Science.gov

Sample records for brain injury ibi

  1. Traumatic Brain Injury

    MedlinePlus

    Traumatic brain injury (TBI) happens when a bump, blow, jolt, or other head injury causes damage to the brain. Every year, millions of people in the U.S. suffer brain injuries. More than half are bad enough that ...

  2. Traumatic Brain Injury

    MedlinePlus

    ... Center PTACs Workspaces Log-in Search for: Traumatic Brain Injury A legacy resource from NICHCY Disability Fact ... in her. Back to top What is Traumatic Brain Injury? A traumatic brain injury (TBI) is an ...

  3. Brain injury - discharge

    MedlinePlus

    ... Rehabilitation Nurses. Care of the patient with mild traumatic brain injury. Available at: www.aann.org/pubs/content/guidelines. ... Stroud, NL, Zafonte R. Rehabilitation of patients with traumatic brain injury. In: Winn HR, ed. Youman's Neurological Surgery . 6th ...

  4. Neuropathophysiology of Brain Injury.

    PubMed

    Quillinan, Nidia; Herson, Paco S; Traystman, Richard J

    2016-09-01

    Every year in the United States, millions of individuals incur ischemic brain injury from stroke, cardiac arrest, or traumatic brain injury. These acquired brain injuries can lead to death or long-term neurologic and neuropsychological impairments. The mechanisms of ischemic and traumatic brain injury that lead to these deficiencies result from a complex interplay of interdependent molecular pathways, including excitotoxicity, acidotoxicity, ionic imbalance, oxidative stress, inflammation, and apoptosis. This article reviews several mechanisms of brain injury and discusses recent developments. Although much is known from animal models of injury, it has been difficult to translate these effects to humans. PMID:27521191

  5. Experimental traumatic brain injury

    PubMed Central

    2010-01-01

    Traumatic brain injury, a leading cause of death and disability, is a result of an outside force causing mechanical disruption of brain tissue and delayed pathogenic events which collectively exacerbate the injury. These pathogenic injury processes are poorly understood and accordingly no effective neuroprotective treatment is available so far. Experimental models are essential for further clarification of the highly complex pathology of traumatic brain injury towards the development of novel treatments. Among the rodent models of traumatic brain injury the most commonly used are the weight-drop, the fluid percussion, and the cortical contusion injury models. As the entire spectrum of events that might occur in traumatic brain injury cannot be covered by one single rodent model, the design and choice of a specific model represents a major challenge for neuroscientists. This review summarizes and evaluates the strengths and weaknesses of the currently available rodent models for traumatic brain injury. PMID:20707892

  6. Traumatic Brain Injury

    MedlinePlus

    ... a concussion may feel dazed and may lose vision or balance for a while after the injury A brain contusion is a bruise of the brain. This ... consciousness Headache Confusion Feeling dizzy or lightheaded Blurry vision ... or severe traumatic brain injury include all of the symptoms listed above ...

  7. Traumatic Brain Injury

    MedlinePlus

    ... disabilities include problems with cognition (thinking, memory, and reasoning), sensory processing (sight, hearing, touch, taste, and smell), ... barrier. NIH Patient Recruitment for Traumatic Brain Injury Clinical Trials At NIH Clinical Center Throughout the U.S. ...

  8. Pediatric Traumatic Brain Injury.

    PubMed

    Schaller, Alexandra L; Lakhani, Saquib A; Hsu, Benson S

    2015-10-01

    The purpose of this article is to provide a better understanding of pediatric traumatic brain injury and its management. Within the pediatric age group, ages 1 to 19, injuries are the number one cause of death with traumatic brain injury being involved in almost 50 percent of these cases. This, along with the fact that the medical system spends over $1 billion annually on pediatric traumatic brain injury, makes this issue both timely and relevant to health care providers. Over the course of this article the epidemiology, physiology, pathophysiology, and treatment of pediatric traumatic brain injury will be explored. Emphasis will be placed on the role of the early responder and the immediate interventions that should be considered and/or performed. The management discussed in this article follows the most recent recommendations from the 2012 edition of the Guidelines for the Acute Medical Management of Severe Traumatic Brain Injury in Infants, Children, and Adolescents. Despite the focus of this article, it is important not to lose sight of the fact that an ounce of prevention is worth a pound--or, to be more precise and use the average human's brain measurements, just above three pounds--of cure. PMID:26630835

  9. Brain injury in sports.

    PubMed

    Lloyd, John; Conidi, Frank

    2016-03-01

    OBJECT Helmets are used for sports, military, and transportation to protect against impact forces and associated injuries. The common belief among end users is that the helmet protects the whole head, including the brain. However, current consensus among biomechanists and sports neurologists indicates that helmets do not provide significant protection against concussion and brain injuries. In this paper the authors present existing scientific evidence on the mechanisms underlying traumatic head and brain injuries, along with a biomechanical evaluation of 21 current and retired football helmets. METHODS The National Operating Committee on Standards for Athletic Equipment (NOCSAE) standard test apparatus was modified and validated for impact testing of protective headwear to include the measurement of both linear and angular kinematics. From a drop height of 2.0 m onto a flat steel anvil, each football helmet was impacted 5 times in the occipital area. RESULTS Skull fracture risk was determined for each of the current varsity football helmets by calculating the percentage reduction in linear acceleration relative to a 140-g skull fracture threshold. Risk of subdural hematoma was determined by calculating the percentage reduction in angular acceleration relative to the bridging vein failure threshold, computed as a function of impact duration. Ranking the helmets according to their performance under these criteria, the authors determined that the Schutt Vengeance performed the best overall. CONCLUSIONS The study findings demonstrated that not all football helmets provide equal or adequate protection against either focal head injuries or traumatic brain injuries. In fact, some of the most popular helmets on the field ranked among the worst. While protection is improving, none of the current or retired varsity football helmets can provide absolute protection against brain injuries, including concussions and subdural hematomas. To maximize protection against head and

  10. TRAUMATIC BRAIN INJURY (TBI) DATABASE

    EPA Science Inventory

    The Traumatic Brain Injury National Data Center (TBINDC) at Kessler Medical Rehabilitation Research and Education Center is the coordinating center for the research and dissemination efforts of the Traumatic Brain Injury Model Systems (TBIMS) program funded by the National Instit...

  11. Radiation Injury to the Brain

    MedlinePlus

    ... Hits since January 2003 RADIATION INJURY TO THE BRAIN Radiation treatments affect all cells that are targeted. ... fractions, duration of therapy, and volume of [healthy brain] nervous tissue irradiated influence the likelihood of injury. ...

  12. Acquired Brain Injury Program.

    ERIC Educational Resources Information Center

    Schwartz, Stacey Hunter

    This paper reviews the Acquired Brain Injury (ABI) Program at Coastline Community College (California). The ABI Program is a two-year, for-credit educational curriculum designed to provide structured cognitive retraining for adults who have sustained an ABI due to traumatic (such as motor vehicle accident or fall) or non-traumatic(such as…

  13. Traumatic Brain Injury (TBI)

    MedlinePlus

    ... A. (2008). Mild traumatic brain injury in U.S. soldiers returning from Iraq. New England Journal of Medicine, 358, 453–463. ... and Spotlights U.S. hospitals miss followup for suspected child abuse Q&A with NICHD Acting Director Catherine ...

  14. Brain Injury Association of America

    MedlinePlus

    ... Only) 1-800-444-6443 Welcome to the Brain Injury Association of America (BIAA) Brain injury is not an event or an outcome. ... misunderstood, under-funded neurological disease. People who sustain brain injuries must have timely access to expert trauma ...

  15. Traumatic brain injury

    PubMed Central

    Risdall, Jane E.; Menon, David K.

    2011-01-01

    There is an increasing incidence of military traumatic brain injury (TBI), and similar injuries are seen in civilians in war zones or terrorist incidents. Indeed, blast-induced mild TBI has been referred to as the signature injury of the conflicts in Iraq and Afghanistan. Assessment involves schemes that are common in civilcian practice but, in common with civilian TBI, takes little account of information available from modern imaging (particularly diffusion tensor magnetic resonance imaging) and emerging biomarkers. The efficient logistics of clinical care delivery in the field may have a role in optimizing outcome. Clinical care has much in common with civilian TBI, but intracranial pressure monitoring is not always available, and protocols need to be modified to take account of this. In addition, severe early oedema has led to increasing use of decompressive craniectomy, and blast TBI may be associated with a higher incidence of vasospasm and pseudoaneurysm formation. Visual and/or auditory deficits are common, and there is a significant risk of post-traumatic epilepsy. TBI is rarely an isolated finding in this setting, and persistent post-concussive symptoms are commonly associated with post-traumatic stress disorder and chronic pain, a constellation of findings that has been called the polytrauma clinical triad. PMID:21149359

  16. Evaluation after Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Trudel, Tina M.; Halper, James; Pines, Hayley; Cancro, Lorraine

    2010-01-01

    It is important to determine if a traumatic brain injury (TBI) has occurred when an individual is assessed in a hospital emergency room after a car accident, fall, or other injury that affects the head. This determination influences decisions about treatment. It is essential to screen for the injury, because the sooner they begin appropriate…

  17. Brain Injury: A Manual For Educators.

    ERIC Educational Resources Information Center

    Connor, Karen; Dettmer, Judy; Dise-lewis, Jeanne E.; Murphy, Mary; Santistevan, Barbette; Seckinger, Barbara

    This manual provides Colorado educators with guidelines for serving students with brain injuries. Following an introductory chapter, chapter 2 provides basic information on the brain including definitions of brain injury and its severity, incidence of brain injury, and characteristics of students with brain injury. Chapter 3 considers…

  18. Controversies in preterm brain injury.

    PubMed

    Penn, Anna A; Gressens, Pierre; Fleiss, Bobbi; Back, Stephen A; Gallo, Vittorio

    2016-08-01

    In this review, we highlight critical unresolved questions in the etiology and mechanisms causing preterm brain injury. Involvement of neurons, glia, endogenous factors and exogenous exposures is considered. The structural and functional correlates of interrupted development and injury in the premature brain are under active investigation, with the hope that the cellular and molecular mechanisms underlying developmental abnormalities in the human preterm brain can be understood, prevented or repaired. PMID:26477300

  19. Sleep in traumatic brain injury.

    PubMed

    Vermaelen, James; Greiffenstein, Patrick; deBoisblanc, Bennett P

    2015-07-01

    More than one-half million patients are hospitalized annually for traumatic brain injury (TBI). One-quarter demonstrate sleep-disordered breathing, up to 50% experience insomnia, and half have hypersomnia. Sleep disturbances after TBI may result from injury to sleep-regulating brain tissue, nonspecific neurohormonal responses to systemic injury, ICU environmental interference, and medication side effects. A diagnosis of sleep disturbances requires a high index of suspicion and appropriate testing. Treatment starts with a focus on making the ICU environment conducive to normal sleep. Treating sleep-disordered breathing likely has outcome benefits in TBI. The use of sleep promoting sedative-hypnotics and anxiolytics should be judicious. PMID:26118920

  20. Traumatic Brain Injury Inpatient Rehabilitation

    ERIC Educational Resources Information Center

    Im, Brian; Schrer, Marcia J.; Gaeta, Raphael; Elias, Eileen

    2010-01-01

    Traumatic brain injuries (TBI) can cause multiple medical and functional problems. As the brain is involved in regulating nearly every bodily function, a TBI can affect any part of the body and aspect of cognitive, behavioral, and physical functioning. However, TBI affects each individual differently. Optimal management requires understanding the…

  1. NONINVASIVE BRAIN STIMULATION IN TRAUMATIC BRAIN INJURY

    PubMed Central

    Demirtas-Tatlidede, Asli; Vahabzadeh-Hagh, Andrew M.; Bernabeu, Montserrat; Tormos, Jose M.; Pascual-Leone, Alvaro

    2012-01-01

    Brain stimulation techniques have evolved in the last few decades with more novel methods capable of painless, noninvasive brain stimulation. While the number of clinical trials employing noninvasive brain stimulation continues to increase in a variety of medication-resistant neurological and psychiatric diseases, studies evaluating their diagnostic and therapeutic potential in traumatic brain injury (TBI) are largely lacking. This review introduces different techniques of noninvasive brain stimulation, which may find potential use in TBI. We cover transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), low-level laser therapy (LLLT) and transcranial doppler sonography (TCD) techniques. We provide a brief overview of studies to date, discuss possible mechanisms of action, and raise a number of considerations when thinking about translating these methods to clinical use. PMID:21691215

  2. Traumatic brain injury-induced sleep disorders.

    PubMed

    Viola-Saltzman, Mari; Musleh, Camelia

    2016-01-01

    Sleep disturbances are frequently identified following traumatic brain injury, affecting 30%-70% of persons, and often occur after mild head injury. Insomnia, fatigue, and sleepiness are the most frequent sleep complaints after traumatic brain injury. Sleep apnea, narcolepsy, periodic limb movement disorder, and parasomnias may also occur after a head injury. In addition, depression, anxiety, and pain are common brain injury comorbidities with significant influence on sleep quality. Two types of traumatic brain injury that may negatively impact sleep are acceleration/deceleration injuries causing generalized brain damage and contact injuries causing focal brain damage. Polysomnography, multiple sleep latency testing, and/or actigraphy may be utilized to diagnose sleep disorders after a head injury. Depending on the disorder, treatment may include the use of medications, positive airway pressure, and/or behavioral modifications. Unfortunately, the treatment of sleep disorders associated with traumatic brain injury may not improve neuropsychological function or sleepiness. PMID:26929626

  3. Traumatic brain injury-induced sleep disorders

    PubMed Central

    Viola-Saltzman, Mari; Musleh, Camelia

    2016-01-01

    Sleep disturbances are frequently identified following traumatic brain injury, affecting 30%–70% of persons, and often occur after mild head injury. Insomnia, fatigue, and sleepiness are the most frequent sleep complaints after traumatic brain injury. Sleep apnea, narcolepsy, periodic limb movement disorder, and parasomnias may also occur after a head injury. In addition, depression, anxiety, and pain are common brain injury comorbidities with significant influence on sleep quality. Two types of traumatic brain injury that may negatively impact sleep are acceleration/deceleration injuries causing generalized brain damage and contact injuries causing focal brain damage. Polysomnography, multiple sleep latency testing, and/or actigraphy may be utilized to diagnose sleep disorders after a head injury. Depending on the disorder, treatment may include the use of medications, positive airway pressure, and/or behavioral modifications. Unfortunately, the treatment of sleep disorders associated with traumatic brain injury may not improve neuropsychological function or sleepiness. PMID:26929626

  4. Traumatic Brain Injury

    MedlinePlus

    ... a wide range of changes affecting thinking, sensation, language, or emotions. TBI can be associated with post-traumatic stress disorder. People with severe injuries usually need rehabilitation. NIH: National Institute of Neurological Disorders and Stroke

  5. Bullet injuries of the brain

    PubMed Central

    Crockard, H Alan

    1974-01-01

    Experience gained with a wide variety of missile injuries of the brain is presented. Clinical signs and intracranial pressure (ICP) studied in the early post-injury period have been correlated with survival and treatment. Stress is laid on fluid requirements and the importance of controlled ventilation in the management of the labile clinical condition of such patients. Coughing and struggling caused extrusion of blood and brain from the wound, and this was reduced considerably with endotracheal intubation and mechanical ventilation. Post-operatively high ICP could be controlled in potential survivors with continued ventilation. ImagesFig. 1Fig. 2Fig. 5Fig. 7 PMID:4608115

  6. Propofol protects hippocampal neurons from apoptosis in ischemic brain injury by increasing GLT-1 expression and inhibiting the activation of NMDAR via the JNK/Akt signaling pathway.

    PubMed

    Gong, Hong-Yan; Zheng, Fang; Zhang, Chao; Chen, Xi-Yan; Liu, Jing-Jing; Yue, Xiu-Qin

    2016-09-01

    Ischemic brain injury (IBI) can cause nerve injury and is a leading cause of morbidity and mortality worldwide. The neuroprotective effects of propofol against IBI have been previously demonstrated. However, the neuroprotective effects of propofol on hippocampal neurons are not yet entirely clear. In the present study, models of IBI were established in hypoxia-exposed hippocampal neuronal cells. Cell viability assay and apoptosis assay were performed to examine the neuroprotective effects of propofol on hippocampal neurons in IBI. A significant decrease in cell viability and a significant increase in cell apoptosis were observed in the IBI group compared with the control group, accompanied by a decrease in glial glutamate transporter-1 (GLT‑1) expression as determined by RT-qPCR and western blot analysis. The effects of IBI were reversed by propofol treatment. The siRNA-mediated knockdown of GLT‑1 in the hypoxia-exposed hippocampal neuronal cells led to an increase in cell apoptosis, Jun N-terminal kinase (JNK) activation and N-methyl-D‑aspartate (NMDA) receptor (NR1 and NR2B) activation, as well as to a decrease in cell viability and a decrease in Akt activation. The effects of RNA interference-mediated GLT‑1 gene silencing on cell viability, JNK activation, NMDAR activation, cell apoptosis and Akt activation in the hippocampal neuronal cells were slightly reversed by propofol treatment. The JNK agonist, anisomycin, and the Akt inhibitor, LY294002, both significantly blocked the effects of propofol on hippocampal neuronal cell viability and apoptosis in IBI. The decrease in JNK activation and the increase in Akt activation caused by GLT‑1 overexpression were reversed by NMDA. Collectively, our findings suggest that propofol treatment protects hippocampal neurons against IBI by enhancing GLT‑1 expression and inhibiting the activation of NMDAR via the JNK/Akt signaling pathway. PMID:27430327

  7. Traumatic Brain Injury: FDA Research and Actions

    MedlinePlus

    ... For Consumers Home For Consumers Consumer Updates Traumatic Brain Injury: FDA Research and Actions Share Tweet Linkedin ... top What to Do if You Suspect Traumatic Brain Injury Anyone with signs of moderate or severe ...

  8. Cerebral Vascular Injury in Traumatic Brain Injury.

    PubMed

    Kenney, Kimbra; Amyot, Franck; Haber, Margalit; Pronger, Angela; Bogoslovsky, Tanya; Moore, Carol; Diaz-Arrastia, Ramon

    2016-01-01

    Traumatic cerebral vascular injury (TCVI) is a very frequent, if not universal, feature after traumatic brain injury (TBI). It is likely responsible, at least in part, for functional deficits and TBI-related chronic disability. Because there are multiple pharmacologic and non-pharmacologic therapies that promote vascular health, TCVI is an attractive target for therapeutic intervention after TBI. The cerebral microvasculature is a component of the neurovascular unit (NVU) coupling neuronal metabolism with local cerebral blood flow. The NVU participates in the pathogenesis of TBI, either directly from physical trauma or as part of the cascade of secondary injury that occurs after TBI. Pathologically, there is extensive cerebral microvascular injury in humans and experimental animal, identified with either conventional light microscopy or ultrastructural examination. It is seen in acute and chronic TBI, and even described in chronic traumatic encephalopathy (CTE). Non-invasive, physiologic measures of cerebral microvascular function show dysfunction after TBI in humans and experimental animal models of TBI. These include imaging sequences (MRI-ASL), Transcranial Doppler (TCD), and Near InfraRed Spectroscopy (NIRS). Understanding the pathophysiology of TCVI, a relatively under-studied component of TBI, has promise for the development of novel therapies for TBI. PMID:26048614

  9. Assessment of Students with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Chesire, David J.; Buckley, Valerie A.; Canto, Angela I.

    2011-01-01

    The incidence of brain injuries, as well as their impact on individuals who sustain them, has received growing attention from American media in recent years. This attention is likely the result of high profile individuals suffering brain injuries. Greater public awareness of traumatic brain injuries (TBIs) has also been promoted by sources such as…

  10. Knowledge of Traumatic Brain Injury among Educators

    ERIC Educational Resources Information Center

    Ernst, William J.; Gallo, Adrienne B.; Sellers, Amanda L.; Mulrine, Jessica; MacNamara, Luciana; Abrahamson, Allison; Kneavel, Meredith

    2016-01-01

    The purpose of this study is to determine knowledge of traumatic brain injury among educators. Few studies have examined knowledge of traumatic brain injury in this population and fewer still have included a substantial proportion of general education teachers. Examining knowledge of traumatic brain injury in educators is important as the vast…

  11. Pathology of traumatic brain injury.

    PubMed

    Finnie, John W

    2014-12-01

    Although traumatic brain injury (TBI) is frequently encountered in veterinary practice in companion animals, livestock and horses, inflicted head injury is a common method of euthanasia in domestic livestock, and malicious head trauma can lead to forensic investigation, the pathology of TBI has generally received little attention in the veterinary literature. This review highlights the pathology and pathogenesis of cerebral lesions produced by blunt, non-missile and penetrating, missile head injuries as an aid to the more accurate diagnosis of neurotrauma cases. If more cases of TBI in animals that result in fatality or euthanasia are subjected to rigorous neuropathological examination, this will lead to a better understanding of the nature and development of brain lesions in these species, rather than extrapolating data from human studies. PMID:25178417

  12. Autophagy in acute brain injury.

    PubMed

    Galluzzi, Lorenzo; Bravo-San Pedro, José Manuel; Blomgren, Klas; Kroemer, Guido

    2016-08-01

    Autophagy is an evolutionarily ancient mechanism that ensures the lysosomal degradation of old, supernumerary or ectopic cytoplasmic entities. Most eukaryotic cells, including neurons, rely on proficient autophagic responses for the maintenance of homeostasis in response to stress. Accordingly, autophagy mediates neuroprotective effects following some forms of acute brain damage, including methamphetamine intoxication, spinal cord injury and subarachnoid haemorrhage. In some other circumstances, however, the autophagic machinery precipitates a peculiar form of cell death (known as autosis) that contributes to the aetiology of other types of acute brain damage, such as neonatal asphyxia. Here, we dissect the context-specific impact of autophagy on non-infectious acute brain injury, emphasizing the possible therapeutic application of pharmacological activators and inhibitors of this catabolic process for neuroprotection. PMID:27256553

  13. Preconditioning for traumatic brain injury

    PubMed Central

    Yokobori, Shoji; Mazzeo, Anna T; Hosein, Khadil; Gajavelli, Shyam; Dietrich, W. Dalton; Bullock, M. Ross

    2016-01-01

    Traumatic brain injury (TBI) treatment is now focused on the prevention of primary injury and reduction of secondary injury. However, no single effective treatment is available as yet for the mitigation of traumatic brain damage in humans. Both chemical and environmental stresses applied before injury, have been shown to induce consequent protection against post-TBI neuronal death. This concept termed “preconditioning” is achieved by exposure to different pre-injury stressors, to achieve the induction of “tolerance” to the effect of the TBI. However, the precise mechanisms underlying this “tolerance” phenomenon are not fully understood in TBI, and therefore even less information is available about possible indications in clinical TBI patients. In this review we will summarize TBI pathophysiology, and discuss existing animal studies demonstrating the efficacy of preconditioning in diffuse and focal type of TBI. We will also review other non-TBI preconditionng studies, including ischemic, environmental, and chemical preconditioning, which maybe relevant to TBI. To date, no clinical studies exist in this field, and we speculate on possible futureclinical situation, in which pre-TBI preconditioning could be considered. PMID:24323189

  14. Management of penetrating brain injury

    PubMed Central

    Kazim, Syed Faraz; Shamim, Muhammad Shahzad; Tahir, Muhammad Zubair; Enam, Syed Ather; Waheed, Shahan

    2011-01-01

    Penetrating brain injury (PBI), though less prevalent than closed head trauma, carries a worse prognosis. The publication of Guidelines for the Management of Penetrating Brain Injury in 2001, attempted to standardize the management of PBI. This paper provides a precise and updated account of the medical and surgical management of these unique injuries which still present a significant challenge to practicing neurosurgeons worldwide. The management algorithms presented in this document are based on Guidelines for the Management of Penetrating Brain Injury and the recommendations are from literature published after 2001. Optimum management of PBI requires adequate comprehension of mechanism and pathophysiology of injury. Based on current evidence, we recommend computed tomography scanning as the neuroradiologic modality of choice for PBI patients. Cerebral angiography is recommended in patients with PBI, where there is a high suspicion of vascular injury. It is still debatable whether craniectomy or craniotomy is the best approach in PBI patients. The recent trend is toward a less aggressive debridement of deep-seated bone and missile fragments and a more aggressive antibiotic prophylaxis in an effort to improve outcomes. Cerebrospinal fluid (CSF) leaks are common in PBI patients and surgical correction is recommended for those which do not close spontaneously or are refractory to CSF diversion through a ventricular or lumbar drain. The risk of post-traumatic epilepsy after PBI is high, and therefore, the use of prophylactic anticonvulsants is recommended. Advanced age, suicide attempts, associated coagulopathy, Glasgow coma scale score of 3 with bilaterally fixed and dilated pupils, and high initial intracranial pressure have been correlated with worse outcomes in PBI patients. PMID:21887033

  15. Neurostimulation for traumatic brain injury.

    PubMed

    Shin, Samuel S; Dixon, C Edward; Okonkwo, David O; Richardson, R Mark

    2014-11-01

    Traumatic brain injury (TBI) remains a significant public health problem and is a leading cause of death and disability in many countries. Durable treatments for neurological function deficits following TBI have been elusive, as there are currently no FDA-approved therapeutic modalities for mitigating the consequences of TBI. Neurostimulation strategies using various forms of electrical stimulation have recently been applied to treat functional deficits in animal models and clinical stroke trials. The results from these studies suggest that neurostimulation may augment improvements in both motor and cognitive deficits after brain injury. Several studies have taken this approach in animal models of TBI, showing both behavioral enhancement and biological evidence of recovery. There have been only a few studies using deep brain stimulation (DBS) in human TBI patients, and future studies are warranted to validate the feasibility of this technique in the clinical treatment of TBI. In this review, the authors summarize insights from studies employing neurostimulation techniques in the setting of brain injury. Moreover, they relate these findings to the future prospect of using DBS to ameliorate motor and cognitive deficits following TBI. PMID:25170668

  16. TRAUMATIC BRAIN INJURY SURVEILLANCE SYSTEM (TBISS)

    EPA Science Inventory

    The National Center for Injury Prevention and Control (NCIPC), Centers for Disease Control and Prevention (CDC) had developed and maintains a surveillance system to understand the magnitude and characteristics of hospitalized and fatal traumatic brain injuries in the United State...

  17. Traumatic brain injury among Indiana state prisoners.

    PubMed

    Ray, Bradley; Sapp, Dona; Kincaid, Ashley

    2014-09-01

    Research on traumatic brain injury among inmates has focused on comparing the rate of traumatic brain injury among offenders to the general population, but also how best to screen for traumatic brain injury among this population. This study administered the short version of the Ohio State University Traumatic Brain Injury Identification Method to all male inmates admitted into Indiana state prisons were screened for a month (N = 831). Results indicate that 35.7% of the inmates reported experiencing a traumatic brain injury during their lifetime and that these inmates were more likely to have a psychiatric disorder and a prior period of incarceration than those without. Logistic regression analysis finds that a traumatic brain injury predicts the likelihood of prior incarceration net of age, race, education, and psychiatric disorder. This study suggests that brief instruments can be successfully implemented into prison screenings to help divert inmates into needed treatment. PMID:24588316

  18. How woodpecker avoids brain injury?

    NASA Astrophysics Data System (ADS)

    Wu, C. W.; Zhu, Z. D.; Zhang, W.

    2015-07-01

    It has long been recognized that woodpecker is an excellent anti-shock organism, as its head and brain can bear high deceleration up to 1500 g under fast pecking. To investigate the mechanism of brain protection of woodpecker, we built a finite element model of a whole woodpecker using computed topography scanning technique and geometry modeling. Numerical results show that the periodical changing Young's modulus around the skull affects the stress wave propagation in head and makes the stress lowest at the position of the brain. Modal analysis reveals the application of pre-tension force to the hyoid bone can increase the natural frequency of woodpecker's head. The large gap between the natural and working frequencies enable the woodpecker to effectively protect its brain from the resonance injury. Energy analyses indicate the majority of the impact energy (99.7%) is stored in the bulk of body and is utilized in the next pecking. There is only a small fraction of it enters into the head (0.3%). The whole body of the woodpecker gets involved in the energy conversion and forms an efficient anti-shock protection system for the brain.

  19. [Mild brain injuries in emergency medicine].

    PubMed

    Liimatainen, Suvi; Niskakangas, Tero; Ohman, Juha

    2011-01-01

    Diagnostics and correct classification of mild brain injuries is challenging. Problems caused by insufficient documentation at the acute phase become more obvious in situations in which legal insurance issues are to be considered. A small proportion of patients with mild brain injury suffer from prolonged symptoms. Medical recording and classification of the brain injury at the initial phase should therefore be carried out in a structured manner. The review deals with the diagnostic problems of mild brain injuries and presents a treatment protocol for adult patients at the acute phase, aiming at avoiding prolonged problems. PMID:22238915

  20. Quality of Life Following Brain Injury: Perspectives from Brain Injury Association of America State Affiliates

    ERIC Educational Resources Information Center

    Degeneffe, Charles Edmund; Tucker, Mark

    2012-01-01

    Objective: to examine the perspectives of brain injury professionals concerning family members' feelings about the quality of life experienced by individuals with brain injuries. Participants: participating in the study were 28 individuals in leadership positions with the state affiliates of the Brain Injury Association of America (BIAA). Methods:…

  1. Brain Imaging and Behavioral Outcome in Traumatic Brain Injury.

    ERIC Educational Resources Information Center

    Bigler, Erin D.

    1996-01-01

    This review explores the cellular pathology associated with traumatic brain injury (TBI) and its relation to neurobehavioral outcomes, the relationship of brain imaging findings to underlying pathology, brain imaging techniques, various image analysis procedures and how they relate to neuropsychological testing, and the importance of brain imaging…

  2. Traumatic Brain Injury: A Challenge for Educators

    ERIC Educational Resources Information Center

    Bullock, Lyndal M.; Gable, Robert A.; Mohr, J. Darrell

    2005-01-01

    In this article, the authors provide information designed to enhance the knowledge and understanding of school personnel about traumatic brain injury (TBI). The authors specifically define TBI and enumerate common characteristics associated with traumatic brain injury, discuss briefly the growth and type of services provided, and offer some…

  3. Traumatic Brain Injury. Fact Sheet Number 18.

    ERIC Educational Resources Information Center

    National Information Center for Children and Youth with Disabilities, Washington, DC.

    This fact sheet describes traumatic brain injury (TBI), an injury of the brain caused by the head being hit by something or being shaken violently. It discusses the incidence of TBI, and describes its symptoms as changes in thinking and reasoning, understanding words, remembering things, paying attention, solving problems, thinking abstractly,…

  4. Resource Guide on Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Monfore, Dorothea

    2005-01-01

    The purpose of this resource guide on traumatic brain injury (TBI) is to provide assistance to educators, families, and professionals who may be striving to increase their knowledge and understanding of brain injury. This guide will hopefully become an initial resource. It provides: a glossary of TBI Terms; contact information for and brief…

  5. Behavioral Considerations Associated with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Mayfield, Joan; Homack, Susan

    2005-01-01

    Children who sustain traumatic brain injury (TBI) can experience significant cognitive deficits. These deficits may significantly impair their functioning in the classroom, resulting in the need for academic and behavioral modifications. Behavior and social problems can be the direct or indirect result of brain injury. Difficulties in paying…

  6. Support Network Responses to Acquired Brain Injury

    ERIC Educational Resources Information Center

    Chleboun, Steffany; Hux, Karen

    2011-01-01

    Acquired brain injury (ABI) affects social relationships; however, the ways social and support networks change and evolve as a result of brain injury is not well understood. This study explored ways in which survivors of ABI and members of their support networks perceive relationship changes as recovery extends into the long-term stage. Two…

  7. Defining sleep disturbance after brain injury.

    PubMed

    Clinchot, D M; Bogner, J; Mysiw, W J; Fugate, L; Corrigan, J

    1998-01-01

    Sleep disorders are a relatively common occurrence after brain injury. Sleep disturbances often result in a poor daytime performance and a poor individual sense of well-being. Unfortunately, there has been minimal attention paid to this common and often disabling sequela of brain injury. This study attempts to define and to correlate the incidence and type of sleep disturbances that occur after brain injury. Consecutive admissions to a rehabilitation unit were used to create a longitudinal database designed to predict long-term outcomes for individuals who suffered a brain injury. Fifty percent of subjects had difficulty sleeping. Sixty-four percent described waking up too early, 25% described sleeping more than usual, and 45% described problems falling asleep. Eighty percent of subjects reporting sleep problems also reported problems with fatigue. Logistic regression analysis revealed the following: the more severe the brain injury the less likely the subject would be to have a sleep disturbance; subjects who had sleep disturbances were more likely to have problems with fatigue; females were more likely to have trouble with sleep. This study demonstrates the substantial prevalence of sleep disturbances after brain injury. It underscores the relationship between sleep disorders and perception of fatigue. It also underscores the need for clinicians to strive for interventional studies to look at the treatment of sleep and fatigue problems after brain injury. PMID:9715917

  8. Clinimetric measurement in traumatic brain injuries

    PubMed Central

    Opara, N; Małecka, I; Szczygiel, M

    2014-01-01

    Abstract Traumatic brain injury is a leading cause of death and disability worldwide. Every year, about 1.5 million affected people die and several millions receive emergency treatment. Most of the burden (90%) is in low and middle-income countries. The costs of care depend on the level of disability. The burden of care after traumatic brain injury is caused by disability as well as by psychosocial and emotional sequelae of injury. The final consequence of brain injury is the reduction of quality of life. It is very difficult to predict the outcome after traumatic brain injury. The basic clinical model included four predictors: age, score in Glasgow coma scale, pupil reactivity, and the presence of major extracranial injury. These are the neuroradiological markers of recovery after TBI (CT, MRI and PET) and biomarkers: genetic markers of ApoE Gene, ectoenzyme CD 38 (cluster of differentiation 38), serum S100B, myelin basic protein (MBP), neuron specific endolase (NSE), and glial fibrillary acidic protein (GPAP). These are many clinimetric scales which are helpful in prognosing after head injury. In this review paper, the most commonly used scales evaluating the level of consciousness after traumatic brain injury have been presented. PMID:25408714

  9. Mitochondrial specific therapeutic targets following brain injury.

    PubMed

    Yonutas, H M; Vekaria, H J; Sullivan, P G

    2016-06-01

    Traumatic brain injury is a complicated disease to treat due to the complex multi-factorial secondary injury cascade that is initiated following the initial impact. This secondary injury cascade causes nonmechanical tissue damage, which is where therapeutic interventions may be efficacious for intervention. One therapeutic target that has shown much promise following brain injury are mitochondria. Mitochondria are complex organelles found within the cell. At a superficial level, mitochondria are known to produce the energy substrate used within the cell called ATP. However, their importance to overall cellular homeostasis is even larger than their production of ATP. These organelles are necessary for calcium cycling, ROS production and play a role in the initiation of cell death pathways. When mitochondria become dysfunctional, they can become dysregulated leading to a loss of cellular homeostasis and eventual cell death. Within this review there will be a deep discussion into mitochondrial bioenergetics followed by a brief discussion into traumatic brain injury and how mitochondria play an integral role in the neuropathological sequelae following an injury. The review will conclude with a discussion pertaining to the therapeutic approaches currently being studied to ameliorate mitochondrial dysfunction following brain injury. This article is part of a Special Issue entitled SI:Brain injury and recovery. PMID:26872596

  10. Alterations in brain protein kinase C after experimental brain injury.

    PubMed

    Padmaperuma, B; Mark, R; Dhillon, H S; Mattson, M P; Prasad, M R

    1996-04-01

    Regional activities and levels of protein kinase C were measured after lateral fluid percussion brain injury in rats. At 5 min and 20 min after injury, neither cofactor-dependent nor -independent PKC activities in the cytosol and membrane fractions changed in the injured and contralateral cortices or in the ipsilateral hippocampus. Western blot analysis revealed decreases in the levels of cytosolic PKC alpha and PKC beta in the injured cortex after brain injury. In the same site, a significant increase in the levels of membrane PKC alpha and PKC beta was observed after injury. Although the level of PKC alpha did not change and that of PKC beta decreased in the cytosol of the ipsilateral hippocampus, these levels did not increase in the membrane fraction after injury. The levels of PKC gamma were generally unchanged in the cytosol and the membrane, except for its decrease in the cytosol of the hippocampus. There were no changes in the levels of any PKC isoform in either the cytosol or the membrane of the contralateral cortex after injury. The present results suggest a translocation of PKC alpha and PKC beta from the cytosol to the membrane in the injured cortex after brain injury. The observation that such a translocation occurs only in the brain regions that undergo substantial neuronal loss suggests that membrane PKC may play a role in neuronal damage after brain injury. PMID:8861605

  11. Traumatic brain injury and forensic neuropsychology.

    PubMed

    Bigler, Erin D; Brooks, Michael

    2009-01-01

    As part of a special issue of The Journal of Head Trauma Rehabilitation, forensic neuropsychology is reviewed as it applies to traumatic brain injury (TBI) and other types of acquired brain injury in which clinical neuropsychologists and rehabilitation psychologists may be asked to render professional opinions about the neurobehavioral effects and outcome of a brain injury. The article introduces and overviews the topic focusing on the process of forensic neuropsychological consultation and practice as it applies to patients with TBI or other types of acquired brain injury. The emphasis is on the application of scientist-practitioner standards as they apply to legal questions about the status of a TBI patient and how best that may be achieved. This article introduces each topic area covered in this special edition. PMID:19333063

  12. Traumatic brain injury: pathophysiology for neurocritical care.

    PubMed

    Kinoshita, Kosaku

    2016-01-01

    Severe cases of traumatic brain injury (TBI) require neurocritical care, the goal being to stabilize hemodynamics and systemic oxygenation to prevent secondary brain injury. It is reported that approximately 45 % of dysoxygenation episodes during critical care have both extracranial and intracranial causes, such as intracranial hypertension and brain edema. For this reason, neurocritical care is incomplete if it only focuses on prevention of increased intracranial pressure (ICP) or decreased cerebral perfusion pressure (CPP). Arterial hypotension is a major risk factor for secondary brain injury, but hypertension with a loss of autoregulation response or excess hyperventilation to reduce ICP can also result in a critical condition in the brain and is associated with a poor outcome after TBI. Moreover, brain injury itself stimulates systemic inflammation, leading to increased permeability of the blood-brain barrier, exacerbated by secondary brain injury and resulting in increased ICP. Indeed, systemic inflammatory response syndrome after TBI reflects the extent of tissue damage at onset and predicts further tissue disruption, producing a worsening clinical condition and ultimately a poor outcome. Elevation of blood catecholamine levels after severe brain damage has been reported to contribute to the regulation of the cytokine network, but this phenomenon is a systemic protective response against systemic insults. Catecholamines are directly involved in the regulation of cytokines, and elevated levels appear to influence the immune system during stress. Medical complications are the leading cause of late morbidity and mortality in many types of brain damage. Neurocritical care after severe TBI has therefore been refined to focus not only on secondary brain injury but also on systemic organ damage after excitation of sympathetic nerves following a stress reaction. PMID:27123305

  13. PROGESTERONE EXERTS NEUROPROTECTIVE EFFECTS AFTER BRAIN INJURY

    PubMed Central

    Stein, Donald G.

    2009-01-01

    Progesterone, although still widely considered primarily a sex hormone, is an important agent affecting many central nervous system functions. This review assesses recent, primarily in vivo, evidence that progesterone can play an important role in promoting and enhancing repair after traumatic brain injury and stroke. Although many of its specific actions on neuroplasticity remain to be discovered, there is growing evidence that this hormone may be a safe and effective treatment for traumatic brain injury and other neural disorders in humans. PMID:17826842

  14. Microglia toxicity in preterm brain injury

    PubMed Central

    Baburamani, Ana A.; Supramaniam, Veena G.; Hagberg, Henrik; Mallard, Carina

    2014-01-01

    Microglia are the resident phagocytic cells of the central nervous system. During brain development they are also imperative for apoptosis of excessive neurons, synaptic pruning, phagocytosis of debris and maintaining brain homeostasis. Brain damage results in a fast and dynamic microglia reaction, which can influence the extent and distribution of subsequent neuronal dysfunction. As a consequence, microglia responses can promote tissue protection and repair following brain injury, or become detrimental for the tissue integrity and functionality. In this review, we will describe microglia responses in the human developing brain in association with injury, with particular focus on the preterm infant. We also explore microglia responses and mechanisms of microglia toxicity in animal models of preterm white matter injury and in vitro primary microglia cell culture experiments. PMID:24768662

  15. Traumatic Brain Injury: Looking Back, Looking Forward

    ERIC Educational Resources Information Center

    Bartlett, Sue; Lorenz, Laura; Rankin, Theresa; Elias, Eileen; Weider, Katie

    2011-01-01

    This article is the eighth of a multi-part series on traumatic brain injury (TBI). Historically, TBI has received limited national attention and support. However, since it is the signature injury of the military conflicts in Iraq and Afghanistan, TBI has gained attention of elected officials, military leaders, policymakers, and the public. The…

  16. Weight Drop Models in Traumatic Brain Injury.

    PubMed

    Kalish, Brian T; Whalen, Michael J

    2016-01-01

    Weight drop models in rodents have been used for several decades to advance our understanding of the pathophysiology of traumatic brain injury. Weight drop models have been used to replicate focal cerebral contusion as well as diffuse brain injury characterized by axonal damage. More recently, closed head injury models with free head rotation have been developed to model sports concussions, which feature functional disturbances in the absence of overt brain damage assessed by conventional imaging techniques. Here, we describe the history of development of closed head injury models in the first part of the chapter. In the second part, we describe the development of our own weight drop closed head injury model that features impact plus rapid downward head rotation, no structural brain injury, and long-term cognitive deficits in the case of multiple injuries. This rodent model was developed to reproduce key aspects of sports concussion so that a mechanistic understanding of how long-term cognitive deficits might develop will eventually follow. Such knowledge is hoped to impact athletes and war fighters and others who suffer concussive head injuries by leading to targeted therapies aimed at preventing cognitive and other neurological sequelae in these high-risk groups. PMID:27604720

  17. Understanding Traumatic Brain Injury: An Introduction

    ERIC Educational Resources Information Center

    Trudel, Tina M.; Scherer, Marcia J.; Elias, Eileen

    2009-01-01

    This article is the first of a multi-part series on traumatic brain injury (TBI). Historically, TBI has received very limited national public policy attention and support. However since it has become the signature injury of the military conflicts in Iraq and Afghanistan, TBI has gained the attention of elected officials, military leaders,…

  18. 'Hidden' Brain Injury a Challenge for Military Doctors

    MedlinePlus

    ... nih.gov/medlineplus/news/fullstory_159316.html 'Hidden' Brain Injury a Challenge for Military Doctors Potentially fatal ... may suffer from a distinctive pattern of "hidden" brain injury, a small study finds. "Blast-related brain ...

  19. Purines: forgotten mediators in traumatic brain injury.

    PubMed

    Jackson, Edwin K; Boison, Detlev; Schwarzschild, Michael A; Kochanek, Patrick M

    2016-04-01

    Recently, the topic of traumatic brain injury has gained attention in both the scientific community and lay press. Similarly, there have been exciting developments on multiple fronts in the area of neurochemistry specifically related to purine biology that are relevant to both neuroprotection and neurodegeneration. At the 2105 meeting of the National Neurotrauma Society, a session sponsored by the International Society for Neurochemistry featured three experts in the field of purine biology who discussed new developments that are germane to both the pathomechanisms of secondary injury and development of therapies for traumatic brain injury. This included presentations by Drs. Edwin Jackson on the novel 2',3'-cAMP pathway in neuroprotection, Detlev Boison on adenosine in post-traumatic seizures and epilepsy, and Michael Schwarzschild on the potential of urate to treat central nervous system injury. This mini review summarizes the important findings in these three areas and outlines future directions for the development of new purine-related therapies for traumatic brain injury and other forms of central nervous system injury. In this review, novel therapies based on three emerging areas of adenosine-related pathobiology in traumatic brain injury (TBI) were proposed, namely, therapies targeting 1) the 2',3'-cyclic adenosine monophosphate (cAMP) pathway, 2) adenosine deficiency after TBI, and 3) augmentation of urate after TBI. PMID:26809224

  20. Traumatic Brain Injury and Sleep Disorders

    PubMed Central

    Viola-Saltzman, Mari; Watson, Nathaniel F.

    2012-01-01

    SYNOPSIS Sleep disturbance is common following traumatic brain injury (TBI), affecting 30–70% of individuals, many occurring after mild injuries. Insomnia, fatigue and sleepiness are the most frequent post-TBI sleep complaints with narcolepsy (with or without cataplexy), sleep apnea (obstructive and/or central), periodic limb movement disorder, and parasomnias occurring less commonly. In addition, depression, anxiety and pain are common TBI co-morbidities with substantial influence on sleep quality. Two types of TBI negatively impact sleep: contact injuries causing focal brain damage and acceleration/deceleration injuries causing more generalized brain damage. Diagnosis of sleep disorders after TBI may involve polysomnography, multiple sleep latency testing and/or actigraphy. Treatment is disorder specific and may include the use of medications, continuous positive airway pressure (or similar device) and/or behavioral modifications. Unfortunately, treatment of sleep disorders associated with TBI often does not improve sleepiness or neuropsychological function. PMID:23099139

  1. Mapping the Connectome Following Traumatic Brain Injury.

    PubMed

    Hannawi, Yousef; Stevens, Robert D

    2016-05-01

    There is a paucity of accurate and reliable biomarkers to detect traumatic brain injury, grade its severity, and model post-traumatic brain injury (TBI) recovery. This gap could be addressed via advances in brain mapping which define injury signatures and enable tracking of post-injury trajectories at the individual level. Mapping of molecular and anatomical changes and of modifications in functional activation supports the conceptual paradigm of TBI as a disorder of large-scale neural connectivity. Imaging approaches with particular relevance are magnetic resonance techniques (diffusion weighted imaging, diffusion tensor imaging, susceptibility weighted imaging, magnetic resonance spectroscopy, functional magnetic resonance imaging, and positron emission tomographic methods including molecular neuroimaging). Inferences from mapping represent unique endophenotypes which have the potential to transform classification and treatment of patients with TBI. Limitations of these methods, as well as future research directions, are highlighted. PMID:27021773

  2. Neurobiological consequences of traumatic brain injury

    PubMed Central

    McAllister, Thomas W.

    2011-01-01

    Traumatic brain injury (TBI) is a worldwide public health problem typically caused by contact and inertial forces acting on the brain. Recent attention has also focused on the mechanisms of injury associated with exposure to blast events or explosions. Advances in the understanding of the neuropathophysiology of TBI suggest that these forces initiate an elaborate and complex array of cellular and subcellular events related to alterations in Ca++ homeostasis and signaling. Furthermore, there is a fairly predictable profile of brain regions that are impacted by neurotrauma and the related events. This profile of brain damage accurately predicts the acute and chronic sequelae that TBI survivors suffer from, although there is enough variation to suggest that individual differences such as genetic polymorphisms and factors governing resiliency play a role in modulating outcome. This paper reviews our current understanding of the neuropathophysiology of TBI and how this relates to the common clinical presentation of neurobehavioral difficulties seen after an injury. PMID:22033563

  3. Traumatic brain injury, neuroimaging, and neurodegeneration

    PubMed Central

    Bigler, Erin D.

    2012-01-01

    Depending on severity, traumatic brain injury (TBI) induces immediate neuropathological effects that in the mildest form may be transient but as severity increases results in neural damage and degeneration. The first phase of neural degeneration is explainable by the primary acute and secondary neuropathological effects initiated by the injury; however, neuroimaging studies demonstrate a prolonged period of pathological changes that progressively occur even during the chronic phase. This review examines how neuroimaging may be used in TBI to understand (1) the dynamic changes that occur in brain development relevant to understanding the effects of TBI and how these relate to developmental stage when the brain is injured, (2) how TBI interferes with age-typical brain development and the effects of aging thereafter, and (3) how TBI results in greater frontotemporolimbic damage, results in cerebral atrophy, and is more disruptive to white matter neural connectivity. Neuroimaging quantification in TBI demonstrates degenerative effects from brain injury over time. An adverse synergistic influence of TBI with aging may predispose the brain injured individual for the development of neuropsychiatric and neurodegenerative disorders long after surviving the brain injury. PMID:23964217

  4. Catecholamines and cognition after traumatic brain injury.

    PubMed

    Jenkins, Peter O; Mehta, Mitul A; Sharp, David J

    2016-09-01

    Cognitive problems are one of the main causes of ongoing disability after traumatic brain injury. The heterogeneity of the injuries sustained and the variability of the resulting cognitive deficits makes treating these problems difficult. Identifying the underlying pathology allows a targeted treatment approach aimed at cognitive enhancement. For example, damage to neuromodulatory neurotransmitter systems is common after traumatic brain injury and is an important cause of cognitive impairment. Here, we discuss the evidence implicating disruption of the catecholamines (dopamine and noradrenaline) and review the efficacy of catecholaminergic drugs in treating post-traumatic brain injury cognitive impairments. The response to these therapies is often variable, a likely consequence of the heterogeneous patterns of injury as well as a non-linear relationship between catecholamine levels and cognitive functions. This individual variability means that measuring the structure and function of a person's catecholaminergic systems is likely to allow more refined therapy. Advanced structural and molecular imaging techniques offer the potential to identify disruption to the catecholaminergic systems and to provide a direct measure of catecholamine levels. In addition, measures of structural and functional connectivity can be used to identify common patterns of injury and to measure the functioning of brain 'networks' that are important for normal cognitive functioning. As the catecholamine systems modulate these cognitive networks, these measures could potentially be used to stratify treatment selection and monitor response to treatment in a more sophisticated manner. PMID:27256296

  5. Catecholamines and cognition after traumatic brain injury

    PubMed Central

    Jenkins, Peter O.; Mehta, Mitul A.

    2016-01-01

    Cognitive problems are one of the main causes of ongoing disability after traumatic brain injury. The heterogeneity of the injuries sustained and the variability of the resulting cognitive deficits makes treating these problems difficult. Identifying the underlying pathology allows a targeted treatment approach aimed at cognitive enhancement. For example, damage to neuromodulatory neurotransmitter systems is common after traumatic brain injury and is an important cause of cognitive impairment. Here, we discuss the evidence implicating disruption of the catecholamines (dopamine and noradrenaline) and review the efficacy of catecholaminergic drugs in treating post-traumatic brain injury cognitive impairments. The response to these therapies is often variable, a likely consequence of the heterogeneous patterns of injury as well as a non-linear relationship between catecholamine levels and cognitive functions. This individual variability means that measuring the structure and function of a person’s catecholaminergic systems is likely to allow more refined therapy. Advanced structural and molecular imaging techniques offer the potential to identify disruption to the catecholaminergic systems and to provide a direct measure of catecholamine levels. In addition, measures of structural and functional connectivity can be used to identify common patterns of injury and to measure the functioning of brain ‘networks’ that are important for normal cognitive functioning. As the catecholamine systems modulate these cognitive networks, these measures could potentially be used to stratify treatment selection and monitor response to treatment in a more sophisticated manner. PMID:27256296

  6. Subacute to chronic mild traumatic brain injury.

    PubMed

    Mott, Timothy F; McConnon, Michael L; Rieger, Brian P

    2012-12-01

    Although a universally accepted definition is lacking, mild traumatic brain injury and concussion are classified by transient loss of consciousness, amnesia, altered mental status, a Glasgow Coma Score of 13 to 15, and focal neurologic deficits following an acute closed head injury. Most patients recover quickly, with a predictable clinical course of recovery within the first one to two weeks following traumatic brain injury. Persistent physical, cognitive, or behavioral postconcussive symptoms may be noted in 5 to 20 percent of persons who have mild traumatic brain injury. Physical symptoms include headaches, dizziness, and nausea, and changes in coordination, balance, appetite, sleep, vision, and hearing. Cognitive and behavioral symptoms include fatigue, anxiety, depression, and irritability, and problems with memory, concentration and decision making. Women, older adults, less educated persons, and those with a previous mental health diagnosis are more likely to have persistent symptoms. The diagnostic workup for subacute to chronic mild traumatic brain injury focuses on the history and physical examination, with continuing observation for the development of red flags such as the progression of physical, cognitive, and behavioral symptoms, seizure, progressive vomiting, and altered mental status. Early patient and family education should include information on diagnosis and prognosis, symptoms, and further injury prevention. Symptom-specific treatment, gradual return to activity, and multidisciplinary coordination of care lead to the best outcomes. Psychiatric and medical comorbidities, psychosocial issues, and legal or compensatory incentives should be explored in patients resistant to treatment. PMID:23198672

  7. Driving, brain injury and assistive technology.

    PubMed

    Lane, Amy K; Benoit, Dana

    2011-01-01

    Individuals with brain injury often present with cognitive, physical and emotional impairments which impact their ability to resume independence in activities of daily living. Of those activities, the resumption of driving privileges is cited as one of the greatest concerns by survivors of brain injury. The integration of driving fundamentals within the hierarchical model proposed by Keskinen represents the complexity of skills and behaviors necessary for driving. This paper provides a brief review of specific considerations concerning the driver with TBI and highlights current vehicle technology which has been developed by the automotive industry and by manufacturers of adaptive driving equipment that may facilitate the driving task. Adaptive equipment technology allows for compensation of a variety of operational deficits, whereas technological advances within the automotive industry provide drivers with improved safety and information systems. However, research has not yet supported the use of such intelligent transportation systems or advanced driving systems for drivers with brain injury. Although technologies are intended to improve the safety of drivers within the general population, the potential of negative consequences for drivers with brain injury must be considered. Ultimately, a comprehensive driving evaluation and training by a driving rehabilitation specialist is recommended for individuals with brain injury. An understanding of the potential impact of TBI on driving-related skills and knowledge of current adaptive equipment and technology is imperative to determine whether return-to-driving is a realistic and achievable goal for the individual with TBI. PMID:21558628

  8. Minocycline Attenuates Iron-Induced Brain Injury.

    PubMed

    Zhao, Fan; Xi, Guohua; Liu, Wenqaun; Keep, Richard F; Hua, Ya

    2016-01-01

    Iron plays an important role in brain injury after intracerebral hemorrhage (ICH). Our previous study found minocycline reduces iron overload after ICH. The present study examined the effects of minocycline on the subacute brain injury induced by iron. Rats had an intracaudate injection of 50 μl of saline, iron, or iron + minocycline. All the animals were euthanized at day 3. Rat brains were used for immunohistochemistry (n = 5-6 per each group) and Western blotting assay (n = 4). Brain swelling, blood-brain barrier (BBB) disruption, and iron-handling proteins were measured. We found that intracerebral injection of iron resulted in brain swelling, BBB disruption, and brain iron-handling protein upregulation (p < 0.05). The co-injection of minocycline with iron significantly reduced iron-induced brain swelling (n = 5, p < 0.01). Albumin, a marker of BBB disruption, was measured by Western blot analysis. Minocycline significantly decreased albumin protein levels in the ipsilateral basal ganglia (p < 0.01). Iron-handling protein levels in the brain, including ceruloplasmin and transferrin, were reduced in the minocycline co-injected animals. In conclusion, the present study suggests that minocycline attenuates brain swelling and BBB disruption via an iron-chelation mechanism. PMID:26463975

  9. Molecular Mechanisms of Neonatal Brain Injury

    PubMed Central

    Thornton, Claire; Rousset, Catherine I.; Kichev, Anton; Miyakuni, Yasuka; Vontell, Regina; Baburamani, Ana A.; Fleiss, Bobbi; Gressens, Pierre; Hagberg, Henrik

    2012-01-01

    Fetal/neonatal brain injury is an important cause of neurological disability. Hypoxia-ischemia and excitotoxicity are considered important insults, and, in spite of their acute nature, brain injury develops over a protracted time period during the primary, secondary, and tertiary phases. The concept that most of the injury develops with a delay after the insult makes it possible to provide effective neuroprotective treatment after the insult. Indeed, hypothermia applied within 6 hours after birth in neonatal encephalopathy reduces neurological disability in clinical trials. In order to develop the next generation of treatment, we need to know more about the pathophysiological mechanism during the secondary and tertiary phases of injury. We review some of the critical molecular events related to mitochondrial dysfunction and apoptosis during the secondary phase and report some recent evidence that intervention may be feasible also days-weeks after the insult. PMID:22363841

  10. Epidemiology of traumatic brain injuries: Indian scenario.

    PubMed

    Gururaj, G

    2002-01-01

    Traumatic brain injuries (TBIs) are a leading cause of morbidity, mortality, disability and socioeconomic losses in India and other developing countries. Specific topics addressed in this paper include magnitude of the problem, causes, context of injury occurrence, risk factors, severity, outcome and impact of TBIs on rapidly transforming societies. It is estimated that nearly 1.5 to 2 million persons are injured and 1 million succumb to death every year in India. Road traffic injuries are the leading cause (60%) of TBIs followed by falls (20%-25%) and violence (10%). Alcohol involvement is known to be present among 15%-20% of TBIs at the time of injury. The rehabilitation needs of brain injured persons are significantly high and increasing from year to year. India and other developing countries face the major challenges of prevention, pre-hospital care and rehabilitation in their rapidly changing environments to reduce the burden of TBIs. PMID:11783750

  11. Traumatic Brain Injury and Dystonia

    MedlinePlus

    ... various neurological symptoms, often including dystonia and other movement disorders. Symptoms • Symptoms of a TBI can be mild, ... following an injury. Symptoms of dystonia and other movement disorders may be delayed by several months or years ...

  12. Pediatric Rodent Models of Traumatic Brain Injury.

    PubMed

    Semple, Bridgette D; Carlson, Jaclyn; Noble-Haeusslein, Linda J

    2016-01-01

    Due to a high incidence of traumatic brain injury (TBI) in children and adolescents, age-specific studies are necessary to fully understand the long-term consequences of injuries to the immature brain. Preclinical and translational research can help elucidate the vulnerabilities of the developing brain to insult, and provide model systems to formulate and evaluate potential treatments aimed at minimizing the adverse effects of TBI. Several experimental TBI models have therefore been scaled down from adult rodents for use in juvenile animals. The following chapter discusses these adapted models for pediatric TBI, and the importance of age equivalence across species during model development and interpretation. Many neurodevelopmental processes are ongoing throughout childhood and adolescence, such that neuropathological mechanisms secondary to a brain insult, including oxidative stress, metabolic dysfunction and inflammation, may be influenced by the age at the time of insult. The long-term evaluation of clinically relevant functional outcomes is imperative to better understand the persistence and evolution of behavioral deficits over time after injury to the developing brain. Strategies to modify or protect against the chronic consequences of pediatric TBI, by supporting the trajectory of normal brain development, have the potential to improve quality of life for brain-injured children. PMID:27604726

  13. Managing traumatic brain injury secondary to explosions

    PubMed Central

    Burgess, Paula; E Sullivent, Ernest; M Sasser, Scott; M Wald, Marlena; Ossmann, Eric; Kapil, Vikas

    2010-01-01

    Explosions and bombings are the most common deliberate cause of disasters with large numbers of casualties. Despite this fact, disaster medical response training has traditionally focused on the management of injuries following natural disasters and terrorist attacks with biological, chemical, and nuclear agents. The following article is a clinical primer for physicians regarding traumatic brain injury (TBI) caused by explosions and bombings. The history, physics, and treatment of TBI are outlined. PMID:20606794

  14. Severe Traumatic Brain Injury: A Case Report

    PubMed Central

    Nelson, Clinton G.; Elta, Tara; Bannister, Jeanette; Dzandu, James; Mangram, Alicia; Zach, Victor

    2016-01-01

    Patient: Male, 28 Final Diagnosis: Closed head injury Symptoms: Bilateral mydriasis • coma Medication: — Clinical Procedure: Ventriculostomy and hemicraniectomy Specialty: Neurology Objective: Unusual clinical course Background: Traumatic brain injury remains a challenging and complicated disease process to care for, despite the advance of technology used to monitor and guide treatment. Currently, the mainstay of treatment is aimed at limiting secondary brain injury, with the help of multiple specialties in a critical care setting. Prognosis after TBI is often even more challenging than the treatment itself, although there are various exam and imaging findings that are associated with poor outcome. These findings are important because they can be used to guide families and loved ones when making decisions about goals of care. Case Report: In this case report, we demonstrate the unanticipated recovery of a 28-year-old male patient who presented with a severe traumatic brain injury after being in a motorcycle accident without wearing a helmet. He presented with several exam and imaging findings that are statistically associated with increased mortality and morbidity. Conclusions: The care of severe traumatic brain injuries is challenging and dynamic. This case highlights the unexpected recovery of a patient and serves as a reminder that there is variability among patients. PMID:27005826

  15. Paclitaxel improves outcome from traumatic brain injury

    PubMed Central

    Cross, Donna J.; Garwin, Gregory G.; Cline, Marcella M.; Richards, Todd L.; Yarnykh, Vasily; Mourad, Pierre D.; Ho, Rodney J.Y.; Minoshima, Satoshi

    2016-01-01

    Pharmacologic interventions for traumatic brain injury (TBI) hold promise to improve outcome. The purpose of this study was to determine if the microtubule stabilizing therapeutic paclitaxel used for more than 20 years in chemotherapy would improve outcome after TBI. We assessed neurological outcome in mice that received direct application of paclitaxel to brain injury from controlled cortical impact (CCI). Magnetic resonance imaging was used to assess injury-related morphological changes. Catwalk Gait analysis showed significant improvement in the paclitaxel group on a variety of parameters compared to the saline group. MRI analysis revealed that paclitaxel treatment resulted in significantly reduced edema volume at site-of-injury (11.92 ± 3.0 and 8.86 ± 2.2 mm3 for saline vs. paclitaxel respectively, as determined by T2-weighted analysis; p ≤ 0.05), and significantly increased myelin tissue preservation (9.45 ± 0.4 vs. 8.95 ± 0.3, p ≤ 0.05). Our findings indicate that paclitaxel treatment resulted in improvement of neurological outcome and MR imaging biomarkers of injury. These results could have a significant impact on therapeutic developments to treat traumatic brain injury. PMID:26086366

  16. Biomarkers in traumatic brain injury: a review.

    PubMed

    Toman, Emma; Harrisson, S; Belli, T

    2016-04-01

    Biomarkers allow physiological processes to be monitored, in both health and injury. Multiple attempts have been made to use biomarkers in traumatic brain injury (TBI). Identification of such biomarkers could allow improved understanding of the pathological processes involved in TBI, diagnosis, prognostication and development of novel therapies. This review article aims to cover both established and emerging TBI biomarkers along with their benefits and limitations. It then discusses the potential value of TBI biomarkers to military, civilian and sporting populations and the future hopes for developing a role for biomarkers in head injury management. PMID:26527607

  17. Neuropsychiatry of Pediatric Traumatic Brain Injury

    PubMed Central

    Max, Jeffrey E.

    2014-01-01

    Synopsis Pediatric traumatic brain injury (TBI) is a major public health problem. Psychiatric disorders with onset before the injury appear to be more common than population base rates. Novel (postinjury onset) psychiatric disorders (NPD) are also common and complicate child function after injury. Novel disorders include personality change due to TBI, secondary attention-deficit/hyperactivity disorder (SADHD), as well as other disruptive behavior disorders, and internalizing disorders. This article reviews preinjury psychiatric disorders as well as biopsychosocial risk factors and treatments for NPD. PMID:24529428

  18. Interleukin-1 and acute brain injury

    PubMed Central

    Murray, Katie N.; Parry-Jones, Adrian R.; Allan, Stuart M.

    2015-01-01

    Inflammation is the key host-defense response to infection and injury, yet also a major contributor to a diverse range of diseases, both peripheral and central in origin. Brain injury as a result of stroke or trauma is a leading cause of death and disability worldwide, yet there are no effective treatments, resulting in enormous social and economic costs. Increasing evidence, both preclinical and clinical, highlights inflammation as an important factor in stroke, both in determining outcome and as a contributor to risk. A number of inflammatory mediators have been proposed as key targets for intervention to reduce the burden of stroke, several reaching clinical trial, but as yet yielding no success. Many factors could explain these failures, including the lack of robust preclinical evidence and poorly designed clinical trials, in addition to the complex nature of the clinical condition. Lack of consideration in preclinical studies of associated co-morbidities prevalent in the clinical stroke population is now seen as an important omission in previous work. These co-morbidities (atherosclerosis, hypertension, diabetes, infection) have a strong inflammatory component, supporting the need for greater understanding of how inflammation contributes to acute brain injury. Interleukin (IL)-1 is the prototypical pro-inflammatory cytokine, first identified many years ago as the endogenous pyrogen. Research over the last 20 years or so reveals that IL-1 is an important mediator of neuronal injury and blocking the actions of IL-1 is beneficial in a number of experimental models of brain damage. Mechanisms underlying the actions of IL-1 in brain injury remain unclear, though increasing evidence indicates the cerebrovasculature as a key target. Recent literature supporting this and other aspects of how IL-1 and systemic inflammation in general contribute to acute brain injury are discussed in this review. PMID:25705177

  19. Money, Language Barriers Can Affect Kids' Brain Injury Care

    MedlinePlus

    ... 159124.html Money, Language Barriers Can Affect Kids' Brain Injury Care Those on Medicaid have less access ... May 31, 2016 (HealthDay News) -- Children with traumatic brain injuries may be less likely to receive rehabilitation ...

  20. Kids' Mild Brain Injury Can Have Long-Term Effects

    MedlinePlus

    ... medlineplus.gov/news/fullstory_160606.html Kids' Mild Brain Injury Can Have Long-Term Effects Early head ... 000 Swedes who suffered at least one traumatic brain injury (TBI) before age 25 with their unaffected ...

  1. Narrative Language in Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Marini, Andrea; Galetto, Valentina; Zampieri, Elisa; Vorano, Lorenza; Zettin, Marina; Carlomagno, Sergio

    2011-01-01

    Persons with traumatic brain injury (TBI) often show impaired linguistic and/or narrative abilities. The present study aimed to document the features of narrative discourse impairment in a group of adults with TBI. 14 severe TBI non-aphasic speakers (GCS less than 8) in the phase of neurological stability and 14 neurologically intact participants…

  2. Working with Students with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Lucas, Matthew D.

    2010-01-01

    The participation of a student with Traumatic Brain Injury (TBI) in general physical education can often be challenging and rewarding for the student and physical education teacher. This article addresses common characteristics of students with TBI and presents basic solutions to improve the education of students with TBI in the general physical…

  3. Defense and Veterans Brain Injury Center

    MedlinePlus

    ... Are you or a loved one in a crisis and need help? Call the Military Crisis Line at 800-273-8255, press 1 to ... blog articles » Defense and Veterans Brain Injury Center Crisis Intervention (24/7) Department of Veterans Affairs Military & ...

  4. Reality Lessons in Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Adams, Elaine Parker; Adams, Albert A., Jr.

    2008-01-01

    This article goes beyond the typical guidance on how to address the educational needs of students with traumatic brain injury (TBI). A survivor of TBI and his parent advocate describe real-life encounters in the education arena and offer ways to respond to the problems depicted in the situations. Their candor enhances educator awareness of the…

  5. Traumatic Brain Injury: Perspectives from Educational Professionals

    ERIC Educational Resources Information Center

    Mohr, J. Darrell; Bullock, Lyndal M.

    2005-01-01

    This article reports the outcomes from 2 focus groups conducted to ascertain professional educators' perceptions regarding their (a) level of preparedness for working with students with traumatic brain injury (TBI), (b) ideas regarding ways to improve support to students and families, and (c) concerns about meeting the diverse needs of children…

  6. Group Treatment in Acquired Brain Injury Rehabilitation

    ERIC Educational Resources Information Center

    Bertisch, Hilary; Rath, Joseph F.; Langenbahn, Donna M.; Sherr, Rose Lynn; Diller, Leonard

    2011-01-01

    The current article describes critical issues in adapting traditional group-treatment methods for working with individuals with reduced cognitive capacity secondary to acquired brain injury. Using the classification system based on functional ability developed at the NYU Rusk Institute of Rehabilitation Medicine (RIRM), we delineate the cognitive…

  7. Traumatic Brain Injury: Empirical Family Assessment Techniques.

    ERIC Educational Resources Information Center

    Bishop, Duane S.; Miller, Ivan W.

    1988-01-01

    Methods are described for quantifying and formalizing assessment of traumatic brain injury patient families. The advantages and disadvantages of empirical and clinical assessment are outlined, and four family assessment methods are reviewed: self-report, interview, observation, and laboratory. Specific assessment instruments are noted along with…

  8. Academic Placement after Traumatic Brain Injury.

    ERIC Educational Resources Information Center

    Donders, Jacques

    The acadmic placement of 87 children (ages 6 to 16 years) who had sustained brain injuries was determined within 1 year after initial psychological assessment. Forty-five children had returned full time to regular academic programs, 21 children received special education support for less than half of their classes, and 21 children were enrolled in…

  9. Traumatic Brain Injury and Personality Change

    ERIC Educational Resources Information Center

    Fowler, Marc; McCabe, Paul C.

    2011-01-01

    Traumatic brain injury (TBI) is the leading cause of death and lifelong disability in the United States for individuals below the age of 45. Current estimates from the Center for Disease Control (CDC) indicate that at least 1.4 million Americans sustain a TBI annually. TBI affects 475,000 children under age 14 each year in the United States alone.…

  10. Traumatic Brain Injury and Vocational Rehabilitation.

    ERIC Educational Resources Information Center

    Corthell, David W., Ed.

    Intended to serve as a resource guide on traumatic brain injury for rehabilitation practitioners, the book's 10 chapters are grouped into sections which provide an introduction and examine aspects of evaluation, treatment and placement planning, and unresolved issues. Chapters have the following titles and authors: "Scope of the Problem" (Marilyn…

  11. School Reentry Following Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Deidrick, Kathleen K. M.; Farmer, Janet E.

    2005-01-01

    Successful school reentry following traumatic brain injury (TBI) is critical to recovery. Physical, cognitive, behavioral, academic, and social problems can affect a child's school performance after a TBI. However, early intervention has the potential to improve child academic outcomes and promote effective coping with any persistent changes in…

  12. Mild Traumatic Brain Injury: Facilitating School Success.

    ERIC Educational Resources Information Center

    Hux, Karen; Hacksley, Carolyn

    1996-01-01

    A case study is used to demonstrate the effects of mild traumatic brain injury on educational efforts. Discussion covers factors complicating school reintegration, ways to facilitate school reintegration, identification of cognitive and behavioral consequences, minimization of educators' discomfort, reintegration program design, and family…

  13. Psychiatric disorders and traumatic brain injury

    PubMed Central

    Schwarzbold, Marcelo; Diaz, Alexandre; Martins, Evandro Tostes; Rufino, Armanda; Amante, Lúcia Nazareth; Thais, Maria Emília; Quevedo, João; Hohl, Alexandre; Linhares, Marcelo Neves; Walz, Roger

    2008-01-01

    Psychiatric disorders after traumatic brain injury (TBI) are frequent. Researches in this area are important for the patients’ care and they may provide hints for the comprehension of primary psychiatric disorders. Here we approach epidemiology, diagnosis, associated factors and treatment of the main psychiatric disorders after TBI. Finally, the present situation of the knowledge in this field is discussed. PMID:19043523

  14. Interviewing Children with Acquired Brain Injury (ABI)

    ERIC Educational Resources Information Center

    Boylan, Anne-Marie; Linden, Mark; Alderdice, Fiona

    2009-01-01

    Research into the lives of children with acquired brain injury (ABI) often neglects to incorporate children as participants, preferring to obtain the opinions of the adult carer (e.g. McKinlay et al., 2002). There has been a concerted attempt to move away from this position by those working in children's research with current etiquette…

  15. Traumatic Brain Injury as a Cause of Behavior Disorders.

    ERIC Educational Resources Information Center

    Nordlund, Marcia R.

    There is increasing evidence that many children and adolescents who display behavior disorders have sustained a traumatic brain injury. Traumatic brain injury can take the following forms: closed head trauma in which the brain usually suffers diffuse damage; open head injury which usually results in specific focal damage; or internal trauma (e.g.,…

  16. Traumatic Alterations in Consciousness: Traumatic Brain Injury

    PubMed Central

    Blyth, Brian J.; Bazarian, Jeffrey J.

    2010-01-01

    Mild traumatic brain injury (mTBI) refers to the clinical condition of transient alteration of consciousness as a result of traumatic injury to the brain. The priority of emergency care is to identify and facilitate the treatment of rare but potentially life threatening intra-cranial injuries associated with mTBI through the judicious application of appropriate imaging studies and neurosurgical consultation. Although post-mTBI symptoms quickly and completely resolve in the vast majority of cases, a significant number of patients will complain of lasting problems that may cause significant disability. Simple and early interventions such as patient education and appropriate referral can reduce the likelihood of chronic symptoms. Although definitive evidence is lacking, mTBI is likely to be related to significant long-term sequelae such as Alzheimer's disease and other neurodegenerative processes. PMID:20709244

  17. Discriminating military and civilian traumatic brain injuries.

    PubMed

    Reid, Matthew W; Velez, Carmen S

    2015-05-01

    Traumatic brain injury (TBI) occurs at higher rates among service members than civilians. Explosions from improvised explosive devices and mines are the leading cause of TBI in the military. As such, TBI is frequently accompanied by other injuries, which makes its diagnosis and treatment difficult. In addition to postconcussion symptoms, those who sustain a TBI commonly report chronic pain and posttraumatic stress symptoms. This combination of symptoms is so typical they have been referred to as the "polytrauma clinical triad" among injured service members. We explore whether these symptoms discriminate civilian occurrences of TBI from those of service members, as well as the possibility that repeated blast exposure contributes to the development of chronic traumatic encephalopathy (CTE). This article is part of a Special Issue entitled 'Traumatic Brain Injury'. PMID:25827093

  18. The Impact of Traumatic Brain Injury on the Aging Brain.

    PubMed

    Young, Jacob S; Hobbs, Jonathan G; Bailes, Julian E

    2016-09-01

    Traumatic brain injury (TBI) has come to the forefront of both the scientific and popular culture. Specifically, sports-related concussions or mild TBI (mTBI) has become the center of scientific scrutiny with a large amount of research focusing on the long-term sequela of this type of injury. As the populace continues to age, the impact of TBI on the aging brain will become clearer. Currently, reports have come to light that link TBI to neurodegenerative disorders such as Alzheimer's and Parkinson's diseases, as well as certain psychiatric diseases. Whether these associations are causations, however, is yet to be determined. Other long-term sequelae, such as chronic traumatic encephalopathy (CTE), appear to be associated with repetitive injuries. Going forward, as we gain better understanding of the pathophysiological process involved in TBI and subclinical head traumas, and individual traits that influence susceptibility to neurocognitive diseases, a clearer, more comprehensive understanding of the connection between brain injury and resultant disease processes in the aging brain will become evident. PMID:27432348

  19. Chronic cerebrovascular dysfunction after traumatic brain injury.

    PubMed

    Jullienne, Amandine; Obenaus, Andre; Ichkova, Aleksandra; Savona-Baron, Catherine; Pearce, William J; Badaut, Jerome

    2016-07-01

    Traumatic brain injuries (TBI) often involve vascular dysfunction that leads to long-term alterations in physiological and cognitive functions of the brain. Indeed, all the cells that form blood vessels and that are involved in maintaining their proper function can be altered by TBI. This Review focuses on the different types of cerebrovascular dysfunction that occur after TBI, including cerebral blood flow alterations, autoregulation impairments, subarachnoid hemorrhage, vasospasms, blood-brain barrier disruption, and edema formation. We also discuss the mechanisms that mediate these dysfunctions, focusing on the cellular components of cerebral blood vessels (endothelial cells, smooth muscle cells, astrocytes, pericytes, perivascular nerves) and their known and potential roles in the secondary injury cascade. © 2016 Wiley Periodicals, Inc. PMID:27117494

  20. Clinical Outcomes after Traumatic Brain Injury.

    PubMed

    Sandsmark, Danielle K

    2016-06-01

    Traumatic brain injury (TBI) is a major cause of death and disability that often affects young people. After injury, the degree of recovery can be highly variable, with some people regaining near complete function while others remain severely disabled. Understanding what factors influence recovery is important for counseling patients and families in the acute period after injury and can help guide therapeutic decisions in the acute period following injury. In this review, prognostic algorithms useful for clinicians are discussed. Tools for grading patient outcomes, their role in clinical care and research studies, and their limitations are reviewed. Ongoing work focusing on the development of biomarkers to track TBI recovery and the refinement of clinical outcome metrics is summarized. PMID:27072952

  1. Forensic Pathology of Traumatic Brain Injury.

    PubMed

    Finnie, J W

    2016-09-01

    Traumatic brain injury constitutes a significant proportion of cases requiring forensic examination, and it encompasses (1) blunt, nonmissile head injury, especially involving motor vehicle accidents, and (2) penetrating, missile injury produced by a range of high- and lower-velocity projectiles. This review examines the complex pathophysiology and biomechanics of both types of neurotrauma and assesses the macroscopic and histologic features of component lesions, which may be used to determine the cause and manner of death resulting from an intentional assault or accident. Estimation of the survival time postinjury by pathologic examination is also important where malicious head injury is suspected, in an attempt to ascertain a time at which the traumatic event might have been committed, thereby evaluating the authenticity of statements made by the alleged perpetrator. PMID:26578643

  2. Simvastatin Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy.

    PubMed

    Mountney, Andrea; Bramlett, Helen M; Dixon, C Edward; Mondello, Stefania; Dietrich, W Dalton; Wang, Kevin K W; Caudle, Krista; Empey, Philip E; Poloyac, Samuel M; Hayes, Ronald L; Povlishock, John T; Tortella, Frank C; Kochanek, Patrick M; Shear, Deborah A

    2016-03-15

    Simvastatin, the fourth drug selected for testing by Operation Brain Trauma Therapy (OBTT), is a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor used clinically to reduce serum cholesterol. In addition, simvastatin has demonstrated potent antineuroinflammatory and brain edema reducing effects and has shown promise in promoting functional recovery in pre-clinical models of traumatic brain injury (TBI). The purpose of this study was to assess the potential neuroprotective effects of oral administration of simvastatin on neurobehavioral, biomarker, and histopathological outcome measures compared across three pre-clinical TBI animal models. Adult male Sprague-Dawley rats were exposed to either moderate fluid percussion injury (FPI), controlled cortical impact injury (CCI), or penetrating ballistic-like brain injury (PBBI). Simvastatin (1 or 5 mg/kg) was delivered via oral gavage at 3 h post-injury and continued once daily out to 14 days post-injury. Results indicated an intermediate beneficial effect of simvastatin on motor performance on the gridwalk (FPI), balance beam (CCI), and rotarod tasks (PBBI). No significant therapeutic benefit was detected, however, on cognitive outcome across the OBTT TBI models. In fact, Morris water maze (MWM) performance was actually worsened by treatment in the FPI model and scored full negative points for low dose in the MWM latency and swim distance to locate the hidden platform. A detrimental effect on cortical tissue loss was also seen in the FPI model, and there were no benefits on histology across the other models. Simvastatin also produced negative effects on circulating glial fibrillary acidic protein biomarker outcomes that were evident in the FPI and PBBI models. Overall, the current findings do not support the beneficial effects of simvastatin administration over 2 weeks post-TBI using the oral route of administration and, as such, it will not be further pursued by OBTT. PMID:26541177

  3. Recovery of resting brain connectivity ensuing mild traumatic brain injury

    PubMed Central

    Bharath, Rose D.; Munivenkatappa, Ashok; Gohel, Suril; Panda, Rajanikant; Saini, Jitender; Rajeswaran, Jamuna; Shukla, Dhaval; Bhagavatula, Indira D.; Biswal, Bharat B.

    2015-01-01

    Brains reveal amplified plasticity as they recover from an injury. We aimed to define time dependent plasticity changes in patients recovering from mild traumatic brain injury (mTBI). Twenty-five subjects with mild head injury were longitudinally evaluated within 36 h, 3 and 6 months using resting state functional connectivity (RSFC). Region of interest (ROI) based connectivity differences over time within the patient group and in comparison with a healthy control group were analyzed at p < 0.005. We found 33 distinct ROI pairs that revealed significant changes in their connectivity strength with time. Within 3 months, the majority of the ROI pairs had decreased connectivity in mTBI population, which increased and became comparable to healthy controls at 6 months. Within this diffuse decreased connectivity in the first 3 months, there were also few regions with increased connections. This hyper connectivity involved the salience network and default mode network within 36 h, and lingual, inferior frontal and fronto-parietal networks at 3 months. Our findings in a fairly homogenous group of patients with mTBI evaluated during the 6 month window of recovery defines time varying brain connectivity changes as the brain recovers from an injury. A majority of these changes were seen in the frontal and parietal lobes between 3 and 6 months after injury. Hyper connectivity of several networks supported normal recovery in the first 6 months and it remains to be seen in future studies whether this can predict an early and efficient recovery of brain function. PMID:26441610

  4. Neuropathology of explosive blast traumatic brain injury.

    PubMed

    Magnuson, John; Leonessa, Fabio; Ling, Geoffrey S F

    2012-10-01

    During the conflicts of the Global War on Terror, which are Operation Enduring Freedom (OEF) in Afghanistan and Operation Iraqi Freedom (OIF), there have been over a quarter of a million diagnosed cases of traumatic brain injury (TBI). The vast majority are due to explosive blast. Although explosive blast TBI (bTBI) shares many clinical features with closed head TBI (cTBI) and penetrating TBI (pTBI), it has unique features, such as early cerebral edema and prolonged cerebral vasospasm. Evolving work suggests that diffuse axonal injury (DAI) seen following explosive blast exposure is different than DAI from focal impact injury. These unique features support the notion that bTBI is a separate and distinct form of TBI. This review summarizes the current state of knowledge pertaining to bTBI. Areas of discussion are: the physics of explosive blast generation, blast wave interaction with the bony calvarium and brain tissue, gross tissue pathophysiology, regional brain injury, and cellular and molecular mechanisms of explosive blast neurotrauma. PMID:22836523

  5. Respiratory mechanics in brain injury: A review.

    PubMed

    Koutsoukou, Antonia; Katsiari, Maria; Orfanos, Stylianos E; Kotanidou, Anastasia; Daganou, Maria; Kyriakopoulou, Magdalini; Koulouris, Nikolaos G; Rovina, Nikoletta

    2016-02-01

    Several clinical and experimental studies have shown that lung injury occurs shortly after brain damage. The responsible mechanisms involve neurogenic pulmonary edema, inflammation, the harmful action of neurotransmitters, or autonomic system dysfunction. Mechanical ventilation, an essential component of life support in brain-damaged patients (BD), may be an additional traumatic factor to the already injured or susceptible to injury lungs of these patients thus worsening lung injury, in case that non lung protective ventilator settings are applied. Measurement of respiratory mechanics in BD patients, as well as assessment of their evolution during mechanical ventilation, may lead to preclinical lung injury detection early enough, allowing thus the selection of the appropriate ventilator settings to avoid ventilator-induced lung injury. The aim of this review is to explore the mechanical properties of the respiratory system in BD patients along with the underlying mechanisms, and to translate the evidence of animal and clinical studies into therapeutic implications regarding the mechanical ventilation of these critically ill patients. PMID:26855895

  6. Respiratory mechanics in brain injury: A review

    PubMed Central

    Koutsoukou, Antonia; Katsiari, Maria; Orfanos, Stylianos E; Kotanidou, Anastasia; Daganou, Maria; Kyriakopoulou, Magdalini; Koulouris, Nikolaos G; Rovina, Nikoletta

    2016-01-01

    Several clinical and experimental studies have shown that lung injury occurs shortly after brain damage. The responsible mechanisms involve neurogenic pulmonary edema, inflammation, the harmful action of neurotransmitters, or autonomic system dysfunction. Mechanical ventilation, an essential component of life support in brain-damaged patients (BD), may be an additional traumatic factor to the already injured or susceptible to injury lungs of these patients thus worsening lung injury, in case that non lung protective ventilator settings are applied. Measurement of respiratory mechanics in BD patients, as well as assessment of their evolution during mechanical ventilation, may lead to preclinical lung injury detection early enough, allowing thus the selection of the appropriate ventilator settings to avoid ventilator-induced lung injury. The aim of this review is to explore the mechanical properties of the respiratory system in BD patients along with the underlying mechanisms, and to translate the evidence of animal and clinical studies into therapeutic implications regarding the mechanical ventilation of these critically ill patients. PMID:26855895

  7. Apelin-13 as a novel target for intervention in secondary injury after traumatic brain injury

    PubMed Central

    Bao, Hai-jun; Qiu, Hai-yang; Kuai, Jin-xia; Song, Cheng-jie; Wang, Shao-xian; Wang, Chao-qun; Peng, Hua-bin; Han, Wen-can; Wu, Yong-ping

    2016-01-01

    The adipocytokine, apelin-13, is an abundantly expressed peptide in the nervous system. Apelin-13 protects the brain against ischemia/reperfusion injury and attenuates traumatic brain injury by suppressing autophagy. However, secondary apelin-13 effects on traumatic brain injury-induced neural cell death and blood-brain barrier integrity are still not clear. Here, we found that apelin-13 significantly decreases cerebral water content, mitigates blood-brain barrier destruction, reduces aquaporin-4 expression, diminishes caspase-3 and Bax expression in the cerebral cortex and hippocampus, and reduces apoptosis. These results show that apelin-13 attenuates secondary injury after traumatic brain injury and exerts a neuroprotective effect.

  8. Nicotinamide Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy.

    PubMed

    Shear, Deborah A; Dixon, C Edward; Bramlett, Helen M; Mondello, Stefania; Dietrich, W Dalton; Deng-Bryant, Ying; Schmid, Kara E; Wang, Kevin K W; Hayes, Ronald L; Povlishock, John T; Kochanek, Patrick M; Tortella, Frank C

    2016-03-15

    Nicotinamide (vitamin B3) was the first drug selected for cross-model testing by the Operation Brain Trauma Therapy (OBTT) consortium based on a compelling record of positive results in pre-clinical models of traumatic brain injury (TBI). Adult male Sprague-Dawley rats were exposed to either moderate fluid percussion injury (FPI), controlled cortical impact injury (CCI), or penetrating ballistic-like brain injury (PBBI). Nicotinamide (50 or 500 mg/kg) was delivered intravenously at 15 min and 24 h after injury with subsequent behavioral, biomarker, and histopathological outcome assessments. There was an intermediate effect on balance beam performance with the high (500 mg/kg) dose in the CCI model, but no significant therapeutic benefit was detected on any other motor task across the OBTT TBI models. There was an intermediate benefit on working memory with the high dose in the FPI model. A negative effect of the low (50 mg/kg) dose, however, was observed on cognitive outcome in the CCI model, and no cognitive improvement was observed in the PBBI model. Lesion volume analysis showed no treatment effects after either FPI or PBBI, but the high dose of nicotinamide resulted in significant tissue sparing in the CCI model. Biomarker assessments included measurements of glial fibrillary acidic protein (GFAP) and ubiquitin carboxyl-terminal hydrolase-1 (UCH-L1) in blood at 4 or 24 h after injury. Negative effects (both doses) were detected on biomarker levels of GFAP after FPI and on biomarker levels of UCH-L1 after PBBI. The high dose of nicotinamide, however, reduced GFAP levels after both PBBI and CCI. Overall, our results showed a surprising lack of benefit from the low dose nicotinamide. In contrast, and partly in keeping with the literature, some benefit was achieved with the high dose. The marginal benefits achieved with nicotinamide, however, which appeared sporadically across the TBI models, has reduced enthusiasm for further investigation by the OBTT Consortium

  9. Diagnosing pseudobulbar affect in traumatic brain injury

    PubMed Central

    Engelman, William; Hammond, Flora M; Malec, James F

    2014-01-01

    Pseudobulbar affect (PBA) is defined by episodes of involuntary crying and/or laughing as a result of brain injury or other neurological disease. Epidemiology studies show that 5.3%–48.2% of people with traumatic brain injury (TBI) may have symptoms consistent with (or suggestive of) PBA. Yet it is a difficult and often overlooked condition in individuals with TBI, and is easily confused with depression or other mood disorders. As a result, it may be undertreated and persist for longer than it should. This review presents the signs and symptoms of PBA in patients with existing TBI and outlines how to distinguish PBA from other similar conditions. It also compares and contrasts the different diagnostic criteria found in the literature and briefly mentions appropriate treatments. This review follows a composite case with respect to the clinical course and treatment for PBA and presents typical challenges posed to a provider when diagnosing PBA. PMID:25336956

  10. Mild Traumatic Brain Injury in Translation

    PubMed Central

    Robertson, Claudia S.

    2013-01-01

    Abstract This Introduction to a Special Issue on Mild Traumatic Brain Injury (mTBI) highlights the methodological challenges in outcome studies and clinical trials involving patients who sustain mTBI. Recent advances in brain imaging and portable, computerized cognitive tasks have contributed to protocols that are sensitive to the effects of mTBI and efficient in time for completion. Investigation of civilian mTBI has been extended to single and repeated injuries in athletes and blast-related mTBI in service members and veterans. Despite differences in mechanism of injury, there is evidence for similar effects of acceleration-deceleration and blast mechanisms of mTBI on cognition. Investigation of repetitive mTBI suggests that the effects may be cumulative and that repeated mTBI and repeated subconcussive head trauma may lead to neurodegenerative conditions. Although animal models of mTBI using cortical impact and fluid percussion injury in rodents have been able to reproduce some of the cognitive deficits frequently exhibited by patients after mTBI, modeling post-concussion symptoms is difficult. Recent use of closed head and blast injury animal models may more closely approximate clinical mTBI. Translation of interventions that are developed in animal models to patients with mTBI is a priority for the research agenda. This Special Issue on mTBI integrates basic neuroscience studies using animal models with studies of human mTBI, including the cognitive sequelae, persisting symptoms, brain imaging, and host factors that facilitate recovery. PMID:23046349

  11. Mild traumatic brain injury in a gymnast.

    PubMed

    Knight, Debra; Dewitt, Rachel; Moser, Sharon

    2016-07-01

    Primary care providers often are responsible for the initial evaluation and management plan of young patients with mild traumatic brain injury (mild TBI, also called concussion), and need to be familiar with new protocols and how to incorporate them into a patient's treatment plan. This article describes a patient who suffered a mild TBI and returned to sports too early, and discusses the appropriate protocols for managing concussion in children. PMID:27351644

  12. Psychotic disorder caused by traumatic brain injury.

    PubMed

    Fujii, Daryl E; Ahmed, Iqbal

    2014-03-01

    Psychosis is a rare and severe sequela of traumatic brain injury (TBI). This article assists clinicians in differential diagnosis by providing literature-based guidance with regard to use of the Diagnostic and Statistical Manual for Mental Disorders 5 criteria for this condition. This article also describes potential relationships between TBI and the development of a psychosis within the conceptualization of psychosis as a neurobehavioral syndrome. PMID:24529427

  13. Inflammatory neuroprotection following traumatic brain injury.

    PubMed

    Russo, Matthew V; McGavern, Dorian B

    2016-08-19

    Traumatic brain injury (TBI) elicits an inflammatory response in the central nervous system (CNS) that involves both resident and peripheral immune cells. Neuroinflammation can persist for years following a single TBI and may contribute to neurodegeneration. However, administration of anti-inflammatory drugs shortly after injury was not effective in the treatment of TBI patients. Some components of the neuroinflammatory response seem to play a beneficial role in the acute phase of TBI. Indeed, following CNS injury, early inflammation can set the stage for proper tissue regeneration and recovery, which can, perhaps, explain why general immunosuppression in TBI patients is disadvantageous. Here, we discuss some positive attributes of neuroinflammation and propose that inflammation be therapeutically guided in TBI patients rather than globally suppressed. PMID:27540166

  14. Emerging Therapies in Traumatic Brain Injury

    PubMed Central

    Kochanek, Patrick M.; Jackson, Travis C.; Ferguson, Nikki Miller; Carlson, Shaun W.; Simon, Dennis W.; Brockman, Erik C.; Ji, Jing; Bayir, Hülya; Poloyac, Samuel M.; Wagner, Amy K.; Kline, Anthony E.; Empey, Philip E.; Clark, Robert S.B.; Jackson, Edwin K.; Dixon, C. Edward

    2015-01-01

    Despite decades of basic and clinical research, treatments to improve outcomes after traumatic brain injury (TBI) are limited. However, based on the recent recognition of the prevalence of mild TBI, and its potential link to neurodegenerative disease, many new and exciting secondary injury mechanisms have been identified and several new therapies are being evaluated targeting both classic and novel paradigms. This includes a robust increase in both preclinical and clinical investigations. Using a mechanism-based approach the authors define the targets and emerging therapies for TBI. They address putative new therapies for TBI across both the spectrum of injury severity and the continuum of care, from the field to rehabilitation. They discuss TBI therapy using 11 categories, namely, (1) excitotoxicity and neuronal death, (2) brain edema, (3) mitochondria and oxidative stress, (4) axonal injury, (5) inflammation, (6) ischemia and cerebral blood flow dysregulation, (7) cognitive enhancement, (8) augmentation of endogenous neuroprotection, (9) cellular therapies, (10) combination therapy, and (11) TBI resuscitation. The current golden age of TBI research represents a special opportunity for the development of breakthroughs in the field. PMID:25714870

  15. Traumatic brain injury in modern war

    NASA Astrophysics Data System (ADS)

    Ling, Geoffrey S. F.; Hawley, Jason; Grimes, Jamie; Macedonia, Christian; Hancock, James; Jaffee, Michael; Dombroski, Todd; Ecklund, James M.

    2013-05-01

    Traumatic brain injury (TBI) is common and especially with military service. In Iraq and Afghanistan, explosive blast related TBI has become prominent and is mainly from improvised explosive devices (IED). Civilian standard of care clinical practice guidelines (CPG) were appropriate has been applied to the combat setting. When such CPGs do not exist or are not applicable, new practice standards for the military are created, as for TBI. Thus, CPGs for prehospital care of combat TBI CPG [1] and mild TBI/concussion [2] were introduced as was a DoD system-wide clinical care program, the first large scale system wide effort to address all severities of TBI in a comprehensive organized way. As TBI remains incompletely understood, substantial research is underway. For the DoD, leading this effort are The Defense and Veterans Brain Injury Center, National Intrepid Center of Excellence and the Defense Centers of Excellence for Psychological Health and Traumatic Brain Injury. This program is a beginning, a work in progress ready to leverage advances made scientifically and always with the intent of providing the best care to its military beneficiaries.

  16. Cerebral Lactate Metabolism After Traumatic Brain Injury.

    PubMed

    Patet, Camille; Suys, Tamarah; Carteron, Laurent; Oddo, Mauro

    2016-04-01

    Cerebral energy dysfunction has emerged as an important determinant of prognosis following traumatic brain injury (TBI). A number of studies using cerebral microdialysis, positron emission tomography, and jugular bulb oximetry to explore cerebral metabolism in patients with TBI have demonstrated a critical decrease in the availability of the main energy substrate of brain cells (i.e., glucose). Energy dysfunction induces adaptations of cerebral metabolism that include the utilization of alternative energy resources that the brain constitutively has, such as lactate. Two decades of experimental and human investigations have convincingly shown that lactate stands as a major actor of cerebral metabolism. Glutamate-induced activation of glycolysis stimulates lactate production from glucose in astrocytes, with subsequent lactate transfer to neurons (astrocyte-neuron lactate shuttle). Lactate is not only used as an extra energy substrate but also acts as a signaling molecule and regulator of systemic and brain glucose use in the cerebral circulation. In animal models of brain injury (e.g., TBI, stroke), supplementation with exogenous lactate exerts significant neuroprotection. Here, we summarize the main clinical studies showing the pivotal role of lactate and cerebral lactate metabolism after TBI. We also review pilot interventional studies that examined exogenous lactate supplementation in patients with TBI and found hypertonic lactate infusions had several beneficial properties on the injured brain, including decrease of brain edema, improvement of neuroenergetics via a "cerebral glucose-sparing effect," and increase of cerebral blood flow. Hypertonic lactate represents a promising area of therapeutic investigation; however, larger studies are needed to further examine mechanisms of action and impact on outcome. PMID:26898683

  17. Substance P Mediates Reduced Pneumonia Rates After Traumatic Brain Injury

    PubMed Central

    Yang, Sung; Stepien, David; Hanseman, Dennis; Robinson, Bryce; Goodman, Michael D.; Pritts, Timothy A.; Caldwell, Charles C.; Remick, Daniel G.; Lentsch, Alex B.

    2014-01-01

    Objectives Traumatic brain injury results in significant morbidity and mortality and is associated with infectious complications, particularly pneumonia. However, whether traumatic brain injury directly impacts the host response to pneumonia is unknown. The objective of this study was to determine the nature of the relationship between traumatic brain injury and the prevalence of pneumonia in trauma patients and investigate the mechanism of this relationship using a murine model of traumatic brain injury with pneumonia. Design Data from the National Trauma Data Bank and a murine model of traumatic brain injury with postinjury pneumonia. Setting Academic medical centers in Cincinnati, OH, and Boston, MA. Patients/Subjects Trauma patients in the National Trauma Data Bank with a hospital length of stay greater than 2 days, age of at least 18 years at admission, and a blunt mechanism of injury. Subjects were female ICR mice 8–10 weeks old. Interventions Administration of a substance P receptor antagonist in mice. Measurements and Main Results Pneumonia rates were measured in trauma patients before and after risk adjustment using propensity scoring. In addition, survival and pulmonary inflammation were measured in mice undergoing traumatic brain injury with or without pneumonia. After risk adjustment, we found that traumatic brain injury patients had significantly lower rates of pneumonia compared to blunt trauma patients without traumatic brain injury. A murine model of traumatic brain injury reproduced these clinical findings with mice subjected to traumatic brain injury demonstrating increased bacterial clearance and survival after induction of pneumonia. To determine the mechanisms responsible for this improvement, the substance P receptor was blocked in mice after traumatic brain injury. This treatment abrogated the traumatic brain injury–associated increases in bacterial clearance and survival. Conclusions The data demonstrate that patients with traumatic

  18. [Intensive care of traumatic brain injury in children].

    PubMed

    Kizilov, A V; Babaev, B D; Malov, A G; Ermolaev, V V; Mikhaĭlov, E V; Ostreĭkov, I F

    2011-01-01

    Traumatic brain injury among other injuries of human body reaches up to 30-50% and, according to the WHO, it grows by 2%. Severe traumatic brain injury (such as severe brain contusion, epidural, subdural and intracerebral hematoma, intracerebral hygroma, diffuse axonal injury) in the structure of general trauma amounts 4-20%. The prognosis of traumatic brain injury mainly depends on the timeliness of the first aid. The therapeutic measures usually begin at the place of the accident or in the ambulance vehicle (hence the clear role of the specialist team). It is advised for children with severe traumatic brain injury to be directed to specialized neurosurgical or trauma hospitals, where it is possible to provide them with adequate medical care. This work is dedicated to the enhancement of the intensive care quality during severe traumatic brain injury in children of Chuvash Republic, by the means of integrated patient assessment. PMID:21513069

  19. Microglia in ischemic brain injury

    PubMed Central

    Weinstein, Jonathan R; Koerner, Ines P; Möller, Thomas

    2010-01-01

    Microglia are resident CNS immune cells that are active sensors in healthy brain and versatile effectors under pathological conditions. Cerebral ischemia induces a robust neuroinflammatory response that includes marked changes in the gene-expression profile and phenotype of a variety of endogenous CNS cell types (astrocytes, neurons and microglia), as well as an influx of leukocytic cells (neutrophils, macrophages and T-cells) from the periphery. Many molecules and conditions can trigger a transformation of surveying microglia to microglia of an alerted or reactive state. Here we review recent developments in the literature that relate to microglial activation in the experimental setting of in vitro and in vivo ischemia. We also present new data from our own laboratory demonstrating the direct effects of in vitro ischemic conditions on the microglial phenotype and genomic profile. In particular, we focus on the role of specific molecular signaling systems, such as hypoxia inducible factor-1 and Toll-like receptor-4, in regulating the microglial response in this setting. We then review histological and novel radiological data that confirm a key role for microglial activation in the setting of ischemic stroke in humans. We also discuss recent progress in the pharmacologic and molecular targeting of microglia in acute ischemic stroke. Finally, we explore how recent studies on ischemic preconditioning have increased interest in pre-emptively targeting microglial activation in order to reduce stroke severity. PMID:20401171

  20. Traumatic Brain Injury: A Guidebook for Idaho Educators.

    ERIC Educational Resources Information Center

    Carter, Susanne

    This guide is an introduction to head injury and to educational resources in the field. An introductory section describes traumatic brain injury (TBI) as a federally recognized disability category and provides its federal and Idaho definitions. The following section introduces the unique characteristics of students with brain injuries. A section…

  1. Traumatic brain injury: Does gender influence outcomes?

    PubMed Central

    Munivenkatappa, Ashok; Agrawal, Amit; Shukla, Dhaval P.; Kumaraswamy, Deepika; Devi, Bhagavatula Indira

    2016-01-01

    Background: Traumatic brain injury (TBI) is a major public health problem. Both genders are affected, but little is known about female TBI. The present study exclusively explores epidemiological, clinical, imaging, and death aspects of female TBI, and how it differs from males. Methods: It is a retrospective study. Data were documented from a tertiary institute during January 2010 to March 2010. All variables were documented on standard proforma. The data were analyzed using R statistics software. Age group was categorized into pediatric (<18 years), middle (19–60 years) and elderly (>61 years). Significance was tested using Chi-square test at the significance level of P < 0.05. Results: Data of 1627 TBI patients were recorded. Of the total, female TBIs contributed nearly 20%. Compared to males, female patients reported higher percentages in manifesting symptoms (84.3% vs. 82.6%), injuries due to fall (32.1% vs. 24.4%), and surgical interventions (11.6% vs. 10.4%). Female patients were significantly higher in mild head injury group (76.8% vs. 69.5%, P - 0.016) and mortality (3.4% vs. 1.6%, P - 0.048). Number of patients and deaths was more among females than males in pediatric and elderly age group. Severities of injuries were more among female patients than male patients in middle and elder age groups. Conclusion: The study results observe that female TBI group differ significantly in the severity of injury and mortality. PMID:27308254

  2. Imaging assessment of traumatic brain injury.

    PubMed

    Currie, Stuart; Saleem, Nayyar; Straiton, John A; Macmullen-Price, Jeremy; Warren, Daniel J; Craven, Ian J

    2016-01-01

    Traumatic brain injury (TBI) constitutes injury that occurs to the brain as a result of trauma. It should be appreciated as a heterogeneous, dynamic pathophysiological process that starts from the moment of impact and continues over time with sequelae potentially seen many years after the initial event. Primary traumatic brain lesions that may occur at the moment of impact include contusions, haematomas, parenchymal fractures and diffuse axonal injury. The presence of extra-axial intracranial lesions such as epidural and subdural haematomas and subarachnoid haemorrhage must be anticipated as they may contribute greatly to secondary brain insult by provoking brain herniation syndromes, cranial nerve deficits, oedema and ischaemia and infarction. Imaging is fundamental to the management of patients with TBI. CT remains the imaging modality of choice for initial assessment due to its ease of access, rapid acquisition and for its sensitivity for detection of acute haemorrhagic lesions for surgical intervention. MRI is typically reserved for the detection of lesions that may explain clinical symptoms that remain unresolved despite initial CT. This is especially apparent in the setting of diffuse axonal injury, which is poorly discerned on CT. Use of particular MRI sequences may increase the sensitivity of detecting such lesions: diffusion-weighted imaging defining acute infarction, susceptibility-weighted imaging affording exquisite data on microhaemorrhage. Additional advanced MRI techniques such as diffusion tensor imaging and functional MRI may provide important information regarding coexistent structural and functional brain damage. Gaining robust prognostic information for patients following TBI remains a challenge. Advanced MRI sequences are showing potential for biomarkers of disease, but this largely remains at the research level. Various global collaborative research groups have been established in an effort to combine imaging data with clinical and

  3. Traumatic Brain Injury: An Educator's Manual. [Revised Edition.

    ERIC Educational Resources Information Center

    Fiegenbaum, Ed, Ed.; And Others

    This manual for the Portland (Oregon) Public Schools presents basic information on providing educational services to children with traumatic brain injury (TBI). Individual sections cover the following topics: the brain, central nervous system and behavior; physical, psychological and emotional implication; traumatic brain injury in children versus…

  4. Mechanical Injury Induces Brain Endothelial-Derived Microvesicle Release: Implications for Cerebral Vascular Injury during Traumatic Brain Injury.

    PubMed

    Andrews, Allison M; Lutton, Evan M; Merkel, Steven F; Razmpour, Roshanak; Ramirez, Servio H

    2016-01-01

    It is well established that the endothelium responds to mechanical forces induced by changes in shear stress and strain. However, our understanding of vascular remodeling following traumatic brain injury (TBI) remains incomplete. Recently published studies have revealed that lung and umbilical endothelial cells produce extracellular microvesicles (eMVs), such as microparticles, in response to changes in mechanical forces (blood flow and mechanical injury). Yet, to date, no studies have shown whether brain endothelial cells produce eMVs following TBI. The brain endothelium is highly specialized and forms the blood-brain barrier (BBB), which regulates diffusion and transport of solutes into the brain. This specialization is largely due to the presence of tight junction proteins (TJPs) between neighboring endothelial cells. Following TBI, a breakdown in tight junction complexes at the BBB leads to increased permeability, which greatly contributes to the secondary phase of injury. We have therefore tested the hypothesis that brain endothelium responds to mechanical injury, by producing eMVs that contain brain endothelial proteins, specifically TJPs. In our study, primary human adult brain microvascular endothelial cells (BMVEC) were subjected to rapid mechanical injury to simulate the abrupt endothelial disruption that can occur in the primary injury phase of TBI. eMVs were isolated from the media following injury at 2, 6, 24, and 48 h. Western blot analysis of eMVs demonstrated a time-dependent increase in TJP occludin, PECAM-1 and ICAM-1 following mechanical injury. In addition, activation of ARF6, a small GTPase linked to extracellular vesicle production, was increased after injury. To confirm these results in vivo, mice were subjected to sham surgery or TBI and blood plasma was collected 24 h post-injury. Isolation and analysis of eMVs from blood plasma using cryo-EM and flow cytometry revealed elevated levels of vesicles containing occludin following brain trauma

  5. Mechanical Injury Induces Brain Endothelial-Derived Microvesicle Release: Implications for Cerebral Vascular Injury during Traumatic Brain Injury

    PubMed Central

    Andrews, Allison M.; Lutton, Evan M.; Merkel, Steven F.; Razmpour, Roshanak; Ramirez, Servio H.

    2016-01-01

    It is well established that the endothelium responds to mechanical forces induced by changes in shear stress and strain. However, our understanding of vascular remodeling following traumatic brain injury (TBI) remains incomplete. Recently published studies have revealed that lung and umbilical endothelial cells produce extracellular microvesicles (eMVs), such as microparticles, in response to changes in mechanical forces (blood flow and mechanical injury). Yet, to date, no studies have shown whether brain endothelial cells produce eMVs following TBI. The brain endothelium is highly specialized and forms the blood-brain barrier (BBB), which regulates diffusion and transport of solutes into the brain. This specialization is largely due to the presence of tight junction proteins (TJPs) between neighboring endothelial cells. Following TBI, a breakdown in tight junction complexes at the BBB leads to increased permeability, which greatly contributes to the secondary phase of injury. We have therefore tested the hypothesis that brain endothelium responds to mechanical injury, by producing eMVs that contain brain endothelial proteins, specifically TJPs. In our study, primary human adult brain microvascular endothelial cells (BMVEC) were subjected to rapid mechanical injury to simulate the abrupt endothelial disruption that can occur in the primary injury phase of TBI. eMVs were isolated from the media following injury at 2, 6, 24, and 48 h. Western blot analysis of eMVs demonstrated a time-dependent increase in TJP occludin, PECAM-1 and ICAM-1 following mechanical injury. In addition, activation of ARF6, a small GTPase linked to extracellular vesicle production, was increased after injury. To confirm these results in vivo, mice were subjected to sham surgery or TBI and blood plasma was collected 24 h post-injury. Isolation and analysis of eMVs from blood plasma using cryo-EM and flow cytometry revealed elevated levels of vesicles containing occludin following brain trauma

  6. Concussive brain injury from explosive blast

    PubMed Central

    de Lanerolle, Nihal C; Hamid, Hamada; Kulas, Joseph; Pan, Jullie W; Czlapinski, Rebecca; Rinaldi, Anthony; Ling, Geoffrey; Bandak, Faris A; Hetherington, Hoby P

    2014-01-01

    Objective Explosive blast mild traumatic brain injury (mTBI) is associated with a variety of symptoms including memory impairment and posttraumatic stress disorder (PTSD). Explosive shock waves can cause hippocampal injury in a large animal model. We recently reported a method for detecting brain injury in soldiers with explosive blast mTBI using magnetic resonance spectroscopic imaging (MRSI). This method is applied in the study of veterans exposed to blast. Methods The hippocampus of 25 veterans with explosive blast mTBI, 20 controls, and 12 subjects with PTSD but without exposure to explosive blast were studied using MRSI at 7 Tesla. Psychiatric and cognitive assessments were administered to characterize the neuropsychiatric deficits and compare with findings from MRSI. Results Significant reductions in the ratio of N-acetyl aspartate to choline (NAA/Ch) and N-acetyl aspartate to creatine (NAA/Cr) (P < 0.05) were found in the anterior portions of the hippocampus with explosive blast mTBI in comparison to control subjects and were more pronounced in the right hippocampus, which was 15% smaller in volume (P < 0.05). Decreased NAA/Ch and NAA/Cr were not influenced by comorbidities – PTSD, depression, or anxiety. Subjects with PTSD without blast had lesser injury, which tended to be in the posterior hippocampus. Explosive blast mTBI subjects had a reduction in visual memory compared to PTSD without blast. Interpretation The region of the hippocampus injured differentiates explosive blast mTBI from PTSD. MRSI is quite sensitive in detecting and localizing regions of neuronal injury from explosive blast associated with memory impairment. PMID:25493283

  7. Time Dysperception Perspective for Acquired Brain Injury

    PubMed Central

    Piras, Federica; Piras, Fabrizio; Ciullo, Valentina; Danese, Emanuela; Caltagirone, Carlo; Spalletta, Gianfranco

    2014-01-01

    Distortions of time perception are presented by a number of neuropsychiatric illnesses. Here we survey timing abilities in clinical populations with focal lesions in key brain structures recently implicated in human studies of timing. We also review timing performance in amnesic and traumatic brain injured patients in order to identify the nature of specific timing disorders in different brain damaged populations. We purposely analyzed the complex relationship between both cognitive and contextual factors involved in time estimation, as to characterize the correlation between timed and other cognitive behaviors in each group. We assume that interval timing is a solid construct to study cognitive dysfunctions following brain injury, as timing performance is a sensitive metric of information processing, while temporal cognition has the potential of influencing a wide range of cognitive processes. Moreover, temporal performance is a sensitive assay of damage to the underlying neural substrate after a brain insult. Further research in neurological and psychiatric patients will clarify whether time distortions are a manifestation of, or a mechanism for, cognitive and behavioral symptoms of neuropsychiatric disorders. PMID:24454304

  8. [Delayed brain abscess after penetrating transorbital injury].

    PubMed

    Hiraishi, Tetsuya; Tomikawa, Masaru; Kobayashi, Tsutomu; Kawaguchi, Tadashi

    2007-05-01

    We report a case of brain abscess caused by a penetrating head injury that occurred 9 years earlier. A 14-year-old girl presenting with fever, headache, and stiff neck was admitted to our hospital. She was diagnosed with aseptic meningitis and treated conservatively. Seven days after admission she became stuporous and showed left hemiparesis. Computed tomography (CT) revealed two ring-enhancing masses with perifocal edema in the right frontal lobe. We diagnosed brain abscess and performed right fronto-temporal decompressive craniectomy and stereotactic aspiration, followed by systemic antibiotic therapy. Post-surgery bone window CT revealed a well-defined, low-density foreign body passing from the left orbita to the right frontal lobe through the ethmoid sinus. We learned that the patient had been struck with a plastic chopstick in the left medial eyelid at the age of 5 years. No particular symptoms developed during the following 9 years. After the cerebral edema had diminished over the next 10 days, a second surgery was performed to remove the residual chopstick, repair the fistula at the base of the skull, and perform cranioplasty. The patient was discharged with only slight hyposmia after a 4-week course of antibiotics. This case showed that it is necessary to remove a residual foreign body and to close the dural fistula if there is a possibility of recurrent central nervous system infection. When a child presents with brain abscess, previous penetrating head injury should be considered. PMID:17491344

  9. Pathophysiology of battlefield associated traumatic brain injury.

    PubMed

    Duckworth, Josh L; Grimes, Jamie; Ling, Geoffrey S F

    2013-02-01

    As more data is accumulated from Operation Iraqi Freedom and Operation Enduring Freedom (OEF in Afghanistan), it is becoming increasing evident that traumatic brain injury (TBI) is a serious and highly prevalent battle related injury. Although traditional TBIs such as closed head and penetrating occur in the modern battle space, the most common cause of modern battle related TBI is exposure to explosive blast. Many believe that explosive blast TBI is unique from the other forms of TBI. This is because the physical forces responsible for explosive blast TBI are different than those for closed head TBI and penetrating TBI. The unique force associated with explosive blast is the blast shock pressure wave. This shock wave occurs over a very short period, milliseconds, and has a specific profile known as the Freidlander curve. This pressure-time curve is characterized by an initial very rapid up-rise followed by a longer decay that reaches a negative inflection point before returning to baseline. This is important as the effect of this shock pressure on brain parenchyma is distinct. The diffuse interaction of the pressure wave with the brain leads to a complex cascade of events that affects neurons, axons, glia cells, and vasculature. It is only by properly studying this disease will meaningful therapies be realized. PMID:22703708

  10. Electrophysiologic monitoring in acute brain injury.

    PubMed

    Claassen, Jan; Vespa, Paul

    2014-12-01

    To determine the optimal use and indications of electroencephalography (EEG) in critical care management of acute brain injury (ABI). An electronic literature search was conducted for articles in English describing electrophysiological monitoring in ABI from January 1990 to August 2013. A total of 165 studies were included. EEG is a useful monitor for seizure and ischemia detection. There is a well-described role for EEG in convulsive status epilepticus and cardiac arrest (CA). Data suggest EEG should be considered in all patients with ABI and unexplained and persistent altered consciousness and in comatose intensive care unit (ICU) patients without an acute primary brain condition who have an unexplained impairment of mental status. There remain uncertainties about certain technical details, e.g., the minimum duration of EEG studies, the montage, and electrodes. Data obtained from both EEG and EP studies may help estimate prognosis in ABI patients, particularly following CA and traumatic brain injury. Data supporting these recommendations is sparse, and high quality studies are needed. EEG is used to monitor and detect seizures and ischemia in ICU patients and indications for EEG are clear for certain disease states, however, uncertainty remains on other applications. PMID:25208668

  11. Hypersexuality or altered sexual preference following brain injury.

    PubMed Central

    Miller, B L; Cummings, J L; McIntyre, H; Ebers, G; Grode, M

    1986-01-01

    Eight patients are described in whom either hypersexuality (four cases) or change in sexual preference (four cases) occurred following brain injury. In this series disinhibition of sexual activity and hypersexuality followed medial basal-frontal or diencephalic injury. This contrasted with the patients demonstrating altered sexual preference whose injuries involved limbic system structures. In some patients altered sexual behaviour may be the presenting or dominant feature of brain injury. Images PMID:3746322

  12. Inflammatory Signalling Associated with Brain Dead Organ Donation: From Brain Injury to Brain Stem Death and Posttransplant Ischaemia Reperfusion Injury

    PubMed Central

    Watts, Ryan P.; Thom, Ogilvie; Fraser, John F.

    2013-01-01

    Brain death is associated with dramatic and serious pathophysiologic changes that adversely affect both the quantity and quality of organs available for transplant. To fully optimise the donor pool necessitates a more complete understanding of the underlying pathophysiology of organ dysfunction associated with transplantation. These injurious processes are initially triggered by catastrophic brain injury and are further enhanced during both brain death and graft transplantation. The activated inflammatory systems then contribute to graft dysfunction in the recipient. Inflammatory mediators drive this process in concert with the innate and adaptive immune systems. Activation of deleterious immunological pathways in organ grafts occurs, priming them for further inflammation after engraftment. Finally, posttransplantation ischaemia reperfusion injury leads to further generation of inflammatory mediators and consequent activation of the recipient's immune system. Ongoing research has identified key mediators that contribute to the inflammatory milieu inherent in brain dead organ donation. This has seen the development of novel therapies that directly target the inflammatory cascade. PMID:23691272

  13. Thaliporphine derivative improves acute lung injury after traumatic brain injury.

    PubMed

    Chen, Gunng-Shinng; Huang, Kuo-Feng; Huang, Chien-Chu; Wang, Jia-Yi

    2015-01-01

    Acute lung injury (ALI) occurs frequently in patients with severe traumatic brain injury (TBI) and is associated with a poor clinical outcome. Aquaporins (AQPs), particularly AQP1 and AQP4, maintain water balances between the epithelial and microvascular domains of the lung. Since pulmonary edema (PE) usually occurs in the TBI-induced ALI patients, we investigated the effects of a thaliporphine derivative, TM-1, on the expression of AQPs and histological outcomes in the lung following TBI in rats. TM-1 administered (10 mg/kg, intraperitoneal injection) at 3 or 4 h after TBI significantly reduced the elevated mRNA expression and protein levels of AQP1 and AQP4 and diminished the wet/dry weight ratio, which reflects PE, in the lung at 8 and 24 h after TBI. Postinjury TM-1 administration also improved histopathological changes at 8 and 24 h after TBI. PE was accompanied with tissue pathological changes because a positive correlation between the lung injury score and the wet/dry weight ratio in the same animal was observed. Postinjury administration of TM-1 improved ALI and reduced PE at 8 and 24 h following TBI. The pulmonary-protective effect of TM-1 may be attributed to, at least in part, downregulation of AQP1 and AQP4 expression after TBI. PMID:25705683

  14. [Mental disorders after mild traumatic brain injury].

    PubMed

    Gonschorek, A S; Schwenkreis, P; Guthke, T

    2016-05-01

    Mild traumatic brain injury (mTBI) is a frequent neurological disorder following a closed head injury. It is often accompanied by temporary changes of consciousness as well as cognitive, emotional and physical symptoms. These symptoms subside in the vast majority of affected persons within a few weeks; however, in recent years it has become increasingly more apparent that functionally significant long-term effects can remain after an initially diagnosed mTBI. In these cases mental disorders, such as impairment of cognitive and emotional functions as well as somatic disorders play an important role. This article presents the frequency, diagnosis, therapy and possible mechanisms of cognitive and emotional dysfunction after mTBI, including medicolegal aspects. PMID:27119532

  15. Aggression after Traumatic Brain Injury: Prevalence & Correlates

    PubMed Central

    Rao, Vani; Rosenberg, Paul; Bertrand, Melaine; Salehinia, Saeed; Spiro, Jennifer; Vaishnavi, Sandeep; Rastogi, Pramit; Noll, Kathy; Schretlen, David J; Brandt, Jason; Cornwell, Edward; Makley, Michael; Miles, Quincy Samus

    2010-01-01

    Aggression after traumatic brain injury (TBI) is common but not well defined. Sixty-seven participants with first-time TBI were seen within three months of injury and evaluated for aggression. The prevalence of aggression was found to be 28.4% and to be predominantly verbal aggression. Post-TBI aggression was associated with new-onset major depression (p=0.02), poorer social functioning (p=0.04), and increased dependency on activities of daily living (p=0.03), but not with a history of substance abuse or adult/childhood behavioral problems. Implications of the study include early screening for aggression, evaluation for depression, and consideration of psychosocial support in aggressive patients. PMID:19996251

  16. Radiation-induced brain injury: A review

    PubMed Central

    Greene-Schloesser, Dana; Robbins, Mike E.; Peiffer, Ann M.; Shaw, Edward G.; Wheeler, Kenneth T.; Chan, Michael D.

    2012-01-01

    Approximately 100,000 primary and metastatic brain tumor patients/year in the US survive long enough (>6 months) to experience radiation-induced brain injury. Prior to 1970, the human brain was thought to be highly radioresistant; the acute CNS syndrome occurs after single doses >30 Gy; white matter necrosis occurs at fractionated doses >60 Gy. Although white matter necrosis is uncommon with modern techniques, functional deficits, including progressive impairments in memory, attention, and executive function have become important, because they have profound effects on quality of life. Preclinical studies have provided valuable insights into the pathogenesis of radiation-induced cognitive impairment. Given its central role in memory and neurogenesis, the majority of these studies have focused on the hippocampus. Irradiating pediatric and young adult rodent brains leads to several hippocampal changes including neuroinflammation and a marked reduction in neurogenesis. These data have been interpreted to suggest that shielding the hippocampus will prevent clinical radiation-induced cognitive impairment. However, this interpretation may be overly simplistic. Studies using older rodents, that more closely match the adult human brain tumor population, indicate that, unlike pediatric and young adult rats, older rats fail to show a radiation-induced decrease in neurogenesis or a loss of mature neurons. Nevertheless, older rats still exhibit cognitive impairment. This occurs in the absence of demyelination and/or white matter necrosis similar to what is observed clinically, suggesting that more subtle molecular, cellular and/or microanatomic modifications are involved in this radiation-induced brain injury. Given that radiation-induced cognitive impairment likely reflects damage to both hippocampal- and non-hippocampal-dependent domains, there is a critical need to investigate the microanatomic and functional effects of radiation in various brain regions as well as their

  17. A study of rotational brain injury.

    PubMed

    Misra, J C; Chakravarty, S

    1984-01-01

    Of concern in the paper is an investigation on brain injuries which may occur owing to an input angular acceleration of the head. The study is based on the use of an improved mathematical model for the cranium. The eccentricity of the braincase is incorporated through the consideration of a prolate spheroidal shell as the representative of the skull. Also the dissipative mechanical behaviour of the brain material (as per the observations of experimenters) has been accounted for by considering the material contained in the shell as viscoelastic. The problem is formulated in terms of prolate spheroidal coordinates. The singularities of the governing equations of motion (when expressed in the prolate coordinate system) are removed by a suitable transformation of the concerned dependent variable, viz. the one that stands for the angular displacement of a representative point of the system. In the first place the solution of the boundary value problem is sought in the Laplace transform space, by employing a finite difference technique. Use of the alternating-direction-implicit method together with Thomas algorithm was made for obtaining the angular acceleration in the transformed space. The Laplace inversion is also carried out with the help of numerical procedures (Gauss quadrature formula is used for this purpose). The results of the parametric study are presented through graphs. The plots illustrate the shear stresses and strains in the brain medium. A meaningful comparison of the computational results with those of previous investigations indicate that the eccentricity of the braincase plays a significant role in causing injury to the brain. PMID:6480621

  18. Leukocyte Recruitment and Ischemic Brain Injury

    PubMed Central

    Yilmaz, Gokhan

    2010-01-01

    Leukocytes are recruited into the cerebral microcirculation following an ischemic insult. The leukocyte–endothelial cell adhesion manifested within a few hours after ischemia (followed by reperfusion, I/R) largely reflects an infiltration of neutrophils, while other leukocyte populations appear to dominate the adhesive interactions with the vessel wall at 24 h of reperfusion. The influx of rolling and adherent leukocytes is accompanied by the recruitment of adherent platelets, which likely enhances the cytotoxic potential of the leukocytes to which they are attached. The recruitment of leukocytes and platelets in the postischemic brain is mediated by specific adhesion glycoproteins expressed by the activated blood cells and on cerebral microvascular endothelial cells. This process is also modulated by different signaling pathways (e.g., CD40/CD40L, Notch) and cytokines (e.g., RANTES) that are activated/released following I/R. Some of the known risk factors for cardiovascular disease, including hypercholesterolemia and obesity appear to exacerbate the leukocyte and platelet recruitment elicited by brain I/R. Although lymphocyte–endothelial cell and –platelet interactions in the postischemic cerebral microcirculation have not been evaluated to date, recent evidence in experimental animals implicate both CD4+ and CD8+ T-lymphocytes in the cerebral microvascular dysfunction, inflammation, and tissue injury associated with brain I/R. Evidence implicating regulatory T-cells as cerebroprotective modulators of the inflammatory and tissue injury responses to brain I/R support a continued focus on leukocytes as a target for therapeutic intervention in ischemic stroke. PMID:19579016

  19. Cyclosporine Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy.

    PubMed

    Dixon, C Edward; Bramlett, Helen M; Dietrich, W Dalton; Shear, Deborah A; Yan, Hong Q; Deng-Bryant, Ying; Mondello, Stefania; Wang, Kevin K W; Hayes, Ronald L; Empey, Philip E; Povlishock, John T; Tortella, Frank C; Kochanek, Patrick M

    2016-03-15

    Operation Brain Trauma Therapy (OBTT) is a consortium of investigators using multiple pre-clinical models of traumatic brain injury (TBI) to bring acute therapies to clinical trials. To screen therapies, we used three rat models (parasagittal fluid percussion injury [FPI], controlled cortical impact [CCI], and penetrating ballistic-like brain injury [PBBI]). We report results of the third therapy (cyclosporin-A; cyclosporine; [CsA]) tested by OBTT. At each site, rats were randomized to treatment with an identical regimen (TBI + vehicle, TBI + CsA [10 mg/kg], or TBI + CsA [20 mg/kg] given intravenously at 15 min and 24 h after injury, and sham). We assessed motor and Morris water maze (MWM) tasks over 3 weeks after TBI and lesion volume and hemispheric tissue loss at 21 days. In FPI, CsA (10 mg/kg) produced histological protection, but 20 mg/kg worsened working memory. In CCI, CsA (20 mg/kg) impaired MWM performance; surprisingly, neither dose showed benefit on any outcome. After PBBI, neither dose produced benefit on any outcome, and mortality was increased (20 mg/kg) partly caused by the solvent vehicle. In OBTT, CsA produced complex effects with histological protection at the lowest dose in the least severe model (FPI), but only deleterious effects as model severity increased (CCI and PBBI). Biomarker assessments included measurements of glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase-L1 (UCH-L1) in blood at 4 or 24 h after injury. No positive treatment effects were seen on biomarker levels in any of the models, whereas significant increases in 24 h UCH-L1 levels were seen with CsA (20 mg/kg) after CCI and 24 h GFAP levels in both CsA treated groups in the PBBI model. Lack of behavioral protection in any model, indicators of toxicity, and a narrow therapeutic index reduce enthusiasm for clinical translation. PMID:26671075

  20. Erythropoietin Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy.

    PubMed

    Bramlett, Helen M; Dietrich, W Dalton; Dixon, C Edward; Shear, Deborah A; Schmid, Kara E; Mondello, Stefania; Wang, Kevin K W; Hayes, Ronald L; Povlishock, John T; Tortella, Frank C; Kochanek, Patrick M

    2016-03-15

    Experimental studies targeting traumatic brain injury (TBI) have reported that erythropoietin (EPO) is an endogenous neuroprotectant in multiple models. In addition to its neuroprotective effects, it has also been shown to enhance reparative processes including angiogenesis and neurogenesis. Based on compelling pre-clinical data, EPO was tested by the Operation Brain Trauma Therapy (OBTT) consortium to evaluate therapeutic potential in multiple TBI models along with biomarker assessments. Based on the pre-clinical TBI literature, two doses of EPO (5000 and 10,000 IU/kg) were tested given at 15 min after moderate fluid percussion brain injury (FPI), controlled cortical impact (CCI), or penetrating ballistic-like brain injury (PBBI) with subsequent behavioral, histopathological, and biomarker outcome assessments. There was a significant benefit on beam walk with the 5000 IU dose in CCI, but no benefit on any other motor task across models in OBTT. Also, no benefit of EPO treatment across the three TBI models was noted using the Morris water maze to assess cognitive deficits. Lesion volume analysis showed no treatment effects after either FPI or CCI; however, with the 5000 IU/kg dose of EPO, a paradoxical increase in lesion volume and percent hemispheric tissue loss was seen after PBBI. Biomarker assessments included measurements of glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase-L1 (UCH-L1) in blood at 4 or 24 h after injury. No treatment effects were seen on biomarker levels after FPI, whereas treatment at either dose exacerbated the increase in GFAP at 24 h in PBBI but attenuated 24-4 h delta UCH-L1 levels at high dose in CCI. Our data indicate a surprising lack of efficacy of EPO across three established TBI models in terms of behavioral, histopathological, and biomarker assessments. Although we cannot rule out the possibility that other doses or more prolonged treatment could show different effects, the lack of efficacy of EPO reduced

  1. Simulated Aeromedical Evacuation Exacerbates Experimental Brain Injury.

    PubMed

    Skovira, Jacob W; Kabadi, Shruti V; Wu, Junfang; Zhao, Zaorui; DuBose, Joseph; Rosenthal, Robert; Fiskum, Gary; Faden, Alan I

    2016-07-15

    Aeromedical evacuation, an important component in the care of many patients with traumatic brain injury (TBI), particularly in war zones, exposes them to prolonged periods of hypobaria. The effects of such exposure on pathophysiological changes and outcome after TBI are largely unexplored. The objective of this study was to investigate whether prolonged hypobaria in rats subjected to TBI alters behavioral and histological outcomes. Adult male Sprague-Dawley rats underwent fluid percussion induced injury at 1.5-1.9 atmospheres of pressure. The effects of hypobaric exposure (6 h duration; equivalent to 0.75 atmospheres) at 6, 24, and 72 h, or 7 days after TBI were evaluated with regard to sensorimotor, cognitive, and histological changes. Additional groups were evaluated to determine the effects of two hypobaric exposures after TBI, representing primary simulated aeromedical evacuation (6 h duration at 24 h after injury) and secondary evacuation (10 h duration at 72 h after injury), as well as the effects of 100% inspired oxygen concentrations during simulated evacuation. Hypobaric exposure up to 7 days after injury significantly worsened cognitive deficits, hippocampal neuronal loss, and microglial/astrocyte activation in comparison with injured controls not exposed to hypobaria. Hyperoxia during hypobaric exposure or two exposures to prolonged hypobaric conditions further exacerbated spatial memory deficits. These findings indicate that exposure to prolonged hypobaria up to 7 days after TBI, even while maintaining physiological oxygen concentration, worsens long-term cognitive function and neuroinflammation. Multiple exposures or use of 100% oxygen further exacerbates these pathophysiological effects. PMID:26593382

  2. The History and Evolution of Experimental Traumatic Brain Injury Models.

    PubMed

    Povlishock, John

    2016-01-01

    This narrative provides a brief history of experimental animal model development for the study of traumatic brain injury. It draws upon a relatively rich history of early animal modeling that employed higher order animals to assess concussive brain injury while exploring the importance of head movement versus stabilization in evaluating the animal's response to injury. These themes are extended to the development of angular/rotational acceleration/deceleration models that also exploited brain movement to generate both the morbidity and pathology typically associated with human traumatic brain injury. Despite the significance of these early model systems, their limitations and overall practicality are discussed. Consideration is given to more contemporary rodent animal models that replicate individual/specific features of human injury, while via various transgenic technologies permitting the evaluation of injury-mediated pathways. The narrative closes on a reconsideration of higher order, porcine animal models of injury and their implication for preclinical/translational research. PMID:27604709

  3. Robust whole-brain segmentation: application to traumatic brain injury.

    PubMed

    Ledig, Christian; Heckemann, Rolf A; Hammers, Alexander; Lopez, Juan Carlos; Newcombe, Virginia F J; Makropoulos, Antonios; Lötjönen, Jyrki; Menon, David K; Rueckert, Daniel

    2015-04-01

    We propose a framework for the robust and fully-automatic segmentation of magnetic resonance (MR) brain images called "Multi-Atlas Label Propagation with Expectation-Maximisation based refinement" (MALP-EM). The presented approach is based on a robust registration approach (MAPER), highly performant label fusion (joint label fusion) and intensity-based label refinement using EM. We further adapt this framework to be applicable for the segmentation of brain images with gross changes in anatomy. We propose to account for consistent registration errors by relaxing anatomical priors obtained by multi-atlas propagation and a weighting scheme to locally combine anatomical atlas priors and intensity-refined posterior probabilities. The method is evaluated on a benchmark dataset used in a recent MICCAI segmentation challenge. In this context we show that MALP-EM is competitive for the segmentation of MR brain scans of healthy adults when compared to state-of-the-art automatic labelling techniques. To demonstrate the versatility of the proposed approach, we employed MALP-EM to segment 125 MR brain images into 134 regions from subjects who had sustained traumatic brain injury (TBI). We employ a protocol to assess segmentation quality if no manual reference labels are available. Based on this protocol, three independent, blinded raters confirmed on 13 MR brain scans with pathology that MALP-EM is superior to established label fusion techniques. We visually confirm the robustness of our segmentation approach on the full cohort and investigate the potential of derived symmetry-based imaging biomarkers that correlate with and predict clinically relevant variables in TBI such as the Marshall Classification (MC) or Glasgow Outcome Score (GOS). Specifically, we show that we are able to stratify TBI patients with favourable outcomes from non-favourable outcomes with 64.7% accuracy using acute-phase MR images and 66.8% accuracy using follow-up MR images. Furthermore, we are able to

  4. ANTIOXIDANT THERAPIES FOR TRAUMATIC BRAIN INJURY

    PubMed Central

    Hall, Edward D.; Vaishnav, Radhika A.; Mustafa, Ayman G.

    2010-01-01

    Free radical-induced oxidative damage reactions, and membrane lipid peroxidation (LP) in particular, are one of the best validated secondary injury mechanisms in preclinical traumatic brain injury models. In addition to the disruption of the membrane phospholipid architecture, LP results in the formation of cytotoxic aldehyde-containing products that bind to cellular proteins and impair their normal functions. This article reviews the progress over the past three decades in regards to the preclinical discovery and attempted clinical development of antioxidant drugs designed to inhibit free radical-induced LP and its neurotoxic consequences via different mechanisms including the O2•- scavenger superoxide dismutase (SOD) and the lipid peroxidation inhibitor tirilazad. In addition, various other antioxidant agents that have been shown to have efficacy in preclinical TBI models are briefly presented such as the LP inhibitors U83836E, resveratrol, curcumin, OPC-14177 and lipoic acid; the iron chelator deferoxamine and the nitroxide-containing antioxidants such as α-phenyl-tert-butyl nitrone and tempol. A relatively new antioxidant mechanistic strategy for acute TBI is aimed at the scavenging of aldehydic LP by-products that are highly neurotoxic with “carbonyl scavenging” compounds. Finally, it is proposed that the most effective approach to interrupt posttraumatic oxidative brain damage after TBI might involve the combined treatment with mechanistically-complementary antioxidants that simultaneously scavenge LP-initiating free radicals, inhibit LP propagation and lastly remove neurotoxic LP byproducts. PMID:20129497

  5. Ischemic preconditioning protects against ischemic brain injury

    PubMed Central

    Ma, Xiao-meng; Liu, Mei; Liu, Ying-ying; Ma, Li-li; Jiang, Ying; Chen, Xiao-hong

    2016-01-01

    In this study, we hypothesized that an increase in integrin αvβ3 and its co-activator vascular endothelial growth factor play important neuroprotective roles in ischemic injury. We performed ischemic preconditioning with bilateral common carotid artery occlusion for 5 minutes in C57BL/6J mice. This was followed by ischemic injury with bilateral common carotid artery occlusion for 30 minutes. The time interval between ischemic preconditioning and lethal ischemia was 48 hours. Histopathological analysis showed that ischemic preconditioning substantially diminished damage to neurons in the hippocampus 7 days after ischemia. Evans Blue dye assay showed that ischemic preconditioning reduced damage to the blood-brain barrier 24 hours after ischemia. This demonstrates the neuroprotective effect of ischemic preconditioning. Western blot assay revealed a significant reduction in protein levels of integrin αvβ3, vascular endothelial growth factor and its receptor in mice given ischemic preconditioning compared with mice not given ischemic preconditioning 24 hours after ischemia. These findings suggest that the neuroprotective effect of ischemic preconditioning is associated with lower integrin αvβ3 and vascular endothelial growth factor levels in the brain following ischemia. PMID:27335560

  6. Ischemic preconditioning protects against ischemic brain injury.

    PubMed

    Ma, Xiao-Meng; Liu, Mei; Liu, Ying-Ying; Ma, Li-Li; Jiang, Ying; Chen, Xiao-Hong

    2016-05-01

    In this study, we hypothesized that an increase in integrin αvβ3 and its co-activator vascular endothelial growth factor play important neuroprotective roles in ischemic injury. We performed ischemic preconditioning with bilateral common carotid artery occlusion for 5 minutes in C57BL/6J mice. This was followed by ischemic injury with bilateral common carotid artery occlusion for 30 minutes. The time interval between ischemic preconditioning and lethal ischemia was 48 hours. Histopathological analysis showed that ischemic preconditioning substantially diminished damage to neurons in the hippocampus 7 days after ischemia. Evans Blue dye assay showed that ischemic preconditioning reduced damage to the blood-brain barrier 24 hours after ischemia. This demonstrates the neuroprotective effect of ischemic preconditioning. Western blot assay revealed a significant reduction in protein levels of integrin αvβ3, vascular endothelial growth factor and its receptor in mice given ischemic preconditioning compared with mice not given ischemic preconditioning 24 hours after ischemia. These findings suggest that the neuroprotective effect of ischemic preconditioning is associated with lower integrin αvβ3 and vascular endothelial growth factor levels in the brain following ischemia. PMID:27335560

  7. Altered Calcium Signaling Following Traumatic Brain Injury

    PubMed Central

    Weber, John T.

    2012-01-01

    Cell death and dysfunction after traumatic brain injury (TBI) is caused by a primary phase, related to direct mechanical disruption of the brain, and a secondary phase which consists of delayed events initiated at the time of the physical insult. Arguably, the calcium ion contributes greatly to the delayed cell damage and death after TBI. A large, sustained influx of calcium into cells can initiate cell death signaling cascades, through activation of several degradative enzymes, such as proteases and endonucleases. However, a sustained level of intracellular free calcium is not necessarily lethal, but the specific route of calcium entry may couple calcium directly to cell death pathways. Other sources of calcium, such as intracellular calcium stores, can also contribute to cell damage. In addition, calcium-mediated signal transduction pathways in neurons may be perturbed following injury. These latter types of alterations may contribute to abnormal physiology in neurons that do not necessarily die after a traumatic episode. This review provides an overview of experimental evidence that has led to our current understanding of the role of calcium signaling in death and dysfunction following TBI. PMID:22518104

  8. MRI of radiation injury to the brain

    SciTech Connect

    Curnes, J.T.; Laster, D.W.; Ball, M.R.; Moody, D.M.; Witcofski, R.L.

    1986-07-01

    Nine patients with a history of radiation of 2400-6000 rad (24-60 Gy) to the brain were examined by magnetic resonance imaging (MRI) and computed tomography (CT). MRI demonstrated abnormalities in the periventricular white matter in all patients. The abnormal periventricular signal was characterized by a long T2 and was demonstrated best on coronal spin-echo (SE) 1000/80 images. A characteristic scalloped appearance at the junction of the gray-white matter was seen on MR images of seven patients, and represented extensive white-matter damage involving the more peripheral arcuate fiber systems. This differs from transependymal absorption, which is seen best on SE 3000/80 images and has a smooth peripheral margin. Cranial CT demonstrated white-matter lucencies in six cases but generally failed to display the extent of white-matter injury demonstrated by MRI. MRI is uniquely suited to detect radiation injury to the brain because of its extreme sensitivity to white-matter edema.

  9. Neuropsychological rehabilitation for traumatic brain injury patients.

    PubMed

    Chantsoulis, Marzena; Mirski, Andrzej; Rasmus, Anna; Kropotov, Juri D; Pachalska, Maria

    2015-01-01

    The aim of this review is to discuss the basic forms of neuropsychological rehabilitation for patients with traumatic brain injury (TBI). More broadly, we discussed cognitive rehabilitation therapy (CRT) which constitutes a fundamental component in therapeutic interaction at many centres worldwide. Equally presented is a comprehensive model of rehabilitation, the fundamental component of which is CRT. It should be noted that the principles of this approach first arose in Poland in the 1970s, in other words, several decades before their appearance in other programmemes. Taken into consideration are four factors conditioning the effectiveness of such a process: comprehensiveness, earlier interaction, universality and its individualized character. A comprehensive programmeme of rehabilitation covers: cognitive rehabilitation, individual and group rehabilitation with the application of a therapeutic environment, specialist vocational rehabilitation, as well as family psychotherapy. These training programmemes are conducted within the scope of the 'Academy of Life,' which provides support for the patients in their efforts and shows them the means by which they can overcome existing difficulties. Equally emphasized is the close cooperation of the whole team of specialists, as well as the active participation of the family as an essential condition for the effectiveness of rehabilitation and, in effect, a return of the patient to a relatively normal life. Also presented are newly developing neurothechnologies and the neuromarkers of brain injuries. This enables a correct diagnosis to be made and, as a result, the selection of appropriate methods for neuropsychological rehabilitation, including neurotherapy. PMID:26094541

  10. Ethics of neuroimaging after serious brain injury

    PubMed Central

    2014-01-01

    Background Patient outcome after serious brain injury is highly variable. Following a period of coma, some patients recover while others progress into a vegetative state (unresponsive wakefulness syndrome) or minimally conscious state. In both cases, assessment is difficult and misdiagnosis may be as high as 43%. Recent advances in neuroimaging suggest a solution. Both functional magnetic resonance imaging and electroencephalography have been used to detect residual cognitive function in vegetative and minimally conscious patients. Neuroimaging may improve diagnosis and prognostication. These techniques are beginning to be applied to comatose patients soon after injury. Evidence of preserved cognitive function may predict recovery, and this information would help families and health providers. Complex ethical issues arise due to the vulnerability of patients and families, difficulties interpreting negative results, restriction of communication to “yes” or “no” answers, and cost. We seek to investigate ethical issues in the use of neuroimaging in behaviorally nonresponsive patients who have suffered serious brain injury. The objectives of this research are to: (1) create an approach to capacity assessment using neuroimaging; (2) develop an ethics of welfare framework to guide considerations of quality of life; (3) explore the impact of neuroimaging on families; and, (4) analyze the ethics of the use of neuroimaging in comatose patients. Methods/Design Our research program encompasses four projects and uses a mixed methods approach. Project 1 asks whether decision making capacity can be assessed in behaviorally nonresponsive patients. We will specify cognitive functions required for capacity and detail their assessment. Further, we will develop and pilot a series of scenarios and questions suitable for assessing capacity. Project 2 examines the ethics of welfare as a guide for neuroimaging. It grounds an obligation to explore patients’ interests, and we

  11. Brain injury, neuroinflammation and Alzheimer's disease

    PubMed Central

    Breunig, Joshua J.; Guillot-Sestier, Marie-Victoire; Town, Terrence

    2013-01-01

    With as many as 300,000 United States troops in Iraq and Afghanistan having suffered head injuries (Miller, 2012), traumatic brain injury (TBI) has garnered much recent attention. While the cause and severity of these injuries is variable, severe cases can lead to lifelong disability or even death. While aging is the greatest risk factor for Alzheimer's disease (AD), it is now becoming clear that a history of TBI predisposes the individual to AD later in life (Sivanandam and Thakur, 2012). In this review article, we begin by defining hallmark pathological features of AD and the various forms of TBI. Putative mechanisms underlying the risk relationship between these two neurological disorders are then critically considered. Such mechanisms include precipitation and ‘spreading’ of cerebral amyloid pathology and the role of neuroinflammation. The combined problems of TBI and AD represent significant burdens to public health. A thorough, mechanistic understanding of the precise relationship between TBI and AD is of utmost importance in order to illuminate new therapeutic targets. Mechanistic investigations and the development of preclinical therapeutics are reliant upon a clearer understanding of these human diseases and accurate modeling of pathological hallmarks in animal systems. PMID:23874297

  12. Traumatic brain injury brief outcome interview.

    PubMed

    Burton, Leslie A; Leahy, Derek M; Volpe, Bruce

    2003-01-01

    There is much evidence that deficits in physical and psychological functioning persist long after traumatic brain injury occurs. This paper presents a brief outcome interview (BOI) that can be administered in person or over the telephone, with evaluation of change in functioning in three areas: (a). occupational status, (b). mobility/activities of daily living (ADL), and (c). social relationships. Forty-four traumatic brain injury participants were evaluated at an average of 6.2 years postinjury with the present BOI as well as with the Glasgow Outcome Scale and Karnofsky Performance Scale (KPS). The BOI demonstrated strong concurrent validity with both scales, as well as strong test-retest reliability. IQ and memory scores obtained at an average of 4.1 months postinjury suggested that the injury was moderately severe. The average score on the GPS suggested "good recovery" and the average score on the KPS suggested "normal activity with effort, some signs or symptoms." These descriptions matched the BOI for the mobility/ADL dimension, for which all respondents reported some form of independent mobility, and 88.6% of the respondents reported no need for any kind of assistance in daily life functioning. However, significant long-term issues were seen for social and occupational functioning. Fifty-four percent said that they did not socialize as much as before their injury, and half of the participants reported not being involved in a romantic relationship in spite of an average age of 32 years. In terms of occupational status, 40.9% reported not working at all at any kind of job. Compared to before their injury, 47.7% said this was less time, 40.9% said that it was for a lower salary, and 54.5% said that their responsibilities were less. The stability of these social and occupational changes was indicated by high test-test reliabilities for the overall BOI score and the three subscale scores (r's ranged from.97 to 1.0). These stable long-term changes are consistent

  13. Depression After Brain Injury: A Guide for Patients and Their Caregivers

    MedlinePlus

    ... a> Consumer Summary – Apr. 13, 2011 Depression After Brain Injury: A Guide for Patients and Their Caregivers ... productID=658 . Understanding Your Condition What is traumatic brain injury? Traumatic brain injury (TBI) is the medical ...

  14. Graph Analysis of Functional Brain Networks for Cognitive Control of Action in Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Caeyenberghs, Karen; Leemans, Alexander; Heitger, Marcus H.; Leunissen, Inge; Dhollander, Thijs; Sunaert, Stefan; Dupont, Patrick; Swinnen, Stephan P.

    2012-01-01

    Patients with traumatic brain injury show clear impairments in behavioural flexibility and inhibition that often persist beyond the time of injury, affecting independent living and psychosocial functioning. Functional magnetic resonance imaging studies have shown that patients with traumatic brain injury typically show increased and more broadly…

  15. Components of Traumatic Brain Injury Severity Indices

    PubMed Central

    Corrigan, John D.; Kreider, Scott; Cuthbert, Jeffrey; Whyte, John; Dams-O’Connor, Kristen; Faul, Mark; Harrison-Felix, Cynthia; Whiteneck, Gale; Pretz, Christopher R.

    2015-01-01

    The purpose of this study was to determine whether there are underlying dimensions common among traditional traumatic brain injury (TBI) severity indices and, if so, the extent to which they are interchangeable when predicting short-term outcomes. This study had an observational design, and took place in United States trauma centers reporting to the National Trauma Data Bank (NTDB). The sample consisted of 77,470 unweighted adult cases reported to the NTDB from 2007 to 2010, with International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) TBI codes. There were no interventions. Severity indices used were the Emergency Department Glasgow Coma Scale (GCS) Total score and each of the subscales for eye opening (four levels), verbal response (five levels), and motor response (six levels); the worst Abbreviated Injury Scale (AIS) severity score for the head (six levels); and the worst Barell index type (three categories). Prediction models were computed for acute care length of stay (days), intensive care unit length of stay (days), hospital discharge status (alive or dead), and, if alive, discharge disposition (home versus institutional). Multiple correspondence analysis (MCA) indicated a two dimensional relationship among items of severity indexes. The primary dimension reflected overall injury severity. The second dimension seemed to capture volitional behavior without the capability for cogent responding. Together, they defined two vectors around which most of the items clustered. A scale that took advantage of the order of items along these vectors proved to be the most consistent index for predicting short-term health outcomes. MCA provided useful insight into the relationships among components of traditional TBI severity indices. The two vector pattern may reflect the impact of injury on different cortical and subcortical networks. Results are discussed in terms of score substitution and the ability to impute missing values. PMID

  16. White Matter Damage and Cognitive Impairment after Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Kinnunen, Kirsi Maria; Greenwood, Richard; Powell, Jane Hilary; Leech, Robert; Hawkins, Peter Charlie; Bonnelle, Valerie; Patel, Maneesh Chandrakant; Counsell, Serena Jane; Sharp, David James

    2011-01-01

    White matter disruption is an important determinant of cognitive impairment after brain injury, but conventional neuroimaging underestimates its extent. In contrast, diffusion tensor imaging provides a validated and sensitive way of identifying the impact of axonal injury. The relationship between cognitive impairment after traumatic brain injury…

  17. Students with Acquired Brain Injury. The School's Response.

    ERIC Educational Resources Information Center

    Glang, Ann, Ed.; Singer, George H. S., Ed.; Todis, Bonnie, Ed.

    Designed for educators, this book focuses on educational issues relating to students with acquired brain injury (ABI), and describes approaches that have been effective in improving the school experiences of students with brain injury. Section 1 provides an introduction to issues related to ABI in children and youth and includes: "An Overview of…

  18. Traumatic Brain Injury - Multiple Languages: MedlinePlus

    MedlinePlus

    ... Supplements Videos & Tools You Are Here: Home → Multiple Languages → All Health Topics → Traumatic Brain Injury URL of this page: https://www.nlm. ... W XYZ List of All Topics All Traumatic Brain Injury - Multiple Languages To use the sharing features on this page, ...

  19. Brain Injury among Children and Adolescents. Tip Cards.

    ERIC Educational Resources Information Center

    Lash, Marilyn; Savage, Ron; DePompei, Roberta; Blosser, Jean

    These eight brochures for parents provide practical information and suggestions regarding various aspects of managing a child with a brain injury. The brochures are: (1) "Back to School after a Mild Brain Injury or Concussion," which covers helping the student in the classroom and changes that occur in school and knowing when extra help is needed…

  20. Community-Based Employment Following Traumatic Brain Injury.

    ERIC Educational Resources Information Center

    Thomas, Dale F., Ed.; And Others

    This collection of papers on vocational rehabilitation of persons impaired as a result of traumatic brain injury is designed to provide a resource for individuals concerned with community-based employment. The 11 papers include: "Training Persons with Traumatic Brain Injury for Complex Computer Jobs: The Domain-Specific Learning Approach"…

  1. The Pediatric Test of Brain Injury: Development and Interpretation

    ERIC Educational Resources Information Center

    Hotz, Gillian A.; Helm-Estabrooks, Nancy; Nelson, Nickola Wolf; Plante, Elena

    2009-01-01

    The Pediatric Test of Brain Injury (PTBI) is designed to assess neurocognitive, language, and literacy abilities that are relevant to the school curriculum of children and adolescents recovering from brain injury. The PTBI is intended to help clinicians establish baseline levels of cognitive-linguistic abilities in the acute stages of recovery,…

  2. Rehabilitation outcome after traumatic brain injury.

    PubMed

    Irdesel, J; Aydiner, S B; Akgoz, S

    2007-02-01

    Rehabilitation goals after traumatic brain injury are improving function, increasing the level of independence as high as possible, preventing complications and providing an acceptable environment to the patient. Several complications can be encountered during the rehabilitation period which lead to physical, cognitive and neurobehavioral impairments that cause major delay in functional improvement. This prospective study was designed in order to investigate the complications and their relations with functional recovery in patients that were included in the acute phase of a rehabilitation program. Thirty traumatic brain injured patients admitted to the Intensive Care Units of Uludag University School of Medicine were included in the study. Rehabilitation program consisted in appropriate positioning, range of motion exercises, postural drainage and respiratory exercises. Complications that were encountered during intensive care rehabilitation program were recorded. All patients were evaluated by Functional Independence Measure, Disability Rating Scale and Ranchos Los Amigos Levels of Cognitive Function Scale at admission and discharge. Improvement was observed in patients in terms of functional outcome and disability levels. Pneumonia, athelectasis, anemia and meningitis were the most frequent complications. Deterioration in functional outcome and disability levels was noted as the number of these complications increased. In conclusion, rehabilitation has an important role in the management of traumatic brain injured patients. Reduction of frequency of complications and improvement in functional outcome and disability levels can be achieved through rehabilitation programs. Long-term controlled studies with large number of patients are needed in order to obtain accurate data on factors associated with rehabilitation outcomes. PMID:17393041

  3. Pediatric Traumatic Brain Injury. Special Topic Report #3.

    ERIC Educational Resources Information Center

    Waaland, Pamela K.; Cockrell, Janice L.

    This brief report summarizes what is known about pediatric traumatic brain injury, including the following: risk factors (e.g., males especially those ages 5 to 25, youth with preexisting problems including previous head injury victims, and children receiving inadequate supervision); life after injury; physical and neurological consequences (e.g.,…

  4. Training to Optimize Learning after Traumatic Brain Injury

    PubMed Central

    Skidmore, Elizabeth R.

    2015-01-01

    One of the major foci of rehabilitation after traumatic brain injury is the design and implementation of interventions to train individuals to learn new knowledge and skills or new ways to access and execute previously acquired knowledge and skills. To optimize these interventions, rehabilitation professionals require a clear understanding of how traumatic brain injury impacts learning, and how specific approaches may enhance learning after traumatic brain injury. This brief conceptual review provides an overview of learning, the impact of traumatic brain injury on explicit and implicit learning, and the current state of the science examining selected training approaches designed to advance learning after traumatic brain injury. Potential directions for future scientific inquiry are discussed throughout the review. PMID:26217546

  5. Evaluation of Autophagy Using Mouse Models of Brain Injury

    PubMed Central

    Au, Alicia K.; Bayir, Hülya; Kochanek, Patrick M.; Clark, Robert S. B.

    2009-01-01

    SUMMARY Autophagy is a homeostatic, carefully regulated, and dynamic process for intracellular recycling of bulk proteins, aging organelles, and lipids. Autophagy occurs in all tissues and cell types, including the brain and neurons. Alteration in the dynamics of autophagy has been observed in many diseases of the central nervous system. Disruption of autophagy for an extended period of time results in accumulation of unwanted proteins and neurodegeneration. However, the role of enhanced autophagy after acute brain injury remains undefined. Established mouse models of brain injury will be valuable in clarifying the role of autophagy after brain injury, and are the topic of discussion in this review. PMID:19879944

  6. The potential of neural transplantation for brain repair and regeneration following traumatic brain injury

    PubMed Central

    Sun, Dong

    2016-01-01

    Traumatic brain injury is a major health problem worldwide. Currently, there is no effective treatment to improve neural structural repair and functional recovery of patients in the clinic. Cell transplantation is a potential strategy to repair and regenerate the injured brain. This review article summarized recent development in cell transplantation studies for post-traumatic brain injury brain repair with varying types of cell sources. It also discussed the potential of neural transplantation to repair/promote recovery of the injured brain following traumatic brain injury. PMID:26981070

  7. Levetiracetam Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy.

    PubMed

    Browning, Megan; Shear, Deborah A; Bramlett, Helen M; Dixon, C Edward; Mondello, Stefania; Schmid, Kara E; Poloyac, Samuel M; Dietrich, W Dalton; Hayes, Ronald L; Wang, Kevin K W; Povlishock, John T; Tortella, Frank C; Kochanek, Patrick M

    2016-03-15

    Levetiracetam (LEV) is an antiepileptic agent targeting novel pathways. Coupled with a favorable safety profile and increasing empirical clinical use, it was the fifth drug tested by Operation Brain Trauma Therapy (OBTT). We assessed the efficacy of a single 15 min post-injury intravenous (IV) dose (54 or 170 mg/kg) on behavioral, histopathological, and biomarker outcomes after parasagittal fluid percussion brain injury (FPI), controlled cortical impact (CCI), and penetrating ballistic-like brain injury (PBBI) in rats. In FPI, there was no benefit on motor function, but on Morris water maze (MWM), both doses improved latencies and path lengths versus vehicle (p < 0.05). On probe trial, the vehicle group was impaired versus sham, but both LEV treated groups did not differ versus sham, and the 54 mg/kg group was improved versus vehicle (p < 0.05). No histological benefit was seen. In CCI, there was a benefit on beam balance at 170 mg/kg (p < 0.05 vs. vehicle). On MWM, the 54 mg/kg dose was improved and not different from sham. Probe trial did not differ between groups for either dose. There was a reduction in hemispheric tissue loss (p < 0.05 vs. vehicle) with 170 mg/kg. In PBBI, there was no motor, cognitive, or histological benefit from either dose. Regarding biomarkers, in CCI, 24 h glial fibrillary acidic protein (GFAP) blood levels were lower in the 170 mg/kg group versus vehicle (p < 0.05). In PBBI, GFAP blood levels were increased in vehicle and 170 mg/kg groups versus sham (p < 0.05) but not in the 54 mg/kg group. No treatment effects were seen for ubiquitin C-terminal hydrolase-L1 across models. Early single IV LEV produced multiple benefits in CCI and FPI and reduced GFAP levels in PBBI. LEV achieved 10 points at each dose, is the most promising drug tested thus far by OBTT, and the only drug to improve cognitive outcome in any model. LEV has been advanced to testing in the micropig model in OBTT. PMID:26671550

  8. Traumatic Brain Injury Models in Animals.

    PubMed

    Rostami, Elham

    2016-01-01

    Traumatic brain injury (TBI) is the leading cause of death in young adults in industrialized nations and in the developing world the WHO considers TBI a silent epidemic caused by an increasing number of traffic accidents. Despite the major improvement of TBI outcome in the acute setting in the past 20 years, the assessment, therapeutic interventions, and prevention of long-term complications remain a challenge. In order to get a deeper insight into the pathology of TBI and advancement of medical understanding and clinical progress experimental animal models are an essential requirement. This chapter provides an overview of most commonly used experimental animal TBI models and the pathobiological findings based on current data. In addition, limitations and advantages of each TBI model are mentioned. This will hopefully give an insight into the possibilities of each model and be of value in choosing one when designing a study. PMID:27604712

  9. Hyperbaric oxygen therapy for traumatic brain injury

    PubMed Central

    2011-01-01

    Traumatic brain injury (TBI) is a major public health issue. The complexity of TBI has precluded the use of effective therapies. Hyperbaric oxygen therapy (HBOT) has been shown to be neuroprotective in multiple neurological disorders, but its efficacy in the management of TBI remains controversial. This review focuses on HBOT applications within the context of experimental and clinical TBI. We also discuss its potential neuroprotective mechanisms. Early or delayed multiple sessions of low atmospheric pressure HBOT can reduce intracranial pressure, improve mortality, as well as promote neurobehavioral recovery. The complimentary, synergistic actions of HBOT include improved tissue oxygenation and cellular metabolism, anti-apoptotic, and anti-inflammatory mechanisms. Thus HBOT may serve as a promising neuroprotective strategy that when combined with other therapeutic targets for TBI patients which could improve long-term outcomes. PMID:22146562

  10. Sexual changes associated with traumatic brain injury.

    PubMed

    Ponsford, Jennie

    2003-01-01

    Findings from numerous outcome studies have suggested that people with traumatic brain injuries (TBI) experience relationship difficulties and changes in sexuality. However, there have been few investigations of these problems. This paper reports the results of a study of sexuality following TBI, which aimed to identify changes in sexual behaviour, affect, self-esteem, and relationship quality, and their inter-relationships. Two hundred and eight participants with moderate-to-severe TBI (69% males) completed a questionnaire 1-5 years post-injury. Their responses were compared with those of 150 controls, matched for age, gender, and education. Of TBI participants 36-54% reported: (1) A decrease in the importance of sexuality, opportunities, and frequency of engaging in sexual activities; (2) reduced sex drive; (3) a decline in their ability to give their partner sexual satisfaction and to engage in sexual intercourse; and (4) decreased enjoyment of sexual activity and ability to stay aroused and to climax. The frequencies of such negative changes were significantly higher than those reported by controls and far outweighed the frequency of increases on these dimensions. A significant proportion of TBI participants also reported decreased self-confidence, sex appeal, higher levels of depression, and decreased communication levels and relationship quality with their sexual partner. Factors associated with sexual problems in the TBI group are explored and implications of all findings discussed. PMID:21854338

  11. Iatrogenic traumatic brain injury during tooth extraction.

    PubMed

    Troxel, Mark

    2015-01-01

    An 8 yr old spayed female Yorkshire terrier was referred for evaluation of progressive neurological signs after a routine dental prophylaxis with tooth extractions. The patient was circling to the left and blind in the right eye with right hemiparesis. Neurolocalization was to the left forebrain. MRI revealed a linear tract extending from the caudal oropharynx, through the left retrobulbar space and frontal lobe, into the left parietal lobe. A small skull fracture was identified in the frontal bone through which the linear tract passed. Those findings were consistent with iatrogenic trauma from slippage of a dental elevator during extraction of tooth 210. The dog was treated empirically with clindamycin. The patient regained most of its normal neurological function within the first 4 mo after the initial injury. Although still not normal, the dog has a good quality of life. Traumatic brain injury is a rarely reported complication of extraction. Care must be taken while performing dental cleaning and tooth extraction, especially of the maxillary premolar and molar teeth to avoid iatrogenic damage to surrounding structures. PMID:25695556

  12. Diabetes Insipidus after Traumatic Brain Injury

    PubMed Central

    Capatina, Cristina; Paluzzi, Alessandro; Mitchell, Rosalid; Karavitaki, Niki

    2015-01-01

    Traumatic brain injury (TBI) is a significant cause of morbidity and mortality in many age groups. Neuroendocrine dysfunction has been recognized as a consequence of TBI and consists of both anterior and posterior pituitary insufficiency; water and electrolyte abnormalities (diabetes insipidus (DI) and the syndrome of inappropriate antidiuretic hormone secretion (SIADH)) are amongst the most challenging sequelae. The acute head trauma can lead (directly or indirectly) to dysfunction of the hypothalamic neurons secreting antidiuretic hormone (ADH) or of the posterior pituitary gland causing post-traumatic DI (PTDI). PTDI is usually diagnosed in the first days after the trauma presenting with hypotonic polyuria. Frequently, the poor general status of most patients prevents adequate fluid intake to compensate the losses and severe dehydration and hypernatremia occur. Management consists of careful monitoring of fluid balance and hormonal replacement. PTDI is associated with high mortality, particularly when presenting very early following the injury. In many surviving patients, the PTDI is transient, lasting a few days to a few weeks and in a minority of cases, it is permanent requiring management similar to that offered to patients with non-traumatic central DI. PMID:26239685

  13. Effort test performance in clinical acute brain injury, community brain injury, and epilepsy populations.

    PubMed

    Hampson, Natalie E; Kemp, Steven; Coughlan, Anthony K; Moulin, Chris J A; Bhakta, Bipin B

    2014-01-01

    Effort tests have become commonplace within medico-legal and forensic contexts and their use is rising within clinical settings. It is recognized that some patients may fail effort tests due to cognitive impairment and not because of poor effort. However, investigation of the base rate of failure among clinical populations other than dementia is limited. Forty-seven clinical participants were recruited and comprised three subgroups: acute brain injury (N = 11), community brain injury (N = 20), and intractable epilepsy (N = 16). Base rates of failure on the Word Memory Test (WMT; Green, 2003 ) and six other less well-validated measures were investigated. A significant minority of patients failed effort tests according to standard cutoff scores, particularly patients with severe traumatic brain injury and marked frontal-executive features. The WMT was able to identify failures associated with significant cognitive impairment through the application of profile analysis and/or lowered cutoff levels. Implications for clinical assessment, effort test interpretation, and future research are discussed. PMID:25084843

  14. Microglia and Inflammation: Impact on Developmental Brain Injuries

    ERIC Educational Resources Information Center

    Chew, Li-Jin; Takanohashi, Asako; Bell, Michael

    2006-01-01

    Inflammation during the perinatal period has become a recognized risk factor for developmental brain injuries over the past decade or more. To fully understand the relationship between inflammation and brain development, a comprehensive knowledge about the immune system within the brain is essential. Microglia are resident immune cells within the…

  15. Sports-related brain injuries: connecting pathology to diagnosis.

    PubMed

    Pan, James; Connolly, Ian D; Dangelmajer, Sean; Kintzing, James; Ho, Allen L; Grant, Gerald

    2016-04-01

    Brain injuries are becoming increasingly common in athletes and represent an important diagnostic challenge. Early detection and management of brain injuries in sports are of utmost importance in preventing chronic neurological and psychiatric decline. These types of injuries incurred during sports are referred to as mild traumatic brain injuries, which represent a heterogeneous spectrum of disease. The most dramatic manifestation of chronic mild traumatic brain injuries is termed chronic traumatic encephalopathy, which is associated with profound neuropsychiatric deficits. Because chronic traumatic encephalopathy can only be diagnosed by postmortem examination, new diagnostic methodologies are needed for early detection and amelioration of disease burden. This review examines the pathology driving changes in athletes participating in high-impact sports and how this understanding can lead to innovations in neuroimaging and biomarker discovery. PMID:27032917

  16. Chronic Traumatic Encephalopathy: The Neuropathological Legacy of Traumatic Brain Injury.

    PubMed

    Hay, Jennifer; Johnson, Victoria E; Smith, Douglas H; Stewart, William

    2016-05-23

    Almost a century ago, the first clinical account of the punch-drunk syndrome emerged, describing chronic neurological and neuropsychiatric sequelae occurring in former boxers. Thereafter, throughout the twentieth century, further reports added to our understanding of the neuropathological consequences of a career in boxing, leading to descriptions of a distinct neurodegenerative pathology, termed dementia pugilistica. During the past decade, growing recognition of this pathology in autopsy studies of nonboxers who were exposed to repetitive, mild traumatic brain injury, or to a single, moderate or severe traumatic brain injury, has led to an awareness that it is exposure to traumatic brain injury that carries with it a risk of this neurodegenerative disease, not the sport or the circumstance in which the injury is sustained. Furthermore, the neuropathology of the neurodegeneration that occurs after traumatic brain injury, now termed chronic traumatic encephalopathy, is acknowledged as being a complex, mixed, but distinctive pathology, the detail of which is reviewed in this article. PMID:26772317

  17. Erythropoietin as a Neuroprotectant for Neonatal Brain Injury: Animal Models

    PubMed Central

    Traudt, Christopher M.; Juul, Sandra E.

    2016-01-01

    Prematurity and perinatal hypoxia-ischemia are common problems that result in significant neurodevelopmental morbidity and high mortality worldwide. The Vannucci model of unilateral brain injury was developed to model perinatal brain injury due to hypoxia-ischemia. Because the rodent brain is altricial, i.e., it develops postnatally, investigators can model either preterm or term brain injury by varying the age at which injury is induced. This model has allowed investigators to better understand developmental changes that occur in susceptibility of the brain to injury, evolution of brain injury over time, and response to potential neuroprotective treatments. The Vannucci model combines unilateral common carotid artery ligation with a hypoxic insult. This produces injury of the cerebral cortex, basal ganglia, hippocampus, and periventricular white matter ipsilateral to the ligated artery. Varying degrees of injury can be obtained by varying the depth and duration of the hypoxic insult. This chapter details one approach to the Vannucci model and also reviews the neuroprotective effects of erythropoietin (Epo), a neuroprotective treatment that has been extensively investigated using this model and others. PMID:23456865

  18. Therapeutic Hypothermia as a Neuroprotective Strategy in Neonatal Hypoxic-Ischemic Brain Injury and Traumatic Brain Injury

    PubMed Central

    Ma, H.; Sinha, B.; Pandya, R.S.; Lin, N.; Popp, A.J.; Li, J.; Yao, J.; Wang, X.

    2014-01-01

    Evidence shows that artificially lowering body and brain temperature can significantly reduce the deleterious effects of brain injury in both newborns and adults. Although the benefits of therapeutic hypothermia have long been known and applied clinically, the underlying molecular mechanisms have yet to be elucidated. Hypoxic-ischemic brain injury and traumatic brain injury both trigger a series of biochemical and molecular events that cause additional brain insult. Induction of therapeutic hypothermia seems to ameliorate the molecular cascade that culminates in neuronal damage. Hypothermia attenuates the toxicity produced by the initial injury that would normally produce reactive oxygen species, neurotransmitters, inflammatory mediators, and apoptosis. Experiments have been performed on various depths and levels of hypothermia to explore neuroprotection. This review summarizes what is currently known about the beneficial effects of therapeutic hypothermia in experimental models of neonatal hypoxic-ischemic brain injury and traumatic brain injury, and explores the molecular mechanisms that could become the targets of novel therapies. In addition, this review summarizes the clinical implications of therapeutic hypothermia in newborn hypoxic-ischemic encephalopathy and adult traumatic brain injury. PMID:22834830

  19. Acute blast injury reduces brain abeta in two rodent species.

    PubMed

    De Gasperi, Rita; Gama Sosa, Miguel A; Kim, Soong Ho; Steele, John W; Shaughness, Michael C; Maudlin-Jeronimo, Eric; Hall, Aaron A; Dekosky, Steven T; McCarron, Richard M; Nambiar, Madhusoodana P; Gandy, Sam; Ahlers, Stephen T; Elder, Gregory A

    2012-01-01

    Blast-induced traumatic brain injury (TBI) has been a major cause of morbidity and mortality in the conflicts in Iraq and Afghanistan. How the primary blast wave affects the brain is not well understood. In particular, it is unclear whether blast injures the brain through mechanisms similar to those found in non-blast closed impact injuries (nbTBI). The β-amyloid (Aβ) peptide associated with the development of Alzheimer's disease is elevated acutely following TBI in humans as well as in experimental animal models of nbTBI. We examined levels of brain Aβ following experimental blast injury using enzyme-linked immunosorbent assays for Aβ 40 and 42. In both rat and mouse models of blast injury, rather than being increased, endogenous rodent brain Aβ levels were decreased acutely following injury. Levels of the amyloid precursor protein (APP) were increased following blast exposure although there was no evidence of axonal pathology based on APP immunohistochemical staining. Unlike the findings in nbTBI animal models, levels of the β-secretase, β-site APP cleaving enzyme 1, and the γ-secretase component presenilin-1 were unchanged following blast exposure. These studies have implications for understanding the nature of blast injury to the brain. They also suggest that strategies aimed at lowering Aβ production may not be effective for treating acute blast injury to the brain. PMID:23267342

  20. Motor Vehicle Crash Brain Injury in Infants and Toddlers: A Suitable Model for Inflicted Head Injury?

    ERIC Educational Resources Information Center

    Shah, Mahim; Vavilala, Monica S.; Feldman, Kenneth W.; Hallam, Daniel K.

    2005-01-01

    Objective: Children involved in motor vehicle crash (MVC) events might experience angular accelerations similar to those experienced by children with inflicted traumatic brain injury (iTBI). This is a pilot study to determine whether the progression of signs and symptoms and radiographic findings of MVC brain injury (mvcTBI) in children of the age…

  1. DARPA challenge: developing new technologies for brain and spinal injuries

    NASA Astrophysics Data System (ADS)

    Macedonia, Christian; Zamisch, Monica; Judy, Jack; Ling, Geoffrey

    2012-06-01

    The repair of traumatic injuries to the central nervous system remains among the most challenging and exciting frontiers in medicine. In both traumatic brain injury and spinal cord injuries, the ultimate goals are to minimize damage and foster recovery. Numerous DARPA initiatives are in progress to meet these goals. The PREventing Violent Explosive Neurologic Trauma program focuses on the characterization of non-penetrating brain injuries resulting from explosive blast, devising predictive models and test platforms, and creating strategies for mitigation and treatment. To this end, animal models of blast induced brain injury are being established, including swine and non-human primates. Assessment of brain injury in blast injured humans will provide invaluable information on brain injury associated motor and cognitive dysfunctions. The Blast Gauge effort provided a device to measure warfighter's blast exposures which will contribute to diagnosing the level of brain injury. The program Cavitation as a Damage Mechanism for Traumatic Brain Injury from Explosive Blast developed mathematical models that predict stresses, strains, and cavitation induced from blast exposures, and is devising mitigation technologies to eliminate injuries resulting from cavitation. The Revolutionizing Prosthetics program is developing an avant-garde prosthetic arm that responds to direct neural control and provides sensory feedback through electrical stimulation. The Reliable Neural-Interface Technology effort will devise technologies to optimally extract information from the nervous system to control next generation prosthetic devices with high fidelity. The emerging knowledge and technologies arising from these DARPA programs will significantly improve the treatment of brain and spinal cord injured patients.

  2. Driving after traumatic brain injury: evaluation and rehabilitation interventions

    PubMed Central

    Schultheis, Maria T.; Whipple, Elizabeth

    2014-01-01

    The ability to return to driving is a common goal for individuals who have sustained a traumatic brain injury. However, specific and empirically validated guidelines for clinicians who make the return-to-drive decision are sparse. In this article, we attempt to integrate previous findings on driving after brain injury and detail the cognitive, motor, and sensory factors necessary for safe driving that may be affected by brain injury. Various forms of evaluation (both in clinic and behind-the-wheel) are discussed, as well as driver retraining and modifications that may be necessary. PMID:25436178

  3. Traumatic brain injury, axonal injury and shaking in New Zealand sea lion pups.

    PubMed

    Roe, W D; Mayhew, I G; Jolly, R D; Marshall, J; Chilvers, B L

    2014-04-01

    Trauma is a common cause of death in neonatal New Zealand sea lion pups, and subadult male sea lions have been observed picking up and violently shaking some pups. In humans, axonal injury is a common result of traumatic brain injury, and can be due to direct trauma to axons or to ischaemic damage secondary to trauma. 'Shaken baby syndrome', which has been described in human infants, is characterised by retinal and intracranial subdural haemorrhages, and has been associated with axonal injury to the brain, spinal cord and optic nerve. This study identifies mechanisms of traumatic brain injury in New Zealand sea lion pups, including impact injuries and shaking-type injuries, and identifies gross lesions of head trauma in 22/36 sea lion pups found dead at a breeding site in the Auckland Islands. Despite the high frequency of such gross lesions, only three of the pups had died of traumatic brain injury. Observational studies confirmed that shaking of pups occurred, but none were shown to die as a direct result of these shaking events. Axonal injury was evaluated in all 36 pup brains using β-amyloid precursor protein immunohistochemistry. Immunoreactive axons were present in the brains of all pups examined including seven with vascular axonal injury and two with diffuse axonal injury, but the severity and pattern of injury was not reliably associated with death due to traumatic brain injury. No dead pups had the typical combination of gross lesions and immunohistochemical findings that would conform to descriptions of 'shaken baby syndrome'. Axonal injury was present in the optic nerves of most pups, irrespective of cause of death, but was associated with ischaemia rather than trauma. PMID:24565687

  4. Brain injury causes loss of cardiovascular response to hemorrhagic shock.

    PubMed

    Fulton, R L; Flynn, W J; Mancino, M; Bowles, D; Cryer, H M

    1993-01-01

    The combined cardiovascular effects of hemorrhagic shock and mechanical brain injury were modeled in five groups of pigs. Standard and hypertonic saline resuscitation of hypotension were evaluated. Changes in mean arterial pressure (MAP), heart rate (HR), central venous pressure (CVP), intracranial pressure (ICP), and brain water were measured. Brain injury (BI) was produced with a fluid percussion device that generated an extradural pressure of 3.5 x 10(5) N/m2 for 400 msec. Shock was caused by bleeding to a MAP of 60 mm Hg for 60 minutes and then resuscitated with shed blood only or shed blood plus 0.9% or 1.8% saline. Brain-injured only and shocked-only pigs served as controls. We found that brain injury alone caused refractory hypotension. Less shed blood was required to produce shock in brain injured animals (p < .05). Shock accompanied by brain injury was not reversed with crystalloid solutions. Volumes of saline required to restore blood pressure were large (> 6 L in 3 hours). 1.8% saline produced less rise in ICP than 0.9% saline but was less effective in restoring blood pressure. Brain edema was not decreased with 1.8% saline. Brain injury altered vascular compensation to hemorrhage and made accepted resuscitative measures ineffective. PMID:8512886

  5. Brain injury tolerance limit based on computation of axonal strain.

    PubMed

    Sahoo, Debasis; Deck, Caroline; Willinger, Rémy

    2016-07-01

    Traumatic brain injury (TBI) is the leading cause of death and permanent impairment over the last decades. In both the severe and mild TBIs, diffuse axonal injury (DAI) is the most common pathology and leads to axonal degeneration. Computation of axonal strain by using finite element head model in numerical simulation can enlighten the DAI mechanism and help to establish advanced head injury criteria. The main objective of this study is to develop a brain injury criterion based on computation of axonal strain. To achieve the objective a state-of-the-art finite element head model with enhanced brain and skull material laws, was used for numerical computation of real world head trauma. The implementation of new medical imaging data such as, fractional anisotropy and axonal fiber orientation from Diffusion Tensor Imaging (DTI) of 12 healthy patients into the finite element brain model was performed to improve the brain constitutive material law with more efficient heterogeneous anisotropic visco hyper-elastic material law. The brain behavior has been validated in terms of brain deformation against Hardy et al. (2001), Hardy et al. (2007), and in terms of brain pressure against Nahum et al. (1977) and Trosseille et al. (1992) experiments. Verification of model stability has been conducted as well. Further, 109 well-documented TBI cases were simulated and axonal strain computed to derive brain injury tolerance curve. Based on an in-depth statistical analysis of different intra-cerebral parameters (brain axonal strain rate, axonal strain, first principal strain, Von Mises strain, first principal stress, Von Mises stress, CSDM (0.10), CSDM (0.15) and CSDM (0.25)), it was shown that axonal strain was the most appropriate candidate parameter to predict DAI. The proposed brain injury tolerance limit for a 50% risk of DAI has been established at 14.65% of axonal strain. This study provides a key step for a realistic novel injury metric for DAI. PMID:27038501

  6. The King's Outcome Scale for Childhood Head Injury and Injury Severity and Outcome Measures in Children with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Calvert, Sophie; Miller, Helen E.; Curran, Andrew; Hameed, Biju; McCarter, Renee; Edwards, Richard J.; Hunt, Linda; Sharples, Peta Mary

    2008-01-01

    The aim of this study was to relate discharge King's Outcome Scale for Childhood Head Injury (KOSCHI) category to injury severity and detailed outcome measures obtained in the first year post-traumatic brain injury (TBI). We used a prospective cohort study. Eighty-one children with TBI were studied: 29 had severe, 15 moderate, and 37 mild TBI. The…

  7. Structural and functional connectivity in traumatic brain injury

    PubMed Central

    Xiao, Hui; Yang, Yang; Xi, Ji-hui; Chen, Zi-qian

    2015-01-01

    Traumatic brain injury survivors often experience cognitive deficits and neuropsychiatric symptoms. However, the neurobiological mechanisms underlying specific impairments are not fully understood. Advances in neuroimaging techniques (such as diffusion tensor imaging and functional MRI) have given us new insights on structural and functional connectivity patterns of the human brain in both health and disease. The connectome derived from connectivity maps reflects the entire constellation of distributed brain networks. Using these powerful neuroimaging approaches, changes at the microstructural level can be detected through regional and global properties of neuronal networks. Here we will review recent developments in the study of brain network abnormalities in traumatic brain injury, mainly focusing on structural and functional connectivity. Some connectomic studies have provided interesting insights into the neurological dysfunction that occurs following traumatic brain injury. These techniques could eventually be helpful in developing imaging biomarkers of cognitive and neurobehavioral sequelae, as well as predicting outcome and prognosis. PMID:26889200

  8. Predicting outcome after traumatic brain injury.

    PubMed

    Maas, Andrew I R; Lingsma, Hester F; Roozenbeek, Bob

    2015-01-01

    Developing insight into which factors determine prognosis after traumatic brain injury (TBI) is useful for clinical practice, research, and policy making. Several steps can be identified in prediction research: univariate analysis, multivariable analysis, and the development of prediction models. For each step, several methodological issues should be considered, such as selection/coding of predictors and dealing with missing data. "Traditional" predictors include demographic factors (age), type of injury, clinical severity, second insults, and the presence of structural abnormalities on neuroimaging. In combination, these predictors can explain approximately 35% of the variance in outcome in populations with severe and moderate TBI. Novel and emerging predictors include genetic constitution, biomarkers, and advanced magnetic resonance (MR) imaging. To estimate prognosis for individual patients reliably, multiple predictors need to be considered jointly in prognostic models. Two prognostic models for use in TBI, developed upon large patient numbers, have been extensively validated externally: the IMPACT and CRASH prediction models. Both models showed good performance in validations across a wide range of settings. Importantly, these models were developed not only for mortality but also for functional outcome. Prognostic models can be used for providing information to relatives of individual patients, for resource allocation, and to support decisions on treatment. At the group level, prognostic models aid in the characterization of patient populations, are important to clinical trial design and analysis, and importantly, can serve as benchmarks for assessing quality of care. Continued development, refinement, and validation of prognostic models for TBI is required and this should become an ongoing process. PMID:25701901

  9. Dementia Resulting From Traumatic Brain Injury

    PubMed Central

    Shively, Sharon; Scher, Ann I.; Perl, Daniel P.; Diaz-Arrastia, Ramon

    2013-01-01

    Traumatic brain injury (TBI) is among the earliest illnesses described in human history and remains a major source of morbidity and mortality in the modern era. It is estimated that 2% of the US population lives with long-term disabilities due to a prior TBI, and incidence and prevalence rates are even higher in developing countries. One of the most feared long-term consequences of TBIs is dementia, as multiple epidemiologic studies show that experiencing a TBI in early or midlife is associated with an increased risk of dementia in late life. The best data indicate that moderate and severe TBIs increase risk of dementia between 2-and 4-fold. It is less clear whether mild TBIs such as brief concussions result in increased dementia risk, in part because mild head injuries are often not well documented and retrospective studies have recall bias. However, it has been observed for many years that multiple mild TBIs as experienced by professional boxers are associated with a high risk of chronic traumatic encephalopathy (CTE), a type of dementia with distinctive clinical and pathologic features. The recent recognition that CTE is common in retired professional football and hockey players has rekindled interest in this condition, as has the recognition that military personnel also experience high rates of mild TBIs and may have a similar syndrome. It is presently unknown whether dementia in TBI survivors is pathophysiologically similar to Alzheimer disease, CTE, or some other entity. Such information is critical for developing preventive and treatment strategies for a common cause of acquired dementia. Herein, we will review the epidemiologic data linking TBI and dementia, existing clinical and pathologic data, and will identify areas where future research is needed. PMID:22776913

  10. Development of brain injury criteria (BrIC).

    PubMed

    Takhounts, Erik G; Craig, Matthew J; Moorhouse, Kevin; McFadden, Joe; Hasija, Vikas

    2013-11-01

    Rotational motion of the head as a mechanism for brain injury was proposed back in the 1940s. Since then a multitude of research studies by various institutions were conducted to confirm/reject this hypothesis. Most of the studies were conducted on animals and concluded that rotational kinematics experienced by the animal's head may cause axonal deformations large enough to induce their functional deficit. Other studies utilized physical and mathematical models of human and animal heads to derive brain injury criteria based on deformation/pressure histories computed from their models. This study differs from the previous research in the following ways: first, it uses two different detailed mathematical models of human head (SIMon and GHBMC), each validated against various human brain response datasets; then establishes physical (strain and stress based) injury criteria for various types of brain injury based on scaled animal injury data; and finally, uses Anthropomorphic Test Devices (ATDs) (Hybrid III 50th Male, Hybrid III 5th Female, THOR 50th Male, ES-2re, SID-IIs, WorldSID 50th Male, and WorldSID 5th Female) test data (NCAP, pendulum, and frontal offset tests) to establish a kinematically based brain injury criterion (BrIC) for all ATDs. Similar procedures were applied to college football data where thousands of head impacts were recorded using a six degrees of freedom (6 DOF) instrumented helmet system. Since animal injury data used in derivation of BrIC were predominantly for diffuse axonal injury (DAI) type, which is currently an AIS 4+ injury, cumulative strain damage measure (CSDM) and maximum principal strain (MPS) were used to derive risk curves for AIS 4+ anatomic brain injuries. The AIS 1+, 2+, 3+, and 5+ risk curves for CSDM and MPS were then computed using the ratios between corresponding risk curves for head injury criterion (HIC) at a 50% risk. The risk curves for BrIC were then obtained from CSDM and MPS risk curves using the linear relationship

  11. Diagnostic criteria and differential diagnosis of mild traumatic brain injury.

    PubMed

    De Kruijk, J R; Twijnstra, A; Leffers, P

    2001-02-01

    Brain injury is classified clinically as severe, moderate or mild brain injury characteristics, including admission Glasgow coma score, duration of unconsciousness and post-traumatic amnesia and any focal neurological findings. Most traumatic brain injuries are classified as mild traumatic brain injury (MTBI). Headache, nausea and dizziness are frequent symptoms after MTBI and may continue for weeks to months after the trauma. MTBI may also be complicated by intracranial injuries. Experimental animal models and post-mortem studies have shown axonal damage and dysfunction in MTBI. This damage is mostly localized in the frontal lobes. Serum S-100 and NSE have been reported to be markers for the seventy of brain damage. In the literature, indications for radiodiagnostic evaluation following MTBI have been the subject of debate. Radiographs of the skull are used to exclude skull fractures, but are not useful for an evaluation of brain injury. Computed tomography of the brain seems to be the best way to exclude the development of relevant intracranial lesions. MTBI has a good clinical outcome, although a substantial group of patients develop post-concussional complaints (PCC). There is little information on the effectiveness of various methods suggested for reducing the frequency of PCC. PMID:11260760

  12. Imatinib treatment reduces brain injury in a murine model of traumatic brain injury

    PubMed Central

    Su, Enming J.; Fredriksson, Linda; Kanzawa, Mia; Moore, Shannon; Folestad, Erika; Stevenson, Tamara K.; Nilsson, Ingrid; Sashindranath, Maithili; Schielke, Gerald P.; Warnock, Mark; Ragsdale, Margaret; Mann, Kris; Lawrence, Anna-Lisa E.; Medcalf, Robert L.; Eriksson, Ulf; Murphy, Geoffrey G.; Lawrence, Daniel A.

    2015-01-01

    Current therapies for Traumatic brain injury (TBI) focus on stabilizing individuals and on preventing further damage from the secondary consequences of TBI. A major complication of TBI is cerebral edema, which can be caused by the loss of blood brain barrier (BBB) integrity. Recent studies in several CNS pathologies have shown that activation of latent platelet derived growth factor-CC (PDGF-CC) within the brain can promote BBB permeability through PDGF receptor α (PDGFRα) signaling, and that blocking this pathway improves outcomes. In this study we examine the efficacy for the treatment of TBI of an FDA approved antagonist of the PDGFRα, Imatinib. Using a murine model we show that Imatinib treatment, begun 45 min after TBI and given twice daily for 5 days, significantly reduces BBB dysfunction. This is associated with significantly reduced lesion size 24 h, 7 days, and 21 days after TBI, reduced cerebral edema, determined from apparent diffusion co-efficient (ADC) measurements, and with the preservation of cognitive function. Finally, analysis of cerebrospinal fluid (CSF) from human TBI patients suggests a possible correlation between high PDGF-CC levels and increased injury severity. Thus, our data suggests a novel strategy for the treatment of TBI with an existing FDA approved antagonist of the PDGFRα. PMID:26500491

  13. Expression of aquaporin-4 and pathological characteristics of brain injury in a rat model of traumatic brain injury

    PubMed Central

    ZHANG, CHENGCHENG; CHEN, JIANQIANG; LU, HONG

    2015-01-01

    Aquaporin 4 (AQP4) is a widely distributed membrane protein, which is found in glial cells, ependymocytes and capillary endothelial cells in the brain, and particularly in the choroid plexus. AQP4 is a key regulator of water metabolism, and changes in its expression following brain injury are associated with pathological changes in the damaged side of the brain; however, the effects of brain injury on AQP4 and injury-induced pathological changes in the contralateral non-damaged side of the brain remain to be fully elucidated. In the present study, male Sprague-Dawley rats were subjected to traumatic brain injury (TBI) and changes in brain water content, the expression of AQP4 expression and pathological characteristics in the damaged and contralateral non-damaged sides of the brain were examined. In the damaged side of the brain, vasogenic edema appeared first, followed by cellular edema. The aggravated cellular edema in the damaged side of the brain resulted in two periods of peak edema severity. Pathological changes in the contralateral non-damaged side of the brain occurred later than those in the damaged side; cellular edema appeared first, followed by vasogenic edema, which was alleviated earlier than the cellular edema. AQP4 was downregulated during vasogenic edema, and upregulated during cellular edema. Taken together, these results suggested that the downregulation of AQP4 was a result of vasogenic edema and that the upregulation of AQP4 may have induced cellular edema. PMID:26459070

  14. Common astrocytic programs during brain development, injury and cancer

    PubMed Central

    Silver, Daniel J.; Steindler, Dennis A.

    2011-01-01

    In addition to radial glial cells of neurohistogenesis, immature astrocytes with stem-cell-like properties cordon off emerging functional patterns in the developing brain. Astrocytes also can be stem cells during adult neurogenesis, and a proposed potency of injury-associated reactive astrocytes has recently been substantiated. Astrocytic cells might additionally be involved in cancer stem cell-associated gliomagenesis. Thus, there are distinguishing roles for stem-cell-like astrocytes during brain development, in neurogenic niches in the adult, during attempted reactive neurogenesis after brain injury or disease and during brain tumorigenesis. PMID:19398132

  15. Controversies in the Management of Traumatic Brain Injury.

    PubMed

    Jinadasa, Sayuri; Boone, M Dustin

    2016-09-01

    Traumatic brain injury (TBI) is a physical insult (a bump, jolt, or blow) to the brain that results in temporary or permanent impairment of normal brain function. TBI describes a heterogeneous group of disorders. The resulting secondary injury, namely brain swelling and its sequelae, is the reason why patients with these vastly different initial insults are homogenously treated. Much of the evidence for the management of TBI is poor or conflicting, and thus definitive guidelines are largely unavailable for clinicians at this time. A substantial portion of this article focuses on discussing the controversies in the management of TBI. PMID:27521198

  16. Midline (Central) Fluid Percussion Model of Traumatic Brain Injury.

    PubMed

    Rowe, Rachel K; Griffiths, Daniel R; Lifshitz, Jonathan

    2016-01-01

    Research models of traumatic brain injury (TBI) hold significant validity towards the human condition, with each model replicating a subset of clinical features and symptoms. After 30 years of characterization and implementation, fluid percussion injury (FPI) is firmly recognized as a clinically relevant model of TBI, encompassing concussion through severe injury. The midline variation of FPI may best represent mild and diffuse clinical brain injury, because of the acute behavioral deficits, the late onset of subtle behavioral morbidities, and the absence of gross histopathology. This chapter outlines the procedures for midline (diffuse) FPI in adult male rats and mice. With these procedures, it becomes possible to generate brain-injured laboratory animals for studies of injury-induced pathophysiology and behavioral deficits, for which rational therapeutic interventions can be implemented. PMID:27604721

  17. Patterns of Brain Injury in Inborn Errors of Metabolism

    PubMed Central

    Gropman, Andrea L.

    2013-01-01

    Many inborn errors of metabolism (IEMs) are associated with irreversible brain injury. For many, it is unclear how metabolite intoxication or substrate depletion accounts for the specific neurologic findings observed. IEM-associated brain injury patterns are characterized by whether the process involves gray matter, white matter, or both, and beyond that, whether subcortical or cortical gray matter nuclei are involved. Despite global insults, IEMs may result in selective injury to deep gray matter nuclei or white matter. This manuscript reviews the neuro-imaging patterns of neural injury in selected disorders of metabolism involving small molecule and macromolecular disorders (ie, Phenylketonuria, urea cycle disorders, and maple syrup urine disease) and discusses the contribution of diet and nutrition to the prevention or exacerbation of injury in selected inborn metabolic disorders. Where known, a review of the roles of individual differences in blood–brain permeability and transport mechanisms in the etiology of these disorders will be discussed. PMID:23245553

  18. How Do Health Care Providers Diagnose Traumatic Brain Injury (TBI)?

    MedlinePlus

    ... Information Clinical Trials Resources and Publications How do health care providers diagnose traumatic brain injury (TBI)? Skip sharing ... links Share this: Page Content To diagnose TBI, health care providers may use one or more tests that ...

  19. What Can I Do to Help Prevent Traumatic Brain Injury?

    MedlinePlus

    ... to Congress: Epidemiology and Rehabilitation Report to Congress: Military Personnel TBI in the US: Emergency Department Visits, Hospitalizations ... sustaining a traumatic brain injury, including: Buckling your child in the car using a child safety seat, ...

  20. Psychiatric treatment in severe brain injury: a case report.

    PubMed

    Kaplan De-Nour, A; Bauman, A

    1980-03-01

    A patient with severe, penetrating brain injury is presented. The patient was in psychiatric treatment for four years, starting two months after the injury; psychological tests were administered four times. By most criteria, the patient recovered completely. The case confirmed earlier observations that intelligence measured by verbal subtests, recovers faster than that measured by performance subtests. The latter continued to improve during the two to four year period after injury. The case clearly indicates the emotional and psychological problems that arise in the presence of severe brain damage. These reactions may hamper rehabilitation, although the gross psychological disabilities caused by the brain injury have improved. It is suggested, therefore, that brain damaged patients should receive psychiatric treatment. Some of the problems of such psychotherapeutic treatment are briefly discussed. PMID:7380245

  1. Money, Language Barriers Can Affect Kids' Brain Injury Care

    MedlinePlus

    ... https://medlineplus.gov/news/fullstory_159124.html Money, Language Barriers Can Affect Kids' Brain Injury Care Those ... included providers of physical and occupational therapy; speech, language and cognitive therapy; and mental health services. The ...

  2. Defense Centers of Excellence for Psychological Health & Traumatic Brain Injury

    MedlinePlus

    ... brain injury may make sleep more difficult. Simple changes to your behavior and environment - sleep schedule, bedtime habits and daily lifestyle choices - ... for the 2016 DCoE Summit is Open Register today for the ...

  3. MG53 permeates through blood-brain barrier to protect ischemic brain injury

    PubMed Central

    Li, Haichang; Han, Yu; Chen, Ken; Wang, Zhen; Zeng, Jing; Liu, Yukai; Wang, Xinquan; Li, Yu; He, Duofen; Lin, Peihui; Zhou, Xinyu; Park, Ki Ho; Bian, Zehua; Chen, Zhishui; Gong, Nianqiao; Tan, Tao; Zhou, Jingsong; Zhang, Meng; Ma, Jianjie; Zeng, Chunyu

    2016-01-01

    Ischemic injury to neurons represents the underlying cause of stroke to the brain. Our previous studies identified MG53 as an essential component of the cell membrane repair machinery. Here we show that the recombinant human (rh)MG53 protein facilitates repair of ischemia-reperfusion (IR) injury to the brain. MG53 rapidly moves to acute injury sites on neuronal cells to form a membrane repair patch. IR-induced brain injury increases permeability of the blood-brain-barrier, providing access of MG53 from blood circulation to target the injured brain tissues. Exogenous rhMG53 protein can protect cultured neurons against hypoxia/reoxygenation-induced damages. Transgenic mice with increased levels of MG53 in the bloodstream are resistant to IR-induced brain injury. Intravenous administration of rhMG53, either prior to or after ischemia, can effectively alleviate brain injuries in rats. rhMG53-mediated neuroprotection involves suppression of apoptotic neuronal cell death, as well as activation of the pro-survival RISK signaling pathway. Our data indicate a physiological function for MG53 in the brain and suggest that targeting membrane repair or RISK signaling may be an effective means to treat ischemic brain injury. PMID:26967557

  4. Adenosine Neuromodulation and Traumatic Brain Injury

    PubMed Central

    Lusardi, T.A

    2009-01-01

    Adenosine is a ubiquitous signaling molecule, with widespread activity across all organ systems. There is evidence that adenosine regulation is a significant factor in traumatic brain injury (TBI) onset, recovery, and outcome, and a growing body of experimental work examining the therapeutic potential of adenosine neuromodulation in the treatment of TBI. In the central nervous system (CNS), adenosine (dys)regulation has been demonstrated following TBI, and correlated to several TBI pathologies, including impaired cerebral hemodynamics, anaerobic metabolism, and inflammation. In addition to acute pathologies, adenosine function has been implicated in TBI comorbidities, such as cognitive deficits, psychiatric function, and post-traumatic epilepsy. This review presents studies in TBI as well as adenosine-related mechanisms in co-morbidities of and unfavorable outcomes resulting from TBI. While the exact role of the adenosine system following TBI remains unclear, there is increasing evidence that a thorough understanding of adenosine signaling will be critical to the development of diagnostic and therapeutic tools for the treatment of TBI. PMID:20190964

  5. Cooking breakfast after a brain injury

    PubMed Central

    Tanguay, Annick N.; Davidson, Patrick S. R.; Guerrero Nuñez, Karla V.; Ferland, Mark B.

    2014-01-01

    Acquired brain injury (ABI) often compromises the ability to carry out instrumental activities of daily living such as cooking. ABI patients' difficulties with executive functions and memory result in less independent and efficient meal preparation. Accurately assessing safety and proficiency in cooking is essential for successful community reintegration following ABI, but in vivo assessment of cooking by clinicians is time-consuming, costly, and difficult to standardize. Accordingly, we examined the usefulness of a computerized meal preparation task (the Breakfast Task; Craik and Bialystok, 2006) as an indicator of real life meal preparation skills. Twenty-two ABI patients and 22 age-matched controls completed the Breakfast Task. Patients also completed the Rehabilitation Activities of Daily Living Survey (RADLS; Salmon, 2003) and prepared actual meals that were rated by members of the clinical team. As expected, the ABI patients had significant difficulty on all aspects of the Breakfast Task (failing to have all their foods ready at the same time, over- and under-cooking foods, setting fewer places at the table, and so on) relative to controls. Surprisingly, however, patients' Breakfast Task performance was not correlated with their in vivo meal preparation. These results indicate caution when endeavoring to replace traditional evaluation methods with computerized tasks for the sake of expediency. PMID:25228863

  6. Narrative language in traumatic brain injury.

    PubMed

    Marini, Andrea; Galetto, Valentina; Zampieri, Elisa; Vorano, Lorenza; Zettin, Marina; Carlomagno, Sergio

    2011-08-01

    Persons with traumatic brain injury (TBI) often show impaired linguistic and/or narrative abilities. The present study aimed to document the features of narrative discourse impairment in a group of adults with TBI. 14 severe TBI non-aphasic speakers (GCS<8) in the phase of neurological stability and 14 neurologically intact participants were recruited for the experiment. Their cognitive, linguistic and narrative skills were thoroughly assessed. The group of non-aphasic individuals with TBI had normal lexical and grammatical skills. However, they produced narratives with increased errors of cohesion and coherence due to the frequent interruption of ongoing utterances, derailments and extraneous utterances that made their discourse vague and ambiguous. They produced a normal amount of thematic units (i.e. concepts) in their narratives. However, this information was not correctly organized at micro- and macrolinguistic levels of processing. A Principal Component Analysis showed that a single factor accounted for the production of global coherence errors, and the reduction of both propositional density at the utterance level and proportion of words that conveyed information. It is hypothesized that the linguistic deficits observed in the participants with TBI may reflect a deficit at the interface between cognitive and linguistic processing rather than a specific linguistic disturbance. PMID:21723304

  7. Advanced Neuroimaging in Traumatic Brain Injury

    PubMed Central

    Edlow, Brian L.; Wu, Ona

    2013-01-01

    Advances in structural and functional neuroimaging have occurred at a rapid pace over the past two decades. Novel techniques for measuring cerebral blood flow, metabolism, white matter connectivity, and neural network activation have great potential to improve the accuracy of diagnosis and prognosis for patients with traumatic brain injury (TBI), while also providing biomarkers to guide the development of new therapies. Several of these advanced imaging modalities are currently being implemented into clinical practice, whereas others require further development and validation. Ultimately, for advanced neuroimaging techniques to reach their full potential and improve clinical care for the many civilians and military personnel affected by TBI, it is critical for clinicians to understand the applications and methodological limitations of each technique. In this review, we examine recent advances in structural and functional neuroimaging and the potential applications of these techniques to the clinical care of patients with TBI. We also discuss pitfalls and confounders that should be considered when interpreting data from each technique. Finally, given the vast amounts of advanced imaging data that will soon be available to clinicians, we discuss strategies for optimizing data integration, visualization and interpretation. PMID:23361483

  8. Cooking breakfast after a brain injury.

    PubMed

    Tanguay, Annick N; Davidson, Patrick S R; Guerrero Nuñez, Karla V; Ferland, Mark B

    2014-01-01

    Acquired brain injury (ABI) often compromises the ability to carry out instrumental activities of daily living such as cooking. ABI patients' difficulties with executive functions and memory result in less independent and efficient meal preparation. Accurately assessing safety and proficiency in cooking is essential for successful community reintegration following ABI, but in vivo assessment of cooking by clinicians is time-consuming, costly, and difficult to standardize. Accordingly, we examined the usefulness of a computerized meal preparation task (the Breakfast Task; Craik and Bialystok, 2006) as an indicator of real life meal preparation skills. Twenty-two ABI patients and 22 age-matched controls completed the Breakfast Task. Patients also completed the Rehabilitation Activities of Daily Living Survey (RADLS; Salmon, 2003) and prepared actual meals that were rated by members of the clinical team. As expected, the ABI patients had significant difficulty on all aspects of the Breakfast Task (failing to have all their foods ready at the same time, over- and under-cooking foods, setting fewer places at the table, and so on) relative to controls. Surprisingly, however, patients' Breakfast Task performance was not correlated with their in vivo meal preparation. These results indicate caution when endeavoring to replace traditional evaluation methods with computerized tasks for the sake of expediency. PMID:25228863

  9. Neurorestoration after traumatic brain injury through angiotensin II receptor blockage.

    PubMed

    Villapol, Sonia; Balarezo, María G; Affram, Kwame; Saavedra, Juan M; Symes, Aviva J

    2015-11-01

    See Moon (doi:10.1093/awv239) for a scientific commentary on this article.Traumatic brain injury frequently leads to long-term cognitive problems and physical disability yet remains without effective therapeutics. Traumatic brain injury results in neuronal injury and death, acute and prolonged inflammation and decreased blood flow. Drugs that block angiotensin II type 1 receptors (AT1R, encoded by AGTR1) (ARBs or sartans) are strongly neuroprotective, neurorestorative and anti-inflammatory. To test whether these drugs may be effective in treating traumatic brain injury, we selected two sartans, candesartan and telmisartan, of proven therapeutic efficacy in animal models of brain inflammation, neurodegenerative disorders and stroke. Using a validated mouse model of controlled cortical impact injury, we determined effective doses for candesartan and telmisartan, their therapeutic window, mechanisms of action and effect on cognition and motor performance. Both candesartan and telmisartan ameliorated controlled cortical impact-induced injury with a therapeutic window up to 6 h at doses that did not affect blood pressure. Both drugs decreased lesion volume, neuronal injury and apoptosis, astrogliosis, microglial activation, pro-inflammatory signalling, and protected cerebral blood flow, when determined 1 to 3 days post-injury. Controlled cortical impact-induced cognitive impairment was ameliorated 30 days after injury only by candesartan. The neurorestorative effects of candesartan and telmisartan were reduced by concomitant administration of the peroxisome proliferator-activated receptor gamma (PPARγ, encoded by PPARG) antagonist T0070907, showing the importance of PPARγ activation for the neurorestorative effect of these sartans. AT1R knockout mice were less vulnerable to controlled cortical impact-induced injury suggesting that the sartan's blockade of the AT1R also contributes to their efficacy. This study strongly suggests that sartans with dual AT1R blocking and

  10. Transcranial amelioration of inflammation and cell death after brain injury

    NASA Astrophysics Data System (ADS)

    Roth, Theodore L.; Nayak, Debasis; Atanasijevic, Tatjana; Koretsky, Alan P.; Latour, Lawrence L.; McGavern, Dorian B.

    2014-01-01

    Traumatic brain injury (TBI) is increasingly appreciated to be highly prevalent and deleterious to neurological function. At present, no effective treatment options are available, and little is known about the complex cellular response to TBI during its acute phase. To gain insights into TBI pathogenesis, we developed a novel murine closed-skull brain injury model that mirrors some pathological features associated with mild TBI in humans and used long-term intravital microscopy to study the dynamics of the injury response from its inception. Here we demonstrate that acute brain injury induces vascular damage, meningeal cell death, and the generation of reactive oxygen species (ROS) that ultimately breach the glial limitans and promote spread of the injury into the parenchyma. In response, the brain elicits a neuroprotective, purinergic-receptor-dependent inflammatory response characterized by meningeal neutrophil swarming and microglial reconstitution of the damaged glial limitans. We also show that the skull bone is permeable to small-molecular-weight compounds, and use this delivery route to modulate inflammation and therapeutically ameliorate brain injury through transcranial administration of the ROS scavenger, glutathione. Our results shed light on the acute cellular response to TBI and provide a means to locally deliver therapeutic compounds to the site of injury.

  11. Intravenous Fluid Therapy in Traumatic Brain Injury and Decompressive Craniectomy

    PubMed Central

    Alvis-Miranda, Hernando Raphael; Castellar-Leones, Sandra Milena; Moscote-Salazar, Luis Rafael

    2014-01-01

    The patient with head trauma is a challenge for the emergency physician and for the neurosurgeon. Currently traumatic brain injury constitutes a public health problem. Knowledge of the various supportive therapeutic strategies in the pre-hospital and pre-operative stages is essential for optimal care. The immediate rapid infusion of large volumes of crystalloids to restore blood volume and blood pressure is now the standard treatment of patients with combined traumatic brain injury (TBI) and hemorrhagic shock (HS). The fluid in patients with brain trauma and especially in patients with brain injur y is a critical issue. In this context we present a review of the literature about the history, physiology of current fluid preparations, and a discussion regarding the use of fluid therapy in traumatic brain injury and decompressive craniectomy. PMID:27162857

  12. Traumatic Brain Injury: Persistent Misconceptions and Knowledge Gaps among Educators

    ERIC Educational Resources Information Center

    Ettel, Deborah; Glang, Ann E.; Todis, Bonnie; Davies, Susan C.

    2016-01-01

    Each year approximately 700,000 U.S. children aged 0-19 years sustain a traumatic brain injury (TBI) placing them at risk for academic, cognitive, and behavioural challenges. Although TBI has been a special education disability category for 25 years, prevalence studies show that of the 145,000 students each year who sustain long-term injury from…

  13. Memory Strategies to Use With Students Following Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Pershelli, Andi

    2007-01-01

    Following a traumatic brain injury, including a mild concussion, most students will have some degree of memory impairment. It can take 1-3 years for a child's memory to improve to its maximum capability following injury. Children cannot wait that long before returning to school. Teachers need to know how to diversify their instruction in order to…

  14. Development of an Ontology for Rehabilitation: Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Grove, Michael J.

    2013-01-01

    Traumatic Brain Injury (TBI) rehabilitation interventions are very heterogeneous due to injury characteristics and pathology, patient demographics, healthcare settings, caregiver variability, and individualized, multi-discipline treatment plans. Consequently, comparing and generalizing the effectiveness of interventions is limited largely due to…

  15. Traumatic Brain Injury (TBI): Moderate or Severe

    MedlinePlus

    ... know? There are two types of TBIs: Closed Head Injury Caused by a blow or jolt to the head that does not penetrate the skull Penetrating Head Injury Occurs when an object goes through the skull ...

  16. [Guidelines for the management of severe traumatic brain injury. Part 3. Surgical management of severe traumatic brain injury (Options)].

    PubMed

    Potapov, A A; Krylov, V V; Gavrilov, A G; Kravchuk, A D; Likhterman, L B; Petrikov, S S; Talypov, A E; Zakharova, N E; Solodov, A A

    2016-01-01

    Traumatic brain injury (TBI) is one of the main causes of mortality and severe disability in young and middle age patients. Patients with severe TBI, who are in coma, are of particular concern. Adequate diagnosis of primary brain injuries and timely prevention and treatment of secondary injury mechanisms markedly affect the possibility of reducing mortality and severe disability. The present guidelines are based on the authors' experience in developing international and national recommendations for the diagnosis and treatment of mild TBI, penetrating gunshot wounds of the skull and brain, severe TBI, and severe consequences of brain injury, including a vegetative state. In addition, we used the materials of international and national guidelines for the diagnosis, intensive care, and surgical treatment of severe TBI, which were published in recent years. The proposed recommendations for surgical treatment of severe TBI in adults are addressed primarily to neurosurgeons, neurologists, neuroradiologists, anesthesiologists, and intensivists who are routinely involved in treating these patients. PMID:27070263

  17. The neuroprotective roles of BDNF in hypoxic ischemic brain injury.

    PubMed

    Chen, Ai; Xiong, Li-Jing; Tong, Yu; Mao, Meng

    2013-03-01

    Hypoxia-ischemia (H/I) brain injury results in various degrees of damage to the body, and the immature brain is particularly fragile to oxygen deprivation. Hypothermia and erythropoietin (EPO) have long been known to be neuroprotective in ischemic brain injury. Brain-derived neurotrophic factor (BDNF) has recently been recognized as a potent modulator capable of regulating a wide repertoire of neuronal functions. This review was based on studies concerning the involvement of BDNF in the protection of H/I brain injury following a search in PubMed between 1995 and December, 2011. We initially examined the background of BDNF, and then focused on its neuroprotective mechanisms against ischemic brain injury, including its involvement in promoting neural regeneration/cognition/memory rehabilitation, angiogenesis within ischemic penumbra and the inhibition of the inflammatory process, neurotoxicity, epilepsy and apoptosis. We also provided a literature overview of experimental studies, discussing the safety and the potential clinical application of BDNF as a neuroprotective agent in the ischemic brain injury. PMID:24648914

  18. Pediatric traumatic brain injury: acute and rehabilitation costs.

    PubMed

    Jaffe, K M; Massagli, T L; Martin, K M; Rivara, J B; Fay, G C; Polissar, N L

    1993-07-01

    Pediatric traumatic brain injury constitutes an enormous public health problem, but little is known about the economic costs of such injury. Using charges as a proxy for cost, we prospectively collected data on initial hospital charges and professional fees for emergency department services, acute inpatient care, and acute inpatient rehabilitation for 96 patients with mild, moderate, and severe traumatic brain injuries. We also examined the relationship between these costs and injury severity and etiology. Acute care and rehabilitation median costs were $5,233 per child, $11,478 for hospitalized children, and $230 for those only seen in the emergency department. Median costs for injuries due to motor vehicles, bicycles, and falls were $15,213, $6,311, and $792, respectively. Using Glasgow Coma Scale criteria, median cost of mild, moderate, and severe traumatic brain injuries were $598, $12,022, and $53,332, respectively. Injury etiology added modestly but significantly to the prediction of cost over and above that predicted by injury severity alone. Rehabilitation costs accounted for 37% of the total for all children, but 45% of those with the most severe injuries. PMID:8328886

  19. Classification of Traumatic Brain Injury for Targeted Therapies

    PubMed Central

    Saatman, Kathryn E.; Duhaime, Ann-Christine; Bullock, Ross; Maas, Andrew I.R.; Valadka, Alex

    2008-01-01

    Abstract The heterogeneity of traumatic brain injury (TBI) is considered one of the most significant barriers to finding effective therapeutic interventions. In October, 2007, the National Institute of Neurological Disorders and Stroke, with support from the Brain Injury Association of America, the Defense and Veterans Brain Injury Center, and the National Institute of Disability and Rehabilitation Research, convened a workshop to outline the steps needed to develop a reliable, efficient and valid classification system for TBI that could be used to link specific patterns of brain and neurovascular injury with appropriate therapeutic interventions. Currently, the Glasgow Coma Scale (GCS) is the primary selection criterion for inclusion in most TBI clinical trials. While the GCS is extremely useful in the clinical management and prognosis of TBI, it does not provide specific information about the pathophysiologic mechanisms which are responsible for neurological deficits and targeted by interventions. On the premise that brain injuries with similar pathoanatomic features are likely to share common pathophysiologic mechanisms, participants proposed that a new, multidimensional classification system should be developed for TBI clinical trials. It was agreed that preclinical models were vital in establishing pathophysiologic mechanisms relevant to specific pathoanatomic types of TBI and verifying that a given therapeutic approach improves outcome in these targeted TBI types. In a clinical trial, patients with the targeted pathoanatomic injury type would be selected using an initial diagnostic entry criterion, including their severity of injury. Coexisting brain injury types would be identified and multivariate prognostic modeling used for refinement of inclusion/exclusion criteria and patient stratification. Outcome assessment would utilize endpoints relevant to the targeted injury type. Advantages and disadvantages of currently available diagnostic, monitoring, and

  20. Neurological consequences of traumatic brain injuries in sports.

    PubMed

    Ling, Helen; Hardy, John; Zetterberg, Henrik

    2015-05-01

    Traumatic brain injury (TBI) is common in boxing and other contact sports. The long term irreversible and progressive aftermath of TBI in boxers depicted as punch drunk syndrome was described almost a century ago and is now widely referred as chronic traumatic encephalopathy (CTE). The short term sequelae of acute brain injury including subdural haematoma and catastrophic brain injury may lead to death, whereas mild TBI, or concussion, causes functional disturbance and axonal injury rather than gross structural brain damage. Following concussion, symptoms such as dizziness, nausea, reduced attention, amnesia and headache tend to develop acutely but usually resolve within a week or two. Severe concussion can also lead to loss of consciousness. Despite the transient nature of the clinical symptoms, functional neuroimaging, electrophysiological, neuropsychological and neurochemical assessments indicate that the disturbance of concussion takes over a month to return to baseline and neuropathological evaluation shows that concussion-induced axonopathy may persist for years. The developing brains in children and adolescents are more susceptible to concussion than adult brain. The mechanism by which acute TBI may lead to the neurodegenerative process of CTE associated with tau hyperphosphorylation and the development of neurofibrillary tangles (NFTs) remains speculative. Focal tau-positive NFTs and neurites in close proximity to focal axonal injury and foci of microhaemorrhage and the predilection of CTE-tau pathology for perivascular and subcortical regions suggest that acute TBI-related axonal injury, loss of microvascular integrity, breach of the blood brain barrier, resulting inflammatory cascade and microglia and astrocyte activation are likely to be the basis of the mechanistic link of TBI and CTE. This article provides an overview of the acute and long-term neurological consequences of TBI in sports. Clinical, neuropathological and the possible pathophysiological

  1. The influence of anisotropy on brain injury prediction.

    PubMed

    Giordano, C; Cloots, R J H; van Dommelen, J A W; Kleiven, S

    2014-03-21

    Traumatic Brain Injury (TBI) occurs when a mechanical insult produces damage to the brain and disrupts its normal function. Numerical head models are often used as tools to analyze TBIs and to measure injury based on mechanical parameters. However, the reliability of such models depends on the incorporation of an appropriate level of structural detail and accurate representation of the material behavior. Since recent studies have shown that several brain regions are characterized by a marked anisotropy, constitutive equations should account for the orientation-dependence within the brain. Nevertheless, in most of the current models brain tissue is considered as completely isotropic. To study the influence of the anisotropy on the mechanical response of the brain, a head model that incorporates the orientation of neural fibers is used and compared with a fully isotropic model. A simulation of a concussive impact based on a sport accident illustrates that significantly lowered strains in the axonal direction as well as increased maximum principal strains are detected for anisotropic regions of the brain. Thus, the orientation-dependence strongly affects the response of the brain tissue. When anisotropy of the whole brain is taken into account, deformation spreads out and white matter is particularly affected. The introduction of local axonal orientations and fiber distribution into the material model is crucial to reliably address the strains occurring during an impact and should be considered in numerical head models for potentially more accurate predictions of brain injury. PMID:24462379

  2. IQ Decline Following Early Unilateral Brain Injury: A Longitudinal Study

    ERIC Educational Resources Information Center

    Levine, Susan C.; Kraus, Ruth; Alexander, Erin; Suriyakham, Linda Whealton; Huttenlocher, Peter R.

    2005-01-01

    We examine whether children with early unilateral brain injury show an IQ decline over the course of development. Fifteen brain injured children were administered an IQ test once before age 7 and again several years later. Post-7 IQ scores were significantly lower than pre-7 IQ scores. In addition, pre-7 IQ scores were lower for children with…

  3. Pesticide mortality of young white-faced ibis in Texas

    USGS Publications Warehouse

    Flickinger, Edward L.; Meeker, D.L.

    1972-01-01

    The combination of the symptoms observed in sick and dying birds and the high brain residues in the three birds collected dying, as well as in two of the four collected dead, implicate dieldrin as at least one of the causes of mortality of young ibis at the Lavaca Bay colony. Mercury residues in the kidneys of all four dead young, including those with low brain residues of dieldrin, suggest that birds were exposed to mercury in rice fields and that mercury may also have contributed to the mortality. Since adult ibis normally feed their young on invertebrates collected in rice fields treated with aldrin and Ceresan L, the use of these rice pesticides appears to be a serious hazard to this species, and probably to other wild birds with similar habits.

  4. Standardizing Data Collection in Traumatic Brain Injury

    PubMed Central

    Harrison-Felix, Cynthia L.; Menon, David; Adelson, P. David; Balkin, Tom; Bullock, Ross; Engel, Doortje C.; Gordon, Wayne; Langlois-Orman, Jean; Lew, Henry L.; Robertson, Claudia; Temkin, Nancy; Valadka, Alex; Verfaellie, Mieke; Wainwright, Mark; Wright, David W.; Schwab, Karen

    2011-01-01

    Abstract Collaboration among investigators, centers, countries, and disciplines is essential to advancing the care for traumatic brain injury (TBI). It is thus important that we “speak the same language.” Great variability, however, exists in data collection and coding of variables in TBI studies, confounding comparisons between and analysis across different studies. Randomized controlled trials can never address the many uncertainties concerning treatment approaches in TBI. Pooling data from different clinical studies and high-quality observational studies combined with comparative effectiveness research may provide excellent alternatives in a cost-efficient way. Standardization of data collection and coding is essential to this end. Common data elements (CDEs) are presented for demographics and clinical variables applicable across the broad spectrum of TBI. Most recommendations represent a consensus derived from clinical practice. Some recommendations concern novel approaches, for example assessment of the intensity of therapy in severely injured patients. Up to three levels of detail for coding data elements were developed: basic, intermediate, and advanced, with the greatest level of detail attained in the advanced version. More detailed codings can be collapsed into the basic version. Templates were produced to summarize coding formats, explanation of choices, and recommendations for procedures. Endorsement of the recommendations has been obtained from many authoritative organizations. The development of CDEs for TBI should be viewed as a continuing process; as more experience is gained, refinement and amendments will be required. This proposed process of standardization will facilitate comparative effectiveness research and encourage high-quality meta-analysis of individual patient data. PMID:21162610

  5. Neuroprotective levels of IGF-1 exacerbate epileptogenesis after brain injury.

    PubMed

    Song, Yu; Pimentel, Corrin; Walters, Katherine; Boller, Lauren; Ghiasvand, Shabnam; Liu, Jing; Staley, Kevin J; Berdichevsky, Yevgeny

    2016-01-01

    Exogenous Insulin-Like Growth Factor-1 (IGF-1) is neuroprotective in animal models of brain injury, and has been considered as a potential therapeutic. Akt-mTOR and MAPK are downstream targets of IGF-1 signaling that are activated after brain injury. However, both brain injury and mTOR are linked to epilepsy, raising the possibility that IGF-1 may be epileptogenic. Here, we considered the role of IGF-1 in development of epilepsy after brain injury, using the organotypic hippocampal culture model of post-traumatic epileptogenesis. We found that IGF-1 was neuroprotective within a few days of injury but that long-term IGF-1 treatment was pro-epileptic. Pro-epileptic effects of IGF-1 were mediated by Akt-mTOR signaling. We also found that IGF-1 - mediated increase in epileptic activity led to neurotoxicity. The dualistic nature of effects of IGF-1 treatment demonstrates that anabolic enhancement through IGF-1 activation of mTOR cascade can be beneficial or harmful depending on the stage of the disease. Our findings suggest that epilepsy risk may need to be considered in the design of neuroprotective treatments for brain injury. PMID:27561791

  6. Neuroprotective levels of IGF-1 exacerbate epileptogenesis after brain injury

    PubMed Central

    Song, Yu; Pimentel, Corrin; Walters, Katherine; Boller, Lauren; Ghiasvand, Shabnam; Liu, Jing; Staley, Kevin J.; Berdichevsky, Yevgeny

    2016-01-01

    Exogenous Insulin-Like Growth Factor-1 (IGF-1) is neuroprotective in animal models of brain injury, and has been considered as a potential therapeutic. Akt-mTOR and MAPK are downstream targets of IGF-1 signaling that are activated after brain injury. However, both brain injury and mTOR are linked to epilepsy, raising the possibility that IGF-1 may be epileptogenic. Here, we considered the role of IGF-1 in development of epilepsy after brain injury, using the organotypic hippocampal culture model of post-traumatic epileptogenesis. We found that IGF-1 was neuroprotective within a few days of injury but that long-term IGF-1 treatment was pro-epileptic. Pro-epileptic effects of IGF-1 were mediated by Akt-mTOR signaling. We also found that IGF-1 – mediated increase in epileptic activity led to neurotoxicity. The dualistic nature of effects of IGF-1 treatment demonstrates that anabolic enhancement through IGF-1 activation of mTOR cascade can be beneficial or harmful depending on the stage of the disease. Our findings suggest that epilepsy risk may need to be considered in the design of neuroprotective treatments for brain injury. PMID:27561791

  7. Intranasal epidermal growth factor treatment rescues neonatal brain injury

    NASA Astrophysics Data System (ADS)

    Scafidi, Joseph; Hammond, Timothy R.; Scafidi, Susanna; Ritter, Jonathan; Jablonska, Beata; Roncal, Maria; Szigeti-Buck, Klara; Coman, Daniel; Huang, Yuegao; McCarter, Robert J.; Hyder, Fahmeed; Horvath, Tamas L.; Gallo, Vittorio

    2014-02-01

    There are no clinically relevant treatments available that improve function in the growing population of very preterm infants (less than 32 weeks' gestation) with neonatal brain injury. Diffuse white matter injury (DWMI) is a common finding in these children and results in chronic neurodevelopmental impairments. As shown recently, failure in oligodendrocyte progenitor cell maturation contributes to DWMI. We demonstrated previously that the epidermal growth factor receptor (EGFR) has an important role in oligodendrocyte development. Here we examine whether enhanced EGFR signalling stimulates the endogenous response of EGFR-expressing progenitor cells during a critical period after brain injury, and promotes cellular and behavioural recovery in the developing brain. Using an established mouse model of very preterm brain injury, we demonstrate that selective overexpression of human EGFR in oligodendrocyte lineage cells or the administration of intranasal heparin-binding EGF immediately after injury decreases oligodendroglia death, enhances generation of new oligodendrocytes from progenitor cells and promotes functional recovery. Furthermore, these interventions diminish ultrastructural abnormalities and alleviate behavioural deficits on white-matter-specific paradigms. Inhibition of EGFR signalling with a molecularly targeted agent used for cancer therapy demonstrates that EGFR activation is an important contributor to oligodendrocyte regeneration and functional recovery after DWMI. Thus, our study provides direct evidence that targeting EGFR in oligodendrocyte progenitor cells at a specific time after injury is clinically feasible and potentially applicable to the treatment of premature children with white matter injury.

  8. Intranasal epidermal growth factor treatment rescues neonatal brain injury

    PubMed Central

    Scafidi, Joseph; Hammond, Timothy R.; Scafidi, Susanna; Ritter, Jonathan; Jablonska, Beata; Roncal, Maria; Szigeti-Buck, Klara; Coman, Daniel; Huang, Yuegao; McCarter, Robert J.; Hyder, Fahmeed; Horvath, Tamas L.; Gallo, Vittorio

    2014-01-01

    There are no clinically relevant treatments available that improve function in the growing population of very preterm infants (<32 weeks gestation) with neonatal brain injury. Diffuse white matter injury (DWMI) is a common finding in these children and results in chronic neurodevelopmental impairments1,2. As shown recently, failure in oligodendrocyte progenitor cell maturation contributes to DWMI3. In a previous study, we demonstrated that epidermal growth factor receptor (EGFR) plays an important role in oligodendrocyte development4. Here, we examine whether enhanced epidermal growth factor receptor (EGFR) signaling stimulates the endogenous response of EGFR-expressing progenitor cells during a critical period after brain injury, and promotes cellular and behavioral recovery in the developing brain. Using an established model of very preterm brain injury, we demonstrate that selective overexpression of human (h)EGFR in oligodendrocyte lineage cells or the administration of intranasal heparin binding EGF immediately after injury decreases oligodendroglia death, enhances generation of new oligodendrocytes from progenitor cells (OPCs) and promotes functional recovery. Furthermore, these interventions diminish ultrastructural abnormalities and alleviate behavioral deficits on white matter-specific paradigms. Inhibition of EGFR signaling with a molecularly targeted agent used for cancer therapy demonstrates that EGFR activation is an important contributor to oligodendrocyte regeneration and functional recovery after DWMI. Thus, our study provides direct evidence that targeting EGFR in OPCs at a specific time after injury is clinically feasible and applicable for the treatment of premature children with white matter injury. PMID:24390343

  9. Magnetic Resonance Imaging in Experimental Traumatic Brain Injury.

    PubMed

    Shen, Qiang; Watts, Lora Tally; Li, Wei; Duong, Timothy Q

    2016-01-01

    Traumatic brain injury (TBI) is a leading cause of death and disability in the USA. Common causes of TBI include falls, violence, injuries from wars, and vehicular and sporting accidents. The initial direct mechanical damage in TBI is followed by progressive secondary injuries such as brain swelling, perturbed cerebral blood flow (CBF), abnormal cerebrovascular reactivity (CR), metabolic dysfunction, blood-brain-barrier disruption, inflammation, oxidative stress, and excitotoxicity, among others. Magnetic resonance imaging (MRI) offers the means to noninvasively probe many of these secondary injuries. MRI has been used to image anatomical, physiological, and functional changes associated with TBI in a longitudinal manner. This chapter describes controlled cortical impact (CCI) TBI surgical procedures, a few common MRI protocols used in TBI imaging, and, finally, image analysis pertaining to experimental TBI imaging in rats. PMID:27604743

  10. Finite Element Analysis of Brain Injury due to Head Impact

    NASA Astrophysics Data System (ADS)

    Suh, Chang Min; Kim, Sung Ho; Goldsmith, Werner

    Traumatic Brain Injury (TBI) due to head impact by external impactor was analyzed using Finite Element Method (FEM). Two-dimensiona modeling was performed according to Magnetic Resonance Imaging (MRI) data of Mongolian subject. Pressure variation in a cranium due to external impact was analyzed in order to simulate Nahum et al.'s cadaver test.6 And, analyzed results were compared with Nahum et al.'s experimental data.6 As results, stress and strain behaviors of the brain during impact were accorded with experimental data qualitatively even though there were some differences in quantitative values. In addition, they were accorded with other references about brain injury as well.

  11. Biomarkers and acute brain injuries: interest and limits

    PubMed Central

    2014-01-01

    For patients presenting with acute brain injury (such as traumatic brain injury, subarachnoid haemorrhage and stroke), the diagnosis and identification of intracerebral lesions and evaluation of the severity, prognosis and treatment efficacy can be challenging. The complexity and heterogeneity of lesions after brain injury are most probably responsible for this difficulty. Patients with apparently comparable brain lesions on imaging may have different neurological outcomes or responses to therapy. In recent years, plasmatic and cerebrospinal fluid biomarkers have emerged as possible tools to distinguish between the different pathophysiological processes. This review aims to summarise the plasmatic and cerebrospinal fluid biomarkers evaluated in subarachnoid haemorrhage, traumatic brain injury and stroke, and to clarify their related interests and limits for diagnosis and prognosis. For subarachnoid haemorrhage, particular interest has been focused on the biomarkers used to predict vasospasm and cerebral ischaemia. The efficacy of biomarkers in predicting the severity and outcome of traumatic brain injury has been stressed. The very early diagnostic performance of biomarkers and their ability to discriminate ischaemic from haemorrhagic stroke were studied. PMID:25029344

  12. Emergency treatment options for pediatric traumatic brain injury

    PubMed Central

    Exo, J; Smith, C; Smith, R; Bell, MJ

    2010-01-01

    Traumatic brain injury is a leading killer of children and is a major public health problem around the world. Using general principles of neurocritical care, various treatment strategies have been developed to attempt to restore homeostasis to the brain and allow brain healing, including mechanical factors, cerebrospinal fluid diversion, hyperventilation, hyperosmolar therapies, barbiturates and hypothermia. Careful application of these therapies, normally in a step-wise fashion as intracranial injuries evolve, is necessary in order to attain maximal neurological outcome for these children. It is hopeful that new therapies, such as early hypothermia or others currently in preclinical trials, will ultimately improve outcome and quality of life for children after traumatic brain injury. PMID:20191093

  13. Recovery of consciousness after brain injury: a mesocircuit hypothesis

    PubMed Central

    Schiff, Nicholas D.

    2009-01-01

    Recovery of consciousness following severe brain injuries may occur over long time intervals. Importantly, evolving cognitive recovery can be strongly dissociated from motor recovery in some individuals, resulting in underestimation of cognitive capacities. Common mechanisms of cerebral dysfunction that arise at the neuronal population level may explain slow functional recoveries from severe brain injuries. This review proposes a “mesocircuit” model that predicts specific roles for different structural and dynamic changes that may occur gradually during recovery. Recent functional neuroimaging studies that operationally identify varying levels of awareness, memory and other higher brain functions in patients with no behavioral evidence of these cognitive capacities are discussed. Measuring evolving changes in underlying brain function and dynamics post-injury and post-treatment frames future investigative work. PMID:19954851

  14. Toll-Like Receptors and Ischemic Brain Injury

    PubMed Central

    Gesuete, Raffaella; Kohama, Steven G.; Stenzel-Poore, Mary

    2014-01-01

    Toll-like receptors (TLRs) are master regulators of innate immunity and play an integral role in the activation of the inflammatory response during infections. In addition, TLRs influence the body’s response to numerous forms of injury. Recent data have shown that TLRs play a modulating role in ischemic brain damage after stroke. Interestingly, their stimulation prior to ischemia induces a tolerant state that is neuroprotective. This phenomenon, referred to as TLR preconditioning, is the result of reprogramming of the TLR response to ischemic injury. This review addresses the role of TLRs in brain ischemia and the activation of endogenous neuroprotective pathways in the setting of preconditioning. We highlight the protective role of the interferon-related response and the potential site of action for TLR preconditioning involving the blood-brain-barrier. Pharmacological modulation of TLR activation to promote protection against stroke is a promising approach for the development of prophylactic and acute therapies targeting ischemic brain injury. PMID:24709682

  15. Translational Research for Blast-Induced Traumatic Brain Injury: Injury Mechanism to Development of Medical Instruments

    NASA Astrophysics Data System (ADS)

    Nakagawa, A.; Ohtani, K.; Arafune, T.; Washio, T.; Iwasaki, M.; Endo, T.; Ogawa, Y.; Kumabe, T.; Takayama, K.; Tominaga, T.

    1. Investigation of shock wave-induced phenomenon: blast-induced traumatic brain injury Blast wave (BW) is generated by explosion and is comprised of lead shock wave (SE) followed by subsequent supersonic flow.

  16. Effects of traumatic brain injury on intestinal contractility

    PubMed Central

    OLSEN, A. B.; HETZ, R. A.; XUE, H.; AROOM, K. R.; BHATTARAI, D.; JOHNSON, E.; BEDI, S.; COX, C. S.; URAY, K.

    2014-01-01

    Background Patients with traumatic brain injury (TBI) often suffer from gastrointestinal dysfunction including intolerance to enteral feedings. However, it is unclear how TBI affects small intestinal contractile activity. The purpose of this study was to determine if TBI affects intestinal smooth muscle function. Methods Sprague–Dawley rats were subjected to controlled cortical impact injury (TBI). Sham animals underwent a similar surgery but no injury (SHAM). Animals were sacrificed 1, 3, and 7 days after TBI and intestinal smooth muscle tissue was collected for measurement of contractile activity and transit, NF-kB activity, and cytokine levels. Brains were collected after sacrifice to determine volume loss due to injury. Key Results Contractile activity decreased significantly in ileum, but not jejunum, in the TBI group 7 days after injury compared with SHAM. Brain volume loss increased significantly 7 days after injury compared with 3 days and correlated significantly with the contractile activity 1 day after injury. In the intestinal smooth muscle, NF-kB activity increased significantly in the TBI group 3 and 7 days after injury vs SHAM. Wet to dry weight ratio, indicating edema, also increased significantly in the TBI group. Interleukin- 1α, -1β, and -17 increased significantly in the TBI group compared with SHAM. Conclusions & Inferences Traumatic brain injury causes a delayed but significant decrease in intestinal contractile activity in the ileum leading to delayed transit. The decreased intestinal contractile activity is attributed to secondary inflammatory injury as evidenced by increased NF-kB activity, increased edema, and increased inflammatory cytokines in the intestinal smooth muscle. PMID:23551971

  17. Traumatic Brain Injury by a Closed Head Injury Device Induces Cerebral Blood Flow Changes and Microhemorrhages

    PubMed Central

    Kallakuri, Srinivasu; Bandaru, Sharath; Zakaria, Nisrine; Shen, Yimin; Kou, Zhifeng; Zhang, Liying; Haacke, Ewart Mark; Cavanaugh, John M

    2015-01-01

    Objectives: Traumatic brain injury is a poly-pathology characterized by changes in the cerebral blood flow, inflammation, diffuse axonal, cellular, and vascular injuries. However, studies related to understanding the temporal changes in the cerebral blood flow following traumatic brain injury extending to sub-acute periods are limited. In addition, knowledge related to microhemorrhages, such as their detection, localization, and temporal progression, is important in the evaluation of traumatic brain injury. Materials and Methods: Cerebral blood flow changes and microhemorrhages in male Sprague Dawley rats at 4 h, 24 h, 3 days, and 7 days were assessed following a closed head injury induced by the Marmarou impact acceleration device (2 m height, 450 g brass weight). Cerebral blood flow was measured by arterial spin labeling. Microhemorrhages were assessed by susceptibility-weighted imaging and Prussian blue histology. Results: Traumatic brain injury rats showed reduced regional and global cerebral blood flow at 4 h and 7 days post-injury. Injured rats showed hemorrhagic lesions in the cortex, corpus callosum, hippocampus, and brainstem in susceptibility-weighted imaging. Injured rats also showed Prussian blue reaction products in both the white and gray matter regions up to 7 days after the injury. These lesions were observed in various areas of the cortex, corpus callosum, hippocampus, thalamus, and midbrain. Conclusions: These results suggest that changes in cerebral blood flow and hemorrhagic lesions can persist for sub-acute periods after the initial traumatic insult in an animal model. In addition, microhemorrhages otherwise not seen by susceptibility-weighted imaging are present in diverse regions of the brain. The combination of altered cerebral blood flow and microhemorrhages can potentially be a source of secondary injury changes following traumatic brain injury and may need to be taken into consideration in the long-term care of these cases. PMID:26605126

  18. Targeted Lipid Profiling Discovers Plasma Biomarkers of Acute Brain Injury

    PubMed Central

    Sheth, Sunil A.; Iavarone, Anthony T.; Liebeskind, David S.; Won, Seok Joon; Swanson, Raymond A.

    2015-01-01

    Prior efforts to identify a blood biomarker of brain injury have relied almost exclusively on proteins; however their low levels at early time points and poor correlation with injury severity have been limiting. Lipids, on the other hand, are the most abundant molecules in the brain and readily cross the blood-brain barrier. We previously showed that certain sphingolipid (SL) species are highly specific to the brain. Here we examined the feasibility of using SLs as biomarkers for acute brain injury. A rat model of traumatic brain injury (TBI) and a mouse model of stroke were used to identify candidate SL species though our mass-spectrometry based lipid profiling approach. Plasma samples collected after TBI in the rat showed large increases in many circulating SLs following injury, and larger lesions produced proportionately larger increases. Plasma samples collected 24 hours after stroke in mice similarly revealed a large increase in many SLs. We constructed an SL score (sum of the two SL species showing the largest relative increases in the mouse stroke model) and then evaluated the diagnostic value of this score on a small sample of patients (n = 14) who presented with acute stroke symptoms. Patients with true stroke had significantly higher SL scores than patients found to have non-stroke causes of their symptoms. The SL score correlated with the volume of ischemic brain tissue. These results demonstrate the feasibility of using lipid biomarkers to diagnose brain injury. Future studies will be needed to further characterize the diagnostic utility of this approach and to transition to an assay method applicable to clinical settings. PMID:26076478

  19. Progesterone for Neuroprotection in Pediatric Traumatic Brain Injury

    PubMed Central

    Robertson, Courtney L.; Fidan, Emin; Stanley, Rachel M.; MHSA; Noje, Corina; Bayir, Hülya

    2016-01-01

    Objective To provide an overview of the preclinical literature on progesterone for neuroprotection after traumatic brain injury (TBI), and to describe unique features of developmental brain injury that should be considered when evaluating the therapeutic potential for progesterone treatment after pediatric TBI. Data Sources National Library of Medicine PubMed literature review. Data Selection The mechanisms of neuroprotection by progesterone are reviewed, and the preclinical literature using progesterone treatment in adult animal models of TBI are summarized. Unique features of the developing brain that could either enhance or limit the efficacy of neuroprotection by progesterone are discussed, and the limited preclinical literature using progesterone after acute injury to the developing brain is described. Finally, the current status of clinical trials of progesterone for adult TBI is reviewed. Data Extraction and Synthesis Progesterone is a pleotropic agent with beneficial effects on secondary injury cascades that occur after TBI, including cerebral edema, neuroinflammation, oxidative stress, and excitotoxicity. More than 40 studies have used progesterone for treatment after TBI in adult animal models, with results summarized in tabular form. However, very few studies have evaluated progesterone in pediatric animal models of brain injury. To date, two human Phase II trials of progesterone for adult TBI have been published, and two multi-center Phase III trials are underway. Conclusions The unique features of the developing brain from that of a mature adult brain make it necessary to independently study progesterone in clinically relevant, immature animal models of TBI. Additional preclinical studies could lead to the development of a novel neuroprotective therapy that could reduce the long-term disability in head-injured children, and could potentially provide benefit in other forms of pediatric brain injury (global ischemia, stroke, statue epilepticus). PMID

  20. Blunt splenic injury and severe brain injury: a decision analysis and implications for care

    PubMed Central

    Alabbasi, Thamer; Nathens, Avery B.; Tien, Col Homer

    2015-01-01

    Background The initial nonoperative management (NOM) of blunt splenic injuries in hemodynamically stable patients is common. In soldiers who experience blunt splenic injuries with concomitant severe brain injury while on deployment, however, NOM may put the injured soldier at risk for secondary brain injury from prolonged hypotension. Methods We conducted a decision analysis using a Markov process to evaluate 2 strategies for managing hemodynamically stable patients with blunt splenic injuries and severe brain injury — immediate splenectomy and NOM — in the setting of a field hospital with surgical capability but no angiography capabilities. We considered the base case of a 40-year-old man with a life expectancy of 78 years who experienced blunt trauma resulting in a severe traumatic brain injury and an isolated splenic injury with an estimated failure rate of NOM of 19.6%. The primary outcome measured was life expectancy. We assumed that failure of NOM would occur in the setting of a prolonged casualty evacuation, where surgical capability was not present. Results Immediate splenectomy was the slightly more effective strategy, resulting in a very modest increase in overall survival compared with NOM. Immediate splenectomy yielded a survival benefit of only 0.4 years over NOM. Conclusion In terms of overall survival, we would not recommend splenectomy unless the estimated failure rate of NOM exceeded 20%, which corresponds to an American Association for the Surgery of Trauma grade III splenic injury. For military patients for whom angiography may not be available at the field hospital and who require prolonged evacuation, immediate splenectomy should be considered for grade III–V injuries in the presence of severe brain injury. PMID:26100770

  1. Injury timing alters metabolic, inflammatory and functional outcomes following repeated mild traumatic brain injury.

    PubMed

    Weil, Zachary M; Gaier, Kristopher R; Karelina, Kate

    2014-10-01

    Repeated head injuries are a major public health concern both for athletes, and members of the police and armed forces. There is ample experimental and clinical evidence that there is a period of enhanced vulnerability to subsequent injury following head trauma. Injuries that occur close together in time produce greater cognitive, histological, and behavioral impairments than do injuries separated by a longer period. Traumatic brain injuries alter cerebral glucose metabolism and the resolution of altered glucose metabolism may signal the end of the period of greater vulnerability. Here, we injured mice either once or twice separated by three or 20days. Repeated injuries that were separated by three days were associated with greater axonal degeneration, enhanced inflammatory responses, and poorer performance in a spatial learning and memory task. A single injury induced a transient but marked increase in local cerebral glucose utilization in the injured hippocampus and sensorimotor cortex, whereas a second injury, three days after the first, failed to induce an increase in glucose utilization at the same time point. In contrast, when the second injury occurred substantially later (20days after the first injury), an increase in glucose utilization occurred that paralleled the increase observed following a single injury. The increased glucose utilization observed after a single injury appears to be an adaptive component of recovery, while mice with 2 injuries separated by three days were not able to mount this response, thus this second injury may have produced a significant energetic crisis such that energetic demands outstripped the ability of the damaged cells to utilize energy. These data strongly reinforce the idea that too rapid return to activity after a traumatic brain injury can induce permanent damage and disability, and that monitoring cerebral energy utilization may be a tool to determine when it is safe to return to the activity that caused the initial

  2. Dexmedetomidine Postconditioning Reduces Brain Injury after Brain Hypoxia-Ischemia in Neonatal Rats.

    PubMed

    Ren, Xiaoyan; Ma, Hong; Zuo, Zhiyi

    2016-06-01

    Perinatal asphyxia can lead to death and severe disability. Brain hypoxia-ischemia (HI) injury is the major pathophysiology contributing to death and severe disability after perinatal asphyxia. Here, seven-day old Sprague-Dawley rats were subjected to left brain HI. Dexmedetomidine was given intraperitoneally after the brain HI. Yohimbine or atipamezole, two α2 adrenergic receptor antagonists, were given 10 min before the dexmedetomidine injection. Neurological outcome was evaluated 7 or 28 days after the brain HI. Frontal cerebral cortex was harvested 6 h after the brain HI. Left brain HI reduced the left cerebral hemisphere weight assessed 7 days after the brain HI. This brain tissue loss was dose-dependently attenuated by dexmedetomidine. Dexmedetomidine applied within 1 h after the brain HI produced this effect. Dexmedetomidine attenuated the brain HI-induced brain tissue and cell loss as well as neurological and cognitive dysfunction assessed from 28 days after the brain HI. Dexmedetomidine postconditioning-induced neuroprotection was abolished by yohimbine or atipamezole. Brain HI increased tumor necrosis factor α and interleukin 1β in the brain tissues. This increase was attenuated by dexmedetomidine. Atipamezole inhibited this dexmedetomidine effect. Our results suggest that dexmedetomidine postconditioning reduces HI-induced brain injury in the neonatal rats. This effect may be mediated by α2 adrenergic receptor activation that inhibits inflammation in the ischemic brain tissues. PMID:26932203

  3. Return to Work for Persons with Traumatic Brain Injury and Spinal Cord Injury: Three Case Studies.

    ERIC Educational Resources Information Center

    Wehman, Paul; And Others

    1994-01-01

    Supported employment was utilized in the vocational rehabilitation of two people with traumatic brain injury and one with a traumatic spinal cord injury. Supported employment was found to yield real work outcomes, though it required substantial amounts of money to return the three patients to relatively low-paying jobs. Funding issues are…

  4. Role of Melatonin in Traumatic Brain Injury and Spinal Cord Injury

    PubMed Central

    Naseem, Mehar; Parvez, Suhel

    2014-01-01

    Brain and spinal cord are implicated in incidences of two of the most severe injuries of central nervous system (CNS). Traumatic brain injury (TBI) is a devastating neurological deficit involving primary and secondary injury cascades. The primary and secondary mechanisms include complex consequences of activation of proinflammatory cytokines, cerebral edema, upregulation of NF-κβ, disruption of blood-brain barrier (BBB), and oxidative stress. Spinal cord injury (SCI) includes primary and secondary injury cascades. Primary injury leads to secondary injury in which generation of free radicals and oxidative or nitrative damage play an important pathophysiological role. The indoleamine melatonin is a hormone secreted or synthesized by pineal gland in the brain which helps to regulate sleep and wake cycle. Melatonin has been shown to be a versatile hormone having antioxidative, antiapoptotic, neuroprotective, and anti-inflammatory properties. It has a special characteristic of crossing BBB. Melatonin has neuroprotective role in the injured part of the CNS after TBI and SCI. A number of studies have successfully shown its therapeutic value as a neuroprotective agent in the treatment of neurodegenerative diseases. Here in this review we have compiled the literature supporting consequences of CNS injuries, TBI and SCI, and the protective role of melatonin in it. PMID:25587567

  5. Patterns of Alcohol Use after Traumatic Brain Injury.

    PubMed

    Pagulayan, Kathleen F; Temkin, Nancy R; Machamer, Joan E; Dikmen, Sureyya S

    2016-07-15

    Alcohol misuse and traumatic brain injury (TBI) frequently co-occur. The negative consequences of this interaction are well documented, but the patterns of long-term post-injury alcohol consumption are less clear. This study examined patterns of alcohol use among 170 adults with a history of complicated mild to severe TBI. Participants were recruited from a Level 1 Trauma Center at the time of their injury and completed evaluations at 1 month, 6 months, 12 months, and 3-5 years post-injury. Pre-injury alcohol use was also assessed at the time of the 1-month assessment. A modified Quantity-Frequency Index of alcohol consumption was then calculated for each time point. The results revealed high levels of pre-injury alcohol consumption, followed by a reduction in consumption at 1-month post-injury. A significant increase in consumption was noted by 6 months post-injury, followed by more gradual increases in alcohol consumption at 1 year. Post-injury alcohol consumption was comparable to the general public at 6 months, 12 months, and 3-5 years post-injury. These results suggest that the first 6 months post-injury may be the critical window of opportunity for alcohol intervention. PMID:26530335

  6. Lateral fluid percussion: model of traumatic brain injury in mice.

    PubMed

    Alder, Janet; Fujioka, Wendy; Lifshitz, Jonathan; Crockett, David P; Thakker-Varia, Smita

    2011-01-01

    Traumatic brain injury (TBI) research has attained renewed momentum due to the increasing awareness of head injuries, which result in morbidity and mortality. Based on the nature of primary injury following TBI, complex and heterogeneous secondary consequences result, which are followed by regenerative processes (1,2). Primary injury can be induced by a direct contusion to the brain from skull fracture or from shearing and stretching of tissue causing displacement of brain due to movement (3,4). The resulting hematomas and lacerations cause a vascular response (3,5), and the morphological and functional damage of the white matter leads to diffuse axonal injury (6-8). Additional secondary changes commonly seen in the brain are edema and increased intracranial pressure (9). Following TBI there are microscopic alterations in biochemical and physiological pathways involving the release of excitotoxic neurotransmitters, immune mediators and oxygen radicals (10-12), which ultimately result in long-term neurological disabilities (13,14). Thus choosing appropriate animal models of TBI that present similar cellular and molecular events in human and rodent TBI is critical for studying the mechanisms underlying injury and repair. Various experimental models of TBI have been developed to reproduce aspects of TBI observed in humans, among them three specific models are widely adapted for rodents: fluid percussion, cortical impact and weight drop/impact acceleration (1). The fluid percussion device produces an injury through a craniectomy by applying a brief fluid pressure pulse on to the intact dura. The pulse is created by a pendulum striking the piston of a reservoir of fluid. The percussion produces brief displacement and deformation of neural tissue (1,15). Conversely, cortical impact injury delivers mechanical energy to the intact dura via a rigid impactor under pneumatic pressure (16,17). The weight drop/impact model is characterized by the fall of a rod with a specific

  7. Lateral Fluid Percussion: Model of Traumatic Brain Injury in Mice

    PubMed Central

    Alder, Janet; Fujioka, Wendy; Lifshitz, Jonathan; Crockett, David P.; Thakker-Varia, Smita

    2011-01-01

    Traumatic brain injury (TBI) research has attained renewed momentum due to the increasing awareness of head injuries, which result in morbidity and mortality. Based on the nature of primary injury following TBI, complex and heterogeneous secondary consequences result, which are followed by regenerative processes 1,2. Primary injury can be induced by a direct contusion to the brain from skull fracture or from shearing and stretching of tissue causing displacement of brain due to movement 3,4. The resulting hematomas and lacerations cause a vascular response 3,5, and the morphological and functional damage of the white matter leads to diffuse axonal injury 6-8. Additional secondary changes commonly seen in the brain are edema and increased intracranial pressure 9. Following TBI there are microscopic alterations in biochemical and physiological pathways involving the release of excitotoxic neurotransmitters, immune mediators and oxygen radicals 10-12, which ultimately result in long-term neurological disabilities 13,14. Thus choosing appropriate animal models of TBI that present similar cellular and molecular events in human and rodent TBI is critical for studying the mechanisms underlying injury and repair. Various experimental models of TBI have been developed to reproduce aspects of TBI observed in humans, among them three specific models are widely adapted for rodents: fluid percussion, cortical impact and weight drop/impact acceleration 1. The fluid percussion device produces an injury through a craniectomy by applying a brief fluid pressure pulse on to the intact dura. The pulse is created by a pendulum striking the piston of a reservoir of fluid. The percussion produces brief displacement and deformation of neural tissue 1,15. Conversely, cortical impact injury delivers mechanical energy to the intact dura via a rigid impactor under pneumatic pressure 16,17. The weight drop/impact model is characterized by the fall of a rod with a specific mass on the closed

  8. Traumatic brain injury: the lag between diagnosis and treatment.

    PubMed

    Retsinas, J

    1993-01-01

    Ogburn described the "culture lag" between technology and attitudes, as people take time to assimilate new technologies, and new facts, into their worldviews. Traumatic brain injury is now a common diagnosis, thanks to neurosurgical expertise. Where thirty years ago mortality from head injuries was high, today mortality rates have improved dramatically; yet even while neurosurgeons spare thousands of people each year, our society struggles to develop appropriate rehabilitation protocols. To date, we are in the lag phase, between diagnosis and treatment. This paper discusses that lag, including reasons for the lack of an effective rehabilitation protocol (the paucity of funds for research, the nature of brain injuries per se), the reluctance of insurers to cover brain injury rehabilitation (the lengthy time involved in rehabilitation, the blurring between rehabilitation and long term care, the nature of experience-rated contracting to businesses for health care insurance, the burgeoning of proprietary brain injury rehabilitation centers), and the prospects for closing the gap in the near future. The paper concludes that preventive measures (seat belt laws, motorcycle helmet laws, laws for helmets in contact sports) allow policy-makers to confront the growing societal problem of the mounting census of head-injured, by avoiding that census and focusing instead on the prevention, or diminution, of future head injuries. PMID:10125462

  9. The Importance of Early Brain Injury after Subarachnoid Hemorrhage

    PubMed Central

    Sehba, Fatima A.; Hou, Jack; Pluta, Ryszard M.; Zhang, John H.

    2012-01-01

    Aneurysmal subarachnoid hemorrhage (aSAH) is a medical emergency that accounts for 5% of all stroke cases. Individuals affected are typically in the prime of their lives (mean age 50 years). Approximately 12% of patients die before receiving medical attention, 33% within 48 hours and 50% within 30 days of aSAH. Of the survivors 50% suffer from permanent disability with an estimated lifetime cost more than double that of an ischemic stroke. Traditionally, spasm that develops in large cerebral arteries 3-7 days after aneurysm rupture is considered the most important determinant of brain injury and outcome after aSAH. However, recent studies show that prevention of delayed vasospasm does not improve outcome in aSAH patients. This finding has finally brought in focus the influence of early brain injury on outcome of aSAH. A substantial amount of evidence indicates that brain injury begins at the aneurysm rupture, evolves with time and plays an important role in patients’ outcome. In this manuscript we review early brain injury after aSAH. Due to the early nature, most of the information on this injury comes from animals and few only from autopsy of patients who died within days after aSAH. Consequently, we began with a review of animal models of early brain injury, next we review the mechanisms of brain injury according to the sequence of their temporal appearance and finally we discuss the failure of clinical translation of therapies successful in animal models of aSAH. PMID:22414893

  10. Immediate neurological recovery following perispinal etanercept years after brain injury.

    PubMed

    Tobinick, Edward; Rodriguez-Romanacce, Helen; Levine, Arthur; Ignatowski, Tracey A; Spengler, Robert N

    2014-05-01

    Positron emission tomographic brain imaging and pathological examination have revealed that a chronic, intracerebral neuroinflammatory response lasting for years after a single brain injury may occur in humans. Evidence suggests the immune signaling molecule, tumor necrosis factor (TNF), is centrally involved in this pathology through its modulation of microglial activation, role in synaptic dysfunction, and induction of depressive symptoms and neuropathic pain. Etanercept is a recombinant TNF receptor fusion protein and potent TNF inhibitor that has been found to reduce microglial activation and neuropathic pain in multiple experimental models. We report that a single dose of perispinal etanercept produced an immediate, profound, and sustained improvement in expressive aphasia, speech apraxia, and left hemiparesis in a patient with chronic, intractable, debilitating neurological dysfunction present for more than 3 years after acute brain injury. These results indicate that acute brain injury-induced pathologic levels of TNF may provide a therapeutic target that can be addressed years after injury. Perispinal administration of etanercept is capable of producing immediate relief from brain injury-mediated neurological dysfunction. PMID:24647830