Science.gov

Sample records for brain infarction model

  1. Longitudinal changes in resting-state brain activity in a capsular infarct model

    PubMed Central

    Kim, Donghyeon; Kim, Ra Gyung; Kim, Hyung-Sun; Kim, Jin-Myung; Jun, Sung Chan; Lee, Boreom; Jo, Hang Joon; Neto, Pedro R; Lee, Min-Cheol; Kim, Hyoung-Ihl

    2015-01-01

    Strokes attributable to subcortical infarcts have been increasing recently in elderly patients. To gain insight how this lesion influences the motor outcome and responds to rehabilitative training, we used circumscribed photothrombotic capsular infarct models on 36 Sprague-Dawley rats (24 experimental and 12 sham-operated). We used 2-deoxy-2-[18F]-fluoro-D-glucose-micro positron emission tomography (FDG-microPET) to assess longitudinal changes in resting-state brain activity (rs-BA) and daily single-pellet reaching task (SPRT) trainings to evaluate motor recovery. Longitudinal FDG-microPET results showed that capsular infarct resulted in a persistent decrease in rs-BA in bilateral sensory and auditory cortices, and ipsilesional motor cortex, thalamus, and inferior colliculus (P<0.0025, false discovery rate (FDR) q<0.05). The decreased rs-BA is compatible with diaschisis and contributes to manifest the malfunctions of lesion-specific functional connectivity. In contrast, capsular infarct resulted in increase of rs-BA in the ipsilesional internal capsule, and contralesional red nucleus and ventral hippocampus in recovery group (P<0.0025, FDR q<0.05), implying that remaining subcortical structures have an important role in conducting the recovery process in capsular infarct. The SPRT training facilitated motor recovery only in rats with an incomplete destruction of the posterior limb of the internal capsule (PLIC) (Pearson's correlation, P<0.05). Alternative therapeutic interventions are required to enhance the potential for recovery in capsular infarct with complete destruction of PLIC. PMID:25352047

  2. Chromium supplementation improved post-stroke brain infarction and hyperglycemia.

    PubMed

    Chen, Wen-Ying; Mao, Frank Chiahung; Liu, Chia-Hsin; Kuan, Yu-Hsiang; Lai, Nai-Wei; Wu, Chih-Cheng; Chen, Chun-Jung

    2016-04-01

    Hyperglycemia is common after acute stroke and is associated with a worse outcome of stroke. Thus, a better understanding of stress hyperglycemia is helpful to the prevention and therapeutic treatment of stroke. Chromium is an essential nutrient required for optimal insulin activity and normal carbohydrate and lipid metabolism. Beyond its nutritional effects, dietary supplement of chromium causes beneficial outcomes against several diseases, in particular diabetes-associated complications. In this study, we investigated whether post-stroke hyperglycemia involved chromium dynamic mobilization in a rat model of permanent focal cerebral ischemia and whether dietary supplement of chromium improved post-stroke injury and alterations. Stroke rats developed brain infarction, hyperglycemia, hyperinsulinemia, glucose intolerance, and insulin resistance. Post-stroke hyperglycemia was accompanied by elevated secretion of counter-regulatory hormones including glucagon, corticosterone, and norepinephrine, decreased insulin signaling in skeletal muscles, and increased hepatic gluconeogenesis. Correlation studies revealed that counter-regulatory hormone secretion showed a positive correlation with chromium loss and blood glucose increased together with chromium loss. Daily chromium supplementation increased tissue chromium levels, attenuated brain infarction, improved hyperglycemia, and decreased plasma levels of glucagon and corticosterone in stroke rats. Our findings suggest that stroke rats show disturbance of tissue chromium homeostasis with a net loss through urinary excretion and chromium mobilization and loss might be an alternative mechanism responsible for post-stroke hyperglycemia. PMID:26477944

  3. Lack of adrenomedullin, but not complement factor H, results in larger infarct size and more extensive brain damage in a focal ischemia model.

    PubMed

    Hurtado, O; Serrano, J; Sobrado, M; Fernández, A P; Lizasoain, I; Martínez-Murillo, R; Moro, M A; Martínez, A

    2010-12-15

    Adrenomedullin (AM) and its binding protein, complement factor H (FH), are expressed throughout the brain. In this study we used a brain-specific conditional knockout for AM and a complete knockout for FH to investigate the effect of these molecules on the pathophysiology of stroke. Following 48 h of middle cerebral artery permanent occlusion, there was a statistically significant infarct size increase in animals lacking AM when compared to their wild type littermates. In contrast, lack of FH did not affect infarct volume. To investigate some of the mechanisms by which lack of AM may augment brain damage, markers of nitrosative stress, apoptosis, and autophagy were studied at the mRNA and protein levels. There was a significant increase of inducible nitric oxide synthase (iNOS), matrix metalloproteinase-9 (MMP9), fractin, and Beclin-1 in the peri-infarct area of AM-deficient mice when compared to their wild type counterparts and to contralateral and sham-operated controls. These data suggest that AM exerts a neuroprotective action in the brain and that this protection may be mediated by regulation of iNOS, matrix metalloproteases, and inflammatory mediators. In the future, substances that increase AM actions in the central nervous system may be used as potential neuroprotective agents in stroke. PMID:20854881

  4. Computational modeling of acute myocardial infarction.

    PubMed

    Sáez, P; Kuhl, E

    2016-08-01

    Myocardial infarction, commonly known as heart attack, is caused by reduced blood supply and damages the heart muscle because of a lack of oxygen. Myocardial infarction initiates a cascade of biochemical and mechanical events. In the early stages, cardiomyocytes death, wall thinning, collagen degradation, and ventricular dilation are the immediate consequences of myocardial infarction. In the later stages, collagenous scar formation in the infarcted zone and hypertrophy of the non-infarcted zone are auto-regulatory mechanisms to partly correct for these events. Here we propose a computational model for the short-term adaptation after myocardial infarction using the continuum theory of multiplicative growth. Our model captures the effects of cell death initiating wall thinning, and collagen degradation initiating ventricular dilation. Our simulations agree well with clinical observations in early myocardial infarction. They represent a first step toward simulating the progression of myocardial infarction with the ultimate goal to predict the propensity toward heart failure as a function of infarct intensity, location, and size. PMID:26583449

  5. Aggravation of brain infarction through an increase in acrolein production and a decrease in glutathione with aging.

    PubMed

    Uemura, Takeshi; Watanabe, Kenta; Ishibashi, Misaki; Saiki, Ryotaro; Kuni, Kyoshiro; Nishimura, Kazuhiro; Toida, Toshihiko; Kashiwagi, Keiko; Igarashi, Kazuei

    2016-04-29

    We previously reported that tissue damage during brain infarction was mainly caused by inactivation of proteins by acrolein. This time, it was tested why brain infarction increases in parallel with aging. A mouse model of photochemically induced thrombosis (PIT) was studied using 2, 6, and 12 month-old female C57BL/6 mice. The size of brain infarction in the mouse PIT model increased with aging. The volume of brain infarction in 12 month-old mice was approximately 2-fold larger than that in 2 month-old mice. The larger brain infarction in 12 month-old mice was due to an increase in acrolein based on an increase in the activity of spermine oxidase, together with a decrease in glutathione (GSH), a major acrolein-detoxifying compound in cells, based on the decrease in one of the subunits of glutathione biosynthesizing enzymes, γ-glutamylcysteine ligase modifier subunit, with aging. The results indicate that aggravation of brain infarction with aging was mainly due to the increase in acrolein production and the decrease in GSH in brain. PMID:27037020

  6. Silent brain infarction in the presence of systemic vascular disease

    PubMed Central

    Slark, Julia; Bentley, Paul; Sharma, Pankaj

    2012-01-01

    Objective To determine the prevalence of asymptomatic brain ischaemic in the presence of vascular disease in other arterial territories. Design Studies up to January 2011 were identified through comprehensive search strategies. Arcsine transformation for meta-analysis was used to calculate the standardized mean difference (SMD) and 95% confidence intervals (CI). Setting A systematic review and meta-analysis were performed. Participants For each study, the proportion of patients positive for SBI in the presence of other systemic vascular disease was extracted and analyzed. Main outcome measures Using a random-effects model, a pooled effect estimate interpreted as a percentage prevalence of disease was calculated. Results SBI in the presence of acute ischaemic stroke was found in 23% (SMD 0.99; P < 0.001; 95% CI 0.88–1.10); a 35% prevalence was found in patients with coronary artery disease (SMD 1.26; P < 0.001; 95% CI 0.95–1.58); and a 14% prevalence in patients with peripheral artery disease (SMD 0.48; P < 0.002; 95% CI 0.42–0.54), although the data-set in the latter is smaller. Conclusions Patients with systemic vascular disease are at an increased risk of silent brain infarction. PMID:24175060

  7. Cortical laminar necrosis in brain infarcts: serial MRI.

    PubMed

    Siskas, N; Lefkopoulos, A; Ioannidis, I; Charitandi, A; Dimitriadis, A S

    2003-05-01

    High-signal cortical lesions are observed on T1-weighted images in cases of brain infarct. Histological examination has demonstrated these to be "cortical laminar necrosis", without haemorrhage or calcification. We report serial MRI in this condition in 12 patients with brain infarcts. We looked at high-signal lesions on T1-weighted images, chronological changes in signal intensity and contrast enhancement. High-signal cortical lesions began to appear about 2 weeks after the ictus, were prominent at 1-2 months, then became less evident, but occasionally remained for up to 1.5 years. They gave high signal or were isointense on T2-weighted images and did not give low signal at any stage. Contrast enhancement of these lesions was prominent at 1-2 months, and less apparent from 3 months, but was seen up to 5 months. PMID:12743663

  8. Microembolism, silent brain infarcts and dementia.

    PubMed

    Goldberg, I; Auriel, E; Russell, D; Korczyn, A D

    2012-11-15

    Cognitive decline becomes more prevalent than ever in parallel with the increasing life expectancy of the population. Alzheimer' disease (AD) and cerebral vascular lesions are common in the elderly and represent, with increased age, the most frequent contributors to cognitive decline. It is now believed that these pathologies frequently coexist in the same brain. The border discriminating vascular dementia from AD is blurred and challenges our understanding of these clinical entities. Further research, at both basic and clinical levels, is mandatory in order to better understand the interactions of vascular ischemic injury and primary degenerative physiopathologies of the brain, in order to prevent and better manage patients with cognitive decline. We review recent published clinical evidence of silent brain ischemia as a contributor to cognitive decline and dementia. Microemboli, from both cardiac and vascular origins, have been shown to be associated with structural changes in the brain. The role of transcranial Doppler as an objective tool for detecting and quantifying microemboli is discussed in light of recent clinical evidence. PMID:22429666

  9. Neisseria sicca Endocarditis Presenting as Multiple Embolic Brain Infarcts.

    PubMed

    Kirlew, Christine; Wilmot, Kobina; Salinas, Jorge L

    2015-09-01

    A 58 year old male presented with a 14 day history of progressive forgetfulness and aggressiveness. He had a history of human immunodeficiency virus infection, ischemic cardiomyopathy, and a myxomatous mitral valve (status post Saint Jude's mitral valve replacement 8 years before presentation). International normalized ratio was supra-therapeatutic on admission. A non-contrast computed tomography of the brain indicated multiple infarcts with hemorrhagic conversion. The source was later found to be a rare case of Neisseria sicca endocarditis. PMID:26284256

  10. Validation of a simple and inexpensive method for the quantitation of infarct in the rat brain.

    PubMed

    Schilichting, C L R; Lima, K C M; Cestari, L A; Sekiyama, J Y; Silva, F M; Milani, H

    2004-04-01

    A gravimetric method was evaluated as a simple, sensitive, reproducible, low-cost alternative to quantify the extent of brain infarct after occlusion of the medial cerebral artery in rats. In ether-anesthetized rats, the left medial cerebral artery was occluded for 1, 1.5 or 2 h by inserting a 4-0 nylon monofilament suture into the internal carotid artery. Twenty-four hours later, the brains were processed for histochemical triphenyltetrazolium chloride (TTC) staining and quantitation of the schemic infarct. In each TTC-stained brain section, the ischemic tissue was dissected with a scalpel and fixed in 10% formalin at 0 masculine C until its total mass could be estimated. The mass (mg) of the ischemic tissue was weighed on an analytical balance and compared to its volume (mm(3)), estimated either by plethysmometry using platinum electrodes or by computer-assisted image analysis. Infarct size as measured by the weighing method (mg), and reported as a percent (%) of the affected (left) hemisphere, correlated closely with volume (mm(3), also reported as %) estimated by computerized image analysis (r = 0.88; P < 0.001; N = 10) or by plethysmography (r = 0.97-0.98; P < 0.0001; N = 41). This degree of correlation was maintained between different experimenters. The method was also sensitive for detecting the effect of different ischemia durations on infarct size (P < 0.005; N = 23), and the effect of drug treatments in reducing the extent of brain damage (P < 0.005; N = 24). The data suggest that, in addition to being simple and low cost, the weighing method is a reliable alternative for quantifying brain infarct in animal models of stroke. PMID:15064814

  11. No association of ALOX5AP polymorphisms with risk of MRI-defined brain infarcts.

    PubMed

    Barral, Sandra; Fernández-Cadenas, Israel; Bis, Joshua C; Montaner, Joan; Ikram, Arfan M; Launer, Lenore J; Fornage, Myriam; Schmidt, Helena; Brickman, Adam M; Seshadri, Sudha; Mayeux, Richard

    2012-03-01

    The arachidonate 5-lipoxygenase-activating protein (ALOX5AP) gene has been associated with stroke. The majority of the reported ALOX5AP associations have considered non-radiologically confirmed infarcts as the stroke phenotype. We assessed the association of genetic variants in ALOX5AP with stroke defined by the presence of infarcts on brain magnetic resonance imaging (MRI). We studied 202 persons with MRI-defined brain infarcts and 487 healthy individuals of Caribbean Hispanic ancestry. Another sample of European ancestry comprised 1823 persons with MRI-defined brain infarct and 7578 control subjects. Subjects were genotyped for the 4 single nucleotide polymorphisms (SNPs) that define ALOX5AP HapA haplotype. No association was found between SNPs and MRI-defined brain infarcts. Our data do not support the hypothesis that variants in ALOX5AP are associated with risk of MRI-defined brain infarcts. PMID:22074807

  12. Persistent Asymmetric Brain MIBG Activity Related to a Cerebrovascular Infarct.

    PubMed

    Bai, Xia; Zhuang, Hongming

    2016-04-01

    A 13-year-old woman with a history of left malignant carotid body paraganglioma status postsurgical resection underwent I-MIBG scan for staging. The images demonstrated no definite evidence of MIBG-avid disease. However, there was asymmetric activity in the region of the brain with relatively less activity on the left compared with the contralateral right side on the head images, which was related to prior infarct revealed from the patient's history. This asymmetric MIBG activity persisted 8 years later. PMID:26571441

  13. Brain Infarction: Rare Neurological Presentation of African Bee Stings

    PubMed Central

    Alvis- Miranda, Hernando Raphael; Duarte-Valdivieso, Nancy Carolina; Alcala-Cerra, Gabriel; Moscote-Salazar, Luis Rafael

    2014-01-01

    Bee stings are commonly encountered worldwide. Various manifestations after bee sting have been described including local reactions which are common, systemic responses such as anaphylaxis, diffuse intravascular coagulation and hemolysis. We report a case of a 74-year-old man who developed neurologic deficit 5 hours after bee stings, which was confirmed to be left frontal infarction on brain CT-scan. The case does not follow the reported  pattern  of hypovolemic or anaphylactic shock, hemolysis and/or  rhabdomyolysis, despite the potentially lethal amount of venom injected. Diverse mechanisms have been proposed to give an explanation to all the clinical manifestation of both toxic and allergic reactions secondary to bee stings. Currently, the most accepted one state that victims can develop severe syndrome characterized by the release of a large amount of cytokines.

  14. The allometric model in chronic myocardial infarction

    PubMed Central

    2012-01-01

    Background An allometric relationship between different electrocardiogram (ECG) parameters and infarcted ventricular mass was assessed in a myocardial infarction (MI) model in New Zealand rabbits. Methods A total of fifteen animals were used, out of which ten underwent left anterior descending coronary artery ligation to induce infarction (7–35% area). Myocardial infarction (MI) evolved and stabilized during a three month-period, after which, rabbits were sacrificed and the injured area was histologically confirmed. Right before sacrifice, ECGs were obtained to correlate several of its parameters to the infarcted mass. The latter was normalized after combining data from planimetry measurements and heart weight. The following ECG parameters were studied: RR and PR intervals, P-wave duration (PD), QRS duration (QRSD) and amplitude (QRSA), Q-wave (QA), R-wave (RA) and S-wave (SA) amplitudes, T-wave peak amplitude (TA), the interval from the peak to the end of the T-wave (TPE), ST-segment deviation (STA), QT interval (QT), corrected QT and JT intervals. Corrected QT was analyzed with different correction formulae, i.e., Bazett (QTB), Framingham (QTFRA), Fridericia (QTFRI), Hodge (QTHO) and Matsunaga (QTMA) and compared thereafter. The former variables and infarcted ventricular mass were then fitted to the allometric equation in terms of deviation from normality, in turn derived after ECGs in 5 healthy rabbits. Results Six variables (JT, QTB, QA, SA, TA and STA) presented statistical differences among leads. QT showed the best allometric fit (r = 0.78), followed by TA (r = 0.77), STA (r = 0.75), QTFRA (r = 0.72), TPE (r = 0.69), QTFRI (r = 0.68) and QTMA (r = 0.68). Corrected QT’s (QTFRA, QTFRI and QTMA) performed worse than the uncorrected counterpart (QT), the former scaling allometrically with similar goodness of fits. Conclusions QT, TA, STA and TPE could possibly be used to assess infarction extent in an old MI event through the allometric model as a first approach. Moreover, the TPE also produced a good allometric scaling, leading to the potential existence of promising allometric indexes to diagnose malignant arrhythmias. PMID:22578057

  15. Cerebral Infarction after Traumatic Brain Injury: Incidence and Risk Factors

    PubMed Central

    Bae, Dong-Hyeon; Choi, Kyu-Sun; Chun, Hyoung-Joon; Ko, Yong; Bak, Koang Hum

    2014-01-01

    Objective Post-traumatic cerebral infarction (PTCI) is one of the most severe secondary insults after traumatic brain injury (TBI), and is known to be associated with poor outcome and high mortality rate. We assessed the practical incidence and risk factors for the development of PTCI. Methods We conducted retrospective study on 986 consecutive patients with TBI from the period May 2005 to November 2012 at our institution. The definition of PTCI was made on non-enhanced CT scan based on a well-demarcated or fairly discernible region of low attenuation following specific vascular territory with normal initial CT. Clinical and radiological findings that related to patients' outcome were reviewed and statistically compared. Results PTCI was observed in 21 (2.1%) patients. Of various parameters, age (p=0.037), initial Glasgow coma scale score (p<0.01), brain herniation (p=0.044), and decompressive craniectomy (p=0.012) were significantly higher in patients with PTCI than patients who do not have PTCI. Duration between accident and PTCI, patterns of TBI and vascular territory of PTCI were not specific. The mortality rates were significantly higher in patients with PTCI than without PTCI. Conclusion The development of PTCI is rare after TBI, but it usually results in serious outcome and high mortality. Early recognition for risks and aggressive managements is mandatory to prevent PTCI. PMID:27169031

  16. Evaluating Blood-Brain Barrier Permeability in Delayed Cerebral Infarction after Aneurysmal Subarachnoid Hemorrhage

    PubMed Central

    Ivanidze, J.; Kesavabhotla, K.; Kallas, O.N.; Mir, D.; Baradaran, H.; Gupta, A.; Segal, A.Z.; Claassen, J.; Sanelli, P.C.

    2015-01-01

    BACKGROUND AND PURPOSE Patients with SAH are at increased risk of delayed infarction. Early detection and treatment of delayed infarction remain challenging. We assessed blood-brain barrier permeability, measured as permeability surface area product, by using CTP in patients with SAH with delayed infarction. MATERIALS AND METHODS We performed a retrospective study of patients with SAH with delayed infarction on follow-up NCCT. CTP was performed before the development of delayed infarction. CTP data were postprocessed into permeability surface area product, CBF, and MTT maps. Coregistration was performed to align the infarcted region on the follow-up NCCT with the corresponding location on the CTP maps obtained before infarction. Permeability surface area product, CBF, and MTT values were then obtained in the location of the subsequent infarction. The contralateral noninfarcted region was compared with the affected side in each patient. Wilcoxon signed rank tests were performed to determine statistical significance. Clinical data were collected at the time of CTP and at the time of follow-up NCCT. RESULTS Twenty-one patients with SAH were included in the study. There was a statistically significant increase in permeability surface area product in the regions of subsequent infarction compared with the contralateral control regions (P < .0001). However, CBF and MTT values were not significantly different in these 2 regions. Subsequent follow-up NCCT demonstrated new delayed infarction in all 21 patients, at which time 38% of patients had new focal neurologic deficits. CONCLUSIONS Our study reveals a statistically significant increase in permeability surface area product preceding delayed infarction in patients with SAH. Further investigation of early permeability changes in SAH may provide new insights into the prediction of delayed infarction. PMID:25572949

  17. Tocilizumab inhibits neuronal cell apoptosis and activates STAT3 in cerebral infarction rat model

    PubMed Central

    Wang, Shaojun; Zhou, Jun; Kang, Weijie; Dong, Zhaoni; Wang, Hezuo

    2016-01-01

    Cerebral infarction is a severe hypoxic ischemic necrosis with accelerated neuronal cell apoptosis in the brain. As a monoclonal antibody against interleukin 6, tocilizumab (TCZ) is widely used in immune diseases, whose function in cerebral infarction has not been studied. This study aims to reveal the role of TCZ in regulating neuronal cell apoptosis in cerebral infarction. The cerebral infarction rat model was constructed by middle cerebral artery occlusion and treated with TCZ. Cell apoptosis in hippocampus and cortex of the brain was examined with TUNEL method. Rat neuronal cells cultured in oxygen-glucose deprivation (OGD) conditions and treated with TCZ were used to compare cell viability and apoptosis. Apoptosis-related factors including B-cell lymphoma extra large (Bcl-xL) and Caspase 3, as well as the phosphorylated signal transducer and activator of transcription 3 (p-STAT3) in brain cortex were analyzed from the protein level. Results indicated that TCZ treatment could significantly prevent the promoted cell apoptosis caused by cerebral infarction or OGD (P < 0.05 or P < 0.01). In brain cortex of the rat model, TCZ up-regulated Bcl-xL and down-regulated Caspase 3, consistent with the inhibited cell apoptosis. It also promoted tyrosine 705 phosphorylation of STAT3, which might be the potential regulatory mechanism of TCZ in neuronal cells. This study provided evidence for the protective role of TCZ against neuronal cell apoptosis in cerebral infarction. Based on these fundamental data, TCZ is a promising option for treating cerebral infarction, but further investigations on related mechanisms are still necessary. PMID:26773188

  18. Physiological Correlates of Intellectual Function in Children with Sickle Cell Disease: Hypoxaemia, Hyperaemia and Brain Infarction

    ERIC Educational Resources Information Center

    Hogan, Alexandra M.; Pit-ten Cate, Ineke M.; Vargha-Khadem, Faraneh; Prengler, Mara; Kirkham, Fenella J.

    2006-01-01

    Lowered intelligence relative to controls is evident by mid-childhood in children with sickle cell disease. There is consensus that brain infarct contributes to this deficit, but the subtle lowering of IQ in children with normal MRI scans might be accounted for by chronic systemic complications leading to insufficient oxygen delivery to the brain.…

  19. Physiological Correlates of Intellectual Function in Children with Sickle Cell Disease: Hypoxaemia, Hyperaemia and Brain Infarction

    ERIC Educational Resources Information Center

    Hogan, Alexandra M.; Pit-ten Cate, Ineke M.; Vargha-Khadem, Faraneh; Prengler, Mara; Kirkham, Fenella J.

    2006-01-01

    Lowered intelligence relative to controls is evident by mid-childhood in children with sickle cell disease. There is consensus that brain infarct contributes to this deficit, but the subtle lowering of IQ in children with normal MRI scans might be accounted for by chronic systemic complications leading to insufficient oxygen delivery to the brain.

  20. Infarct hemisphere and noninfarcted brain volumes affect locomotor performance following stroke

    PubMed Central

    Chen, I-Hsuan; Novak, Vera

    2014-01-01

    Objective: Brain damage within the right middle cerebral artery (MCA) territory is particularly disruptive to mediolateral postural stabilization. The objective of this cross-sectional study was to test the hypothesis that chronic right MCA infarcts (as compared to left) are associated with slower and more bilaterally asymmetrical gait. We further hypothesized that in those with chronic right MCA infarct, locomotor performance is more dependent on gray matter (GM) volumes within noninfarcted regions of the brain that are involved in motor control yet lie outside of the MCA territory. Methods: Gait speed was assessed in 19 subjects with right MCA infarct, 20 with left MCA infarct, and 108 controls. Bilateral plantar pressure and temporal symmetry ratios were calculated in a subset of the cohort. GM volumes within 5 regions outside of the MCA territory (superior parietal lobe, precuneus, caudate, putamen, and cerebellum) were quantified from anatomic MRIs. Results: Right and left infarct groups had similar poststroke duration (7.6 ± 6.0 years), infarct size, and functional independence. The right infarct group demonstrated slower gait speed and greater asymmetry compared to the left infarct group and controls (p < 0.05). In the right infarct group only, those with larger GM volumes within the cerebellum (r2 = 0.32, p = 0.02) and caudate (r2 = 0.56, p < 0.001) exhibited faster gait speed. Conclusion: Individuals with chronic lesions within the right MCA territory, as compared to the left MCA territory, exhibit slower, more asymmetrical gait. For these individuals, larger GM volumes within regions outside of the infarcted vascular territory may help preserve locomotor control. PMID:24489132

  1. Prognostic Value of Troponin I for Infarct Size to Improve Preclinical Myocardial Infarction Small Animal Models

    PubMed Central

    Frobert, Aurélien; Valentin, Jérémy; Magnin, Jean-Luc; Riedo, Erwin; Cook, Stéphane; Giraud, Marie-Noëlle

    2015-01-01

    Coronary artery ligations to induce myocardial infarction (MI) in mice and rats are widely used in preclinical investigation. However, myocardial ischemic damage and subsequent infarct size are highly variable. The lack of standardization of the model impairs the probability of effective translation to the clinic. Cardiac Troponin I (cTnI) is a major clinically relevant biomarker. Aim: In the present study, we investigated the prognostic value of cTnI for early estimation of the infarct size. Methods and Results: Infarcts of different sizes were induced in mice and rats by ligation, at a random site, of the coronary artery. Kinetics of the plasma levels of cTnI were measured. Heart function was evaluated by echocardiography, the percentage of infarcted left ventricle and infarct expansion index were assessed from histological section. We observed that plasma cTnI level peaked at 24 h in the infarcted rats and between 24 and 48 h in mice. Sham operated animals had a level of cTnI below 15 ng/mL. Infarct expansion index (EI) assessed 4 weeks after ligation showed a large variation coefficient of 63 and 71% in rats and mice respectively. We showed a significative correlation between cTnI level and the EI demonstrating its predictive value for myocardial injury in small animal models. Conclusion: we demonstrated the importance of cTnI plasma level as a major early marker to assist in the optimal and efficient management of MI in laboratory animals model. The presented results stress the need for comparable biomarkers in the animal model and clinical trials for improved translation. PMID:26640441

  2. Genome-wide Association Studies of MRI-defined Brain Infarcts: Meta-analysis from the CHARGE Consortium

    PubMed Central

    Debette, Stephanie; Bis, Joshua C.; Fornage, Myriam; Schmidt, Helena; Ikram, M. Arfan; Sigurdsson, Sigurdur; Heiss, Gerardo; Struchalin, Maksim; Smith, Albert V.; van der Lugt, Aad; DeCarli, Charles; Lumley, Thomas; Knopman, David S.; Enzinger, Christian; Eiriksdottir, Gudny; Koudstaal, Peter J.; DeStefano, Anita L.; Psaty, Bruce M.; Dufouil, Carole; Catellier, Diane J.; Fazekas, Franz; Aspelund, Thor; Aulchenko, Yurii S.; Beiser, Alexa; Rotter, Jerome I.; Tzourio, Christophe; Shibata, Dean K.; Tscherner, Maria; Harris, Tamara B.; Rivadeneira, Fernando; Atwood, Larry D.; Rice, Kenneth; Gottesman, Rebecca F.; van Buchem, Mark A.; Uitterlinden, Andre G.; Kelly-Hayes, Margaret; Cushman, Mary; Zhu, Yicheng; Boerwinkle, Eric; Gudnason, Vilmundur; Hofman, Albert; Romero, Jose R.; Lopez, Oscar; van Duijn, Cornelia M.; Au, Rhoda; Heckbert, Susan R.; Wolf, Philip A.; Mosley, Thomas H.; Seshadri, Sudha; Breteler, Monique M.B.; Schmidt, Reinhold; Launer, Lenore J.; Longstreth, WT

    2010-01-01

    Background Previous studies examining genetic associations with MRI-defined brain infarct have yielded inconsistent findings. We investigated genetic variation underlying covert MRI-infarct, in persons without histories of transient ischemic attack or stroke. We performed meta-analysis of genome-wide association studies of white participants in 6 studies comprising the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium. Methods Using 2.2 million genotyped and imputed SNPs, each study performed cross-sectional genome-wide association analysis of MRI-infarct using age and sex-adjusted logistic regression models. Study-specific findings were combined in an inverse-variance weighted meta-analysis, including 9401 participants with mean age 69.7, 19.4% of whom had ≥1 MRI-infarct. Results The most significant association was found with rs2208454 (minor allele frequency: 20%), located in intron 3 of MACRO Domain Containing 2 gene and in the downstream region of Fibronectin Leucine Rich Transmembrane Protein 3 gene. Each copy of the minor allele was associated with lower risk of MRI-infarcts: odds ratio=0.76, 95% confidence interval=0.68–0.84, p=4.64×10−7. Highly suggestive associations (p<1.0×10−5) were also found for 22 other SNPs in linkage disequilibrium (r2>0.64) with rs2208454. The association with rs2208454 did not replicate in independent samples of 1822 white and 644 African-American participants, although 4 SNPs within 200kb from rs2208454 were associated with MRI-infarcts in African-American sample. Conclusions This first community-based, genome-wide association study on covert MRI-infarcts uncovered novel associations. Although replication of the association with top SNP failed, possibly due to insufficient power, results in the African American sample are encouraging, and further efforts at replication are needed. PMID:20044523

  3. Surgery-Related Thrombosis Critically Affects the Brain Infarct Volume in Mice Following Transient Middle Cerebral Artery Occlusion

    PubMed Central

    Lin, Xiaojie; Miao, Peng; Wang, Jixian; Yuan, Falei; Guan, Yongjing; Tang, Yaohui; He, Xiaosong; Wang, Yongting; Yang, Guo-Yuan

    2013-01-01

    Transient middle cerebral artery occlusion (tMCAO) model is widely used to mimic human focal ischemic stroke in order to study ischemia/reperfusion brain injury in rodents. In tMCAO model, intraluminal suture technique is widely used to achieve ischemia and reperfusion. However, variation of infarct volume in this model often requires large sample size, which hinders the progress of preclinical research. Our previous study demonstrated that infarct volume was related to the success of reperfusion although the reason remained unclear. The aim of present study is to explore the relationship between focal thrombus formation and model reproducibility with respect to infarct volume. We hypothesize that suture-induced thrombosis causes infarct volume variability due to insufficient reperfusion after suture withdrawal. Seventy-two adult male CD-1 mice underwent 90 minutes of tMCAO with or without intraperitoneal administration of heparin. Dynamic synchrotron radiation microangiography (SRA) and laser speckle contrast imaging (LSCI) were performed before and after tMCAO to observe the cerebral vascular morphology and to measure the cerebral blood flow in vivo. Infarct volume and neurological score were examined to evaluate severity of ischemic brain injury. We found that the rate of successful reperfusion was much higher in heparin-treated mice compared to that in heparin-free mice according to the result of SRA and LSCI at 1 and 3 hours after suture withdrawal (p<0.05). Pathological features and SRA revealed that thrombus formed in the internal carotid artery, middle cerebral artery or anterior cerebral artery, which blocked reperfusion following tMCAO. LSCI showed that cortical collateral circulation could be disturbed by thrombi. Our results demonstrated that suture-induced thrombosis was a critical element, which affects the success of reperfusion. Appropriate heparin management provides a useful approach for improving reproducibility of reperfusion model in mice. PMID:24086572

  4. The influence of meteorological and geomagnetic factors on acute myocardial infarction and brain stroke in Moscow, Russia

    NASA Astrophysics Data System (ADS)

    Shaposhnikov, Dmitry; Revich, Boris; Gurfinkel, Yuri; Naumova, Elena

    2014-07-01

    Evidence of the impact of air temperature and pressure on cardiovascular morbidity is still quite limited and controversial, and even less is known about the potential influence of geomagnetic activity. The objective of this study was to assess impacts of air temperature, barometric pressure and geomagnetic activity on hospitalizations with myocardial infarctions and brain strokes. We studied 2,833 myocardial infarctions and 1,096 brain strokes registered in two Moscow hospitals between 1992 and 2005. Daily event rates were linked with meteorological and geomagnetic conditions, using generalized linear model with controls for day of the week, seasonal and long-term trends. The number of myocardial infarctions decreased with temperature, displayed a U-shaped relationship with pressure and variations in pressure, and increased with geomagnetic activity. The number of strokes increased with temperature, daily temperature range and geomagnetic activity. Detrimental effects on strokes of low pressure and falling pressure were observed. Relative risks of infarctions and strokes during geomagnetic storms were 1.29 (95 % CI 1.19-1.40) and 1.25 (1.10-1.42), respectively. The number of strokes doubled during cold spells. The influence of barometric pressure on hospitalizations was relatively greater than the influence of geomagnetic activity, and the influence of temperature was greater than the influence of pressure. Brain strokes were more sensitive to inclement weather than myocardial infarctions. This paper provides quantitative estimates of the expected increases in hospital admissions on the worst days and can help to develop preventive health plans for cardiovascular diseases.

  5. Intravenous Treatment With Coenzyme Q10 Improves Neurological Outcome and Reduces Infarct Volume After Transient Focal Brain Ischemia in Rats.

    PubMed

    Belousova, Margarita; Tokareva, Olga G; Gorodetskaya, Evgeniya; Kalenikova, Elena I; Medvedev, Oleg S

    2016-02-01

    Coenzyme Q10 (CoQ10) crosses the blood-brain barrier when administered intravenously and accumulates in the brain. In this study, we investigated whether CoQ10 protects against ischemia-reperfusion injury by measuring neurological function and brain infarct volumes in a rat model of transient focal cerebral ischemia. In male Wistar rats, we performed transient middle cerebral artery occlusion (tMCAO) for 60 minutes, followed by reperfusion for 24 hours or 7 days. Forty-five minutes after the onset of occlusion (or 15 minutes before reperfusion), rats received a single intravenous injection of solubilized CoQ10 (30 mg·mL·kg) or saline (2 mL/kg). Sensory and motor function scores and body weights were obtained before the rats were killed by decapitation, and brain infarct volumes were calculated using tetrazolium chloride staining. CoQ10 brain levels were measured by high-performance liquid chromatography with electrochemical detection. CoQ10 significantly improved neurological behavior and reduced weight loss up to 7 days after tMCAO (P < 0.05). Furthermore, CoQ10 reduced cerebral infarct volumes by 67% at 24 hours after tMCAO and 35% at 7 days (P < 0.05). Cerebral ischemia resulted in a significant reduction in endogenous CoQ10 in both hemispheres (P < 0.05). However, intravenous injection of solubilized CoQ10 resulted in its increase in both hemispheres at 24 hours and in the contralateral hemisphere at 7 days (P < 0.05). Our results demonstrate that CoQ10 is a robust neuroprotective agent against ischemia-reperfusion brain injury in rats, improving both functional and morphological indices of brain damage. PMID:26371950

  6. Near-infrared diffuse reflectance imaging of infarct core and peri-infarct depolarization in a rat middle cerebral artery occlusion model

    NASA Astrophysics Data System (ADS)

    Kawauchi, Satoko; Nishidate, Izumi; Nawashiro, Hiroshi; Sato, Shunichi

    2014-03-01

    To understand the pathophysiology of ischemic stroke, in vivo imaging of the brain tissue viability and related spreading depolarization is crucial. In the infarct core, impairment of energy metabolism causes anoxic depolarization (AD), which considerably increases energy consumption, accelerating irreversible neuronal damage. In the peri-infarct penumbra region, where tissue is still reversible despite limited blood flow, peri-infarct depolarization (PID) occurs, exacerbating energy deficit and hence expanding the infarct area. We previously showed that light-scattering signal, which is sensitive to cellular/subcellular structural integrity, was correlated with AD and brain tissue viability in a rat hypoxia-reoxygenation model. In the present study, we performed transcranial NIR diffuse reflectance imaging of the rat brain during middle cerebral artery (MCA) occlusion and examined whether the infarct core and PIDs can be detected. Immediately after occluding the left MCA, light scattering started to increase focally in the occlusion site and a bright region was generated near the occlusion site and spread over the left entire cortex, which was followed by a dark region, showing the occurrence of PID. The PID was generated repetitively and the number of times of occurrence in a rat ranged from four to ten within 1 hour after occlusion (n=4). The scattering increase in the occlusion site was irreversible and the area with increased scattering expanded with increasing the number of PIDs, indicating an expansion of the infarct core. These results suggest the usefulness of NIR diffuse reflectance signal to visualize spatiotemporal changes in the infarct area and PIDs.

  7. Bilateral borderzone brain infarctions in association with heroin abuse.

    PubMed

    Niehaus, L; Meyer, B U

    1998-10-01

    A 25-year-old drug abuser who developed an unusual pattern of cerebral ischemic lesions is presented. Cerebral magnetic resonance imaging revealed bilateral borderzone infarctions which were attributed to a heroin-associated vasculitis of the basal cerebral arteries. Under probatory corticosteroid medication the mild neurological deficits completely disappeared. PMID:9849803

  8. Development and Characterization of a Macaque Model of Focal Internal Capsular Infarcts

    PubMed Central

    Murata, Yumi; Higo, Noriyuki

    2016-01-01

    Several studies have used macaque monkeys with lesions induced in the primary motor cortex (M1) to investigate the recovery of motor function after brain damage. However, in human stroke patients, the severity and outcome of motor impairments depend on the degree of damage to the white matter, especially that in the posterior internal capsule, which carries corticospinal tracts. To bridge the gap between results obtained in M1-lesioned macaques and the development of clinical intervention strategies, we established a method of inducing focal infarcts at the posterior internal capsule of macaque monkeys by injecting endothelin-1 (ET-1), a vasoconstrictor peptide. The infarcts expanded between 3 days and 1 week after ET-1 injection. The infarct volume in each macaque was negatively correlated with precision grip performance 3 days and 1 week after injection, suggesting that the degree of infarct expansion may have been a cause of the impairment in hand movements during the early stage. Although the infarct volume decreased and gross movement improved, impairment of dexterous hand movements remained until the end of the behavioral and imaging experiments at 3 months after ET-1 injection. A decrease in the abundance of large neurons in M1, from which the descending motor tracts originate, was associated with this later-stage impairment. The present model is useful not only for studying neurological changes underlying deficits and recovery but also for testing therapeutic interventions after white matter infarcts in primates. PMID:27149111

  9. Development and Characterization of a Macaque Model of Focal Internal Capsular Infarcts.

    PubMed

    Murata, Yumi; Higo, Noriyuki

    2016-01-01

    Several studies have used macaque monkeys with lesions induced in the primary motor cortex (M1) to investigate the recovery of motor function after brain damage. However, in human stroke patients, the severity and outcome of motor impairments depend on the degree of damage to the white matter, especially that in the posterior internal capsule, which carries corticospinal tracts. To bridge the gap between results obtained in M1-lesioned macaques and the development of clinical intervention strategies, we established a method of inducing focal infarcts at the posterior internal capsule of macaque monkeys by injecting endothelin-1 (ET-1), a vasoconstrictor peptide. The infarcts expanded between 3 days and 1 week after ET-1 injection. The infarct volume in each macaque was negatively correlated with precision grip performance 3 days and 1 week after injection, suggesting that the degree of infarct expansion may have been a cause of the impairment in hand movements during the early stage. Although the infarct volume decreased and gross movement improved, impairment of dexterous hand movements remained until the end of the behavioral and imaging experiments at 3 months after ET-1 injection. A decrease in the abundance of large neurons in M1, from which the descending motor tracts originate, was associated with this later-stage impairment. The present model is useful not only for studying neurological changes underlying deficits and recovery but also for testing therapeutic interventions after white matter infarcts in primates. PMID:27149111

  10. Devastating recurrent brain ischemic infarctions and retinal disease in pediatric patients with CD59 deficiency.

    PubMed

    Ben-Zeev, Bruria; Tabib, Adi; Nissenkorn, Andreea; Garti, Ben-Zion; Gomori, John Moshe; Nass, Dvora; Goldshmidt, Hanoch; Fellig, Yakov; Anikster, Yair; Nevo, Yoram; Elpeleg, Orly; Mevorach, Dror

    2015-11-01

    Identification of CD59 p.Cys89Tyr mutation in 5 patients from North-African Jewish origin presenting with chronic inflammatory demyelinating polyradiculoneuropathy like disease and chronic hemolysis, led us to reinvestigate an unsolved disease in 2 siblings from the same origin who died 17 years ago. The two patients carried the same CD59 gene mutation previously described by our group. These children had quiet similar disease course but in addition developed devastating recurrent brain infarctions, retinal and optic nerve involvement. Revising the brain autopsy of one of these patients confirmed the finding of multiple brain infarctions of different ages. CD59 protein expression was missing on brain endothelial cells by immunohistochemical staining. This new data expands the clinical spectrum of CD59 mutations and further emphasizes the need for its early detection and treatment. PMID:26233519

  11. Sources of abnormal EEG activity in brain infarctions.

    PubMed

    Fernández-Bouzas, A; Harmony, T; Fernández, T; Silva-Pereyra, J; Valdés, P; Bosch, J; Aubert, E; Casián, G; Otero Ojeda, G; Ricardo, J; Hernández-Ballesteros, A; Santiago, E

    2000-10-01

    EEGs from 16 patients with stroke in three different stages of evolution were recorded. EEG sources were calculated every 0.39 Hz by frequency domain VARETA. The main source was within the delta band in 2 out of 4 chronic patients, and in 67% of the patients in the acute or subacute stages when edema (cytotoxic or vasogenic) was present. Moreover, all patients showed abnormal activity in the theta band. Sources of abnormal activity in cortical or corticosubcortical infarcts were located in the cortex, surrounding the lesion. At the site of the infarct, a decrease of EEG power was observed. Sources of abnormal theta power coincided with edema and/or ischemic penumbra. PMID:11056837

  12. Imaging diagnosis--magnetic resonance imaging findings in a dog with sequential brain infarction.

    PubMed

    Major, Alison C; Caine, Abby; Rodriguez, Sue B; Cherubini, Giunio B

    2012-01-01

    An adult greyhound was evaluated on three occasions for acute, intracranial neurologic signs. Based on magnetic resonance (MR) imaging, there were T2-hyperintense and T1-hypointense, noncontrast enhancing lesions in the cerebellum, and brain stem. Using diffusion-weighted imaging (DWI), the lesions were characterized initially by restricted water diffusion. The presumptive diagnosis on each occasion was acute ischemic cerebrovascular accident leading to infarction. This allowed us to characterize the changes in appearance of infarcted neural tissue on the standard MR sequences over time, and to confirm that the DWI could be successfully used in low-field imaging. © 2012 Veterinary Radiology & Ultrasound. PMID:22731883

  13. Cerebral Venous Infarction: A Potentially Avoidable Complication of Deep Brain Stimulation Surgery

    PubMed Central

    Morishita, Takashi; Okun, Michael S.; Burdick, Adam; Jacobson, Charles E; Foote, Kelly D.

    2013-01-01

    Object Despite numerous reports on the morbidity and mortality of deep brain stimulation (DBS), cerebral venous infarction has rarely been reported. We present four cases of venous infarct secondary to DBS surgery. Methods The diagnosis of venous infarction was based on: 1) delayed onset of new neurologic deficits on post-operative day 1 or 2, and 2) significant edema surrounding the superficial aspect of the implanted lead, with or without subcortical hemorrhage on CT scan. Results Four cases (0.8%/lead, 1.3%/patient) of symptomatic cerebral venous infarction were identified out of 500 DBS lead implantation procedures between July 2002 and August 2009. All four patients had Parkinson’s disease (PD). Their DBS leads were implanted in the subthalamic nucleus (STN) (n=2), and the internal globus pallidus (GPi) (n=2). Retrospective review of the targeting confirmed that the planned trajectory passed within 3mm of a cortical vein in two cases for which contrast-enhanced pre-operative MRI was available. In the other two cases, contrasted targeting images were not obtained preoperatively. Conclusion Cerebral venous infarction is a potentially avoidable, but serious complication. To minimize its incidence, we propose the use of high resolution, contrast-enhanced, T1 weighted MR images to delineate cerebral venous anatomy, along with careful stereotactic planning of the lead trajectory to avoid injury to venous structures. PMID:23738501

  14. Fatal Massive Cerebral Infarction in a Child after Mild Brain Trauma: A Case Report and Literature Review

    PubMed Central

    Calderon-Miranda, Willen Guillermo; Alvis-Miranda, Hernando Raphael; M. Rubiano, Andres; Moscote-Salazar, Luis Rafael

    2014-01-01

    Traumatic brain injury is a common entity. However cerebral infarction in infants is a rare entity while the diagnosis of this pathology in the pediatric population is usually difficult. The mild head trauma is rarely accompanied by intracranial injury and even less, with cerebral infarction. We herein report the first case of cerebral infarction after a mild brain trauma in a 2-year-old Latin-American male patient, in which brain computed tomography (CT) scan was performed on the first day of the accident, showed right hemispheric cerebral ischemia compromising the fronto-parieto-occipital region. Conservative management was established. The patient died at day 5. So Brain CT scan may be beneficial to reveal any hemispheric infarction due to a probable mass effect.

  15. Strategic infarcts in vascular dementia. A clinical and brain imaging experience.

    PubMed

    Tatemichi, T K; Desmond, D W; Prohovnik, I

    1995-03-01

    The mechanisms of dementia resulting from small deep infarctions are incompletely understood. The thesis underlying the concept of "multi-infarct dementia" is that multiple lesions have a synergistic effect on mental functions, resulting in dementia irrespective of specific location or volume. In this report, we summarize our experience with six patients reported previously along with additional patients examined subsequently, whose clinical features and brain imaging findings allow an alternative formulation for dementia resulting from lacunar stroke. The six initial patients presented with an abrupt change in behavior after acute infarction involving the inferior genu of the internal capsule documented by computed tomography (CT) and magnetic resonance imaging (MRI). The acute syndrome featured fluctuating alertness, inattention, memory loss, apathy, abulia, and psychomotor retardation suggesting frontal lobe dysfunction. Contralateral hemiparesis and dysarthria were generally mild, except when the infarct extended into the posterior limb. Neuropsychological testing in five patients with left-sided infarcts revealed severe verbal memory loss. Additional cognitive deficits consistent with dementia were evident in four patients. A right-sided infarct caused transient impairment in visuospatial memory. Functional brain imaging in three patients using 133xenon regional cerebral blood flow (rCBF) and single photon emission computed tomography (SPECT) showed focal reduction in hemispheric perfusion most prominent in the ipsilateral inferior and medial frontal cortex. Perfusion was also defective in the medial and laterial temporal cortex. Important pathways of the limbic system traverse the inferior capsule in the region of the genu. Corticothalamic and thalamocortical fibers form the thalamic peduncles which detach from the internal capsule and enter the thalamus at its rostral and caudal poles and along its dorsal surface. The anterior thalamic peduncle, conveys reciprocal connections between the dorsomedial nucleus and the cingulate gyrus, as well as the prefrontal and orbitofrontal cortex. The inferior thalamic peduncle carries fibers which connect the thalamus with orbitofrontal, insular, and temporal cortex, as well as the amygdala via the ansa peduncularis to the ventral amygdalofugal pathway. Thus, damage to one or both white-matter tracts may occur with infarctions in the region of the inferior genu, causing striking frontal behavioral effects and memory loss in our patients associated with functional deactivation of the ipsilateral frontal and temporal cortex.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:7763329

  16. Invasive surgery reduces infarct size and preserves cardiac function in a porcine model of myocardial infarction

    PubMed Central

    van Hout, Gerardus PJ; Teuben, Michel PJ; Heeres, Marjolein; de Maat, Steven; de Jong, Renate; Maas, Coen; Kouwenberg, Lisanne HJA; Koenderman, Leo; van Solinge, Wouter W; de Jager, Saskia CA; Pasterkamp, Gerard; Hoefer, Imo E

    2015-01-01

    Reperfusion injury following myocardial infarction (MI) increases infarct size (IS) and deteriorates cardiac function. Cardioprotective strategies in large animal MI models often failed in clinical trials, suggesting translational failure. Experimentally, MI is induced artificially and the effect of the experimental procedures may influence outcome and thus clinical applicability. The aim of this study was to investigate if invasive surgery, as in the common open chest MI model affects IS and cardiac function. Twenty female landrace pigs were subjected to MI by transluminal balloon occlusion. In 10 of 20 pigs, balloon occlusion was preceded by invasive surgery (medial sternotomy). After 72 hrs, pigs were subjected to echocardiography and Evans blue/triphenyl tetrazoliumchloride double staining to determine IS and area at risk. Quantification of IS showed a significant IS reduction in the open chest group compared to the closed chest group (IS versus area at risk: 50.9 ± 5.4% versus 69.9 ± 3.4%, P = 0.007). End systolic LV volume and LV ejection fraction measured by echocardiography at follow-up differed significantly between both groups (51 ± 5 ml versus 65 ± 3 ml, P = 0.033; 47.5 ± 2.6% versus 38.8 ± 1.2%, P = 0.005). The inflammatory response in the damaged myocardium did not differ between groups. This study indicates that invasive surgery reduces IS and preserves cardiac function in a porcine MI model. Future studies need to elucidate the effect of infarct induction technique on the efficacy of pharmacological therapies in large animal cardioprotection studies. PMID:26282710

  17. MRI and PET in Mouse Models of Myocardial Infarction

    PubMed Central

    Buonincontri, Guido; Methner, Carmen; Carpenter, T. Adrian; Hawkes, Robert C.; Sawiak, Stephen J.; Krieg, Thomas

    2013-01-01

    Myocardial infarction is one of the leading causes of death in the Western world. The similarity of the mouse heart to the human heart has made it an ideal model for testing novel therapeutic strategies. In vivo magnetic resonance imaging (MRI) gives excellent views of the heart noninvasively with clear anatomical detail, which can be used for accurate functional assessment. Contrast agents can provide basic measures of tissue viability but these are nonspecific. Positron emission tomography (PET) is a complementary technique that is highly specific for molecular imaging, but lacks the anatomical detail of MRI. Used together, these techniques offer a sensitive, specific and quantitative tool for the assessment of the heart in disease and recovery following treatment. In this paper we explain how these methods are carried out in mouse models of acute myocardial infarction. The procedures described here were designed for the assessment of putative protective drug treatments. We used MRI to measure systolic function and infarct size with late gadolinium enhancement, and PET with fluorodeoxyglucose (FDG) to assess metabolic function in the infarcted region. The paper focuses on practical aspects such as slice planning, accurate gating, drug delivery, segmentation of images, and multimodal coregistration. The methods presented here achieve good repeatability and accuracy maintaining a high throughput. PMID:24378323

  18. Neuroglobin Over Expressing Mice: Expression Pattern and Effect on Brain Ischemic Infarct Size

    PubMed Central

    Raida, Zindy; Hundahl, Christian Ansgar; Nyengaard, Jens R.; Hay-Schmidt, Anders

    2013-01-01

    Background Stroke is a major cause of death and severe disability, but effective treatments are limited. Neuroglobin, a neuronal heme-globin, has been advocated as a novel pharmacological target in combating stroke and neurodegenerative disorders based on cytoprotective properties. Using thoroughly validated antibodies and oligos, we give a detailed brain anatomical characterization of transgenic mice over expressing Neuroglobin. Moreover, using permanent middle artery occlusion the effect of elevated levels of Neuroglobin on ischemic damage was studied. Lastly, the impact of mouse strain genetic background on ischemic damage was investigated. Principal Findings A four to five fold increase in Neuroglobin mRNA and protein expression was seen in the brain of transgenic mice. A β-actin promoter was used to drive Neuroglobin over expression, but immunohistochemistry and in situ hybridization showed over expression to be confined to primarily the cortex, hippocampus, cerebellum, and only in neurons. The level and expression pattern of endogenous Neuroglobin was unaffected by insertion of the over expressing Ngb transgene. Neuroglobin over expression resulted in a significant reduction in infarct volume 24 hours after ischemia. Immunohistochemistry showed no selective sparing of Neuroglobin expressing cells in the ischemic core or penumbra. A significant difference in infarct volume was found between mice of the same strain, but from different colonies. Significance In contrast to some previous reports, Neuroglobin over expression is not global but confined to a few well-defined brain regions, and only in neurons. This study confirms previous reports showing a correlation between reduced infarct volume and elevated Neuroglobin levels, but underlines the need to study the likely contribution from compensatory mechanisms to the phenotype following a genetic perturbation. We also stress, that care should be taken when comparing results where different mouse strains and colonies have been used due to large genetic background contribution to the observed phenotype. PMID:24098534

  19. Modeling Myocardial Infarction in Mice: Methodology, Monitoring, Pathomorphology

    PubMed Central

    Ovsepyan, A.A.; Panchenkov, D.N.; Prokhortchouk, E.B.; Telegin, G.B.; Zhigalova, N.A.; Golubev, E.P.; Sviridova, T.E.; Matskeplishvili, S.T.; Skryabin, K.G.; Buziashvili, U.I.

    2011-01-01

    Myocardial infarction is one of the most serious and widespread diseases in the world. In this work, a minimally invasive method for simulating myocardial infarction in mice is described in the Russian Federation for the very first time; the procedure is carried out by ligation of the coronary heart artery or by controlled electrocoagulation. As a part of the methodology, a series of anesthetic, microsurgical and revival protocols are designed, owing to which a decrease in the postoperational mortality from the initial 94.6 to 13.6% is achieved. ECG confirms the development of large-focal or surface myocardial infarction. Postmortal histological examination confirms the presence of necrosis foci in the heart muscles of 87.5% of animals. Altogether, the medical data allow us to conclude that an adequate mouse model for myocardial infarction was generated. A further study is focused on the standardization of the experimental procedure and the use of genetically modified mouse strains, with the purpose of finding the most efficient therapeutic approaches for this disease. PMID:22649679

  20. Anticoagulation management of myocardial infarction after deep brain stimulation: a comparison of two cases.

    PubMed

    Polanski, Witold; Koy, Jan; Juratli, Tareq; Wolz, Martin; Klingelhfer, Lisa; Fauser, Mareike; Storch, Alexander; Schackert, Gabriele; Sobottka, Stephan B

    2013-09-01

    Deep brain stimulation (DBS) is an established treatment of various diseases, particularly used for idiopathic Parkinson's disease. Frequently, DBS patients are multimorbid and managing them may be challenging, since postoperative complications can become more likely with age. In this article, we present two cases of myocardial infarction after DBS with different therapeutic strategies. Case 1 was anticoagulated with a heparin infusion with a target partial thromboplastine time (PTT) between 50 and 60 s after the myocardial infarction and showed 3 days later, after an initial postoperative inconspicuous cranial computer tomography, an intracerebral haematoma, which was evacuated without explanting the DBS lead. Case 2 was only treated with enoxaparine 40 mg s.c. twice a day after the myocardial infarction without any further complications. Both cases benefited from the DBS with respect to the motor fluctuations, but case 1 continued to suffer from psychomotor slowdown, mild hemiparesis of the left side, visual neglect and a gaze paresis. Unfortunately, there are no established guidelines or therapy recommendations for the management of such patients. An individual therapy regime is necessary for this patient population regarding the bleeding risk, the cardial risk and the symptoms of the patient. Retrospectively, the rejection of the intravenous application of heparin in case 2 seems to be the right decision. But regarding the small number of cases, it remains still an individual therapy. Further experience will help us to develop optimal therapy strategies for this patient population. PMID:23563744

  1. Gastroschisis, Destructive Brain Lesions, and Placental Infarction in the Second Trimester Suggest a Vascular Pathogenesis

    PubMed Central

    Folkerth, Rebecca D.; Habbe, Donald M.; Boyd, Theonia K.; McMillan, Kristin; Gromer, Jessica; Sens, Mary Ann; Elliott, Amy J.

    2014-01-01

    The cause and pathogenesis of gastroschisis are uncertain. We report the autopsy and placental pathology of a stillbirth at 20 gestational weeks, in which gastroschisis was accompanied by destructive lesions in the cerebral cortex and brainstem, as well as cardiac calcification, consistent with ischemic injury during the 2nd trimester. An important potential underlying mechanism explaining the fetal abnormalities is the presence of infarcts in the placenta, indicative at this gestational age of maternal vascular underperfusion. The association of gastroschisis with ischemic lesions in the brain, heart, and placenta in this case supports the concept that gastroschisis, at least in some instances, may result from vascular event(s) causing disruption of the fetal abdominal wall and resulting in the extrusion of the abdominal organs, as well as hypoxic–ischemic brain and cardiac injury. PMID:23895144

  2. Laser system refinements to reduce variability in infarct size in the rat photothrombotic stroke model

    PubMed Central

    Alaverdashvili, Mariam; Paterson, Phyllis G.; Bradley, Michael P.

    2015-01-01

    Background The rat photothrombotic stroke model can induce brain infarcts with reasonable biological variability. Nevertheless, we observed unexplained high inter-individual variability despite using a rigorous protocol. Of the three major determinants of infarct volume, photosensitive dye concentration and illumination period were strictly controlled, whereas undetected fluctuation in laser power output was suspected to account for the variability. New method The frequently utilized Diode Pumped Solid State (DPSS) lasers emitting 532 nm (green) light can exhibit fluctuations in output power due to temperature and input power alterations. The polarization properties of the Nd:YAG and Nd:YVO4 crystals commonly used in these lasers are another potential source of fluctuation, since one means of controlling output power uses a polarizer with a variable transmission axis. Thus, the properties of DPSS lasers and the relationship between power output and infarct size were explored. Results DPSS laser beam intensity showed considerable variation. Either a polarizer or a variable neutral density filter allowed adjustment of a polarized laser beam to the desired intensity. When the beam was unpolarized, the experimenter was restricted to using a variable neutral density filter. Comparison with existing method(s) Our refined approach includes continuous monitoring of DPSS laser intensity via beam sampling using a pellicle beamsplitter and photodiode sensor. This guarantees the desired beam intensity at the targeted brain area during stroke induction, with the intensity controlled either through a polarizer or variable neutral density filter. Conclusions Continuous monitoring and control of laser beam intensity is critical for ensuring consistent infarct size. PMID:25840363

  3. Oxygen Mapping within Healthy and Acutely Infarcted Brain Tissue in Humans Using the NMR Relaxation of Lipids: A Proof-Of-Concept Translational Study

    PubMed Central

    Magat, Julie; Joudiou, Nicolas; Peeters, André P.; Jordan, Bénédicte F.; Gallez, Bernard; Duprez, Thierry

    2015-01-01

    The clinical applicability of brain oxygenation mapping using the MOBILE (Mapping of Oxygen By Imaging Lipids relaxation Enhancement) magnetic resonance (MR) technique was assessed in the clinical setting of normal brain and of acute cerebral ischemia as a founding proof-of-concept translational study. Changes in the oxygenation level within healthy brain tissue can be detected by analyzing the spin-lattice proton relaxation (‘Global T1’ combining water and lipid protons) because of the paramagnetic properties of molecular oxygen. It was hypothesized that selective measurement of the relaxation of the lipid protons (‘Lipids T1’) would result in enhanced sensitivity of pO2 mapping because of higher solubility of oxygen in lipids than in water, and this was demonstrated in pre-clinical models using the MOBILE technique. In the present study, 12 healthy volunteers and eight patients with acute (48–72 hours) brain infarction were examined with the same clinical 3T MR system. Both Lipids R1 (R1 = 1/T1) and Global R1 were significantly different in the infarcted area and the contralateral unaffected brain tissue, with a higher statistical significance for Lipids R1 (median difference: 0.408 s-1; p<0.0001) than for Global R1 (median difference: 0.154 s-1; p = 0.027). Both Lipids R1 and Global R1 values in the unaffected contralateral brain tissue of stroke patients were not significantly different from the R1 values calculated in the brain tissue of healthy volunteers. The main limitations of the present prototypic version of the MOBILE sequence are the long acquisition time (4 min), hampering robustness of data in uncooperative patients, and a 2 mm slice thickness precluding accurate measurements in small infarcts because of partial volume averaging effects. PMID:26267901

  4. Risk reduction of brain infarction during carotid endarterectomy or stenting using sonolysis - Prospective randomized study pilot data

    NASA Astrophysics Data System (ADS)

    Kuliha, Martin; Školoudík, David; Martin Roubec, Martin; Herzig, Roman; Procházka, Václav; Jonszta, Tomáš; Krajča, Jan; Czerný, Dan; Hrbáč, Tomáš; Otáhal, David; Langová, Kateřina

    2012-11-01

    Sonolysis is a new therapeutic option for the acceleration of arterial recanalization. The aim of this study was to confirm risk reduction of brain infarction during endarterectomy (CEA) and stenting (CAS) of the internal carotid artery (ICA) using sonolysis with continuous transcranial Doppler (TCD) monitoring by diagnostic 2 MHz probe, additional interest was to assess impact of new brain ischemic lesions on cognitive functions. Methods: All consecutive patients 1/ with ICA stenosis >70%, 2/ indicated to CEA or CAS, 3/ with signed informed consent, were enrolled to the prospective study during 17 months. Patients were randomized into 2 groups: Group 1 with sonolysis during intervention and Group 2 without sonolysis. Neurological examination, assessment of cognitive functions and brain magnetic resonance imaging (MRI) were performed before and 24 hours after intervention in all patients. Occurrence of new brain infarctions (including infarctions >0.5 cm3), and the results of Mini-Mental State Examination, Clock Drawing and Verbal Fluency tests were statistically evaluated using T-test. Results: 97 patients were included into the study. Out of the 47 patients randomized to sonolysis group (Group 1) 25 underwent CEA (Group 1a) and 22 CAS (Group 1b). Out of the 50 patients randomized to control group (Group 2), 22 underwent CEA (Group 2a) and 28 CAS (Group 2b). New ischemic brain infarctions on follow up MRI were found in 14 (29.8%) patients in Group 1-4 (16.0%) in Group 1a and 10 (45.5%) in Group 1b. In Group 2, new ischemic brain infarctions were found in 18 (36.0%) patients-6 (27.3%) in Group 2a and 12 (42.9%) in Group 2b (p>0.05 in all cases). New ischemic brain infarctions >0.5 cm3 were found in 4 (8.5 %) patients in Group 1 and in 11 (22.0 %) patients in Group 2 (p= 0.017). No significant differences were found in cognitive tests results between subgroups (p>0.05 in all tests). Conclusion: Sonolysis seems to be effective in the prevention of large ischemic brain infarctions during CEA and CAS.

  5. Cosmic rays as indicator of space weather influence on frequency of infarct myocardial, brain strokes, car and train accidents

    NASA Astrophysics Data System (ADS)

    Dorman, L. I.; Iucci, N.; Ptitsyna, N. G.; Villoresi, G.

    2001-08-01

    By Dorman et al. (1999) was shown that CR Forbush-decreases can be considered as indicators of space phenomenon influence on the infarct myocardial, brain stroke, and car accident frequency. The obtained results are bigger than statistical errors in 4-7 times. In Dorman et al. (1999) we used daily averaged data on frequency of infarcts myocardial, brain strokes, and car accidents, obtained from ambulance organizations of Moscow for the period January 1979 December 1981 and of Leningrad (now St. Petersburg) for the period January 1987 December 1989. In the present researchwe will use monthly averaged data of infarct myocardial, brain stroke, and car accident frequencies as well as monthly data of train accident frequencies of two types (1-stcaused by the man factor, and the 2-nd ~@~S caused by the technological factorss) on the Siberian railways for the period 1 January 1986 ~@~S 30 November 1993. These daata allow us to estimate the possible connection of space weather changing (controlled by CR intensity and solar activity long-term variations) with frequency of people deceases (as infarcts myocardial and brain strokes), and car accidents as well as with frequency of train accidents caused by the man factor.

  6. Association of Reduced Folate Carrier-1 (RFC-1) Polymorphisms with Ischemic Stroke and Silent Brain Infarction

    PubMed Central

    Cho, Yunkyung; Kim, Jung O; Lee, Jeong Han; Park, Hye Mi; Jeon, Young Joo; Oh, Seung Hun; Bae, Jinkun; Park, Young Seok; Kim, Ok Joon; Kim, Nam Keun

    2015-01-01

    Stroke is the second leading cause of death in the world and in South Korea. Ischemic stroke and silent brain infarction (SBI) are complex, multifactorial diseases influenced by multiple genetic and environmental factors. Moderately elevated plasma homocysteine levels are a major risk factor for vascular diseases, including stroke and SBI. Folate and vitamin B12 are important regulators of homocysteine metabolism. Reduced folate carrier (RFC), a bidirectional anion exchanger, mediates folate delivery to a variety of cells. We selected three known RFC-1 polymorphisms (-43C>T, 80A>G, 696T>C) and investigated their relationship to cerebral infarction in the Korean population. We used the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method to analyze associations between the three RFC-1 polymorphisms, disease status, and folate and homocysteine levels in 584 ischemic stroke patients, 353 SBI patients, and 505 control subjects. The frequencies of the RFC-1 -43TT, 80GG, and 696CC genotypes differed significantly between the stroke and control groups. The RFC-1 80A>G substitution was also associated with small artery occlusion and SBI. In a gene-environment analysis, the RFC-1 -43C>T, 80A>G, and 696T>C polymorphisms in the ischemic stroke group had combined effects with all environmental factors. In summary, we found that the RFC-1 -43C>T, 80A>G, and 696T>C polymorphisms may be risk factors for ischemic stroke. PMID:25659099

  7. The epidemiology of silent brain infarction: a systematic review of population-based cohorts

    PubMed Central

    2014-01-01

    Background Cerebral infarction is a commonly observed radiological finding in the absence of corresponding, clinical symptomatology, the so-called silent brain infarction (SBI). SBIs are a relatively new consideration as improved imaging has facilitated recognition of their occurrence. However, the true incidence, prevalence and risk factors associated with SBI remain controversial. Methods Systematic searches of the Medline and EMBASE databases from 1946 to December 2013 were performed to identify original studies of population-based adult cohorts derived from community surveys and routine health screening that reported the incidence and prevalence of magnetic resonance imaging (MRI)-determined SBI. Results The prevalence of SBI ranges from 5% to 62% with most studies reported in the 10% to 20% range. Longitudinal studies suggest an annual incidence of between 2% and 4%. A strong association was seen to exist between epidemiological estimates of SBI and age of the population assessed. Hypertension, carotid stenosis, chronic kidney disease and metabolic syndrome all showed a strong association with SBI. Heart failure, coronary artery disease, hyperhomocysteinemia and obstructive sleep apnea are also likely of significance. However, any association between SBI and gender, ethnicity, tobacco or alcohol consumption, obesity, dyslipidemia, atrial fibrillation and diabetes mellitus remains unclear. Conclusions SBI is a remarkably common phenomenon and endemic among older people. This systematic review supports the association of a number of traditional vascular risk factors, but also highlights disparities between clinically apparent and silent strokes, potentially suggesting important differences in pathophysiology and warranting further investigation. PMID:25012298

  8. The Seattle Post Myocardial Infarction Model (SPIM): prediction of mortality after acute myocardial infarction with left ventricular dysfunction

    PubMed Central

    Dickstein, Kenneth; Kjekshus, John; Pitt, Bertram; Wong, Meagan F; Linker, David T; Levy, Wayne C

    2014-01-01

    Aims: Ischemic heart disease is a leading worldwide cause of death. The Seattle Post Myocardial Infarction Model (SPIM) was developed to predict survival 6 months to 2 years after an acute myocardial infarction with evidence of left ventricular dysfunction. Methods and Results: A total of 6632 subjects from the EPHESUS trial were used to derive the predictive model, while 5477 subjects from the OPTIMAAL trial were used to validate the model. Cox proportional hazards modeling was used to develop a multivariate risk score predictive of all-cause mortality. The SPIM risk score integrated lab and vital parameters, Killip class, reperfusion or revascularization, the number of cardiac evidence-based medicines (aspirin, statin, β blocker, ACEI/ARB, aldosterone blocker), and the number of cardiac risk factors. The model was predictive of all-cause mortality after myocardial infarction, with an AUC of 0.75 at 6 months and 0.75 at 2 years in the derivation cohort and 0.77 and 0.78 for the same time points in the validation cohort. Model predicted versus Kaplan-Meier observed survival was excellent in the derivation cohort. It remained so in the validation cohort—84.9% versus 85.0% at 2 years. The 10% of subjects with the highest predicted risk had approximately 25 times higher mortality at 2 years than the 10% of subjects with the lowest predicted risk. Conclusion: The SPIM score was a powerful predictor of outcomes after myocardial infarction with left ventricular dysfunction. Its highly accurate predictions should improve patient and physician understanding of survival and may prove a useful tool in post-infarct risk stratification. PMID:24562803

  9. Neuroprotective mechanisms of puerarin in middle cerebral artery occlusion-induced brain infarction in rats.

    PubMed

    Chang, Yi; Hsieh, Cheng-Ying; Peng, Zi-Aa; Yen, Ting-Lin; Hsiao, George; Chou, Duen-Suey; Chen, Chien-Ming; Sheu, Joen-Rong

    2009-01-01

    Puerarin, a major isoflavonoid derived from the Chinese medical herb Radix puerariae (kudzu root), has been reported to be useful in the treatment of various cardiovascular diseases. In the present study, we examined the detailed mechanisms underlying the inhibitory effects of puerarin on inflammatory and apoptotic responses induced by middle cerebral artery occlusion (MCAO) in rats. Treatment of puerarin (25 and 50 mg/kg; intraperitoneally) 10 min before MCAO dose-dependently attenuated focal cerebral ischemia in rats. Administration of puerarin at 50 mg/kg, showed marked reduction in infarct size compared with that of control rats. MCAO-induced focal cerebral ischemia was associated with increases in hypoxia-inducible factor-1alpha (HIF-1alpha), inducible nitric oxide synthase (iNOS), and active caspase-3 protein expressions as well as the mRNA expression of tumor necrosis factor-alpha (TNF-alpha) in ischemic regions. These expressions were markedly inhibited by the treatment of puerarin (50 mg/kg). In addition, puerarin (10-50 microM) concentration-dependently inhibited respiratory bursts in human neutrophils stimulated by formyl-Met-Leu-Phe. On the other hand, puerarin (20-500 microM) did not significantly inhibit the thiobarbituric acid-reactive substance reaction in rat brain homogenates. An electron spin resonance (ESR) method was conducted on the scavenging activity of puerarin on the free radicals formed. Puerarin (200 and 500 microM) did not reduce the ESR signal intensity of hydroxyl radical formation. In conclusion, we demonstrate that puerarin is a potent neuroprotective agent on MCAO-induced focal cerebral ischemia in vivo. This effect may be mediated, at least in part, by the inhibition of both HIF-1alpha and TNF-alpha activation, followed by the inhibition of inflammatory responses (i.e., iNOS expression), apoptosis formation (active caspase-3), and neutrophil activation, resulting in a reduction in the infarct volume in ischemia-reperfusion brain injury. Thus, puerarin treatment may represent a novel approach to lowering the risk of or improving function in ischemia-reperfusion brain injury-related disorders. PMID:19272172

  10. Early menopause and the risk of silent brain infarction in community-dwelling elderly subjects: the Sefuri brain MRI study.

    PubMed

    Fukuda, Kenji; Takashima, Yuki; Hashimoto, Manabu; Uchino, Akira; Yuzuriha, Takefumi; Yao, Hiroshi

    2014-01-01

    Our previous study showed that the male predominance of silent brain infarction (SBI) was largely because of higher prevalence of alcohol habit and smoking in men than in women. In the present study, we further conducted an analysis of brain magnetic resonance imaging findings to examine whether early menopause contributes to SBI in community-dwelling subjects. Women were queried as to the age and cause of menopause, the total number of children, and the age at giving birth to her last child. Among 306 female subjects aged 60 years or older, univariate analysis showed that early menopause (total or natural) was significantly associated with SBI but age at natural menopause, number of children, and age at the last parity were not. In the total of 715 subjects (283 men and 432 women with a mean age of 67.2 years), the forward stepwise method of logistic analysis revealed that natural early menopause (odds ratio [OR] 4.28, 95% confidence interval [CI] 1.07-17.11), in addition to age, hypertension, alcohol intake, and smoking, was a significant factor concerning SBI. Also in the subgroup of female subjects aged 60 years or older, natural early menopause was a significant factor concerning SBI (OR 4.35, 95% CI 1.05-18.08) adjusted for covariates. Although the prevalence of natural early menopause was low (3.3% of 306 female subjects), natural menopause before the age of 40 years may be a risk for SBI or small-vessel disease of the brain. PMID:24045081

  11. Lysophosphatidic Acid Level and the Incidence of Silent Brain Infarction in Patients with Nonvalvular Atrial Fibrillation

    PubMed Central

    Li, Zhen-Guang; Yu, Zhan-Cai; Yu, Yong-Peng; Ju, Wei-Ping; Wang, Dao-Zhen; Zhan, Xia; Wu, Xi-Juan; Zhou, Li

    2010-01-01

    Lysophosphatidic acid (LPA), which is proposed to play an important role in normal physiological situations such as wound healing, vascular tone, vascular integrity and reproduction, may be involved in the etiology of some diseases such as atherosclerosis, cancer, obesity or myocardial infarction. Abnormal findings, including silent brain infarction (SBI), are frequently observed by magnetic resonance imaging (MRI) in patients with nonvalvular atrial fibrillation (NVAF). However, whether there is a relationship between LPA level and the prevalence of SBI has not been extensively studied. In the present study, the association between them was investigated. 235 patients with NVAF, 116 cases of SBI without NVAF and 120 cases of healthy volunteers (control group), who did not receive any antithrombotic therapy, were enrolled in this study. Plasma LPA levels in the NVAF with SBI group were significantly higher than that in the control group (p < 0.01), NVAF without SBI group (p < 0.01) and SBI without NVAF group (p < 0.01). The LPA levels are lower in the control group than in the NVAF without SBI and SBI without NVAF groups (p < 0.01), however, the latter two groups did not significantly differ from each other for LPA levels (p > 0.05) There were significant differences in the positive rate of platelet activation between each of the groups (p < 0.01). The positive rate of platelet activation was significantly higher in the NVAF with SBI group. We suggest that LPA might be a novel marker for estimation of the status of platelet activation and the risk factor for SBI onset in NVAF patients. We expected that plasma LPA levels could predict the occurrence of SBI in NVAF patients. PMID:21152315

  12. A New Non-Human Primate Model of Photochemically Induced Cerebral Infarction

    PubMed Central

    Ohwatashi, Akihiko; Kamikawa, Yurie; Yoshida, Akira; Kawahira, Kazumi

    2013-01-01

    Background and Purpose Rat models of photochemically induced cerebral infarction have been readily studied, but to date there are no reports of transcranial photochemically induced infarctions in the marmoset. In this report, we used this non-human primate as a model of cerebral thrombosis and observed the recovery process. Methods Five common marmosets were used. Cerebral ischemia was produced via intravascular thrombosis induced by an intravenous injection of Rose Bengal and irradiation with green light. After inducing cerebral infarction, we observed the behavior of marmosets via a continuous video recording. We evaluated maximum speed, mean speed, and distance traveled in 1 min. In addition, we evaluated scores for feeding behavior, upper limb grip, and lower limb grip. We confirmed the infarct area after cerebral infarction using 2,3,5-triphenyltetrazolium chloride staining in a separate marmoset. Results We found functional decreases 2 days after creating the cerebral infarction in all measurements. Total distance traveled, average speed, upper limb score, and feeding behavior score did not recover to pre-infarction levels within 28 days. Maximum speed in 1 min and lower limb score recovered 28 days after infarction as compared to pre-infarction levels. We confirmed the infarct area of 11.4 mm×6.8 mm as stained with 2,3,5-triphenyltetrazolium chloride. Conclusion We were able to create a primate photothrombosis-induced cerebral infarction model using marmosets and observe functional recovery. We suggest that this is a useful model for basic research of cerebral infarction. PMID:23527298

  13. AAV-mediated targeting of gene expression to the peri-infarct region in rat cortical stroke model

    PubMed Central

    Mätlik, Kert; Abo-Ramadan, Usama; Harvey, Brandon K.; Arumäe, Urmas; Airavaara, Mikko

    2014-01-01

    Background For stroke patients the recovery of cognitive and behavioral functions is often incomplete. Functional recovery is thought to be mediated largely by connectivity rearrangements in the peri-infarct region. A method for manipulating gene expression in this region would be useful for identifying new recovery-enhancing treatments. New Method We have characterized a way of targeting adeno-associated virus (AAV) vectors to the peri-infarct region of cortical ischemic lesion in rats two days after middle cerebral artery occlusion (MCAo). Results We used magnetic resonance imaging (MRI) to show that the altered properties of post-ischemic brain tissue facilitate the spreading of intrastriatally injected nanoparticles towards the infarct. We show that subcortical injection of green fluorescent protein-encoding dsAAV7-GFP resulted in transduction of cells in and around the white matter tract underlying the lesion, and in the cortex proximal to the lesion. A similar result was achieved with dsAAV7 vector encoding the cerebral dopamine neurotrophic factor (CDNF), a protein with therapeutic potential. Comparison with existing methods Viral-vector mediated intracerebral gene delivery has been used before in rodent models of ischemic injury. However, the method of targeting gene expression to the peri-infarct region, after the initial phase of ischemic cell death, has not been described before. Conclusions We demonstrate a straightforward and robust way to target AAV vector-mediated over-expression of genes to the peri-infarct region in a rat stroke model. This method will be useful for studying the action of specific proteins in peri-infarct region during the recovery process. PMID:25152446

  14. The time course of ischemic damage and cerebral perfusion in a rat model of space-occupying cerebral infarction.

    PubMed

    Hofmeijer, J; Veldhuis, W B; Schepers, J; Nicolay, K; Kappelle, L J; Bär, P R; van der Worp, H B

    2004-07-01

    We aimed to establish a rat model of space-occupying hemispheric infarction to evaluate potential treatment strategies. For adequate timing of therapy in future experiments, we studied the development of tissue damage, edema formation, and perfusion over time with different MRI techniques. Permanent middle cerebral artery (MCA) occlusion was performed in 32 Fisher-344 rats. Forty-six MRI experiments including diffusion weighted (DW), T2-weighted (T2W), flow-sensitive alternating inversion recovery (FAIR) perfusion-weighted, and T1-weighted (T1W) imaging before and after gadolinium were performed at 1, 3, 8, 16, 24, and 48 h of ischemia. MCA occlusion consistently led to infarction of the complete MCA territory. Mortality was 75%. Lesion volumes as derived from apparent diffusion coefficient (ADC) and T2 maps increased to maximum values of 400+/-48 mm3 at 24 h and 420+/-54 mm3 at 48 h of ischemia, respectively. Midline shift peaked at 24 h. The area with diffusion-perfusion deficit decreased to a minimum at 24 h after onset of ischemia and perfusion of the contralateral hemisphere dropped at the same time point. Leakage of gadolinium through the blood-brain barrier in the entire infarct occurred within 3 h of ischemia. Permanent intraluminal MCA occlusion in Fisher-344 rats is an adequate model for space-occupying cerebral infarction. Rats may benefit from intervention aimed at reducing tissue shift and intracranial pressure (ICP), and at improving cerebral blood flow, if initiated before 24 h after MCA occlusion. The value of treatment modalities depending on an intact blood-brain barrier should be questioned. PMID:15196969

  15. Risk prediction for myocardial infarction via generalized functional regression models.

    PubMed

    Ieva, Francesca; Paganoni, Anna M

    2013-07-18

    In this paper, we propose a generalized functional linear regression model for a binary outcome indicating the presence/absence of a cardiac disease with multivariate functional data among the relevant predictors. In particular, the motivating aim is the analysis of electrocardiographic traces of patients whose pre-hospital electrocardiogram (ECG) has been sent to 118 Dispatch Center of Milan (the Italian free-toll number for emergencies) by life support personnel of the basic rescue units. The statistical analysis starts with a preprocessing of ECGs treated as multivariate functional data. The signals are reconstructed from noisy observations. The biological variability is then removed by a nonlinear registration procedure based on landmarks. Thus, in order to perform a data-driven dimensional reduction, a multivariate functional principal component analysis is carried out on the variance-covariance matrix of the reconstructed and registered ECGs and their first derivatives. We use the scores of the Principal Components decomposition as covariates in a generalized linear model to predict the presence of the disease in a new patient. Hence, a new semi-automatic diagnostic procedure is proposed to estimate the risk of infarction (in the case of interest, the probability of being affected by Left Bundle Brunch Block). The performance of this classification method is evaluated and compared with other methods proposed in literature. Finally, the robustness of the procedure is checked via leave-j-out techniques. PMID:23868543

  16. Tooth loss is associated with brain white matter change and silent infarction among adults without dementia and stroke.

    PubMed

    Minn, Yang-Ki; Suk, Seung-Han; Park, Hyunyoung; Cheong, Jin-Sung; Yang, Hyunduk; Lee, Sungik; Do, Seung-Yeon; Kang, Ji-Sook

    2013-06-01

    Periodontal disease is a predictor of stroke and cognitive impairment. The association between the number of lost teeth (an indicator of periodontal disease) and silent infarcts and cerebral white matter changes on brain CT was investigated in community-dwelling adults without dementia or stroke. Dental examination and CT were performed in 438 stroke- and dementia-free subjects older than 50 yr (mean age, 63 ± 7.9 yr), who were recruited for an early health check-up program as part of the Prevention of Stroke and Dementia (PRESENT) project between 2009 and 2010. In unadjusted analyses, the odds ratio (OR) for silent cerebral infarcts and cerebral white matter changes for subjects with 6-10 and > 10 lost teeth was 2.3 (95% CI, 1.38-4.39; P = 0.006) and 4.2 (95% CI, 1.57-5.64; P < 0.001), respectively, as compared to subjects with 0-5 lost teeth. After adjustment for age, education, hypertension, diabetes mellitus, hyperlipidemia, and smoking, the ORs were 1.7 (95% CI, 1.08-3.69; P = 0.12) and 3.9 (95% CI, 1.27-5.02; P < 0.001), respectively. These findings suggest that severe tooth loss may be a predictor of silent cerebral infarcts and cerebral white matter changes in community-dwelling, stroke- and dementia-free adults. PMID:23772160

  17. Complete cardiac regeneration in a mouse model of myocardial infarction.

    PubMed

    Haubner, Bernhard Johannes; Adamowicz-Brice, Martyna; Khadayate, Sanjay; Tiefenthaler, Viktoria; Metzler, Bernhard; Aitman, Tim; Penninger, Josef M

    2012-12-01

    Cardiac remodeling and subsequent heart failure remain critical issues after myocardial infarction despite improved treatment and reperfusion strategies. Recently, complete cardiac regeneration has been demonstrated in fish and newborn mice following resection of the cardiac apex. However, it remained entirely unclear whether the mammalian heart can also completely regenerate following a complex cardiac ischemic injury. We established a protocol to induce a severe heart attack in one-day-old mice using left anterior descending artery (LAD) ligation. LAD ligation triggered substantial cardiac injury in the left ventricle defined by Caspase 3 activation and massive cell death. Ischemia-induced cardiomyocyte death was also visible on day 4 after LAD ligation. Remarkably, 7 days after the initial ischemic insult, we observed complete cardiac regeneration without any signs of tissue damage or scarring. This tissue regeneration translated into long-term normal heart functions as assessed by echocardiography. In contrast, LAD ligations in 7-day-old mice resulted in extensive scarring comparable to adult mice, indicating that the regenerative capacity for complete cardiac healing after heart attacks can be traced to the first week after birth. RNAseq analyses of hearts on day 1, day 3, and day 10 and comparing LAD-ligated and sham-operated mice surprisingly revealed a transcriptional programme of major changes in genes mediating mitosis and cell division between days 1, 3 and 10 postnatally and a very limited set of genes, including genes regulating cell cycle and extracellular matrix synthesis, being differentially regulated in the regenerating hearts. We present for the first time a mammalian model of complete cardiac regeneration following a severe ischemic cardiac injury. This novel model system provides the unique opportunity to uncover molecular and cellular pathways that can induce cardiac regeneration after ischemic injury, findings that one day could be translated to human heart attack patients. PMID:23425860

  18. Tissue plasminogen activator followed by antioxidant-loaded nanoparticle delivery promotes activation/mobilization of progenitor cells in infarcted rat brain.

    PubMed

    Petro, Marianne; Jaffer, Hayder; Yang, Jun; Kabu, Shushi; Morris, Viola B; Labhasetwar, Vinod

    2016-03-01

    Inherent neuronal and circulating progenitor cells play important roles in facilitating neuronal and functional recovery post stroke. However, this endogenous repair process is rather limited, primarily due to unfavorable conditions in the infarcted brain involving reactive oxygen species (ROS)-mediated oxidative stress and inflammation following ischemia/reperfusion injury. We hypothesized that during reperfusion, effective delivery of antioxidants to ischemic brain would create an environment without such oxidative stress and inflammation, thus promoting activation and mobilization of progenitor cells in the infarcted brain. We administered recombinant human tissue-type plasminogen activator (tPA) via carotid artery at 3 h post stroke in a thromboembolic rat model, followed by sequential administration of the antioxidants catalase (CAT) and superoxide dismutase (SOD), encapsulated in biodegradable nanoparticles (nano-CAT/SOD). Brains were harvested at 48 h post stroke for immunohistochemical analysis. Ipsilateral brain slices from animals that had received tPA + nano-CAT/SOD showed a widespread distribution of glial fibrillary acidic protein-positive cells (with morphology resembling radial glia-like neural precursor cells) and nestin-positive cells (indicating the presence of immature neurons); such cells were considerably fewer in untreated animals or those treated with tPA alone. Brain sections from animals receiving tPA + nano-CAT/SOD also showed much greater numbers of SOX2- and nestin-positive progenitor cells migrating from subventricular zone of the lateral ventricle and entering the rostral migratory stream than in t-PA alone treated group or untreated control. Further, animals treated with tPA + nano-CAT/SOD showed far fewer caspase-positive cells and fewer neutrophils than did other groups, as well as an inhibition of hippocampal swelling. These results suggest that the antioxidants mitigated the inflammatory response, protected neuronal cells from undergoing apoptosis, and inhibited edema formation by protecting the blood-brain barrier from ROS-mediated reperfusion injury. A longer-term study would enable us to determine if our approach would assist progenitor cells to undergo neurogenesis and to facilitate neurological and functional recovery following stroke and reperfusion injury. PMID:26735970

  19. Dronedarone does not affect infarct volume as assessed by magnetic resonance imaging in a porcine model of myocardial infarction.

    PubMed

    Linke, Josefine; Utpatel, Kirsten; Wolke, Carmen; Evert, Matthias; Kühn, Jens-Peter; Bukowska, Alicja; Goette, Andreas; Lendeckel, Uwe; Peters, Barbara

    2015-10-01

    Dronedarone has been demonstrated to be harmful in patients with recent decompensated heart failure. Furthermore, a PALLAS study reported that dronedarone therapy increases mortality rates in patients with permanent atrial fibrillation. Although a pathophysiological explanation for these finding remains to be elucidated, the long term effects of dronedarone on myocardial structure and stability have been suggested. The aim of the present study was to determine whether dronedarone therapy affects left ventricular (LV) function in a chronic model of myocardial infarction (MI). An anterior MI was induced in 16 pigs. Of these animals, eight pigs were then treated with dronedarone for 1 week prior to, and 4 weeks following MI, the remaining pigs served as controls. LV angiography was performed 4 weeks after MI to determine the LV ejection fraction (LVEF). A post‑mortem magnetic resonance imaging scan of the LV was then performed on the two groups (n=6) to determine the volume and size of the induced MI. Dronedarone therapy did not affect systemic and intracardiac hemodynamic parameters or LVEF during the follow‑up assessment. Of note, dronedarone had no negative effect on the total infarct volume and size and did not induce lethal proarrhythmic effects following the induced anterior MI. Therefore, the results suggested that dronedarone did not increase the volume or size of induced anterior MI and did not affect LV performance. Thus, dronedarone therapy was observed to be safe in a porcine model of anterior MI. PMID:26179812

  20. Effect of Inducible Co-Stimulatory Molecule siRNA in Cerebral Infarction Rat Models

    PubMed Central

    Luo, Yingquan; Yang, Yu; Zhang, Hui; Zhang, Ting; Wang, Yina; Tan, Shengyu; Xu, Yan; Li, Dan; Ye, Ling; Chen, Ping

    2015-01-01

    Background T cell-induced inflammatory response and related cytokine secretion at the injury site may participate in the pathogenesis of cerebral infarction. Recent studies established inducible co-stimulatory molecule (ICOS) as a novel T cell-related factor for its activation and functions. We thus investigate the role of ICOS in cerebral infarction. Material/Methods The siRNA of ICOS was first used to suppress the gene expression in cultured lymphocytes. An in vivo study was then performed by intravenous application of ICOS siRNA in cerebral infarction rats. Survival rates, neurological scores, serum tumor necrosis factor (TNF)-α, interleukin (IL)-1, and IL-17 levels were observed. Results The expression of ICOS in cultured lymphocytes was significantly suppressed by siRNA. In the in vivo study, the application of siRNA effectively lowered mortality rates of rats, in addition to the improvement of neurological behaviors and amelioration of cerebral tissue damage. Serum levels of TNF-α, IL-1 and IL-17 were all significantly suppressed after siRNA injection. Conclusions ICOS siRNA can protect brain tissues from ischemia injuries after cerebral infarction, improve limb movement and coordination, lower the mortality rate of rats, and inhibit T cell-induced cytokines. These results collectively suggest the potential treatment efficacy of ICOS siRNA against cerebral infarction. PMID:26436531

  1. Spatiotemporal evolution of blood brain barrier damage and tissue infarction within the first 3h after ischemia onset.

    PubMed

    Jin, Xinchun; Liu, Jie; Yang, Yi; Liu, Ke J; Yang, Yirong; Liu, Wenlan

    2012-12-01

    Blood brain barrier (BBB) damage that occurs within the thrombolytic time window is increasingly appreciated to negatively impact the safety and efficacy profiles of thrombolytic therapy for ischemic stroke. However, the spatiotemporal evolution of BBB damage in this early stroke stage and the underlying mechanisms remain unclear. Here, we investigated the topographical distribution of BBB damage and its association with tissue injury within the first 3 h after ischemia onset and the roles of matrix metalloproteinase (MMP)-2/9 in this process. Rats were subjected to 1, 2, or 3 h of middle cerebral artery occlusion (MCAO) followed by 10 min reperfusion with fluorescence-labeled dextran as BBB permeability marker. Acute tissue infarction was evidenced by staining defect with triphenyltetrazolium chloride (TTC). Cerebral blood flow (CBF) was measured by magnetic resonance imaging. MMP-2/9 were assessed by gel and in situ zymography. After 2-h MCAO, dextran leakage was seen in the ischemic ventromedial striatum and the preoptic area which showed ~70% CBF reduction, and expanded to other MCA regions including the cortex after 3-h MCAO. Interestingly, high (2000 kDa) and low (70 kDa) molecular weight dextrans displayed almost identical leakage patterns. Different from BBB damage, tissue infarction was first seen in the ischemic dorsal striatum and the parietal/insular cortex which experienced ~90% CBF reduction. Increased gelatinolytic activity colocalized with dextran leakage, and MMP-2 was found to be the major enzymatic source on gelatin zymograms. Pretreatment with MMP inhibitor GM6001 significantly reduced dextran leakage induced by 2-h and 3-h MCAO. Taken together, our findings reveal substantial differences in the topographic distribution of BBB damage and tissue infarction within the first 3 h after MCAO onset. Unlike ischemic neuronal damage, BBB damage appears to develop faster in brain regions with moderately severe ischemia, and MMP-2 contributes to this early ischemic BBB damage. PMID:22813865

  2. Increased Silent Brain Infarction Accompanied With High Prevalence of Diabetes and Dyslipidemia in Psychiatric Inpatients: A Cross-Sectional Study

    PubMed Central

    Uju, Yoriyasu; Sekine, Keisuke; Ishii, Yukihiro; Yoshimi, Taro; Yasui, Reiko; Yasukawa, Asuka; Sato, Mamoru; Okamoto, Seiko; Hisaoka, Tetsuya; Miura, Masafumi; Kusanishi, Shun; Murakami, Kanako; Nakano, Chieko; Mizuta, Yasuhiko; Mimori, Seisuke; Mishima, Shunichi; Igarashi, Kazuei; Takizawa, Tsuyoshi; Hayakawa, Tatsuro; Tsukada, Kazumi

    2015-01-01

    Objective: Patients with schizophrenia have increased risk of atherosclerotic diseases. It is already known that lifestyle-related disorders and the use of antipsychotics are closely related with the progression of atherosclerosis in psychiatric patients. Stroke as well as coronary heart disease play an important role in the cause of death in Asia and Japan. Thus, we studied the prevalence of cerebrovascular disease in psychiatric inpatients in Japan using brain magnetic resonance imaging (MRI). Method: This cross-sectional study was performed from January 2012 to December 2013. Study participants were 152 hospitalized patients (61 men and 91 women) in the Department of Psychiatry at Kohnodai Hospital, National Center for Global Health and Medicine, Ichikawa City, Japan. Mean ages were 50.0 and 57.1 years old for men and women, respectively. The diagnoses (DSM-IV-TR criteria) of participants were schizophrenia (69.1%), mood disorder (18.4%), and other mental disorders (12.5%). We checked physical status, metabolic status of glucose and lipid levels, and brain MRI within 1 week of admission. Results: The study group showed a significantly high prevalence of diabetes and low high-density lipoprotein (HDL) cholesterolemia in both sexes (n = 61 in men, n = 91 in women, P < .05). In the study group, serum fasting plasma glucose and hemoglobin A1c levels were significantly high (n = 152, P < .05), but serum HDL cholesterol and total cholesterol were significantly low in both sexes (n = 61 in men, n = 90 in women, P < .05), and triglycerides were low in men (n = 61, P < .05). Silent brain infarction was recognized at a higher rate (n = 98, P < .05) compared with healthy controls. Conclusions: Participants in this study had an increased ratio of silent brain infarction compared with Japanese healthy controls, accompanied with higher ratios of diabetes and low HDL cholesterol. PMID:26445690

  3. Development and evaluation of models to predict death and myocardial infarction following coronary angioplasty and stenting.

    PubMed

    Resnic, F S; Popma, J J; Ohno-Machado, L

    2000-01-01

    Prior estimates of the risk death and myocardial infarction following percutaneous coronary intervention (PCI) may not be uniformly applicable due to recent significant changes in clinical practice. Accordingly, we studied 2,804 cases from January 1997 through February 1999, in order to develop risk models to predict death, and post-procedural myocardial infarction following PCI. Risk models were constructed using multivariate logistic regression, artificial neural networks and prognostic risk scoring systems. Composite logistic regression models and artificial neural networks performed similarly in predicting the risk of major acute complications (c-index for predicting death of 0.812 and 0.807, respectively). Risk scoring models, based on the composite logistic regression beta coefficients, performed only slightly worse (c-index death = 0.794). Risk score models appear to provide reasonable discrimination while offering the potential for simple clinical implementation in the estimation of the risk of death and myocardial infarction in interventional cardiology. PMID:11079972

  4. The Role of the PI3K Pathway in the Regeneration of the Damaged Brain by Neural Stem Cells after Cerebral Infarction

    PubMed Central

    Lo, Eng H.

    2015-01-01

    Neurologic deficits resulting from stroke remain largely intractable, which has prompted thousands of studies aimed at developing methods for treating these neurologic sequelae. Endogenous neurogenesis is also known to occur after brain damage, including that due to cerebral infarction. Focusing on this process may provide a solution for treating neurologic deficits caused by cerebral infarction. The phosphatidylinositol-3-kinase (PI3K) pathway is known to play important roles in cell survival, and many studies have focused on use of the PI3K pathway to treat brain injury after stroke. Furthermore, since the PI3K pathway may also play key roles in the physiology of neural stem cells (NSCs), eliciting the appropriate activation of the PI3K pathway in NSCs may help to improve the sequelae of cerebral infarction. This review describes the PI3K pathway, its roles in the brain and NSCs after cerebral infarction, and the therapeutic possibility of activating the pathway to improve neurologic deficits after cerebral infarction. PMID:26320845

  5. Coupled agent-based and finite-element models for predicting scar structure following myocardial infarction.

    PubMed

    Rouillard, Andrew D; Holmes, Jeffrey W

    2014-08-01

    Following myocardial infarction, damaged muscle is gradually replaced by collagenous scar tissue. The structural and mechanical properties of the scar are critical determinants of heart function, as well as the risk of serious post-infarction complications such as infarct rupture, infarct expansion, and progression to dilated heart failure. A number of therapeutic approaches currently under development aim to alter infarct mechanics in order to reduce complications, such as implantation of mechanical restraint devices, polymer injection, and peri-infarct pacing. Because mechanical stimuli regulate scar remodeling, the long-term consequences of therapies that alter infarct mechanics must be carefully considered. Computational models have the potential to greatly improve our ability to understand and predict how such therapies alter heart structure, mechanics, and function over time. Toward this end, we developed a straightforward method for coupling an agent-based model of scar formation to a finite-element model of tissue mechanics, creating a multi-scale model that captures the dynamic interplay between mechanical loading, scar deformation, and scar material properties. The agent-based component of the coupled model predicts how fibroblasts integrate local chemical, structural, and mechanical cues as they deposit and remodel collagen, while the finite-element component predicts local mechanics at any time point given the current collagen fiber structure and applied loads. We used the coupled model to explore the balance between increasing stiffness due to collagen deposition and increasing wall stress due to infarct thinning and left ventricular dilation during the normal time course of healing in myocardial infarcts, as well as the negative feedback between strain anisotropy and the structural anisotropy it promotes in healing scar. The coupled model reproduced the observed evolution of both collagen fiber structure and regional deformation following coronary ligation in the rat, and suggests that fibroblast alignment in the direction of greatest stretch provides negative feedback on the level of anisotropy in a scar forming under load. In the future, this coupled model may prove useful in computational design and screening of novel therapies to influence scar formation in mechanically loaded tissues. PMID:25009995

  6. Therapeutic Effects of Human Multilineage-Differentiating Stress Enduring (MUSE) Cell Transplantation into Infarct Brain of Mice

    PubMed Central

    Yamauchi, Tomohiro; Kuroda, Yasumasa; Morita, Takahiro; Shichinohe, Hideo; Houkin, Kiyohiro; Dezawa, Mari; Kuroda, Satoshi

    2015-01-01

    Objective Bone marrow stromal cells (BMSCs) are heterogeneous and their therapeutic effect is pleiotropic. Multilineage-differentiating stress enduring (Muse) cells are recently identified to comprise several percentages of BMSCs, being able to differentiate into triploblastic lineages including neuronal cells and act as tissue repair cells. This study was aimed to clarify how Muse and non-Muse cells in BMSCs contribute to functional recovery after ischemic stroke. Methods Human BMSCs were separated into stage specific embryonic antigen-3-positive Muse cells and -negative non-Muse cells. Immunodeficient mice were subjected to permanent middle cerebral artery occlusion and received transplantation of vehicle, Muse, non-Muse or BMSCs (2.5×104 cells) into the ipsilateral striatum 7 days later. Results Motor function recovery in BMSC and non-Muse groups became apparent at 21 days after transplantation, but reached the plateau thereafter. In Muse group, functional recovery was not observed for up to 28 days post-transplantation, but became apparent at 35 days post-transplantation. On immunohistochemistry, only Muse cells were integrated into peri-infarct cortex and differentiate into Tuj-1- and NeuN-expressing cells, while negligible number of BMSCs and non-Muse cells remained in the peri-infarct area at 42 days post-transplantation. Conclusions These findings strongly suggest that Muse cells and non-Muse cells may contribute differently to tissue regeneration and functional recovery. Muse cells may be more responsible for replacement of the lost neurons through their integration into the peri-infarct cortex and spontaneous differentiation into neuronal marker-positive cells. Non-Muse cells do not remain in the host brain and may exhibit trophic effects rather than cell replacement. PMID:25747577

  7. Decreased brain infarct following focal ischemia in mice lacking the transcription factor E2F1.

    PubMed

    MacManus, J P; Koch, C J; Jian, M; Walker, T; Zurakowski, B

    1999-09-01

    E2F1+/- mice subjected to 2 h middle cerebral artery occlusion developed an infarct of 77.0 +/- 3.2 mm3 (mean +/- s.e.m., n = 15) in the ischemic hemisphere after 24 h reperfusion. A significantly smaller infarct of 58.8 +/- 4.8 mm3 (n = 15; p < 0.01) was found in E2F1-/- animals. Both deficient and normal mice had similar cerebral angioarchitecture and intra-ischemic decreases in regional blood flow. Similar areas of hypoxia in both groups of ischemic animals were demonstrated directly by immunohistochemical detection of nitroimidazole adducts. It was concluded that all animals received the same ischemic insult, yet the subsequent damage was different in the mutant mice. This is the first indication that the E2F1 gene plays a role in ischemic death of post-mitotic neurons. PMID:10511428

  8. Brain Stem Infarction Due to Basilar Artery Dissection in a Patient with Moyamoya Disease Four Years after Successful Bilateral Revascularization Surgeries.

    PubMed

    Abe, Takatsugu; Fujimura, Miki; Mugikura, Shunji; Endo, Hidenori; Tominaga, Teiji

    2016-06-01

    Moyamoya disease (MMD) is a rare cerebrovascular disease with an unknown etiology and is characterized by intrinsic fragility in the intracranial vascular walls such as the affected internal elastic lamina and thinning medial layer. The association of MMD with intracranial arterial dissection is extremely rare, whereas that with basilar artery dissection (BAD) has not been reported previously. A 46-year-old woman developed brain stem infarction due to BAD 4 years after successful bilateral superficial temporal artery-middle cerebral artery anastomosis with indirect pial synangiosis for ischemic-onset MMD. She presented with sudden occipitalgia and subsequently developed transient dysarthria and mild hemiparesis. Although a transient ischemic attack was initially suspected, her condition deteriorated in a manner that was consistent with left hemiplegia with severe dysarthria. Magnetic resonance (MR) imaging revealed brain stem infarction, and MR angiography delineated a double-lumen sign in the basilar artery, indicating BAD. She was treated conservatively and brain stem infarction did not expand. One year after the onset of brain stem infarction, her activity of daily living is still dependent (modified Rankin Scale of 4), and there were no morphological changes associated with BAD or recurrent cerebrovascular events during the follow-up period. The association of MMD with BAD is extremely rare. While considering the common underlying pathology such as an affected internal elastic lamina and fragile medial layer, the occurrence of BAD in a patient with MMD in a stable hemodynamic state is apparently unique. PMID:27068774

  9. Peri-infarct flow transients predict outcome in rat focal brain ischemia

    PubMed Central

    Lückl, Janos; Dreier, Jens P.; Szabados, Tamas; Wiesenthal, Dirk; Bari, Ferenc; Greenberg, Joel H.

    2012-01-01

    Spreading depolarizations are accompanied by transient changes in cerebral blood flow (CBF). In a post-hoc analysis of previously studied control rats we analysed CBF time courses after middle cerebral artery occlusion in the rat in order to test whether intra-ischemic flow, reperfusion, and different parameters of peri-infarct flow transients (PIFTs) (amplitude, number) can predict outcome. Sprague-Dawley rats anesthetized with either halothane (n=23) or isoflurane (n=32) underwent 90-minute filament occlusion of the middle cerebral artery followed by 72 hours of reperfusion. The infarct size was determined by 2,3,5-triphenyltetrazolium chloride staining. Relative CBF changes were monitored by laser Doppler flowmetry at 4–5 mm lateral, and 1–2 mm posterior to Bregma. An additional filament occlusion study (n=12) was performed to validate that PIFTs were coupled to direct current shifts of spreading depolarization. The PIFT-direct current shift study revealed that every PIFT was associated with a negative direct current shift typical of spreading depolarization. Post-hoc analysis showed that the number of PIFTs, especially with the combination of intra-ischemic level of flow, can predict the development of cortical infarcts. These findings show that PIFTs can serve as an early biomarker in predicting outcome in preclinical animal studies. PMID:22986160

  10. Regional left ventricular myocardial contractility and stress in a finite element model of posterobasal myocardial infarction.

    PubMed

    Wenk, Jonathan F; Sun, Kay; Zhang, Zhihong; Soleimani, Mehrdad; Ge, Liang; Saloner, David; Wallace, Arthur W; Ratcliffe, Mark B; Guccione, Julius M

    2011-04-01

    Recently, a noninvasive method for determining regional myocardial contractility, using an animal-specific finite element (FE) model-based optimization, was developed to study a sheep with anteroapical infarction (Sun et al., 2009, "A Computationally Efficient Formal Optimization of Regional Myocardial Contractility in a Sheep With Left Ventricular Aneurysm," ASME J. Biomech. Eng., 131(11), p. 111001). Using the methodology developed in the previous study (Sun et al., 2009, "A Computationally Efficient Formal Optimization of Regional Myocardial Contractility in a Sheep With Left Ventricular Aneurysm," ASME J. Biomech. Eng., 131(11), p. 111001), which incorporates tagged magnetic resonance images, three-dimensional myocardial strains, left ventricular (LV) volumes, and LV cardiac catheterization pressures, the regional myocardial contractility and stress distribution of a sheep with posterobasal infarction were investigated. Active material parameters in the noninfarcted border zone (BZ) myocardium adjacent to the infarct (T(max_B)), in the myocardium remote from the infarct (T(max_R)), and in the infarct (T(max_I)) were estimated by minimizing the errors between FE model-predicted and experimentally measured systolic strains and LV volumes using the previously developed optimization scheme. The optimized T(max_B) was found to be significantly depressed relative to T(max_R), while T(max_I) was found to be zero. The myofiber stress in the BZ was found to be elevated, relative to the remote region. This could cause further damage to the contracting myocytes, leading to heart failure. PMID:21428685

  11. Exploring diagnostic potentials of radioiodinated sennidin A in rat model of reperfused myocardial infarction.

    PubMed

    Jiang, Cuihua; Gao, Meng; Li, Yue; Huang, Dejian; Yao, Nan; Ji, Yun; Liu, Xuejiao; Zhang, Dongjian; Wang, Xiaoning; Yin, Zhiqi; Jing, Su; Ni, Yicheng; Zhang, Jian

    2015-11-10

    Non-invasive "hot spot imaging" and localization of necrotic tissue may be helpful for definitive diagnosis of myocardial viability, which is essential for clinical management of ischemic heart disease. We labeled Sennidin A (SA), a naturally occurring median dianthrone compound, with (131)I and evaluated (131)I SA as a potential necrosis-avid diagnostic tracer agent in rat model of reperfused myocardial infarction. Magnetic resonance imaging (MRI) was performed to determine the location and dimension of infarction. (131)I-SA was evaluated in rat model of 24-hour old reperfused myocardial infarction using single-photon emission computed tomography/computed tomography (SPECT/CT), biodistribution, triphenyltetrazolium chloride (TTC) histochemical staining, serial sectional autoradiography and microscopy. Gamma counting revealed high uptake and prolonged retention of (131)I SA in necrotic myocardium and fast clearance from non-targeted tissues. On SPECT/CT images, myocardial infarction was persistently visualized as well-defined hotspots over 24h, which was confirmed by perfect matches of images from post-mortem TTC staining and autoradiography. Radioactivity concentration in infarcted myocardium was over 9 times higher than that of the normal myocardium at 24h. With favorable hydrophilicity and stability, radioiodinated SA may serve as a necrosis-avid diagnostic agent for assessment of myocardial viability. PMID:26302863

  12. Regional assessment of LV wall in infarcted heart using tagged MRI and cardiac modelling.

    PubMed

    Jahanzad, Zeinab; Liew, Yih Miin; Bilgen, Mehmet; McLaughlin, Robert A; Leong, Chen Onn; Chee, Kok Han; Aziz, Yang Faridah Abdul; Ung, Ngie Min; Lai, Khin Wee; Ng, Siew-Cheok; Lim, Einly

    2015-05-21

    A segmental two-parameter empirical deformable model is proposed for evaluating regional motion abnormality of the left ventricle. Short-axis tagged MRI scans were acquired from 10 healthy subjects and 10 postinfarct patients. Two motion parameters, contraction and rotation, were quantified for each cardiac segment by fitting the proposed model using a non-rigid registration algorithm. The accuracy in motion estimation was compared to a global model approach. Motion parameters extracted from patients were correlated to infarct transmurality assessed with delayed-contrast-enhanced MRI. The proposed segmental model allows markedly improved accuracy in regional motion analysis as compared to the global model for both subject groups (1.22-1.40 mm versus 2.31-2.55 mm error). By end-systole, all healthy segments experienced radial displacement by ~25-35% of the epicardial radius, whereas the 3 short-axis planes rotated differently (basal: 3.3°; mid:  -1° and apical:  -4.6°) to create a twisting motion. While systolic contraction showed clear correspondence to infarct transmurality, rotation was nonspecific to either infarct location or transmurality but could indicate the presence of functional abnormality. Regional contraction and rotation derived using this model could potentially aid in the assessment of severity of regional dysfunction of infarcted myocardium. PMID:25919317

  13. Regional assessment of LV wall in infarcted heart using tagged MRI and cardiac modelling

    NASA Astrophysics Data System (ADS)

    Jahanzad, Zeinab; Miin Liew, Yih; Bilgen, Mehmet; McLaughlin, Robert A.; Onn Leong, Chen; Chee, Kok Han; Aziz, Yang Faridah Abdul; Ung, Ngie Min; Lai, Khin Wee; Ng, Siew-Cheok; Lim, Einly

    2015-05-01

    A segmental two-parameter empirical deformable model is proposed for evaluating regional motion abnormality of the left ventricle. Short-axis tagged MRI scans were acquired from 10 healthy subjects and 10 postinfarct patients. Two motion parameters, contraction and rotation, were quantified for each cardiac segment by fitting the proposed model using a non-rigid registration algorithm. The accuracy in motion estimation was compared to a global model approach. Motion parameters extracted from patients were correlated to infarct transmurality assessed with delayed-contrast-enhanced MRI. The proposed segmental model allows markedly improved accuracy in regional motion analysis as compared to the global model for both subject groups (1.22-1.40 mm versus 2.31-2.55 mm error). By end-systole, all healthy segments experienced radial displacement by ~25-35% of the epicardial radius, whereas the 3 short-axis planes rotated differently (basal: 3.3° mid:  -1° and apical:  -4.6°) to create a twisting motion. While systolic contraction showed clear correspondence to infarct transmurality, rotation was nonspecific to either infarct location or transmurality but could indicate the presence of functional abnormality. Regional contraction and rotation derived using this model could potentially aid in the assessment of severity of regional dysfunction of infarcted myocardium.

  14. A Nonthoracotomy Myocardial Infarction Model in an Ovine Using Autologous Platelets

    PubMed Central

    Spata, Tyler; Bobek, Daniel; Whitson, Bryan A.; Parthasarathy, Sampath; Mohler, Peter J.; Higgins, Robert S. D.; Kilic, Ahmet

    2013-01-01

    Objective. There is a paucity of a biological large animal model of myocardial infarction (MI). We hypothesized that, using autologous-aggregated platelets, we could create an ovine model that was reproducible and more closely mimicked the pathophysiology of MI. Methods. Mepacrine stained autologous platelets from male sheep (n = 7) were used to create a myocardial infarction via catheter injection into the mid-left anterior descending (LAD) coronary artery. Serial daily serum troponin measurements were taken and tissue harvested on post-embolization day three. Immunofluorescence microscopy was used to detect the mepacrine-stained platelet-induced thrombus, and histology performed to identify three distinct myocardial (infarct, peri-ischemic “border zone,” and remote) zones. Results. Serial serum troponin levels (μg/mL) measured 0.0 ± 0.0 at baseline and peaked at 297.4 ± 58.0 on post-embolization day 1, followed by 153.0 ± 38.8 on day 2 and 76.7 ± 19.8 on day 3. Staining confirmed distinct myocardial regions of inflammation and fibrosis as well as mepacrine-stained platelets as the cause of intravascular thrombosis. Conclusion. We report a reproducible, unique model of a biological myocardial infarction in a large animal model. This technique can be used to study acute, regional myocardial changes following a thrombotic injury. PMID:24367790

  15. [Increased circulating Ly6C(high); monocyte subsets are correlated with cerebral infarct size in cerebral ischemia/reperfusion mouse models].

    PubMed

    Zhang, Xin; Li, Hongxia; Li, Yuxiu; Ma, Yongqiang; Luo, Yanwei; Ji, Wenjie; Zhou, Xin; Li, Yuming

    2016-03-01

    Objective To investigate the dynamic changes of monocyte subsets after cerebral ischemia/reperfusion in mice and their correlations with infarct size and neurological defects. Methods Thirty male C57BL/6 mice were randomly divided into two groups: middle cerebral artery occlusion/reperfusion (MCAO/R) group and Sham group. MCAO/R mouse models were induced via the intraluminal suture technique (so called filament or suture model). The modified Neurological Severity Scores (mNSS) was used to assess neurological function 6, 12 hours, 1, 2, 3 days after MCAO/R. Blood samples were collected 1, 2 and 3 days after surgery to determine the dynamic changes of Ly6C(high); and Ly6C(low); subsets by flow cytometry. Triphenyltetrazolium chloride (TTC) staining and HE staining of the brains were also performed on day 1, 2 and 3. The relationships between the changes of monocyte subsets and the cerebral infarct size and neurological scores were studied by correlation analysis. Results Compared with the baseline, the proportion of Ly6C(high); monocytes significantly increased 1 day after MCAO/R surgery, reached the peak level on the following day and then declined. Compared with the Sham group, the proportion of Ly6C(high); monocytes went up obviously at each time point. TTC staining revealed that the infarct size increased markedly 2 days after surgery. The proportion of Ly6C(high); monocytes in the MCAO/R group was positively associated with the percentage of cerebral infarct size, and it also showed a positive correlation with neurological function deficit scores. Conclusion The dynamic changes of monocyte subsets after MCAO/R modeling revealed that Ly6C(high); subset peaked on day 2 after the operation and was correlated with cerebral infarct size. PMID:26927544

  16. Experimental model of small subcortical infarcts in mice with long-lasting functional disabilities.

    PubMed

    Uchida, Hiroki; Sakata, Hiroyuki; Fujimura, Miki; Niizuma, Kuniyasu; Kushida, Yoshihiro; Dezawa, Mari; Tominaga, Teiji

    2015-12-10

    Small subcortical infarcts account for 25% of all ischemic strokes. Although once considered to be a small vessel disease with a favorable outcome, recent studies have reported relatively poor long-term prognoses following small subcortical infarcts. Limited pre-clinical modeling has hampered understanding of the etiology and development of treatments for this disease. Therefore, we attempted to develop a new experimental model of small subcortical infarcts in mice to investigate pathophysiological changes in the corticospinal tract and assess long-term behavioral performance. The vasoconstrictor peptide, endothlin-1 (ET-1), in combination with the nitric oxide synthase inhibitor, N(G)-nitro-l-arginine methyl ester (l-NAME), were injected into the internal capsule of mice. Histological and behavioral tests were performed 0-8 weeks after the injection. The ET-1/l-NAME injection resulted in severe neurological deficits that continued for up to 8 weeks. The loss of axons and myelin surrounded by reactive gliosis was identified in the region of the injection, in which the vasoconstriction of microvessels was also observed. Moreover, a tract-tracing study revealed an interruption in axonal flow at the internal capsule. The present model of small subcortical infarcts is unique and novel due to the reproduction of neurological deficits that continue for a long period, up to 8 weeks, as well as the use of mice as experimental animals. The reproducibility, simplicity, and easy adoptability make the present model highly appealing for use in further pre-clinical studies on small subcortical infarcts. PMID:26522346

  17. Comparative Analysis of Methods to Induce Myocardial Infarction in a Closed-Chest Rabbit Model

    PubMed Central

    Isorni, Marc-Antoine; Casanova, Amaury; Piquet, Julie; Bellamy, Valérie; Pignon, Charly; Puymirat, Etienne; Menasche, Philippe

    2015-01-01

    Objective. To develop a rabbit model of closed-chest catheter-induced myocardial infarction. Background. Limitations of rodent and large animal models justify the search for clinically relevant alternatives. Methods. Microcatheterization of the heart was performed in 47 anesthetized 3-4 kg New Zealand rabbits to test five techniques of myocardial ischemia: free coils (n = 4), interlocking coils (n = 4), thrombogenic gelatin sponge (n = 4), balloon occlusion (n = 4), and alcohol injection (n = 8). In order to limit ventricular fibrillation, an antiarrhythmic protocol was implemented, with beta-blockers/amiodarone before and xylocaine infusion during the procedure. Clinical, angiographic, and echographic data were gathered. End points included demonstration of vessel occlusion (TIMI flow grades 0 and 1 on the angiogram), impairment of left ventricular function at 2 weeks after procedure (by echocardiography), and pathologically confirmed myocardial infarction. Results. The best arterial access was determined to be through the right carotid artery. The internal mammary guiding catheter 4-Fr was selected as the optimal device for selective intracoronary injection. Free coils deployed prematurely and tended to prolapse into the aorta. Interlocking coils did not deploy completely and failed to provide reliable results. Gelatin sponge was difficult to handle, adhered to the catheter, and could not be clearly visualized by fluoroscopy. Balloon occlusion yielded inconsistent results. Alcohol injection was the most efficient and reproducible method for inducing myocardial infarction (4 out of 6 animals), the extent of which could be fine-tuned by using a coaxial balloon catheter as a microcatheter (0.52 mm) to achieve a superselective injection of 0.2 mL of alcohol. This approach resulted in a 20% decrease in LVEF and infarcted myocardium was confirmed histologically. Conclusions. By following a stepwise approach, a minimally invasive, effective, and reproducible rabbit model of catheter-induced myocardial infarction has been developed which addresses the limitations of rodent experiments while avoiding the logistical and cost issues associated with large animal models. PMID:26504843

  18. On the influence of space storms on the frequency of infarct-myocardial, brain strokes, and hard car accidents; possible using of CR for their forecasting

    NASA Astrophysics Data System (ADS)

    Dorman, L. I.; Iucci, N.; Ptitsyna, N. G.; Villoresi, G.

    We consider the influence of space storms as strong interplanetary shock waves causing great cosmic ray Forbush-decreases and big geomagnetic storms on the people health at the ground level We used data of more than 7 millions ambulance cases in Moscow and St Petersburg included information on daily numbers of the hard traffic accidents infarctions and brain strokes We found that during space storms the average daily numbers of hard traffic accidents with using ambulances as well as infarctions and brain strokes confirmed by medical personal increase by 17 4 pm 3 1 10 5 pm 1 2 and 7 0 pm 1 7 respectively We show that the forecasting of these dangerous apace phenomena can be done partly by using cosmic ray data on pre-increase and pre-decrease effects as well as on the change of 3-D cosmic ray anisotropy

  19. Long-term effects of hepatocyte growth factor gene therapy in rat myocardial infarct model.

    PubMed

    Jin, Y-N; Inubushi, M; Masamoto, K; Odaka, K; Aoki, I; Tsuji, A B; Sagara, M; Koizumi, M; Saga, T

    2012-08-01

    We investigated the long-term effects of human hepatocyte growth factor (HGF) gene therapy in a rat myocardial infarct model. Treatment adenovirus coexpressing the HGF therapeutic gene and the human sodium/iodide symporter (NIS) reporter gene or control adenovirus expressing the NIS gene alone were injected directly into the infarct border zone immediately after permanent coronary ligation in rats (n=6 each). A uniform disease state was confirmed in the acute phase in terms of impaired left ventricular (LV) function by cine magnetic resonance imaging (MRI), large infarct extent by (99m)Tc-tetrofosmin single-photon emission computed tomography (SPECT) and successful gene transfer and expression by (99m)TcO(4)(-) SPECT. After a 10-week follow-up, repeated cine MRI demonstrated no significant difference in the LV ejection fraction between the time points or groups, but a significantly increased end-diastolic volume from the acute to the chronic phase without a significant difference between the groups. Capillary density was significantly higher in the treatment group, whereas arteriole density remained unchanged. Two-photon excitation fluorescence microscopy revealed extremely thin capillaries (2-5 μm), and their irregular networks increased in the infarct border zone of the treated myocardium. Our results indicated that single HGF gene therapy alone induced an immature and irregular microvasculature. PMID:21918549

  20. rCBF-SPECT in brain infarction: When does it predict outcome

    SciTech Connect

    Limburg, M.; van Royen, E.A.; Hijdra, A.; Verbeeten, B. Jr. )

    1991-03-01

    We prospectively studied 26 patients with ischemic stroke within 24 hr, after 2 wk, and after 6 mo with thallium-201-diethyldithiocarbamate single-photon emission computed tomography (SPECT) and neurologic and functional assessments. The admission flow deficits correlated with outcome. The admission and 6-mo scores correlated with clinical conditions at each time. At 2 wk, the flow deficits were smaller and did not correlate with clinical parameters. Nor did the presence or absence of hyperfixation of the radiopharmaceutical. Six months after the infarct, the flow defect had decreased in 9 of 15 patients in whom three serial scans were available, with better clinical improvement than in the remaining six whose flow deficits increased. More patients in the first group had been treated randomly with the calcium-entry blocker flunarizine. SPECT imaging of rCBF within 24 hr after stroke correlates with clinical outcome and condition, whereas rCBF imaging at 2 wk after the stroke shows no clinical correlation.

  1. Higher coated-platelet levels are associated with stroke recurrence following nonlacunar brain infarction

    PubMed Central

    Prodan, Calin I; Stoner, Julie A; Cowan, Linda D; Dale, George L

    2013-01-01

    Coated-platelets are procoagulant platelets observed upon dual-agonist stimulation with collagen and thrombin. Coated-platelet levels are elevated in patients with nonlacunar (large-vessel) ischemic stroke and decreased in patients with spontaneous intracerebral hemorrhage as compared with controls. The purpose of this study was to investigate a possible relationship between coated-platelet levels and stroke recurrence in patients with nonlacunar ischemic stroke. We assayed coated-platelet levels in 190 consecutive patients with nonlacunar stroke who were followed for up to 12 months; 20 subjects experienced recurrent stroke. Subjects were categorized into tertiles of coated-platelet levels. The distributions of time-to-recurrent stroke were estimated for each tertile using cumulative incidence curves and compared statistically using a log-rank test. The cumulative incidence of recurrent stroke at 12 months differed among the coated-platelet tertiles: 2% for the first tertile (lowest coated-platelet levels), 18% for the second tertile, and 17% for the third tertile (overall log-rank test, P=0.019). These data suggest that higher levels of coated-platelets, measured shortly after a nonlacunar stroke, are associated with an increased incidence of stroke recurrence. This observation offers an additional tool for identifying patients at highest risk for stroke recurrence following a nonlacunar (large-vessel) infarct. PMID:23149559

  2. Arrhythmia risk stratification of patients after myocardial infarction using personalized heart models

    PubMed Central

    Arevalo, Hermenegild J.; Vadakkumpadan, Fijoy; Guallar, Eliseo; Jebb, Alexander; Malamas, Peter; Wu, Katherine C.; Trayanova, Natalia A.

    2016-01-01

    Sudden cardiac death (SCD) from arrhythmias is a leading cause of mortality. For patients at high SCD risk, prophylactic insertion of implantable cardioverter defibrillators (ICDs) reduces mortality. Current approaches to identify patients at risk for arrhythmia are, however, of low sensitivity and specificity, which results in a low rate of appropriate ICD therapy. Here, we develop a personalized approach to assess SCD risk in post-infarction patients based on cardiac imaging and computational modelling. We construct personalized three-dimensional computer models of post-infarction hearts from patients' clinical magnetic resonance imaging data and assess the propensity of each model to develop arrhythmia. In a proof-of-concept retrospective study, the virtual heart test significantly outperformed several existing clinical metrics in predicting future arrhythmic events. The robust and non-invasive personalized virtual heart risk assessment may have the potential to prevent SCD and avoid unnecessary ICD implantations. PMID:27164184

  3. Arrhythmia risk stratification of patients after myocardial infarction using personalized heart models.

    PubMed

    Arevalo, Hermenegild J; Vadakkumpadan, Fijoy; Guallar, Eliseo; Jebb, Alexander; Malamas, Peter; Wu, Katherine C; Trayanova, Natalia A

    2016-01-01

    Sudden cardiac death (SCD) from arrhythmias is a leading cause of mortality. For patients at high SCD risk, prophylactic insertion of implantable cardioverter defibrillators (ICDs) reduces mortality. Current approaches to identify patients at risk for arrhythmia are, however, of low sensitivity and specificity, which results in a low rate of appropriate ICD therapy. Here, we develop a personalized approach to assess SCD risk in post-infarction patients based on cardiac imaging and computational modelling. We construct personalized three-dimensional computer models of post-infarction hearts from patients' clinical magnetic resonance imaging data and assess the propensity of each model to develop arrhythmia. In a proof-of-concept retrospective study, the virtual heart test significantly outperformed several existing clinical metrics in predicting future arrhythmic events. The robust and non-invasive personalized virtual heart risk assessment may have the potential to prevent SCD and avoid unnecessary ICD implantations. PMID:27164184

  4. Tubastatin A, an HDAC6 inhibitor, alleviates stroke-induced brain infarction and functional deficits: potential roles of α-tubulin acetylation and FGF-21 up-regulation

    PubMed Central

    Wang, Zhifei; Leng, Yan; Wang, Junyu; Liao, Hsiao-Mei; Bergman, Joel; Leeds, Peter; Kozikowski, Alan; Chuang, De-Maw

    2016-01-01

    Histone deacetylase (HDAC) 6 exists exclusively in cytoplasm and deacetylates cytoplasmic proteins such as α-tubulin. HDAC6 dysfunction is associated with several pathological conditions in the central nervous system. This study investigated the beneficial effects of tubastatin A (TubA), a novel specific HDAC6 inhibitor, in a rat model of transient middle cerebral artery occlusion (MCAO) and an in vitro model of excitotoxicity. Post-ischemic TubA treatment robustly improved functional outcomes, reduced brain infarction, and ameliorated neuronal cell death in MCAO rats. These beneficial effects lasted at least three days after MCAO. Notably, when given at 24 hours after MCAO, TubA still exhibited significant protection. Levels of acetylated α-tubulin were decreased in the ischemic hemisphere on Days 1 and 3 after MCAO, and were significantly restored by TubA. MCAO markedly downregulated fibroblast growth factor-21 (FGF-21) and TubA significantly reversed this downregulation. TubA also mitigated impaired FGF-21 signaling in the ischemic hemisphere, including up-regulating β-Klotho, and activating ERK and Akt/GSK-3β signaling pathways. In addition, both TubA and exogenous FGF-21 conferred neuroprotection and restored mitochondrial trafficking in rat cortical neurons against glutamate-induced excitotoxicity. Our findings suggest that the neuroprotective effects of TubA likely involve HDAC6 inhibition and the subsequent up-regulation of acetylated α-tubulin and FGF-21. PMID:26790818

  5. Synergistic effects of nitric oxide and exercise on revascularisation in the infarcted ventricle in a murine model of myocardial infarction

    PubMed Central

    Ranjbar, Kamal; Nazem, Farzad; Nazari, Afshin; Gholami, Mohammadreza; Nezami, Ali Reza; Ardakanizade, Malihe; Sohrabi, Maryam; Ahmadvand, Hasan; Mottaghi, Mohammad; Azizi, Yaser

    2015-01-01

    It has been shown that density of microvessels decreases in the left ventricular after myocardial infarction (MI). The change of angiogenic and angiostatic factors as the main factors in revascularisation after exercise training in area at risk is not determined yet in MI. Therefore, the aim of the present study was the effect of exercise training and L-arginine supplementation on area at risk angiogenesis in myocardial infarction rat. Four weeks after surgery (Left Anterior Descending Coronary artery Ligation), myocardial infarction rats were divided into 4 groups: Sedentary rats (Sed-MI); L-arginine supplementation (La-MI); Exercise training (Ex-MI) and Exercise + L-arginine (Ex+La). Exercise training (ET) lasted for 10 weeks at 17 m/min for 10-50 min day−1. Rats in the L-arginine-treated groups drank water containing 4 % L-arginine. After ET and L-arginine supplementation, ventricular function was evaluated and angiogenic and angiostatic indices were measured at ~1 mm from the edge of scar tissue (area at risk). Statistical analysis revealed that gene expression of VEGF as an angiogenic factor, angiostatin as an angiostatic factor and caspase-3 at area at risk decrease significantly in response to exercise training compared to the sedentary group. The capillary and arteriolar density in the Ex groups were significantly higher than those of the Sed groups. Compared to the Ex-MI group, the Ex+La group showed a markedly increase in capillary to fiber ratio. No significant differences were found in infarct size among the four groups, but cardiac function increased in response to exercise. Exercise training increases revascularization at area at risk by reduction of angiostatin. L-arginine supplementation causes additional effects on exercise-induced angiogenesis by preventing more reduction of VEGF gene expression in response to exercise. These improvements, in turn, increase left ventricular systolic function and decrease mortality in myocardial infarction rats. PMID:26869868

  6. Effects of Edaravone, a Free Radical Scavenger, on Photochemically Induced Cerebral Infarction in a Rat Hemiplegic Model

    PubMed Central

    Harada, Katsuhiro; Ohwatashi, Akihiko; Kamikawa, Yurie

    2013-01-01

    Edaravone is a free radical scavenger that protects the adjacent cortex during cerebral infarction. We created a hemiparetic model of cerebral thrombosis from a photochemically induced infarction with the photosensitive dye, rose bengal, in rats. We examined the effects of edaravone on recovery in the model. A total of 36 adult Wistar rats were used. The right sensorimotor area was irradiated with green light with a wavelength of 533 nm (10 mm diameter), and the rose bengal was injected intravenously to create an infarction. The edaravone group was injected intraperitoneally with edaravone (3 mg/kg), and the control group was injected with saline. The recovery process of the hemiplegia was evaluated with the 7-step scale of Fenny. The infarcted areas were measured after fixation. The recovery of the paralysis in the edaravone-treated group was significantly earlier than that in the untreated group. Seven days later, both groups were mostly recovered and had scores of 7, and the infarction region was significantly smaller in the edaravone-treated group. Edaravone reduced the infarction area and promoted the functional recovery of hemiparesis from cerebral thrombosis in a rat model. These findings suggest that edaravone treatment would be effective in clinical patients recovering from cerebral infarction. PMID:23853531

  7. Effects of edaravone, a free radical scavenger, on photochemically induced cerebral infarction in a rat hemiplegic model.

    PubMed

    Ikeda, Satoshi; Harada, Katsuhiro; Ohwatashi, Akihiko; Kamikawa, Yurie

    2013-01-01

    Edaravone is a free radical scavenger that protects the adjacent cortex during cerebral infarction. We created a hemiparetic model of cerebral thrombosis from a photochemically induced infarction with the photosensitive dye, rose bengal, in rats. We examined the effects of edaravone on recovery in the model. A total of 36 adult Wistar rats were used. The right sensorimotor area was irradiated with green light with a wavelength of 533 nm (10 mm diameter), and the rose bengal was injected intravenously to create an infarction. The edaravone group was injected intraperitoneally with edaravone (3 mg/kg), and the control group was injected with saline. The recovery process of the hemiplegia was evaluated with the 7-step scale of Fenny. The infarcted areas were measured after fixation. The recovery of the paralysis in the edaravone-treated group was significantly earlier than that in the untreated group. Seven days later, both groups were mostly recovered and had scores of 7, and the infarction region was significantly smaller in the edaravone-treated group. Edaravone reduced the infarction area and promoted the functional recovery of hemiparesis from cerebral thrombosis in a rat model. These findings suggest that edaravone treatment would be effective in clinical patients recovering from cerebral infarction. PMID:23853531

  8. Hierarchical Models in the Brain

    PubMed Central

    Friston, Karl

    2008-01-01

    This paper describes a general model that subsumes many parametric models for continuous data. The model comprises hidden layers of state-space or dynamic causal models, arranged so that the output of one provides input to another. The ensuing hierarchy furnishes a model for many types of data, of arbitrary complexity. Special cases range from the general linear model for static data to generalised convolution models, with system noise, for nonlinear time-series analysis. Crucially, all of these models can be inverted using exactly the same scheme, namely, dynamic expectation maximization. This means that a single model and optimisation scheme can be used to invert a wide range of models. We present the model and a brief review of its inversion to disclose the relationships among, apparently, diverse generative models of empirical data. We then show that this inversion can be formulated as a simple neural network and may provide a useful metaphor for inference and learning in the brain. PMID:18989391

  9. Hierarchical models in the brain.

    PubMed

    Friston, Karl

    2008-11-01

    This paper describes a general model that subsumes many parametric models for continuous data. The model comprises hidden layers of state-space or dynamic causal models, arranged so that the output of one provides input to another. The ensuing hierarchy furnishes a model for many types of data, of arbitrary complexity. Special cases range from the general linear model for static data to generalised convolution models, with system noise, for nonlinear time-series analysis. Crucially, all of these models can be inverted using exactly the same scheme, namely, dynamic expectation maximization. This means that a single model and optimisation scheme can be used to invert a wide range of models. We present the model and a brief review of its inversion to disclose the relationships among, apparently, diverse generative models of empirical data. We then show that this inversion can be formulated as a simple neural network and may provide a useful metaphor for inference and learning in the brain. PMID:18989391

  10. Computational Modeling of the Effects of Myocardial Infarction on Left Ventricular Hemodynamics

    NASA Astrophysics Data System (ADS)

    Vedula, Vijay; Seo, Jung Hee; Mittal, Rajat; Fortini, Stefania; Querzoli, Giorgio

    2012-11-01

    Most in-vivo and modeling studies on myocardial infarction and ischemia have been directed towards understanding the left ventricular wall mechanics including stress-strain behavior, end systolic pressure-volume correlations, ejection fraction and stroke work. Fewer studies have focused on the alterations in the intraventricular blood flow behavior due to local infarctions. Changes in the motion of the endocardium can cause local circulation and stagnation regions; these increase the blood cell residence time in the left ventricle and may eventually be implicated in thrombus formation. In the present study, we investigate the effects of myocardial infarction on the ventricular hemodynamics in simple models of the left ventricle using an immersed-boundary flow solver. Apart from the Eulerian flow features such as vorticity and velocity flow fields, pressure distribution, shear stress, viscous dissipation and pump work, we also examine the Lagrangian dynamics of the flow to gain insights into the effect of flow dynamics on thrombus formation. The study is preceded by a comprehensive validation study which is based on an in-vitro experimental model of the left ventricle and this study is also described. This research is supported by the U.S. National Science Foundation through (NSF) CDI-Type II grant IOS-1124804. Computational resources for some of the simulations were also provided in part through the NSF grant NSF-OCI-108849.

  11. Blood brain barrier breakdown was found in non-infarcted area after 2-h MCAO.

    PubMed

    Wang, Xiaona; Liu, Yushan; Sun, Yanyun; Liu, Wenlan; Jin, Xinchun

    2016-04-15

    The blood brain barrier (BBB) could be damaged within the thrombolytic time window and is considered to be a precursor to hemorrhagic transformation during reperfusion. Although we have recently reported the association between BBB damage and tissue injury within the thrombolytic time window, our knowledge about this early BBB damage is limited. In this study, rats were subjected to 2-h middle cerebral artery occlusion (MCAO) followed by 10min reperfusion with Evan's blue as a tracer to detect BBB damage. Rat brain was sliced into 10 consecutive sections and with TTC staining, a macro and full view of the spatial distribution of BBB damage and tissue injury could be clearly seen in the same group of animals. After 2-h MCAO, tissue injury started from 2nd slice and the BBB leakage started from the 5th slice, of note, there is no colocalization between BBB damage and tissue injury. Fluoro Jade B was employed to explore the localization of neuronal degeneration, and our results showed that 2-h MCAO produced greater number of positive cells in ischemic cortex and dorsal striatum than other areas. More important, 2-h MCAO induced occludin but not claudin-5 degradation in the ischemic hemisphere and pretreatment with MMP inhibitor GM6001 significantly reduced occludin degradation as well as BBB damage detected by IgG leakage. Taken together, our findings demonstrated a "mismatch" between ischemic tissue injury and BBB leakage and a differential degradation of occludin and claudin-5 by MMP-2 after 2-h MCAO. PMID:27000223

  12. Cardiac Motion Analysis Using High-Speed Video Images in a Rat Model for Myocardial Infarction

    NASA Astrophysics Data System (ADS)

    Ishii, Idaku; Okuda, Toshikazu; Nie, Yuman; Takaki, Takeshi; Orito, Kensuke; Tanaka, Akane; Matsuda, Hiroshi

    In this study, we performed a cardiac motion analysis by using 1000-frames per second (fps) stereo images to capture the three-dimensional motion of small color markers in a rat heart. This method of recording cardiac motion could quantify the rate of change in the myocardial area, which indicated localized myocardial activity of rhythmic expansion and contraction. We analyzed the three-dimensional motion distributions in a rat model for myocardial infarction, in which the heart rate was 4 times/s or more. In the analysis, we spatiotemporally quantified the characteristic cardiac motion in ischemic heart diseases and found that infarction due to ischemia in the rat heart was spread around the left ventricle.

  13. Anaerobic Threshold by Mathematical Model in Healthy and Post-Myocardial Infarction Men.

    PubMed

    Novais, L D; Silva, E; Simões, R P; Sakabe, D I; Martins, L E B; Oliveira, L; Diniz, C A R; Gallo, L; Catai, A M

    2016-02-01

    The aim of this study was to determine the anaerobic threshold (AT) in a population of healthy and post-myocardial infarction men by applying Hinkley's mathematical method and comparing its performance to the ventilatory visual method. This mathematical model, in lieu of observer-dependent visual determination, can produce more reliable results due to the uniformity of the procedure. 17 middle-aged men (55±3 years) were studied in 2 groups: 9 healthy men (54±2 years); and 8 men with previous myocardial infarction (57±3 years). All subjects underwent an incremental ramp exercise test until physical exhaustion. Breath-by-breath ventilatory variables, heart rate (HR), and vastus lateralis surface electromyography (sEMG) signal were collected throughout the test. Carbon dioxide output (V˙CO2), HR, and sEMG were studied, and the AT determination methods were compared using correlation coefficients and Bland-Altman plots. Parametric statistical tests were applied with significance level set at 5%. No significant differences were found in the HR, sEMG, and ventilatory variables at AT between the different methods, such as the intensity of effort relative to AT. Moreover, important concordance and significant correlations were observed between the methods. We concluded that the mathematical model was suitable for detecting the AT in both healthy and myocardial infarction subjects. PMID:26509383

  14. Neural differentiation of transplanted neural stem cells in a rat model of striatal lacunar infarction: light and electron microscopic observations

    PubMed Central

    Muetn-Gmez, Vilma C.; Doncel-Prez, Ernesto; Fernandez, Ana P.; Serrano, Julia; Pozo-Rodriglvarez, Andrea; Vellosillo-Huerta, Lara; Taylor, Julian S.; Cardona-Gmez, Gloria P.; Nieto-Sampedro, Manuel; Martnez-Murillo, Ricardo

    2012-01-01

    The increased risk and prevalence of lacunar stroke and Parkinson's disease (PD) makes the search for better experimental models an important requirement for translational research. In this study we assess ischemic damage of the nigrostriatal pathway in a model of lacunar stroke evoked by damaging the perforating arteries in the territory of the substantia nigra (SN) of the rat after stereotaxic administration of endothelin-1 (ET-1), a potent vasoconstrictor peptide. We hypothesized that transplantation of neural stem cells (NSCs) with the capacity of differentiating into diverse cell types such as neurons and glia, but with limited proliferation potential, would constitute an alternative and/or adjuvant therapy for lacunar stroke. These cells showed neuritogenic activity in vitro and a high potential for neural differentiation. Light and electron microscopy immunocytochemistry was used to characterize GFP-positive neurons derived from the transplants. 48 h after ET-1 injection, we characterized an area of selective degeneration of dopaminergic neurons within the nigrostriatal pathway characterized with tissue necrosis and glial scar formation, with subsequent behavioral signs of Parkinsonism. Light microscopy showed that grafted cells within the striatal infarction zone differentiated with a high yield into mature glial cells (GFAP-positive) and neuron types present in the normal striatum. Electron microscopy revealed that NSCs-derived neurons integrated into the host circuitry establishing synaptic contacts, mostly of the asymmetric type. Astrocytes were closely associated with normal small-sized blood vessels in the area of infarct, suggesting a possible role in the regulation of the blood brain barrier and angiogenesis. Our results encourage the use of NSCs as a cell-replacement therapy for the treatment of human vascular Parkinsonism. PMID:22876219

  15. Heliox and oxygen reduce infarct volume in a rat model of focal ischemia.

    PubMed

    Pan, Yi; Zhang, Haibo; VanDeripe, Donald R; Cruz-Flores, Salvador; Panneton, W Michael

    2007-06-01

    Normobaric hyperoxia treatment has recently been demonstrated to be remarkably beneficial in acute focal ischemia. The present study compared hyperoxia treatment with a novel heliox treatment. Adult male rats breathed 30% oxygen and 70% nitrogen (control group), 100% oxygen (hyperoxia group), or 30% oxygen and 70% helium (heliox group) during a middle cerebral artery occlusion for 2 h and a 1-hour reperfusion (n=6 in each group). Neurological deficits were scored at 3 and 24 h post focal ischemia. Neither the physiological parameters (body temperature, blood pressure, heart rate, O(2) saturation, and laser Doppler cerebral blood) nor the 3-hour post ischemia neurological scores differed between groups. However, the neurological scores showed a statistically significant improvement at 24 h post ischemia in the heliox group (p<0.05). The infarct volume (mean+SD) as measured by 2,3,5-triphenyltetrazolium staining included 36+/-17% of the involved hemisphere in the control group, 16+/-14% in the hyperoxia group, and 4+/-2% in the heliox group (p<0.01). In conclusion, whereas hyperoxia reduced the infarct volume, heliox further reduced the infarct volume and improved 24-hour neurological deficits in a rat model of focal ischemia. This suggests that a greater benefit may accrue from heliox therapy. PMID:17467695

  16. Testosterone replacement attenuates mitochondrial damage in a rat model of myocardial infarction.

    PubMed

    Wang, Fengyue; Yang, Jing; Sun, Junfeng; Dong, Yanli; Zhao, Hong; Shi, Hui; Fu, Lu

    2015-05-01

    Testosterone can affect cardiovascular disease, but its effects on mitochondrial dynamics in the post-infarct myocardium remain unclear. To observe the effects of testosterone replacement, a rat model of castration-myocardial infarction (MI) was established by ligating the left anterior descending coronary artery 2 weeks after castration with or without testosterone treatment. Expression of mitochondrial fission and fusion proteins was detected by western blot and immunofluorescence 14 days after MI. Cardiac function, myocardial inflammatory infiltration and fibrosis, cardiomyocyte apoptosis, mitochondrial microstructure, and ATP levels were also assessed. Compared with MI rats, castrated rats showed aggravated mitochondrial and myocardial insults, including mitochondrial swelling and disordered arrangement; loss of cristae, reduced mitochondrial length; decreased ATP levels; cardiomyocyte apoptosis; and impaired cardiac function. Results of western blotting analyses indicated that castration downregulated peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1A) and mitofusin 2, but upregulated dynamin-related protein 1. The results were also supported by results obtained using immunofluorescence. However, these detrimental effects were reversed by testosterone supplementation, which also elevated the upstream AMP-activated protein kinase (AMPK) activation of PGC1A. Thus, testosterone can protect mitochondria in the post-infarct myocardium, partly via the AMPK-PGC1A pathway, thereby decreasing mitochondrial dysfunction and cardiomyocyte apoptosis. The effects of testosterone were confirmed by the results of ELISA analyses. PMID:25770118

  17. Intraperitoneal bilirubin administration decreases infarct area in a rat coronary ischemia/reperfusion model

    PubMed Central

    Ben-Amotz, Ron; Bonagura, John; Velayutham, Murugesan; Hamlin, Robert; Burns, Patrick; Adin, Christopher

    2014-01-01

    Bilirubin was previously considered a toxin byproduct of heme catabolism. However, a mounting body of evidence suggests that at physiological doses, bilirubin is a powerful antioxidant and anti-atherosclerotic agent. Recent clinical studies have shown that human beings with genetically-induced hyperbilirubinemia (Gilbert Syndrome) are protected against coronary heart disease. The purpose of this study was to investigate whether administration of exogenous bilirubin to normal rats would convey similar protective effects in an experimental model of coronary ischemia. We hypothesized that intraperitoneal bilirubin administration 1 h before injury would decrease infarct area and preserve left ventricular (LV) systolic function when compared to non-treated rats. Coronary ischemia was induced by temporary (30 min) ligation of the left anterior descending coronary artery in control or bilirubin treated rats, followed by a 1-h period of reperfusion. LV function was estimated by measurements of fractional shortening (FS) and fractional area shortening using echocardiography. LV function decreased in both experimental groups after ischemia and reperfusion, although in bilirubin-treated rats FS was less depressed during the period of ischemia (18.8 vs. 25.8%, p = 0.034). Infarct size was significantly reduced in the bilirubin treated group compared to the non-treated group (13.34 vs. 25.5%, p = 0.0067). Based on the results of this study, bilirubin supplementation appears to provide significant decrease in infarct size although protective effects on LV function were noted only during the period of ischemia. This result also suggests that lipid soluble antioxidant bilirubin prevents the oxidation of cardiolipin and decreases the infarct size in the heart during ischemia. PMID:24600401

  18. Defibrotide reduces infarct size in a rabbit model of experimental myocardial ischaemia and reperfusion.

    PubMed Central

    Thiemermann, C.; Thomas, G. R.; Vane, J. R.

    1989-01-01

    1. Defibrotide, a single-stranded polydeoxyribonucleotide obtained from bovine lungs, has significant anti-thrombotic, pro-fibrinolytic and prostacyclin-stimulating properties. 2. The present study was designed to evaluate the effects of defibrotide on infarct size and regional myocardial blood flow in a rabbit model of myocardial ischaemia and reperfusion. 3. Defibrotide (32 mg kg-1 bolus + 32 mg kg-1 h-1, i.v.) either with or without co-administration of indomethacin (5 mg kg-1 x 2, i.v.) was administered 5 min after occlusion of the left anterior-lateral coronary artery and continued during the 60 min occlusion and subsequent 3 h reperfusion periods. 4. Defibrotide significantly attenuated the ischaemia-induced ST-segment elevation and abolished the reperfusion-related changes (R-wave reduction and Q-wave development) in the electrocardiogram. In addition, defibrotide significantly improved myocardial blood flow in normal and in ischaemic, but not in infarcted sections of the heart. The improvement in blood flow in normal perfused myocardium, but not in the ischaemic area was prevented by indomethacin. 5. Although the area at risk was similar in all animal groups studied, defibrotide treatment resulted in a 51% reduction of infarct size. Indomethacin treatment abolished the reduction of infarct size seen with defibrotide alone. 6. The data demonstrate a considerable cardioprotective effect of defibrotide in the reperfused ischaemic rabbit myocardium. This effect may be related, at least in part, to a stimulation of endogenous prostaglandin formation. Other possible mechanisms are discussed. PMID:2758223

  19. Predictors of Pulmonary Infarction.

    PubMed

    Miniati, Massimo; Bottai, Matteo; Ciccotosto, Cesario; Roberto, Luca; Monti, Simonetta

    2015-10-01

    In the setting of acute pulmonary embolism (PE), pulmonary infarction is deemed to occur primarily in individuals with compromised cardiac function.The current study was undertaken to establish the prevalence of pulmonary infarction in patients with acute PE, and the relationship between infarction and: age, body height, body mass index (BMI), smoking habits, clot burden, and comorbidities.The authors studied prospectively 335 patients with acute PE diagnosed by computed tomographic angiography (CT) in 18 hospitals throughout central Italy. The diagnosis of pulmonary infarction on CT was based on Hampton and Castleman's criteria (cushion-like or hemispherical consolidation lying along the visceral pleura). Multivariable logistic regression was used to model the relationship between covariates and the probability of pulmonary infarction.The prevalence of pulmonary infarction was 31%. Patients with infarction were significantly younger and with significantly lower prevalence of cardiovascular disease than those without (P?infarction increased linearly with increasing height, and decreased with increasing BMI. In logistic regression, the covariates significantly associated with the probability of infarction were age, body height, BMI, and current smoking. The risk of infarction grew with age, peaked at approximately age 40, and decreased afterwards. Increasing body height and current smoking were significant amplifiers of the risk of infarction, whereas increasing BMI appeared to confer some protection.Our data indicate that pulmonary infarction occurs in nearly one-third of the patients with acute PE. Those with infarction are often young and otherwise healthy. Increasing body height and active smoking are predisposing risk factors. PMID:26469892

  20. Current models of the marmoset brain.

    PubMed

    Hashikawa, Tsutomu; Nakatomi, Reiko; Iriki, Atsushi

    2015-04-01

    Since the availability of the common marmoset monkey as a primate model in neuroscience research has recently increased, much effort has been made to develop a reliable guide of the brain structures of this species. In this article, we review the development of the marmoset brain atlas and discuss a newly developed brain model, which was reconstructed from histological sections under volume-rendering technology. This kind of brain model allows virtual sections to be constructed on any axis, with nomenclatural annotations to structures in situ. This model is also applicable for the identification of structures revealed in magnetic resonance imaging studies. The brain model is accessible at the following web address: http://brainatlas.brain.riken.jp/marmoset/modules/xoonips/listitem.php?index_id=66. PMID:25817023

  1. Inhomogeneity of collagen organization within the fibrotic scar after myocardial infarction: results in a swine model and in human samples.

    PubMed

    Hervas, Arantxa; Ruiz-Sauri, Amparo; de Dios, Elena; Forteza, Maria Jose; Minana, Gema; Nunez, Julio; Gomez, Cristina; Bonanad, Clara; Perez-Sole, Nerea; Gavara, Jose; Chorro, Francisco Javier; Bodi, Vicente

    2016-01-01

    We aimed to characterize the organization of collagen within a fibrotic scar in swine and human samples from patients with chronic infarctions. Swine were subjected to occlusion of the left anterior descending artery followed by reperfusion 1 week (acute myocardial infarction group) or 1 month (chronic myocardial infarction group) after infarction. The organization of the collagen fibers (Fast Fourier Transform of samples after picrosirius staining; higher values indicate more disorganization) was studied in 100 swine and 95 human samples. No differences in collagen organization were found between the acute and chronic groups in the core area of the scar in the experimental model. In the chronic group, the endocardium [0.90 (0.84-0.94); median (interquartile range)], epicardium [0.84 (0.79-0.91)] and peripheral area [0.73 (0.63-0.83)] displayed a much more disorganized pattern than the core area of the fibrotic scar [0.56 (0.45-0.64)]. Similarly, in human samples, the collagen fibers were more disorganized in all of the outer areas than in the core of the fibrotic scar (P<0.0001). Both in a highly controlled experimental model and in patient samples, collagen fibers exhibited an organized pattern in the core of the infarction, whereas the outer areas displayed a high level of inhomogeneity. This finding contributes pathophysiological information regarding the healing process and may lead to a clearer understanding of the genesis and invasive treatment of arrhythmias after acute myocardial infarction. PMID:26510481

  2. Magnetic targeting enhances retrograde cell retention in a rat model of myocardial infarction

    PubMed Central

    2013-01-01

    Introduction Retrograde coronary venous infusion is a promising delivery method for cellular cardiomyoplasty. Poor cell retention is the major obstacle to the establishment of this method as the preferred route for cell delivery. Here, we explored whether magnetic targeting could enhance retrograde cell retention in a rat model of myocardial infarction. Methods Rat mesenchymal stem cells were labeled with superparamagnetic oxide nanoparticles. The magnetic responsiveness of MSCs was observed while cells flowed through a tube that served as a model of blood vessels in a 0.6-Tesla magnetic field. In a Sprague–Dawley rat model of acute myocardial infarction, 1 × 106 magnetic mesenchymal stem cells were transjugularly injected into the left cardiac vein while a 0.6-Tesla magnet was placed above the heart. The cardiac retention of transplanted cells was assessed by using quantitative Y chromosome-specific polymerase chain reaction, cardiac magnetic resonance imaging, and optical imaging. Cardiac function was measured by using echocardiography, and histologic analyses of infarct morphology and angiogenesis were obtained. Results The flowing iron oxide-labeled mesenchymal stem cells were effectively attracted to the area where the magnet was positioned. Twenty-four hours after cellular retrocoronary delivery, magnetic targeting significantly increased the cardiac retention of transplanted cells by 2.73- to 2.87-fold. Histologic analyses showed that more transplanted cells were distributed in the anterior wall of the left ventricle. The enhanced cell engraftment persisted for at least 3 weeks, at which time, left ventricular remodeling was attenuated, and cardiac function benefit was improved. Conclusions These results suggest that magnetic targeting offers new perspectives for retrograde coronary venous delivery to enhance cell retention and subsequent functional benefit in heart diseases. PMID:24330751

  3. Virtual Electrophysiologic Study in a Three-dimensional Cardiac MRI Model of Porcine Myocardial Infarction

    PubMed Central

    Ng, Jason; Jacobson, Jason T; Ng, Justin K; Gordon, David; Lee, Daniel C; Carr, James C.; Goldberger, Jeffrey J

    2012-01-01

    Objective This study sought to test the hypothesis that “virtual” electrophysiologic studies (EPS) on an anatomic platform generated by 3D MRI reconstruction of the left ventricle (LV) can reproduce the reentrant circuits of induced ventricular tachycardia (VT) in a porcine model of myocardial infarction (MI). Background Delayed-enhancement MRI has been used to characterize MI and “gray zones”, which are thought to reflect heterogeneous regions of viable and non-viable myocytes. Methods MI by coronary artery occlusion was induced in eight pigs. After a recovery period, 3D cardiac MRIs were obtained from each pig in-vivo. Normal areas, gray zones, and infarct cores were classified based on voxel intensity. In the computer model, gray zones were assigned slower conduction and longer action potential durations than those for normal myocardium. Virtual EPS was performed and was compared to results of actual in vivo programmed stimulation and non-contact mapping. Results The LV volumes ranged from 97.8 to 166.2 cm3 with 4.9 to 17.5% of voxels classified as infarct zones. Six of the seven pigs that developed VT during actual EPS were also inducible with virtual EPS. Four of the six pigs that had simulated VT had reentrant circuits that approximated the circuits seen with non-contact mapping, while the remaining two had similar circuits but propagating in opposite directions. Conclusions This initial study demonstrates the feasibility of applying a mathematical model to MRI reconstructions of the LV to predict VT circuits. Virtual EPS may be helpful to plan catheter ablation strategies or to identify patients who are at risk for future episodes of VT. PMID:22633654

  4. Experimental model of transthoracic, vascular-targeted, photodynamically induced myocardial infarction.

    TOXLINE Toxicology Bibliographic Information

    Chrastina A; Pokreisz P; Schnitzer JE

    2014-01-15

    We describe a novel model of myocardial infarction (MI) in rats induced by percutaneous transthoracic low-energy laser-targeted photodynamic irradiation. The procedure does not require thoracotomy and represents a minimally invasive alternative to existing surgical models. Target cardiac area to be photodynamically irradiated was triangulated from the thoracic X-ray scans. The acute phase of MI was histopathologically characterized by the presence of extensive vascular occlusion, hemorrhage, loss of transversal striations, neutrophilic infiltration, and necrotic changes of cardiomyocytes. Consequently, damaged myocardium was replaced with fibrovascular and granulation tissue. The fibrotic scar in the infarcted area was detected by computer tomography imaging. Cardiac troponin I (cTnI), a specific marker of myocardial injury, was significantly elevated at 6 h (41 ± 6 ng/ml, n = 4, P < 0.05 vs. baseline) and returned to baseline after 72 h. Triphenyltetrazolium chloride staining revealed transmural anterolateral infarcts targeting 25 ± 3% of the left ventricle at day 1 with a decrease to 20 ± 3% at day 40 (n = 6 for each group, P < 0.01 vs. day 1). Electrocardiography (ECG) showed significant ST-segment elevation in the acute phase with subsequent development of a pathological Q wave and premature ventricular contractions in the chronic phase of MI. Vectorcardiogram analysis of spatiotemporal electrical signal transduction revealed changes in inscription direction, QRS loop morphology, and redistribution in quadrant areas. The photodynamically induced MI in n = 51 rats was associated with 12% total mortality. Histological findings, ECG abnormalities, and elevated cTnI levels confirmed the photosensitizer-dependent induction of MI after laser irradiation. This novel rodent model of MI might provide a platform to evaluate new diagnostic or therapeutic interventions.

  5. Experimental model of transthoracic, vascular-targeted, photodynamically induced myocardial infarction

    PubMed Central

    Pokreisz, Peter; Schnitzer, Jan E.

    2013-01-01

    We describe a novel model of myocardial infarction (MI) in rats induced by percutaneous transthoracic low-energy laser-targeted photodynamic irradiation. The procedure does not require thoracotomy and represents a minimally invasive alternative to existing surgical models. Target cardiac area to be photodynamically irradiated was triangulated from the thoracic X-ray scans. The acute phase of MI was histopathologically characterized by the presence of extensive vascular occlusion, hemorrhage, loss of transversal striations, neutrophilic infiltration, and necrotic changes of cardiomyocytes. Consequently, damaged myocardium was replaced with fibrovascular and granulation tissue. The fibrotic scar in the infarcted area was detected by computer tomography imaging. Cardiac troponin I (cTnI), a specific marker of myocardial injury, was significantly elevated at 6 h (41 ± 6 ng/ml, n = 4, P < 0.05 vs. baseline) and returned to baseline after 72 h. Triphenyltetrazolium chloride staining revealed transmural anterolateral infarcts targeting 25 ± 3% of the left ventricle at day 1 with a decrease to 20 ± 3% at day 40 (n = 6 for each group, P < 0.01 vs. day 1). Electrocardiography (ECG) showed significant ST-segment elevation in the acute phase with subsequent development of a pathological Q wave and premature ventricular contractions in the chronic phase of MI. Vectorcardiogram analysis of spatiotemporal electrical signal transduction revealed changes in inscription direction, QRS loop morphology, and redistribution in quadrant areas. The photodynamically induced MI in n = 51 rats was associated with 12% total mortality. Histological findings, ECG abnormalities, and elevated cTnI levels confirmed the photosensitizer-dependent induction of MI after laser irradiation. This novel rodent model of MI might provide a platform to evaluate new diagnostic or therapeutic interventions. PMID:24213611

  6. Fenofibrate plus Metformin Produces Cardioprotection in a Type 2 Diabetes and Acute Myocardial Infarction Model

    PubMed Central

    Oidor-Chan, Víctor Hugo; Hong, Enrique; Pérez-Severiano, Francisca; Montes, Sergio; Torres-Narváez, Juan Carlos; del Valle-Mondragón, Leonardo; Pastelín-Hernández, Gustavo; Sánchez-Mendoza, Alicia

    2016-01-01

    We investigated whether fenofibrate, metformin, and their combination generate cardioprotection in a rat model of type 2 diabetes (T2D) and acute myocardial infarction (AMI). Streptozotocin-induced diabetic- (DB-) rats received 14 days of either vehicle, fenofibrate, metformin, or their combination and immediately after underwent myocardial ischemia/reperfusion (I/R). Fenofibrate plus metformin generated cardioprotection in a DBI/R model, reported as decreased coronary vascular resistance, compared to DBI/R-Vehicle, smaller infarct size, and increased cardiac work. The subchronic treatment with fenofibrate plus metformin increased, compared with DBI/R-Vehicle, total antioxidant capacity, manganese-dependent superoxide dismutase activity (MnSOD), guanosine triphosphate cyclohydrolase I (GTPCH-I) expression, tetrahydrobiopterin : dihydrobiopterin (BH4 : BH2) ratio, endothelial nitric oxide synthase (eNOS) activity, nitric oxide (NO) bioavailability, and decreased inducible NOS (iNOS) activity. These findings suggest that PPARα activation by fenofibrate + metformin, at low doses, generates cardioprotection in a rat model of T2D and AMI and may represent a novel treatment strategy to limit I/R injury in patients with T2D. PMID:27069466

  7. Potential economic consequences of a cardioprotective agent for patients with myocardial infarction: modelling study

    PubMed Central

    Verhoef, Talitha I; Morris, Stephen; Mathur, Anthony; Singer, Mervyn

    2015-01-01

    Objective To investigate the cost-effectiveness of a hypothetical cardioprotective agent used to reduce infarct size in patients undergoing percutaneous coronary intervention (PCI) after anterior ST-elevation myocardial infarction. Methods Design: A cost-utility analysis using a Markov model. Setting: The National Health Service in the UK. Patients: Patients undergoing PCI after anterior ST-elevation myocardial infarction. Interventions: A cardioprotective agent given at the time of reperfusion compared to no cardioprotection. We assumed the cardioprotective agent (given at the time of reperfusion) would reduce the risk and severity of heart failure (HF) after PCI and the risk of mortality after PCI (with a relative risk ranging from 0.6 to 1). The costs of the cardioprotective agent were assumed to be in the range £1000–4000. Main outcome measures: The incremental costs per quality-adjusted life-year (QALY) gained, using 95% CIs from 1000 simulations. Results Incremental costs ranged from £933 to £3820 and incremental QALYs from 0.04 to 0.38. The incremental cost-effectiveness ratio (ICER) ranged from £3311 to £63 480 per QALY gained. The results were highly dependent on the costs of a cardioprotective agent, patient age, and the relative risk of HF after PCI. The ICER was below the willingness-to-pay threshold of £20 000 per QALY gained in 71% of the simulations. Conclusions A cardioprotective agent that can reduce the risk of HF and mortality after PCI has a high chance of being cost-effective. This chance depends on the price of the agent, the age of the patient and the relative risk of HF after PCI. PMID:26567251

  8. A rat model of photothrombotic capsular infarct with a marked motor deficit: a behavioral, histologic, and microPET study

    PubMed Central

    Kim, Hyung-Sun; Kim, Donghyeon; Kim, Ra Gyung; Kim, Jin-Myung; Chung, Euiheon; Neto, Pedro R; Lee, Min-Cheol; Kim, Hyoung-Ihl

    2014-01-01

    We present a new method for inducing a circumscribed subcortical capsular infarct (SCI), which imposes a persistent motor impairment in rats. Photothrombotic destruction of the internal capsule (IC) was conducted in Sprague Dawley rats (male; n=38). The motor performance of all animals was assessed using forelimb placing, forelimb use asymmetry, and the single pellet reaching test. On the basis of the degree of motor recovery, rats were subdivided into either the poor recovery group (PRG) or the moderate recovery group (MRG). Imaging assessment of the impact of SCI on brain metabolism was performed using 2-deoxy-2-[18F]-fluoro-D-glucose ([18F]-FDG) microPET (positron emission tomography). Photothrombotic lesioning using low light energy selectively disrupted circumscribed capsular fibers. The MRG showed recovery of motor performance after 1 week, but the PRG showed a persistent motor impairment for >3 weeks. Damage to the posterior limb of the IC (PLIC) is more effective for producing a severe motor deficit. Analysis of PET data revealed decreased regional glucose metabolism in the ipsilesional motor and bilateral sensory cortex and increased metabolism in the contralesional motor cortex and bilateral hippocampus during the early recovery period after SCI. Behavioral, histologic, and functional imaging findings support the usefulness of this novel SCI rat model for investigating motor recovery. PMID:24473479

  9. Sesamin attenuates neurotoxicity in mouse model of ischemic brain stroke.

    PubMed

    Ahmad, Saif; Elsherbiny, Nehal M; Haque, Rizwanul; Khan, M Badruzzaman; Ishrat, Tauheed; Shah, Zahoor A; Khan, Mohammad M; Ali, Mehboob; Jamal, Arshad; Katare, Deepshikha Pande; Liou, Gregory I; Bhatia, Kanchan

    2014-12-01

    Stroke is a severe neurological disorder characterized by the abrupt loss of blood circulation into the brain resulting into wide ranging brain and behavior abnormalities. The present study was designed to evaluate molecular mechanism by which sesamin (SES) induces neuroprotection in mouse model of ischemic stroke. The results of this study demonstrate that SES treatment (30 mg/kg bwt) significantly reduced infarction volume, lipid per-oxidation, cleaved-caspase-3 activation, and increased GSH activity following MCAO in adult male mouse. SES treatment also diminished iNOS and COX-2 protein expression, and significantly restored SOD activity and protein expression level in the ischemic cortex of the MCAO animals. Furthermore, SES treatment also significantly reduced inflammatory and oxidative stress markers including Iba1, Nox-2, Cox-2, peroxynitrite compared to placebo MCAO animals. Superoxide radical production, as studied by DHE staining method, was also significantly reduced in the ischemic cortex of SES treated compared to placebo MCAO animals. Likewise, downstream effects of superoxide free radicals i.e. MAPK/ERK and P38 activation was also significantly attenuated in SES treated compared to placebo MCAO animals. In conclusion, these results suggest that SES induces significant neuroprotection, by ameliorating many signaling pathways activated/deactivated following cerebral ischemia in adult mouse. PMID:25316624

  10. [Bilateral caudate head infarcts].

    PubMed

    Kuriyama, N; Yamamoto, Y; Akiguchi, I; Oiwa, K; Nakajima, K

    1997-11-01

    We reported a 67-year-old woman with bilateral caudate head infarcts. She developed sudden mutism followed by abulia. She was admitted to our hospital 2 months after ictus for further examination. She showed prominent abulia and was inactive, slow and apathetic. Spontaneous activity and speech, immediate response to queries, spontaneous word recall and attention and persistence to complex programs were disturbed. Apparent motor disturbance, gait disturbance, motor aphasia, apraxia and remote memory disturbance were not identified. She seemed to be depressed but not sad. Brain CT and MRI revealed bilateral caudate head hemorrhagic infarcts including bilateral anterior internal capsules, in which the left lesion was more extensive than right one and involved the part of the left putamen. These infarct locations were thought to be supplied by the area around the medial striate artery including Heubner's arteries and the A1 perforator. Digital subtraction angiography showed asymptomatic right internal carotid artery occlusion. She bad had hypertension, diabetes mellitus and atrial fibrillation and also had a left atrium with a large diameter. The infarcts were thought to be caused by cardioembolic occlusion to the distal portion of the left internal carotid artery. Although some variations of vasculature at the anterior communicating artery might contribute to bilateral medial striate artery infarcts, we could not demonstrate such abnormalities by angiography. Bilateral caudate head infarcts involving the anterior internal capsule may cause prominent abulia. The patient did not improve by drug and rehabilitation therapy and died suddenly a year after discharge. PMID:9503974

  11. Effects of recombinant human brain natriuretic peptide on renal function in patients with acute heart failure following myocardial infarction

    PubMed Central

    Wang, Yanbo; Gu, Xinshun; Fan, Weize; Fan, Yanming; Li, Wei; Fu, Xianghua

    2016-01-01

    Objective: To investigate the effect of recombinant human brain natriuretic peptide (rhBNP) on renal function in patients with acute heart failure (AHF) following acute myocardial infarction (AMI). Methods: Consecutive patients with AHF following AMI were enrolled in this clinical trial. Eligible patients were randomly assigned to receive rhBNP (rhBNP group) or nitroglycerin (NIT group). Patients in the rhBNP group received rhBNP 0.15 μg /kg bolus injection after randomization followed by an adjusted-dose (0.0075-0.020 μg/kg/min) for 72 hours, while patients in NIT received infusion of nitroglycerin with an adjusted-dose (10-100 μg/kg/min) for 72 hours in NIT group. Standard clinical and laboratory data were collected. The levels of serum creatinine (SCr), urea, β-2 microglobulin and cystatin C were measured at baseline and repeated at the end of the 24, 48 and 72 hours after infusion. The primary end point was the incidence of acute renal dysfunction, which was defined as an increase in SCr > 0.5 mg/dl (> 44.2 μmol/L) or 25% above baseline SCr value. The occurrence of major adverse cardiac event (MACE) was followed up for 1 month. Results: Of the 50 patients enrolled, 26 were randomly assigned to rhBNP and 24 to nitroglycerin (NIT). There were no significant differences in baseline characteristics between the two groups (all P > 0.05). The baseline concentrations of SCr, urea, β-2 microglobulin and cystatin C at admission were similar in the two groups. However, the concentrations of SCr and urea were significantly higher in rhBNP group than those in NIT group at hour 24 and 48 after treatments (all P < 0.01). For both groups, the concentrations of SCr, urea, β-2 microglobulin and cystatin C were not significant changed compared with baseline levels. The levels of systolic blood pressure (SBP) and diastolic blood pressures (DBP) at admission were also similar between the two groups. In rhBNP group, levels of SBP and DBP decreased significantly at hour 24, 48 and 72 (all P < 0.05). In NIT group, levels of SBP decreased significantly at hour 48 and 72. The level of SBP at hour 24 and DBP at hour 48 after treatment were lower in rhBNP group than those in NIT group (P < 0.01). The occurrence of MACE was not significantly different. The incidence of acute renal dysfuntion in rhBNP group was higher (9/26 vs. 2/24, P = 0.040). The results of multiple logistic regression found that the use of rhBNP was an independent predictor of acute renal dysfunction in patients with AHF following AMI (OR, 0.162; 95% CI, 0.029 to 0.909; P = 0.039). Conclusion: the incidence of acute renal dysfuntion in rhBNP group was higher, and the use of rhBNP was an independent predictor of acute renal dysfunction in patients with AHF following AMI. (ChiCTR-IPR-15005796). PMID:27069557

  12. Fatal outcome after brain stem infarction related to bilateral vertebral artery occlusion - case report of a detrimental complication of cervical spine trauma

    PubMed Central

    2011-01-01

    Background Vertebral artery injury (VAI) after blunt cervical trauma occurs more frequently than historically believed. The symptoms due to vertebral artery (VA) occlusion usually manifest within the first 24 hours after trauma. Misdiagnosed VAI or delay in diagnosis has been reported to cause acute deterioration of previously conscious and neurologically intact patients. Case presentation A 67 year-old male was involved in a motor vehicle crash (MVC) sustaining multiple injuries. Initial evaluation by the emergency medical response team revealed that he was alert, oriented, and neurologically intact. He was transferred to the local hospital where cervical spine computed tomography (CT) revealed several abnormalities. Distraction and subluxation was present at C5-C6 and a comminuted fracture of the left lateral mass of C6 with violation of the transverse foramen was noted. Unavailability of a spine specialist prompted the patient's transfer to an area medical center equipped with spine care capabilities. After arrival, the patient became unresponsive and neurological deficits were noted. His continued deterioration prompted yet another transfer to our Level 1 regional trauma center. A repeat cervical spine CT at our institution revealed significantly worsened subluxation at C5-C6. CT angiogram also revealed complete occlusion of bilateral VA. The following day, a repeat CT of the head revealed brain stem infarction due to bilateral VA occlusion. Shortly following, the patient was diagnosed with brain death and care was withdrawn. Conclusion Brain stem infarction secondary to bilateral VA occlusion following cervical spine trauma resulted in fatal outcome. Prompt imaging evaluation is necessary to assess for VAI in cervical trauma cases with facet joint subluxation/dislocation or transverse foramen fracture so that treatment is not delayed. Additionally, multiple transportation events are risk factors for worsening when unstable cervical injuries are present. Close attention to proper immobilization and neck position depending on the mechanism of injury is mandatory. PMID:21756312

  13. Anti-edema action of thyroid hormone in MCAO model of ischemic brain stroke: Possible association with AQP4 modulation.

    PubMed

    Sadana, Prabodh; Coughlin, Lucy; Burke, Jamie; Woods, Robert; Mdzinarishvili, Alexander

    2015-07-15

    The use of neuroprotective strategies to mitigate the fatal consequences of ischemic brain stroke is a focus of robust research activity. We have previously demonstrated that thyroid hormone (T3; 3,3',5-triiodo-l-thyronine) possesses neuroprotective and anti-edema activity in pre-stroke treatment regimens when administered as a solution or as a nanoparticle formulation. In this study we have extended our evaluation of thyroid hormone use in animal models of brain stroke. We have used both transient middle cerebral artery occlusion (t-MCAO) and permanent (p-MCAO) models of ischemic brain stroke. A significant reduction of tissue infarction and a concurrent decrease in edema were observed in the t-MCAO model of brain stroke. However, no benefit of T3 was observed in p-MCAO stroke setting. Significant improvement of neurological outcomes was observed upon T3 treatment in t-MCAO mice. Further, we tested T2 (3,5-diiodo-l-thyronine) a natural deiodination metabolite of T3 in MCAO model of brain stroke. T2 potently decreased infarct size as well as edema formation. Additionally, we report here that T3 suppresses the expression of aquaporin-4 (AQP4) water channels which could be a likely mechanism of its anti-edema activity. Our studies provide evidence to stimulate clinical development of thyroid hormones for use in ischemic brain stroke. PMID:25963308

  14. A Novel and Efficient Model of Coronary Artery Ligation and Myocardial Infarction in the Mouse

    PubMed Central

    Gao, Erhe; Lei, Yong Hong; Shang, Xiying; Huang, Z. Maggie; Zuo, Lin; Boucher, Matthieu; Fan, Qian; Chuprun, J. Kurt; Ma, Xin L.; Koch, Walter J.

    2010-01-01

    Rationale Coronary artery ligation to induce myocardial infarction (MI) in mice is typically performed by an invasive and time consuming approach that requires ventilation and chest opening (classical method), often resulting in extensive tissue damage and high mortality. We developed a novel and rapid surgical method to induce MI that does not require ventilation. Objective The purpose of this study was to develop and comprehensively describe this method and directly compare it to the classical method. Methods and Results Male C57/B6 mice were grouped into four groups: new method MI (MI-N) or sham (S-N), classical method MI (MI-C) or sham (S-C). In new method, heart was manually exposed without intubation through a small incision and MI was induced. In classical method, MI was induced through a ventilated thoracotomy. Similar groups were used in an ischemia/reperfusion injury model. This novel MI procedure is rapid with an average procedure time of 1.22±0.05 min while the classical method requires 23.2±0.6 min per procedure. Surgical mortality was 3% in MI-N and 15.9% in MI-C. The rate of arrhythmia was significantly lower in MI-N. The post-surgical levels of TNFα and myeloperoxidase (MPO) were lower in new method indicating less inflammation. Overall 28 day post-MI survival rate was 68% with MI-N and 48% with MI-C. Importantly, there was no difference in infarct size or post-MI cardiac function between methods. Conclusion This new rapid method of MI in mice represents a more efficient and less damaging model of myocardial ischemic injury compared to the classical method. PMID:20966393

  15. Development of a Closed Chest Model of Chronic Myocardial Infarction in Swine: Magnetic Resonance Imaging and Pathological Evaluation

    PubMed Central

    Crisóstomo, Verónica; Maestre, Juan; Maynar, Manuel; Sun, Fei; Báez-Díaz, Claudia; Usón, Jesús; Sánchez-Margallo, Francisco M.

    2013-01-01

    Our aim was to develop an easy-to-induce, reproducible, and low mortality clinically relevant closed-chest model of chronic myocardial infarction in swine using intracoronary ethanol and characterize its evolution using MRI and pathology. We injected 3-4 mL of 100% ethanol into the mid-LAD of anesthetized swine. Heart function and infarct size were assessed serially using MRI. Pigs were euthanized on days 7, 30, and 90 (n = 5 at each timepoint). Postoperative MRI revealed compromised contractility and decreased ejection fraction, from 53.8% ± 6.32% to 43.79% ± 7.72% (P = 0.001). These values remained lower than baseline thorough the followup (46.54% ± 11.12%, 44.48% ± 7.77%, and 40.48% ± 6.40%, resp., P < 0.05). Progressive remodeling was seen in all animals. Infarcted myocardium decreased on the first 30 days (from 18.09% ± 7.26% to 9.9% ± 5.68%) and then stabilized (10.2% ± 4.21%). Pathology revealed increasing collagen content and fibrous organization over time, with a rim of preserved endocardial cells. In conclusion, intracoronary ethanol administration in swine consistently results in infarction. The sustained compromise in heart function and myocardial thinning over time indicate that the model may be useful for the preclinical evaluation of and training in therapeutic approaches to heart failure. PMID:24282645

  16. Traumatic brain injury using mouse models.

    PubMed

    Zhang, Yi Ping; Cai, Jun; Shields, Lisa B E; Liu, Naikui; Xu, Xiao-Ming; Shields, Christopher B

    2014-08-01

    The use of mouse models in traumatic brain injury (TBI) has several advantages compared to other animal models including low cost of breeding, easy maintenance, and innovative technology to create genetically modified strains. Studies using knockout and transgenic mice demonstrating functional gain or loss of molecules provide insight into basic mechanisms of TBI. Mouse models provide powerful tools to screen for putative therapeutic targets in TBI. This article reviews currently available mouse models that replicate several clinical features of TBI such as closed head injuries (CHI), penetrating head injuries, and a combination of both. CHI may be caused by direct trauma creating cerebral concussion or contusion. Sudden acceleration-deceleration injuries of the head without direct trauma may also cause intracranial injury by the transmission of shock waves to the brain. Recapitulation of temporary cavities that are induced by high-velocity penetrating objects in the mouse brain are difficult to produce, but slow brain penetration injuries in mice are reviewed. Synergistic damaging effects on the brain following systemic complications are also described. Advantages and disadvantages of CHI mouse models induced by weight drop, fluid percussion, and controlled cortical impact injuries are compared. Differences in the anatomy, biomechanics, and behavioral evaluations between mice and humans are discussed. Although the use of mouse models for TBI research is promising, further development of these techniques is warranted. PMID:24493632

  17. MALDI Mass Spectrometric Imaging of Cardiac Tissue Following Myocardial Infarction in a Rat Coronary Artery Ligation Model

    PubMed Central

    Menger, Robert F.; Stutts, Whitney L.; Anbukumar, Dhanam S.; Bowden, John A.; Ford, David A.; Yost, Richard A.

    2011-01-01

    Although acute myocardial infarction (MI) is consistently among the top causes of death in the United States, the spatial distribution of lipids and metabolites following MI remains to be elucidated. This work presents the investigation of an in vivo rat model of MI using mass spectrometric imaging (MSI) and multivariate data analysis. MSI was conducted on cardiac tissue following a 24-hour left anterior descending coronary artery ligation in order to analyze multiple compound classes. First, the spatial distribution of a small metabolite, creatine, was used to identify areas of infarcted myocardium. Second, multivariate data analysis and tandem mass spectrometry were used to identify phospholipid (PL) markers of MI. A number of lysophospholipids demonstrated increased ion signal in areas of infarction. In contrast, select intact PLs demonstrated decreased ion signal in the area of infarction. The complementary nature of these two lipid classes suggest increased activity of phospholipase A2, an enzyme that has been implicated in coronary heart disease and inflammation. PMID:22141424

  18. An Ultrasound-Driven Kinematic Model for Deformation of the Infarcted Mouse Left Ventricle Incorporating A Near-Incompressibility Constraint

    PubMed Central

    Lin, Dan; French, Brent A.; Xu, Yaqin; Hossack, John A.; Holmes, Jeffrey W.

    2014-01-01

    Mathematical models of varying complexity have proved useful in fitting and interpreting regional cardiac displacements obtained from imaging methods such as ultrasound speckle tracking or MRI tagging. Simpler models, such as the classic thick-walled cylinder model of the left ventricle (LV), solve quickly and are easy to implement, but they ignore regional geometric variations and are difficult to adapt to the study of regional pathologies such as myocardial infarction. Complex, anatomically accurate finite-element models work well but are computationally intensive and require specialized expertise to implement. We developed a kinematic model that offers a compromise between these two traditional approaches, assuming only that displacements in the left ventricle are polynomial functions of initial position and that the myocardium is nearly incompressible, while allowing myocardial motion to vary spatially as would be expected in an ischemic or dyssynchronous left ventricle. Model parameters were determined using an objective function with adjustable weights to account for confidence in individual displacement components and desired strength of the incompressibility constraint. The model accurately represented the motion of both normal and infarcted mouse left ventricles during the cardiac cycle, with normalized root mean square errors in predicted deformed positions of 8.2 2.3% and 7.4 2.1% for normal and infarcted hearts, respectively. PMID:25542490

  19. Twenty-four hours hypothermia has temporary efficacy in reducing brain infarction and inflammation in aged rats.

    PubMed

    Sandu, Raluca Elena; Buga, Ana-Maria; Balseanu, Adrian Tudor; Moldovan, Mihai; Popa-Wagner, Aurel

    2016-02-01

    Stroke is a major cause of disability for which no neuroprotective measures are available. Age is the principal nonmodifiable risk factor for this disease. Previously, we reported that exposure to hydrogen sulfide for 48 hours after stroke lowers whole body temperature and confers neuroprotection in aged animals. Because the duration of hypothermia in most clinical trials is between 24 and 48 hours, we questioned whether 24 hours exposure to gaseous hypothermia confers the same neuroprotective efficacy as 48 hours exposure. We found that a shorter exposure to hypothermia transiently reduced both inflammation and infarct size. However, after 1 week, the infarct size became even larger than in controls and after 2 weeks there was no beneficial effect on regenerative processes such as neurogenesis. Behaviorally, hypothermia also had a limited beneficial effect. Finally, after hydrogen sulfide-induced hypothermia, the poststroke aged rats experienced a persistent sleep impairment during their active nocturnal period. Our data suggest that cellular events that are delayed by hypothermia in aged rats may, in the long term, rebound, and diminish the beneficial effects. PMID:26827651

  20. The Detection of Surfactant Proteins A, B, C and D in the Human Brain and Their Regulation in Cerebral Infarction, Autoimmune Conditions and Infections of the CNS

    PubMed Central

    Schob, Stefan; Schicht, Martin; Sel, Saadettin; Stiller, Dankwart; Kekulé, Alexander; Paulsen, Friedrich; Maronde, Erik; Bräuer, Lars

    2013-01-01

    Surfactant proteins (SP) have been studied intensively in the respiratory system. Surfactant protein A and surfactant protein D are proteins belonging to the family of collectins each playing a major role in the innate immune system. The ability of surfactant protein A and surfactant protein D to bind various pathogens and facilitate their elimination has been described in a vast number of studies. Surfactant proteins are very important in modulating the host's inflammatory response and participate in the clearance of apoptotic cells. Surfactant protein B and surfactant protein C are proteins responsible for lowering the surface tension in the lungs. The aim of this study was an investigation of expression of surfactant proteins in the central nervous system to assess their specific distribution patterns. The second aim was to quantify surfactant proteins in cerebrospinal fluid of healthy subjects compared to patients suffering from different neuropathologies. The expression of mRNA for the surfactant proteins was analyzed with RT-PCR done with samples from different parts of the human brain. The production of the surfactant proteins in the brain was verified using immunohistochemistry and Western blot. The concentrations of the surfactant proteins in cerebrospinal fluid from healthy subjects and patients suffering from neuropathologic conditions were quantified using ELISA. Our results revealed that surfactant proteins are present in the central nervous system and that the concentrations of one or more surfactant proteins in healthy subjects differed significantly from those of patients affected by central autoimmune processes, CNS infections or cerebral infarction. Based on the localization of the surfactant proteins in the brain, their different levels in normal versus pathologic samples of cerebrospinal fluid and their well-known functions in the lungs, it appears that the surfactant proteins may play roles in host defense of the brain, facilitation of cerebrospinal fluid secretion and maintenance of the latter's rheological properties. PMID:24098648

  1. Treatment with the C5a receptor antagonist ADC-1004 reduces myocardial infarction in a porcine ischemia-reperfusion model

    PubMed Central

    2010-01-01

    Background Polymorphonuclear neutrophils, stimulated by the activated complement factor C5a, have been implicated in cardiac ischemia/reperfusion injury. ADC-1004 is a competitive C5a receptor antagonist that has been shown to inhibit complement related neutrophil activation. ADC-1004 shields the neutrophils from C5a activation before they enter the reperfused area, which could be a mechanistic advantage compared to previous C5a directed reperfusion therapies. We investigated if treatment with ADC-1004, according to a clinically applicable protocol, would reduce infarct size and microvascular obstruction in a large animal myocardial infarct model. Methods In anesthetized pigs (42-53 kg), a percutaneous coronary intervention balloon was inflated in the left anterior descending artery for 40 minutes, followed by 4 hours of reperfusion. Twenty minutes after balloon inflation the pigs were randomized to an intravenous bolus administration of ADC-1004 (175 mg, n = 8) or saline (9 mg/ml, n = 8). Area at risk (AAR) was evaluated by ex vivo SPECT. Infarct size and microvascular obstruction were evaluated by ex vivo MRI. The observers were blinded to the treatment at randomization and analysis. Results ADC-1004 treatment reduced infarct size by 21% (ADC-1004: 58.3 ± 3.4 vs control: 74.1 ± 2.9%AAR, p = 0.007). Microvascular obstruction was similar between the groups (ADC-1004: 2.2 ± 1.2 vs control: 5.3 ± 2.5%AAR, p = 0.23). The mean plasma concentration of ADC-1004 was 83 ± 8 nM at sacrifice. There were no significant differences between the groups with respect to heart rate, mean arterial pressure, cardiac output and blood-gas data. Conclusions ADC-1004 treatment reduces myocardial ischemia-reperfusion injury and represents a novel treatment strategy of myocardial infarct with potential clinical applicability. PMID:20875134

  2. Coupled Hemodynamic-Biochemical Modeling of Thrombus Formation in Infarcted Left Ventricles

    NASA Astrophysics Data System (ADS)

    Seo, Jung Hee; Vedula, Vijay; George, Richard; Mittal, Rajat

    2013-11-01

    Patients with heart failure (HF) and left ventricular (LV) systolic dysfunction have higher rates of thromboembolic events including embolic stroke and peripheral arterial thrombi. A common cause of arterial emboli in HF patients is myocardial infarction (MI) and subsequent left ventricular thrombus (LVT) formation. Stagnation of blood and endocardial injury are hypothesized to promote the development of LVT. The identification of high risk patients and the pharmacologic prevention of LVT formation are the keys to preventing embolic events. Stratification of patients at risk for LVT formation is currently limited, and primarily based on global assessment of ventricular function and image based assessment of ventricular wall motion. In this study, we explore a method to predict LVT risk using a multi-physics computational model. The blood flow in the left ventricle is simulated by solving the incompressible Navier-Stokes equation using an immersed boundary method and this is coupled to a convection-diffusion-reaction equation based model of platelet activation and coagulation. The results are then correlated with the other hemodynamic metrics such as wall shear stress and residence time to develop quantitative metrics for the LVT risk prediction. Supported by NSF CDI-Type II grant IOS-1124804, Computational resource by XSEDE NSF grant TG-CTS100002.

  3. Ventricular Arrhythmias and Mortality Associated with Isoflurane and Sevoflurane in a Porcine Model of Myocardial Infarction

    PubMed Central

    Regueiro-Purriños, Marta; Fernández-Vázquez, Felipe; de Prado, Armando Perez; Altónaga, Jose R; Cuellas-Ramón, Carlos; Ajenjo-Silverio, Jose M; Orden, Asuncion; Gonzalo-Orden, Jose M

    2011-01-01

    Ischemia of the myocardium can lead to reversible or irreversible injury depending on the severity and duration of the preceding ischemia. Here we compared sevoflurane and isoflurane with particular reference to their hemodynamic effects and ability to modify the effects of acute severe myocardial ischemia and reperfusion on ventricular arrhythmias and mortality in a porcine model of myocardial infarction. Female Large White pigs were premedicated with ketamine, midazolam, and atropine. Propofol was given intravenously for the anesthetic induction, and anesthesia was maintained with isoflurane or sevoflurane. Endovascular, fluoroscopy-guided, coronary procedures were performed to occlude the midleft anterior descending artery by using a coronary angioplasty balloon. After 75 min, the balloon catheter system was withdrawn and the presence of adequate reperfusion flow was verified. The pigs were followed for 2 mo, and overall mortality rate was calculated. The isoflurane group showed lower arterial pressure throughout the procedure, with the difference reaching statistical significance after induction of myocardial ischemia. The ventricular fibrillation rate was higher in isoflurane group (81.3%) than the sevoflurane group (51.7%; relative risk, 1.57 [1.03 to 2.4]). Overall survival was lower in the isoflurane group (75%) than the sevoflurane group (96.4%). In conclusion, in this porcine model of myocardial ischemia and reperfusion, sevoflurane was associated with higher hemodynamic stability and fewer ventricular arrhythmias and mortality than was isoflurane. PMID:21333167

  4. Multimodal, multidimensional models of mouse brain.

    PubMed

    Mackenzie-Graham, Allan J; Lee, Erh-Fang; Dinov, Ivo D; Yuan, Heng; Jacobs, Russell E; Toga, Arthur W

    2007-01-01

    Naturally occurring mutants and genetically manipulated strains of mice are widely used to model a variety of human diseases. Atlases are an invaluable aid in understanding the impact of such manipulations by providing a standard for comparison and to facilitate the integration of anatomic, genetic, and physiologic observations from multiple subjects and experiments. We have developed digital atlases of the C57BL/6J mouse brain (adult and neonate) as comprehensive frameworks for storing and accessing the myriad types of information about the mouse brain. Along with raw and annotated images, these contain database management systems and a set of tools for comparing information from different techniques and different animals. Each atlas establishes a canonical representation of the mouse brain and provides the tools for the manipulation and analysis of new data. We describe both these atlases and discuss how they may be put to use in organizing and analyzing data from mouse models of epilepsy. PMID:17767578

  5. Ligands for opioid and sigma-receptors improve cardiac electrical stability in rat models of post-infarction cardiosclerosis and stress.

    PubMed

    Lishmanov YuB; Maslov, L N; Naryzhnaya, N V; Tam, S W

    1999-01-01

    The effects of the extremely selective mu-opioid receptor agonist, [D-Arg2,Lys4]-dermorphin-(1-4)-amide (DALDA), the mu-opioid receptor agonist morphine, the mu/delta agonist D-Ala2, Leu5, Arg6-enkephalin (dalargin), the kappa-opioid receptor agonist spiradoline, and the sigma1-receptor antagonist DuP 734 on ventricular fibrillation threshold (VFT) was investigated in an experimental post-infarction cardiosclerosis model and an immobilization stress-induced model in rats. Both models produced a significant decrease in VFT. The postinfarction cardiosclerosis-induced decrease in VFT was significantly reversed by intravenous administration of dalargin (0.1 mg/kg), DALDA (0.1 mg/kg), or morphine HCl (1.5 mg/kg). Pretreatment with naloxone (0.2 mg/kg) completely eliminated the increase in cardiac electrical stability produced by DALDA. Both spiradoline (8 mg/kg, i.p.) and DuP 734 (1 mg/kg, i.p.) produced a significant increase in VFT in rats with post-infarction cardiosclerosis. This effect of spiradoline was blocked by nor-binaltorphimine. The immobilization stress-induced decrease in VFT was significantly reversed by administration of either DALDA, spiradoline or DuP 734. In conclusion, activation of either mu- or kappa1-opioid receptors or blockade of sigma1-receptors reversed the decrease in VFT in both cardiac compromised models. Since DALDA and dalargin essentially do not cross blood brain barriers, their effects on VFT may be mediated through peripheral mu-opioid receptors. PMID:10403501

  6. Compact continuum brain model for human electroencephalogram

    NASA Astrophysics Data System (ADS)

    Kim, J. W.; Shin, H.-B.; Robinson, P. A.

    2007-12-01

    A low-dimensional, compact brain model has recently been developed based on physiologically based mean-field continuum formulation of electric activity of the brain. The essential feature of the new compact model is a second order time-delayed differential equation that has physiologically plausible terms, such as rapid corticocortical feedback and delayed feedback via extracortical pathways. Due to its compact form, the model facilitates insight into complex brain dynamics via standard linear and nonlinear techniques. The model successfully reproduces many features of previous models and experiments. For example, experimentally observed typical rhythms of electroencephalogram (EEG) signals are reproduced in a physiologically plausible parameter region. In the nonlinear regime, onsets of seizures, which often develop into limit cycles, are illustrated by modulating model parameters. It is also shown that a hysteresis can occur when the system has multiple attractors. As a further illustration of this approach, power spectra of the model are fitted to those of sleep EEGs of two subjects (one with apnea, the other with narcolepsy). The model parameters obtained from the fittings show good matches with previous literature. Our results suggest that the compact model can provide a theoretical basis for analyzing complex EEG signals.

  7. HIF-1α inhibition ameliorates neonatal brain injury in a rat pup hypoxic-ischemic model

    PubMed Central

    Chen, Wanqiu; Jadhav, Vikram; Tang, Jiping; Zhang, John H.

    2008-01-01

    Hypoxia-inducible factor-1alpha (HIF-1α) has been considered as a regulator of both prosurvival and prodeath pathways in the nervous system. The present study was designed to elucidate the role of HIF-1α in neonatal hypoxic-ischemic (HI) brain injury. Rice-Vannucci model of neonatal hypoxic-ischemic brain injury was used in seven-day-old rats, by subjecting unilateral carotid artery ligation followed by 2h of hypoxia (8% O2 at 37°C). HIF-1α activity was inhibited by 2-methoxyestradiol (2ME2) and enhanced by dimethyloxalylglycine (DMOG). Results showed that 2ME2 exhibited dose-dependent neuroprotection by decreasing infarct volume and reducing brain edema at 48 h post HI. The neuroprotection was lost when 2ME2 was administered 3 h post HI. HIF-1α upregulation by DMOG increased the permeability of the BBB and brain edema compared with HI group. 2ME2 attenuated the increase in HIF-1α and VEGF 24 h after HI. 2ME2 also had a long-term effect of protecting against the loss of brain tissue. The study showed that the early inhibition of HIF-1α acutely after injury provided neuroprotection after neonatal hypoxia-ischemia which was associated with preservation of BBB integrity, attenuation of brain edema, and neuronal death. PMID:18602008

  8. A swine model of infarct-related reentrant ventricular tachycardia: Electroanatomic, magnetic resonance, and histopathological characterization

    PubMed Central

    Tschabrunn, Cory M.; Roujol, Sébastien; Nezafat, Reza; Faulkner-Jones, Beverly; Buxton, Alfred E.; Josephson, Mark E.; Anter, Elad

    2016-01-01

    BACKGROUND Human ventricular tachycardia (VT) after myocardial infarction usually occurs because of subendocardial reentrant circuits originating in scar tissue that borders surviving myocardial bundles. Several preclinical large animal models have been used to further study postinfarct reentrant VT, but with varied experimental methodologies and limited evaluation of the underlying substrate or induced arrhythmia mechanism. OBJECTIVE We aimed to develop and characterize a swine model of scar-related reentrant VT. METHODS Thirty-five Yorkshire swine underwent 180-minute occlusion of the left anterior descending coronary artery. Thirty-one animals (89%) survived the 6–8-week survival period. These animals underwent cardiac magnetic resonance imaging followed by electrophysiology study, detailed electroanatomic mapping, and histopathological analysis. RESULTS Left ventricular (LV) ejection fraction measured using CMR imaging was 36% ± 6.6% with anteroseptal wall motion abnormality and late gadolinium enhancement across 12.5% ± 4.1% of the LV surface area. Low voltage measured using endocardial electroanatomic mapping encompassed 11.1% ± 3.5% of the LV surface area (bipolar voltage ≤1.5 mV) with anterior, anteroseptal, and anterolateral involvement. Reentrant circuits mapped were largely determined by functional rather than fix anatomical barriers, consistent with “pseudo-block” due to anisotropic conduction. Sustained monomorphic VT was induced in 28 of 31 swine (90%) (67 VTs; 2.4 ± 1.1; range 1–4) and characterized as reentry. VT circuits were subendocardial, with an arrhythmogenic substrate characterized by transmural anterior scar with varying degrees of fibrosis and myocardial fiber disarray on the septal and lateral borders. CONCLUSION This is a well-characterized swine model of scar-related subendocardial reentrant VT. This model can serve as the basis for further investigation in the physiology and therapeutics of humanlike postinfarction reentrant VT. PMID:26226214

  9. Detection and evaluation of renal biomarkers in a swine model of acute myocardial infarction and reperfusion.

    PubMed

    Duan, Su-Yan; Xing, Chang-Ying; Zhang, Bo; Chen, Yan

    2015-01-01

    The prevalence of type 1 cardiorenal syndrome (CRS) is increasing and strongly associated with long-term mortality. However, lack of reliable animal models and well-defined measures of renoprotection, made early diagnosis and therapy difficult. We previously successfully established the swine acute myocardial infarction (AMI) model of ischemia-reperfusion by blocking left anterior descending branch (LAD). Reperfusion was performed after 90-minute occlusion of the LAD. AMI was confirmed by ECG and left ventricular angiography (LVG). Then those 52 survived AMI reperfusion swine, including ventricular fibrillation-cardiac arrest after restoration of blood flow, were randomly divided into four groups (four/group) according to different interventions: resuscitation in room temperature, resuscitation with 500 ml saline in room temperature, resuscitation with 4°C 500 ml saline and normal control (with no intervention of resuscitation). Each group was further observed in four groups according to different time of resuscitation after ventricular arrhythmias: 1, 3, 5, 10-minute reperfusion after ventricular arrhythmias. Plasma and random urine were collected to evaluate renal function and test renal biomarkers of acute kidney injury (AKI). Our swine AMI model of ischemia-reperfusion provoked subclinical AKI with the elevation of the tubular damage biomarker, NGAL, IL-18 and L-FABP. Renal damage rapidly observed after hemodynamic instability, rather than observation after several hours as previously reported. The increasing rate of biological markers declined after interventions, however, its impact on the long-term prognosis remains to be further studied. These data show that elevation of tubular damage biomarkers without glomerular function loss may indicate appropriate timing for effective renoprotections like hypothermia resuscitation in type 1 CRS. PMID:26339403

  10. Detection and evaluation of renal biomarkers in a swine model of acute myocardial infarction and reperfusion

    PubMed Central

    Duan, Su-Yan; Xing, Chang-Ying; Zhang, Bo; Chen, Yan

    2015-01-01

    The prevalence of type 1 cardiorenal syndrome (CRS) is increasing and strongly associated with long-term mortality. However, lack of reliable animal models and well-defined measures of renoprotection, made early diagnosis and therapy difficult. We previously successfully established the swine acute myocardial infarction (AMI) model of ischemia-reperfusion by blocking left anterior descending branch (LAD). Reperfusion was performed after 90-minute occlusion of the LAD. AMI was confirmed by ECG and left ventricular angiography (LVG). Then those 52 survived AMI reperfusion swine, including ventricular fibrillation-cardiac arrest after restoration of blood flow, were randomly divided into four groups (four/group) according to different interventions: resuscitation in room temperature, resuscitation with 500 ml saline in room temperature, resuscitation with 4°C 500 ml saline and normal control (with no intervention of resuscitation). Each group was further observed in four groups according to different time of resuscitation after ventricular arrhythmias: 1, 3, 5, 10-minute reperfusion after ventricular arrhythmias. Plasma and random urine were collected to evaluate renal function and test renal biomarkers of acute kidney injury (AKI). Our swine AMI model of ischemia-reperfusion provoked subclinical AKI with the elevation of the tubular damage biomarker, NGAL, IL-18 and L-FABP. Renal damage rapidly observed after hemodynamic instability, rather than observation after several hours as previously reported. The increasing rate of biological markers declined after interventions, however, its impact on the long-term prognosis remains to be further studied. These data show that elevation of tubular damage biomarkers without glomerular function loss may indicate appropriate timing for effective renoprotections like hypothermia resuscitation in type 1 CRS. PMID:26339403

  11. Neurodynamical model of collective brain

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    1992-01-01

    A dynamical system which mimics collective purposeful activities of a set of units of intelligence is introduced and discussed. A global control of the unit activities is replaced by the probabilistic correlations between them. These correlations are learned during a long term period of performing collective tasks, and are stored in the synaptic interconnections. The model is represented by a system of ordinary differential equations with terminal attractors and repellers, and does not contain any man-made digital devices.

  12. Stem cell-loaded nanofibrous patch promotes the regeneration of infarcted myocardium with functional improvement in rat model.

    PubMed

    Kai, Dan; Wang, Qiang-Li; Wang, Hai-Jie; Prabhakaran, Molamma P; Zhang, Yanzhong; Tan, Yu-Zhen; Ramakrishna, Seeram

    2014-06-01

    Myocardial infarction (MI) leads to the loss of cardiomyocytes, followed by left ventricular (LV) remodeling and cardiac dysfunction. The authors hypothesize that an elastic, biodegradable nanofibrous cardiac patch loaded with mesenchymal stem cells (MSC) could restrain LV remodeling and improve cardiac function after MI. Poly(ε-caprolactone)/gelatin (PG) nanofibers were fabricated by electrospinning, and the nanofibers displayed a porous and uniform nanofibrous structure with a diameter of 244±51nm. An MI model was established by ligation of the left anterior descending coronary artery of female Sprague-Dawley rats. The PG nanofibrous patch seeded with MSC, isolated from rat bone marrow, was implanted on the epicardium of the infarcted region of the LV wall of the heart. After transplantation, the PG-cell patch restricted the expansion of the LV wall effectively and reduced the scar size, and the density of the microvessels increased. Cells within the patch were able to migrate towards the scar tissue, and promoted new blood vessel formation at the infarct site. Angiogenesis and the cardiac functions improved significantly after 4weeks of implantation. The MSC-seeded PG nanofibrous patches are demonstrated to provide sufficient mechanical support, to induce angiogenesis and to accelerate cardiac repair in a rat model of MI. The study highlights the positive impact of implantation of an MSC-seeded PG nanofibrous patch as a novel constituent for MI repair. PMID:24576580

  13. Transmural distribution of myocardial infarction: difference between the right and left ventricles in a canine model

    SciTech Connect

    Ohzono, K.; Koyanagi, S.; Urabe, Y.; Harasawa, Y.; Tomoike, H.; Nakamura, M.

    1986-07-01

    The evolution of myocardial infarction 24 hours after ligating both the right coronary artery and the obtuse marginal branch of the left circumflex coronary artery was examined in 33 anesthetized dogs. Postmortem coronary angiography and a tracer microsphere technique were used to determine risk areas and their collateral blood flows, respectively. The mean weight of the risk areas was 11.3 +/- 0.5 g (mean +/- SEM) in the right ventricle and 10.5 +/- 0.9 g in the left ventricle (NS). The weight of infarcted tissue was 5.7 +/- 0.7 g in the right ventricle and 5.2 +/- 0.9 g in the left ventricle (NS). In both ventricles, infarct weight was linearly related to risk area size, and the percent of risk area necrosis was inversely correlated with the extent of collateral flow at 24 hours of coronary ligation, defined as the mean myocardial blood flow inside the central risk area. Ratios of infarct to risk area between the subendocardial and subepicardial layers were 0.76 +/- 0.06 and 0.28 +/- 0.05 in the right and left ventricles, respectively (p less than 0.01, between ventricles, n = 31), which coincided well with subendocardial-to-subepicardial-flow ratios at 24 hours, ie, 0.86 +/- 0.04 in the right ventricle and 0.32 +/- 0.06 in the left ventricle (p less than 0.01). The regional distribution of myocardial infarction correlated well with flow distribution inside the risk area; the slope of these relations was similar between the subendocardium and subepicardium in the right ventricle, whereas in the left ventricle it was larger in the subendocardium than in the subepicardium. Thus, in the dog, the inherent change in the regional distribution of coronary collateral blood flow is an important modifier in the evolution of myocardial infarction, especially in the left ventricle.

  14. Multiscale modeling of brain blow flow

    NASA Astrophysics Data System (ADS)

    Karniadakis, George

    2014-11-01

    Cardiovascular pathologies, such as brain aneurysms, are affected by the global blood circulation as well as by the local microrheology. Hence, developing computational models for such cases requires the coupling of disparate spatial and temporal scales often governed by diverse mathematical descriptions, e.g., by partial differential equations (continuum, 3D or 1D) and ordinary differential equations for discrete particles (atomistic). However, interfacing atomistic-based with continuum-based domain discretizations is a challenging problem that requires both mathematical and computational advances. We will present a physical model of the brain vasculature consisting at the macro level of all major arteries (about 200 down to 0.5 mm), at the mesoscale the fractal arteriolar tree (more than 10 millions down to 20 nm) and at the microscale the capillary bed. Correspondingly, we employ three different methods to model the total brain vasculature by developing proper interface conditions at each level. We will present examples from aneurysms and other hematological diseases, where red blood cell rheology is modeled explicitly.

  15. Intracardiac injection of matrigel induces stem cell recruitment and improves cardiac functions in a rat myocardial infarction model

    PubMed Central

    Ou, Lailiang; Li, Wenzhong; Zhang, Yue; Wang, Weiwei; Liu, Jun; Sorg, Heiko; Furlani, Dario; Gäbel, Ralf; Mark, Peter; Klopsch, Christian; Wang, Liang; Lützow, Karola; Lendlein, Andreas; Wagner, Klaus; Klee, Doris; Liebold, Andreas; Li, Ren-Ke; Kong, Deling; Steinhoff, Gustav; Ma, Nan

    2011-01-01

    Abstract Matrigel promotes angiogenesis in the myocardium from ischemic injury and prevents remodelling of the left ventricle. We assessed the therapeutic efficacy of intracardiac matrigel injection and matrigel-mediated stem cell homing in a rat myocardial infarction (MI) model. Following MI, matrigel (250 μl) or phosphate-buffered solution (PBS) was delivered by intracardiac injection. Compared to the MI control group (MI-PBS), matrigel significantly improved left ventricular function (n= 11, P < 0.05) assessed by pressure–volume loops after 4 weeks. There is no significant difference in infarct size between MI-matrigel (MI-M; 21.48 ± 1.49%, n= 10) and MI-PBS hearts (20.98 ± 1.25%, n= 10). The infarct wall thickness of left ventricle is significantly higher (P < 0.01) in MI-M (0.72 ± 0.02 mm, n= 10) compared with MI-PBS (0.62 ± 0.02 mm, n= 10). MI-M hearts exhibited higher capillary density (border 130.8 ± 4.7 versus 115.4 ± 6.0, P < 0.05; vessels per high-power field [HPF; 400×], n= 6) than MI-PBS hearts. c-Kit+ stem cells (38.3 ± 5.3 versus 25.7 ± 1.5 c-Kit+ cells per HPF [630×], n= 5, P < 0.05) and CD34+ cells (13.0 ± 1.51 versus 5.6 ± 0.68 CD34+ cells per HPF [630×], n= 5, P < 0.01) were significantly more numerous in MI-M than in MI-PBS in the infarcted hearts (n= 5, P < 0.05). Intracardiac matrigel injection restores myocardial functions following MI, which may attribute to the improved recruitment of CD34+ and c-Kit+ stem cells. PMID:20477905

  16. Plasma von Willebrand factor level is transiently elevated in a rat model of acute myocardial infarction

    PubMed Central

    LI, YAN; LI, LIQUN; DONG, FENGYUN; GUO, LING; HOU, YINGLONG; HU, HESHENG; YAN, SUHUA; ZHOU, XIAOJUN; LIAO, LIN; ALLEN, THADDEUS D.; LIU, JU

    2015-01-01

    The von Willebrand factor (vWF) is a plasma glycoprotein that plays an essential role in hemostasis by supporting platelet adhesion and thrombus formation in response to vascular injury. Plasma levels of vWF are an independent risk factor for patients with acute myocardial infarction (AMI); however, clinical data have demonstrated a marked variation of vWF levels in patients with AMI, the reason for which has not yet been identified. In the present study, a rat model of ST-segment elevation AMI was established, and cardiac and peripheral blood was collected for a time-course examination of the plasma levels of vWF and tumor necrosis factor-α (TNF-α). The level of vWF in the blood plasma increased, peaked at 1 h and decreased to normal levels by day 7 following AMI, while the level of TNF-α peaked at 24 h and remained elevated until day 7. The effects of TNF-α on vWF secretion and expression were examined in cultured human umbilical vascular endothelial cells (HUVECs). TNF-α treatment increased vWF secretion from the HUVECs but inhibited the mRNA and protein expression of vWF in the HUVECs. These results indicate that vWF secretion from endothelial cells is transiently elevated following AMI, and then decreases as the expression of vWF is inhibited by TNF-α. The present study increases the understanding of the pathophysiology of vWF and indicates that the determination of vWF levels may be useful in the clinical evaluation of AMI. PMID:26640545

  17. Association of seizures with cortical spreading depression and peri-infarct depolarisations in the acutely injured human brain

    PubMed Central

    Fabricius, Martin; Fuhr, Susanne; Willumsen, Lisette; Dreier, Jens P; Bhatia, Robin; Boutelle, Martyn G.; Hartings, Jed A; Bullock, Ross; Strong, Anthony J; Lauritzen, Martin

    2008-01-01

    Objective To test the co-occurrence and interrelation of ictal activity and cortical spreading depressions (CSDs) - including the related periinfarct depolarisations in acute brain injury caused by trauma, and spontaneous subarachnoid and/or intracerebral haemorrhage. Methods 63 patients underwent craniotomy and electrocorticographic (ECoG) recordings were taken near foci of damaged cortical tissue for up to 10 days. Results 32 of 63 patients exhibited CSDs (5 to 75 episodes), and 11 had ECoGraphic seizure activity (1-81 episodes). Occurrence of seizures was significantly associated with CSD, as 10 of 11 patients with seizures also had CSD (p=0.007, 2-tailed Fishers exact test). Clinically overt seizures were only observed in one patient. Each patient with CSD and seizures displayed one of four different patterns of interaction between CSD and seizures. In four patients CSD was immediately preceded by prolonged seizure activity. In three patients the two phenomena were separated in time: multiple CSDs were replaced by ictal activity. In one patient seizures appeared to trigger repeated CSDs at the adjacent electrode. In two patients ongoing repeated seizures were interrupted each time CSD occurred. Conclusions Seizure activity occurs in association with CSD in the injured human brain. Significance ECoG recordings in brain injury patients provide insight into pathophysiological mechanisms that is not accessible by scalp EEG recordings. PMID:18621582

  18. Mouse Genetic Models of Human Brain Disorders

    PubMed Central

    Leung, Celeste; Jia, Zhengping

    2016-01-01

    Over the past three decades, genetic manipulations in mice have been used in neuroscience as a major approach to investigate the in vivo function of genes and their alterations. In particular, gene targeting techniques using embryonic stem cells have revolutionized the field of mammalian genetics and have been at the forefront in the generation of numerous mouse models of human brain disorders. In this review, we will first examine childhood developmental disorders such as autism, intellectual disability, Fragile X syndrome, and Williams-Beuren syndrome. We will then explore psychiatric disorders such as schizophrenia and lastly, neurodegenerative disorders including Alzheimer’s disease and Parkinson’s disease. We will outline the creation of these mouse models that range from single gene deletions, subtle point mutations to multi-gene manipulations, and discuss the key behavioral phenotypes of these mice. Ultimately, the analysis of the models outlined in this review will enhance our understanding of the in vivo role and underlying mechanisms of disease-related genes in both normal brain function and brain disorders, and provide potential therapeutic targets and strategies to prevent and treat these diseases. PMID:27047540

  19. Mouse Genetic Models of Human Brain Disorders.

    PubMed

    Leung, Celeste; Jia, Zhengping

    2016-01-01

    Over the past three decades, genetic manipulations in mice have been used in neuroscience as a major approach to investigate the in vivo function of genes and their alterations. In particular, gene targeting techniques using embryonic stem cells have revolutionized the field of mammalian genetics and have been at the forefront in the generation of numerous mouse models of human brain disorders. In this review, we will first examine childhood developmental disorders such as autism, intellectual disability, Fragile X syndrome, and Williams-Beuren syndrome. We will then explore psychiatric disorders such as schizophrenia and lastly, neurodegenerative disorders including Alzheimer's disease and Parkinson's disease. We will outline the creation of these mouse models that range from single gene deletions, subtle point mutations to multi-gene manipulations, and discuss the key behavioral phenotypes of these mice. Ultimately, the analysis of the models outlined in this review will enhance our understanding of the in vivo role and underlying mechanisms of disease-related genes in both normal brain function and brain disorders, and provide potential therapeutic targets and strategies to prevent and treat these diseases. PMID:27047540

  20. Asiatic acid inhibits left ventricular remodeling and improves cardiac function in a rat model of myocardial infarction

    PubMed Central

    HUO, LIANYING; SHI, WENBING; CHONG, LING; WANG, JINLONG; ZHANG, KAI; LI, YUFENG

    2016-01-01

    Left ventricular remodeling results in cardiac dysfunction and accounts for the majority of the morbidity and mortality following myocardial infarction (MI). The aim of the present study was to investigate the effect of asiatic acid (AA) on cardiac function and left ventricular remodeling in a rat model of MI and explore the underlying mechanisms. Rats were subjected to coronary artery ligation to model MI and orally treated with AA. After 4 weeks, cardiac function was assessed by echocardiography. Cardiomyocyte cross-sectional area was recorded, and the expression levels of a number of inflammatory cytokines were detected using ELISA. The degree of interstitial fibrosis was determined by evaluating the mRNA expression levels of collagen II and III. Western blot analysis was performed to detect the expression levels of total and phosphorylated p38 MAPK and ERK1/2, to investigate whether they are involved in the mechanism underlying the effect of AA on the heart. Rats subjected to MI displayed significantly impaired cardiac function compared with those subjected to a sham procedure, while this change was reversed by treatment with AA. Furthermore, AA markedly inhibited cardiac hypertrophy, reduced the mRNA expression levels of inflammatory cytokines and decreased interstitial fibrosis in the infarct border zone of MI model rats compared with those in vehicle-treated MI model rats. Furthermore, the phosphorylation of p38 MAPK and ERK1/2 was blocked by AA in the MI rats but not in the sham rats. In summary, AA treatment preserved cardiac function and inhibited left ventricular remodeling, potentially by blocking the phosphorylation of p38 MAPK and ERK1/2 in the infarct border zone of the ischemic myocardium, indicating that AA may be a novel candidate for development as a therapy for MI. PMID:26889217

  1. Aquaporin-4 gene silencing protects injured neurons after early cerebral infarction

    PubMed Central

    He, Zhan-ping; Lu, Hong

    2015-01-01

    Aquaporin-4 regulates water molecule channels and is important in tissue regulation and water transportation in the brain. Upregulation of aquaporin-4 expression is closely related to cellular edema after early cerebral infarction. Cellular edema and aquaporin-4 expression can be determined by measuring cerebral infarct area and apparent diffusion coefficient using diffusion-weighted imaging (DWI). We examined the effects of silencing aquaporin-4 on cerebral infarction. Rat models of cerebral infarction were established by occlusion of the right middle cerebral artery and siRNA-aquaporin-4 was immediately injected via the right basal ganglia. In control animals, the area of high signal intensity and relative apparent diffusion coefficient value on T2-weighted imaging (T2WI) and DWI gradually increased within 0.5–6 hours after cerebral infarction. After aquaporin-4 gene silencing, the area of high signal intensity on T2WI and DWI reduced, relative apparent diffusion coefficient value was increased, and cellular edema was obviously alleviated. At 6 hours after cerebral infarction, the apparent diffusion coefficient value was similar between treatment and model groups, but angioedema was still obvious in the treatment group. These results indicate that aquaporin-4 gene silencing can effectively relieve cellular edema after early cerebral infarction; and when conducted accurately and on time, the diffusion coefficient value and the area of high signal intensity on T2WI and DWI can reflect therapeutic effects of aquaporin-4 gene silencing on cellular edema. PMID:26330830

  2. Analyzing the Release of Copeptin from the Heart in Acute Myocardial Infarction Using a Transcoronary Gradient Model

    PubMed Central

    Boeckel, Jes-Niels; Oppermann, Jana; Anadol, Remzi; Fichtlscherer, Stephan; Zeiher, Andreas M.; Keller, Till

    2016-01-01

    Copeptin is the C-terminal end of pre-provasopressin released equimolar to vasopressin into circulation and recently discussed as promising cardiovascular biomarker amendatory to established markers such as troponins. Vasopressin is a cytokine synthesized in the hypothalamus. A direct release of copeptin from the heart into the circulation is implied by data from a rat model showing a cardiac origin in hearts put under cardiovascular wall stress. Therefore, evaluation of a potential release of copeptin from the human heart in acute myocardial infarction (AMI) has been done. PMID:26864512

  3. Myocardial Repolarization Dispersion and Autonomic Nerve Activity in a Canine Experimental Acute Myocardial Infarction Model

    PubMed Central

    Piccirillo, Gianfranco; Moscucci, Federica; D’Alessandro, Gaetana; Pascucci, Matteo; Rossi, Pietro; Han, Seongwook; Chen, Lan S; Lin, Shien-Fong; Chen, Peng-Sheng; Magrì, Damiano

    2014-01-01

    Background Evidence from a canine experimental acute myocardial infarction (MI) model shows that until the seventh week after MI the relationship between stellate ganglionic nerve and vagal nerve activities (SGNA/VNA) progressively increases. Objective We evaluated how autonomic nervous system activity influences temporal myocardial repolarization dispersion at this period. Methods We analyzed autonomic nerve activity as well as QT and RR variability from recordings previously obtained in 9 dogs. From a total 48 short-term electrocardiographic segments, 24 recorded before and 24 seven weeks after experimentally-induced MI, we obtained three indices of temporal myocardial repolarization dispersion: QTe (from q wave T to wave end), QTp (from q wave to T wave peak) and Te (from T wave peak to T wave end) variability index (QTeVI, QTpVI, TeVI). We also performed a heart rate variability power spectral analysis on the same segments. Results After MI, all the QT variables increased QTeVI (median [interquartile range]) (from - 1.76[0.82] to −1.32[0.68]), QTeVI (from −1.90[1.01] to −1.45[0.78]) and TeVI (from −0.72[0.67] to −0.22[1.00]), whereas all RR spectral indexes decreased (p<0.001 for all). Distinct circadian rhythms in QTeVI (p<0.05,) QTpVI (p<0.001) and TeVI (p<0.05) appeared after MI with circadian variations resembling that of SGNA/VNA. The morning QTpVI and TeVI acrophases approached the SGNA/VNA acrophase. Conversely, the evening QTeVI acrophase coincided with another SGNA/VNA peak. After MI, regression analysis detected a positive relationship between SGNA/VNA and TeVI (R2: 0.077; β: 0.278; p< 0.001). Conclusion Temporal myocardial repolarization dispersion shows a circadian variation after MI reaching its peak at a time when sympathetic is highest and vagal activity lowest. PMID:24120873

  4. Fractional Modeling of Viscoelasticity in Brain Aneurysms

    NASA Astrophysics Data System (ADS)

    Yu, Yue; Karniadakis, George

    2014-11-01

    We develop fundamental new numerical methods for fractional order PDEs, and investigate corresponding models for arterial walls. Specifically, the arterial wall is a heterogeneous soft tissue with complex biomechanical properties, and its constitutive laws are typically derived using integer-order differential equations. However, recent simulations on 1D model have indicated that fractional order models may offer a more powerful alternative for describing arterial wall mechanics, because they are less sensitive to the parameter estimation compared with the integer-calculus-based models. We study the specific fractional PDEs that better model the properties of the 3D arterial walls, and for the first time employ them in simulating flow structure interactions for patient-specific brain aneurysms. A comparison study indicates that for the integer order models, the viscous behavior strongly depends on the relaxation parameters while the fractional order models are less sensitive. This finding is consistent with what is observed in the 1D models for arterial networks (Perdikaris & Karniadakis, 2014), except that when the fractional order is small, the 3D fractional-order models are more sensitive to the fractional order compared to the 1D models.

  5. Pretreatment with pentoxifylline has antidepressant-like effects in a rat model of acute myocardial infarction.

    PubMed

    Bah, Thierno Madjou; Kaloustian, Svan; Rousseau, Guy; Godbout, Roger

    2011-12-01

    We have observed that, after myocardial infarction (MI), rats display apoptosis in the limbic system that can be prevented by pentoxifylline (PTX), a proinflammatory cytokine inhibitor. We have hypothesized that reduction of apoptosis in the limbic system can attenuate the depressive behaviour occurring post-MI. The present study was, therefore, designed to assess the outcome of PTX on depressive behaviour manifesting after MI. Myocardial ischaemia, induced for 40 min in male Sprague-Dawley rats, was followed by reperfusion (MI groups). Sham groups were subjected to the same protocol without occlusion. PTX (10 mg/kg/day) or saline was administered intraperitoneally 15 min before ischaemia, and then every day until sacrifice. Two weeks after ischaemia, depression was evaluated by the forced swim test and the sucrose preference test. At the end of the experiment, the animals were sacrificed, and myocardial infarct size was examined along with plasma IL-1? concentrations. MI rats drank less sucrose in the sucrose preference test and were more immobile in the forced swim test than the sham controls. PTX reversed these behaviours in the MI group to a level similar to that in the untreated sham group, without affecting infarct size. PTX reduced plasma IL-1? concentrations in both sham and MI rats. We conclude that PTX administration significantly reverses the depressive-like behaviour seen after MI in rats. PMID:21971020

  6. Cardioprotective effect of liposomal prostaglandin E1 on a porcine model of myocardial infarction reperfusion no-reflow*

    PubMed Central

    Li, Jia-hui; Yang, Peng; Li, Ai-li; Wang, Yong; Ke, Yuan-nan; Li, Xian-lun

    2011-01-01

    Objective: To evaluate whether liposomal prostaglandin E1 (lipo-PGE1) can decrease reperfusion no-reflow in a catheter-based porcine model of acute myocardial infarction (AMI). Methods: Twenty-two male Chinese mini-swines were randomized into three groups: six in a sham-operation group, and eight each in the control and lipo-PGE1 groups. The distal part of the left anterior descending coronary artery (LAD) in the latter two groups was completely occluded for 2 h, and then reperfused for 3 h. Lipo-PGE1 (1 μg/kg) was injected 10 min before LAD occlusion until reperfusion for 1 h in the lipo-PGE1 group. Hemodynamic data and proinflammatory cytokines were examined before AMI, 2 h after occlusion, and 1, 2, and 3 h after reperfusion. Myocardial contrast echocardiography (MCE) and double staining were performed to evaluate the myocardial no-reflow area (NRA). Results: Left ventricular systolic pressure and end-diastolic pressure significantly improved in the lipo-PGE1 group after reperfusion compared with the control group and also 2 h after AMI (P<0.05 for both). MCE and double staining both showed that lipo-PGE1 decreased reperfusion NRA after AMI (P<0.05, P<0.01). Lipo-PGE1 decreased serum interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) after myocardial infarction reperfusion (P<0.05 for both). Conclusions: Lipo-PGE1 is cardioprotective in our porcine model of myocardial infarction reperfusion no-reflow, decreasing NRA and attenuating the inflammatory response. PMID:21796804

  7. Infarct density distribution by MRI in the porcine model of acute and chronic myocardial infarction as a potential method transferable to the clinic.

    PubMed

    Varga-Szemes, Akos; Simor, Tamas; Lenkey, Zsofia; van der Geest, Rob J; Kirschner, Robert; Toth, Levente; Brott, Brigitta C; Elgavish, Ada; Elgavish, Gabriel A

    2014-06-01

    To study the feasibility of a myocardial infarct (MI) quantification method [signal intensity-based percent infarct mapping (SI-PIM)] that is able to evaluate not only the size, but also the density distribution of the MI. In 14 male swine, MI was generated by 90 min of closed-chest balloon occlusion followed by reperfusion. Seven (n = 7) or 56 (n = 7) days after reperfusion, Gd-DTPA-bolus and continuous-infusion enhanced late gadolinium enhancement (LGE) MRI, and R1-mapping were carried out and post mortem triphenyl-tetrazolium-chloride (TTC) staining was performed. MI was quantified using binary [2 or 5 standard deviation (SD)], SI-PIM and R1-PIM methods. Infarct fraction (IF), and infarct-involved voxel fraction (IIVF) were determined by each MRI method. Bias of each method was compared to the TTC technique. The accuracy of MI quantification did not depend on the method of contrast administration or the age of the MI. IFs obtained by either of the two PIM methods were statistically not different from the IFs derived from the TTC measurements at either MI age. IFs obtained from the binary 2SD method overestimated IF obtained from TTC. IIVF among the three different PIM methods did not vary, but with the binary methods the IIVF gradually decreased with increasing the threshold limit. The advantage of SI-PIM over the conventional binary method is the ability to represent not only IF but also the density distribution of the MI. Since the SI-PIM methods are based on a single LGE acquisition, the bolus-data-based SI-PIM method can effortlessly be incorporated into the clinical image post-processing procedure. PMID:24718787

  8. Development of an assisting detection system for early infarct diagnosis

    SciTech Connect

    Sim, K. S.; Nia, M. E.; Ee, C. S.

    2015-04-24

    In this paper, a detection assisting system for early infarct detection is developed. This new developed method is used to assist the medical practitioners to diagnose infarct from computed tomography images of brain. Using this assisting system, the infarct could be diagnosed at earlier stages. The non-contrast computed tomography (NCCT) brain images are the data set used for this system. Detection module extracts the pixel data from NCCT brain images, and produces the colourized version of images. The proposed method showed great potential in detecting infarct, and helps medical practitioners to make earlier and better diagnoses.

  9. On a Quantum Model of Brain Activities

    NASA Astrophysics Data System (ADS)

    Fichtner, K.-H.; Fichtner, L.; Freudenberg, W.; Ohya, M.

    2010-01-01

    One of the main activities of the brain is the recognition of signals. A first attempt to explain the process of recognition in terms of quantum statistics was given in [6]. Subsequently, details of the mathematical model were presented in a (still incomplete) series of papers (cf. [7, 2, 5, 10]). In the present note we want to give a general view of the principal ideas of this approach. We will introduce the basic spaces and justify the choice of spaces and operations. Further, we bring the model face to face with basic postulates any statistical model of the recognition process should fulfill. These postulates are in accordance with the opinion widely accepted in psychology and neurology.

  10. Animal models of traumatic brain injury

    PubMed Central

    Xiong, Ye; Mahmood, Asim; Chopp, Michael

    2014-01-01

    Traumatic brain injury (TBI) is a leading cause of mortality and morbidity in both civilian life and the battlefield worldwide. Survivors of TBI frequently experience long-term disabling changes in cognition, sensorimotor function and personality. Over the past three decades, animal models have been developed to replicate the various aspects of human TBI, to better understand the underlying pathophysiology and to explore potential treatments. Nevertheless, promising neuroprotective drugs, which were identified to be effective in animal TBI models, have all failed in phase II or phase III clinical trials. This failure in clinical translation of preclinical studies highlights a compelling need to revisit the current status of animal models of TBI and therapeutic strategies. PMID:23329160

  11. BigBrain: an ultrahigh-resolution 3D human brain model.

    PubMed

    Amunts, Katrin; Lepage, Claude; Borgeat, Louis; Mohlberg, Hartmut; Dickscheid, Timo; Rousseau, Marc-Étienne; Bludau, Sebastian; Bazin, Pierre-Louis; Lewis, Lindsay B; Oros-Peusquens, Ana-Maria; Shah, Nadim J; Lippert, Thomas; Zilles, Karl; Evans, Alan C

    2013-06-21

    Reference brains are indispensable tools in human brain mapping, enabling integration of multimodal data into an anatomically realistic standard space. Available reference brains, however, are restricted to the macroscopic scale and do not provide information on the functionally important microscopic dimension. We created an ultrahigh-resolution three-dimensional (3D) model of a human brain at nearly cellular resolution of 20 micrometers, based on the reconstruction of 7404 histological sections. "BigBrain" is a free, publicly available tool that provides considerable neuroanatomical insight into the human brain, thereby allowing the extraction of microscopic data for modeling and simulation. BigBrain enables testing of hypotheses on optimal path lengths between interconnected cortical regions or on spatial organization of genetic patterning, redefining the traditional neuroanatomy maps such as those of Brodmann and von Economo. PMID:23788795

  12. Tropisetron ameliorates ischemic brain injury in an embolic model of stroke.

    PubMed

    Rahimian, Reza; Daneshmand, Ali; Mehr, Shahram Ejtemaei; Barzegar-Fallah, Anita; Mohammadi-Rick, Sanaz; Fakhfouri, Gohar; Shabanzadeh, Alireza P; Dehpour, Ahmad Reza

    2011-05-25

    Tropisetron is widely used to counteract chemotherapy-induced emesis. Evidence obtained from human and animal studies shows that tropisetron possesses anti-inflammatory properties. In this study, we assessed the effect of tropisetron on brain damage in a rat thromboembolic model of stroke. Stroke was rendered in rats by introduction of an autologous clot into the middle cerebral artery (MCA). Tropisetron (1 or 3mg/kg); m-chlorophenylbiguanide (mCPBG), a selective 5-HT(3) receptor agonist (15 mg/kg); tropisetron (3mg/kg) plus mCPBG (15 mg/kg); granisetron (3mg/kg); tacrolimus (1mg/kg); or tacrolimus (1mg/kg) plus tropisetron (3mg/kg) were administered intraperitoneally 1h prior to embolization. Behavioral scores and infarct volume as well as myeloperoxidase (MPO) activity and tumor necrosis factor-alpha (TNF-α) level were determined in the ipsilateral cortex 4h and 48 h following stroke induction. Forty-eight hours after embolization, tropisetron (1 or 3mg/kg), tropisetron (3mg/kg) plus mCPBG (15 mg/kg), tacrolimus (1mg/kg), or tacrolimus (1mg/kg) plus tropisetron (3mg/kg) significantly curtailed brain infarction, improved behavioral scores, diminished elevated tissue MPO activity, and reduced TNF-α levels compared to control group (n=6; P<0.05). mCPBG or granisetron had no effect on the mentioned parameters. Tropisetron attenuates brain damage after a thromboembolic event. Beneficial effects of tropisetron in this setting are receptor independent. PMID:21447327

  13. Molsidomine for the prevention of vasospasm-related delayed ischemic neurological deficits and delayed brain infarction and the improvement of clinical outcome after subarachnoid hemorrhage: a single-center clinical observational study.

    PubMed

    Ehlert, Angelika; Schmidt, Christoph; Wölfer, Johannes; Manthei, Gerd; Jacobs, Andreas H; Brüning, Roland; Heindel, Walter; Ringelstein, E Bernd; Stummer, Walter; Pluta, Ryszard M; Hesselmann, Volker

    2016-01-01

    OBJECT Delayed ischemic neurological deficits (DINDs) and cerebral vasospasm (CVS) are responsible fora poor outcome in patients with aneurysmal subarachnoid hemorrhage (SAH), most likely because of a decreased availability of nitric oxide (NO) in the cerebral microcirculation. In this study, the authors examined the effects of treatment with the NO donor molsidomine with regard to decreasing the incidence of spasm-related delayed brain infarctions and improving clinical outcome in patients with SAH. METHODS Seventy-four patients with spontaneous aneurysmal SAH were included in this post hoc analysis. Twenty-nine patients with SAH and proven CVS received molsidomine in addition to oral or intravenous nimodipine. Control groups consisted of 25 SAH patients with proven vasospasm and 20 SAH patients without. These patients received nimodipine therapy alone. Cranial computed tomography (CCT) before and after treatment was analyzed for CVS-related infarcts. A modified National Institutes of Health Stroke Scale (mNIHSS) and the modified Rankin Scale (mRS) were used to assess outcomes at a 3-month clinical follow-up. RESULTS Four of the 29 (13.8%) patients receiving molsidomine plus nimodipine and 22 of the 45 (48%) patients receiving nimodipine therapy alone developed vasospasm-associated brain infarcts (p < 0.01). Follow-up revealed a median mNIHSS score of 3.0 and a median mRS score of 2.5 in the molsidomine group compared with scores of 11.5 and 5.0, respectively, in the nimodipine group with CVS (p < 0.001). One patient in the molsidomine treatment group died, and 12 patients in the standard care group died (p < 0.01). CONCLUSIONS In this post hoc analysis, patients with CVS who were treated with intravenous molsidomine had a significant improvement in clinical outcome and less cerebral infarction. Molsidomine offers a promising therapeutic option in patients with severe SAH and CVS and should be assessed in a prospective study. PMID:26162034

  14. Permanent ligation of the left anterior descending coronary artery in mice: a model of post-myocardial infarction remodelling and heart failure.

    PubMed

    Muthuramu, Ilayaraja; Lox, Marleen; Jacobs, Frank; De Geest, Bart

    2014-01-01

    Heart failure is a syndrome in which the heart fails to pump blood at a rate commensurate with cellular oxygen requirements at rest or during stress. It is characterized by fluid retention, shortness of breath, and fatigue, in particular on exertion. Heart failure is a growing public health problem, the leading cause of hospitalization, and a major cause of mortality. Ischemic heart disease is the main cause of heart failure. Ventricular remodelling refers to changes in structure, size, and shape of the left ventricle. This architectural remodelling of the left ventricle is induced by injury (e.g., myocardial infarction), by pressure overload (e.g., systemic arterial hypertension or aortic stenosis), or by volume overload. Since ventricular remodelling affects wall stress, it has a profound impact on cardiac function and on the development of heart failure. A model of permanent ligation of the left anterior descending coronary artery in mice is used to investigate ventricular remodelling and cardiac function post-myocardial infarction. This model is fundamentally different in terms of objectives and pathophysiological relevance compared to the model of transient ligation of the left anterior descending coronary artery. In this latter model of ischemia/reperfusion injury, the initial extent of the infarct may be modulated by factors that affect myocardial salvage following reperfusion. In contrast, the infarct area at 24 hr after permanent ligation of the left anterior descending coronary artery is fixed. Cardiac function in this model will be affected by 1) the process of infarct expansion, infarct healing, and scar formation; and 2) the concomitant development of left ventricular dilatation, cardiac hypertrophy, and ventricular remodelling. Besides the model of permanent ligation of the left anterior descending coronary artery, the technique of invasive hemodynamic measurements in mice is presented in detail. PMID:25489995

  15. Towards the virtual brain: network modeling of the intact and the damaged brain.

    PubMed

    Jirsa, V K; Sporns, O; Breakspear, M; Deco, G; McIntosh, A R

    2010-09-01

    Neurocomputational models of large-scale brain dynamics utilizing realistic connectivity matrices have advanced our understanding of the operational network principles in the brain. In particular, spontaneous or resting state activity has been studied on various scales of spatial and temporal organization including those that relate to physiological, encephalographic and hemodynamic data. In this article we focus on the brain from the perspective of a dynamic network and discuss the role of its network constituents in shaping brain dynamics. These constituents include the brain's structural connectivity, the population dynamics of its network nodes and the time delays involved in signal transmission. In addition, no discussion of brain dynamics would be complete without considering noise and stochastic effects. In fact, there is mounting evidence that the interaction between noise and dynamics plays an important functional role in shaping key brain processes. In particular, we discuss a unifying theoretical framework that explains how structured spatio-temporal resting state patterns emerge from noise driven explorations of unstable or stable oscillatory states. Embracing this perspective, we explore the consequences of network manipulations to understand some of the brain's dysfunctions, as well as network effects that offer new insights into routes towards therapy, recovery and brain repair. These collective insights will be at the core of a new computational environment, the Virtual Brain, which will allow flexible incorporation of empirical data constraining the brain models to integrate, unify and predict network responses to incipient pathological processes. PMID:21175008

  16. Comparing the effects of MSCs and CD34+ cell therapy in a rat model of myocardial infarction.

    PubMed

    Shalaby, Sally M; El-Shal, Amal S; Zidan, Haidy E; Mazen, Nehad F; Abd El-Haleem, Manal R; Abd El Motteleb, Dalia M

    2016-05-01

    Stem cell therapy is considered as a promising approach in the treatment of myocardial infarction (MI). This study was designed as a comparison of human umbilical cord blood (HUCB)-derived CD34+ and HUCB-derived MSCs for the repair of cardiac tissue by induction of the angiogenesis. Forty-eight male rats were randomized into four groups: sham-operated group, MI group, MSCs-treated group, and CD34+ cells-treated group. After 4 weeks, the rats were sacrificed. All sections from left ventricles of all groups were subjected to hematoxylin & eosin, Masson's trichrome, and immunohistochemical stains (CD133, CD44, and α-smooth muscle actin). RNA was extracted for gene expression of the angiogenic markers. A significant reduction of the infarct size and the amplitude of T-wave in the CD34+ cells-treated group when compared with the MSCs-treated group were determined. Histologically, the MI group showed scar tissue, congested blood capillaries around the infarcted area, some necrotic cells, and inflammatory cells. Administration of either MSCs or CD34+ cells had a therapeutic potential to induce regenerative changes in the myocardium with better results in CD34+cells-treated group. Quantitative RT-PCR analysis revealed a significant increase in the expression of vascular endothelial growth factor (VEGF), VEGFR-2, Ang-1, and Tie-2 and a significant decreased expression of Ang-2 in stem cells transplanted groups when compared with the noncell transplanted hearts. A significant increase of VEGF, VEGFR-2, Ang-1, and Tie-2 expression in the group receiving CD34+ cells than those receiving MSCs was found. Finally, there was an upregulation of both human VEGF and human hypoxia-inducible factor 1α in the infarcted hearts treated by CD34+ cells than that treated by MSCs. We first revealed a superior efficacy of CD34+ cells when compared with MSCs in induction of regenerative changes in the MI model. Both cell therapies may repair the damaged heart tissue primarily by secretion of proangiogenic factors that induce the angiogenesis and activate the angiogenesis signaling pathway. © 2016 IUBMB Life, 68(5):343-354, 2016. PMID:26949188

  17. Progenitor Cell Therapy in a Porcine Acute Myocardial Infarction Model Induces Cardiac Hypertrophy, Mediated by Paracrine Secretion of Cardiotrophic Factors Including TGFβ1

    PubMed Central

    Doyle, Brendan; Sorajja, Paul; Hynes, Brian; Kumar, Arun H.S.; Araoz, Phillip A.; Stalboerger, Paul G.; Miller, Dylan; Reed, Cynthia; Schmeckpeper, Jeffrey; Wang, Shaohua; Liu, Chunsheng; Terzic, Andre; Kruger, David; Riederer, Stephen

    2008-01-01

    Administration of endothelial progenitor cells (EPC) is a promising therapy for post-infarction cardiac repair. However, the mechanisms that underlie apparent beneficial effects on myocardial remodeling are unclear. In a porcine model of acute myocardial infarction, we investigated the therapeutic effects of a mixed population of culture modified peripheral blood mononuclear cells (termed hereafter porcine EPC). Porcine EPC were isolated using methods identical to those previously adopted for harvest of EPC in human cell therapy studies. In addition the therapeutic effects of paracrine factors secreted by these cells was evaluated in vitro and in vivo. Intracoronary injection of autologous porcine EPC was associated with increased infarct territory mass and improved regional ventricular systolic function at 2 months compared to control. Treatment with conditioned media derived from autologous EPC was associated with similar improved effects on infarct territory mass and function. Histologic analysis of the infarct territory revealed significantly increased cardiomyocyte size in EPC and conditioned media treated groups, when compared to controls. A paracrine EPC effect was also verified in a pure myocardial preparation in which cardiomyocytes devoid of fibroblast, neuronal and vascular elements directly responded by increasing cell mass when exposed to the same conditioned media. Analysis of conditioned media revealed elevated levels of TGFβ1 (human 267.3±11.8 pg/ml, porcine 57.1±6.1 pg/ml), a recognized mediator of hypertrophic signaling in the heart. Neutralizing antibodies to TGFβ1 attenuated the pro-hypertrophic effect of conditioned media, and use of recombinant TGFβ1 added to fresh media replicated the pro-hypertrophic effects of conditioned media in vitro. These data demonstrate the potential of paracrine factors secreted from endothelial progenitor cells to induce cardiomyocyte hypertrophy contributing to increased infarct territory LV mass, with favorable medium term effects on regional function following myocardial infarction. PMID:18564032

  18. Translation of TRO40303 from myocardial infarction models to demonstration of safety and tolerance in a randomized Phase I trial

    PubMed Central

    2014-01-01

    Background Although reperfusion injury has been shown to be responsible for cardiomyocytes death after an acute myocardial infarction, there is currently no drug on the market that reduces this type of injury. TRO40303 is a new cardioprotective compound that was shown to inhibit the opening of the mitochondrial permeability transition pore and reduce infarct size after ischemia-reperfusion in a rat model of cardiac ischemia-reperfusion injury. Methods In the rat model, the therapeutic window and the dose effect relationship were investigated in order to select the proper dose and design for clinical investigations. To evaluate post-ischemic functional recovery, TRO40303 was tested in a model of isolated rat heart. Additionally, TRO40303 was investigated in a Phase I randomized, double-blind, placebo controlled study to assess the safety, tolerability and pharmacokinetics of single intravenous ascending doses of the compound (0.5 to 13 mg/kg) in 72 healthy male, post-menopausal and hysterectomized female subjects at flow rates from 0.04 to 35 mL/min (EudraCT number: 2010-021453-39). This work was supported in part by the French Agence Nationale de la Recherche. Results In the vivo model, TRO40303 reduced infarct size by 40% at 1 mg/kg and by 50% at 3 and 10 mg/kg given by intravenous bolus and was only active when administered before reperfusion. Additionally, TRO40303 provided functional recovery and reduced oxidative stress in the isolated rat heart model. These results, together with pharmacokinetic based allometry to human and non-clinical toxicology data, were used to design the Phase I trial. All the tested doses and flow rates were well tolerated clinically. There were no serious adverse events reported. No relevant changes in vital signs, electrocardiogram parameters, laboratory tests or physical examinations were observed at any time in any dose group. Pharmacokinetics was linear up to 6 mg/kg and slightly ~1.5-fold, hyper-proportional from 6 to 13 mg/kg. Conclusions These data demonstrated that TRO40303 can be safely administered by the intravenous route in humans at doses expected to be pharmacologically active. These results allowed evaluating the expected active dose in human at 6 mg/kg, used in a Phase II proof-of-concept study currently ongoing. PMID:24507657

  19. Bone marrow mesenchymal stem cells improve myocardial function in a swine model of acute myocardial infarction.

    PubMed

    Zhao, Jing-Jie; Liu, Xiao-Cheng; Kong, Feng; Qi, Tong-Gang; Cheng, Guang-Hui; Wang, Jue; Sun, Chao; Luan, Yun

    2014-09-01

    The aim of the current study was to confirm the effect and elucidate the mechanism of bone marrow mesenchymal stem cells (BMSCs) in acute myocardial infarction (AMI). AMI was induced in mini‑swine by ligating the left anterior descending coronary artery, and BMSCs (1x107) were injected via a sterile microinjection into the ischemic area. Six months postoperatively, electrocardiograph‑gated single photon emission computed tomography revealed that the myocardial filling defect was reduced and the left ventricular ejection fraction was improved in the BMSC group compared with the control group (P<0.05). Histopathological examination indicated that, in the BMSC treatment group, the percentage of survived myocardial tissue and the vessel density were increased, and the percentage of apoptosis was decreased compared with controls (P<0.05). Reverse transcription‑polymerase chain reaction results indicated that the expression levels of multiple inflammatory factors were significantly upregulated in the BMSC group compared with levels in the control group (P<0.05). In conclusion, the present study demonstrated that BMSC injection significantly improved cardiac function and reduced infarct size in six months, indicating that this method may be valuable for future study in clinical trials. PMID:25060678

  20. Cell tracking and therapy evaluation of bone marrow monocytes and stromal cells using SPECT and CMR in a canine model of myocardial infarction

    PubMed Central

    Wisenberg, Gerald; Lekx, Katie; Zabel, Pam; Kong, Huafu; Mann, Rupinder; Zeman, Peter R; Datta, Sudip; Culshaw, Caroline N; Merrifield, Peter; Bureau, Yves; Wells, Glenn; Sykes, Jane; Prato, Frank S

    2009-01-01

    Background The clinical application of stem cell therapy for myocardial infarction will require the development of methods to monitor treatment and pre-clinical assessment in a large animal model, to determine its effectiveness and the optimum cell population, route of delivery, timing, and flow milieu. Objectives To establish a model for a) in vivo tracking to monitor cell engraftment after autologous transplantation and b) concurrent measurement of infarct evolution and remodeling. Methods We evaluated 22 dogs (8 sham controls, 7 treated with autologous bone marrow monocytes, and 7 with stromal cells) using both imaging of 111Indium-tropolone labeled cells and late gadolinium enhancement CMR for up to12 weeks after a 3 hour coronary occlusion. Hearts were also examined using immunohistochemistry for capillary density and presence of PKH26 labeled cells. Results In vivo Indium imaging demonstrated an effective biological clearance half-life from the injection site of ~5 days. CMR demonstrated a pattern of progressive infarct shrinkage over 12 weeks, ranging from 67–88% of baseline values with monocytes producing a significant treatment effect. Relative infarct shrinkage was similar through to 6 weeks in all groups, following which the treatment effect was manifest. There was a trend towards an increase in capillary density with cell treatment. Conclusion This multi-modality approach will allow determination of the success and persistence of engraftment, and a correlation of this with infarct size shrinkage, regional function, and left ventricular remodeling. There were overall no major treatment effects with this particular model of transplantation immediately post-infarct. PMID:19397809

  1. Modeling Brain Resonance Phenomena Using a Neural Mass Model

    PubMed Central

    Spiegler, Andreas; Knösche, Thomas R.; Schwab, Karin; Haueisen, Jens; Atay, Fatihcan M.

    2011-01-01

    Stimulation with rhythmic light flicker (photic driving) plays an important role in the diagnosis of schizophrenia, mood disorder, migraine, and epilepsy. In particular, the adjustment of spontaneous brain rhythms to the stimulus frequency (entrainment) is used to assess the functional flexibility of the brain. We aim to gain deeper understanding of the mechanisms underlying this technique and to predict the effects of stimulus frequency and intensity. For this purpose, a modified Jansen and Rit neural mass model (NMM) of a cortical circuit is used. This mean field model has been designed to strike a balance between mathematical simplicity and biological plausibility. We reproduced the entrainment phenomenon observed in EEG during a photic driving experiment. More generally, we demonstrate that such a single area model can already yield very complex dynamics, including chaos, for biologically plausible parameter ranges. We chart the entire parameter space by means of characteristic Lyapunov spectra and Kaplan-Yorke dimension as well as time series and power spectra. Rhythmic and chaotic brain states were found virtually next to each other, such that small parameter changes can give rise to switching from one to another. Strikingly, this characteristic pattern of unpredictability generated by the model was matched to the experimental data with reasonable accuracy. These findings confirm that the NMM is a useful model of brain dynamics during photic driving. In this context, it can be used to study the mechanisms of, for example, perception and epileptic seizure generation. In particular, it enabled us to make predictions regarding the stimulus amplitude in further experiments for improving the entrainment effect. PMID:22215992

  2. Neuroprotective mechanism of the novel melatonin derivative Neu-P11 in brain ischemia related models.

    PubMed

    Buendia, Izaskun; Gómez-Rangel, Vanessa; González-Lafuente, Laura; Parada, Esther; León, Rafael; Gameiro, Isabel; Michalska, Patrycja; Laudon, Moshe; Egea, Javier; López, Manuela G

    2015-12-01

    Stopping the ischemic cascade by targeting its components is a potential strategy for acute ischemic stroke treatment. During ischemia and especially over reperfusion, oxidative stress plays a major role in causing neuronal cell death. Melatonin has been previously reported to provide neuroprotective effects in in vivo models of stroke by a mechanism that implicates melatonin receptors. In this context, this study was planned to test the potential neuroprotective effects of the novel melatonin MT1/MT2 receptor agonist, Neu-P11, against brain ischemia in in vitro and in vivo models, and to elucidate its underlying mechanism of action. Neu-P11 proved to be a good antioxidant, to protect against glutamate-induced excitotoxicity and oxygen and glucose deprivation in hippocampal slices, and to reduce infarct volume in an in vivo stroke model. Regarding its mechanism of action, the protective effect of Neu-P11 was reverted by luzindole (melatonin receptor antagonist), AG490 (JAK2 inhibitor), LY294002 (PI3/AKT inhibitor) and PD98059 (MEK/ERK1/2 inhibitor). In conclusion, Neu-P11 affords neuroprotection against brain ischemia in in vitro and in vivo models by activating a pro-survival signaling pathway that involves melatonin receptors, JAK/STAT, PI3K/Akt and MEK/ERK1/2. PMID:26188145

  3. Rethinking segregation and integration: contributions of whole-brain modelling.

    PubMed

    Deco, Gustavo; Tononi, Giulio; Boly, Melanie; Kringelbach, Morten L

    2015-07-01

    The brain regulates information flow by balancing the segregation and integration of incoming stimuli to facilitate flexible cognition and behaviour. The topological features of brain networks--in particular, network communities and hubs--support this segregation and integration but do not provide information about how external inputs are processed dynamically (that is, over time). Experiments in which the consequences of selective inputs on brain activity are controlled and traced with great precision could provide such information. However, such strategies have thus far had limited success. By contrast, recent whole-brain computational modelling approaches have enabled us to start assessing the effect of input perturbations on brain dynamics in silico. PMID:26081790

  4. Brainstem infarction and sleep-disordered breathing in the BASIC Sleep Apnea Study

    PubMed Central

    Brown, Devin L.; McDermott, Mollie; Mowla, Ashkan; De Lott, Lindsey; Morgenstern, Lewis B.; Kerber, Kevin A.; Hegeman, Garnett; Smith, Melinda A.; Garcia, Nelda M.; Chervin, Ronald D.; Lisabeth, Lynda D.

    2014-01-01

    Background Association between cerebral infarction site and post-stroke sleep-disordered breathing (SDB) has important implications for SDB screening and the pathophysiology of post-stroke SDB. Within a large, population-based study, we assessed whether brainstem infarction location is associated with SDB presence and severity. Methods Cross-sectional study of ischemic stroke patients in the Brain Attack Surveillance in Corpus Christi (BASIC) project. Subjects underwent SDB screening (median 13 days after stroke) with a well-validated cardiopulmonary sleep apnea testing device (n=355). Acute infarction location was determined based on review of radiology reports and dichotomized into brainstem involvement or none. Logistic and linear regression models were used to test the associations between brainstem involvement and SDB or apnea/hypopnea index (AHI) in unadjusted and adjusted models. Results Thirty-eight (11%) had acute infarction involving the brainstem. Of those without brainstem infarction, 59% had significant SDB (AHI≥10); the median AHI was 13 (interquartile range (IQR) 6, 26). Of those with brainstem infarction, 84% had SDB; median AHI was 20 (IQR 11, 38). In unadjusted analysis, brainstem involvement was associated with over three times the odds of SDB (OR 3.71 (95% CI: 1.52, 9.13)). In a multivariable model, adjusted for demographics, BMI, hypertension, diabetes, coronary artery disease, atrial fibrillation, prior stroke/TIA, and stroke severity, results were similar (OR 3.76 (95% CI: 1.44, 9.81)). Brainstem infarction was also associated with AHI (continuous) in unadjusted (p=0.004) and adjusted models (p=0.004). Conclusions Data from this population-based stroke study show that acute infarction involving the brainstem is associated with both presence and severity of SDB. PMID:24916097

  5. Mathematical modeling of human brain physiological data

    NASA Astrophysics Data System (ADS)

    Böhm, Matthias; Faltermeier, Rupert; Brawanski, Alexander; Lang, Elmar W.

    2013-12-01

    Recently, a mathematical model of the basic physiological processes regulating the cerebral perfusion and oxygen supply was introduced [Jung , J. Math. Biol.JMBLAJ0303-681210.1007/s00285-005-0343-5 51, 491 (2005)]. Although this model correctly describes the interdependence of arterial blood pressure (ABP) and intracranial pressure (ICP), it fails badly when it comes to explaining certain abnormal correlations seen in about 80% of the recordings of ABP together with ICP and the partial oxygen pressure (TiPO2) of the neuronal tissue, taken at an intensive care unit during neuromonitoring of patients with a severe brain trauma. Such recordings occasionally show segments, where the mean arterial blood pressure is correlated with the partial oxygen pressure in tissue but anticorrelated with the intracranial pressure. The origin of such abnormal correlations has not been fully understood yet. Here, two extensions to the previous approach are proposed which can reproduce such abnormal correlations in simulations quantitatively. Furthermore, as the simulations are based on a mathematical model, additional insight into the physiological mechanisms from which such abnormal correlations originate can be gained.

  6. Application of peripheral-blood-derived endothelial progenitor cell for treating ischemia-reperfusion injury and infarction: a preclinical study in rat models

    PubMed Central

    2013-01-01

    Background Our aim was to explore the therapeutic effects of peripheral blood-derived endothelial progenitor cells (PB-EPC) in cardiac ischemia-reperfusion infarction models in rats and in in vitro culture systems. Methods Rat models of ischemia reperfusion and myocardial infarction were developed using male, Sprague–Dawley rats. Cardiomyocyte and endothelial cell cultures were also established. Therapeutic effects of PB-EPCs were examined in vivo and in vitro in both models. Rats underwent either cardiac ischemia-reperfusion (n = 40) or infarction (n = 56) surgeries and were transplanted with genetically modified EPCs. Treatment efficacy in the ischemia-reperfusion group was measured by infarct size, myocardial contraction velocity, and myeloperoxidase activity after transplantation. Cardiomyocyte survival and endothelial cell apoptosis were investigated in vitro. Vascular growth-associated protein expression and cardiac function were evaluated in the myocardial infarction group by western blot and echocardiography, respectively. Results Infarct size and myeloperoxidase activity were significantly decreased in the ischemia-reperfusion group, whereas myocardial contractility was significantly increased in the EPC and Tβ4 groups compared with that in the control group. In contrast, no differences were found between EPC + shRNA Tβ4 and control groups. Rates of cardiomyocyte survival and endothelial cell apoptosis were significantly higher and lower, respectively, in the EPC and Tβ4 groups than in the control group, whereas no differences were found between the EPC + shRNA Tβ4 and control group. Four weeks after myocardial infarction, cardiac function was significantly better in the EPC group than in the control group. Expressions of PDGF, VEGF, and Flk-1 were significantly higher in EPC group than in control group. Conclusions Study findings suggest that PB-EPCs are able to protect cardiomyocytes from ischemia-reperfusion or infarction-induced damage via a Tβ4-mediated mechanism. EPCs may also provide protection through increased expression of proteins involved in mediating vascular growth. Autologous peripheral-blood-derived EPCs are readily available for efficient therapeutic use without the concerns of graft rejection. PMID:23452866

  7. Tongxinluo Enhances Neurogenesis and Angiogenesis in Peri-Infarct Area and Subventricular Zone and Promotes Functional Recovery after Focal Cerebral Ischemic Infarction in Hypertensive Rats

    PubMed Central

    Chen, Li; Wang, Xiaoting; Zhang, Jian; Dang, Chao; Liu, Gang; Liang, Zhijian; Huang, Gelun; Zhao, Weijia; Zeng, Jinsheng

    2016-01-01

    Background. Tongxinluo is a traditional Chinese medicine compound with the potential to promote the neuronal functional recovery in cerebral ischemic infarction. Objective. This study aimed to disclose whether tongxinluo promotes neurological functional recovery and neurogenesis and angiogenesis in the infarcted area and SVZ after cerebral ischemic infarction in hypertensive rats. Methods. The ischemic model was prepared by distal middle cerebral artery occlusion (MCAO) in hypertensive rats. Tongxinluo was administrated 24 h after MCAO and lasted for 3, 7, or 14 days. Behavioral tests were performed to evaluate the protection of tongxinluo. Immunochemical staining was applied on brain tissue to evaluate the effects of tongxinluo on neurogenesis and vascularization in the MCAO model rats. Results. Postinjury administration of tongxinluo ameliorated the neuronal function deficit in the MCAO model rats. As evidenced by the immunochemical staining, BrdU+/DCX+, BrdU+/nestin+, and BrdU+ vascular endothelial cells were promoted to proliferate in SVZ after tongxinluo administration. The matured neurons stained by NeuN and vascularization by laminin staining were observed after tongxinluo administration in the peri-infarct area. Conclusion. Tongxinluo postischemia administration could ameliorate the neurological function deficit in the model rats. Possible mechanisms are related to neurogenesis and angiogenesis in the peri-infarct area and SVZ. PMID:27069496

  8. Mathematical modelling of blood-brain barrier failure and edema

    NASA Astrophysics Data System (ADS)

    Waters, Sarah; Lang, Georgina; Vella, Dominic; Goriely, Alain

    2015-11-01

    Injuries such as traumatic brain injury and stroke can result in increased blood-brain barrier permeability. This increase may lead to water accumulation in the brain tissue resulting in vasogenic edema. Although the initial injury may be localised, the resulting edema causes mechanical damage and compression of the vasculature beyond the original injury site. We employ a biphasic mixture model to investigate the consequences of blood-brain barrier permeability changes within a region of brain tissue and the onset of vasogenic edema. We find that such localised changes can indeed result in brain tissue swelling and that the type of damage that results (stress damage or strain damage) depends on the ability of the brain to clear edema fluid.

  9. On a Mathematical Model of Brain Activities

    SciTech Connect

    Fichtner, K.-H.; Fichtner, L.; Freudenberg, W.; Ohya, M.

    2007-12-03

    The procedure of recognition can be described as follows: There is a set of complex signals stored in the memory. Choosing one of these signals may be interpreted as generating a hypothesis concerning an 'expexted view of the world'. Then the brain compares a signal arising from our senses with the signal chosen from the memory leading to a change of the state of both signals. Furthermore, measurements of that procedure like EEG or MEG are based on the fact that recognition of signals causes a certain loss of excited neurons, i.e. the neurons change their state from 'excited' to 'nonexcited'. For that reason a statistical model of the recognition process should reflect both--the change of the signals and the loss of excited neurons. A first attempt to explain the process of recognition in terms of quantum statistics was given. In the present note it is not possible to present this approach in detail. In lieu we will sketch roughly a few of the basic ideas and structures of the proposed model of the recognition process (Section). Further, we introduce the basic spaces and justify the choice of spaces used in this approach. A more elaborate presentation including all proofs will be given in a series of some forthcoming papers. In this series also the procedures of creation of signals from the memory, amplification, accumulation and transformation of input signals, and measurements like EEG and MEG will be treated in detail.

  10. S-values calculated from a tomographic head/brain model for brain imaging

    NASA Astrophysics Data System (ADS)

    Chao, Tsi-chian; Xu, X. George

    2004-11-01

    A tomographic head/brain model was developed from the Visible Human images and used to calculate S-values for brain imaging procedures. This model contains 15 segmented sub-regions including caudate nucleus, cerebellum, cerebral cortex, cerebral white matter, corpus callosum, eyes, lateral ventricles, lenses, lentiform nucleus, optic chiasma, optic nerve, pons and middle cerebellar peduncle, skull CSF, thalamus and thyroid. S-values for C-11, O-15, F-18, Tc-99m and I-123 have been calculated using this model and a Monte Carlo code, EGS4. Comparison of the calculated S-values with those calculated from the MIRD (1999) stylized head/brain model shows significant differences. In many cases, the stylized head/brain model resulted in smaller S-values (as much as 88%), suggesting that the doses to a specific patient similar to the Visible Man could have been underestimated using the existing clinical dosimetry.

  11. Multi-Infarct Dementia

    MedlinePLUS

    ... Diversity Find People About NINDS NINDS Multi-Infarct Dementia Information Page Synonym(s): Dementia - Multi-Infarct Table of ... Additional resources from MedlinePlus What is Multi-Infarct Dementia? Multi-infarct dementia (MID) is a common cause ...

  12. Preserved Coronary Endothelial Function by Inhibition of δ Protein Kinase C in a Porcine Acute Myocardial Infarction Model

    PubMed Central

    Kaneda, Hideaki; Inagaki, Koichi; Ikeno, Fumiaki; Mochly-Rosen, Daria

    2009-01-01

    Background Previous studies demonstrate impairment of endothelial-dependent vasodilation after ischemia/reperfusion (I/R). Though we have demonstrated that inhibition of δ protein kinase C (δPKC) at reperfusion reduces myocyte damage and improves cardiac function in a porcine acute myocardial infarction (AMI) model, impact of the selective δPKC inhibitor on epicardial coronary endothelial function remains unknown. Methods Either δPKC inhibitor (δV1-1, n=5) or saline (n=5) was infused into the left anterior descending artery at the last 1 minute of the 30-minute ischemia by balloon occlusion. In vivo responses to bradykinin (endothelium-dependent vasodilator) or nitroglycerin (endothelium-independent vasodilator) were analyzed at 24 h after I/R using intravascular ultrasound. Vascular responses were calculated as the ratio of vessel area at each time point (30, 60, 90 and 120 seconds after the infusion), divided by values at baseline (before the infusion). Results In control pigs, endothelial-dependent vasodilation following bradykinin infusion in infarct-related epicardial coronary artery was impaired, whereas in δPKC inhibitor treated-pigs the endothelial-dependent vasodilation was preserved. Nitroglycerin infusion caused similar vasodilatory responses in the both groups. Conclusions This is the first demonstration that a δPKC inhibitor preserves vasodilator capacity in epicardial coronary arteries in an in vivo porcine AMI model. Because endothelial dysfunction correlates with worse outcome in patients with AMI, this preserved endothelial function in epicardial coronary arteries might result in a better clinical outcome. PMID:18242734

  13. Effects of Intracoronary Administration of Autologous Adipose Tissue-Derived Stem Cells on Acute Myocardial Infarction in a Porcine Model

    PubMed Central

    Lee, Hye Won; Park, Jong Ha; Kim, Bo Won; Ahn, Jinhee; Kim, Jin Hee; Park, Jin Sup; Oh, Jun-Hyok; Choi, Jung Hyun; Cha, Kwang Soo; Hong, Taek Jong; Park, Tae Sik; Kim, Sang-Pil; Song, Seunghwan; Kim, Ji Yeon; Park, Mi Hwa; Jung, Jin Sup

    2015-01-01

    Purpose Adipose-derived stem cells (ADSCs) are known to be potentially effective in regeneration of damaged tissue. We aimed to assess the effectiveness of intracoronary administration of ADSCs in reducing the infarction area and improving function after acute transmural myocardial infarction (MI) in a porcine model. Materials and Methods ADSCs were obtained from each pig's abdominal subcutaneous fat tissue by simple liposuction. After 3 passages of 14-days culture, 2 million ADSCs were injected into the coronary artery 30 min after acute transmural MI. At baseline and 4 weeks after the ADSC injection, 99mTc methoxyisobutylisonitrile-single photon emission computed tomography (MIBI-SPECT) was performed to evaluate the left ventricular volume, left ventricular ejection fraction (LVEF; %), and perfusion defects as well as the myocardial salvage (%) and salvage index. At 4 weeks, each pig was sacrificed, and the heart was extracted and dissected. Gross and microscopic analyses with specific immunohistochemistry staining were then performed. Results Analysis showed improvement in the perfusion defect, but not in the LVEF in the ADSC group (n=14), compared with the control group (n=14) (perfusion defect, -13.0±10.0 vs. -2.6±12.0, p=0.019; LVEF, -8.0±15.4 vs. -15.9±14.8, p=0.181). There was a tendency of reducing left ventricular volume in ADSC group. The ADSCs identified by stromal cell-derived factor-1 (SDF-1) staining were well co-localized by von Willebrand factor and Troponin T staining. Conclusion Intracoronary injection of cultured ADSCs improved myocardial perfusion in this porcine acute transmural MI model. PMID:26446632

  14. Viability assessment after conventional coronary angiography using a novel cardiovascular interventional therapeutic CT system: Comparison with gross morphology in a subacute infarct swine model

    PubMed Central

    Hartaigh, Bríain W.Ó.; Park, Se-Il; Hong, Youngtaek; Shin, Sanghoon; Ha, Seongmin; Jeon, Byunghwan; Jung, Hoyup; Shim, Hackjoon; Min, James K.; Chang, Hyuk-Jae; Jang, Yangsoo; Chung, Namsik

    2015-01-01

    Background Given the lack of promptness and inevitable use of additional contrast agents, the myocardial viability imaging procedures have not been used widely for determining the need to performing revascularization. Objective This study is aimed to evaluate the feasibility of myocardial viability assessment, consecutively with diagnostic invasive coronary angiography (ICA) without use of additional contrast agent, using a novel hybrid system comprising ICA and multislice CT (MSCT). Methods In all, 14 Yucatan miniature swine models (female; age, 3 months; weight, 28–30 kg) were subjected to ICA followed by balloon occlusion (90 minutes) and reperfusion of the left anterior descending coronary artery. Two weeks after induction of myocardial infarction, delayed hyperenhancement (DHE) images were obtained, using a novel combined machine comprising ICA and 320-channel MSCT scanner (Aquilion ONE, Toshiba), after 2, 5, 7, 10, 15, and 20 minutes after conventional ICA. The heart was sliced in 10-mm consecutive sections in the short-axis plane and was embedded in a solution of 1% triphenyltetrazolium chloride (TTC). Infarct size was determined as TTC-negative areas as a percentage of total left ventricular area. On MSCT images, infarct size per slice was calculated by dividing the DHE area by the total slice area (%) and compared with histochemical analyses. Results Serial MSCT scans revealed a peak CT attenuation of the infarct area (222.5 ± 36.5 Hounsfield units) with a maximum mean difference in CT attenuation between the infarct areas and normal myocardium of at 2 minutes after contrast injection (106.4; P for difference = 0.002). Furthermore, the percentage difference of infarct size by MSCT vs histopathologic specimen was significantly lower at 2 (8.5% ± 1.8%) and 5 minutes (9.5% ± 1.9%) than those after 7 minutes. Direct comparisons of slice-matched DHE area by MSCT demonstrated excellent correlation with TTC-derived infarct size (r = 0.952; P < .001). Bland-Altman plots of the differences between DHE by MSCT and TTC-derived infarct measurements plotted against their means showed good agreement between the 2 methods. Conclusion The feasibility of myocardial viability assessment by DHE using MSCT after conventional ICA was proven in experimental models, and the optimal viability images were obtained after 2 to 5 minutes after the final intracoronary injection of contrast agent for conventional ICA. PMID:26088379

  15. Cerebral infarction due to intracranial sinus thrombosis

    PubMed Central

    Ata, M.

    1965-01-01

    Four cases, two infants and two adults, of extensive thrombosis of the intracranial venous sinuses are described. Infarction of the brain had occurred in three cases. The first two cases presented as diabetic coma. The third case has been included to represent primary puerperal cerebral venous thrombosis. Extensive venous sinus thrombosis was seen at post-mortem examination in the fourth case, an infant who died suddenly, but there was no cerebral infarction in this case. Images PMID:5835445

  16. Prasugrel reduces ischaemic infarct volume and ameliorates neurological deficits in a non-human primate model of middle cerebral artery thrombosis.

    PubMed

    Tomizawa, Atsuyuki; Ohno, Kousaku; Jakubowski, Joseph A; Mizuno, Makoto; Sugidachi, Atsuhiro

    2015-12-01

    Several clinical trials have demonstrated the benefits of thienopyridine monotherapy in ischaemic stroke patients. Non-human primate models of ischaemic stroke have been used for various antithrombotic agents; however, to the best of our knowledge, there is no data on the effects of P2Y12 antagonists in models, such as the thrombotic middle cerebral artery occlusion (MCAO) monkey model. Accordingly, it remains unclear what level of inhibition of platelet aggregation (IPA) is required for optimal treatment of ischaemic stroke. In the present study, we investigated the effects of prasugrel, a third-generation thienopyridine antiplatelet drug, on platelet aggregation, thrombus formation and cerebral infarct volume in a non-human primate model. Daily oral administration of prasugrel resulted in significant and stable platelet inhibitory effects on Day 3, with IPA values ranging from 31% to 36% at 0.3mg/kg/day and from 44% to 50% at 1mg/kg/day. These IPA levels encompassed values observed in clinical trials of clopidogrel, and were thus selected for further study. In the thrombotic MCAO model, prasugrel increased MCA patency in a dose-dependent manner and significantly reduced ischaemic infarct volume by approximately 70% at 0.3mg/kg/day and 90% at 1mg/kg/day without increasing haemorrhagic infarction. Prasugrel also significantly reduced neurological deficit scores by 60% at 0.3mg/kg/day and 80% at 1mg/kg/day. In conclusion, prasugrel treatment resulted in effective reduction of ischaemic infarction and an associated improvement in neurological function without increasing haemorrhagic infarction. These data suggest that prasugrel monotherapy would be effective for the prevention of thrombotic stroke. PMID:26388120

  17. A revised dosimetric model of the adult head and brain

    SciTech Connect

    Bouchet, L.G.; Bolch, W.E.; Weber, D.A.

    1996-06-01

    During the last decade, new radiopharmaceutical have been introduced for brain imaging. The marked differences of these tracers in tissue specificity within the brain and their increasing use for diagnostic studies support the need for a more anthropomorphic model of the human brain and head. Brain and head models developed in the past have been only simplistic representations of this anatomic region. For example, the brain within the phantom of MIRD Pamphlet No. 5 Revised is modeled simply as a single ellipsoid of tissue With no differentiation of its internal structures. To address this need, the MIRD Committee established a Task Group in 1992 to construct a more detailed brain model to include the cerebral cortex, the white matter, the cerebellum, the thalamus, the caudate nucleus, the lentiform nucleus, the cerebral spinal fluid, the lateral ventricles, and the third ventricle. This brain model has been included within a slightly modified version of the head model developed by Poston et al. in 1984. This model has been incorporated into the radiation transport code EGS4 so as to calculate photon and electron absorbed fractions in the energy range 10 keV to 4 MeV for each of thirteen sources in the brain. Furthermore, explicit positron transport have been considered, separating the contribution by the positron itself and its associated annihilations photons. No differences are found between the electron and positron absorbed fractions; however, for initial energies of positrons greater than {approximately}0.5 MeV, significant differences are found between absorbed fractions from explicit transport of annihilation photons and those from an assumed uniform distribution of 0.511-MeV photons. Subsequently, S values were calculated for a variety of beta-particle and positron emitters brain imaging agents. Moreover, pediatric head and brain dosimetric models are currently being developed based on this adult head model.

  18. Intramuscular Transplantation of Pig Amniotic Fluid-Derived Progenitor Cells Has Therapeutic Potential in a Mouse Model of Myocardial Infarction.

    PubMed

    Peng, Shao-Yu; Chou, Chih-Jen; Cheng, Po-Jen; Tseng, Tse-Yang; Cheng, Winston Teng-Kui; Shaw, S W Steven; Wu, Shinn-Chih

    2015-01-01

    Acute myocardial infarction (MI) is a fatal event that causes a large number of deaths worldwide. MI results in pathological remodeling and decreased cardiac function, which could lead to heart failure and fatal arrhythmia. Cell therapy is a potential strategy to repair the damage through enhanced angiogenesis or by modulation of the inflammatory process via paracrine signaling. Amniotic fluid-derived progenitor cells (AFPCs) have been reported to differentiate into several lineages and can be used without ethical concerns or risk of teratoma formation. Since pigs are anatomically, physiologically, and genetically similar to humans, and pregnant pigs can be an abundant source of AFPCs, we used porcine AFPCs (pAFPCs) as our target cells. Intramyocardial injection of AFPCs has been shown to cure MI in animal models. However, intramuscular transplantation of cells has not been extensively investigated. In this study, we investigated the therapeutic potential of intramuscular injection of pAFPCs on acute MI. MI mice were divided into 1) PBS control, 2) medium cell dose (1 × 10(6) cells per leg; cell-M), and 3) high cell dose (4 × 10(6) cells per leg; cell-H) groups. Cells or PBS were directly injected into the hamstring muscle 20 min after MI surgery. Four weeks after MI surgery, the cell-M and cell-H groups exhibited significantly better ejection fraction, significantly greater wall thickness, smaller infarct scar sizes, and lower LV expansion index compared to the PBS group. Using in vivo imaging, we showed that the hamstring muscles from animals in the cell-M and cell-H groups had RFP-positive signals. In summary, intramuscular injection of porcine AFPCs reduced scar size, reduced pathological remodeling, and preserved heart function after MI. PMID:24667157

  19. Brain

    MedlinePLUS

    ... will return after updating. Resources Archived Modules Updates Brain Cerebrum The cerebrum is the part of the ... the outside of the brain and spinal cord. Brain Stem The brain stem is the part of ...

  20. MCARD-Mediated Gene Transfer of GRK2 Inhibitor in Ovine Model of Acute Myocardial Infarction

    PubMed Central

    Swain, JaBaris D.; Fargnoli, Anthony S.; Katz, Michael G.; Tomasulo, Catherine E.; Sumaroka, Marina; Richardville, Kyle C.; Koch, Walter J.; Rabinowitz, Joseph E.; Bridges, Charles R.

    2013-01-01

    β-adrenergic receptor (βAR) dysfunction in acute myocardial infarction (MI) is associated with elevated levels of the G protein-coupled receptor kinase-2 (GRK2), which plays a key role in heart failure progression. Inhibition of GRK2 via expression of a peptide βARKct transferred by molecular cardiac surgery with recirculating delivery (MCARD) may be a promising intervention. Five sheep underwent scAAV6-mediated MCARD delivery of βARKct and five received no treatment (control). After a 3 week period, the branch of the circumflex artery (OM1) was ligated. Quantitative PCR data showed intense βARKct expression in the left ventricle (LV). Circumferential fractional shortening was 23.4±7.1% (baseline) vs. −2.9±5.2% (p<0.05) in the control at 10 weeks. In the MCARD-βARKct group this parameter was close to baseline. The same trend was observed with LV wall thickening. Cardiac index fully recovered in the MCARD-βARKct group. LV end-diastolic volume and LV end-diastolic pressure did not differ in both groups. MCARD-mediated βARKct gene expression results in preservation of regional and global systolic function after acute MI without arresting progressive ventricular remodeling. PMID:23208013

  1. Echocardiographic assessment of coronary artery flow in normal canines and model dogs with myocardial infarction

    PubMed Central

    Park, Nohwon; Kim, Jaehwan; Lee, Miyoung; Lee, Soyun; Song, Sunhye; Lee, Seungjun; Kim, Soyoung; Park, Yangwoo

    2014-01-01

    This study was conducted to evaluate the usefulness of coronary arterial profiles from normal dogs (11 animals) and canines (six dogs) with experimental myocardial infarction (MI) induced by ligation of the left coronary artery (LCA). Blood velocity of the LCA and right coronary artery (RCA) were evaluated following transthoracic pulsed-wave Doppler echocardiography. The LCA was observed as an infundibular shape, located adjacent to the sinus of Valsalva. The RCA appeared as a tubular structure located 12 o'clock relative to the aorta. In normal dogs, the LCA and RCA mean peak diastolic velocities were 20.84 ± 3.24 and 19.47 ± 2.67 cm/sec, respectively. The LCA and RCA mean diastolic deceleration times were 0.91 ± 0.14 sec and 1.13 ± 0.20 sec, respectively. In dogs with MI, the LCA had significantly (p < 0.01) lower peak velocities (14.82 ± 1.61 cm/sec) than the RCA (31.61 ± 2.34 cm/sec). The RCA had a significantly (p < 0.01) rapid diastolic deceleration time (0.71 ± 0.06 sec) than that found in the LCA (1.02 ± 0.22 sec) of MI dogs. In conclusion, these profiles may serve as a differential factor for evaluating cardiomyopathy in dogs. PMID:23820197

  2. Volumetric Intraoperative Brain Deformation Compensation: Model Development and Phantom Validation

    PubMed Central

    DeLorenzo, Christine; Papademetris, Xenophon; Staib, Lawrence H.; Vives, Kenneth P.; Spencer, Dennis D.; Duncan, James S.

    2012-01-01

    During neurosurgery, nonrigid brain deformation may affect the reliability of tissue localization based on preoperative images. To provide accurate surgical guidance in these cases, preoperative images must be updated to reflect the intraoperative brain. This can be accomplished by warping these preoperative images using a biomechanical model. Due to the possible complexity of this deformation, intraoperative information is often required to guide the model solution. In this paper, a linear elastic model of the brain is developed to infer volumetric brain deformation associated with measured intraoperative cortical surface displacement. The developed model relies on known material properties of brain tissue, and does not require further knowledge about intraoperative conditions. To provide an initial estimation of volumetric model accuracy, as well as determine the model’s sensitivity to the specified material parameters and surface displacements, a realistic brain phantom was developed. Phantom results indicate that the linear elastic model significantly reduced localization error due to brain shift, from >16 mm to under 5 mm, on average. In addition, though in vivo quantitative validation is necessary, preliminary application of this approach to images acquired during neocortical epilepsy cases confirms the feasibility of applying the developed model to in vivo data. PMID:22562728

  3. Progress on the paternal brain: theory, animal models, human brain research, and mental health implications.

    PubMed

    Swain, J E; Dayton, C J; Kim, P; Tolman, R M; Volling, B L

    2014-01-01

    With a secure foundation in basic research across mammalian species in which fathers participate in the raising of young, novel brain-imaging approaches are outlining a set of consistent brain circuits that regulate paternal thoughts and behaviors in humans. The newest experimental paradigms include increasingly realistic baby-stimuli to provoke paternal cognitions and behaviors with coordinated hormone measures to outline brain networks that regulate motivation, reflexive caring, emotion regulation, and social brain networks with differences and similarities to those found in mothers. In this article, on the father brain, we review all brain-imaging studies on PubMed to date on the human father brain and introduce the topic with a selection of theoretical models and foundational neurohormonal research on animal models in support of the human work. We discuss potentially translatable models for the identification and treatment of paternal mood and father-child relational problems, which could improve infant mental health and developmental trajectories with potentially broad public health importance. PMID:25798491

  4. The direct incorporation of perfusion defect information to define ischemia and infarction in a finite element model of the left ventricle.

    PubMed

    Veress, Alexander I; Fung, George S K; Lee, Taek-Soo; Tsui, Benjamin M W; Kicska, Gregory A; Paul Segars, W; Gullberg, Grant T

    2015-05-01

    This paper describes the process in which complex lesion geometries (specified by computer generated perfusion defects) are incorporated in the description of nonlinear finite element (FE) mechanical models used for specifying the motion of the left ventricle (LV) in the 4D extended cardiac torso (XCAT) phantom to simulate gated cardiac image data. An image interrogation process was developed to define the elements in the LV mesh as ischemic or infarcted based upon the values of sampled intensity levels of the perfusion maps. The intensity values were determined for each of the interior integration points of every element of the FE mesh. The average element intensity levels were then determined. The elements with average intensity values below a user-controlled threshold were defined as ischemic or infarcted depending upon the model being defined. For the infarction model cases, the thresholding and interrogation process were repeated in order to define a border zone (BZ) surrounding the infarction. This methodology was evaluated using perfusion maps created by the perfusion cardiac-torso (PCAT) phantom an extension of the 4D XCAT phantom. The PCAT was used to create 3D perfusion maps representing 90% occlusions at four locations (left anterior descending (LAD) segments 6 and 9, left circumflex (LCX) segment 11, right coronary artery (RCA) segment 1) in the coronary tree. The volumes and shapes of the defects defined in the FE mechanical models were compared with perfusion maps produced by the PCAT. The models were incorporated into the XCAT phantom. The ischemia models had reduced stroke volume (SV) by 18-59 ml. and ejection fraction (EF) values by 14-50% points compared to the normal models. The infarction models, had less reductions in SV and EF, 17-54 ml. and 14-45% points, respectively. The volumes of the ischemic/infarcted regions of the models were nearly identical to those volumes obtained from the perfusion images and were highly correlated (R² = 0.99). PMID:25367177

  5. Modelling the current distribution across the depth electrode-brain interface in deep brain stimulation

    PubMed Central

    Yousif, Nada; Liu, Xuguang

    2008-01-01

    The mismatch between the extensive clinical use of deep brain stimulation (DBS), which is being used to treat an increasing number of neurological disorders, and the lack of understanding of the underlying mechanisms, is confounded by the difficulty of measuring the spread of electric current in the brain in vivo. Here we present a brief review of the recent computational models which simulate the electric current and field distribution in the three-dimensional space, and consequently make estimations of the brain volume being modulated by therapeutic DBS. Such structural modelling work can be categorised into three main approaches: 1) Target specific modelling; 2) Models of instrumentation; 3) Modelling the electrode-brain interface (EBI). Comments are made for each of these approaches with emphasis on our EBI modelling, since the stimulating current must travel across the EBI in order to reach the surrounding brain tissue, and modulate the pathological neural activity. For future modelling work, a combined approach needs to be taken for revealing the underlying mechanisms, and both structural and dynamic models need to be clinically validated to make reliable predictions about the therapeutic effect of DBS in order to assist clinical practice. PMID:17850197

  6. Zebrafish as an emerging model for studying complex brain disorders

    PubMed Central

    Kalueff, Allan V.; Stewart, Adam Michael; Gerlai, Robert

    2014-01-01

    The zebrafish (Danio rerio) is rapidly becoming a popular model organism in pharmacogenetics and neuropharmacology. Both larval and adult zebrafish are currently used to increase our understanding of brain function, dysfunction, and their genetic and pharmacological modulation. Here we review the developing utility of zebrafish in the analysis of complex brain disorders (including, for example, depression, autism, psychoses, drug abuse and cognitive disorders), also covering zebrafish applications towards the goal of modeling major human neuropsychiatric and drug-induced syndromes. We argue that zebrafish models of complex brain disorders and drug-induced conditions have become a rapidly emerging critical field in translational neuropharmacology research. PMID:24412421

  7. The Virtual Brain Integrates Computational Modeling and Multimodal Neuroimaging

    PubMed Central

    Schirner, Michael; McIntosh, Anthony R.; Jirsa, Viktor K.

    2013-01-01

    Abstract Brain function is thought to emerge from the interactions among neuronal populations. Apart from traditional efforts to reproduce brain dynamics from the micro- to macroscopic scales, complementary approaches develop phenomenological models of lower complexity. Such macroscopic models typically generate only a few selected—ideally functionally relevant—aspects of the brain dynamics. Importantly, they often allow an understanding of the underlying mechanisms beyond computational reproduction. Adding detail to these models will widen their ability to reproduce a broader range of dynamic features of the brain. For instance, such models allow for the exploration of consequences of focal and distributed pathological changes in the system, enabling us to identify and develop approaches to counteract those unfavorable processes. Toward this end, The Virtual Brain (TVB) (www.thevirtualbrain.org), a neuroinformatics platform with a brain simulator that incorporates a range of neuronal models and dynamics at its core, has been developed. This integrated framework allows the model-based simulation, analysis, and inference of neurophysiological mechanisms over several brain scales that underlie the generation of macroscopic neuroimaging signals. In this article, we describe how TVB works, and we present the first proof of concept. PMID:23442172

  8. The grasshopper: a novel model for assessing vertebrate brain uptake.

    PubMed

    Andersson, Olga; Hansen, Steen Honoré; Hellman, Karin; Olsen, Line Rørbæk; Andersson, Gunnar; Badolo, Lassina; Svenstrup, Niels; Nielsen, Peter Aadal

    2013-08-01

    The aim of the present study was to develop a blood-brain barrier (BBB) permeability model that is applicable in the drug discovery phase. The BBB ensures proper neural function, but it restricts many drugs from entering the brain, and this complicates the development of new drugs against central nervous system diseases. Many in vitro models have been developed to predict BBB permeability, but the permeability characteristics of the human BBB are notoriously complex and hard to predict. Consequently, one single suitable BBB permeability screening model, which is generally applicable in the early drug discovery phase, does not yet exist. A new refined ex vivo insect-based BBB screening model that uses an intact, viable whole brain under controlled in vitro-like exposure conditions is presented. This model uses intact brains from desert locusts, which are placed in a well containing the compound solubilized in an insect buffer. After a limited time, the brain is removed and the compound concentration in the brain is measured by conventional liquid chromatography-mass spectrometry. The data presented here include 25 known drugs, and the data show that the ex vivo insect model can be used to measure the brain uptake over the hemolymph-brain barrier of drugs and that the brain uptake shows linear correlation with in situ perfusion data obtained in vertebrates. Moreover, this study shows that the insect ex vivo model is able to identify P-glycoprotein (Pgp) substrates, and the model allows differentiation between low-permeability compounds and compounds that are Pgp substrates. PMID:23671124

  9. Human adipose stem cell and ASC-derived cardiac progenitor cellular therapy improves outcomes in a murine model of myocardial infarction

    PubMed Central

    Davy, Philip MC; Lye, Kevin D; Mathews, Juanita; Owens, Jesse B; Chow, Alice Y; Wong, Livingston; Moisyadi, Stefan; Allsopp, Richard C

    2015-01-01

    Background Adipose tissue is an abundant and potent source of adult stem cells for transplant therapy. In this study, we present our findings on the potential application of adipose-derived stem cells (ASCs) as well as induced cardiac-like progenitors (iCPs) derived from ASCs for the treatment of myocardial infarction. Methods and results Human bone marrow (BM)-derived stem cells, ASCs, and iCPs generated from ASCs using three defined cardiac lineage transcription factors were assessed in an immune-compromised mouse myocardial infarction model. Analysis of iCP prior to transplant confirmed changes in gene and protein expression consistent with a cardiac phenotype. Endpoint analysis was performed 1 month posttransplant. Significantly increased endpoint fractional shortening, as well as reduction in the infarct area at risk, was observed in recipients of iCPs as compared to the other recipient cohorts. Both recipients of iCPs and ASCs presented higher myocardial capillary densities than either recipients of BM-derived stem cells or the control cohort. Furthermore, mice receiving iCPs had a significantly higher cardiac retention of transplanted cells than all other groups. Conclusion Overall, iCPs generated from ASCs outperform BM-derived stem cells and ASCs in facilitating recovery from induced myocardial infarction in mice. PMID:26604802

  10. Discrepant Results of Experimental Human Mesenchymal Stromal Cell Therapy after Myocardial Infarction: Are Animal Models Robust Enough?

    PubMed Central

    Pluijmert, Niek J.; Schutte, Cindy I.; Fibbe, Willem E.; Schalij, Martin J.; Roelofs, Helene; Atsma, Douwe E.

    2016-01-01

    Background Human mesenchymal stromal cells (MSCs) have been reported to preserve cardiac function in myocardial infarction (MI) models. Previously, we found a beneficial effect of intramyocardial injection of unstimulated human MSCs (uMSCs) on cardiac function after permanent coronary artery ligation. In the present study we aimed to extend this research by investigating the effect of intramyocardial injection of human MSCs pre-stimulated with the pro-inflammatory cytokine interferon-gamma (iMSCs), since pro-inflammatory priming has shown additional salutary effects in multiple experimental disease models. Methods MI was induced in NOD/Scid mice by permanent ligation of the left anterior descending coronary artery. Animals received intramyocardial injection of uMSCs, iMSCs or PBS. Sham-operated animals were used to determine baseline characteristics. Cardiac performance was assessed after 2 and 14 days using 7-Tesla magnetic resonance imaging and pressure-volume loop measurements. Histology and q-PCR were used to confirm MSC engraftment in the heart. Results Both uMSC and iMSC therapy had no significant beneficial effect on cardiac function or remodelling in contrast to our previous studies. Conclusions Animal models for cardiac MSC therapy appear less robust than initially envisioned. PMID:27050443

  11. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy in a Chinese pedigree: A case report using brain magnetic resonance imaging and biospy.

    PubMed

    Xu, Erhe; Dong, Huiqing; Zhang, Milan; Xu, Min

    2012-01-25

    The present study enrolled a Chinese family that comprised 34 members and spanned three generations. Eight members were diagnosed with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, and disease diagnoses corresponded with autosomal incomplete dominance inheritance. The primary clinical manifestations included paralysis, dysarthria, and mild cognitive deficits. Magnetic resonance imaging revealed diffuse leukoencephalopathy with involvement of bilateral anterior temporal lobes, in particular the pons. In addition, multiple cerebral infarction was identified in the proband. Sural nerve biopsy findings of the proband revealed granular osmophilic material deposits in the extracellular matrix, which were adjacent to smooth muscle cells of dermal arterioles. Screening exons 2-4 for NOTCH 3 mutations by direct sequencing did not reveal any abnormalities. PMID:25767504

  12. Erythropoietin as a Neuroprotectant for Neonatal Brain Injury: Animal Models

    PubMed Central

    Traudt, Christopher M.; Juul, Sandra E.

    2016-01-01

    Prematurity and perinatal hypoxia-ischemia are common problems that result in significant neurodevelopmental morbidity and high mortality worldwide. The Vannucci model of unilateral brain injury was developed to model perinatal brain injury due to hypoxia-ischemia. Because the rodent brain is altricial, i.e., it develops postnatally, investigators can model either preterm or term brain injury by varying the age at which injury is induced. This model has allowed investigators to better understand developmental changes that occur in susceptibility of the brain to injury, evolution of brain injury over time, and response to potential neuroprotective treatments. The Vannucci model combines unilateral common carotid artery ligation with a hypoxic insult. This produces injury of the cerebral cortex, basal ganglia, hippocampus, and periventricular white matter ipsilateral to the ligated artery. Varying degrees of injury can be obtained by varying the depth and duration of the hypoxic insult. This chapter details one approach to the Vannucci model and also reviews the neuroprotective effects of erythropoietin (Epo), a neuroprotective treatment that has been extensively investigated using this model and others. PMID:23456865

  13. Functional principal component model for high-dimensional brain imaging.

    PubMed

    Zipunnikov, Vadim; Caffo, Brian; Yousem, David M; Davatzikos, Christos; Schwartz, Brian S; Crainiceanu, Ciprian

    2011-10-01

    We explore a connection between the singular value decomposition (SVD) and functional principal component analysis (FPCA) models in high-dimensional brain imaging applications. We formally link right singular vectors to principal scores of FPCA. This, combined with the fact that left singular vectors estimate principal components, allows us to deploy the numerical efficiency of SVD to fully estimate the components of FPCA, even for extremely high-dimensional functional objects, such as brain images. As an example, a FPCA model is fit to high-resolution morphometric (RAVENS) images. The main directions of morphometric variation in brain volumes are identified and discussed. PMID:21798354

  14. Model of Reentrant Ventricular Tachycardia based upon Infarct Border Zone Geometry Predicts Reentrant Circuit Features as Determined by Activation Mapping

    PubMed Central

    Ciaccio, Edward J; Ashikaga, Hiroshi; Kaba, Riyaz A; Cervantes, Daniel; Hopenfeld, Bruce; Wit, Andrew L; Peters, Nicholas S; McVeigh, Elliot R; Garan, Hasan; Coromilas, James

    2008-01-01

    Background Infarct border zone (IBZ) geometry likely affects inducibility and characteristics of postinfarction reentrant ventricular tachycardia, but the connection has not been established. Objective To determine characteristics of post infarction ventricular tachycardia in the IBZ. Methods A geometric model describing the relationship between IBZ geometry and wavefront propagation in reentrant circuits was developed. Based on the formulation, slow conduction and block was expected to coincide with areas where IBZ thickness (T) is minimal and the local spatial gradient in thickness (ΔT) is maximal, so that the degree of wavefront curvature ρ ∝ ΔT/T is maximal. Regions of fastest conduction velocity were predicted to coincide with areas of minimum ΔT. In seven arrhythmogenic postinfarction canine heart experiments, tachycardia was induced by programmed stimulation, and activation maps were constructed from multichannel recordings. IBZ thickness was measured in excised hearts from histologic analysis or magnetic resonance imaging. Reentrant circuit properties were predicted from IBZ geometry and compared with ventricular activation maps following tachycardia induction. Results Mean IBZ thickness was 231±140µm at the reentry isthmus and 1440±770µm in the outer pathway (p<0.001). Mean curvature ρ was 1.63±0.45mm−1 at functional block line locations, 0.71±0.18mm−1 at isthmus entrance-exit points, and 0.33±0.13mm−1 in the outer reentrant circuit pathway. The mean conduction velocity about the circuit during reentrant tachycardia was 0.32±0.04mm/ms at entrance-exit points, 0.42±0.13mm/ms for the entire outer pathway, and 0.64±0.16mm/ms at outer pathway regions with minimum ΔT. Model sensitivity and specificity to detect isthmus location was 75.0±5.7% and 97.2±0.7%. Conclusions Reentrant circuit features as determined by activation mapping can be predicted on the basis of IBZ geometrical relationships. PMID:17675078

  15. Electrocardiograms Corresponding to the Development of Myocardial Infarction in Anesthetized WHHLMI Rabbits (Oryctolagus cuniculus), an Animal Model for Familial Hypercholesterolemia

    PubMed Central

    Kobayashi, Tsutomu; Ito, Takashi; Yamada, Satoshi; Kuniyoshi, Nobue; Shiomi, Masashi

    2012-01-01

    The aim of this study was to determine whether features indicative of myocardial ischemia occur in the electrocardiograms (ECG) in myocardial infarction-prone Watanabe heritable hyperlipidemic (WHHLMI) rabbits, an animal model for human familial hypercholesterolemia. ECG were recorded in 110 anesthetized WHHLMI rabbits (age, 10 to 39 mo) by using unipolar and bipolar limb leads with or without chest leads. We noted the following electrocardiographic changes: T wave inversion (37.4%), ST segment depression (31.8%), deep Q wave (16.3%), reduced R wave amplitude (7.3%), ST segment elevation (2.7%), and high T wave (1.8%). These ECG changes resembled those in human patients with coronary heart disease. Histopathologic examination revealed that the left ventricular wall showed acute myocardial lesions, including loss of cross-striations, vacuolar degeneration, coagulation necrosis of cardiac myocytes, and edema between myofibrils, in addition to chronic myocardial lesions such as myocardial fibrosis. The coronary arteries that caused these ECG changes were severely stenosed due to atherosclerotic lesions. Ischemic ECG changes corresponded to the locations of the myocardial lesions. Normal ECG waveforms were similar between WHHLMI rabbits and humans, in contrast to the large differences between rabbits and mice or rats. In conclusion, ischemic ECG changes in WHHLMI rabbits reflect the location of myocardial lesions, making this model useful for studying coronary heart disease. PMID:23114045

  16. Effect and mechanism of fluoxetine on electrophysiology in vivo in a rat model of postmyocardial infarction depression

    PubMed Central

    Liang, Jinjun; Yuan, Xiaoran; Shi, Shaobo; Wang, Fang; Chen, Yingying; Qu, Chuan; Chen, Jingjing; Hu, Dan; Yang, Bo

    2015-01-01

    Background Major depression is diagnosed in 18% of patients following myocardial infarction (MI), and the antidepressant fluoxetine is shown to effectively decrease depressive symptoms and improve coronary heart disease prognosis. We observed the effect of fluoxetine on cardiac electrophysiology in vivo in a rat model of post-MI depression and the potential mechanism. Methods and results Eighty adult male Sprague Dawley rats (200–250 g) were randomly assigned to five groups: normal control (control group), MI (MI group), depression (depression group), post-MI depression (model group), and post-MI depression treated with intragastric administration of 10 mg/kg fluoxetine (fluoxetine group). MI was induced by left anterior descending coronary artery ligation. Depression was developed by 4-week chronic mild stress (CMS). Behavior measurement was done before and during the experiment. Electrophysiology study in vivo and Western blot analysis were carried on after 4 weeks of CMS. After 4 weeks of CMS, depression-like behaviors were observed in the MI, depression, and model groups, and chronic fluoxetine administration could significantly improve those behaviors (P<0.05 vs model group). Fluoxetine significantly increased the ventricular fibrillation threshold compared with the model group (20.20±9.32 V vs 14.67±1.85 V, P<0.05). Expression of Kv4.2 was significantly reduced by 29%±12%, 24%±6%, and 41%±15%, respectively, in the MI group, CMS group, and model group, which could be improved by fluoxetine (30%±9%). But fluoxetine showed no improvement on the MI-induced loss of Cx43. Conclusion The susceptibility to ventricular arrhythmias was increased in depression and post-MI depression rats, and fluoxetine may reduce the incidence of ventricular arrhythmia in post-MI depression rats and thus improve the prognosis. This may be related in part to the upregulation of Kv4.2 by fluoxetine. PMID:25709400

  17. Brain tumor modeling: glioma growth and interaction with chemotherapy

    NASA Astrophysics Data System (ADS)

    Banaem, Hossein Y.; Ahmadian, Alireza; Saberi, Hooshangh; Daneshmehr, Alireza; Khodadad, Davood

    2011-10-01

    In last decade increasingly mathematical models of tumor growths have been studied, particularly on solid tumors which growth mainly caused by cellular proliferation. In this paper we propose a modified model to simulate the growth of gliomas in different stages. Glioma growth is modeled by a reaction-advection-diffusion. We begin with a model of untreated gliomas and continue with models of polyclonal glioma following chemotherapy. From relatively simple assumptions involving homogeneous brain tissue bounded by a few gross anatomical landmarks (ventricles and skull) the models have been expanded to include heterogeneous brain tissue with different motilities of glioma cells in grey and white matter. Tumor growth is characterized by a dangerous change in the control mechanisms, which normally maintain a balance between the rate of proliferation and the rate of apoptosis (controlled cell death). Result shows that this model closes to clinical finding and can simulate brain tumor behavior properly.

  18. Intramyocardial Transplantation and Tracking of Human Mesenchymal Stem Cells in a Novel Intra-Uterine Pre-Immune Fetal Sheep Myocardial Infarction Model: A Proof of Concept Study

    PubMed Central

    Wolint, Petra; Frauenfelder, Thomas; Zeisberger, Steffen M.; Behr, Luc; Sammut, Sebastien; Scherman, Jacques; Brokopp, Chad E.; Schwartländer, Ruth; Vogel, Viola; Vogt, Peter; Grünenfelder, Jürg; Alkadhi, Hatem; Falk, Volkmar; Boss, Andreas; Hoerstrup, Simon P.

    2013-01-01

    Although stem-cell therapies have been suggested for cardiac-regeneration after myocardial-infarction (MI), key-questions regarding the in-vivo cell-fate remain unknown. While most available animal-models require immunosuppressive-therapy when applying human cells, the fetal-sheep being pre-immune until day 75 of gestation has been proposed for the in-vivo tracking of human cells after intra-peritoneal transplantation. We introduce a novel intra-uterine myocardial-infarction model to track human mesenchymal stem cells after direct intra-myocardial transplantation into the pre-immune fetal-sheep. Thirteen fetal-sheep (gestation age: 70–75 days) were included. Ten animals either received an intra-uterine induction of MI only (n = 4) or MI+intra-myocardial injection (IMI;n = 6) using micron-sized, iron-oxide (MPIO) labeled human mesenchymal stem cells either derived from the adipose-tissue (ATMSCs;n = 3) or the bone-marrow (BMMSCs;n = 3). Three animals received an intra-peritoneal injection (IPI;n = 3; ATMSCs;n = 2/BMMSCs;n = 1). All procedures were performed successfully and follow-up was 7–9 days. To assess human cell-fate, multimodal cell-tracking was performed via MRI and/or Micro-CT, Flow-Cytometry, PCR and immunohistochemistry. After IMI, MRI displayed an estimated amount of 1×105–5×105 human cells within ventricular-wall corresponding to the injection-sites which was further confirmed on Micro-CT. PCR and IHC verified intra-myocardial presence via detection of human-specific β-2-microglobulin, MHC-1, ALU-Sequence and anti-FITC targeting the fluorochrome-labeled part of the MPIOs. The cells appeared viable, integrated and were found in clusters or in the interstitial-spaces. Flow-Cytometry confirmed intra-myocardial presence, and showed further distribution within the spleen, lungs, kidneys and brain. Following IPI, MRI indicated the cells within the intra-peritoneal-cavity involving the liver and kidneys. Flow-Cytometry detected the cells within spleen, lungs, kidneys, thymus, bone-marrow and intra-peritoneal lavage, but not within the heart. For the first time we demonstrate the feasibility of intra-uterine, intra-myocardial stem-cell transplantation into the pre-immune fetal-sheep after MI. Utilizing cell-tracking strategies comprising advanced imaging-technologies and in-vitro tracking-tools, this novel model may serve as a unique platform to assess human cell-fate after intra-myocardial transplantation without the necessity of immunosuppressive-therapy. PMID:23533575

  19. Cerebral organoids model human brain development and microcephaly

    PubMed Central

    Lancaster, Madeline A.; Renner, Magdalena; Martin, Carol-Anne; Wenzel, Daniel; Bicknell, Louise S.; Hurles, Matthew E.; Homfray, Tessa; Penninger, Josef M.; Jackson, Andrew P.; Knoblich, Juergen A.

    2013-01-01

    The complexity of the human brain has made it difficult to study many brain disorders in model organisms, and highlights the need for an in vitro model of human brain development. We have developed a human pluripotent stem cell-derived 3D organoid culture system, termed cerebral organoid, which develops various discrete though interdependent brain regions. These include cerebral cortex containing progenitor populations that organize and produce mature cortical neuron subtypes. Furthermore, cerebral organoids recapitulate features of human cortical development, namely characteristic progenitor zone organization with abundant outer radial glial stem cells. Finally, we use RNAi and patient-specific iPS cells to model microcephaly, a disorder that has been difficult to recapitulate in mice. We demonstrate premature neuronal differentiation in patient organoids, a defect that could explain the disease phenotype. Our data demonstrate that 3D organoids can recapitulate development and disease of even this most complex human tissue. PMID:23995685

  20. A Bayesian Model of Category-Specific Emotional Brain Responses

    PubMed Central

    Wager, Tor D.; Kang, Jian; Johnson, Timothy D.; Nichols, Thomas E.; Satpute, Ajay B.; Barrett, Lisa Feldman

    2015-01-01

    Understanding emotion is critical for a science of healthy and disordered brain function, but the neurophysiological basis of emotional experience is still poorly understood. We analyzed human brain activity patterns from 148 studies of emotion categories (2159 total participants) using a novel hierarchical Bayesian model. The model allowed us to classify which of five categories—fear, anger, disgust, sadness, or happiness—is engaged by a study with 66% accuracy (43-86% across categories). Analyses of the activity patterns encoded in the model revealed that each emotion category is associated with unique, prototypical patterns of activity across multiple brain systems including the cortex, thalamus, amygdala, and other structures. The results indicate that emotion categories are not contained within any one region or system, but are represented as configurations across multiple brain networks. The model provides a precise summary of the prototypical patterns for each emotion category, and demonstrates that a sufficient characterization of emotion categories relies on (a) differential patterns of involvement in neocortical systems that differ between humans and other species, and (b) distinctive patterns of cortical-subcortical interactions. Thus, these findings are incompatible with several contemporary theories of emotion, including those that emphasize emotion-dedicated brain systems and those that propose emotion is localized primarily in subcortical activity. They are consistent with componential and constructionist views, which propose that emotions are differentiated by a combination of perceptual, mnemonic, prospective, and motivational elements. Such brain-based models of emotion provide a foundation for new translational and clinical approaches. PMID:25853490

  1. Fuzzy object models for newborn brain MR image segmentation

    NASA Astrophysics Data System (ADS)

    Kobashi, Syoji; Udupa, Jayaram K.

    2013-03-01

    Newborn brain MR image segmentation is a challenging problem because of variety of size, shape and MR signal although it is the fundamental study for quantitative radiology in brain MR images. Because of the large difference between the adult brain and the newborn brain, it is difficult to directly apply the conventional methods for the newborn brain. Inspired by the original fuzzy object model introduced by Udupa et al. at SPIE Medical Imaging 2011, called fuzzy shape object model (FSOM) here, this paper introduces fuzzy intensity object model (FIOM), and proposes a new image segmentation method which combines the FSOM and FIOM into fuzzy connected (FC) image segmentation. The fuzzy object models are built from training datasets in which the cerebral parenchyma is delineated by experts. After registering FSOM with the evaluating image, the proposed method roughly recognizes the cerebral parenchyma region based on a prior knowledge of location, shape, and the MR signal given by the registered FSOM and FIOM. Then, FC image segmentation delineates the cerebral parenchyma using the fuzzy object models. The proposed method has been evaluated using 9 newborn brain MR images using the leave-one-out strategy. The revised age was between -1 and 2 months. Quantitative evaluation using false positive volume fraction (FPVF) and false negative volume fraction (FNVF) has been conducted. Using the evaluation data, a FPVF of 0.75% and FNVF of 3.75% were achieved. More data collection and testing are underway.

  2. A Bayesian model of category-specific emotional brain responses.

    PubMed

    Wager, Tor D; Kang, Jian; Johnson, Timothy D; Nichols, Thomas E; Satpute, Ajay B; Barrett, Lisa Feldman

    2015-04-01

    Understanding emotion is critical for a science of healthy and disordered brain function, but the neurophysiological basis of emotional experience is still poorly understood. We analyzed human brain activity patterns from 148 studies of emotion categories (2159 total participants) using a novel hierarchical Bayesian model. The model allowed us to classify which of five categories--fear, anger, disgust, sadness, or happiness--is engaged by a study with 66% accuracy (43-86% across categories). Analyses of the activity patterns encoded in the model revealed that each emotion category is associated with unique, prototypical patterns of activity across multiple brain systems including the cortex, thalamus, amygdala, and other structures. The results indicate that emotion categories are not contained within any one region or system, but are represented as configurations across multiple brain networks. The model provides a precise summary of the prototypical patterns for each emotion category, and demonstrates that a sufficient characterization of emotion categories relies on (a) differential patterns of involvement in neocortical systems that differ between humans and other species, and (b) distinctive patterns of cortical-subcortical interactions. Thus, these findings are incompatible with several contemporary theories of emotion, including those that emphasize emotion-dedicated brain systems and those that propose emotion is localized primarily in subcortical activity. They are consistent with componential and constructionist views, which propose that emotions are differentiated by a combination of perceptual, mnemonic, prospective, and motivational elements. Such brain-based models of emotion provide a foundation for new translational and clinical approaches. PMID:25853490

  3. An Anthelmintic Drug, Pyrvinium Pamoate, Thwarts Fibrosis and Ameliorates Myocardial Contractile Dysfunction in a Mouse Model of Myocardial Infarction

    PubMed Central

    Murakoshi, Motoaki; Saiki, Kyohei; Urayama, Kyoji; Sato, Thomas N.

    2013-01-01

    Metabolic adaptation to limited supplies of oxygen and nutrients plays a pivotal role in health and disease. Heart attack results from insufficient delivery of oxygen and nutrients to the heart, where cardiomyocytes die and cardiac fibroblasts proliferate the latter causing scar formation, which impedes regeneration and impairs contractility of the heart. We postulated that cardiac fibroblasts survive metabolic stress by adapting their intracellular metabolism to low oxygen and nutrients, and impeding this metabolic adaptation would thwart their survival and facilitate the repair of scarred heart. Herein, we show that an anthelmintic drug, Pyrvinium pamoate, which has been previously shown to compromise cancer cell survival under glucose starvation condition, also disables cardiac fibroblast survival specifically under glucose deficient condition. Furthermore, Pyrvinium pamoate reduces scar formation and improves cardiac contractility in a mouse model of myocardial infarction. As Pyrvinium pamoate is an FDA-approved drug, our results suggest a therapeutic use of this or other related drugs to repair scarred heart and possibly other organs. PMID:24223934

  4. Melatonin protects ADSCs from ROS and enhances their therapeutic potency in a rat model of myocardial infarction

    PubMed Central

    Zhu, Ping; Liu, Jianfeng; Shi, Jinxin; Zhou, Qian; Liu, Jie; Zhang, Xianwei; Du, Zhiyan; Liu, Qiaowei; Guo, Yuanyuan

    2015-01-01

    Myocardial infarction (MI) is a major cause of death and disability worldwide. In the last decade, mesenchymal stem cells (MSCs) based cell therapy has emerged as a promising therapeutic strategy. Although great advance have been made using MSCs to treat MI, the low viability of transplanted MSCs severely limits the efficiency of MSCs therapy. Here, we show evidence that ex vivo pre-treatment with melatonin, an endogenous hormone with newly found anti-oxidative activity, could improve survival and function of adipose tissue derived MSCs (ADSCs) in vitro as well as in vivo. ADSCs with 5 μM melatonin pre-treatment for 24 hrs showed increased expression of the antioxidant enzyme catalase and Cu/Zn superoxide dismutase (SOD-1), as well as pro-angiogenic and mitogenic factors like insulin-like growth factor 1, basic fibroblast growth factor, hepatocyte growth factor (HGF), epidermal growth factor. Furthermore, melatonin pre-treatment protected MSCs from reactive oxygen species (ROS) induced apoptosis both directly by promoting anti-apoptosis kinases like p-Akt as well as blocking caspase cascade, and indirectly by restoring the ROS impaired cell adhesion. Using a rat model of MI, we found that melatonin pre-treatment enhanced the viability of engrafted ADSCs, and promoted their therapeutic potency. Hopefully, our results may shed light on the design of more effective therapeutic strategies treating MI by MSCs in clinic. PMID:26081690

  5. An anthelmintic drug, pyrvinium pamoate, thwarts fibrosis and ameliorates myocardial contractile dysfunction in a mouse model of myocardial infarction.

    PubMed

    Murakoshi, Motoaki; Saiki, Kyohei; Urayama, Kyoji; Sato, Thomas N

    2013-01-01

    Metabolic adaptation to limited supplies of oxygen and nutrients plays a pivotal role in health and disease. Heart attack results from insufficient delivery of oxygen and nutrients to the heart, where cardiomyocytes die and cardiac fibroblasts proliferate--the latter causing scar formation, which impedes regeneration and impairs contractility of the heart. We postulated that cardiac fibroblasts survive metabolic stress by adapting their intracellular metabolism to low oxygen and nutrients, and impeding this metabolic adaptation would thwart their survival and facilitate the repair of scarred heart. Herein, we show that an anthelmintic drug, Pyrvinium pamoate, which has been previously shown to compromise cancer cell survival under glucose starvation condition, also disables cardiac fibroblast survival specifically under glucose deficient condition. Furthermore, Pyrvinium pamoate reduces scar formation and improves cardiac contractility in a mouse model of myocardial infarction. As Pyrvinium pamoate is an FDA-approved drug, our results suggest a therapeutic use of this or other related drugs to repair scarred heart and possibly other organs. PMID:24223934

  6. Development of a Model for Whole Brain Learning of Physiology

    ERIC Educational Resources Information Center

    Eagleton, Saramarie; Muller, Anton

    2011-01-01

    In this report, a model was developed for whole brain learning based on Curry's onion model. Curry described the effect of personality traits as the inner layer of learning, information-processing styles as the middle layer of learning, and environmental and instructional preferences as the outer layer of learning. The model that was developed

  7. Development of a Model for Whole Brain Learning of Physiology

    ERIC Educational Resources Information Center

    Eagleton, Saramarie; Muller, Anton

    2011-01-01

    In this report, a model was developed for whole brain learning based on Curry's onion model. Curry described the effect of personality traits as the inner layer of learning, information-processing styles as the middle layer of learning, and environmental and instructional preferences as the outer layer of learning. The model that was developed…

  8. Image guided constitutive modeling of the silicone brain phantom

    NASA Astrophysics Data System (ADS)

    Puzrin, Alexander; Skrinjar, Oskar; Ozan, Cem; Kim, Sihyun; Mukundan, Srinivasan

    2005-04-01

    The goal of this work is to develop reliable constitutive models of the mechanical behavior of the in-vivo human brain tissue for applications in neurosurgery. We propose to define the mechanical properties of the brain tissue in-vivo, by taking the global MR or CT images of a brain response to ventriculostomy - the relief of the elevated intracranial pressure. 3D image analysis translates these images into displacement fields, which by using inverse analysis allow for the constitutive models of the brain tissue to be developed. We term this approach Image Guided Constitutive Modeling (IGCM). The presented paper demonstrates performance of the IGCM in the controlled environment: on the silicone brain phantoms closely simulating the in-vivo brain geometry, mechanical properties and boundary conditions. The phantom of the left hemisphere of human brain was cast using silicon gel. An inflatable rubber membrane was placed inside the phantom to model the lateral ventricle. The experiments were carried out in a specially designed setup in a CT scanner with submillimeter isotropic voxels. The non-communicative hydrocephalus and ventriculostomy were simulated by consequently inflating and deflating the internal rubber membrane. The obtained images were analyzed to derive displacement fields, meshed, and incorporated into ABAQUS. The subsequent Inverse Finite Element Analysis (based on Levenberg-Marquardt algorithm) allowed for optimization of the parameters of the Mooney-Rivlin non-linear elastic model for the phantom material. The calculated mechanical properties were consistent with those obtained from the element tests, providing justification for the future application of the IGCM to in-vivo brain tissue.

  9. Biothermal Model of Patient and Automatic Control System of Brain Temperature for Brain Hypothermia Treatment

    NASA Astrophysics Data System (ADS)

    Wakamatsu, Hidetoshi; Gaohua, Lu

    Various surface-cooling apparatus such as the cooling cap, muffler and blankets have been commonly used for the cooling of the brain to provide hypothermic neuro-protection for patients of hypoxic-ischemic encephalopathy. The present paper is aimed at the brain temperature regulation from the viewpoint of automatic system control, in order to help clinicians decide an optimal temperature of the cooling fluid provided for these three types of apparatus. At first, a biothermal model characterized by dynamic ambient temperatures is constructed for adult patient, especially on account of the clinical practice of hypothermia and anesthesia in the brain hypothermia treatment. Secondly, the model is represented by the state equation as a lumped parameter linear dynamic system. The biothermal model is justified from their various responses corresponding to clinical phenomena and treatment. Finally, the optimal regulator is tentatively designed to give clinicians some suggestions on the optimal temperature regulation of the patient’s brain. It suggests the patient’s brain temperature could be optimally controlled to follow-up the temperature process prescribed by the clinicians. This study benefits us a great clinical possibility for the automatic hypothermia treatment.

  10. Models of the Aging Brain Structure and Individual Decline

    PubMed Central

    Ziegler, Gabriel; Dahnke, Robert; Gaser, Christian

    2012-01-01

    The aging brain’s structural development constitutes a spatiotemporal process that is accessible by MR-based computational morphometry. Here we introduce basic concepts and analytical approaches to quantify age-related differences and changes in neuroanatomical images of the human brain. The presented models first address the estimation of age trajectories, then we consider inter-individual variations of structural decline, using a repeated measures design. We concentrate our overview on preprocessed neuroanatomical images of the human brain to facilitate practical applications to diverse voxel- and surface-based structural markers. Together these methods afford analysis of aging brain structure in relation to behavioral, health, or cognitive parameters. PMID:22435060

  11. Neurodynamic models of brain in psychiatry.

    PubMed

    Freeman, Walter J

    2003-07-01

    The history of brain theory is described in terms of three kinds of theory of perception. The most widely used kind sees perception as dependent on passive inflow from the environment of information that is used to make and process representations of objects and events. A second kind views perception as an active search for information that is inherent in the environment and is extracted by tuned resonances in brain circuits. A third kind holds that perception works by the creation of information through chaotic dynamics by forming hypotheses about the environment, through which learning takes place. Experimental evidence for creative dynamics in brains is briefly sketched. The explanation is offered that brains, being finite systems, work this way in order to cope with the infinite complexity of the world. All that brains can know is the hypotheses they construct and the results of testing them by acting into the environment, and learning by assimilation from the sensory consequences of their actions. The process is described as intentionality. It works through the action-perception-assimilation cycle. The cost of this solution to the problem of infinite complexity by hypothesis testing is the progressive isolation of individuals, as they accumulate their unique experiences through which their personalities form. Socialization and the acquisition of shared knowledge requires the emergence of new personality structure by self-organization through chaotic dissolution of existing the structure, as a prelude to the creation of new traits, habits, and values. Dissolution works in a crisis situation by regression to earlier stages of development, from which a fresh start can be made. A state of malleability emerges in the depth of crisis, in which compassionate companions through loving care can invite cooperative actions. Joint actions support the growth of a new lifestyle based on trust. Socialization requires neurochemical mechanisms of affiliation and bonding that evolved through the requirements of parental care of altricial offspring in mammalian reproduction. These mechanisms are invoked by means of behavioral techniques from cultural evolution. The dynamics, neural mechanisms, behavioral signs, methods of induction, and therapeutic utility of dissolution should be known by therapists. Lack of recognition and understanding may cause failure to use brief windows of opportunity to instill long-term relief of psychic pain by restructuring intentionality in distressed patients. PMID:12827145

  12. [Cerebral infarct in chronic acetylsalicylic acid poisoning].

    PubMed

    Treib, J; Blaes, F; Haass, A; Ohlmann, D; Pindur, G; Hamann, G F

    1996-04-01

    Salicylates increase the risk of hemorrhage. An ischemic brain infarct has not previously been described following intoxication with salicylates. Case report. A 58-year-old comatose patient was admitted with symptoms of a basilar artery thrombosis. A diagnostic angiography was impossible because laboratory results showed a prothrombin time (Quick) of 9% and a toxic salicylate level of 528 mg/l. During the next few days CCT and MRI scans revealed ischemic infarctions within the brain stem. Discussion. Salicylates can induce hemorrhage both by inhibiting platelet aggregation and - especially in higher doses - by vitamin K antagonism, leading to severe coagulopathy. The occurrence of an ischemic infarction, as presented in this case report, can be explained by a reduction of the vitamin K-dependent protein C level. PMID:8684514

  13. A revised dosimetric model of the adult head and brain

    SciTech Connect

    Bouchet, L.G.; Bolch, W.E.; Weber, D.A.; Atkins, H.L.; Poston, J.W. ||

    1996-07-01

    During the last decade, several new radiopharmaceuticals have been introduced for brain imaging. The marked differences of these tracers in tissue specificicity within the brain and their increasing use for diagnostic studies support the need for a more antihropomorphic model of the human brain and head. Brain and head models developed in the past have comprised only simplistic representations of this anatomic region. A new brain model has been developed which includes eight subregions: the caudate nucleus, the cerebellium, the cerebral cortex, the lateral ventricles, the lentiform nucleus, the thalamus, the third ventricle and the white matter. This brain model has been included within a slightly modified version of the head model developed by Poston et al. in 1984. The head model, which includes both the thyroid and eyes, was modified in this work to include the cerebrospinal fluid within the cranial and spinal regions. Absorbed fractions of energy for photon and electron sources located in thirteen source regions within the new head model were calculated using the EGS4 Monte Carlo radiation transport code for radiations in the energy range 10 keV to 4 MeV. S-values were calculated for five radionuclides used in brain imaging ({sup 11}C, {sup 15}O, {sup 18}F, {sup 99m}Tc and {sup 123}I) and for three radionuclides showing selective uptake in the thyroid ({sup 99m}Tc, {sup 123}I, and {sup 131}I). S-values were calculated using 100 discrete energy points in the beta-emission spectrum of the different radionuclides. 17 refs., 14 figs., 3 tabs.

  14. Regulatory effect of Dimethyl Sulfoxide (DMSO) on astrocytic reactivity in a murine model of cerebral infarction by arterial embolization

    PubMed Central

    Rengifo Valbuena, Carlos Augusto; Ávila Rodríguez, Marco Fidel; Céspedes Rubio, Angel

    2013-01-01

    Introduction: The pathophysiology of cerebral ischemia is essential for early diagnosis, neurologic recovery, the early onset of drug treatment and the prognosis of ischemic events. Experimental models of cerebral ischemia can be used to evaluate the cellular response phenomena and possible neurological protection by drugs. Objective: To characterize the cellular changes in the neuronal population and astrocytic response by the effect of Dimethyl Sulfoxide (DMSO) on a model of ischemia caused by cerebral embolism. Methods: Twenty Wistar rats were divided into four groups (n= 5). The infarct was induced with α-bovine thrombin (40 NIH/Unit.). The treated group received 90 mg (100 μL) of DMSO in saline (1:1 v/v) intraperitoneally for 5 days; ischemic controls received only NaCl (placebo) and two non-ischemic groups (simulated) received NaCl and DMSO respectively. We evaluated the neuronal (anti-NeuN) and astrocytic immune-reactivity (anti-GFAP). The results were analyzed by densitometry (NIH Image J-Fiji 1.45 software) and analysis of variance (ANOVA) with the Graph pad software (Prism 5). Results: Cerebral embolism induced reproducible and reliable lesions in the cortex and hippocampus (CA1)., similar to those of focal models. DMSO did not reverse the loss of post-ischemia neuronal immune-reactivity, but prevented the morphological damage of neurons, and significantly reduced astrocytic hyperactivity in the somato-sensory cortex and CA1 (p <0.001). Conclusions: The regulatory effect of DMSO on astrocyte hyperreactivity and neuronal-astroglial cytoarchitecture , gives it potential neuroprotective properties for the treatment of thromboembolic cerebral ischemia in the acute phase. PMID:24892319

  15. Effects of health belief model-based video training about risk factors on knowledge and attitude of myocardial infarction patients after discharge

    PubMed Central

    Abbaszadeh, Abbas; Borhani, Fariba; Asadi, Neda

    2011-01-01

    BACKGROUND: Ischemic heart diseases are the most common cardiovascular diseases. This study aimed to assess the effects of video training about risk factors based on health belief model on knowledge and attitude of myocardial infarction patients after discharge. METHODS: This was a quasi-experimental study conducted in 2010. Eighty patients were randomly assigned to either intervention or control group. Data was collected by a researcher-made questionnaire. RESULTS: Study results showed that the mean score of knowledge about disease, diet, physical activity and perceived benefit, severity, and susceptibility after video training was increased significantly. CONCLUSIONS: Using videos for educating myocardial infarction patients is a useful method for preventing recurrence of the disease. PMID:22091231

  16. Reperfusion Therapy with Low-Dose Insulin or Insulin-Like Growth Factor 2; Myocardial Function and Infarct Size in a Porcine Model of Ischaemia and Reperfusion

    PubMed Central

    Salminen, Pirjo-Riitta; Dahle, Geir Olav; Moen, Christian Arvei; Wergeland, Anita; Jonassen, Anne Kristin; Haaverstad, Rune; Matre, Knut; Grong, Ketil

    2014-01-01

    In an open-chest porcine model, we examined whether myocardial pharmacological conditioning at the time of reperfusion with low-dose insulin or insulin-like growth factor 2 (IGF2), not affecting serum glucose levels, could reduce infarct size and improve functional recovery. Two groups of anaesthetized pigs with either 60 or 40 min. of left anterior descending artery occlusion (total n = 42) were randomized to receive either 0.9% saline, insulin or IGF2 infusion for 15 min., starting 5 min. before a 180-min. reperfusion period. Repeated fluorescent microsphere injections were used to confirm ischaemia and reperfusion. Area at risk and infarct size was determined with Evans blue and triphenyltetrazolium chloride staining. Local myocardial function was evaluated with multi-layer radial tissue Doppler strain and speckle-tracking strain from epicardial echocardiography. Western blotting and TUNEL staining were performed to explore apoptosis. Infarct size did not differ between treatment groups and was 56.7 ± 6.8%, 49.7 ± 9.6%, 56.2 ± 8.0% of area at risk for control, insulin and IGF2 group, respectively, in the 60-min. occlusion series. Corresponding values were 45.6 ± 6.0%, 48.4 ± 7.2% and 34.1 ± 5.8% after 40-min. occlusion. Global and local cardiac function did not differ between treatment groups. No differences related to treatment could be found in myocardial tissue cleaved caspase-3 content or the degree of TUNEL staining. Reperfusion therapy with low-dose insulin or with IGF2 neither reduced infarct size nor improved function in reperfused myocardium in this in vivo porcine model. PMID:24751184

  17. Computational modeling of brain tumors: discrete, continuum or hybrid?

    NASA Astrophysics Data System (ADS)

    Wang, Zhihui; Deisboeck, Thomas S.

    In spite of all efforts, patients diagnosed with highly malignant brain tumors (gliomas), continue to face a grim prognosis. Achieving significant therapeutic advances will also require a more detailed quantitative understanding of the dynamic interactions among tumor cells, and between these cells and their biological microenvironment. Data-driven computational brain tumor models have the potential to provide experimental tumor biologists with such quantitative and cost-efficient tools to generate and test hypotheses on tumor progression, and to infer fundamental operating principles governing bidirectional signal propagation in multicellular cancer systems. This review highlights the modeling objectives of and challenges with developing such in silico brain tumor models by outlining two distinct computational approaches: discrete and continuum, each with representative examples. Future directions of this integrative computational neuro-oncology field, such as hybrid multiscale multiresolution modeling are discussed.

  18. Electrocardiographic changes during exposure to residual oil fly ash (ROFA) particles in a rat model of myocardial infarction.

    PubMed

    Wellenius, Gregory A; Saldiva, Paulo H N; Batalha, Joao R F; Krishna Murthy, G G; Coull, Brent A; Verrier, Richard L; Godleski, John J

    2002-04-01

    Epidemiological studies have reported a positive association of short-term increases in ambient particulate matter (PM) with daily mortality and hospital admissions for cardiovascular disease. Although patients with cardiopulmonary disease appear to be most at risk, particulate-related cardiac effects following myocardial infarction (MI) have not been examined. To improve understanding of mechanisms, we developed and tested a model for investigating the effects of inhaled PM on arrhythmias and heart rate variability (HRV), a measure of autonomic nervous system activity, in rats with acute MI. Left-ventricular MI was induced in 31 Sprague-Dawley rats by thermocoagulation of the left coronary artery; 32 additional rats served as sham-operated controls. Diazepam-sedated rats were exposed (1 h) to residual oil fly ash (ROFA), carbon black, or room air at 12-18 h after surgery. Each exposure was immediately preceded and followed by a 1-h exposure to room air (baseline and recovery periods, respectively). Lead-II electrocardiograms were recorded. In the MI group, 41% of rats exhibited one or more premature ventricular complexes (PVCs) during the baseline period. Exposure to ROFA, but not to carbon black or room air, increased arrhythmia frequency in animals with preexisting PVCs. Furthermore, MI rats exposed to ROFA, but not to carbon black or room air, decreased HRV. There was no difference in arrhythmia frequency or HRV among sham-operated animals. These results underscore the usefulness of this model for elucidating the physiologic mechanisms of pollution-induced cardiovascular arrhythmias and contribute to defining the specific constituents of ambient particles responsible for arrhythmias. PMID:11896300

  19. Action of acetylstrophanthidin on experimental myocardial infarction.

    NASA Technical Reports Server (NTRS)

    Nola, G. T.; Pope, S. E.; Harrison, D. C.

    1972-01-01

    An experimental animal model with acute myocardial infarction of a size insufficient to produce profound heart failure or shock was used to study the effects of acute infarction on digitalis tolerance and the hemodynamic changes produced by moderate and large doses of acetylstrophanthidin. With acute myocardial infarction, digitalis toxic arrhythmias could be precipitated with significantly lower doses of digitalis than in animals without myocardial infarction. There was no precise correlation between the size of infarction and the toxic dose of glycoside. Coronary artery ligation produced a stable but relatively depressed circulatory state, as evidenced by lowered cardiac output and stroke volume and elevated systemic vascular resistance and left atrial mean pressure. When digitalis was infused, the following significant changes were observed at nontoxic doses: (1) elevation of aortic and left ventricular pressures; (2) further decline in cardiac output; and (3) decreased left atrial mean pressure.

  20. MR image denoising method for brain surface 3D modeling

    NASA Astrophysics Data System (ADS)

    Zhao, De-xin; Liu, Peng-jie; Zhang, De-gan

    2014-11-01

    Three-dimensional (3D) modeling of medical images is a critical part of surgical simulation. In this paper, we focus on the magnetic resonance (MR) images denoising for brain modeling reconstruction, and exploit a practical solution. We attempt to remove the noise existing in the MR imaging signal and preserve the image characteristics. A wavelet-based adaptive curve shrinkage function is presented in spherical coordinates system. The comparative experiments show that the denoising method can preserve better image details and enhance the coefficients of contours. Using these denoised images, the brain 3D visualization is given through surface triangle mesh model, which demonstrates the effectiveness of the proposed method.

  1. Multiclassifier fusion in human brain MR segmentation: modelling convergence.

    PubMed

    Heckemann, Rolf A; Hajnal, Joseph V; Aljabar, Paul; Rueckert, Daniel; Hammers, Alexander

    2006-01-01

    Segmentations of MR images of the human brain can be generated by propagating an existing atlas label volume to the target image. By fusing multiple propagated label volumes, the segmentation can be improved. We developed a model that predicts the improvement of labelling accuracy and precision based on the number of segmentations used as input. Using a cross-validation study on brain image data as well as numerical simulations, we verified the model. Fit parameters of this model are potential indicators of the quality of a given label propagation method or the consistency of the input segmentations used. PMID:17354848

  2. Realistic modeling of neurons and networks: towards brain simulation

    PubMed Central

    D’Angelo, Egidio; Solinas, Sergio; Garrido, Jesus; Casellato, Claudia; Pedrocchi, Alessandra; Mapelli, Jonathan; Gandolfi, Daniela; Prestori, Francesca

    Summary Realistic modeling is a new advanced methodology for investigating brain functions. Realistic modeling is based on a detailed biophysical description of neurons and synapses, which can be integrated into microcircuits. The latter can, in turn, be further integrated to form large-scale brain networks and eventually to reconstruct complex brain systems. Here we provide a review of the realistic simulation strategy and use the cerebellar network as an example. This network has been carefully investigated at molecular and cellular level and has been the object of intense theoretical investigation. The cerebellum is thought to lie at the core of the forward controller operations of the brain and to implement timing and sensory prediction functions. The cerebellum is well described and provides a challenging field in which one of the most advanced realistic microcircuit models has been generated. We illustrate how these models can be elaborated and embedded into robotic control systems to gain insight into how the cellular properties of cerebellar neurons emerge in integrated behaviors. Realistic network modeling opens up new perspectives for the investigation of brain pathologies and for the neurorobotic field. PMID:24139652

  3. [18F]FEBMP: Positron Emission Tomography Imaging of TSPO in a Model of Neuroinflammation in Rats, and in vitro Autoradiograms of the Human Brain

    PubMed Central

    Tiwari, Anjani K.; Ji, Bin; Yui, Joji; Fujinaga, Masayuki; Yamasaki, Tomoteru; Xie, Lin; Luo, Rui; Shimoda, Yoko; Kumata, Katsushi; Zhang, Yiding; Hatori, Akiko; Maeda, Jun; Higuchi, Makoto; Wang, Feng; Zhang, Ming-Rong

    2015-01-01

    We evaluated the efficacy of 2-[5-(4-[18F]fluoroethoxy-2-oxo-1,3-benzoxazol-3(2H)-yl)-N-methyl-N-phenylacetamide] ([18F]FEBMP) for positron emission tomography (PET) imaging of translocator protein (18 kDa, TSPO). Dissection was used to determine the distribution of [18F]FEBMP in mice, while small-animal PET and metabolite analysis were used for a rat model of focal cerebral ischemia. [18F]FEBMP showed high radioactivity uptake in mouse peripheral organs enriched with TSPO, and relatively high initial brain uptake (2.67 ± 0.12% ID/g). PET imaging revealed an increased accumulation of radioactivity in the infarcted striatum, with a maximum ratio of 3.20 ± 0.12, compared to non-injured striatum. Displacement with specific TSPO ligands lowered the accumulation levels in infarcts to those on the contralateral side. This suggests that the increased accumulation reflected TPSO-specific binding of [18F]FEBMP in vivo. Using a simplified reference tissue model, the binding potential on the infarcted area was 2.72 ± 0.27. Metabolite analysis in brain tissues showed that 83.2 ± 7.4% and 76.4 ± 2.1% of radioactivity was from intact [18F]FEBMP at 30 and 60 min, respectively, and that this ratio was higher than in plasma (8.6 ± 1.9% and 3.9 ± 1.1%, respectively). In vitro autoradiography on postmortem human brains showed that TSPO rs6971 polymorphism did not affect binding sites for [18F]FEBMP. These findings suggest that [18F]FEBMP is a promising new tool for visualization of neuroinflammation. PMID:26155312

  4. Cognitive Models as Bridge between Brain and Behavior.

    PubMed

    Love, Bradley C

    2016-04-01

    How can disparate neural and behavioral measures be integrated? Turner and colleagues propose joint modeling as a solution. Joint modeling mutually constrains the interpretation of brain and behavioral measures by exploiting their covariation structure. Simultaneous estimation allows for more accurate prediction than would be possible by considering these measures in isolation. PMID:26947873

  5. Classical Wave Model of Quantum-Like Processing in Brain

    NASA Astrophysics Data System (ADS)

    Khrennikov, A.

    2011-01-01

    We discuss the conjecture on quantum-like (QL) processing of information in the brain. It is not based on the physical quantum brain (e.g., Penrose) - quantum physical carriers of information. In our approach the brain created the QL representation (QLR) of information in Hilbert space. It uses quantum information rules in decision making. The existence of such QLR was (at least preliminary) confirmed by experimental data from cognitive psychology. The violation of the law of total probability in these experiments is an important sign of nonclassicality of data. In so called "constructive wave function approach" such data can be represented by complex amplitudes. We presented 1,2 the QL model of decision making. In this paper we speculate on a possible physical realization of QLR in the brain: a classical wave model producing QLR . It is based on variety of time scales in the brain. Each pair of scales (fine - the background fluctuations of electromagnetic field and rough - the cognitive image scale) induces the QL representation. The background field plays the crucial role in creation of "superstrong QL correlations" in the brain.

  6. Enhanced angiogenesis mediated by vascular endothelial growth factor plasmid-loaded thermo-responsive amphiphilic polymer in a rat myocardial infarction model.

    PubMed

    Kwon, Jin Sook; Park, In Kyu; Cho, Ae Shin; Shin, Sun Mi; Hong, Moon Hwa; Jeong, Seo Yeon; Kim, Yong Sook; Min, Jung-Joon; Jeong, Myung Ho; Kim, Won Jong; Jo, Seongbong; Pun, Suzie H; Cho, Jeong Gwan; Park, Jong Chun; Kang, Jung Chaee; Ahn, Youngkeun

    2009-09-01

    Thermo-responsive hydrogel-mediated gene transfer may be preferred for the muscle, because the release of DNA into the surrounding tissue can be controlled by the 3-dimensional structure of the hydrogel. Such a system for the controlled release of a therapeutic gene may extend the duration of gene expression. Here, a thermo-responsive, biodegradable polymeric hydrogel was synthesized for local gene transfer in the heart. Initially, the luciferase gene was delivered into mouse heart. The intensity of gene expression assessed by optical imaging was closely correlated with the expressed protein concentration measured by luciferase assay in homogenized heart. Polymeric hydrogel-based gene transfer enhanced gene expression up to 4 fold, compared with naked plasmid, and displayed 2 bi-modal expression profiles with peaks at 2 days and around 25 days after local injection. Histological analyses showed that gene expression was initially highest in the myocardium, whereas lower and longer expression was seen mainly in fibrotic or inflammatory cells that infiltrated the injury site during injection. Next, a rat myocardial infarction model was made for 1 week, and human vascular endothelial growth factor (hVEGF) plasmid was injected into the infarct area with an amphiphilic thermo-responsive polymer. Enhanced and sustained hVEGF expression in the infarct region mediated by amphiphilic thermo-responsive polymer increased capillary density and larger vessel formation, thus enabling effective angiogenesis. PMID:19465071

  7. Magnetic Resonance Imaging of Acute Reperfused Myocardial Infarction: Intraindividual Comparison of ECIII-60 and Gd-DTPA in a Swine Model

    SciTech Connect

    Jin Jiyang; Teng Gaojun; Feng Yi; Wu Yanping; Jin Qindi; Wang Yu; Wang Zhen; Lu Qin; Jiang Yibo; Wang Shengqi; Chen Feng; Marchal, Guy; Ni Yicheng

    2007-04-15

    Purpose. To compare a necrosis-avid contrast agent (NACA) bis-Gd-DTPA-pamoic acid derivative (ECIII-60) after intracoronary delivery with an extracellular agent Gd-DTPA after intravenous injection on magnetic resonance imaging (MRI) in a swine model of acute reperfused myocardial infarction (MI). Methods. Eight pigs underwent 90 min of transcatheter coronary balloon occlusion and 60 min of reperfusion. After intravenous injection of Gd-DTPA at a dose of 0.2 mmol/kg, all pigs were scanned with T1-weighted MRI until the delayed enhancement of MI disappeared. Then they were intracoronarily infused with ECIII-60 at 0.0025 mmol/kg and imaged for 5 hr. Signal intensity, infarct-over-normal contrast ratio and relative infarct size were quantified, compared, and correlated with the results of postmortem MRI and triphenyltetrazolium chloride (TTC) histochemical staining. Results. A contrast ratio over 3.0 was induced by both Gd-DTPA and ECIII-60. However, while the delayed enhancement with Gd-DTPA virtually vanished in 1 hr, ECIII-60 at an 80x smaller dose depicted the MI accurately over 5 hr as proven by ex vivo MRI and TTC staining. Conclusion. Both Gd-DTPA and ECIII-60 strongly enhanced acute MI. Comparing with fading contrast in a narrow time window with intravenous Gd-DTPA, intracoronary ECIII-60 persistently demarcated the acute MI, indicating a potential method for postprocedural assessment of myocardial viability after coronary interventions.

  8. Salubrinal protects cardiomyocytes against apoptosis in a rat myocardial infarction model via suppressing the dephosphorylation of eukaryotic translation initiation factor 2α.

    PubMed

    Li, Rui-Jun; He, Kun-Lun; Li, Xin; Wang, Li-Li; Liu, Chun-Lei; He, Yun-Yun

    2015-07-01

    The aim of the present study was to examine the role of eIF2α in cardiomyocyte apoptosis and evaluate the cardioprotective role of salubrinal in a rat myocardial infarction (MI) model. Rat left anterior descending coronary arteries were ligated and the classical proteins involved in the endoplasmic reticulum stress (ERS)-induced apoptotic pathway were analyzed using quantitative polymerase chain reaction and western blot analysis. Salubrinal was administered to the rats and cardiomyocyte apoptosis and infarct size were evaluated by a specific staining method. Compared with the sham surgery group, the rate of cardiomyocyte apoptosis in the MI group was increased with the development of the disease. It was also demonstrated that the mRNA and protein levels of GRP78, caspase-12, CHOP and the protein expression of p-eIF2α were increased in the MI group. Furthermore, the results showed that treatment with salubrinal can decrease cardiomyocyte apoptosis and infarct size by increasing eIF2α phosphorylation and decreasing the expression of caspase-12 and CHOP. The present study suggests that salubrinal protects against ER stress-induced rat cadiomyocyte apoptosis via suppressing the dephosphorylation of eIF2α in the ERS-associated pathway. PMID:25816071

  9. Task-Specific Functional Brain Geometry from Model Maps

    PubMed Central

    Langs, Georg; Samaras, Dimitris; Paragios, Nikos; Honorio, Jean; Alia-Klein, Nelly; Tomasi, Dardo; Volkow, Nora D.; Goldstein, Rita Z.

    2016-01-01

    In this paper we propose model maps to derive and represent the intrinsic functional geometry of a brain from functional magnetic resonance imaging (fMRI) data for a specific task. Model maps represent the coherence of behavior of individual fMRI-measurements for a set of observations, or a time sequence. The maps establish a relation between individual positions in the brain by encoding the blood oxygen level dependent (BOLD) signal over a time period in a Markov chain. They represent this relation by mapping spatial positions to a new metric space, the model map. In this map the Euclidean distance between two points relates to the joint modeling behavior of their signals and thus the co-dependencies of the corresponding signals. The map reflects the functional as opposed to the anatomical geometry of the brain. It provides a quantitative tool to explore and study global and local patterns of resource allocation in the brain. To demonstrate the merit of this representation, we report quantitative experimental results on 29 fMRI time sequences, each with sub-sequences corresponding to 4 different conditions for two groups of individuals. We demonstrate that drug abusers exhibit lower differentiation in brain interactivity between baseline and reward related tasks, which could not be quantified until now. PMID:18979834

  10. An Adaptive Complex Network Model for Brain Functional Networks

    PubMed Central

    Gomez Portillo, Ignacio J.; Gleiser, Pablo M.

    2009-01-01

    Brain functional networks are graph representations of activity in the brain, where the vertices represent anatomical regions and the edges their functional connectivity. These networks present a robust small world topological structure, characterized by highly integrated modules connected sparsely by long range links. Recent studies showed that other topological properties such as the degree distribution and the presence (or absence) of a hierarchical structure are not robust, and show different intriguing behaviors. In order to understand the basic ingredients necessary for the emergence of these complex network structures we present an adaptive complex network model for human brain functional networks. The microscopic units of the model are dynamical nodes that represent active regions of the brain, whose interaction gives rise to complex network structures. The links between the nodes are chosen following an adaptive algorithm that establishes connections between dynamical elements with similar internal states. We show that the model is able to describe topological characteristics of human brain networks obtained from functional magnetic resonance imaging studies. In particular, when the dynamical rules of the model allow for integrated processing over the entire network scale-free non-hierarchical networks with well defined communities emerge. On the other hand, when the dynamical rules restrict the information to a local neighborhood, communities cluster together into larger ones, giving rise to a hierarchical structure, with a truncated power law degree distribution. PMID:19738902

  11. Induction of angiogenesis via topical delivery of basic-fibroblast growth factor from polyvinyl alcohol-dextran blend hydrogel in an ovine model of acute myocardial infarction.

    PubMed

    Fathi, Ezzatollah; Nassiri, Seyed Mahdi; Atyabi, Nahid; Ahmadi, Seyed Hossein; Imani, Mohammad; Farahzadi, Raheleh; Rabbani, Shahram; Akhlaghpour, Shahram; Sahebjam, Mohammad; Taheri, Mohammad

    2013-09-01

    Hydrogels are currently used as interesting constructs for the delivery of proteins. In this study, a novel polyvinyl alcohol-dextran (PVA-Dex) blend hydrogel was used for controlled delivery of basic-fibroblast growth factor (bFGF). These biocompatible constructs were sutured to the epicardium as patches on the heart surface to provide slow release of bFGF to the infarcted site in an ovine model of myocardial infarction (MI). Eighteen sheep were randomly divided into three groups (n = 6 each), including group I (control without any patch and bFGF), group II (patch without bFGF) and group III (patch incorporating 100 µg bFGF). They were subjected to coronary artery ligation after lateral thoracotomy, and then in groups II and III the patches were implanted 20-30 min after MI. Cardiac function was assessed by both echocardiography and magnetic resonance imaging (MRI) 2 months after implantation. Then the animals were sacrificed and the hearts subjected to histopathological examination, immunohistochemistry and electron microscopy. Heart lysates were subject to protein expression analysis through western blotting. The results showed that sustained release of bFGF using PVA-Dex blend hydrogel strongly stimulated angiogenesis and increased wall thickness index in the infarcted myocardium. The patch also significantly attenuated the increase in left ventricular end-systolic diameter, but it did not improve cardiac function within 2 months of myocardial infarction. In conclusion, PVA-Dex gel incorporating bFGF can be used as a sustained release construct for therapeutic angiogenesis in ischaemic heart disease. PMID:22674791

  12. Modeling and detecting deep brain activity with MEG & EEG.

    PubMed

    Attal, Yohan; Bhattacharjee, Manik; Yelnik, Jerome; Cottereau, Benoit; Lefèvre, Julien; Okada, Yoshio; Bardinet, Eric; Chupin, Marie; Baillet, Sylvain

    2007-01-01

    We introduce an anatomical and electrophysiological model of deep brain structures dedicated to magnetoencephalography (MEG) and electroencephalography (EEG) source imaging. So far, most imaging inverse models considered that MEG/EEG surface signals were predominantly produced by cortical, hence superficial, neural currents. Here we question whether crucial deep brain structures such as the basal ganglia and the hippocampus may also contribute to distant, scalp MEG and EEG measurements. We first design a realistic anatomical and electrophysiological model of these structures and subsequently run Monte-Carlo experiments to evaluate the respective sensitivity of the MEG and EEG to signals from deeper origins. Results indicate that MEG/EEG may indeed localize these deeper generators, which is confirmed here from experimental MEG data reporting on the modulation of alpha brain waves. PMID:18003114

  13. Analysis of Gene Expression During the Development of Congestive Heart Failure After Myocardial Infarction in Rat Models.

    PubMed

    Yu, Zhuo; Zhang, Hu; Yu, Mingli; Ye, Qing

    2015-01-01

    Our study aimed to investigate the gene expression at different myocardial infarction (MI) phases and to understand the development mechanisms of congestive heart failure (CHF) after MI. Dataset GSE1957 including 24 samples of rat left ventricles at 1-day post MI or sham operation and 7-day post MI or sham operation was downloaded from Gene Expression Ominibus. The data were normalized with an affyPLM package and differentially expressed genes (DEGs) were identified with a Linear Models for Microarray Data package. Heat maps of the DEGs were constructed using Cluster 3.0. GO (Gene Ontology) enrichment analysis of the DEGs was performed in Database for Annotation, Visualization, and Integrated Discovery. A protein-protein interaction (PPI) network was constructed by Biomolecular Interaction Network Database and visualized by Cytoscape, and a subnetwork was analyzed using plugin ClusterONE in Cytoscape. A total of 5 DEGs at 1-day post-MI, 5 DEGs at 7-day post-MI, and 7 DEGs between the MI and sham groups at 1-day and 7-day post-MI were identified. For the GO category analysis, DEGs at 1-day post-MI were enriched in response to cytokine stimulus. DEGs at 7-day post-MI were enriched in response to inorganic substance and chemical homeostasis. DEGs between 1-day and 7-day post-MI including CDK2 and CDC20 were significantly enriched in mitosis. CDK2, ANXA1, CDC20, and AQP2 were included in the PPI network, and CDK2 was the only DEG included in the subnetwork. In conclusion, the induction of DEGs at 7-day post-MI might participate in the response to a hormone and endogenous stimulus to regulate the development of CHF after MI. PMID:26104178

  14. The immunosuppressant FTY720 prolongs survival in a mouse model of diet-induced coronary atherosclerosis and myocardial infarction.

    PubMed

    Wang, Guanying; Kim, Roy Y; Imhof, Isabella; Honbo, Norman; Luk, Fu S; Li, Kang; Kumar, Nikit; Zhu, Bo-Qing; Eberlé, Delphine; Ching, Daniel; Karliner, Joel S; Raffai, Robert L

    2014-02-01

    FTY720, an analogue of sphingosine-1-phosphate, is cardioprotective during acute injury. Whether long-term FTY720 affords cardioprotection is unknown. Here, we report the effects of oral FTY720 on ischemia/reperfusion injury and in hypomorphic apoE mice deficient in SR-BI receptor expression (ApoeR61(h/h)/SRB1(-/- mice), a model of diet-induced coronary atherosclerosis and heart failure. We added FTY720 (0.3 mg·kg(-1)·d(-1)) to the drinking water of C57BL/6J mice. After ex vivo cardiac ischemia/reperfusion injury, these mice had significantly improved left ventricular (LV) developed pressure and reduced infarct size compared with controls. Subsequently, ApoeR61(h/h)/SRB1(-/-) mice fed a high-fat diet for 4 weeks were treated or not with oral FTY720 (0.05 mg·kg(-1)·d(-1)). This sharply reduced mortality (P < 0.02) and resulted in better LV function and less LV remodeling compared with controls without reducing hypercholesterolemia and atherosclerosis. Oral FTY720 reduced the number of blood lymphocytes and increased the percentage of CD4+Foxp3+ regulatory T cells (Tregs) in the circulation, spleen, and lymph nodes. FTY720-treated mice exhibited increased TGF-β and reduced IFN-γ expression in the heart. Also, CD4 expression was increased and strongly correlated with molecules involved in natural Treg activity, such as TGF-β and GITR. Our data suggest that long-term FTY720 treatment enhances LV function and increases longevity in mice with heart failure. These benefits resulted not from atheroprotection but from systemic immunosuppression and a moderate reduction of inflammation in the heart. PMID:24508946

  15. Astragalosides promote angiogenesis via vascular endothelial growth factor and basic fibroblast growth factor in a rat model of myocardial infarction

    PubMed Central

    YU, JUN-MIN; ZHANG, XIAO-BO; JIANG, WEN; WANG, HUI-DONG; ZHANG, YI-NA

    2015-01-01

    The aim of the present study was to evaluate the effect of astragalosides (ASTs) on angiogenesis, as well as the expression of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) following myocardial infarction (MI). MI was induced in rats by ligation of the left coronary artery. Twenty-four hours after surgery, the rats were divided into low-dose, high-dose, control and sham surgery groups (n=8 per group). The low- and high-dose groups were treated with ASTs (2.5 and 10 mg/kg/day, respectively, via intraperitoneal injection), while, the control and sham surgery group rats received saline. Serum levels, and mRNA and protein expression levels of VEGF and bFGF, as well as the microvessel density (MVD) were determined four weeks post-treatment. Twenty-four hours post-surgery, VEGF and bFGF serum levels were observed to be comparable between the groups; while at four weeks, the VEGF and bFGF levels were higher in the AST-treated rats (P<0.01). Similarly, VEGF and bFGF mRNA and protein expression levels were higher following AST treatment (P<0.05). No difference in VEGF mRNA expression between the low- and high-dose groups was noted, however, an increase in the bFGF expression levels was detected in the high-dose group. Newly generated blood vessels were observed following MI, with a significant increase in MVD observed in the AST-treated groups (P<0.05). AST promotes angiogenesis of the heart and increases VEGF and bFGF expression levels. Thus, it is hypothesized that increased VEGF and bFGF levels may contribute to the AST-induced increase in angiogenesis in rat models of MI. PMID:26352430

  16. 5′-Adenosine Monophosphate-Induced Hypothermia Attenuates Brain Ischemia/Reperfusion Injury in a Rat Model by Inhibiting the Inflammatory Response

    PubMed Central

    Miao, Yi-Feng; Wu, Hui; Yang, Shao-Feng; Dai, Jiong; Qiu, Yong-Ming; Tao, Zhen-Yi; Zhang, Xiao-Hua

    2015-01-01

    Hypothermia treatment is a promising therapeutic strategy for brain injury. We previously demonstrated that 5′-adenosine monophosphate (5′-AMP), a ribonucleic acid nucleotide, produces reversible deep hypothermia in rats when the ambient temperature is appropriately controlled. Thus, we hypothesized that 5′-AMP-induced hypothermia (AIH) may attenuate brain ischemia/reperfusion injury. Transient cerebral ischemia was induced by using the middle cerebral artery occlusion (MCAO) model in rats. Rats that underwent AIH treatment exhibited a significant reduction in neutrophil elastase infiltration into neuronal cells and matrix metalloproteinase 9 (MMP-9), interleukin-1 receptor (IL-1R), tumor necrosis factor receptor (TNFR), and Toll-like receptor (TLR) protein expression in the infarcted area compared to euthermic controls. AIH treatment also decreased the number of terminal deoxynucleotidyl transferase dUTP nick end labeling- (TUNEL-) positive neuronal cells. The overall infarct volume was significantly smaller in AIH-treated rats, and neurological function was improved. By contrast, rats with ischemic brain injury that were administered 5′-AMP without inducing hypothermia had ischemia/reperfusion injuries similar to those in euthermic controls. Thus, the neuroprotective effects of AIH were primarily related to hypothermia. PMID:25873763

  17. Resolving structural variability in network models and the brain.

    PubMed

    Klimm, Florian; Bassett, Danielle S; Carlson, Jean M; Mucha, Peter J

    2014-03-01

    Large-scale white matter pathways crisscrossing the cortex create a complex pattern of connectivity that underlies human cognitive function. Generative mechanisms for this architecture have been difficult to identify in part because little is known in general about mechanistic drivers of structured networks. Here we contrast network properties derived from diffusion spectrum imaging data of the human brain with 13 synthetic network models chosen to probe the roles of physical network embedding and temporal network growth. We characterize both the empirical and synthetic networks using familiar graph metrics, but presented here in a more complete statistical form, as scatter plots and distributions, to reveal the full range of variability of each measure across scales in the network. We focus specifically on the degree distribution, degree assortativity, hierarchy, topological Rentian scaling, and topological fractal scaling--in addition to several summary statistics, including the mean clustering coefficient, the shortest path-length, and the network diameter. The models are investigated in a progressive, branching sequence, aimed at capturing different elements thought to be important in the brain, and range from simple random and regular networks, to models that incorporate specific growth rules and constraints. We find that synthetic models that constrain the network nodes to be physically embedded in anatomical brain regions tend to produce distributions that are most similar to the corresponding measurements for the brain. We also find that network models hardcoded to display one network property (e.g., assortativity) do not in general simultaneously display a second (e.g., hierarchy). This relative independence of network properties suggests that multiple neurobiological mechanisms might be at play in the development of human brain network architecture. Together, the network models that we develop and employ provide a potentially useful starting point for the statistical inference of brain network structure from neuroimaging data. PMID:24675546

  18. Resolving Structural Variability in Network Models and the Brain

    PubMed Central

    Klimm, Florian; Bassett, Danielle S.; Carlson, Jean M.; Mucha, Peter J.

    2014-01-01

    Large-scale white matter pathways crisscrossing the cortex create a complex pattern of connectivity that underlies human cognitive function. Generative mechanisms for this architecture have been difficult to identify in part because little is known in general about mechanistic drivers of structured networks. Here we contrast network properties derived from diffusion spectrum imaging data of the human brain with 13 synthetic network models chosen to probe the roles of physical network embedding and temporal network growth. We characterize both the empirical and synthetic networks using familiar graph metrics, but presented here in a more complete statistical form, as scatter plots and distributions, to reveal the full range of variability of each measure across scales in the network. We focus specifically on the degree distribution, degree assortativity, hierarchy, topological Rentian scaling, and topological fractal scaling—in addition to several summary statistics, including the mean clustering coefficient, the shortest path-length, and the network diameter. The models are investigated in a progressive, branching sequence, aimed at capturing different elements thought to be important in the brain, and range from simple random and regular networks, to models that incorporate specific growth rules and constraints. We find that synthetic models that constrain the network nodes to be physically embedded in anatomical brain regions tend to produce distributions that are most similar to the corresponding measurements for the brain. We also find that network models hardcoded to display one network property (e.g., assortativity) do not in general simultaneously display a second (e.g., hierarchy). This relative independence of network properties suggests that multiple neurobiological mechanisms might be at play in the development of human brain network architecture. Together, the network models that we develop and employ provide a potentially useful starting point for the statistical inference of brain network structure from neuroimaging data. PMID:24675546

  19. Toward modeling of regional myocardial ischemia and infarction: generation of realistic coronary arterial tree for the heart model of the XCAT phantom

    NASA Astrophysics Data System (ADS)

    Fung, George S. K.; Segars, W. Paul; Veress, Alexander I.; Gullberg, Grant T.; Tsui, Benjamin M. W.

    2009-02-01

    A realistic 3D coronary arterial tree (CAT) has been developed for the heart model of the computer generated 3D XCAT phantom. The CAT allows generation of a realistic model of the location, size and shape of the associated regional ischemia or infarction for a given coronary arterial stenosis or occlusion. This in turn can be used in medical imaging applications. An iterative rule-based generation method that systematically utilized anatomic, morphometric and physiologic knowledge was used to construct a detailed realistic 3D model of the CAT in the XCAT phantom. The anatomic details of the myocardial surfaces and large coronary arterial vessel segments were first extracted from cardiac CT images of a normal patient with right coronary dominance. Morphometric information derived from porcine data from the literature, after being adjusted by scaling laws, provided statistically nominal diameters, lengths, and connectivity probabilities of the generated coronary arterial segments in modeling the CAT of an average human. The largest six orders of the CAT were generated based on the physiologic constraints defined in the coronary generation algorithms. When combined with the heart model of the XCAT phantom, the realistic CAT provides a unique simulation tool for the generation of realistic regional myocardial ischemia and infraction. Together with the existing heart model, the new CAT provides an important improvement over the current 3D XCAT phantom in providing a more realistic model of the normal heart and the potential to simulate myocardial diseases in evaluation of medical imaging instrumentation, image reconstruction, and data processing methods.

  20. Optical projection tomography permits efficient assessment of infarct volume in the murine heart postmyocardial infarction

    PubMed Central

    Zhao, X.; Wu, J.; Gray, C. D.; McGregor, K.; Rossi, A. G.; Morrison, H.; Jansen, M. A.

    2015-01-01

    The extent of infarct injury is a key determinant of structural and functional remodeling following myocardial infarction (MI). Infarct volume in experimental models of MI can be determined accurately by in vivo magnetic resonance imaging (MRI), but this is costly and not widely available. Experimental studies therefore commonly assess injury by histological analysis of sections sampled from the infarcted heart, an approach that is labor intensive, can be subjective, and does not fully assess the extent of injury. The present study aimed to assess the suitability of optical projection tomography (OPT) for identification of injured myocardium and for accurate and efficient assessment of infarct volume. Intact, perfusion-fixed, optically cleared hearts, collected from mice 7 days after induction of MI by coronary artery occlusion, were scanned by a tomograph for autofluorescence emission after UV excitation, generating >400 transaxial sections for reconstruction. Differential autofluorescence permitted discrimination between viable and injured myocardium and highlighted the heterogeneity within the infarct zone. Two-dimensional infarct areas derived from OPT imaging and Masson's trichrome staining of slices from the same heart were highly correlated (r2 = 0.99, P < 0.0001). Infarct volume derived from reconstructed OPT sections correlated with volume derived from in vivo late gadolinium enhancement MRI (r2 = 0.7608, P < 0.005). Tissue processing for OPT did not compromise subsequent immunohistochemical detection of endothelial cell and inflammatory cell markers. OPT is thus a nondestructive, efficient, and accurate approach for routine in vitro assessment of murine myocardial infarct volume. PMID:26071543

  1. Causation model of autism: Audiovisual brain specialization in infancy competes with social brain networks.

    PubMed

    Heffler, Karen Frankel; Oestreicher, Leonard M

    2016-06-01

    Earliest identifiable findings in autism indicate that the autistic brain develops differently from the typical brain in the first year of life, after a period of typical development. Twin studies suggest that autism has an environmental component contributing to causation. Increased availability of audiovisual (AV) materials and viewing practices of infants parallel the time frame of the rise in prevalence of autism spectrum disorder (ASD). Studies have shown an association between ASD and increased TV/cable screen exposure in infancy, suggesting AV exposure in infancy as a possible contributing cause of ASD. Infants are attracted to the saliency of AV materials, yet do not have the experience to recognize these stimuli as socially relevant. The authors present a developmental model of autism in which exposure to screen-based AV input in genetically susceptible infants stimulates specialization of non-social sensory processing in the brain. Through a process of neuroplasticity, the autistic infant develops the skills that are driven by the AV viewing. The AV developed neuronal pathways compete with preference for social processing, negatively affecting development of social brain pathways and causing global developmental delay. This model explains atypical face and speech processing, as well as preference for AV synchrony over biological motion in ASD. Neural hyper-connectivity, enlarged brain size and special abilities in visual, auditory and motion processing in ASD are also explained by the model. Positive effects of early intervention are predicted by the model. Researchers studying causation of autism have largely overlooked AV exposure in infancy as a potential contributing factor. The authors call for increased public awareness of the association between early screen viewing and ASD, and a concerted research effort to determine the extent of causal relationship. PMID:26146132

  2. Xenon contrast CT-CBF scanning of the brain differentiates normal age-related changes from multi-infarct dementia and senile dementia of Alzheimer type

    SciTech Connect

    Tachibana, H.; Meyer, J.S.; Okayasu, H.; Shaw, T.G.; Kandula, P.; Rogers, R.L.

    1984-07-01

    Local cerebral blood flow (LCBF) and partition coefficients (L lambda) were measured during inhalation of stable xenon gas with serial CT scanning among normal volunteers (N . 15), individuals with multi-infarct dementia (MID, N . 10), and persons with senile dementia of Alzheimer type (SDAT, N . 8). Mean gray matter flow values were reduced in both MID and SDAT. Age-related declines in LCBF values in normals were marked in frontal cortex and basal ganglia. LCBF values were decreased beyond normals in frontal and temporal cortices and thalamus in MID and SDAT, in basal ganglia only in MID. Unlike SDAT and age-matched normals, L lambda values were reduced in fronto-temporal cortex and thalamus in MID. Multifocal nature of lesions in MID was apparent. Coefficients of variation for LCBFs were greater in MID compared with SDAT and/or age-matched normals.

  3. A revised dosimetric model of the head and brain

    SciTech Connect

    Bolch, W.E.; Poston, J.W. Sr.

    1995-05-01

    The use of PET and SPECT radiopharmaceuticals in brain imaging has greatly expanded over the past several years. Many of these agents localize within particular subregions of the brain, thus allowing for detailed physiologic and metabolic imaging. Dosimetric models to support these advances in nuclear medicine have been lacking. For example, the brain within the phantom of MIRD Pamphlet No. 5 Revised is modeled simply as a single ellipsoid of tissue with no differentiation of its internal structures. To address this need, the MIRD Committee established a Task Group in 1992 to construct a revised dosimetric model of the brain to include the following subregions: the cerebral cortex, the white matter, the cerebellum, the thalamus, the caudate nucleus, the lentiform nucleus (putamen and globus pallidus), the cerebral spinal fluid (within the subarachnoid space of the brain), the lateral ventricles, and the third ventricle. Estimates of both electron and photon absorbed fractions (AF) were subsequently calculated using the EGS4 radiation transport code. For most of the internal brain structures, electron AFs are shown to fall fellow unity for all regions within the energy range of {approximately}200 keV to 4 MeV. For example, AFs for the caudate nucleus as both a source and target region and estimated as 0.98, 0.84, 0.39 for 200-keV, 1-MeV, and 4-MeV electron sources, respectively. Corresponding AFs within the white matter as a source and target region are estimated as 1.0, 0.95, and 0.79 for these same electron energies. Revised S values were subsequently calculated for a variety of beta-particle and positron emitters used in brain imaging.

  4. Rat and rabbit heart infarction: effects of anesthesia, perfusate, risk zone, and method of infarct sizing.

    PubMed

    Ytrehus, K; Liu, Y; Tsuchida, A; Miura, T; Liu, G S; Yang, X M; Herbert, D; Cohen, M V; Downey, J M

    1994-12-01

    Rabbits and rats are becoming popular models for in vitro as well as in situ studies of myocardial infarction. In the present analysis we evaluated the results of several of our completed investigations and tested whether blood-free perfusate, anesthesia, or risk zone size affects infarction in these species. In addition, the influence of the method used for determining infarct size (histology or histochemistry) was examined in rabbits. All hearts experienced 30 min of regional ischemia followed by either 2-3 h of reperfusion in animals in which infarct size was assessed by staining with triphenyltetrazolium chloride or 72 h in those in which histological methods were used to measure infarct size. Eighteen rabbit and seven rat hearts perfused with Krebs buffer, seventeen open-chest rabbits, eight rats anesthetized with pentobarbital, and ten conscious rabbits were studied. Risk zone size measured with fluorescent particles was plotted against infarct size. Infarct size was linearly correlated with risk zone size and did not differ among models for each species. In rat hearts the regression line passed through the origin so that zero infarction occurred with zero risk zone size. However, in the rabbit heart there was no apparent infarction for risk zone sizes < 0.3 cm3. Although the relationship between risk zone and infarction was found to be remarkably independent of the model chosen, the nonzero intercept for the rabbit heart can be an important, previously unrecognized source of experimental variability when infarct size is expressed as a percentage of the risk zone. PMID:7528994

  5. Animal models of brain maldevelopment induced by cycad plant genotoxins.

    PubMed

    Kisby, Glen E; Moore, Holly; Spencer, Peter S

    2013-12-01

    Cycads are long-lived tropical and subtropical plants that contain azoxyglycosides (e.g., cycasin, macrozamin) and neurotoxic amino acids (notably ?-N-methylamino-l-alanine l-BMAA), toxins that have been implicated in the etiology of a disappearing neurodegenerative disease, amyotrophic lateral sclerosis and parkinsonism-dementia complex that has been present in high incidence among three genetically distinct populations in the western Pacific. The neuropathology of amyotrophic lateral sclerosis/parkinsonism-dementia complex includes features suggestive of brain maldevelopment, an experimentally proven property of cycasin attributable to the genotoxic action of its aglycone methylazoxymethanol (MAM). This property of MAM has been exploited by neurobiologists as a tool to study perturbations of brain development. Depending on the neurodevelopmental stage, MAM can induce features in laboratory animals that model certain characteristics of epilepsy, schizophrenia, or ataxia. Studies in DNA repair-deficient mice show that MAM perturbs brain development through a DNA damage-mediated mechanism. The brain DNA lesions produced by systemic MAM appear to modulate the expression of genes that regulate neurodevelopment and contribute to neurodegeneration. Epigenetic changes (histone lysine methylation) have also been detected in the underdeveloped brain after MAM administration. The DNA damage and epigenetic changes produced by MAM and, perhaps by chemically related substances (e.g., nitrosamines, nitrosoureas, hydrazines), might be an important mechanism by which early-life exposure to genotoxicants can induce long-term brain dysfunction. PMID:24339036

  6. Animal Models of Brain Maldevelopment Induced by Cycad Plant Genotoxins

    PubMed Central

    Kisby, Glen E.; Moore, Holly; Spencer, Peter S.

    2014-01-01

    Cycads are long-lived tropical and subtropical plants that contain azoxyglycosides (e.g., cycasin, macrozamin) and neurotoxic amino acids (notably β-N-methylamino-L-alanine L-BMAA), toxins that have been implicated in the etiology of a disappearing neurodegenerative disease, amyotrophic lateral sclerosis and parkinsonism-dementia complex that has been present in high incidence among three genetically distinct populations in the western Pacific. The neuropathology of amyotrophic lateral sclerosis/parkinsonism-dementia complex includes features suggestive of brain maldevelopment, an experimentally proven property of cycasin attributable to the genotoxic action of its aglycone methylazoxymethanol (MAM). This property of MAM has been exploited by neurobiologists as a tool to study perturbations of brain development. Depending on the neurodevelopmental stage, MAM can induce features in laboratory animals that model certain characteristics of epilepsy, schizophrenia, or ataxia. Studies in DNA repair-deficient mice show that MAM perturbs brain development through a DNA damage-mediated mechanism. The brain DNA lesions produced by systemic MAM appear to modulate the expression of genes that regulate neurodevelopment and contribute to neurodegeneration. Epigenetic changes (histone lysine methylation) have also been detected in the underdeveloped brain after MAM administration. The DNA damage and epigenetic changes produced by MAM and, perhaps by chemically related substances (e.g., nitrosamines, nitrosoureas, hydrazines), might be an important mechanism by which early-life exposure to genotoxicants can induce long-term brain dysfunction. PMID:24339036

  7. Temporally-Patterned Deep Brain Stimulation in a Mouse Model of Multiple Traumatic Brain Injury

    PubMed Central

    Tabansky, Inna; Quinkert, Amy Wells; Rahman, Nadera; Muller, Salomon Zev; Löfgren, Jesper; Rudling, Johan; Goodman, Alyssa; Wang, Yingping; Pfaff, Donald W.

    2014-01-01

    We report that mice with closed-head multiple traumatic brain injury (TBI) show a decrease in the motoric aspects of generalized arousal, as measured by automated, quantitative behavioral assays. Further, we found that temporally-patterned deep brain stimulation (DBS) can increase generalized arousal and spontaneous motor activity in this mouse model of TBI. This arousal increase is input-pattern-dependent, as changing the temporal pattern of DBS can modulate its effect on motor activity. Finally, an extensive examination of mouse behavioral capacities, looking for deficits in this model of TBI, suggest that the strongest effects of TBI in this model are found in the initiation of any kind of movement. PMID:25072520

  8. Temporally-patterned deep brain stimulation in a mouse model of multiple traumatic brain injury.

    PubMed

    Tabansky, Inna; Quinkert, Amy Wells; Rahman, Nadera; Muller, Salomon Zev; Lofgren, Jesper; Rudling, Johan; Goodman, Alyssa; Wang, Yingping; Pfaff, Donald W

    2014-10-15

    We report that mice with closed-head multiple traumatic brain injury (TBI) show a decrease in the motoric aspects of generalized arousal, as measured by automated, quantitative behavioral assays. Further, we found that temporally-patterned deep brain stimulation (DBS) can increase generalized arousal and spontaneous motor activity in this mouse model of TBI. This arousal increase is input-pattern-dependent, as changing the temporal pattern of DBS can modulate its effect on motor activity. Finally, an extensive examination of mouse behavioral capacities, looking for deficits in this model of TBI, suggest that the strongest effects of TBI in this model are found in the initiation of any kind of movement. PMID:25072520

  9. Characterisation and modelling of brain tissue for surgical simulation.

    PubMed

    Mendizabal, A; Aguinaga, I; Sánchez, E

    2015-05-01

    Interactive surgical simulators capable of providing a realistic visual and haptic feedback to users are a promising technology for medical training and surgery planification. However, modelling the physical behaviour of human organs and tissues for surgery simulation remains a challenge. On the one hand, this is due to the difficulty to characterise the physical properties of biological soft tissues. On the other hand, the challenge still remains in the computation time requirements of real-time simulation required in interactive systems. Real-time surgical simulation and medical training must employ a sufficiently accurate and simple model of soft tissues in order to provide a realistic haptic and visual response. This study attempts to characterise the brain tissue at similar conditions to those that take place on surgical procedures. With this aim, porcine brain tissue is characterised, as a surrogate of human brain, on a rotational rheometer at low strain rates and large strains. In order to model the brain tissue with an adequate level of accuracy and simplicity, linear elastic, hyperelastic and quasi-linear viscoelastic models are defined. These models are simulated using the ABAQUS finite element platform and compared with the obtained experimental data. PMID:25676499

  10. Computational modeling of an endovascular approach to deep brain stimulation

    NASA Astrophysics Data System (ADS)

    Teplitzky, Benjamin A.; Connolly, Allison T.; Bajwa, Jawad A.; Johnson, Matthew D.

    2014-04-01

    Objective. Deep brain stimulation (DBS) therapy currently relies on a transcranial neurosurgical technique to implant one or more electrode leads into the brain parenchyma. In this study, we used computational modeling to investigate the feasibility of using an endovascular approach to target DBS therapy. Approach. Image-based anatomical reconstructions of the human brain and vasculature were used to identify 17 established and hypothesized anatomical targets of DBS, of which five were found adjacent to a vein or artery with intraluminal diameter ≥1 mm. Two of these targets, the fornix and subgenual cingulate white matter (SgCwm) tracts, were further investigated using a computational modeling framework that combined segmented volumes of the vascularized brain, finite element models of the tissue voltage during DBS, and multi-compartment axon models to predict the direct electrophysiological effects of endovascular DBS. Main results. The models showed that: (1) a ring-electrode conforming to the vessel wall was more efficient at neural activation than a guidewire design, (2) increasing the length of a ring-electrode had minimal effect on neural activation thresholds, (3) large variability in neural activation occurred with suboptimal placement of a ring-electrode along the targeted vessel, and (4) activation thresholds for the fornix and SgCwm tracts were comparable for endovascular and stereotactic DBS, though endovascular DBS was able to produce significantly larger contralateral activation for a unilateral implantation. Significance. Together, these results suggest that endovascular DBS can serve as a complementary approach to stereotactic DBS in select cases.

  11. Brain atlas of an emerging teleostean model: Nothobranchius furzeri.

    PubMed

    D'angelo, Livia

    2013-04-01

    Nothobranchius furzeri has emerged as a new fish model for neurobiological and age research over recent years, due to the exceptionally short lifespan, age-dependent cognitive/behavioral decline, expression of age-related biomarkers. The growing interest in this teleost has raised the need to construct an atlas of the whole brain of N. furzeri. The study has been carried out on adult specimens belonging to the long lived strain, originating from Mozambique and named MZM 04/10. In the atlas, the external features of brain, images of sections stained with luxol fast bleu/violet and schematic drawings of the most representative sections are showed. The identification and description of brain structures has been carried out on methodological and hodological studies. Comparative analyses have revealed remarkable and peculiar neuroanatomical characteristics of N. furzeri brain architecture. Thus, a comprehensive whole brain atlas of N. furzeri has been constructed aiming to provide a baseline for structural and functional future experiments on this emerging model organism. PMID:23408644

  12. Assessment of C-phycocyanin effect on astrocytes-mediated neuroprotection against oxidative brain injury using 2D and 3D astrocyte tissue model.

    PubMed

    Min, Seul Ki; Park, Jun Sang; Luo, Lidan; Kwon, Yeo Seon; Lee, Hoo Cheol; Shim, Hyun Jung; Kim, Il-Doo; Lee, Ja-Kyeong; Shin, Hwa Sung

    2015-01-01

    Drugs are currently being developed to attenuate oxidative stress as a treatment for brain injuries. C-phycocyanin (C-Pc) is an antioxidant protein of green microalgae known to exert neuroprotective effects against oxidative brain injury. Astrocytes, which compose many portions of the brain, exert various functions to overcome oxidative stress; however, little is known about how C-Pc mediates the antioxidative effects of astrocytes. In this study, we revealed that C-Pc intranasal administration to the middle cerebral artery occlusion (MCAO) rats ensures neuroprotection of ischemic brain by reducing infarct size and improving behavioral deficits. C-Pc also enhanced viability and proliferation but attenuated apoptosis and reactive oxygen species (ROS) of oxidized astrocytes, without cytotoxicity to normal astrocytes and neurons. To elucidate how C-Pc leads astrocytes to enhance neuroprotection and repair of ischemia brain, we firstly developed 3D oxidized astrocyte model. C-Pc had astrocytes upregulate antioxidant enzymes such as SOD and catalase and neurotrophic factors BDNF and NGF, while alleviating inflammatory factors IL-6 and IL-1β and glial scar. Additionally, C-Pc improved viability of 3D oxidized neurons. In summary, C-Pc was concluded to activate oxidized astrocytes to protect and repair the ischemic brain with the combinatorial effects of improved antioxidative, neurotrophic, and anti-inflammatory mechanisms. PMID:26399322

  13. Assessment of C-phycocyanin effect on astrocytes-mediated neuroprotection against oxidative brain injury using 2D and 3D astrocyte tissue model

    PubMed Central

    Min, Seul Ki; Park, Jun Sang; Luo, Lidan; Kwon, Yeo Seon; Lee, Hoo Cheol; Jung Shim, Hyun; Kim, Il-Doo; Lee, Ja-Kyeong; Shin, Hwa Sung

    2015-01-01

    Drugs are currently being developed to attenuate oxidative stress as a treatment for brain injuries. C-phycocyanin (C-Pc) is an antioxidant protein of green microalgae known to exert neuroprotective effects against oxidative brain injury. Astrocytes, which compose many portions of the brain, exert various functions to overcome oxidative stress; however, little is known about how C-Pc mediates the antioxidative effects of astrocytes. In this study, we revealed that C-Pc intranasal administration to the middle cerebral artery occlusion (MCAO) rats ensures neuroprotection of ischemic brain by reducing infarct size and improving behavioral deficits. C-Pc also enhanced viability and proliferation but attenuated apoptosis and reactive oxygen species (ROS) of oxidized astrocytes, without cytotoxicity to normal astrocytes and neurons. To elucidate how C-Pc leads astrocytes to enhance neuroprotection and repair of ischemia brain, we firstly developed 3D oxidized astrocyte model. C-Pc had astrocytes upregulate antioxidant enzymes such as SOD and catalase and neurotrophic factors BDNF and NGF, while alleviating inflammatory factors IL-6 and IL-1β and glial scar. Additionally, C-Pc improved viability of 3D oxidized neurons. In summary, C-Pc was concluded to activate oxidized astrocytes to protect and repair the ischemic brain with the combinatorial effects of improved antioxidative, neurotrophic, and anti-inflammatory mechanisms. PMID:26399322

  14. Transcranial magnetic stimulation and brain atrophy: a computer-based human brain model study

    PubMed Central

    Eden, Uri; Fregni, Felipe; Valero-Cabre, Antoni; Ramos-Estebanez, Ciro; Pronio-Stelluto, Valerie; Grodzinsky, Alan; Zahn, Markus; Pascual-Leone, Alvaro

    2012-01-01

    This paper is aimed at exploring the effect of cortical brain atrophy on the currents induced by transcranial magnetic stimulation (TMS). We compared the currents induced by various TMS conditions on several different MRI derived finite element head models of brain atrophy, incorporating both decreasing cortical volume and widened sulci. The current densities induced in the cortex were dependent upon the degree and type of cortical atrophy and were altered in magnitude, location, and orientation when compared to healthy head models. Predictive models of the degree of current density attenuation as a function of the scalp-to-cortex distance were analyzed, concluding that those which ignore the electromagnetic field–tissue interactions lead to inaccurate conclusions. Ultimately, the precise site and population of neural elements stimulated by TMS in an atrophic brain cannot be predicted based on healthy head models which ignore the effects of the altered cortex on the stimulating currents. Clinical applications of TMS should be carefully considered in light of these findings. PMID:18193208

  15. Sodium thiosulfate protects brain in rat model of adenine induced vascular calcification.

    PubMed

    Subhash, N; Sriram, R; Kurian, Gino A

    2015-11-01

    Vascular bed calcification is a common feature of ends stage renal disease that may lead to a complication in cardiovascular and cerebrovascular beds, which is a promoting cause of myocardial infarction, stroke, dementia and aneurysms. Sodium thiosulfate (STS) due to its multiple properties such as antioxidant and calcium chelation has been reported to prevent vascular calcification in uremic rats, without mentioning its impact on cerebral function. Moreover, the previous studies have not explored the effect of STS on the mitochondrial dysfunction, one of the main pathophysiological features associated with the disease and the main site for STS metabolism. The present study addresses this limitation by using a rat model where 0.75% adenine was administered to induce vascular calcification and 400 mg/kg b wt. of STS was given as preventive and curative agent. The blood and urine chemistries along with histopathology of aorta confirms the renal protective effect of STS in two modes of administration. The brain oxidative stress assessment was made through TBARS level, catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities, found to be in the near normal level. STS administration not only reduced the mitochondrial oxidative stress (measured by TBARS, SOD, GPx and CAT) but also preserved the mitochondrial respiratory enzyme activities (NADH dehydrogenase, Succinate dehydrogenase and Malate dehydrogenase) and its physiology (measured by P/O ratio and RCR). In fact, the protective effect of STS was prominent, when it was administered as a curative agent, where low H2S and high thiosulfate level was observed along with low cystathionine β synthase activity, confirms thiosulfate mediated renal protection. In conclusion, STS when given after induction of calcification is protective to the brain by preserving its mitochondria, compared to the treatment given concomitantly. PMID:26363090

  16. In vitro models of the blood-brain barrier.

    PubMed

    Wilhelm, Imola; Fazakas, Csilla; Krizbai, Istvan A

    2011-01-01

    The blood-brain barrier (BBB) is an active interface between the circulation and the central nervous system (CNS) with a dual function: the barrier function restricts the transport from the blood to the brain of potentially toxic or harmful substances; the carrier function is responsible for the transport of nutrients to the brain and removal of metabolites. The BBB plays a crucial role in the clinical practice as well. On the one side there is a large number of neurological disorders including cerebral ischemia, brain trauma and tumors, neurodegenerative disorders, in which the permeability of the BBB is increased. On the other hand due to the relative impermeability of the barrier many drugs are unable to reach the CNS in therapeutically relevant concentration, making the BBB one of the major impediments in the treatment of CNS disorders. The significant scientific and industrial interest in the physiology and pathology of the BBB led to the development of several in vitro models of the BBB. These models are mainly based on the culture of cerebral endothelial cells. The best in vitro models which mimic the best way the in vivo anatomical conditions are the co-culture models in which brain endothelial cells are co-cultured with astrocytes and/or pericytes. Our in vitro BBB model is characterized by high transendothelial electrical resistance (TEER regularily above 200 Ohm x cm(2)), low permeability and expression of several transporters. Our experiments have proven that the model is suitable for basic research and for testing the interaction between the BBB and potential drug candidates (toxicity, permeability, interaction with efflux transporters) as well. PMID:21499332

  17. Directions for Mind, Brain, and Education: Methods, Models, and Morality

    ERIC Educational Resources Information Center

    Stein, Zachary; Fischer, Kurt W.

    2011-01-01

    In this article we frame a set of important issues in the emerging field of Mind, Brain, and Education in terms of three broad headings: methods, models, and morality. Under the heading of methods we suggest that the need for synthesis across scientific and practical disciplines entails the pursuit of usable knowledge via a catalytic symbiosis

  18. Directions for Mind, Brain, and Education: Methods, Models, and Morality

    ERIC Educational Resources Information Center

    Stein, Zachary; Fischer, Kurt W.

    2011-01-01

    In this article we frame a set of important issues in the emerging field of Mind, Brain, and Education in terms of three broad headings: methods, models, and morality. Under the heading of methods we suggest that the need for synthesis across scientific and practical disciplines entails the pursuit of usable knowledge via a catalytic symbiosis…

  19. ND-309, a novel compound, ameliorates cerebral infarction in rats by antioxidant action.

    PubMed

    Tian, Jingwei; Li, Guisheng; Liu, Zhifeng; Zhang, Shumin; Qu, Guiwu; Jiang, Wanglin; Fu, Fenghua

    2008-09-19

    Extract of danshen (Salvia miltiorrhiza Bunge.) has been clinically prescribed in China to treat patients with stroke. The novel compound designated ND-309, namely isopropyl-beta-(3,4-dihydroxyphenyl)-alpha-hydroxypropanoate is a new metabolite of danshen in rat brain. The present study was conducted to investigate whether ND-309 has a protective effect on brain injury after focal cerebral ischemia, and to determine the possible mechanism. Adult male SD rats were subjected to middle cerebral artery occlusion (MCAO) by bipolar electro-coagulation. Behavioral tests were used to evaluate the damage to central nervous system. The cerebral infarct volume and edema were assessed to evaluate the brain patho-physiological changes. Spectrophotometric or spectrofluorometric assay methods were used to determine the generation of reactive oxygen species (ROS), activities of superoxide dismutase (SOD) and glutathione-peroxidase (GSH-Px), contents of malondialdehyde (MDA) and adenosine triphosphate (ATP), as well as respiratory control ratio of the brain mitochondria. The results showed that treatment with ND-309 significantly decreased neurological deficit scores, reduced infarct volume and the edema compared with the model group. Meanwhile, ND-309 significantly increased the brain ATP content, improved mitochondrial energy metabolism, attenuated the elevation of MDA content, the decrease in SOD, GSH-Px activity and the generation of ROS in brain mitochondria. All of these findings indicate that ND-309 has the protective potential against cerebral ischemia injury and its protective effects may be due to the amelioration of cerebral energy metabolism and its antioxidant property. PMID:18652875

  20. Effects of exercise on brain functions in diabetic animal models

    PubMed Central

    Yi, Sun Shin

    2015-01-01

    Human life span has dramatically increased over several decades, and the quality of life has been considered to be equally important. However, diabetes mellitus (DM) characterized by problems related to insulin secretion and recognition has become a serious health problem in recent years that threatens human health by causing decline in brain functions and finally leading to neurodegenerative diseases. Exercise is recognized as an effective therapy for DM without medication administration. Exercise studies using experimental animals are a suitable option to overcome this drawback, and animal studies have improved continuously according to the needs of the experimenters. Since brain health is the most significant factor in human life, it is very important to assess brain functions according to the different exercise conditions using experimental animal models. Generally, there are two types of DM; insulin-dependent type 1 DM and an insulin-independent type 2 DM (T2DM); however, the author will mostly discuss brain functions in T2DM animal models in this review. Additionally, many physiopathologic alterations are caused in the brain by DM such as increased adiposity, inflammation, hormonal dysregulation, uncontrolled hyperphagia, insulin and leptin resistance, and dysregulation of neurotransmitters and declined neurogenesis in the hippocampus and we describe how exercise corrects these alterations in animal models. The results of changes in the brain environment differ according to voluntary, involuntary running exercises and resistance exercise, and gender in the animal studies. These factors have been mentioned in this review, and this review will be a good reference for studying how exercise can be used with therapy for treating DM. PMID:25987956

  1. Orthotopic models of pediatric brain tumors in zebrafish.

    PubMed

    Eden, C J; Ju, B; Murugesan, M; Phoenix, T N; Nimmervoll, B; Tong, Y; Ellison, D W; Finkelstein, D; Wright, K; Boulos, N; Dapper, J; Thiruvenkatam, R; Lessman, C A; Taylor, M R; Gilbertson, R J

    2015-03-26

    High-throughput screens (HTS) of compound toxicity against cancer cells can identify thousands of potential new drug-leads. But only limited numbers of these compounds can progress to expensive and labor-intensive efficacy studies in mice, creating a 'bottle neck' in the drug development pipeline. Approaches that triage drug-leads for further study are greatly needed. Here we provide an intermediary platform between HTS and mice by adapting mouse models of pediatric brain tumors to grow as orthotopic xenografts in the brains of zebrafish. Freshly isolated mouse ependymoma, glioma and choroid plexus carcinoma cells expressing red fluorescence protein were conditioned to grow at 34 °C. Conditioned tumor cells were then transplanted orthotopically into the brains of zebrafish acclimatized to ambient temperatures of 34 °C. Live in vivo fluorescence imaging identified robust, quantifiable and reproducible brain tumor growth as well as spinal metastasis in zebrafish. All tumor xenografts in zebrafish retained the histological characteristics of the corresponding parent mouse tumor and efficiently recruited fish endothelial cells to form a tumor vasculature. Finally, by treating zebrafish harboring ERBB2-driven gliomas with an appropriate cytotoxic chemotherapy (5-fluorouracil) or tyrosine kinase inhibitor (erlotinib), we show that these models can effectively assess drug efficacy. Our data demonstrate, for the first time, that mouse brain tumors can grow orthotopically in fish and serve as a platform to study drug efficacy. As large cohorts of brain tumor-bearing zebrafish can be generated rapidly and inexpensively, these models may serve as a powerful tool to triage drug-leads from HTS for formal efficacy testing in mice. PMID:24747973

  2. Effects of exercise on brain functions in diabetic animal models.

    PubMed

    Yi, Sun Shin

    2015-05-15

    Human life span has dramatically increased over several decades, and the quality of life has been considered to be equally important. However, diabetes mellitus (DM) characterized by problems related to insulin secretion and recognition has become a serious health problem in recent years that threatens human health by causing decline in brain functions and finally leading to neurodegenerative diseases. Exercise is recognized as an effective therapy for DM without medication administration. Exercise studies using experimental animals are a suitable option to overcome this drawback, and animal studies have improved continuously according to the needs of the experimenters. Since brain health is the most significant factor in human life, it is very important to assess brain functions according to the different exercise conditions using experimental animal models. Generally, there are two types of DM; insulin-dependent type 1 DM and an insulin-independent type 2 DM (T2DM); however, the author will mostly discuss brain functions in T2DM animal models in this review. Additionally, many physiopathologic alterations are caused in the brain by DM such as increased adiposity, inflammation, hormonal dysregulation, uncontrolled hyperphagia, insulin and leptin resistance, and dysregulation of neurotransmitters and declined neurogenesis in the hippocampus and we describe how exercise corrects these alterations in animal models. The results of changes in the brain environment differ according to voluntary, involuntary running exercises and resistance exercise, and gender in the animal studies. These factors have been mentioned in this review, and this review will be a good reference for studying how exercise can be used with therapy for treating DM. PMID:25987956

  3. Insight into Pre-Clinical Models of Traumatic Brain Injury Using Circulating Brain Damage Biomarkers: Operation Brain Trauma Therapy.

    PubMed

    Mondello, Stefania; Shear, Deborah A; Bramlett, Helen M; Dixon, C Edward; Schmid, Kara E; Dietrich, W Dalton; Wang, Kevin K W; Hayes, Ronald L; Glushakova, Olena; Catania, Michael; Richieri, Steven P; Povlishock, John T; Tortella, Frank C; Kochanek, Patrick M

    2016-03-15

    Operation Brain Trauma Therapy (OBTT) is a multicenter pre-clinical drug screening consortium testing promising therapies for traumatic brain injury (TBI) in three well-established models of TBI in rats-namely, parasagittal fluid percussion injury (FPI), controlled cortical impact (CCI), and penetrating ballistic-like brain injury (PBBI). This article presents unique characterization of these models using histological and behavioral outcomes and novel candidate biomarkers from the first three treatment trials of OBTT. Adult rats underwent CCI, FPI, or PBBI and were treated with vehicle (VEH). Shams underwent all manipulations except trauma. The glial marker glial fibrillary acidic protein (GFAP) and the neuronal marker ubiquitin C-terminal hydrolase (UCH-L1) were measured by enzyme-linked immunosorbent assay in blood at 4 and 24 h, and their delta 24-4 h was calculated for each marker. Comparing sham groups across experiments, no differences were found in the same model. Similarly, comparing TBI + VEH groups across experiments, no differences were found in the same model. GFAP was acutely increased in injured rats in each model, with significant differences in levels and temporal patterns mirrored by significant differences in delta 24-4 h GFAP levels and neuropathological and behavioral outcomes. Circulating GFAP levels at 4 and 24 h were powerful predictors of 21 day contusion volume and tissue loss. UCH-L1 showed similar tendencies, albeit with less robust differences between sham and injury groups. Significant differences were also found comparing shams across the models. Our findings (1) demonstrate that TBI models display specific biomarker profiles, functional deficits, and pathological consequence; (2) support the concept that there are different cellular, molecular, and pathophysiological responses to TBI in each model; and (3) advance our understanding of TBI, providing opportunities for a successful translation and holding promise for theranostic applications. Based on our findings, additional studies in pre-clinical models should pursue assessment of GFAP as a surrogate histological and/or theranostic end-point. PMID:26671651

  4. Computational modeling of brain tumors: discrete, continuum or hybrid?

    NASA Astrophysics Data System (ADS)

    Wang, Zhihui; Deisboeck, Thomas S.

    2008-04-01

    In spite of all efforts, patients diagnosed with highly malignant brain tumors (gliomas), continue to face a grim prognosis. Achieving significant therapeutic advances will also require a more detailed quantitative understanding of the dynamic interactions among tumor cells, and between these cells and their biological microenvironment. Data-driven computational brain tumor models have the potential to provide experimental tumor biologists with such quantitative and cost-efficient tools to generate and test hypotheses on tumor progression, and to infer fundamental operating principles governing bidirectional signal propagation in multicellular cancer systems. This review highlights the modeling objectives of and challenges with developing such in silicobrain tumor models by outlining two distinct computational approaches: discrete and continuum, each with representative examples. Future directions of this integrative computational neuro-oncology field, such as hybrid multiscale multiresolution modeling are discussed.

  5. “Zipped Synthesis” by Cross-Metathesis Provides a Cystathionine β-Synthase Inhibitor that Attenuates Cellular H2S Levels and Reduces Neuronal Infarction in a Rat Ischemic Stroke Model

    PubMed Central

    2016-01-01

    The gaseous neuromodulator H2S is associated with neuronal cell death pursuant to cerebral ischemia. As cystathionine β-synthase (CBS) is the primary mediator of H2S biogenesis in the brain, it has emerged as a potential target for the treatment of stroke. Herein, a “zipped” approach by alkene cross-metathesis into CBS inhibitor candidate synthesis is demonstrated. The inhibitors are modeled after the pseudo-C2-symmetric CBS product (l,l)-cystathionine. The “zipped” concept means only half of the inhibitor needs be constructed; the two halves are then fused by olefin cross-metathesis. Inhibitor design is also mechanism-based, exploiting the favorable kinetics associated with hydrazine-imine interchange as opposed to the usual imine–imine interchange. It is demonstrated that the most potent “zipped” inhibitor 6S reduces H2S production in SH-SY5Y cells overexpressing CBS, thereby reducing cell death. Most importantly, CBS inhibitor 6S dramatically reduces infarct volume (1 h post-stroke treatment; ∼70% reduction) in a rat transient middle cerebral artery occlusion model for ischemia. PMID:27163055

  6. Arginase inhibition improves coronary microvascular function and reduces infarct size following ischemia-reperfusion in a rat model

    PubMed Central

    Grönros, Julia; Kiss, Attila; Palmér, Malin; Jung, Christian; Berkowitz, Dan; Pernow, John

    2013-01-01

    Aim Ischemia-reperfusion injury is associated with reduced bioavailability of nitric oxide and microvascular dysfunction. One emerging mechanism behind reduced nitric oxide bioavailability is upregulation of arginase which metabolizes the nitric oxide synthase substrate L-arginine. This study investigated the effects of arginase inhibition on coronary flow velocity and infarct size during reperfusion. Methods Anaesthetized rats, subjected to 30 min coronary artery ligation and reperfusion up to 8 days, were treated with vehicle or the arginase inhibitor Nω-hydroxy-nor-L-arginine (nor-NOHA; 100 mg/kg) intravenously 15 min before ischemia. Coronary flow velocity was determined repeatedly during reperfusion. Results Arginase activity in the ischemic-reperfused myocardium was increased already at 20 min of reperfusion and maintained at 8 days. Infarct size was reduced by arginase inhibition at 2 h (39 ± 3% of the area at risk vs. 51 ± 2% in the vehicle group, P<0.01) and at 8 days of reperfusion (13 ± 2% of the left ventricle vs. 22 ± 2%, P<0.05). Basal coronary flow velocity was higher during reperfusion in the group given nor-NOHA and it correlated inversely to infarct size (P<0.01, r=−0.60). Hyperemic coronary flow velocity was also increased in the nor-NOHA treated group compared to vehicle at 24 h and at day 8 (P<0.05). Conclusion It is concluded that arginase activity is increased already during early reperfusion. Arginase inhibition increases coronary flow velocity and reduces infarct size that is sustained 8 days after reperfusion. Inhibition of arginase may thus be a promising therapeutic target to prevent the development of microvascular dysfunction and myocardial injury following ischemia-reperfusion. PMID:23497275

  7. Models to Tailor Brain Stimulation Therapies in Stroke.

    PubMed

    Plow, E B; Sankarasubramanian, V; Cunningham, D A; Potter-Baker, K; Varnerin, N; Cohen, L G; Sterr, A; Conforto, A B; Machado, A G

    2016-01-01

    A great challenge facing stroke rehabilitation is the lack of information on how to derive targeted therapies. As such, techniques once considered promising, such as brain stimulation, have demonstrated mixed efficacy across heterogeneous samples in clinical studies. Here, we explain reasons, citing its one-type-suits-all approach as the primary cause of variable efficacy. We present evidence supporting the role of alternate substrates, which can be targeted instead in patients with greater damage and deficit. Building on this groundwork, this review will also discuss different frameworks on how to tailor brain stimulation therapies. To the best of our knowledge, our report is the first instance that enumerates and compares across theoretical models from upper limb recovery and conditions like aphasia and depression. Here, we explain how different models capture heterogeneity across patients and how they can be used to predict which patients would best respond to what treatments to develop targeted, individualized brain stimulation therapies. Our intent is to weigh pros and cons of testing each type of model so brain stimulation is successfully tailored to maximize upper limb recovery in stroke. PMID:27006833

  8. Models to Tailor Brain Stimulation Therapies in Stroke

    PubMed Central

    Plow, E. B.; Sankarasubramanian, V.; Cunningham, D. A.; Potter-Baker, K.; Varnerin, N.; Cohen, L. G.; Sterr, A.; Conforto, A. B.; Machado, A. G.

    2016-01-01

    A great challenge facing stroke rehabilitation is the lack of information on how to derive targeted therapies. As such, techniques once considered promising, such as brain stimulation, have demonstrated mixed efficacy across heterogeneous samples in clinical studies. Here, we explain reasons, citing its one-type-suits-all approach as the primary cause of variable efficacy. We present evidence supporting the role of alternate substrates, which can be targeted instead in patients with greater damage and deficit. Building on this groundwork, this review will also discuss different frameworks on how to tailor brain stimulation therapies. To the best of our knowledge, our report is the first instance that enumerates and compares across theoretical models from upper limb recovery and conditions like aphasia and depression. Here, we explain how different models capture heterogeneity across patients and how they can be used to predict which patients would best respond to what treatments to develop targeted, individualized brain stimulation therapies. Our intent is to weigh pros and cons of testing each type of model so brain stimulation is successfully tailored to maximize upper limb recovery in stroke. PMID:27006833

  9. Modelling Brain Temperature and Perfusion for Cerebral Cooling

    NASA Astrophysics Data System (ADS)

    Blowers, Stephen; Valluri, Prashant; Marshall, Ian; Andrews, Peter; Harris, Bridget; Thrippleton, Michael

    2015-11-01

    Brain temperature relies heavily on two aspects: i) blood perfusion and porous heat transport through tissue and ii) blood flow and heat transfer through embedded arterial and venous vasculature. Moreover brain temperature cannot be measured directly unless highly invasive surgical procedures are used. A 3D two-phase fluid-porous model for mapping flow and temperature in brain is presented with arterial and venous vessels extracted from MRI scans. Heat generation through metabolism is also included. The model is robust and reveals flow and temperature maps in unprecedented 3D detail. However, the Karmen-Kozeny parameters of the porous (tissue) phase need to be optimised for expected perfusion profiles. In order to optimise the K-K parameters a reduced order two-phase model is developed where 1D vessels are created with a tree generation algorithm embedded inside a 3D porous domain. Results reveal that blood perfusion is a strong function of the porosity distribution in the tissue. We present a qualitative comparison between the simulated perfusion maps and those obtained clinically. We also present results studying the effect of scalp cooling on core brain temperature and preliminary results agree with those observed clinically.

  10. Creating Physical 3D Stereolithograph Models of Brain and Skull

    PubMed Central

    Kelley, Daniel J.; Farhoud, Mohammed; Meyerand, M. Elizabeth; Nelson, David L.; Ramirez, Lincoln F.; Dempsey, Robert J.; Wolf, Alan J.; Alexander, Andrew L.; Davidson, Richard J.

    2007-01-01

    The human brain and skull are three dimensional (3D) anatomical structures with complex surfaces. However, medical images are often two dimensional (2D) and provide incomplete visualization of structural morphology. To overcome this loss in dimension, we developed and validated a freely available, semi-automated pathway to build 3D virtual reality (VR) and hand-held, stereolithograph models. To evaluate whether surface visualization in 3D was more informative than in 2D, undergraduate students (n = 50) used the Gillespie scale to rate 3D VR and physical models of both a living patient-volunteer's brain and the skull of Phineas Gage, a historically famous railroad worker whose misfortune with a projectile tamping iron provided the first evidence of a structure-function relationship in brain. Using our processing pathway, we successfully fabricated human brain and skull replicas and validated that the stereolithograph model preserved the scale of the VR model. Based on the Gillespie ratings, students indicated that the biological utility and quality of visual information at the surface of VR and stereolithograph models were greater than the 2D images from which they were derived. The method we developed is useful to create VR and stereolithograph 3D models from medical images and can be used to model hard or soft tissue in living or preserved specimens. Compared to 2D images, VR and stereolithograph models provide an extra dimension that enhances both the quality of visual information and utility of surface visualization in neuroscience and medicine. PMID:17971879

  11. Dosha brain-types: A neural model of individual differences.

    PubMed

    Travis, Frederick T; Wallace, Robert Keith

    2015-01-01

    This paper explores brain patterns associated with the three categories of regulatory principles of the body, mind, and behavior in Ayurveda, called Vata, Pitta, and Kapha dosha. A growing body of research has reported patterns of blood chemistry, genetic expression, physiological states, and chronic diseases associated with each dosha type. Since metabolic and growth factors are controlled by the nervous system, each dosha type should be associated with patterns of functioning of six major areas of the nervous system: The prefrontal cortex, the reticular activating system, the autonomic nervous system, the enteric nervous system, the limbic system, and the hypothalamus. For instance, the prefrontal cortex, which includes the anterior cingulate, ventral medial, and the dorsal lateral cortices, would exhibit a high range of functioning in the Vata brain-type leading to the possibility of being easily overstimulated. The Vata brain-type performs activity quickly. Learns quickly and forgets quickly. Their fast mind gives them an edge in creative problem solving. The Pitta brain-type reacts strongly to all challenges leading to purposeful and resolute actions. They never give up and are very dynamic and goal oriented. The Kapha brain-type is slow and steady leading to methodical thinking and action. They prefer routine and needs stimulation to get going. A model of dosha brain-types could provide a physiological foundation to understand individual differences. This model could help individualize treatment modalities to address different mental and physical dysfunctions. It also could explain differences in behavior seen in clinical as well as in normal populations. PMID:26834428

  12. Dosha brain-types: A neural model of individual differences

    PubMed Central

    Travis, Frederick T.; Wallace, Robert Keith

    2015-01-01

    This paper explores brain patterns associated with the three categories of regulatory principles of the body, mind, and behavior in Ayurveda, called Vata, Pitta, and Kapha dosha. A growing body of research has reported patterns of blood chemistry, genetic expression, physiological states, and chronic diseases associated with each dosha type. Since metabolic and growth factors are controlled by the nervous system, each dosha type should be associated with patterns of functioning of six major areas of the nervous system: The prefrontal cortex, the reticular activating system, the autonomic nervous system, the enteric nervous system, the limbic system, and the hypothalamus. For instance, the prefrontal cortex, which includes the anterior cingulate, ventral medial, and the dorsal lateral cortices, would exhibit a high range of functioning in the Vata brain-type leading to the possibility of being easily overstimulated. The Vata brain-type performs activity quickly. Learns quickly and forgets quickly. Their fast mind gives them an edge in creative problem solving. The Pitta brain-type reacts strongly to all challenges leading to purposeful and resolute actions. They never give up and are very dynamic and goal oriented. The Kapha brain-type is slow and steady leading to methodical thinking and action. They prefer routine and needs stimulation to get going. A model of dosha brain-types could provide a physiological foundation to understand individual differences. This model could help individualize treatment modalities to address different mental and physical dysfunctions. It also could explain differences in behavior seen in clinical as well as in normal populations. PMID:26834428

  13. Corticonic models of brain mechanisms underlying cognition and intelligence

    NASA Astrophysics Data System (ADS)

    Farhat, Nabil H.

    The concern of this review is brain theory or more specifically, in its first part, a model of the cerebral cortex and the way it: (a) interacts with subcortical regions like the thalamus and the hippocampus to provide higher-level-brain functions that underlie cognition and intelligence, (b) handles and represents dynamical sensory patterns imposed by a constantly changing environment, (c) copes with the enormous number of such patterns encountered in a lifetime by means of dynamic memory that offers an immense number of stimulus-specific attractors for input patterns (stimuli) to select from, (d) selects an attractor through a process of “conjugation” of the input pattern with the dynamics of the thalamo-cortical loop, (e) distinguishes between redundant (structured) and non-redundant (random) inputs that are void of information, (f) can do categorical perception when there is access to vast associative memory laid out in the association cortex with the help of the hippocampus, and (g) makes use of “computation” at the edge of chaos and information driven annealing to achieve all this. Other features and implications of the concepts presented for the design of computational algorithms and machines with brain-like intelligence are also discussed. The material and results presented suggest, that a Parametrically Coupled Logistic Map network (PCLMN) is a minimal model of the thalamo-cortical complex and that marrying such a network to a suitable associative memory with re-entry or feedback forms a useful, albeit, abstract model of a cortical module of the brain that could facilitate building a simple artificial brain. In the second part of the review, the results of numerical simulations and drawn conclusions in the first part are linked to the most directly relevant works and views of other workers. What emerges is a picture of brain dynamics on the mesoscopic and macroscopic scales that gives a glimpse of the nature of the long sought after brain code underlying intelligence and other higher level brain functions.

  14. A Mixed Approach for Modeling Blood Flow in Brain Microcirculation

    NASA Astrophysics Data System (ADS)

    Lorthois, Sylvie; Peyrounette, Myriam; Davit, Yohan; Quintard, Michel; Groupe d'Etude sur les Milieux Poreux Team

    2015-11-01

    Consistent with its distribution and exchange functions, the vascular system of the human brain cortex is a superposition of two components. At small-scale, a homogeneous and space-filling mesh-like capillary network. At large scale, quasi-fractal branched veins and arteries. From a modeling perspective, this is the superposition of: (a) a continuum model resulting from the homogenization of slow transport in the small-scale capillary network; and (b) a discrete network approach describing fast transport in the arteries and veins, which cannot be homogenized because of their fractal nature. This problematic is analogous to fast conducting wells embedded in a reservoir rock in petroleum engineering. An efficient method to reduce the computational cost is to use relatively large grid blocks for the continuum model. This makes it difficult to accurately couple both components. We solve this issue by adapting the ``well model'' concept used in petroleum engineering to brain specific 3D situations. We obtain a unique linear system describing the discrete network, the continuum and the well model. Results are presented for realistic arterial and venous geometries. The mixed approach is compared with full network models including various idealized capillary networks of known permeability. ERC BrainMicroFlow GA615102.

  15. Resuscitation speed affects brain injury in a large animal model of traumatic brain injury and shock

    PubMed Central

    2014-01-01

    Background Optimal fluid resuscitation strategy following combined traumatic brain injury (TBI) and hemorrhagic shock (HS) remain controversial and the effect of resuscitation infusion speed on outcome is not well known. We have previously reported that bolus infusion of fresh frozen plasma (FFP) protects the brain compared with bolus infusion of 0.9% normal saline (NS). We now hypothesize reducing resuscitation infusion speed through a stepwise infusion speed increment protocol using either FFP or NS would provide neuroprotection compared with a high speed resuscitation protocol. Methods 23 Yorkshire swine underwent a protocol of computer controlled TBI and 40% hemorrhage. Animals were left in shock (mean arterial pressure of 35 mmHg) for two hours prior to resuscitation with bolus FFP (n = 5, 50 ml/min) or stepwise infusion speed increment FFP (n = 6), bolus NS (n = 5, 165 ml/min) or stepwise infusion speed increment NS (n = 7). Hemodynamic variables over a 6-hour observation phase were recorded. Following euthanasia, brains were harvested and lesion size as well as brain swelling was measured. Results Bolus FFP resuscitation resulted in greater brain swelling (22.36 ± 1.03% vs. 15.58 ± 2.52%, p = 0.04), but similar lesion size compared with stepwise resuscitation. This was associated with a lower cardiac output (CO: 4.81 ± 1.50 l/min vs. 5.45 ± 1.14 l/min, p = 0.03). In the NS groups, bolus infusion resulted in both increased brain swelling (37.24 ± 1.63% vs. 26.74 ± 1.33%, p = 0.05) as well as lesion size (3285.44 ± 130.81 mm3 vs. 2509.41 ± 297.44 mm3, p = 0.04). This was also associated with decreased cardiac output (NS: 4.37 ± 0.12 l/min vs. 6.35 ± 0.10 l/min, p < 0.01). Conclusions In this clinically relevant model of combined TBI and HS, stepwise resuscitation protected the brain compared with bolus resuscitation. PMID:25116886

  16. Cardiac repair in a porcine model of acute myocardial infarction with human induced pluripotent stem cell-derived cardiovascular cell populations

    PubMed Central

    Ye, Lei; Chang, Ying-Hua; Xiong, Qiang; Zhang, Pengyuan; Zhang, Liying; Somasundaram, Porur; Lepley, Mike; Swingen, Cory; Su, Liping; Wendel, Jacqueline S.; Guo, Jing; Jang, Albert; Rosenbush, Daniel; Greder, Lucas; Dutton, James R.; Zhang, Jianhua; Kamp, Timothy J.; Kaufman, Dan S.; Ge, Ying; Zhang, Jianyi

    2014-01-01

    Summary Human induced pluripotent stem cells (hiPSCs) hold promise for myocardial repair following injury, but preclinical studies in large animal models are required to determine optimal cell preparation and delivery strategies to maximize functional benefits and to evaluate safety. Here, we utilized a porcine model of acute myocardial infarction (MI) to investigate the functional impact of intramyocardial transplantation of hiPSC-derived cardiomyocytes, endothelial cells, and smooth muscle cells, in combination with a 3D fibrin patch loaded with insulin growth factor (IGF)-encapsulated microspheres. hiPSC-derived cardiomyocytes integrated into host myocardium and generated organized sarcomeric structures, and endothelial and smooth muscle cells contributed to host vasculature. Tri-lineage cell transplantation significantly improved left ventricular function, myocardial metabolism, and arteriole density, while reducing infarct size, ventricular wall stress and apoptosis without inducing ventricular arrhythmias. These findings in a large animal MI model highlight the potential of utilizing hiPSC-derived cells for cardiac repair. PMID:25479750

  17. Thalamic infarcts and hemorrhages.

    PubMed

    Amici, Serena

    2012-01-01

    The anatomy and supply of thalamic arteries are briefly described here. Thalamic infarcts and small-size hemorrhages are classified according to their sites: (1) posterolateral, (2) anterolateral, (3) medial, and (4) dorsal. (1) Posterolateral hemorrhages or lateral thalamic infarcts are usually characterized by severe motor impairment and sensory loss. Transient reduced consciousness, vertical-gaze abnormalities, and small fixed pupils may be evidenced. (2) Patients with anterolateral hemorrhages or tuberothalamic artery infarcts present frontal-type neuropsychological symptoms associated with mild hemiparesis and hemihypesthesia. (3) Medially located hemorrhages or paramedian artery infarcts have decreased levels of consciousness, vertical- and horizontal-gaze abnormalities, amnesia, and abulia. (4) Dorsal hemorrhages or posterior choroidal artery infarcts present with minimal transient hemiparesis and hemihypesthesia; apraxia, aphasia, and amnesia have also been described. PMID:22377880

  18. Dynamic Bayesian network modeling for longitudinal brain morphometry.

    PubMed

    Chen, Rong; Resnick, Susan M; Davatzikos, Christos; Herskovits, Edward H

    2012-02-01

    Identifying interactions among brain regions from structural magnetic-resonance images presents one of the major challenges in computational neuroanatomy. We propose a Bayesian data-mining approach to the detection of longitudinal morphological changes in the human brain. Our method uses a dynamic Bayesian network to represent evolving inter-regional dependencies. The major advantage of dynamic Bayesian network modeling is that it can represent complicated interactions among temporal processes. We validated our approach by analyzing a simulated atrophy study, and found that this approach requires only a small number of samples to detect the ground-truth temporal model. We further applied dynamic Bayesian network modeling to a longitudinal study of normal aging and mild cognitive impairment--the Baltimore Longitudinal Study of Aging. We found that interactions among regional volume-change rates for the mild cognitive impairment group are different from those for the normal-aging group. PMID:21963916

  19. Structural connectivity based whole brain modelling in epilepsy.

    PubMed

    Taylor, Peter Neal; Kaiser, Marcus; Dauwels, Justin

    2014-10-30

    Epilepsy is a neurological condition characterised by the recurrence of seizures. During seizures multiple brain areas can behave abnormally. Rather than considering each abnormal area in isolation, one can consider them as an interconnected functional 'network'. Recently, there has been a shift in emphasis to consider epilepsy as a disorder involving more widespread functional brain networks than perhaps was previously thought. The basis for these functional networks is proposed to be the static structural brain network established through the connectivity of the white matter. Additionally, it has also been argued that time varying aspects of epilepsy are of crucial importance and as such computational models of these dynamical properties have recently advanced. We describe how dynamic computer models can be combined with static human in vivo connectivity obtained through diffusion weighted magnetic resonance imaging. We predict that in future the use of these two methods in concert will lead to predictions for optimal surgery and brain stimulation sites for epilepsy and other neurological disorders. PMID:25149109

  20. The Protective Effect of Puerarin on Myocardial Infarction Reperfusion Injury (MIRI): A Meta-Analysis of Randomized Studies in Rat Models

    PubMed Central

    Wenjun, Huang; Jing, Wen; Tao, Li; Liang, Mao; Yan, Yang; Xiaorong, Zeng; Rui, Zhou

    2015-01-01

    Background Although puerarin is generally considered as a protective agent for cardio-cerebrovascular diseases, the exact effect on reducing myocardial infarction reperfusion injury (MIRI) is not well understood. This study aimed to pool previous randomized controlled studies based on rat models to evaluate the effects of puerarin on MIRI. Material/Methods Relevant studies were searched among PubMed, Embase, Medline, and CNKI (China National Knowledge Infrastructure). To assess the therapeutic effects of protective effects of puerarin on myocardial infarction reperfusion injury, the outcome indicators which were reported in at least 3 original studies were extracted and pooled, including size of myocardial ischemia (MIS) and myocardial infarction (MIN), creatine kinase (CK), methylene dioxyamphetamine (MDA), and superoxide dismutase (SOD). Results Administration of puerarin could effectively reduce the size of MIN after MIR (mean difference: −29.20, 95%CI: −44.90 to −13.51, p=0.0003). Puerarin directly led to decreased CK (mean difference: −6.89, 95%CI: −9.40 to −4.38, p=0.00001) and MDA (mean difference: −2.41, 95%CI: −3.14 to −1.68, p<0.00001) and increased serum SOD (mean difference: 63.97, 95%CI: 38.19 to 89.75, p<0.00001). Conclusions Puerarin might have a protective effect in myocardial tissues during MIRI through increasing SOD and decreasing CK and MDA. However, more animal studies and randomized controlled clinical trials are required to confirm these results. PMID:26067875

  1. Transplantation of adipose tissue-derived stem cells improves cardiac contractile function and electrical stability in a rat myocardial infarction model.

    PubMed

    Gautam, Milan; Fujita, Daiki; Kimura, Kazuhiro; Ichikawa, Hinako; Izawa, Atsushi; Hirose, Masamichi; Kashihara, Toshihide; Yamada, Mitsuhiko; Takahashi, Masafumi; Ikeda, Uichi; Shiba, Yuji

    2015-04-01

    The transplantation of adipose tissue-derived stem cells (ADSCs) improves cardiac contractility after myocardial infarction (MI); however, little is known about the electrophysiological consequences of transplantation. The purpose of this study was to clarify whether the transplantation of ADSCs increases or decreases the incidence of ventricular tachyarrhythmias (VT) in a rat model of MI. MI was induced experimentally by permanent occlusion of the left anterior descending artery of Lewis rats. ADSCs were harvested from GFP-transgenic rats, and were cultured until passage four. ADSCs (1010(6)) resuspended in 100?L saline or pro-survival cocktail (PSC), which enhances cardiac graft survival, were injected directly into syngeneic rat hearts 1week after MI. The recipients of ADSCs suspended in PSC had a larger graft area compared with those receiving ASDCs suspended in saline at 1week post-transplantation (number of graft cells/section: 148.710.6 vs. 22.43.4, p<0.05, n=5/group). Thereafter, all ADSC recipients were transplanted with ASDCs in PSC. ADSCs were transplanted into infarcted hearts, and the mechanical and electrophysiological functions were assessed. Echocardiography revealed that ADSC recipients had improved contractile function compared with those receiving PSC vehicle (fractional shortening: 21.10.9 vs. 14.11.2, p<0.05, n?12/group). Four weeks post-transplantation, VT was induced via in vivo programmed electrical stimulation. The recipients of ADSCs showed a significantly lower incidence of induced VT compared with the control (31.3% vs. 83.3%, p<0.05, n?12/group). To understand the electrical activity following transplantation, we performed ex vivo optical mapping using a voltage sensitive dye, and found that ADSC transplantation decreased conduction velocity and its dispersion in the peri-infarct area. These results suggest that ADSC transplantation improved cardiac mechanical and electrophysiological functions in subacute MI. PMID:25724725

  2. Peroxisome proliferator-activated receptors (PPAR) downregulate the expression of pro-inflammatory molecules in an experimental model of myocardial infarction.

    PubMed

    Ibarra-Lara, María de la Luz; Sánchez-Aguilar, María; Soria, Elizabeth; Torres-Narváez, Juan Carlos; Del Valle-Mondragón, Leonardo; Cervantes-Pérez, Luz Graciela; Pérez-Severiano, Francisca; Ramírez-Ortega, Margarita Del Carmen; Pastelín-Hernández, Gustavo; Oidor-Chan, Víctor Hugo; Sánchez-Mendoza, Alicia

    2016-06-01

    Myocardial infarction (MI) has been associated with an inflammatory response and a rise in TNF-α, interleukin (IL)-1β, and IL-6. Peroxisome proliferator-activated receptors (PPARs) promote a decreased expression of inflammatory molecules. We aimed to study whether PPAR stimulation by clofibrate decreases inflammation and reduces infarct size in rats with MI. Male Wistar rats were randomized into 3 groups: control, MI + vehicle, and MI + clofibrate (100 mg/kg). Treatment was administered for 3 consecutive days, previous to 2 h of MI. MI induced an increase in protein expression, mRNA content, and enzymatic activity of inducible nitric oxide synthase (iNOS). Additionally, MI incited an increased expression of matrix metalloproteinase (MMP)-2 and MMP-9, intercellular adhesion molecule (ICAM)-1, and IL-6. MI also elevated the nuclear content of nuclear factor-κB (NF-κB) and decreased IκB, both in myocyte nuclei and cytosol. Clofibrate treatment prevented MI-induced changes in iNOS, MMP-2 and MMP-9, ICAM-1, IL-6, NF-κB, and IκB. Infarct size was smaller in clofibrate-treated rats compared to MI-vehicle animals. In silico analysis exhibited 3 motifs shared by genes from renin-angiotensin system, PPARα, iNOS, MMP-2 and MMP-9, ICAM-1, and VCAM-1, suggesting a cross regulation. In conclusion, PPARα-stimulation prevents overexpression of pro-inflammatory molecules and preserves viability in an experimental model of acute MI. PMID:27050838

  3. Mesh Smoothing Algorithm Applied to a Finite Element Model of the Brain for Improved Brain-Skull Interface.

    PubMed

    Kelley, Mireille E; Miller, Logan E; Urban, Jillian E; Stitzel, Joel D

    2015-01-01

    The brain-skull interface plays an important role in the strain and pressure response of the brain due to impact. In this study, a finite element (FE) model was developed from a brain atlas, representing an adult brain, by converting each 1mm isotropic voxel into a single element of the same size using a custom code developed in MATLAB. This model includes the brain (combined cerebrum and cerebellum), cerebrospinal fluid (CSF), ventricles, and a rigid skull. A voxel-based approach to develop a FE model causes the outer surface of each part to be stair-stepped, which may affect the stress and strain measurements at interfaces between parts. To improve the interaction between the skull, CSF, and brain surfaces, a previously developed mesh smoothing algorithm based on a Laplacian non-shrinking smoothing algorithm was applied to the FE model. This algorithm not only applies smoothing to the surface of the model, but also to the interfaces between the brain, CSF, and skull, while preserving volume and element quality. Warpage, jacobian, aspect ratio, and skew were evaluated and reveal that >99% of the elements retain good element quality. Future work includes implementation of contact definitions to accurately represent the brain-skull interface and to ultimately better understand and predict head injury. PMID:25996716

  4. Normal brain ageing: models and mechanisms

    PubMed Central

    Toescu, Emil C

    2005-01-01

    Normal ageing is associated with a degree of decline in a number of cognitive functions. Apart from the issues raised by the current attempts to expand the lifespan, understanding the mechanisms and the detailed metabolic interactions involved in the process of normal neuronal ageing continues to be a challenge. One model, supported by a significant amount of experimental evidence, views the cellular ageing as a metabolic state characterized by an altered function of the metabolic triad: mitochondria–reactive oxygen species (ROS)–intracellular Ca2+. The perturbation in the relationship between the members of this metabolic triad generate a state of decreased homeostatic reserve, in which the aged neurons could maintain adequate function during normal activity, as demonstrated by the fact that normal ageing is not associated with widespread neuronal loss, but become increasingly vulnerable to the effects of excessive metabolic loads, usually associated with trauma, ischaemia or neurodegenerative processes. This review will concentrate on some of the evidence showing altered mitochondrial function with ageing and also discuss some of the functional consequences that would result from such events, such as alterations in mitochondrial Ca2+ homeostasis, ATP production and generation of ROS. PMID:16321805

  5. Transplantation of mesenchymal stem cells exerts a greater long-term effect than bone marrow mononuclear cells in a chronic myocardial infarction model in rat.

    PubMed

    Mazo, Manuel; Gavira, Juan José; Abizanda, Gloria; Moreno, Cristina; Ecay, Margarita; Soriano, Mario; Aranda, Pablo; Collantes, María; Alegría, Eduardo; Merino, Juana; Peñuelas, Iván; García Verdugo, José Manuel; Pelacho, Beatriz; Prósper, Felipe

    2010-01-01

    The aim of this study is to assess the long-term effect of mesenchymal stem cells (MSC) transplantation in a rat model of chronic myocardial infarction (MI) in comparison with the effect of bone marrow mononuclear cells (BM-MNC) transplant. Five weeks after induction of MI, rats were allocated to receive intramyocardial injection of 10(6) GFP-expressing cells (BM-MNC or MSC) or medium as control. Heart function (echocardiography and (18)F-FDG-microPET) and histological studies were performed 3 months after transplantation and cell fate was analyzed along the experiment (1 and 2 weeks and 1 and 3 months). The main findings of this study were that both BM-derived populations, BM-MNC and MSC, induced a long-lasting (3 months) improvement in LVEF (BM-MNC: 26.61 +/- 2.01% to 46.61 +/- 3.7%, p < 0.05; MSC: 27.5 +/- 1.28% to 38.8 +/- 3.2%, p < 0.05) but remarkably, only MSC improved tissue metabolism quantified by (18)F-FDG uptake (71.15 +/- 1.27 to 76.31 +/- 1.11, p < 0.01), which was thereby associated with a smaller infarct size and scar collagen content and also with a higher revascularization degree. Altogether, results show that MSC provides a long-term superior benefit than whole BM-MNC transplantation in a rat model of chronic MI. PMID:19919732

  6. An overview on development and application of an experimental platform for quantitative cardiac imaging research in rabbit models of myocardial infarction

    PubMed Central

    Feng, Yuanbo; Bogaert, Jan; Oyen, Raymond

    2014-01-01

    To exploit the advantages of using rabbits for cardiac imaging research and to tackle the technical obstacles, efforts have been made under the framework of a doctoral research program. In this overview article, by cross-referencing the current literature, we summarize how we have developed a preclinical cardiac research platform based on modified models of reperfused myocardial infarction (MI) in rabbits; how the in vivo manifestations of cardiac imaging could be closely matched with those ex vivo macro- and microscopic findings; how these imaging outcomes could be quantitatively analyzed, validated and demonstrated; and how we could apply this cardiac imaging platform to provide possible solutions to certain lingering diagnostic and therapeutic problems in experimental cardiology. In particular, tissue components in acute cardiac ischemia have been stratified and characterized, post-infarct lipomatous metaplasia (LM) as a common but hardly illuminated clinical pathology has been identified in rabbit models, and a necrosis avid tracer as well as an anti-ischemic drug have been successfully assessed for their potential utilities in clinical cardiology. These outcomes may interest the researchers in the related fields and help strengthen translational research in cardiovascular diseases. PMID:25392822

  7. Neurosurgical management of cerebellar haematoma and infarct.

    PubMed Central

    Mathew, P; Teasdale, G; Bannan, A; Oluoch-Olunya, D

    1995-01-01

    The clinical features, treatment, and outcome were reviewed for 48 patients with a haematoma and 71 patients with an infarct in the posterior fossa in order to develop a rational plan of management. Clinical features alone were insufficient to make a diagnosis in about half of the series. Patients with a haematoma were referred more quickly to the neurosurgical unit, were more often in coma, and more often had CT evidence of brain stem compression and acute hydrocephalus. Ultimately, 75% of the patients with a haematoma required an operation. By contrast, most patients with an infarct were managed successfully conservatively. Early surgical management in both cerebellar haemorrhage and infarct (either external ventricular drainage or evacuation of the lesion), associated with early presentation and CT signs of brain stem compression and acute hydrocephalus, led to a good outcome in most patients. Of the patients with cerebellar haematoma initially treated by external drainage, over half subsequently required craniectomy and evacuation of the lesion; but, in some cases, this failed to reverse the deterioration. In patients with a cerebellar infarct, external drainage was more often successful. The guidelines, findings, and recommendations for future management of patients with posterior fossa stroke are discussed. Images PMID:7673958

  8. A Novel Mouse Model of Penetrating Brain Injury

    PubMed Central

    Cernak, Ibolja; Wing, Ian D.; Davidsson, Johan; Plantman, Stefan

    2014-01-01

    Penetrating traumatic brain injury (pTBI) has been difficult to model in small laboratory animals, such as rats or mice. Previously, we have established a non-fatal, rat model for pTBI using a modified air-rifle that accelerates a pellet, which hits a small probe that then penetrates the experimental animal’s brain. Knockout and transgenic strains of mice offer attractive tools to study biological reactions induced by TBI. Hence, in the present study, we adapted and modified our model to be used with mice. The technical characterization of the impact device included depth and speed of impact, as well as dimensions of the temporary cavity formed in a brain surrogate material after impact. Biologically, we have focused on three distinct levels of severity (mild, moderate, and severe), and characterized the acute phase response to injury in terms of tissue destruction, neural degeneration, and gliosis. Functional outcome was assessed by measuring bodyweight and motor performance on rotarod. The results showed that this model is capable of reproducing major morphological and neurological changes of pTBI; as such, we recommend its utilization in research studies aiming to unravel the biological events underlying injury and regeneration after pTBI. PMID:25374559

  9. Avoiding Boltzmann Brain domination in holographic dark energy models

    NASA Astrophysics Data System (ADS)

    Horvat, R.

    2015-11-01

    In a spatially infinite and eternal universe approaching ultimately a de Sitter (or quasi-de Sitter) regime, structure can form by thermal fluctuations as such a space is thermal. The models of Dark Energy invoking holographic principle fit naturally into such a category, and spontaneous formation of isolated brains in otherwise empty space seems the most perplexing, creating the paradox of Boltzmann Brains (BB). It is thus appropriate to ask if such models can be made free from domination by Boltzmann Brains. Here we consider only the simplest model, but adopt both the local and the global viewpoint in the description of the Universe. In the former case, we find that if a dimensionless model parameter c, which modulates the Dark Energy density, lies outside the exponentially narrow strip around the most natural c = 1 line, the theory is rendered BB-safe. In the latter case, the bound on c is exponentially stronger, and seemingly at odds with those bounds on c obtained from various observational tests.

  10. Controlled cortical impact model for traumatic brain injury.

    PubMed

    Romine, Jennifer; Gao, Xiang; Chen, Jinhui

    2014-01-01

    Every year over a million Americans suffer a traumatic brain injury (TBI). Combined with the incidence of TBIs worldwide, the physical, emotional, social, and economical effects are staggering. Therefore, further research into the effects of TBI and effective treatments is necessary. The controlled cortical impact (CCI) model induces traumatic brain injuries ranging from mild to severe. This method uses a rigid impactor to deliver mechanical energy to an intact dura exposed following a craniectomy. Impact is made under precise parameters at a set velocity to achieve a pre-determined deformation depth. Although other TBI models, such as weight drop and fluid percussion, exist, CCI is more accurate, easier to control, and most importantly, produces traumatic brain injuries similar to those seen in humans. However, no TBI model is currently able to reproduce pathological changes identical to those seen in human patients. The CCI model allows investigation into the short-term and long-term effects of TBI, such as neuronal death, memory deficits, and cerebral edema, as well as potential therapeutic treatments for TBI. PMID:25145417

  11. [Neuroprotective activity of the proline-containing dipeptide noopept on the model of brain ischemia induced by the middle cerebral artery occlusion].

    PubMed

    Gavrilova, S A; Us, K S; Ostrovskaia, R U; Koshelev, V B

    2006-01-01

    The influence of noopept (N-phenylacetyl-L-prolylglycine ethyl ester, GVS-111) on the extent of ischemic cortical stroke was investigated in experiments on white mongrel male rats with ischemia induced by a combination of the middle cerebral artery occlusion with ipsilateral common carotid artery ligation. Animals were treated with noopept (0.5 mg/kg, i.p.) according to the following schedule: 15 min and 2, 24, and 48 h after the occlusion. Test rats were decapitated 72 h after occlusion, brains were extracted and frozen, and thin brain slices were stained with 2,3,5-triphenyltetrazolium chloride. The slices were scanned and processed using Auc 1 computer program, which estimates the percentage of damaged area relative to that of the whole ipsilateral hemisphere. The conditions of coagulation the distal segment of middle cerebral artery were selected, which caused necrosis localized in the fronto-parietal and dorso-lateral regions of the brain cortex without any damage of subcortical structures. The extent of the brain damage in control group (treated by saline) was 18.6%, while that in the group treated with noopept was 12.2%, thus demonstrating a decrease in the infarction area by 34.5% (p < 05). The data on noopept efficacy on the model of the extensive ischemic injury of brain cortex show that this drug has good prospects for use in the neuroprotective treatment of stroke. PMID:16995431

  12. Imatinib treatment reduces brain injury in a murine model of traumatic brain injury

    PubMed Central

    Su, Enming J.; Fredriksson, Linda; Kanzawa, Mia; Moore, Shannon; Folestad, Erika; Stevenson, Tamara K.; Nilsson, Ingrid; Sashindranath, Maithili; Schielke, Gerald P.; Warnock, Mark; Ragsdale, Margaret; Mann, Kris; Lawrence, Anna-Lisa E.; Medcalf, Robert L.; Eriksson, Ulf; Murphy, Geoffrey G.; Lawrence, Daniel A.

    2015-01-01

    Current therapies for Traumatic brain injury (TBI) focus on stabilizing individuals and on preventing further damage from the secondary consequences of TBI. A major complication of TBI is cerebral edema, which can be caused by the loss of blood brain barrier (BBB) integrity. Recent studies in several CNS pathologies have shown that activation of latent platelet derived growth factor-CC (PDGF-CC) within the brain can promote BBB permeability through PDGF receptor α (PDGFRα) signaling, and that blocking this pathway improves outcomes. In this study we examine the efficacy for the treatment of TBI of an FDA approved antagonist of the PDGFRα, Imatinib. Using a murine model we show that Imatinib treatment, begun 45 min after TBI and given twice daily for 5 days, significantly reduces BBB dysfunction. This is associated with significantly reduced lesion size 24 h, 7 days, and 21 days after TBI, reduced cerebral edema, determined from apparent diffusion co-efficient (ADC) measurements, and with the preservation of cognitive function. Finally, analysis of cerebrospinal fluid (CSF) from human TBI patients suggests a possible correlation between high PDGF-CC levels and increased injury severity. Thus, our data suggests a novel strategy for the treatment of TBI with an existing FDA approved antagonist of the PDGFRα. PMID:26500491

  13. A Statistical Model for Multiphoton Calcium Imaging of the Brain

    PubMed Central

    Malik, Wasim Q.; Schummers, James; Sur, Mriganka; Brown, Emery N.

    2011-01-01

    Multiphoton calcium fluorescence imaging has gained prominence as a valuable tool for the study of brain cells, but the corresponding analytical regimes remain rather naive. In this paper, we develop a statistical framework that facilitates principled quantitative analysis of multiphoton images. The proposed methods discriminate the stimulus-evoked response of a neuron from the background firing and image artifacts. We develop a harmonic regression model with colored noise, and estimate the model parameters with computationally efficient algorithms. We apply this model to in vivo characterization of cells from the ferret visual cortex. The results demonstrate substantially improved tuning curve fitting and image contrast. PMID:19964727

  14. Developing better and more valid animal models of brain disorders.

    PubMed

    Stewart, Adam Michael; Kalueff, Allan V

    2015-01-01

    Valid sensitive animal models are crucial for understanding the pathobiology of complex human disorders, such as anxiety, autism, depression and schizophrenia, which all have the 'spectrum' nature. Discussing new important strategic directions of research in this field, here we focus i) on cross-species validation of animal models, ii) ensuring their population (external) validity, and iii) the need to target the interplay between multiple disordered domains. We note that optimal animal models of brain disorders should target evolutionary conserved 'core' traits/domains and specifically mimic the clinically relevant inter-relationships between these domains. PMID:24384129

  15. Self-organization in a simple brain model

    SciTech Connect

    Stassinopoulos, D.; Bak, P.; Alstroem, P.

    1994-03-10

    Simulations on a simple model of the brain are presented. The model consists of a set of randomly connected neurons. Inputs and outputs are also connected randomly to a subset of neurons. For each input there is a set of output neurons which must fire in order to achieve success. A signal giving information as to whether or not the action was successful is fed back to the brain from the environment. The connections between firing neurons are strengthened or weakened according to whether or not the action was successful. The system learns, through a self-organization process, to react intelligently to input signals, i.e. it learns to quickly select the correct output for each input. If part of the network is damaged, the system relearns the correct response after a training period.

  16. A model for genomic imprinting in the social brain: juveniles.

    PubMed

    Ubeda, Francisco; Gardner, Andy

    2010-09-01

    What are imprinted genes doing in the adult brain? Genomic imprinting is when a gene's expression depends upon parent of origin. According to the prevailing view, the "kinship theory" of genomic imprinting, this effect is driven by evolutionary conflicts between genes inherited via sperm versus egg. This theory emphasizes conflicts over the allocation of maternal resources, and focuses upon genes that are expressed in the placenta and infant brain. However, there is growing evidence that imprinted genes are also expressed in the juvenile and adult brain, after cessation of parental care. These genes have recently been suggested to underpin neurological disorders of the social brain such as psychosis and autism. Here we advance the kinship theory by developing an evolutionary model of genomic imprinting for social behavior beyond the nuclear family. We consider the role of demography and mating system, emphasizing the importance of sex differences in dispersal and variance in reproductive success. We predict that, in hominids and birds, altruism will be promoted by paternally inherited genes and egoism will be promoted by maternally inherited genes. In nonhominid mammals we predict more diversity, with some mammals showing the same pattern and other showing the reverse. We discuss the implications for the evolution of psychotic and autistic spectrum disorders in human populations with different social structures. PMID:20394663

  17. Signal transmission competing with noise in model excitable brains

    NASA Astrophysics Data System (ADS)

    Marro, J.; Mejias, J. F.; Pinamonti, G.; Torres, J. J.

    2013-01-01

    This is a short review of recent studies in our group on how weak signals may efficiently propagate in a system with noise-induced excitation-inhibition competition which adapts to the activity at short-time scales and thus induces excitable conditions. Our numerical results on simple mathematical models should hold for many complex networks in nature, including some brain cortical areas. In particular, they serve us here to interpret available psycho-technical data.

  18. Towards dynamical system models of language-related brain potentials

    PubMed Central

    Gerth, Sabrina; Vasishth, Shravan

    2008-01-01

    Event-related brain potentials (ERP) are important neural correlates of cognitive processes. In the domain of language processing, the N400 and P600 reflect lexical-semantic integration and syntactic processing problems, respectively. We suggest an interpretation of these markers in terms of dynamical system theory and present two nonlinear dynamical models for syntactic computations where different processing strategies correspond to functionally different regions in the system’s phase space. PMID:19003488

  19. Functional consequences of a tissue-engineered myocardial patch for cardiac repair in a rat infarct model.

    PubMed

    Wendel, Jacqueline S; Ye, Lei; Zhang, Pengyuan; Tranquillo, Robert T; Zhang, Jianyi Jay

    2014-04-01

    Cell therapies have emerged as a promising treatment for the prevention of heart failure after myocardial infarction (MI). This study evaluated the capacity of an aligned, fibrin-based, stretch-conditioned cardiac patch consisting of either the native population or a cardiomyocyte (CM)-depleted population (i.e., CM+ or CM- patches) of neonatal rat heart cells to ameliorate left ventricular (LV) remodeling in the acute-phase postinfarction in syngeneic, immunocompetent rats. Patches were exposed to 7 days of static culture and 7 days of cyclic stretching prior to implantation. Within 1 week of implantation, both patches became vascularized, and non-CMs began migrating from CM+ patches. By week 4, patches had been remodeled into collagenous tissue, and live, elongated, donor CMs were found within grafted CM+ patches. Significant improvement in cardiac contractile function was seen with the administration of the CM+ patch (ejection fraction increased from 35.1% ± 4.0% for MI only to 58.8% ± 7.3% with a CM+ patch, p<0.05) associated with a 77% reduction in infarct size (61.3% ± 7.9% for MI only, 13.9% ± 10.8% for CM+ patch, p<0.05), and the elimination of LV free-wall thinning. Decreased infarct size and reduced wall thinning also occurred with the administration of the CM- patch (infarct size 36.9% ± 10.2%, LV wall thickness: 1058.2 ± 135.4 μm for CM- patch, 661.3 ± 37.4 μm for MI only, p<0.05), but without improvements in cardiac function. Approximately 36.5% of the transplanted CMs survived at 4 weeks; however, they remained separated and electrically uncoupled from the host myocardium by a layer of CM-free tissue, which suggests that the benefits of CM+ patch transplantation resulted from paracrine mechanisms originating from CMs. Collectively, these observations suggest that the transplantation of CM-containing engineered heart tissue patches can lead to dramatic improvements in cardiac function and remodeling after acute MI. PMID:24295499

  20. Homing of Neural Stem Cells From the Venous Compartment Into a Brain Infarct Does Not Involve Conventional Interactions With Vascular Endothelium

    PubMed Central

    Goncharova, Valentina; Das, Shreyasi; Niles, Walter; Schraufstatter, Ingrid; Wong, Aaron K.; Povaly, Tatiana; Wakeman, Dustin; Miller, Leonard

    2014-01-01

    Human neural stem cells (hNSCs) hold great potential for treatment of a wide variety of neurodegenerative and neurotraumatic conditions. Heretofore, administration has been through intracranial injection or implantation of cells. Because neural stem cells are capable of migrating to the injured brain from the intravascular space, it seemed feasible to administer them intravenously if their ability to circumvent the blood-brain barrier was enhanced. In the present studies, we found that interactions of hNSCs in vitro on the luminal surface of human umbilical vein endothelial cells was enhanced following enforced expression of cutaneous lymphocyte antigen on cell surface moieties by incubation of hNSCs with fucosyltransferase VI and GDP-fucose (fhNSCs). Interestingly, ex vivo fucosylation of hNSCs not only did not improve the cells homing into the brain injured by stroke following intravenous administration but also increased mortality of rats compared with the nonfucosylated hNSC group. Efforts to explain these unexpected findings using a three-dimensional flow chamber device revealed that transmigration of fhNSCs (under conditions of physiological shear stress) mediated by stromal cell-derived factor 1α was significantly decreased compared with controls. Further analysis revealed that hNSCs poorly withstand physiological shear stress, and their ability is further decreased following fucosylation. In addition, fhNSCs demonstrated a higher frequency of cellular aggregate formation as well as a tendency for removal of fucose from the cell surface. In summary, our findings suggest that the behavior of hNSCs in circulation is different from that observed with other cell types and that, at least for stroke, intravenous administration is a suboptimal route, even when the in vitro rolling ability of hNSCs is optimized by enforced fucosylation. PMID:24396034

  1. Bilateral anterior choroidal artery infarction presenting with progressive somnolence.

    PubMed

    van Son, Brechtje; Vandevenne, Jan; Viaene, Pieter

    2014-09-01

    A 55-year-old woman was admitted with a 3 days history of increasing lethargy with bradyphrenia and apathy. She progressively developed severe somnolence with marked abulia, right hemiparesis, right hemianopsia, and pseudobulbar palsy. Brain magnetic resonance imaging showed the rare image of bilateral acute anterior choroidal artery infarction. Pseudobulbar mutism and in rare cases abulia have been described in acute anterior choroidal artery infarction contralateral to an older lesion in mirror position. Although neurologic deterioration is not infrequent in anterior choroidal artery territory infarcts, the absence of focal neurologic signs on admission is rare and did not raise suspicion of acute stroke. PMID:25106836

  2. Amelioration of ischemic brain damage by peritoneal dialysis

    PubMed Central

    Godino, María del Carmen; Romera, Victor G.; Sánchez-Tomero, José Antonio; Pacheco, Jesus; Canals, Santiago; Lerma, Juan; Vivancos, José; Moro, María Angeles; Torres, Magdalena; Lizasoain, Ignacio; Sánchez-Prieto, José

    2013-01-01

    Ischemic stroke is a devastating condition, for which there is still no effective therapy. Acute ischemic stroke is associated with high concentrations of glutamate in the blood and interstitial brain fluid. The inability of the tissue to retain glutamate within the cells of the brain ultimately provokes neuronal death. Increased concentrations of interstitial glutamate exert further excitotoxic effects on healthy tissue surrounding the infarct zone. We developed a strategy based on peritoneal dialysis to reduce blood glutamate levels, thereby accelerating brain-to-blood glutamate clearance. In a rat model of stroke, this simple procedure reduced the transient increase in glutamate, consequently decreasing the size of the infarct area. Functional magnetic resonance imaging demonstrated that the rescued brain tissue remained functional. Moreover, in patients with kidney failure, peritoneal dialysis significantly decreased glutamate concentrations. Our results suggest that peritoneal dialysis may represent a simple and effective intervention for human stroke patients. PMID:23999426

  3. Amelioration of ischemic brain damage by peritoneal dialysis.

    PubMed

    Godino, María del Carmen; Romera, Victor G; Sánchez-Tomero, José Antonio; Pacheco, Jesus; Canals, Santiago; Lerma, Juan; Vivancos, José; Moro, María Angeles; Torres, Magdalena; Lizasoain, Ignacio; Sánchez-Prieto, José

    2013-10-01

    Ischemic stroke is a devastating condition, for which there is still no effective therapy. Acute ischemic stroke is associated with high concentrations of glutamate in the blood and interstitial brain fluid. The inability of the tissue to retain glutamate within the cells of the brain ultimately provokes neuronal death. Increased concentrations of interstitial glutamate exert further excitotoxic effects on healthy tissue surrounding the infarct zone. We developed a strategy based on peritoneal dialysis to reduce blood glutamate levels, thereby accelerating brain-to-blood glutamate clearance. In a rat model of stroke, this simple procedure reduced the transient increase in glutamate, consequently decreasing the size of the infarct area. Functional magnetic resonance imaging demonstrated that the rescued brain tissue remained functional. Moreover, in patients with kidney failure, peritoneal dialysis significantly decreased glutamate concentrations. Our results suggest that peritoneal dialysis may represent a simple and effective intervention for human stroke patients. PMID:23999426

  4. In vitro models of the blood-brain barrier: An overview of commonly used brain endothelial cell culture models and guidelines for their use.

    PubMed

    Helms, Hans C; Abbott, N Joan; Burek, Malgorzata; Cecchelli, Romeo; Couraud, Pierre-Olivier; Deli, Maria A; Förster, Carola; Galla, Hans J; Romero, Ignacio A; Shusta, Eric V; Stebbins, Matthew J; Vandenhaute, Elodie; Weksler, Babette; Brodin, Birger

    2016-05-01

    The endothelial cells lining the brain capillaries separate the blood from the brain parenchyma. The endothelial monolayer of the brain capillaries serves both as a crucial interface for exchange of nutrients, gases, and metabolites between blood and brain, and as a barrier for neurotoxic components of plasma and xenobiotics. This "blood-brain barrier" function is a major hindrance for drug uptake into the brain parenchyma. Cell culture models, based on either primary cells or immortalized brain endothelial cell lines, have been developed, in order to facilitate in vitro studies of drug transport to the brain and studies of endothelial cell biology and pathophysiology. In this review, we aim to give an overview of established in vitro blood-brain barrier models with a focus on their validation regarding a set of well-established blood-brain barrier characteristics. As an ideal cell culture model of the blood-brain barrier is yet to be developed, we also aim to give an overview of the advantages and drawbacks of the different models described. PMID:26868179

  5. Transplanted bone marrow stem cells relocate to infarct penumbra and co-express endogenous proliferative and immature neuronal markers in a mouse model of ischemic cerebral stroke

    PubMed Central

    2010-01-01

    Background Several studies demonstrate that neurogenesis may be induced or activated following vascular insults, which may be important for neuronal regeneration and functional recovery. Understanding the cellular mechanism underlying stroke-associated neurogenesis is of neurobiological as well as neurological/clinical relevance. The present study attempted to explore potential homing and early development of transplanted bone marrow stem cells in mouse forebrain after focal occlusion of the middle cerebral artery, an experimental model of ischemic stroke. Results Bone marrow stem cells isolated from donor mice were confirmed by analysis of surface antigen profile, and were pre-labeled with a lipophilic fluorescent dye PKH26, and subsequently transfused into recipient mice with middle cerebral artery coagulation. A large number of PKH26-labeled cells were detected surrounding the infarct site, most of which colocalized with immunolabelings for the proliferating cell nuclear antigen (PCNA) and some also colocalized with the immature neuronal marker doublecortin (DCX) during 1-2 weeks after the bone marrow cells transfusion. Conclusions The present study shows that transplanted bone morrow cells largely relocate to the infarct penumbra in ischemic mouse cerebrum. These transplanted bone marrow cells appear to undergo a process of in situ proliferation and develop into putative cortical interneurons during the early phase of experimental vascular injury. PMID:20973978

  6. Comparison of the Cardiac MicroPET Images Obtained Using [18F]FPTP and [13N]NH3 in Rat Myocardial Infarction Models

    PubMed Central

    2014-01-01

    The short half-life of current positron emission tomography (PET) cardiac tracers limits their widespread clinical use. We previously developed a 18F-labeled phosphonium cation, [18F]FPTP, that demonstrated sharply defined myocardial defects in a corresponding infarcted myocardium. The aim of this study was to compare the image properties of PET scans obtained using [18F]FPTP with those obtained using [13N]NH3 in rat myocardial infarction models. Perfusion abnormality was analyzed in 17 segments of polar map images. The myocardium-to-liver and myocardium-to-lung ratios of [18F]FPTP were 10.48 and 2.65 times higher, respectively, than those of [13N]NH3 in images acquired 30 min after tracer injection. The myocardial defect size measured by [18F]FPTP correlated more closely with the hypoperfused area measured by quantitative 2,3,5-triphenyltetrazolium chloride staining (r = 0.89, P < 0.01) than did [13N]NH3 (r = 0.84, P < 0.01). [18F]FPTP might be useful as a replacement for the myocardial agent [13N]NH3 in cardiac PET/CT applications. PMID:25313324

  7. Six-month angiographic study of immediate autologous bone marrow mononuclear cell implantation on acute anterior wall myocardial infarction using a mini-pig model.

    PubMed

    Sheu, Jiunn-Jye; Yuen, Chun-Man; Sun, Cheuk-Kwan; Chang, Li-Teh; Yen, Chia-Hung; Chiang, Chiang-Hua; Ko, Sheung-Fat; Pei, Sung-Nan; Chua, Sarah; Bhasin, Anuj; Wu, Chiung-Jen; Yip, Hon-Kan

    2009-03-01

    This study investigated six-month angiographic results of autologous bone marrow mononuclear cell (BMMNC) transplantation immediately following acute myocardial infarction (AMI) in a mini-pig model.AMI was induced by left anterior descending artery ligation. Twenty-four mini-pigs were equally divided into group 1 [AMI plus saline injection in infarcted area (IA)], group 2 (AMI plus BMMNC transplantation into non-IA), group 3 (AMI plus BMMNC implantation into IA), and group 4 (sham control). One-week cultured BMMNCs (3.0 x 10(7)) were immediately transplanted following AMI induction. Angiographic studies over 6 months demonstrated that mitral regurgitation (MR) was lower in groups 3 and 4 than in groups 1 and 2 (all P < 0.01). Wall motion scores and left ventricular ejection fraction (LVEF) were higher in groups 3 and 4 than in groups 1 and 2 (all P < 0.05). Collateral circulation was higher in group 3 than in groups 1 and 2 ( P < 0.01). The wall thickness of the IA was higher, whereas the heart weight was lower in group 3 than in groups 1 and 2 (all P < 0.01).Immediate autologous BMMNC transplantation into IA is superior to saline-treated only or BMMNC transplantation into non-IA following AMI for reducing MR and improving LVEF. PMID:19367032

  8. Infarcted Left Ventricles Have Stiffer Material Properties and Lower Stiffness Variation: Three-Dimensional Echo-Based Modeling to Quantify In Vivo Ventricle Material Properties.

    PubMed

    Fan, Longling; Yao, Jing; Yang, Chun; Tang, Dalin; Xu, Di

    2015-08-01

    Methods to quantify ventricle material properties noninvasively using in vivo data are of great important in clinical applications. An ultrasound echo-based computational modeling approach was proposed to quantify left ventricle (LV) material properties, curvature, and stress/strain conditions and find differences between normal LV and LV with infarct. Echo image data were acquired from five patients with myocardial infarction (I-Group) and five healthy volunteers as control (H-Group). Finite element models were constructed to obtain ventricle stress and strain conditions. Material stiffening and softening were used to model ventricle active contraction and relaxation. Systolic and diastolic material parameter values were obtained by adjusting the models to match echo volume data. Young's modulus (YM) value was obtained for each material stress-strain curve for easy comparison. LV wall thickness, circumferential and longitudinal curvatures (C- and L-curvature), material parameter values, and stress/strain values were recorded for analysis. Using the mean value of H-Group as the base value, at end-diastole, I-Group mean YM value for the fiber direction stress-strain curve was 54% stiffer than that of H-Group (136.24 kPa versus 88.68 kPa). At end-systole, the mean YM values from the two groups were similar (175.84 kPa versus 200.2 kPa). More interestingly, H-Group end-systole mean YM was 126% higher that its end-diastole value, while I-Group end-systole mean YM was only 29% higher that its end-diastole value. This indicated that H-Group had much greater systole-diastole material stiffness variations. At beginning-of-ejection (BE), LV ejection fraction (LVEF) showed positive correlation with C-curvature, stress, and strain, and negative correlation with LV volume, respectively. At beginning-of-filling (BF), LVEF showed positive correlation with C-curvature and strain, but negative correlation with stress and LV volume, respectively. Using averaged values of two groups at BE, I-Group stress, strain, and wall thickness were 32%, 29%, and 18% lower (thinner), respectively, compared to those of H-Group. L-curvature from I-Group was 61% higher than that from H-Group. Difference in C-curvature between the two groups was not statistically significant. Our results indicated that our modeling approach has the potential to determine in vivo ventricle material properties, which in turn could lead to methods to infer presence of infarct from LV contractibility and material stiffness variations. Quantitative differences in LV volume, curvatures, stress, strain, and wall thickness between the two groups were provided. PMID:25994130

  9. Statistical shape model-based segmentation of brain MRI images.

    PubMed

    Bailleul, Jonathan; Ruan, Su; Constans, Jean-Marc

    2007-01-01

    We propose a segmentation method that automatically delineates structures contours from 3D brain MRI images using a statistical shape model. We automatically build this 3D Point Distribution Model (PDM) in applying a Minimum Description Length (MDL) annotation to a training set of shapes, obtained by registration of a 3D anatomical atlas over a set of patients brain MRIs. Delineation of any structure from a new MRI image is first initialized by such registration. Then, delineation is achieved in iterating two consecutive steps until the 3D contour reaches idempotence. The first step consists in applying an intensity model to the latest shape position so as to formulate a closer guess: our model requires far less priors than standard model in aiming at direct interpretation rather than compliance to learned contexts. The second step consists in enforcing shape constraints onto previous guess so as to remove all bias induced by artifacts or low contrast on current MRI. For this, we infer the closest shape instance from the PDM shape space using a new estimation method which accuracy is significantly improved by a huge increase in the model resolution and by a depth-search in the parameter space. The delineation results we obtained are very encouraging and show the interest of the proposed framework. PMID:18003193

  10. Fluid-percussion–induced traumatic brain injury model in rats

    PubMed Central

    Kabadi, Shruti V.; Hilton, Genell D.; Stoica, Bogdan A.; Zapple, David N.; Faden, Alan I.

    2013-01-01

    Traumatic brain injury (TBI) is a major cause of mortality and morbidity. Various attempts have been made to replicate clinical TBI using animal models. The fluid-percussion model (FP) is one of the oldest and most commonly used models of experimentally induced TBI. Both central (CFP) and lateral (LFP) variations of the model have been used. Developed initially for use in larger species, the standard FP device was adapted more than 20 years ago to induce consistent degrees of brain injury in rodents. Recently, we developed a microprocessor-controlled, pneumatically driven instrument, micro-FP (MFP), to address operational concerns associated with the use of the standard FP device in rodents. We have characterized the MFP model with regard to injury severity according to behavioral and histological outcomes. In this protocol, we review the FP models and detail surgical procedures for LFP. The surgery involves tracheal intubation, craniotomy and fixation of Luer fittings, and induction of injury. The surgical procedure can be performed within 45–50 min. PMID:20725070

  11. The animat: new frontiers in whole brain modeling.

    PubMed

    Ames, Heather; Mingolla, Ennio; Sohail, Aisha; Chandler, Benjamin; Gorchetchnikov, Anatoli; Leveille, Jasmin; Livitz, Gennady; Versace, Massimiliano

    2012-01-01

    The researchers at Boston University (BU)'s Neuromorphics Laboratory, part of the National Science Foundation (NSF)-sponsored Center of Excellence for Learning in Education, Science, and Technology (CELEST), are working in collaboration with the engineers and scientists at Hewlett-Packard (HP) to implement neural models of intelligent processes for the next generation of dense, low-power, computer hardware that will use memristive technology to bring data closer to the processor where computation occurs. The HP and BU teams are jointly designing an optimal infrastructure, simulation, and software platform to build an artificial brain. The resulting Cog Ex Machina (Cog) software platform has been successfully used to implement a large-scale, multicomponent brain system that is able to simulate some key rat behavioral results in a virtual environment and has been applied to control robotic platforms as they learn to interact with their environment. PMID:22344952

  12. Experimental myocardial infarction

    PubMed Central

    Kumar, Raj; Hood, William B.; Joison, Julio; Norman, John C.; Abelmann, Walter H.

    1970-01-01

    Acute myocardial infarction causes depression of left ventricular function, but the capacity of the ventricle to recover from such an injury remains unknown. This problem was explored by measuring left ventricular function in eight intact conscious dogs before, 1 hr after, and again 6-8 days after myocardial infarction. Acute myocardial infarction was produced using a technique which entails gradual inflation over an average period of 1 hr of a balloon cuff previously implanted around the left anterior descending coronary artery. Occurrence of anterior wall infarction was detected electrocardiographically and later confirmed by postmortem examination. Left ventricular function was evaluated from the relationship between left ventricular developed pressure (left ventricular peak systolic pressure minus left ventricular end-diastolic pressure) and left ventricular end-diastolic pressure during transient aortic occlusion with a balloon catheter. Left ventricular function curves were obtained by plotting left ventricular-developed pressure at increasing left ventricular end-diastolic pressures up to 50 mm Hg. Acute myocardial infarction caused marked depression of left ventricular function measured 1 hr after onset of infarction, but 1 wk later all eight animals showed improvement with return of function toward the control levels. A small but significant descending limb was noted at left ventricular end-diastolic pressures above 35 mm Hg. Quantitatively, the descending limb was similar before, 1 hr after, and 1 wk after myocardial infarction. Hemodynamic data revealed evidence of left ventricular failure in all animals, but variability in individual hemodynamic parameters was noted. The data indicate that the marked depression of left ventricular function observed immediately after experimental acute myocardial infarction undergoes considerable resolution within 1 wk, but that functional recovery remains incomplete. PMID:5409808

  13. High-tech brains: a history of technology-based analogies and models of nerve and brain function.

    PubMed

    Kirkland, Kyle L

    2002-01-01

    This article reviews some of the technological devices and ideas which have been used over the years to answer the question, how does the brain work? It describes some of the early technology-based analogies and models of nerve fibers, and then discusses other analogies and models of the brain based on mechanical and electrical technologies. There are also short sections on cybernetics, telephone exchanges, and computers. Although all of these ideas are flawed to some extent, this article offers a brief argument on the usefulness of analogy and abstraction in brain science. PMID:11919380

  14. Biothermal Model of Patient for Brain Hypothermia Treatment

    NASA Astrophysics Data System (ADS)

    Wakamatsu, Hidetoshi; Gaohua, Lu

    A biothermal model of patient is proposed and verified for the brain hypothermia treatment, since the conventionally applied biothermal models are inappropriate for their unprecedented application. The model is constructed on the basis of the clinical practice of the pertinent therapy and characterized by the mathematical relation with variable ambient temperatures, in consideration of the clinical treatments such as the vital cardiopulmonary regulation. It has geometrically clear representation of multi-segmental core-shell structure, database of physiological and physical parameters with a systemic state equation setting the initial temperature of each compartment. Its step response gives the time constant about 3 hours in agreement with clinical knowledge. As for the essential property of the model, the dynamic temperature of its face-core compartment is realized, which corresponds to the tympanic membrane temperature measured under the practical anesthesia. From the various simulations consistent with the phenomena of clinical practice, it is concluded that the proposed model is appropriate for the theoretical analysis and clinical application to the brain hypothermia treatment.

  15. Therapeutic Hypothermia for Cardioprotection in Acute Myocardial Infarction.

    PubMed

    Kang, In Sook; Fumiaki, Ikeno; Pyun, Wook Bum

    2016-03-01

    Mild therapeutic hypothermia of 32-35°C improved neurologic outcomes in outside hospital cardiac arrest survivor. Furthermore, in experimental studies on infarcted model and pilot studies on conscious patients with acute myocardial infarction, therapeutic hypothermia successfully reduced infarct size and microvascular resistance. Therefore, mild therapeutic hypothermia has received an attention as a promising solution for reduction of infarction size after acute myocardial infarction which are not completely solved despite of optimal reperfusion therapy. Nevertheless, the results from randomized clinical trials failed to prove the cardioprotective effects of therapeutic hypothermia or showed beneficial effects only in limited subgroups. In this article, we reviewed rationale for therapeutic hypothermia and possible mechanisms from previous studies, effective methods for clinical application to the patients with acute myocardial infarction, lessons from current clinical trials and future directions. PMID:26847278

  16. Therapeutic Hypothermia for Cardioprotection in Acute Myocardial Infarction

    PubMed Central

    Kang, In Sook; Fumiaki, Ikeno

    2016-01-01

    Mild therapeutic hypothermia of 32–35℃ improved neurologic outcomes in outside hospital cardiac arrest survivor. Furthermore, in experimental studies on infarcted model and pilot studies on conscious patients with acute myocardial infarction, therapeutic hypothermia successfully reduced infarct size and microvascular resistance. Therefore, mild therapeutic hypothermia has received an attention as a promising solution for reduction of infarction size after acute myocardial infarction which are not completely solved despite of optimal reperfusion therapy. Nevertheless, the results from randomized clinical trials failed to prove the cardioprotective effects of therapeutic hypothermia or showed beneficial effects only in limited subgroups. In this article, we reviewed rationale for therapeutic hypothermia and possible mechanisms from previous studies, effective methods for clinical application to the patients with acute myocardial infarction, lessons from current clinical trials and future directions. PMID:26847278

  17. From synthetic modeling of social interaction to dynamic theories of brain-body-environment-body-brain systems.

    PubMed

    Froese, Tom; Iizuka, Hiroyuki; Ikegami, Takashi

    2013-08-01

    Synthetic approaches to social interaction support the development of a second-person neuroscience. Agent-based models and psychological experiments can be related in a mutually informing manner. Models have the advantage of making the nonlinear brain-body-environment-body-brain system as a whole accessible to analysis by dynamical systems theory. We highlight some general principles of how social interaction can partially constitute an individual's behavior. PMID:23883749

  18. Usefulness of MRI to Differentiate Between Temporary and Long-Term Coronary Artery Occlusion in a Minimally Invasive Model of Experimental Myocardial Infarction

    SciTech Connect

    Abegunewardene, Nico Vosseler, Markus; Gori, Tommaso; Hoffmann, Nico; Schmidt, Kai-Helge; Becker, Dietmar; Kreitner, Karl-Friedrich; Petersen, Steffen E.; Schreiber, Laura M.; Horstick, Georg; Muenzel, Thomas

    2009-09-15

    The surgical technique employed to determine an experimental ischemic damage is a major factor in the subsequent process of myocardial scar development. We set out to establish a minimally invasive porcine model of myocardial infarction using cardiac contrast-enhanced magnetic resonance imaging (ce-MRI) as the basic diagnostic tool. Twenty-seven domestic pigs were randomized to either temporary or permanent occlusion of the left anterior descending artery (LAD). Temporary occlusion was achieved by inflation of a percutaneous balloon in the left anterior descending artery directly beyond the second diagonal branch. Occlusion was maintained for 30 or 45 min, followed by reperfusion. Permanent occlusion was achieved via thrombin injection. Thirteen animals died peri- or postinterventionally due to arrhythmias. Fourteen animals survived the 30-min ischemia (four animals; group 1), the 45-min ischemia (six animals; group 2), or the permanent occlusion (4 animals; group 3). Coronary angiography and ce-MRI were performed 8 weeks after coronary occlusion to document the coronary flow grade and the size of myocardial scar tissue. The LAD was patent in all animals in groups 1 and 2, with normal TIMI flow; in group 3 animals, the LAD was totally occluded. Fibrosis of the left ventricle in group 1 (4.9 {+-} 4.4%; p = 0.008) and group 2 (9.4 {+-} 2.9%; p = 0.05) was significantly lower than in group 3 (14.5 {+-} 3.9%). Wall thickness of the ischemic area was significantly lower in group 3 versus group 1 and group 2 (2.9 {+-} 0.3, 5.9 {+-} 0.7, and 6.1 {+-} 0.7 mm; p = 0.005). The extent of late enhancement of the left ventricle was also significantly higher in group 3 (16.9 {+-} 2.1%) compared to group 1 (5.3 {+-} 5.4%; p = 0.003) and group 2 (9.7 {+-} 3.4%, p = 0.013). In conclusion, the present model of minimally invasive infarction coupled with ce-MRI may represent a useful alternative to the open chest model for studies of myocardial infarction and scar development.

  19. High-strain-rate brain injury model using submerged acute rat brain tissue slices.

    PubMed

    Sarntinoranont, Malisa; Lee, Sung J; Hong, Yu; King, Michael A; Subhash, Ghatu; Kwon, Jiwoon; Moore, David F

    2012-01-20

    Blast-induced traumatic brain injury (bTBI) has received increasing attention in recent years due to ongoing military operations in Iraq and Afghanistan. Sudden impacts or explosive blasts generate stress and pressure waves that propagate at high velocities and affect sensitive neurological tissues. The immediate soft tissue response to these stress waves is difficult to assess using current in vivo imaging technologies. However, these stress waves and resultant stretching and shearing of tissue within the nano- to microsecond time scale of blast and impact are likely to cause initial injury. To visualize the effects of stress wave loading, we have developed a new ex vivo model in which living tissue slices from rat brain, attached to a ballistic gelatin substrate, were subjected to high-strain-rate loads using a polymer split Hopkinson pressure bar (PSHPB) with real-time high-speed imaging. In this study, average peak fluid pressure within the test chamber reached a value of 1584±63.3 psi. Cavitation due to a trailing underpressure wave was also observed. Time-resolved images of tissue deformation were collected and large maximum eigenstrains (0.03-0.42), minimum eigenstrains (-0.33 to -0.03), maximum shear strains (0.09-0.45), and strain rates (8.4×10³/sec) were estimated using digital image correlation (DIC). Injury at 4 and 6 h was quantified using Fluoro-Jade C. Neuronal injury due to PSHPB testing was found to be significantly greater than injury associated with the tissue slice paradigm alone. While large pressures and strains were encountered for these tests, this system provides a controllable test environment to study injury to submerged brain slices over a range of strain rate, pressure, and strain loads. PMID:21970544

  20. Ekbom Syndrome Occurring with Multi Infarct Dementia

    PubMed Central

    Gautam, Priyanka; Kaur, Jaswinder

    2015-01-01

    Ekbom Syndrome is characterized by delusion that small living being infests skin. The clinical profile of this disorder has shown it to be associated with organic conditions. Neuroimaging studies implicate putamen as the brain structure involved in the pathophysiology. These are also known as organic delusional disorder and provide an opportunity to study biological causation of delusional disorder. We report a patient presented with a complaint of insects crawling on her body for last two years. She collected the peeled skin in a jar and claimed that these are insects. CT scan (brain) revealed multiple infarcts involving basal ganglia. She responded to Risperidone 4 mg daily. PMID:26023627

  1. Ekbom syndrome occurring with multi infarct dementia.

    PubMed

    Bhatia, M S; Gautam, Priyanka; Kaur, Jaswinder

    2015-04-01

    Ekbom Syndrome is characterized by delusion that small living being infests skin. The clinical profile of this disorder has shown it to be associated with organic conditions. Neuroimaging studies implicate putamen as the brain structure involved in the pathophysiology. These are also known as organic delusional disorder and provide an opportunity to study biological causation of delusional disorder. We report a patient presented with a complaint of insects crawling on her body for last two years. She collected the peeled skin in a jar and claimed that these are insects. CT scan (brain) revealed multiple infarcts involving basal ganglia. She responded to Risperidone 4 mg daily. PMID:26023627

  2. Interstitial microwave hyperthermia in a canine brain model.

    PubMed

    Sneed, P K; Matsumoto, K; Stauffer, P R; Fike, J R; Smith, V; Gutin, P H

    1986-10-01

    A dual frequency microwave system was constructed for interstitial heating of brain tissue. Single-junction dipole antennas were tested in a phantom model and in normal dog brain to determine how variations in physical factors affected temperature distributions. Non-survival studies were performed at both 915 and 2450 MHz to determine heating patterns that could be achieved within normal brain using this system. Chronic survival studies were performed using a single dipole antenna inserted laterally into one hemisphere of brain and driven at 2450 MHz. Temperatures of 43 or 44 degrees C for 30 min at a reference point 0.5 cm from the antenna junction were used to induce a thermal lesion of approximately 1 cm diameter in the right cerebral hemisphere of dogs. Neurologic and physical changes in dogs were monitored daily for up to 16 weeks after induction of cerebral lesions. The extent and development of thermal lesions was monitored with weekly computed tomographic (CT) examinations and, after death, at histopathologic examination. Results of the phantom studies showed that the longitudinal heating pattern was bell-shaped at both frequencies used and that there was some variation in heating length that depended on insertion depth. Acute studies in dog brain showed that 915 MHz antennas implanted less than 6.5 cm deep produced erratic heating patterns that usually included excessive heating of the surface of the brain. Conversely, 2 cm-long antennas driven at 2450 MHz gave reproducible temperature distributions both longitudinally along and radially away from the antenna. The steepest gradients--about 1 degree C/mm--occurred in the radial direction away from the antenna junction. A single 30 min heat treatment produced a large focal lesion that consisted of central coagulation necrosis surrounded by a sharply demarcated hypervascular zone. Edematous changes were minimal and were observed only during the first week after treatment. As assessed by serial CT scans, thermal lesions reached a maximum size by the first week after treatment and were essentially resolved by 16 weeks after treatment. PMID:3759542

  3. Experimental modeling of explosive blast-related traumatic brain injuries.

    PubMed

    Alley, Matthew D; Schimizze, Benjamin R; Son, Steven F

    2011-01-01

    This study aims to characterize the interaction of explosive blast waves through simulated anatomical systems. We have developed physical models and a systematic approach for testing traumatic brain injury (TBI) mechanisms and occurrences. A simplified series of models consisting of spherical poly(methyl methacrylate) (PMMA) shells housing synthetic gelatins as brain simulants have been utilized. A series of experiments was conducted to compare the sensitivity of the system response to mechanical properties of the simulants under high strain-rate explosive blasts. Small explosive charges were directed at the models to produce a realistic blast wave in a scaled laboratory setting. Blast profiles were measured and analyzed to compare system response severity. High-speed shadowgraph imaging captured blast wave interaction with the head model while particle tracking captured internal response for displacement and strain correlation. The results suggest amplification of shock waves inside the head near material interfaces due to impedance mismatches. In addition, significant relative displacement was observed between the interacting materials suggesting large strain values of nearly 5%. Further quantitative results were obtained through shadowgraph imaging of the blasts confirming a separation of time scales between blast interaction and bulk movement. These results lead to a conclusion that primary blast effects may potentially contribute significantly to the occurrence of military associated TBI. PMID:20580931

  4. Multiscale modeling and simulation of brain blood flow

    NASA Astrophysics Data System (ADS)

    Perdikaris, Paris; Grinberg, Leopold; Karniadakis, George Em

    2016-02-01

    The aim of this work is to present an overview of recent advances in multi-scale modeling of brain blood flow. In particular, we present some approaches that enable the in silico study of multi-scale and multi-physics phenomena in the cerebral vasculature. We discuss the formulation of continuum and atomistic modeling approaches, present a consistent framework for their concurrent coupling, and list some of the challenges that one needs to overcome in achieving a seamless and scalable integration of heterogeneous numerical solvers. The effectiveness of the proposed framework is demonstrated in a realistic case involving modeling the thrombus formation process taking place on the wall of a patient-specific cerebral aneurysm. This highlights the ability of multi-scale algorithms to resolve important biophysical processes that span several spatial and temporal scales, potentially yielding new insight into the key aspects of brain blood flow in health and disease. Finally, we discuss open questions in multi-scale modeling and emerging topics of future research.

  5. Experimental Models of Anxiety for Drug Discovery and Brain Research.

    PubMed

    Hart, Peter C; Bergner, Carisa L; Smolinsky, Amanda N; Dufour, Brett D; Egan, Rupert J; LaPorte, Justin L; Kalueff, Allan V

    2016-01-01

    Animal models have been vital to recent advances in experimental neuroscience, including the modeling of common human brain disorders such as anxiety, depression, and schizophrenia. As mice express robust anxiety-like behaviors when exposed to stressors (e.g., novelty, bright light, or social confrontation), these phenotypes have clear utility in testing the effects of psychotropic drugs. Of specific interest is the extent to which mouse models can be used for the screening of new anxiolytic drugs and verification of their possible applications in humans. To address this problem, the present chapter will review different experimental models of mouse anxiety and discuss their utility for testing anxiolytic and anxiogenic drugs. Detailed protocols will be provided for these paradigms, and possible confounds will be addressed accordingly. PMID:27150096

  6. A variational Bayes spatiotemporal model for electromagnetic brain mapping.

    PubMed

    Nathoo, F S; Babul, A; Moiseev, A; Virji-Babul, N; Beg, M F

    2014-03-01

    In this article, we present a new variational Bayes approach for solving the neuroelectromagnetic inverse problem arising in studies involving electroencephalography (EEG) and magnetoencephalography (MEG). This high-dimensional spatiotemporal estimation problem involves the recovery of time-varying neural activity at a large number of locations within the brain, from electromagnetic signals recorded at a relatively small number of external locations on or near the scalp. Framing this problem within the context of spatial variable selection for an underdetermined functional linear model, we propose a spatial mixture formulation where the profile of electrical activity within the brain is represented through location-specific spike-and-slab priors based on a spatial logistic specification. The prior specification accommodates spatial clustering in brain activation, while also allowing for the inclusion of auxiliary information derived from alternative imaging modalities, such as functional magnetic resonance imaging (fMRI). We develop a variational Bayes approach for computing estimates of neural source activity, and incorporate a nonparametric bootstrap for interval estimation. The proposed methodology is compared with several alternative approaches through simulation studies, and is applied to the analysis of a multimodal neuroimaging study examining the neural response to face perception using EEG, MEG, and fMRI. PMID:24354514

  7. The Impact of Trimetazidine Treatment on Left Ventricular Functions and Plasma Brain Natriuretic Peptide Levels in Patients with Non-ST Segment Elevation Myocardial Infarction Undergoing Percutaneous Coronary Intervention

    PubMed Central

    Karakelleoğlu, Şule; Gündoğdu, Fuat; Taş, Muhammed Hakan; Kaya, Ahmet; Duman, Hakan; Değirmenci, Hüsnü; Hamur, Hikmet; Şimşek, Ziya

    2013-01-01

    Background and Objectives The aim of this study was to investigate the impact of treatment with oral trimetazidine (TMZ) applied before and after percutaneous coronary interventions (PCI) on short-term left ventricular functions and plasma brain natriuretic peptide (BNP) levels in patients with non-ST segment elevation myocardial infarction (NSTEMI) undergoing PCI. Subjects and Methods The study included 45 patients who were undergoing PCI with the diagnosis of NSTEMI. The patients were randomized into two groups. The first group (n=22) of the patients hospitalized with the diagnosis of NSTEMI was given conventional therapy plus 60 mg TMZ just prior to PCI. Treatment with TMZ was continued for one month after the procedure. TMZ treatment was not given to the second group (n=23). Echocardiography images were recorded and plasma BNP levels were measured just prior to the PCI and on the 1st and 30th days after PCI. Results The myocardial performance index (MPI) was greater in the second group (p=0.02). In the comparison of BNP levels, they significantly decreased in both of the groups during the 30-day follow-up period (29.0±8 and 50.6±33, p<0.01 respectively). However, decreasing of BNP levels was higher in the group administered with TMZ. The decrease of left ventriclular end-diastolic volume was observed in all groups at 30 days after intervention, but was higher in the group administered with TMZ (p=0.01). Conclusion Trimetazidine treatment commencing prior to PCI and continued after PCI in patients with NSTEMI provides improvements in MPI, left ventricular end diastolic volume and a decrease in BNP levels. PMID:23964292

  8. Vitamin E isoforms alpha-tocotrienol and gamma-tocopherol prevent cerebral infarction in mice.

    PubMed

    Mishima, Kenichi; Tanaka, Takamitsu; Pu, Fengling; Egashira, Nobuaki; Iwasaki, Katsunori; Hidaka, Ryoji; Matsunaga, Kazuhisa; Takata, Jiro; Karube, Yoshiharu; Fujiwara, Michihiro

    2003-01-30

    Alpha-tocopherol and its derivatives have been shown to be effective in reducing cerebral ischemia-induced brain damage. However, the effects of other vitamin E isoforms have not been characterized. In the present study, we investigated the effects of six different isoforms of vitamin E on the ischemic brain damage in the mice middle cerebral artery (MCA) occlusion model. All vitamin E isoforms were injected i.v., twice, immediately before and 3 h after the occlusion. Alpha-tocopherol (2 mM), alpha-tocotrienol (0.2 and 2 mM) and gamma-tocopherol (0.2 and 2 mM) significantly decreased the size of the cerebral infarcts 1 day after the MCA occlusion, while gamma-tocotrienol, delta-tocopherol and delta-tocotrienol showed no effect on the cerebral infarcts. These results suggest that alpha-tocotrienol and gamma-tocopherol are potent and effective agents for preventing cerebral infarction induced by MCA occlusion. PMID:12524170

  9. [Bilateral multiple border zone infarctions after massive bleeding: report of two cases].

    PubMed

    Ueda, Akihiko; Hashimoto, Yoichiro; Kugimiya, Fumihito; Yonemura, Kiminobu; Hirano, Teruyuki; Uchino, Makoto

    2005-10-01

    We present two patients who developed bilateral border zone brain infarctions after massive bleeding. Patient 1 was a 46-year old woman who developed bilateral visual disturbance and left hand monoparesis after excessive menstruation with severe anemia. Diffusion-weighted MRI of brain showed multiple border zone infarcts bilaterally in cerebral and cerebellar hemispheres while brain MRA was normal. Patient 2 was a 67-year old man who developed disturbance of consciousness and right hemiplegia after upper gastrointestinal tract bleeding. Diffusion-weighted MRI of brain showed bilateral multiple border zone infarcts in cerebral hemispheres, although he had asymptomatic occlusion of the left internal carotid artery. The bilateral multiple border zone infarcts are one of the key findings suggesting the presence of anemic hypoxia as a result of global brain hypoperfusion caused by massive blood loss. PMID:16318366

  10. A rodent model of mild traumatic brain blast injury.

    PubMed

    Perez-Polo, J R; Rea, H C; Johnson, K M; Parsley, M A; Unabia, G C; Xu, G-Y; Prough, D; DeWitt, D S; Spratt, H; Hulsebosch, C E

    2015-04-01

    One of the criteria defining mild traumatic brain injury (mTBI) in humans is a loss of consciousness lasting for less than 30 min. mTBI can result in long-term impairment of cognition and behavior. In rats, the length of time it takes a rat to right itself after injury is considered to be an analog for human return to consciousness. This study characterized a rat mild brain blast injury (mBBI) model defined by a righting response reflex time (RRRT) of more than 4 min but less than 10 min. Assessments of motor coordination relying on beam-balance and foot-fault assays and reference memory showed significant impairment in animals exposed to mBBI. This study's hypothesis is that there are inflammatory outcomes to mTBI over time that cause its deleterious effects. For example, mBBI significantly increased brain levels of interleukin (IL)-1β and tumor necrosis factor-α (TNFα) protein. There were significant inflammatory responses in the cortex, hippocampus, thalamus, and amygdala 6 hr after mBBI, as evidenced by increased levels of the inflammatory markers associated with activation of microglia and macrophages, ionized calcium binding adaptor 1 (IBA1), impairment of the blood-brain barrier, and significant neuronal losses. There were significant increases in phosphorylated Tau (p-Tau) levels, a putative precursor to the development of neuroencephalopathy, as early as 6 hr after mBBI in the cortex and the hippocampus but not in the thalamus or the amygdala. There was an apparent correlation between RRRTs and p-Tau protein levels but not IBA1. These results suggest potential therapies for mild blast injuries via blockade of the IL-1β and TNFα receptors. PMID:25410497

  11. Spatiotemporal Modeling of Brain Dynamics Using Resting-State Functional Magnetic Resonance Imaging with Gaussian Hidden Markov Model.

    PubMed

    Chen, Shiyang; Langley, Jason; Chen, Xiangchuan; Hu, Xiaoping

    2016-05-01

    Analyzing functional magnetic resonance imaging (fMRI) time courses with dynamic approaches has generated a great deal of interest because of the additional temporal features that can be extracted. In this work, to systemically model spatiotemporal patterns of the brain, a Gaussian hidden Markov model (GHMM) was adopted to model the brain state switching process. We assumed that the brain switches among a number of different brain states as a Markov process and used multivariate Gaussian distributions to represent the spontaneous activity patterns of brain states. This model was applied to resting-state fMRI data from 100 subjects in the Human Connectome Project and detected nine highly reproducible brain states and their temporal and transition characteristics. Our results indicate that the GHMM can unveil brain dynamics that may provide additional insights regarding the brain at resting state. PMID:27008543

  12. Acute simultaneous multiple lacunar infarcts as the initial presentation of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy.

    PubMed

    Hsiao, Cheng-Tsung; Chen, Yun-Chung; Liu, Yo-Tsen; Soong, Bing-Wen; Lee, Yi-Chung

    2015-07-01

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an adult-onset, dominantly inherited small-vessel disease of the brain caused by NOTCH3 mutations and characterized by recurrent subcortical infarctions, dementia, migraine with aura, and mood disturbance. We report a patient with unusual presentation of CADASIL with acute simultaneous multiple subcortical lacunar infarcts as the first manifestation. A 69-year-old man developed confusion, drowsiness, right hemiparesis, and slurred speech following orthopedic surgeries. Brain magnetic resonance imaging revealed diffuse leukoencephalopathy and multiple acute subcortical lacunar infarcts. Brain magnetic resonance angiography, echocardiography and 24-hour electrocardiography were unremarkable. The symptoms improved quickly after treatment with fluid hydration and antiplatelet agent, and his consciousness and mentality totally recovered within 3 days. The NOTCH3 genetic testing showed a heterozygous missense mutation, c.1630C>T (p. Arg544Cys). The experience in this case suggests that brain imaging is important in managing postoperative confusion, and any patient with diffuse leukoencephalopathy of unknown etiology may need to be tested for NOTCH3 mutations. Surgery is an important factor of encephalopathy and acute infarction in individuals with NOTCH3 mutations. Comprehensive presurgical evaluations and proactive perioperative precautions to avoid dehydration and anemia are necessary for patients with CADASIL who are about to receive anesthesia and surgery. PMID:25959358

  13. Using Data-Driven Model-Brain Mappings to Constrain Formal Models of Cognition

    PubMed Central

    Borst, Jelmer P.; Nijboer, Menno; Taatgen, Niels A.; van Rijn, Hedderik; Anderson, John R.

    2015-01-01

    In this paper we propose a method to create data-driven mappings from components of cognitive models to brain regions. Cognitive models are notoriously hard to evaluate, especially based on behavioral measures alone. Neuroimaging data can provide additional constraints, but this requires a mapping from model components to brain regions. Although such mappings can be based on the experience of the modeler or on a reading of the literature, a formal method is preferred to prevent researcher-based biases. In this paper we used model-based fMRI analysis to create a data-driven model-brain mapping for five modules of the ACT-R cognitive architecture. We then validated this mapping by applying it to two new datasets with associated models. The new mapping was at least as powerful as an existing mapping that was based on the literature, and indicated where the models were supported by the data and where they have to be improved. We conclude that data-driven model-brain mappings can provide strong constraints on cognitive models, and that model-based fMRI is a suitable way to create such mappings. PMID:25747601

  14. Brain glucose metabolism in an animal model of depression.

    PubMed

    Detka, J; Kurek, A; Kucharczyk, M; Głombik, K; Basta-Kaim, A; Kubera, M; Lasoń, W; Budziszewska, B

    2015-06-01

    An increasing number of data support the involvement of disturbances in glucose metabolism in the pathogenesis of depression. We previously reported that glucose and glycogen concentrations in brain structures important for depression are higher in a prenatal stress model of depression when compared with control animals. A marked rise in the concentrations of these carbohydrates and glucose transporters were evident in prenatally stressed animals subjected to acute stress and glucose loading in adulthood. To determine whether elevated levels of brain glucose are associated with a change in its metabolism in this model, we assessed key glycolytic enzymes (hexokinase, phosphofructokinase and pyruvate kinase), products of glycolysis, i.e., pyruvate and lactate, and two selected enzymes of the tricarboxylic acid cycle (pyruvate dehydrogenase and α-ketoglutarate dehydrogenase) in the hippocampus and frontal cortex. Additionally, we assessed glucose-6-phosphate dehydrogenase activity, a key enzyme in the pentose phosphate pathway (PPP). Prenatal stress increased the levels of phosphofructokinase, an important glycolytic enzyme, in the hippocampus and frontal cortex. However, prenatal stress had no effect on hexokinase or pyruvate kinase levels. The lactate concentration was elevated in prenatally stressed rats in the frontal cortex, and pyruvate levels remained unchanged. Among the tricarboxylic acid cycle enzymes, prenatal stress decreased the level of pyruvate dehydrogenase in the hippocampus, but it had no effect on α-ketoglutarate dehydrogenase. Like in the case of glucose and its transporters, also in the present study, differences in markers of glucose metabolism between control animals and those subjected to prenatal stress were not observed under basal conditions but in rats subjected to acute stress and glucose load in adulthood. Glucose-6-phosphate dehydrogenase activity was not reduced by prenatal stress but was found to be even higher in animals exposed to all experimental conditions, i.e., prenatal stress, acute stress, and glucose administration. Our data indicate that glycolysis is increased and the Krebs cycle is decreased in the brain of a prenatal stress animal model of depression. PMID:25819664

  15. A Mixed Approach for Modeling Blood Flow in Brain Microcirculation

    NASA Astrophysics Data System (ADS)

    Peyrounette, M.; Sylvie, L.; Davit, Y.; Quintard, M.

    2014-12-01

    We have previously demonstrated [1] that the vascular system of the healthy human brain cortex is a superposition of two structural components, each corresponding to a different spatial scale. At small-scale, the vascular network has a capillary structure, which is homogeneous and space-filling over a cut-off length. At larger scale, veins and arteries conform to a quasi-fractal branched structure. This structural duality is consistent with the functional duality of the vasculature, i.e. distribution and exchange. From a modeling perspective, this can be viewed as the superposition of: (a) a continuum model describing slow transport in the small-scale capillary network, characterized by a representative elementary volume and effective properties; and (b) a discrete network approach [2] describing fast transport in the arterial and venous network, which cannot be homogenized because of its fractal nature. This problematic is analogous to modeling problems encountered in geological media, e.g, in petroleum engineering, where fast conducting channels (wells or fractures) are embedded in a porous medium (reservoir rock). An efficient method to reduce the computational cost of fractures/continuum simulations is to use relatively large grid blocks for the continuum model. However, this also makes it difficult to accurately couple both structural components. In this work, we solve this issue by adapting the "well model" concept used in petroleum engineering [3] to brain specific 3-D situations. We obtain a unique linear system of equations describing the discrete network, the continuum and the well model coupling. Results are presented for realistic geometries and compared with a non-homogenized small-scale network model of an idealized periodic capillary network of known permeability. [1] Lorthois & Cassot, J. Theor. Biol. 262, 614-633, 2010. [2] Lorthois et al., Neuroimage 54 : 1031-1042, 2011. [3] Peaceman, SPE J. 18, 183-194, 1978.

  16. The musician's brain as a model of neuroplasticity.

    PubMed

    Münte, Thomas F; Altenmüller, Eckart; Jäncke, Lutz

    2002-06-01

    Studies of experience-driven neuroplasticity at the behavioural, ensemble, cellular and molecular levels have shown that the structure and significance of the eliciting stimulus can determine the neural changes that result. Studying such effects in humans is difficult, but professional musicians represent an ideal model in which to investigate plastic changes in the human brain. There are two advantages to studying plasticity in musicians: the complexity of the eliciting stimulus music and the extent of their exposure to this stimulus. Here, we focus on the functional and anatomical differences that have been detected in musicians by modern neuroimaging methods. PMID:12042882

  17. Experimental Models of Brain Ischemia: A Review of Techniques, Magnetic Resonance Imaging, and Investigational Cell-Based Therapies

    PubMed Central

    Canazza, Alessandra; Minati, Ludovico; Boffano, Carlo; Parati, Eugenio; Binks, Sophie

    2013-01-01

    Stroke continues to be a significant cause of death and disability worldwide. Although major advances have been made in the past decades in prevention, treatment, and rehabilitation, enormous challenges remain in the way of translating new therapeutic approaches from bench to bedside. Thrombolysis, while routinely used for ischemic stroke, is only a viable option within a narrow time window. Recently, progress in stem cell biology has opened up avenues to therapeutic strategies aimed at supporting and replacing neural cells in infarcted areas. Realistic experimental animal models are crucial to understand the mechanisms of neuronal survival following ischemic brain injury and to develop therapeutic interventions. Current studies on experimental stroke therapies evaluate the efficiency of neuroprotective agents and cell-based approaches using primarily rodent models of permanent or transient focal cerebral ischemia. In parallel, advancements in imaging techniques permit better mapping of the spatial-temporal evolution of the lesioned cortex and its functional responses. This review provides a condensed conceptual review of the state of the art of this field, from models and magnetic resonance imaging techniques through to stem cell therapies. PMID:24600434

  18. A simulation model for analysing brain structure deformations

    NASA Astrophysics Data System (ADS)

    Di Bona, Sergio; Lutzemberger, Ludovico; Salvetti, Ovidio

    2003-12-01

    Recent developments of medical software applications—from the simulation to the planning of surgical operations—have revealed the need for modelling human tissues and organs, not only from a geometric point of view but also from a physical one, i.e. soft tissues, rigid body, viscoelasticity, etc. This has given rise to the term 'deformable objects', which refers to objects with a morphology, a physical and a mechanical behaviour of their own and that reflects their natural properties. In this paper, we propose a model, based upon physical laws, suitable for the realistic manipulation of geometric reconstructions of volumetric data taken from MR and CT scans. In particular, a physically based model of the brain is presented that is able to simulate the evolution of different nature pathological intra-cranial phenomena such as haemorrhages, neoplasm, haematoma, etc and to describe the consequences that are caused by their volume expansions and the influences they have on the anatomical and neuro-functional structures of the brain.

  19. Melanoma Cells Homing to the Brain: An In Vitro Model

    PubMed Central

    Rizzo, A.; Vasco, C.; Girgenti, V.; Fugnanesi, V.; Calatozzolo, C.; Canazza, A.; Salmaggi, A.; Rivoltini, L.; Morbin, M.; Ciusani, E.

    2015-01-01

    We developed an in vitro contact through-feet blood brain barrier (BBB) model built using type IV collagen, rat astrocytes, and human umbilical vein endothelial cells (HUVECs) cocultured through Transwell porous polycarbonate membrane. The contact between astrocytes and HUVECs was demonstrated by electron microscopy: astrocytes endfeet pass through the 8.0 μm pores inducing HUVECs to assume a cerebral phenotype. Using this model we evaluated transmigration of melanoma cells from two different patients (M1 and M2) selected among seven melanoma primary cultures. M2 cells showed a statistically significant higher capability to pass across the in vitro BBB model, compared to M1. Expression of adhesion molecules was evaluated by flow cytometry: a statistically significant increased expression of MCAM, αvβ3, and CD49b was detected in M1. PCR array data showed that M2 had a higher expression of several matrix metalloproteinase proteins (MMPs) compared to M1. Specifically, data suggest that MMP2 and MMP9 could be directly involved in BBB permeability and that brain invasion by melanoma cells could be related to the overexpression of many MMPs. Future studies will be necessary to deepen the mechanisms of central nervous system invasion. PMID:25692137

  20. Cluster imaging of multi-brain networks (CIMBN): a general framework for hyperscanning and modeling a group of interacting brains.

    PubMed

    Duan, Lian; Dai, Rui-Na; Xiao, Xiang; Sun, Pei-Pei; Li, Zheng; Zhu, Chao-Zhe

    2015-01-01

    Studying the neural basis of human social interactions is a key topic in the field of social neuroscience. Brain imaging studies in this field usually focus on the neural correlates of the social interactions between two participants. However, as the participant number further increases, even by a small amount, great difficulties raise. One challenge is how to concurrently scan all the interacting brains with high ecological validity, especially for a large number of participants. The other challenge is how to effectively model the complex group interaction behaviors emerging from the intricate neural information exchange among a group of socially organized people. Confronting these challenges, we propose a new approach called "Cluster Imaging of Multi-brain Networks" (CIMBN). CIMBN consists of two parts. The first part is a cluster imaging technique with high ecological validity based on multiple functional near-infrared spectroscopy (fNIRS) systems. Using this technique, we can easily extend the simultaneous imaging capacity of social neuroscience studies up to dozens of participants. The second part of CIMBN is a multi-brain network (MBN) modeling method based on graph theory. By taking each brain as a network node and the relationship between any two brains as a network edge, one can construct a network model for a group of interacting brains. The emergent group social behaviors can then be studied using the network's properties, such as its topological structure and information exchange efficiency. Although there is still much work to do, as a general framework for hyperscanning and modeling a group of interacting brains, CIMBN can provide new insights into the neural correlates of group social interactions, and advance social neuroscience and social psychology. PMID:26283906

  1. Cluster imaging of multi-brain networks (CIMBN): a general framework for hyperscanning and modeling a group of interacting brains

    PubMed Central

    Duan, Lian; Dai, Rui-Na; Xiao, Xiang; Sun, Pei-Pei; Li, Zheng; Zhu, Chao-Zhe

    2015-01-01

    Studying the neural basis of human social interactions is a key topic in the field of social neuroscience. Brain imaging studies in this field usually focus on the neural correlates of the social interactions between two participants. However, as the participant number further increases, even by a small amount, great difficulties raise. One challenge is how to concurrently scan all the interacting brains with high ecological validity, especially for a large number of participants. The other challenge is how to effectively model the complex group interaction behaviors emerging from the intricate neural information exchange among a group of socially organized people. Confronting these challenges, we propose a new approach called “Cluster Imaging of Multi-brain Networks” (CIMBN). CIMBN consists of two parts. The first part is a cluster imaging technique with high ecological validity based on multiple functional near-infrared spectroscopy (fNIRS) systems. Using this technique, we can easily extend the simultaneous imaging capacity of social neuroscience studies up to dozens of participants. The second part of CIMBN is a multi-brain network (MBN) modeling method based on graph theory. By taking each brain as a network node and the relationship between any two brains as a network edge, one can construct a network model for a group of interacting brains. The emergent group social behaviors can then be studied using the network's properties, such as its topological structure and information exchange efficiency. Although there is still much work to do, as a general framework for hyperscanning and modeling a group of interacting brains, CIMBN can provide new insights into the neural correlates of group social interactions, and advance social neuroscience and social psychology. PMID:26283906

  2. A mouse model of human repetitive mild traumatic brain injury

    PubMed Central

    Kane, Michael J.; Pérez, Mariana Angoa; Briggs, Denise I.; Viano, David C.; Kreipke, Christian W.; Kuhn, Donald M.

    2011-01-01

    A novel method for the study of repetitive mild traumatic brain injury (rmTBI) that models the most common form of head injury in humans is presented. Existing animal models of TBI impart focal, severe damage unlike that seen in repeated and mild concussive injuries, and few are configured for repetitive application. Our model is a modification of the Marmarou weight drop method and allows repeated head impacts to lightly anesthetized mice. A key facet of this method is the delivery of an impact to the cranium of an unrestrained subject allowing rapid acceleration of the free-moving head and torso, an essential characteristic known to be important for concussive injury in humans, and a factor that is missing from existing animal models of TBI. Our method does not require scalp incision, emplacement of protective skull helmets or surgery and the procedure can be completed in 1-2 minutes. Mice spontaneously recover the righting reflex and show no evidence of seizures, paralysis or impaired behavior. Skull fractures and intracranial bleeding are very rare. Minor deficits in motor coordination and locomotor hyperactivity recover over time. Histological analyses reveal mild astrocytic reactivity (increased expression of GFAP) and increased phospho-tau but a lack of blood-brain-barrier disruption, edema and microglial activation. This new animal model is simple and cost-effective and will facilitate characterization of the neurobiological and behavioral consequences of rmTBI. It is also ideal for high throughput screening of potential new therapies for mild concussive injuries as experienced by athletes and military personnel. PMID:21930157

  3. Evaluation of Left Ventricle Function by Regional Fractional Area Change (RFAC) in a Mouse Model of Myocardial Infarction Secondary to Valsartan Treatment

    PubMed Central

    Castiglioni, Laura; Colazzo, Francesca; Fontana, Lucia; Colombo, Gualtiero I.; Piacentini, Luca; Bono, Elisa; Milano, Giuseppina; Paleari, Serena; Palermo, Annamaria; Guerrini, Uliano; Tremoli, Elena; Sironi, Luigi

    2015-01-01

    Aim Left ventricle (LV) regional fractional area change (RFAC) measured by cardiac magnetic resonance (CMR) allows the non-invasive localization and quantification of the degree of myocardial infarction (MI), and could be applied to assess the effectiveness of pharmacological or regenerative therapies. Here we investigate the ability of RFAC to identify regional dysfunction and discriminate the effect of pharmacological treatment with valsartan, a selective antagonist of angiotensin II type 1 receptor, in a model of MI. Methods and Results C57BL/6N mice, undergoing coronary artery ligation, were divided into two groups: untreated (MI) or treated with valsartan (MI+Val). Sham-operated mice were used as a control. Cardiac dimensions and function were assessed at baseline, 24 hours, 1 and 4 weeks post surgery by CMR and echocardiography. At sacrifice histology and whole-genome gene expression profiling were performed. RFAC was able to detect significant differences between treatment groups whereas the global ejection fraction was not. RFAC showed greater loss of regional contraction in remote non-infarcted myocardium in MI group than in MI+Val group. Consistently, in the same region MI+Val mice showed reduced myocyte hypertrophy, fibroblast proliferation, and fibrosis and modulation of target genes; in addition, left atrium volumes, appendage length and duct contraction were preserved. Conclusion In this study, RFAC effectively estimated the degree of systolic dysfunction and discriminated the regions preserved by pharmacological treatment. RFAC index is a promising tool to monitor changes in LV contraction and to assess the effectiveness of therapeutic regimens in clinical settings. PMID:26291973

  4. Modeling Brain Responses in an Arithmetic Working Memory Task

    NASA Astrophysics Data System (ADS)

    Hamid, Aini Ismafairus Abd; Yusoff, Ahmad Nazlim; Mukari, Siti Zamratol-Mai Sarah; Mohamad, Mazlyfarina; Manan, Hanani Abdul; Hamid, Khairiah Abdul

    2010-07-01

    Functional magnetic resonance imaging (fMRI) was used to investigate brain responses due to arithmetic working memory. Nine healthy young male subjects were given simple addition and subtraction instructions in noise and in quiet. The general linear model (GLM) and random field theory (RFT) were implemented in modelling the activation. The results showed that addition and subtraction evoked bilateral activation in Heschl's gyrus (HG), superior temporal gyrus (STG), inferior frontal gyrus (IFG), supramarginal gyrus (SG) and precentral gyrus (PCG). The HG, STG, SG and PCG activate higher number of voxels in noise as compared to in quiet for addition and subtraction except for IFG that showed otherwise. The percentage of signal change (PSC) in all areas is higher in quiet as compared to in noise. Surprisingly addition (not subtraction) exhibits stronger activation.

  5. Dendrimer Brain Uptake and Targeted Therapy for Brain Injury in a Large Animal Model of Hypothermic Circulatory Arrest

    PubMed Central

    2015-01-01

    Treatment of brain injury following circulatory arrest is a challenging health issue with no viable therapeutic options. Based on studies in a clinically relevant large animal (canine) model of hypothermic circulatory arrest (HCA)-induced brain injury, neuroinflammation and excitotoxicity have been identified as key players in mediating the brain injury after HCA. Therapy with large doses of valproic acid (VPA) showed some neuroprotection but was associated with adverse side effects. For the first time in a large animal model, we explored whether systemically administered polyamidoamine (PAMAM) dendrimers could be effective in reaching target cells in the brain and deliver therapeutics. We showed that, upon systemic administration, hydroxyl-terminated PAMAM dendrimers are taken up in the brain of injured animals and selectively localize in the injured neurons and microglia in the brain. The biodistribution in other major organs was similar to that seen in small animal models. We studied systemic dendrimer–drug combination therapy with two clinically approved drugs, N-acetyl cysteine (NAC) (attenuating neuroinflammation) and valproic acid (attenuating excitotoxicity), building on positive outcomes in a rabbit model of perinatal brain injury. We prepared and characterized dendrimer-NAC (D-NAC) and dendrimer-VPA (D-VPA) conjugates in multigram quantities. A glutathione-sensitive linker to enable for fast intracellular release. In preliminary efficacy studies, combination therapy with D-NAC and D-VPA showed promise in this large animal model, producing 24 h neurological deficit score improvements comparable to high dose combination therapy with VPA and NAC, or free VPA, but at one-tenth the dose, while significantly reducing the adverse side effects. Since adverse side effects of drugs are exaggerated in HCA, the reduced side effects with dendrimer conjugates and suggestions of neuroprotection offer promise for these nanoscale drug delivery systems. PMID:24499315

  6. Multistability in Large Scale Models of Brain Activity.

    PubMed

    Golos, Mathieu; Jirsa, Viktor; Daucé, Emmanuel

    2015-12-01

    Noise driven exploration of a brain network's dynamic repertoire has been hypothesized to be causally involved in cognitive function, aging and neurodegeneration. The dynamic repertoire crucially depends on the network's capacity to store patterns, as well as their stability. Here we systematically explore the capacity of networks derived from human connectomes to store attractor states, as well as various network mechanisms to control the brain's dynamic repertoire. Using a deterministic graded response Hopfield model with connectome-based interactions, we reconstruct the system's attractor space through a uniform sampling of the initial conditions. Large fixed-point attractor sets are obtained in the low temperature condition, with a bigger number of attractors than ever reported so far. Different variants of the initial model, including (i) a uniform activation threshold or (ii) a global negative feedback, produce a similarly robust multistability in a limited parameter range. A numerical analysis of the distribution of the attractors identifies spatially-segregated components, with a centro-medial core and several well-delineated regional patches. Those different modes share similarity with the fMRI independent components observed in the "resting state" condition. We demonstrate non-stationary behavior in noise-driven generalizations of the models, with different meta-stable attractors visited along the same time course. Only the model with a global dynamic density control is found to display robust and long-lasting non-stationarity with no tendency toward either overactivity or extinction. The best fit with empirical signals is observed at the edge of multistability, a parameter region that also corresponds to the highest entropy of the attractors. PMID:26709852

  7. Language Model Applications to Spelling with Brain-Computer Interfaces

    PubMed Central

    Mora-Cortes, Anderson; Manyakov, Nikolay V.; Chumerin, Nikolay; Van Hulle, Marc M.

    2014-01-01

    Within the Ambient Assisted Living (AAL) community, Brain-Computer Interfaces (BCIs) have raised great hopes as they provide alternative communication means for persons with disabilities bypassing the need for speech and other motor activities. Although significant advancements have been realized in the last decade, applications of language models (e.g., word prediction, completion) have only recently started to appear in BCI systems. The main goal of this article is to review the language model applications that supplement non-invasive BCI-based communication systems by discussing their potential and limitations, and to discern future trends. First, a brief overview of the most prominent BCI spelling systems is given, followed by an in-depth discussion of the language models applied to them. These language models are classified according to their functionality in the context of BCI-based spelling: the static/dynamic nature of the user interface, the use of error correction and predictive spelling, and the potential to improve their classification performance by using language models. To conclude, the review offers an overview of the advantages and challenges when implementing language models in BCI-based communication systems when implemented in conjunction with other AAL technologies. PMID:24675760

  8. Exercise preconditioning reduces ischemia reperfusion-induced focal cerebral infarct volume through up-regulating the expression of HIF-1α.

    PubMed

    Wang, Lu; Deng, Wenqian; Yuan, Qiongjia; Yang, Huijun

    2015-03-01

    To study the effect and mechanism of exercise preconditioning on focal cerebral ischemia reperfusion induced cerebral infarction via rat model; Sixty Sprague Dawley rats were divided into three groups at random: ischemia reperfusion group (IR, n=24), sham group (sham, n=12) and exercise preconditioning group (EP, n=24). Group EP carried out moderate exercise preconditioning for 4 weeks (swimming with non-weight bearing, 60 minutes/day, 6 days/week), Rats in Group EP and IR were established cerebral ischemia reperfusion injury model by Zea Longa's thread method. The cerebral infarct volume in rat of different group was evaluated after 2%TTC staining, expression of HIF-1α in rats' brain was detected by real-time RT-PCR, immunohistochmeistry method and western blot. No cerebral infarction and significant expression of HIF-1α in Group sham. Compared with Group IR, there was smaller infarct volume and stronger HIF-1α expression in Group EP (P<0.05). Moderate exercise preconditioning reduces ischemia reperfusion induced focal cerebral infarct volume through up-regulating the expression of HIF-1α. PMID:25796156

  9. Resveratrol attenuates brain damage in a rat model of focal cerebral ischemia via up-regulation of hippocampal Bcl-2.

    PubMed

    Li, Zhen; Pang, Liang; Fang, Fang; Zhang, Gongliang; Zhang, Jin; Xie, Min; Wang, Liecheng

    2012-04-23

    A number of studies have demonstrated that resveratrol (Res), a natural polyphenol compound found in plants, shows potent neuroprotective, anti-inflammatory and antioxidant effects; however, its ability to prevent ischemia-induced brain damage remains unclear. Here we tested whether Res played a neuroprotective role in a rat brain ischemia model induced by middle cerebral artery occlusion (MCAO). Adult male rats were randomly assigned into four experimental groups: sham operation (sham), ischemia treatment (MCAO), Res-treated MCAO (Res+MCAO) and Res alone group (Res+sham). The brain damage size and hippocampal apoptotic neurons in each rat were evaluated by triphenyltetrazolium chloride (TTC) staining and terminal deoxynucleotidyl transferase-mediated dUTP-nick end labeling (TUNEL) staining, respectively. Long-term potentiation (LTP) induced by high-frequency stimulation (HFS) in the hippocampus was assessed with extracellular recording. The expression of apoptosis-related proteins, i.e., Bcl-2 and Bax, in the hippocampus was detected by western blot. Our results revealed that Res treatment significantly reduced brain infarct volume of MCAO rats as compared to MCAO rats without Res treatment. A significant increase in TUNEL-positive neurons in the hippocampal CA1 region was visualized in the MCAO rats as compared to that of the sham group, but this increase was attenuated with Res treatment. Functionally, extracellular recordings revealed that MCAO operation impaired LTP in the hippocampal CA1 region and the basal synaptic transmission between the Schaffer collaterals, whereas Res treatment rescued the impaired LTP and facilitated synaptic transmission in the CA1 region of the MCAO rats. Res treatment increased the expression of anti-apoptotic protein Bcl-2 and decreased the expression of pro-apoptotic protein Bax in the MCAO rats. The findings suggest that Res can attenuate the deleterious effects of focal cerebral ischemia/reperfusion-induced brain injury and function as a potential neuroprotective agent. The neuroprotective qualities of Res, based on our data, may be attributable to the up-regulation of Bcl-2 expression and down-regulation of Bax expression. PMID:22410291

  10. Multispectral optoacoustic tomography of myocardial infarction

    PubMed Central

    Taruttis, Adrian; Wildgruber, Moritz; Kosanke, Katja; Beziere, Nicolas; Licha, Kai; Haag, Rainer; Aichler, Michaela; Walch, Axel; Rummeny, Ernst; Ntziachristos, Vasilis

    2012-01-01

    Objectives To investigate the feasibility of a high resolution optical imaging strategy for myocardial infarction. Background Near-infrared approaches to imaging cardiovascular disease enable visualization of disease-associated biological processes in vivo. However, even at the scale of small animals, the strong scattering of light prevents high resolution imaging after the first 1–2 mm of tissue, leading to degraded signal localization. Methods Multispectral optoacoustic tomography (MSOT) was used to non-invasively image myocardial infarction (MI) in a murine model of coronary artery ligation at resolutions not possible with current deep-tissue optical imaging methods. Post-MI imaging was based on resolving the spectral absorption signature of a dendritic polyglycerol sulfate-based (dPGS) near-infrared imaging agent targeted to P- and L-selectin. Results In vivo imaging succeeded in detection of the agent in the injured myocardium after intravenous injection. The high anatomic resolution (<200 μm) achieved by the described method allowed signals originating in the infarcted heart to be distinguished from uptake in adjacent regions. Histological analysis found dPGS signal in infarcted areas, originating from leukocytes and endothelial cells. Conclusions MSOT imaging of myocardial infarction provides non-invasive visualization of optical contrast with a high spatial resolution that is not degraded by the scattering of light. PMID:25327410

  11. Positron Spectroscopy Investigation of Normal Brain Section and Brain Section with Glioma Derived from a Rat Glioma Model

    NASA Astrophysics Data System (ADS)

    Quarles, C. A.; Ballmann, Charles; Yang, S. H.

    2009-04-01

    The application of positron annihilation lifetime spectroscopy (PALS) and Doppler broadening spectroscopy (DBS) to the study of animal or human tissue has only recently been reported. We have initiated a study of normal brain section and brain section with glioma derived from a rat glioma model. PALS lifetime runs were made with the samples soaked in formalin, and there was not significant evaporation of formalin during the runs. While early results suggested a small decrease in o-Ps pickoff lifetime between the normal brain section and brain section with glioma, further runs with additional samples have showed no statistically significant difference between the normal and tumor tissue for this type of tumor. DBS was also used to investigate the difference in positronium formation between tumor and normal tissue. Tissue samples are heterogeneous and this needs to be carefully considered if PALS and DBS are to become useful tools in distinguishing tissue samples.

  12. Transauricular embolization of the rabbit coronary artery for experimental myocardial infarction: comparison of a minimally invasive closed-chest model with open-chest surgery

    PubMed Central

    2012-01-01

    Introduction To date, most animal studies of myocardial ischemia have used open-chest models with direct surgical coronary artery ligation. We aimed to develop a novel, percutaneous, minimally-invasive, closed-chest model of experimental myocardial infarction (EMI) in the New Zealand White rabbit and compare it with the standard open-chest surgical model in order to minimize local and systemic side-effects of major surgery. Methods New Zealand White rabbits were handled in conformity with the "Guide for the Care and Use of Laboratory Animals" and underwent EMI under intravenous anesthesia. Group A underwent EMI with an open-chest method involving surgical tracheostomy, a mini median sternotomy incision and left anterior descending (LAD) coronary artery ligation with a plain suture, whereas Group B underwent EMI with a closed-chest method involving fluoroscopy-guided percutaneous transauricular intra-arterial access, superselective LAD catheterization and distal coronary embolization with a micro-coil. Electrocardiography (ECG), cardiac enzymes and transcatheter left ventricular end-diastolic pressure (LVEDP) measurements were recorded. Surviving animals were euthanized after 4 weeks and the hearts were harvested for Hematoxylin-eosin and Masson-trichrome staining. Results In total, 38 subjects underwent EMI with a surgical (n = 17) or endovascular (n = 21) approach. ST-segment elevation (1.90 ± 0.71 mm) occurred sharply after surgical LAD ligation compared to progressive ST elevation (2.01 ± 0.84 mm;p = 0.68) within 15-20 min after LAD micro-coil embolization. Increase of troponin and other cardiac enzymes, abnormal ischemic Q waves and LVEDP changes were recorded in both groups without any significant differences (p > 0.05). Infarct area was similar in both models (0.86 ± 0.35 cm in the surgical group vs. 0.92 ± 0.54 cm in the percutaneous group;p = 0.68). Conclusion The proposed model of transauricular coronary coil embolization avoids thoracotomy and major surgery and may be an equally reliable and reproducible platform for the experimental study of myocardial ischemia. PMID:22330077

  13. Agraphia caused by acute right parietal infarction.

    PubMed

    Lee, Manyong; Suh, Mee Kyung; Lee, Myung Hyun; Lee, Jin Soo; Moon, So Young

    2015-04-01

    Injury in the dominant language hemisphere typically leads to agraphia, however we report a patient with agraphia after injury to the right angular gyrus. A 71-year-old Korean woman presented with the complaint of an inability to write for the last 7 days. The patient had been illiterate for most of her life, but had started learning to write Hangul, the Korean alphabet, at a welfare center 3 years ago. On language screening she was unable to write although she could read, and other language functions showed no abnormalities. Brain MRI showed acute infarction in the right angular gyrus. Her writing patterns displayed features of surface agraphia, indicative of phoneme-to-grapheme conversion with phonetic writing of targets. Additionally, she manifested visual errors. A functional MRI indicated that her left hemisphere was language dominant. This patient experienced agraphia resulting from pure impairment of visuo-constructive function after acute infarction in the right angular gyrus. PMID:25564267

  14. Comparison of conventional risk factors in middle-aged versus elderly diabetic and nondiabetic patients with myocardial infarction: prediction with decisionanalytic model

    PubMed Central

    Mahmoodi, Mohammad Reza; Baneshi, Mohammad Reza; Rastegari, Azam

    2015-01-01

    Background: We sought to predict occurrence of myocardial infarction (MI) by means of a classification and regression tree (CART) model by conventional risk factors in middle-aged versus elderly (age ?65years) diabetic and nondiabetic patients from the Modares Heart Study. Method: A total of 469 patients were randomly selected and categorized into two groups according to clinical diabetes status. Group I consisted of 238 diabetic patients and group II consisted of 231 nondiabetic patients. Our population was MI positive. The outcome investigated was diabetes mellitus. We used a decisionanalytic model to predict the diagnosis of patients with suspected MI. Results: We constructed 4 predictive patterns using 12 input variables and 1 output variable in terms of their sensitivity, specificity and risk. The differences among patterns were due to inclusion of predictor variables. The CART model suggested different variables of hypertension, mean cell volume, fasting blood sugar, cholesterol, triglyceride and uric acid concentration based on middle-aged and elderly patients at high risk for MI. Levels of biochemical measurements identified as best risk cutoff points. In evaluating the precision of different patterns, sensitivity and specificity were 47.984.0% and 56.393.0%, respectively. Conclusions: The CART model is capable of symbolizing interpretable clinical data for confirming and better prediction of MI occurrence in clinic or in hospital. Therefore, predictor variables in pattern could affect the outcome based on age group variable. Hyperglycemia, hypertension, hyperlipidemia and hyperuricemia were serious predictors for occurrence of MI in diabetics. PMID:26623003

  15. Modeling brain circuitry over a wide range of scales.

    PubMed

    Fua, Pascal; Knott, Graham W

    2015-01-01

    If we are ever to unravel the mysteries of brain function at its most fundamental level, we will need a precise understanding of how its component neurons connect to each other. Electron Microscopes (EM) can now provide the nanometer resolution that is needed to image synapses, and therefore connections, while Light Microscopes (LM) see at the micrometer resolution required to model the 3D structure of the dendritic network. Since both the topology and the connection strength are integral parts of the brain's wiring diagram, being able to combine these two modalities is critically important. In fact, these microscopes now routinely produce high-resolution imagery in such large quantities that the bottleneck becomes automated processing and interpretation, which is needed for such data to be exploited to its full potential. In this paper, we briefly review the Computer Vision techniques we have developed at EPFL to address this need. They include delineating dendritic arbors from LM imagery, segmenting organelles from EM, and combining the two into a consistent representation. PMID:25904852

  16. Modeling brain circuitry over a wide range of scales

    PubMed Central

    Fua, Pascal; Knott, Graham W.

    2015-01-01

    If we are ever to unravel the mysteries of brain function at its most fundamental level, we will need a precise understanding of how its component neurons connect to each other. Electron Microscopes (EM) can now provide the nanometer resolution that is needed to image synapses, and therefore connections, while Light Microscopes (LM) see at the micrometer resolution required to model the 3D structure of the dendritic network. Since both the topology and the connection strength are integral parts of the brain's wiring diagram, being able to combine these two modalities is critically important. In fact, these microscopes now routinely produce high-resolution imagery in such large quantities that the bottleneck becomes automated processing and interpretation, which is needed for such data to be exploited to its full potential. In this paper, we briefly review the Computer Vision techniques we have developed at EPFL to address this need. They include delineating dendritic arbors from LM imagery, segmenting organelles from EM, and combining the two into a consistent representation. PMID:25904852

  17. Regional brain metabolism in a murine systemic lupus erythematosus model.

    PubMed

    Vo, An; Volpe, Bruce T; Tang, Chris C; Schiffer, Wynne K; Kowal, Czeslawa; Huerta, Patricio T; Ulu?, Aziz M; Dewey, Stephen L; Eidelberg, David; Diamond, Betty

    2014-08-01

    Systemic lupus erythematosus (SLE) is characterized by multiorgan inflammation, neuropsychiatric disorders (NPSLE), and anti-nuclear antibodies. We previously identified a subset of anti-DNA antibodies (DNRAb) cross-reactive with the N-methyl-D-aspartate receptor, present in 30% to 40% of patients, able to enhance excitatory post-synaptic potentials and trigger neuronal apoptosis. DNRAb+ mice exhibit memory impairment or altered fear response, depending on whether the antibody penetrates the hippocampus or amygdala. Here, we used 18F-fluorodeoxyglucose (FDG) microPET to plot changes in brain metabolism after regional blood-brain barrier (BBB) breach. In DNRAb+ mice, metabolism declined at the site of BBB breach in the first 2 weeks and increased over the next 2 weeks. In contrast, DNRAb- mice exhibited metabolic increases in these regions over the 4 weeks after the insult. Memory impairment was present in DNRAb+ animals with hippocampal BBB breach and altered fear conditioning in DNRAb+ mice with amygdala BBB breach. In DNRAb+ mice, we observed an inverse relationship between neuron number and regional metabolism, while a positive correlation was observed in DNRAb- mice. These findings suggest that local metabolic alterations in this model take place through different mechanisms with distinct time courses, with important implications for the interpretation of imaging data in SLE subjects. PMID:24824914

  18. Computational modeling of pedunculopontine nucleus deep brain stimulation

    NASA Astrophysics Data System (ADS)

    Zitella, Laura M.; Mohsenian, Kevin; Pahwa, Mrinal; Gloeckner, Cory; Johnson, Matthew D.

    2013-08-01

    Objective. Deep brain stimulation (DBS) near the pedunculopontine nucleus (PPN) has been posited to improve medication-intractable gait and balance problems in patients with Parkinson's disease. However, clinical studies evaluating this DBS target have not demonstrated consistent therapeutic effects, with several studies reporting the emergence of paresthesia and oculomotor side effects. The spatial and pathway-specific extent to which brainstem regions are modulated during PPN-DBS is not well understood. Approach. Here, we describe two computational models that estimate the direct effects of DBS in the PPN region for human and translational non-human primate (NHP) studies. The three-dimensional models were constructed from segmented histological images from each species, multi-compartment neuron models and inhomogeneous finite element models of the voltage distribution in the brainstem during DBS. Main Results. The computational models predicted that: (1) the majority of PPN neurons are activated with -3 V monopolar cathodic stimulation; (2) surgical targeting errors of as little as 1 mm in both species decrement activation selectivity; (3) specifically, monopolar stimulation in caudal, medial, or anterior PPN activates a significant proportion of the superior cerebellar peduncle (up to 60% in the human model and 90% in the NHP model at -3 V) (4) monopolar stimulation in rostral, lateral or anterior PPN activates a large percentage of medial lemniscus fibers (up to 33% in the human model and 40% in the NHP model at -3 V) and (5) the current clinical cylindrical electrode design is suboptimal for isolating the modulatory effects to PPN neurons. Significance. We show that a DBS lead design with radially-segmented electrodes may yield improved functional outcome for PPN-DBS.

  19. Model driven EEG/fMRI fusion of brain oscillations.

    PubMed

    Valdes-Sosa, Pedro A; Sanchez-Bornot, Jose Miguel; Sotero, Roberto Carlos; Iturria-Medina, Yasser; Aleman-Gomez, Yasser; Bosch-Bayard, Jorge; Carbonell, Felix; Ozaki, Tohru

    2009-09-01

    This article reviews progress and challenges in model driven EEG/fMRI fusion with a focus on brain oscillations. Fusion is the combination of both imaging modalities based on a cascade of forward models from ensemble of post-synaptic potentials (ePSP) to net primary current densities (nPCD) to EEG; and from ePSP to vasomotor feed forward signal (VFFSS) to BOLD. In absence of a model, data driven fusion creates maps of correlations between EEG and BOLD or between estimates of nPCD and VFFS. A consistent finding has been that of positive correlations between EEG alpha power and BOLD in both frontal cortices and thalamus and of negative ones for the occipital region. For model driven fusion we formulate a neural mass EEG/fMRI model coupled to a metabolic hemodynamic model. For exploratory simulations we show that the Local Linearization (LL) method for integrating stochastic differential equations is appropriate for highly nonlinear dynamics. It has been successfully applied to small and medium sized networks, reproducing the described EEG/BOLD correlations. A new LL-algebraic method allows simulations with hundreds of thousands of neural populations, with connectivities and conduction delays estimated from diffusion weighted MRI. For parameter and state estimation, Kalman filtering combined with the LL method estimates the innovations or prediction errors. From these the likelihood of models given data are obtained. The LL-innovation estimation method has been already applied to small and medium scale models. With improved Bayesian computations the practical estimation of very large scale EEG/fMRI models shall soon be possible. PMID:19107753

  20. Prioritizing the development of mouse models for childhood brain disorders.

    PubMed

    Ogden, Kevin K; Ozkan, Emin D; Rumbaugh, Gavin

    2016-01-01

    Mutations in hundreds of genes contribute to cognitive and behavioral dysfunction associated with developmental brain disorders (DBDs). Due to the sheer number of risk factors available for study combined with the cost of developing new animal models, it remains an open question how genes should be prioritized for in-depth neurobiological investigations. Recent reviews have argued that priority should be given to frequently mutated genes commonly found in sporadic DBD patients. Intrigued by this idea, we explored to what extent "high priority" risk factors have been studied in animals in an effort to assess their potential for generating valuable preclinical models capable of advancing the neurobiological understanding of DBDs. We found that in-depth whole animal studies are lacking for many high priority genes, with relatively few neurobiological studies performed in construct valid animal models aimed at understanding the pathological substrates associated with disease phenotypes. However, some high priority risk factors have been extensively studied in animal models and they have generated novel insights into DBD patho-neurobiology while also advancing early pre-clinical therapeutic treatment strategies. We suggest that prioritizing model development toward genes frequently mutated in non-specific DBD populations will accelerate the understanding of DBD patho-neurobiology and drive novel therapeutic strategies. This article is part of the Special Issue entitled 'Synaptopathy--from Biology to Therapy'. PMID:26231830

  1. A model for traumatic brain injury using laser induced shockwaves

    NASA Astrophysics Data System (ADS)

    Selfridge, A.; Preece, D.; Gomez, V.; Shi, L. Z.; Berns, M. W.

    2015-08-01

    Traumatic brain injury (TBI) represents a major treatment challenge in both civilian and military medicine; on the cellular level, its mechanisms are poorly understood. As a method to study the dysfunctional repair mechanisms following injury, laser induced shock waves (LIS) are a useful way to create highly precise, well characterized mechanical forces. We present a simple model for TBI using laser induced shock waves as a model for damage. Our objective is to develop an understanding of the processes responsible for neuronal death, the ways in which we can manipulate these processes to improve cell survival and repair, and the importance of these processes at different levels of biological organization. The physics of shock wave creation has been modeled and can be used to calculate forces acting on individual neurons. By ensuring that the impulse is in the same regime as that occurring in practical TBI, the LIS model can ensure that in vitro conditions and damage are similar to those experienced in TBI. This model will allow for the study of the biochemical response of neurons to mechanical stresses, and can be combined with microfluidic systems for cell growth in order to better isolate areas of damage.

  2. Pharmacokinetic Modeling of Non-Linear Brain Distribution of Fluvoxamine in the Rat

    PubMed Central

    Geldof, Marian; Freijer, Jan; van Beijsterveldt, Ludy

    2007-01-01

    Introduction A pharmacokinetic (PK) model is proposed for estimation of total and free brain concentrations of fluvoxamine. Materials and methods Rats with arterial and venous cannulas and a microdialysis probe in the frontal cortex received intravenous infusions of 1, 3.7 or 7.3 mg.kg−1 of fluvoxamine. Analysis With increasing dose a disproportional increase in brain concentrations was observed. The kinetics of brain distribution was estimated by simultaneous analysis of plasma, free brain ECF and total brain tissue concentrations. The PK model consists of three compartments for fluvoxamine concentrations in plasma in combination with a catenary two compartment model for distribution into the brain. In this catenary model, the mass exchange between a shallow perfusion-limited and a deep brain compartment is described by a passive diffusion term and a saturable active efflux term. Results The model resulted in precise estimates of the parameters describing passive influx into (kin) of 0.16 min−1 and efflux from the shallow brain compartment (kout) of 0.019 min−1 and the fluvoxamine concentration at which 50% of the maximum active efflux (C50) is reached of 710 ng.ml−1. The proposed brain distribution model constitutes a basis for precise characterization of the PK–PD correlation of fluvoxamine by taking into account the non-linearity in brain distribution. PMID:17710515

  3. Transcending Right Brain/Left Brain Boundaries: The Teacher as Model.

    ERIC Educational Resources Information Center

    Bump, Jerome

    One of the deepest and most debilitating schisms in the university classroom, as in life, is that between the left and right sides of the brain, reason and emotion, the head and the heart. More and more college English teachers have become aware of the value of addressing the whole brain, the whole person. Teachers set up goals and communicate…

  4. Build-a-Brain Project: Students Design and Model the Brain of an Imaginary Animal

    ERIC Educational Resources Information Center

    Demetrikopoulos, Melissa K.; Pecore, John; Rose, Jordan D.; Fobbs, Archibald J., Jr.; Johnson, John I.; Carruth, Laura L.

    2006-01-01

    The brain is a truly fascinating structure! It controls the body and allows everyone to think, learn, speak, move, feel, remember, and experience emotions. Although the brain is a single organ, it is very complex and has several regions, each having a specific function. These functionally diverse regions work together to allow for coordination of…

  5. Acute infarct selective MRI contrast agent.

    PubMed

    Kirschner, Robert; Varga-Szemes, Akos; Simor, Tamas; Suranyi, Pal; Kiss, Pal; Ruzsics, Balazs; Brott, Brigitta C; Elgavish, Ada; Elgavish, Gabriel A

    2012-02-01

    To determine the infarct affinity of a low molecular weight contrast agent, Gd(ABE-DTTA), during the subacute phase of myocardial infarct (MI). Dogs (n = 7) were examined, using a closed-chest, reperfused MI model. MI was generated by occluding for 180 min the left anterior descending (LAD) coronary artery with an angioplasty balloon. DE-MRI images with Gd(ABE-DTTA) were obtained on days 4, 14, and 28 after MI. Control DE-MRI by Gd(DTPA) was carried out on day 27. T2-TSE images were acquired on day 3, 13 and 27. Triphenyltetrazolium chloride (TTC) histomorphometry validated postmortem the existence of infarct. Gd(ABE-DTTA) highlighted the infarct on day 4, but not at all on day 14 or on day 28, following MI. On day 4, the mean ± SD signal intensity (SI) of infarcted myocardium in the presence of Gd(ABE-DTTA) significantly differed from that of healthy myocardium (45 ± 6.0 vs. 10 ± 5.0, P < 0.05), but it did not on day 14 (11 ± 9.4 vs. 10 ± 5.7, P = NS), nor on day 28 (7 ± 1.5 vs. 7 ± 2.4, P = NS). The mean ± SD signal intensity enhancement (SIE) induced by Gd(ABE-DTTA) was 386 ± 165% on day 4, significantly different from mean SIE on day 14 (9 ± 20%), and from mean SIE on day 28 (12 ± 18%), following MI (P < 0.05). The last two mean values did not differ significantly (P = NS) from each other. As control, Gd(DTPA) was used and it did highlight the infarct on day 27, inducing a mean SIE value of 312 ± 40%. The mean SIE on day 3, 13, or 27 did not vary significantly (P = NS) on the T2-TSE images (114 ± 41%, 123 ± 41%, and 150 ± 79%, respectively). Post mortem, the existence of infarcts was confirmed by TTC staining. The infarct affinity of Gd(ABE-DTTA) vanishes in the subacute phase of scar healing, allowing its use for infarct age differentiation early on, immediately following the acute phase. PMID:21336553

  6. Imaging Long-Term Fate of Intramyocardially Implanted Mesenchymal Stem Cells in a Porcine Myocardial Infarction Model

    PubMed Central

    Marini, Frank C.; Silva, Guilherme V.; Zheng, Yi; Baimbridge, Fred; Quan, Xin; Fernandes, Marlos R.; Gahremanpour, Amir; Young, Daniel; Paolillo, Vincenzo; Mukhopadhyay, Uday; Borne, Agatha T.; Uthamanthil, Rajesh; Brammer, David; Jackson, James; Decker, William K.; Najjar, Amer M.; Thomas, Michael W.; Volgin, Andrei; Rabinovich, Brian; Soghomonyan, Suren; Jeong, Hwan-Jeong; Rios, Jesse M.; Steiner, David; Robinson, Simon; Mawlawi, Osama; Pan, Tinsu; Stafford, Jason; Kundra, Vikas; Li, Chun; Alauddin, Mian M.; Willerson, James T.; Shpall, Elizabeth; Gelovani, Juri G.

    2011-01-01

    The long-term fate of stem cells after intramyocardial delivery is unknown. We used noninvasive, repetitive PET/CT imaging with [18F]FEAU to monitor the long-term (up to 5 months) spatial-temporal dynamics of MSCs retrovirally transduced with the sr39HSV1-tk gene (sr39HSV1-tk-MSC) and implanted intramyocardially in pigs with induced acute myocardial infarction. Repetitive [18F]FEAU PET/CT revealed a biphasic pattern of sr39HSV1-tk-MSC dynamics; cell proliferation peaked at 33–35 days after injection, in periinfarct regions and the major cardiac lymphatic vessels and lymph nodes. The sr39HSV1-tk-MSC–associated [18F]FEAU signals gradually decreased thereafter. Cardiac lymphography studies using PG-Gd-NIRF813 contrast for MRI and near-infrared fluorescence imaging showed rapid clearance of the contrast from the site of intramyocardial injection through the subepicardial lymphatic network into the lymphatic vessels and periaortic lymph nodes. Immunohistochemical analysis of cardiac tissue obtained at 35 and 150 days demonstrated several types of sr39HSV1-tk expressing cells, including fibro-myoblasts, lymphovascular cells, and microvascular and arterial endothelium. In summary, this study demonstrated the feasibility and sensitivity of [18F]FEAU PET/CT imaging for long-term, in-vivo monitoring (up to 5 months) of the fate of intramyocardially injected sr39HSV1-tk-MSC cells. Intramyocardially transplanted MSCs appear to integrate into the lymphatic endothelium and may help improve myocardial lymphatic system function after MI. PMID:21912635

  7. Liquid jet delivery method featuring S100A1 gene therapy in the rodent model following acute myocardial infarction.

    PubMed

    Fargnoli, A S; Katz, M G; Williams, R D; Kendle, A P; Steuerwald, N; Bridges, C R

    2016-02-01

    The S100A1 gene is a promising target enhancing contractility and survival post myocardial infarction (MI). Achieving sufficient gene delivery within safety limits is a major translational problem. This proof of concept study evaluates viral mediated S100A1 overexpression featuring a novel liquid jet delivery (LJ) method. Twenty-four rats after successful MI were divided into three groups (n=8 ea.): saline control (SA); ssAAV9.S100A1 (SS) delivery; and scAAV9.S100A1 (SC) delivery (both 1.2 × 10(11) viral particles). For each post MI rat, the LJ device fired three separate 100 μl injections into the myocardium. Following 10 weeks, all rats were evaluated with echocardiography, quantitative PCR (qPCR) and overall S100A1 and CD38 immune protein. At 10 weeks all groups demonstrated a functional decline from baseline, but the S100A1 therapy groups displayed preserved left ventricular function with significantly higher ejection fraction %; SS group (60±3) and SC group (57±4) versus saline (46±3), P<0.05. Heart qPCR testing showed robust S100A1 in the SS (10 147±3993) and SC (35 155±5808) copies per 100 ng DNA, while off-target liver detection was lower in both SS (40±40), SC (34 841±3164), respectively. Cardiac S100A1 protein expression was (4.3±0.2) and (6.1±0.3) fold higher than controls in the SS and SC groups, respectively, P<0.05. PMID:26461176

  8. Monocytes in myocardial infarction.

    PubMed

    Dutta, Partha; Nahrendorf, Matthias

    2015-05-01

    Myocardial infarction (MI) is the leading cause of death in developed countries. Though timely revascularization of the ischemic myocardium and current standard therapy reduce acute mortality after MI, long-term morbidity and mortality remain high. During the first 1 to 2 weeks after MI, tissues in the infarcted myocardium undergo rapid turnover, including digestion of extracellular matrix and fibrosis. Post-MI repair is crucial to survival. Monocytes recruited to the infarcted myocardium remove debris and facilitate the repair process. However, exaggerated inflammation may also impede healing, as demonstrated by the association between elevated white blood cell count and in-hospital mortality after MI. Monocytes produced in the bone marrow and spleen enter the blood after MI and are recruited to the injured myocardium in 2 phases. The first phase is dominated by Ly-6c(high) monocytes and the second phase by Ly-6c(low) monocytes. Yet the number of Ly6C(low) monocytes recruited to the infarct is much lower, and Ly6C(high) monocytes can differentiate to Ly6C(low) macrophages in later healing stages. Understanding the signals regulating monocytosis after MI will help design new therapies to facilitate cardiac healing and limit heart failure. PMID:25792449

  9. Bilateral renal infarction.

    PubMed

    Chung, Shiu-Dong; Yu, Hong-Jeng; Huang, Kuo-How

    2009-02-01

    A 34-year-old man was admitted for acute onset of left lower abdominal pain associated with fever. His medical history was unremarkable, and the physical examination revealed bilateral flank tenderness. Bilateral renal infarction was diagnosed and demonstrated by computed tomography. PMID:18829084

  10. Cardiac Function in a Long-Term Follow-Up Study of Moderate and Severe Porcine Model of Chronic Myocardial Infarction

    PubMed Central

    de Jong, Renate; van Hout, Gerardus P. J.; Houtgraaf, Jaco H.; Takashima, S.; Pasterkamp, Gerard; Hoefer, Imo; Duckers, Henricus J.

    2015-01-01

    Background. Novel therapies need to be evaluated in a relevant large animal model that mimics the clinical course and treatment in a reasonable time frame. To reliably assess therapeutic efficacy, knowledge regarding the translational model and the course of disease is needed. Methods. Landrace pigs were subjected to a transient occlusion of the proximal left circumflex artery (LCx) (n = 6) or mid-left anterior descending artery (LAD) (n = 6) for 150 min. Cardiac function was evaluated before by 2D echocardiography or 3D echocardiography and pressure-volume loop analysis. At 12 weeks of follow-up the heart was excised for histological analysis and infarct size calculations. Results. Directly following AMI, LVEF was severely reduced compared to baseline in the LAD group (−17.1 ± 1.6%, P = 0.009) compared to only a moderate reduction in the LCx group (−5.9 ± 1.5%, P = 0.02) and this effect remained unchanged during 12 weeks of follow-up. Conclusion. Two models of chronic MI, representative for different patient groups, can reproducibly be created through clinically relevant ischemia-reperfusion of the mid-LAD and proximal LCx. PMID:25802838

  11. Informing Pedagogy Through the Brain-Targeted Teaching Model

    PubMed Central

    Hardiman, Mariale

    2012-01-01

    Improving teaching to foster creative thinking and problem-solving for students of all ages will require two essential changes in current educational practice. First, to allow more time for deeper engagement with material, it is critical to reduce the vast number of topics often required in many courses. Second, and perhaps more challenging, is the alignment of pedagogy with recent research on cognition and learning. With a growing focus on the use of research to inform teaching practices, educators need a pedagogical framework that helps them interpret and apply research findings. This article describes the Brain-Targeted Teaching Model, a scheme that relates six distinct aspects of instruction to research from the neuro- and cognitive sciences. PMID:23653775

  12. Localized radiation necrosis model in mouse brain using proton ion beams.

    PubMed

    Kondo, Natsuko; Sakurai, Yoshinori; Takata, Takushi; Takai, Nobuhiko; Nakagawa, Yosuke; Tanaka, Hiroki; Watanabe, Tsubasa; Kume, Kyo; Toho, Taichiro; Miyatake, Shin-ichi; Suzuki, Minoru; Masunaga, Shin-ichiro; Ono, Koji

    2015-12-01

    Brain radiation necrosis is the most serious late adverse event that occurs after 6 months following radiation therapy. Effective treatment for this irreversible brain necrosis has not been established yet. This study tries to establish brain radiation necrosis mouse model using proton or helium beam. The right cerebral hemispheres of C57BL/6J mouse brains were irradiated at doses of 40, 50, 60 Gy with charged particles. In 60 Gy group, brain necrosis that recapitulates human disease was detected after 8 months. PMID:26260449

  13. Intermedin attenuates myocardial infarction through activation of autophagy in a rat model of ischemic heart failure via both cAMP and MAPK/ERK1/2 pathways

    PubMed Central

    Wei, Peng; Yang, Xiang-Jun; Fu, Qiang; Han, Bing; Ling, Lin; Bai, Jie; Zong, Bin; Jiang, Chun-Ying

    2015-01-01

    Intermedin is a proopiomelanocortin-derived peptide before opioid promoting cortical hormone, its main function embodies in mononuclear macrophages and neutrophilic granulocytes to inhibit the proinflammatory cytokines. The aim of this study is to determine intermedin attenuates myocardial infarction and its related mechanisms in a rat model of ischemic heart failure. After rat model of ischemic heart failure was set up, myocardial infarction, blood levels of activities of creatine kinase (CK), the MB isoenzyme of creatine kinase (CK-MB), lactate dehydrogenase (LDH) and cardiac troponin T (cTnT) were effectively reduced by treatment with intermedin. Tumor necrosis factor (TNF-?) and interleukin-6 (IL-6) in a rat model of ischemic heart failure were recovered by pretreatment with intermedin. Administrate of intermedin availably promoted cAMP contents and suppressed caspase-3 protein in ischemic heart failure rat. ERK1/2 and LC3 protein expression were significantly activated and autophagy was significantly promoted by intermedin in a rat model of ischemic heart failure. These results indicate that intermedin protected rat heart, attenuates myocardial infarction from ischemic heart failure in the rat model. The underlying mechanisms may include upregulation of cAMP, ERK1/2 and LC3 protein expression and activating of autophagy. PMID:26617693

  14. Different effects of tirofiban and aspirin plus clopidogrel on myocardial no‐reflow in a mini‐swine model of acute myocardial infarction and reperfusion

    PubMed Central

    Yang, Y‐J; Zhao, J‐L; You, S‐J; Wu, Y‐J; Jing, Z‐C; Yang, W‐X; Meng, L; Wang, Y‐W; Gao, R‐L

    2006-01-01

    Objective To compare the effects of an aspirin–clopidogrel combination with those of the specific glycoprotein IIb/IIIa inhibitor tirofiban on myocardial no‐reflow, nitric oxide concentration and activity of nitric oxide synthase (NOS) isoforms in a mini‐swine model of acute myocardial infarction and reperfusion. Methods Area of no‐reflow was determined by both myocardial contrast echocardiography and pathological means in 40 mini‐swine randomly assigned to five study groups: eight controls, eight pretreated with aspirin–clopidogrel combination for three days, eight given an intravenous infusion of tirofiban, eight treated with ischaemic preconditioning and eight sham operated. The acute myocardial infarction and reperfusion model was created with 3 h occlusion of the left anterior descending coronary artery followed by 1 h reperfusion. Results Compared with the control group, tirofiban significantly decreased the area of no‐reflow assessed echocardiographically and pathologically, from 78.5% to 22.8% and 82.3% to 23.2%, respectively (both p < 0.01), and increased blood nitric oxide concentration (p < 0.05), enhanced constitutive NOS activity from 0.51 to 0.81 U/mg protein and mRNA expression from 0.47% to 0.66%, but decreased inducible NOS activity from 0.76 to 0.41 U/mg protein and mRNA expression from 0.54% to 0.39% in reflow myocardium (all p < 0.05–0.01). In contrast, the aspirin–clopidogrel combination did not significantly modify the above parameters (all p > 0.05) except for decreasing inducible NOS activity from 0.76 to 0.39 U/mg protein (p < 0.01) and mRNA expression from 0.54% to 0.40% (p < 0.05). Conclusions Tirofiban is very effective in attenuating myocardial no‐reflow; in contrast, aspirin–clopidogrel combination is totally ineffective. These findings also support the concept that endothelial protection, apart from platelet inhibition, contributes to the beneficial effect of tirofiban on myocardial no‐reflow. PMID:16387825

  15. Effects of high-intensity interval versus continuous moderate-intensity aerobic exercise on apoptosis, oxidative stress and metabolism of the infarcted myocardium in a rat model.

    PubMed

    Lu, Kai; Wang, Li; Wang, Changying; Yang, Yuan; Hu, Dayi; Ding, Rongjing

    2015-08-01

    The optimal aerobic exercise training (AET) protocol for patients following myocardial infarction (MI) has remained under debate. The present study therefore aimed to compare the effects of continuous moderate-intensity training (CMT) and high-intensity interval training (HIT) on cardiac functional recovery, and to investigate the potential associated mechanisms in a post-MI rat model. Female Sprague Dawley rats (8-10 weeks old) undergoing MI or sham surgery were subsequently submitted to CMT or HIT, or kept sedentary for eight weeks. Prior to and following AET, echocardiographic parameters and exercise capacity of the rats were measured. Western blotting was used to evaluate the levels of apoptosis and associated signaling pathway protein expression. The concentrations of biomarkers of oxidative stress were also determined by ELISA assay. Messenger (m)RNA levels and activity of the key enzymes for glycolysis and fatty acid oxidation, as well as the rate of adenosine triphosphate (ATP) synthesis, were also measured. Compared with the MI group, exercise capacity and cardiac function were significantly improved following AET, particularly following HIT. Left ventricular ejection fraction and fraction shortening were further improved in the MI-HIT group in comparison to that of the MI-CMT group. The two forms of AET almost equally attenuated apoptosis of the post-infarction myocardium. CMT and HIT also alleviated oxidative stress by decreasing the concentration of malondialdehyde and increasing the concentration of superoxide dismutase and glutathione peroxidase (GPx). In particular, HIT induced a greater increase in the concentration of GPx than that of CMT. AET, and HIT in particular, significantly increased the levels of mRNA and the maximal activity of phosphofructokinase-1 and carnitine palmitoyl transferase-1, as well as the maximal ratio of ATP synthesis. In addition, compared with the MI group, the expression of signaling proteins PI3K, Akt, p38mapk and AMPK was significantly altered in the MI-CMT and MI-HIT groups. HIT was superior to CMT in its ability to improve cardiac function and exercise capability in a post-MI rat model. HIT was also superior to CMT with regard to attenuating oxidative stress and improving glucolipid metabolism of the post-MI myocardium. PMID:25936391

  16. Computational modelling for the embolization of brain arteriovenous malformations.

    PubMed

    Orlowski, Piotr; Summers, Paul; Noble, J Alison; Byrne, James; Ventikos, Yiannis

    2012-09-01

    Treatment of arteriovenous malformations (AVMs) of the brain often requires the injection of a liquid embolic material to reduce blood flow through the malformation. The type of the liquid and the location of injection have to be carefully planned in a pre-operative manner. We introduce a new model of the interaction of liquid embolic materials with blood for the simulation of their propagation and solidification in the AVM. Solidification is mimicked by an increase of the material's viscosity. Propagation is modelled by using the concept of two-fluids modelling and that of scalar transport. The method is tested on digital phantoms and on one anatomically derived patient AVM case. Simulations showed that intuitive behaviour of the two-fluid system can be confirmed and that two types of glue propagation through the malformation can be reproduced. Distinction between the two types of propagation could be used to identify fistulous and plexiform compartments composing the AVM and to characterize the solidification of the embolic material in them. PMID:22056793

  17. Traumatic Brain Injury – Modeling Neuropsychiatric Symptoms in Rodents

    PubMed Central

    Malkesman, Oz; Tucker, Laura B.; Ozl, Jessica; McCabe, Joseph T.

    2013-01-01

    Each year in the US, ∼1.5 million people sustain a traumatic brain injury (TBI). Victims of TBI can suffer from chronic post-TBI symptoms, such as sensory and motor deficits, cognitive impairments including problems with memory, learning, and attention, and neuropsychiatric symptoms such as depression, anxiety, irritability, aggression, and suicidal rumination. Although partially associated with the site and severity of injury, the biological mechanisms associated with many of these symptoms – and why some patients experience differing assortments of persistent maladies – are largely unknown. The use of animal models is a promising strategy for elucidation of the mechanisms of impairment and treatment, and learning, memory, sensory, and motor tests have widespread utility in rodent models of TBI and psychopharmacology. Comparatively, behavioral tests for the evaluation of neuropsychiatric symptomatology are rarely employed in animal models of TBI and, as determined in this review, the results have been inconsistent. Animal behavioral studies contribute to the understanding of the biological mechanisms by which TBI is associated with neurobehavioral symptoms and offer a powerful means for pre-clinical treatment validation. Therefore, further exploration of the utility of animal behavioral tests for the study of injury mechanisms and therapeutic strategies for the alleviation of emotional symptoms are relevant and essential. PMID:24109476

  18. Infantile Tubercular Meningitis With Brain Infarct.

    PubMed

    Kratimenos, Panagiotis; Koutroulis, Ioannis; Fruscione, Mike; Adigun, Hazeez; DeGroote, Richard; Fisher, Margaret C

    2016-02-01

    A previously healthy 6-month-old Asian girl presented to the emergency department (ED) after 7 to 10 days of fever of 101 to 102°F, cough, and intermittent vomiting. Pneumonia was diagnosed and successfully treated, and the patient was discharged. She returned to the ED after her mother noticed mild facial asymmetry, left upper extremity weakness, and an episode of jerkiness. The mother then revealed that both she and the child's maternal grandmother, who also lived with the patient, had suffered chronic coughs in recent months. The mother's previous chest radiograph showed pulmonary tuberculosis. The patient's magnetic resonance imaging findings were consistent with a cerebrovascular event. Positive results on cerebrospinal fluid analysis, the mother's suspicious tuberculosis-like history, and the patient's clinical symptoms pointed heavily toward a diagnosis of tuberculous meningitis. A 4-drug antituberculosis regimen with dexamethasone was instituted and scheduled to continue for 12 months. However, the patient returned to the ED 2 months later after developing an obstructive hydrocephalus. PMID:26087442

  19. Modelling of the human brain with detailed anatomy for numerical simulation of surgical interventions

    NASA Astrophysics Data System (ADS)

    Gao, Chunping; Eng Hock Tay, Francis; Nowinski, Wieslaw L.

    2006-04-01

    During the design and simulation process of MEMS medical devices used in neurosurgery, there is a need to build a brain model with detailed anatomy and physical properties incorporated as a platform to conduct numerical analysis. This paper presents a study on constructing a brain model for simulation of medical device interventions during neurosurgery. A brain atlas was utilized to develop a detailed model consisting of multiple structures. Two types of atlas model were generated employing different mesh types and biomechanical properties suited for various applications. The developed model was able to capture the detailed anatomy of the brain and reflect the application-dependant biomechanical behaviour based on material modelling of brain tissue under surgical intervention.

  20. Derivation and Validation of a Risk Standardization Model for Benchmarking Hospital Performance for Health-Related Quality of Life Outcomes after Acute Myocardial Infarction

    PubMed Central

    Arnold, Suzanne V.; Masoudi, Frederick A.; Rumsfeld, John S.; Li, Yan; Jones, Philip G.; Spertus, John A.

    2014-01-01

    Background Before outcomes-based measures of quality can be used to compare and improve care, they must be risk-standardized to account for variations in patient characteristics. Despite the importance of health-related quality of life (HRQL) outcomes among patients with acute myocardial infarction (AMI), no risk-standardized models have been developed. Methods and Results We assessed disease-specific HRQL using the Seattle Angina Questionnaire at baseline and 1 year later in 2693 unselected AMI patients from 24 hospitals enrolled in the TRIUMPH registry. Using 57 candidate sociodemographic, economic, and clinical variables present on admission, we developed a parsimonious, hierarchical linear regression model to predict HRQL. Eleven variables were independently associated with poor HRQL after AMI, including younger age, prior CABG, depressive symptoms, and financial difficulties (R2=20%). The model demonstrated excellent internal calibration and reasonable calibration in an independent sample of 1890 AMI patients in a separate registry, although the model slightly over-predicted HRQL scores in the higher deciles. Among the 24 TRIUMPH hospitals, 1-year unadjusted HRQL scores ranged from 67–89. After risk-standardization, HRQL scores variability narrowed substantially (range=79–83), and the group of hospital performance (bottom 20%/middle 60%/top 20%) changed in 14 of the 24 hospitals (58% reclassification with risk-standardization). Conclusions In this predictive model for HRQL after AMI, we identified risk factors, including economic and psychological characteristics, associated with HRQL outcomes. Adjusting for these factors substantially altered the rankings of hospitals as compared with unadjusted comparisons. Using this model to compare risk-standardized HRQL outcomes across hospitals may identify processes of care that maximize this important patient-centered outcome. PMID:24163068

  1. Longitudinal monitoring adipose-derived stem cell survival by PET imaging hexadecyl-4-{sup 124}I-iodobenzoate in rat myocardial infarction model

    SciTech Connect

    Kim, Min Hwan; Woo, Sang-Keun; Lee, Kyo Chul; An, Gwang Il; Pandya, Darpan; Park, Noh Won; Nahm, Sang-Soep; Eom, Ki Dong; Kim, Kwang Il; Lee, Tae Sup; Kim, Chan Wha; Kang, Joo Hyun; Yoo, Jeongsoo; Lee, Yong Jin

    2015-01-02

    Highlights: • We developed a safe, simple and appropriate stem cell labeling method with {sup 124}I-HIB. • ADSC survival can be monitored with PET in MI model via direct labeling. • Tracking of ADSC labeled with {sup 124}I-HIB was possible for 3 days in MI model using PET. • ADSC viability and differentiation were not affected by {sup 124}I-HIB labeling. • Survival of ADSC in living bodies can be longitudinally tracked with PET imaging. - Abstract: This study aims to monitor how the change of cell survival of transplanted adipose-derived stem cells (ADSCs) responds to myocardial infarction (MI) via the hexadecyl-4-{sup 124}I-iodobenzoate ({sup 124}I-HIB) mediated direct labeling method in vivo. Stem cells have shown the potential to improve cardiac function after MI. However, monitoring of the fate of transplanted stem cells at target sites is still unclear. Rat ADSCs were labeled with {sup 124}I-HIB, and radiolabeled ADSCs were transplanted into the myocardium of normal and MI model. In the group of {sup 124}I-HIB-labeled ADSC transplantation, in vivo imaging was performed using small-animal positron emission tomography (PET)/computed tomography (CT) for 9 days. Twenty-one days post-transplantation, histopathological analysis and apoptosis assay were performed. ADSC viability and differentiation were not affected by {sup 124}I-HIB labeling. In vivo tracking of the {sup 124}I-HIB-labeled ADSCs was possible for 9 and 3 days in normal and MI model, respectively. Apoptosis of transplanted cells increased in the MI model compared than that in normal model. We developed a direct labeling agent, {sup 124}I-HIB, and first tried to longitudinally monitor transplanted stem cell to MI. This approach may provide new insights on the roles of stem cell monitoring in living bodies for stem cell therapy from pre-clinical studies to clinical trials.

  2. Stretch in Brain Microvascular Endothelial Cells (cEND) as an In Vitro Traumatic Brain Injury Model of the Blood Brain Barrier

    PubMed Central

    Salvador, Ellaine; Neuhaus, Winfried; Foerster, Carola

    2013-01-01

    Due to the high mortality incident brought about by traumatic brain injury (TBI), methods that would enable one to better understand the underlying mechanisms involved in it are useful for treatment. There are both in vivo and in vitro methods available for this purpose. In vivo models can mimic actual head injury as it occurs during TBI. However, in vivo techniques may not be exploited for studies at the cell physiology level. Hence, in vitro methods are more advantageous for this purpose since they provide easier access to the cells and the extracellular environment for manipulation. Our protocol presents an in vitro model of TBI using stretch injury in brain microvascular endothelial cells. It utilizes pressure applied to the cells cultured in flexible-bottomed wells. The pressure applied may easily be controlled and can produce injury that ranges from low to severe. The murine brain microvascular endothelial cells (cEND) generated in our laboratory is a well-suited model for the blood brain barrier (BBB) thus providing an advantage to other systems that employ a similar technique. In addition, due to the simplicity of the method, experimental set-ups are easily duplicated. Thus, this model can be used in studying the cellular and molecular mechanisms involved in TBI at the BBB. PMID:24193450

  3. Brain Tumor Susceptibility: the Role of Genetic Factors and Uses of Mouse Models to Unravel Risk

    PubMed Central

    Reilly, Karlyne M.

    2009-01-01

    Brain tumors are relatively rare but deadly cancers, and present challenges in the determination of risk factors in the population. These tumors are inherently difficult to cure because of their protected location in the brain, with surgery, radiation and chemotherapy options carrying potentially lasting morbidity for patients and incomplete cure of the tumor. The development of methods to prevent or detect brain tumors at an early stage is extremely important to reduce damage to the brain from the tumor and the therapy. Developing effective prevention or early detection methods requires a deep understanding of the risk factors for brain tumors. This review explores the difficulties in assessing risk factors in rare diseases such as brain tumors, and discusses how mouse models of cancer can aid in a better understanding of genetic risk factors for brain tumors. PMID:19076777

  4. Model of the Brain Tumor–Pumilio translation repressor complex

    PubMed Central

    Edwards, Thomas A.; Wilkinson, Brian D.; Wharton, Robin P.; Aggarwal, Aneel K.

    2003-01-01

    The Brain Tumor (Brat) protein is recruited to the 3′ untranslated region (UTR) of hunchback mRNA to regulate its translation. Recruitment is mediated by interactions between the Pumilio RNA-binding Puf repeats and the NHL domain of Brat, a conserved structural motif present in a large family of growth regulators. In this report, we describe the crystal structure of the Brat NHL domain and present a model of the Pumilio–Brat complex derived from in silico docking experiments and supported by mutational analysis of the protein–protein interface. A key feature of the model is recognition of the outer, convex surface of the Pumilio Puf domain by the top, electropositive face of the six-bladed Brat β-propeller. In particular, an extended loop in Puf repeat 8 fits in the entrance to the central channel of the Brat β-propeller. Together, these interactions are likely to be prototypic of the recruitment strategies of other NHL-containing proteins in development. PMID:14561773

  5. Local Model of Arteriovenous Malformation of the Human Brain

    NASA Astrophysics Data System (ADS)

    Nadezhda Telegina, Ms; Aleksandr Chupakhin, Mr; Aleksandr Cherevko, Mr

    2013-02-01

    Vascular diseases of the human brain are one of the reasons of deaths and people's incapacitation not only in Russia, but also in the world. The danger of an arteriovenous malformation (AVM) is in premature rupture of pathological vessels of an AVM which may cause haemorrhage. Long-term prognosis without surgical treatment is unfavorable. The reduced impact method of AVM treatment is embolization of a malformation which often results in complete obliteration of an AVM. Pre-surgical mathematical modeling of an arteriovenous malformation can help surgeons with an optimal sequence of the operation. During investigations, the simple mathematical model of arteriovenous malformation is developed and calculated, and stationary and non-stationary processes of its embolization are considered. Various sequences of embolization of a malformation are also considered. Calculations were done with approximate steady flow on the basis of balanced equations derived from conservation laws. Depending on pressure difference, a fistula-type AVM should be embolized at first, and then small racemose AVMs are embolized. Obtained results are in good correspondence with neurosurgical AVM practice.

  6. Fractional Diffusion Based Modelling and Prediction of Human Brain Response to External Stimuli

    PubMed Central

    Kulish, Vladimir V.

    2015-01-01

    Human brain response is the result of the overall ability of the brain in analyzing different internal and external stimuli and thus making the proper decisions. During the last decades scientists have discovered more about this phenomenon and proposed some models based on computational, biological, or neuropsychological methods. Despite some advances in studies related to this area of the brain research, there were fewer efforts which have been done on the mathematical modeling of the human brain response to external stimuli. This research is devoted to the modeling and prediction of the human EEG signal, as an alert state of overall human brain activity monitoring, upon receiving external stimuli, based on fractional diffusion equations. The results of this modeling show very good agreement with the real human EEG signal and thus this model can be used for many types of applications such as prediction of seizure onset in patient with epilepsy. PMID:26089955

  7. A New Rabbit Model of Pediatric Traumatic Brain Injury.

    PubMed

    Zhang, Zhi; Saraswati, Manda; Koehler, Raymond C; Robertson, Courtney; Kannan, Sujatha

    2015-09-01

    Traumatic brain injury (TBI) is a common cause of disability in childhood, resulting in numerous physical, behavioral, and cognitive sequelae, which can influence development through the lifespan. The mechanisms by which TBI influences normal development and maturation remain largely unknown. Pediatric rodent models of TBI often do not demonstrate the spectrum of motor and cognitive deficits seen in patients. To address this problem, we developed a New Zealand white rabbit model of pediatric TBI that better mimics the neurological injury seen after TBI in children. On postnatal Day 5-7 (P5-7), rabbits were injured by a controlled cortical impact (6-mm impactor tip; 5.5 m/sec, 2-mm depth, 50-msec duration). Rabbits from the same litter served as naïve (no injury) and sham (craniotomy alone) controls. Functional abilities and activity levels were measured 1 and 5 d after injury. Maturation level was monitored daily. We performed cognitive tests during P14-24 and sacrificed the animals at 1, 3, 7, and 21 d after injury to evaluate lesion volume and microglia. TBI kits exhibited delayed achievement of normal developmental milestones. They also demonstrated significant cognitive deficits, with lower percentage of correct alternation rate in the T-maze (n=9-15/group; p<0.001) and less discrimination between novel and old objects (p<0.001). Lesion volume increased from 16% at Day 3 to 30% at Day 7 after injury, indicating ongoing secondary injury. Activated microglia were noted at the injury site and also in white matter regions of the ipsilateral and contralateral hemispheres. The neurologic and histologic changes in this model are comparable to those reported clinically. Thus, this rabbit model provides a novel platform for evaluating neuroprotective therapies in pediatric TBI. PMID:25758339

  8. Multistability in Large Scale Models of Brain Activity

    PubMed Central

    Golos, Mathieu; Jirsa, Viktor; Daucé, Emmanuel

    2015-01-01

    Noise driven exploration of a brain network’s dynamic repertoire has been hypothesized to be causally involved in cognitive function, aging and neurodegeneration. The dynamic repertoire crucially depends on the network’s capacity to store patterns, as well as their stability. Here we systematically explore the capacity of networks derived from human connectomes to store attractor states, as well as various network mechanisms to control the brain’s dynamic repertoire. Using a deterministic graded response Hopfield model with connectome-based interactions, we reconstruct the system’s attractor space through a uniform sampling of the initial conditions. Large fixed-point attractor sets are obtained in the low temperature condition, with a bigger number of attractors than ever reported so far. Different variants of the initial model, including (i) a uniform activation threshold or (ii) a global negative feedback, produce a similarly robust multistability in a limited parameter range. A numerical analysis of the distribution of the attractors identifies spatially-segregated components, with a centro-medial core and several well-delineated regional patches. Those different modes share similarity with the fMRI independent components observed in the “resting state” condition. We demonstrate non-stationary behavior in noise-driven generalizations of the models, with different meta-stable attractors visited along the same time course. Only the model with a global dynamic density control is found to display robust and long-lasting non-stationarity with no tendency toward either overactivity or extinction. The best fit with empirical signals is observed at the edge of multistability, a parameter region that also corresponds to the highest entropy of the attractors. PMID:26709852

  9. Bilateral caudate infarct--a case report.

    PubMed

    Lim, J K; Yap, K B

    1999-07-01

    Caudate strokes comprise only a small proportion of all subtypes of strokes. Bilateral caudate infarcts are even rarer and only a few cases have been reported in the literature. We report an 86-year-old woman with bilateral caudate infarcts. She had no past medical history of note. She presented with headache for several days and drowsiness on day of admission. Clinical examination revealed abulia, inability to comprehend or verbalize (acute mutism), right-sided neglect and right-sided hemiparesis. Computed tomographic (CT) scan brain revealed decreased attenuation in both heads of both caudate nuclei with extension across the anterior limb of both internal capsules to involve the lentiform nuclei. Echocardiography showed aortic valve sclerosis, mild mitral and aortic regurgitation and normal left ventricular function. Carotid ultrasound revealed mild stenosis of proximal right internal carotid and left distal common carotid and adjacent proximal internal carotid arteries. She showed initial improvement in the first week, but subsequently had a progressive downward course despite rehabilitation and died 44 days after her stroke. A patient with bilateral caudate infarcts is likely to have poor prognosis for rehabilitation and survival. PMID:10561773

  10. Perceived Neighborhood Social Cohesion and Myocardial Infarction

    PubMed Central

    Kim, Eric S.; Hawes, Armani M.; Smith, Jacqui

    2015-01-01

    Background The main strategy for alleviating heart disease has been to target individuals and encourage them to change their health behaviors. Though important, emphasis on individuals has diverted focus and responsibility away from neighborhood characteristics, which also strongly influence peoples behaviors. Although a growing body of research has repeatedly demonstrated strong associations between neighborhood characteristics and cardiovascular health, it has typically focused on negative neighborhood characteristics. Only a few studies have examined the potential health enhancing effects of positive neighborhood characteristics, such as perceived neighborhood social cohesion. Methods Using multiple logistic regression models, we tested whether higher perceived neighborhood social cohesion was associated with lower incidence of myocardial infarction. Prospective data from the Health and Retirement Studya nationally representative panel study of American adults over the age of 50were used to analyze 5,276 participants with no history of heart disease. Respondents were tracked for four years and analyses adjusted for relevant sociodemographic, behavioral, biological, and psychosocial factors. Results In a model that adjusted for age, gender, race, marital status, education, and total wealth, each standard deviation increase in perceived neighborhood social cohesion was associated with a 22% reduced odds of myocardial infarction (OR = 0.78, 95% CI, 0.630.94. The association between perceived neighborhood social cohesion and myocardial infarction remained even after adjusting for behavioral, biological, and psychosocial covariates. Conclusions Higher perceived neighborhood social cohesion may have a protective effect against myocardial infarction. PMID:25135074

  11. System Dynamics Modeling in the Evaluation of Delays of Care in ST-Segment Elevation Myocardial Infarction Patients within a Tiered Health System

    PubMed Central

    de Andrade, Luciano; Lynch, Catherine; Carvalho, Elias; Rodrigues, Clarissa Garcia; Vissoci, João Ricardo Nickenig; Passos, Guttenberg Ferreira; Pietrobon, Ricardo; Nihei, Oscar Kenji; de Barros Carvalho, Maria Dalva

    2014-01-01

    Background Mortality rates amongst ST segment elevation myocardial infarction (STEMI) patients remain high, especially in developing countries. The aim of this study was to evaluate the factors related with delays in the treatment of STEMI patients to support a strategic plan toward structural and personnel modifications in a primary hospital aligning its process with international guidelines. Methods and Findings The study was conducted in a primary hospital localized in Foz do Iguaçu, Brazil. We utilized a qualitative and quantitative integrated analysis including on-site observations, interviews, medical records analysis, Qualitative Comparative Analysis (QCA) and System Dynamics Modeling (SD). Main cause of delays were categorized into three themes: a) professional, b) equipment and c) transportation logistics. QCA analysis confirmed four main stages of delay to STEMI patient’s care in relation to the ‘Door-in-Door-out’ time at the primary hospital. These stages and their average delays in minutes were: a) First Medical Contact (From Door-In to the first contact with the nurse and/or physician): 7 minutes; b) Electrocardiogram acquisition and review by a physician: 28 minutes; c) ECG transmission and Percutaneous Coronary Intervention Center team feedback time: 76 minutes; and d) Patient’s Transfer Waiting Time: 78 minutes. SD baseline model confirmed the system’s behavior with all occurring delays and the need of improvements. Moreover, after model validation and sensitivity analysis, results suggested that an overall improvement of 40% to 50% in each of these identified stages would reduce the delay. Conclusions This evaluation suggests that investment in health personnel training, diminution of bureaucracy, and management of guidelines might lead to important improvements decreasing the delay of STEMI patients’ care. In addition, this work provides evidence that SD modeling may highlight areas where health system managers can implement and evaluate the necessary changes in order to improve the process of care. PMID:25079362

  12. Ex vivo Evans blue assessment of the blood brain barrier in three breast cancer brain metastasis models

    PubMed Central

    Do, John; Foster, Deshka; Renier, Corinne; Vogel, Hannes; Rosenblum, Sahar; Doyle, Timothy C.; Tse, Victor

    2015-01-01

    The limited entry of anticancer drugs into the central nervous system represents a special therapeutic challenge for patients with brain metastases and is primarily due to the blood brain barrier (BBB). Albumin-bound Evans blue (EB) dye is too large to cross the BBB but can grossly stain tissue blue when the BBB is disrupted. The course of tumor development and the integrity of the BBB were studied in three preclinical breast cancer brain metastasis (BCBM) models. A luciferase-transduced braintropic clone of MDA-231 cell line was used. Nude mice were subjected to stereotactic intracerebral inoculation, mammary fat pad-derived tumor fragment implantation, or carotid artery injections. EB was injected 30 min prior to euthanasia at various timepoints for each of the BCBM model animals. Serial bioluminescent imaging demonstrated exponential tumor growth in all models. Carotid BCBM appeared as diffuse multifocal cell clusters. EB aided the localization of metastases ex vivo. Tumor implants stained blue at 7 days whereas gross staining was not evident until day 14 in the stereotactic model and day 28 for the carotid model. EB assessment of the integrity of the BBB provides useful information relevant to drug testing in preclinical BCBM models. PMID:24510011

  13. Probabilistic multiobject deformable model for MR/SPECT brain image registration and segmentation

    NASA Astrophysics Data System (ADS)

    Nikou, Christophoros; Heitz, Fabrice; Armspach, Jean-Paul

    1999-05-01

    A probabilistic deformable model for the representation of brain structures is described. The statistically learned deformable model represents the relative location of head (skull and scalp) and brain surfaces in MR/SPECT images pairs and accommodates the significant variability of these anatomical structures across different individuals. To provide a training set, a representative collection of 3D MRI volumes of different patients have first been registered to a reference image. The head and brain surfaces of each volume are parameterized by the amplitudes of the vibration modes of a deformable spherical mesh. For a given MR image in the training set, a vector containing the largest vibration modes describing the head and the brain is created. This random vector is statistically constrained by retaining the most significant variations modes of its Karhunen-Loeve expansion on the training population. By these means, both head and brain surfaces are deformed according to the anatomical variability observed in the training set. Two applications of the probabilistic deformable model are presented: the deformable model-based registration of 3D multimodal (MR/SPECT) brain images and the segmentation of the brain from MRI using the probabilistic constraints embedded in the deformable model. The multi-object deformable model may be considered as a first step towards the development of a general purpose probabilistic anatomical atlas of the brain.

  14. Approaches to Modelling the Dynamical Activity of Brain Function Based on the Electroencephalogram

    NASA Astrophysics Data System (ADS)

    Liley, David T. J.; Frascoli, Federico

    The brain is arguably the quintessential complex system as indicated by the patterns of behaviour it produces. Despite many decades of concentrated research efforts, we remain largely ignorant regarding the essential processes that regulate and define its function. While advances in functional neuroimaging have provided welcome windows into the coarse organisation of the neuronal networks that underlie a range of cognitive functions, they have largely ignored the fact that behaviour, and by inference brain function, unfolds dynamically. Modelling the brain's dynamics is therefore a critical step towards understanding the underlying mechanisms of its functioning. To date, models have concentrated on describing the sequential organisation of either abstract mental states (functionalism, hard AI) or the objectively measurable manifestations of the brain's ongoing activity (rCBF, EEG, MEG). While the former types of modelling approach may seem to better characterise brain function, they do so at the expense of not making a definite connection with the actual physical brain. Of the latter, only models of the EEG (or MEG) offer a temporal resolution well matched to the anticipated temporal scales of brain (mental processes) function. This chapter will outline the most pertinent of these modelling approaches, and illustrate, using the electrocortical model of Liley et al, how the detailed application of the methods of nonlinear dynamics and bifurcation theory is central to exploring and characterising their various dynamical features. The rich repertoire of dynamics revealed by such dynamical systems approaches arguably represents a critical step towards an understanding of the complexity of brain function.

  15. Insular dwarfism in hippos and a model for brain size reduction in Homo floresiensis.

    PubMed

    Weston, Eleanor M; Lister, Adrian M

    2009-05-01

    Body size reduction in mammals is usually associated with only moderate brain size reduction, because the brain and sensory organs complete their growth before the rest of the body during ontogeny. On this basis, 'phyletic dwarfs' are predicted to have a greater relative brain size than 'phyletic giants'. However, this trend has been questioned in the special case of dwarfism of mammals on islands. Here we show that the endocranial capacities of extinct dwarf species of hippopotamus from Madagascar are up to 30% smaller than those of a mainland African ancestor scaled to equivalent body mass. These results show that brain size reduction is much greater than predicted from an intraspecific 'late ontogenetic' model of dwarfism in which brain size scales to body size with an exponent of 0.35. The nature of the proportional change or grade shift observed here indicates that selective pressures on brain size are potentially independent of those on body size. This study demonstrates empirically that it is mechanistically possible for dwarf mammals on islands to evolve significantly smaller brains than would be predicted from a model of dwarfing based on the intraspecific scaling of the mainland ancestor. Our findings challenge current understanding of brain-body allometric relationships in mammals and suggest that the process of dwarfism could in principle explain small brain size, a factor relevant to the interpretation of the small-brained hominin found on the Island of Flores, Indonesia. PMID:19424156

  16. Synchronization Tomography: Modeling and Exploring Complex Brain Dynamics

    NASA Astrophysics Data System (ADS)

    Fieseler, Thomas

    2002-03-01

    Phase synchronization (PS) plays an important role both under physiological and pathological conditions. With standard averaging techniques of MEG data, it is difficult to reliably detect cortico-cortical and cortico-muscular PS processes that are not time-locked to an external stimulus. For this reason, novel synchronization analysis techniques were developed and directly applied to MEG signals. Of course, due to the lack of an inverse modeling (i.e. source localization), the spatial resolution of this approach was limited. To detect and localize cerebral PS, we here present the synchronization tomography (ST): For this, we first estimate the cerebral current source density by means of the magnetic field tomography (MFT). We then apply the single-run PS analysis to the current source density in each voxel of the reconstruction space. In this way we study simulated PS, voxel by voxel in order to determine the spatio-temporal resolution of the ST. To this end different generators of ongoing rhythmic cerebral activity are simulated by current dipoles at different locations and directions, which are modeled by slightly detuned chaotic oscillators. MEG signals for these generators are simulated for a spherical head model and a whole-head MEG system. MFT current density solutions are calculated from these simulated signals within a hemispherical source space. We compare the spatial resolution of the ST with that of the MFT. Our results show that adjacent sources which are indistinguishable for the MFT, can nevertheless be separated with the ST, provided they are not strongly phase synchronized. This clearly demonstrates the potential of combining spatial information (i.e. source localization) with temporal information for the anatomical localization of phase synchronization in the human brain.

  17. [Bonsai induced acute myocardial infarction].

    PubMed

    Ayhan, Hüseyin; Aslan, Abdullah Nabi; Süygün, Hakan; Durmaz, Tahir

    2014-09-01

    Incidences of drug abuse and cannabis have increased in young adults, recently. Cannabis induced myocardial infarction has rarely been reported in these people. There is no any literature about a synthetic cannabinoid, being recently most popular Bonsai, to cause myocardial infarction. In this case report we presented a 33-year-old male patient who developed acute myocardial infarction after taking high doses of Bonsai. PMID:25362948

  18. Secondary SUNCT syndrome caused by dorsolateral medullary infarction.

    PubMed

    Jin, Di; Lian, Ya-Jun; Zhang, Hai-Feng

    2016-12-01

    Short-lasting unilateral neuralgiform headaches with conjunctival injection and tearing (SUNCT) is a rare headache syndrome which belongs to trigeminal autonomic cephalalgias. Though the majority of SUNCT syndrome is idiopathic, more and more cases of secondary SUNCT syndrome have been reported recently. In this study, we present a case of symptomatic SUNCT syndrome caused by acute dorsolateral medullary infarction which was verified by brain MRI(magnetic resonance imaging). Up to now, there is not absolutely effective treatment for SUNCT syndrome. However, in our case, SUNCT was completely resolved after conventional treatment for cerebral infarction without specific drug intervention. PMID:26885826

  19. Short-, middle- and long-term safety of superparamagnetic iron oxide-labeled allogeneic bone marrow stromal cell transplantation in rat model of lacunar infarction.

    PubMed

    Tan, Chengbo; Shichinohe, Hideo; Abumiya, Takeo; Nakayama, Naoki; Kazumata, Ken; Hokari, Masaaki; Hamauchi, Shuji; Houkin, Kiyohiro

    2015-06-01

    Recently, both basic and clinical studies demonstrated that bone marrow stromal cell (BMSC) transplantation therapy can promote functional recovery of patients with CNS disorders. A non-invasive method for cell tracking using MRI and superparamagnetic iron oxide (SPIO)-based labeling agents has been applied to elucidate the behavior of transplanted cells. However, the long-term safety of SPIO-labeled BMSCs still remains unclear. The aim of this study was to investigate the short-, middle- and long-term safety of the SPIO-labeled allogeneic BMSC transplantation. For this purpose, BMSCs were isolated from transgenic rats expressing green fluorescent protein (GFP) and were labeled with SPIO. The Na/K ATPase pump inhibitor ouabain or vehicle was stereotactically injected into the right striatum of wild-type rats to induce a lacunar lesion (n = 22). Seven days after the insult, either BMSCs or SPIO solution were stereotactically injected into the left striatum. A 7.0-Tesla MRI was performed to serially monitor the behavior of BMSCs in the host brain. The animals were sacrificed after 7 days (n = 7), 6 weeks (n = 6) or 10 months (n = 9) after the transplantation. MRI demonstrated that BMSCs migrated to the damage area through the corpus callosum. Histological analysis showed that activated microglia were present around the bolus of donor cells 7 days after the allogeneic cell transplantation, although an immunosuppressive drug was administered. The SPIO-labeled BMSCs resided and started to proliferate around the route of the cell transplantation. Within 6 weeks, large numbers of SPIO-labeled BMSCs reached the lacunar infarction area from the transplantation region through the corpus callosum. Some SPIO nanoparticles were phagocytized by microglia. After 10 months, the number of SPIO-positive cells was lower compared with the 7-day and 6-week groups. There was no tumorigenesis or severe injury observed in any of the animals. These findings suggest that BMSCs are safe after cell transplantation for the treatment of stroke. PMID:25376270

  20. The zebrafish heart regenerates after cryoinjury-induced myocardial infarction

    PubMed Central

    2011-01-01

    Background In humans, myocardial infarction is characterized by irreversible loss of heart tissue, which becomes replaced with a fibrous scar. By contrast, teleost fish and urodele amphibians are capable of heart regeneration after a partial amputation. However, due to the lack of a suitable infarct model, it is not known how these animals respond to myocardial infarction. Results Here, we have established a heart infarct model in zebrafish using cryoinjury. In contrast to the common method of partial resection, cryoinjury results in massive cell death within 20% of the ventricular wall, similar to that observed in mammalian infarcts. As in mammals, the initial stages of the injury response include thrombosis, accumulation of fibroblasts and collagen deposition. However, at later stages, cardiac cells can enter the cell cycle and invade the infarct area in zebrafish. In the subsequent two months, fibrotic scar tissue is progressively eliminated by cell apoptosis and becomes replaced with a new myocardium, resulting in scarless regeneration. We show that tissue remodeling at the myocardial-infarct border zone is associated with accumulation of Vimentin-positive fibroblasts and with expression of an extracellular matrix protein Tenascin-C. Electrocardiogram analysis demonstrated that the reconstitution of the cardiac muscle leads to the restoration of the heart function. Conclusions We developed a new cryoinjury model to induce myocardial infarction in zebrafish. Although the initial stages following cryoinjury resemble typical healing in mammals, the zebrafish heart is capable of structural and functional regeneration. Understanding the key healing processes after myocardial infarction in zebrafish may result in identification of the barriers to efficient cardiac regeneration in mammals. PMID:21473762

  1. STRIATOCAPSULAR INFARCTION; A SINGLE INSTITUTIONAL EXPERIENCE

    PubMed Central

    Shukir Muhammed Amin, Osama; Aziz Abdullah, Araz; Xaznadar, Amanj; Shaikhani, Mohammad

    2012-01-01

    Objective: Striatocapsular infarction is an uncommon form of deep hemispheric strokes. We analyzed the clinical presentation of this stroke to determine its core features and neurological outcome. Material and methods: This prospective, observational, short-term longitudinal study was carried out from November 1, 2009 to October 30, 2011 in the department of neurology, Sulaimaniya general teaching hospital, Iraq and involved 13 consecutive Kurdish patients who were diagnosed with striatocapsular infarction radiologically; all patients underwent routine blood tests, resting 12-lead ECG, transthoracic echocardiography, and urgent non-contrast CT brain scanning at the time of admission. All patients were reassessed clinically after 3 months. Results: Nine patients (69%) were females and 7 patients (53%) were older than 50 years of age. Infarction of the right lenticular nucleus was more common than the left one. Severe flaccid hemiplegia dominated the clinical presentation. Speech and language dysfunction were found in 4 patients (30%) while inattention and neglect were detected in 8 patients (61%). At 3 months, 4 patients were bed-ridden and 4 were wheel-chair bound; dystonia and involuntary movements did not occur. Only the patient with bilateral infarction demonstrated Parkinsonism. Conclusion: Striatocapsular infraction in Iraqi Kurdish patients was more common in females and at the right lenticular nucleus. Hypertension, smoking, and hypercholesterolemia were the commonest risk factors. Dense hemiplegia was the commonest presentation; the functional outcome was poor in the majority. After 3 months of the ischemic event, involuntary movements and dystonia were not seen, and Parkinsonism was found in one patient only. PMID:23322963

  2. Myocardial infarction after rituximab infusion.

    PubMed

    Renard, Dimitri; Cornillet, Luc; Castelnovo, Giovanni

    2013-07-01

    Myocardial infarction after rituximab or other monoclonal antibody therapies has been reported in rare cases, all in patients with classical cardiovascular risk factors or associated inflammatory or lymphoproliferative disorders. We report the case of a 52-year-old man, without classical cardiovascular risk factors or associated inflammatory or lymphoproliferative disorder, treated for seronegative myasthenia with rituximab infusions complicated by myocardial infarction. The exact origin of myocardial infarction after monoclonal antibody treatment is unclear. Myocardial infarction is a rare but possibly fatal complication of rituximab infusion, even occurring in relatively young patients, without classical risk factors and without associated inflammatory or lymphoproliferative disorder. PMID:23768984

  3. Noise in the brain: a physical network model.

    PubMed

    Haken, H

    1996-09-01

    In the brain as in any other open physical systems, noise is inevitable. We present an explicit model of an active physical system that is borrowed from laser physics and allows us to establish the properties of the fluctuating forces that cause noise in the system. It is shown how the cooperation of the individual parts of a system (atoms or neurons) can considerably reduce the noise level. In particular we determine the correlation function between the individual parts. The basic equations can be transformed in such a way that a close analogy with typical equations of neural nets are obtained. In particular, the nonlinear properties of neurons described by the sigmoid function are well captured. Propagation of excitation in axons and dendrites is represented by a linear equation, where we consider both a bandwidth filter and more or less free propagation. In the latter case, a close analogy with an equation for neural activity in the sense of Nunez and established by Jirsa and Haken is pointed out. PMID:8968847

  4. A model for genomic imprinting in the social brain: elders.

    PubMed

    Úbeda, Francisco; Gardner, Andy

    2012-05-01

    Genomic imprinting refers to the process whereby genes are silenced when inherited via sperm or egg. The most widely accepted theory for the evolution of genomic imprinting-the kinship theory-argues that conflict between maternally inherited and paternally inherited genes over phenotypes with asymmetric effects on matrilineal and patrilineal kin results in self-imposed silencing of one of the copies. This theory was originally developed in the context of fitness interactions within nuclear families, to understand intragenomic conflict in the embryo and infant, but it has recently been extended to encompass interactions within wider social groups, to understand intragenomic conflict over the social behavior of juveniles and adults. Here, we complete our model of genomic imprinting in the social brain by considering age-specific levels of expression in a society were generations overlap, to determine how intragenomic conflict plays out in older age. We determine the role of sex bias in juvenile dispersal, reproductive success, and adult mortality in mediating the direction and intensity of conflict over the competing demands of parental and communal care as the individual ages. We discover that sex-specific asymmetries in these demographic parameters result in intragenomic conflict at early age but this conflict gradually decays with age. Although individuals are riven by internal conflict in their youth and middle age, they put their demons to rest in later life. PMID:22519791

  5. Modeling localized delivery of Doxorubicin to the brain following focused ultrasound enhanced blood-brain barrier permeability

    NASA Astrophysics Data System (ADS)

    Nhan, Tam; Burgess, Alison; Lilge, Lothar; Hynynen, Kullervo

    2014-10-01

    Doxorubicin (Dox) is a well-established chemotherapeutic agent, however it has limited efficacy in treating brain malignancies due to the presence of the blood-brain barrier (BBB). Recent preclinical studies have demonstrated that focused ultrasound induced BBB disruption (BBBD) enables efficient delivery of Dox to the brain. For future treatment planning of BBBD-based drug delivery, it is crucial to establish a mathematical framework to predict the effect of transient BBB permeability enhancement on the spatiotemporal distribution of Dox at the targeted area. The constructed model considers Dox concentrations within three compartments (plasma, extracellular, intracellular) that are governed by various transport processes (e.g. diffusion in interstitial space, exchange across vessel wall, clearance by cerebral spinal fluid, uptake by brain cells). By examining several clinical treatment aspects (e.g. sonication scheme, permeability enhancement, injection mode), our simulation results support the experimental findings of optimal interval delay between two consecutive sonications and therapeutically-sufficient intracellular concentration with respect to transfer constant Ktrans range of 0.01-0.03 min-1. Finally, the model suggests that infusion over a short duration (20-60 min) should be employed along with single-sonication or multiple-sonication at 10 min interval to ensure maximum delivery to the intracellular compartment while attaining minimal cardiotoxicity via suppressing peak plasma concentration.

  6. A Mathematical Model to Elucidate Brain Tumor Abrogation by Immunotherapy with T11 Target Structure

    PubMed Central

    Chaudhuri, Swapna

    2015-01-01

    T11 Target structure (T11TS), a membrane glycoprotein isolated from sheep erythrocytes, reverses the immune suppressed state of brain tumor induced animals by boosting the functional status of the immune cells. This study aims at aiding in the design of more efficacious brain tumor therapies with T11 target structure. We propose a mathematical model for brain tumor (glioma) and the immune system interactions, which aims in designing efficacious brain tumor therapy. The model encompasses considerations of the interactive dynamics of glioma cells, macrophages, cytotoxic T-lymphocytes (CD8+ T-cells), TGF-β, IFN-γ and the T11TS. The system undergoes sensitivity analysis, that determines which state variables are sensitive to the given parameters and the parameters are estimated from the published data. Computer simulations were used for model verification and validation, which highlight the importance of T11 target structure in brain tumor therapy. PMID:25955428

  7. Genetic deletion of neuronal pentraxin 1 expression prevents brain injury in a neonatal mouse model of cerebral hypoxia-ischemia

    PubMed Central

    Thatipamula, Shabarish; Rahim, Md Al; Zhang, Jiangyang; Hossain, Mir Ahamed

    2015-01-01

    Neonatal hypoxic-ischemic (HI) brain injury is a leading cause of mortality and morbidity in infants and children for which there is no promising therapy at present. Previously, we reported induction of neuronal pentraxin 1 (NP1), a novel neuronal protein of the long-pentraxin family, following HI injury in neonatal brain. Here, we report that genetic deletion of NP1 expression prevents HI injury in neonatal brain. Elevated expression of NP1 was observed in neurons, not in astrocytes, of the ipsilateral cortical layers (I–IV) and in the hippocampal CA1 and CA3 areas of WT brains following hypoxia-ischemia; brain areas that developed infarcts (at 24–48 h), showed significantly increased numbers of TUNEL-(+) cells and tissue loss (at 7 d). In contrast, NP1-KO mice showed no evidence of brain infarction and tissue loss after HI. The immunofluorescence staining of brain sections with mitochondrial protein COX IV and subcellular fractionation analysis showed increased accumulation of NP1 in mitochondria, pro-death protein Bax activation and NP1 co-localization with activated caspase-3 in WT, but not in the NP1-KO brains; corroborating NP1 interactions with the mitochondria-derived pro-death pathways. Disruption of NP1 translocation to mitochondria by NP1-siRNA in primary cortical cultures significantly reduced ischemic neuronal death. NP1 was immunoprecipitated with activated Bax[6A7] proteins; HI caused increased interactions of NP1 with Bax, thereby, facilitating Bax translocation to mitochondrial and neuronal death. To further delineate the specificity of NPs, we found that NP1 but not the NP2 induction is specifically involved in brain injury mechanisms and that knockdown of NP1 only results in neuroprotection. Furthermore, live in vivo T2-weighted magnetic resonance imaging (MRI) including fractional anisotropy (FA) mapping showed no sign of delayed brain injury or tissue loss in the NP1-KO mice as compared to the WT at different post-HI periods (4–24 weeks), examined; indicating a long-term neuroprotective efficacy of NP1 gene deletion. Collectively, our results demonstrate a novel mechanism of neuronal death and predict that inhibition of NP1 expression is a promising strategy to prevent hypoxic-ischemic injury in immature brain. PMID:25554688

  8. Myocardin-related transcription factor-A-overexpressing bone marrow stem cells protect cardiomyocytes and alleviate cardiac damage in a rat model of acute myocardial infarction.

    PubMed

    Zhong, Ze; Hu, Jia-Qing; Wu, Xin-Dong; Sun, Yong; Jiang, Jun

    2015-09-01

    Myocardin-related transcription factor-A (MRTF-A) can transduce biomechanical and humoral signals, which can positively modulate cardiac damage induced by acute myocardial infarction (AMI). In the clinic, bone marrow stem cell (BMSC) therapy is being increasingly utilized for AMI; however, the effects of BMSC transplantation remain to be optimized. Therefore, a novel strategy to enhance BMSC‑directed myocardial repair is particularly important. The present study was performed to assess the efficacy of MRTF‑A-overexpressing BMSCs in a rat model of AMI. Primary cardiomyocytes were prepared from neonatal Sprague-Dawley rats and BMSCs were isolated from male Sprague-Dawley rats (aged 8-12 weeks). Annexin V-phycoerythrin/7-actinomycin D staining was used to evaluate BMSC and cardiomyocyte survival after exposure to hydrogen peroxide in vitro. B-cell lymphoma 2 (Bcl-2) protein expression was measured by flow cytometric and western blot analyses. The effects of MRTF-A‑overexpressing BMSCs in a rat model of AMI were investigated by hematoxylin and eosin staining and western blot analysis of Bcl-2 expression in myocardial tissue sections. MRTF-A enhanced the migration of BMSCs, and overexpression of MRTF-A in BMSCs prevented hydrogen peroxide-induced apoptosis in primary cardiomyocytes ex vivo. In addition, co-culture of cardiomyocytes with MRTF‑A-overexpressing BMSCs inhibited hydrogen peroxide-induced apoptosis and the enhanced expression of Bcl-2. Furthermore, in vivo, enhanced cell survival was observed in the MRTF-A-modified BMSC group compared with that in the control group. These observations indicated that MRTF-A-overexpressing BMSCs have the potential to exert cardioprotective effects against hydrogen peroxide-induced injury and that treatment with MRTF‑A‑modified BMSCs is able to reverse cardiac dysfunction after AMI. PMID:26135208

  9. Cardiac rehabilitation using the Family-Centered Empowerment Model versus home-based cardiac rehabilitation in patients with myocardial infarction: a randomised controlled trial

    PubMed Central

    Vahedian-Azimi, Amir; Hajiesmaieli, Mohammadreza; Kangasniemi, Mari; Alhani, Fatemah; Jelvehmoghaddam, Hosseinali; Fathi, Mohammad; Farzanegan, Behrooz; Ardehali, Seyed H; Hatamian, Sevak; Gahremani, Mehdi; Mosavinasab, Seyed M M; Rostami, Zohreh; Madani, Seyed J; Izadi, Morteza

    2016-01-01

    Objective To determine if a hybrid cardiac rehabilitation (CR) programme using the Family-Centered Empowerment Model (FCEM) as compared with standard CR will improve patient quality of life, perceived stress and state anxiety of patients with myocardial infarction (MI). Methods We conducted a randomised controlled trial in which patients received either standard home CR or CR using the FCEM strategy. Patient empowerment was measured with FCEM questionnaires preintervention and postintervention for a total of 9 assessments. Quality of life, perceived stress, and state and trait anxiety were assessed using the 36-Item Short Form Health Survey (SF-36), the 14-item Perceived Stress, and the 20-item State and 20-item Trait Anxiety questionnaires, respectively. Results 70 patients were randomised. Baseline characteristics were similar. Ejection fraction was significantly higher in the intervention group at measurements 2 (p=0.01) and 3 (p=0.001). Exercise tolerance measured as walking distance was significantly improved in the intervention group throughout the study. The quality of life results in the FCEM group showed significant improvement both within the group over time (p<0.0001) and when compared with control (p<0.0001). Similarly, the perceived stress and state anxiety results showed significant improvement both within the FCEM group over time (p<0.0001) and when compared with control (p<0.0001). No significant difference was found either within or between groups for trait anxiety. Conclusions The family-centred empowerment model may be an effective hybrid cardiac rehabilitation method for improving the physical and mental health of patients post-MI; however, further study is needed to validate these findings. Clinical Trials.gov identifier NCT02402582. Trial registration number NCT02402582. PMID:27110376

  10. Neuroimaging of cortical development and brain connectivity in human newborns and animal models

    PubMed Central

    Lodygensky, Gregory A; Vasung, Lana; Sizonenko, Stéphane V; Hüppi, Petra S

    2010-01-01

    Significant human brain growth occurs during the third trimester, with a doubling of whole brain volume and a fourfold increase of cortical gray matter volume. This is also the time period during which cortical folding and gyrification take place. Conditions such as intrauterine growth restriction, prematurity and cerebral white matter injury have been shown to affect brain growth including specific structures such as the hippocampus, with subsequent potentially permanent functional consequences. The use of 3D magnetic resonance imaging (MRI) and dedicated postprocessing tools to measure brain tissue volumes (cerebral cortical gray matter, white matter), surface and sulcation index can elucidate phenotypes associated with early behavior development. The use of diffusion tensor imaging can further help in assessing microstructural changes within the cerebral white matter and the establishment of brain connectivity. Finally, the use of functional MRI and resting-state functional MRI connectivity allows exploration of the impact of adverse conditions on functional brain connectivity in vivo. Results from studies using these methods have for the first time illustrated the structural impact of antenatal conditions and neonatal intensive care on the functional brain deficits observed after premature birth. In order to study the pathophysiology of these adverse conditions, MRI has also been used in conjunction with histology in animal models of injury in the immature brain. Understanding the histological substrate of brain injury seen on MRI provides new insights into the immature brain, mechanisms of injury and their imaging phenotype. PMID:20979587

  11. Neuroimaging of cortical development and brain connectivity in human newborns and animal models.

    PubMed

    Lodygensky, Gregory A; Vasung, Lana; Sizonenko, Stéphane V; Hüppi, Petra S

    2010-10-01

    Significant human brain growth occurs during the third trimester, with a doubling of whole brain volume and a fourfold increase of cortical gray matter volume. This is also the time period during which cortical folding and gyrification take place. Conditions such as intrauterine growth restriction, prematurity and cerebral white matter injury have been shown to affect brain growth including specific structures such as the hippocampus, with subsequent potentially permanent functional consequences. The use of 3D magnetic resonance imaging (MRI) and dedicated postprocessing tools to measure brain tissue volumes (cerebral cortical gray matter, white matter), surface and sulcation index can elucidate phenotypes associated with early behavior development. The use of diffusion tensor imaging can further help in assessing microstructural changes within the cerebral white matter and the establishment of brain connectivity. Finally, the use of functional MRI and resting-state functional MRI connectivity allows exploration of the impact of adverse conditions on functional brain connectivity in vivo. Results from studies using these methods have for the first time illustrated the structural impact of antenatal conditions and neonatal intensive care on the functional brain deficits observed after premature birth. In order to study the pathophysiology of these adverse conditions, MRI has also been used in conjunction with histology in animal models of injury in the immature brain. Understanding the histological substrate of brain injury seen on MRI provides new insights into the immature brain, mechanisms of injury and their imaging phenotype. PMID:20979587

  12. Allostasis and the Human Brain: Integrating Models of Stress from the Social and Life Sciences

    ERIC Educational Resources Information Center

    Ganzel, Barbara L.; Morris, Pamela A.; Wethington, Elaine

    2010-01-01

    We draw on the theory of allostasis to develop an integrative model of the current stress process that highlights the brain as a dynamically adapting interface between the changing environment and the biological self. We review evidence that the core emotional regions of the brain constitute the primary mediator of the well-established association…

  13. Using Structural Equation Modeling to Assess Functional Connectivity in the Brain: Power and Sample Size Considerations

    ERIC Educational Resources Information Center

    Sideridis, Georgios; Simos, Panagiotis; Papanicolaou, Andrew; Fletcher, Jack

    2014-01-01

    The present study assessed the impact of sample size on the power and fit of structural equation modeling applied to functional brain connectivity hypotheses. The data consisted of time-constrained minimum norm estimates of regional brain activity during performance of a reading task obtained with magnetoencephalography. Power analysis was first…

  14. NeuroGPS: automated localization of neurons for brain circuits using L1 minimization model.

    PubMed

    Quan, Tingwei; Zheng, Ting; Yang, Zhongqing; Ding, Wenxiang; Li, Shiwei; Li, Jing; Zhou, Hang; Luo, Qingming; Gong, Hui; Zeng, Shaoqun

    2013-01-01

    Drawing the map of neuronal circuits at microscopic resolution is important to explain how brain works. Recent progresses in fluorescence labeling and imaging techniques have enabled measuring the whole brain of a rodent like a mouse at submicron-resolution. Considering the huge volume of such datasets, automatic tracing and reconstruct the neuronal connections from the image stacks is essential to form the large scale circuits. However, the first step among which, automated location the soma across different brain areas remains a challenge. Here, we addressed this problem by introducing L1 minimization model. We developed a fully automated system, NeuronGlobalPositionSystem (NeuroGPS) that is robust to the broad diversity of shape, size and density of the neurons in a mouse brain. This method allows locating the neurons across different brain areas without human intervention. We believe this method would facilitate the analysis of the neuronal circuits for brain function and disease studies. PMID:23546385

  15. MicroRNA-214 Inhibits Left Ventricular Remodeling in an Acute Myocardial Infarction Rat Model by Suppressing Cellular Apoptosis via the Phosphatase and Tensin Homolog (PTEN).

    PubMed

    Yang, Xingwei; Qin, Yanjun; Shao, Suxia; Yu, Yueqing; Zhang, Chongyang; Dong, Hua; Lv, Guangwei; Dong, Shimin

    2016-03-22

    The aims of the present study were to determine the role of miR-214 on left ventricular remodeling of rat heart with acute myocardial infarction (AMI) and to further investigate the underlying mechanism of miR-214-mediated myocardial protection. AMI was induced in which adenovirus-expressing miR-214 (Ad-miR-214), anti-miR-214, or Ad-GFP had been delivered into rats hearts 4 days prior, while a phosphatase and tensin homolog (PTEN) inhibitor was administered via intra-peritoneal injection 30 minutes prior to AMI. Changes in hemodynamic parameters were detected and recorded. Left ventricular (LV) dimensions and LV/BW were measured. Quantitative RT-PCR was used to determine the miR-214 expression levels of the myocytes in the infarcted, border, and non-infarcted areas of the LV. Myocardial infarct size was also measured. Flow cytometry analysis was performed to examine cellular apoptosis. Western blot analysis was performed to examine PTEN expression. The results showed that miR-214 was upregulated in both border and infarcted areas. Myocardial cell apoptosis was decreased in the Ad-miR-214 group, but was increased in the anti-miR-214 group, while there were no differences among the Ad-GFP-group, PTEN-ad-miR-214 group, or PTEN-anti-miR-214 group. Myocardial infarct size, LV dimensions, heart rate (HR), and LV end-diastolic pressure (LVEDP) were decreased while the maximal rates of rise or decline in blood pressure in the ventricular chamber (± dp/dt) and LV systolic pressure (LVSP) were increased in the Ad-miR-214 group, all of which exhibited opposite changes in the anti-miR-214 group. PTEN was downregulated in the Ad-miR-214 group and upregulated in the anti-miR-214 group. PTEN was decreased in both the border and infarcted areas compared with non-infarcted areas. The study results suggest that Ad-miR-214 improves LV remodeling and decreases the apoptosis of myocardial cells through PTEN, suggesting a possible mechanism by which Ad-miR-214 functions in protecting against AMI injury. PMID:26973267

  16. Positron Spectroscopy Investigation of Normal Brain Section and Brain Section with Glioma Derived from a Rat Glioma Model

    SciTech Connect

    Yang, SH.; Ballmann, C.; Quarles, C. A.

    2009-03-10

    The application of positron annihilation lifetime spectroscopy (PALS) and Doppler broadening spectroscopy (DBS) to the study of animal or human tissue has only recently been reported [G. Liu, et al. phys. stat. sol. (C) 4, Nos. 10, 3912-3915 (2007)]. We have initiated a study of normal brain section and brain section with glioma derived from a rat glioma model. For the rat glioma model, 200,000 C6 cells were implanted in the basal ganglion of adult Sprague Dawley rats. The rats were sacrificed at 21 days after implantation. The brains were harvested, sliced into 2 mm thick coronal sections, and fixed in 4% formalin. PALS lifetime runs were made with the samples soaked in formalin, and there was not significant evaporation of formalin during the runs. The lifetime spectra were analyzed into two lifetime components. While early results suggested a small decrease in ortho-Positronium (o-Ps) pickoff lifetime between the normal brain section and brain section with glioma, further runs with additional samples have showed no statistically significant difference between the normal and tumor tissue for this type of tumor. The o-Ps lifetime in formalin alone was lower than either the normal tissue or glioma sample. So annihilation in the formalin absorbed in the samples would lower the o-Ps lifetime and this may have masked any difference due to the glioma itself. DBS was also used to investigate the difference in positronium formation between tumor and normal tissue. Tissue samples are heterogeneous and this needs to be carefully considered if PALS and DBS are to become useful tools in distinguishing tissue samples.

  17. Task-Driven Activity Reduces the Cortical Activity Space of the Brain: Experiment and Whole-Brain Modeling

    PubMed Central

    Hagmann, Patric; Deco, Gustavo

    2015-01-01

    How a stimulus or a task alters the spontaneous dynamics of the brain remains a fundamental open question in neuroscience. One of the most robust hallmarks of task/stimulus-driven brain dynamics is the decrease of variability with respect to the spontaneous level, an effect seen across multiple experimental conditions and in brain signals observed at different spatiotemporal scales. Recently, it was observed that the trial-to-trial variability and temporal variance of functional magnetic resonance imaging (fMRI) signals decrease in the task-driven activity. Here we examined the dynamics of a large-scale model of the human cortex to provide a mechanistic understanding of these observations. The model allows computing the statistics of synaptic activity in the spontaneous condition and in putative tasks determined by external inputs to a given subset of brain regions. We demonstrated that external inputs decrease the variance, increase the covariances, and decrease the autocovariance of synaptic activity as a consequence of single node and large-scale network dynamics. Altogether, these changes in network statistics imply a reduction of entropy, meaning that the spontaneous synaptic activity outlines a larger multidimensional activity space than does the task-driven activity. We tested this model’s prediction on fMRI signals from healthy humans acquired during rest and task conditions and found a significant decrease of entropy in the stimulus-driven activity. Altogether, our study proposes a mechanism for increasing the information capacity of brain networks by enlarging the volume of possible activity configurations at rest and reliably settling into a confined stimulus-driven state to allow better transmission of stimulus-related information. PMID:26317432

  18. 3D brain atlas reconstructor service--online repository of three-dimensional models of brain structures.

    PubMed

    Majka, Piotr; Kowalski, Jakub M; Chlodzinska, Natalia; Wójcik, Daniel K

    2013-10-01

    Brain atlases are important tools of neuroscience. Traditionally prepared in paper book format, more and more commonly they take digital form which extends their utility. To simplify work with different atlases, to lay the ground for developing universal tools which could abstract from the origin of the atlas, efforts are being made to provide common interfaces to these atlases. 3D Brain Atlas Reconstructor service (3dBARs) described here is a repository of digital representations of different brain atlases in CAF format which we recently proposed and a repository of 3D models of brain structures. A graphical front-end is provided for creating and viewing the reconstructed models as well as the underlying 2D atlas data. An application programming interface (API) facilitates programmatic access to the service contents from other websites. From a typical user's point of view, 3dBARs offers an accessible way to mine publicly available atlasing data with a convenient browser based interface, without the need to install extra software. For a developer of services related to brain atlases, 3dBARs supplies mechanisms for enhancing functionality of other software. The policy of the service is to accept new datasets as delivered by interested parties and we work with the researchers who obtain original data to make them available to the neuroscience community at large. The functionality offered by the 3dBARs situates it at the core of present and future general atlasing services tying it strongly to the global atlasing neuroinformatics infrastructure. PMID:23943281

  19. Positron Spectroscopy Investigation of Normal Brain Section and Brain Section with Glioma Derived from a Rat Glioma Model

    NASA Astrophysics Data System (ADS)

    Yang, SH.; Ballmann, C.; Quarles, C. A.

    2009-03-01

    The application of positron annihilation lifetime spectroscopy (PALS) and Doppler broadening spectroscopy (DBS) to the study of animal or human tissue has only recently been reported [G. Liu, et al. phys. stat. sol. (C) 4, Nos. 10, 3912-3915 (2007)]. We have initiated a study of normal brain section and brain section with glioma derived from a rat glioma model. For the rat glioma model, 200,000 C6 cells were implanted in the basal ganglion of adult Sprague Dawley rats. The rats were sacrificed at 21 days after implantation. The brains were harvested, sliced into 2 mm thick coronal sections, and fixed in 4% formalin. PALS lifetime runs were made with the samples soaked in formalin, and there was not significant evaporation of formalin during the runs. The lifetime spectra were analyzed into two lifetime components. While early results suggested a small decrease in ortho-Positronium (o-Ps) pickoff lifetime between the normal brain section and brain section with glioma, further runs with additional samples have showed no statistically significant difference between the normal and tumor tissue for this type of tumor. The o-Ps lifetime in formalin alone was lower than either the normal tissue or glioma sample. So annihilation in the formalin absorbed in the samples would lower the o-Ps lifetime and this may have masked any difference due to the glioma itself. DBS was also used to investigate the difference in positronium formation between tumor and normal tissue. Tissue samples are heterogeneous and this needs to be carefully considered if PALS and DBS are to become useful tools in distinguishing tissue samples.

  20. An in vitro model for the assessment of stem cell fate following implantation within the infarct microenvironment identifies ISL-1 expression as the strongest predictor of c-Kit(+) cardiac progenitor cells' therapeutic potential.

    PubMed

    Sullivan, Kelly E; Burns, Laura J; Black, Lauren D

    2015-11-01

    Cell therapy has the potential to drastically improve clinical outcomes for the 1.45 million patients suffering from a myocardial infarction (MI) each year in the U.S. However, the limitations associated with this treatment - including poor engraftment, significant cell death and poor differentiation potential - have prevented its widespread application clinically. To optimize functional improvements provided by transplanted cells, there is a need to develop methods that increase cellular retention and viability, while supporting differentiation and promoting paracrine signaling. Current in vivo models are expensive, difficult to access and manipulate and are time consuming. We have developed an in vitro model of MI which allows for a straightforward, consistent and relatively accurate prediction of cell fate following injection in vivo. The model demonstrated how the infarct environment impairs cellular engraftment and differentiation, but identified an implantation strategy which enhanced cell fate in vitro. Multivariate linear regression identified variables within the model that regulated vascular differentiation potential including oxygen tension, stiffness and cytokine presence, while cardiac differentiation was more accurately predicted by Isl-1 expression in the original cell isolate than any other variable present within the model system. The model highlighted how the cells' sensitivity to the infarct variables varied from line to line, which emphasizes the importance of the model system for the prediction of cell fate on a patient specific basis. Further development of this model system could help predict the clinical efficacy of cardiac progenitor cell therapy at the patient level as well as identify the optimal strategy for cell delivery. PMID:26393440

  1. Mammalian Cardiac Regeneration After Fetal Myocardial Infarction Requires Cardiac Progenitor Cell Recruitment

    PubMed Central

    Allukian, Myron; Xu, Junwang; Morris, Michael; Caskey, Robert; Dorsett-Martin, Wanda; Plappert, Theodore; Griswold, Michael; Gorman, Joseph H.; Gorman, Robert C.; Liechty, Kenneth W.

    2013-01-01

    Background In contrast to the adult, fetal sheep consistently regenerate functional myocardium after myocardial infarction. We hypothesize that this regeneration is due to the recruitment of cardiac progenitor cells to the infarct by stromal-derived factor-1α (SDF-1α) and that its competitive inhibition will block the regenerative fetal response. Methods A 20% apical infarct was created in adult and fetal sheep by selective permanent coronary artery ligation. Lentiviral overexpression of mutant SDF-1α competitively inhibited SDF-1α in fetal infarcts. Echocardiography was performed to assess left ventricular function and infarct size. Cardiac progenitor cell recruitment and proliferation was assessed in fetal infarcts at 1 month by immunohistochemistry for nkx2.5 and 5-bromo-2-deoxyuridine. Results Competitive inhibition of SDF-1α converted the regenerative fetal response into a reparative response, similar to the adult. SDF-inhibited fetal infarcts demonstrated significant infarct expansion by echocardiography (p < 0.001) and a significant decrease in the number of nkx2.5+ cells repopulating the infarct (p < 0.001). Conclusions The fetal regenerative response to myocardial infarction requires the recruitment of cardiac progenitor cells and is dependent on SDF1α. This novel model of mammalian cardiac regeneration after myocardial infarction provides a powerful tool to better understand cardiac progenitor cell biology and to develop strategies to cardiac regeneration in the adult. PMID:23816072

  2. Cerebral infarction secondary to vasospasm after perimesencephalic subarachnoid hemorrhage.

    PubMed

    Fernandez, A; Bond, R L; Aziz-Sultan, M A; Olvey, S E; Mangat, H S

    2011-07-01

    Perimesencephalic subarachnoid hemorrhage (pSAH) has been described as a distinct form of subarachnoid hemorrhage (SAH) associated with good outcomes. We report a 48-year-old female who developed cerebral infarction due to severe diffuse vasospasm following pSAH. The patient presented with non-aneurysmal pSAH and was discharged home on day 5. However, one week later she developed an acute onset of right hemiparesis. A brain MRI showed acute infarctions on diffusion weighted imaging and her cerebral angiogram showed diffuse vasospasm. The patient received intra-arterial diltiazem and hypervolemic-hypertensive-hemodilution therapy with resulting resolution of the vasospasm and hemiparesis. While not as common as in SAH, there is a potential for the occurrence of cerebral infarction due to vasospasm after pSAH. PMID:21565507

  3. Head and brain response to blast using sagittal and transverse finite element models.

    PubMed

    Singh, Dilaver; Cronin, Duane S; Haladuick, Tyler N

    2014-04-01

    Mild traumatic brain injury caused by blast exposure from Improvised Explosive Devices has become increasingly prevalent in modern conflicts. To investigate head kinematics and brain tissue response in blast scenarios, two solid hexahedral blast-head models were developed in the sagittal and transverse planes. The models were coupled to an Arbitrary Lagrangian-Eulerian model of the surrounding air to model blast-head interaction, for three blast load cases (5 kg C4 at 3, 3.5 and 4 m). The models were validated using experimental kinematic data, where predicted accelerations were in good agreement with experimental tests, and intracranial pressure traces at four locations in the brain, where the models provided good predictions for frontal, temporal and parietal, but underpredicted pressures at the occipital location. Brain tissue response was investigated for the wide range of constitutive properties available. The models predicted relatively low peak principal brain tissue strains from 0.035 to 0.087; however, strain rates ranged from 225 to 571 s-1. Importantly, these models have allowed us to quantify expected strains and strain rates experienced in brain tissue, which can be used to guide future material characterization. These computationally efficient and predictive models can be used to evaluate protection and mitigation strategies in future analysis. PMID:24293124

  4. PDT-induced apoptosis: investigations using two malignant brain tumor models

    NASA Astrophysics Data System (ADS)

    Lilge, Lothar D.; Menzies, Keir; Bisland, Stuart K.; Lin, Annie; Wilson, Brian C.

    2002-06-01

    PDT included necrosis in brain tissue and an intracranial tumor has been quantified for various photosensitizers, and it has been shown to be dependent on the sub-cellular localization of these photosensitizers. In quantifying non- necrotic biological endpoints, such as PDT induced apoptosis, the expression and translation of apoptosis inhibiting or promoting genes is of considerable importance. We studied the susceptibility of two glioblastoma cell lines to under go apoptotic cell death following photodynamic treatment with either Photofrin or delta-aminolevulinic acid (delta) ALA) in vivo. Murine 9L Gliosarcoma cells or human U87 Glioblastoma cells were implanted into the cortex of rats, and following 12 or 14 days of growth respectively, subjected to either Photofrin-mediated PDT or ALA-mediated PDT. 9L gliosarcoma cells express the phosphatase Tensin homologue (PTEN) tumor suppressor gene while in U87 cells PTEN is mutated. Differences in the Photofrin mediated PDT induced apoptosis were noted between the two different cell lines in vivo, suggesting that Photofrin mediated PDT may be dependent on apoptotic pathways. ALA induced PPIX showed higher selectivity towards 9L than Photofrin mediated PDT. These studies suggests that PDT could be used as an effective treatment for intracranial neoplasm. Endogenous photosensitizers such as ALA could be used to promote apoptosis in tumor cells due to PDT treatment and thereby minimize the extent of necrotic infarction in the surrounding normal brain.

  5. Cerebral infarction in acute anemia.

    PubMed

    Tsai, Chung-Fen; Yip, Ping-Keung; Chen, Chao-Ching; Yeh, Shin-Joe; Chung, Shih-Tze; Jeng, Jiann-Shing

    2010-12-01

    There are few previous studies on the relationship between cerebral infarction and acute anemia. This study presents patients with cerebral infarction in acute anemia due to marked blood loss and aims to clarify the stroke nature and possible mechanism. Patients with acute cerebral infarction and anemia following marked blood loss without systemic hypotension were recruited from 2001 to 2009. Clinical characteristics, particularly hemoglobin level, and neuroimaging findings were reviewed in detail to analyze the stroke nature and verify the possible pathogenesis. Twelve patients (males 8; mean age 74.9 years) were included. Eleven patients had cerebral infarction after acute massive gastrointestinal bleeding, and one had cerebral infarction following postoperative extensive hematoma during hospitalization. In all patients, borderzone infarction was the most characteristic finding: six had unilateral and six had bilateral borderzone infarction. Mean hemoglobin at infarction after acute blood loss was 5.8 g/dl, with 46% reduction from baseline. Of nine patients receiving detailed extracranial and intracranial vascular studies, none had severe carotid stenosis and six had intracranial stenosis. The arterial borderzones are the most vulnerable regions to a fall in cerebral perfusion. Acute anemia may produce cerebral blood flow insufficiency, reduce oxygen-carrying capacity, and result in distal-field tissue ischemic injury when hemoglobin level decreases below a critical level, especially in patients with intracranial stenosis. PMID:20635184

  6. p-Hydroxybenzyl alcohol prevents brain injury and behavioral impairment by activating Nrf2, PDI, and neurotrophic factor genes in a rat model of brain ischemia.

    PubMed

    Kam, Kyung-Yoon; Yu, Seong Jin; Jeong, Nahee; Hong, Jeong Hwa; Jalin, Angela M A Anthony; Lee, Sungja; Choi, Yong Won; Lee, Chae Kwan; Kang, Sung Goo

    2011-03-01

    The therapeutic goal in treating cerebral ischemia is to reduce the extent of brain injury and thus minimize neurological impairment. We examined the effects of p-hydroxybenzyl alcohol (HBA), an active component of Gastrodia elata Blume, on transient focal cerebral ischemia-induced brain injury with respect to the involvement of protein disulphide isomerase (PDI), nuclear factor-E2-related factor 2 (Nrf2), and neurotrophic factors. All animals were ovariectomized 14 days before ischemic injury. Ischemic injury was induced for 1 h by middle cerebral artery occlusion (MCAO) followed by 24-h reperfusion. Three days before MCAO, the vehicle-treated and the HBA-treated groups received intramuscular sesame oil and HBA (25 mg/kg BW), respectively. 2,3,5-Triphenyltetrazolium chloride (TTC) staining showed decreased infarct volume in the ischemic lesion of HBA-treated animals. HBA pretreatment also promoted functional recovery, as measured by the modified neurological severity score (mNSS; p < 0.05). Moreover, expression of PDI, Nrf2, BDNF, GDNF, and MBP genes increased by HBA treatment. In vitro, H(2)O(2)-induced PC12 cell death was prevented by 24 h HBA treatment, but bacitracin, a PDI inhibitor, attenuated this cytoprotective effect in a dose-dependent manner. HBA treatment for 2 h also induced nuclear translocation of Nrf2, possibly activating the intracellular antioxidative system. These results suggest that HBA protects against brain damage by modulating cytoprotective genes, such as Nrf2 and PDI, and neurotrophic factors. PMID:21347705

  7. Computational model of an infant brain subjected to periodic motion simplified modelling and Bayesian sensitivity analysis.

    PubMed

    Batterbee, D C; Sims, N D; Becker, W; Worden, K; Rowson, J

    2011-11-01

    Non-accidental head injury in infants, or shaken baby syndrome, is a highly controversial and disputed topic. Biomechanical studies often suggest that shaking alone cannot cause the classical symptoms, yet many medical experts believe the contrary. Researchers have turned to finite element modelling for a more detailed understanding of the interactions between the brain, skull, cerebrospinal fluid (CSF), and surrounding tissues. However, the uncertainties in such models are significant; these can arise from theoretical approximations, lack of information, and inherent variability. Consequently, this study presents an uncertainty analysis of a finite element model of a human head subject to shaking. Although the model geometry was greatly simplified, fluid-structure-interaction techniques were used to model the brain, skull, and CSF using a Eulerian mesh formulation with penalty-based coupling. Uncertainty and sensitivity measurements were obtained using Bayesian sensitivity analysis, which is a technique that is relatively new to the engineering community. Uncertainty in nine different model parameters was investigated for two different shaking excitations: sinusoidal translation only, and sinusoidal translation plus rotation about the base of the head. The level and type of sensitivity in the results was found to be highly dependent on the excitation type. PMID:22292202

  8. Combination of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 reduces post-myocardial infarction depression symptoms and restores intestinal permeability in a rat model.

    PubMed

    Arseneault-Brard, Jessica; Rondeau, Isabelle; Gilbert, Kim; Girard, Stphanie-Anne; Tompkins, Thomas A; Godbout, Roger; Rousseau, Guy

    2012-06-01

    Myocardial infarction (MI) in rats is accompanied by apoptosis in the limbic system and a behavioural syndrome similar to models of depression. We have already shown that probiotics can reduce post-MI apoptosis and designed the present study to determine if probiotics can also prevent post-MI depressive behaviour. We also tested the hypothesis that probiotics achieve their central effects through changes in the intestinal barrier. MI was induced in anaesthetised rats via 40-min transient occlusion of the left anterior coronary artery. Sham rats underwent the same surgical procedure without actual coronary occlusion. For 7 d before MI and between the seventh post-MI day and euthanasia, half the MI and sham rats were given one billion live bacterial cells of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 per d dissolved in water, while the remaining animals received only the vehicle (maltodextrin). Depressive behaviour was evaluated 2 weeks post-MI in social interaction, forced swimming and passive avoidance step-down tests. Intestinal permeability was evaluated by oral administration with fluorescein isothiocyanate-dextran, 4 h before euthanasia. MI rats displayed less social interaction and impaired performance in the forced swimming and passive avoidance step-down tests compared to the sham controls (P < 005). Probiotics reversed the behavioural effects of MI (P < 005), but did not alter the behaviour of sham rats. Intestinal permeability was increased in MI rats and reversed by probiotics. In conclusion, L. helveticus R0052 and B. longum R0175 combination interferes with the development of post-MI depressive behaviour and restores intestinal barrier integrity in MI rats. PMID:21933458

  9. From animal model to human brain networking: dynamic causal modeling of motivational systems.

    PubMed

    Gonen, Tal; Admon, Roee; Podlipsky, Ilana; Hendler, Talma

    2012-05-23

    An organism's behavior is sensitive to different reinforcements in the environment. Based on extensive animal literature, the reinforcement sensitivity theory (RST) proposes three separate neurobehavioral systems to account for such context-sensitive behavior, affecting the tendency to react to punishment, reward, or goal-conflict stimuli. The translation of animal findings to complex human behavior, however, is far from obvious. To examine whether the neural networks underlying humans' motivational processes are similar to those proposed by the RST model, we conducted a functional MRI study, in which 24 healthy subjects performed an interactive game that engaged the different motivational systems using distinct time periods (states) of punishment, reward, and conflict. Crucially, we found that the different motivational states elicited activations in brain regions that corresponded exactly to the brain systems underlying RST. Moreover, dynamic causal modeling of each motivational system confirmed that the coupling strengths between the key brain regions of each system were enabled selectively by the appropriate motivational state. These results may shed light on the impairments that underlie psychopathologies associated with dysfunctional motivational processes and provide a translational validity for the RST. PMID:22623666

  10. Quantitative Imaging Methods for the Development and Validation of Brain Biomechanics Models

    PubMed Central

    Bayly, Philip V.; Clayton, Erik H.; Genin, Guy M.

    2013-01-01

    Rapid deformation of brain tissue in response to head impact or acceleration can lead to numerous pathological changes, both immediate and delayed. Modeling and simulation hold promise for illuminating the mechanisms of traumatic brain injury (TBI) and for developing preventive devices and strategies. However, mathematical models have predictive value only if they satisfy two conditions. First, they must capture the biomechanics of the brain as both a material and a structure, including the mechanics of brain tissue and its interactions with the skull. Second, they must be validated by direct comparison with experimental data. Emerging imaging technologies and recent imaging studies provide important data for these purposes. This review describes these techniques and data, with an emphasis on magnetic resonance imaging approaches. In combination, these imaging tools promise to extend our understanding of brain biomechanics and improve our ability to study TBI in silico. PMID:22655600

  11. [Occupational stress and myocardial infarction].

    PubMed

    Consoli, Silla M

    2015-01-01

    Besides the best-known role of depressed mood, occupational stress deserves to be taken as a coronary risk factor. There are two basic models to define occupational stress: Karasek's model (high job psychological demands associated with low decision latitude, or even low social support at work) and Siegrist's model (imbalance between efforts and rewards received). The combination of the two models better reflects the coronary risk than each model alone. Occupational stress appears both as a risk factor and a prognostic factor after the occurrence of myocardial infarction. The relevance of the models is best in men or in younger age subjects. In women, role conflicts (occupational/domestic), the existence of excessive "intrinsic" efforts (job over investment) and association with marital stress provide more specific information. Burnout, particularly among health professionals, and bullying at work are also linked to cardiovascular risk. Occupational stress is a collective indicator of health at work, valuable to the employer. At an individual level, it can lead to therapeutic preventive approaches. PMID:26150284

  12. Trauma induced myocardial infarction.

    PubMed

    Lolay, Georges A; Abdel-Latif, Ahmed K

    2016-01-15

    Chest Trauma in athletes is a common health problem. However, myocardial infarction secondary to coronary dissection in the setting of blunt chest trauma is extremely rare. We report a case of acute inferior wall myocardial infarction following blunt chest trauma. A 32-year-old male with no relevant medical problems was transferred to our medical center for retrosternal chest pain after being elbowed in the chest during a soccer game. Few seconds later, he started experiencing sharp retrosternal chest pain that was severe to that point where he called the emergency medical service. Upon arrival to the trauma department patient was still complaining of chest pain. ECG demonstrated ST segment elevation in the inferior leads with reciprocal changes in the lateral leads all consistent with active ischemia. After rolling out aortic dissection, patient was loaded with ASA, ticagerlor, heparin and was emergently taken to the cardiac catheterization lab. Coronary angiography demonstrated 100% thrombotic occlusion in the distal right coronary artery with TIMI 0 flow distally. After thrombus aspiration, a focal dissection was noted on the angiogram that was successfully stented. Two days after admission patient was discharged home. Echocardiography prior to discharge showed inferior wall akinesis, normal right ventricular systolic function and normal overall ejection fraction. PMID:26490501

  13. Trauma Induced Myocardial Infarction

    PubMed Central

    Lolay, Georges A.; Abdel-Latef, Ahmed K.

    2016-01-01

    Chest Trauma in athletes is a common health problem. However, myocardial infarction secondary to coronary dissection in the setting of blunt chest trauma is extremely rare. We report a case of acute inferior wall myocardial infarction following blunt chest trauma. A 32-year-old male with no relevant medical problems was transferred to our medical center for retrosternal chest pain after being elbowed in the chest during a soccer game. Few seconds later, he started experiencing sharp retrosternal chest pain that was severe to that point where he called the emergency medical service. Upon arrival to the Trauma department patient was still complaining of chest pain. ECG demonstrated ST segment elevation in the inferior leads with reciprocal changes in the lateral leads all consistent with active ischemia. After rolling out Aortic dissection, patient was loaded with ASA, ticagerlor, heparin and was emergently taken to the cardiac catheterization lab. Coronary angiography demonstrated 100% thrombotic occlusion in the distal right coronary artery with TIMI 0 flow distally. After thrombus aspiration, a focal dissection was noted on the angiogram that was successfully stented. Two days after admission patient was discharged home. Echocardiography prior to discharge showed inferior wall akinesis, normal right ventricular systolic function and normal overall ejection fraction. PMID:26490501

  14. Optically enhanced blood-brain-barrier crossing of plasmonic-active nanoparticles in preclinical brain tumor animal models

    NASA Astrophysics Data System (ADS)

    Yuan, Hsiangkuo; Wilson, Christy M.; Li, Shuqin; Fales, Andrew M.; Liu, Yang; Grant, Gerald; Vo-Dinh, Tuan

    2014-02-01

    Nanotechnology provides tremendous biomedical opportunities for cancer diagnosis, imaging, and therapy. In contrast to conventional chemotherapeutic agents where their actual target delivery cannot be easily imaged, integrating imaging and therapeutic properties into one platform facilitates the understanding of pharmacokinetic profiles, and enables monitoring of the therapeutic process in each individual. Such a concept dubbed "theranostics" potentiates translational research and improves precision medicine. One particular challenging application of theranostics involves imaging and controlled delivery of nanoplatforms across blood-brain-barrier (BBB) into brain tissues. Typically, the BBB hinders paracellular flux of drug molecules into brain parenchyma. BBB disrupting agents (e.g. mannitol, focused ultrasound), however, suffer from poor spatial confinement. It has been a challenge to design a nanoplatform not only acts as a contrast agent but also improves the BBB permeation. In this study, we demonstrated the feasibility of plasmonic gold nanoparticles as both high-resolution optical contrast agent and focalized tumor BBB permeation-inducing agent. We specifically examined the microscopic distribution of nanoparticles in tumor brain animal models. We observed that most nanoparticles accumulated at the tumor periphery or perivascular spaces. Nanoparticles were present in both endothelial cells and interstitial matrices. This study also demonstrated a novel photothermal-induced BBB permeation. Fine-tuning the irradiating energy induced gentle disruption of the vascular integrity, causing short-term extravasation of nanomaterials but without hemorrhage. We conclude that our gold nanoparticles are a powerful biocompatible contrast agent capable of inducing focal BBB permeation, and therefore envision a strong potential of plasmonic gold nanoparticle in future brain tumor imaging and therapy.

  15. Application of Random Forest Survival Models to Increase Generalizability of Decision Trees: A Case Study in Acute Myocardial Infarction

    PubMed Central

    Yosefian, Iman; Mosa Farkhani, Ehsan; Baneshi, Mohammad Reza

    2015-01-01

    Background. Tree models provide easily interpretable prognostic tool, but instable results. Two approaches to enhance the generalizability of the results are pruning and random survival forest (RSF). The aim of this study is to assess the generalizability of saturated tree (ST), pruned tree (PT), and RSF. Methods. Data of 607 patients was randomly divided into training and test set applying 10-fold cross-validation. Using training sets, all three models were applied. Using Log-Rank test, ST was constructed by searching for optimal cutoffs. PT was selected plotting error rate versus minimum sample size in terminal nodes. In construction of RSF, 1000 bootstrap samples were drawn from the training set. C-index and integrated Brier score (IBS) statistic were used to compare models. Results. ST provides the most overoptimized statistics. Mean difference between C-index in training and test set was 0.237. Corresponding figure in PT and RSF was 0.054 and 0.007. In terms of IBS, the difference was 0.136 in ST, 0.021 in PT, and 0.0003 in RSF. Conclusion. Pruning of tree and assessment of its performance of a test set partially improve the generalizability of decision trees. RSF provides results that are highly generalizable. PMID:26858773

  16. A Simulation Model of Periarterial Clearance of Amyloid-β from the Brain.

    PubMed

    Diem, Alexandra K; Tan, Mingyi; Bressloff, Neil W; Hawkes, Cheryl; Morris, Alan W J; Weller, Roy O; Carare, Roxana O

    2016-01-01

    The accumulation of soluble and insoluble amyloid-β (Aβ) in the brain indicates failure of elimination of Aβ from the brain with age and Alzheimer's disease (AD). There is a variety of mechanisms for elimination of Aβ from the brain. They include the action of microglia and enzymes together with receptor-mediated absorption of Aβ into the blood and periarterial lymphatic drainage of Aβ. Although the brain possesses no conventional lymphatics, experimental studies have shown that fluid and solutes, such as Aβ, are eliminated from the brain along 100 nm wide basement membranes in the walls of cerebral capillaries and arteries. This lymphatic drainage pathway is reflected in the deposition of Aβ in the walls of human arteries with age and AD as cerebral amyloid angiopathy (CAA). Initially, Aβ diffuses through the extracellular spaces of gray matter in the brain and then enters basement membranes in capillaries and arteries to flow out of the brain. Although diffusion through the extracellular spaces of the brain has been well characterized, the exact mechanism whereby perivascular elimination of Aβ occurs has not been resolved. Here we use a computational model to describe the process of periarterial drainage in the context of diffusion in the brain, demonstrating that periarterial drainage along basement membranes is very rapid compared with diffusion. Our results are a validation of experimental data and are significant in the context of failure of periarterial drainage as a mechanism underlying the pathogenesis of AD as well as complications associated with its immunotherapy. PMID:26903861

  17. A Simulation Model of Periarterial Clearance of Amyloid-β from the Brain

    PubMed Central

    Diem, Alexandra K.; Tan, Mingyi; Bressloff, Neil W.; Hawkes, Cheryl; Morris, Alan W. J.; Weller, Roy O.; Carare, Roxana O.

    2016-01-01

    The accumulation of soluble and insoluble amyloid-β (Aβ) in the brain indicates failure of elimination of Aβ from the brain with age and Alzheimer's disease (AD). There is a variety of mechanisms for elimination of Aβ from the brain. They include the action of microglia and enzymes together with receptor-mediated absorption of Aβ into the blood and periarterial lymphatic drainage of Aβ. Although the brain possesses no conventional lymphatics, experimental studies have shown that fluid and solutes, such as Aβ, are eliminated from the brain along 100 nm wide basement membranes in the walls of cerebral capillaries and arteries. This lymphatic drainage pathway is reflected in the deposition of Aβ in the walls of human arteries with age and AD as cerebral amyloid angiopathy (CAA). Initially, Aβ diffuses through the extracellular spaces of gray matter in the brain and then enters basement membranes in capillaries and arteries to flow out of the brain. Although diffusion through the extracellular spaces of the brain has been well characterized, the exact mechanism whereby perivascular elimination of Aβ occurs has not been resolved. Here we use a computational model to describe the process of periarterial drainage in the context of diffusion in the brain, demonstrating that periarterial drainage along basement membranes is very rapid compared with diffusion. Our results are a validation of experimental data and are significant in the context of failure of periarterial drainage as a mechanism underlying the pathogenesis of AD as well as complications associated with its immunotherapy. PMID:26903861

  18. Assessment of Myocardial Infarction by Cardiac Magnetic Resonance Imaging and Long-Term Mortality

    PubMed Central

    Petriz, João Luiz Fernandes; Gomes, Bruno Ferraz de Oliveira; Rua, Braulio Santos; Azevedo, Clério Francisco; Hadlich, Marcelo Souza; Mussi, Henrique Thadeu Periard; Taets, Gunnar de Cunto; do Nascimento, Emília Matos; Pereira, Basílio de Bragança; e Silva, Nelson Albuquerque de Souza

    2015-01-01

    Background Cardiac magnetic resonance imaging provides detailed anatomical information on infarction. However, few studies have investigated the association of these data with mortality after acute myocardial infarction. Objective To study the association between data regarding infarct size and anatomy, as obtained from cardiac magnetic resonance imaging after acute myocardial infarction, and long-term mortality. Methods A total of 1959 reports of “infarct size” were identified in 7119 cardiac magnetic resonance imaging studies, of which 420 had clinical and laboratory confirmation of previous myocardial infarction. The variables studied were the classic risk factors – left ventricular ejection fraction, categorized ventricular function, and location of acute myocardial infarction. Infarct size and acute myocardial infarction extent and transmurality were analyzed alone and together, using the variable named “MET-AMI”. The statistical analysis was carried out using the elastic net regularization, with the Cox model and survival trees. Results The mean age was 62.3 ± 12 years, and 77.3% were males. During the mean follow-up of 6.4 ± 2.9 years, there were 76 deaths (18.1%). Serum creatinine, diabetes mellitus and previous myocardial infarction were independently associated with mortality. Age was the main explanatory factor. The cardiac magnetic resonance imaging variables independently associated with mortality were transmurality of acute myocardial infarction (p = 0.047), ventricular dysfunction (p = 0.0005) and infarcted size (p = 0.0005); the latter was the main explanatory variable for ischemic heart disease death. The MET-AMI variable was the most strongly associated with risk of ischemic heart disease death (HR: 16.04; 95%CI: 2.64-97.5; p = 0.003). Conclusion The anatomical data of infarction, obtained from cardiac magnetic resonance imaging after acute myocardial infarction, were independently associated with long-term mortality, especially for ischemic heart disease death. PMID:25424161

  19. Development of a cerebral circulation model for the automatic control of brain physiology.

    PubMed

    Utsuki, T

    2015-08-01

    In various clinical guidelines of brain injury, intracranial pressure (ICP), cerebral blood flow (CBF) and brain temperature (BT) are essential targets for precise management for brain resuscitation. In addition, the integrated automatic control of BT, ICP, and CBF is required for improving therapeutic effects and reducing medical costs and staff burden. Thus, a new model of cerebral circulation was developed in this study for integrative automatic control. With this model, the CBF and cerebral perfusion pressure of a normal adult male were regionally calculated according to cerebrovascular structure, blood viscosity, blood distribution, CBF autoregulation, and ICP. The analysis results were consistent with physiological knowledge already obtained with conventional studies. Therefore, the developed model is potentially available for the integrative control of the physiological state of the brain as a reference model of an automatic control system, or as a controlled object in various control simulations. PMID:26736651

  20. Pharmacokinetic modeling of subcutaneous heroin and its metabolites in blood and brain of mice.

    PubMed

    Boix, Fernando; Andersen, Jannike M; Mørland, Jørg

    2013-01-01

    High blood-brain permeability and effective delivery of morphine to the brain have been considered as explanations for the high potency of heroin. Results from Andersen et al. indicate that 6-monoacetylmorphine (6-MAM), and not morphine, is the active metabolite responsible for the acute effects observed for heroin. Here, we use pharmacokinetic modeling on data from the aforementioned study to calculate parameters of the distribution of heroin, 6-MAM and morphine in blood and brain tissue after subcutaneous heroin administration in mice. The estimated pharmacokinetic parameters imply that the very low heroin and the high 6-MAM levels observed both in blood and brain in the original experiment are likely to be caused by a very high metabolic rate of heroin in blood. The estimated metabolic rate of heroin in brain was much lower and cannot account for the low heroin and high 6-MAM levels in the brain, which would primarily reflect the concentrations of these compounds in blood. The very different metabolic rates for heroin in blood and brain calculated by the model were confirmed by in vitro experiments. These results show that heroin's fast metabolism in blood renders high concentrations of 6-MAM which, due to its relatively good blood-brain permeability, results in high levels of this metabolite in the brain. Thus, it is the high blood metabolism rate of heroin and the blood-brain permeability to 6-MAM, and not to heroin, which could account for the highly efficient delivery of active metabolites to the brain after heroin administration. PMID:21481103

  1. Three dimensional fusion of electromechanical mapping and magnetic resonance imaging for real-time navigation of intramyocardial cell injections in a porcine model of chronic myocardial infarction.

    PubMed

    van Slochteren, F J; van Es, R; Gyöngyösi, M; van der Spoel, T I G; Koudstaal, S; Leiner, T; Doevendans, P A; Chamuleau, S A J

    2016-05-01

    For cardiac regenerative therapy intramyocardial catheter guided cell transplantations are targeted to the infarct border zone (IBZ) i.e. the closest region of viable myocardium in the vicinity of the infarct area. For optimal therapeutic effect this area should be accurately identified. However late gadolinium enhanced magnetic resonance imaging (LGE-MRI) is the gold standard technique to determine the infarct size and location, electromechanical mapping (EMM) is used to guide percutaneous intramyocardial injections to the IBZ. Since EMM has a low spatial resolution, we aim to develop a practical and accurate technique to fuse EMM with LGE-MRI to guide intramyocardial injections. LGE-MRI and EMM were obtained in 17 pigs with chronic myocardial infarction created by balloon occlusion of LCX and LAD coronary arteries. LGE-MRI and EMM datasets were registered using our in-house developed 3D CartBox image registration software toolbox to assess: (1) the feasibility of the 3D CartBox toolbox, (2) the EMM values measured in the areas with a distinct infarct transmurality (IT), and (3) the highest sensitivity and specificity of the EMM to assess IT and define the IBZ. Registration of LGE-MRI and EMM resulted in a mean error of 3.01 ± 1.94 mm between the LGE-MRI mesh and EMM points. The highest sensitivity and specificity were found for UV <9.4 mV and bipolar voltage <1.2 mV to respectively identify IT of ≥5 and ≥97.5 %. The 3D CartBox image registration toolbox enables registration of EMM data on pre-acquired MRI during the EMM guided procedure and allows physicians to easily guide injections to the most optimal injection location for cardiac regenerative therapy and harness the full therapeutic effect of the therapy. PMID:26883433

  2. Material and physical model for evaluation of deep brain activity contribution to EEG recordings

    NASA Astrophysics Data System (ADS)

    Ye, Yan; Li, Xiaoping; Wu, Tiecheng; Li, Zhe; Xie, Wenwen

    2015-12-01

    Deep brain activity is conventionally recorded with surgical implantation of electrodes. During the neurosurgery, brain tissue damage and the consequent side effects to patients are inevitably incurred. In order to eliminate undesired risks, we propose that deep brain activity should be measured using the noninvasive scalp electroencephalography (EEG) technique. However, the deeper the neuronal activity is located, the noisier the corresponding scalp EEG signals are. Thus, the present study aims to evaluate whether deep brain activity could be observed from EEG recordings. In the experiment, a three-layer cylindrical head model was constructed to mimic a human head. A single dipole source (sine wave, 10 Hz, altering amplitudes) was embedded inside the model to simulate neuronal activity. When the dipole source was activated, surface potential was measured via electrodes attached on the top surface of the model and raw data were recorded for signal analysis. Results show that the dipole source activity positioned at 66 mm depth in the model, equivalent to the depth of deep brain structures, is clearly observed from surface potential recordings. Therefore, it is highly possible that deep brain activity could be observed from EEG recordings and deep brain activity could be measured using the noninvasive scalp EEG technique.

  3. Vitexin reduces hypoxia-ischemia neonatal brain injury by the inhibition of HIF-1alpha in a rat pup model.

    PubMed

    Min, Jia-Wei; Hu, Jiang-Jian; He, Miao; Sanchez, Russell M; Huang, Wen-Xian; Liu, Yu-Qiang; Bsoul, Najeeb Bassam; Han, Song; Yin, Jun; Liu, Wan-Hong; He, Xiao-Hua; Peng, Bi-Wen

    2015-12-01

    Previous studies have demonstrated that the early suppression of HIF-1α after hypoxia-ischemia (HI) injury provides neuroprotection. Vitexin (5, 7, 4-trihydroxyflavone-8-glucoside), an HIF-1α inhibitor, is a c-glycosylated flavone that has been identified in medicinal plants. Therefore, we hypothesized that treatment with vitexin would protect against HI brain injury. Newborn rat pups were subjected to unilateral carotid artery ligation followed by 2.5 h of hypoxia (8% O2 at 37 °C). Vitexin (30, 45 or 60 mg/kg) was administered intraperitoneally at 5 min or 3 h after HI. Vitexin, administered 5 min after HI, was neuroprotective as seen by decreased infarct volume evaluated at 48 h post-HI. This neuroprotection was removed when vitexin was administered 3 h after HI. Neuronal cell death, blood-brain barrier (BBB) integrity, brain edema, HIF-1α and VEGF protein levels were evaluated using a combination of Nissl staining, IgG staining, brain water content, immunohistochemistry and Western blot at 24 and 48 h after HI. The long-term effects of vitexin were evaluated by brain atrophy measurement, Nissl staining and neurobehavioral tests. Vitexin (45 mg/kg) ameliorated brain edema, BBB disruption and neuronal cell death; Upregulation of HIF-1α by dimethyloxalylglycine (DMOG) increased the BBB permeability and brain edema compared to HI alone. Vitexin attenuated the increase in HIF-1α and VEGF. Vitexin also had long-term effects of protecting against the loss of ipsilateral brain and improveing neurobehavioral outcomes. In conclusion, our data indicate early HIF-1α inhibition with vitexin provides both acute and long-term neuroprotection in the developing brain after neonatal HI injury. PMID:26187393