapies for neuropsychiatric disorders. PMID:24381719

  10. Metabolic Risk Factors of Sporadic Alzheimer’s Disease: Implications in the Pathology, Pathogenesis and Treatment

    PubMed Central

    Chakrabarti, Sasanka; Khemka, Vineet Kumar; Banerjee, Anindita; Chatterjee, Gargi; Ganguly, Anirban; Biswas, Atanu

    2015-01-01

    Alzheimer’s disease (AD), the major cause of dementia among the elderly world-wide, manifests in familial and sporadic forms, and the latter variety accounts for the majority of the patients affected by this disease. The etiopathogenesis of sporadic AD is complex and uncertain. The autopsy studies of AD brain have provided limited understanding of the antemortem pathogenesis of the disease. Experimental AD research with transgenic animal or various cell based models has so far failed to explain the complex and varied spectrum of AD dementia. The review, therefore, emphasizes the importance of AD related risk factors, especially those with metabolic implications, identified from various epidemiological studies, in providing clues to the pathogenesis of this complex disorder. Several metabolic risk factors of AD like hypercholesterolemia, hyperhomocysteinemia and type 2 diabetes have been studied extensively both in epidemiology and experimental research, while much less is known about the role of adipokines, pro-inflammatory cytokines and vitamin D in this context. Moreover, the results from many of these studies have shown a degree of variability which has hindered our understanding of the role of AD related risk factors in the disease progression. The review also encompasses the recent recommendations regarding clinical and neuropathological diagnosis of AD and brings out the inherent uncertainty and ambiguity in this area which may have a distinct impact on the outcome of various population-based studies on AD-related risk factors. PMID:26236550

  11. Metabolic Risk Factors of Sporadic Alzheimer's Disease: Implications in the Pathology, Pathogenesis and Treatment.

    PubMed

    Chakrabarti, Sasanka; Khemka, Vineet Kumar; Banerjee, Anindita; Chatterjee, Gargi; Ganguly, Anirban; Biswas, Atanu

    2015-08-01

    Alzheimer's disease (AD), the major cause of dementia among the elderly world-wide, manifests in familial and sporadic forms, and the latter variety accounts for the majority of the patients affected by this disease. The etiopathogenesis of sporadic AD is complex and uncertain. The autopsy studies of AD brain have provided limited understanding of the antemortem pathogenesis of the disease. Experimental AD research with transgenic animal or various cell based models has so far failed to explain the complex and varied spectrum of AD dementia. The review, therefore, emphasizes the importance of AD related risk factors, especially those with metabolic implications, identified from various epidemiological studies, in providing clues to the pathogenesis of this complex disorder. Several metabolic risk factors of AD like hypercholesterolemia, hyperhomocysteinemia and type 2 diabetes have been studied extensively both in epidemiology and experimental research, while much less is known about the role of adipokines, pro-inflammatory cytokines and vitamin D in this context. Moreover, the results from many of these studies have shown a degree of variability which has hindered our understanding of the role of AD related risk factors in the disease progression. The review also encompasses the recent recommendations regarding clinical and neuropathological diagnosis of AD and brings out the inherent uncertainty and ambiguity in this area which may have a distinct impact on the outcome of various population-based studies on AD-related risk factors. PMID:26236550

  12. Neuronal and astrocytic metabolism in a transgenic rat model of Alzheimer's disease

    PubMed Central

    Nilsen, Linn Hege; Witter, Menno P; Sonnewald, Ursula

    2014-01-01

    Regional hypometabolism of glucose in the brain is a hallmark of Alzheimer's disease (AD). However, little is known about the specific alterations of neuronal and astrocytic metabolism involved in homeostasis of glutamate and GABA in AD. Here, we investigated the effects of amyloid β (Aβ) pathology on neuronal and astrocytic metabolism and glial-neuronal interactions in amino acid neurotransmitter homeostasis in the transgenic McGill-R-Thy1-APP rat model of AD compared with healthy controls at age 15 months. Rats were injected with [1-13C]glucose and [1,2-13C]acetate, and extracts of the hippocampal formation as well as several cortical regions were analyzed using 1H- and 13C nuclear magnetic resonance spectroscopy and high-performance liquid chromatography. Reduced tricarboxylic acid cycle turnover was evident for glutamatergic and GABAergic neurons in hippocampal formation and frontal cortex, and for astrocytes in frontal cortex. Pyruvate carboxylation, which is necessary for de novo synthesis of amino acids, was decreased and affected the level of glutamine in hippocampal formation and those of glutamate, glutamine, GABA, and aspartate in the retrosplenial/cingulate cortex. Metabolic alterations were also detected in the entorhinal cortex. Overall, perturbations in energy- and neurotransmitter homeostasis, mitochondrial astrocytic and neuronal metabolism, and aspects of the glutamate–glutamine cycle were found in McGill-R-Thy1-APP rats. PMID:24594625

  13. A failure in energy metabolism and antioxidant uptake precede symptoms of Huntington's disease in mice.

    PubMed

    Acuña, Aníbal I; Esparza, Magdalena; Kramm, Carlos; Beltrán, Felipe A; Parra, Alejandra V; Cepeda, Carlos; Toro, Carlos A; Vidal, René L; Hetz, Claudio; Concha, Ilona I; Brauchi, Sebastián; Levine, Michael S; Castro, Maite A

    2013-01-01

    Huntington's disease has been associated with a failure in energy metabolism and oxidative damage. Ascorbic acid is a powerful antioxidant highly concentrated in the brain where it acts as a messenger, modulating neuronal metabolism. Using an electrophysiological approach in R6/2 HD slices, we observe an abnormal ascorbic acid flux from astrocytes to neurons, which is responsible for alterations in neuronal metabolic substrate preferences. Here using striatal neurons derived from knock-in mice expressing mutant huntingtin (STHdhQ cells), we study ascorbic acid transport. When extracellular ascorbic acid concentration increases, as occurs during synaptic activity, ascorbic acid transporter 2 (SVCT2) translocates to the plasma membrane, ensuring optimal ascorbic acid uptake for neurons. In contrast, SVCT2 from cells that mimic HD symptoms (dubbed HD cells) fails to reach the plasma membrane under the same conditions. We reason that an early impairment of ascorbic acid uptake in HD neurons could lead to early metabolic failure promoting neuronal death. PMID:24336051

  14. Clearance systems in the brain-implications for Alzheimer disease.

    PubMed

    Tarasoff-Conway, Jenna M; Carare, Roxana O; Osorio, Ricardo S; Glodzik, Lidia; Butler, Tracy; Fieremans, Els; Axel, Leon; Rusinek, Henry; Nicholson, Charles; Zlokovic, Berislav V; Frangione, Blas; Blennow, Kaj; Ménard, Joël; Zetterberg, Henrik; Wisniewski, Thomas; de Leon, Mony J

    2015-08-01

    Accumulation of toxic protein aggregates-amyloid-β (Aβ) plaques and hyperphosphorylated tau tangles-is the pathological hallmark of Alzheimer disease (AD). Aβ accumulation has been hypothesized to result from an imbalance between Aβ production and clearance; indeed, Aβ clearance seems to be impaired in both early and late forms of AD. To develop efficient strategies to slow down or halt AD, it is critical to understand how Aβ is cleared from the brain. Extracellular Aβ deposits can be removed from the brain by various clearance systems, most importantly, transport across the blood-brain barrier. Findings from the past few years suggest that astroglial-mediated interstitial fluid (ISF) bulk flow, known as the glymphatic system, might contribute to a larger portion of extracellular Aβ (eAβ) clearance than previously thought. The meningeal lymphatic vessels, discovered in 2015, might provide another clearance route. Because these clearance systems act together to drive eAβ from the brain, any alteration to their function could contribute to AD. An understanding of Aβ clearance might provide strategies to reduce excess Aβ deposits and delay, or even prevent, disease onset. In this Review, we describe the clearance systems of the brain as they relate to proteins implicated in AD pathology, with the main focus on Aβ. PMID:26195256

  15. Impact of DHA on Metabolic Diseases from Womb to Tomb

    PubMed Central

    Arnoldussen, Ilse A. C.; Kiliaan, Amanda J.

    2014-01-01

    Long chain polyunsaturated fatty acids (LC-PUFAs) are important mediators in improving and maintaining human health over the total lifespan. One topic we especially focus on in this review is omega-3 LC-PUFA docosahexaenoic acid (DHA). Adequate DHA levels are essential during neurodevelopment and, in addition, beneficial in cognitive processes throughout life. We review the impact of DHA on societal relevant metabolic diseases such as cardiovascular diseases, obesity, and diabetes mellitus type 2 (T2DM). All of these are risk factors for cognitive decline and dementia in later life. DHA supplementation is associated with a reduced incidence of both stroke and atherosclerosis, lower bodyweight and decreased T2DM prevalence. These findings are discussed in the light of different stages in the human life cycle: childhood, adolescence, adulthood and in later life. From this review, it can be concluded that DHA supplementation is able to inhibit pathologies like obesity and cardiovascular disease. DHA could be a dietary protector against these metabolic diseases during a person’s entire lifespan. However, supplementation of DHA in combination with other dietary factors is also effective. The efficacy of DHA depends on its dose as well as on the duration of supplementation, sex, and age. PMID:25528960

  16. Black leaf streak disease affects starch metabolism in banana fruit.

    PubMed

    Saraiva, Lorenzo de Amorim; Castelan, Florence Polegato; Shitakubo, Renata; Hassimotto, Neuza Mariko Aymoto; Purgatto, Eduardo; Chillet, Marc; Cordenunsi, Beatriz Rosana

    2013-06-12

    Black leaf streak disease (BLSD), also known as black sigatoka, represents the main foliar disease in Brazilian banana plantations. In addition to photosynthetic leaf area losses and yield losses, this disease causes an alteration in the pre- and postharvest behavior of the fruit. The aim of this work was to investigate the starch metabolism of fruits during fruit ripening from plants infected with BLSD by evaluating carbohydrate content (i.e., starch, soluble sugars, oligosaccharides, amylose), phenolic compound content, phytohormones, enzymatic activities (i.e., starch phosphorylases, α- and β-amylase), and starch granules. The results indicated that the starch metabolism in banana fruit ripening is affected by BLSD infection. Fruit from infested plots contained unusual amounts of soluble sugars in the green stage and smaller starch granules and showed a different pattern of superficial degradation. Enzymatic activities linked to starch degradation were also altered by the disease. Moreover, the levels of indole-acetic acid and phenolic compounds indicated an advanced fruit physiological age for fruits from infested plots. PMID:23692371

  17. The emerging use of zebrafish to model metabolic disease

    PubMed Central

    Seth, Asha; Stemple, Derek L.; Barroso, Inês

    2013-01-01

    The zebrafish research community is celebrating! The zebrafish genome has recently been sequenced, the Zebrafish Mutation Project (launched by the Wellcome Trust Sanger Institute) has published the results of its first large-scale ethylnitrosourea (ENU) mutagenesis screen, and a host of new techniques, such as the genome editing technologies TALEN and CRISPR-Cas, are enabling specific mutations to be created in model organisms and investigated in vivo. The zebrafish truly seems to be coming of age. These powerful resources invoke the question of whether zebrafish can be increasingly used to model human disease, particularly common, chronic diseases of metabolism such as obesity and type 2 diabetes. In recent years, there has been considerable success, mainly from genomic approaches, in identifying genetic variants that are associated with these conditions in humans; however, mechanistic insights into the role of implicated disease loci are lacking. In this Review, we highlight some of the advantages and disadvantages of zebrafish to address the organism’s utility as a model system for human metabolic diseases. PMID:24046387

  18. Brain Natriuretic Peptide Stimulates Lipid Metabolism through Its Receptor NPR1 and the Glycerolipid Metabolism Pathway in Chicken Adipocytes.

    PubMed

    Huang, H Y; Zhao, G P; Liu, R R; Li, Q H; Zheng, M Q; Li, S F; Liang, Z; Zhao, Z H; Wen, J

    2015-11-01

    Brain natriuretic peptide (BNP) is related to lipid metabolism in mammals, but its effect and the molecular mechanisms underlying it in chickens are incompletely understood. We found that the level of natriuretic peptide precursor B (NPPB, which encodes BNP) mRNA expression in high-abdominal-fat chicken groups was significantly higher than that of low-abdominal-fat groups. Partial correlations indicated that changes in the weight of abdominal fat were positively correlated with NPPB mRNA expression level. In vitro, compared with the control group, preadipocytes with NPPB interference showed reduced levels of proliferation, differentiation, and glycerin in media. Treatments of cells with BNP led to enhanced proliferation and differentiation of cells and glycerin concentration, and mRNA expression of its receptor natriuretic peptide receptor 1 (NPR1) was upregulated significantly. In cells exposed to BNP, 482 differentially expressed genes were identified compared with controls without BNP. Four genes known to be related to lipid metabolism (diacylglycerol kinase; lipase, endothelial; 1-acylglycerol-3-phosphate O-acyltransferase 1; and 1-acylglycerol-3-phosphate O-acyltransferase 2) were enriched in the glycerolipid metabolism pathway and expressed differentially. In conclusion, BNP stimulates the proliferation, differentiation, and lipolysis of preadipocytes through upregulation of the levels of expression of its receptor NPR1 and key genes enriched in the glycerolipid metabolic pathway. PMID:26463554

  19. Disorders of Iron Metabolism and Anemia in Chronic Kidney Disease.

    PubMed

    Panwar, Bhupesh; Gutiérrez, Orlando M

    2016-07-01

    Dysregulated iron homeostasis plays a central role in the development of anemia of chronic kidney disease (CKD) and is a major contributor toward resistance to treatment with erythropoiesis-stimulating agents. Understanding the underlying pathophysiology requires an in-depth understanding of normal iron physiology and regulation. Recent discoveries in the field of iron biology have greatly improved our understanding of the hormonal regulation of iron trafficking in human beings and how its alterations lead to the development of anemia of CKD. In addition, emerging evidence has suggested that iron homeostasis interacts with bone and mineral metabolism on multiple levels, opening up new avenues of investigation into the genesis of disordered iron metabolism in CKD. Building on recent advances in our understanding of normal iron physiology and abnormalities in iron homeostasis in CKD, this review characterizes how anemia related to disordered iron metabolism develops in the setting of CKD. In addition, this review explores our emerging recognition of the connections between iron homeostasis and mineral metabolism and their implications for the management of altered iron status and anemia of CKD. PMID:27475656

  20. Genetic regulation of human brain development: lessons from Mendelian diseases

    PubMed Central

    Dixon-Salazar, Tracy J.; Gleeson, Joseph G.

    2016-01-01

    One of the fundamental goals in human genetics is to link gene function to phenotype, yet the function of the majority of the genes in the human body is still poorly understood. This is especially true for the developing human brain. The study of human phenotypes that result from inherited, mutated alleles is the most direct evidence for the requirement of a gene in human physiology. Thus, the study of Mendelian central nervous system(CNS) diseases can be an extremely powerful approach to elucidate such phenotypic/genotypic links and to increase our understanding of the key components required for development of the human brain. In this review, we highlight examples of how the study of inherited neurodevelopmental disorders contributes to our knowledge of both the “normal” and diseased human brain, as well as elaborate on the future of this type of research. Mendelian disease research has been, and will continue to be, key to understanding the molecular mechanisms that underlie human brain function, and will ultimately form a basis for the design of intelligent, mechanism-specific treatments for nervous system disorders. PMID:21062301

  1. Assessment of regional glucose metabolism in aging brain and dementia with positron-emission tomography

    SciTech Connect

    Reivich, M.; Alavi, A.; Ferris, S.; Christman, D.; Fowler, J.; MacGregor, R.; Farkas, T.; Greenberg, J.; Dann, R.; Wolf, A.

    1981-01-01

    This paper explores the alterations in regional glucose metabolism that occur in elderly subjects and those with senile dementia compared to normal young volunteers. Results showed a tendency for the frontal regions to have a lower metabolic rate in patients with dementia although this did not reach the level of significance when compared to the elderly control subjects. The changes in glucose metabolism were symmetrical in both the left and right hemispheres. There was a lack of correlation between the mean cortical metabolic rates for glucose and the global mental function in the patients with senile dementia. This is at variance with most of the regional cerebral blood flow data that has been collected. This may be partly related to the use of substrates other than glucose by the brain in elderly and demented subjects. (PSB)

  2. Molecular links between early energy metabolism alterations and Alzheimer's disease.

    PubMed

    Pedros, Ignacio; Patraca, Ivan; Martinez, Nohora; Petrov, Dmitry; Sureda, Francesc X; Auladell, Carme; Beas-Zarate, Carlos; Folch, Jaume

    2016-01-01

    Recent studies suggest that the neurobiology of Alzheimer's disease (AD) pathology could not be explained solely by an increase in beta-amyloid levels. In fact, success with potential therapeutic drugs that inhibit the generation of beta amyloid has been low. Therefore, due to therapeutic failure in recent years, the scientists are looking for alternative hypotheses to explain the causes of the disease and the cognitive loss. Accordingly, alternative hypothesis propose a link between AD and peripheral metabolic alteration. Then, we review in depth changes related to insulin signalling and energy metabolism in the context of the APPSwe/PS1dE9 (APP/PS1) mice model of AD. We show an integrated view of the changes that occur in the early stages of the amyloidogenic process in the APP/PS1 double transgenic mice model. These early changes affect several key metabolic processes related to glucose uptake and insulin signalling, cellular energy homeostasis, mitochondrial biogenesis and increased Tau phosphorylation by kinase molecules like mTOR and Cdk5. PMID:26709757

  3. Clinical Neurochemistry of Subarachnoid Hemorrhage: Toward Predicting Individual Outcomes via Biomarkers of Brain Energy Metabolism.

    PubMed

    Tholance, Yannick; Barcelos, Gleicy; Dailler, Frederic; Perret-Liaudet, Armand; Renaud, Bernard

    2015-12-16

    The functional outcome of patients with subarachnoid hemorrhage is difficult to predict at the individual level. The monitoring of brain energy metabolism has proven to be useful in improving the pathophysiological understanding of subarachnoid hemorrhage. Nonetheless, brain energy monitoring has not yet clearly been included in official guidelines for the management of subarachnoid hemorrhage patients, likely because previous studies compared only biological data between two groups of patients (unfavorable vs favorable outcomes) and did not determine decision thresholds that could be useful in clinical practice. Therefore, this Viewpoint discusses recent findings suggesting that monitoring biomarkers of brain energy metabolism at the level of individuals can be used to predict the outcomes of subarachnoid hemorrhage patients. Indeed, by taking into account specific neurochemical patterns obtained by local or global monitoring of brain energy metabolism, it may become possible to predict routinely, and with sufficient sensitivity and specificity, the individual outcomes of subarachnoid hemorrhage patients. Moreover, combining both local and global monitoring improves the overall performance of individual outcome prediction. Such a combined neurochemical monitoring approach may become, after prospective clinical validation, an important component in the management of subarachnoid hemorrhage patients to adapt individualized therapeutic interventions. PMID:26595414

  4. Brain Metabolism of Less-Educated Patients With Alzheimer Dementia Studied by Positron Emission Tomography

    PubMed Central

    Huang, Yu Ching; Yen, Pao Sheng; Wu, Shwu Tzy; Chen, Jung Tai; Hung, Gung Uei; Kao, Chia Hung; Chen, Tai Yee; Ho, Feng Ming

    2015-01-01

    Abstract Alzheimer dementia (AD) is the commonest form of dementia. Although illiteracy is associated with high prevalence of dementia of the Alzheimer type (DAT), their relationship is still unclear. Nevertheless, mild DAT in illiterate participants seems to be due to brain atrophy. In this study, we compared the impact of brain metabolism efficiency in healthy participants and less-educated patients with mild DAT using 2-fluoro-2-deoxy-d-glucose (18F-FDG-PET) positron emission tomography. Out of 43 eligible less-educated participants with dementia, only 23 (14 women and 9 men) met Diagnostic and Statistical Manual (DSM)-III-R or DSM-IV criteria for DAT and AD and were included. Participants with intracranial insults were excluded by brain magnetic resonance imaging and participants with metabolic or systemic conditions were excluded by blood sampling. In addition, 16 cognitively normal elderly (age >70 years), including 7 women and 9 men, were enrolled in the sham group. The PET imaging data were analyzed using statistical parametric mapping (SPM8) to determine reliability and specificity. Glucose metabolic rate was low in the DAT group, especially in the middle temporal gyrus, middle frontal gyrus, superior frontal gyrus, inferior frontal gyrus, posterior cingulate gyrus, angular gyrus, parahippocampal gyrus, middle occipital gyrus, rectal gyrus, and lingual gyrus. Our results showed that DAT patients with less education not only have prominent clinical signs and symptoms related to dementia but also decreased gray matter metabolism. PMID:26222866

  5. Network Analysis of Intrinsic Functional Brain Connectivity in Alzheimer's Disease

    PubMed Central

    Supekar, Kaustubh; Menon, Vinod; Rubin, Daniel; Musen, Mark; Greicius, Michael D.

    2008-01-01

    Functional brain networks detected in task-free (“resting-state”) functional magnetic resonance imaging (fMRI) have a small-world architecture that reflects a robust functional organization of the brain. Here, we examined whether this functional organization is disrupted in Alzheimer's disease (AD). Task-free fMRI data from 21 AD subjects and 18 age-matched controls were obtained. Wavelet analysis was applied to the fMRI data to compute frequency-dependent correlation matrices. Correlation matrices were thresholded to create 90-node undirected-graphs of functional brain networks. Small-world metrics (characteristic path length and clustering coefficient) were computed using graph analytical methods. In the low frequency interval 0.01 to 0.05 Hz, functional brain networks in controls showed small-world organization of brain activity, characterized by a high clustering coefficient and a low characteristic path length. In contrast, functional brain networks in AD showed loss of small-world properties, characterized by a significantly lower clustering coefficient (p<0.01), indicative of disrupted local connectivity. Clustering coefficients for the left and right hippocampus were significantly lower (p<0.01) in the AD group compared to the control group. Furthermore, the clustering coefficient distinguished AD participants from the controls with a sensitivity of 72% and specificity of 78%. Our study provides new evidence that there is disrupted organization of functional brain networks in AD. Small-world metrics can characterize the functional organization of the brain in AD, and our findings further suggest that these network measures may be useful as an imaging-based biomarker to distinguish AD from healthy aging. PMID:18584043

  6. Bone Health and Associated Metabolic Complications in Neuromuscular Diseases

    PubMed Central

    Joyce, Nanette C.; Hache, Lauren P.; Clemens, Paula R.

    2014-01-01

    Synopsis This article reviews the recent literature regarding bone health as it relates to the patient living with neuromuscular disease (NMD). Poor bone health with related morbidity is a significant problem for patients with NMD. Although the evidence addressing issues of bone health and osteoporosis have increased as a result of the Bone and Joint Decade, studies defining the scope of bone-related disease in NMD are scant. The available evidence is discussed focusing on abnormal calcium metabolism, increased fracture risk, and the prevalence of both scoliosis and hypovitaminosis D in Duchenne muscular dystrophy, amyotrophic lateral sclerosis and spinal muscular atrophy. These problems appear common. Osteomalacia often complicates disease-related baseline osteoporosis and may reduce fracture risk if treated. Future directions are discussed, including the urgent need for studies to both determine the nature and extent of poor bone health, and to evaluate the therapeutic effect of available osteoporosis treatments in patients with NMD. PMID:23137737

  7. Gout secondary to chronic renal disease: studies on urate metabolism.

    PubMed

    Sorensen, L F

    1980-10-01

    A report of 20 cases of gout considered to be secondary to chronic renal disease is presented. Studies of renal function and of uric acid metabolism were carried out in 16 patients. The daily production of urate remained within normal limits in the face of progressive renal dysfunction. Renal excretion of uric acid was decreased to a mean of 35.5% of the turnover. The cumulative urinary recovery of intravenously injected 14C-uric acid averaged 32.0%. In 3 patients 14C was successively retrieved in urinary allantoinand urea, in carbon dioxide of expired air, and in faeces. As in normal man, carbon dioxide and ammonia were the principal uricolytic products. The extrarenal excretion of uric acid assumes a greater role in chronic renal disease and eventually becomes the major route of elimination of uric acid. The possibility that gout may be secondary to intrinsic renal disease should be entertained when azotaemia is present. PMID:7436573

  8. Noninvasive brain stimulation in Huntington's disease.

    PubMed

    Berardelli, Alfredo; Suppa, Antonio

    2013-01-01

    Several important advances in the pathophysiology of Huntington's disease (HD) have been achieved by means of neurophysiological techniques designed to investigate the excitability and plasticity of brainstem and cortical circuits in patients with the condition. Studies designed to investigate brainstem reflexes, with paired-pulse and repetitive stimulation of the supraorbital nerve (blink reflex), have demonstrated abnormal excitability and plasticity of brainstem interneurons. In addition, several authors have tested the excitability of the primary motor cortex (M1) with the transcranial magnetic stimulation (TMS) technique and reported abnormal excitability of inhibitory intracortical circuits (cortical silent period, short afferent inhibition). Studies investigating plasticity processes by means of repetitive TMS (rTMS) protocols have demonstrated altered short-term as well as long-term M1 plasticity. Abnormal cortical excitability and plasticity can be present in the early phase of HD and in asymptomatic HD carriers. Evidence from a single study of small cohorts of patients with HD supports the therapeutic application of rTMS for symptomatic improvement of chorea in HD. PMID:24112923

  9. CARS microscopy of Alzheimer's diseased brain tissue

    NASA Astrophysics Data System (ADS)

    Enejder, Annika; Kiskis, Juris; Fink, Helen; Nyberg, Lena; Thyr, Jakob; Li, Jia-Yi

    2014-02-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder currently without cure, characterized by the presence of extracellular plaques surrounded by dystrophic neurites. In an effort to understand the underlying mechanisms, biochemical analysis (protein immunoblot) of plaque extracts reveals that they consist of amyloid-beta (Aβ) peptides assembled as oligomers, protofibrils and aggregates. Their spatial distribution has been confirmed by Thioflavin-S or immuno-staining with fluorescence microscopy. However, it is increasingly understood that the protein aggregation is only one of several mechanism that causes neuronal dysfunction and death. This raises the need for a more complete biochemical analysis. In this study, we have complemented 2-photon fluorescence microscopy of Thioflavin-S and Aβ immuno-stained human AD plaques with CARS microscopy. We show that the chemical build-up of AD plaques is more complex and that Aβ staining does not provide the complete picture of the spatial distribution or the molecular composition of AD plaques. CARS images provide important complementary information to that obtained by fluorescence microscopy, motivating a broader introduction of CARS microscopy in the AD research field.

  10. Blood-Brain Barrier Dysfunction and Cerebral Small Vessel Disease (Arteriolosclerosis) in Brains of Older People

    PubMed Central

    Khoong, Cheryl H.L.; Poon, Wayne; Esiri, Margaret M.; Markus, Hugh S.; Hainsworth, Atticus H.

    2014-01-01

    The blood-brain barrier (BBB) protects brain tissue from potentially harmful plasma components. Small vessel disease ([SVD], arteriolosclerosis) is common in the brains of older people and is associated with lacunar infarcts, leukoaraiosis and vascular dementia. To determine whether plasma extravasation is associated with SVD, we immunolabeled the plasma proteins fibrinogen and IgG, which are assumed to reflect BBB dysfunction, in deep grey matter (anterior caudate-putamen, [DGM]) and deep subcortical white matter (DWM) in the brains of a well-characterized patient cohort with minimal Alzheimer disease pathology (Braak stage 0-II) (n = 84; age ≥65 years). Morphometric measures of fibrinogen labeling were compared between people with neuropathologically defined SVD and aged control subjects. Parenchymal cellular labeling with fibrinogen and IgG was detectable in DGM and DWM in many subjects (>70%). Quantitative measures of fibrinogen were not associated with SVD in DGM or DWM; SVD severity was correlated between DGM and DWM (p < 0.0001). Fibrinogen in DGM showed a modest association with a history of hypertension; DWM fibrinogen was associated with dementia and cerebral amyloid angiopathy (all p < 0.05). In DWM, SVD was associated with leukoaraiosis identified in life (p < 0.05), but fibrinogen was not. Our data suggest that in aged brains plasma extravasation and hence local BBB dysfunction is common but do not support an association with SVD. PMID:25289893

  11. The brain erythropoietin system and its potential for therapeutic exploitation in brain disease.

    PubMed

    Hasselblatt, Martin; Ehrenreich, Hannelore; Sirén, Anna-Leena

    2006-04-01

    The discovery of the broad neuroprotective potential of erythropoietin (EPO), an endogenous hematopoietic growth factor, has opened new therapeutic avenues in the treatment of brain diseases. EPO expression in the brain is induced by hypoxia. Practically all brain cells are capable of production and release of EPO and expression of its receptor. EPO exerts multifaceted protective effects on brain cells. It protects neuronal cells from noxious stimuli such as hypoxia, excess glutamate, serum deprivation or kainic acid exposure in vitro by targeting a variety of mechanisms and involves neuronal, glial and endothelial cell functions. In rodent models of ischemic stroke, EPO reduces infarct volume and improves functional outcome, but beneficial effects have also been observed in animal models of subarachnoid hemorrhage, intracerebral hemorrhage, traumatic brain injury, and spinal cord injury. EPO has a convenient therapeutic window upon ischemic stroke and favorable pharmacokinetics. Results from first therapeutic trials in humans are promising, but will need to be validated in larger trials. The safety profile and effectiveness of EPO in a wide variety of neurologic disease models make EPO a candidate compound for a potential first-line therapeutic for neurologic emergencies. PMID:16628067

  12. Pyruvate treatment attenuates cerebral metabolic depression and neuronal loss after experimental traumatic brain injury.

    PubMed

    Moro, Nobuhiro; Ghavim, Sima S; Harris, Neil G; Hovda, David A; Sutton, Richard L

    2016-07-01

    Experimental traumatic brain injury (TBI) is known to produce an acute increase in cerebral glucose utilization, followed rapidly by a generalized cerebral metabolic depression. The current studies determined effects of single or multiple treatments with sodium pyruvate (SP; 1000mg/kg, i.p.) or ethyl pyruvate (EP; 40mg/kg, i.p.) on cerebral glucose metabolism and neuronal injury in rats with unilateral controlled cortical impact (CCI) injury. In Experiment 1 a single treatment was given immediately after CCI. SP significantly improved glucose metabolism in 3 of 13 brain regions while EP improved metabolism in 7 regions compared to saline-treated controls at 24h post-injury. Both SP and EP produced equivalent and significant reductions in dead/dying neurons in cortex and hippocampus at 24h post-CCI. In Experiment 2 SP or EP were administered immediately (time 0) and at 1, 3 and 6h post-CCI. Multiple SP treatments also significantly attenuated TBI-induced reductions in cerebral glucose metabolism (in 4 brain regions) 24h post-CCI, as did multiple injections of EP (in 4 regions). The four pyruvate treatments produced significant neuroprotection in cortex and hippocampus 1day after CCI, similar to that found with a single SP or EP treatment. Thus, early administration of pyruvate compounds enhanced cerebral glucose metabolism and neuronal survival, with 40mg/kg of EP being as effective as 1000mg/kg of SP, and multiple treatments within 6h of injury did not improve upon outcomes seen following a single treatment. PMID:27059390

  13. Age-related increase of resting metabolic rate in the human brain

    PubMed Central

    Peng, Shin-Lei; Dumas, Julie A.; Park, Denise C.; Liu, Peiying; Filbey, Francesca M.; McAdams, Carrie J.; Pinkham, Amy E.; Adinoff, Bryon; Zhang, Rong; Lu, Hanzhang

    2014-01-01

    With age, many aspects of the brain structure undergo a pronounced decline, yet individuals generally function well until advanced old age. There appear to be several compensatory mechanisms in brain aging, but their precise nature is not well characterized. Here we provide evidence that the brain of older adults expends more energy when compared to younger adults, as manifested by an age-related increase (P=0.03) in cerebral metabolic rate of oxygen (CMRO2) (N=118, men=56, ages 18 to 74). We further showed that, before the mean menopausal age of 51 years old, female and male groups have similar rates of CMRO2 increase (P=0.015) and there was no interaction between age and sex effects (P=0.85). However, when using data from the entire age range, women have a slower rate of CMRO2 change when compared to men (P<0.001 for age × sex interaction term). Thus, menopause and estrogen level may have played a role in this sex difference. Our data also revealed a possible circadian rhythm of CMRO2 in that brain metabolic rate is greater at noon than in the morning (P=0.02). This study reveals a potential neurobiological mechanism for age-related compensation in brain function and also suggests a sex-difference in its temporal pattern. PMID:24814209

  14. Neuronal and astrocytic interactions modulate brain endothelial properties during metabolic stresses of in vitro cerebral ischemia

    PubMed Central

    2014-01-01

    Neurovascular and gliovascular interactions significantly affect endothelial phenotype. Physiologically, brain endothelium attains several of its properties by its intimate association with neurons and astrocytes. However, during cerebrovascular pathologies such as cerebral ischemia, the uncoupling of neurovascular and gliovascular units can result in several phenotypical changes in brain endothelium. The role of neurovascular and gliovascular uncoupling in modulating brain endothelial properties during cerebral ischemia is not clear. Specifically, the roles of metabolic stresses involved in cerebral ischemia, including aglycemia, hypoxia and combined aglycemia and hypoxia (oxygen glucose deprivation and re-oxygenation, OGDR) in modulating neurovascular and gliovascular interactions are not known. The complex intimate interactions in neurovascular and gliovascular units are highly difficult to recapitulate in vitro. However, in the present study, we used a 3D co-culture model of brain endothelium with neurons and astrocytes in vitro reflecting an intimate neurovascular and gliovascular interactions in vivo. While the cellular signaling interactions in neurovascular and gliovascular units in vivo are much more complex than the 3D co-culture models in vitro, we were still able to observe several important phenotypical changes in brain endothelial properties by metabolically stressed neurons and astrocytes including changes in barrier, lymphocyte adhesive properties, endothelial cell adhesion molecule expression and in vitro angiogenic potential. PMID:24438487

  15. Brain metabolism and oxygenation in healthy pigs receiving hypoventilation and hyperoxia.

    PubMed

    Rostami, Elham; Rocksén, David; Ekberg, Neda R; Goiny, Michel; Ungerstedt, Urban

    2013-12-01

    Modulation in ventilatory settings is one of the approaches and interventions used to treat and prevent secondary brain damage after traumatic brain injury (TBI). Here we investigate the effect of hyperoxia in combination with hypoventilation on brain oxygenation, metabolism and intracranial pressure. Twelve pigs were divided into three groups; group1-100% hyperoxia (n=4), group 2-100% hyperoxia and 20% decrease in minute volume (MV) (n=4) and group 3-100% hyperoxia and 50% decrease in MV (n=4). Neither of the ventilator settings affected the lactate/pyruvate ratio significantly. However, there was a significant decrease of brain lactate (2.6±1.7 to 1.8±1.6mM) and a rapid and marked increase in brain oxygenation (7.9±0.7 to 61.3±17.6mmHg) in group 3. Intracranial pressure (ICP) was not significantly affected in this group, however, the ICP increased significantly in group 2 with 100% hyperoxia plus 20% reduction in minute volume. We conclude that hyperoxia in combination with 50% decrease in MV showed pronounced increase in partial brain oxygen tension (pbrO2) and decrease in brain lactate. The ventilatory modification, used in this study should be considered for further investigation as a possible therapeutic intervention for TBI patients. PMID:24013004

  16. Generalized decrease in brain glucose metabolism during fasting in humans studied by PET

    SciTech Connect

    Redies, C.; Hoffer, L.J.; Beil, C.; Marliss, E.B.; Evans, A.C.; Lariviere, F.; Marrett, S.; Meyer, E.; Diksic, M.; Gjedde, A.

    1989-06-01

    In prolonged fasting, the brain derives a large portion of its oxidative energy from the ketone bodies, beta-hydroxybutyrate and acetoacetate, thereby reducing whole body glucose consumption. Energy substrate utilization differs regionally in the brain of fasting rat, but comparable information has hitherto been unavailable in humans. We used positron emission tomography (PET) to study regional brain glucose and oxygen metabolism, blood flow, and blood volume in four obese subjects before and after a 3-wk total fast. Whole brain glucose utilization fell to 54% of control (postabsorptive) values (P less than 0.002). The whole brain rate constant for glucose tracer phosphorylation fell to 51% of control values (P less than 0.002). Both parameters decreased uniformly throughout the brain. The 2-fluoro-2-deoxy-D-glucose lumped constant decreased from a control value of 0.57 to 0.43 (P less than 0.01). Regional blood-brain barrier transfer coefficients for glucose tracer, regional oxygen utilization, blood flow, and blood volume were unchanged.

  17. Nanoparticle-mediated brain drug delivery: Overcoming blood-brain barrier to treat neurodegenerative diseases.

    PubMed

    Saraiva, Cláudia; Praça, Catarina; Ferreira, Raquel; Santos, Tiago; Ferreira, Lino; Bernardino, Liliana

    2016-08-10

    The blood-brain barrier (BBB) is a vital boundary between neural tissue and circulating blood. The BBB's unique and protective features control brain homeostasis as well as ion and molecule movement. Failure in maintaining any of these components results in the breakdown of this specialized multicellular structure and consequently promotes neuroinflammation and neurodegeneration. In several high incidence pathologies such as stroke, Alz