Science.gov

Sample records for brain perfusion abnormalities

  1. Cerebral abnormalities in cocaine abusers: Demonstration by SPECT perfusion brain scintigraphy. Work in progress

    SciTech Connect

    Tumeh, S.S.; Nagel, J.S.; English, R.J.; Moore, M.; Holman, B.L. )

    1990-09-01

    Single photon emission computed tomography (SPECT) perfusion brain scans with iodine-123 isopropyl iodoamphetamine (IMP) were obtained in 12 subjects who acknowledged using cocaine on a sporadic to a daily basis. The route of cocaine administration varied from nasal to intravenous. Concurrent abuse of other drugs was also reported. None of the patients were positive for human immunodeficiency virus. Brain scans demonstrated focal defects in 11 subjects, including seven who were asymptomatic, and no abnormality in one. Among the findings were scattered focal cortical deficits, which were seen in several patients and which ranged in severity from small and few to multiple and large, with a special predilection for the frontal and temporal lobes. No perfusion deficits were seen on I-123 SPECT images in five healthy volunteers. Focal alterations in cerebral perfusion are seen commonly in asymptomatic drug users, and these focal deficits are readily depicted by I-123 IMP SPECT.

  2. An a contrario approach for the detection of patient-specific brain perfusion abnormalities with arterial spin labelling.

    PubMed

    Maumet, Camille; Maurel, Pierre; Ferré, Jean-Christophe; Barillot, Christian

    2016-07-01

    In this paper, we introduce a new locally multivariate procedure to quantitatively extract voxel-wise patterns of abnormal perfusion in individual patients. This a contrario approach uses a multivariate metric from the computer vision community that is suitable to detect abnormalities even in the presence of closeby hypo- and hyper-perfusions. This method takes into account local information without applying Gaussian smoothing to the data. Furthermore, to improve on the standard a contrario approach, which assumes white noise, we introduce an updated a contrario approach that takes into account the spatial coherency of the noise in the probability estimation. Validation is undertaken on a dataset of 25 patients diagnosed with brain tumours and 61 healthy volunteers. We show how the a contrario approach outperforms the massively univariate general linear model usually employed for this type of analysis. PMID:27039702

  3. Hepatic perfusion abnormalities during CT angiography: Detection and interpretation

    SciTech Connect

    Freeny, P.C.; Marks, W.M.

    1986-06-01

    Twenty-seven perfusion abnormalities were detected in 17 of 50 patients who underwent computed tomographic angiography (CTA) of the liver. All but one of the perfusion abnormalities occurred in patients with primary or metastatic liver tumors. Perfusion abnormalities were lobar in nine cases, segmental in 11, and subsegmental in seven; 14 were hypoperfusion and 13 were hyperperfusion abnormalities. The causes for the abnormalities included nonperfusion of a replaced hepatic artery (n = 11), cirrhosis and nodular regeneration (n = 3), altered hepatic hemodynamics (e.g., siphoning, laminar flow) caused by tumor (n = 7), contrast media washout from a nonperfused vessel (n = 1), compression of adjacent hepatic parenchyma (n = 1), and unknown (n = 4). Differentiation of perfusion abnormalities from tumor usually can be made by comparing the morphology of the known tumor with the suspected perfusion abnormality, changes of each on delayed CTA scans, and review of initial angiograms and other imaging studies.

  4. Pattern of brain blood perfusion in tinnitus patients using technetium-99m SPECT imaging

    PubMed Central

    Mahmoudian, Saeid; Farhadi, Mohammad; Gholami, Saeid; Saddadi, Fariba; Karimian, Ali Reza; Mirzaei, Mohammad; Ghoreyshi, Esmaeel; Ahmadizadeh, Majid; Lenarz, Thomas

    2012-01-01

    Background and Purpose: Tinnitus is associated with an increased activity in central auditory system as demonstrated by neuroimaging studies. Brain perfusion scanning using single photon emission computed tomography (SPECT) was done to understand the pattern of brain blood perfusion of tinnitus subjects and find the areas which are mostly abnormal in these patients. Materials and Methods: A number of 122 patients with tinnitus were enrolled to this cross-sectional study. They underwent SPECT and magnetic resonance imaging (MRI) of brain, and the images were fused to find the regions with abnormal perfusion. Results: SPECT scan results were abnormal in 101 patients (83%). Most patients had bilateral abnormal perfusion (N = 65, 53.3%), and most subjects had abnormality in middle-temporal gyrus (N = 83, 68%) and temporoparietal cortex (N = 46, 37.7%). Patients with multifocal involvement had the least mean age than other 2 groups (patients with no abnormality and unifocal abnormality) (P value = 0.045). Conclusions: Brain blood perfusion pattern differs in patient with tinnitus than others. These patients have brain perfusion abnormality, mostly in auditory gyrus (middle temporal) and associative cortex (temporoparietal cortex). Multifocal abnormalities might be due to more cognitive and emotional brain centers involvement due to tinnitus or more stress and anxiety of tinnitus in the young patients. PMID:23267375

  5. {sup 99m}Tc radiopharmaceuticals for brain perfusion imaging

    SciTech Connect

    Deutsch, E.; Volkert, W.A.

    1991-12-31

    It is well established that small, neutral, lipophilic technetium complexes can diffuse into the brain and then be trapped intracellularly by a variety of mechanisms. A more detailed understanding of the structural and chemical parameters which promote efficient diffusion into the brain, and which underlie the trapping mechanisms, will be necessary to delineate the clinical relevance of current agents, and to design improved technetium 99 pharmaceuticals. Current technetium 99 brain-perfusion imaging agents do not show ideal characteristics of brain uptake and retention. Furthermore, significant fractions of the technetium 99 complexes are lost between site of injection and the brain. Thus, it is difficult to use these current agents to quantitate regional cerebral blood flow. Nevertheless, these agents are proving extremely valuable for the SPECT evaluation of abnormalities in brain perfusion patients with neurological disorders.

  6. Myocardial perfusion abnormalities in asymptomatic patients with systemic lupus erythematosus

    SciTech Connect

    Hosenpud, J.D.; Montanaro, A.; Hart, M.V.; Haines, J.E.; Specht, H.D.; Bennett, R.M.; Kloster, F.E.

    1984-08-01

    Accelerated coronary artery disease and myocardial infarction in young patients with systemic lupus erythematosus is well documented; however, the prevalence of coronary involvement is unknown. Accordingly, 26 patients with systemic lupus were selected irrespective of previous cardiac history to undergo exercise thallium-201 cardiac scintigraphy. Segmental perfusion abnormalities were present in 10 of the 26 studies (38.5 percent). Five patients had reversible defects suggesting ischemia, four patients had persistent defects consistent with scar, and one patient had both reversible and persistent defects in two areas. There was no correlation between positive thallium results and duration of disease, amount of corticosteroid treatment, major organ system involvement or age. Only a history of pericarditis appeared to be associated with positive thallium-201 results (p less than 0.05). It is concluded that segmental myocardial perfusion abnormalities are common in patients with systemic lupus erythematosus. Whether this reflects large-vessel coronary disease or small-vessel abnormalities remains to be determined.

  7. Perfusion harmonic imaging of the human brain

    NASA Astrophysics Data System (ADS)

    Metzler, Volker H.; Seidel, Guenter; Wiesmann, Martin; Meyer, Karsten; Aach, Til

    2003-05-01

    The fast visualisation of cerebral microcirculation supports diagnosis of acute cerebrovascular diseases. However, the commonly used CT/MRI-based methods are time consuming and, moreover, costly. Therefore we propose an alternative approach to brain perfusion imaging by means of ultrasonography. In spite of the low signal/noise-ratio of transcranial ultrasound and the high impedance of the skull, flow images of cerebral blood flow can be derived by capturing the kinetics of appropriate contrast agents by harmonic ultrasound image sequences. In this paper we propose three different methods for human brain perfusion imaging, each of which yielding flow images indicating the status of the patient's cerebral microcirculation by visualising local flow parameters. Bolus harmonic imaging (BHI) displays the flow kinetics of bolus injections, while replenishment (RHI) and diminution harmonic imaging (DHI) compute flow characteristics from contrast agent continuous infusions. RHI measures the contrast agents kinetics in the influx phase and DHI displays the diminution kinetics of the contrast agent acquired from the decay phase. In clinical studies, BHI- and RHI-parameter images were found to represent comprehensive and reproducible distributions of physiological cerebral blood flow. For DHI it is shown, that bubble destruction and hence perfusion phenomena principally can be displayed. Generally, perfusion harmonic imaging enables reliable and fast bedside imaging of human brain perfusion. Due to its cost efficiency it complements cerebrovascular diagnostics by established CT/MRI-based methods.

  8. Perfusion Neuroimaging Abnormalities Alone Distinguish National Football League Players from a Healthy Population

    PubMed Central

    Amen, Daniel G.; Willeumier, Kristen; Omalu, Bennet; Newberg, Andrew; Raghavendra, Cauligi; Raji, Cyrus A.

    2016-01-01

    Background: National Football League (NFL) players are exposed to multiple head collisions during their careers. Increasing awareness of the adverse long-term effects of repetitive head trauma has raised substantial concern among players, medical professionals, and the general public. Objective: To determine whether low perfusion in specific brain regions on neuroimaging can accurately separate professional football players from healthy controls. Method: A cohort of retired and current NFL players (n = 161) were recruited in a longitudinal study starting in 2009 with ongoing interval follow up. A healthy control group (n = 124) was separately recruited for comparison. Assessments included medical examinations, neuropsychological tests, and perfusion neuroimaging with single photon emission computed tomography (SPECT). Perfusion estimates of each scan were quantified using a standard atlas. We hypothesized that hypoperfusion particularly in the orbital frontal, anterior cingulate, anterior temporal, hippocampal, amygdala, insular, caudate, superior/mid occipital, and cerebellar sub-regions alone would reliably separate controls from NFL players. Cerebral perfusion differences were calculated using a one-way ANOVA and diagnostic separation was determined with discriminant and automatic linear regression predictive models. Results: NFL players showed lower cerebral perfusion on average (p < 0.01) in 36 brain regions. The discriminant analysis subsequently distinguished NFL players from controls with 90% sensitivity, 86% specificity, and 94% accuracy (95% CI 95-99). Automatic linear modeling achieved similar results. Inclusion of age and clinical co-morbidities did not improve diagnostic classification. Conclusion: Specific brain regions commonly damaged in traumatic brain injury show abnormally low perfusion on SPECT in professional NFL players. These same regions alone can distinguish this group from healthy subjects with high diagnostic accuracy. This

  9. Whole-Brain Computed Tomographic Perfusion Imaging in Acute Cerebral Venous Sinus Thrombosis

    PubMed Central

    Mokin, Maxim; Ciambella, Chelsey C.; Masud, Muhammad W.; Levy, Elad I.; Snyder, Kenneth V.; Siddiqui, Adnan H.

    2016-01-01

    Background Acute cerebral venous sinus thrombosis (VST) can be difficult to diagnose because of its diverse clinical presentation. The utility of perfusion imaging for diagnosing VST is not well understood. Summary We retrospectively reviewed cases of acute VST in patients who underwent whole-brain (320-detector-row) computed tomographic (CT) perfusion imaging in combination with craniocervical CT venography. Perfusion maps that were analyzed included cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time, and time to peak. Among the 10 patients with acute VST included in this study, 9 had perfusion abnormalities. All perfusion abnormalities were localized in areas adjacent to the occluded sinus and did not match typical anterior or posterior circulation arterial territories. Bilateral perfusion deficits were seen in 4 cases. In 2 cases, parenchymal hemorrhage was diagnosed on noncontrast CT imaging; in those cases, focal CBV and CBF were reduced. Key Messages Whole-brain CT perfusion imaging with 320-detector-row scanners can further assist in establishing the diagnosis of VST by detecting perfusion abnormalities corresponding to venous and not arterial territories. CT perfusion could assist in the differentiation between focal reversible changes, such as those caused by vasogenic edema, and irreversible changes due to infarction. PMID:27051406

  10. Visual analysis of longitudinal brain tumor perfusion

    NASA Astrophysics Data System (ADS)

    Glaßer, Sylvia; Oeltze, Steffen; Preim, Uta; Bjørnerud, Atle; Hauser, Helwig; Preim, Bernhard

    2013-02-01

    In clinical research on diagnosis and evaluation of brain tumors, longitudinal perfusion MRI studies are acquired for tumor grading as well as to monitor and assess treatment response and patient prognosis. Within this work, we demonstrate how visual analysis techniques can be adapted to multidimensional datasets from such studies within a framework to support the computer-aided diagnosis of brain tumors. Our solution builds on two innovations: First, we introduce a pipeline yielding comparative, co-registered quantitative perfusion parameter maps over all time steps of the longitudinal study. Second, based on these time-dependent parameter maps, visual analysis methods were developed and adapted to reveal valuable insight into tumor progression, especially regarding the clinical research area of low grade glioma transformation into high grade gliomas. Our examination of four longitudinal brain studies demonstrates the suitability of the presented visual analysis methods and comprises new possibilities for the clinical researcher to characterize the development of low grade gliomas.

  11. Quantification of brain perfusion with tracers retained by the brain

    SciTech Connect

    Pupi, A.; Bacciottini, L.; De Cristofaro, M.T.R.; Formiconi, A.R.; Castagnoli, A.

    1991-12-31

    Almost a decade ago, tracers, labelled with {sup 123}I and {sup 99m}Tc, that are retained by the brain, started to be used for studies of regional brain perfusion (regional cerebral blood flow, rCBF). To date, these tracers have been used for brain perfusion imaging with SPECT in brain disorders as well as for physiological activation protocols. Only seldom, however, have they been used in protocols that quantitatively measure rCBF. Nevertheless, comparative studies with perfusion reference tracers have repeatedly demonstrated that the brain uptake of these brain-retained tracers is correlated to perfusion, the major determinant of the distribution of these tracers in the brain. The brain kinetics of {sup 99m}Tc HMPAO, which is the tracer most commonly used, was described with a two-compartment tissue model. The theoretical approach, which is, in itself, sufficient for modeling quantitative measurements with {sup 99m}Tc HMPAO, initially suggested the possibility of empirically narrowing the distance between the brain`s regional uptake of the tracer and rCBF with a linearization algorithm which uses the cerebellum as the reference region. The value of this empirical method is hampered by the fact that the cerebellum can be involved in cerebrovascular disease (i.e. cerebellar diaschisis) as well as in several other brain disorders (e.g. anxiety, and dementia of the Alzheimer type). It also was proposed that different reference regions (occipital, whole slice, or whole brain) should be selected in relation to the brain disorder under study. However, this approach does not solve the main problem because it does not equip us with a reliable tool to evaluate rCBF with a high predictive value, and, at the same time, to reduce intersubject variability. The solution would be to measure a quantitative parameter which directly reflects rCBF, such as the unidirectional influx constant of the freely diffusible flow-limited tracers. 45 refs., 3 figs., 1 tab.

  12. The pediatric template of brain perfusion

    PubMed Central

    Avants, Brian B; Duda, Jeffrey T; Kilroy, Emily; Krasileva, Kate; Jann, Kay; Kandel, Benjamin T; Tustison, Nicholas J; Yan, Lirong; Jog, Mayank; Smith, Robert; Wang, Yi; Dapretto, Mirella; Wang, Danny J J

    2015-01-01

    Magnetic resonance imaging (MRI) captures the dynamics of brain development with multiple modalities that quantify both structure and function. These measurements may yield valuable insights into the neural patterns that mark healthy maturation or that identify early risk for psychiatric disorder. The Pediatric Template of Brain Perfusion (PTBP) is a free and public neuroimaging resource that will help accelerate the understanding of childhood brain development as seen through the lens of multiple modality neuroimaging and in relation to cognitive and environmental factors. The PTBP uses cross-sectional and longitudinal MRI to quantify cortex, white matter, resting state functional connectivity and brain perfusion, as measured by Arterial Spin Labeling (ASL), in 120 children 7–18 years of age. We describe the PTBP and show, as a demonstration of validity, that global summary measurements capture the trajectories that demarcate critical turning points in brain maturation. This novel resource will allow a more detailed understanding of the network-level, structural and functional landmarks that are obtained during normal adolescent brain development. PMID:25977810

  13. Brain perfusion in polysubstance users: Relationship to substance and tobacco use, cognition, and self-regulation*

    PubMed Central

    Murray, Donna E.; Durazzo, Timothy C.; Mon, Anderson; Schmidt, Thomas P.; Meyerhoff, Dieter J.

    2015-01-01

    Background Brain perfusion is altered in both alcohol dependence and stimulant dependence. Although most substance users also abuse/depend on alcohol concurrently (polysubstance users; PSU), rigorous perfusion research in PSU is limited. Also, the relationships of perfusion abnormalities with cognition, impulsivity or decision making are not well known. Methods Arterial spin labeling MRI and neuropsychological measures assessed perfusion levels and neurocognition in 20 alcohol dependent individuals with comorbid stimulant dependence (PSU), 26 individuals dependent on alcohol only (ALC), and 31 light/non-drinking controls (LD). The patient groups included smokers and non-smokers. Results ALC had lower perfusion than LD in subcortical and cortical brain regions including the brain reward/executive oversight system (BREOS). Contrary to our hypothesis, regional perfusion was generally not lower in PSU than ALC. However, smoking PSU had lower perfusion than smoking ALC in several regions, including BREOS. Lower BREOS perfusion related to greater drinking severity in smoking substance users and to greater smoking severity in smoking ALC. Lower regional perfusion in ALC and PSU correlated with worse performance in different cognitive domains; smoking status affected perfusion-cognition relationships in ALC only. Lower BREOS perfusion in both substance using groups related to higher impulsivity. Conclusion Although regional perfusion was not decreased in PSU as a group, the combination of cigarette smoking and polysubstance use is strongly related to hypoperfusion in important cortical and subcortical regions. As lower perfusion relates to greater smoking severity, worse cognition and higher impulsivity, smoking cessation is warranted for treatment-seeking PSU and ALC. PMID:25772434

  14. Abnormal myocardial perfusion and risk of heart failure in patients with type 2 diabetes mellitus

    PubMed Central

    Utrera-Lagunas, Marcelo; Orea-Tejeda, Arturo; Castillo-Martínez, Lilia; Balderas-Muñoz, Karla; Keirns-Davis, Candace; Espinoza-Rosas, Sarahi; Sánchez-Ortíz, Néstor Alonso; Olvera-Mayorga, Gabriela

    2013-01-01

    BACKGROUND: Diabetes is a major risk factor for heart failure (HF), although the pathophysiological processes have not been clarified. OBJECTIVE: To determine the prevalence of HF and of abnormal myocardial perfusion in diabetic patients evaluated using technetium (99m) sestamibi single-photon emission computed tomography. METHODS: An observational cross-sectional study was conducted that included patients with type 2 diabetes mellitus who underwent echocardiography to diagnose HF and a pharmacological stress test with intravenous dipyridamole to examine cardiac scintigraphic perfusion abnormalities. Clinical and biochemical data were also collected. RESULTS: Of the 160 diabetic patients included, 92 (57.6%) were in HF and 68 (42.5%) were not. When patients were stratified according to the presence of abnormal myocardial perfusion, those with abnormal perfusion had a higher prevalence of HF (93%) than those with normal perfusion (44.4%) (P<0.0001). Patients with HF weighed more (P=0.03), used insulin less frequently (P=0.01), had lower total cholesterol (P=0.05) and high-density lipoprotein cholesterol concentrations (P=0.002), and a greater number of their myocardial segments showed abnormal perfusion (P≤0.001). More HF patients had a history of myocardial infarction (P<0.001) compared with those without HF. In a logistic regression analysis, the number of segments exhibiting abnormal myocardial perfusion was an independent risk factor for HF. CONCLUSIONS: The prevalence of HF in diabetic patients was high and HF predominantly occured in association with myocardial ischemia. PMID:24294048

  15. Schizophrenia and abnormal brain network hubs

    PubMed Central

    Rubinov, Mikail; Bullmore, Ed.

    2013-01-01

    Schizophrenia is a heterogeneous psychiatric disorder of unknown cause or characteristic pathology. Clinical neuroscientists increasingly postulate that schizophrenia is a disorder of brain network organization. In this article we discuss the conceptual framework of this dysconnection hypothesis, describe the predominant methodological paradigm for testing this hypothesis, and review recent evidence for disruption of central/hub brain regions, as a promising example of this hypothesis. We summarize studies of brain hubs in large-scale structural and functional brain networks and find strong evidence for network abnormalities of prefrontal hubs, and moderate evidence for network abnormalities of limbic, temporal, and parietal hubs. Future studies are needed to differentiate network dysfunction from previously observed gray- and white-matter abnormalities of these hubs, and to link endogenous network dysfunction phenotypes with perceptual, behavioral, and cognitive clinical phenotypes of schizophrenia. PMID:24174905

  16. Reversible cold-induced abnormalities in myocardial perfusion and function in systemic sclerosis

    SciTech Connect

    Alexander, E.L.; Firestein, G.S.; Weiss, J.L.; Heuser, R.R.; Leitl, G.; Wagner, H.N. Jr.; Brinker, J.A.; Ciuffo, A.A.; Becker, L.C.

    1986-11-01

    The effects of peripheral cold exposure on myocardial perfusion and function were studied in 13 patients with scleroderma without clinically evident myocardial disease. Ten patients had at least one transient, cold-induced, myocardial perfusion defect visualized by thallium-201 scintigraphy, and 12 had reversible, cold-induced, segmental left ventricular hypokinesis by two-dimensional echocardiography. The 10 patients with transient perfusion defects all had anatomically corresponding ventricular wall motion abnormalities. No one in either of two control groups (9 normal volunteers and 7 patients with chest pain and normal coronary arteriograms) had cold-induced abnormalities. This study is the first to show the simultaneous occurrence of cold-induced abnormalities in myocardial perfusion and function in patients with scleroderma. The results suggest that cold exposure in such patients may elicit transient reflex coronary vasoconstriction resulting in reversible myocardial ischemia and dysfunction. Chronic recurrent episodes of coronary spasm may lead to focal myocardial fibrosis.

  17. Developmental disruptions underlying brain abnormalities in ciliopathies

    PubMed Central

    Guo, Jiami; Higginbotham, Holden; Li, Jingjun; Nichols, Jackie; Hirt, Josua; Ghukasyan, Vladimir; Anton, E.S.

    2015-01-01

    Primary cilia are essential conveyors of signals underlying major cell functions. Cerebral cortical progenitors and neurons have a primary cilium. The significance of cilia function for brain development and function is evident in the plethora of developmental brain disorders associated with human ciliopathies. Nevertheless, the role of primary cilia function in corticogenesis remains largely unknown. Here we delineate the functions of primary cilia in the construction of cerebral cortex and their relevance to ciliopathies, using an shRNA library targeting ciliopathy genes known to cause brain disorders, but whose roles in brain development are unclear. We used the library to query how ciliopathy genes affect distinct stages of mouse cortical development, in particular neural progenitor development, neuronal migration, neuronal differentiation and early neuronal connectivity. Our results define the developmental functions of ciliopathy genes and delineate disrupted developmental events that are integrally related to the emergence of brain abnormalities in ciliopathies. PMID:26206566

  18. Interobserver variation in diagnosis of dementia by brain perfusion SPECT.

    PubMed

    Honda, Norinari; Machida, Kikuo; Hosono, Makoto; Matsumoto, Tohru; Matsuda, Hiroshi; Oshima, Motoo; Koizumi, Kiyoshi; Kosuda, Shigeru; Momose, Toshimitsu; Mori, Yutaka; Hashimoto, Jun; Shimizu, Yuji

    2002-01-01

    Brain perfusion SPECT (BP-SPECT) has characteristic patterns of abnormality, enabling the differential diagnosis of dementia. The purpose of this study was to measure interobserver variations in the diagnosis of dementia using BP-SPECT. BP-SPECT images of 57 cases, 19 of Alzheimer's disease (AD), eight of multi-infarct dementia (MID), three of Pick's disease, five of other dementias, and 22 normal controls, were interpreted by ten nuclear medicine physicians with varying levels of experience. Brain MR images of the cases were then interpreted apart from SPECT. The physicians independently rated all of the diagnoses listed beforehand according to a five-point scale, with clinical information provided. Receiver-operating characteristic (ROC) curves and the area under the ROC curve (Az) were calculated. Az varied from 0.48 to 0.87. Mean Az's were significantly larger (p<0.05) in the diagnosis by SPECT than in that by MRI (0.715 and 0.629 for dementia vs. normal, 0.670 and 0.560 for AD or MID vs. normal, 0.610 and 0.416 for AD vs. normal, and 0.672 and 0.412 for AD vs. MID, respectively). Considerable interobserver variation was present in BP-SPECT interpretation. BP-SPECT may be more effective for the evaluation of dementia than MRI when the same nuclear medicine physicians interpret both images. PMID:12553341

  19. Voxel-by-voxel analysis of brain SPECT perfusion in Fibromyalgia

    NASA Astrophysics Data System (ADS)

    Guedj, Eric; Taïeb, David; Cammilleri, Serge; Lussato, David; de Laforte, Catherine; Niboyet, Jean; Mundler, Olivier

    2007-02-01

    We evaluated brain perfusion SPECT at rest, without noxious stiumuli, in a homogeneous group of hyperalgesic FM patients. We performed a voxel-based analysis in comparison to a control group, matched for age and gender. Under such conditions, we made the assumption that significant cerebral perfusion abnormalities could be demonstrated, evidencing altered cerebral processing associated with spontaneous pain in FM patients. The secondary objective was to study the reversibility and the prognostic value of such possible perfusion abnormalities under specific treatment. Eighteen hyperalgesic FM women (mean age 48 yr; range 25-63 yr; ACR criteria) and 10 healthy women matched for age were enrolled in the study. A voxel-by-voxel group analysis was performed using SPM2 ( p<0.05, corrected for multiple comparisons). All brain SPECT were performed before any change was made in therapy in the pain care unit. A second SPECT was performed a month later after specific treatment by Ketamine. Compared to control subjects, we observed individual brain SPECT abnormalities in FM patients, confirmed by SPM2 analysis with hyperperfusion of the somatosensory cortex and hypoperfusion of the frontal, cingulate, medial temporal and cerebellar cortices. We also found that a medial frontal and anterior cingulate hypoperfusions were highly predictive (PPV=83%; NPV=91%) of non-response on Ketamine, and that only responders showed significant modification of brain perfusion, after treatment. In the present study performed without noxious stimuli in hyperalgesic FM patients, we found significant hyperperfusion in regions of the brain known to be involved in sensory dimension of pain processing and significant hypoperfusion in areas assumed to be associated with the affective dimension. As current pharmacological and non-pharmacological therapies act differently on both components of pain, we hypothesize that SPECT could be a valuable and readily available tool to guide individual therapeutic

  20. Cerebral perfusion and neuropsychological follow up in mild traumatic brain injury: acute versus chronic disturbances?

    PubMed

    Metting, Zwany; Spikman, Jacoba M; Rödiger, Lars A; van der Naalt, Joukje

    2014-04-01

    In a subgroup of patients with mild traumatic brain injury (TBI) residual symptoms, interfering with outcome and return to work, are found. With neuropsychological assessment cognitive deficits can be demonstrated although the pathological underpinnings of these cognitive deficits are not fully understood. As the admission computed tomography (CT) often is normal, perfusion CT imaging may be a useful indicator of brain dysfunction in the acute phase after injury in these patients. In the present study, directly after admission perfusion CT imaging was performed in mild TBI patients with follow-up neuropsychological assessment in those with complaints and a normal non-contrast CT. Neuropsychological tests comprised the 15 Words test Immediate Recall, Trailmaking test part B, Zoo Map test and the FEEST, which were dichotomized into normal and abnormal. Perfusion CT results of patients with normal neuropsychological test scores were compared to those with abnormal test scores. In total eighteen patients were included. Those with an abnormal score on the Zoo Map test had a significant lower CBV in the right frontal and the bilateral parieto-temporal white matter. Patients with an abnormal score on the FEEST had a significant higher MTT in the bilateral frontal white matter and a significant decreased CBF in the left parieto-temporal grey matter. No significant relation between the perfusion CT parameters and the 15 Words test and the Trailmaking test part B was present. In conclusion, impairments in executive functioning and emotion perception assessed with neuropsychological tests during follow up were related to differences in cerebral perfusion at admission in mild TBI. The pathophysiological concept of these findings is discussed. PMID:24556319

  1. A General Approach to the Evaluation of Ventilation-Perfusion Ratios in Normal and Abnormal Lungs

    ERIC Educational Resources Information Center

    Wagner, Peter D.

    1977-01-01

    Outlines methods for manipulating multiple gas data so as to gain the greatest amount of insight into the properties of ventilation-perfusion distributions. Refers to data corresponding to normal and abnormal lungs. Uses a two-dimensional framework with the respiratory gases of oxygen and carbon dioxide. (CS)

  2. Modelling Brain Temperature and Perfusion for Cerebral Cooling

    NASA Astrophysics Data System (ADS)

    Blowers, Stephen; Valluri, Prashant; Marshall, Ian; Andrews, Peter; Harris, Bridget; Thrippleton, Michael

    2015-11-01

    Brain temperature relies heavily on two aspects: i) blood perfusion and porous heat transport through tissue and ii) blood flow and heat transfer through embedded arterial and venous vasculature. Moreover brain temperature cannot be measured directly unless highly invasive surgical procedures are used. A 3D two-phase fluid-porous model for mapping flow and temperature in brain is presented with arterial and venous vessels extracted from MRI scans. Heat generation through metabolism is also included. The model is robust and reveals flow and temperature maps in unprecedented 3D detail. However, the Karmen-Kozeny parameters of the porous (tissue) phase need to be optimised for expected perfusion profiles. In order to optimise the K-K parameters a reduced order two-phase model is developed where 1D vessels are created with a tree generation algorithm embedded inside a 3D porous domain. Results reveal that blood perfusion is a strong function of the porosity distribution in the tissue. We present a qualitative comparison between the simulated perfusion maps and those obtained clinically. We also present results studying the effect of scalp cooling on core brain temperature and preliminary results agree with those observed clinically.

  3. Brain perfusion in acute and chronic hyperglycemia in rats

    SciTech Connect

    Kikano, G.E.; LaManna, J.C.; Harik, S.I. )

    1989-08-01

    Recent studies show that acute and chronic hyperglycemia cause a diffuse decrease in regional cerebral blood flow and that chronic hyperglycemia decreases the brain L-glucose space. Since these changes can be caused by a decreased density of perfused brain capillaries, we used 30 adult male Wistar rats to study the effect of acute and chronic hyperglycemia on (1) the brain intravascular space using radioiodinated albumin, (2) the anatomic density of brain capillaries using alkaline phosphatase histochemistry, and (3) the fraction of brain capillaries that are perfused using the fluorescein isothiocyanate-dextran method. Our results indicate that acute and chronic hyperglycemia do not affect the brain intravascular space nor the anatomic density of brain capillaries. Also, there were no differences in capillary recruitment among normoglycemic, acutely hyperglycemic, and chronically hyperglycemic rats. These results suggest that the shrinkage of the brain L-glucose space in chronic hyperglycemia is more likely due to changes in the blood-brain barrier permeability to L-glucose.

  4. Clinical Brain Death with False Positive Radionuclide Cerebral Perfusion Scans

    PubMed Central

    Venkatram, Sindhaghatta; Bughio, Sara; Diaz-Fuentes, Gilda

    2015-01-01

    Practice guidelines from the American Academy of Neurology for the determination of brain death in adults define brain death as “the irreversible loss of function of the brain, including the brainstem.” Neurological determination of brain death is primarily based on clinical examination; if clinical criteria are met, a definitive confirmatory test is indicated. The apnea test remains the gold standard for confirmation. In patients with factors that confound the clinical determination or when apnea tests cannot safely be performed, an ancillary test is required to confirm brain death. Confirmatory ancillary tests for brain death include (a) tests of electrical activity (electroencephalography (EEG) and somatosensory evoked potentials) and (b) radiologic examinations of blood flow (contrast angiography, transcranial Doppler ultrasound (TCD), and radionuclide methods). Of these, however, radionuclide studies are used most commonly. Here we present data from two patients with a false positive Radionuclide Cerebral Perfusion Scan (RCPS). PMID:26167307

  5. Technological advances in MRI measurement of brain perfusion.

    PubMed

    Duyn, Jeff H; van Gelderen, Peter; Talagala, Lalith; Koretsky, Alan; de Zwart, Jacco A

    2005-12-01

    Measurement of brain perfusion using arterial spin labeling (ASL) or dynamic susceptibility contrast (DSC) based MRI has many potential important clinical applications. However, the clinical application of perfusion MRI has been limited by a number of factors, including a relatively poor spatial resolution, limited volume coverage, and low signal-to-noise ratio (SNR). It is difficult to improve any of these aspects because both ASL and DSC methods require rapid image acquisition. In this report, recent methodological developments are discussed that alleviate some of these limitations and make perfusion MRI more suitable for clinical application. In particular, the availability of high magnetic field strength systems, increased gradient performance, the use of RF coil arrays and parallel imaging, and increasing pulse sequence efficiency allow for increased image acquisition speed and improved SNR. The use of parallel imaging facilitates the trade-off of SNR for increases in spatial resolution. As a demonstration, we obtained DSC and ASL perfusion images at 3.0 T and 7.0 T with multichannel RF coils and parallel imaging, which allowed us to obtain high-quality images with in-plane voxel sizes of 1.5 x 1.5 mm(2). PMID:16267852

  6. Radiation-induced myocardial perfusion abnormalities in breast cancer patients following external beam radiation therapy

    PubMed Central

    Eftekhari, Mohammad; Anbiaei, Robabeh; Zamani, Hanie; Fallahi, Babak; Beiki, Davood; Ameri, Ahmad; Emami-Ardekani, Alireza; Fard-Esfahani, Armaghan; Gholamrezanezhad, Ali; Seid Ratki, Kazem Razavi; Roknabadi, Alireza Momen

    2015-01-01

    Objective(s): Radiation therapy for breast cancer can induce myocardial capillary injury and increase cardiovascular morbidity and mortality. A prospective cohort was conducted to study the prevalence of myocardial perfusion abnormalities following radiation therapy of left-sided breast cancer patients as compared to those with right–sided cancer. Methods: To minimize potential confounding factors, only those patients with low 10-year risk of coronary artery disease (based on Framingham risk scoring) were included. All patients were initially treated by modified radical mastectomy and then were managed by postoperative 3D Conformal Radiation Therapy (CRT) to the surgical bed with an additional 1-cm margin, delivered by 46-50 Gy (in 2 Gy daily fractions) over a 5-week course. The same dose-adjusted chemotherapy regimen (including anthracyclines, cyclophosphamide and taxol) was given to all patients. Six months after radiation therapy, all patients underwent cardiac SPECT for the evaluation of myocardial perfusion. Results: A total of 71 patients with a mean age of 45.3±7.2 years [35 patients with leftsided breast cancer (exposed) and 36 patients with right-sided cancer (controls)] were enrolled. Dose-volume histogram (DVH) [showing the percentage of the heart exposed to >50% of radiation] was significantly higher in patients with left-sided breast cancer. Visual interpretation detected perfusion abnormalities in 42.9% of cases and 16.7% of controls (P=0.02, Odds ratio=1.46). In semiquantitative segmental analysis, only apical (28.6% versus 8.3%, P=0.03) and anterolateral (17.1% versus 2.8%, P=0.049) walls showed significantly reduced myocardial perfusion in the exposed group. Summed Stress Score (SSS) of>3 was observed in twelve cases (34.3%), while in five of the controls (13.9%),(Odds ratio=1.3). There was no significant difference between the groups regarding left ventricular ejection fraction. Conclusion: The risk of radiation induced myocardial perfusion

  7. Clinical Correlation between Perverted Nystagmus and Brain MRI Abnormal Findings

    PubMed Central

    Han, Won-Gue; Yoon, Hee-Chul; Kim, Tae-Min; Rah, Yoon Chan

    2016-01-01

    Background and Objectives To analyze the clinical correlation between perverted nystagmus and brain magnetic resonance imaging (MRI) abnormal findings and to evaluate whether perverted nystagmus is clinically significant results of brain abnormal lesions or not. Subjects and Methods We performed medical charts review from January 2008 to July 2014, retrospectively. Patients who were suspected central originated vertigo at Frenzel goggles test were included among patients who visited our hospital. To investigate the correlation with nystagmus suspected central originated vertigo and brain MRI abnormal findings, we confirmed whether performing brain MRI or not. Then we exclude that patients not performed brain MRI. Results The number of patients with perverted nystagmus was 15, upbeating was 1 and down-beating was 14. Among these patients, 5 patients have brain MRI abnormal findings. However, 2 patients with MRI abnormal findings were not associated correctly with perverted nystagmus and only 3 patients with perverted nystagmus were considered central originated vertigo and further evaluation and treatment was performed by the department of neurology. Conclusions Perverted nystagmus was considered to the abnormalities at brain lesions, especially cerebellum, but neurologic symptoms and further evaluation were needed for exact diagnosis of central originated vertigo. PMID:27626081

  8. Do thallium myocardial perfusion scan abnormalities predict survival in sarcoid patients without cardiac symptoms

    SciTech Connect

    Kinney, E.L.; Caldwell, J.W. )

    1990-07-01

    Whereas the total mortality rate for sarcoidosis is 0.2 per 100,000, the prognosis, when the heart is involved, is very much worse. The authors used the difference in mortality rate to infer whether thallium 201 myocardial perfusion scan abnormalities correspond to myocardial sarcoid by making the simplifying assumption that if they do, then patients with abnormal scans will be found to have a death rate similar to patients with sarcoid heart disease. The authors therefore analyzed complete survival data on 52 sarcoid patients without cardiac symptoms an average of eighty-nine months after they had been scanned as part of a protocol. By use of survival analysis (the Cox proportional hazards model), the only variable that was significantly associated with survival was age. The patients' scan pattern, treatment status, gender, and race were not significantly related to survival. The authors conclude that thallium myocardial perfusion scans cannot reliably be used to diagnose sarcoid heart disease in sarcoid patients without cardiac symptoms.

  9. Abnormal brain scan with subacute extradural haematomas

    PubMed Central

    Morley, J. Barrie; Langford, Keith H.

    1970-01-01

    Four patients are described with proven subacute extradural haematomas, each with an abnormal cerebral scan of diagnostic assistance. A possible mechanism of production of the subacute extradural haematoma is discussed, and appears to be similar to the mechanism involved in the subacute subdural haematoma. The means by which the abnormal scan results in such cases is also examined, from which it appears that non-specific meningeal membrane inflammatory reaction surrounding the haematoma is significant. Images PMID:5478950

  10. Is the solitary dark neuron a manifestation of postmortem trauma to the brain inadequately fixed by perfusion?

    PubMed

    Cammermeyer, J

    1978-06-01

    Dark neurons, classified as solitary because of their sparse occurrence, were discerned in the transitional zones between gray and white matter in various species of laboratory animals fixed by perfusion. These neurons, histologically indistinguishable from dark neurons in immersion fixed material, tended to develop when the saline perfusion was delayed or slow, the amount of the Bouin fixative was excessive, or the autopsy was performed shortly after the perfusion. Under these conditions, the white matter manifested a softer consistency and a paler color than the gray matter. These observations suggest that, as the consequence of regional differences in intensity and speed of fixation, distortion during extraction of the brain may activate a stress force in the transitional zones where incompletely fixed neurons become affected and acquire an abnormal affinity for aniline dyes and silver. PMID:97249

  11. Baseline brain perfusion and brain structure in patients with major depression: a multimodal magnetic resonance imaging study

    PubMed Central

    Vasic, Nenad; Wolf, Nadine D.; Grön, Georg; Sosic-Vasic, Zrinka; Connemann, Bernhard J.; Sambataro, Fabio; von Strombeck, Anna; Lang, Dirk; Otte, Stefanie; Dudek, Manuela; Wolf, Robert C.

    2015-01-01

    Background Abnormal regional cerebral blood flow (rCBF) and grey matter volume have been frequently reported in patients with major depressive disorder (MDD). However, it is unclear to what extent structural and functional change co-occurs in patients with MDD and whether markers of neural activity, such as rCBF, can be predicted by structural change. Methods Using MRI, we investigated resting-state rCBF and brain structure in patients with MDD and healthy controls between July 2008 and January 2013. We acquired perfusion images obtained with continuous arterial spin labelling, used voxel-based morphometry to assess grey matter volume and integrated biological parametric mapping analyses to investigate the impact of brain atrophy on rCBF. Results We included 43 patients and 29 controls in our study. Frontotemporal grey matter volume was reduced in patients compared with controls. In patients, rCBF was reduced in the anterior cingulate and bilateral parahippocampal areas and increased in frontoparietal and striatal regions. These abnormalities were confirmed by analyses with brain volume as a covariate. In patients with MDD there were significant negative correlations between the extent of depressive symptoms and bilateral parahippocampal rCBF. We found a positive correlation between depressive symptoms and rCBF for right middle frontal cortical blood flow. Limitations Medication use in patients has to be considered as a limitation of our study. Conclusion Our data suggest that while changes of cerebral blood flow and brain volume co-occur in patients with MDD, structural change is not sufficient to explain altered neural activity in patients at rest. Abnormal brain structure and function in patients with MDD appear to reflect distinct levels of neuropathology. PMID:26125119

  12. [Antegrade unilateral perfusion of the brain through the brachiocephalic trunk in operations on the aortic arch].

    PubMed

    Kozlov, B N; Panfilov, D S; Kuznetsov, M S; Ponomarenko, I V; Nasrashvili, G G; Shipulin, V M

    2016-01-01

    Presented herein is a technique of unilateral antegrade perfusion of the brain in operations on the aortic arch. The method makes it possible to perform both systemic artificial circulation and adequate physiological perfusion of the brain, promoting minimization of the number of neurological complications. PMID:27100557

  13. Arterial Spin Labeling Perfusion Study in the Patients with Subacute Mild Traumatic Brain Injury

    PubMed Central

    Lin, Che-Ming; Tseng, Ying-Chi; Hsu, Hui-Ling; Chen, Chi-Jen; Chen, David Yen-Ting; Yan, Feng-Xian; Chiu, Wen-Ta

    2016-01-01

    Background This study uses a MRI technique, three-dimension pulse continuous arterial spin labeling (3D-PCASL), to measure the patient’s cerebral blood flow (CBF) at the subacute stage of mild traumatic brain injury (MTBI) in order to analyze the relationship between cerebral blood flow and neurocognitive deficits. Objective To provide the relationship between cortical CBF and neuropsychological dysfunction for the subacute MTBI patients. Methods After MTBI, perfusion MR imaging technique (3D-PCASL) measures the CBF of MTBI patients (n = 23) within 1 month and that of normal controls (n = 22) to determine the quantity and location of perfusion defect. The correlation between CBF abnormalities and cognitive deficits was elucidated by combining the results of the neuropsychological tests of the patients. Result We observed a substantial reduction in CBF in the bilateral frontal and left occipital cortex as compared with the normal persons. In addition, there were correlation between post concussive symptoms (including dizziness and simulator sickness) and CBF in the hypoperfused areas. The more severe symptom was correlated with higher CBF in bilateral frontal and left occipital lobes. Conclusion First, this study determined that despite no significant abnormality detected on conventional CT and MRI studies, hypoperfusion was observed in MTBI group using 3D-PCASL technique in subacute stage, which suggested that this approach may increase sensitivity to MTBI. Second, the correlation between CBF and the severity of post concussive symptoms suggested that changes in cerebral hemodynamics may play a role in pathophysiology underlies the symptoms. PMID:26871696

  14. Brief Report: Brain Mechanisms in Autism: Functional and Structural Abnormalities.

    ERIC Educational Resources Information Center

    Minshew, Nancy J.

    1996-01-01

    This paper summarizes results of research on functional and structural abnormalities of the brain in autism. The current concept of causation is seen to involve multiple biologic levels. A consistent profile of brain function and dysfunction across methods has been found and specific neuropathologic findings have been found; but some research…

  15. Iterative blind deconvolution in magnetic resonance brain perfusion imaging.

    PubMed

    Grüner, Renate; Taxt, Torfinn

    2006-04-01

    In first pass magnetic resonance brain perfusion imaging, arterial input functions are used in the deconvolution of the observed contrast concentrations to obtain quantitative hemodynamic parameters. Ideally, arterial input functions should be measured in each imaged voxel to eliminate the effects of delay and dispersion of the contrast agent from the injection site. An approach based on iterative blind deconvolution with the Richardson-Lucy algorithm is proposed for the simultaneous estimation of voxel-specific arterial input functions and voxel-specific tissue residue functions. An extended contrast concentration model was used to separate the first pass bolus from additional recirculation and leakage signals. The extended model was evaluated using in vivo data. Computer simulations examined the feasibility of iterative blind deconvolution in perfusion imaging. Preliminary in vivo results from a patient with fibromuscular dysplasia showed territories with delayed/dispersed arterial input functions that coincided with the location of territories supplied by collateral circulation as described from the complete radiologic examination. Higher flow values and shorter mean transit times compared to conventional methods were obtained in these areas, suggesting that the effects of dispersion were minimized. The in vivo estimated arterial input functions visualized the patient's blood supply patterns as a function of time. PMID:16526016

  16. Quantitative iodine-123 IMP imaging of brain perfusion in schizophrenia.

    PubMed

    Cohen, M B; Lake, R R; Graham, L S; King, M A; Kling, A S; Fitten, L J; O'Rear, J; Bronca, G A; Gan, M; Servrin, R

    1989-10-01

    Decreased perfusion in the frontal lobes of patients with chronic schizophrenia has been reported by multiple observes using a variety of techniques. Other observers have been unable to confirm this finding using similar techniques. In this study quantitative single photon emission computed tomography brain imaging was performed using p,5n [123I]IMP in five normal subjects and ten chronically medicated patients with schizophrenia. The acquisition data were preprocessed with an image dependent Metz filter and reconstructed using a ramp filtered back projection technique. The uptake in each of 50 regions of interest in each subject was normalized to the uptake in the cerebellum. There were no significant confirmed differences in the comparable ratios of normal subjects and patients with schizophrenia even at the p = 0.15 level. "Hypofrontality" was not observed. PMID:2795201

  17. Quantitative iodine-123 IMP imaging of brain perfusion in schizophrenia

    SciTech Connect

    Cohen, M.B.; Lake, R.R.; Graham, L.S.; King, M.A.; Kling, A.S.; Fitten, L.J.; O'Rear, J.; Bronca, G.A.; Gan, M.; Servrin, R. )

    1989-10-01

    Decreased perfusion in the frontal lobes of patients with chronic schizophrenia has been reported by multiple observes using a variety of techniques. Other observers have been unable to confirm this finding using similar techniques. In this study quantitative single photon emission computed tomography brain imaging was performed using p,5n ({sup 123}I)IMP in five normal subjects and ten chronically medicated patients with schizophrenia. The acquisition data were preprocessed with an image dependent Metz filter and reconstructed using a ramp filtered back projection technique. The uptake in each of 50 regions of interest in each subject was normalized to the uptake in the cerebellum. There were no significant confirmed differences in the comparable ratios of normal subjects and patients with schizophrenia even at the p = 0.15 level. Hypofrontality was not observed.

  18. Prevalence and Severity of Myocardial Perfusion Imaging Abnormalities in Inmate Subjects

    PubMed Central

    Acampa, Wanda; Nappi, Carmela; Gaudieri, Valeria; Frega, Nicola; D’Arienzo, Davide; Tuccillo, Marianna; Di Lorenzo, Pierpaolo; Buccelli, Claudio; Petretta, Mario; Cuocolo, Alberto

    2015-01-01

    Aim We evaluated the prevalence and severity of myocardial perfusion abnormalities among inmates undergoing cardiac single-photon emission computed tomography. We also compared the results with those obtained in a cohort of non-inmates. Methods Between January 2009 and December 2013, 2420 consecutive subjects (258 inmates and 2162 non-inmates) with suspected or known coronary artery disease underwent stress myocardial perfusion single-photon emission computed tomography (MPS) to our institution. The decision to submit inmates to MPS was taken by the physicians of the penal institutions or ordered by the court based on the survey of part. To account for differences in clinical characteristics between inmates and non-inmates, we created a propensity score-matched cohort considering clinical variables and stress type. Results Before matching, inmates were younger and had higher prevalence of male gender, smoking, chest pain, and previous myocardial infarction or revascularization (all p < 0.001). After matching, all characteristics were comparable in 258 inmates and 258 non-inmates. The total amount of abnormal myocardium was similar in inmates and non-inmates before and after matching. Infarct size and severity were larger in inmates before (p < 0.001) and after (p < 0.01) matching and left ventricular ejection fraction was lower in inmates compared to non-inmates (p < 0.01). Conclusions Detention is associated with larger infarct size compared to a general population of subjects referred to stress MPS also after matching for clinical variables and stress type. The similar prevalence of normal MPS in the matched cohort suggests that this imaging technique might be appropriate in inmates. PMID:26200782

  19. Brain Perfusion in Corticobasal Syndrome with Progressive Aphasia

    PubMed Central

    Abe, Yoshitake; Kimura, Noriyuki; Goto, Megumi; Aso, Yasuhiro; Matsubara, Etsuro

    2016-01-01

    Background Brain perfusion may differ between patients with corticobasal syndrome (CBS) with and without aphasia. Methods Twenty-six (9 males and 17 females; mean age 76 ± 5.3 years) patients with CBS were enrolled in the study. Brain MRI and single-photon emission computed tomography were performed in all subjects. Language was evaluated using the Standard Language Test of Aphasia. The patients were divided into two subgroups according to the presence or absence of progressive aphasia. Differences in the regional cerebral blood flow (rCBF) between the two groups were detected based on voxel-by-voxel group analysis using Statistical Parametric Mapping 8. Results All patients exhibited asymmetric motor symptoms and signs, including limb apraxia, bradykinesia, and akinetic rigidity. Of 26 patients, 9 had a clinically obvious language disturbance, characterized as nonfluent aphasia. Almost all CBS patients with aphasia exhibited cortical atrophy predominantly in the left frontal and temporal lobes with widening of the Sylvian fissure on MRI. The rCBF in the left middle frontal gyrus differed significantly between CBS patients with and without aphasia. Conclusion CBS patients with aphasia exhibit motor symptoms predominantly on the right side and cortical atrophy mainly in the left perisylvian cortices. In particular, left frontal dysfunction might be related to nonfluent aphasia in CBS. PMID:27195001

  20. Neuropsychological Correlates of Brain Perfusion SPECT in Patients with Macrophagic Myofasciitis

    PubMed Central

    Van Der Gucht, Axel; Aouizerate, Jessie; Evangelista, Eva; Chalaye, Julia; Gherardi, Romain K.; Ragunathan-Thangarajah, Nilusha; Bachoud-Levi, Anne-Catherine; Authier, François-Jérôme

    2015-01-01

    Background Patients with aluminum hydroxide adjuvant-induced macrophagic myofasciitis (MMF) complain of arthromyalgias, chronic fatigue and cognitive deficits. This study aimed to characterize brain perfusion in these patients. Methods Brain perfusion SPECT was performed in 76 consecutive patients (aged 49±10 y) followed in the Garches-Necker-Mondor-Hendaye reference center for rare neuromuscular diseases. Images were acquired 30 min after intravenous injection of 925 MBq 99mTc-ethylcysteinate dimer (ECD) at rest. All patients also underwent a comprehensive battery of neuropsychological tests, within 1.3±5.5 mo from SPECT. Statistical parametric maps (SPM12) were obtained for each test using linear regressions between each performance score and brain perfusion, with adjustment for age, sex, socio-cultural level and time delay between brain SPECT and neuropsychological testing. Results SPM analysis revealed positive correlation between neuropsychological scores (mostly exploring executive functions) and brain perfusion in the posterior associative cortex, including cuneus/precuneus/occipital lingual areas, the periventricular white matter/corpus callosum, and the cerebellum, while negative correlation was found with amygdalo-hippocampal/entorhinal complexes. A positive correlation was also observed between brain perfusion and the posterior associative cortex when the time elapsed since last vaccine injection was investigated. Conclusions Brain perfusion SPECT showed a pattern of cortical and subcortical changes in accordance with the MMF-associated cognitive disorder previously described. These results provide a neurobiological substrate for brain dysfunction in aluminum hydroxide adjuvant-induced MMF patients. PMID:26030650

  1. Structural brain abnormalities in cervical dystonia

    PubMed Central

    2013-01-01

    Background Idiopathic cervical dystonia is characterized by involuntary spasms, tremors or jerks. It is not restricted to a disturbance in the basal ganglia system because non-conventional voxel-based MRI morphometry (VBM) and diffusion tensor imaging (DTI) have detected numerous regional changes in the brains of patients. In this study scans of 24 patients with cervical dystonia and 24 age-and sex-matched controls were analysed using VBM, DTI and magnetization transfer imaging (MTI) using a voxel-based approach and a region-of-interest analysis. Results were correlated with UDRS, TWSTRS and disease duration. Results We found structural alterations in the basal ganglia; thalamus; motor cortex; premotor cortex; frontal, temporal and parietal cortices; visual system; cerebellum and brainstem of the patients with dystonia. Conclusions Cervical dystonia is a multisystem disease involving several networks such as the motor, sensory and visual systems. PMID:24131497

  2. Stroke prognosis by applying double thresholds on CT-perfusion-brain images

    NASA Astrophysics Data System (ADS)

    Chokchaitam, Somchart; Santipromwong, Nittaya; Muengtaweepongsa, Sombat

    2013-03-01

    The CT-perfusion image shows information of brain abnormalities such as its size and location. Generally, neurologist diagnoses stroke disease using CT-perfusion images such as Cerebral blood flow (CBF), cerebral blood volume (CBV). In our previous report, we applied threshold technique to divide amount of CBV and CBF into low and high level. Then, their levels are applied to identify normal tissue areas, dead tissue areas (infract core) and blood-cot tissue areas (infract penumbra). However, it's not totally correct, if the same threshold is applied to the whole area (it must depend on size of blood vessel in that area. In this report, we propose double thresholds to divided CBV and CBF into 3 levels: very low, medium and very high levels. Very low and very high levels are definitely implied to bad areas and good areas, respectively. The proposed double thresholds makes stroke prognosis more accurate. The simulation results confirm that our proposed results closed to results defined from neurologist comparing to the conventional results.

  3. Genetic abnormality predicts benefit for a rare brain tumor

    Cancer.gov

    A clinical trial has shown that addition of chemotherapy to radiation therapy leads to a near doubling of median survival time in patients with a form of brain tumor (oligodendroglioma) that carries a chromosomal abnormality called the 1p19q co-deletion.

  4. Morphometric Brain Abnormalities in Boys with Conduct Disorder

    ERIC Educational Resources Information Center

    Huebner, Thomas; Vloet, Timo D.; Marx, Ivo; Konrad, Kerstin; Fink, Gereon R.; Herpertz, Sabine C.; Herpertz-Dahlmann, Beate

    2008-01-01

    Conduct disorder (CD) is associated with antisocial personality behavior that violates the basic rights of others. Results, on examining the structural brain aberrations in boys' CD, show that boys with CD and cormobid attention-deficit/hyperactivity disorder showed abnormalities in frontolimbic areas that could contribute to antisocial…

  5. Contrast-enhanced diffuse optical tomography of brain perfusion in humans using ICG

    NASA Astrophysics Data System (ADS)

    Habermehl, Christina; Schmitz, Christoph; Steinbrink, Jens

    2012-02-01

    Regular monitoring of brain perfusion at the bedside in neurointensive care is desirable. Currently used imaging modalities are not suited for constant monitoring and often require a transport of the patient. Noninvasive near infrared spectroscopy (NIRS) in combination with an injection of a safe dye (indocyanine green, ICG) could serve as a quasi-continuous brain perfusion monitor. In this work, we evaluate prerequisites for the development of a brain perfusion monitor using continuous wave (cw) NIRS technique. We present results from a high-resolution diffuse optical tomography (HR-DOT) experiment in humans demonstrating the separation of signals from skin from the brain. This technique can help to monitor neurointensive care patients on a regular basis, detecting changes in cortical perfusion in time.

  6. Brain tumors and synchrotron radiation: Methodological developments in quantitative brain perfusion imaging and radiation therapy

    SciTech Connect

    Adam, Jean-Francois

    2005-04-01

    High-grade gliomas are the most frequent type of primary brain tumors in adults. Unfortunately, the management of glioblastomas is still mainly palliative and remains a difficult challenge, despite advances in brain tumor molecular biology and in some emerging therapies. Synchrotron radiation opens fields for medical imaging and radiation therapy by using monochromatic intense x-ray beams. It is now well known that angiogenesis plays a critical role in the tumor growth process and that brain perfusion is representative of the tumor mitotic activity. Synchrotron radiation quantitative computed tomography (SRCT) is one of the most accurate techniques for measuring in vivo contrast agent concentration and thus computing precise and accurate absolute values of the brain perfusion key parameters. The methodological developments of SRCT absolute brain perfusion measurements as well as their preclinical validation are detailed in this thesis. In particular, absolute cerebral volume and blood brain barrier permeability high-resolution (pixel size <50x50 {mu}m{sup 2}) parametric maps were reported. In conventional radiotherapy, the treatment of these tumors remains a delicate challenge, because the damages to the surrounding normal brain tissue limit the amount of radiation that can be delivered. One strategy to overcome this limitation is to infuse an iodinated contrast agent to the patient during the irradiation. The contrast agent accumulates in the tumor, through the broken blood brain barrier, and the irradiation is performed with kilovoltage x rays, in tomography mode, the tumor being located at the center of rotation and the beam size adjusted to the tumor dimensions. The dose enhancement results from the photoelectric effect on the heavy element and from the irradiation geometry. Synchrotron beams, providing high intensity, tunable monochromatic x rays, are ideal for this treatment. The beam properties allow the selection of monochromatic irradiation, at the optimal

  7. Regional brain perfusion in 10 normal dogs measured using Technetium-99m ethyl cysteinate dimer spect.

    PubMed

    Peremans, K; De Bondt, P; Audenaert, K; Van Laere, K; Gielen, I; Koole, M; Versijpt, J; Van Bree, H; Verschooten, F; Dierckx, R

    2001-01-01

    Single photon emission computed tomography (SPECT) of the brain using perfusion tracers allows estimation of regional brain perfusion. This allows in vivo examination of brain function in the setting of neuropsychologic and pathophysiologic changes. However functional imaging data on brain perfusion in dogs are limited. Hence, the aim of this study was to determine the scintigraphic regional perfusion pattern of the normal canine brain. Ten healthy shepherd type dogs were injected with 925 MBq Technetium-99m ethyl cysteinate (ECD) 20 minutes before the examination. Acquisition was performed using a triple head gamma camera equipped with fanbeam collimators. Uniform attenuation correction and triple energy window correction were applied. Computed tomographic images were obtained from the same dogs, reoriented along the orbito-meatal axis and SPECT perfusion data were coregistered to the CT-volume data. Based on morphological and suggested brain divisions, regions-of-interest (ROIs) were defined for the bilateral frontocerebral, temporocerebral, parietocerebral, occipitocerebral, cerebellar, thalamic, and striatal area. Regional count density was normalized on total counts. All dogs had the highest uptake in the thalamic/striatal area compared to a rather homogeneous cerebral uptake. No significant left/right count differences were found, but a rostro-caudal gradient (+12-13%) was present. In this group, age and gender did not influence the perfusion pattern. PMID:11768526

  8. Connectivity and functional profiling of abnormal brain structures in pedophilia

    PubMed Central

    Poeppl, Timm B.; Eickhoff, Simon B.; Fox, Peter T.; Laird, Angela R.; Rupprecht, Rainer; Langguth, Berthold; Bzdok, Danilo

    2015-01-01

    Despite its 0.5–1% lifetime prevalence in men and its general societal relevance, neuroimaging investigations in pedophilia are scarce. Preliminary findings indicate abnormal brain structure and function. However, no study has yet linked structural alterations in pedophiles to both connectional and functional properties of the aberrant hotspots. The relationship between morphological alterations and brain function in pedophilia as well as their contribution to its psychopathology thus remain unclear. First, we assessed bimodal connectivity of structurally altered candidate regions using meta-analytic connectivity modeling (MACM) and resting-state correlations employing openly accessible data. We compared the ensuing connectivity maps to the activation likelihood estimation (ALE) maps of a recent quantitative meta-analysis of brain activity during processing of sexual stimuli. Second, we functionally characterized the structurally altered regions employing meta-data of a large-scale neuroimaging database. Candidate regions were functionally connected to key areas for processing of sexual stimuli. Moreover, we found that the functional role of structurally altered brain regions in pedophilia relates to nonsexual emotional as well as neurocognitive and executive functions, previously reported to be impaired in pedophiles. Our results suggest that structural brain alterations affect neural networks for sexual processing by way of disrupted functional connectivity, which may entail abnormal sexual arousal patterns. The findings moreover indicate that structural alterations account for common affective and neurocognitive impairments in pedophilia. The present multi-modal integration of brain structure and function analyses links sexual and nonsexual psychopathology in pedophilia. PMID:25733379

  9. Connectivity and functional profiling of abnormal brain structures in pedophilia.

    PubMed

    Poeppl, Timm B; Eickhoff, Simon B; Fox, Peter T; Laird, Angela R; Rupprecht, Rainer; Langguth, Berthold; Bzdok, Danilo

    2015-06-01

    Despite its 0.5-1% lifetime prevalence in men and its general societal relevance, neuroimaging investigations in pedophilia are scarce. Preliminary findings indicate abnormal brain structure and function. However, no study has yet linked structural alterations in pedophiles to both connectional and functional properties of the aberrant hotspots. The relationship between morphological alterations and brain function in pedophilia as well as their contribution to its psychopathology thus remain unclear. First, we assessed bimodal connectivity of structurally altered candidate regions using meta-analytic connectivity modeling (MACM) and resting-state correlations employing openly accessible data. We compared the ensuing connectivity maps to the activation likelihood estimation (ALE) maps of a recent quantitative meta-analysis of brain activity during processing of sexual stimuli. Second, we functionally characterized the structurally altered regions employing meta-data of a large-scale neuroimaging database. Candidate regions were functionally connected to key areas for processing of sexual stimuli. Moreover, we found that the functional role of structurally altered brain regions in pedophilia relates to nonsexual emotional as well as neurocognitive and executive functions, previously reported to be impaired in pedophiles. Our results suggest that structural brain alterations affect neural networks for sexual processing by way of disrupted functional connectivity, which may entail abnormal sexual arousal patterns. The findings moreover indicate that structural alterations account for common affective and neurocognitive impairments in pedophilia. The present multimodal integration of brain structure and function analyses links sexual and nonsexual psychopathology in pedophilia. PMID:25733379

  10. Sleep Deprivation Reveals Altered Brain Perfusion Patterns in Somnambulism

    PubMed Central

    Dang-Vu, Thien Thanh; Zadra, Antonio; Labelle, Marc-Antoine; Petit, Dominique; Soucy, Jean-Paul; Montplaisir, Jacques

    2015-01-01

    Background Despite its high prevalence, relatively little is known about the pathophysiology of somnambulism. Increasing evidence indicates that somnambulism is associated with functional abnormalities during wakefulness and that sleep deprivation constitutes an important drive that facilitates sleepwalking in predisposed patients. Here, we studied the neural mechanisms associated with somnambulism using Single Photon Emission Computed Tomography (SPECT) with 99mTc-Ethylene Cysteinate Dimer (ECD), during wakefulness and after sleep deprivation. Methods Ten adult sleepwalkers and twelve controls with normal sleep were scanned using 99mTc-ECD SPECT in morning wakefulness after a full night of sleep. Eight of the sleepwalkers and nine of the controls were also scanned during wakefulness after a night of total sleep deprivation. Between-group comparisons of regional cerebral blood flow (rCBF) were performed to characterize brain activity patterns during wakefulness in sleepwalkers. Results During wakefulness following a night of total sleep deprivation, rCBF was decreased bilaterally in the inferior temporal gyrus in sleepwalkers compared to controls. Conclusions Functional neural abnormalities can be observed during wakefulness in somnambulism, particularly after sleep deprivation and in the inferior temporal cortex. Sleep deprivation thus not only facilitates the occurrence of sleepwalking episodes, but also uncovers patterns of neural dysfunction that characterize sleepwalkers during wakefulness. PMID:26241047

  11. Brain abnormality segmentation based on l1-norm minimization

    NASA Astrophysics Data System (ADS)

    Zeng, Ke; Erus, Guray; Tanwar, Manoj; Davatzikos, Christos

    2014-03-01

    We present a method that uses sparse representations to model the inter-individual variability of healthy anatomy from a limited number of normal medical images. Abnormalities in MR images are then defined as deviations from the normal variation. More precisely, we model an abnormal (pathological) signal y as the superposition of a normal part ~y that can be sparsely represented under an example-based dictionary, and an abnormal part r. Motivated by a dense error correction scheme recently proposed for sparse signal recovery, we use l1- norm minimization to separate ~y and r. We extend the existing framework, which was mainly used on robust face recognition in a discriminative setting, to address challenges of brain image analysis, particularly the high dimensionality and low sample size problem. The dictionary is constructed from local image patches extracted from training images aligned using smooth transformations, together with minor perturbations of those patches. A multi-scale sliding-window scheme is applied to capture anatomical variations ranging from fine and localized to coarser and more global. The statistical significance of the abnormality term r is obtained by comparison to its empirical distribution through cross-validation, and is used to assign an abnormality score to each voxel. In our validation experiments the method is applied for segmenting abnormalities on 2-D slices of FLAIR images, and we obtain segmentation results consistent with the expert-defined masks.

  12. Volumetric brain abnormalities in polysubstance use disorder patients

    PubMed Central

    Noyan, Cemal Onur; Kose, Samet; Nurmedov, Serdar; Metin, Baris; Darcin, Aslı Enez; Dilbaz, Nesrin

    2016-01-01

    Aim Polysubstance users represent the largest group of patients seeking treatment at addiction and rehabilitation clinics in Turkey. There is little knowledge about the structural brain abnormalities seen in polysubstance users. This study was conducted to examine the structural brain differences between polysubstance use disorder patients and healthy control subjects using voxel-based morphometry. Methods Forty-six male polysubstance use disorder patients in the early abstinence period and 30 healthy male controls underwent structural magnetic resonance imaging scans. Voxel-based morphometry analysis was performed to examine gray matter (GM) abnormality differences. Results Polysubstance use disorder patients displayed significantly smaller GM volume in the thalamus, temporal pole, superior frontal gyrus, cerebellum, gyrus rectus, occipital lobe, anterior cingulate cortex, superior temporal gyrus, and postcentral gyrus. Conclusion A widespread and smaller GM volume has been found at different regions of the frontal, temporal, occipital, and parietal lobes, cerebellum, and anterior cingulate cortex in polysubstance users. PMID:27358566

  13. Non Tumor Perfusion Changes Following Stereotactic Radiosurgery to Brain Metastases

    PubMed Central

    Jakubovic, Raphael; Sahgal, Arjun; Ruschin, Mark; Pejović-Milić, Ana; Milwid, Rachael; Aviv, Richard I.

    2015-01-01

    Purpose: To evaluate early perfusion changes in normal tissue following stereotactic radiosurgery (SRS). Methods: Nineteen patients harboring twenty-two brain metastases treated with SRS were imaged with dynamic susceptibility magnetic resonance imaging (DSC MRI) at baseline, 1 week and 1 month post SRS. Relative cerebral blood volume and flow (rCBV and rCBF) ratios were evaluated outside of tumor within a combined region of interest (ROI) and separately within gray matter (GM) and white matter (WM) ROIs. Three-dimensional dose distribution from each SRS plan was divided into six regions: (1) <2 Gy; (2) 2-5 Gy; (3) 5-10 Gy; (4) 10-12 Gy; (5) 12-16 Gy; and (6) >16 Gy. rCBV and rCBF ratio differences between baseline, 1 week and 1 month were compared. Best linear fit plots quantified normal tissue dose-dependency. Results: Significant rCBV ratio increases were present between baseline and 1 month for all ROIs and dose ranges except for WM ROI receiving <2 Gy. rCBV ratio for all ROIs was maximally increased from baseline to 1 month with the greatest changes occurring within the 5-10 Gy dose range (53.1%). rCBF ratio was maximally increased from baseline to 1 month for all ROIs within the 5-10 Gy dose range (33.9-45.0%). Both rCBV and rCBF ratios were most elevated within GM ROIs. A weak, positive but not significant association between dose, rCBV and rCBF ratio was demonstrated. Progressive rCBV and rCBF ratio increased with dose up to 10 Gy at 1 month. Conclusion: Normal tissue response following SRS can be characterized by dose, tissue, and time specific increases in rCBV and rCBF ratio. PMID:26269612

  14. Correction for partial volume effects in brain perfusion ECT imaging

    NASA Astrophysics Data System (ADS)

    Koole, Michel; Staelens, Steven; Van de Walle, Rik; Lemahieu, Ignace L.

    2003-05-01

    The accurate quantification of brain perfusion for emission computed tomography data (PET-SPECT) is limited by partial volume effects (PVE). This study presents a new approach to estimate accurately the true tissue tracer activity within the grey matter tissue compartment. The methodology is based on the availability of additional anatomical side information and on the assumption that activity concentration within the white matter tissue compartment is constant. Starting from an initial estimate for the white matter grey matter activity, the true tracer activity within the grey matter tissue compartment is estimated by an alternating ML-EM-algorithm. During the updating step the constant activity concentration within the white matter compartment is modelled in the forward projection in order to reconstruct the true activity distribution within the grey matter tissue compartment, hence reducing partial volume averaging. Consequently the estimate for the constant activity in the white matter tissue compartment is updated based on the new estimated activity distribution in the grey matter tissue compartment. We have tested this methodology by means of computer simulations. A T1-weighted MR brainscan of a patient was segmented into white matter, grey matter and cerebrospinal fluid, using the segmentation package of the SPM-software (Statistical Parametric Mapping). The segmented grey and white matter were used to simulate a SPECT acquisition, modelling the noise and the distance dependant detector response. Scatter and attenuation were ignored. Following the above described strategy, simulations have shown it is possible to reconstruct the true activity distribution for the grey matter tissue compartment (activity/tissue volume), assuming constant activity in the white matter tissue compartment.

  15. Volume estimation of brain abnormalities in MRI data

    NASA Astrophysics Data System (ADS)

    Suprijadi, Pratama, S. H.; Haryanto, F.

    2014-02-01

    The abnormality of brain tissue always becomes a crucial issue in medical field. This medical condition can be recognized through segmentation of certain region from medical images obtained from MRI dataset. Image processing is one of computational methods which very helpful to analyze the MRI data. In this study, combination of segmentation and rendering image were used to isolate tumor and stroke. Two methods of thresholding were employed to segment the abnormality occurrence, followed by filtering to reduce non-abnormality area. Each MRI image is labeled and then used for volume estimations of tumor and stroke-attacked area. The algorithms are shown to be successful in isolating tumor and stroke in MRI images, based on thresholding parameter and stated detection accuracy.

  16. Early Blood Gas Abnormalities and the Preterm Brain

    PubMed Central

    Leviton, Alan; Allred, Elizabeth; Kuban, Karl C. K.; Dammann, Olaf; O'Shea, T. Michael; Hirtz, Deborah; Schreiber, Michael D.; Paneth, Nigel

    2010-01-01

    The authors explored associations between blood gas abnormalities in more than 1,000 preterm infants during the first postnatal days and indicators of neonatal brain damage. During 2002–2004, women delivering infants before 28 weeks’ gestation at one of 14 participating institutions in 5 US states were asked to enroll in the study. The authors compared infants with blood gas values in the highest or lowest quintile for gestational age and postnatal day (extreme value) on at least 1 of the first 3 postnatal days with the remainder of the subjects, with separate analyses for blood gas abnormalities on multiple days and for partial pressure of oxygen in the alveolar gas of <35. Outcomes analyzed were ventriculomegaly and an echolucent lesion on an ultrasound scan in the neonatal intensive care unit, and cerebral palsy, microcephaly, and a low score on a Bayley Scale of Infant Development at 24 months. Every blood gas derangement (hypoxemia, hyperoxemia, hypocapnia, hypercapnia, and acidosis) was associated with multiple indicators of brain damage. However, for some, the associations were seen with only 1 day of exposure; others were evident with 2 or more days’ exposure. Findings suggest that individual blood gas derangements do not increase brain damage risk. Rather, the multiple derangements associated with indicators of brain damage might be indicators of immaturity/vulnerability and illness severity. PMID:20807736

  17. Comparison of myocardial contrast echocardiography with NC100100 and 99mTc sestamibi SPECT for detection of resting myocardial perfusion abnormalities in patients with previous myocardial infarction

    PubMed Central

    Jucquois, I; Nihoyannopoulos, P; D'Hondt, A; Roelants, V; Robert, A; Melin, J; Glass, D; Vanoverschelde, J

    2000-01-01

    OBJECTIVE—To determine whether myocardial contrast echocardiography (MCE) following intravenous injection of perfluorocarbon microbubbles permits identification of resting myocardial perfusion abnormalities in patients who have had a previous myocardial infarction.
PATIENTS AND INTERVENTIONS—22 patients (mean (SD) age 66 (11) years) underwent MCE after intravenous injection of NC100100, a novel perfluorocarbon containing contrast agent, and resting 99mTc sestamibi single photon emission computed tomography (SPECT). With both methods, myocardial perfusion was graded semiquantitatively as 1 = normal, 0.5 = mild defect, and 0 = severe defect.
RESULTS—Among the 203 normally contracting segments, 151 (74%) were normally perfused by SPECT and 145 (71%) by MCE. With SPECT, abnormal tracer uptake was mainly found among normally contracting segments from the inferior wall. By contrast, with MCE poor myocardial opacification was noted essentially among the normally contracting segments from the anterior and lateral walls. Of the 142 dysfunctional segments, 87 (61%) showed perfusion defects by SPECT, and 94 (66%) by MCE. With both methods, perfusion abnormalities were seen more frequently among akinetic than hypokinetic segments. MCE correctly identified 81/139 segments that exhibited a perfusion defect by SPECT (58%), and 135/206 segments that were normally perfused by SPECT (66%). Exclusion of segments with attenuation artefacts (defined as abnormal myocardial opacification or sestamibi uptake but normal contraction) by either MCE or SPECT improved both the sensitivity (76%) and the specificity (83%) of the detection of SPECT perfusion defects by MCE.
CONCLUSIONS—The data suggest that MCE allows identification of myocardial perfusion abnormalities in patients who have had a previous myocardial infarction, provided that regional wall motion is simultaneously taken into account.


Keywords: myocardial contrast echocardiography; NC100100

  18. Abuse of Amphetamines and Structural Abnormalities in Brain

    PubMed Central

    Berman, Steven; O’Neill, Joseph; Fears, Scott; Bartzokis, George; London, Edythe D.

    2009-01-01

    We review evidence that structural brain abnormalities are associated with abuse of amphetamines. A brief history of amphetamine use/abuse, and evidence for toxicity is followed by a summary of findings from structural magnetic resonance imaging (MRI) studies of human subjects who had abused amphetamines and children who were exposed to amphetamines in utero. Evidence comes from studies that used a variety of techniques that include manual tracing, pattern matching, voxel-based, tensor-based, or cortical thickness mapping, quantification of white matter signal hyperintensities, and diffusion tensor imaging. Ten studies compared controls to individuals who were exposed to methamphetamine. Three studies assessed individuals exposed to 3-4-methylenedioxymethamphetamine (MDMA). Brain structural abnormalities were consistently reported in amphetamine abusers, as compared to control subjects. These included lower cortical gray matter volume and higher striatal volume than control subjects. These differences might reflect brain features that could predispose to substance dependence. High striatal volumes might also reflect compensation for toxicity in the dopamine-rich basal ganglia. Prenatal exposure was associated with striatal volume that was below control values, suggesting that such compensation might not occur in utero. Several forms of white matter abnormality are also common, and may involve gliosis. Many of the limitations and inconsistencies in the literature relate to techniques and cross-sectional designs, which cannot infer causality. Potential confounding influences include effects of pre-existing risk/protective factors, development, gender, severity of amphetamine abuse, abuse of other drugs, abstinence, and differences in lifestyle. Longitudinal designs in which multimodal datasets are acquired and are subjected to multivariate analyses would enhance our ability to provide general conclusions regarding the associations between amphetamine abuse and brain

  19. Abuse of amphetamines and structural abnormalities in the brain.

    PubMed

    Berman, Steven; O'Neill, Joseph; Fears, Scott; Bartzokis, George; London, Edythe D

    2008-10-01

    We review evidence that structural brain abnormalities are associated with abuse of amphetamines. A brief history of amphetamine use/abuse and evidence for toxicity is followed by a summary of findings from structural magnetic resonance imaging (MRI) studies of human subjects who had abused amphetamines and children who were exposed to amphetamines in utero. Evidence comes from studies that used a variety of techniques including manual tracing, pattern matching, voxel-based, tensor-based, or cortical thickness mapping, quantification of white matter signal hyperintensities, and diffusion tensor imaging. Ten studies compared controls to individuals who were exposed to methamphetamine. Three studies assessed individuals exposed to 3-4-methylenedioxymethamphetamine (MDMA). Brain structural abnormalities were consistently reported in amphetamine abusers, as compared to control subjects. These included lower cortical gray matter volume and higher striatal volume than control subjects. These differences might reflect brain features that could predispose to substance dependence. High striatal volumes might also reflect compensation for toxicity in the dopamine-rich basal ganglia. Prenatal exposure was associated with striatal volume that was below control values, suggesting that such compensation might not occur in utero. Several forms of white matter abnormality are also common and may involve gliosis. Many of the limitations and inconsistencies in the literature relate to techniques and cross-sectional designs, which cannot infer causality. Potential confounding influences include effects of pre existing risk/protective factors, development, gender, severity of amphetamine abuse, abuse of other drugs, abstinence, and differences in lifestyle. Longitudinal designs in which multimodal datasets are acquired and are subjected to multivariate analyses would enhance our ability to provide general conclusions regarding the associations between amphetamine abuse and brain

  20. Electrocardiographic abnormalities and cardiac arrhythmias in structural brain lesions.

    PubMed

    Katsanos, Aristeidis H; Korantzopoulos, Panagiotis; Tsivgoulis, Georgios; Kyritsis, Athanassios P; Kosmidou, Maria; Giannopoulos, Sotirios

    2013-07-31

    Cardiac arrhythmias and electrocardiographic abnormalities are frequently observed after acute cerebrovascular events. The precise mechanism that leads to the development of these arrhythmias is still uncertain, though increasing evidence suggests that it is mainly due to autonomic nervous system dysregulation. In massive brain lesions sympathetic predominance and parasympathetic withdrawal during the first 72 h are associated with the occurrence of severe secondary complications in the first week. Right insular cortex lesions are also related with sympathetic overactivation and with a higher incidence of electrocardiographic abnormalities, mostly QT prolongation, in patients with ischemic stroke. Additionally, female sex and hypokalemia are independent risk factors for severe prolongation of the QT interval which subsequently results in malignant arrhythmias and poor outcome. The prognostic value of repolarization changes commonly seen after aneurysmal subarachnoid hemorrhage, such as ST segment, T wave, and U wave abnormalities, still remains controversial. In patients with traumatic brain injury both intracranial hypertension and cerebral hypoperfusion correlate with low heart rate variability and increased mortality. Given that there are no firm guidelines for the prevention or treatment of the arrhythmias that appear after cerebral incidents this review aims to highlight important issues on this topic. Selected patients with the aforementioned risk factors could benefit from electrocardiographic monitoring, reassessment of the medications that prolong QTc interval, and administration of antiadrenergic agents. Further research is required in order to validate these assumptions and to establish specific therapeutic strategies. PMID:22809542

  1. Gyrification brain abnormalities as predictors of outcome in anorexia nervosa.

    PubMed

    Favaro, Angela; Tenconi, Elena; Degortes, Daniela; Manara, Renzo; Santonastaso, Paolo

    2015-12-01

    Gyrification brain abnormalities are considered a marker of early deviations from normal developmental trajectories and a putative predictor of poor outcome in psychiatric disorders. The aim of this study was to explore cortical folding morphology in patients with anorexia nervosa (AN). A MRI brain study was conducted on 38 patients with AN, 20 fully recovered patients, and 38 healthy women. Local gyrification was measured with procedures implemented in FreeSurfer. Vertex-wise comparisons were carried out to compare: (1) AN patients and healthy women; (2) patients with a full remission at a 3-year longitudinal follow-up assessment and patients who did not recover. AN patients exhibited significantly lower gyrification when compared with healthy controls. Patients with a poor 3-year outcome had significantly lower baseline gyrification when compared to both healthy women and patients with full recovery at follow-up, even after controlling for the effects of duration of illness and gray matter volume. No significant correlation has been found between gyrification, body mass index, amount of weight loss, onset age, and duration of illness. Brain gyrification significantly predicted outcome at follow-up even after controlling for the effects of duration of illness and other clinical prognostic factors. Although the role of starvation in determining our findings cannot be excluded, our study showed that brain gyrification might be a predictor of outcome in AN. Further studies are needed to understand if brain gyrification abnormalities are indices of early neurodevelopmental alterations, the consequence of starvation, or the interaction between both factors. PMID:26374960

  2. Influence of Thin Slice Reconstruction on CT Brain Perfusion Analysis

    PubMed Central

    Bennink, Edwin; Oosterbroek, Jaap; Horsch, Alexander D.; Dankbaar, Jan Willem; Velthuis, Birgitta K.; Viergever, Max A.; de Jong, Hugo W. A. M.

    2015-01-01

    Objectives Although CT scanners generally allow dynamic acquisition of thin slices (1 mm), thick slice (≥5 mm) reconstruction is commonly used for stroke imaging to reduce data, processing time, and noise level. Thin slice CT perfusion (CTP) reconstruction may suffer less from partial volume effects, and thus yield more accurate quantitative results with increased resolution. Before thin slice protocols are to be introduced clinically, it needs to be ensured that this does not affect overall CTP constancy. We studied the influence of thin slice reconstruction on average perfusion values by comparing it with standard thick slice reconstruction. Materials and Methods From 50 patient studies, absolute and relative hemisphere averaged estimates of cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT), and permeability-surface area product (PS) were analyzed using 0.8, 2.4, 4.8, and 9.6 mm slice reconstructions. Specifically, the influence of Gaussian and bilateral filtering, the arterial input function (AIF), and motion correction on the perfusion values was investigated. Results Bilateral filtering gave noise levels comparable to isotropic Gaussian filtering, with less partial volume effects. Absolute CBF, CBV and PS were 22%, 14% and 46% lower with 0.8 mm than with 4.8 mm slices. If the AIF and motion correction were based on thin slices prior to reconstruction of thicker slices, these differences reduced to 3%, 4% and 3%. The effect of slice thickness on relative values was very small. Conclusions This study shows that thin slice reconstruction for CTP with unaltered acquisition protocol gives relative perfusion values without clinically relevant bias. It does however affect absolute perfusion values, of which CBF and CBV are most sensitive. Partial volume effects in large arteries and veins lead to overestimation of these values. The effects of reconstruction slice thickness should be taken into account when absolute perfusion values are

  3. Challenges for non-invasive brain perfusion quantification using arterial spin labeling.

    PubMed

    Sousa, I; Santos, N; Sanches, J; Figueiredo, P

    2011-03-29

    Arterial Spin Labeling (ASL) sequences for perfusion Magnetic Resonance Imaging (MRI) have recently become available to be used in the clinical practice, offering a completely non-invasive technique for the quantitative evaluation of brain perfusion. Despite its great potential, ASL perfusion imaging still presents important methodological challenges before its incorporation in routine protocols. Specifically, in some pathological conditions in which the cerebrovascular dynamics is altered, the standard application of ASL may lead to measurement errors. In these cases, it would be possible to estimate perfusion, as well as arterial transit times, by collecting images at multiple time points and then fitting a mathematical model to the data. This approach can be optimized by selecting a set of optimal imaging time points and incorporating knowledge about the physiological distributions of the parameters into the model estimation procedures. In this study, we address the challenges that arise in the measurement of brain perfusion using PASL, due to variations in the arterial transit times, by estimating the errors produced using different types of acquisitions and proposing methods for minimizing such errors. We show by simulation that multiple inversion time ASL acquisitions are expected to reduce measurement errors relative to standard approaches. In data collected from a group of subjects, we further observed reduced inter-subject variability in perfusion measurements when using a multiple versus single inversion time acquisitions. Both measurement errors and variability were further reduced if optimized acquisition and analysis techniques were employed. PMID:24059574

  4. Verapamil prevents silent myocardial perfusion abnormalities during exercise in asymptomatic patients with hypertrophic cardiomyopathy

    SciTech Connect

    Udelson, J.E.; Bonow, R.O.; O'Gara, P.T.; Maron, B.J.; Van Lingen, A.; Bacharach, S.L.; Epstein, S.E.

    1989-05-01

    Recent studies indicate that reversible 201Tl perfusion defects, compatible with silent myocardial ischemia, commonly develop during exercise in asymptomatic or mildly symptomatic patients with hypertrophic cardiomyopathy (HCM). To determine whether this represents a dynamic process that may be modified favorably by medical therapy, we studied 29 asymptomatic or minimally symptomatic patients with HCM, aged 12-55 years (mean, 28), with exercise 201Tl emission computed tomography under control conditions and again after 1 week of oral verapamil (mean dosage, 453 mg/day). Treadmill time increased slightly during verapamil (21.0 +/- 3.6 to 21.9 +/- 2.7 minutes, p less than 0.005), but peak heart rate-blood pressure product was unchanged (26.3 +/- 6.0 X 10(3)) compared with 25.0 +/- 6.4 X 10(3). Two midventricular short-axis images per study were divided into five regions each, and each of these 10 regions was then analyzed on a 0-2 scale by three observers blinded with regard to the patients' therapy. Average regional scores of 1.5 or less were considered to represent perfusion defects, and a change in regional score of 0.5 or more was considered to constitute a significant change. During control studies, 15 patients (52%) developed perfusion defects with exercise (average, 3.7 regions per patient). In 14 of these patients, all perfusion defects completely reversed after 3 hours of rest; one patient had fixed defects. After administration of verapamil, exercise perfusion scores improved in 10 of the 14 patients (71%) with reversible defects; there was overall improvement in 34 of 50 (68%) regions with initially reversible perfusion defects.

  5. Perfused drop microfluidic device for brain slice culture-based drug discovery.

    PubMed

    Liu, Jing; Pan, Liping; Cheng, Xuanhong; Berdichevsky, Yevgeny

    2016-06-01

    Living slices of brain tissue are widely used to model brain processes in vitro. In addition to basic neurophysiology studies, brain slices are also extensively used for pharmacology, toxicology, and drug discovery research. In these experiments, high parallelism and throughput are critical. Capability to conduct long-term electrical recording experiments may also be necessary to address disease processes that require protein synthesis and neural circuit rewiring. We developed a novel perfused drop microfluidic device for use with long term cultures of brain slices (organotypic cultures). Slices of hippocampus were placed into wells cut in polydimethylsiloxane (PDMS) film. Fluid level in the wells was hydrostatically controlled such that a drop was formed around each slice. The drops were continuously perfused with culture medium through microchannels. We found that viable organotypic hippocampal slice cultures could be maintained for at least 9 days in vitro. PDMS microfluidic network could be readily integrated with substrate-printed microelectrodes for parallel electrical recordings of multiple perfused organotypic cultures on a single MEA chip. We expect that this highly scalable perfused drop microfluidic device will facilitate high-throughput drug discovery and toxicology. PMID:27194028

  6. Whole-Brain CT Perfusion to Quantify Acute Ischemic Penumbra and Core.

    PubMed

    Lin, Longting; Bivard, Andrew; Krishnamurthy, Venkatesh; Levi, Christopher R; Parsons, Mark W

    2016-06-01

    Purpose To validate the use of perfusion computed tomography (CT) with whole-brain coverage to measure the ischemic penumbra and core and to compare its performance to that of limited-coverage perfusion CT. Materials and Methods Institutional ethics committee approval and informed consent were obtained. Patients (n = 296) who underwent 320-detector CT perfusion within 6 hours of the onset of ischemic stroke were studied. First, the ischemic volume at CT perfusion was compared with the penumbra and core reference values at magnetic resonance (MR) imaging to derive CT perfusion penumbra and core thresholds. Second, the thresholds were tested in a different group of patients to predict the final infarction at diffusion-weighted imaging 24 hours after CT perfusion. Third, the change in ischemic volume delineated by the optimal penumbra and core threshold was determined as the brain coverage was gradually reduced from 160 mm to 20 mm. The Wilcoxon signed-rank test, concordance correlation coefficient (CCC), and analysis of variance were used for the first, second, and third steps, respectively. Results CT perfusion at penumbra and core thresholds resulted in the least volumetric difference from MR imaging reference values with delay times greater than 3 seconds and delay-corrected cerebral blood flow of less than 30% (P = .34 and .33, respectively). When the thresholds were applied to the new group of patients, prediction of the final infarction was allowed with delay times greater than 3 seconds in patients with no recanalization of the occluded artery (CCC, 0.96 [95% confidence interval: 0.92, 0.98]) and with delay-corrected cerebral blood flow less than 30% in patients with complete recanalization (CCC, 0.91 [95% confidence interval: 0.83, 0.95]). However, the ischemic volume with a delay time greater than 3 seconds was underestimated when the brain coverage was reduced to 80 mm (P = .04) and the core volume measured as cerebral blood flow less than 30% was

  7. ASFNR recommendations for clinical performance of MR dynamic susceptibility contrast perfusion imaging of the brain.

    PubMed

    Welker, K; Boxerman, J; Kalnin, A; Kaufmann, T; Shiroishi, M; Wintermark, M

    2015-06-01

    MR perfusion imaging is becoming an increasingly common means of evaluating a variety of cerebral pathologies, including tumors and ischemia. In particular, there has been great interest in the use of MR perfusion imaging for both assessing brain tumor grade and for monitoring for tumor recurrence in previously treated patients. Of the various techniques devised for evaluating cerebral perfusion imaging, the dynamic susceptibility contrast method has been employed most widely among clinical MR imaging practitioners. However, when implementing DSC MR perfusion imaging in a contemporary radiology practice, a neuroradiologist is confronted with a large number of decisions. These include choices surrounding appropriate patient selection, scan-acquisition parameters, data-postprocessing methods, image interpretation, and reporting. Throughout the imaging literature, there is conflicting advice on these issues. In an effort to provide guidance to neuroradiologists struggling to implement DSC perfusion imaging in their MR imaging practice, the Clinical Practice Committee of the American Society of Functional Neuroradiology has provided the following recommendations. This guidance is based on review of the literature coupled with the practice experience of the authors. While the ASFNR acknowledges that alternate means of carrying out DSC perfusion imaging may yield clinically acceptable results, the following recommendations should provide a framework for achieving routine success in this complicated-but-rewarding aspect of neuroradiology MR imaging practice. PMID:25907520

  8. Neuroendocrine abnormalities in patients with traumatic brain injury

    NASA Technical Reports Server (NTRS)

    Yuan, X. Q.; Wade, C. E.

    1991-01-01

    This article provides an overview of hypothalamic and pituitary alterations in brain trauma, including the incidence of hypothalamic-pituitary damage, injury mechanisms, features of the hypothalamic-pituitary defects, and major hypothalamic-pituitary disturbances in brain trauma. While hypothalamic-pituitary lesions have been commonly described at postmortem examination, only a limited number of clinical cases of traumatic hypothalamic-pituitary dysfunction have been reported, probably because head injury of sufficient severity to cause hypothalamic and pituitary damage usually leads to early death. With the improvement in rescue measures, an increasing number of severely head-injured patients with hypothalamic-pituitary dysfunction will survive to be seen by clinicians. Patterns of endocrine abnormalities following brain trauma vary depending on whether the injury site is in the hypothalamus, the anterior or posterior pituitary, or the upper or lower portion of the pituitary stalk. Injury predominantly to the hypothalamus can produce dissociated ACTH-cortisol levels with no response to insulin-induced hypoglycemia and a limited or failed metopirone test, hypothyroxinemia with a preserved thyroid-stimulating hormone response to thyrotropin-releasing hormone, low gonadotropin levels with a normal response to gonadotropin-releasing hormone, a variable growth hormone (GH) level with a paradoxical rise in GH after glucose loading, hyperprolactinemia, the syndrome of inappropriate ADH secretion (SIADH), temporary or permanent diabetes insipidus (DI), disturbed glucose metabolism, and loss of body temperature control. Severe damage to the lower pituitary stalk or anterior lobe can cause low basal levels of all anterior pituitary hormones and eliminate responses to their releasing factors. Only a few cases showed typical features of hypothalamic or pituitary dysfunction. Most severe injuries are sufficient to damage both structures and produce a mixed endocrine picture

  9. Conditional Tat protein brain expression in the GT-tg bigenic mouse induces cerebral fractional anisotropy abnormalities

    PubMed Central

    Carey, Amanda N.; Liu, Xiaoxu; Mintzopoulos, Dionyssios; Paris, Jason J.; McLaughlin, Jay P.; Kaufman, Marc J.

    2015-01-01

    Cerebral white matter changes including tissue water diffusion abnormalities detected with diffusion tensor magnetic resonance imaging (DTI) are commonly found in humans with Human Immunodeficiency Virus (HIV) infection, as well as in animal models of the disorder. The severities of some of these abnormalities have been reported to correlate with measures of disease progression or severity, or with the degree of cognitive dysfunction. Accordingly, DTI may be a useful translational biomarker. HIV-Tat protein appears to be an important factor in the viral pathogenesis of HIV-associated neurotoxicity. We previously reported cerebral gray matter density reductions in the GT-tg bigenic mouse treated with doxycycline (Dox) to conditionally induce Tat protein expression. Presently, we administered intraperitoneal (i.p.) Dox (100 mg/kg/day) for 7 days to GT-tg mice to determine whether induction of conditional Tat expression led to the development of cerebral DTI abnormalities. Perfused and fixed brains from eight GT-tg mice administered Dox and eight control mice administered saline i.p. were extracted and underwent DTI scans on a 9.4 Tesla scanner. A whole brain analysis detected fractional anisotropy (FA) reductions in several areas including insular and endopiriform regions, as well as within the dorsal striatum. These findings suggest that exposure to Tat protein is sufficient to induce FA abnormalities, and further support the use of the GT-tg mouse to model some effects of HIV. PMID:25619988

  10. Anatomical and functional brain abnormalities in unmedicated major depressive disorder

    PubMed Central

    Yang, Xiao; Ma, Xiaojuan; Li, Mingli; Liu, Ye; Zhang, Jian; Huang, Bin; Zhao, Liansheng; Deng, Wei; Li, Tao; Ma, Xiaohong

    2015-01-01

    Background Using magnetic resonance imaging (MRI) and resting-state functional magnetic resonance imaging (rsfMRI) to explore the mechanism of brain structure and function in unmedicated patients with major depressive disorder (MDD). Patients and methods Fifty patients with MDD and 50 matched healthy control participants free of psychotropic medication underwent high-resolution structural and rsfMRI scanning. Optimized diffeomorphic anatomical registration through exponentiated lie algebra and the Data Processing Assistant for rsfMRI were used to find potential differences in gray-matter volume (GMV) and regional homogeneity (ReHo) between the two groups. A Pearson correlation model was used to analyze associations of morphometric and functional changes with clinical symptoms. Results Compared to healthy controls, patients with MDD showed significant GMV increase in the left posterior cingulate gyrus and GMV decrease in the left lingual gyrus (P<0.001, uncorrected). In ReHo analysis, values were significantly increased in the left precuneus and decreased in the left putamen (P<0.001, uncorrected) in patients with MDD compared to healthy controls. There was no overlap between anatomical and functional changes. Linear correlation suggested no significant correlation between mean GMV values within regions with anatomical abnormality and ReHo values in regions with functional abnormality in the patient group. These changes were not significantly correlated with symptom severity. Conclusion Our study suggests a dissociation pattern of brain regions with anatomical and functional alterations in unmedicated patients with MDD, especially with regard to GMV and ReHo. PMID:26425096

  11. The cerebral imaging using vessel-around method in the perfusion CT of the human brain

    NASA Astrophysics Data System (ADS)

    Ahn, Choong-Il; Choi, Seung-Wook; Park, Seung-Chul; Shin, Yeong-Gil; Kim, Jae-Hyoung; Chong, Gi-Bong

    2005-04-01

    Perfusion CT has been successfully used as a functional imaging technique for diagnosis of patients with hyperacute stroke. However, the commonly used methods based on curve-fitting are time consuming. Numerous researchers have investigated to what extent Perfusion CT can be used for the quantitative assessment of cerebral ischemia and to rapidly obtain comprehensive information regarding the extent of ischemic damage in acute stroke patients. The aim of this study is to propose an alternative approach to rapidly obtain the brain perfusion mapping and to show the proposed cerebral flow imaging of the vessel and tissue in human brain be reliable and useful. Our main design concern was algorithmic speed, robustness and automation in order to allow its potential use in the emergency situation of acute stroke. To obtain a more effective mapping, we analyzed the signal characteristics of Perfusion CT and defined the vessel-around model which includes the vessel and tissue. We proposed a nonparametric vessel-around approach which automatically discriminates the vessel and tissue around vessel from non-interested brain matter stratifying the level of maximum enhancement of pixel-based TAC. The stratification of pixel-based TAC was executed using the mean and standard deviation of the signal intensity of each pixel and mapped to the cerebral flow imaging. The defined vessel-around model was used to show the cerebral flow imaging and to specify the area of markedly reduced perfusion with loss of function of still viable neurons. Perfusion CT is a fast and practical technique for routine clinical application. It provides substantial and important additional information for the selection of the optimal treatment strategy for patients with hyperacute stroke. The vessel-around approach reduces the computation time significantly when compared with the perfusion imaging using the GVF. The proposed cerebral imaging shows reliable results which are validated by physicians and

  12. Quantitative Perfusion and Permeability Biomarkers in Brain Cancer from Tomographic CT and MR Images

    PubMed Central

    Eilaghi, Armin; Yeung, Timothy; d’Esterre, Christopher; Bauman, Glenn; Yartsev, Slav; Easaw, Jay; Fainardi, Enrico; Lee, Ting-Yim; Frayne, Richard

    2016-01-01

    Dynamic contrast-enhanced perfusion and permeability imaging, using computed tomography and magnetic resonance systems, are important techniques for assessing the vascular supply and hemodynamics of healthy brain parenchyma and tumors. These techniques can measure blood flow, blood volume, and blood–brain barrier permeability surface area product and, thus, may provide information complementary to clinical and pathological assessments. These have been used as biomarkers to enhance the treatment planning process, to optimize treatment decision-making, and to enable monitoring of the treatment noninvasively. In this review, the principles of magnetic resonance and computed tomography dynamic contrast-enhanced perfusion and permeability imaging are described (with an emphasis on their commonalities), and the potential values of these techniques for differentiating high-grade gliomas from other brain lesions, distinguishing true progression from posttreatment effects, and predicting survival after radiotherapy, chemotherapy, and antiangiogenic treatments are presented. PMID:27398030

  13. Dependence of Brain Intravoxel Incoherent Motion Perfusion Parameters on the Cardiac Cycle

    PubMed Central

    Federau, Christian; Hagmann, Patric; Maeder, Philippe; Müller, Markus; Meuli, Reto; Stuber, Matthias; O’Brien, Kieran

    2013-01-01

    Measurement of microvascular perfusion with Intravoxel Incoherent Motion (IVIM) MRI is gaining interest. Yet, the physiological influences on the IVIM perfusion parameters (“pseudo-diffusion” coefficient D*, perfusion fraction f, and flow related parameter fD*) remain insufficiently characterized. In this article, we hypothesize that D* and fD*, which depend on blood speed, should vary during the cardiac cycle. We extended the IVIM model to include time dependence of D* = D*(t), and demonstrate in the healthy human brain that both parameters D* and fD* are significantly larger during systole than diastole, while the diffusion coefficient D and f do not vary significantly. The results non-invasively demonstrate the pulsatility of the brain’s microvasculature. PMID:24023649

  14. Effects of perfusion on the mechanical behavior of the brain-exposed to hypergravity.

    PubMed

    Guillaume, A; Osmont, D; Gaffie, D; Sarron, J C; Quandieu, P

    1997-04-01

    In certain flight configurations, fighter pilots are exposed to high Gz acceleration which may induce inflight loss of consciousness (G-LOC). In order to study the mechanical effects induced by these accelerations on the cerebral structures, an experimental model has been developed in vitro. Fresh bovine brains were excised and placed in a transparent mold modeling the inside of the skull. Half of these brains were perfused during the experiment. This assembly was placed into the gondola of a centrifuge, in front of a camera lens. Displacements and deformations of the brains were filmed and recorded at different onset rates. Measurements were made after off-line digitalization of images. Experimental data were incorporated into a finite element calculation code whose mesh represented the brain. The applied behavior law was elastic, the structure being considered as homogeneous and isotropic. The first results concerned the elastic properties of the brains under hypergravity. The mean value of the Young's modulus of the nonperfused brain was 46.8 kPa, which corresponded to the values published in reference literature. For the perfused brains, the mean value of the Young's modulus was higher. The mean value of the equivalent Poisson's ratio was 0.35. In fact, contrary to impacts, the mechanical stimulation is long enough to allow fluid displacements. The mean value of the equivalent Poisson's ratio calculated in the present study should probably be increased since this study was performed post mortem. PMID:9075007

  15. Acute effect of a high nitrate diet on brain perfusion in older adults

    PubMed Central

    Presley, Tennille D.; Morgan, Ashley R.; Bechtold, Erika; Clodfelter, William; Dove, Robin W.; Jennings, Janine M.; Kraft, Robert A.; King, S. Bruce; Laurienti, Paul J.; Rejeski, W. Jack; Burdette, Jonathan H.; Kim-Shapiro, Daniel B.; Miller, Gary D.

    2010-01-01

    Aims Poor blood flow and hypoxia/ischemia contribute to many disease states and may also be a factor in the decline of physical and cognitive function in aging. Nitrite has been discovered to be a vasodilator that is preferentially harnessed in hypoxia. Thus, both infused and inhaled nitrite are being studied as therapeutic agents for a variety of diseases. In addition, nitrite derived from nitrate in the diet has been shown to decrease blood pressure and improve exercise performance. Thus, dietary nitrate may also be important when increased blood flow in hypoxic or ischemic areas is indicated. These conditions could include age-associated dementia and cognitive decline. The goal of this study was to determine if dietary nitrate would increase cerebral blood flow in older adults. Methods and Results In this investigation we administered a high vs. low nitrate diet to older adults (74.7 ± 6.9 years) and measured cerebral perfusion using arterial spin labeling magnetic resonance imaging. We found that the high nitrate diet did not alter global cerebral perfusion, but did lead to increased regional cerebral perfusion in frontal lobe white matter, especially between the dorsolateral prefrontal cortex and anterior cingulate cortex. Conclusion These results suggest that dietary nitrate may be useful in improving regional brain perfusion in older adults in critical brain areas known to be involved in executive functioning. PMID:20951824

  16. The influence of brain abnormalities on psychosocial development, criminal history and paraphilias in sexual murderers.

    PubMed

    Briken, Peer; Habermann, Niels; Berner, Wolfgang; Hill, Andreas

    2005-09-01

    The aim of this study was to investigate the number and type of brain abnormalities and their influence on psychosocial development, criminal history and paraphilias in sexual murderers. We analyzed psychiatric court reports of 166 sexual murderers and compared a group with notable signs of brain abnormalities (N = 50) with those without any signs (N = 116). Sexual murderers with brain abnormalities suffered more from early behavior problems. They were less likely to cohabitate with the victim at the time of the homicide and had more victims at the age of six years or younger. Psychiatric diagnoses revealed a higher total number of paraphilias: Transvestic fetishism and paraphilias not otherwise specified were more frequent in offenders with brain abnormalities. A binary logistic regression identified five predictors that accounted for 46.8% of the variance explaining the presence of brain abnormalities. Our results suggest the importance of a comprehensive neurological and psychological examination of this special offender group. PMID:16225232

  17. Mapping abnormal subcortical brain morphometry in an elderly HIV + cohort

    PubMed Central

    Wade, Benjamin S.C.; Valcour, Victor G.; Wendelken-Riegelhaupt, Lauren; Esmaeili-Firidouni, Pardis; Joshi, Shantanu H.; Gutman, Boris A.; Thompson, Paul M.

    2015-01-01

    Over 50% of HIV + individuals exhibit neurocognitive impairment and subcortical atrophy, but the profile of brain abnormalities associated with HIV is still poorly understood. Using surface-based shape analyses, we mapped the 3D profile of subcortical morphometry in 63 elderly HIV + participants and 31 uninfected controls. The thalamus, caudate, putamen, pallidum, hippocampus, amygdala, brainstem, accumbens, callosum and ventricles were segmented from high-resolution MRIs. To investigate shape-based morphometry, we analyzed the Jacobian determinant (JD) and radial distances (RD) defined on each region's surfaces. We also investigated effects of nadir CD4 + T-cell counts, viral load, time since diagnosis (TSD) and cognition on subcortical morphology. Lastly, we explored whether HIV + participants were distinguishable from unaffected controls in a machine learning context. All shape and volume features were included in a random forest (RF) model. The model was validated with 2-fold cross-validation. Volumes of HIV + participants' bilateral thalamus, left pallidum, left putamen and callosum were significantly reduced while ventricular spaces were enlarged. Significant shape variation was associated with HIV status, TSD and the Wechsler adult intelligence scale. HIV + people had diffuse atrophy, particularly in the caudate, putamen, hippocampus and thalamus. Unexpectedly, extended TSD was associated with increased thickness of the anterior right pallidum. In the classification of HIV + participants vs. controls, our RF model attained an area under the curve of 72%. PMID:26640768

  18. Cholinergic and perfusion brain networks in Parkinson disease dementia

    PubMed Central

    McKeith, Ian G.; Burn, David J.; Wyper, David J.; O'Brien, John T.; Taylor, John-Paul

    2016-01-01

    Objective: To investigate muscarinic M1/M4 cholinergic networks in Parkinson disease dementia (PDD) and their association with changes in Mini-Mental State Examination (MMSE) after 12 weeks of treatment with donepezil. Methods: Forty-nine participants (25 PDD and 24 elderly controls) underwent 123I-QNB and 99mTc-exametazime SPECT scanning. We implemented voxel principal components (PC) analysis, producing a series of PC images of patterns of interrelated voxels across individuals. Linear regression analyses derived specific M1/M4 and perfusion spatial covariance patterns (SCPs). Results: We found an M1/M4 SCP of relative decreased binding in basal forebrain, temporal, striatum, insula, and anterior cingulate (F1,47 = 31.9, p < 0.001) in cholinesterase inhibitor–naive patients with PDD, implicating limbic-paralimbic and salience cholinergic networks. The corresponding regional cerebral blood flow SCP showed relative decreased uptake in temporoparietal and prefrontal areas (F1,47 = 177.5, p < 0.001) and nodes of the frontoparietal and default mode networks (DMN). The M1/M4 pattern that correlated with an improvement in MMSE (r = 0.58, p = 0.005) revealed relatively preserved/increased pre/medial/orbitofrontal, parietal, and posterior cingulate areas coinciding with the DMN and frontoparietal networks. Conclusion: Dysfunctional limbic-paralimbic and salience cholinergic networks were associated with PDD. Established cholinergic maintenance of the DMN and frontoparietal networks may be prerequisite for cognitive remediation following cholinergic treatment in this condition. PMID:27306636

  19. A Device for Long-Term Perfusion, Imaging, and Electrical Interfacing of Brain Tissue In vitro

    PubMed Central

    Killian, Nathaniel J.; Vernekar, Varadraj N.; Potter, Steve M.; Vukasinovic, Jelena

    2016-01-01

    Distributed microelectrode array (MEA) recordings from consistent, viable, ≥500 μm thick tissue preparations over time periods from days to weeks may aid in studying a wide range of problems in neurobiology that require in vivo-like organotypic morphology. Existing tools for electrically interfacing with organotypic slices do not address necrosis that inevitably occurs within thick slices with limited diffusion of nutrients and gas, and limited removal of waste. We developed an integrated device that enables long-term maintenance of thick, functionally active, brain tissue models using interstitial perfusion and distributed recordings from thick sections of explanted tissue on a perforated multi-electrode array. This novel device allows for automated culturing, in situ imaging, and extracellular multi-electrode interfacing with brain slices, 3-D cell cultures, and potentially other tissue culture models. The device is economical, easy to assemble, and integrable with standard electrophysiology tools. We found that convective perfusion through the culture thickness provided a functional benefit to the preparations as firing rates were generally higher in perfused cultures compared to their respective unperfused controls. This work is a step toward the development of integrated tools for days-long experiments with more consistent, healthier, thicker, and functionally more active tissue cultures with built-in distributed electrophysiological recording and stimulation functionality. The results may be useful for the study of normal processes, pathological conditions, and drug screening strategies currently hindered by the limitations of acute (a few hours long) brain slice preparations. PMID:27065793

  20. Patterns of pulmonary perfusion scans in normal subjects. IV. The prevalence of abnormal scans in smokers 30 to 49 years of age

    SciTech Connect

    Fedullo, P.F.; Kapitan, K.S.; Brewer, N.S.; Ashburn, W.L.; Hartman, M.T.; Moser, K.M.

    1989-05-01

    The usefulness of ventilation-perfusion scans in the diagnosis of pulmonary embolism is limited by the wide range of pulmonary diseases that are associated with abnormal scans, and by the largely undetermined prevalence of abnormal scans in persons without cardiopulmonary disease. In prior studies, we found perfusion defects to be rarely present in young persons and in older nonsmokers. To determine if normal older smokers have a higher prevalence of abnormal ventilation and perfusion scans, we performed six-view /sup 99m/Tc perfusion (Q) scans and /sup 133/Xe ventilation (V) scans in 40 subjects 30 to 49 yr of age who had no known cardiopulmonary disease. Each subject had undergone a history, physical examination, electrocardiogram, spirometry, and posteroanterior chest roentgenogram prior to scanning. All V and Q scans were interpreted blindly and independently by two experienced readers. No subject demonstrated a lobar or segmental defect on two views. One subject had a matched subsegmental defect, and one subject had delayed washout from a subsegmental area of the right upper lobe during V scanning, with a normal Q scan. We conclude that abnormal V and Q scans are uncommon among normal smokers 30 to 49 yr of age.

  1. Brain perfusion SPECT with Brodmann areas analysis in differentiating frontotemporal dementia subtypes.

    PubMed

    Valotassiou, Varvara; Papatriantafyllou, John; Sifakis, Nikolaos; Tzavara, Chara; Tsougos, Ioannis; Psimadas, Dimitrios; Kapsalaki, Eftychia; Fezoulidis, Ioannis; Hadjigeorgiou, George; Georgoulias, Panagiotis

    2014-01-01

    Despite the known validity of clinical diagnostic criteria, significant overlap of clinical symptoms between Frontotemporal dementia (FTD) subtypes exists in several cases, resulting in great uncertainty of the diagnostic boundaries. We evaluated the perfusion between FTD subtypes using brain perfusion (99m)Tc-HMPAO SPECT with Brodmann areas (BA) mapping. NeuroGam software was applied on single photon emission computed tomographic (SPECT) studies for the semi-quantitative evaluation of perfusion in BA and the comparison with the software's normal database. We studied 91 consecutive FTD patients: 21 with behavioural variants (bvFTD), 39 with language variants (lvFTD) [12 with progressive non-fluent aphasia (PNFA), 27 with semantic dementia (SD)], and 31 patients with progressive supranuclear palsy (PSP)/corticobasal degeneration (CBD). Stepwise logistic regression analyses showed that the BA 28L and 32R could independently differentiate bvFTD from lvFTD, while the BA 8R and 25R could discriminate bvFTD from SD and PNFA, respectively. Additionally, BA 7R and 32R were found to discriminate bvFTD from CBD/PSP. The only BA that could differentiate SD from PNFA was 6L. BA 6R and 20L were found to independently differentiate CBD/PSP from lvFTD. Moreover, BA 20L and 22R could discriminate CBD/PSP from PNFA, while BA 6R, 20L and 45R were found to independently discriminate CBD/PSP from SD. Brain perfusion SPECT with BA mapping can be a useful additional tool in differentiating FTD variants by improving the definition of brain areas that are specifically implicated, resulting in a more accurate differential diagnosis in atypical or uncertain forms of FTD. PMID:25387340

  2. Stress myocardial imaging in patients with mitral valve prolapse: evidence of a perfusion abnormality

    SciTech Connect

    Butman, S.; Chandraratna, P.A.; Milne, N.; Olson, H.; Lyons, K.; Aronow, W.S.

    1982-01-01

    Twenty-four patients with mitral valve prolapse underwent cardiac catheterization, exercise testing, and exercise /sup 201/T1 scintigraphy. Of 10 patients with coronary artery disease, six had abnormal scintigrams. Two of these six had exercise-induced reversible defects, two had defects that persisted during redistribution, and two had both reversible and persistent defects. Of 14 patients with normal coronary arteries, five had negative scintigrams. Of the remaining nine patients, two had exercise-induced defects, and seven (50%) had defects involving the inferior or posterior wall that persisted during redistribution. Possible mechanisms for this latter finding are discussed. In contrast to previous reports, exercise /sup 201/T1 scintigraphy was not entirely successful in identifying patients with coronary artery disease in our patients with mitral valve prolapse.

  3. Perfusion deficits in patients with mild traumatic brain injury characterized by dynamic susceptibility contrast MRI.

    PubMed

    Liu, Wei; Wang, Binquan; Wolfowitz, Rachel; Yeh, Ping-Hong; Nathan, Dominic E; Graner, John; Tang, Haiying; Pan, Hai; Harper, Jamie; Pham, Dzung; Oakes, Terrence R; French, Louis M; Riedy, Gerard

    2013-06-01

    Perfusion deficits in patients with mild traumatic brain injury (TBI) from a military population were characterized by dynamic susceptibility contrast perfusion imaging. Relative cerebral blood flow (rCBF) was calculated by a model-independent deconvolution approach from the tracer concentration curves following a bolus injection of gadolinium diethylenetriaminepentaacetate (Gd-DTPA) using both manually and automatically selected arterial input functions (AIFs). Linear regression analysis of the mean values of rCBF from selected regions of interest showed a very good agreement between the two approaches, with a regression coefficient of R = 0.88 and a slope of 0.88. The Bland-Altman plot also illustrated the good agreement between the two approaches, with a mean difference of 0.6 ± 12.4 mL/100 g/min. Voxelwise analysis of rCBF maps from both approaches demonstrated multiple clusters of decreased perfusion (p < 0.01) in the cerebellum, cuneus, cingulate and temporal gyrus in the group with mild TBI relative to the controls. MRI perfusion deficits in the cerebellum and anterior cingulate also correlated (p < 0.01) with neurocognitive results, including the mean reaction time in the Automated Neuropsychological Assessment Metrics and commission error and detection T-scores in the Continuous Performance Test, as well as neurobehavioral scores in the Post-traumatic Stress Disorder Checklist-Civilian Version. In conclusion, rCBF calculated using AIFs selected from an automated approach demonstrated a good agreement with the corresponding results using manually selected AIFs. Group analysis of patients with mild TBI from a military population demonstrated scattered perfusion deficits, which showed significant correlations with measures of verbal memory, speed of reaction time and self-report of stress symptoms. PMID:23456696

  4. Decreased Brain and Placental Perfusion in Omphalopagus Conjoined Twins on Fetal MRI.

    PubMed

    Gorkem, Sureyya Burcu; Kutuk, Mehmet Serdar; Doganay, Selim; Gunes, Tamer; Yildiz, Karamehmet; Kucukaydin, Mustafa

    2016-01-01

    The aim of this study is to evaluate perfusional changes in brain and placenta of omphalopagus conjoined twins and to compare them with singleton fetuses by using diffusion weighted imaging and apparent diffusion coefficient. Fetal MRIs of 28-week-old omphalopagus conjoined twins with a shared liver with two separate gallbladders and portal and hepatic venous systems and three singleton fetuses with unilateral borderline ventriculomegaly at the same gestational week as control group were enrolled retrospectively. There was a significant decrease in ADC values of brain regions (p = 0.018) and placenta (p = 0.005) of conjoined twins compared to the control group. The decreased ADC values in placenta and brain regions in conjoined twins might be due to decreased placental perfusion compared to singleton pregnancy. Our results would be a keystone for future studies which will compare larger group of monochorionic multiple pregnancies with singleton pregnancies. PMID:27034830

  5. Decreased Brain and Placental Perfusion in Omphalopagus Conjoined Twins on Fetal MRI

    PubMed Central

    Kutuk, Mehmet Serdar; Doganay, Selim; Gunes, Tamer; Yildiz, Karamehmet; Kucukaydin, Mustafa

    2016-01-01

    The aim of this study is to evaluate perfusional changes in brain and placenta of omphalopagus conjoined twins and to compare them with singleton fetuses by using diffusion weighted imaging and apparent diffusion coefficient. Fetal MRIs of 28-week-old omphalopagus conjoined twins with a shared liver with two separate gallbladders and portal and hepatic venous systems and three singleton fetuses with unilateral borderline ventriculomegaly at the same gestational week as control group were enrolled retrospectively. There was a significant decrease in ADC values of brain regions (p = 0.018) and placenta (p = 0.005) of conjoined twins compared to the control group. The decreased ADC values in placenta and brain regions in conjoined twins might be due to decreased placental perfusion compared to singleton pregnancy. Our results would be a keystone for future studies which will compare larger group of monochorionic multiple pregnancies with singleton pregnancies. PMID:27034830

  6. SPECT brain perfusion imaging with Tc-99m ECD: Semi-quantitative regional analysis and database mapping

    SciTech Connect

    Schiepers, C.; Hegge, J.; De Roo, M.

    1994-05-01

    Brain SPECT is a well accepted method for the assessment of brain perfusion in various disorders such as epilepsy, stroke, dementia. A program for handling the tomographic data was developed, using a commercial spreadsheet (Microsoft EXCEL) with a set of macro`s for analysis, graphic display and database management of the final results.

  7. [Abnormal cerebral blood flow distributions during the post-ictal phase of febrile status epilepticus in three pediatric patients measured by arterial spin labeling perfusion MRI].

    PubMed

    Hirano, Keiko; Fukuda, Tokiko

    2016-05-01

    The ability to visualize brain perfusion is important for identifying epileptic foci. We present three pediatric cases showing asymmetrical cerebral blood flow (CBF) distributions during the post-ictal phase of febrile status epilepticus measured by arterial spin labeling (ASL) perfusion MRI. During the acute phase, regional CBF measurements in the areas considered including epileptic foci were higher than in the corresponding area of the contralateral hemisphere, though the exact quantitative value varied between cases. We could not identify the correct epileptogenic foci, because those ASL images were taken after the prolonged and extraordinary activation of neurons in the affected area. During the recovery phase, the differences reduced and the average regional CBF measurement was 54.6 ± 6.1 ml/100 g per minute, which was a little less than the number of previous ASL studies. ASL perfusion MRI imaging provides a method for evaluating regional CBF by using magnetically labeled arterial blood water as an endogenous tracer. With this technique, we can repeatedly evaluate both the brain structure and the level of perfusion at the same time. ASL is noninvasive and easily accessible, and therefore it could become a routine tool for assessment of perfusion in daily practice of pediatric neurology. PMID:27349086

  8. Brain white matter abnormality in a newborn infant with congenital adrenal hyperplasia.

    PubMed

    Kaga, Akimune; Saito-Hakoda, Akiko; Uematsu, Mitsugu; Kamimura, Miki; Kanno, Junko; Kure, Shigeo; Fujiwara, Ikuma

    2013-10-01

    Several studies have described brain white matter abnormalities on magnetic resonance imaging (MRI) in children and adults with congenital adrenal hyperplasia (CAH), while the brain MRI findings of newborn infants with CAH have not been clarified. We report a newborn boy with CAH who presented brain white matter abnormality on MRI. He was diagnosed as having salt-wasting CAH with a high 17-OHP level at neonatal screening and was initially treated with hydrocortisone at 8 days of age. On day 11 after birth, he had a generalized tonic seizure. No evidence of serum electrolyte abnormalities was observed. Brain MRI revealed white matter abnormalities that consisted of bilateral small diffuse hyperintensities on T1-weighted images with slightly low intensity on T2-weighted images in the watershed area. Several factors associated with brain white matter abnormalities in adults with CAH, such as increasing age, hypertension, diabetes and corticosteroid replacement, were not applicable. Although the cause of the phenomenon in this case is unclear, brain white matter abnormality could be observed in newborn infants with CAH as well as in adult patients. PMID:24170965

  9. Investigating individual differences in brain abnormalities in autism.

    PubMed Central

    Salmond, C H; de Haan, M; Friston, K J; Gadian, D G; Vargha-Khadem, F

    2003-01-01

    Autism is a psychiatric syndrome characterized by impairments in three domains: social interaction, communication, and restricted and repetitive behaviours and interests. Recent findings implicate the amygdala in the neurobiology of autism. In this paper, we report the results of a series of novel experimental investigations focusing on the structure and function of the amygdala in a group of children with autism. The first section attempts to determine if abnormality of the amygdala can be identified in an individual using magnetic resonance imaging in vivo. Using single-case voxel-based morphometric analyses, abnormality in the amygdala was detected in half the children with autism. Abnormalities in other regions were also found. In the second section, emotional modulation of the startle response was investigated in the group of autistic children. Surprisingly, there were no significant differences between the patterns of emotional modulation of the startle response in the autistic group compared with the controls. PMID:12639337

  10. Functional Brain Network Abnormalities during Verbal Working Memory Performance in Adolescents and Young Adults with Dyslexia

    ERIC Educational Resources Information Center

    Wolf, Robert Christian; Sambataro, Fabio; Lohr, Christina; Steinbrink, Claudia; Martin, Claudia; Vasic, Nenad

    2010-01-01

    Behavioral and functional neuroimaging studies indicate deficits in verbal working memory (WM) and frontoparietal dysfunction in individuals with dyslexia. Additionally, structural brain abnormalities in dyslexics suggest a dysconnectivity of brain regions associated with phonological processing. However, little is known about the functional…

  11. Infantile Autism and Computerized Tomography Brain-Scan Findings: Specific versus Nonspecific Abnormalities.

    ERIC Educational Resources Information Center

    Balottin, Umberto; And Others

    1989-01-01

    The study of computerized tomography brain-scan findings with 45 autistic and 19 control subjects concluded that autism is nonspecifically associated with brain-scan abnormalities, and that other nonorganic, as well as organic, factors should be taken into account. (Author/DB)

  12. Anger camera imaging of perfused and nonperfused brain tissue with intra-arterial 133Xenon technique.

    PubMed

    Guldberg, C; Karle, A; Jørgensen, P B

    1977-12-30

    The regional cerebral blood flow, the regional blood flow distribution, and the regional distribution of perfused (= vital) brain tissue been imaged with a digitalized conventional Anger camer. An analog scaler was placed behind the PM-tubes to reduce dead-time loss. The input pulse rate was doubled to counteract the effect of scaling on counting statistics, and the gamma emission was filtered through 1 mm of brass to increase the fraction of the integral count rate within the 40% window. In this way the 31 keV peak disappears, and Compton scatter and disturbing coincidences are markedly reduced. This improves spatial resolution. The flow parameters are imaged regionally in 3 X 3 mm2 matrix elements after flat field correction and smoothing. The matrix is 64 X 64 interpolated to 128 X 128. Patient studies emphasized the importance of imaging the distribution of perfused and nonperfused tissue in cases of infarctions, dilacerations, etc., where angiography and conventional brain scanning may often be negative. PMID:415863

  13. Developmental vitamin D deficiency causes abnormal brain development.

    PubMed

    Eyles, D W; Feron, F; Cui, X; Kesby, J P; Harms, L H; Ko, P; McGrath, J J; Burne, T H J

    2009-12-01

    There is now clear evidence that vitamin D is involved in brain development. Our group is interested in environmental factors that shape brain development and how this may be relevant to neuropsychiatric diseases including schizophrenia. The origins of schizophrenia are considered developmental. We hypothesised that developmental vitamin D (DVD) deficiency may be the plausible neurobiological explanation for several important epidemiological correlates of schizophrenia namely: (1) the excess winter/spring birth rate, (2) increased incidence of the disease in 2nd generation Afro-Caribbean migrants and (3) increased urban birth rate. Moreover we have published two pieces of direct epidemiological support for this hypothesis in patients. In order to establish the "Biological Plausibility" of this hypothesis we have developed an animal model to study the effect of DVD deficiency on brain development. We do this by removing vitamin D from the diet of female rats prior to breeding. At birth we return all dams to a vitamin D containing diet. Using this procedure we impose a transient, gestational vitamin D deficiency, while maintaining normal calcium levels throughout. The brains of offspring from DVD-deficient dams are characterised by (1) a mild distortion in brain shape, (2) increased lateral ventricle volumes, (3) reduced differentiation and (4) diminished expression of neurotrophic factors. As adults, the alterations in ventricular volume persist and alterations in brain gene and protein expression emerge. Adult DVD-deficient rats also display behavioural sensitivity to agents that induce psychosis (the NMDA antagonist MK-801) and have impairments in attentional processing. In this review we summarise the literature addressing the function of vitamin D on neuronal and non-neuronal cells as well as in vivo results from DVD-deficient animals. Our conclusions from these data are that vitamin D is a plausible biological risk factor for neuropsychiatric disorders and that

  14. Abnormal deposits of chromium in the pathological human brain.

    PubMed Central

    Duckett, S

    1986-01-01

    Three patients presented with encephalopathies: an undiagnosed degenerative disease of the brain, a degenerative cerebral disease in a patient with a myeloma but without a myelomatous deposit in the CNS and a malignant astrocytoma. Perivascular pallidal deposits (vascular siderosis) containing chromium, phosphorus and calcium plus sometimes traces of other elements were present in the three cases. Such deposits were present in the pallidal parenchyma and around vessels in the cerebellum in one case. Calcium and phosphorus are always present in any CNS calcification but the presence of chromium has not been reported. Chromium and its compounds (ingested, injected or inhaled) are toxic to humans and animals in trace doses. Approximately 900 cases of chromium intoxication have been reported and usually have had dermatological or pulmonary lesions (including cancer) but there is no report of involvement of the CNS. Sublethal doses of chromium nitrate injected intraperitoneally in rats and rabbits results in the presence of chromium in the brain. A thorough investigation was made to find the source of the chromium in these patients. Chromium was found to be present in trace amounts in the radiological contrast agents administered to these patients and in the KCl replacement solution and in mylanta, an antacid, given to one case. The evidence that chromium induced pathological changes in these three brains is circumstantial but shows that chromium can penetrate the human brain. This study indicates that vascular siderosis found in the brains of the majority of middle-aged and elderly humans is not simply an anecdotal pathological curiosity, but that it can serve as a route of entry for toxic products into the brain. Images PMID:3958742

  15. Current concepts of optimal cerebral perfusion pressure in traumatic brain injury

    PubMed Central

    Prabhakar, Hemanshu; Sandhu, Kavita; Bhagat, Hemant; Durga, Padmaja; Chawla, Rajiv

    2014-01-01

    Traumatic brain injury (TBI) consists of varied pathophysiological consequences and alteration of intracranial dynamics, reduction of the cerebral blood flow and oxygenation. In the past decade more emphasis has been directed towards optimizing cerebral perfusion pressure (CPP) in patients who have suffered TBI. Injured brain may show signs of ischemia if CPP remains below 50 mmHg and raising the CPP above 60 mmHg may avoid cerebral oxygen desaturation. Though CPP above 70 mmHg is influential in achieving an improved patient outcome, maintenance of CPP higher than 70 mmHg was associated with greater risk of acute respiratory distress syndrome (ARDS). The target CPP has been laid within 50-70 mmHg. Cerebral blood flow and metabolism are heterogeneous after TBI and with regional temporal differences in the requirement for CPP. Brain monitoring techniques such as jugular venous oximetry, monitoring of brain tissue oxygen tension (PbrO2), and cerebral microdialysis provide complementary and specific information that permits the selection of the optimal CPP. This review highlights the rationale for use CPP directed therapies and neuromonitoring to identify optimal CPP of head injured patients. The article also reviews the evidence provided by various clinical trials regarding optimal CPP and their application in the management of head injured patients. PMID:25190937

  16. Childhood Onset Schizophrenia: Cortical Brain Abnormalities as Young Adults

    ERIC Educational Resources Information Center

    Greenstein, Deanna; Lerch, Jason; Shaw, Philip; Clasen, Liv; Giedd, Jay; Gochman, Peter; Rapoport, Judith; Gogtay, Nitin

    2006-01-01

    Background: Childhood onset schizophrenia (COS) is a rare but severe form of the adult onset disorder. While structural brain imaging studies show robust, widespread, and progressive gray matter loss in COS during adolescence, there have been no longitudinal studies of sufficient duration to examine comparability with the more common adult onset…

  17. Brain Structure Abnormalities in Adolescent Girls with Conduct Disorder

    ERIC Educational Resources Information Center

    Fairchild, Graeme; Hagan, Cindy C.; Walsh, Nicholas D.; Passamonti, Luca; Calder, Andrew J.; Goodyer, Ian M.

    2013-01-01

    Background: Conduct disorder (CD) in female adolescents is associated with a range of negative outcomes, including teenage pregnancy and antisocial personality disorder. Although recent studies have documented changes in brain structure and function in male adolescents with CD, there have been no neuroimaging studies of female adolescents with CD.…

  18. Thrombotic thrombocytopenic purpura: MR demonstration of reversible brain abnormalities

    SciTech Connect

    D'Aprile, P.; Carella, A.; Pagliarulo, R. ); Farchi, G. )

    1994-01-01

    We report a case of thrombotic thrombocytopenic purpura evaluated by MR, Multiple hyperintense foci on the TS-weighted images, observed principally in the brain stem and in the region of the basal nuclei, and neurologic signs disappeared after 15 days of therapy. 6 refs., 2 figs.

  19. Structural and functional brain abnormalities place phenocopy frontotemporal dementia (FTD) in the FTD spectrum

    PubMed Central

    Steketee, Rebecca M.E.; Meijboom, Rozanna; Bron, Esther E.; Osse, Robert Jan; de Koning, Inge; Jiskoot, Lize C.; Klein, Stefan; de Jong, Frank Jan; van der Lugt, Aad; van Swieten, John C.; Smits, Marion

    2016-01-01

    Purpose ‘Phenocopy’ frontotemporal dementia (phFTD) patients may clinically mimic the behavioral variant of FTD (bvFTD), but do not show functional decline or abnormalities upon visual inspection of routine neuroimaging. We aimed to identify abnormalities in gray matter (GM) volume and perfusion in phFTD and to assess whether phFTD belongs to the FTD spectrum. We compared phFTD patients with both healthy controls and bvFTD patients. Materials & methods Seven phFTD and 11 bvFTD patients, and 20 age-matched controls underwent structural T1-weighted magnetic resonance imaging (MRI) and 3D pseudo-continuous arterial spin labeling (pCASL) at 3T. Normalized GM (nGM) volumes and perfusion, corrected for partial volume effects, were quantified regionally as well as in the entire supratentorial cortex, and compared between groups taking into account potential confounding effects of gender and scanner. Results PhFTD patients showed cortical atrophy, most prominently in the right temporal lobe. Apart from this regional atrophy, GM volume was generally not different from either controls or from bvFTD. BvFTD however showed extensive frontotemporal atrophy. Perfusion was increased in the left prefrontal cortex compared to bvFTD and to a lesser extent to controls. Conclusion PhFTD and bvFTD show overlapping cortical structural abnormalities indicating a continuum of changes especially in the frontotemporal regions. Together with functional changes suggestive of a compensatory response to incipient pathology in the left prefrontal regions, these findings are the first to support a possible neuropathological etiology of phFTD and suggest that phFTD may be a neurodegenerative disease on the FTD spectrum. PMID:27222795

  20. Synthesis and evaluation of p-iodophentermine (IP) as a brain perfusion imaging agent

    SciTech Connect

    Elmaleh, D.R.; Kizuka, H.; Garneau, J.; Brownell, G.L.; Keiss, M.; B-Kovach, M.; Hanson, R.N.; Strauss, H.W.

    1984-01-01

    Recently N-isopropyl-rho-(/sup 123/I)-iodoamphetamine (IMP) has been reported as a potential cerebral perfusion imaging agent for single-photon emission tomography (SPECT). Since addition of a methyl group in the alpha position of amphetamine results in increased lipophilicity and prolonged residence time of the compound in the brain, the authors synthesized and evaluated the biological behaviour of rho-Iodo phenteramine (IP). IP was prepared by diazotization of rho-aminophentermine followed by decomposition of the diazonium salt with KI. Radioiodinated analog was prepared either by the solid-phase isotopic exchange reaction of Mangner et al or by decomposition of the piperidinotrazine derivative with a radiochemical yield of 40-60%. Biodistribution in rats showed that the brain concentration of /sup 131/I-IP was 1.69 +- 0.53, 1.70 +- 0.23 and 1.72 +- 0.11% injected dose/g tissue at 5, 30 and 60 min respectively, after IV injection. The lung uptake was 10.82% ID/g at 5 min and decreased to 7.7% ID/g at 60 min. The thyroid activity was low during the first hour of the study indicating minimal deiodination on the aryl ring. Sequential images of the brains of three dogs after intracarotid injection of /sup 123/I-IP showed localization of activity to one hemisphere of the brain, and clearance of <15% at one hour. In addition, SPECT images revealed more intense localization in the region of gray matter then white matter in the brain.

  1. scMRI Reveals Large-Scale Brain Network Abnormalities in Autism

    PubMed Central

    Zielinski, Brandon A.; Anderson, Jeffrey S.; Froehlich, Alyson L.; Prigge, Molly B. D.; Nielsen, Jared A.; Cooperrider, Jason R.; Cariello, Annahir N.; Fletcher, P. Thomas; Alexander, Andrew L.; Lange, Nicholas; Bigler, Erin D.; Lainhart, Janet E.

    2012-01-01

    Autism is a complex neurological condition characterized by childhood onset of dysfunction in multiple cognitive domains including socio-emotional function, speech and language, and processing of internally versus externally directed stimuli. Although gross brain anatomic differences in autism are well established, recent studies investigating regional differences in brain structure and function have yielded divergent and seemingly contradictory results. How regional abnormalities relate to the autistic phenotype remains unclear. We hypothesized that autism exhibits distinct perturbations in network-level brain architecture, and that cognitive dysfunction may be reflected by abnormal network structure. Network-level anatomic abnormalities in autism have not been previously described. We used structural covariance MRI to investigate network-level differences in gray matter structure within two large-scale networks strongly implicated in autism, the salience network and the default mode network, in autistic subjects and age-, gender-, and IQ-matched controls. We report specific perturbations in brain network architecture in the salience and default-mode networks consistent with clinical manifestations of autism. Extent and distribution of the salience network, involved in social-emotional regulation of environmental stimuli, is restricted in autism. In contrast, posterior elements of the default mode network have increased spatial distribution, suggesting a ‘posteriorization’ of this network. These findings are consistent with a network-based model of autism, and suggest a unifying interpretation of previous work. Moreover, we provide evidence of specific abnormalities in brain network architecture underlying autism that are quantifiable using standard clinical MRI. PMID:23185305

  2. MRI-based methods to detect placental and fetal brain abnormalities in utero.

    PubMed

    Girardi, Guillermina

    2016-04-01

    There are very few methods for screening women for pregnancy complications. Identification of pregnancies at risk would be of enormous clinical significance as would influence decisions made about pregnancy management and delivery. Adverse pregnancy outcomes such as obstetric antiphospholipid syndrome (APS) and preterm birth (PTB), characterized by placental insufficiency and abnormal fetal brain development, in mice and humans have been associated with activation of inflammatory pathways, in particular the complement cascade. Recently, antibodies against C3 activation products conjugated with contrast agent ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles were used to detect non-invasively sites of inflammation within the placenta and the fetal brain in mouse models of APS and PTB. In utero, magnetic resonance imaging (MRI)-based detection of C3 deposition in the placenta in the APS model was associated with signs of placental insufficiency and intrauterine growth restriction. In both models, fetal brain C3 deposition was associated with cortical axonal cytoarchitecture disruption and increased neurodegeneration. Proton magnetic resonance spectroscopy ((1)H MRS), another non invasive method, is used to identify metabolic abnormalities to predict fetal brain abnormalities. This review describes the recent development of preclinical MRI-based methods for the detection of inflammatory markers of placental insufficiency and abnormal fetal brain development and metabolism to predict pregnancy outcomes. PMID:26187242

  3. Abnormal brain structure in youth who commit homicide

    PubMed Central

    Cope, L.M.; Ermer, E.; Gaudet, L.M.; Steele, V.R.; Eckhardt, A.L.; Arbabshirani, M.R.; Caldwell, M.F.; Calhoun, V.D.; Kiehl, K.A.

    2014-01-01

    Background Violence that leads to homicide results in an extreme financial and emotional burden on society. Juveniles who commit homicide are often tried in adult court and typically spend the majority of their lives in prison. Despite the enormous costs associated with homicidal behavior, there have been no serious neuroscientific studies examining youth who commit homicide. Methods Here we use neuroimaging and voxel-based morphometry to examine brain gray matter in incarcerated male adolescents who committed homicide (n = 20) compared with incarcerated offenders who did not commit homicide (n = 135). Two additional control groups were used to understand further the nature of gray matter differences: incarcerated offenders who did not commit homicide matched on important demographic and psychometric variables (n = 20) and healthy participants from the community (n = 21). Results Compared with incarcerated adolescents who did not commit homicide (n = 135), incarcerated homicide offenders had reduced gray matter volumes in the medial and lateral temporal lobes, including the hippocampus and posterior insula. Feature selection and support vector machine learning classified offenders into the homicide and non-homicide groups with 81% overall accuracy. Conclusions Our results indicate that brain structural differences may help identify those at the highest risk for committing serious violent offenses. PMID:24936430

  4. Partial volume correction of brain perfusion estimates using the inherent signal data of time-resolved arterial spin labeling.

    PubMed

    Ahlgren, André; Wirestam, Ronnie; Petersen, Esben Thade; Ståhlberg, Freddy; Knutsson, Linda

    2014-09-01

    Quantitative perfusion MRI based on arterial spin labeling (ASL) is hampered by partial volume effects (PVEs), arising due to voxel signal cross-contamination between different compartments. To address this issue, several partial volume correction (PVC) methods have been presented. Most previous methods rely on segmentation of a high-resolution T1 -weighted morphological image volume that is coregistered to the low-resolution ASL data, making the result sensitive to errors in the segmentation and coregistration. In this work, we present a methodology for partial volume estimation and correction, using only low-resolution ASL data acquired with the QUASAR sequence. The methodology consists of a T1 -based segmentation method, with no spatial priors, and a modified PVC method based on linear regression. The presented approach thus avoids prior assumptions about the spatial distribution of brain compartments, while also avoiding coregistration between different image volumes. Simulations based on a digital phantom as well as in vivo measurements in 10 volunteers were used to assess the performance of the proposed segmentation approach. The simulation results indicated that QUASAR data can be used for robust partial volume estimation, and this was confirmed by the in vivo experiments. The proposed PVC method yielded probable perfusion maps, comparable to a reference method based on segmentation of a high-resolution morphological scan. Corrected gray matter (GM) perfusion was 47% higher than uncorrected values, suggesting a significant amount of PVEs in the data. Whereas the reference method failed to completely eliminate the dependence of perfusion estimates on the volume fraction, the novel approach produced GM perfusion values independent of GM volume fraction. The intra-subject coefficient of variation of corrected perfusion values was lowest for the proposed PVC method. As shown in this work, low-resolution partial volume estimation in connection with ASL perfusion

  5. Abnormal subcellular localization of GABAA receptor subunits in schizophrenia brain.

    PubMed

    Mueller, T M; Remedies, C E; Haroutunian, V; Meador-Woodruff, J H

    2015-01-01

    Inhibitory neurotransmission is primarily mediated by γ-aminobutyric acid (GABA) activating synaptic GABA type A receptors (GABA(A)R). In schizophrenia, presynaptic GABAergic signaling deficits are among the most replicated findings; however, postsynaptic GABAergic deficits are less well characterized. Our lab has previously demonstrated that although there is no difference in total protein expression of the α1-6, β1-3 or γ2 GABA(A)R subunits in the superior temporal gyrus (STG) in schizophrenia, the α1, β1 and β2 GABA(A)R subunits are abnormally N-glycosylated. N-glycosylation is a posttranslational modification that has important functional roles in protein folding, multimer assembly and forward trafficking. To investigate the impact that altered N-glycosylation has on the assembly and trafficking of GABA(A)Rs in schizophrenia, this study used western blot analysis to measure the expression of α1, α2, β1, β2 and γ2 GABA(A)R subunits in subcellular fractions enriched for endoplasmic reticulum (ER) and synapses (SYN) from STG of schizophrenia (N = 16) and comparison (N = 14) subjects and found evidence of abnormal localization of the β1 and β2 GABA(A)R subunits and subunit isoforms in schizophrenia. The β2 subunit is expressed as three isoforms at 52 kDa (β2(52 kDa)), 50 kDa (β2(50 kDa)) and 48 kDa (β2(48 kDa)). In the ER, we found increased total β2 GABA(A)R subunit (β2(ALL)) expression driven by increased β2(50 kDa), a decreased ratio of β(248 kDa):β2(ALL) and an increased ratio of β2(50 kDa):β2(48 kDa). Decreased ratios of β1:β2(ALL) and β1:β2(50 kDa) in both the ER and SYN fractions and an increased ratio of β2(52 kDa):β(248 kDa) at the synapse were also identified in schizophrenia. Taken together, these findings provide evidence that alterations of N-glycosylation may contribute to GABAergic signaling deficits in schizophrenia by disrupting the assembly and trafficking of GABA(A)Rs. PMID:26241350

  6. Abnormal subcellular localization of GABAA receptor subunits in schizophrenia brain

    PubMed Central

    Mueller, T M; Remedies, C E; Haroutunian, V; Meador-Woodruff, J H

    2015-01-01

    Inhibitory neurotransmission is primarily mediated by γ-aminobutyric acid (GABA) activating synaptic GABA type A receptors (GABAAR). In schizophrenia, presynaptic GABAergic signaling deficits are among the most replicated findings; however, postsynaptic GABAergic deficits are less well characterized. Our lab has previously demonstrated that although there is no difference in total protein expression of the α1–6, β1–3 or γ2 GABAAR subunits in the superior temporal gyrus (STG) in schizophrenia, the α1, β1 and β2 GABAAR subunits are abnormally N-glycosylated. N-glycosylation is a posttranslational modification that has important functional roles in protein folding, multimer assembly and forward trafficking. To investigate the impact that altered N-glycosylation has on the assembly and trafficking of GABAARs in schizophrenia, this study used western blot analysis to measure the expression of α1, α2, β1, β2 and γ2 GABAAR subunits in subcellular fractions enriched for endoplasmic reticulum (ER) and synapses (SYN) from STG of schizophrenia (N=16) and comparison (N=14) subjects and found evidence of abnormal localization of the β1 and β2 GABAAR subunits and subunit isoforms in schizophrenia. The β2 subunit is expressed as three isoforms at 52 kDa (β252 kDa), 50 kDa (β250 kDa) and 48 kDa (β248 kDa). In the ER, we found increased total β2 GABAAR subunit (β2ALL) expression driven by increased β250 kDa, a decreased ratio of β248 kDa:β2ALL and an increased ratio of β250 kDa:β248 kDa. Decreased ratios of β1:β2ALL and β1:β250 kDa in both the ER and SYN fractions and an increased ratio of β252 kDa:β248 kDa at the synapse were also identified in schizophrenia. Taken together, these findings provide evidence that alterations of N-glycosylation may contribute to GABAergic signaling deficits in schizophrenia by disrupting the assembly and trafficking of GABAARs. PMID:26241350

  7. Maternal immune activation and abnormal brain development across CNS disorders.

    PubMed

    Knuesel, Irene; Chicha, Laurie; Britschgi, Markus; Schobel, Scott A; Bodmer, Michael; Hellings, Jessica A; Toovey, Stephen; Prinssen, Eric P

    2014-11-01

    Epidemiological studies have shown a clear association between maternal infection and schizophrenia or autism in the progeny. Animal models have revealed maternal immune activation (mIA) to be a profound risk factor for neurochemical and behavioural abnormalities in the offspring. Microglial priming has been proposed as a major consequence of mIA, and represents a critical link in a causal chain that leads to the wide spectrum of neuronal dysfunctions and behavioural phenotypes observed in the juvenile, adult or aged offspring. Such diversity of phenotypic outcomes in the mIA model are mirrored by recent clinical evidence suggesting that infectious exposure during pregnancy is also associated with epilepsy and, to a lesser extent, cerebral palsy in children. Preclinical research also suggests that mIA might precipitate the development of Alzheimer and Parkinson diseases. Here, we summarize and critically review the emerging evidence that mIA is a shared environmental risk factor across CNS disorders that varies as a function of interactions between genetic and additional environmental factors. We also review ongoing clinical trials targeting immune pathways affected by mIA that may play a part in disease manifestation. In addition, future directions and outstanding questions are discussed, including potential symptomatic, disease-modifying and preventive treatment strategies. PMID:25311587

  8. Detection of the brain response during a cognitive task using perfusion-based event-related functional MRI.

    PubMed

    Yee, S H; Liu, H L; Hou, J; Pu, Y; Fox, P T; Gao, J H

    2000-08-01

    Event-related (ER) fMRI has evoked great interest due to the ability to depict the dynamic features of human brain function during various cognitive tasks. Thus far, all cognitive ER-fMRI studies have been based on blood oxygenation level-dependent (BOLD) contrast techniques. Compared with BOLD-based fMRI techniques, perfusion-based fMRI is able to localize the region of neuronal activity more accurately. This report demonstrates, for the first time, the detection of the brain response to a cognitive task using high temporal resolution perfusion-based ER-fMRI. An English verb generation task was used in this study. Results show that perfusion-based ER-fMRI accurately depicts the activation in Broca's area. Average changes in regional relative cerebral blood flow reached a maximum value of 30.7% at approximately 6.5 s after the start of stimulation and returned to 10% of the maximum value at approximately 12.8 s. Our results show that perfusion-based ER-fMRI is a useful tool for cognitive neuroscience studies, providing comparable temporal resolution and better localization of brain function than BOLD ER-fMRI. PMID:10943717

  9. Comparison of Perfusion- and Diffusion-weighted Imaging Parameters in Brain Tumor Studies Processed Using Different Software Platforms

    PubMed Central

    Milchenko, Mikhail V.; Rajderkar, Dhanashree; LaMontagne, Pamela; Massoumzadeh, Parinaz; Bogdasarian, Ronald; Schweitzer, Gordon; Benzinger, Tammie; Marcus, Dan; Shimony, Joshua S.; Fouke, Sarah Jost

    2015-01-01

    Rationale and Objectives To compare quantitative imaging parameter measures from diffusion- and perfusion-weighted imaging magnetic resonance imaging (MRI) sequences in subjects with brain tumors that have been processed with different software platforms. Materials and Methods Scans from 20 subjects with primary brain tumors were selected from the Comprehensive Neuro-oncology Data Repository at Washington University School of Medicine (WUSM) and the Swedish Neuroscience Institute. MR images were coregistered, and each subject's data set was processed by three software packages: 1) vendor-specific scanner software, 2) research software developed at WUSM, and 3) a commercially available, Food and Drug Administration–approved, processing platform (Nordic Ice). Regions of interest (ROIs) were chosen within the brain tumor and normal nontumor tissue. The results obtained using these methods were compared. Results For diffusion parameters, including mean diffusivity and fractional anisotropy, concordance was high when comparing different processing methods. For perfusion-imaging parameters, a significant variance in cerebral blood volume, cerebral blood flow, and mean transit time (MTT) values was seen when comparing the same raw data processed using different software platforms. Correlation was better with larger ROIs (radii ≥ 5 mm). Greatest variance was observed in MTT. Conclusions Diffusion parameter values were consistent across different software processing platforms. Perfusion parameter values were more variable and were influenced by the software used. Variation in the MTT was especially large suggesting that MTT estimation may be unreliable in tumor tissues using current MRI perfusion methods. PMID:25088833

  10. [Assessment of brain perfusion by arterial spin-labeling MR imaging in qusai-moyamoya disease associated with Graves' disease].

    PubMed

    Hayashi, Hisako; Kawatani, Masao; Ohta, Genrei; Kometani, Hiroshi; Ohshima, Yusei

    2014-07-01

    We report a case of 12-year-old girl with Graves' disease who had presented with deterioration in physical and scholastic performances since 10 years of age. She had an episode of atonic seizure and difficulty in speech. Brain MRI revealed formation of moyamoya vessels and a lesion suggestive of ischemic changes in the left frontal lobe. Because of uncontrollable thyrotoxicosis with anti-thyroid drug, she received a subtotal thyroidectomy. Two months later, she received a shunt operation between left superficial temporal artery and middle cerebral artery. The postoperative arterial spin-labeling MR imaging demonstrated an improvement of brain perfusion in left frontal lobe compared with the preoperative one, and provided comparable results of angiography and acetazolamide-challenged 150-gas PET. Thus, arterial spin-labeling MR imaging seems useful for follow-up evaluation of brain perfusion in qusai-moyamoya disease. PMID:25154228

  11. Localized Drug Application and Sub-Second Voltammetric Dopamine Release Measurements in a Brain Slice Perfusion Device

    PubMed Central

    2015-01-01

    The use of fast scan cyclic voltammetry (FSCV) to measure the release and uptake of dopamine (DA) as well as other biogenic molecules in viable brain tissue slices has gained popularity over the last 2 decades. Brain slices have the advantage of maintaining the functional three-dimensional architecture of the neuronal network while also allowing researchers to obtain multiple sets of measurements from a single animal. In this work, we describe a simple, easy-to-fabricate perfusion device designed to focally deliver pharmacological agents to brain slices. The device incorporates a microfluidic channel that runs under the perfusion bath and a microcapillary that supplies fluid from this channel up to the slice. We measured electrically evoked DA release in brain slices before and after the administration of two dopaminergic stimulants, cocaine and GBR-12909. Measurements were collected at two locations, one directly over and the other 500 μm away from the capillary opening. Using this approach, the controlled delivery of drugs to a confined region of the brain slice and the application of this chamber to FSCV measurements, were demonstrated. Moreover, the consumption of drugs was reduced to tens of microliters, which is thousands of times less than traditional perfusion methods. We expect that this simply fabricated device will be useful in providing spatially resolved delivery of drugs with minimum consumption for voltammetric and electrophysiological studies of a variety of biological tissues both in vitro and ex vivo. PMID:24734992

  12. Absence of Glial α-Dystrobrevin Causes Abnormalities of the Blood-Brain Barrier and Progressive Brain Edema*

    PubMed Central

    Lien, Chun Fu; Mohanta, Sarajo Kumar; Frontczak-Baniewicz, Malgorzata; Swinny, Jerome D.; Zablocka, Barbara; Górecki, Dariusz C.

    2012-01-01

    The blood-brain barrier (BBB) plays a key role in maintaining brain functionality. Although mammalian BBB is formed by endothelial cells, its function requires interactions between endotheliocytes and glia. To understand the molecular mechanisms involved in these interactions is currently a major challenge. We show here that α-dystrobrevin (α-DB), a protein contributing to dystrophin-associated protein scaffolds in astrocytic endfeet, is essential for the formation and functioning of BBB. The absence of α-DB in null brains resulted in abnormal brain capillary permeability, progressively escalating brain edema, and damage of the neurovascular unit. Analyses in situ and in two-dimensional and three-dimensional in vitro models of BBB containing α-DB-null astrocytes demonstrated these abnormalities to be associated with loss of aquaporin-4 water and Kir4.1 potassium channels from glial endfeet, formation of intracellular vacuoles in α-DB-null astrocytes, and defects of the astrocyte-endothelial interactions. These caused deregulation of tight junction proteins in the endothelia. Importantly, α-DB but not dystrophins showed continuous expression throughout development in BBB models. Thus, α-DB emerges as a central organizer of dystrophin-associated protein in glial endfeet and a rare example of a glial protein with a role in maintaining BBB function. Its abnormalities might therefore lead to BBB dysfunction. PMID:23043099

  13. Preliminary research on abnormal brain detection by wavelet-energy and quantum- behaved PSO.

    PubMed

    Zhang, Yudong; Ji, Genlin; Yang, Jiquan; Wang, Shuihua; Dong, Zhengchao; Phillips, Preetha; Sun, Ping

    2016-04-29

    It is important to detect abnormal brains accurately and early. The wavelet-energy (WE) was a successful feature descriptor that achieved excellent performance in various applications; hence, we proposed a WE based new approach for automated abnormal detection, and reported its preliminary results in this study. The kernel support vector machine (KSVM) was used as the classifier, and quantum-behaved particle swarm optimization (QPSO) was introduced to optimize the weights of the SVM. The results based on a 5 × 5-fold cross validation showed the performance of the proposed WE + QPSO-KSVM was superior to ``DWT + PCA + BP-NN'', ``DWT + PCA + RBF-NN'', ``DWT + PCA + PSO-KSVM'', ``WE + BPNN'', ``WE +$ KSVM'', and ``DWT $+$ PCA $+$ GA-KSVM'' w.r.t. sensitivity, specificity, and accuracy. The work provides a novel means to detect abnormal brains with excellent performance. PMID:27163327

  14. The MEG topography and the source model of abnormal neural activities associated with brain lesions

    SciTech Connect

    Ueno, S.; Iramina, K.; Ozaki, H.; Harada, K.

    1986-09-01

    A source model is proposed to simulate spatial distributions of abnormal MEG and EEG activities generated by abnormal neural activities such as the delta activity associated with brain tumors. Brain tumor itself is electrically silent and the spherical shell around the tumor might generate abnormal neural activities. The sources of these neural activities are represented by combinations of multiple current dipoles. The head is assumed to be a spherical volume conductor. Electrical potentials and magnetic fields over the surface of the spheres are calculated. The computer simulation shows that the MEG topography and EEG topography vary variously with combinations of location and orientation of the dipoles. In a special case, however, that the dipoles orient in the same direction or orient radially, the spatial patterns of the MEGs and EEGs generated by numerous dipoles are analogous to those generated by single dipoles.

  15. A brain stress test: Cerebral perfusion during memory encoding in mild cognitive impairment.

    PubMed

    Xie, Long; Dolui, Sudipto; Das, Sandhitsu R; Stockbower, Grace E; Daffner, Molly; Rao, Hengyi; Yushkevich, Paul A; Detre, John A; Wolk, David A

    2016-01-01

    Arterial spin labeled perfusion magnetic resonance imaging (ASL MRI) provides non-invasive quantification of cerebral blood flow, which can be used as a biomarker of brain function due to the tight coupling between cerebral blood flow (CBF) and brain metabolism. A growing body of literature suggests that regional CBF is altered in neurodegenerative diseases. Here we examined ASL MRI CBF in subjects with amnestic mild cognitive impairment (n = 65) and cognitively normal healthy controls (n = 62), both at rest and during performance of a memory-encoding task. As compared to rest, task-enhanced ASL MRI improved group discrimination, which supports the notion that physiologic measures during a cognitive challenge, or "stress test", may increase the ability to detect subtle functional changes in early disease stages. Further, logistic regression analysis demonstrated that ASL MRI and concomitantly acquired structural MRI provide complementary information of disease status. The current findings support the potential utility of task-enhanced ASL MRI as a biomarker in early Alzheimer's disease. PMID:27222794

  16. Development of a realistic, dynamic digital brain phantom for CT perfusion validation

    NASA Astrophysics Data System (ADS)

    Divel, Sarah E.; Segars, W. Paul; Christensen, Soren; Wintermark, Max; Lansberg, Maarten G.; Pelc, Norbert J.

    2016-03-01

    Physicians rely on CT Perfusion (CTP) images and quantitative image data, including cerebral blood flow, cerebral blood volume, and bolus arrival delay, to diagnose and treat stroke patients. However, the quantification of these metrics may vary depending on the computational method used. Therefore, we have developed a dynamic and realistic digital brain phantom upon which CTP scans can be simulated based on a set of ground truth scenarios. Building upon the previously developed 4D extended cardiac-torso (XCAT) phantom containing a highly detailed brain model, this work consisted of expanding the intricate vasculature by semi-automatically segmenting existing MRA data and fitting nonuniform rational B-spline surfaces to the new vessels. Using time attenuation curves input by the user as reference, the contrast enhancement in the vessels changes dynamically. At each time point, the iodine concentration in the arteries and veins is calculated from the curves and the material composition of the blood changes to reflect the expected values. CatSim, a CT system simulator, generates simulated data sets of this dynamic digital phantom which can be further analyzed to validate CTP studies and post-processing methods. The development of this dynamic and realistic digital phantom provides a valuable resource with which current uncertainties and controversies surrounding the quantitative computations generated from CTP data can be examined and resolved.

  17. A brain stress test: Cerebral perfusion during memory encoding in mild cognitive impairment

    PubMed Central

    Xie, Long; Dolui, Sudipto; Das, Sandhitsu R.; Stockbower, Grace E.; Daffner, Molly; Rao, Hengyi; Yushkevich, Paul A.; Detre, John A.; Wolk, David A.

    2016-01-01

    Arterial spin labeled perfusion magnetic resonance imaging (ASL MRI) provides non-invasive quantification of cerebral blood flow, which can be used as a biomarker of brain function due to the tight coupling between cerebral blood flow (CBF) and brain metabolism. A growing body of literature suggests that regional CBF is altered in neurodegenerative diseases. Here we examined ASL MRI CBF in subjects with amnestic mild cognitive impairment (n = 65) and cognitively normal healthy controls (n = 62), both at rest and during performance of a memory-encoding task. As compared to rest, task-enhanced ASL MRI improved group discrimination, which supports the notion that physiologic measures during a cognitive challenge, or “stress test”, may increase the ability to detect subtle functional changes in early disease stages. Further, logistic regression analysis demonstrated that ASL MRI and concomitantly acquired structural MRI provide complementary information of disease status. The current findings support the potential utility of task-enhanced ASL MRI as a biomarker in early Alzheimer's disease. PMID:27222794

  18. Abnormal Corticospinal Excitability in Traumatic Diffuse Axonal Brain Injury

    PubMed Central

    Bernabeu, Montse; Demirtas-Tatlidede, Asli; Opisso, Eloy; Lopez, Raquel; Tormos, Jose Mª

    2009-01-01

    Abstract This study aimed to investigate the cortical motor excitability characteristics in diffuse axonal injury (DAI) due to severe traumatic brain injury (TBI). A variety of excitatory and inhibitory transcranial magnetic stimulation (TMS) paradigms were applied to primary motor cortices of 17 patients and 11 healthy controls. The parameters of testing included resting motor threshold (MT), motor evoked potential (MEP) area under the curve, input-output curves, MEP variability, and silent period (SP) duration. The patient group overall revealed a higher MT, smaller MEP areas, and narrower recruitment curves compared to normal controls (p < 0.05). The alterations in excitability were more pronounced with an increase in DAI severity (p < 0.005) and the presence of motor impairment (p < 0.05), while co-existence of focal lesions did not affect the degree of MEP changes. MEP variability was significantly lower in the group with motor impairment only (p < 0.05). The intracortical inhibition, as revealed by SP duration, did not exhibit any significant differences in any of the patient groups. In conclusion, our findings expand the concept that impairment of the excitatory and inhibitory phenomena in the motor cortex does not proceed in parallel and demonstrate distinct patterns of aberrations in TBI. Furthermore, these data suggest that alterations in the corticospinal excitatory mechanisms are determined predominantly by the severity of DAI, and show a significant relationship with clinical motor dysfunction following severe trauma diffusely affecting the motor cortical connections. In severe TBI, motor and functional recovery might be linked to restitution of normal corticospinal mechanisms, indexed by normalization of the cortical excitability parameters. PMID:19604100

  19. Abnormal Parietal Brain Function in ADHD: Replication and Extension of Previous EEG Beta Asymmetry Findings

    PubMed Central

    Hale, T. Sigi; Kane, Andrea M.; Tung, Kelly L.; Kaminsky, Olivia; McGough, James J.; Hanada, Grant; Loo, Sandra K.

    2014-01-01

    Background: Abundant work indicates ADHD abnormal posterior brain structure and function, including abnormal structural and functional asymmetries and reduced corpus callosum size. However, this literature has attracted considerably less research interest than fronto-striatal findings. Objective: To help address this imbalance, the current study replicates and extends our previous work showing abnormal parietal brain function in ADHD adults during the Conner’s Continuous Performance Test (CPT). Method: Our previous study found that ADHD adults had increased rightward EEG beta (16–21 Hz) asymmetry in inferior parietal brain regions during the CPT (p = 0.00001), and that this metric exhibited a lack of normal correlation (i.e., observed in controls) with beta asymmetry at temporal–parietal regions. We re-tested these effects in a new ADHD sample and with both new and old samples combined. We additionally examined: (a) EEG asymmetry in multiple frequency bands, (b) unilateral effects for all asymmetry findings, and (c) the association between EEG asymmetry and a battery of cognitive tests. Results: We replicated our original findings by demonstrating abnormal rightward inferior parietal beta asymmetry in adults with ADHD during the CPT, and again this metric exhibited abnormal reduced correlation to temporal–parietal beta asymmetry. Novel analyses also demonstrated a broader pattern of rightward beta and theta asymmetry across inferior, superior, and temporal–parietal brain regions, and showed that rightward parietal asymmetry in ADHD was atypically associated with multiple cognitive tests. Conclusion: Abnormal increased rightward parietal EEG beta asymmetry is an important feature of ADHD. We speculate that this phenotype may occur with any form of impaired capacity for top-down task-directed control over sensory encoding functions, and that it may reflect associated increase of attentional shifting and compensatory sustained/selective attention. PMID

  20. Absolute perfusion measurements and associated iodinated contrast agent time course in brain metastasis: a study for contrast-enhanced radiotherapy

    PubMed Central

    Obeid, Layal; Deman, Pierre; Tessier, Alexandre; Balosso, Jacques; Estève, François; Adam, Jean- François

    2014-01-01

    Contrast-enhanced radiotherapy is an innovative treatment that combines the selective accumulation of heavy elements in tumors with stereotactic irradiations using medium energy X-rays. The radiation dose enhancement depends on the absolute amount of iodine reached in the tumor and its time course. Quantitative, postinfusion iodine biodistribution and associated brain perfusion parameters were studied in human brain metastasis as key parameters for treatment feasibility and quality. Twelve patients received an intravenous bolus of iodinated contrast agent (CA) (40 mL, 4 mL/s), followed by a steady-state infusion (160 mL, 0.5 mL/s) to ensure stable intratumoral amounts of iodine during the treatment. Absolute iodine concentrations and quantitative perfusion maps were derived from 40 multislice dynamic computed tomography (CT) images of the brain. The postinfusion mean intratumoral iodine concentration (over 30 minutes) reached 1.94±0.12 mg/mL. Reasonable correlations were obtained between these concentrations and the permeability surface area product and the cerebral blood volume. To our knowledge, this is the first quantitative study of CA biodistribution versus time in brain metastasis. The study shows that suitable and stable amounts of iodine can be reached for contrast-enhanced radiotherapy. Moreover, the associated perfusion measurements provide useful information for the patient recruitment and management processes. PMID:24447951

  1. Combined anatomical and functional imaging using coronary CT angiography and myocardial perfusion SPECT in symptomatic adults with abnormal origin of a coronary artery.

    PubMed

    Uebleis, C; Groebner, M; von Ziegler, F; Becker, A; Rischpler, C; Tegtmeyer, R; Becker, C; Lehner, S; Haug, A R; Cumming, P; Bartenstein, P; Franz, W M; Hacker, M

    2012-10-01

    There has been a lack of standardized workup guidelines for patients with congenital abnormal origin of a coronary artery from the opposite sinus (ACAOS). We aimed to evaluate the use of cardiac hybrid imaging using multi-detector row CT (MDCT) for coronary CT angiography (Coronary CTA) and stress-rest myocardial perfusion SPECT (MPS) for comprehensive diagnosis of symptomatic adult patients with ACAOS. Seventeen symptomatic patients (12 men; 54 ± 13 years) presenting with ACAOS underwent coronary CTA and MPS. Imaging data were analyzed by conventional means, and with additional use of 3D image fusion to allocate stress induced perfusion defects (PD) to their supplying coronary arteries. An anomalous RCA arose from the left anterior sinus in eight patients, an abnormal origin from the right sinus was detected in nine patients (5 left coronary arteries, LCA and 4 LCx). Five of the 17 patients (29%) demonstrated a reversible PD in MPS. There was no correlation between the anatomical variants of ACAOS and the presence of myocardial ischemia. Image fusion enabled the allocation of reversible PD to the anomalous vessel in three patients (two cases in the RCA and the other in the LCA territory); PD in two patients were allocated to the territory of artery giving rise to the anomalies, rather than the anomalies themselves. In a small cohort of adult symptomatic patients with ACAOS anomaly there was no relation found between the specific anatomical variant and the appearance of stress induced myocardial ischemia using cardiac hybrid imaging. PMID:22147107

  2. Abnormal brain aging as a radical-related disease: A new target for nuclear medicine

    SciTech Connect

    Fujibayashi, Y.; Yamamoto, S.; Waki, A. |

    1996-05-01

    DNA damages caused by endogenously produced radicals are closely correlated with aging. Among them, mitochondrial DNA (mtDNA) deletions have been reported as a memory of DNA damage by oxygen radicals. In fact, clinical as well as experimental studies indicated the accumulation of deleted mtDNA in the brain, myocardium and son on, in aged subjects. In our previous work, radioiodinated radical trapping agent, p-iodophenyl-N-t-butylnitrone, and hypoxia imaging agent, Cu-62 diacetyl-bis-N-4-methyl-thiosemicarbazone have been developed for the diagnosis of radical-related diseases, such as ischemic, inflammation, cancer or aging. The aim of the present work was to evaluate these agents for brain aging studies. In our university, an unique animal model, a senescence accelerated model mouse (SAM), has been established. Among the various substrains, SAMP8 showing memory deterioration in its young age ({approximately}3 month) was basically evaluated as an abnormal brain aging model with mtDNA deletion. As controls, SAMR1 showing normal aging and ddY mice were used. MtDNA deletion n the brain was analyzed with polymerase-chain reaction (PCR) method, and relationship between mtDNA deletion and brain uptake of IPBN or Cu-62-ATSM was studied. In 1-3 month old SAMP8 brain, multiple mtDNa deletions were already found and their content was significantly higher than that of SAMR1 or age-matched ddY control. Thus, it was cleared that SAMP8 brain has high tendency to be attacked by endogenously produced oxygen radicals, possibly from its birth. Both IPBN and Cu-ATSM showed significantly higher accumulation in the SAMP8 brain than in the SAMR1 brain, indicating that these agents have high possibility for the early detection of abnormal brain aging as a radical-related disease.

  3. Hemodynamic Segmentation of Brain Perfusion Images with Delay and Dispersion Effects Using an Expectation-Maximization Algorithm

    PubMed Central

    Lu, Chia-Feng; Guo, Wan-Yuo; Chang, Feng-Chi; Huang, Shang-Ran; Chou, Yen-Chun; Wu, Yu-Te

    2013-01-01

    Automatic identification of various perfusion compartments from dynamic susceptibility contrast magnetic resonance brain images can assist in clinical diagnosis and treatment of cerebrovascular diseases. The principle of segmentation methods was based on the clustering of bolus transit-time profiles to discern areas of different tissues. However, the cerebrovascular diseases may result in a delayed and dispersed local perfusion and therefore alter the hemodynamic signal profiles. Assessing the accuracy of the segmentation technique under delayed/dispersed circumstance is critical to accurately evaluate the severity of the vascular disease. In this study, we improved the segmentation method of expectation-maximization algorithm by using the results of hierarchical clustering on whitened perfusion data as initial parameters for a mixture of multivariate Gaussians model. In addition, Monte Carlo simulations were conducted to evaluate the performance of proposed method under different levels of delay, dispersion, and noise of signal profiles in tissue segmentation. The proposed method was used to classify brain tissue types using perfusion data from five normal participants, a patient with unilateral stenosis of the internal carotid artery, and a patient with moyamoya disease. Our results showed that the normal, delayed or dispersed hemodynamics can be well differentiated for patients, and therefore the local arterial input function for impaired tissues can be recognized to minimize the error when estimating the cerebral blood flow. Furthermore, the tissue in the risk of infarct and the tissue with or without the complementary blood supply from the communicating arteries can be identified. PMID:23894386

  4. Correlation of oxygenation and perfusion sensitive MRI with invasive micro probe measurements in healthy mice brain.

    PubMed

    Sedlacik, Jan; Reitz, Matthias; Bolar, Divya S; Adalsteinsson, Elfar; Schmidt, Nils O; Fiehler, Jens

    2015-03-01

    The non-invasive assessment of (patho-)physiological parameters such as, perfusion and oxygenation, is of great importance for the characterization of pathologies e.g., tumors, which may be helpful to better predict treatment response and potential outcome. To better understand the influence of physiological parameters on the investigated oxygenation and perfusion sensitive MRI methods, MRI measurements were correlated with subsequent invasive micro probe measurements during free breathing conditions of air, air+10% CO2 and 100% O2 in healthy mice brain. MRI parameters were the irreversible (R2), reversible (R2') and effective (R2*) transverse relaxation rates, venous blood oxygenation level assessed by quantitative blood oxygenation level dependent (qBOLD) method and cerebral blood flow (CBF) assessed by arterial spin labeling (ASL) using a 7 T small animal MRI scanner. One to two days after MRI, tissue perfusion and pO2 were measured by Laser-Doppler flowmetry and fluorescence quenching micro probes, respectively. The tissue pO2 values were converted to blood oxygen saturation by using the Hill equation. The animals were anesthetized by intra peritoneal injection of ketamine-xylazine-acepromazine (10-2-0.3 mg/ml · kg). Results for normal/hypercapnia/hyperoxia conditions were: R2[s(∧)-1] = 20.7/20.4/20.1, R2*[s(∧)-1] = 31.6/29.6/25.9, R2'[s-(∧)1] = 10.9/9.2/5.7, qBOLD venous blood oxygenation level = 0.43/0.51/0.56, CBF[ml · min(∧)-1 · 100 g(∧)-1] = 70.6/105.5/81.8, Laser-Doppler flowmetry[a.u.] = 89.2/120.2/90.6 and pO2[mmHg] = 6.3/32.3/46.7. All parameters were statistically significantly different with P < 0.001 between all breathing conditions. All MRI and the corresponding micro probe measurements were also statistically significantly (P ≤ 0.03) correlated with each other. However, converting the tissue pO2 to blood oxygen saturation = 0.02/0.34/0.63, showed only very limited agreement with the qBOLD venous blood oxygenation level. We found

  5. Cranial index of children with normal and abnormal brain development in Sokoto, Nigeria: A comparative study

    PubMed Central

    Musa, Muhammad Awwal; Zagga, Abdullahi Daudu; Danfulani, Mohammed; Tadros, Aziz Abdo; Ahmed, Hamid

    2014-01-01

    Background: Abnormal brain development due to neurodevelopmental disorders in children has always been an important concern, but yet has to be considered as a significant public health problem, especially in the low- and middle-income countries including Nigeria. Aims: The aim of this study is to determine whether abnormal brain development in the form of neurodevelopmental disorders causes any deviation in the cranial index of affected children. Materials and Methods: This is a comparative study on the head length, head width, and cranial index of 112 children (72 males and 40 females) diagnosed with at least one abnormal problem in brain development, in the form of a neurodevelopmental disorder (NDD), in comparison with that of 218 normal growing children without any form of NDD (121 males and 97 females), aged 0-18 years old seen at the Usmanu Danfodiyo University Teaching Hospital, Sokoto, over a period of six months, June to December, 2012. The head length and head width of the children was measured using standard anatomical landmarks and cranial index calculated. The data obtained was entered into the Microsoft excel worksheet and analyzed using SPSS version 17. Results: The mean Cephalic Index for normal growing children with normal brain development was 79.82 ± 3.35 and that of the children with abnormal brain development was 77.78 ± 2.95 and the difference between the two groups was not statistically significant (P > 0.05). Conclusion: It can be deduced from this present study that the cranial index does not change in children with neurodevelopmental disorders. PMID:24966551

  6. Mismatch between iodine-123 IMP and technetium-99m HM-PAO brain perfusion imaging in a patient with meningioma

    SciTech Connect

    Hoshi, H.; Jinnouchi, S.; Watanabe, K.; Nakano, S.; Kinoshita, K.

    1987-09-01

    The discrepancy between three methods for cerebral perfusion imagings in the case of a man with meningioma is presented. Imaging with N-isopropyl-P-(I-123) iodoamphetamine (IMP) showed no activity in the tumor. Imaging with Tc-99m hexamethylpropyleneamine oxime (HM-PAO) and the local cerebral blood flow (LCBF) image with Xe-133 inhalation showed high tumor activity. IMP is a more accurate method for imaging the brain tissue blood flow.

  7. SPECT Perfusion Imaging Demonstrates Improvement of Traumatic Brain Injury With Transcranial Near-infrared Laser Phototherapy.

    PubMed

    Henderson, Theodore A; Morries, Larry D

    2015-01-01

    Traumatic brain injury (TBI) is a growing health concern affecting civilians and military personnel. Near-infrared (NIR) light has shown benefits in animal models and human trials for stroke and in animal models for TBI. Diodes emitting low-level NIR often have lacked therapeutic efficacy, perhaps failing to deliver sufficient radiant energy to the necessary depth. In this case report, a patient with moderate TBI documented in anatomical magnetic resonance imaging (MRI) and perfusion single-photon emission computed tomography (SPECT) received 20 NIR treatments in the course of 2 mo using a high-power NIR laser. Symptoms were monitored by clinical examination and a novel patient diary system specifically designed for this patient population. Clinical application of these levels of infrared energy for this patient with TBI yielded highly favorable outcomes with decreased depression, anxiety, headache, and insomnia, whereas cognition and quality of life improved. Neurological function appeared to improve based on changes in the SPECT by quantitative analysis. NIR in the power range of 10-15 W at 810 and 980 nm can safely and effectively treat chronic symptoms of TBI. PMID:26535475

  8. Reduction in radiation dose with reconstruction technique in the brain perfusion CT

    NASA Astrophysics Data System (ADS)

    Kim, H. J.; Lee, H. K.; Song, H.; Ju, M. S.; Dong, K. R.; Chung, W. K.; Cho, M. S.; Cho, J. H.

    2011-12-01

    The principal objective of this study was to verify the utility of the reconstruction imaging technique in the brain perfusion computed tomography (PCT) scan by assessing reductions in the radiation dose and analyzing the generated images. The setting used for image acquisition had a detector coverage of 40 mm, a helical thickness of 0.625 mm, a helical shuttle mode scan type and a rotation time of 0.5 s as the image parameters used for the brain PCT scan. Additionally, a phantom experiment and an animal experiment were carried out. In the phantom and animal experiments, noise was measured in the scanning with the tube voltage fixed at 80 kVp (kilovolt peak) and the level of the adaptive statistical iterative reconstruction (ASIR) was changed from 0% to 100% at 10% intervals. The standard deviation of the CT coefficient was measured three times to calculate the mean value. In the phantom and animal experiments, the absorbed dose was measured 10 times under the same conditions as the ones for noise measurement before the mean value was calculated. In the animal experiment, pencil-type and CT-dedicated ionization chambers were inserted into the central portion of pig heads for measurement. In the phantom study, as the level of the ASIR changed from 0% to 100% under identical scanning conditions, the noise value and dose were proportionally reduced. In our animal experiment, the noise value was lowest when the ASIR level was 50%, unlike in the phantom study. The dose was reduced as in the phantom study.

  9. A mechanical model predicts morphological abnormalities in the developing human brain

    NASA Astrophysics Data System (ADS)

    Budday, Silvia; Raybaud, Charles; Kuhl, Ellen

    2014-07-01

    The developing human brain remains one of the few unsolved mysteries of science. Advancements in developmental biology, neuroscience, and medical imaging have brought us closer than ever to understand brain development in health and disease. However, the precise role of mechanics throughout this process remains underestimated and poorly understood. Here we show that mechanical stretch plays a crucial role in brain development. Using the nonlinear field theories of mechanics supplemented by the theory of finite growth, we model the human brain as a living system with a morphogenetically growing outer surface and a stretch-driven growing inner core. This approach seamlessly integrates the two popular but competing hypotheses for cortical folding: axonal tension and differential growth. We calibrate our model using magnetic resonance images from very preterm neonates. Our model predicts that deviations in cortical growth and thickness induce morphological abnormalities. Using the gyrification index, the ratio between the total and exposed surface area, we demonstrate that these abnormalities agree with the classical pathologies of lissencephaly and polymicrogyria. Understanding the mechanisms of cortical folding in the developing human brain has direct implications in the diagnostics and treatment of neurological disorders, including epilepsy, schizophrenia, and autism.

  10. A mechanical model predicts morphological abnormalities in the developing human brain

    PubMed Central

    Budday, Silvia; Raybaud, Charles; Kuhl, Ellen

    2014-01-01

    The developing human brain remains one of the few unsolved mysteries of science. Advancements in developmental biology, neuroscience, and medical imaging have brought us closer than ever to understand brain development in health and disease. However, the precise role of mechanics throughout this process remains underestimated and poorly understood. Here we show that mechanical stretch plays a crucial role in brain development. Using the nonlinear field theories of mechanics supplemented by the theory of finite growth, we model the human brain as a living system with a morphogenetically growing outer surface and a stretch-driven growing inner core. This approach seamlessly integrates the two popular but competing hypotheses for cortical folding: axonal tension and differential growth. We calibrate our model using magnetic resonance images from very preterm neonates. Our model predicts that deviations in cortical growth and thickness induce morphological abnormalities. Using the gyrification index, the ratio between the total and exposed surface area, we demonstrate that these abnormalities agree with the classical pathologies of lissencephaly and polymicrogyria. Understanding the mechanisms of cortical folding in the developing human brain has direct implications in the diagnostics and treatment of neurological disorders, including epilepsy, schizophrenia, and autism. PMID:25008163

  11. Limbic Metabolic Abnormalities in Remote Traumatic Brain Injury and Correlation With Psychiatric Morbidity and Social Functioning

    PubMed Central

    Capizzano, Arístides A.; Jorge, Ricardo E.; Robinson, Robert G.

    2013-01-01

    The aim of this study was to investigate limbic metabolic abnormalities in remote traumatic brain injury (TBI) and their psychiatric correlates. Twenty patients and 13 age-matched comparison subjects received complete psychiatric evaluation and brain MRI and MR spectroscopy at 3 Tesla. Patients had reduced NAA to creatine ratio in the left hippocampus relative to comparison subjects (mean=1.3 [SD=0.21] compared with mean=1.55 [SD=0.21]; F=10.73, df=1, 30, p=0.003), which correlated with the Social Functioning Examination scores (rs=−0.502, p=0.034). Furthermore, patients with mood disorders had reduced NAA to creatine ratio in the left cingulate relative to patients without mood disorders (1.47 compared with 1.68; F=3.393, df=3, 19, p=0.044). Remote TBI displays limbic metabolic abnormalities, which correlate to social outcome and psychiatric status. PMID:21037120

  12. Abnormal trigeminal nerve microstructure and brain white matter in idiopathic trigeminal neuralgia.

    PubMed

    DeSouza, Danielle D; Hodaie, Mojgan; Davis, Karen D

    2014-01-01

    Idiopathic trigeminal neuralgia (TN) is classically associated with neurovascular compression (NVC) of the trigeminal nerve at the root entry zone (REZ), but NVC-induced structural alterations are not always apparent on conventional imaging. Previous studies report lower fractional anisotropy (FA) in the affected trigeminal nerves of TN patients using diffusion tensor imaging (DTI). However, it is not known if TN patients have trigeminal nerve abnormalities of mean, radial, or axial diffusivity (MD, RD, AD - metrics linked to neuroinflammation and edema) or brain white matter (WM) abnormalities. DTI scans in 18 right-sided TN patients and 18 healthy controls were retrospectively analyzed to extract FA, RD, AD, and MD from the trigeminal nerve REZ, and Tract-Based Spatial Statistics (TBSS) was used to assess brain WM. In patients, the affected trigeminal nerve had lower FA, and higher RD, AD, and MD was found bilaterally compared to controls. Group TBSS (P<0.05, corrected) showed patients had lower FA and increased RD, MD, and AD in brain WM connecting areas involved in the sensory and cognitive-affective dimensions of pain, attention, and motor functions, including the corpus callosum, cingulum, posterior corona radiata, and superior longitudinal fasciculus. These data indicate that TN patients have abnormal tissue microstructure in their affected trigeminal nerves, and as a possible consequence, WM microstructural alterations in the brain. These findings suggest that trigeminal nerve structural abnormalities occur in TN, even if not apparent on gross imaging. Furthermore, MD and RD findings suggest that neuroinflammation and edema may contribute to TN pathophysiology. PMID:23999058

  13. Persistent endothelial abnormalities and blood-brain barrier leak in primary and secondary progressive multiple sclerosis.

    PubMed

    Leech, S; Kirk, J; Plumb, J; McQuaid, S

    2007-02-01

    Epithelial and endothelial tight junctions are pathologically altered in infectious, inflammatory, neoplastic and other diseases. Previously, we described such abnormalities, associated with serum protein leak, in tight junctions of the blood-brain barrier endothelium, in lesional and normal-appearing white matter (NAWM) in secondary progressive (SP) and acute multiple sclerosis (MS). This work is extended here to lesions and NAWM in primary progressive multiple sclerosis (PPMS) and to cortical grey matter in PPMS and SPMS. Immunocytochemistry and semiquantitative confocal microscopy for the tight junction protein zonula occludens 1 (ZO-1) was performed on snap-frozen sections from PPMS (n = 6) and controls (n = 5). Data on 2103 blood vessels were acquired from active lesions (n = 10), inactive lesions (n = 15), NAWM (n = 42) and controls (n = 20). Data on 1218 vessels were acquired from normal-appearing grey matter (PPMS, 5; SPMS, 6; controls, 5). In PPMS abnormal ZO-1 expression in active white matter lesions and NAWM, was found in 42% and 13% of blood vessels, respectively, comparable to previous data from acute and SPMS. In chronic white matter plaques, however, abnormalities were considerably more frequent (37%) in PPMS than in SPMS. Abnormality was also more frequent in normal-appearing grey matter in SPMS (23%) than in PPMS (10%). In summary, abnormal tight junctions in both SPMS and PPMS are most frequent in active white matter lesions but persist in inactive lesions, particularly in PPMS. Abnormal tight junctions are also common in normal-appearing grey matter in SPMS. Persistent endothelial abnormality with leak (PEAL) is therefore widespread but variably expressed in MS and may contribute to disease progression. PMID:17239011

  14. The "selfish brain" hypothesis for metabolic abnormalities in bipolar disorder and schizophrenia.

    PubMed

    Mansur, Rodrigo Barbachan; Brietzke, Elisa

    2012-09-01

    Metabolic abnormalities are frequent in patients with schizophrenia and bipolar disorder (BD), leading to a high prevalence of diabetes and metabolic syndrome in this population. Moreover, mortality rates among patients are higher than in the general population, especially due to cardiovascular diseases. Several neurobiological systems involved in energy metabolism have been shown to be altered in both illnesses; however, the cause of metabolic abnormalities and how they relate to schizophrenia and BD pathophysiology are still largely unknown. The "selfish brain" theory is a recent paradigm postulating that, in order to maintain its own energy supply stable, the brain modulates energy metabolism in the periphery by regulation of both allocation and intake of nutrients. We hypothesize that the metabolic alterations observed in these disorders are a result of an inefficient regulation of the brain energy supply and its compensatory mechanisms. The selfish brain theory can also expand our understanding of stress adaptation and neuroprogression in schizophrenia and BD, and, overall, can have important clinical implications for both illnesses. PMID:25923003

  15. Thalamic abnormalities are a cardinal feature of alcohol-related brain dysfunction.

    PubMed

    Pitel, Anne Lise; Segobin, Shailendra H; Ritz, Ludivine; Eustache, Francis; Beaunieux, Hélène

    2015-07-01

    Two brain networks are particularly affected by the harmful effect of chronic and excessive alcohol consumption: the circuit of Papez and the frontocerebellar circuit, in both of which the thalamus plays a key role. Shrinkage of the thalamus is more severe in alcoholics with Korsakoff's syndrome (KS) than in those without neurological complication (AL). In accordance with the gradient effect of thalamic abnormalities between AL and KS, the pattern of brain dysfunction in the Papez's circuit results in anterograde amnesia in KS and only mild-to-moderate episodic memory disorders in AL. On the opposite, dysfunction of the frontocerebellar circuit results in a similar pattern of working memory and executive deficits in the AL and KS. Several hypotheses, mutually compatible, can be drawn to explain that the severe thalamic shrinkage observed in KS has different consequences in the neuropsychological profile associated with the two brain networks. PMID:25108034

  16. Positron Emission Tomography Reveals Abnormal Topological Organization in Functional Brain Network in Diabetic Patients

    PubMed Central

    Qiu, Xiangzhe; Zhang, Yanjun; Feng, Hongbo; Jiang, Donglang

    2016-01-01

    Recent studies have demonstrated alterations in the topological organization of structural brain networks in diabetes mellitus (DM). However, the DM-related changes in the topological properties in functional brain networks are unexplored so far. We therefore used fluoro-D-glucose positron emission tomography (FDG-PET) data to construct functional brain networks of 73 DM patients and 91 sex- and age-matched normal controls (NCs), followed by a graph theoretical analysis. We found that both DM patients and NCs had a small-world topology in functional brain network. In comparison to the NC group, the DM group was found to have significantly lower small-world index, lower normalized clustering coefficients and higher normalized characteristic path length. Moreover, for diabetic patients, the nodal centrality was significantly reduced in the right rectus, the right cuneus, the left middle occipital gyrus, and the left postcentral gyrus, and it was significantly increased in the orbitofrontal region of the left middle frontal gyrus, the left olfactory region, and the right paracentral lobule. Our results demonstrated that the diabetic brain was associated with disrupted topological organization in the functional PET network, thus providing functional evidence for the abnormalities of brain networks in DM. PMID:27303259

  17. Positron Emission Tomography Reveals Abnormal Topological Organization in Functional Brain Network in Diabetic Patients.

    PubMed

    Qiu, Xiangzhe; Zhang, Yanjun; Feng, Hongbo; Jiang, Donglang

    2016-01-01

    Recent studies have demonstrated alterations in the topological organization of structural brain networks in diabetes mellitus (DM). However, the DM-related changes in the topological properties in functional brain networks are unexplored so far. We therefore used fluoro-D-glucose positron emission tomography (FDG-PET) data to construct functional brain networks of 73 DM patients and 91 sex- and age-matched normal controls (NCs), followed by a graph theoretical analysis. We found that both DM patients and NCs had a small-world topology in functional brain network. In comparison to the NC group, the DM group was found to have significantly lower small-world index, lower normalized clustering coefficients and higher normalized characteristic path length. Moreover, for diabetic patients, the nodal centrality was significantly reduced in the right rectus, the right cuneus, the left middle occipital gyrus, and the left postcentral gyrus, and it was significantly increased in the orbitofrontal region of the left middle frontal gyrus, the left olfactory region, and the right paracentral lobule. Our results demonstrated that the diabetic brain was associated with disrupted topological organization in the functional PET network, thus providing functional evidence for the abnormalities of brain networks in DM. PMID:27303259

  18. Evaluating the feasibility of C-arm CT for brain perfusion imaging: an in vitro study

    NASA Astrophysics Data System (ADS)

    Ganguly, A.; Fieselmann, A.; Boese, J.; Rohkohl, C.; Hornegger, J.; Fahrig, R.

    2010-02-01

    C-arm cone-beam CT (CBCT) is increasingly being used to supplement 2D real-time data with 3D information. Temporal resolution is currently limited by the mechanical rotation speed of the C-arm which presents challenges for applications such as imaging of contrast flow in brain perfusion CT (PCT). We present a novel scheme where multiple scans are obtained at different start times with respect to the contrast injection. The data is interleaved temporally and interpolated during 3D reconstruction. For evaluation we developed a phantom to generate the range of temporal frequencies relevant for PCT. The highest requirements are for imaging the arterial input function (AIF) modeled as a gamma-variate function. Fourier transform analysis of the AIF showed that 90% of the spectral energy is contained at frequencies lower than 0.08Hz. We built an acrylic cylinder phantom of diameter 1.9 cm, with 25 sections of 1cm length each. Iodine concentration in each compartment was varied to produce a half-cycle sinusoid variation in HU in version 1, and 2.5 cycles in version 2 of the phantom. The phantom was moved linearly at speeds from 0.5cm/s to 4cm/s (temporal frequencies of 0.02Hz to 0.09Hz) and imaged using a C-arm system. Phantom CT numbers in a slice reconstructed at isocenter were measured and sinusoidal fits to the data were obtained. The fitted sinusoids had frequencies that were within 3+/-2% of the actual temporal frequencies of the sinusoid. This suggests that the imaging and reconstruction scheme is adequate for PCT imaging.

  19. Comparison of Partial Volume Effects in Arterial and Venous Contrast Curves in CT Brain Perfusion Imaging

    PubMed Central

    Riordan, Alan J.; Bennink, Edwin; Dankbaar, Jan Willem; Viergever, Max A.; Velthuis, Birgitta K.; Smit, Ewoud J.; de Jong, Hugo W. A. M.

    2014-01-01

    Purpose In brain CT perfusion (CTP), the arterial contrast bolus is scaled to have the same area under the curve (AUC) as the venous outflow to correct for partial volume effects (PVE). This scaling is based on the assumption that large veins are unaffected by PVE. Measurement of the internal carotid artery (ICA), usually unaffected by PVE due to its large diameter, may avoid the need for partial volume correction. The aims of this work are to examine i) the assumptions behind PVE correction and ii) the potential of selecting the ICA obviating correction for PVE. Methods The AUC of the ICA and sagittal sinus were measured in CTP datasets from 52 patients. The AUCs were determined by i) using commercial CTP software based on a Gaussian curve-fitting to the time attenuation curve, and ii) by simple integration of the time attenuation curve over a time interval. In addition, frames acquired up to 3 minutes after first bolus passage were used to examine the ratio of arterial and venous enhancement. The impact of selecting the ICA without PVE correction was illustrated by reporting cerebral blood volume (CBV) measurements. Results In 49 of 52 patients, the AUC of the ICA was significantly larger than that of the sagittal sinus (p = 0.017). Measured after the first pass bolus, contrast enhancement remained 50% higher in the ICA just after the first pass bolus, and 30% higher 3 minutes later. CBV measurements were significantly lowered when the ICA was used without PVE correction. Conclusions Contradicting the assumptions underlying PVE correction, contrast in the ICA was significantly higher than in the sagittal sinus, even 3 minutes after the first pass of the contrast bolus. PVE correction might lead to overestimation of CBV if the CBV is calculated using the AUC of the time attenuation curves. PMID:24858308

  20. CT-perfusion imaging of the human brain: advanced deconvolution analysis using circulant singular value decomposition.

    PubMed

    Wittsack, H J; Wohlschläger, A M; Ritzl, E K; Kleiser, R; Cohnen, M; Seitz, R J; Mödder, U

    2008-01-01

    According to indicator dilution theory tissue time-concentration curves have to be deconvolved with arterial input curves in order to get valid perfusion results. Our aim was to adapt and validate a deconvolution method originating from magnetic resonance techniques and apply it to the calculation of dynamic contrast enhanced computed tomography perfusion imaging. The application of a block-circulant matrix approach for singular value decomposition renders the analysis independent of tracer arrival time to improve the results. PMID:18029143

  1. A non-linear regression method for CT brain perfusion analysis

    NASA Astrophysics Data System (ADS)

    Bennink, E.; Oosterbroek, J.; Viergever, M. A.; Velthuis, B. K.; de Jong, H. W. A. M.

    2015-03-01

    CT perfusion (CTP) imaging allows for rapid diagnosis of ischemic stroke. Generation of perfusion maps from CTP data usually involves deconvolution algorithms providing estimates for the impulse response function in the tissue. We propose the use of a fast non-linear regression (NLR) method that we postulate has similar performance to the current academic state-of-art method (bSVD), but that has some important advantages, including the estimation of vascular permeability, improved robustness to tracer-delay, and very few tuning parameters, that are all important in stroke assessment. The aim of this study is to evaluate the fast NLR method against bSVD and a commercial clinical state-of-art method. The three methods were tested against a published digital perfusion phantom earlier used to illustrate the superiority of bSVD. In addition, the NLR and clinical methods were also tested against bSVD on 20 clinical scans. Pearson correlation coefficients were calculated for each of the tested methods. All three methods showed high correlation coefficients (>0.9) with the ground truth in the phantom. With respect to the clinical scans, the NLR perfusion maps showed higher correlation with bSVD than the perfusion maps from the clinical method. Furthermore, the perfusion maps showed that the fast NLR estimates are robust to tracer-delay. In conclusion, the proposed fast NLR method provides a simple and flexible way of estimating perfusion parameters from CT perfusion scans, with high correlation coefficients. This suggests that it could be a better alternative to the current clinical and academic state-of-art methods.

  2. Age at First Episode Modulates Diagnosis-Related Structural Brain Abnormalities in Psychosis.

    PubMed

    Pina-Camacho, Laura; Del Rey-Mejías, Ángel; Janssen, Joost; Bioque, Miquel; González-Pinto, Ana; Arango, Celso; Lobo, Antonio; Sarró, Salvador; Desco, Manuel; Sanjuan, Julio; Lacalle-Aurioles, Maria; Cuesta, Manuel J; Saiz-Ruiz, Jerónimo; Bernardo, Miguel; Parellada, Mara

    2016-03-01

    Brain volume and thickness abnormalities have been reported in first-episode psychosis (FEP). However, it is unclear if and how they are modulated by brain developmental stage (and, therefore, by age at FEP as a proxy). This is a multicenter cross-sectional case-control brain magnetic resonance imaging (MRI) study. Patients with FEP (n = 196), 65.3% males, with a wide age at FEP span (12-35 y), and healthy controls (HC) (n = 157), matched for age, sex, and handedness, were scanned at 6 sites. Gray matter volume and thickness measurements were generated for several brain regions using FreeSurfer software. The nonlinear relationship between age at scan (a proxy for age at FEP in patients) and volume and thickness measurements was explored in patients with schizophrenia spectrum disorders (SSD), affective psychoses (AFP), and HC. Earlier SSD cases (ie, FEP before 15-20 y) showed significant volume and thickness deficits in frontal lobe, volume deficits in temporal lobe, and volume enlargements in ventricular system and basal ganglia. First-episode AFP patients had smaller cingulate cortex volume and thicker temporal cortex only at early age at FEP (before 18-20 y). The AFP group also had age-constant (12-35-y age span) volume enlargements in the frontal and parietal lobe. Our study suggests that age at first episode modulates the structural brain abnormalities found in FEP patients in a nonlinear and diagnosis-dependent manner. Future MRI studies should take these results into account when interpreting samples with different ages at onset and diagnosis. PMID:26371339

  3. Abnormal brain activation during directed forgetting of negative memory in depressed patients.

    PubMed

    Yang, Wenjing; Chen, Qunlin; Liu, Peiduo; Cheng, Hongsheng; Cui, Qian; Wei, Dongtao; Zhang, Qinglin; Qiu, Jiang

    2016-01-15

    The frequent occurrence of uncontrollable negative thoughts and memories is a troubling aspect of depression. Thus, knowledge on the mechanism underlying intentional forgetting of these thoughts and memories is crucial to develop an effective emotion regulation strategy for depressed individuals. Behavioral studies have demonstrated that depressed participants cannot intentionally forget negative memories. However, the neural mechanism underlying this process remains unclear. In this study, participants completed the directed forgetting task in which they were instructed to remember or forget neutral or negative words. Standard univariate analysis based on the General Linear Model showed that the depressed participants have higher activation in the inferior frontal gyrus (IFG), superior frontal gyrus (SFG), superior parietal gyrus (SPG), and inferior temporal gyrus (ITG) than the healthy individuals. The results indicated that depressed participants recruited more frontal and parietal inhibitory control resources to inhibit the TBF items, but the attempt still failed because of negative bias. We also used the Support Vector Machine to perform multivariate pattern classification based on the brain activation during directed forgetting. The pattern of brain activity in directed forgetting of negative words allowed correct group classification with an overall accuracy of 75% (P=0.012). The brain regions which are critical for this discrimination showed abnormal activation when depressed participants were attempting to forget negative words. These results indicated that the abnormal neural circuitry when depressed individuals tried to forget the negative words might provide neurobiological markers for depression. PMID:26639452

  4. Co-localisation of abnormal brain structure and function in specific language impairment

    PubMed Central

    Badcock, Nicholas A.; Bishop, Dorothy V.M.; Hardiman, Mervyn J.; Barry, Johanna G.; Watkins, Kate E.

    2012-01-01

    We assessed the relationship between brain structure and function in 10 individuals with specific language impairment (SLI), compared to six unaffected siblings, and 16 unrelated control participants with typical language. Voxel-based morphometry indicated that grey matter in the SLI group, relative to controls, was increased in the left inferior frontal cortex and decreased in the right caudate nucleus and superior temporal cortex bilaterally. The unaffected siblings also showed reduced grey matter in the caudate nucleus relative to controls. In an auditory covert naming task, the SLI group showed reduced activation in the left inferior frontal cortex, right putamen, and in the superior temporal cortex bilaterally. Despite spatially coincident structural and functional abnormalities in frontal and temporal areas, the relationships between structure and function in these regions were different. These findings suggest multiple structural and functional abnormalities in SLI that are differently associated with receptive and expressive language processing. PMID:22137677

  5. Fish consumption and risk of subclinical brain abnormalities on MRI in older adults

    PubMed Central

    Virtanen, J K.; Siscovick, D S.; Longstreth, W T.; Kuller, L H.; Mozaffarian, D

    2008-01-01

    Objective: To investigate the association between fish consumption and subclinical brain abnormalities. Methods: In the population-based Cardiovascular Health Study, 3,660 participants age ≥65 underwent an MRI scan in 1992–1994. Five years later, 2,313 were scanned. Neuroradiologists assessed MRI scans in a standardized and blinded manner. Food frequency questionnaires were used to assess dietary intakes. Participants with known cerebrovascular disease were excluded from the analyses. Results: After adjustment for multiple risk factors, the risk of having one or more prevalent subclinical infarcts was lower among those consuming tuna/other fish ≥3 times/week, compared to <1/month (relative risk 0.74, 95% CI = 0.54–1.01, p = 0.06, p trend = 0.03). Tuna/other fish consumption was also associated with trends toward lower incidence of subclinical infarcts. Additionally, tuna/other fish intake was associated with better white matter grade, but not with sulcal and ventricular grades, markers of brain atrophy. No significant associations were found between fried fish consumption and any subclinical brain abnormalities. Conclusions: Among older adults, modest consumption of tuna/other fish, but not fried fish, was associated with lower prevalence of subclinical infarcts and white matter abnormalities on MRI examinations. Our results add to prior evidence that suggest that dietary intake of fish with higher eicosapentaenoic acid and docosahexaenoic acid content, and not fried fish intake, may have clinically important health benefits. GLOSSARY ARR = absolute risk reduction; BMI = body mass index; CHD = coronary heart disease; CHS = Cardiovascular Health Study; DHA = docosahexaenoic acid; EPA = eicosapentaenoic acid; FFQ = food frequency questionnaire; HDL-C = high-density lipoprotein cholesterol; LDL-C = low-density lipoprotein cholesterol; PUFA = polyunsaturated fatty acid; RR = relative risk. PMID:18678827

  6. Posterior brain white matter abnormalities in older adults with probable mild cognitive impairment

    PubMed Central

    Cooley, Sarah A.; Cabeen, Ryan P.; Laidlaw, David H.; Conturo, Thomas E.; Lane, Elizabeth M.; Heaps, Jodi M.; Bolzenius, Jacob D.; Baker, Laurie M.; Salminen, Lauren E.; Scott, Staci E.; Paul, Robert H.

    2014-01-01

    Objective Much of the mild cognitive impairment (MCI) neuroimaging literature has exclusively focused on regions associated with Alzheimer’s disease. Little research has examined white matter abnormalities of other brain regions, including those associated with visual processing, despite evidence that other brain abnormalities appear in these regions in early disease stages. Method Diffusion tensor imaging (DTI) was utilized to examine participants (n = 44) that completed baseline imaging as part of a longitudinal healthy aging study. Participants were divided into two groups based on scores from the Montreal Cognitive Assessment (MoCA), a brief screening tool for MCI. Participants who scored < 26 were defined as “probable MCI” while those who scored ≥ 26 were labled cognitively healthy. Two DTI indices were analyzed including fractional anisotropy (FA) and mean diffusivity (MD). DTI values for white matter in the lingual gyrus, cuneus, pericalcarine, fusiform gyrus and all four lobes were compared using MANOVA. Regression analyses examined the relationship between DTI indices and total MoCA score. Results Results revealed significantly lower FA in the probable MCI group in the cuneus, fusiform, pericalcarine and occipital lobe, and significantly higher MD in the temporal lobe. Fusiform FA and temporal lobe MD were significantly related to total MoCA score after accounting for age and education. Conclusions Results indicate that there are posterior white matter microstructural changes in individuals with probable MCI. These differences demonstrate that white matter abnormalities are evident among individuals with probable MCI in regions beyond those commonly associated with Alzheimer’s disease and anterior brain aging patterns. PMID:25523313

  7. Brain abnormalities in human obesity: a voxel-based morphometric study.

    PubMed

    Pannacciulli, Nicola; Del Parigi, Angelo; Chen, Kewei; Le, Duc Son N T; Reiman, Eric M; Tataranni, Pietro A

    2006-07-15

    Obesity is accompanied by damage to several tissues. Overweight is a risk factor for Alzheimer's disease and other neurodegenerative disorders. Whether structural abnormalities associated with excess body fat may also occur in the brain is unknown. We sought to determine to what extent excess body fat is associated with regional alterations in brain structure using voxel-based morphometry (VBM), a whole-brain unbiased technique based upon high-definition 3D magnetic resonance imaging (MRI) scans normalized into a common standard space and allowing for an objective assessment of neuroanatomical differences throughout the brain. We studied 24 obese (11 male, 13 female; age: 32 +/- 8 years; body mass index [BMI]: 39.4 +/- 4.7 kg/m2) and 36 lean (25 male, 11 female; mean age: 33 +/- 9 years; BMI: 22.7 +/- 2.2 kg/m2) non-diabetic Caucasians. In comparison with the group of lean subjects, the group of obese individuals had significantly lower gray matter density in the post-central gyrus, frontal operculum, putamen, and middle frontal gyrus (P < 0.01 after adjustment for sex, age, handedness, global tissue density, and multiple comparisons). BMI was negatively associated with GM density of the left post-central gyrus in obese but not lean subjects. This study identified structural brain differences in human obesity in several brain areas previously involved in the regulation of taste, reward, and behavioral control. These alterations may either precede obesity, representing a neural marker of increased propensity to gaining weight, or occur as a consequence of obesity, indicating that also the brain is affected by increased adiposity. PMID:16545583

  8. Skeletal and Brain Abnormalities in Fucosidosis, a Rare Lysosomal Storage Disorder

    PubMed Central

    Malatt, Camille; Koning, Jeffrey L.; Naheedy, John

    2015-01-01

    Fucosidosis is a rare genetic lysosomal storage disorder caused by a deficiency in alpha- L-fucosidase. We present a case of a 4-year, 11-month-old girl with developmental delay, as well as skeletal and brain abnormalities as shown on X-ray and MRI. Her spinal X- rays demonstrated lumbar kyphosis and anterior beaking of lumbar vertebral bodies. Lower iliac segment constriction, increased angulation of the acetabular roof, and widening of the ribs were apparent on abdominal X-ray. Her brain MRI illustrated symmetric T1 hyperintensity and T2 hypointensity of the bilateral globi pallidi. The case report highlights clinical and imaging findings of this rare disease. PMID:26622931

  9. Zika Virus Infection with Prolonged Maternal Viremia and Fetal Brain Abnormalities.

    PubMed

    Driggers, Rita W; Ho, Cheng-Ying; Korhonen, Essi M; Kuivanen, Suvi; Jääskeläinen, Anne J; Smura, Teemu; Rosenberg, Avi; Hill, D Ashley; DeBiasi, Roberta L; Vezina, Gilbert; Timofeev, Julia; Rodriguez, Fausto J; Levanov, Lev; Razak, Jennifer; Iyengar, Preetha; Hennenfent, Andrew; Kennedy, Richard; Lanciotti, Robert; du Plessis, Adre; Vapalahti, Olli

    2016-06-01

    The current outbreak of Zika virus (ZIKV) infection has been associated with an apparent increased risk of congenital microcephaly. We describe a case of a pregnant woman and her fetus infected with ZIKV during the 11th gestational week. The fetal head circumference decreased from the 47th percentile to the 24th percentile between 16 and 20 weeks of gestation. ZIKV RNA was identified in maternal serum at 16 and 21 weeks of gestation. At 19 and 20 weeks of gestation, substantial brain abnormalities were detected on ultrasonography and magnetic resonance imaging (MRI) without the presence of microcephaly or intracranial calcifications. On postmortem analysis of the fetal brain, diffuse cerebral cortical thinning, high ZIKV RNA loads, and viral particles were detected, and ZIKV was subsequently isolated. PMID:27028667

  10. Retinal microvascular abnormalities and subclinical magnetic resonance imaging brain infarct: a prospective study

    PubMed Central

    Cheung, Ning; Mosley, Thomas; Islam, Amirul; Kawasaki, Ryo; Sharrett, A. Richey; Klein, Ronald; Coker, Laura H.; Knopman, David S.; Shibata, Dean K.; Catellier, Diane

    2010-01-01

    Silent brain infarct and white matter lesions are common radiological findings associated with the risk of clinical stroke and dementia; however, our understanding of their underlying pathophysiology and risk factors remains limited. This study aimed to determine whether assessment of retinal microvascular abnormalities could provide prognostic information regarding the risk of brain infarct and white matter lesions on magnetic resonance imaging. This study is based on a subset of 810 middle-aged persons without clinical stroke or baseline magnetic resonance imaging infarct enrolled in the Atherosclerosis Risk in Communities Brain Magnetic Resonance Imaging Study, a prospective, population-based study. Participants had a baseline magnetic resonance imaging brain examination and retinal photography in 1993–1995, and returned for a repeat magnetic resonance imaging examination in 2004–2006. Magnetic resonance images were graded for presence of any cerebral infarct, infarct with lacunar characteristics and white matter lesions according to standardized protocols. Retinal photographs were graded for presence of retinopathy lesions and retinal arteriolar abnormalities following a standardized protocol. Over a median follow-up of 10.5 years, 164 (20.2%) participants developed cerebral infarct, 131 (16.2%) developed lacunar infarct, 182 (24.2%) developed new white matter lesions and 49 (6.1%) had evidence of white matter lesion progression. After adjusting for age, gender, race, cardiovascular risk factors and carotid intima-media thickness, retinopathy was associated with incident cerebral infarct (odds ratio 2.82; 95% confidence interval 1.42–5.60) and lacunar infarct (odds ratio 3.19; 95% confidence interval: 1.56–6.50). Retinal arteriovenous nicking was associated with incident cerebral infarct (odds ratio 2.82; 95% confidence interval: 1.66–4.76), lacunar infarct (odds ratio 2.48; 95% confidence interval: 1.39–4.40) and white matter lesion incidence (odds

  11. Abnormal structural connectivity in the brain networks of children with hydrocephalus

    PubMed Central

    Yuan, Weihong; Holland, Scott K.; Shimony, Joshua S.; Altaye, Mekibib; Mangano, Francesco T.; Limbrick, David D.; Jones, Blaise V.; Nash, Tiffany; Rajagopal, Akila; Simpson, Sarah; Ragan, Dustin; McKinstry, Robert C.

    2015-01-01

    Increased intracranial pressure and ventriculomegaly in children with hydrocephalus are known to have adverse effects on white matter structure. This study seeks to investigate the impact of hydrocephalus on topological features of brain networks in children. The goal was to investigate structural network connectivity, at both global and regional levels, in the brains in children with hydrocephalus using graph theory analysis and diffusion tensor tractography. Three groups of children were included in the study (29 normally developing controls, 9 preoperative hydrocephalus patients, and 17 postoperative hydrocephalus patients). Graph theory analysis was applied to calculate the global network measures including small-worldness, normalized clustering coefficients, normalized characteristic path length, global efficiency, and modularity. Abnormalities in regional network parameters, including nodal degree, local efficiency, clustering coefficient, and betweenness centrality, were also compared between the two patients groups (separately) and the controls using two tailed t-test at significance level of p < 0.05 (corrected for multiple comparison). Children with hydrocephalus in both the preoperative and postoperative groups were found to have significantly lower small-worldness and lower normalized clustering coefficient than controls. Children with hydrocephalus in the postoperative group were also found to have significantly lower normalized characteristic path length and lower modularity. At regional level, significant group differences (or differences at trend level) in regional network measures were found between hydrocephalus patients and the controls in a series of brain regions including the medial occipital gyrus, medial frontal gyrus, thalamus, cingulate gyrus, lingual gyrus, rectal gyrus, caudate, cuneus, and insular. Our data showed that structural connectivity analysis using graph theory and diffusion tensor tractography is sensitive to detect

  12. Abnormal structural connectivity in the brain networks of children with hydrocephalus.

    PubMed

    Yuan, Weihong; Holland, Scott K; Shimony, Joshua S; Altaye, Mekibib; Mangano, Francesco T; Limbrick, David D; Jones, Blaise V; Nash, Tiffany; Rajagopal, Akila; Simpson, Sarah; Ragan, Dustin; McKinstry, Robert C

    2015-01-01

    Increased intracranial pressure and ventriculomegaly in children with hydrocephalus are known to have adverse effects on white matter structure. This study seeks to investigate the impact of hydrocephalus on topological features of brain networks in children. The goal was to investigate structural network connectivity, at both global and regional levels, in the brains in children with hydrocephalus using graph theory analysis and diffusion tensor tractography. Three groups of children were included in the study (29 normally developing controls, 9 preoperative hydrocephalus patients, and 17 postoperative hydrocephalus patients). Graph theory analysis was applied to calculate the global network measures including small-worldness, normalized clustering coefficients, normalized characteristic path length, global efficiency, and modularity. Abnormalities in regional network parameters, including nodal degree, local efficiency, clustering coefficient, and betweenness centrality, were also compared between the two patients groups (separately) and the controls using two tailed t-test at significance level of p < 0.05 (corrected for multiple comparison). Children with hydrocephalus in both the preoperative and postoperative groups were found to have significantly lower small-worldness and lower normalized clustering coefficient than controls. Children with hydrocephalus in the postoperative group were also found to have significantly lower normalized characteristic path length and lower modularity. At regional level, significant group differences (or differences at trend level) in regional network measures were found between hydrocephalus patients and the controls in a series of brain regions including the medial occipital gyrus, medial frontal gyrus, thalamus, cingulate gyrus, lingual gyrus, rectal gyrus, caudate, cuneus, and insular. Our data showed that structural connectivity analysis using graph theory and diffusion tensor tractography is sensitive to detect

  13. Structural abnormalities of the brain in schizophrenia: sex differences in the Cantabria First Episode of Schizophrenia Study.

    PubMed

    Vázquez-Barquero, J L; Cuesta Núñez, M J; Quintana Pando, F; de la Varga, M; Herrera Castanedo, S; Dunn, G

    1995-11-01

    This paper examines structural brain abnormalities, as evaluated by the CT scan, in first episodes of schizophrenia and their association with sociodemographic, diagnostic and clinical variables. The investigation included all patients with a first episode of schizophrenia who, over a 2-year period, made contact with any of the public mental health services of the Autonomous Region of Cantabria in Northern Spain. Diagnostic and clinical characteristics were evaluated through the use of the Spanish version of the Present State Examination (PSE-9) and the Scales for the Assessment of Positive and Negative Symptoms (SANS and SAPS respectively). The study demonstrated the presence of structural brain abnormalities in this sample of first episode schizophrenics. These abnormalities were mainly expressed in the presence of larger VBR for schizophrenic patients than in the controls, these findings being more marked in women than in men. We failed to reveal, however, any evidence of an association of these brain abnormalities with diagnostic or clinical characteristics. PMID:8637954

  14. Differences in Cerebral Perfusion Deficits in Mild Traumatic Brain Injury and Depression Using Single-Photon Emission Computed Tomography

    PubMed Central

    Romero, Kristoffer; Black, Sandra E.; Feinstein, Anthony

    2014-01-01

    Background: Numerous studies have shown decreased perfusion in the prefrontal cortex following mild traumatic brain injury (mTBI). However, similar hypoperfusion can also be observed in depression. Given the high prevalence of depressive symptoms following mTBI, it is unclear to what extent depression influences hypoperfusion in TBI. Methods: Mild TBI patients without depressive symptoms (mTBI-noD, n = 39), TBI patients with depressive symptoms (mTBI-D, n = 13), and 15 patients with major depressive disorder (MDD), but no TBI were given 99m T-ECD single-photon emission computed tomography (SPECT) scans within 2 weeks of injury. All subjects completed tests of information processing speed, complex attention, and executive functioning, and a self-report questionnaire measuring symptoms of psychological distress. Between-group comparisons of quantified SPECT perfusion were undertaken using univariate and multivariate (partial least squares) analyses. Results: mTBI-D and mTBI-noD groups did not differ in terms of cerebral perfusion. However, patients with MDD showed hypoperfusion compared to both TBI groups in several frontal (orbitofrontal, middle frontal, and superior frontal cortex), superior temporal, and posterior cingulate regions. The mTBI-D group showed poorer performance on a measure of complex attention and working memory compared to both the mTBI-noD and MDD groups. Conclusion: These results suggest that depressive symptoms do not affect SPECT perfusion in the sub-acute phase following a mild TBI. Conversely, MDD is associated with hypoperfusion primarily in frontal regions. PMID:25191305

  15. Abnormal Secretion of Insulin and Glucagon by the In Vitro Perfused Pancreas of the Genetically Diabetic Chinese Hamster

    PubMed Central

    Frankel, Barbara J.; Gerich, John E.; Hagura, Ryoko; Fanska, Rudy E.; Gerritsen, George C.; Grodsky, Gerold M.

    1974-01-01

    Hereditary insulin-deficient diabetes mellitus occurs in certain sublines of nonobese Chinese hamsters. Several characteristics of this syndrome are similar to those seen in insulin-deficient human diabetics. Therefore, to characterize pancreatic islet function, dynamic insulin and glucagon release from normal and nonketotic diabetic hamster pancreases in response to glucose (300 mg/100 ml) and theophylline (10 mM), infused singly and together, was studied in vitro. 20-min glucose infusions of normal hamster pancreases caused biphasic insulin release, consisting of a rapid first peak and a gradually rising second phase, similar to that reported for man in vivo. Both phases were significantly reduced in the diabetic pancreases. Theophylline alone stimulated similar nonphasic insulin release in both the normal and the diabetic pancreases. Glucose and theophylline together caused greater insulin release than either stimulant alone in both normals and diabetics; however, the diabetic response was still subnormal. Glucose suppressed glucagon release from normal pancreases; suppression was significantly impaired in diabetics. Theophylline stimulated nonphasic glucagon release in both the normals and diabetics. Glucose partially suppressed the theophylline-stimulated release in both groups. Insulin/glucagon molar ratios of the diabetics were consistently subnormal, although individual hormone levels often overlapped into the normal range. In summary, the pancreases of genetically diabetic Chinese hamsters perfused in vitro showed: (a) decreased first and second phase insulin release in response to glucose-containing stimuli—only partially ameliorated by theophylline—, and (b) impaired suppression of glucagon in response to glucose, resulting in (c) a decreased insulin/glucagon molar ratio. These data support the suggestion that both alpha and beta cells of diabetic pancreases may be insensitive to glucose. Images PMID:4830228

  16. Brain Microstructural Abnormalities Are Related to Physiological Alterations in End-Stage Renal Disease

    PubMed Central

    Tian, Junzhang; Dong, Jianwei; He, Jinlong; Zhan, Wenfeng; Xu, Lijuan; Xu, Yikai; Jiang, Guihua

    2016-01-01

    Purpose To study whole-brain microstructural alterations in patients with end-stage renal disease (ESRD) and examine the relationship between brain microstructure and physiological indictors in the disease. Materials and Methods Diffusion tensor imaging data were collected from 35 patients with ESRD (28 men, 18–61 years) and 40 age- and gender-matched healthy controls (HCs, 32 men, 22–58 years). A voxel-wise analysis was then used to identify microstructural alterations over the whole brain in the ESRD patients compared with the HCs. Multiple biochemical measures of renal metabolin, vascular risk factors, general cognitive ability and dialysis duration were correlated with microstructural integrity for the patients. Results Compared to the HCs, the ESRD patients exhibited disrupted microstructural integrity in not only white matter (WM) but also gray matter (GM) regions, as characterized by decreased fractional anisotropy (FA) and increased mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD). Further correlation analyses revealed that the in MD, AD and RD values showed significantly positive correlations with the blood urea nitrogen in the left superior temporal gyrus and significantly negative correlations with the calcium levels in the left superior frontal gyrus (orbital part) in the patients. Conclusion Our findings suggest that ESRD is associated with widespread diffusion abnormalities in both WM and GM regions in the brain, and microstructural integrity of several GM regions are related to biochemical alterations in the disease. PMID:27227649

  17. [Brain MR perfusion and MR spectroscopy in differentiation of radiation necrosis from tumor recurrence (case report)].

    PubMed

    Tekşam, Mehmet; Kayahan, Esra Meltem; Yerli, Hasan; Ağildere, A Muhteşem

    2004-12-01

    It is not always possible to differentiate tumor recurrence from radiation necrosis using conventional MR images. In this report we present a case of pathologically proven radiation necrosis which appeared as nodular contrast enhancement on conventional MR images in a patient who was surgically treated for grade II astrocytoma 5 years ago. There were decreased choline, creatine and N-acetyl aspartate peaks and significantly increased lipid peak on multivoxel H1-MR spectroscopy while there was no significant perfusion increase on MR perfusion. These findings suggested changes secondary to radiation necrosis. PMID:15611913

  18. Abnormal spontaneous brain activity in minimal hepatic encephalopathy: resting-state fMRI study

    PubMed Central

    Zhong, Wei-Jia; Zhou, Zhi-Ming; Zhao, Jian-Nong; Wu, Wei; Guo, Da-Jing

    2016-01-01

    PURPOSE We aimed to assess the abnormality of baseline spontaneous brain activity in minimal hepatic encephalopathy (MHE) by amplitude of low frequency fluctuation (ALFF) and fraction ALFF (fALFF). METHODS A total of 14 MHE patients and 14 healthy controls were included in our study. Both ALFF and fALFF of functional magnetic resonance imaging were calculated for statistical analysis. RESULTS Compared with healthy controls, patients with MHE had significantly decreased ALFF in the bilateral medial prefrontal cortex (MPFC), left superior frontal gyrus, right precentral gyrus, left opercular part of inferior frontal gyrus, left gyrus rectus, bilateral precuneus, and the posterior lobe of right cerebellum; and they had significantly decreased fALFF in the bilateral MPFC, right middle frontal gyrus, right superior temporal gyrus, and the posterior lobe of left cerebellum. CONCLUSION ALFF and fALFF changes in many brain regions demonstrate abnormality of the spontaneous neuronal activity in MHE. Especially the impairment of right precuneus and left MPFC may play a critical role in manifestation of MHE. Changes of ALFF and fALFF in the precuneus and the MPFC can be used as a potential marker for MHE. PMID:26742646

  19. Abnormal White Matter Blood-Oxygen-Level-Dependent Signals in Chronic Mild Traumatic Brain Injury.

    PubMed

    Astafiev, Serguei V; Shulman, Gordon L; Metcalf, Nicholas V; Rengachary, Jennifer; MacDonald, Christine L; Harrington, Deborah L; Maruta, Jun; Shimony, Joshua S; Ghajar, Jamshid; Diwakar, Mithun; Huang, Ming-Xiong; Lee, Roland R; Corbetta, Maurizio

    2015-08-15

    Concussion, or mild traumatic brain injury (mTBI), can cause persistent behavioral symptoms and cognitive impairment, but it is unclear if this condition is associated with detectable structural or functional brain changes. At two sites, chronic mTBI human subjects with persistent post-concussive symptoms (three months to five years after injury) and age- and education-matched healthy human control subjects underwent extensive neuropsychological and visual tracking eye movement tests. At one site, patients and controls also performed the visual tracking tasks while blood-oxygen-level-dependent (BOLD) signals were measured with functional magnetic resonance imaging. Although neither neuropsychological nor visual tracking measures distinguished patients from controls at the level of individual subjects, abnormal BOLD signals were reliably detected in patients. The most consistent changes were localized in white matter regions: anterior internal capsule and superior longitudinal fasciculus. In contrast, BOLD signals were normal in cortical regions, such as the frontal eye field and intraparietal sulcus, that mediate oculomotor and attention functions necessary for visual tracking. The abnormal BOLD signals accurately differentiated chronic mTBI patients from healthy controls at the single-subject level, although they did not correlate with symptoms or neuropsychological performance. We conclude that subjects with persistent post-concussive symptoms can be identified years after their TBI using fMRI and an eye movement task despite showing normal structural MRI and DTI. PMID:25758167

  20. Potential of optical microangiography to monitor cerebral blood perfusion and vascular plasticity following traumatic brain injury in mice in vivo

    NASA Astrophysics Data System (ADS)

    Jia, Yali; Alkayed, Nabil; Wang, Ruikang K.

    2009-07-01

    Optical microanglography (OMAG) is a recently developed imaging modality capable of volumetric imaging of dynamic blood perfusion, down to capillary level resolution, with an imaging depth up to 2.00 mm beneath the tissue surface. We report the use of OMAG to monitor the cerebral blood flow (CBF) over the cortex of mouse brain upon traumatic brain injury (TBI), with the cranium left intact, for a period of two weeks on the same animal. We show the ability of OMAG to repeatedly image 3-D cerebral vasculatures during pre- and post-traumatic phases, and to visualize the changes of regulated CBF and the vascular plasticity after TBI. The results indicate the potential of OMAG to explore the mechanism involved in the rehabilitation of TBI.

  1. Effects of hyperbaric oxygen on eye tracking abnormalities in males after mild traumatic brain injury.

    PubMed

    Cifu, David X; Hoke, Kathy W; Wetzel, Paul A; Wares, Joanna R; Gitchel, George; Carne, William

    2014-01-01

    The effects of hyperbaric oxygen (HBO2) on eye movement abnormalities in 60 military servicemembers with at least one mild traumatic brain injury (TBI) from combat were examined in a single-center, randomized, double-blind, sham-controlled, prospective study at the Naval Medicine Operational Training Center. During the 10 wk of the study, each subject was delivered a series of 40, once a day, hyperbaric chamber compressions at a pressure of 2.0 atmospheres absolute (ATA). At each session, subjects breathed one of three preassigned oxygen fractions (10.5%, 75%, or 100%) for 1 h, resulting in an oxygen exposure equivalent to breathing either surface air, 100% oxygen at 1.5 ATA, or 100% oxygen at 2.0 ATA, respectively. Using a standardized, validated, computerized eye tracking protocol, fixation, saccades, and smooth pursuit eye movements were measured just prior to intervention and immediately postintervention. Between and within groups testing of pre- and postintervention means revealed no significant differences on eye movement abnormalities and no significant main effect for HBO2 at either 1.5 ATA or 2.0 ATA equivalent compared with the sham-control. This study demonstrated that neither 1.5 nor 2.0 ATA equivalent HBO2 had an effect on postconcussive eye movement abnormalities after mild TBI when compared with a sham-control. PMID:25436771

  2. Optical monitoring of cardiac and respiratory rhythms in the skin perfusion near the brain under controlled conditions

    NASA Astrophysics Data System (ADS)

    Mukunda Rao, M.; Blazek, Vladimir; Schmitt, Hans J.

    1998-06-01

    In this investigation an attempt is made to find the effects of controlled breathing on brain with the help of optical sensors mounted on the left and right temples of a subject. It has already been established that the brain activity can be monitored in terms of arterial blood volumetric changes to the left and right hemispheres of the brain recorded with the help of optical sensors. To investigate the influence of controlled breathing, an expert in controlled breathing (pranayama) is chosen as the subject. Pranayama is believed to be the controlled intake and outflow of breath in a firmly established posture. Some types of pranayama are believed to relive mental stress. While the subject is practicing one such type of breath control, arterial blood volume changes in the brain are recorded using optical sensors mounted on the left and right temples of the subject. From these measurements at the beginning and end of the pranayama exercise, it could be noticed that the subject could induce changes in the cardiac and respiratory rhythms by controlled breathing. Rhythmic phenomena in the skin perfusion in the vicinity of the brian are also studied when the subject is holding his breath. The arterial blood volume changes to the left and right hemispheres of the brain, as monitored by the optical sensors during this period, exhibit asymmetric reaction when the subject is holding his breath. An attempt is made to understand whether these changes induced by stoppage of breathing are 'chaotic' or 'adaptive' in nature.

  3. Changes of Cerebral Perfusion and Functional Brain Network Organization in Patients with Mild Cognitive Impairment.

    PubMed

    Lou, Wutao; Shi, Lin; Wong, Adrian; Chu, Winnie C W; Mok, Vincent C T; Wang, Defeng

    2016-08-10

    Disruptions of the functional brain network and cerebral blood flow (CBF) have been revealed in patients with mild cognitive impairment (MCI). However, the neurophysiological mechanism of hypoperfusion as well as the reorganization of the intrinsic whole brain network due to the neuropathology of MCI are still unclear. In this study, we aimed to investigate the changes of CBF and the whole brain network organization in MCI by using a multimodal MRI approach. Resting state ASL MRI and BOLD MRI were used to evaluate disruptions of CBF and underlying functional connectivity in 27 patients with MCI and 35 cognitive normal controls (NC). The eigenvector centrality mapping (ECM) was used to assess the whole brain network reorganization in MCI, and a seed-based ECM approach was proposed to reveal the contributions of the whole brain network on the ECM alterations. Significantly decreased perfusion in the posterior parietal cortex as well as its connectivity within the default mode network and occipital cortex were found in the MCI group compared to the NC group. The ECM analysis revealed decreased EC in the middle cingulate cortex, parahippocampal gyrus, medial frontal gyrus, and increased EC in the right calcarine sulcus, superior temporal gyrus, and supplementary motor area in the MCI group. The results of this study indicate that there are deficits in cerebral blood flow and functional connectivity in the default mode network, and that sensory-processing networks might play a compensatory role to make up for the decreased connections in MCI. PMID:27567823

  4. The nature of white matter abnormalities in blast-related mild traumatic brain injury

    PubMed Central

    Hayes, Jasmeet P.; Miller, Danielle R.; Lafleche, Ginette; Salat, David H.; Verfaellie, Mieke

    2015-01-01

    Blast-related traumatic brain injury (TBI) has been a common injury among returning troops due to the widespread use of improvised explosive devices in the Iraq and Afghanistan Wars. As most of the TBIs sustained are in the mild range, brain changes may not be detected by standard clinical imaging techniques such as CT. Furthermore, the functional significance of these types of injuries is currently being debated. However, accumulating evidence suggests that diffusion tensor imaging (DTI) is sensitive to subtle white matter abnormalities and may be especially useful in detecting mild TBI (mTBI). The primary aim of this study was to use DTI to characterize the nature of white matter abnormalities following blast-related mTBI, and in particular, examine the extent to which mTBI-related white matter abnormalities are region-specific or spatially heterogeneous. In addition, we examined whether mTBI with loss of consciousness (LOC) was associated with more extensive white matter abnormality than mTBI without LOC, as well as the potential moderating effect of number of blast exposures. A second aim was to examine the relationship between white matter integrity and neurocognitive function. Finally, a third aim was to examine the contribution of PTSD symptom severity to observed white matter alterations. One hundred fourteen OEF/OIF veterans underwent DTI and neuropsychological examination and were divided into three groups including a control group, blast-related mTBI without LOC (mTBI - LOC) group, and blast-related mTBI with LOC (mTBI + LOC) group. Hierarchical regression models were used to examine the extent to which mTBI and PTSD predicted white matter abnormalities using two approaches: 1) a region-specific analysis and 2) a measure of spatial heterogeneity. Neurocognitive composite scores were calculated for executive functions, attention, memory, and psychomotor speed. Results showed that blast-related mTBI + LOC was associated with greater odds of having

  5. The nature of white matter abnormalities in blast-related mild traumatic brain injury.

    PubMed

    Hayes, Jasmeet P; Miller, Danielle R; Lafleche, Ginette; Salat, David H; Verfaellie, Mieke

    2015-01-01

    Blast-related traumatic brain injury (TBI) has been a common injury among returning troops due to the widespread use of improvised explosive devices in the Iraq and Afghanistan Wars. As most of the TBIs sustained are in the mild range, brain changes may not be detected by standard clinical imaging techniques such as CT. Furthermore, the functional significance of these types of injuries is currently being debated. However, accumulating evidence suggests that diffusion tensor imaging (DTI) is sensitive to subtle white matter abnormalities and may be especially useful in detecting mild TBI (mTBI). The primary aim of this study was to use DTI to characterize the nature of white matter abnormalities following blast-related mTBI, and in particular, examine the extent to which mTBI-related white matter abnormalities are region-specific or spatially heterogeneous. In addition, we examined whether mTBI with loss of consciousness (LOC) was associated with more extensive white matter abnormality than mTBI without LOC, as well as the potential moderating effect of number of blast exposures. A second aim was to examine the relationship between white matter integrity and neurocognitive function. Finally, a third aim was to examine the contribution of PTSD symptom severity to observed white matter alterations. One hundred fourteen OEF/OIF veterans underwent DTI and neuropsychological examination and were divided into three groups including a control group, blast-related mTBI without LOC (mTBI - LOC) group, and blast-related mTBI with LOC (mTBI + LOC) group. Hierarchical regression models were used to examine the extent to which mTBI and PTSD predicted white matter abnormalities using two approaches: 1) a region-specific analysis and 2) a measure of spatial heterogeneity. Neurocognitive composite scores were calculated for executive functions, attention, memory, and psychomotor speed. Results showed that blast-related mTBI + LOC was associated with greater odds of having

  6. Abnormalities of functional brain networks in pathological gambling: a graph-theoretical approach

    PubMed Central

    Tschernegg, Melanie; Crone, Julia S.; Eigenberger, Tina; Schwartenbeck, Philipp; Fauth-Bühler, Mira; Lemènager, Tagrid; Mann, Karl; Thon, Natasha; Wurst, Friedrich M.; Kronbichler, Martin

    2013-01-01

    Functional neuroimaging studies of pathological gambling (PG) demonstrate alterations in frontal and subcortical regions of the mesolimbic reward system. However, most investigations were performed using tasks involving reward processing or executive functions. Little is known about brain network abnormalities during task-free resting state in PG. In the present study, graph-theoretical methods were used to investigate network properties of resting state functional magnetic resonance imaging data in PG. We compared 19 patients with PG to 19 healthy controls (HCs) using the Graph Analysis Toolbox (GAT). None of the examined global metrics differed between groups. At the nodal level, pathological gambler showed a reduced clustering coefficient in the left paracingulate cortex and the left juxtapositional lobe (supplementary motor area, SMA), reduced local efficiency in the left SMA, as well as an increased node betweenness for the left and right paracingulate cortex and the left SMA. At an uncorrected threshold level, the node betweenness in the left inferior frontal gyrus was decreased and increased in the caudate. Additionally, increased functional connectivity between fronto-striatal regions and within frontal regions has also been found for the gambling patients. These findings suggest that regions associated with the reward system demonstrate reduced segregation but enhanced integration while regions associated with executive functions demonstrate reduced integration. The present study makes evident that PG is also associated with abnormalities in the topological network structure of the brain during rest. Since alterations in PG cannot be explained by direct effects of abused substances on the brain, these findings will be of relevance for understanding functional connectivity in other addictive disorders. PMID:24098282

  7. Abnormal functional global and local brain connectivity in female patients with anorexia nervosa

    PubMed Central

    Geisler, Daniel; Borchardt, Viola; Lord, Anton R.; Boehm, Ilka; Ritschel, Franziska; Zwipp, Johannes; Clas, Sabine; King, Joseph A.; Wolff-Stephan, Silvia; Roessner, Veit; Walter, Martin; Ehrlich, Stefan

    2016-01-01

    Background Previous resting-state functional connectivity studies in patients with anorexia nervosa used independent component analysis or seed-based connectivity analysis to probe specific brain networks. Instead, modelling the entire brain as a complex network allows determination of graph-theoretical metrics, which describe global and local properties of how brain networks are organized and how they interact. Methods To determine differences in network properties between female patients with acute anorexia nervosa and pairwise matched healthy controls, we used resting-state fMRI and computed well-established global and local graph metrics across a range of network densities. Results Our analyses included 35 patients and 35 controls. We found that the global functional network structure in patients with anorexia nervosa is characterized by increases in both characteristic path length (longer average routes between nodes) and assortativity (more nodes with a similar connectedness link together). Accordingly, we found locally decreased connectivity strength and increased path length in the posterior insula and thalamus. Limitations The present results may be limited to the methods applied during preprocessing and network construction. Conclusion We demonstrated anorexia nervosa–related changes in the network configuration for, to our knowledge, the first time using resting-state fMRI and graph-theoretical measures. Our findings revealed an altered global brain network architecture accompanied by local degradations indicating wide-scale disturbance in information flow across brain networks in patients with acute anorexia nervosa. Reduced local network efficiency in the thalamus and posterior insula may reflect a mechanism that helps explain the impaired integration of visuospatial and homeostatic signals in patients with this disorder, which is thought to be linked to abnormal representations of body size and hunger. PMID:26252451

  8. Multicenter Study of Brain Volume Abnormalities in Children and Adolescent-Onset Psychosis

    PubMed Central

    Reig, Santiago; Parellada, Mara; Castro-Fornieles, Josefina; Janssen, Joost; Moreno, Dolores; Baeza, Inmaculada; Bargalló, Nuria; González-Pinto, Ana; Graell, Montserrat; Ortuño, Felipe; Otero, Soraya; Arango, Celso; Desco, Manuel

    2011-01-01

    The goal of the study is to determine the extent of structural brain abnormalities in a multicenter sample of children and adolescents with a recent-onset first episode of psychosis (FEP), compared with a sample of healthy controls. Total brain and lobar volumes and those of gray matter (GM), white matter, and cerebrospinal fluid (CSF) were measured in 92 patients with a FEP and in 94 controls, matched for age, gender, and years of education. Male patients (n = 64) showed several significant differences when compared with controls (n = 61). GM volume in male patients was reduced in the whole brain and in frontal and parietal lobes compared with controls. Total CSF volume and frontal, temporal, and right parietal CSF volumes were also increased in male patients. Within patients, those with a further diagnosis of “schizophrenia” or “other psychosis” showed a pattern similar to the group of all patients relative to controls. However, bipolar patients showed fewer differences relative to controls. In female patients, only the schizophrenia group showed differences relative to controls, in frontal CSF. GM deficit in male patients with a first episode correlated with negative symptoms. Our study suggests that at least part of the GM deficit in children and adolescent-onset schizophrenia and in other psychosis occurs before onset of the first positive symptoms and that, contrary to what has been shown in children-onset schizophrenia, frontal GM deficits are probably present from the first appearance of positive symptoms in children and adolescents. PMID:20478821

  9. Neurological Gait Abnormalities Moderate the Functional Brain Signature of the Posture First Hypothesis.

    PubMed

    Holtzer, Roee; Verghese, Joe; Allali, Gilles; Izzetoglu, Meltem; Wang, Cuiling; Mahoney, Jeannette R

    2016-03-01

    The posture first hypothesis suggests that under dual-task walking conditions older adults prioritize gait over cognitive task performance. Functional neural confirmation of this hypothesis, however, is lacking. Herein, we determined the functional neural correlates of the posture first hypothesis and hypothesized that the presence of neurological gait abnormalities (NGA) would moderate associations between brain activations, gait and cognitive performance. Using functional near-infrared spectroscopy we assessed changes in oxygenated hemoglobin levels in the pre-frontal cortex (PFC) during normal walk and walk while talk (WWT) conditions in a large cohort of non-demented older adults (n = 236; age = 75.5 ± 6.49 years; female = 51.7 %). NGA were defined as central (due to brain diseases) or peripheral (neuropathic gait) following a standardized neurological examination protocol. Double dissociations between brain activations and behavior emerged as a function of NGA. Higher oxygenation levels during WWT were related to better cognitive performance (estimate = 0.145; p < 0.001) but slower gait velocity (estimate = -6.336, p < 0.05) among normals. In contrast, higher oxygenation levels during WWT among individuals with peripheral NGA were associated with worse cognitive performance (estimate = -0.355; p < 0.001) but faster gait velocity (estimate = 14.855; p < 0.05). Increased activation in the PFC during locomotion may have a compensatory function that is designed to support gait among individuals with peripheral NGA. PMID:26613725

  10. Dido mutations trigger perinatal death and generate brain abnormalities and behavioral alterations in surviving adult mice.

    PubMed

    Villares, Ricardo; Gutiérrez, Julio; Fütterer, Agnes; Trachana, Varvara; Gutiérrez del Burgo, Fernando; Martínez-A, Carlos

    2015-04-14

    Nearly all vertebrate cells have a single cilium protruding from their surface. This threadlike organelle, once considered vestigial, is now seen as a pivotal element for detection of extracellular signals that trigger crucial morphogenetic pathways. We recently proposed a role for Dido3, the main product of the death inducer-obliterator (dido) gene, in histone deacetylase 6 delivery to the primary cilium [Sánchez de Diego A, et al. (2014) Nat Commun 5:3500]. Here we used mice that express truncated forms of Dido proteins to determine the link with cilium-associated disorders. We describe dido mutant mice with high incidence of perinatal lethality and distinct neurodevelopmental, morphogenetic, and metabolic alterations. The anatomical abnormalities were related to brain and orofacial development, consistent with the known roles of primary cilia in brain patterning, hydrocephalus incidence, and cleft palate. Mutant mice that reached adulthood showed reduced life expectancy, brain malformations including hippocampus hypoplasia and agenesis of corpus callosum, as well as neuromuscular and behavioral alterations. These mice can be considered a model for the study of ciliopathies and provide information for assessing diagnosis and therapy of genetic disorders linked to the deregulation of primary cilia. PMID:25825751

  11. Dido mutations trigger perinatal death and generate brain abnormalities and behavioral alterations in surviving adult mice

    PubMed Central

    Villares, Ricardo; Gutiérrez, Julio; Fütterer, Agnes; Trachana, Varvara; Gutiérrez del Burgo, Fernando; Martínez-A, Carlos

    2015-01-01

    Nearly all vertebrate cells have a single cilium protruding from their surface. This threadlike organelle, once considered vestigial, is now seen as a pivotal element for detection of extracellular signals that trigger crucial morphogenetic pathways. We recently proposed a role for Dido3, the main product of the death inducer-obliterator (dido) gene, in histone deacetylase 6 delivery to the primary cilium [Sánchez de Diego A, et al. (2014) Nat Commun 5:3500]. Here we used mice that express truncated forms of Dido proteins to determine the link with cilium-associated disorders. We describe dido mutant mice with high incidence of perinatal lethality and distinct neurodevelopmental, morphogenetic, and metabolic alterations. The anatomical abnormalities were related to brain and orofacial development, consistent with the known roles of primary cilia in brain patterning, hydrocephalus incidence, and cleft palate. Mutant mice that reached adulthood showed reduced life expectancy, brain malformations including hippocampus hypoplasia and agenesis of corpus callosum, as well as neuromuscular and behavioral alterations. These mice can be considered a model for the study of ciliopathies and provide information for assessing diagnosis and therapy of genetic disorders linked to the deregulation of primary cilia. PMID:25825751

  12. Multidimensional morphometric 3D MRI analyses for detecting brain abnormalities in children: impact of control population.

    PubMed

    Wilke, Marko; Rose, Douglas F; Holland, Scott K; Leach, James L

    2014-07-01

    Automated morphometric approaches are used to detect epileptogenic structural abnormalities in 3D MR images in adults, using the variance of a control population to obtain z-score maps in an individual patient. Due to the substantial changes the developing human brain undergoes, performing such analyses in children is challenging. This study investigated six features derived from high-resolution T1 datasets in four groups: normal children (1.5T or 3T data), normal clinical scans (3T data), and patients with structural brain lesions (3T data), with each n = 10. Normative control data were obtained from the NIH study on normal brain development (n = 401). We show that control group size substantially influences the captured variance, directly impacting the patient's z-scores. Interestingly, matching on gender does not seem to be beneficial, which was unexpected. Using data obtained at higher field scanners produces slightly different base rates of suprathreshold voxels, as does using clinically derived normal studies, suggesting a subtle but systematic effect of both factors. Two approaches for controlling suprathreshold voxels in a multidimensional approach (combining features and requiring a minimum cluster size) were shown to be substantial and effective in reducing this number. Finally, specific strengths and limitations of such an approach could be demonstrated in individual cases. PMID:25050423

  13. Optical monitoring of cardiac and respiratory rhythms in the skin perfusion near the brain under controlled conditions

    NASA Astrophysics Data System (ADS)

    Mukunda Rao, M.; Blazek, Vladimir; Schmitt, Hans J.

    1998-04-01

    In this investigation an attempt is made to find the effects of controlled breathing on brain with the help of optical sensor mounted on the left and right temples of a subject. It has already been established that the brain activity can be monitored in terms of arterial blood volumetric changes to the left and right hemispheres of the brain recorded with the help of optical sensors. To investigate the influence of controlled breathing, an expert in controlled breathing is chosen as the subject. Pranayama is believed to be the controlled intake and outflow of breath in a firmly established posture. Some types of pranayama are believed to relieve mental stress. While the subject is practicing one such type of breath control, arterial blood volume changes in the brain are recorded using optical sensor mounted on the left and right temples of the subject. From these measurements at the beginning and end of the pranayama exercise, it could be noticed that the subject could induce changes in the cardiac and respiratory rhythms by controlled breathing. Rhythmic phenomena in the skin perfusion in the vicinity of the brian are also studied when the subject is holding his breath. The arterial blood volume changes to the left and right hemispheres of the brian, as monitored by the optical sensors during this period, exhibit asymmetric reaction when the subject is holding his breath. An attempt is made to understand whether these changes induced by stoppage of breathing are 'chaotic' or 'adaptive' in nature.

  14. Estimation of brain perfusion using Va value as initial distribution volume in radionuclide angiography with technetium-99m HMPAO

    SciTech Connect

    Kawamoto, M.; Ikegami, T.

    1994-05-01

    Matsuda reported a non-invasive, simple method for the quantitative measurements of brain perfusion using radionuclide angiography with Tc-99m. HMPAO and showed graphical analysis of the ratio of brain activity to aortic arch activity gave two parameters, which are the slope of the fitted line (Ku:unidirectional influx constant) and its intercept with the yards (Vn:initial volume of distribution). Brain perfusion index (BPI),which is a connected Ku value, showed good correlation with cerebral blood flow determined with Xe-133 SPECT. The aim of our study is to elucidate the clinical significance of another parameter, Vn value, determined inpatients with cerebral vessel disease. Eighty-nine cases were studied and classified into three groups on the basis of clinical history and images of CT and/or MR: Group A, normal, 36 cases; Group B, infarction, 44 cases; Group C, subarachnoid hemorrhage, 9 cases. The average age of each group were not different statistically (63.3, 67.4 and 59.8, respectively). The average BPI values for group B and C were significantly lower than that of group A(7.7, 6. 8 and 9.5, respectively ). On the other hand, Vn for group C(0.23) was significantly lower than that for group A(0.45); however that for group B(0.49) was not. These findings indicate that cerebral blood flow in both infarction and subarachnoid hemorrhage decrease but their circumstances near vessels differ from the aspect of initial volume of tracer distribution. This might help to understand or diagnose cerebral vessel diseases.

  15. Neonatal brain abnormalities associated with autism spectrum disorder in children born very preterm.

    PubMed

    Ure, Alexandra M; Treyvaud, Karli; Thompson, Deanne K; Pascoe, Leona; Roberts, Gehan; Lee, Katherine J; Seal, Marc L; Northam, Elisabeth; Cheong, Jeanie L; Hunt, Rod W; Inder, Terrie; Doyle, Lex W; Anderson, Peter J

    2016-05-01

    Very preterm (VP) survivors are at increased risk of autism spectrum disorder (ASD) compared with term-born children. This study explored whether neonatal magnetic resonance (MR) brain features differed in VP children with and without ASD at 7 years. One hundred and seventy-two VP children (<30 weeks' gestation or <1250 g birth weight) underwent structural brain MR scans at term equivalent age (TEA; 40 weeks' gestation ±2 weeks) and were assessed for ASD at 7 years of age. The presence and severity of white matter, cortical gray matter, deep nuclear gray matter, and cerebellar abnormalities were assessed, and total and regional brain volumes were measured. ASD was diagnosed using a standardized parent report diagnostic interview and confirmed via an independent assessment. Eight VP children (4.7%) were diagnosed with ASD. Children with ASD had more cystic lesions in the cortical white matter at TEA compared with those without ASD (odds ratio [OR] 8.7, 95% confidence interval [CI] 1.5, 51.3, P = 0.02). There was also some evidence for smaller cerebellar volumes in children with ASD compared with those without ASD (OR = 0.82, CI = 0.66, 1.00, P = 0.06). Overall, the results suggest that VP children with ASD have different brain structure in the neonatal period compared with those who do not have ASD. Autism Res 2016, 9: 543-552. © 2015 International Society for Autism Research, Wiley Periodicals, Inc. PMID:26442616

  16. Brain and Cognition Abnormalities in Long-Term Anabolic-Androgenic Steroid Users

    PubMed Central

    Kaufman, Marc J.; Janes, Amy C.; Hudson, James I.; Brennan, Brian P.; Kanayama, Gen; Kerrigan, Andrew R.; Jensen, J. Eric; Pope, Harrison G.

    2015-01-01

    Background Anabolic-androgenic steroid (AAS) use is associated with psychiatric symptoms including increased aggression as well as with cognitive dysfunction. The brain effects of long-term AAS use have not been assessed in humans. Methods This multimodal magnetic resonance imaging study of the brain compared 10 male weightlifters reporting long-term AAS use with 10 age-matched weightlifters reporting no AAS exposure. Participants were administered visuospatial memory tests and underwent neuroimaging. Brain volumetric analyses were performed; resting-state fMRI functional connectivity (rsFC) was evaluated using a region-of-interest analysis focused on the amygdala; and dorsal anterior cingulate cortex (dACC) metabolites were quantified by proton magnetic resonance spectroscopy (MRS). Results AAS users had larger right amygdala volumes than nonusers (P=0.002) and reduced rsFC between right amygdala and frontal, striatal, limbic, hippocampal, and visual cortical areas. Left amygdala volumes were slightly larger in AAS users (P=0.061) but few group differences were detected in left amygdala rsFC. AAS users also had lower dACC scyllo-inositol levels (P=0.004) and higher glutamine/glutamate ratios (P=0.028), possibly reflecting increased glutamate turnover. On a visuospatial cognitive task, AAS users performed more poorly than nonusers, with the difference approaching significance (P=0.053). Conclusions Long-term AAS use is associated with right amygdala enlargement and reduced right amygdala rsFC with brain areas involved in cognitive control and spatial memory, which could contribute to the psychiatric effects and cognitive dysfunction associated with AAS use. The MRS abnormalities we detected could reflect enhanced glutamate turnover and increased vulnerability to neurotoxic or neurodegenerative processes, which could contribute to AAS-associated cognitive dysfunction. PMID:25986964

  17. Framework for cognitive analysis of dynamic perfusion computed tomography with visualization of large volumetric data

    NASA Astrophysics Data System (ADS)

    Hachaj, Tomasz; Ogiela, Marek R.

    2012-10-01

    The proposed framework for cognitive analysis of perfusion computed tomography images is a fusion of image processing, pattern recognition, and image analysis procedures. The output data of the algorithm consists of: regions of perfusion abnormalities, anatomy atlas description of brain tissues, measures of perfusion parameters, and prognosis for infracted tissues. That information is superimposed onto volumetric computed tomography data and displayed to radiologists. Our rendering algorithm enables rendering large volumes on off-the-shelf hardware. This portability of rendering solution is very important because our framework can be run without using expensive dedicated hardware. The other important factors are theoretically unlimited size of rendered volume and possibility of trading of image quality for rendering speed. Such rendered, high quality visualizations may be further used for intelligent brain perfusion abnormality identification, and computer aided-diagnosis of selected types of pathologies.

  18. Apert and Crouzon syndromes-Cognitive development, brain abnormalities, and molecular aspects.

    PubMed

    Fernandes, Marilyse B L; Maximino, Luciana P; Perosa, Gimol B; Abramides, Dagma V M; Passos-Bueno, Maria Rita; Yacubian-Fernandes, Adriano

    2016-06-01

    Apert and Crouzon are the most common craniosynostosis syndromes associated with mutations in the fibroblast growth factor receptor 2 (FGFR2) gene. We conducted a study to examine the molecular biology, brain abnormalities, and cognitive development of individuals with these syndromes. A retrospective longitudinal review of 14 patients with Apert and Crouzon syndromes seen at the outpatient Craniofacial Surgery Hospital for Rehabilitation of Craniofacial Anomalies in Brazil from January 1999 through August 2010 was performed. Patients between 11 and 36 years of age (mean 18.29 ± 5.80), received cognitive evaluations, cerebral magnetic resonance imaging, and molecular DNA analyses. Eight patients with Apert syndrome (AS) had full scale intelligence quotients (FSIQs) that ranged from 47 to 108 (mean 76.9 ± 20.2), and structural brain abnormalities were identified in five of eight patients. Six patients presented with a gain-of-function mutation (p.Ser252Trp) in FGFR2 and FSIQs in those patients ranged from 47 to78 (mean 67.2 ± 10.7). One patient with a gain-of-function mutation (p.Pro253Arg) had a FSIQ of 108 and another patient with an atypical splice mutation (940-2A →G) had a FSIQ of 104. Six patients with Crouzon syndrome had with mutations in exons IIIa and IIIc of FGFR2 and their FSIQs ranged from 82 to 102 (mean 93.5 ± 6.7). These reveal that molecular aspects are another factor that can be considered in studies of global and cognitive development of patients with Apert and Crouzon syndrome (CS). © 2016 Wiley Periodicals, Inc. PMID:27028366

  19. Bilateral brain abnormalities associated with dominantly inherited verbal and orofacial dyspraxia.

    PubMed

    Belton, Emma; Salmond, Claire H; Watkins, Kate E; Vargha-Khadem, Faraneh; Gadian, David G

    2003-03-01

    The KE family is a large three-generational pedigree in which half of the members suffer from a verbal and orofacial dyspraxia in association with a point mutation in the FOXP2 gene. This report extends previous voxel-based morphometric analyses of magnetic resonance imaging (MRI) scans (Watkins et al. [2002] Brain 125:465-478) using a bilateral conjunction analysis. This searches specifically for areas of grey matter density that differ bilaterally in the affected members compared with both matched controls and the unaffected family members. 3-D T1-weighted MRI datasets of 17 family members (10 affected, 7 unaffected) and matched controls were compared. The most significant findings were reduced grey matter density bilaterally in the caudate nucleus, the cerebellum, and the left and right inferior frontal gyrus in the affected members. In addition, increased grey matter density was found bilaterally in the planum temporale. These results confirm that a point mutation in FOXP2 is associated with several bilateral grey matter abnormalities in both motor and language related regions. The results also demonstrate the advantages of using a conjunction analysis when bilateral abnormalities are suspected. PMID:12599277

  20. Abnormal neuronal activity in Tourette syndrome and its modulation using deep brain stimulation

    PubMed Central

    Israelashvili, Michal; Loewenstern, Yocheved

    2015-01-01

    Tourette syndrome (TS) is a common childhood-onset disorder characterized by motor and vocal tics that are typically accompanied by a multitude of comorbid symptoms. Pharmacological treatment options are limited, which has led to the exploration of deep brain stimulation (DBS) as a possible treatment for severe cases. Multiple lines of evidence have linked TS with abnormalities in the motor and limbic cortico-basal ganglia (CBG) pathways. Neurophysiological data have only recently started to slowly accumulate from multiple sources: noninvasive imaging and electrophysiological techniques, invasive electrophysiological recordings in TS patients undergoing DBS implantation surgery, and animal models of the disorder. These converging sources point to system-level physiological changes throughout the CBG pathway, including both general altered baseline neuronal activity patterns and specific tic-related activity. DBS has been applied to different regions along the motor and limbic pathways, primarily to the globus pallidus internus, thalamic nuclei, and nucleus accumbens. In line with the findings that also draw on the more abundant application of DBS to Parkinson's disease, this stimulation is assumed to result in changes in the neuronal firing patterns and the passage of information through the stimulated nuclei. We present an overview of recent experimental findings on abnormal neuronal activity associated with TS and the changes in this activity following DBS. These findings are then discussed in the context of current models of CBG function in the normal state, during TS, and finally in the wider context of DBS in CBG-related disorders. PMID:25925326

  1. Mathematical Difficulties and White Matter Abnormalities in Subacute Pediatric Mild Traumatic Brain Injury.

    PubMed

    Van Beek, Leen; Ghesquière, Pol; Lagae, Lieven; De Smedt, Bert

    2015-10-15

    Mathematical difficulties have been documented following pediatric mild traumatic brain injury (mTBI), yet a precise characterization of these impairments and their neural correlates is currently unavailable. We aimed to characterize these impairments by comparing behavioral and neuroimaging (i.e., diffusion tensor imaging [DTI]) outcomes from children with subacute mTBI to typically-developing controls. Twenty subacute pediatric mTBI patients and 20 well-matched controls underwent cognitive assessment and DTI examination. DTI tractography was used to detect white matter abnormalities in the corpus callosum (CC) and superior and inferior longitudinal fasciculi; these tracts are involved in mathematical performance and they are often damaged after mTBI. Behavioral results revealed that children with mTBI performed significantly more poorly on rapid apprehension of small numbers of objects (or "subitizing"), processing of non-symbolic numerosities, and procedural problem solving. These group differences were explained by differences in visuospatial working memory, which suggests that the observed mathematical difficulties may be a consequence of impairments in visuospatial abilities. DTI analysis revealed subtle group differences in the CC genu and splenium (i.e., higher fractional anisotropy and lower mean and radial diffusivity in children with mTBI) but the observed white matter abnormalities of the CC were not significantly associated with the observed mathematical difficulties in the mTBI patients. PMID:25915107

  2. Predicting the Probability of Abnormal Stimulated Growth Hormone Response in Children After Radiotherapy for Brain Tumors

    SciTech Connect

    Hua Chiaho; Wu Shengjie; Chemaitilly, Wassim; Lukose, Renin C.; Merchant, Thomas E.

    2012-11-15

    Purpose: To develop a mathematical model utilizing more readily available measures than stimulation tests that identifies brain tumor survivors with high likelihood of abnormal growth hormone secretion after radiotherapy (RT), to avoid late recognition and a consequent delay in growth hormone replacement therapy. Methods and Materials: We analyzed 191 prospectively collected post-RT evaluations of peak growth hormone level (arginine tolerance/levodopa stimulation test), serum insulin-like growth factor 1 (IGF-1), IGF-binding protein 3, height, weight, growth velocity, and body mass index in 106 children and adolescents treated for ependymoma (n = 72), low-grade glioma (n = 28) or craniopharyngioma (n = 6), who had normal growth hormone levels before RT. Normal level in this study was defined as the peak growth hormone response to the stimulation test {>=}7 ng/mL. Results: Independent predictor variables identified by multivariate logistic regression with high statistical significance (p < 0.0001) included IGF-1 z score, weight z score, and hypothalamic dose. The developed predictive model demonstrated a strong discriminatory power with an area under the receiver operating characteristic curve of 0.883. At a potential cutoff point of probability of 0.3 the sensitivity was 80% and specificity 78%. Conclusions: Without unpleasant and expensive frequent stimulation tests, our model provides a quantitative approach to closely follow the growth hormone secretory capacity of brain tumor survivors. It allows identification of high-risk children for subsequent confirmatory tests and in-depth workup for diagnosis of growth hormone deficiency.

  3. Abnormal autonomic and associated brain activities during rest in autism spectrum disorder.

    PubMed

    Eilam-Stock, Tehila; Xu, Pengfei; Cao, Miao; Gu, Xiaosi; Van Dam, Nicholas T; Anagnostou, Evdokia; Kolevzon, Alexander; Soorya, Latha; Park, Yunsoo; Siller, Michael; He, Yong; Hof, Patrick R; Fan, Jin

    2014-01-01

    Autism spectrum disorders are associated with social and emotional deficits, the aetiology of which are not well understood. A growing consensus is that the autonomic nervous system serves a key role in emotional processes, by providing physiological signals essential to subjective states. We hypothesized that altered autonomic processing is related to the socio-emotional deficits in autism spectrum disorders. Here, we investigated the relationship between non-specific skin conductance response, an objective index of sympathetic neural activity, and brain fluctuations during rest in high-functioning adults with autism spectrum disorder relative to neurotypical controls. Compared with control participants, individuals with autism spectrum disorder showed less skin conductance responses overall. They also showed weaker correlations between skin conductance responses and frontal brain regions, including the anterior cingulate and anterior insular cortices. Additionally, skin conductance responses were found to have less contribution to default mode network connectivity in individuals with autism spectrum disorders relative to controls. These results suggest that autonomic processing is altered in autism spectrum disorders, which may be related to the abnormal socio-emotional behaviours that characterize this condition. PMID:24424916

  4. Abnormal autonomic and associated brain activities during rest in autism spectrum disorder

    PubMed Central

    Eilam-Stock, Tehila; Xu, Pengfei; Cao, Miao; Gu, Xiaosi; Van Dam, Nicholas T.; Anagnostou, Evdokia; Kolevzon, Alexander; Soorya, Latha; Park, Yunsoo; Siller, Michael; He, Yong; Hof, Patrick R.

    2014-01-01

    Autism spectrum disorders are associated with social and emotional deficits, the aetiology of which are not well understood. A growing consensus is that the autonomic nervous system serves a key role in emotional processes, by providing physiological signals essential to subjective states. We hypothesized that altered autonomic processing is related to the socio-emotional deficits in autism spectrum disorders. Here, we investigated the relationship between non-specific skin conductance response, an objective index of sympathetic neural activity, and brain fluctuations during rest in high-functioning adults with autism spectrum disorder relative to neurotypical controls. Compared with control participants, individuals with autism spectrum disorder showed less skin conductance responses overall. They also showed weaker correlations between skin conductance responses and frontal brain regions, including the anterior cingulate and anterior insular cortices. Additionally, skin conductance responses were found to have less contribution to default mode network connectivity in individuals with autism spectrum disorders relative to controls. These results suggest that autonomic processing is altered in autism spectrum disorders, which may be related to the abnormal socio-emotional behaviours that characterize this condition. PMID:24424916

  5. Structural brain abnormalities in the frontostriatal system and cerebellum in pedophilia.

    PubMed

    Schiffer, Boris; Peschel, Thomas; Paul, Thomas; Gizewski, Elke; Forsting, Michael; Leygraf, Norbert; Schedlowski, Manfred; Krueger, Tillmann H C

    2007-11-01

    Even though previous neuropsychological studies and clinical case reports have suggested an association between pedophilia and frontocortical dysfunction, our knowledge about the neurobiological mechanisms underlying pedophilia is still fragmentary. Specifically, the brain morphology of such disorders has not yet been investigated using MR imaging techniques. Whole brain structural T1-weighted MR images from 18 pedophile patients (9 attracted to males, 9 attracted to females) and 24 healthy age-matched control subjects (12 hetero- and 12 homosexual) from a comparable socioeconomic stratum were processed by using optimized automated voxel-based morphometry within multiple linear regression analyses. Compared to the homosexual and heterosexual control subjects, pedophiles showed decreased gray matter volume in the ventral striatum (also extending into the nucl. accumbens), the orbitofrontal cortex and the cerebellum. These observations further indicate an association between frontostriatal morphometric abnormalities and pedophilia. In this respect these findings may support the hypothesis that there is a shared etiopathological mechanism in all obsessive-compulsive spectrum disorders. PMID:16876824

  6. Outcome, Pressure Reactivity and Optimal Cerebral Perfusion Pressure Calculation in Traumatic Brain Injury: A Comparison of Two Variants.

    PubMed

    Lang, Erhard W; Kasprowicz, Magdalena; Smielewski, Peter; Santos, Edgar; Pickard, John; Czosnyka, Marek

    2016-01-01

    This study investigates the outcome prediction and calculation of optimal cerebral perfusion pressure (CPPopt) in 307 patients after severe traumatic brain injury (TBI) based on cerebrovascular reactivity calculation of a moving correlation correlation coefficient, named PRx, between mean arterial pressure (ABP) and intracranial pressure (ICP). The correlation coefficient was calculated from simultaneously recorded data using different frequencies. PRx was calculated from oscillations between 0.008 and 0.05Hz and the longPRx (L-PRx) was calculated from oscillations between 0.0008 and 0.016 Hz. PRx was a significant mortality predictor, whereas L-PRx was not. CPPopt for pooled data was higher for L-PRx than for PRx, with no statistical difference. Mortality was associated with mean CPP below CPPopt. Severe disability was associated with CPP above CPPopt (PRx). These relationships were not statistically significant for CPPopt (L-PRx). We conclude that PRx and L-PRx cannot be used interchangeably. PMID:27165910

  7. Thirty minute transcutaneous electric acupoint stimulation modulates resting state brain activities: a perfusion and BOLD fMRI study.

    PubMed

    Jiang, Yin; Hao, Ying; Zhang, Yue; Liu, Jing; Wang, Xiaoying; Han, Jisheng; Fang, Jing; Zhang, Jue; Cui, Cailian

    2012-05-31

    Increasing neuroimaging studies have focused on the sustained after effects of acupuncture, especially for the changes of brain activities in rest. However, short-period stimuli have mostly been chosen in these works. The present study aimed to investigate how the resting state brain activities in healthy subjects were modulated by relatively long-period (30 min) acupuncture, a widely used modality in clinical practice. Transcutaneous electric acupoint stimulation (TEAS) or intermittent minimal TEAS (MTEAS) were given for 30 min to 40 subjects. Functional MRI (fMRI) data were collected including the pre-stimulation resting state and the post-stimulation resting state, using dual-echo arterial spin labeling (ASL) techniques, representing both cerebral blood flow (CBF) signals and blood oxygen-dependent level (BOLD) signals simultaneously. Following 30 min TEAS, but not MTEAS, the mean global CBF decreased, and a significant decrease of regional CBF was observed in SI, insula, STG, MOG and IFG. Functional connectivity analysis showed more secure and spatially extended connectivity of both the DMN and SMN after 30 min TEAS. Our results implied that modulation of the regional brain activities and network connectivity induced by thirty minute TEAS may associate with the acupuncture-related therapeutic effects. Furthermore, the resting state regional CBF quantified by ASL perfusion fMRI may serve as a potential biomarker in future acupuncture studies. PMID:22541167

  8. Technetium-99m bis (aminoethanethiol) complexes with amine sidechains--potential brain perfusion imaging agents for SPECT

    SciTech Connect

    Efange, S.M.; Kung, H.F.; Billings, J.; Guo, Y.Z.; Blau, M.

    1987-06-01

    In an effort to develop new clinically useful technetium-99m bis(aminoethanethiol) ((/sup 99m/Tc)BAT) complexes for the evaluation of regional cerebral perfusion, two new BAT ligands containing amines in the sidechain were synthesized and subsequently complexed with /sup 99m/Tc to yield the target complexes: (/sup 99m/Tc)DEA and (/sup 99m/Tc)TMPDA. Each complex was obtained as mixtures of two isomers, syn and anti, which were separated chromatographically. In biodistribution studies, both isomers of (/sup 99m/Tc)TMPDA showed little uptake in the brain. In contrast, the brain uptake values at 2 and 15 min for (/sup 99m/Tc)DEA-anti were 0.99 and 0.26, whereas, the corresponding values for DEA-syn were 2.27, 0.64% dose/organ, respectively. Autoradiographic studies (in rats) using both isomers of (/sup 99m/Tc)DEA show a fixed regional distribution and a higher concentration of radioactivity in the gray matter relative to the white matter. Planar imaging using (/sup 99m/Tc)DEA-syn clearly demonstrates localization of the complex in the brain with a T 1/2 of 41 min, suggesting some potential for use with single photon emission computed tomography.

  9. Early Cerebral Circulation Disturbance in Patients Suffering from Severe Traumatic Brain Injury (TBI): A Xenon CT and Perfusion CT Study

    PubMed Central

    HONDA, Mitsuru; ICHIBAYASHI, Ryo; YOKOMURO, Hiroki; YOSHIHARA, Katsunori; MASUDA, Hiroyuki; HAGA, Daisuke; SEIKI, Yoshikatsu; KUDOH, Chiaki; KISHI, Taichi

    2016-01-01

    Traumatic brain injury (TBI) is widely known to cause dynamic changes in cerebral blood flow (CBF). Ischemia is a common and deleterious secondary injury following TBI. Detecting early ischemia in TBI patients is important to prevent further advancement and deterioration of the brain tissue. The purpose of this study was to clarify the cerebral circulatory disturbance during the early phase and whether it can be used to predict patient outcome. A total of 90 patients with TBI underwent a xenon-computed tomography (Xe-CT) and subsequently perfusion CT to evaluate the cerebral circulation on days 1–3. We measured CBF using Xe-CT and mean transit time (MTT: the width between two inflection points [maximum upward slope and maximum downward slope from inflow to outflow of the contrast agent]) using perfusion CT and calculated the cerebral blood volume (CBV) using the AZ-7000W98 computer system. The relationships of the hemodynamic parameters CBF, MTT, and CBV to the Glasgow Coma Scale (GCS) score and the Glasgow Outcome Scale (GOS) score were examined. There were no significant differences in CBF, MTT, and CBV among GCS3–4, GCS5–6, and GCS7–8 groups. The patients with a favorable outcome (GR and MD) had significantly higher CBF and lower MTT than those with an unfavorable one (SD, VS, or D). The discriminant analysis of these parameters could predict patient outcome with a probability of 70.6%. During the early phase, CBF reduction and MTT prolongation might influence the clinical outcome of TBI. These parameters are helpful for evaluating the severity of cerebral circulatory disturbance and predicting the outcome of TBI patients. PMID:27356957

  10. Early Cerebral Circulation Disturbance in Patients Suffering from Severe Traumatic Brain Injury (TBI): A Xenon CT and Perfusion CT Study.

    PubMed

    Honda, Mitsuru; Ichibayashi, Ryo; Yokomuro, Hiroki; Yoshihara, Katsunori; Masuda, Hiroyuki; Haga, Daisuke; Seiki, Yoshikatsu; Kudoh, Chiaki; Kishi, Taichi

    2016-08-15

    Traumatic brain injury (TBI) is widely known to cause dynamic changes in cerebral blood flow (CBF). Ischemia is a common and deleterious secondary injury following TBI. Detecting early ischemia in TBI patients is important to prevent further advancement and deterioration of the brain tissue. The purpose of this study was to clarify the cerebral circulatory disturbance during the early phase and whether it can be used to predict patient outcome. A total of 90 patients with TBI underwent a xenon-computed tomography (Xe-CT) and subsequently perfusion CT to evaluate the cerebral circulation on days 1-3. We measured CBF using Xe-CT and mean transit time (MTT: the width between two inflection points [maximum upward slope and maximum downward slope from inflow to outflow of the contrast agent]) using perfusion CT and calculated the cerebral blood volume (CBV) using the AZ-7000W98 computer system. The relationships of the hemodynamic parameters CBF, MTT, and CBV to the Glasgow Coma Scale (GCS) score and the Glasgow Outcome Scale (GOS) score were examined. There were no significant differences in CBF, MTT, and CBV among GCS3-4, GCS5-6, and GCS7-8 groups. The patients with a favorable outcome (GR and MD) had significantly higher CBF and lower MTT than those with an unfavorable one (SD, VS, or D). The discriminant analysis of these parameters could predict patient outcome with a probability of 70.6%. During the early phase, CBF reduction and MTT prolongation might influence the clinical outcome of TBI. These parameters are helpful for evaluating the severity of cerebral circulatory disturbance and predicting the outcome of TBI patients. PMID:27356957

  11. Abnormal Brain Areas Common to the Focal Epilepsies: Multivariate Pattern Analysis of fMRI.

    PubMed

    Pedersen, Mangor; Curwood, Evan K; Vaughan, David N; Omidvarnia, Amir H; Jackson, Graeme D

    2016-04-01

    Individuals with focal epilepsy have heterogeneous sites of seizure origin. However, there may be brain regions that are common to most cases of intractable focal epilepsy. In this study, we aim to identify these using multivariate analysis of task-free functional MRI. Fourteen subjects with extratemporal focal epilepsy and 14 healthy controls were included in the study. Task-free functional MRI data were used to calculate voxel-wise regional connectivity with regional homogeneity (ReHo) and weighted degree centrality (DCw), in addition to regional activity using fraction of amplitude of low-frequency fluctuations (fALFF). Multivariate pattern analysis was applied to each of these metrics to discriminate brain areas that differed between focal epilepsy subjects and healthy controls. ReHo and DCw classified focal epilepsy subjects from healthy controls with high accuracy (89.3% and 75%, respectively). However, fALFF did not significantly classify patients from controls. Increased regional network activity in epilepsy subjects was seen in the ipsilateral piriform cortex, insula, and thalamus, in addition to the dorsal anterior cingulate cortex and lateral frontal cortices. Decreased regional connectivity was observed in the ventromedial prefrontal cortex, as well as lateral temporal cortices. Patients with extratemporal focal epilepsy have common areas of abnormality (ReHo and DCw measures), including the ipsilateral piriform cortex, temporal neocortex, and ventromedial prefrontal cortex. ReHo shows additional increase in the "salience network" that includes anterior insula and anterior cingulate cortex. DCw showed additional effects in the ipsilateral thalamus and striatum. These brain areas may represent key regional network properties underlying focal epilepsy. PMID:26537783

  12. Perfusion MRI Indexes Variability in the Functional Brain Effects of Theta-Burst Transcranial Magnetic Stimulation

    PubMed Central

    Gratton, Caterina; Lee, Taraz G.; Nomura, Emi M.; D’Esposito, Mark

    2014-01-01

    Transcranial Magnetic Stimulation (TMS) is an important tool for testing causal relationships in cognitive neuroscience research. However, the efficacy of TMS can be variable across individuals and difficult to measure. This variability is especially a challenge when TMS is applied to regions without well-characterized behavioral effects, such as in studies using TMS on multi-modal areas in intrinsic networks. Here, we examined whether perfusion fMRI recordings of Cerebral Blood Flow (CBF), a quantitative measure sensitive to slow functional changes, reliably index variability in the effects of stimulation. Twenty-seven participants each completed four combined TMS-fMRI sessions during which both resting state Blood Oxygen Level Dependent (BOLD) and perfusion Arterial Spin Labeling (ASL) scans were recorded. In each session after the first baseline day, continuous theta-burst TMS (TBS) was applied to one of three locations: left dorsolateral prefrontal cortex (L dlPFC), left anterior insula/frontal operculum (L aI/fO), or left primary somatosensory cortex (L S1). The two frontal targets are components of intrinsic networks and L S1 was used as an experimental control. CBF changes were measured both before and after TMS on each day from a series of interleaved resting state and perfusion scans. Although TBS led to weak selective increases under the coil in CBF measurements across the group, individual subjects showed wide variability in their responses. TBS-induced changes in rCBF were related to TBS-induced changes in functional connectivity of the relevant intrinsic networks measured during separate resting-state BOLD scans. This relationship was selective: CBF and functional connectivity of these networks were not related before TBS or after TBS to the experimental control region (S1). Furthermore, subject groups with different directions of CBF change after TBS showed distinct modulations in the functional interactions of targeted networks. These results suggest

  13. Cross-Sectional and Longitudinal Abnormalities in Brain Structure in Children with Severe Mood Dysregulation or Bipolar Disorder

    ERIC Educational Resources Information Center

    Adleman, Nancy E.; Fromm, Stephen J.; Razdan, Varun; Kayser, Reilly; Dickstein, Daniel P.; Brotman, Melissa A.; Pine, Daniel S.; Leibenluft, Ellen

    2012-01-01

    Background: There is debate as to whether chronic irritability (operationalized as severe mood dysregulation, SMD) is a developmental form of bipolar disorder (BD). Although structural brain abnormalities in BD have been demonstrated, no study compares neuroanatomy among SMD, BD, and healthy volunteers (HV) either cross-sectionally or over time.…

  14. Brain Gray Matter Abnormalities in First-Episode, Treatment-Naive Children with Obsessive-Compulsive Disorder

    PubMed Central

    Cheng, Bochao; Cai, Wu; Wang, Xiuli; Lei, Du; Guo, Yingkun; Yang, Xun; Wu, Qizhu; Gong, Jianping; Gong, Qiyong; Ning, Gang

    2016-01-01

    Although several magnetic resonance imaging (MRI) studies have been conducted in children with obsessive-compulsive disorder (OCD), the brain structural abnormalities in OCD, especially in children, are not yet well characterized. We aimed to identify gray matter (GM) abnormalities in the early stage of pediatric OCD and examine the relationship between these structural abnormalities with clinical characteristics. Examinations of 30 first-episode, treatment-naive pediatric OCD patients without any comorbidities and 30 matched healthy controls (HCs) were performed with 3.0 T magnetic resonance imaging (MRI). Voxel-based morphometry (VBM) following Diffeomorphic Anatomical Registration using Exponentiated Lie algebra (DARTEL) was used to conduct voxel-wise tests for group differences in regional gray matter volume (GMV). Compared to HCs, the patient group exhibited more GMV in the bilateral putamen and left orbitofrontal cortex (OFC) and less GMV in the left inferior parietal lobule (IPL). The GMV alternation in the right putamen of OCD patients was positively correlated with Hamilton Anxiety Rating Scale (HAM-A) scores, while the GMV alternation in the left IPL exhibited a trend to negatively correlate with HAM-A scores. Our current results suggest that the GM abnormalities were defined in the early stage of pediatric OCD. Moreover, these findings provided further evidence of brain GM abnormalities that are not only present in the classical fronto–striatal–thalamic circuit but also in the default mode network (DMN), which may represent the interaction of abnormally functional organization of both network in pediatric OCD. PMID:27445736

  15. Brain Gray Matter Abnormalities in First-Episode, Treatment-Naive Children with Obsessive-Compulsive Disorder.

    PubMed

    Cheng, Bochao; Cai, Wu; Wang, Xiuli; Lei, Du; Guo, Yingkun; Yang, Xun; Wu, Qizhu; Gong, Jianping; Gong, Qiyong; Ning, Gang

    2016-01-01

    Although several magnetic resonance imaging (MRI) studies have been conducted in children with obsessive-compulsive disorder (OCD), the brain structural abnormalities in OCD, especially in children, are not yet well characterized. We aimed to identify gray matter (GM) abnormalities in the early stage of pediatric OCD and examine the relationship between these structural abnormalities with clinical characteristics. Examinations of 30 first-episode, treatment-naive pediatric OCD patients without any comorbidities and 30 matched healthy controls (HCs) were performed with 3.0 T magnetic resonance imaging (MRI). Voxel-based morphometry (VBM) following Diffeomorphic Anatomical Registration using Exponentiated Lie algebra (DARTEL) was used to conduct voxel-wise tests for group differences in regional gray matter volume (GMV). Compared to HCs, the patient group exhibited more GMV in the bilateral putamen and left orbitofrontal cortex (OFC) and less GMV in the left inferior parietal lobule (IPL). The GMV alternation in the right putamen of OCD patients was positively correlated with Hamilton Anxiety Rating Scale (HAM-A) scores, while the GMV alternation in the left IPL exhibited a trend to negatively correlate with HAM-A scores. Our current results suggest that the GM abnormalities were defined in the early stage of pediatric OCD. Moreover, these findings provided further evidence of brain GM abnormalities that are not only present in the classical fronto-striatal-thalamic circuit but also in the default mode network (DMN), which may represent the interaction of abnormally functional organization of both network in pediatric OCD. PMID:27445736

  16. Brain-derived neurotrophic factor-deficient mice develop aggressiveness and hyperphagia in conjunction with brain serotonergic abnormalities

    PubMed Central

    Lyons, W. Ernest; Mamounas, Laura A.; Ricaurte, George A.; Coppola, Vincenzo; Reid, Susan W.; Bora, Susan H.; Wihler, Cornelia; Koliatsos, Vassilis E.; Tessarollo, Lino

    1999-01-01

    Brain-derived neurotrophic factor (BDNF) has trophic effects on serotonergic (5-HT) neurons in the central nervous system. However, the role of endogenous BDNF in the development and function of these neurons has not been established in vivo because of the early postnatal lethality of BDNF null mice. In the present study, we use heterozygous BDNF+/− mice that have a normal life span and show that these animals develop enhanced intermale aggressiveness and hyperphagia accompanied by significant weight gain in early adulthood; these behavioral abnormalities are known to correlate with 5-HT dysfunction. Forebrain 5-HT levels and fiber density in BDNF+/− mice are normal at an early age but undergo premature age-associated decrements. However, young adult BDNF+/− mice show a blunted c-fos induction by the specific serotonin releaser-uptake inhibitor dexfenfluramine and alterations in the expression of several 5-HT receptors in the cortex, hippocampus, and hypothalamus. The heightened aggressiveness can be ameliorated by the selective serotonin reuptake inhibitor fluoxetine. Our results indicate that endogenous BDNF is critical for the normal development and function of central 5-HT neurons and for the elaboration of behaviors that depend on these nerve cells. Therefore, BDNF+/− mice may provide a useful model to study human psychiatric disorders attributed to dysfunction of serotonergic neurons. PMID:10611369

  17. Brain structural abnormalities in patients with major depression with or without generalized anxiety disorder comorbidity.

    PubMed

    Canu, Elisa; Kostić, Milutin; Agosta, Federica; Munjiza, Ana; Ferraro, Pilar M; Pesic, Danilo; Copetti, Massimiliano; Peljto, Amir; Lecic Tosevski, Dusica; Filippi, Massimo

    2015-05-01

    An overlap frequently occurs between major depression disorder (MDD) and generalized anxiety disorder (GAD). Aim of this study was to assess cortical and white matter (WM) alterations in MDD patients with or without GAD comorbidity. Seventy-one MDD patients and 71 controls were recruited. All subjects underwent T1-weighted and diffusion tensor (DT)/MRI. MRI metrics of cortical thickness and WM integrity were obtained from atlas-based cortical regions and the interhemispheric and major long association WM tracts. Between-group MRI comparisons and multiple regressions with clinical scale scores were performed. Compared to controls, both MDD and MDD-GAD patients showed a cortical thinning of the middle frontal cortex bilaterally, left medial frontal gyrus and frontal pole. Compared to controls and MDD patients, MDD-GAD cases also showed a thinning of the right medial orbitofrontal and fusiform gyri, and left temporal pole and lateral occipital cortices. Compared to controls, MDD patients showed DT MRI abnormalities of the right parahippocampal tract and superior longitudinal fasciculus bilaterally, while no WM alterations were found in MDD-GAD. In all patients, brain abnormalities were related with symptom severity. MDD and MDD-GAD share a common pattern of cortical alterations located in the frontal regions. However, while both the cortex and WM integrity are affected in MDD, only the former is affected in MDD-GAD. These findings support the notion of MDD-GAD as a distinct clinical entity, providing insights into patient vulnerability for specific networks as well as into patient resilience factors reflected by the integrity of other cerebral circuits. PMID:25794861

  18. Near-Infrared Spectroscopy versus Magnetic Resonance Imaging To Study Brain Perfusion in Newborns with Hypoxic-Ischemic Encephalopathy Treated with Hypothermia

    PubMed Central

    Wintermark, P.; Hansen, A.; Warfield, SK.; Dukhovny, D.; Soul, JS.

    2014-01-01

    Background The measurement of brain perfusion may provide valuable information for assessment and treatment of newborns with hypoxic-ischemic encephalopathy (HIE). While arterial spin labeled perfusion (ASL) magnetic resonance imaging (MRI) provides noninvasive and direct measurements of regional cerebral blood flow (CBF) values, it is logistically challenging to obtain. Near-infrared spectroscopy (NIRS) might be an alternative, as it permits noninvasive and continuous monitoring of cerebral hemodynamics and oxygenation at the bedside. Objective The purpose of this study is to determine the correlation between measurements of brain perfusion by NIRS and by MRI in term newborns with HIE treated with hypothermia. Design/Methods In this prospective cohort study, ASL-MRI and NIRS performed during hypothermia were used to assess brain perfusion in these newborns. Regional cerebral blood flow values (CBF), measured from 1–2 MRI scans for each patient, were compared to mixed venous saturation values (SctO2) recorded by NIRS just before and after each MRI. Analysis included groupings into moderate versus severe HIE based on their initial background pattern of amplitude-integrated electroencephalogram. Results Twelve concomitant recordings were obtained of seven neonates. Strong correlation was found between SctO2 and CBF in asphyxiated newborns with severe HIE (r = 0.88; p value = 0.0085). Moreover, newborns with severe HIE had lower CBF (likely lower oxygen supply) and extracted less oxygen (likely lower oxygen demand or utilization) when comparing SctO2 and CBF to those with moderate HIE. Conclusions NIRS is an effective bedside tool to monitor and understand brain perfusion changes in term asphyxiated newborns, which in conjunction with precise measurements of CBF obtained by MRI at particular times, may help tailor neuroprotective strategies in term newborns with HIE. PMID:23631990

  19. Brain perfusion monitoring with frequency-domain and continuous-wave near-infrared spectroscopy: a cross-correlation study in newborn piglets

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Katz, A.; Alfano, R. R.; Kofinas, A. D.; Kofinas, D. A.; Stubblefield, P. G.; Rosenfeld, W.; Beyer, D.; Maulik, D.; Stankovic, M. R.

    2000-11-01

    The newborn piglet brain model was used to correlate continuous-wave (CW) and frequency-domain (FD) near-infrared spectroscopy. Six ventilated and instrumented newborn piglets were subjected to a series of manipulations in blood oxygenation with the effects on brain perfusion known to be associated with brain hypoxia-ischaemia. An excellent agreement between the CW and FD was demonstrated. This agreement improved when the scattering properties (determined by the FD device) were employed to calculate the differential pathlength factor, an important step in CW data processing.

  20. The Neural Underpinnings of Associative Learning in Health and Psychosis: How Can Performance Be Preserved When Brain Responses Are Abnormal?

    PubMed Central

    Murray, Graham K.; Corlett, Philip R.; Fletcher, Paul C.

    2010-01-01

    Associative learning experiments in schizophrenia and other psychoses reveal subtle abnormalities in patients’ brain responses. These are sometimes accompanied by intact task performance. An important question arises: How can learning occur if the brain system is not functioning normally? Here, we examine a series of possible explanations for this apparent discrepancy: (1) standard brain activation patterns may be present in psychosis but partially obscured by greater noise, (2) brain signals may be more sensitive to real group differences than behavioral measures, and (3) patients may achieve comparable levels of performance to control subjects by employing alternative or compensatory neural strategies. We consider these explanations in relation to data from causal- and reward-learning imaging experiments in first-episode psychosis patients. The findings suggest that a combination of these factors may resolve the question of why performance is sometimes preserved when brain patterns are disrupted. PMID:20154201

  1. Sources of abnormal EEG activity in the presence of brain lesions.

    PubMed

    Fernández-Bouzas, A; Harmony, T; Bosch, J; Aubert, E; Fernández, T; Valdés, P; Silva, J; Marosi, E; Martínez-López, M; Casián, G

    1999-04-01

    In routine clinical EEG, a common origin is assumed for delta and theta rhythms produced by brain lesions. In previous papers, we have provided some experimental support, based on High Resolution qEEG and dipole fitting in the frequency domain, for the hypothesis that delta and theta spectral power have independent origins related to lesion and edema respectively. This paper describes the results obtained with Frequency Domain VARETA (FD-VARETA) in a group of 13 patients with cortical space-occupying lesions, in order to: 1) Test the accuracy of FD-VARETA for the localization of brain lesions, and 2) To provide further support for the independent origin of delta and theta components. FD VARETA is a distributed inverse solution, constrained by the Montreal Neurological Institute probabilistic atlas that estimates the spectra of EEG sources. In all patients, logarithmic transformed source spectra were compared with age-matched normative values, defining the Z source spectrum. Maximum Z values were found in 10 patients within the delta band (1.56 to 3.12 Hz); the spatial extent of these sources in the atlas corresponded with the location of the tumors in the CT. In 2 patients with small metastases and large volumes of edema and in a patient showing only edema, maximum Z values were found between 4.29 and 5.12 Hz. The spatial extent of the sources at these frequencies was within the volume of the edema in the CT. These results provided strong support to the hypothesis that both delta and theta abnormal EEG activities are the counterparts of two different pathophysiological processes. PMID:10358783

  2. Abnormal Subcortical Brain Morphology in Patients with Knee Osteoarthritis: A Cross-sectional Study

    PubMed Central

    Mao, Cui Ping; Bai, Zhi Lan; Zhang, Xiao Na; Zhang, Qiu Juan; Zhang, Lei

    2016-01-01

    Despite the involvement of subcortical brain structures in the pathogenesis of chronic pain and persistent pain as the defining symptom of knee osteoarthritis (KOA), little attention has been paid to the morphometric measurements of these subcortical nuclei in patients with KOA. The purpose of this study is to explore the potential morphological abnormalities of subcortical brain structures in patients with KOA as compared to the healthy control subjects by using high-resolution MRI. Structural MR data were acquired from 26 patients with KOA and 31 demographically similar healthy individuals. The MR data were analyzed by using FMRIB’s integrated registration and segmentation tool. Both volumetric analysis and surface-based shape analysis were performed to characterize the subcortical morphology. The normalized volumes of bilateral caudate nucleus were significantly smaller in the KOA group than in the control group (P = 0.004). There was also a trend toward smaller volume of the hippocampus in KOA as compared to the control group (P = 0.027). Detailed surface analyses further localized these differences with a greater involvement of the left hemisphere (P < 0.05, corrected) for the caudate nucleus. Hemispheric asymmetry (right larger than left) of the caudate nucleus was found in both KOA and control groups. Besides, no significant correlation was found between the structural data and pain intensities. Our results indicated that patients with KOA had statistically significant smaller normalized volumes of bilateral caudate nucleus and a trend toward smaller volume of the hippocampus as compared to the control subjects. Further investigations are necessary to characterize the role of caudate nucleus in the course of chronicity of pain associated with KOA. PMID:26834629

  3. Penumbra Pattern Assessment in Acute Stroke Patients: Comparison of Quantitative and Non-Quantitative Methods in Whole Brain CT Perfusion

    PubMed Central

    Baumann, Alena B.; Meinel, Felix G.; Helck, Andreas D.; Opherk, Christian; Straube, Andreas; Reiser, Maximilian F.; Sommer, Wieland H.

    2014-01-01

    Background And Purpose While penumbra assessment has become an important part of the clinical decision making for acute stroke patients, there is a lack of studies measuring the reliability and reproducibility of defined assessment techniques in the clinical setting. Our aim was to determine reliability and reproducibility of different types of three-dimensional penumbra assessment methods in stroke patients who underwent whole brain CT perfusion imaging (WB-CTP). Materials And Methods We included 29 patients with a confirmed MCA infarction who underwent initial WB-CTP with a scan coverage of 100 mm in the z-axis. Two blinded and experienced readers assessed the flow-volume-mismatch twice and in two quantitative ways: Performing a volumetric mismatch analysis using OsiriX imaging software (MMVOL) and visual estimation of mismatch (MMEST). Complementarily, the semiquantitative Alberta Stroke Programme Early CT Score for CT perfusion was used to define mismatch (MMASPECTS). A favorable penumbral pattern was defined by a mismatch of ≥30% in combination with a cerebral blood flow deficit of ≤90 ml and an MMASPECTS score of ≥1, respectively. Inter- and intrareader agreement was determined by Kappa-values and ICCs. Results Overall, MMVOL showed considerably higher inter-/intrareader agreement (ICCs: 0.751/0.843) compared to MMEST (0.292/0.749). In the subgroup of large (≥50 mL) perfusion deficits, inter- and intrareader agreement of MMVOL was excellent (ICCs: 0.961/0.942), while MMEST interreader agreement was poor (0.415) and intrareader agreement was good (0.919). With respect to penumbra classification, MMVOL showed the highest agreement (interreader agreement: 25 agreements/4 non-agreements/κ: 0.595; intrareader agreement 27/2/0.833), followed by MMEST (22/7/0.471; 23/6/0.577), and MMASPECTS (18/11/0.133; 21/8/0.340). Conclusion The evaluated approach of volumetric mismatch assessment is superior to pure visual and ASPECTS penumbra pattern assessment in WB

  4. Diffusion abnormalities of the corpus callosum in patients receiving bevacizumab for malignant brain tumors: suspected treatment toxicity.

    PubMed

    Futterer, Stephen F; Nemeth, Alexander J; Grimm, Sean A; Ragin, Ann B; Chandler, James P; Muro, Kenji; Marymont, Maryanne H; Raizer, Jeffrey J

    2014-05-01

    Bevacizumab has been reported to cause diffusion restriction in the tumor bed of patients with malignant gliomas. This study evaluated prolonged diffusion restriction, in the corpus callosum (CC), of patients with malignant brain tumors treated with bevacizumab. We retrospectively reviewed our database of patients treated with bevacizumab for malignant brain tumors looking for those with restricted diffusion in the CC. CC ADC ratio measurements were obtained prior to and following treatment. Correlation was made with biopsy (n = 3) and MR perfusion (n = 7) and PET (n = 4). The temporal evolution of these changes relative to therapy was examined with mixed effects regression analysis. Nine patients (eight malignant gliomas, one malignant meningioma) out of 146 patients were found to have developed areas of diffusion restriction in the CC. These areas tended to enlarge and coalesce over serial MRIs and persisted for up to 22 months. Hypoperfusion was demonstrated in MR perfusion in 7/7. PET was hypometabolic in all 4. Biopsy of the CC showed no tumor in 3/3. ADC ratio measurements indicated a significant overall effect of time (F(16,60) = 11.2; p < 0.0001), consistent with persistent diffusion restriction over the measured time periods. Bevacizumab causes prolonged diffusion restriction in the CC. The negative MR perfusion, FDG PET and histopathology suggest this is a toxicity of bevacizumab and not active tumor. Awareness of these changes can assist in patient care. PMID:24574050

  5. Early perfusion changes in patients with recurrent high-grade brain tumor treated with Bevacizumab: preliminary results by a quantitative evaluation

    PubMed Central

    2012-01-01

    Background To determine whether early monitoring of the effects of bevacizumab in patients with recurrent high-grade gliomas, by a Perfusion Computed Tomography (PCT), may be a predictor of the response to treatment assessed through conventional MRI follow-up. Methods Sixteen patients were enrolled in the present study. For each patient, two PCT examinations, before and after the first dose of bevacizumab, were acquired. Areas of abnormal Cerebral Blood Volume (CBV) were manually defined on the CBV maps, using co-registered T1- weighted images, acquired before treatment, as a guide to the tumor location. Different perfusion metrics were derived from the histogram analysis of the normalized CBV (nCBV) maps; both hyper and hypo-perfused sub-volumes were quantified in the lesion, including tumor necrosis. A two-tailed Wilcoxon test was used to establish the significance of changes in the different perfusion metrics, observed at baseline and during treatment. The relationships between changes in perfusion and morphological MRI modifications at first follow-up were investigated. Results Significant reductions in mean and median nCBV were detected throughout the entire patient population, after only a single dose of bevacizumab. The nCBV histogram modifications indicated the normalization effect of bevacizumab on the tumor abnormal vasculature. An improvement in hypoxia after a single dose of bevacizumab was predictive of a greater reduction in T1-weighted contrast-enhanced volumes at first follow-up. Conclusions These preliminary results show that a quantification of changes in necrotic intra-tumoral regions could be proposed as a potential imaging biomarker of tumor response to anti-VEGF therapies. PMID:22494770

  6. Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium.

    PubMed

    van Erp, T G M; Hibar, D P; Rasmussen, J M; Glahn, D C; Pearlson, G D; Andreassen, O A; Agartz, I; Westlye, L T; Haukvik, U K; Dale, A M; Melle, I; Hartberg, C B; Gruber, O; Kraemer, B; Zilles, D; Donohoe, G; Kelly, S; McDonald, C; Morris, D W; Cannon, D M; Corvin, A; Machielsen, M W J; Koenders, L; de Haan, L; Veltman, D J; Satterthwaite, T D; Wolf, D H; Gur, R C; Gur, R E; Potkin, S G; Mathalon, D H; Mueller, B A; Preda, A; Macciardi, F; Ehrlich, S; Walton, E; Hass, J; Calhoun, V D; Bockholt, H J; Sponheim, S R; Shoemaker, J M; van Haren, N E M; Hulshoff Pol, H E; Pol, H E H; Ophoff, R A; Kahn, R S; Roiz-Santiañez, R; Crespo-Facorro, B; Wang, L; Alpert, K I; Jönsson, E G; Dimitrova, R; Bois, C; Whalley, H C; McIntosh, A M; Lawrie, S M; Hashimoto, R; Thompson, P M; Turner, J A

    2016-04-01

    The profile of brain structural abnormalities in schizophrenia is still not fully understood, despite decades of research using brain scans. To validate a prospective meta-analysis approach to analyzing multicenter neuroimaging data, we analyzed brain MRI scans from 2028 schizophrenia patients and 2540 healthy controls, assessed with standardized methods at 15 centers worldwide. We identified subcortical brain volumes that differentiated patients from controls, and ranked them according to their effect sizes. Compared with healthy controls, patients with schizophrenia had smaller hippocampus (Cohen's d=-0.46), amygdala (d=-0.31), thalamus (d=-0.31), accumbens (d=-0.25) and intracranial volumes (d=-0.12), as well as larger pallidum (d=0.21) and lateral ventricle volumes (d=0.37). Putamen and pallidum volume augmentations were positively associated with duration of illness and hippocampal deficits scaled with the proportion of unmedicated patients. Worldwide cooperative analyses of brain imaging data support a profile of subcortical abnormalities in schizophrenia, which is consistent with that based on traditional meta-analytic approaches. This first ENIGMA Schizophrenia Working Group study validates that collaborative data analyses can readily be used across brain phenotypes and disorders and encourages analysis and data sharing efforts to further our understanding of severe mental illness. PMID:26033243

  7. Brain tissue- and region-specific abnormalities on volumetric MRI scans in 21 patients with Bardet-Biedl syndrome (BBS)

    PubMed Central

    2011-01-01

    Background Bardet-Biedl syndrome (BBS) is a heterogeneous human disorder inherited in an autosomal recessive pattern, and characterized by the primary findings of obesity, polydactyly, hypogonadism, and learning and behavioural problems. BBS mouse models have a neuroanatomical phenotype consisting of third and lateral ventriculomegaly, thinning of the cerebral cortex, and reduction in the size of the corpus striatum and hippocampus. These abnormalities raise the question of whether humans with BBS have a characteristic morphologic brain phenotype. Further, although behavioral, developmental, neurological and motor defects have been noted in patients with BBS, to date, there are limited reports of brain findings in BBS. The present study represents the largest systematic evaluation for the presence of structural brain malformations and/or progressive changes, which may contribute to these functional problems. Methods A case-control study of 21 patients, most aged 13-35 years, except for 2 patients aged 4 and 8 years, who were diagnosed with BBS by clinical criteria and genetic analysis of known BBS genes, and were evaluated by qualitative and volumetric brain MRI scans. Healthy controls were matched 3:1 by age, sex and race. Statistical analysis was performed using SAS language with SAS STAT procedures. Results All 21 patients with BBS were found to have statistically significant region- and tissue-specific patterns of brain abnormalities. There was 1) normal intracranial volume; 2) reduced white matter in all regions of the brain, but most in the occipital region; 3) preserved gray matter volume, with increased cerebral cortex volume in only the occipital lobe; 4) reduced gray matter in the subcortical regions of the brain, including the caudate, putamen and thalamus, but not in the cerebellum; and 5) increased cerebrospinal fluid volume. Conclusions There are distinct and characteristic abnormalities in tissue- and region- specific volumes of the brain in patients

  8. Bernoulli's Principle Applied to Brain Fluids: Intracranial Pressure Does Not Drive Cerebral Perfusion or CSF Flow.

    PubMed

    Schmidt, Eric; Ros, Maxime; Moyse, Emmanuel; Lorthois, Sylvie; Swider, Pascal

    2016-01-01

    In line with the first law of thermodynamics, Bernoulli's principle states that the total energy in a fluid is the same at all points. We applied Bernoulli's principle to understand the relationship between intracranial pressure (ICP) and intracranial fluids. We analyzed simple fluid physics along a tube to describe the interplay between pressure and velocity. Bernoulli's equation demonstrates that a fluid does not flow along a gradient of pressure or velocity; a fluid flows along a gradient of energy from a high-energy region to a low-energy region. A fluid can even flow against a pressure gradient or a velocity gradient. Pressure and velocity represent part of the total energy. Cerebral blood perfusion is not driven by pressure but by energy: the blood flows from high-energy to lower-energy regions. Hydrocephalus is related to increased cerebrospinal fluid (CSF) resistance (i.e., energy transfer) at various points. Identification of the energy transfer within the CSF circuit is important in understanding and treating CSF-related disorders. Bernoulli's principle is not an abstract concept far from clinical practice. We should be aware that pressure is easy to measure, but it does not induce resumption of fluid flow. Even at the bedside, energy is the key to understanding ICP and fluid dynamics. PMID:27165887

  9. 3D perfused brain phantom for interstitial ultrasound thermal therapy and imaging: design, construction and characterization

    NASA Astrophysics Data System (ADS)

    Martínez, José M.; Jarosz, Boguslaw J.

    2015-03-01

    Thermal therapy has emerged as an independent modality of treating some tumors. In many clinics the hyperthermia, one of the thermal therapy modalities, has been used adjuvant to radio- or chemotherapy to substantially improve the clinical treatment outcomes. In this work, a methodology for building a realistic brain phantom for interstitial ultrasound low dose-rate thermal therapy of the brain is proposed. A 3D brain phantom made of the tissue mimicking material (TMM) had the acoustic and thermal properties in the 20-32 °C range, which is similar to that of a brain at 37 °C. The phantom had 10-11% by mass of bovine gelatin powder dissolved in ethylene glycol. The TMM sonicated at 1 MHz, 1.6 MHz and 2.5 MHz yielded the amplitude attenuation coefficients of 62  ±  1 dB m-1, 115  ±  4 dB m-1 and 175  ±  9 dB m-1, respectively. The density and acoustic speed determination at room temperature (~24 °C) gave 1040  ±  40 kg m-3 and 1545  ±  44 m s-1, respectively. The average thermal conductivity was 0.532 W m-1 K-1. The T1 and T2 values of the TMM were 207  ±  4 and 36.2  ±  0.4 ms, respectively. We envisage the use of our phantom for treatment planning and for quality assurance in MRI based temperature determination. Our phantom preparation methodology may be readily extended to other thermal therapy technologies.

  10. CT-based attenuation and scatter correction compared with uniform attenuation correction in brain perfusion SPECT imaging for dementia

    NASA Astrophysics Data System (ADS)

    Gillen, Rebecca; Firbank, Michael J.; Lloyd, Jim; O'Brien, John T.

    2015-09-01

    This study investigated if the appearance and diagnostic accuracy of HMPAO brain perfusion SPECT images could be improved by using CT-based attenuation and scatter correction compared with the uniform attenuation correction method. A cohort of subjects who were clinically categorized as Alzheimer’s Disease (n=38 ), Dementia with Lewy Bodies (n=29 ) or healthy normal controls (n=30 ), underwent SPECT imaging with Tc-99m HMPAO and a separate CT scan. The SPECT images were processed using: (a) correction map derived from the subject’s CT scan or (b) the Chang uniform approximation for correction or (c) no attenuation correction. Images were visually inspected. The ratios between key regions of interest known to be affected or spared in each condition were calculated for each correction method, and the differences between these ratios were evaluated. The images produced using the different corrections were noted to be visually different. However, ROI analysis found similar statistically significant differences between control and dementia groups and between AD and DLB groups regardless of the correction map used. We did not identify an improvement in diagnostic accuracy in images which were corrected using CT-based attenuation and scatter correction, compared with those corrected using a uniform correction map.

  11. Increases in brain white matter abnormalities and subcortical gray matter are linked to CD4 recovery in HIV infection.

    PubMed

    Fennema-Notestine, Christine; Ellis, Ronald J; Archibald, Sarah L; Jernigan, Terry L; Letendre, Scott L; Notestine, Randy J; Taylor, Michael J; Theilmann, Rebecca J; Julaton, Michelle D; Croteau, David J; Wolfson, Tanya; Heaton, Robert K; Gamst, Anthony C; Franklin, Donald R; Clifford, David B; Collier, Ann C; Gelman, Benjamin B; Marra, Christina; McArthur, Justin C; McCutchan, J Allen; Morgello, Susan; Simpson, David M; Grant, Igor

    2013-08-01

    MRI alterations in the cerebral white (WM) and gray matter (GM) are common in HIV infection, even during successful combination antiretroviral therapy (CART), and their pathophysiology and clinical significance are unclear. We evaluated the association of these alterations with recovery of CD4+ T cells. Seventy-five HIV-infected (HIV+) volunteers in the CNS HIV Anti-Retroviral Therapy Effects Research study underwent brain MRI at two visits. Multi-channel morphometry yielded volumes of total cerebral WM, abnormal WM, cortical and subcortical GM, and ventricular and sulcal CSF. Multivariable linear regressions were used to predict volumetric changes with change in current CD4 and detectable HIV RNA. On average, the cohort (79 % initially on CART) demonstrated loss of total cerebral WM alongside increases in abnormal WM and ventricular volumes. A greater extent of CD4 recovery was associated with increases in abnormal WM and subcortical GM volumes. Virologic suppression was associated with increased subcortical GM volume, independent of CD4 recovery. These findings suggest a possible link between brain alterations and immune recovery, distinct from the influence of virologic suppression. The association of increasing abnormal WM and subcortical GM volumes with CD4+ T cell recovery suggests that neuroinflammation may be one mechanism in CNS pathogenesis. PMID:23838849

  12. Cardiolipin and electron transport chain abnormalities in mouse brain tumor mitochondria: lipidomic evidence supporting the Warburg theory of cancer*

    PubMed Central

    Kiebish, Michael A.; Han, Xianlin; Cheng, Hua; Chuang, Jeffrey H.; Seyfried, Thomas N.

    2008-01-01

    Otto Warburg first proposed that cancer originated from irreversible injury to mitochondrial respiration, but the structural basis for this injury has remained elusive. Cardiolipin (CL) is a complex phospholipid found almost exclusively in the inner mitochondrial membrane and is intimately involved in maintaining mitochondrial functionality and membrane integrity. Abnormalities in CL can impair mitochondrial function and bioenergetics. We used shotgun lipidomics to analyze CL content and composition in highly purified brain mitochondria from the C57BL/6J (B6) and VM/Dk (VM) inbred strains and from subcutaneously grown brain tumors derived from these strains to include an astrocytoma and ependymoblastoma (B6 tumors), a stem cell tumor, and two microgliomas (VM tumors). Major abnormalities in CL content or composition were found in all tumors. The compositional abnormalities involved an abundance of immature molecular species and deficiencies of mature molecular species, suggesting major defects in CL synthesis and remodeling. The tumor CL abnormalities were also associated with significant reductions in both individual and linked electron transport chain activities. A mathematical model was developed to facilitate data interpretation. The implications of our findings to the Warburg cancer theory are discussed. PMID:18703489

  13. Evaluation of changes in the parameters of brain tissue perfusion in multi-slice computed tomography in patients after carotid artery stenting

    PubMed Central

    Szarmach, Arkadiusz; Halena, Grzegorz; Buczny, Jacek; Studniarek, Michał; Markiet, Karolina; Szurowska, Edyta; Retkowski, Mariusz; Piskunowicz, Maciej

    2011-01-01

    Summary Background: CT perfusion of the brain allows functional evaluation of cerebral blood flow. Patients with chronic internal carotid artery (ICA) stenosis may suffer from malperfusion. Improvement of cerebral blood flow and remission of neurological symptoms indicate the effectiveness of treatment of internal carotid artery stenosis. Material/Methods: The aim of the study was to analyze alterations within cerebral perfusion parameters in CT brain perfusion examination in patients who were scheduled for endovascular therapy due to ICA stenosis. Forty patients with ICA stenosis of over 79% who were included in this prospective study underwent perfusion CT examination twice – 24 hours prior to stenting and after 6–8 weeks following the procedure. CBF, CBV, MTT and TTP were evaluated. Results: Prior to endovascular therapy, an increase in MTT and TTP, and a decrease in CBV and CBF were observed within arterial supply of the hemisphere ipsilateral to stenosis. After the procedure, a decrease in MTT and TTP was seen in all cases, while no statistically significant changes of CBF or CBV were observed. MTT proved to be the most sensitive indicator of ICA stenosis, as its values allowed differentiation between critical and non-critical stenosis. No correlation between the degree of ICA stenosis and TTP values was found. Mild cerebral hyperperfusion syndrome (CHS) was observed in only one patient and the difference between pre-treatment MTT values calculated for both hemispheres was shown to be a prognostic factor for CHS incidence. Conclusions: Endovascular stent placing in patients with hemodynamically significant internal carotid artery stenosis results in alteration of perfusion parameters, especially concerning TTP and MTT. PMID:22802836

  14. Optical fiber spectroscopy measures perfusion of the brain in a murine Alzheimer's disease model

    NASA Astrophysics Data System (ADS)

    Ahn, Hyung Jin; Strickland, Sidney; Krueger, James; Gareau, Daniel

    2014-02-01

    Optical fiber spectroscopy is a versatile tool for measuring diffuse reflectance and extracting absorption information that can noninvasively quantify the presence of chromophores such as oxyhemoglobin and deoxy-hemoglobin in tissues. Cerebrovascular abnormalities were widely recognized in Alzheimer's disease (AD) patients. We analyzed blood volume fraction and level of oxygenated hemoglobin in Tg6799 mice, which are transgenic mice expressing five different familial Alzheimer disease-associated mutations in the human amyloid precursor protein and presenilin-1 genes. Diffuse reflectance spectra were iteratively fit as weighted sums of oxy- and deoxy-hemoglobin. Our observations showed slightly hypoxic conditions and significantly increased blood volume in the Alzheimer's mice versus wild type. These results suggest that hyperperfusion of our AD mice may be a compensating mechanism for impaired cerebral vascular function and somehow relevant with early stage of AD patients. Ongoing work focuses on developing a cannula fixture that allows measurement in awake, behaving animals.

  15. Arterial Spin Labeling Magnetic Resonance Perfusion for Traumatic Brain Injury: Technical Challenges and Potentials.

    PubMed

    Andre, Jalal B

    2015-10-01

    Traumatic brain injury (TBI), including concussion, is a public health concern, as it affects over 1.7 million persons in the United States per year. Yet, the diagnosis of TBI, particularly mild TBI (mTBI), can be controversial, as neuroimaging findings can be sparse on conventional magnetic resonance and computed tomography examinations, and when present, often poorly correlate with clinical signs and symptoms. Furthermore, the discussion of TBI, concussion, and head impact exposure is immediately complicated by the many differing opinions of what constitutes each, their respective severities, and how the underlying biomechanics of the inciting head impact might alter the distribution, severity, and prognosis of the underlying brain injury. Advanced imaging methodologies hold promise in improving the sensitivity and detectability of associated imaging biomarkers that might better correlate with patient outcome and prognostication, allowing for improved triage and therapeutic guidance in the setting of TBI, particularly in mTBI. This work will examine the defining symptom complex associated with mTBI and explore changes in cerebral blood flow measured by arterial spin labeling, as a potential imaging biomarker for TBI, and briefly correlate these observations with findings identified by single photon emission computed tomography and positron emission tomography imaging. PMID:26502309

  16. Salicylic acid analogues as chemical exchange saturation transfer MRI contrast agents for the assessment of brain perfusion territory and blood-brain barrier opening after intra-arterial infusion.

    PubMed

    Song, Xiaolei; Walczak, Piotr; He, Xiaowei; Yang, Xing; Pearl, Monica; Bulte, Jeff Wm; Pomper, Martin G; McMahon, Michael T; Janowski, Mirosław

    2016-07-01

    The blood-brain barrier (BBB) is a major obstacle for drug delivery to the brain. Predicted, focal opening of the BBB through intra-arterial infusion of hyperosmolar mannitol is feasible, but there is a need to facilitate imaging techniques (e.g. MRI) to guide interventional procedures and assess the outcomes. Here, we show that salicylic acid analogues (SAA) can depict the brain territory supplied by the catheter and detect the BBB opening, through chemical exchange saturation transfer (CEST) MRI. Hyperosmolar SAA solutions themselves are also capable of opening the BBB, and, when multiple SAA agents were co-injected, their locoregional perfusion could be differentiated. PMID:26980755

  17. Quantitation of brain perfusion with {sup 99m}{Tc}-bicisate and single SPECT scan: Comparison with microsphere measurements

    SciTech Connect

    Pupi, A.; De Cristofaro, T.R.; Passeri, A.; Castagnoli, A.; Bacciottini, L.; Bottoncetti, A.; Dal Pozzo, G.; Santoro, G.M.; Antoniucci, D.

    1994-01-01

    This study describes and validates in a preliminary manner a method to measure the steady-state influx constant (K{sub 1}) of {sup 99m}{Tc}-bicisate with one single photon emission computed tomography (SPECT) scan. The method is based on the analysis of the arterial concentration of the radioactivity. The results of this quantitation procedure were compared with regional CBF (rCBF) measurements made using {sup 99m}{Tc}-microspheres (MI). Two quantitative indexes of perfusion, fractional brain uptake (FBU) and normalized (with cerebellum) brain uptake (NBU), were also evaluated. Two SPECT studies were performed on seven cardiovascular patients who had no signs of neurological disease. In the first of these, {sup 99m}{Tc}-bicisate was used, while in the other, which was performed 2 days later, MI were injected into the left heart ventricle. The values of the FBU, NBU, and K{sub 1} of {sup 99m}{Tc}-bicisate were calculated in several gray and white matter brain regions of interest (ROIs) and compared with the rCBF values measured with MI in coupled ROIs. Mean FBU values were 0.00008 {+-} 0.00002 and 0.00004 {+-} 0.00001 in the gray and the white matter, respectively. Mean NBU values were 0.99 {+-} 0.04 and 0.54 {+-} 0.05, mean K{sub 1} values were 0.36 {+-} 0.06 and 0.19 {+-} 0.03 ml g{sup {minus}1} min{sup {minus}1} and mean rCBF values were 0.51 {+-} 0.04 and 0.27 {+-} 0.04 ml g{sup {minus}1} min{sup {minus}1} in gray and white matter, respectively. Analysis of variance of the regression gave different F values for the regressions with rCBF of FBU (F = 19, n = 126), NBU (F = 289, n = 112), and K{sub 1}(F = 117, n = 112), and K{sub 1}(F = 117, n = 126). The regression of K{sub 1} versus rCBF was K{sub 1} = 0.08 {+-} 0.55 rCBF. 25 refs., 5 figs., 2 tabs.

  18. Annual Research Review: Growth connectomics – the organization and reorganization of brain networks during normal and abnormal development

    PubMed Central

    Vértes, Petra E; Bullmore, Edward T

    2015-01-01

    Background We first give a brief introduction to graph theoretical analysis and its application to the study of brain network topology or connectomics. Within this framework, we review the existing empirical data on developmental changes in brain network organization across a range of experimental modalities (including structural and functional MRI, diffusion tensor imaging, magnetoencephalography and electroencephalography in humans). Synthesis We discuss preliminary evidence and current hypotheses for how the emergence of network properties correlates with concomitant cognitive and behavioural changes associated with development. We highlight some of the technical and conceptual challenges to be addressed by future developments in this rapidly moving field. Given the parallels previously discovered between neural systems across species and over a range of spatial scales, we also review some recent advances in developmental network studies at the cellular scale. We highlight the opportunities presented by such studies and how they may complement neuroimaging in advancing our understanding of brain development. Finally, we note that many brain and mind disorders are thought to be neurodevelopmental in origin and that charting the trajectory of brain network changes associated with healthy development also sets the stage for understanding abnormal network development. Conclusions We therefore briefly review the clinical relevance of network metrics as potential diagnostic markers and some recent efforts in computational modelling of brain networks which might contribute to a more mechanistic understanding of neurodevelopmental disorders in future. PMID:25441756

  19. Circulating Omega‐3 Polyunsaturated Fatty Acids and Subclinical Brain Abnormalities on MRI in Older Adults: The Cardiovascular Health Study

    PubMed Central

    Virtanen, Jyrki K.; Siscovick, David S.; Lemaitre, Rozenn N.; Longstreth, William T.; Spiegelman, Donna; Rimm, Eric B.; King, Irena B.; Mozaffarian, Dariush

    2013-01-01

    Background Consumption of tuna or other broiled or baked fish, but not fried fish, is associated with fewer subclinical brain abnormalities on magnetic resonance imaging (MRI). We investigated the association between plasma phospholipid omega‐3 polyunsaturated fatty acids (PUFAs), objective biomarkers of exposure, and subclinical brain abnormalities on MRI. Methods and Results In the community‐based Cardiovascular Health Study, 3660 participants aged ≥65 underwent brain MRI in 1992–1994, and 2313 were rescanned 5 years later. MRIs were centrally read by neuroradiologists in a standardized, blinded manner. Participants with recognized transient ischemic attacks or stroke were excluded. Phospholipid PUFAs were measured in stored plasma collected in 1992–1993 and related to cross‐sectional and longitudinal MRI findings. After multivariable adjustment, the odds ratio for having a prevalent subclinical infarct was 0.60 (95% CI, 0.44 to 0.82; P for trend=0.001) in the highest versus lowest long‐chain omega‐3 PUFA quartile. Higher long‐chain omega‐3 PUFA content was also associated with better white matter grade, but not with sulcal or ventricular grades, markers of brain atrophy, or with incident subclinical infarcts. The phospholipid intermediate‐chain omega‐3 PUFA alpha‐linolenic acid was associated only with modestly better sulcal and ventricular grades. However, this finding was not supported in the analyses with alpha‐linolenic acid intake. Conclusions Among older adults, higher phospholipid long‐chain omega‐3 PUFA content was associated with lower prevalence of subclinical infarcts and better white matter grade on MRI. Our results support the beneficial effects of fish consumption, the major source of long‐chain omega‐3 PUFAs, on brain health in later life. The role of plant‐derived alpha‐linolenic acid in brain health requires further investigation. PMID:24113325

  20. Single-subject-based whole-brain MEG slow-wave imaging approach for detecting abnormality in patients with mild traumatic brain injury

    PubMed Central

    Huang, Ming-Xiong; Nichols, Sharon; Baker, Dewleen G.; Robb, Ashley; Angeles, Annemarie; Yurgil, Kate A.; Drake, Angela; Levy, Michael; Song, Tao; McLay, Robert; Theilmann, Rebecca J.; Diwakar, Mithun; Risbrough, Victoria B.; Ji, Zhengwei; Huang, Charles W.; Chang, Douglas G.; Harrington, Deborah L.; Muzzatti, Laura; Canive, Jose M.; Christopher Edgar, J.; Chen, Yu-Han; Lee, Roland R.

    2014-01-01

    Traumatic brain injury (TBI) is a leading cause of sustained impairment in military and civilian populations. However, mild TBI (mTBI) can be difficult to detect using conventional MRI or CT. Injured brain tissues in mTBI patients generate abnormal slow-waves (1–4 Hz) that can be measured and localized by resting-state magnetoencephalography (MEG). In this study, we develop a voxel-based whole-brain MEG slow-wave imaging approach for detecting abnormality in patients with mTBI on a single-subject basis. A normative database of resting-state MEG source magnitude images (1–4 Hz) from 79 healthy control subjects was established for all brain voxels. The high-resolution MEG source magnitude images were obtained by our recent Fast-VESTAL method. In 84 mTBI patients with persistent post-concussive symptoms (36 from blasts, and 48 from non-blast causes), our method detected abnormalities at the positive detection rates of 84.5%, 86.1%, and 83.3% for the combined (blast-induced plus with non-blast causes), blast, and non-blast mTBI groups, respectively. We found that prefrontal, posterior parietal, inferior temporal, hippocampus, and cerebella areas were particularly vulnerable to head trauma. The result also showed that MEG slow-wave generation in prefrontal areas positively correlated with personality change, trouble concentrating, affective lability, and depression symptoms. Discussion is provided regarding the neuronal mechanisms of MEG slow-wave generation due to deafferentation caused by axonal injury and/or blockages/limitations of cholinergic transmission in TBI. This study provides an effective way for using MEG slow-wave source imaging to localize affected areas and supports MEG as a tool for assisting the diagnosis of mTBI. PMID:25009772

  1. Single-subject-based whole-brain MEG slow-wave imaging approach for detecting abnormality in patients with mild traumatic brain injury.

    PubMed

    Huang, Ming-Xiong; Nichols, Sharon; Baker, Dewleen G; Robb, Ashley; Angeles, Annemarie; Yurgil, Kate A; Drake, Angela; Levy, Michael; Song, Tao; McLay, Robert; Theilmann, Rebecca J; Diwakar, Mithun; Risbrough, Victoria B; Ji, Zhengwei; Huang, Charles W; Chang, Douglas G; Harrington, Deborah L; Muzzatti, Laura; Canive, Jose M; Christopher Edgar, J; Chen, Yu-Han; Lee, Roland R

    2014-01-01

    Traumatic brain injury (TBI) is a leading cause of sustained impairment in military and civilian populations. However, mild TBI (mTBI) can be difficult to detect using conventional MRI or CT. Injured brain tissues in mTBI patients generate abnormal slow-waves (1-4 Hz) that can be measured and localized by resting-state magnetoencephalography (MEG). In this study, we develop a voxel-based whole-brain MEG slow-wave imaging approach for detecting abnormality in patients with mTBI on a single-subject basis. A normative database of resting-state MEG source magnitude images (1-4 Hz) from 79 healthy control subjects was established for all brain voxels. The high-resolution MEG source magnitude images were obtained by our recent Fast-VESTAL method. In 84 mTBI patients with persistent post-concussive symptoms (36 from blasts, and 48 from non-blast causes), our method detected abnormalities at the positive detection rates of 84.5%, 86.1%, and 83.3% for the combined (blast-induced plus with non-blast causes), blast, and non-blast mTBI groups, respectively. We found that prefrontal, posterior parietal, inferior temporal, hippocampus, and cerebella areas were particularly vulnerable to head trauma. The result also showed that MEG slow-wave generation in prefrontal areas positively correlated with personality change, trouble concentrating, affective lability, and depression symptoms. Discussion is provided regarding the neuronal mechanisms of MEG slow-wave generation due to deafferentation caused by axonal injury and/or blockages/limitations of cholinergic transmission in TBI. This study provides an effective way for using MEG slow-wave source imaging to localize affected areas and supports MEG as a tool for assisting the diagnosis of mTBI. PMID:25009772

  2. An electrophysiological study of the in vitro, perfused brain stem-cerebellum of adult guinea-pig.

    PubMed Central

    Llinás, R; Mühlethaler, M

    1988-01-01

    1. We describe here a technique which allows the long-term in vitro survival of the perfused isolated brain stem-cerebellum of adult guinea-pig. The viability of this preparation was assessed by comparing the electrophysiological properties of individual neurones and of neuronal pools to those obtained in vivo or in brain slices. The areas investigated included the cerebellar cortex, the inferior olive and the pontine nuclei. 2. Cerebellar field potential and intra- and extracellular single-cell recordings could be obtained for as long as 15 h after the preparation was initially isolated. The waveforms of field potentials recorded at various depths in the cerebellar cortex following surface folial stimulation were similar to those recorded in vivo. Extracellular recordings from single Purkinje cells following white matter stimulation demonstrated antidromic as well as mossy- and climbing fibre-mediated excitation. Stimulation of the cerebellar surface elicited orthodromic parallel fibre excitation of Purkinje cells and basket-stellate and Golgi cell inhibition. 3. Intrasomatic and intradendritic recordings from Purkinje cells reproduced all the phenomenology described earlier under in vivo conditions and in vitro slice preparations. In addition, spontaneous excitatory synaptic potentials generating simple spikes (mossy fibre-parallel fibre-mediated activity) and complex spikes (climbing fibre-mediated activity) were consistently observed. 4. Extracellular field potentials and extra- and intracellular recordings from inferior olive neurones were similar to those previously shown for the mammalian inferior olive. 5. Intracellular recordings were also obtained from pontine nuclei neurones, a major source of mossy fibre afferents to the cerebellum. Stimulation of the contralateral superior cerebellar peduncle produced antidromic invasion of these neurones whereas stimulation of the ipsilateral inferior cerebral peduncle resulted in their orthodromic activation. 6. The

  3. Regional brain abnormalities in 22q11.2 deletion syndrome: association with cognitive abilities and behavioral symptoms.

    PubMed

    Bearden, Carrie E; van Erp, Theo G M; Monterosso, John R; Simon, Tony J; Glahn, David C; Saleh, Peter A; Hill, Nicole M; McDonald-McGinn, Donna M; Zackai, Elaine; Emanuel, Beverly S; Cannon, Tyrone D

    2004-06-01

    Children with 22q11.2 microdeletions (Velocardiofacial Syndrome; VCFS) have previously been shown to exhibit learning deficits and elevated rates of psychopathology. The aim of this study was to assess regional brain abnormalities in children with 22q11DS, and to determine the relationship of these measures to neurocognitive and behavioral function. Thirteen children with confirmed deletions and 9 demographically matched comparison subjects were assessed with a neurocognitive battery, behavioral measures, and high-resolution MRI. Twenty-two qllDS children showed a nonsignificant 4.3% global decrease in total brain volume as compared to healthy controls,with differential reduction in white matter, and significantly increased sulcal cerebrospinal fluid (CSF) in temporal and posterior brain regions. In 22q11 DS subjects, but not controls, bilateral temporal gray and white matter volumes were significant predictors of overall cognitive performance. Further, reduced temporal gray matter was associated with elevated Thought Problems score on the CBCL. Results indicate that global alterations in brain volume are common in children with 22q deletions, particularly those with low IQ and/or behavioral disturbance. Although preliminary,these findings suggest a possible underlying pathophysiology of the cognitive deficits seen in this syndrome,and provide insight into complex gene-brain-behavior relationships. PMID:15788257

  4. Evaluation of brain perfusion in specific Brodmann areas in Frontotemporal dementia and Alzheimer disease using automated 3-D voxel based analysis

    NASA Astrophysics Data System (ADS)

    Valotassiou, V.; Papatriantafyllou, J.; Sifakis, N.; Karageorgiou, C.; Tsougos, I.; Tzavara, C.; Zerva, C.; Georgoulias, P.

    2009-05-01

    Introduction. Brain perfusion studies with single-photon emission computed tomography (SPECT) have been applied in demented patients to provide better discrimination between frontotemporal dementia (FTD) and Alzheimer's disease (AD). Aim. To assess the perfusion of specific Brodmann (Br) areas of the brain cortex in FTD and AD patients, using NeuroGam processing program to provide 3D voxel-by-voxel cerebral SPECT analysis. Material and methods. We studied 34 consecutive patients. We used the established criteria for the diagnosis of dementia and the specific established criteria for the diagnosis of FTD and AD. All the patients had a neuropsychological evaluation with a battery of tests including the mini-mental state examination (MMSE).Twenty-six patients (16 males, 10 females, mean age 68.76±6.51 years, education 11.81±4.25 years, MMSE 16.69±9.89) received the diagnosis of FTD and 8 patients (all females, mean age 71.25±10.48 years, education 10±4.6 years, MMSE 12.5±3.89) the diagnosis of AD. All the patients underwent a brain SPECT. We applied the NeuroGam Software for the evaluation of brain perfusion in specific Br areas in the left (L) and right (R) hemispheres. Results. Statistically significant hypoperfusion in FTD compared to AD patients, was found in the following Br areas: 11L (p<0.0001), 11R, 20L, 20R, 32L, 38L, 38R, 44L (p<0.001), 32R, 36L, 36R, 45L, 45R, 47R (p<0.01), 9L, 21L, 39R, 44R, 46R, 47L (p<0.05). On the contrary, AD patients presented significant (p<0.05) hypoperfusion in 7R and 39R Br areas. Conclusion. NeuroGam processing program of brain perfusion SPECT could result in enhanced accuracy for the differential diagnosis between AD and FTD patients.

  5. A Cross-Sectional Study of Regional Brain Volume Abnormalities in Lesch-Nyhan Disease and its Variants

    PubMed Central

    Schretlen, David J.; Varvaris, Mark; Ho, Tiffany E.; Vannorsdall, Tracy D.; Gordon, Barry; Harris, James C.; Jinnah, H. A.

    2014-01-01

    Background Lesch-Nyhan disease (LND) is a rare, X-linked, neurodevelopmental metabolic disorder that results from a near-complete lack of hypoxanthine phosphoribosyl-transferase enzyme activity. LND is characterized by hyperuricemia, motor neurological abnormalities, recurrent self-injury, and cognitive impairment, but its neural substrates remain poorly understood. Methods In this cross-sectional study, we measured gray matter abnormalities in 21 persons with LND, 17 with an attenuated variant of the phenotype (LNV), and 33 healthy controls using voxel-based morphometry. We conducted an analysis of covariance to identify group differences in regional gray matter volume (GMV), followed by six pair-wise post-hoc group comparisons. Findings Patients with LND showed 20% smaller intracranial volumes (17% gray and 26% white matter) than healthy adults. The largest differences were found in basal ganglia, frontotemporal, and limbic regions, with sparing of parieto-occipital regions. The gray matter volumes of LNV participants invariably fell between those of patients with classical LND and healthy controls. Compared to healthy adults, patients with LND showed additional GMV reductions in the temporal lobe and left lateralized structures, and patients with LNV showed additional reductions in lingual and precuneus regions with sparing of right frontal and temporal regions. LND participants showed reductions in the ventral striatum and prefrontal areas relative to LNV. Interpretation This study of brain morphology reveals regional abnormalities associated with known neurological and behavioral deficits in persons with LND. It also revealed that patients with LNV show milder gray matter abnormalities in many of the same brain regions and preservation of GMV in other regions which could provide important clues to the neural substrates of differences between thephenotypes. PMID:24383089

  6. MR Perfusion Imaging in Acute Ischemic Stroke

    PubMed Central

    Copen, William A.; Schaefer, Pamela W.; Wu, Ona

    2011-01-01

    MR perfusion imaging offers the potential for measuring brain perfusion in acute stroke patients, at a time when treatment decisions based upon these measurements may affect outcomes dramatically. Rapid advancements in both acute stroke therapy and perfusion imaging techniques have resulted in continuing redefinition of the role that perfusion imaging should play in patient management. This review first discusses the basic pathophysiology of acute stroke, with specific attention to alterations in the various perfusion-related parameters that can be studied by MR perfusion imaging. Although these parameters are sometimes treated as somewhat interchangeable, they reveal greatly different information about brain perfusion. Therefore, subsequent discussion of the utility of different kinds of perfusion images focuses on the differences between them, as well as important artifacts that can complicate their interpretation. Finally, research on the continually evolving role of MR perfusion imaging in acute stroke care is summarized. PMID:21640299

  7. Dyslexic brain activation abnormalities in deep and shallow orthographies: A meta-analysis of 28 functional neuroimaging studies.

    PubMed

    Martin, Anna; Kronbichler, Martin; Richlan, Fabio

    2016-07-01

    We used coordinate-based meta-analysis to objectively quantify commonalities and differences of dyslexic functional brain abnormalities between alphabetic languages differing in orthographic depth. Specifically, we compared foci of under- and overactivation in dyslexic readers relative to nonimpaired readers reported in 14 studies in deep orthographies (DO: English) and in 14 studies in shallow orthographies (SO: Dutch, German, Italian, Swedish). The separate meta-analyses of the two sets of studies showed universal reading-related dyslexic underactivation in the left occipitotemporal cortex (including the visual word form area (VWFA)). The direct statistical comparison revealed higher convergence of underactivation for DO compared with SO in bilateral inferior parietal regions, but this abnormality disappeared when foci resulting from stronger dyslexic task-negative activation (i.e., deactivation relative to baseline) were excluded. Higher convergence of underactivation for DO compared with SO was further identified in the left inferior frontal gyrus (IFG) pars triangularis, left precuneus, and right superior temporal gyrus, together with higher convergence of overactivation in the left anterior insula. Higher convergence of underactivation for SO compared with DO was found in the left fusiform gyrus, left temporoparietal cortex, left IFG pars orbitalis, and left frontal operculum, together with higher convergence of overactivation in the left precentral gyrus. Taken together, the findings support the notion of a biological unity of dyslexia, with additional orthography-specific abnormalities and presumably different compensatory mechanisms. The results are discussed in relation to current functional neuroanatomical models of developmental dyslexia. Hum Brain Mapp 37:2676-2699, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:27061464

  8. Multislice perfusion imaging in human brain using the C-FOCI inversion pulse: comparison with hyperbolic secant.

    PubMed

    Yongbi, M N; Yang, Y; Frank, J A; Duyn, J H

    1999-12-01

    Perfusion studies based on pulsed arterial spin labeling have primarily applied hyperbolic secant (HS) pulses for spin inversion. To optimize perfusion sensitivity, it is highly desirable to implement the HS pulse with the same slice width as the width of the imaging pulse. Unfortunately, this approach causes interactions between the slice profiles and manifests as residual signal from static tissue in the resultant perfusion image. This problem is currently overcome by increasing the selective HS width relative to the imaging slice width. However, this solution increases the time for the labeled blood to reach the imaging slice (transit time), causing loss of perfusion sensitivity as a result of T(1) relaxation effects. In this study, we demonstrate that the preceding problems can be largely overcome by use of the C-shaped frequency offset corrected inversion (FOCI) pulse [Ordidge et al., Magn Reson Med 1996;36:562]. The implementation of this pulse for multislice perfusion imaging on the cerebrum is presented, showing substantial improvement in slice definition in vivo compared with the HS pulse. The sharper FOCI profile is shown to reduce the physical gap (or "safety margin") between the inversion and imaging slabs, resulting in a significant increase in perfusion signal without residual contamination from static tissue. The mean +/- SE (n = 6) gray matter perfusion-weighted signal (DeltaM/M(o)) without the application of vascular signal suppression gradients were 1.19 +/- 0. 10% (HS-flow-sensitive alternating inversion recovery [FAIR]), and 1. 51 +/- 0.11% for the FOCI-FAIR sequence. The corresponding values with vascular signal suppression were 0.64 +/- 0.14%, and 0.91 +/- 0. 08% using the HS- and FOCI-FAIR sequences, respectively. Compared with the HS-based data, the FOCI-FAIR results correspond to an average increase in perfusion signal of up to between 26%-30%. Magn Reson Med 42:1098-1105, 1999. PMID:10571931

  9. Red-backed vole brain promotes highly efficient in vitro amplification of abnormal prion protein from macaque and human brains infected with variant Creutzfeldt-Jakob disease agent.

    USGS Publications Warehouse

    Nemecek, Julie; Nag, Nabanita; Carlson, Christina M.; Schneider, Jay R.; Heisey, Dennis M.; Johnson, Christopher J.; Asher, David M.; Gregori, Luisa

    2013-01-01

    Rapid antemortem tests to detect individuals with transmissible spongiform encephalopathies (TSE) would contribute to public health. We investigated a technique known as protein misfolding cyclic amplification (PMCA) to amplify abnormal prion protein (PrPTSE) from highly diluted variant Creutzfeldt-Jakob disease (vCJD)-infected human and macaque brain homogenates, seeking to improve the rapid detection of PrPTSE in tissues and blood. Macaque vCJD PrPTSE did not amplify using normal macaque brain homogenate as substrate (intraspecies PMCA). Next, we tested interspecies PMCA with normal brain homogenate of the southern red-backed vole (RBV), a close relative of the bank vole, seeded with macaque vCJD PrPTSE. The RBV has a natural polymorphism at residue 170 of the PrP-encoding gene (N/N, S/S, and S/N). We investigated the effect of this polymorphism on amplification of human and macaque vCJD PrPTSE. Meadow vole brain (170N/N PrP genotype) was also included in the panel of substrates tested. Both humans and macaques have the same 170S/S PrP genotype. Macaque PrPTSE was best amplified with RBV 170S/S brain, although 170N/N and 170S/N were also competent substrates, while meadow vole brain was a poor substrate. In contrast, human PrPTSE demonstrated a striking narrow selectivity for PMCA substrate and was successfully amplified only with RBV 170S/S brain. These observations suggest that macaque PrPTSE was more permissive than human PrPTSE in selecting the competent RBV substrate. RBV 170S/S brain was used to assess the sensitivity of PMCA with PrPTSE from brains of humans and macaques with vCJD. PrPTSE signals were reproducibly detected by Western blot in dilutions through 10-12 of vCJD-infected 10% brain homogenates. This is the first report showing PrPTSE from vCJD-infected human and macaque brains efficiently amplified with RBV brain as the substrate. Based on our estimates, PMCA showed a sensitivity that might be sufficient to detect PrPTSE in v

  10. Red-Backed Vole Brain Promotes Highly Efficient In Vitro Amplification of Abnormal Prion Protein from Macaque and Human Brains Infected with Variant Creutzfeldt-Jakob Disease Agent

    PubMed Central

    Nemecek, Julie; Nag, Nabanita; Carlson, Christina M.; Schneider, Jay R.; Heisey, Dennis M.; Johnson, Christopher J.; Asher, David M.; Gregori, Luisa

    2013-01-01

    Rapid antemortem tests to detect individuals with transmissible spongiform encephalopathies (TSE) would contribute to public health. We investigated a technique known as protein misfolding cyclic amplification (PMCA) to amplify abnormal prion protein (PrPTSE) from highly diluted variant Creutzfeldt-Jakob disease (vCJD)-infected human and macaque brain homogenates, seeking to improve the rapid detection of PrPTSE in tissues and blood. Macaque vCJD PrPTSE did not amplify using normal macaque brain homogenate as substrate (intraspecies PMCA). Next, we tested interspecies PMCA with normal brain homogenate of the southern red-backed vole (RBV), a close relative of the bank vole, seeded with macaque vCJD PrPTSE. The RBV has a natural polymorphism at residue 170 of the PrP-encoding gene (N/N, S/S, and S/N). We investigated the effect of this polymorphism on amplification of human and macaque vCJD PrPTSE. Meadow vole brain (170N/N PrP genotype) was also included in the panel of substrates tested. Both humans and macaques have the same 170S/S PrP genotype. Macaque PrPTSE was best amplified with RBV 170S/S brain, although 170N/N and 170S/N were also competent substrates, while meadow vole brain was a poor substrate. In contrast, human PrPTSE demonstrated a striking narrow selectivity for PMCA substrate and was successfully amplified only with RBV 170S/S brain. These observations suggest that macaque PrPTSE was more permissive than human PrPTSE in selecting the competent RBV substrate. RBV 170S/S brain was used to assess the sensitivity of PMCA with PrPTSE from brains of humans and macaques with vCJD. PrPTSE signals were reproducibly detected by Western blot in dilutions through 10-12 of vCJD-infected 10% brain homogenates. This is the first report showing PrPTSE from vCJD-infected human and macaque brains efficiently amplified with RBV brain as the substrate. Based on our estimates, PMCA showed a sensitivity that might be sufficient to detect PrPTSE in vCJD-infected human

  11. High Incidence of Progressive Postnatal Cerebellar Enlargement in Costello Syndrome: Brain Overgrowth Associated with HRAS Mutations as the Likely Cause of Structural Brain and Spinal Cord Abnormalities

    PubMed Central

    Gripp, Karen W.; Hopkins, Elisabeth; Doyle, Daniel; Dobyns, William B.

    2010-01-01

    Costello syndrome is a rasopathy caused by germline mutations in the proto-oncogene HRAS. Its presentation includes failure-to-thrive with macrocephaly, characteristic facial features, hypertrophic cardiomyopathy, papillomata, malignant tumors, and cognitive impairment. In a systematic review we found absolute or relative macrocephaly (100%), ventriculomegaly (50%), and other abnormalities on brain and spinal cord imaging studies in 27/28 individuals. Posterior fossa crowding with cerebellar tonsillar herniation (CBTH) was noted in 27/28 (96%), and in 10/17 (59%) with serial studies posterior fossa crowding progressed. Sequelae of posterior fossa crowding and CBTH included hydrocephalus requiring shunt or ventriculostomy (25%), Chiari 1 malformation (32%) and syrinx formation (25%). Our data reveal macrocephaly with progressive frontal bossing and CBTH, documenting an ongoing process rather than a static congenital anomaly. Comparison of images obtained in young infants to subsequent studies demonstrated postnatal development of posterior fossa crowding. This process of evolving megalencephaly and cerebellar enlargement is in keeping with mouse model data, delineating abnormal genesis of neurons and glia, resulting in an increased number of astrocytes and enlarged brain volume. In Costello syndrome and macrocephaly-capillary malformation syndrome disproportionate brain growth is the main factor resulting in postnatal CBTH and Chiari 1 malformation. PMID:20425820

  12. Better Glasgow outcome score, cerebral perfusion pressure and focal brain oxygenation in severely traumatized brain following direct regional brain hypothermia therapy: A prospective randomized study

    PubMed Central

    Idris, Zamzuri; Zenian, Mohd Sofan; Muzaimi, Mustapha; Hamid, Wan Zuraida Wan Abdul

    2014-01-01

    Background: Induced hypothermia for treatment of traumatic brain injury is controversial. Since many pathways involved in the pathophysiology of secondary brain injury are temperature dependent, regional brain hypothermia is thought capable to mitigate those processes. The objectives of this study are to assess the therapeutic effects and complications of regional brain cooling in severe head injury with Glasgow coma scale (GCS) 6-7. Materials and Methods: A prospective randomized controlled pilot study involving patients with severe traumatic brain injury with GCS 6 and 7 who required decompressive craniectomy. Patients were randomized into two groups: Cooling and no cooling. For the cooling group, analysis was made by dividing the group into mild and deep cooling. Brain was cooled by irrigating the brain continuously with cold Hartmann solution for 24-48 h. Main outcome assessments were a dichotomized Glasgow outcome score (GOS) at 6 months posttrauma. Results: A total of 32 patients were recruited. The cooling-treated patients did better than no cooling. There were 63.2% of patients in cooling group attained good GOS at 6 months compared to only 15.4% in noncooling group (P = 0.007). Interestingly, the analysis at 6 months post-trauma disclosed mild-cooling-treated patients did better than no cooling (70% vs. 15.4% attained good GOS, P = 0.013) and apparently, the deep-cooling-treated patients failed to be better than either no cooling (P = 0.074) or mild cooling group (P = 0.650). Conclusion: Data from this pilot study imply direct regional brain hypothermia appears safe, feasible and maybe beneficial in treating severely head-injured patients. PMID:25685201

  13. Optimising Golgi–Cox staining for use with perfusion-fixed brain tissue validated in the zQ175 mouse model of Huntington's disease

    PubMed Central

    Bayram-Weston, Zubeyde; Olsen, Elliott; Harrison, David J.; Dunnett, Stephen B.; Brooks, Simon P.

    2016-01-01

    Background The Golgi–Cox stain is an established method for characterising neuron cell morphology. The method highlights neurite processes of stained cells allowing the complexity of dendritic branching to be measured. New methods Conventional rapid Golgi and Golgi–Cox methods all require fresh impregnation in unfixed brain blocks. Here, we describe a modified method that gives high quality staining on brain tissue blocks perfusion-fixed with 4% paraformaldehyde (PFA) and post-fixed by immersion for 24 h. Results Tissue perfused with 4% PFA and post fixed for 24 h remained viable for the modified Golgi–Cox silver impregnation staining of mouse striatum from perfused wild type and zQ175. It was not found necessary to impregnate tissue blocks with Golgi solutions prior to sectioning, as post-sectioned tissues yielded equally good impregnation. Impregnation for 14 days resulted in optimal visualisation of striatal neuron and dendritic morphology. Although no modifications applied to the rapid Golgi method were reliable, the modified Golgi–Cox method yielded consistently reliable high-quality staining. Comparison with existing methods The current method used fixed tissues to reduce damage and preserve cell morphology. The revised method was found to be fast, reliable and cost effective without the need for expensive staining kits and could be performed in any neuroscience lab with limited specialist equipment. Conclusions The present study introduces a robust reproducible and inexpensive staining method for identifying neuronal morphological changes in the post fixed mouse brain, and is suitable for assessing changes in cell morphology in models of neurodegeneration and in response to experimental treatment. PMID:26459195

  14. Biphasic thallium 201 SPECT-imaging for the noninvasive diagnosis of myocardial perfusion abnormalities in a child with Kawasaki disease--a case report

    SciTech Connect

    Hausdorf, G.; Nienaber, C.A.; Spielman, R.P.

    1988-02-01

    The mucocutaneous lymph node syndrome (Kawasaki disease) is of increasing importance for the pediatric cardiologist, for coronary aneurysms with the potential of thrombosis and subsequent stenosis can develop in the course of the disease. The authors report a 2 1/2-year-old female child in whom, fourteen months after the acute phase of Kawasaki disease, myocardial infarction occurred. Biphasic thallium 201 SPECT-imaging using dipyridamole depicted anterior wall ischemia and inferolateral infarction. This case demonstrates that noninvasive vasodilation-redistribution thallium 201 SPECT-imaging has the potential to predict reversible myocardial perfusion defects and myocardial necrosis, even in small infants with Kawasaki disease.

  15. Glucose Metabolism during Resting State Reveals Abnormal Brain Networks Organization in the Alzheimer’s Disease and Mild Cognitive Impairment

    PubMed Central

    Martínez-Montes, Eduardo

    2013-01-01

    This paper aims to study the abnormal patterns of brain glucose metabolism co-variations in Alzheimer disease (AD) and Mild Cognitive Impairment (MCI) patients compared to Normal healthy controls (NC) using the Alzheimer Disease Neuroimaging Initiative (ADNI) database. The local cerebral metabolic rate for glucose (CMRgl) in a set of 90 structures belonging to the AAL atlas was obtained from Fluro-Deoxyglucose Positron Emission Tomography data in resting state. It is assumed that brain regions whose CMRgl values are significantly correlated are functionally associated; therefore, when metabolism is altered in a single region, the alteration will affect the metabolism of other brain areas with which it interrelates. The glucose metabolism network (represented by the matrix of the CMRgl co-variations among all pairs of structures) was studied using the graph theory framework. The highest concurrent fluctuations in CMRgl were basically identified between homologous cortical regions in all groups. Significant differences in CMRgl co-variations in AD and MCI groups as compared to NC were found. The AD and MCI patients showed aberrant patterns in comparison to NC subjects, as detected by global and local network properties (global and local efficiency, clustering index, and others). MCI network’s attributes showed an intermediate position between NC and AD, corroborating it as a transitional stage from normal aging to Alzheimer disease. Our study is an attempt at exploring the complex association between glucose metabolism, CMRgl covariations and the attributes of the brain network organization in AD and MCI. PMID:23894356

  16. Brain MRI abnormalities in the adult form of myotonic dystrophy type 1: A longitudinal case series study.

    PubMed

    Conforti, Renata; de Cristofaro, Mario; Cristofano, Adriana; Brogna, Barbara; Sardaro, Angela; Tedeschi, Gioacchino; Cirillo, Sossio; Di Costanzo, Alfonso

    2016-02-01

    This study aimed to verify whether brain abnormalities, previously described in patients with myotonic dystrophy type 1 (DM1) by magnetic resonance imaging (MRI), progressed over time and, if so, to characterize their progression. Thirteen DM1 patients, who had at least two MRI examinations, were retrospectively evaluated and included in the study. The mean duration (± standard deviation) of follow-up was 13.4 (±3.8) years, over a range of 7-20 years. White matter lesions (WMLs) were rated by semi-quantitative method, the signal intensity of white matter poster-superior to trigones (WMPST) by reference to standard images and brain atrophy by ventricular/brain ratio (VBR). At the end of MRI follow-up, the scores relative to lobar, temporal and periventricular WMLs, to WMPST signal intensity and to VBR were significantly increased compared to baseline, and MRI changes were more evident in some families than in others. No correlation was found between the MRI changes and age, onset, disease duration, muscular involvement, CTG repetition and follow-up duration. These results demonstrated that white matter involvement and brain atrophy were progressive in DM1 and suggested that progression rate varied from patient to patient, regardless of age, disease duration and genetic defect. PMID:26755488

  17. Abnormal Baseline Brain Activity in Patients with Pulsatile Tinnitus: A Resting-State fMRI Study

    PubMed Central

    Han, Lv; Zhaohui, Liu; Fei, Yan; Ting, Li; Pengfei, Zhao; Wang, Du; Cheng, Dong; Pengde, Guo; Xiaoyi, Han; Xiao, Wang; Rui, Li; Zhenchang, Wang

    2014-01-01

    Numerous investigations studying the brain functional activity of the tinnitus patients have indicated that neurological changes are important findings of this kind of disease. However, the pulsatile tinnitus (PT) patients were excluded in previous studies because of the totally different mechanisms of the two subtype tinnitus. The aim of this study is to investigate whether altered baseline brain activity presents in patients with PT using resting-state functional magnetic resonance imaging (rs-fMRI) technique. The present study used unilateral PT patients (n = 42) and age-, sex-, and education-matched normal control subjects (n = 42) to investigate the changes in structural and amplitude of low-frequency (ALFF) of the brain. Also, we analyzed the relationships between these changes with clinical data of the PT patients. Compared with normal controls, PT patients did not show any structural changes. PT patients showed significant increased ALFF in the bilateral precuneus, and bilateral inferior frontal gyrus (IFG) and decreased ALFF in multiple occipital areas. Moreover, the increased THI score and PT duration was correlated with increased ALFF in precuneus and bilateral IFG. The abnormalities of spontaneous brain activity reflected by ALFF measurements in the absence of structural changes may provide insights into the neural reorganization in PT patients. PMID:24872895

  18. Motor Network Plasticity and Low-Frequency Oscillations Abnormalities in Patients with Brain Gliomas: A Functional MRI Study

    PubMed Central

    Niu, Chen; Zhang, Ming; Min, Zhigang; Rana, Netra; Zhang, Qiuli; Liu, Xin; Li, Min; Lin, Pan

    2014-01-01

    Brain plasticity is often associated with the process of slow-growing tumor formation, which remodels neural organization and optimizes brain network function. In this study, we aimed to investigate whether motor function plasticity would display deficits in patients with slow-growing brain tumors located in or near motor areas, but who were without motor neurological deficits. We used resting-state functional magnetic resonance imaging to probe motor networks in 15 patients with histopathologically confirmed brain gliomas and 15 age-matched healthy controls. All subjects performed a motor task to help identify individual motor activity in the bilateral primary motor cortex (PMC) and supplementary motor area (SMA). Frequency-based analysis at three different frequencies was then used to investigate possible alterations in the power spectral density (PSD) of low-frequency oscillations. For each group, the average PSD was determined for each brain region and a nonparametric test was performed to determine the difference in power between the two groups. Significantly reduced inter-hemispheric functional connectivity between the left and right PMC was observed in patients compared with controls (P<0.05). We also found significantly decreased PSD in patients compared to that in controls, in all three frequency bands (low: 0.01–0.02 Hz; middle: 0.02–0.06 Hz; and high: 0.06–0.1 Hz), at three key motor regions. These findings suggest that in asymptomatic patients with brain tumors located in eloquent regions, inter-hemispheric connection may be more vulnerable. A comparison of the two approaches indicated that power spectral analysis is more sensitive than functional connectivity analysis for identifying the neurological abnormalities underlying motor function plasticity induced by slow-growing tumors. PMID:24806463

  19. Monitoring stroke progression: in vivo imaging of cortical perfusion, blood-brain barrier permeability and cellular damage in the rat photothrombosis model.

    PubMed

    Schoknecht, Karl; Prager, Ofer; Vazana, Udi; Kamintsky, Lyn; Harhausen, Denise; Zille, Marietta; Figge, Lena; Chassidim, Yoash; Schellenberger, Eyk; Kovács, Richard; Heinemann, Uwe; Friedman, Alon

    2014-11-01

    Focal cerebral ischemia is among the main causes of death and disability worldwide. The ischemic core often progresses, invading the peri-ischemic brain; however, assessing the propensity of the peri-ischemic brain to undergo secondary damage, understanding the underlying mechanisms, and adjusting treatment accordingly remain clinically unmet challenges. A significant hallmark of the peri-ischemic brain is dysfunction of the blood-brain barrier (BBB), yet the role of disturbed vascular permeability in stroke progression is unclear. Here we describe a longitudinal in vivo fluorescence imaging approach for the evaluation of cortical perfusion, BBB dysfunction, free radical formation and cellular injury using the photothrombosis vascular occlusion model in male Sprague Dawley rats. Blood-brain barrier dysfunction propagated within the peri-ischemic brain in the first hours after photothrombosis and was associated with free radical formation and cellular injury. Inhibiting free radical signaling significantly reduced progressive cellular damage after photothrombosis, with no significant effect on blood flow and BBB permeability. Our approach allows a dynamic follow-up of cellular events and their response to therapeutics in the acutely injured cerebral cortex. PMID:25160672

  20. Monitoring stroke progression: in vivo imaging of cortical perfusion, blood–brain barrier permeability and cellular damage in the rat photothrombosis model

    PubMed Central

    Schoknecht, Karl; Prager, Ofer; Vazana, Udi; Kamintsky, Lyn; Harhausen, Denise; Zille, Marietta; Figge, Lena; Chassidim, Yoash; Schellenberger, Eyk; Kovács, Richard; Heinemann, Uwe; Friedman, Alon

    2014-01-01

    Focal cerebral ischemia is among the main causes of death and disability worldwide. The ischemic core often progresses, invading the peri-ischemic brain; however, assessing the propensity of the peri-ischemic brain to undergo secondary damage, understanding the underlying mechanisms, and adjusting treatment accordingly remain clinically unmet challenges. A significant hallmark of the peri-ischemic brain is dysfunction of the blood–brain barrier (BBB), yet the role of disturbed vascular permeability in stroke progression is unclear. Here we describe a longitudinal in vivo fluorescence imaging approach for the evaluation of cortical perfusion, BBB dysfunction, free radical formation and cellular injury using the photothrombosis vascular occlusion model in male Sprague Dawley rats. Blood–brain barrier dysfunction propagated within the peri-ischemic brain in the first hours after photothrombosis and was associated with free radical formation and cellular injury. Inhibiting free radical signaling significantly reduced progressive cellular damage after photothrombosis, with no significant effect on blood flow and BBB permeability. Our approach allows a dynamic follow-up of cellular events and their response to therapeutics in the acutely injured cerebral cortex. PMID:25160672

  1. Role of Brain Perfusion SPECT with 99mTc HMPAO in the Assessment of Response to Drug Therapy in Patients with Autoimmune Vasculitis: A Prospective Study

    PubMed Central

    Mauro, Liberatore; Manuela, Morreale; Valentina, Megna; Sara, Collorone; Chondrogiannis, Sotirios; Maria, Drudi Francesco; Christos, Anagnostou; Liana, Civitelli; Ada, Francia; Maffione, Anna Margherita; Marzola, Maria Cristina; Rubello, Domenico

    2015-01-01

    Background: The diagnosis of vasculitis in the brain remains a quite difficult achievement. To the best of our knowledge, there is no imaging method reported in literature which is capable of reaching to a diagnosis of vasculitis with very high sensitivity. Aim: The aim of this study was to determine whether perfusion brain single photon emission computed tomography (SPECT) can be usefully employed in monitoring the treatment of vasculitis, allowing treating only potentially responder patients and avoiding the side effects on patients who do not respond. Materials and Methods: Twenty patients (two males and 18 females) suffering from systemic lupus erythematosus (SLE; n = 5), Behcet's disease (BD; n = 5), undifferentiated vasculitis (UV; n = 5), and Sjogren's syndrome (SS; n = 5) were included in the study. All patients underwent a wide neurological anamnestic investigation, a complete objective neurological examination and SPECT of the brain with 99mTc-hexamethyl-propylene-aminoxime (HMPAO). The brain SPECT was then repeated after appropriate medical treatment. The neurological and neuropsychiatric follow-up was performed at 6 months after the start of the treatment. Results: Overall, the differences between the scintigraphic results obtained after and before the medical treatment indicated a statistically significant increase of the cerebral perfusion (CP). In 19 out of 200 regions of interest (ROI) studied, the difference between pre- and post treatment percentages had negative sign, indicating a worsening of CP. This latter event has occurred six times (five in the same patients) in the UV, 10 times (eight in the same patients) in the SLE, never in BD, and three times (two in the same patient) in the SS. Conclusion: The reported results seem to indicate the possibility of identifying, by the means of a brain SPECT, responder and nonresponder (unchanged or worsened CP) patients, affected by autoimmune vasculitis, to the therapy. PMID:25973400

  2. Abnormal neurological exam findings in individuals with mild traumatic brain injury (mTBI) versus psychiatric and healthy controls.

    PubMed

    Silva, Marc A; Donnell, Alison J; Kim, Michelle S; Vanderploeg, Rodney D

    2012-01-01

    In those with a history of mild traumatic brain injury (mTBI), cognitive and emotional disturbances are often misattributed to that preexisting injury. However, causal determinations of current symptoms cannot be conclusively determined because symptoms are often nonspecific to etiology and offer virtually no differential diagnostic value in postacute or chronic phases. This population-based study examined whether the presence of abnormalities during neurological examination would distinguish between mTBI (in the chronic phase), healthy controls, and selected psychiatric conditions. Retrospective analysis of data from 4462 community-dwelling Army veterans was conducted. Diagnostically unique groups were compared on examination of cranial nerve function and other neurological signs. Results demonstrated that individuals with mTBI were no more likely than those with a major depressive disorder, generalized anxiety disorder, posttraumatic stress disorder, or somatoform disorder to show any abnormality. Thus, like self-reported cognitive and emotional symptoms, the presence of cranial nerve or other neurological abnormalities offers no differential diagnostic value. Clinical implications and study limitations are presented. PMID:23020281

  3. Air pollution, cognitive deficits and brain abnormalities: a pilot study with children and dogs.

    PubMed

    Calderón-Garcidueñas, Lilian; Mora-Tiscareño, Antonieta; Ontiveros, Esperanza; Gómez-Garza, Gilberto; Barragán-Mejía, Gerardo; Broadway, James; Chapman, Susan; Valencia-Salazar, Gildardo; Jewells, Valerie; Maronpot, Robert R; Henríquez-Roldán, Carlos; Pérez-Guillé, Beatriz; Torres-Jardón, Ricardo; Herrit, Lou; Brooks, Diane; Osnaya-Brizuela, Norma; Monroy, Maria E; González-Maciel, Angelica; Reynoso-Robles, Rafael; Villarreal-Calderon, Rafael; Solt, Anna C; Engle, Randall W

    2008-11-01

    Exposure to air pollution is associated with neuroinflammation in healthy children and dogs in Mexico City. Comparative studies were carried out in healthy children and young dogs similarly exposed to ambient pollution in Mexico City. Children from Mexico City (n: 55) and a low polluted city (n:18) underwent psychometric testing and brain magnetic resonance imaging MRI. Seven healthy young dogs with similar exposure to Mexico City air pollution had brain MRI, measurement of mRNA abundance of two inflammatory genes cyclooxygenase-2, and interleukin 1 beta in target brain areas, and histopathological evaluation of brain tissue. Children with no known risk factors for neurological or cognitive disorders residing in a polluted urban environment exhibited significant deficits in a combination of fluid and crystallized cognition tasks. Fifty-six percent of Mexico City children tested showed prefrontal white matter hyperintense lesions and similar lesions were observed in dogs (57%). Exposed dogs had frontal lesions with vascular subcortical pathology associated with neuroinflammation, enlarged Virchow-Robin spaces, gliosis, and ultrafine particulate matter deposition. Based on the MRI findings, the prefrontal cortex was a target anatomical region in Mexico City children and its damage could have contributed to their cognitive dysfunction. The present work presents a groundbreaking, interdisciplinary methodology for addressing relationships between environmental pollution, structural brain alterations by MRI, and cognitive deficits/delays in healthy children. PMID:18550243

  4. Comparison of nine tractography algorithms for detecting abnormal structural brain networks in Alzheimer’s disease

    PubMed Central

    Zhan, Liang; Zhou, Jiayu; Wang, Yalin; Jin, Yan; Jahanshad, Neda; Prasad, Gautam; Nir, Talia M.; Leonardo, Cassandra D.; Ye, Jieping; Thompson, Paul M.; for the Alzheimer’s Disease Neuroimaging Initiative

    2015-01-01

    Alzheimer’s disease (AD) involves a gradual breakdown of brain connectivity, and network analyses offer a promising new approach to track and understand disease progression. Even so, our ability to detect degenerative changes in brain networks depends on the methods used. Here we compared several tractography and feature extraction methods to see which ones gave best diagnostic classification for 202 people with AD, mild cognitive impairment or normal cognition, scanned with 41-gradient diffusion-weighted magnetic resonance imaging as part of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) project. We computed brain networks based on whole brain tractography with nine different methods – four of them tensor-based deterministic (FACT, RK2, SL, and TL), two orientation distribution function (ODF)-based deterministic (FACT, RK2), two ODF-based probabilistic approaches (Hough and PICo), and one “ball-and-stick” approach (Probtrackx). Brain networks derived from different tractography algorithms did not differ in terms of classification performance on ADNI, but performing principal components analysis on networks helped classification in some cases. Small differences may still be detectable in a truly vast cohort, but these experiments help assess the relative advantages of different tractography algorithms, and different post-processing choices, when used for classification. PMID:25926791

  5. Abnormal EEG Complexity and Functional Connectivity of Brain in Patients with Acute Thalamic Ischemic Stroke

    PubMed Central

    Liu, Shuang; Guo, Jie; Meng, Jiayuan; Wang, Zhijun; Yao, Yang; Yang, Jiajia; Qi, Hongzhi; Ming, Dong

    2016-01-01

    Ischemic thalamus stroke has become a serious cardiovascular and cerebral disease in recent years. To date the existing researches mostly concentrated on the power spectral density (PSD) in several frequency bands. In this paper, we investigated the nonlinear features of EEG and brain functional connectivity in patients with acute thalamic ischemic stroke and healthy subjects. Electroencephalography (EEG) in resting condition with eyes closed was recorded for 12 stroke patients and 11 healthy subjects as control group. Lempel-Ziv complexity (LZC), Sample Entropy (SampEn), and brain network using partial directed coherence (PDC) were calculated for feature extraction. Results showed that patients had increased mean LZC and SampEn than the controls, which implied the stroke group has higher EEG complexity. For the brain network, the stroke group displayed a trend of weaker cortical connectivity, which suggests a functional impairment of information transmission in cortical connections in stroke patients. These findings suggest that nonlinear analysis and brain network could provide essential information for better understanding the brain dysfunction in the stroke and assisting monitoring or prognostication of stroke evolution. PMID:27403202

  6. Microstructural abnormalities of the brain white matter in attention-deficit/hyperactivity disorder

    PubMed Central

    Chen, Lizhou; Huang, Xiaoqi; Lei, Du; He, Ning; Hu, Xinyu; Chen, Ying; Li, Yuanyuan; Zhou, Jinbo; Guo, Lanting; Kemp, Graham J.; Gong, Qiyong

    2015-01-01

    Background Attention-deficit/hyperactivity disorder (ADHD) is an early-onset neurodevelopmental disorder with multiple behavioural problems and executive dysfunctions for which neuroimaging studies have reported a variety of abnormalities, with inconsistencies partly owing to confounding by medication and concurrent psychiatric disease. We aimed to investigate the microstructural abnormalities of white matter in unmedicated children and adolescents with pure ADHD and to explore the association between these abnormalities and behavioural symptoms and executive functions. Methods We assessed children and adolescents with ADHD and healthy controls using psychiatric interviews. Behavioural problems were rated using the revised Conners’ Parent Rating Scale, and executive functions were measured using the Stroop Colour-Word Test and the Wisconsin Card Sorting test. We acquired diffusion tensor imaging data using a 3 T MRI system, and we compared diffusion parameters, including fractional anisotropy (FA) and mean, axial and radial diffusivities, between the 2 groups. Results Thirty-three children and adolescents with ADHD and 35 healthy controls were included in our study. In patients compared with controls, FA was increased in the left posterior cingulum bundle as a result of both increased axial diffusivity and decreased radial diffusivity. In addition, the averaged FA of the cluster in this region correlated with behavioural measures as well as executive function in patients with ADHD. Limitations This study was limited by its cross-sectional design and small sample size. The cluster size of the significant result was small. Conclusion Our findings suggest that white matter abnormalities within the limbic network could be part of the neural underpinning of behavioural problems and executive dysfunction in patients with ADHD. PMID:25853285

  7. 3D PATTERN OF BRAIN ABNORMALITIES IN WILLIAMS SYNDROME VISUALIZED USING TENSOR-BASED MORPHOMETRY

    PubMed Central

    Chiang, Ming-Chang; Reiss, Allan L.; Lee, Agatha D.; Bellugi, Ursula; Galaburda, Albert M.; Korenberg, Julie R.; Mills, Debra L.; Toga, Arthur W.; Thompson, Paul M.

    2009-01-01

    Williams syndrome (WS) is a neurodevelopmental disorder associated with deletion of ~20 contiguous genes in chromosome band 7q11.23. Individuals with WS exhibit mild to moderate mental retardation, but are relatively more proficient in specific language and musical abilities. We used tensor-based morphometry (TBM) to visualize the complex pattern of gray/white matter reductions in WS, based on fluid registration of structural brain images. Methods 3D T1-weighted brain MRIs of 41 WS subjects (age: 29.2±9.2SD years; 23F/18M) and 39 age-matched healthy controls (age: 27.5±7.4 years; 23F/16M) were fluidly registered to a minimum deformation target. Fine-scale volumetric differences were mapped between diagnostic groups. Local regions were identified where regional structure volumes were associated with diagnosis, and with intelligence quotient (IQ) scores. Brain asymmetry was also mapped and compared between diagnostic groups. Results WS subjects exhibited widely distributed brain volume reductions (~10–15% reduction; P < 0.0002, permutation test). After adjusting for total brain volume, the frontal lobes, anterior cingulate, superior temporal gyrus, amygdala, fusiform gyrus and cerebellum were found to be relatively preserved in WS, but parietal and occipital lobes, thalamus and basal ganglia, and midbrain were disproportionally decreased in volume (P < 0.0002). These regional volumes also correlated positively with performance IQ in adult WS subjects (age ≥ 30 years, P = 0.038). Conclusion TBM facilitates 3D visualization of brain volume reductions in WS. Reduced parietal/occipital volumes may be associated with visuospatial deficits in WS. By contrast, frontal lobes, amygdala, and cingulate gyrus are relatively preserved or even enlarged, consistent with unusual affect regulation and language production in WS. PMID:17512756

  8. Predictors of Abnormal Neuroimaging of the Brain in Children With Epilepsy Aged 1 Month to 2 Years: Useful Clues in a Resource-Limited Setting.

    PubMed

    Sanmaneechai, Oranee; Danchaivijitr, Nasuda; Likasitwattanakul, Surachai

    2015-10-01

    Neuroimaging should be performed on infants with seizure. However, there are economic limitations in performing neuroimaging in a resource-limited setting. The younger the age, the higher the risk of having abnormal neuroimaging. The aim was to determine frequency and predictors of abnormal neuroimaging in children with epilepsy aged 1 month to 2 years. History, physical examination, electroencephalogram (EEG), and neuroimaging were reviewed. Thirty-seven of 49 (76%) had neuroimaging studies; 19 computed tomography (CT), 14 magnetic resonance imaging (MRI), and 4 had both. Abnormal neuroimaging was found in 19 (51%). Predictors of abnormal neuroimages are developmental delay, abnormal head circumference, and abnormal neurologic examination. Eight children (21%) had lesions on neuroimaging studies that altered or influenced management. Of 8 patients with normal examination and EEG, 1 had a brain tumor and another had arteriovenous malformation. Neuroimaging should be considered as an essential aid in the evaluation of infants with epilepsy, even in a resource-limited setting. PMID:25792429

  9. White matter abnormalities are associated with chronic postconcussion symptoms in blast-related mild traumatic brain injury.

    PubMed

    Miller, Danielle R; Hayes, Jasmeet P; Lafleche, Ginette; Salat, David H; Verfaellie, Mieke

    2016-01-01

    Blast-related mild traumatic brain injury (mTBI) is a common injury among Iraq and Afghanistan military veterans due to the frequent use of improvised explosive devices. A significant minority of individuals with mTBI report chronic postconcussion symptoms (PCS), which include physical, emotional, and cognitive complaints. However, chronic PCS are nonspecific and are also associated with mental health disorders such as posttraumatic stress disorder (PTSD). Identifying the mechanisms that contribute to chronic PCS is particularly challenging in blast-related mTBI, where the incidence of comorbid PTSD is high. In this study, we examined whether blast-related mTBI is associated with diffuse white matter changes, and whether these neural changes are associated with chronic PCS. Ninety Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF) veterans were assigned to one of three groups including a blast-exposed no--TBI group, a blast-related mTBI without loss of consciousness (LOC) group (mTBI--LOC), and a blast-related mTBI with LOC group (mTBI + LOC). PCS were measured with the Rivermead Postconcussion Questionnaire. Results showed that participants in the mTBI + LOC group had more spatially heterogeneous white matter abnormalities than those in the no--TBI group. These white matter abnormalities were significantly associated with physical PCS severity even after accounting for PTSD symptoms, but not with cognitive or emotional PCS severity. A mediation analysis revealed that mTBI + LOC significantly influenced physical PCS severity through its effect on white matter integrity. These results suggest that white matter abnormalities are associated with chronic PCS independent of PTSD symptom severity and that these abnormalities are an important mechanism explaining the relationship between mTBI and chronic physical PCS. PMID:26497829

  10. Diagnostic yield and accuracy of postmortem cytological sampling from the brain surface of animals with neurological abnormalities.

    PubMed

    Wünsche, S; Rosati, M; Matiasek, K

    2016-05-01

    Clarification of central nervous system (CNS) disorders frequently requires pathological investigation via brain biopsy or postmortem examination. The use of cytology is usually restricted to diagnosis of mass lesions and septic meningitis. The value of brain cytology at postmortem examination has not been explored sufficiently. This study aimed to clarify the diagnostic value of meningeal imprint cytology at postmortem brain examination. Samples were taken from cerebrum and cerebellum and stained with the modified Wright stain and with haematoxylin-eosin. The slides were evaluated and findings were compared to brain histopathology with respect to resemblance, discrepancy and diagnostic validity. The study included 169 cases involving multiple animal species. Histopathology identified inflammatory disorders in 60/135 (44.4%) cases, neoplasia in 19/135 (14.1%) and non-infiltrative diseases in 56/135 (41.5%). Cytology revealed pathological changes in 79/135 (58.5%) of these cases. The histopathological diagnosis was reproduced in 57/135 (42.2%) cases, 43/57 (75.4%) of which were inflammatory. Non-diagnostic cases included 16/135 (11.9%) with sub-diagnostic cytological features and 3/135 (2.2%) with unclear phenomena. In 55/135 (40.7%) of brains with histological lesions, cytology proved inferior, providing negative results, including 40/55 (72.7%) cases with non-infiltrative diseases, 12/55 (21.8%) with inflammation and 3/55 (5.5%) with neoplasia. Conversely, 3/34 (8.8%) of controls showed cytological abnormalities. Cytological sampling from CNS adds to the sensitivity of neuropathological investigations, even if restricted to non-invasive surface imprints. The diagnostic accuracy exceeds 40%, with infiltrative diseases being five times more likely to be detected than non-infiltrative diseases. PMID:27009475