Science.gov

Sample records for brain purine metabolism

  1. Purines: forgotten mediators in traumatic brain injury.

    PubMed

    Jackson, Edwin K; Boison, Detlev; Schwarzschild, Michael A; Kochanek, Patrick M

    2016-04-01

    Recently, the topic of traumatic brain injury has gained attention in both the scientific community and lay press. Similarly, there have been exciting developments on multiple fronts in the area of neurochemistry specifically related to purine biology that are relevant to both neuroprotection and neurodegeneration. At the 2105 meeting of the National Neurotrauma Society, a session sponsored by the International Society for Neurochemistry featured three experts in the field of purine biology who discussed new developments that are germane to both the pathomechanisms of secondary injury and development of therapies for traumatic brain injury. This included presentations by Drs. Edwin Jackson on the novel 2',3'-cAMP pathway in neuroprotection, Detlev Boison on adenosine in post-traumatic seizures and epilepsy, and Michael Schwarzschild on the potential of urate to treat central nervous system injury. This mini review summarizes the important findings in these three areas and outlines future directions for the development of new purine-related therapies for traumatic brain injury and other forms of central nervous system injury. In this review, novel therapies based on three emerging areas of adenosine-related pathobiology in traumatic brain injury (TBI) were proposed, namely, therapies targeting 1) the 2',3'-cyclic adenosine monophosphate (cAMP) pathway, 2) adenosine deficiency after TBI, and 3) augmentation of urate after TBI. PMID:26809224

  2. Metabolism and ecology of purine alkaloids.

    PubMed

    Anaya, Ana Luisa; Cruz-Ortega, Rocio; Waller, George R

    2006-01-01

    In this review, the biosynthesis, catabolism, ecological significance, and modes of action of purine alkaloids particularly, caffeine, theobromine and theophylline in plants are discussed. In the biosynthesis of caffeine, progress has been made in enzymology, the amino acid sequence of the enzymes, and in the genes encoding N-methyltransferases. In addition, caffeine-deficient plants have been produced. The ecology of purine alkaloids has not proved to be particularly promising. However, advances have been made in insecticidal and allelopathic fields, and in the role of microorganisms play in the changes that these compounds undergo in the soil. Caffeine inhibits cell plate formation during telophase throughout the development of coffee plants and other species. PMID:16720319

  3. Inborn errors of purine metabolism: clinical update and therapies.

    PubMed

    Balasubramaniam, Shanti; Duley, John A; Christodoulou, John

    2014-09-01

    Inborn errors of purine metabolism exhibit broad neurological, immunological, haematological and renal manifestations. Limited awareness of the phenotypic spectrum, the recent descriptions of newer disorders and considerable genetic heterogeneity, have contributed to long diagnostic odysseys for affected individuals. These enzymes are widely but not ubiquitously distributed in human tissues and are crucial for synthesis of essential nucleotides, such as ATP, which form the basis of DNA and RNA, oxidative phosphorylation, signal transduction and a range of molecular synthetic processes. Depletion of nucleotides or accumulation of toxic intermediates contributes to the pathogenesis of these disorders. Maintenance of cellular nucleotides depends on the three aspects of metabolism of purines (and related pyrimidines): de novo synthesis, catabolism and recycling of these metabolites. At present, treatments for the clinically significant defects of the purine pathway are restricted: purine 5'-nucleotidase deficiency with uridine; familial juvenile hyperuricaemic nephropathy (FJHN), adenine phosphoribosyl transferase (APRT) deficiency, hypoxanthine phosphoribosyl transferase (HPRT) deficiency and phosphoribosyl-pyrophosphate synthetase superactivity (PRPS) with allopurinol; adenosine deaminase (ADA) and purine nucleoside phosphorylase (PNP) deficiencies have been treated by bone marrow transplantation (BMT), and ADA deficiency with enzyme replacement with polyethylene glycol (PEG)-ADA, or erythrocyte-encapsulated ADA; myeloadenylate deaminase (MADA) and adenylosuccinate lyase (ADSL) deficiencies have had trials of oral ribose; PRPS, HPRT and adenosine kinase (ADK) deficiencies with S-adenosylmethionine; and molybdenum cofactor deficiency of complementation group A (MOCODA) with cyclic pyranopterin monophosphate (cPMP). In this review we describe the known inborn errors of purine metabolism, their phenotypic presentations, established diagnostic methodology and recognised

  4. Purine metabolism in adenosine deaminase deficiency.

    PubMed Central

    Mills, G C; Schmalstieg, F C; Trimmer, K B; Goldman, A S; Goldblum, R M

    1976-01-01

    Purine and pyrimidine metabolites were measured in erythrocytes, plasma, and urine of a 5-month-old infant with adenosine deaminase (adenosine aminohydrolase, EC 3.5.4.4) deficiency. Adenosine and adenine were measured using newly devised ion exchange separation techniques and a sensitive fluorescence assay. Plasma adenosine levels were increased, whereas adenosine was normal in erythrocytes and not detectable in urine. Increased amounts of adenine were found in erythrocytes and urine as well as in the plasma. Erythrocyte adenosine 5'-monophosphate and adenosine diphosphate concentrations were normal, but adenosine triphosphate content was greatly elevated. Because of the possibility of pyrimidine starvation, pyrimidine nucleotides (pyrimidine coenzymes) in erythrocytes and orotic acid in urine were measured. Pyrimidine nucleotide concentrations were normal, while orotic acid was not detected. These studies suggest that the immune deficiency associated with adenosine deaminase deficiency may be related to increased amounts of adenine, adenosine, or adenine nucleotides. PMID:1066699

  5. Novel developments in metabolic disorders of purine and pyrimidine metabolism and therapeutic applications of their analogs.

    PubMed

    Torres, Rosa J; Peters, Godefridus J; Puig, Juan G

    2014-01-01

    The biennial 15th symposium on Purine and Pyrimidine metabolism was held in Madrid, June 2013 (PP13). During the meeting, several novel developments on the diagnosis, pathophysiology, and treatment of several inborn errors of purine and pyrimidine metabolism were presented. These ranged from new drugs for gout to enzyme replacement therapies for mitochondrial diseases. A relatively novel aspect in this meeting was the interest in purine and pyrimidine metabolism in nonmammalian systems, such as parasites, mycoplasms, and bacteria. Development of novel analogs for parasite infections, cardiovascular diseases, inflammatory diseases, and cancer were also discussed. PMID:24940665

  6. Metabolic Reprogramming During Purine Stress in the Protozoan Pathogen Leishmania donovani

    SciTech Connect

    Martin, Jessica L.; Yates, Phillip A.; Soysa, Radika; Alfaro, Joshua F.; Yang, Feng; Burnum-Johnson, Kristin E.; Petyuk, Vladislav A.; Weitz, Karl K.; Camp, David G.; Smith, Richard D.; Wilmarth, Phillip A.; David, Larry L.; Ramasamy, Gowthaman; Myler, Peter J.; Carter, Nicola S.

    2014-02-27

    The ability of Leishmania to survive in their insect or mammalian host is dependent upon an ability to sense and adapt to changes in the microenvironment. However, little is known about the molecular mechanisms underlying the parasite response to environmental changes, such as nutrient availability. To elucidate nutrient stress response pathways in Leishmania donovani, we have used purine starvation as the paradigm. The salvage of purines from the host milieu is obligatory for parasite replication; nevertheless, purine-starved parasites can persist in culture without supplementary purine for over 3 months, indicating that the response to purine starvation is robust and engenders parasite survival under conditions of extreme scarcity. To understand metabolic reprogramming during purine starvation we have employed global approaches. Whole proteome comparisons between purine-starved and purine-replete parasites over a 6-48 h span have revealed a temporal and coordinated response to purine starvation. Purine transporters and enzymes involved in acquisition at the cell surface are upregulated within a few hours of purine removal from the media, while other key purine salvage components are upregulated later in the time-course and more modestly. After 48 h, the proteome of purine-starved parasites is extensively remodeled and adaptations to purine stress appear tailored to deal with both purine deprivation and general stress. To probe the molecular mechanisms affecting proteome remodeling in response to purine starvation, comparative RNA-seq analyses, qRT-PCR, and luciferase reporter assays were performed on purine-starved versus purine-replete parasites. While the regulation of a minority of proteins tracked with changes at the mRNA level, for many regulated proteins it appears that proteome remodeling during purine stress occurs primarily via translational and/or post-translational mechanisms.

  7. Targeting Purine and Pyrimidine Metabolism in Human Apicomplexan Parasites

    PubMed Central

    Hyde, John E.

    2009-01-01

    Synthesis de novo, acquisition by salvage and interconversion of purines and pyrimidines represent the fundamental requirements for their eventual assembly into nucleic acids as nucleotides and the deployment of their derivatives in other biochemical pathways. A small number of drugs targeted to nucleotide metabolism, by virtue of their effect on folate biosynthesis and recycling, have been successfully used against apicomplexan parasites such as Plasmodium and Toxoplasma for many years, although resistance is now a major problem in the prevention and treatment of malaria. Many targets not involving folate metabolism have also been explored at the experimental level. However, the unravelling of the genome sequences of these eukaryotic unicellular organisms, together with increasingly sophisticated molecular analyses, opens up possibilities of introducing new drugs that could interfere with these processes. This review examines the status of established drugs of this type and the potential for further exploiting the vulnerability of apicomplexan human pathogens to inhibition of this key area of metabolism. PMID:17266529

  8. Autoimmune Dysregulation and Purine Metabolism in Adenosine Deaminase Deficiency

    PubMed Central

    Sauer, Aisha Vanessa; Brigida, Immacolata; Carriglio, Nicola; Aiuti, Alessandro

    2012-01-01

    Genetic defects in the adenosine deaminase (ADA) gene are among the most common causes for severe combined immunodeficiency (SCID). ADA-SCID patients suffer from lymphopenia, severely impaired cellular and humoral immunity, failure to thrive, and recurrent infections. Currently available therapeutic options for this otherwise fatal disorder include bone marrow transplantation (BMT), enzyme replacement therapy with bovine ADA (PEG-ADA), or hematopoietic stem cell gene therapy (HSC-GT). Although varying degrees of immune reconstitution can be achieved by these treatments, breakdown of tolerance is a major concern in ADA-SCID. Immune dysregulation such as autoimmune hypothyroidism, diabetes mellitus, hemolytic anemia, and immune thrombocytopenia are frequently observed in milder forms of the disease. However, several reports document similar complications also in patients on long-term PEG-ADA and after BMT or GT treatment. A skewed repertoire and decreased immune functions have been implicated in autoimmunity observed in certain B-cell and/or T-cell immunodeficiencies, but it remains unclear to what extent specific mechanisms of tolerance are affected in ADA deficiency. Herein we provide an overview about ADA-SCID and the autoimmune manifestations reported in these patients before and after treatment. We also assess the value of the ADA-deficient mouse model as a useful tool to study both immune and metabolic disease mechanisms. With focus on regulatory T- and B-cells we discuss the lymphocyte subpopulations particularly prone to contribute to the loss of self-tolerance and onset of autoimmunity in ADA deficiency. Moreover we address which aspects of immune dysregulation are specifically related to alterations in purine metabolism caused by the lack of ADA and the subsequent accumulation of metabolites with immunomodulatory properties. PMID:22969765

  9. Morphine enhances the release of /sup 3/H-purines from rat brain cerebral cortical prisms

    SciTech Connect

    Wu, P.H.; Phillis, J.W.; Yuen, H.

    1982-10-01

    In vitro experiments have shown that /sup 3/H-purines can be released from /sup 3/H-adenosine preloaded rat brain cortical prisms by a KCl-evoked depolarization. The KCl-evoked release of /sup 3/H-purines is dependent on the concentration of KCl present in the superfusate. At concentrations of 10(-7) approximately 10(-5)M morphine did not influence the basal release of /sup 3/H-purines from the prisms, although it enhanced the KCl-evoked release of /sup 3/H-purines. The enhancement of KCl-evoked /sup 3/H-purine release by morphine was concentration-dependent and was antagonized by naloxone, suggesting the involvement of opiate receptors. Uptake studies with rat brain cerebral cortical synaptosomes show that morphine is a very weak inhibitor of adenosine uptake. Comparisons with dipyridamole, a potent inhibitor of adenosine uptake, suggest that this low level of inhibition of the uptake did not contribute significantly to the release of /sup 3/H-purine by morphine seen in our experiments. It is therefore suggested that morphine enhances KCl-evoked /sup 3/H-purine release by an interaction with opiate receptors and that the resultant increase in extracellular purine (adenosine) levels may account for some of the actions of morphine.

  10. Regulation of Purine Metabolism in Intact Leaves of Coffea arabica.

    PubMed Central

    Nazario, G. M.; Lovatt, C. J.

    1993-01-01

    The capacity of Coffea arabica leaves (5- x 5-mm pieces) to synthesize de novo and catabolize purine nucleotides to provide precursors for caffeine (1,3,7-trimethylxanthine) was investigated. Consistent with de novo synthesis, glycine, bicarbonate, and formate were incorporated into the purine ring of inosine 5[prime]-monophosphate (IMP) and adenine nucleotides ([sigma]Ade); azaserine, a known inhibitor of purine de novo synthesis, inhibited incorporation. Activity of the de novo pathway in C. arabica per g fresh weight of leaf tissue during a 3-h incubation period was 8 [plus or minus] 4 nmol of formate incorporated into IMP, 61 [plus or minus] 7 nmol into [sigma]Ade, and 150 nmol into caffeine (the latter during a 7-h incubation). Coffee leaves exhibited classical purine catabolism. Radiolabeled formate, inosine, adenosine, and adenine were incorporated into hypoxanthine and xanthine, which were catabolized to allantoin and urea. Urease activity was demonstrated. Per g fresh weight, coffee leaf squares incorporated 90 [plus or minus] 22 nmol of xanthine into caffeine in 7 h but degraded 102 [plus or minus] 1 nmol of xanthine to allantoin in 3 h. Feedback control of de novo purine biosynthesis was contrasted in C. arabica and Cucurbita pepo, a species that does not synthesize purine alkaloids. End-product inhibition was demonstrated to occur in both species but at different enzyme reactions. PMID:12232012

  11. [Metformin impact on purine metabolism in breast cancer].

    PubMed

    Shatova, O P; Butenko, Eu V; Khomutov, Eu V; Kaplun, D S; Sedakov, I Eu; Zinkovych, I I

    2016-03-01

    Large-scale epidemiological and clinical studies have demonstrated the efficacy of metformin in oncology practice. However, the mechanisms of implementation of the anti-tumor effect of this drug there is still need understanding. In this study we have investigated the effect of metformin on the activity of adenosine deaminase and respectively adenosinergic immunosuppression in tumors and their microenvironment. The material of the study was taken during surgery of breast cacer patients receiveing metformin, and also patients which did not take this drug. The adenosine deaminase activity and substrate (adenosine) and products (inosine, hypoxanthine) concentrations were determined by HPLC. Results of this study suggest that metformin significantly alters catabolism of purine nucleotides in the node breast adenocarcinoma tisue. However, the metformin-induced increase in the adenosine deaminase activity is not sufficient to reduce the level of adenosine in cancer tissue. Thus, in metformin treated patients the adenosine concentration remained unchanged, and inosine and hypoxanthine concentration significantly increased. PMID:27420623

  12. Metabolic drift in the aging brain

    PubMed Central

    Ivanisevic, Julijana; Stauch, Kelly L.; Petrascheck, Michael; Benton, H. Paul; Epstein, Adrian A.; Fang, Mingliang; Gorantla, Santhi; Tran, Minerva; Hoang, Linh; Kurczy, Michael E.; Boska, Michael D.; Gendelman, Howard E.; Fox, Howard S.; Siuzdak, Gary

    2016-01-01

    Brain function is highly dependent upon controlled energy metabolism whose loss heralds cognitive impairments. This is particularly notable in the aged individuals and in age-related neurodegenerative diseases. However, how metabolic homeostasis is disrupted in the aging brain is still poorly understood. Here we performed global, metabolomic and proteomic analyses across different anatomical regions of mouse brain at different stages of its adult lifespan. Interestingly, while severe proteomic imbalance was absent, global-untargeted metabolomics revealed an energy metabolic drift or significant imbalance in core metabolite levels in aged mouse brains. Metabolic imbalance was characterized by compromised cellular energy status (NAD decline, increased AMP/ATP, purine/pyrimidine accumulation) and significantly altered oxidative phosphorylation and nucleotide biosynthesis and degradation. The central energy metabolic drift suggests a failure of the cellular machinery to restore metabostasis (metabolite homeostasis) in the aged brain and therefore an inability to respond properly to external stimuli, likely driving the alterations in signaling activity and thus in neuronal function and communication. PMID:27182841

  13. Metabolic drift in the aging brain.

    PubMed

    Ivanisevic, Julijana; Stauch, Kelly L; Petrascheck, Michael; Benton, H Paul; Epstein, Adrian A; Fang, Mingliang; Gorantla, Santhi; Tran, Minerva; Hoang, Linh; Kurczy, Michael E; Boska, Michael D; Gendelman, Howard E; Fox, Howard S; Siuzdak, Gary

    2016-05-01

    Brain function is highly dependent upon controlled energy metabolism whose loss heralds cognitive impairments. This is particularly notable in the aged individuals and in age-related neurodegenerative diseases. However, how metabolic homeostasis is disrupted in the aging brain is still poorly understood. Here we performed global, metabolomic and proteomic analyses across different anatomical regions of mouse brain at different stages of its adult lifespan. Interestingly, while severe proteomic imbalance was absent, global-untargeted metabolomics revealed an energymetabolic drift or significant imbalance in core metabolite levels in aged mouse brains. Metabolic imbalance was characterized by compromised cellular energy status (NAD decline, increased AMP/ATP, purine/pyrimidine accumulation) and significantly altered oxidative phosphorylation and nucleotide biosynthesis and degradation. The central energy metabolic drift suggests a failure of the cellular machinery to restore metabostasis (metabolite homeostasis) in the aged brain and therefore an inability to respond properly to external stimuli, likely driving the alterations in signaling activity and thus in neuronal function and communication. PMID:27182841

  14. Structural Phylogenomics Reveals Gradual Evolutionary Replacement of Abiotic Chemistries by Protein Enzymes in Purine Metabolism

    PubMed Central

    Caetano-Anollés, Kelsey; Caetano-Anollés, Gustavo

    2013-01-01

    The origin of metabolism has been linked to abiotic chemistries that existed in our planet at the beginning of life. While plausible chemical pathways have been proposed, including the synthesis of nucleobases, ribose and ribonucleotides, the cooption of these reactions by modern enzymes remains shrouded in mystery. Here we study the emergence of purine metabolism. The ages of protein domains derived from a census of fold family structure in hundreds of genomes were mapped onto enzymes in metabolic diagrams. We find that the origin of the nucleotide interconversion pathway benefited most parsimoniously from the prebiotic formation of adenine nucleosides. In turn, pathways of nucleotide biosynthesis, catabolism and salvage originated ∼300 million years later by concerted enzymatic recruitments and gradual replacement of abiotic chemistries. Remarkably, this process led to the emergence of the fully enzymatic biosynthetic pathway ∼3 billion years ago, concurrently with the appearance of a functional ribosome. The simultaneous appearance of purine biosynthesis and the ribosome probably fulfilled the expanding matter-energy and processing needs of genomic information. PMID:23516625

  15. The purine degradation pathway: possible role in paralytic shellfish toxin metabolism in the cyanobacterium Planktothrix sp. FP1.

    PubMed

    Pomati, F; Manarolla, G; Rossi, O; Vigetti, D; Rossetti, C

    2001-12-01

    The paralytic shellfish toxins (PSTs) are potent neurotoxic alkaloids and their major biological effect is due to the blockage of voltage-gated sodium channels in excitable cells. They have been recognised as an important health risk for humans, animals, and ecosystems worldwide. The metabolic pathways that lead to the production and the degradation of these toxic metabolites are still unknown. In this study, we investigated the possible link between PST accumulation and the activation of the metabolism that leads to purine degradation in the filamentous freshwater cyanobacterium Planktothrix sp. FP1. The purine catabolic pathway is related to the nitrogen microcycle in water environments, in which cyanobacteria use traces of purines and ureides as a nitrogen source for growth. Thus, the activity of allantoicase, a key inducible enzyme of this metabolism, was used as tool for assaying the activation of the purine degradation pathway. The enzyme and the pathway were induced by allantoic acid, the direct substrate of allantoicase, as well as by adenine and, to a lower degree, by urea, one of the main products of purine catabolism. Crude cell extract of Escherichia coli was also employed and showed the best induction of allantoicase activity. In culture, Planktothrix sp. FP1 showed a differential accumulation of PST in consequence of the induction with different substrates. The cyanobacterial culture induced with allantoic acid accumulated 61.7% more toxins in comparison with the control. On the other hand, the cultures induced with adenine, urea, and the E. coli extract showed low PST accumulation, respectively, 1%, 38%, and 5% of the total toxins content detected in the noninduced culture. A degradation pathway for the PSTs can be hypothesised: as suggested for purine alkaloids in higher plants, saxitoxin (STX) and derivatives may also be converted into xanthine, urea, and further to CO2 and NH4+ or recycled in the primary metabolism through the purine degradation

  16. An Ancient Riboswitch Class in Bacteria Regulates Purine Biosynthesis and One-carbon Metabolism

    PubMed Central

    Kim, Peter B.; Nelson, James W.; Breaker, Ronald R.

    2015-01-01

    SUMMARY Over thirty years ago, ZTP (5-amino-4-imidazole carboxamide riboside 5'-triphosphate), a modified purine biosynthetic intermediate, was proposed to signal 10-formyl-tetrahydrofolate (10f-THF) deficiency in bacteria. However, the mechanisms by which this putative alarmone or its precursor ZMP (5-aminoimidazole-4-carboxamide ribonucleotide, also known as AICAR) brings about any metabolic changes remain unexplained. Herein we report the existence of a widespread riboswitch class that is most commonly associated with genes related to de novo purine biosynthesis and one carbon metabolism. Biochemical data confirms that members of this riboswitch class selectively bind ZMP and ZTP with nanomolar affinity, while strongly rejecting numerous natural analogs. Indeed, increases in the ZMP/ZTP pool, caused by folate stress in bacterial cells, trigger changes in the expression of a reporter gene fused to representative ZTP riboswitches in vivo. The wide distribution of this riboswitch class suggests that ZMP/ZTP signaling is important for species in numerous bacterial lineages. PMID:25616067

  17. Genetic Screen Reveals the Role of Purine Metabolism in Staphylococcus aureus Persistence to Rifampicin

    PubMed Central

    Yee, Rebecca; Cui, Peng; Shi, Wanliang; Feng, Jie; Zhang, Ying

    2015-01-01

    Chronic infections with Staphylococcus aureus such as septicemia, osteomyelitis, endocarditis, and biofilm infections are difficult to treat because of persisters. Despite many efforts in understanding bacterial persistence, the mechanisms of persister formation in S. aureus remain elusive. Here, we performed a genome-wide screen of a transposon mutant library to study the molecular mechanisms involved in persistence of community-acquired S. aureus. Screening of the library for mutants defective in persistence or tolerance to rifampicin revealed many genes involved in metabolic pathways that are important for antibiotic persistence. In particular, the identified mutants belonged to metabolic pathways involved in carbohydrate, amino acid, lipid, vitamin and purine biosynthesis. Five mutants played a role in purine biosynthesis and two mutants, purB, an adenylosuccinate lyase, and purM, a phosphoribosylaminoimidazole synthetase, were selected for further confirmation. Mutants purB and purM showed defective persistence compared to the parental strain USA300 in multiple stress conditions including various antibiotics, low pH, and heat stress. The defect in persistence was restored by complementation with the wildtype purB and purM gene in the respective mutants. These findings provide new insights into the mechanisms of persistence in S. aureus and provide novel therapeutic targets for developing more effective treatment for persistent infections due to S. aureus. PMID:27025643

  18. The Purine-Utilizing Bacterium Clostridium acidurici 9a: A Genome-Guided Metabolic Reconsideration

    PubMed Central

    Hartwich, Katrin; Poehlein, Anja; Daniel, Rolf

    2012-01-01

    Clostridium acidurici is an anaerobic, homoacetogenic bacterium, which is able to use purines such as uric acid as sole carbon, nitrogen, and energy source. Together with the two other known purinolytic clostridia C. cylindrosporum and C. purinilyticum, C. acidurici serves as a model organism for investigation of purine fermentation. Here, we present the first complete sequence and analysis of a genome derived from a purinolytic Clostridium. The genome of C. acidurici 9a consists of one chromosome (3,105,335 bp) and one small circular plasmid (2,913 bp). The lack of candidate genes encoding glycine reductase indicates that C. acidurici 9a uses the energetically less favorable glycine-serine-pyruvate pathway for glycine degradation. In accordance with the specialized lifestyle and the corresponding narrow substrate spectrum of C. acidurici 9a, the number of genes involved in carbohydrate transport and metabolism is significantly lower than in other clostridia such as C. acetobutylicum, C. saccharolyticum, and C. beijerinckii. The only amino acid that can be degraded by C. acidurici is glycine but growth on glycine only occurs in the presence of a fermentable purine. Nevertheless, the addition of glycine resulted in increased transcription levels of genes encoding enzymes involved in the glycine-serine-pyruvate pathway such as serine hydroxymethyltransferase and acetate kinase, whereas the transcription levels of formate dehydrogenase-encoding genes decreased. Sugars could not be utilized by C. acidurici but the full genetic repertoire for glycolysis was detected. In addition, genes encoding enzymes that mediate resistance against several antimicrobials and metals were identified. High resistance of C. acidurici towards bacitracin, acriflavine and azaleucine was experimentally confirmed. PMID:23240052

  19. A Canonical Correlation Analysis of AIDS Restriction Genes and Metabolic Pathways Identifies Purine Metabolism as a Key Cooperator

    PubMed Central

    Ye, Hanhui; Yuan, Jinjin; Wang, Zhengwu; Huang, Aiqiong; Liu, Xiaolong; Han, Xiao; Chen, Yahong

    2016-01-01

    Human immunodeficiency virus causes a severe disease in humans, referred to as immune deficiency syndrome. Studies on the interaction between host genetic factors and the virus have revealed dozens of genes that impact diverse processes in the AIDS disease. To resolve more genetic factors related to AIDS, a canonical correlation analysis was used to determine the correlation between AIDS restriction and metabolic pathway gene expression. The results show that HIV-1 postentry cellular viral cofactors from AIDS restriction genes are coexpressed in human transcriptome microarray datasets. Further, the purine metabolism pathway comprises novel host factors that are coexpressed with AIDS restriction genes. Using a canonical correlation analysis for expression is a reliable approach to exploring the mechanism underlying AIDS. PMID:27462363

  20. Analysis of purine metabolic enzymes in human CD4 Leu 8- and CD4 Leu 8+ lymphocyte subpopulations.

    PubMed

    Fernandez-Mejia, C; Polmar, S H; Peralta-Zaragoza, O; Madrid-Marina, V

    1993-02-01

    1. Specific activities of adenosine deaminase, purine nucleoside phosphorylase, adenosine kinase, 5'-nucleotidase, S-adenosyl-L-homocysteine hydrolase, AMP deaminase, adenine phosphoribosyl transferase, and hypoxanthine phosphoribosyl transferase were analyzed in human CD4 T-lymphocyte subsets. 2. CD4 Leu 8- (helper/inducer) and CD4 Leu 8+ (suppressor/inducer) subpopulations were obtained by panning or fluorescence activated cell sorting techniques using specific monoclonal antibodies. 3. A 45% decrease of 5'-NT AMP activity in the CD4 Leu 8- cells (suppressor/inducer) compared with CD4 total cell population. 4. No statistical significant differences in enzyme activity were found between the subsets analyzed in other purine enzymes. 5. These results suggest that the distribution of purine metabolic enzymes is homogeneous in CD4 Leu 8- and CD4 Leu 8+ T-lymphocyte subpopulations. PMID:8444317

  1. Metabolic engineering of the purine biosynthetic pathway in Corynebacterium glutamicum results in increased intracellular pool sizes of IMP and hypoxanthine

    PubMed Central

    2012-01-01

    Background Purine nucleotides exhibit various functions in cellular metabolism. Besides serving as building blocks for nucleic acid synthesis, they participate in signaling pathways and energy metabolism. Further, IMP and GMP represent industrially relevant biotechnological products used as flavor enhancing additives in food industry. Therefore, this work aimed towards the accumulation of IMP applying targeted genetic engineering of Corynebacterium glutamicum. Results Blocking of the degrading reactions towards AMP and GMP lead to a 45-fold increased intracellular IMP pool of 22 μmol gCDW-1. Deletion of the pgi gene encoding glucose 6-phosphate isomerase in combination with the deactivated AMP and GMP generating reactions, however, resulted in significantly decreased IMP pools (13 μmol gCDW-1). Targeted metabolite profiling of the purine biosynthetic pathway further revealed a metabolite shift towards the formation of the corresponding nucleobase hypoxanthine (102 μmol gCDW-1) derived from IMP degradation. Conclusions The purine biosynthetic pathway is strongly interconnected with various parts of the central metabolism and therefore tightly controlled. However, deleting degrading reactions from IMP to AMP and GMP significantly increased intracellular IMP levels. Due to the complexity of this pathway further degradation from IMP to the corresponding nucleobase drastically increased suggesting additional targets for future strain optimization. PMID:23092390

  2. Purine nucleoside metabolism in the erythrocytes of patients with adenosine deaminase deficiency and severe combined immunodeficiency.

    PubMed Central

    Agarwal, R P; Crabtree, G W; Parks, R E; Nelson, J A; Keightley, R; Parkman, R; Rosen, F S; Stern, R C; Polmar, S H

    1976-01-01

    Deficiency of erythrocytic and lymphocytic adenosine deaminase (ADA) occurs in some patients with severe combined immunodeficiency disease (SCID). SCID with ADA deficiency is inherited as an autosomal recessive trait. ADA is markedly reduced or undetectable in affected patients (homozygotes), and approximately one-half normal levels are found in individuals heterozygous for ADA deficiency. The metabolism of purine nucleosides was studied in erythrocytes from normal individuals, four ADA-deficiency patients, and two heterozygous individuals. ADA deficiency in intake erythrocytes was confirmed by a very sensitive ammonia-liberation technique. Erythrocytic ADA activity in three heterozygous individuals (0.07,0.08, and 0.14 mumolar units/ml of packed cells) was between that of the four normal controls (0.20-0.37 mumol/ml) and the ADA-deficient patients (no activity). In vitro, adenosine was incorporated principally into IMP in the heterozygous and normal individuals but into the adenosine nucleotides in the ADa-deficient patients. Coformycin (3-beta-D-ribofuranosyl-6,7,8-trihydroimidazo[4,5-4] [1,3] diazepin-8 (R)-ol), a potent inhibitor of ADA, made possible incorporation of adenosine nucleotides in the ADA-deficient patients... PMID:947948

  3. Purine metabolism enzyme pattern, cytochemical characteristics and clinicopathologic features of CD10-positive childhood T-cell leukemia.

    PubMed

    Babusíková, O; Cáp, J; Hrivnáková, A; Klobusická, M; Mesárosová, A; Koníková, E

    1991-01-01

    Purine metabolism enzyme pattern, cytochemical markers and clinicopathologic features of common acute lymphoblastic leukemia antigen (cALLA; CD10)-positive, CD10-negative T acute lymphoblastic leukemia (ALL), and cALLA-positive non-T, non-B ALL (common ALL; C ALL) of children were compared. The results of immunophenotyping of blast cells in 61 children with ALL who were treated and followed during the last 7 years at the Second Pediatric Clinic in Bratislava are presented. The aim of our study was to determine the correlation of CD10 marker expression with purine enzyme activities and clinical course in ALL of children. Immunologic phenotype performed by a panel of monoclonal antibodies in indirect immunofluorescence assay revealed 3 main ALL groups: Common ALL (C ALL), T ALL and CD10+ T ALL (C + T ALL). An additional exact cytochemical marker analysis was performed in these three ALL immunologic subtypes. Two enzymes of purine metabolism, i.e. adenosine deaminase (ADA) and purine nucleosidephosphorylase (PNP) were investigated in blast cells by paper radiochromatography. Life-table analysis revealed significant prognostic differences with regard to event-free survival and overall survival in followed groups of ALL patients. Our results showed a rather high frequency of mixed (C + T) ALL phenotype. The characteristic T ALL enzyme pattern (high ADA, low PNP) was present not only in T, but also in CD10+ T ALL blast cells. The T cell marker showed to be dominant in the determination of clinical course and prognostic significance in children with ALL; children with T and CD10+ T ALL phenotype, in contrast to C ALL phenotype, experienced more frequent relapses and a shorter event-free survival. PMID:1837333

  4. Purine metabolism in response to hypoxic conditions associated with breath-hold diving and exercise in erythrocytes and plasma from bottlenose dolphins (Tursiops truncatus).

    PubMed

    del Castillo Velasco-Martínez, Iris; Hernández-Camacho, Claudia J; Méndez-Rodríguez, Lía C; Zenteno-Savín, Tania

    2016-01-01

    In mammalian tissues under hypoxic conditions, ATP degradation results in accumulation of purine metabolites. During exercise, muscle energetic demand increases and oxygen consumption can exceed its supply. During breath-hold diving, oxygen supply is reduced and, although oxygen utilization is regulated by bradycardia (low heart rate) and peripheral vasoconstriction, tissues with low blood flow (ischemia) may become hypoxic. The goal of this study was to evaluate potential differences in the circulating levels of purine metabolism components between diving and exercise in bottlenose dolphins (Tursiops truncatus). Blood samples were taken from captive dolphins following a swimming routine (n=8) and after a 2min dive (n=8). Activity of enzymes involved in purine metabolism (hypoxanthine guanine phosphoribosyl transferase (HGPRT), inosine monophosphate deshydrogenase (IMPDH), xanthine oxidase (XO), purine nucleoside phosphorylase (PNP)), and purine metabolite (hypoxanthine (HX), xanthine (X), uric acid (UA), inosine monophosphate (IMP), inosine, nicotinamide adenine dinucleotide (NAD(+)), adenosine, adenosine monophosphate (AMP), adenosine diphosphate (ADP), ATP, guanosine diphosphate (GDP), guanosine triphosphate (GTP)) concentrations were quantified in erythrocyte and plasma samples. Enzymatic activity and purine metabolite concentrations involved in purine synthesis and degradation, were not significantly different between diving and exercise. Plasma adenosine concentration was higher after diving than exercise (p=0.03); this may be related to dive-induced ischemia. In erythrocytes, HGPRT activity was higher after diving than exercise (p=0.007), suggesting an increased capacity for purine recycling and ATP synthesis from IMP in ischemic tissues of bottlenose dolphins during diving. Purine recycling and physiological adaptations may maintain the ATP concentrations in bottlenose dolphins after diving and exercise. PMID:26506131

  5. Consortium analysis of gene and gene-folate interactions in purine and pyrimidine metabolism pathways with ovarian carcinoma risk

    PubMed Central

    Kelemen, Linda E.; Terry, Kathryn L.; Goodman, Marc T.; Webb, Penelope M.; Bandera, Elisa V.; McGuire, Valerie; Rossing, Mary Anne; Wang, Qinggang; Dicks, Ed; Tyrer, Jonathan P.; Song, Honglin; Kupryjanczyk, Jolanta; Dansonka-Mieszkowska, Agnieszka; Plisiecka-Halasa, Joanna; Timorek, Agnieszka; Menon, Usha; Gentry-Maharaj, Aleksandra; Gayther, Simon A.; Ramus, Susan J.; Narod, Steven A.; Risch, Harvey A.; McLaughlin, John R.; Siddiqui, Nadeem; Glasspool, Rosalind; Paul, James; Carty, Karen; Gronwald, Jacek; Lubiński, Jan; Jakubowska, Anna; Cybulski, Cezary; Kiemeney, Lambertus A.; Massuger, Leon F. A. G.; van Altena, Anne M.; Aben, Katja K. H.; Olson, Sara H.; Orlow, Irene; Cramer, Daniel W.; Levine, Douglas A.; Bisogna, Maria; Giles, Graham G.; Southey, Melissa C.; Bruinsma, Fiona; Kjær, Susanne Krüger; Høgdall, Estrid; Jensen, Allan; Høgdall, Claus K.; Lundvall, Lene; Engelholm, Svend-Aage; Heitz, Florian; du Bois, Andreas; Harter, Philipp; Schwaab, Ira; Butzow, Ralf; Nevanlinna, Heli; Pelttari, Liisa M.; Leminen, Arto; Thompson, Pamela J.; Lurie, Galina; Wilkens, Lynne R.; Lambrechts, Diether; Van Nieuwenhuysen, Els; Lambrechts, Sandrina; Vergote, Ignace; Beesley, Jonathan; Fasching, Peter A.; Beckmann, Matthias W.; Hein, Alexander; Ekici, Arif B.; Doherty, Jennifer A.; Wu, Anna H.; Pearce, Celeste L.; Pike, Malcolm C.; Stram, Daniel; Chang-Claude, Jenny; Rudolph, Anja; Dörk, Thilo; Dürst, Matthias; Hillemanns, Peter; Runnebaum, Ingo B.; Bogdanova, Natalia; Antonenkova, Natalia; Odunsi, Kunle; Edwards, Robert P.; Kelley, Joseph L.; Modugno, Francesmary; Ness, Roberta B.; Karlan, Beth Y.; Walsh, Christine; Lester, Jenny; Orsulic, Sandra; Fridley, Brooke L.; Vierkant, Robert A.; Cunningham, Julie M.; Wu, Xifeng; Lu, Karen; Liang, Dong; Hildebrandt, Michelle A.T.; Weber, Rachel Palmieri; Iversen, Edwin S.; Tworoger, Shelley S.; Poole, Elizabeth M.; Salvesen, Helga B.; Krakstad, Camilla; Bjorge, Line; Tangen, Ingvild L.; Pejovic, Tanja; Bean, Yukie; Kellar, Melissa; Wentzensen, Nicolas; Brinton, Louise A.; Lissowska, Jolanta; Garcia-Closas, Montserrat; Campbell, Ian G.; Eccles, Diana; Whittemore, Alice S.; Sieh, Weiva; Rothstein, Joseph H.; Anton-Culver, Hoda; Ziogas, Argyrios; Phelan, Catherine M.; Moysich, Kirsten B.; Goode, Ellen L.; Schildkraut, Joellen M.; Berchuck, Andrew; Pharoah, Paul D.P.; Sellers, Thomas A.; Brooks-Wilson, Angela; Cook, Linda S.; Le, Nhu D.

    2014-01-01

    Scope We re-evaluated previously reported associations between variants in pathways of one-carbon (folate) transfer genes and ovarian carcinoma (OC) risk, and in related pathways of purine and pyrimidine metabolism, and assessed interactions with folate intake. Methods and Results Odds ratios (OR) for 446 genetic variants were estimated among 13,410 OC cases and 22,635 controls and among 2,281 cases and 3,444 controls with folate information. Following multiple testing correction, the most significant main effect associations were for DPYD variants rs11587873 (OR=0.92, P=6x10−5) and rs828054 (OR=1.06, P=1x10−4). Thirteen variants in the pyrimidine metabolism genes, DPYD, DPYS, PPAT and TYMS, also interacted significantly with folate in a multi-variant analysis (corrected P=9.9x10−6) but collectively explained only 0.2% of OC risk. Although no other associations were significant after multiple testing correction, variants in SHMT1 in one-carbon transfer, previously reported with OC, suggested lower risk at higher folate (Pinteraction=0.03-0.006). Conclusions Variation in pyrimidine metabolism genes, particularly DPYD, which was previously reported to be associated with OC, may influence risk; however, stratification by folate intake is unlikely to modify disease risk appreciably in these women. SHMT1 SNP-byfolate interactions are plausible but require further validation. Polymorphisms in selected genes in purine metabolism were not associated with OC. PMID:25066213

  6. Complex coordinated extracellular metabolism: Acid phosphatases activate diluted human leukocyte proteins to generate energy flow as NADPH from purine nucleotide ribose.

    PubMed

    Hibbs, John B; Vavrin, Zdenek; Cox, James E

    2016-08-01

    Complex metabolism is thought to occur exclusively in the crowded intracellular environment. Here we report that diluted enzymes from lysed human leukocytes produce extracellular energy. Our findings involve two pathways: the purine nucleotide catabolic pathway and the pentose phosphate pathway, which function together to generate energy as NADPH. Glucose6P fuel for NADPH production is generated from structural ribose of purine ribonucleoside monophosphates, ADP, and ADP-ribose. NADPH drives glutathione reductase to reduce an oxidized glutathione disulfide-glutathione redox couple. Acid phosphatases initiate ribose5P salvage from purine ribonucleoside monophosphates, and transaldolase controls the direction of carbon chain flow through the nonoxidative branch of the pentose phosphate pathway. These metabolic control points are regulated by pH. Biologically, this energy conserving metabolism could function in perturbed extracellular spaces. PMID:26895212

  7. Complex coordinated extracellular metabolism: Acid phosphatases activate diluted human leukocyte proteins to generate energy flow as NADPH from purine nucleotide ribose

    PubMed Central

    Hibbs, John B.; Vavrin, Zdenek; Cox, James E.

    2016-01-01

    Complex metabolism is thought to occur exclusively in the crowded intracellular environment. Here we report that diluted enzymes from lysed human leukocytes produce extracellular energy. Our findings involve two pathways: the purine nucleotide catabolic pathway and the pentose phosphate pathway, which function together to generate energy as NADPH. Glucose6P fuel for NADPH production is generated from structural ribose of purine ribonucleoside monophosphates, ADP, and ADP-ribose. NADPH drives glutathione reductase to reduce an oxidized glutathione disulfide-glutathione redox couple. Acid phosphatases initiate ribose5P salvage from purine ribonucleoside monophosphates, and transaldolase controls the direction of carbon chain flow through the nonoxidative branch of the pentose phosphate pathway. These metabolic control points are regulated by pH. Biologically, this energy conserving metabolism could function in perturbed extracellular spaces. PMID:26895212

  8. Disturbance of Antioxidant Enzymes and Purine Metabolism in the Ejaculate of Men Living in Disadvantaged Areas of Kyzylorda Region

    PubMed Central

    Kislitskaya, Valentihna N.; Kenzhin, Zhandos D.; Kultanov, Berikbay Zh.; Dosmagambetova, Raushan S.; Turmuhambetova, Anar A.

    2015-01-01

    AIM: Objective of the study was to evaluate the state of the main indicators of antioxidant status and enzymes of purine metabolism in the germ cells of men living in the zone of ecological catastrophe Aral Sea region. METHODS: The criterion for inclusion is the stay of an adult in the Aral Sea area is not less than 5 years, employment in occupations with no more than 2 hazard class. Determination of the activity of adenosine deaminase (ADA) was conducted in semen by the method of Nemechek et al., 1993. Determination of the activity of catalase (CAT) was performed according by the method of Korolyuk et al., 1988. RESULTS: Results of the study indicate a change in the activity of catalase and adenosine deaminase, due to increased levels of oxidative stress and the development of the pathological process. CONCLUSIONS: According to the results of study, it was put the influence of negative factors of the Aral Sea region in men’s sperm of reproductive age gives to disability free-radical processes, that proves changing of ferments of ant oxidative protection Catalase and adenosine deaminase (ADA). This disturbance in men’s sperm of reproductive age leading to increased level of oxidative stress and impaired activity of antioxidant enzymes and purine metabolism, responsible for the abnormal transmembrane and intracellular processes, reflecting the degree of imbalance of enzymes.

  9. Integrative Analysis of Circadian Transcriptome and Metabolic Network Reveals the Role of De Novo Purine Synthesis in Circadian Control of Cell Cycle

    PubMed Central

    Li, Ying; Li, Guang; Görling, Benjamin; Luy, Burkhard; Du, Jiulin; Yan, Jun

    2015-01-01

    Metabolism is the major output of the circadian clock in many organisms. We developed a computational method to integrate both circadian gene expression and metabolic network. Applying this method to zebrafish circadian transcriptome, we have identified large clusters of metabolic genes containing mostly genes in purine and pyrimidine metabolism in the metabolic network showing similar circadian phases. Our metabolomics analysis found that the level of inosine 5'-monophosphate (IMP), an intermediate metabolite in de novo purine synthesis, showed significant circadian oscillation in larval zebrafish. We focused on IMP dehydrogenase (impdh), a rate-limiting enzyme in de novo purine synthesis, with three circadian oscillating gene homologs: impdh1a, impdh1b and impdh2. Functional analysis revealed that impdh2 contributes to the daily rhythm of S phase in the cell cycle while impdh1a contributes to ocular development and pigment synthesis. The three zebrafish homologs of impdh are likely regulated by different circadian transcription factors. We propose that the circadian regulation of de novo purine synthesis that supplies crucial building blocks for DNA replication is an important mechanism conferring circadian rhythmicity on the cell cycle. Our method is widely applicable to study the impact of circadian transcriptome on metabolism in complex organisms. PMID:25714999

  10. p38α Activates Purine Metabolism to Initiate Hematopoietic Stem/Progenitor Cell Cycling in Response to Stress.

    PubMed

    Karigane, Daiki; Kobayashi, Hiroshi; Morikawa, Takayuki; Ootomo, Yukako; Sakai, Mashito; Nagamatsu, Go; Kubota, Yoshiaki; Goda, Nobuhito; Matsumoto, Michihiro; Nishimura, Emi K; Soga, Tomoyoshi; Otsu, Kinya; Suematsu, Makoto; Okamoto, Shinichiro; Suda, Toshio; Takubo, Keiyo

    2016-08-01

    Hematopoietic stem cells (HSCs) maintain quiescence by activating specific metabolic pathways, including glycolysis. We do not yet have a clear understanding of how this metabolic activity changes during stress hematopoiesis, such as bone marrow transplantation. Here, we report a critical role for the p38MAPK family isoform p38α in initiating hematopoietic stem and progenitor cell (HSPC) proliferation during stress hematopoiesis in mice. We found that p38MAPK is immediately phosphorylated in HSPCs after a hematological stress, preceding increased HSPC cycling. Conditional deletion of p38α led to defective recovery from hematological stress and a delay in initiation of HSPC proliferation. Mechanistically, p38α signaling increases expression of inosine-5'-monophosphate dehydrogenase 2 in HSPCs, leading to altered levels of amino acids and purine-related metabolites and changes in cell-cycle progression in vitro and in vivo. Our studies have therefore uncovered a p38α-mediated pathway that alters HSPC metabolism to respond to stress and promote recovery. PMID:27345838

  11. Prevention of lethal graft vs Host disease following bone marrow transplantation (pretreatment of the inoculum with purine metabolic enzyme inhibitors)

    SciTech Connect

    Kennedy, D.W.

    1983-01-01

    A correlation between lymphocyte function and enzymes of the purine metabolic pathway has been shown. Abnormal levels of three of these enzymes - adenosine deaminase (ADA), 5'-nucleotidase (5'-NT), and purine nucleoside phosphorylase (PNP) - have been associated with defective lymphoid functions. Selective inhibition of one or more of these enzymes may result in elimination of specific lymphocyte populations from a bone marrow (BM) graft and thus prevent graft-vs-host disease (GVHD). To test this hypothesis, BM and spleen cells were pretreated with inhibitors of ADA or PNP before transplant to histoincompatible recipients. Germfree (GF) mice approximately 11 weeks of age were lethally X-irradiated with 1000 Rads. At 24 hours post irradiation the mice received 5 x 10/sup 6/ BM cells and 5 x 10/sup 6/ BM cells and 5 x 10/sup 6/ spleen cells i.v. from syngeneic donors or allogeneic donors. Prior to injection the mice were divided into 5 groups: (1) the inoculum was treated with a final concentration of 10 ..mu..M deoxycoformycin (dCF), and ADA inhibitor, and 100 ..mu..M deoxyadenosine (dAdo); (2) the inoculum was treated with a final concentration of 100 ..mu..M 8-aminoguanosine (8AGuo), an inhibitor of PNP, and 100 ..mu..M 2'-deoxyguanosine (2'dGuo); (3) allogenic controls; (4) syngeneic controls; and (5) radiation controls. In vitro experiments utilizing human peripheral blood and bone marrow demonstrated a severe immunosuppressive effect by the combination of 2'dCF and dAdo which was quick acting and not easily washed away. Treatment with 8A Guo + 2'dGuo also was immunosuppressive, but not as effective as the dCF and dAdo treatment. Both groups of drugs deserve further investigation for possible clinical application to BM transplantation.

  12. [Purine nucleoside phosphorylase].

    PubMed

    Pogosian, L G; Akopian, Zh I

    2013-01-01

    Purine nucleoside phosphorylase (PNP) is one of the most important enzymes of the purine metabolism, wich promotes the recycling of purine bases. Nowadays is the actual to search for effective inhibitors of this enzyme which is necessary for creation T-cell immunodeficient status of the organism in the organs and tissues transplantation, and chemotherapy of a number pathologies as well. For their successful practical application necessary to conduct in-depth and comprehensive study of the enzyme, namely a structure, functions, and an affinity of the reaction mechanism. In the review the contemporary achievements in the study of PNP from various biological objects are presented. New data describing the structure of PNP are summarised and analysed. The physiological role of the enzyme is discussed. The enzyme basic reaction mechanisms and actions are considered. The studies on enzyme physicochemical, kinetic, and catalytic research are presented. PMID:24479338

  13. Reduced levels of dopamine and altered metabolism in brains of HPRT knock-out rats: a new rodent model of Lesch-Nyhan Disease.

    PubMed

    Meek, Stephen; Thomson, Alison J; Sutherland, Linda; Sharp, Matthew G F; Thomson, Julie; Bishop, Valerie; Meddle, Simone L; Gloaguen, Yoann; Weidt, Stefan; Singh-Dolt, Karamjit; Buehr, Mia; Brown, Helen K; Gill, Andrew C; Burdon, Tom

    2016-01-01

    Lesch-Nyhan disease (LND) is a severe neurological disorder caused by loss-of-function mutations in the gene encoding hypoxanthine phosphoribosyltransferase (HPRT), an enzyme required for efficient recycling of purine nucleotides. Although this biochemical defect reconfigures purine metabolism and leads to elevated levels of the breakdown product urea, it remains unclear exactly how loss of HPRT activity disrupts brain function. As the rat is the preferred rodent experimental model for studying neurobiology and diseases of the brain, we used genetically-modified embryonic stem cells to generate an HPRT knock-out rat. Male HPRT-deficient rats were viable, fertile and displayed normal caged behaviour. However, metabolomic analysis revealed changes in brain biochemistry consistent with disruption of purine recycling and nucleotide metabolism. Broader changes in brain biochemistry were also indicated by increased levels of the core metabolite citrate and reduced levels of lipids and fatty acids. Targeted MS/MS analysis identified reduced levels of dopamine in the brains of HPRT-deficient animals, consistent with deficits noted previously in human LND patients and HPRT knock-out mice. The HPRT-deficient rat therefore provides a new experimental platform for future investigation of how HPRT activity and disruption of purine metabolism affects neural function and behaviour. PMID:27185277

  14. Reduced levels of dopamine and altered metabolism in brains of HPRT knock-out rats: a new rodent model of Lesch-Nyhan Disease

    PubMed Central

    Meek, Stephen; Thomson, Alison J.; Sutherland, Linda; Sharp, Matthew G. F.; Thomson, Julie; Bishop, Valerie; Meddle, Simone L.; Gloaguen, Yoann; Weidt, Stefan; Singh-Dolt, Karamjit; Buehr, Mia; Brown, Helen K.; Gill, Andrew C.; Burdon, Tom

    2016-01-01

    Lesch-Nyhan disease (LND) is a severe neurological disorder caused by loss-of-function mutations in the gene encoding hypoxanthine phosphoribosyltransferase (HPRT), an enzyme required for efficient recycling of purine nucleotides. Although this biochemical defect reconfigures purine metabolism and leads to elevated levels of the breakdown product urea, it remains unclear exactly how loss of HPRT activity disrupts brain function. As the rat is the preferred rodent experimental model for studying neurobiology and diseases of the brain, we used genetically-modified embryonic stem cells to generate an HPRT knock-out rat. Male HPRT-deficient rats were viable, fertile and displayed normal caged behaviour. However, metabolomic analysis revealed changes in brain biochemistry consistent with disruption of purine recycling and nucleotide metabolism. Broader changes in brain biochemistry were also indicated by increased levels of the core metabolite citrate and reduced levels of lipids and fatty acids. Targeted MS/MS analysis identified reduced levels of dopamine in the brains of HPRT-deficient animals, consistent with deficits noted previously in human LND patients and HPRT knock-out mice. The HPRT-deficient rat therefore provides a new experimental platform for future investigation of how HPRT activity and disruption of purine metabolism affects neural function and behaviour. PMID:27185277

  15. Genetics of Somatic Mammalian Cells: Biochemical Genetics of Chinese Hamster Cell Mutants with Deviant Purine Metabolism

    PubMed Central

    Patterson, David; Kao, Fa-Ten; Puck, Theodore T.

    1974-01-01

    Studies are presented on the biochemical genetics of 30 adenine-requiring mutants of the Chinese hamster ovary cell which were induced by mutagenesis and selected by the BrdU-visible light technique. Representative experiments conducted with these mutants include: hybridization with each other; hybridization with normal human cells; nutritional analysis; biochemical analysis with radioactively labeled intermediates; and measurement of reversion frequencies to wild-type phenotype occurring spontaneously and under the influence of selected mutagens. All mutants behave as if having point mutations. These experiments provide information relevant to the determination of dominant-recessive relationships, resolution into different complementation classes, localization of the human chromosomes which carry human genes required by the individual mutants, determination of the point of metabolic block for different mutants, and elucidation of the nature of the underlying DNA changes. These experiments illustrate the range of biochemical-genetic studies now possible with such a family of somatic mammalian cell mutants in vitro. Possible application to problems of human genetic disease are indicated. Images PMID:4525316

  16. Cerebral metabolic adaptation and ketone metabolism after brain injury

    PubMed Central

    Prins, Mayumi L

    2010-01-01

    The developing central nervous system has the capacity to metabolize ketone bodies. It was once accepted that on weaning, the ‘post-weaned/adult’ brain was limited solely to glucose metabolism. However, increasing evidence from conditions of inadequate glucose availability or increased energy demands has shown that the adult brain is not static in its fuel options. The objective of this review is to summarize the body of literature specifically regarding cerebral ketone metabolism at different ages, under conditions of starvation and after various pathologic conditions. The evidence presented supports the following findings: (1) there is an inverse relationship between age and the brain’s capacity for ketone metabolism that continues well after weaning; (2) neuroprotective potentials of ketone administration have been shown for neurodegenerative conditions, epilepsy, hypoxia/ischemia, and traumatic brain injury; and (3) there is an age-related therapeutic potential for ketone as an alternative substrate. The concept of cerebral metabolic adaptation under various physiologic and pathologic conditions is not new, but it has taken the contribution of numerous studies over many years to break the previously accepted dogma of cerebral metabolism. Our emerging understanding of cerebral metabolism is far more complex than could have been imagined. It is clear that in addition to glucose, other substrates must be considered along with fuel interactions, metabolic challenges, and cerebral maturation. PMID:17684514

  17. Metabolic correlates of hominid brain evolution.

    PubMed

    Leonard, William R; Robertson, Marcia L; Snodgrass, J Josh; Kuzawa, Christopher W

    2003-09-01

    Large brain sizes in humans have important metabolic consequences as humans expend a relatively larger proportion of their resting energy budget on brain metabolism than other primates or non-primate mammals. The high costs of large human brains are supported, in part, by diets that are relatively rich in energy and other nutrients. Among living primates, the relative proportion of metabolic energy allocated to the brain is positively correlated with dietary quality. Humans fall at the positive end of this relationship, having both a very high quality diet and a large brain size. Greater encephalization also appears to have consequences for aspects of body composition. Comparative primate data indicate that humans are 'under-muscled', having relatively lower levels of skeletal muscle than other primate species of similar size. Conversely, levels of body fatness are relatively high in humans, particularly in infancy. These greater levels of body fatness and reduced levels of muscle mass allow human infants to accommodate the growth of their large brains in two important ways: (1) by having a ready supply of stored energy to 'feed the brain', when intake is limited and (2) by reducing the total energy costs of the rest of the body. Paleontological evidence indicates that the rapid brain evolution observed with the emergence of Homo erectus at approximately 1.8 million years ago was likely associated with important changes in diet and body composition. PMID:14527625

  18. Purines in neurite growth and astroglia activation.

    PubMed

    Heine, Claudia; Sygnecka, Katja; Franke, Heike

    2016-05-01

    The mammalian nervous system is a complex, functional network of neurons, consisting of local and long-range connections. Neuronal growth is highly coordinated by a variety of extracellular and intracellular signaling molecules. Purines turned out to be an essential component of these processes. Here, we review the current knowledge about the involvement of purinergic signaling in the regulation of neuronal development. We particularly focus on its role in neuritogenesis: the formation and extension of neurites. In the course of maturation mammals generally lose their ability to regenerate the central nervous system (CNS) e.g. after traumatic brain injury; although, spontaneous regeneration still occurs in the peripheral nervous system (PNS). Thus, it is crucial to translate the knowledge about CNS development and PNS regeneration into novel approaches to enable neurons of the mature CNS to regenerate. In this context we give a general overview of growth-inhibitory and growth-stimulatory factors and mechanisms involved in neurite growth. With regard to neuronal growth, astrocytes are an important cell population. They provide structural and metabolic support to neurons and actively participate in brain signaling. Astrocytes respond to injury with beneficial or detrimental reactions with regard to axonal growth. In this review we present the current knowledge of purines in these glial functions. Moreover, we discuss organotypic brain slice co-cultures as a model which retains neuron-glia interactions, and further presents at once a model for CNS development and regeneration. In summary, the purinergic system is a pivotal factor in neuronal development and in the response to injury. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'. PMID:26498067

  19. [Cerebral microdialysis. Brain metabolism monitoring].

    PubMed

    Esteban Jarque, Encarna; Expósito Mozas, Lourdes; Olalla Martín, Mercedes; Alvarez Alvarez, Irene

    2002-09-01

    This is a novel technique which provides information about all the happenings going on in the brain and which helps to better interpret the complete physiologic pathology of a patient suffering from serious cranial encephalitic trauma. The authors describe how to put this technique into practice, what materials are necessary to do so, and what conclusions may be obtained from biochemical analysis. PMID:13677751

  20. Metabolic brain imaging correlated with clinical features of brain tumors

    SciTech Connect

    Alavi, J.; Alavi, A.; Dann, R.; Kushner, M.; Chawluk, J.; Powlis, W.; Reivich, M.

    1985-05-01

    Nineteen adults with brain tumors have been studied with positron emission tomography utilizing FDG. Fourteen had biopsy proven cerebral malignant glioma, one each had meningioma, hemangiopericytoma, primitive neuroectodermal tumor (PNET), two had unbiopsied lesions, and one patient had an area of biopsy proven radiation necrosis. Three different patterns of glucose metabolism are observed: marked increase in metabolism at the site of the known tumor in (10 high grade gliomas and the PNET), lower than normal metabolism at the tumor (in 1 grade II glioma, 3 grade III gliomas, 2 unbiopsied low density nonenhancing lesions, and the meningioma), no abnormality (1 enhancing glioma, the hemangiopericytoma and the radiation necrosis.) The metabolic rate of the tumor or the surrounding brain did not appear to be correlated with the history of previous irradiation or chemotherapy. Decreased metabolism was frequently observed in the rest of the affected hemisphere and in the contralateral cerebellum. Tumors of high grade or with enhancing CT characteristics were more likely to show increased metabolism. Among the patients with proven gliomas, survival after PETT scan tended to be longer for those with low metabolic activity tumors than for those with highly active tumors. The authors conclude that PETT may help to predict the malignant potential of tumors, and may add useful clinical information to the CT scan.

  1. Cerebral Lactate Metabolism After Traumatic Brain Injury.

    PubMed

    Patet, Camille; Suys, Tamarah; Carteron, Laurent; Oddo, Mauro

    2016-04-01

    Cerebral energy dysfunction has emerged as an important determinant of prognosis following traumatic brain injury (TBI). A number of studies using cerebral microdialysis, positron emission tomography, and jugular bulb oximetry to explore cerebral metabolism in patients with TBI have demonstrated a critical decrease in the availability of the main energy substrate of brain cells (i.e., glucose). Energy dysfunction induces adaptations of cerebral metabolism that include the utilization of alternative energy resources that the brain constitutively has, such as lactate. Two decades of experimental and human investigations have convincingly shown that lactate stands as a major actor of cerebral metabolism. Glutamate-induced activation of glycolysis stimulates lactate production from glucose in astrocytes, with subsequent lactate transfer to neurons (astrocyte-neuron lactate shuttle). Lactate is not only used as an extra energy substrate but also acts as a signaling molecule and regulator of systemic and brain glucose use in the cerebral circulation. In animal models of brain injury (e.g., TBI, stroke), supplementation with exogenous lactate exerts significant neuroprotection. Here, we summarize the main clinical studies showing the pivotal role of lactate and cerebral lactate metabolism after TBI. We also review pilot interventional studies that examined exogenous lactate supplementation in patients with TBI and found hypertonic lactate infusions had several beneficial properties on the injured brain, including decrease of brain edema, improvement of neuroenergetics via a "cerebral glucose-sparing effect," and increase of cerebral blood flow. Hypertonic lactate represents a promising area of therapeutic investigation; however, larger studies are needed to further examine mechanisms of action and impact on outcome. PMID:26898683

  2. Metabolic profiling of Alzheimer's disease brains

    NASA Astrophysics Data System (ADS)

    Inoue, Koichi; Tsutsui, Haruhito; Akatsu, Hiroyasu; Hashizume, Yoshio; Matsukawa, Noriyuki; Yamamoto, Takayuki; Toyo'Oka, Toshimasa

    2013-08-01

    Alzheimer's disease (AD) is an irreversible, progressive brain disease and can be definitively diagnosed after death through an examination of senile plaques and neurofibrillary tangles in several brain regions. It is to be expected that changes in the concentration and/or localization of low-molecular-weight molecules are linked to the pathological changes that occur in AD, and determining their identity would provide valuable information regarding AD processes. Here, we propose definitive brain metabolic profiling using ultra-performance liquid chromatography coupled with electrospray time-of-flight mass spectrometry analysis. The acquired data were subjected to principal components analysis to differentiate the frontal and parietal lobes of the AD/Control groups. Significant differences in the levels of spermine and spermidine were identified using S-plot, mass spectra, databases and standards. Based on the investigation of the polyamine metabolite pathway, these data establish that the downstream metabolites of ornithine are increased, potentially implicating ornithine decarboxylase activity in AD pathology.

  3. A role for adenine nucleotides in the sensing mechanism to purine starvation in Leishmania donovani.

    PubMed

    Martin, Jessica L; Yates, Phillip A; Boitz, Jan M; Koop, Dennis R; Fulwiler, Audrey L; Cassera, Maria Belen; Ullman, Buddy; Carter, Nicola S

    2016-07-01

    Purine salvage by Leishmania is an obligatory nutritional process that impacts both cell viability and growth. Previously, we have demonstrated that the removal of purines in culture provokes significant metabolic changes that enable Leishmania to survive prolonged periods of purine starvation. In order to understand how Leishmania sense and respond to changes in their purine environment, we have exploited several purine pathway mutants, some in which adenine and guanine nucleotide metabolism is uncoupled. While wild type parasites grow in any one of a variety of naturally occurring purines, the proliferation of these purine pathway mutants requires specific types or combinations of exogenous purines. By culturing purine pathway mutants in high levels of extracellular purines that are either permissive or non-permissive for growth and monitoring for previously defined markers of the adaptive response to purine starvation, we determined that adaptation arises from a surveillance of intracellular purine nucleotide pools rather than from a direct sensing of the extracellular purine content of the environment. Specifically, our data suggest that perturbation of intracellular adenine-containing nucleotide pools provides a crucial signal for inducing the metabolic changes necessary for the long-term survival of Leishmania in a purine-scarce environment. PMID:27062185

  4. Altered brain arginine metabolism in schizophrenia.

    PubMed

    Liu, P; Jing, Y; Collie, N D; Dean, B; Bilkey, D K; Zhang, H

    2016-01-01

    Previous research implicates altered metabolism of l-arginine, a versatile amino acid with a number of bioactive metabolites, in the pathogenesis of schizophrenia. The present study, for we believe the first time, systematically compared the metabolic profile of l-arginine in the frontal cortex (Brodmann's area 8) obtained post-mortem from schizophrenic individuals and age- and gender-matched non-psychiatric controls (n=20 per group). The enzyme assays revealed no change in total nitric oxide synthase (NOS) activity, but significantly increased arginase activity in the schizophrenia group. Western blot showed reduced endothelial NOS protein expression and increased arginase II protein level in the disease group. High-performance liquid chromatography and liquid chromatography/mass spectrometric assays confirmed significantly reduced levels of γ-aminobutyric acid (GABA), but increased agmatine concentration and glutamate/GABA ratio in the schizophrenia cases. Regression analysis indicated positive correlations between arginase activity and the age of disease onset and between l-ornithine level and the duration of illness. Moreover, cluster analyses revealed that l-arginine and its main metabolites l-citrulline, l-ornithine and agmatine formed distinct groups, which were altered in the schizophrenia group. The present study provides further evidence of altered brain arginine metabolism in schizophrenia, which enhances our understanding of the pathogenesis of schizophrenia and may lead to the future development of novel preventions and/or therapeutics for the disease. PMID:27529679

  5. Pyrimidine and purine salvage deoxyribonucleoside metabolism in hepatic and renal homogenates from rats pretreated with propylthiouracil or L-thyroxine.

    PubMed

    Karbownik, Malgorzata; Modrzejewska, Hanna; Reiter, Russel J.; Zasada, Krzysztof; Greger, Janusz; Lewinski, Andrzej

    2000-01-01

    OBJECTIVES: In vitro activities of thymidine kinase (TK, EC 2.7.1.21), adenosine kinase (AK, EC 2.7.1.20) and deoxycytidine kinase (dCK, EC 2.7.1.74) enzymes involved in the salvage pathway of DNA precursor synthesis, in homogenates of the rat liver and kidney, were examined. Type I iodothyronine-5'-deiodinase (5'D-I) is the main enzyme responsible for peripheral metabolism of thyroid hormones. This occurs especially in the liver, kidney and muscle. The activity of 5'D-I is inhibited bypropylthiouracil (PTU), an antithyroid drug. METHODS: The liver and kidney were collected from rats pretreated in vivo with either a 0.1% solution of PTU in drinking water for 2 weeks or injected with levothyroxine (L-T(4), 50 &mgr;g/kg BW, daily) for 2 weeks. The enzyme activities were measured by ascending chromatography and expressed asthe amounts of radioactive reaction products of the phosphorylation of dThd (for TK), ofdAdo (for AK and dCK) and of dGuo (for dCK). RESULTS: In liver homogenates, PTU-pretreatment decreased the activities of the three enzymes when compared to control values and those of L-T(4)-treated animals; also L-T(4) injections decreased the AK and dCK activities in the liver homogenates. PTU-pretreatment increased TK activity and the rate of dGuo phosphorylation in kidney homogenates, when compared to controls and to the L-T(4)-pretreated animals. Conversely, both PTU- and L-T(4)-pretreatment reduced the rate of dAdo phosphorylation in kidney homogenates. CONCLUSION: Changes in the activities of examined enzymes which participate inpyrimidine orpurine metabolism of the salvage pathway of DNA synthesis in the liver afterPTU-pretreatment (as shown herein) are similar to the changes of the 5'D-I activity after PTU-treatment (as reported by others). Thus, the observations suggest a role of the salvage pathway of DNA synthesis in the peripheral metabolism of thyroid hormones. PMID:11455332

  6. Quantitative analysis of purine nucleotides indicates that purinosomes increase de novo purine biosynthesis.

    PubMed

    Zhao, Hong; Chiaro, Christopher R; Zhang, Limin; Smith, Philip B; Chan, Chung Yu; Pedley, Anthony M; Pugh, Raymond J; French, Jarrod B; Patterson, Andrew D; Benkovic, Stephen J

    2015-03-13

    Enzymes in the de novo purine biosynthesis pathway are recruited to form a dynamic metabolic complex referred to as the purinosome. Previous studies have demonstrated that purinosome assembly responds to purine levels in culture medium. Purine-depleted medium or 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT) treatment stimulates the purinosome assembly in HeLa cells. Here, several metabolomic technologies were applied to quantify the static cellular levels of purine nucleotides and measure the de novo biosynthesis rate of IMP, AMP, and GMP. Direct comparison of purinosome-rich cells (cultured in purine-depleted medium) and normal cells showed a 3-fold increase in IMP concentration in purinosome-rich cells and similar levels of AMP, GMP, and ratios of AMP/GMP and ATP/ADP for both. In addition, a higher level of IMP was also observed in HeLa cells treated with DMAT. Furthermore, increases in the de novo IMP/AMP/GMP biosynthetic flux rate under purine-depleted condition were observed. The synthetic enzymes, adenylosuccinate synthase (ADSS) and inosine monophosphate dehydrogenase (IMPDH), downstream of IMP were also shown to be part of the purinosome. Collectively, these results provide further evidence that purinosome assembly is directly related to activated de novo purine biosynthesis, consistent with the functionality of the purinosome. PMID:25605736

  7. Quantitative Analysis of Purine Nucleotides Indicates That Purinosomes Increase de Novo Purine Biosynthesis*♦

    PubMed Central

    Zhao, Hong; Chiaro, Christopher R.; Zhang, Limin; Smith, Philip B.; Chan, Chung Yu; Pedley, Anthony M.; Pugh, Raymond J.; French, Jarrod B.; Patterson, Andrew D.; Benkovic, Stephen J.

    2015-01-01

    Enzymes in the de novo purine biosynthesis pathway are recruited to form a dynamic metabolic complex referred to as the purinosome. Previous studies have demonstrated that purinosome assembly responds to purine levels in culture medium. Purine-depleted medium or 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT) treatment stimulates the purinosome assembly in HeLa cells. Here, several metabolomic technologies were applied to quantify the static cellular levels of purine nucleotides and measure the de novo biosynthesis rate of IMP, AMP, and GMP. Direct comparison of purinosome-rich cells (cultured in purine-depleted medium) and normal cells showed a 3-fold increase in IMP concentration in purinosome-rich cells and similar levels of AMP, GMP, and ratios of AMP/GMP and ATP/ADP for both. In addition, a higher level of IMP was also observed in HeLa cells treated with DMAT. Furthermore, increases in the de novo IMP/AMP/GMP biosynthetic flux rate under purine-depleted condition were observed. The synthetic enzymes, adenylosuccinate synthase (ADSS) and inosine monophosphate dehydrogenase (IMPDH), downstream of IMP were also shown to be part of the purinosome. Collectively, these results provide further evidence that purinosome assembly is directly related to activated de novo purine biosynthesis, consistent with the functionality of the purinosome. PMID:25605736

  8. Metabolic Flux and Compartmentation Analysis in the Brain In vivo

    PubMed Central

    Lanz, Bernard; Gruetter, Rolf; Duarte, João M. N.

    2013-01-01

    Through significant developments and progresses in the last two decades, in vivo localized nuclear magnetic resonance spectroscopy (MRS) became a method of choice to probe brain metabolic pathways in a non-invasive way. Beside the measurement of the total concentration of more than 20 metabolites, 1H MRS can be used to quantify the dynamics of substrate transport across the blood-brain barrier by varying the plasma substrate level. On the other hand, 13C MRS with the infusion of 13C-enriched substrates enables the characterization of brain oxidative metabolism and neurotransmission by incorporation of 13C in the different carbon positions of amino acid neurotransmitters. The quantitative determination of the biochemical reactions involved in these processes requires the use of appropriate metabolic models, whose level of details is strongly related to the amount of data accessible with in vivo MRS. In the present work, we present the different steps involved in the elaboration of a mathematical model of a given brain metabolic process and its application to the experimental data in order to extract quantitative brain metabolic rates. We review the recent advances in the localized measurement of brain glucose transport and compartmentalized brain energy metabolism, and how these reveal mechanistic details on glial support to glutamatergic and GABAergic neurons. PMID:24194729

  9. Socially responsive effects of brain oxidative metabolism on aggression

    PubMed Central

    Li-Byarlay, Hongmei; Rittschof, Clare C.; Massey, Jonathan H.; Pittendrigh, Barry R.; Robinson, Gene E.

    2014-01-01

    Despite ongoing high energetic demands, brains do not always use glucose and oxygen in a ratio that produces maximal ATP through oxidative phosphorylation. In some cases glucose consumption exceeds oxygen use despite adequate oxygen availability, a phenomenon known as aerobic glycolysis. Although metabolic plasticity seems essential for normal cognition, studying its functional significance has been challenging because few experimental systems link brain metabolic patterns to distinct behavioral states. Our recent transcriptomic analysis established a correlation between aggression and decreased whole-brain oxidative phosphorylation activity in the honey bee (Apis mellifera), suggesting that brain metabolic plasticity may modulate this naturally occurring behavior. Here we demonstrate that the relationship between brain metabolism and aggression is causal, conserved over evolutionary time, cell type-specific, and modulated by the social environment. Pharmacologically treating honey bees to inhibit complexes I or V in the oxidative phosphorylation pathway resulted in increased aggression. In addition, transgenic RNAi lines and genetic manipulation to knock down gene expression in complex I in fruit fly (Drosophila melanogaster) neurons resulted in increased aggression, but knockdown in glia had no effect. Finally, honey bee colony-level social manipulations that decrease individual aggression attenuated the effects of oxidative phosphorylation inhibition on aggression, demonstrating a specific effect of the social environment on brain function. Because decreased neuronal oxidative phosphorylation is usually associated with brain disease, these findings provide a powerful context for understanding brain metabolic plasticity and naturally occurring behavioral plasticity. PMID:25092297

  10. Metabolic costs and evolutionary implications of human brain development.

    PubMed

    Kuzawa, Christopher W; Chugani, Harry T; Grossman, Lawrence I; Lipovich, Leonard; Muzik, Otto; Hof, Patrick R; Wildman, Derek E; Sherwood, Chet C; Leonard, William R; Lange, Nicholas

    2014-09-01

    The high energetic costs of human brain development have been hypothesized to explain distinctive human traits, including exceptionally slow and protracted preadult growth. Although widely assumed to constrain life-history evolution, the metabolic requirements of the growing human brain are unknown. We combined previously collected PET and MRI data to calculate the human brain's glucose use from birth to adulthood, which we compare with body growth rate. We evaluate the strength of brain-body metabolic trade-offs using the ratios of brain glucose uptake to the body's resting metabolic rate (RMR) and daily energy requirements (DER) expressed in glucose-gram equivalents (glucosermr% and glucoseder%). We find that glucosermr% and glucoseder% do not peak at birth (52.5% and 59.8% of RMR, or 35.4% and 38.7% of DER, for males and females, respectively), when relative brain size is largest, but rather in childhood (66.3% and 65.0% of RMR and 43.3% and 43.8% of DER). Body-weight growth (dw/dt) and both glucosermr% and glucoseder% are strongly, inversely related: soon after birth, increases in brain glucose demand are accompanied by proportionate decreases in dw/dt. Ages of peak brain glucose demand and lowest dw/dt co-occur and subsequent developmental declines in brain metabolism are matched by proportionate increases in dw/dt until puberty. The finding that human brain glucose demands peak during childhood, and evidence that brain metabolism and body growth rate covary inversely across development, support the hypothesis that the high costs of human brain development require compensatory slowing of body growth rate. PMID:25157149

  11. Are purines mediators of the anticonvulsant/neuroprotective effects of ketogenic diets?

    PubMed Central

    Masino, Susan A.; Geiger, Jonathan D.

    2015-01-01

    Abnormal neuronal signaling caused by metabolic changes characterizes several neurological disorders, and in some instances metabolic interventions provide therapeutic benefits. Indeed, altering metabolism either by fasting or by maintaining a low-carbohydrate (ketogenic) diet might reduce epileptic seizures and offer neuroprotection in part because the diet increases mitochondrial biogenesis and brain energy levels. Here we focus on a novel hypothesis that a ketogenic diet-induced change in energy metabolism increases levels of ATP and adenosine, purines that are critically involved in neuron–glia interactions, neuromodulation and synaptic plasticity. Enhancing brain bioenergetics (ATP) and increasing levels of adenosine, an endogenous anticonvulsant and neuroprotective molecule, might help with understanding and treating a variety of neurological disorders. PMID:18471903

  12. Brain glucose metabolism during hypoglycemia in type 1 diabetes: insights from functional and metabolic neuroimaging studies.

    PubMed

    Rooijackers, Hanne M M; Wiegers, Evita C; Tack, Cees J; van der Graaf, Marinette; de Galan, Bastiaan E

    2016-02-01

    Hypoglycemia is the most frequent complication of insulin therapy in patients with type 1 diabetes. Since the brain is reliant on circulating glucose as its main source of energy, hypoglycemia poses a threat for normal brain function. Paradoxically, although hypoglycemia commonly induces immediate decline in cognitive function, long-lasting changes in brain structure and cognitive function are uncommon in patients with type 1 diabetes. In fact, recurrent hypoglycemia initiates a process of habituation that suppresses hormonal responses to and impairs awareness of subsequent hypoglycemia, which has been attributed to adaptations in the brain. These observations sparked great scientific interest into the brain's handling of glucose during (recurrent) hypoglycemia. Various neuroimaging techniques have been employed to study brain (glucose) metabolism, including PET, fMRI, MRS and ASL. This review discusses what is currently known about cerebral metabolism during hypoglycemia, and how findings obtained by functional and metabolic neuroimaging techniques contributed to this knowledge. PMID:26521082

  13. Metabolic costs and evolutionary implications of human brain development

    PubMed Central

    Kuzawa, Christopher W.; Chugani, Harry T.; Grossman, Lawrence I.; Lipovich, Leonard; Muzik, Otto; Hof, Patrick R.; Wildman, Derek E.; Sherwood, Chet C.; Leonard, William R.; Lange, Nicholas

    2014-01-01

    The high energetic costs of human brain development have been hypothesized to explain distinctive human traits, including exceptionally slow and protracted preadult growth. Although widely assumed to constrain life-history evolution, the metabolic requirements of the growing human brain are unknown. We combined previously collected PET and MRI data to calculate the human brain’s glucose use from birth to adulthood, which we compare with body growth rate. We evaluate the strength of brain–body metabolic trade-offs using the ratios of brain glucose uptake to the body’s resting metabolic rate (RMR) and daily energy requirements (DER) expressed in glucose-gram equivalents (glucosermr% and glucoseder%). We find that glucosermr% and glucoseder% do not peak at birth (52.5% and 59.8% of RMR, or 35.4% and 38.7% of DER, for males and females, respectively), when relative brain size is largest, but rather in childhood (66.3% and 65.0% of RMR and 43.3% and 43.8% of DER). Body-weight growth (dw/dt) and both glucosermr% and glucoseder% are strongly, inversely related: soon after birth, increases in brain glucose demand are accompanied by proportionate decreases in dw/dt. Ages of peak brain glucose demand and lowest dw/dt co-occur and subsequent developmental declines in brain metabolism are matched by proportionate increases in dw/dt until puberty. The finding that human brain glucose demands peak during childhood, and evidence that brain metabolism and body growth rate covary inversely across development, support the hypothesis that the high costs of human brain development require compensatory slowing of body growth rate. PMID:25157149

  14. Region-specific metabolic alterations in the brain of the APP/PS1 transgenic mice of Alzheimer's disease.

    PubMed

    González-Domínguez, Raúl; García-Barrera, Tamara; Vitorica, Javier; Gómez-Ariza, José Luis

    2014-12-01

    Alzheimer's disease (AD) is the most common neurodegenerative disorder worldwide, but its etiology is still not completely understood. The identification of underlying pathological mechanisms is becoming increasingly important for the discovery of biomarkers and therapies, for which metabolomics presents a great potential. In this work, we studied metabolic alterations in different brain regions of the APP/PS1 mice by using a high-throughput metabolomic approach based on the combination of gas chromatography-mass spectrometry and ultra-high performance liquid chromatography-mass spectrometry. Multivariate statistics showed that metabolomic perturbations are widespread, affecting mainly the hippocampus and the cortex, but are also present in regions not primarily associated with AD such as the striatum, cerebellum and olfactory bulbs. Multiple metabolic pathways could be linked to the development of AD-type disorders in this mouse model, including abnormal purine metabolism, bioenergetic failures, dyshomeostasis of amino acids and disturbances in membrane lipids, among others. Interestingly, region-specific alterations were observed for some of the potential markers identified, associated with abnormal fatty acid composition of phospholipids and sphingomyelins, or differential regulation of neurotransmitter amino acids (e.g. glutamate, glycine, serine, N-acetyl-aspartate), not previously described to our knowledge. Therefore, these findings could provide a new insight into brain pathology in Alzheimer's disease. PMID:25281826

  15. Maturation of metabolic connectivity of the adolescent rat brain

    PubMed Central

    Choi, Hongyoon; Choi, Yoori; Kim, Kyu Wan; Kang, Hyejin; Hwang, Do Won; Kim, E Edmund; Chung, June-Key; Lee, Dong Soo

    2015-01-01

    Neuroimaging has been used to examine developmental changes of the brain. While PET studies revealed maturation-related changes, maturation of metabolic connectivity of the brain is not yet understood. Here, we show that rat brain metabolism is reconfigured to achieve long-distance connections with higher energy efficiency during maturation. Metabolism increased in anterior cerebrum and decreased in thalamus and cerebellum during maturation. When functional covariance patterns of PET images were examined, metabolic networks including default mode network (DMN) were extracted. Connectivity increased between the anterior and posterior parts of DMN and sensory-motor cortices during maturation. Energy efficiency, a ratio of connectivity strength to metabolism of a region, increased in medial prefrontal and retrosplenial cortices. Our data revealed that metabolic networks mature to increase metabolic connections and establish its efficiency between large-scale spatial components from childhood to early adulthood. Neurodevelopmental diseases might be understood by abnormal reconfiguration of metabolic connectivity and efficiency. DOI: http://dx.doi.org/10.7554/eLife.11571.001 PMID:26613413

  16. Diet-Induced Metabolic Disturbances As Modulators of Brain Homeostasis

    PubMed Central

    Zhang, Le; Bruce-Keller, Annadora J.; Dasuri, Kalavathi; Nguyen, AnhThao; Liu, Dr Ying; Keller, Jeffrey N.

    2009-01-01

    A number of metabolic disturbances occur in response to the consumption of a high fat Western diet. Such metabolic disturbances can include the progressive development of hyperglycemia, hyperinsulemia, obesity, metabolic syndrome, and diabetes. Cumulatively, diet-induced disturbance in metabolism are known to promote increased morbidity and negatively impact life expectancy through a variety of mechanisms. While the impact of metabolic disturbances on the hepatic, endocrine, and cardiovascular systems are well established there remains a noticeable void in understanding the basis by which the central nervous system (CNS) becomes altered in response to diet-induced metabolic dysfunction. In particular, it remains to be fully elucidated which established features of diet-induced pathogenesis (observed in non-CNS tissues) are recapitulated in the brain, and identification as to whether the observed changes in the brain are a direct or indirect effect of peripheral metabolic disturbances. This review will focus on each of these key issues and identify some critical experimental questions which remain to be elucidated experimentally, as well as provide an outline of our current understanding for how diet-induced alterations in metabolism may impact the brain during aging and age-related diseases of the nervous system. PMID:18926905

  17. Effects of diabetes on brain metabolism--is brain glycogen a significant player?

    PubMed

    Sickmann, Helle M; Waagepetersen, Helle S

    2015-02-01

    Brain glycogen, being an intracellular glucose reservoir, contributes to maintain energy and neurotransmitter homeostasis under physiological as well as pathological conditions. Under conditions with a disturbance in systemic glucose metabolism such as in diabetes, the supply of glucose to the brain may be affected and have important impacts on brain metabolism and neurotransmission. This also implies that brain glycogen may serve an essential role in the diabetic state to sustain appropriate brain function. There are two main types of diabetes; type 1 and type 2 diabetes and both types may be associated with brain impairments e.g. cognitive decline and dementia. It is however, not clear how these impairments on brain function are linked to alterations in brain energy and neurotransmitter metabolism. In this review, we will illuminate how rodent diabetes models have contributed to a better understanding of how brain energy and neurotransmitter metabolism is affected in diabetes. There will be a particular focus on the role of brain glycogen to support glycolytic and TCA cycle activity as well as glutamate-glutamine cycle in type 1 and type 2 diabetes. PMID:24771109

  18. Nicotinamide riboside and nicotinic acid riboside salvage in fungi and mammals. Quantitative basis for Urh1 and purine nucleoside phosphorylase function in NAD+ metabolism.

    PubMed

    Belenky, Peter; Christensen, Kathryn C; Gazzaniga, Francesca; Pletnev, Alexandre A; Brenner, Charles

    2009-01-01

    NAD+ is a co-enzyme for hydride transfer enzymes and an essential substrate of ADP-ribose transfer enzymes and sirtuins, the type III protein lysine deacetylases related to yeast Sir2. Supplementation of yeast cells with nicotinamide riboside extends replicative lifespan and increases Sir2-dependent gene silencing by virtue of increasing net NAD+ synthesis. Nicotinamide riboside elevates NAD+ levels via the nicotinamide riboside kinase pathway and by a pathway initiated by splitting the nucleoside into a nicotinamide base followed by nicotinamide salvage. Genetic evidence has established that uridine hydrolase, purine nucleoside phosphorylase, and methylthioadenosine phosphorylase are required for Nrk-independent utilization of nicotinamide riboside in yeast. Here we show that mammalian purine nucleoside phosphorylase but not methylthioadenosine phosphorylase is responsible for mammalian nicotinamide riboside kinase-independent nicotinamide riboside utilization. We demonstrate that so-called uridine hydrolase is 100-fold more active as a nicotinamide riboside hydrolase than as a uridine hydrolase and that uridine hydrolase and mammalian purine nucleoside phosphorylase cleave nicotinic acid riboside, whereas the yeast phosphorylase has little activity on nicotinic acid riboside. Finally, we show that yeast nicotinic acid riboside utilization largely depends on uridine hydrolase and nicotinamide riboside kinase and that nicotinic acid riboside bioavailability is increased by ester modification. PMID:19001417

  19. Insights into Brain Glycogen Metabolism: THE STRUCTURE OF HUMAN BRAIN GLYCOGEN PHOSPHORYLASE.

    PubMed

    Mathieu, Cécile; de la Sierra-Gallay, Ines Li; Duval, Romain; Xu, Ximing; Cocaign, Angélique; Léger, Thibaut; Woffendin, Gary; Camadro, Jean-Michel; Etchebest, Catherine; Haouz, Ahmed; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2016-08-26

    Brain glycogen metabolism plays a critical role in major brain functions such as learning or memory consolidation. However, alteration of glycogen metabolism and glycogen accumulation in the brain contributes to neurodegeneration as observed in Lafora disease. Glycogen phosphorylase (GP), a key enzyme in glycogen metabolism, catalyzes the rate-limiting step of glycogen mobilization. Moreover, the allosteric regulation of the three GP isozymes (muscle, liver, and brain) by metabolites and phosphorylation, in response to hormonal signaling, fine-tunes glycogenolysis to fulfill energetic and metabolic requirements. Whereas the structures of muscle and liver GPs have been known for decades, the structure of brain GP (bGP) has remained elusive despite its critical role in brain glycogen metabolism. Here, we report the crystal structure of human bGP in complex with PEG 400 (2.5 Å) and in complex with its allosteric activator AMP (3.4 Å). These structures demonstrate that bGP has a closer structural relationship with muscle GP, which is also activated by AMP, contrary to liver GP, which is not. Importantly, despite the structural similarities between human bGP and the two other mammalian isozymes, the bGP structures reveal molecular features unique to the brain isozyme that provide a deeper understanding of the differences in the activation properties of these allosteric enzymes by the allosteric effector AMP. Overall, our study further supports that the distinct structural and regulatory properties of GP isozymes contribute to the different functions of muscle, liver, and brain glycogen. PMID:27402852

  20. Targeting energy metabolism in brain cancer: review and hypothesis

    PubMed Central

    Seyfried, Thomas N; Mukherjee, Purna

    2005-01-01

    Malignant brain tumors are a significant health problem in children and adults and are often unmanageable. As a metabolic disorder involving the dysregulation of glycolysis and respiration, malignant brain cancer is potentially manageable through changes in metabolic environment. A radically different approach to brain cancer management is proposed that combines metabolic control analysis with the evolutionarily conserved capacity of normal cells to survive extreme shifts in physiological environment. In contrast to malignant brain tumors that are largely dependent on glycolysis for energy, normal neurons and glia readily transition to ketone bodies (β-hydroxybutyrate) for energy in vivo when glucose levels are reduced. The bioenergetic transition from glucose to ketone bodies metabolically targets brain tumors through integrated anti-inflammatory, anti-angiogenic, and pro-apoptotic mechanisms. The approach focuses more on the genomic flexibility of normal cells than on the genomic defects of tumor cells and is supported from recent studies in orthotopic mouse brain tumor models and in human pediatric astrocytoma treated with dietary energy restriction and the ketogenic diet. PMID:16242042

  1. Reproducibility of regional brain metabolic responses to lorazepam

    SciTech Connect

    Wang, G.J.; Volkow, N.D.; Overall, J. |

    1996-10-01

    Changes in regional brain glucose metabolism in response to benzodiazepine agonists have been used as indicators of benzodiazepine-GABA receptor function. The purpose of this study was to assess the reproducibility of these responses. Sixteen healthy right-handed men underwent scanning with PET and [{sup 18}F]fluorodeoxyglucose (FDG) twice: before placebo and before lorazepam (30 {mu}g/kg). The same double FDG procedure was repeated 6-8 wk later on the men to assess test-retest reproducibility. The regional absolute brain metabolic values obtained during the second evaluation were significantly lower than those obtained from the first evaluation regardless of condition (p {le} 0.001). Lorazepam significantly and consistently decreased both whole-brain metabolism and the magnitude. The regional pattern of the changes were comparable for both studies (12.3% {plus_minus} 6.9% and 13.7% {plus_minus} 7.4%). Lorazepam effects were the largest in the thalamus (22.2% {plus_minus} 8.6% and 22.4% {plus_minus} 6.9%) and occipital cortex (19% {plus_minus} 8.9% and 21.8% {plus_minus} 8.9%). Relative metabolic measures were highly reproducible both for pharmacolgic and replication condition. This study measured the test-retest reproducibility in regional brain metabolic responses, and although the global and regional metabolic values were significantly lower for the repeated evaluation, the response to lorazepam was highly reproducible. 1613 refs., 3 figs., 3 tabs.

  2. Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo

    NASA Astrophysics Data System (ADS)

    Yao, Junjie; Xia, Jun; Maslov, Konstantin; Avanaki, Mohammadreza R. N.; Tsytsarev, Vassiliy; Demchenko, Alexei V.; Wang, Lihong V.

    2013-03-01

    To control the overall action of the body, brain consumes a large amount of energy in proportion to its volume. In humans and many other species, the brain gets most of its energy from oxygen-dependent metabolism of glucose. An abnormal metabolic rate of glucose and/or oxygen usually reflects a diseased status of brain, such as cancer or Alzheimer's disease. We have demonstrated the feasibility of imaging mouse brain metabolism using photoacoustic computed tomography (PACT), a fast, noninvasive and functional imaging modality with optical contrast and acoustic resolution. Brain responses to forepaw stimulations were imaged transdermally and transcranially. 2-NBDG, which diffuses well across the blood-brain-barrier, provided exogenous contrast for photoacoustic imaging of glucose response. Concurrently, hemoglobin provided endogenous contrast for photoacoustic imaging of hemodynamic response. Glucose and hemodynamic responses were quantitatively unmixed by using two-wavelength measurements. We found that glucose uptake and blood perfusion around the somatosensory region of the contralateral hemisphere were both increased by stimulations, indicating elevated neuron activity. The glucose response amplitude was about half that of the hemodynamic response. While the glucose response area was more homogenous and confined within the somatosensory region, the hemodynamic response area showed a clear vascular pattern and spread about twice as wide as that of the glucose response. The PACT of mouse brain metabolism was validated by high-resolution open-scalp OR-PAM and fluorescence imaging. Our results demonstrate that 2-NBDG-enhanced PACT is a promising tool for noninvasive studies of brain metabolism.

  3. The metabolism of malate by cultured rat brain astrocytes

    SciTech Connect

    McKenna, M.C.; Tildon, J.T.; Couto, R.; Stevenson, J.H.; Caprio, F.J. )

    1990-12-01

    Since malate is known to play an important role in a variety of functions in the brain including energy metabolism, the transfer of reducing equivalents and possibly metabolic trafficking between different cell types; a series of biochemical determinations were initiated to evaluate the rate of 14CO2 production from L-(U-14C)malate in rat brain astrocytes. The 14CO2 production from labeled malate was almost totally suppressed by the metabolic inhibitors rotenone and antimycin A suggesting that most of malate metabolism was coupled to the electron transport system. A double reciprocal plot of the 14CO2 production from the metabolism of labeled malate revealed biphasic kinetics with two apparent Km and Vmax values suggesting the presence of more than one mechanism of malate metabolism in these cells. Subsequent experiments were carried out using 0.01 mM and 0.5 mM malate to determine whether the addition of effectors would differentially alter the metabolism of high and low concentrations of malate. Effectors studied included compounds which could be endogenous regulators of malate metabolism and metabolic inhibitors which would provide information regarding the mechanisms regulating malate metabolism. Both lactate and aspartate decreased 14CO2 production from malate equally. However, a number of effectors were identified which selectively altered the metabolism of 0.01 mM malate including aminooxyacetate, furosemide, N-acetylaspartate, oxaloacetate, pyruvate and glucose, but had little or no effect on the metabolism of 0.5 mM malate. In addition, alpha-ketoglutarate and succinate decreased 14CO2 production from 0.01 mM malate much more than from 0.5 mM malate. In contrast, a number of effectors altered the metabolism of 0.5 mM malate more than 0.01 mM. These included methionine sulfoximine, glutamate, malonate, alpha-cyano-4-hydroxycinnamate and ouabain.

  4. Energy metabolism of the developing brain

    SciTech Connect

    Abrams, R.M.; Hutchison, A.A.

    1985-04-01

    Cerebral metabolism in utero and in the neonatal period remains incompletely understood. A major investigative technique uses /sup 14/C deoxyglucose. Species differences, behavioral states and gestational age all have an impact. Hormonal and sensory stimuli have potential influences. The use of this new investigative technique in the human will allow detailed study of the effects of a variety of pathophysiologic events and possibly of drug therapy on cerebral glucose metabolism.

  5. Patterns of Brain Injury in Inborn Errors of Metabolism

    PubMed Central

    Gropman, Andrea L.

    2013-01-01

    Many inborn errors of metabolism (IEMs) are associated with irreversible brain injury. For many, it is unclear how metabolite intoxication or substrate depletion accounts for the specific neurologic findings observed. IEM-associated brain injury patterns are characterized by whether the process involves gray matter, white matter, or both, and beyond that, whether subcortical or cortical gray matter nuclei are involved. Despite global insults, IEMs may result in selective injury to deep gray matter nuclei or white matter. This manuscript reviews the neuro-imaging patterns of neural injury in selected disorders of metabolism involving small molecule and macromolecular disorders (ie, Phenylketonuria, urea cycle disorders, and maple syrup urine disease) and discusses the contribution of diet and nutrition to the prevention or exacerbation of injury in selected inborn metabolic disorders. Where known, a review of the roles of individual differences in blood–brain permeability and transport mechanisms in the etiology of these disorders will be discussed. PMID:23245553

  6. Changes in brain oxidative metabolism induced by water maze training.

    PubMed

    Conejo, N M; González-Pardo, H; Vallejo, G; Arias, J L

    2007-03-16

    Although the hippocampus has been shown to be essential for spatial memory, the contribution of associated brain regions is not well established. Wistar rats were trained to find a hidden escape platform in the water maze during eight days. Following training, the oxidative metabolism in different brain regions was evaluated using cytochrome oxidase histochemistry. Metabolic activations were found in the prelimbic cortex, cornu ammonis (CA) 1 subfield of the dorsal hippocampus and the anterior thalamic nuclei, relative to yoked swim controls and naïve rats. In addition, many cross-correlations in brain metabolism were observed among the latter regions. These results support the implication of a hippocampal-prefrontal-thalamic system to spatial memory in rats. PMID:17222984

  7. Brain microsomal metabolism of phencyclidine in male and female rats.

    PubMed

    Laurenzana, E M; Owens, S M

    1997-05-01

    These studies examined the microsomal brain metabolism of phencyclidine (PCP) in male and female Sprague-Dawley rats. Several monohydroxylated metabolites of PCP were detected including cis- and trans-1-(1-phenyl-4-hydroxycyclohexyl)piperidine (c-PPC and t-PPC) and 1-(1-phenylcyclohexyl)-4-hydroxypiperidine (PCHP). The in vitro formation of these metabolites required NADPH and was inhibited by carbon monoxide. c-PPC was formed in the male and female brain microsomes at rates of 7.1 +/- 1.3 and 5.7 +/- 1.1 fmol/min per mg, respectively, while t-PPC was formed at rates of 16.2 +/- 3.3 and 16.5 +/- 4.2 fmol/min per mg. PCHP had the highest formation rate at 50.7 +/- 8.9 and 48.2 +/- 8.8 fmol/min per mg, respectively. Although previous studies with rat liver microsomes find higher levels of PCP metabolism in male rats and the formation of an irreversibly bound metabolite in male rats, the present study of brain metabolism found no sex differences in brain metabolism. The formation of PCP metabolites in male rat livers is at least partially mediated by the male-specific isozyme CYP2C11, and possibly CYP2D1. Nevertheless, the formation of the major brain metabolite, PCHP, was not inhibited by an anti-CYP2C11 or an anti-CYP2D6 antibody. However, PCHP formation was inhibited by drug inhibitors of CYP2D1-mediated metabolism, suggesting the involvement of a CYP2D isoform. These data indicate brain metabolism of PCP is significant, but unlike the liver it is not sexually dimorphic. PMID:9187340

  8. Brain lactate metabolism: the discoveries and the controversies

    PubMed Central

    Dienel, Gerald A

    2012-01-01

    Potential roles for lactate in the energetics of brain activation have changed radically during the past three decades, shifting from waste product to supplemental fuel and signaling molecule. Current models for lactate transport and metabolism involving cellular responses to excitatory neurotransmission are highly debated, owing, in part, to discordant results obtained in different experimental systems and conditions. Major conclusions drawn from tabular data summarizing results obtained in many laboratories are as follows: Glutamate-stimulated glycolysis is not an inherent property of all astrocyte cultures. Synaptosomes from the adult brain and many preparations of cultured neurons have high capacities to increase glucose transport, glycolysis, and glucose-supported respiration, and pathway rates are stimulated by glutamate and compounds that enhance metabolic demand. Lactate accumulation in activated tissue is a minor fraction of glucose metabolized and does not reflect pathway fluxes. Brain activation in subjects with low plasma lactate causes outward, brain-to-blood lactate gradients, and lactate is quickly released in substantial amounts. Lactate utilization by the adult brain increases during lactate infusions and strenuous exercise that markedly increase blood lactate levels. Lactate can be an ‘opportunistic', glucose-sparing substrate when present in high amounts, but most evidence supports glucose as the major fuel for normal, activated brain. PMID:22186669

  9. Ethanol effects on rat brain phosphoinositide metabolism

    SciTech Connect

    Huang, H.M.

    1987-01-01

    An increase in acidic phospholipids in brain plasma and synaptic plasma membranes upon chronic ethanol administration was observed. Chronic ethanol administration resulted in an increase in {sup 32}P{sub i} incorporation into the acidic phospholipids in synaptosomes. Postdecapitative ischemic treatment resulted rapid degradation of poly-PI in rat brain. However, there was a rapid appearance of IP{sub 2} in ethanol group which indicated a more rapid turnover of IP{sub 3} in the ethanol-treated rats. Carbachol stimulated accumulation of labeled inositol phosphates in brain slices and synaptosomes. Carbachol-stimulated release of IP and IP{sub 2} was calcium dependent and was inhibited by EGTA and atropine. Adenosine triphosphates and 1 mM further enhanced carbachol-induced formation of IP and IP{sub 2}, but showed an increase and a decrease in IP{sub 3} at 1 mM and 0.01 mM, respectively. Guanosine triphosphate at 0.1 mM did not change in labeled IP, but there was a significant increase in labeled IP{sub 2} and decrease in IP{sub 3}. Mn and CMP greatly enhanced incorporation of ({sup 3}H)-inositol into PI, but not into poly-PI labeling in brain synaptosomes. Incubation of brain synaptosomes resulted in a Ca{sup 2+}, time-dependent release of labeled IP. However, the pool of PI labeled through this pathway is not susceptible to carbachol stimulation. When saponin permeabilized synaptosomal preparations were incubated with ({sup 3}H)-inositol-PI or ({sup 14}C)-arachidonoyl-PI, ATP enhanced the formation of labeled IP and DG.

  10. Cyclooxygenase-2 Mediates Anandamide Metabolism in the Mouse Brain

    PubMed Central

    Kaczocha, Martin

    2010-01-01

    Cyclooxygenase-2 (COX-2) mediates inflammation and contributes to neurodegeneration. Best known for its pathological up-regulation, COX-2 is also constitutively expressed within the brain and mediates synaptic transmission through prostaglandin synthesis. Along with arachidonic acid, COX-2 oxygenates the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol in vitro. Inhibition of COX-2 enhances retrograde signaling in the hippocampus, suggesting COX-2 mediates endocannabinoid tone in healthy brain. The degree to which COX-2 may regulate endocannabinoid metabolism in vivo is currently unclear. Therefore, we explored the effect of COX-2 inhibition on [3H]AEA metabolism in mouse brain. Although AEA is hydrolyzed primarily by fatty acid amide hydrolase (FAAH), ex vivo autoradiography revealed that COX-2 inhibition by nimesulide redirected [3H]AEA substrate from COX-2 to FAAH in the cortex, hippocampus, thalamus, and periaqueductal gray. These data indicate that COX-2 possesses the capacity to metabolize AEA in vivo and can compete with FAAH for AEA in several brain regions. Temporal fluctuations in COX-2 expression were observed in the brain, with an increase in COX-2 protein and mRNA in the hippocampus at midnight compared with noon. COX-2 immunolocalization was robust in the hippocampus and several cortical regions. Although most regions exhibited no temporal changes in COX-2 immunolocalization, increased numbers of immunoreactive cells were detected at midnight in layers II and III of the somatosensory and visual cortices. These temporal variations in COX-2 distribution reduced the enzyme's contribution toward [3H]AEA metabolism in the somatosensory cortex at midnight. Taken together, our findings establish COX-2 as a mediator of regional AEA metabolism in mouse brain. PMID:20702753

  11. Metabolic therapy: a new paradigm for managing malignant brain cancer.

    PubMed

    Seyfried, Thomas N; Flores, Roberto; Poff, Angela M; D'Agostino, Dominic P; Mukherjee, Purna

    2015-01-28

    Little progress has been made in the long-term management of glioblastoma multiforme (GBM), considered among the most lethal of brain cancers. Cytotoxic chemotherapy, steroids, and high-dose radiation are generally used as the standard of care for GBM. These procedures can create a tumor microenvironment rich in glucose and glutamine. Glucose and glutamine are suggested to facilitate tumor progression. Recent evidence suggests that many GBMs are infected with cytomegalovirus, which could further enhance glucose and glutamine metabolism in the tumor cells. Emerging evidence also suggests that neoplastic macrophages/microglia, arising through possible fusion hybridization, can comprise an invasive cell subpopulation within GBM. Glucose and glutamine are major fuels for myeloid cells, as well as for the more rapidly proliferating cancer stem cells. Therapies that increase inflammation and energy metabolites in the GBM microenvironment can enhance tumor progression. In contrast to current GBM therapies, metabolic therapy is designed to target the metabolic malady common to all tumor cells (aerobic fermentation), while enhancing the health and vitality of normal brain cells and the entire body. The calorie restricted ketogenic diet (KD-R) is an anti-angiogenic, anti-inflammatory and pro-apoptotic metabolic therapy that also reduces fermentable fuels in the tumor microenvironment. Metabolic therapy, as an alternative to the standard of care, has the potential to improve outcome for patients with GBM and other malignant brain cancers. PMID:25069036

  12. 13C NMR spectroscopy applications to brain energy metabolism

    PubMed Central

    Rodrigues, Tiago B.; Valette, Julien; Bouzier-Sore, Anne-Karine

    2013-01-01

    13C nuclear magnetic resonance (NMR) spectroscopy is the method of choice for studying brain metabolism. Indeed, the most convincing data obtained to decipher metabolic exchanges between neurons and astrocytes have been obtained using this technique, thus illustrating its power. It may be difficult for non-specialists, however, to grasp thefull implication of data presented in articles written by spectroscopists. The aim of the review is, therefore, to provide a fundamental understanding of this topic to facilitate the non-specialists in their reading of this literature. In the first part of this review, we present the metabolic fate of 13C-labeled substrates in the brain in a detailed way, including an overview of some general neurochemical principles. We also address and compare the various spectroscopic strategies that can be used to study brain metabolism. Then, we provide an overview of the 13C NMR experiments performed to analyze both intracellular and intercellular metabolic fluxes. More particularly, the role of lactate as a potential energy substrate for neurons is discussed in the light of 13C NMR data. Finally, new perspectives and applications offered by 13C hyperpolarization are described. PMID:24367329

  13. Basis for the control of purine biosynthesis by purine ribonucleotides.

    PubMed Central

    Itakura, M; Sabina, R L; Heald, P W; Holmes, E W

    1981-01-01

    An animal model was used to determine the basis for the increase in purine biosynthesis that results from hepatic depletion of purine nucleotides, such as seen in patients with type I glycogen storage disease or following fructose administration. Mice were injected intravenously with glucose or fructose, 2.5 mg/g of body weight, and the animals were killed at 0, 3, and 30 min following carbohydrate infusion. Fructose, but not glucose, administration led to a threefold increase in [14C]glycine incorporation into hepatic purine nucleotides documenting an increase in the rate of purine biosynthesis in the liver of fructose-treated animals. In the fructose, but not the glucose-treated animals, there was a reduction in the hepatic content of purine nucleotides that are inhibitory for amidophosphoribosyltransferase, the enzyme that catalyzes the first reaction unique to the pathway of purine biosynthesis. PP-ribose-P, an important metabolite in the control of purine biosynthesis, was increased 2,3-fold in liver following fructose, but not glucose administration. In conjunction with the decrease in inhibitory nucleotides and increase in PP-ribose-P 29% of amidophosphoribosyltransferase was shifted from the large inactive to the small active form of the enzyme. Results of these studies demonstrate that the end-products of the pathway, purine nucleotides, control the activity of the enzyme that catalyzes the first reaction leading to purine nucleotide synthesis either through a direct effect of purine nucleotides on the enzyme, through an indirect effect of the change in nucleotides on PP-ribose-P synthesis, or a combination of these effects. The resultant changes in amidophosphoribosyltransferase conformation and activity provide a basis for understanding the increase in purine biosynthesis that results from hepatic depletion of purine nucleotides. PMID:6162862

  14. Phosphatidylserine in the Brain: Metabolism and Function

    PubMed Central

    Kim, Hee-Yong; Huang, Bill X.; Spector, Arthur A.

    2014-01-01

    Phosphatidylserine (PS) is the major anionic phospholipid class particularly enriched in the inner leaflet of the plasma membrane in neural tissues. PS is synthesized from phosphatidylcholine or phosphatidylethanolamine by exchanging the base head group with serine in reactions are catalyzed by phosphatidylserine synthase 1 and phosphatidylserine synthase 2 located in the endoplasmic reticulum. Activation of Akt, Raf-1 and protein kinase C signaling, which supports neuronal survival and differentiation, requires interaction of these proteins with PS localized in the cytoplasmic leaflet of the plasma membrane. Furthermore, neurotransmitter release by exocytosis and a number of synaptic receptors and proteins are modulated by PS present in the neuronal membranes. Brain is highly enriched with docosahexaenoic acid (DHA), and brain PS has a high DHA content. By promoting PS synthesis, DHA can uniquely expand the PS pool in neuronal membranes and thereby influence PS-dependent signaling and protein function. Ethanol decreases DHA-promoted PS synthesis and accumulation in neurons, which may contribute to the deleterious effects of ethanol intake. Improvement of some memory functions has been observed in cognitively impaired subjects as a result of PS supplementation, but the mechanism is unclear. PMID:24992464

  15. Synthetic strategies toward carbocyclic purine-pyrimidine hybrid nucleosides.

    PubMed

    Sadler, Joshua M; Mosley, Sylvester L; Dorgan, Kathleen M; Zhou, Zhaohui Sunny; Seley-Radtke, Katherine L

    2009-08-01

    The blending of key structural features from the purine and pyrimidine nucleobase scaffolds gives rise to a new class of hybrid nucleosides. The purine-pyrimidine hybrid nucleosides can be viewed as either N-3 ribosylated purines or 5,6-disubstituted pyrimidines, thus recognition by both purine- and pyrimidine-metabolizing enzymes is possible. Given the increasing reports of the development of resistance in many enzymatic systems, a drug that could be recognized by more than one enzyme could prove highly advantageous in overcoming resistance mechanisms related to binding site mutations. In that regard, the design, synthesis and results of preliminary biological activity for a series of carbocyclic uracil derivatives with either a fused imidazole or thiazole ring are presented herein. PMID:19592260

  16. Synthetic Strategies Toward Carbocyclic Purine-Pyrimidine Hybrid Nucleosides

    PubMed Central

    Sadler, Joshua M.; Mosley, Sylvester L.; Dorgan, Kathleen M.; Zhou, Zhaohui Sunny; Seley-Radtke, Katherine L.

    2009-01-01

    The blending of key structural features from the purine and pyrimidine nucleobase scaffolds gives rise to a new class of hybrid nucleosides. The purine-pyrimidine hybrid nucleosides can be viewed as either N-3 ribosylated purines or 5,6-disubstituted pyrimidines, thus recognition by both purine- and pyrimidine-metabolizing enzymes is possible. Given the increasing reports of the development of resistance in many enzymatic systems, a drug that could be recognized by more than one enzyme could prove highly advantageous in overcoming resistance mechanisms related to binding site mutations. In that regard, the design, synthesis and results of preliminary biological activity for a series of carbocyclic uracil derivatives with either a fused imidazole or thiazole ring are presented herein. PMID:19592260

  17. Robust Brain Hyperglycemia during General Anesthesia: Relationships with Metabolic Brain Inhibition and Vasodilation

    PubMed Central

    Bola, R. Aaron; Kiyatkin, Eugene A.

    2016-01-01

    Glucose is the main energetic substrate for the metabolic activity of brain cells and its proper delivery into the extracellular space is essential for maintaining normal neural functions. Under physiological conditions, glucose continuously enters the extracellular space from arterial blood via gradient-dependent facilitated diffusion governed by the GLUT-1 transporters. Due to this gradient-dependent mechanism, glucose levels rise in the brain after consumption of glucose-containing foods and drinks. Glucose entry is also accelerated due to local neuronal activation and neuro-vascular coupling, resulting in transient hyperglycemia to prevent any metabolic deficit. Here, we explored another mechanism that is activated during general anesthesia and results in significant brain hyperglycemia. By using enzyme-based glucose biosensors we demonstrate that glucose levels in the nucleus accumbens (NAc) strongly increase after iv injection of Equthesin, a mixture of chloral hydrate and sodium pentobarbital, which is often used for general anesthesia in rats. By combining electrochemical recordings with brain, muscle, and skin temperature monitoring, we show that the gradual increase in brain glucose occurring during the development of general anesthesia tightly correlate with decreases in brain-muscle temperature differentials, suggesting that this rise in glucose is related to metabolic inhibition. While the decreased consumption of glucose by brain cells could contribute to the development of hyperglycemia, an exceptionally strong positive correlation (r = 0.99) between glucose rise and increases in skin-muscle temperature differentials was also found, suggesting the strong vasodilation of cerebral vessels as the primary mechanism for accelerated entry of glucose into brain tissue. Our present data could explain drastic differences in basal glucose levels found in awake and anesthetized animal preparations. They also suggest that glucose entry into brain tissue could be

  18. Robust Brain Hyperglycemia during General Anesthesia: Relationships with Metabolic Brain Inhibition and Vasodilation.

    PubMed

    Bola, R Aaron; Kiyatkin, Eugene A

    2016-01-01

    Glucose is the main energetic substrate for the metabolic activity of brain cells and its proper delivery into the extracellular space is essential for maintaining normal neural functions. Under physiological conditions, glucose continuously enters the extracellular space from arterial blood via gradient-dependent facilitated diffusion governed by the GLUT-1 transporters. Due to this gradient-dependent mechanism, glucose levels rise in the brain after consumption of glucose-containing foods and drinks. Glucose entry is also accelerated due to local neuronal activation and neuro-vascular coupling, resulting in transient hyperglycemia to prevent any metabolic deficit. Here, we explored another mechanism that is activated during general anesthesia and results in significant brain hyperglycemia. By using enzyme-based glucose biosensors we demonstrate that glucose levels in the nucleus accumbens (NAc) strongly increase after iv injection of Equthesin, a mixture of chloral hydrate and sodium pentobarbital, which is often used for general anesthesia in rats. By combining electrochemical recordings with brain, muscle, and skin temperature monitoring, we show that the gradual increase in brain glucose occurring during the development of general anesthesia tightly correlate with decreases in brain-muscle temperature differentials, suggesting that this rise in glucose is related to metabolic inhibition. While the decreased consumption of glucose by brain cells could contribute to the development of hyperglycemia, an exceptionally strong positive correlation (r = 0.99) between glucose rise and increases in skin-muscle temperature differentials was also found, suggesting the strong vasodilation of cerebral vessels as the primary mechanism for accelerated entry of glucose into brain tissue. Our present data could explain drastic differences in basal glucose levels found in awake and anesthetized animal preparations. They also suggest that glucose entry into brain tissue could be

  19. Effect of acute thioacetamide administration on rat brain phospholipid metabolism

    SciTech Connect

    Osada, J.; Aylagas, H.; Miro-Obradors, M.J.; Arce, C.; Palacios-Alaiz, E.; Cascales, M. )

    1990-09-01

    Brain phospholipid composition and the ({sup 32}P)orthophosphate incorporation into brain phospholipids of control and rats treated for 3 days with thioacetamide were studied. Brain phospholipid content, phosphatidylcholine, phosphatidylethanolamine, lysolecithin and phosphatidic acid did not show any significant change by the effect of thioacetamide. In contrast, thioacetamide induced a significant decrease in the levels of phosphatidylserine, sphingomyelin, phosphatidylinositol and diphosphatidylglycerol. After 75 minutes of intraperitoneal label injection, specific radioactivity of all the above phospholipids with the exception of phosphatidylethanolamine and phosphatidylcholine significantly increased. After 13 hours of isotope administration the specific radioactivity of almost all studied phospholipid classes was elevated, except for phosphatidic acid, the specific radioactivity of which did not change and for diphosphatidylglycerol which showed a decrease in specific radioactivity. These results suggest that under thioacetamide treatment brain phospholipids undergo metabolic transformations that may contribute to the hepatic encephalopathy induced by thioacetamide.

  20. Does acute caffeine ingestion alter brain metabolism in young adults?

    PubMed

    Xu, Feng; Liu, Peiying; Pekar, James J; Lu, Hanzhang

    2015-04-15

    Caffeine, as the most commonly used stimulant drug, improves vigilance and, in some cases, cognition. However, the exact effect of caffeine on brain activity has not been fully elucidated. Because caffeine has a pronounced vascular effect which is independent of any neural effects, many hemodynamics-based methods such as fMRI cannot be readily applied without a proper calibration. The scope of the present work is two-fold. In Study 1, we used a recently developed MRI technique to examine the time-dependent changes in whole-brain cerebral metabolic rate of oxygen (CMRO2) following the ingestion of 200mg caffeine. It was found that, despite a pronounced decrease in CBF (p<0.001), global CMRO2 did not change significantly. Instead, the oxygen extraction fraction (OEF) was significantly elevated (p=0.002) to fully compensate for the reduced blood supply. Using the whole-brain finding as a reference, we aim to investigate whether there are any regional differences in the brain's response to caffeine. Therefore, in Study 2, we examined regional heterogeneities in CBF changes following the same amount of caffeine ingestion. We found that posterior brain regions such as posterior cingulate cortex and superior temporal regions manifested a slower CBF reduction, whereas anterior brain regions including dorsolateral prefrontal cortex and medial frontal cortex showed a faster rate of decline. These findings have a few possible explanations. One is that caffeine may result in a region-dependent increase or decrease in brain activity, resulting in an unaltered average brain metabolic rate. The other is that caffeine's effect on vasculature may be region-specific. Plausibility of these explanations is discussed in the context of spatial distribution of the adenosine receptors. PMID:25644657

  1. Enhanced regional brain metabolic responses to benzodiazepines in cocaine abusers

    SciTech Connect

    Volkow, N.D.; Wang, G.J.; Fowler, J.S.

    1997-05-01

    While dopamine (DA) appears to be crucial for cocaine reinforcement, its involvement in cocaine addiction is much less clear. Using PET we have shown persistent reductions in striatal DA D2 receptors (which arc predominantly located on GABA cells) in cocaine abusers. This finding coupled to GABA`s role as an effector for DA led us to investigate if there were GABAergic abnormalities in cocaine abusers. In this study we measured regional brain metabolic responses to lorazepam, to indirectly assess GABA function (benzodiazepines facilitate GABAergic neurotransmission). Methods: The experimental subjects consisted of 12 active cocaine abusers and 32 age matched controls. Each subject underwent two PET FDG scans obtained within 1 week of each other. The first FDG scan was obtained after administration of placebo (3 cc of saline solution) given 40-50 minutes prior to FDG; and the second after administration of lorazepam (30 {mu}g/kg) given 40-50 minutes prior to FDG. The subjects were blind to the drugs received. Results: Lorazepam-induced sleepiness was significantly greater in abusers than in controls (p<0.001). Lorazepam-induced decreases in brain glucose metabolism were significantly larger in cocaine abusers than in controls. Whereas in controls whole brain metabolism decreased 13{+-}7 %, in cocaine abusers it decreased 21{+-}13 % (p < 0.05). Lorazepam-induced decrements in regional metabolism were significantly larger in striatum (p < 0.0 1), thalamus (p < 0.01) and cerebellum (p < 0.005) of cocaine abusers than of controls (ANOVA diagnosis by condition (placebo versus lorazepam) interaction effect). The only brain region for which the absolute metabolic changes-induced by lorazepam in cocaine abusers were equivalent to those in controls was the orbitofrontal cortex. These results document an accentuated sensitivity to benzodiazepines in cocaine abusers which is compatible with disrupted GABAergic function in these patients.

  2. Unpredictable Chronic Stress Alters Adenosine Metabolism in Zebrafish Brain.

    PubMed

    Zimmermann, F F; Altenhofen, S; Kist, L W; Leite, C E; Bogo, M R; Cognato, G P; Bonan, C D

    2016-05-01

    Stress is considered a risk factor for several human disorders. Despite the broad knowledge of stress responses in mammals, data on the relationship between unpredictable chronic stress (UCS) and its effects on purinergic signaling are limited. ATP hydrolysis by ectonucleotidases is an important source of adenosine, and adenosine deaminase (ADA) contributes to the control of the nucleoside concentrations. Considering that some stress models could affect signaling systems, the objective of this study was to investigate whether UCS alters ectonucleotidase and ADA pathway in zebrafish brain. Additionally, we analyzed ATP metabolism as well as ada1, ada2.1, ada2.2, adaL, and adaasi gene expression in zebrafish brain. Our results have demonstrated that UCS did not alter ectonucleotidase and soluble ADA activities. However, ecto-ADA activity was significantly decreased (26.8%) in brain membranes of animals exposed to UCS when compared to the control group. Quantitative reverse transcription PCR (RT-PCR) analysis did not show significant changes on ADA gene expression after the UCS exposure. The brain ATP metabolism showed a marked increase in adenosine levels (ADO) in animals exposed to UCS. These data suggest an increase on extracellular adenosine levels in zebrafish brain. Since this nucleoside has neuromodulatory and anxiolytic effects, changes in adenosine levels could play a role in counteracting the stress, which could be related to a compensatory mechanism in order to restore the homeostasis. PMID:26081145

  3. The effects of hyperammonemia in learning and brain metabolic activity.

    PubMed

    Arias, Natalia; Fidalgo, Camino; Felipo, Vicente; Arias, Jorge L

    2014-03-01

    Ammonia is thought to be central in the development of hepatic encephalopathy. However, the specific relation of ammonia with brain energy depletions and learning has not been studied. Our work attempts to reproduce an increase in rat cerebral ammonia level, study the hyperamonemic animals' performance of two learning tasks, an allocentric (ALLO) and a cue guided (CG) task, and elucidate the contribution of hyperammonemia to the differential energy requirements of the brain limbic system regions involved in these tasks. To assess these goals, four groups of animals were used: a control (CHA) CG group (n = 10), a CHA ALLO group (n = 9), a hyperammonemia (HA) CG group (n = 7), and HA ALLO group (n = 8). Oxidative metabolism of the target brain regions were assessed by histochemical labelling of cytochrome oxidase (C.O.). The behavioural results revealed that the hyperammonemic rats were not able to reach the behavioural criterion in either of the two tasks, in contrast to the CHA groups. The metabolic brain consumption revealed increased C.O. activity in the anterodorsal thalamus when comparing the HA ALLO group with the CHA ALLO group. Significant differences between animals trained in the CG task were observed in the prelimbic, infralimbic, parietal, entorhinal and perirhinal cortices, the anterolateral and anteromedial striatum, and the basolateral and central amygdala. Our findings may provide fresh insights to reveal how the differential damage to the brain limbic structures involved in these tasks differs according to the degree of task difficulty. PMID:24415107

  4. Metabolic Alterations Associated to Brain Dysfunction in Diabetes

    PubMed Central

    Duarte, João M. N

    2015-01-01

    From epidemiological studies it is known that diabetes patients display increased risk of developing dementia. Moreover, cognitive impairment and Alzheimer’s disease (AD) are also accompanied by impaired glucose homeostasis and insulin signalling. Although there is plenty of evidence for a connection between insulin-resistant diabetes and AD, definitive linking mechanisms remain elusive. Cerebrovascular complications of diabetes, alterations in glucose homeostasis and insulin signalling, as well as recurrent hypoglycaemia are the factors that most likely affect brain function and structure. While difficult to study in patients, the mechanisms by which diabetes leads to brain dysfunction have been investigated in experimental models that display phenotypes of the disease. The present article reviews the impact of diabetes and AD on brain structure and function, and discusses recent findings from translational studies in animal models that link insulin resistance to metabolic alterations that underlie brain dysfunction. Such modifications of brain metabolism are likely to occur at early stages of neurodegeneration and impact regional neurochemical profiles and constitute non-invasive biomarkers detectable by magnetic resonance spectroscopy (MRS). PMID:26425386

  5. Regional brain metabolism in a murine systemic lupus erythematosus model.

    PubMed

    Vo, An; Volpe, Bruce T; Tang, Chris C; Schiffer, Wynne K; Kowal, Czeslawa; Huerta, Patricio T; Uluğ, Aziz M; Dewey, Stephen L; Eidelberg, David; Diamond, Betty

    2014-08-01

    Systemic lupus erythematosus (SLE) is characterized by multiorgan inflammation, neuropsychiatric disorders (NPSLE), and anti-nuclear antibodies. We previously identified a subset of anti-DNA antibodies (DNRAb) cross-reactive with the N-methyl-D-aspartate receptor, present in 30% to 40% of patients, able to enhance excitatory post-synaptic potentials and trigger neuronal apoptosis. DNRAb+ mice exhibit memory impairment or altered fear response, depending on whether the antibody penetrates the hippocampus or amygdala. Here, we used 18F-fluorodeoxyglucose (FDG) microPET to plot changes in brain metabolism after regional blood-brain barrier (BBB) breach. In DNRAb+ mice, metabolism declined at the site of BBB breach in the first 2 weeks and increased over the next 2 weeks. In contrast, DNRAb- mice exhibited metabolic increases in these regions over the 4 weeks after the insult. Memory impairment was present in DNRAb+ animals with hippocampal BBB breach and altered fear conditioning in DNRAb+ mice with amygdala BBB breach. In DNRAb+ mice, we observed an inverse relationship between neuron number and regional metabolism, while a positive correlation was observed in DNRAb- mice. These findings suggest that local metabolic alterations in this model take place through different mechanisms with distinct time courses, with important implications for the interpretation of imaging data in SLE subjects. PMID:24824914

  6. Regional brain glucose metabolism in patients with brain tumors before and after radiotherapy

    SciTech Connect

    Wang, G.J.; Volkow, N.D.; Lau, Y.H.

    1994-05-01

    This study was performed to measure regional glucose metabolism in nonaffected brain regions of patients with primary or metastatic brain tumors. Seven female and four male patients (mean age 51.5{plus_minus}14.0 years old) were compared with eleven age and sex matched normal subjects. None of the patients had hydrocephalus and/or increased intracranial pressure. Brain glucose metabolism was measured using FDG-PET scan. Five of the patients were reevaluated one week after receiving radiation treatment (RT) to the brain. Patients were on Decadron and/or Dilantin at the time of both scan. PET images were analyzed with a template of 115 nonoverlapping regions of interest and then grouped into eight gray matter regions on each hemisphere. Brain regions with tumors and edema shown in MR imaging were excluded. Z scores were used to compare individual patients` regional values with those of normal subjects. The number of regional values with Z scores of less than - 3.0 were considered abnormal and were quantified. The mean global glucose metabolic rate (mean of all regions) in nonaffected brain regions of patients was significantly lower than that of normal controls (32.1{plus_minus}9.0 versus 44.8{plus_minus}6.3 {mu}mol/100g/min, p<0.001). Analyses of individual subjects revealed that none of the controls and 8 of the 11 patients had at least one abnormal region. In these 8 patients the regions which were abnormal were most frequently localized in right (n=5) and left occipital (n=6) and right orbital frontal cortex (n=7) whereas the basal ganglia was not affected. Five of the patients who had repeated scans following RT showed decrements in tumor metabolism (41{plus_minus}20.5%) and a significant increase in whole brain metabolism (8.6{plus_minus}5.3%, p<0.001). The improvement in whole brain metabolism after RT suggests that the brain metabolic decrements in the patients were related to the presence of tumoral tissue and not just a medication effect.

  7. Facilitating Understanding of the Purine Nucleotide Cycle and the One-Carbon Pool: Part II--Metabolism of the One-Carbon Pool

    ERIC Educational Resources Information Center

    Arinze, Ifeanyi J.

    2005-01-01

    Some metabolic processes such as glycolysis, gluconeogenesis, and lipogenesis are readily understood because they are circumscribed in metabolic pathways that have clearly identifiable beginning points, end products, and other features. Other metabolic pathways that do not appear to be straightforward pose difficulties for students. In part I of…

  8. Triheptanoin improves brain energy metabolism in patients with Huntington disease

    PubMed Central

    Adanyeguh, Isaac Mawusi; Rinaldi, Daisy; Henry, Pierre-Gilles; Caillet, Samantha; Valabregue, Romain; Durr, Alexandra

    2015-01-01

    Objective: Based on our previous work in Huntington disease (HD) showing improved energy metabolism in muscle by providing substrates to the Krebs cycle, we wished to obtain a proof-of-concept of the therapeutic benefit of triheptanoin using a functional biomarker of brain energy metabolism validated in HD. Methods: We performed an open-label study using 31P brain magnetic resonance spectroscopy (MRS) to measure the levels of phosphocreatine (PCr) and inorganic phosphate (Pi) before (rest), during (activation), and after (recovery) a visual stimulus. We performed 31P brain MRS in 10 patients at an early stage of HD and 13 controls. Patients with HD were then treated for 1 month with triheptanoin after which they returned for follow-up including 31P brain MRS scan. Results: At baseline, we confirmed an increase in Pi/PCr ratio during brain activation in controls—reflecting increased adenosine triphosphate synthesis—followed by a return to baseline levels during recovery (p = 0.013). In patients with HD, we validated the existence of an abnormal brain energy profile as previously reported. After 1 month, this profile remained abnormal in patients with HD who did not receive treatment. Conversely, the MRS profile was improved in patients with HD treated with triheptanoin for 1 month with the restoration of an increased Pi/PCr ratio during visual stimulation (p = 0.005). Conclusion: This study suggests that triheptanoin is able to correct the bioenergetic profile in the brain of patients with HD at an early stage of the disease. Classification of evidence: This study provides Class III evidence that, for patients with HD, treatment with triheptanoin for 1 month restores an increased MRS Pi/PCr ratio during visual stimulation. PMID:25568297

  9. Does acute caffeine ingestion alter brain metabolism in young adults?

    PubMed Central

    Xu, Feng; Liu, Peiying; Pekar, James J.; Lu, Hanzhang

    2015-01-01

    Caffeine, as the most commonly used stimulant drug, improves vigilance and, in some cases, cognition. However, the exact effect of caffeine on brain activity has not been fully elucidated. Because caffeine has a pronounced vascular effect which is independent of any neural effects, many hemodynamics-based methods such as fMRI cannot be readily applied without a proper calibration. The scope of the present work is two-fold. In Study 1, we used a recently developed MRI technique to examine the time-dependent changes in whole-brain cerebral metabolic rate of oxygen (CMRO2) following the ingestion of 200mg caffeine. It was found that, despite a pronounced decrease in CBF (p<0.001), global CMRO2 did not change significantly. Instead, the oxygen extraction fraction (OEF) was significantly elevated (p=0.002) to fully compensate for the reduced blood supply. Using the whole-brain finding as a reference, we aim to investigate whether there are any regional differences in the brain’s response to caffeine. Therefore, in Study 2, we examined regional heterogeneities in CBF changes following the same amount of caffeine ingestion. We found that posterior brain regions such as posterior cingulate cortex and superior temporal regions manifested a slower CBF reduction, whereas anterior brain regions including dorsolateral prefrontal cortex and medial frontal cortex showed a faster rate of decline. These findings have a few possible explanations. One is that caffeine may result in a region-dependent increase or decrease in brain activity, resulting in an unaltered average brain metabolic rate. The other is that caffeine’s effect on vasculature may be region-specific. Plausibility of these explanations is discussed in the context of spatial distribution of the adenosine receptors. PMID:25644657

  10. Expensive Brains: “Brainy” Rodents have Higher Metabolic Rate

    PubMed Central

    Sobrero, Raúl; May-Collado, Laura J.; Agnarsson, Ingi; Hernández, Cristián E.

    2011-01-01

    Brains are the centers of the nervous system of animals, controlling the organ systems of the body and coordinating responses to changes in the ecological and social environment. The evolution of traits that correlate with cognitive ability, such as relative brain size is thus of broad interest. Brain mass relative to body mass (BM) varies among mammals, and diverse factors have been proposed to explain this variation. A recent study provided evidence that energetics play an important role in brain evolution (Isler and van Schaik, 2006). Using composite phylogenies and data drawn from multiple sources, these authors showed that basal metabolic rate (BMR) correlates with brain mass across mammals. However, no such relationship was found within rodents. Here we re-examined the relationship between BMR and brain mass within Rodentia using a novel species-level phylogeny. Our results are sensitive to parameter evaluation; in particular how species mass is estimated. We detect no pattern when applying an approach used by previous studies, where each species BM is represented by two different numbers, one being the individual that happened to be used for BMR estimates of that species. However, this approach may compromise the analysis. When using a single value of BM for each species, whether representing a single individual, or available species mean, our findings provide evidence that brain mass (independent of BM) and BMR are correlated. These findings are thus consistent with the hypothesis that large brains evolve when the payoff for increased brain mass is greater than the energetic cost they incur. PMID:21811456

  11. Genetic disorders of thyroid metabolism and brain development

    PubMed Central

    Kurian, Manju A; Jungbluth, Heinz

    2014-01-01

    Normal thyroid metabolism is essential for human development, including the formation and functioning of the central and peripheral nervous system. Disorders of thyroid metabolism are increasingly recognized within the spectrum of paediatric neurological disorders. Both hypothyroid and hyperthyroid disease states (resulting from genetic and acquired aetiologies) can lead to characteristic neurological syndromes, with cognitive delay, extrapyramidal movement disorders, neuropsychiatric symptoms, and neuromuscular manifestations. In this review, the neurological manifestations of genetic disorders of thyroid metabolism are outlined, with particular focus on Allan-Herndon-Dudley syndrome and benign hereditary chorea. We report in detail the clinical features, major neurological and neuropsychiatric manifestations, molecular genetic findings, disease mechanisms, and therapeutic strategies for these emerging genetic ‘brain-thyroid’ disorders. PMID:24665922

  12. Purine and pyrimidine excretion in psoriasis

    PubMed Central

    Simmonds, H. A.; Bowyer, A.

    1974-01-01

    1 Urinary purine excretion has been investigated in two healthy controls and two patients with psoriasis, one a hyperuricaemic, one a normouricaemic. No difference was detected between the patients and controls. Therapy with allopurinol effectively lowered blood and urinary uric acid levels and produced a deficit in total urinary oxypurine excretion in both controls and patients with psoriasis. The concomitant increase in xanthine excretion was greater than the increase in hypoxanthine excretion and xanthine/hypoxanthine ratios (average 0.70 and 1.0 prior to therapy) were increased by allopurinol to an average of 3.0 and 3.8 respectively in the two groups. Allopurinol also reduced the excretion of 8-hydroxy-7-methyl guanine but no effect on the excretion levels of other minor purine bases was noted. 2 Allopurinol was metabolized similarly by both patients and controls, 84% of the administered allopurinol being accounted for as urinary metabolites. 74% of the drug in the urine was excreted as oxipurinol, 26% as unchanged allopurinol plus allopurinol riboside, the remainder being oxipurinol riboside. 3 Pseudouridine excretion in 25 healthy controls was 86.5 ± 17.8 mg/24 hours. Pseudouridine excretion was not excessive in the patients with psoriasis and was not altered by allopurinol therapy. 4 No abnormality or difference in purine or pyrimidine excretion in either patient was detected prior to or during therapy which could be related to the epidermal lesion. PMID:22454896

  13. Genetic and metabolomic analysis of AdeD and AdeI mutants of de novo purine biosynthesis: cellular models of de novo purine biosynthesis deficiency disorders.

    PubMed

    Duval, Nathan; Luhrs, Kyleen; Wilkinson, Terry G; Baresova, Veronika; Skopova, Vaclava; Kmoch, Stanislav; Vacano, Guido N; Zikanova, Marie; Patterson, David

    2013-03-01

    Purines are molecules essential for many cell processes, including RNA and DNA synthesis, regulation of enzyme activity, protein synthesis and function, energy metabolism and transfer, essential coenzyme function, and cell signaling. Purines are produced via the de novo purine biosynthesis pathway. Mutations in purine biosynthetic genes, for example phosphoribosylaminoimidazole carboxylase/phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS, E.C. 6.3.2.6/E.C. 4.1.1.21), can lead to developmental anomalies in lower vertebrates. Alterations in PAICS expression in humans have been associated with various types of cancer. Mutations in adenylosuccinate lyase (ADSL, E.C. 4.3.2.2) or 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase (ATIC, E.C. 2.1.2.3/E.C. 3.5.4.10) lead to inborn errors of metabolism with a range of clinical symptoms, including developmental delay, severe neurological symptoms, and autistic features. The pathogenetic mechanism is unknown for these conditions, and no effective treatments exist. The study of cells carrying mutations in the various de novo purine biosynthesis pathway genes provides one approach to analysis of purine disorders. Here we report the characterization of AdeD Chinese hamster ovary (CHO) cells, which carry genetic mutations encoding p.E177K and p.W363* variants of PAICS. Both mutations impact PAICS structure and completely abolish its biosynthesis. Additionally, we describe a sensitive and rapid analytical method for detection of purine de novo biosynthesis intermediates based on high performance liquid chromatography with electrochemical detection. Using this technique we detected accumulation of AIR in AdeD cells. In AdeI cells, mutant for the ADSL gene, we detected accumulation of SAICAR and SAMP and, somewhat unexpectedly, accumulation of AIR. This method has great potential for metabolite profiling of de novo purine biosynthesis pathway mutants, identification of novel genetic

  14. Brain glucose metabolism in an animal model of depression.

    PubMed

    Detka, J; Kurek, A; Kucharczyk, M; Głombik, K; Basta-Kaim, A; Kubera, M; Lasoń, W; Budziszewska, B

    2015-06-01

    An increasing number of data support the involvement of disturbances in glucose metabolism in the pathogenesis of depression. We previously reported that glucose and glycogen concentrations in brain structures important for depression are higher in a prenatal stress model of depression when compared with control animals. A marked rise in the concentrations of these carbohydrates and glucose transporters were evident in prenatally stressed animals subjected to acute stress and glucose loading in adulthood. To determine whether elevated levels of brain glucose are associated with a change in its metabolism in this model, we assessed key glycolytic enzymes (hexokinase, phosphofructokinase and pyruvate kinase), products of glycolysis, i.e., pyruvate and lactate, and two selected enzymes of the tricarboxylic acid cycle (pyruvate dehydrogenase and α-ketoglutarate dehydrogenase) in the hippocampus and frontal cortex. Additionally, we assessed glucose-6-phosphate dehydrogenase activity, a key enzyme in the pentose phosphate pathway (PPP). Prenatal stress increased the levels of phosphofructokinase, an important glycolytic enzyme, in the hippocampus and frontal cortex. However, prenatal stress had no effect on hexokinase or pyruvate kinase levels. The lactate concentration was elevated in prenatally stressed rats in the frontal cortex, and pyruvate levels remained unchanged. Among the tricarboxylic acid cycle enzymes, prenatal stress decreased the level of pyruvate dehydrogenase in the hippocampus, but it had no effect on α-ketoglutarate dehydrogenase. Like in the case of glucose and its transporters, also in the present study, differences in markers of glucose metabolism between control animals and those subjected to prenatal stress were not observed under basal conditions but in rats subjected to acute stress and glucose load in adulthood. Glucose-6-phosphate dehydrogenase activity was not reduced by prenatal stress but was found to be even higher in animals exposed to

  15. Purines and neuronal excitability: links to the ketogenic diet.

    PubMed

    Masino, S A; Kawamura, M; Ruskin, D N; Geiger, J D; Boison, D

    2012-07-01

    ATP and adenosine are purines that play dual roles in cell metabolism and neuronal signaling. Acting at the A(1) receptor (A(1)R) subtype, adenosine acts directly on neurons to inhibit excitability and is a powerful endogenous neuroprotective and anticonvulsant molecule. Previous research showed an increase in ATP and other cell energy parameters when an animal is administered a ketogenic diet, an established metabolic therapy to reduce epileptic seizures, but the relationship among purines, neuronal excitability and the ketogenic diet was unclear. Recent work in vivo and in vitro tested the specific hypothesis that adenosine acting at A(1)Rs is a key mechanism underlying the success of ketogenic diet therapy and yielded direct evidence linking A(1)Rs to the antiepileptic effects of a ketogenic diet. Specifically, an in vitro mimic of a ketogenic diet revealed an A(1)R-dependent metabolic autocrine hyperpolarization of hippocampal neurons. In parallel, applying the ketogenic diet in vivo to transgenic mouse models with spontaneous electrographic seizures revealed that intact A(1)Rs are necessary for the seizure-suppressing effects of the diet. This is the first direct in vivo evidence linking A(1)Rs to the antiepileptic effects of a ketogenic diet. Other predictions of the relationship between purines and the ketogenic diet are discussed. Taken together, recent research on the role of purines may offer new opportunities for metabolic therapy and insight into its underlying mechanisms. PMID:21880467

  16. Phagocytic and metabolic reactions to chronically implanted metal brain electrodes.

    PubMed

    Babb, T L; Kupfer, W

    1984-11-01

    In order to study the biocompatibility of metal electrodes and insulations in the rat brain, eight different metal electrode types and two different insulations were implanted for 11, 35, 36, 37, or 63 days. Stainless steel and Nichrome were nontoxic metals, silver was toxic, and copper extremely toxic with phagocytosis active to 37 days of implantation. Active phagocytosis was easily detected by high glucose demand using 2-deoxy[14C]glucose (2-DG) autoradiography contrasted with normal 2-DG autoradiographs where phagocytes were present but not ingesting. Epoxylite, an epoxy-polyester varnish, was slightly more reactive in brain than polyimide but not statistically significant. In general, larger electrodes created more tissue reaction per se for as long as 37 days. These results suggested that a thin stainless-steel bipolar electrode will provide safe recording electrodes in either animal or human brain. The importance of these findings is that certain metals (silver, copper) cannot be used in the brain without producing necrosis and phagocytosis, whereas other metals (stainless steel, Nichrome) with varnish insulators (Epoxylite, polyimide) can be implanted without producing any detectable damage beyond that of the initial trauma and brief phagocytosis limited to the edge of the electrode track. Finally, the glucose metabolism autoradiographs differentiated active phagocytosis (copper) from inactive phagocytes (silver) when using long implants (37 days) of toxic metals. PMID:6489492

  17. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis.

    PubMed

    O'Mahony, S M; Clarke, G; Borre, Y E; Dinan, T G; Cryan, J F

    2015-01-15

    The brain-gut axis is a bidirectional communication system between the central nervous system and the gastrointestinal tract. Serotonin functions as a key neurotransmitter at both terminals of this network. Accumulating evidence points to a critical role for the gut microbiome in regulating normal functioning of this axis. In particular, it is becoming clear that the microbial influence on tryptophan metabolism and the serotonergic system may be an important node in such regulation. There is also substantial overlap between behaviours influenced by the gut microbiota and those which rely on intact serotonergic neurotransmission. The developing serotonergic system may be vulnerable to differential microbial colonisation patterns prior to the emergence of a stable adult-like gut microbiota. At the other extreme of life, the decreased diversity and stability of the gut microbiota may dictate serotonin-related health problems in the elderly. The mechanisms underpinning this crosstalk require further elaboration but may be related to the ability of the gut microbiota to control host tryptophan metabolism along the kynurenine pathway, thereby simultaneously reducing the fraction available for serotonin synthesis and increasing the production of neuroactive metabolites. The enzymes of this pathway are immune and stress-responsive, both systems which buttress the brain-gut axis. In addition, there are neural processes in the gastrointestinal tract which can be influenced by local alterations in serotonin concentrations with subsequent relay of signals along the scaffolding of the brain-gut axis to influence CNS neurotransmission. Therapeutic targeting of the gut microbiota might be a viable treatment strategy for serotonin-related brain-gut axis disorders. PMID:25078296

  18. Human Brain Glycogen Metabolism During and After Hypoglycemia

    PubMed Central

    Öz, Gülin; Kumar, Anjali; Rao, Jyothi P.; Kodl, Christopher T.; Chow, Lisa; Eberly, Lynn E.; Seaquist, Elizabeth R.

    2009-01-01

    OBJECTIVE We tested the hypotheses that human brain glycogen is mobilized during hypoglycemia and its content increases above normal levels (“supercompensates”) after hypoglycemia. RESEARCH DESIGN AND METHODS We utilized in vivo 13C nuclear magnetic resonance spectroscopy in conjunction with intravenous infusions of [13C]glucose in healthy volunteers to measure brain glycogen metabolism during and after euglycemic and hypoglycemic clamps. RESULTS After an overnight intravenous infusion of 99% enriched [1-13C]glucose to prelabel glycogen, the rate of label wash-out from [1-13C]glycogen was higher (0.12 ± 0.05 vs. 0.03 ± 0.06 μmol · g−1 · h−1, means ± SD, P < 0.02, n = 5) during a 2-h hyperinsulinemic-hypoglycemic clamp (glucose concentration 57.2 ± 9.7 mg/dl) than during a hyperinsulinemic-euglycemic clamp (95.3 ± 3.3 mg/dl), indicating mobilization of glucose units from glycogen during moderate hypoglycemia. Five additional healthy volunteers received intravenous 25–50% enriched [1-13C]glucose over 22–54 h after undergoing hyperinsulinemic-euglycemic (glucose concentration 92.4 ± 2.3 mg/dl) and hyperinsulinemic-hypoglycemic (52.9 ± 4.8 mg/dl) clamps separated by at least 1 month. Levels of newly synthesized glycogen measured from 4 to 80 h were higher after hypoglycemia than after euglycemia (P ≤ 0.01 for each subject), indicating increased brain glycogen synthesis after moderate hypoglycemia. CONCLUSIONS These data indicate that brain glycogen supports energy metabolism when glucose supply from the blood is inadequate and that its levels rebound to levels higher than normal after a single episode of moderate hypoglycemia in humans. PMID:19502412

  19. Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism

    PubMed Central

    Roh, Eun; Song, Do Kyeong; Kim, Min-Seon

    2016-01-01

    Accumulated evidence from genetic animal models suggests that the brain, particularly the hypothalamus, has a key role in the homeostatic regulation of energy and glucose metabolism. The brain integrates multiple metabolic inputs from the periphery through nutrients, gut-derived satiety signals and adiposity-related hormones. The brain modulates various aspects of metabolism, such as food intake, energy expenditure, insulin secretion, hepatic glucose production and glucose/fatty acid metabolism in adipose tissue and skeletal muscle. Highly coordinated interactions between the brain and peripheral metabolic organs are critical for the maintenance of energy and glucose homeostasis. Defective crosstalk between the brain and peripheral organs contributes to the development of obesity and type 2 diabetes. Here we comprehensively review the above topics, discussing the main findings related to the role of the brain in the homeostatic regulation of energy and glucose metabolism. PMID:26964832

  20. Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism.

    PubMed

    Roh, Eun; Song, Do Kyeong; Kim, Min-Seon

    2016-01-01

    Accumulated evidence from genetic animal models suggests that the brain, particularly the hypothalamus, has a key role in the homeostatic regulation of energy and glucose metabolism. The brain integrates multiple metabolic inputs from the periphery through nutrients, gut-derived satiety signals and adiposity-related hormones. The brain modulates various aspects of metabolism, such as food intake, energy expenditure, insulin secretion, hepatic glucose production and glucose/fatty acid metabolism in adipose tissue and skeletal muscle. Highly coordinated interactions between the brain and peripheral metabolic organs are critical for the maintenance of energy and glucose homeostasis. Defective crosstalk between the brain and peripheral organs contributes to the development of obesity and type 2 diabetes. Here we comprehensively review the above topics, discussing the main findings related to the role of the brain in the homeostatic regulation of energy and glucose metabolism. PMID:26964832

  1. Transmural distribution of extracellular purines in isolated guinea pig heart.

    PubMed Central

    Zhu, Q Y; Headrick, J P; Berne, R M

    1991-01-01

    The purine adenosine appears to be involved in regulation of coronary vascular tone. Little is known concerning the levels and distribution of adenosine and related purines in the extracellular fluid of the heart. We have measured epicardial and endocardial levels of adenosine, inosine, hypoxanthine, AMP, and IMP in isolated constant flow perfused guinea pig hearts by using a recently developed technique with porous nylon sampling discs. Venous effluent purine levels were also measured. Concentrations of all purines measured, excluding IMP, were significantly higher in endocardial fluid samples than in epicardial fluid samples (P less than 0.05). Conversely, IMP levels were significantly lower in endocardial than in epicardial samples. The magnitude of the endocardial/epicardial ratios for adenosine, inosine, hypoxanthine, AMP, and IMP were approximately 12:1, 4:1, 5:1, 4:1, and 1:2, respectively. To assess cellular damage, lactate dehydrogenase activity was measured in all fluid samples and was not significantly different in endocardial and epicardial fluid. These data support the existence of significant transmural gradients for extracellular purine levels in crystalloid perfused guinea pig hearts. Transmural differences in vasoactive adenosine levels may be partially due to the greater endocardial oxygen consumption and metabolism and may be involved in maintaining relatively high subendocardial blood flows in the face of high intramyocardial pressures. Images PMID:1988961

  2. GSM mobile phone radiation suppresses brain glucose metabolism

    PubMed Central

    Kwon, Myoung Soo; Vorobyev, Victor; Kännälä, Sami; Laine, Matti; Rinne, Juha O; Toivonen, Tommi; Johansson, Jarkko; Teräs, Mika; Lindholm, Harri; Alanko, Tommi; Hämäläinen, Heikki

    2011-01-01

    We investigated the effects of mobile phone radiation on cerebral glucose metabolism using high-resolution positron emission tomography (PET) with the 18F-deoxyglucose (FDG) tracer. A long half-life (109 minutes) of the 18F isotope allowed a long, natural exposure condition outside the PET scanner. Thirteen young right-handed male subjects were exposed to a pulse-modulated 902.4 MHz Global System for Mobile Communications signal for 33 minutes, while performing a simple visual vigilance task. Temperature was also measured in the head region (forehead, eyes, cheeks, ear canals) during exposure. 18F-deoxyglucose PET images acquired after the exposure showed that relative cerebral metabolic rate of glucose was significantly reduced in the temporoparietal junction and anterior temporal lobe of the right hemisphere ipsilateral to the exposure. Temperature rise was also observed on the exposed side of the head, but the magnitude was very small. The exposure did not affect task performance (reaction time, error rate). Our results show that short-term mobile phone exposure can locally suppress brain energy metabolism in humans. PMID:21915135

  3. GSM mobile phone radiation suppresses brain glucose metabolism.

    PubMed

    Kwon, Myoung Soo; Vorobyev, Victor; Kännälä, Sami; Laine, Matti; Rinne, Juha O; Toivonen, Tommi; Johansson, Jarkko; Teräs, Mika; Lindholm, Harri; Alanko, Tommi; Hämäläinen, Heikki

    2011-12-01

    We investigated the effects of mobile phone radiation on cerebral glucose metabolism using high-resolution positron emission tomography (PET) with the (18)F-deoxyglucose (FDG) tracer. A long half-life (109 minutes) of the (18)F isotope allowed a long, natural exposure condition outside the PET scanner. Thirteen young right-handed male subjects were exposed to a pulse-modulated 902.4 MHz Global System for Mobile Communications signal for 33 minutes, while performing a simple visual vigilance task. Temperature was also measured in the head region (forehead, eyes, cheeks, ear canals) during exposure. (18)F-deoxyglucose PET images acquired after the exposure showed that relative cerebral metabolic rate of glucose was significantly reduced in the temporoparietal junction and anterior temporal lobe of the right hemisphere ipsilateral to the exposure. Temperature rise was also observed on the exposed side of the head, but the magnitude was very small. The exposure did not affect task performance (reaction time, error rate). Our results show that short-term mobile phone exposure can locally suppress brain energy metabolism in humans. PMID:21915135

  4. In Vivo NMR Studies of the Brain with Hereditary or Acquired Metabolic Disorders.

    PubMed

    Sherry, Erica B; Lee, Phil; Choi, In-Young

    2015-12-01

    Metabolic disorders, whether hereditary or acquired, affect the brain, and abnormalities of the brain are related to cellular integrity; particularly in regard to neurons and astrocytes as well as interactions between them. Metabolic disturbances lead to alterations in cellular function as well as microscopic and macroscopic structural changes in the brain with diabetes, the most typical example of metabolic disorders, and a number of hereditary metabolic disorders. Alternatively, cellular dysfunction and degeneration of the brain lead to metabolic disturbances in hereditary neurological disorders with neurodegeneration. Nuclear magnetic resonance (NMR) techniques allow us to assess a range of pathophysiological changes of the brain in vivo. For example, magnetic resonance spectroscopy detects alterations in brain metabolism and energetics. Physiological magnetic resonance imaging (MRI) detects accompanying changes in cerebral blood flow related to neurovascular coupling. Diffusion and T1/T2-weighted MRI detect microscopic and macroscopic changes of the brain structure. This review summarizes current NMR findings of functional, physiological and biochemical alterations within a number of hereditary and acquired metabolic disorders in both animal models and humans. The global view of the impact of these metabolic disorders on the brain may be useful in identifying the unique and/or general patterns of abnormalities in the living brain related to the pathophysiology of the diseases, and identifying future fields of inquiry. PMID:26610379

  5. [Uric acid and purine plasma levels as plausible markers for placental dysfunction in pre-eclampsia].

    PubMed

    Escudero, Carlos; Bertoglia, Patricio; Muñoz, Felipe; Roberts, James M

    2013-07-01

    Uric acid is the final metabolite of purine break down, such as ATP, ADP, AMP, adenosine, inosine and hypoxanthine. The metabolite has been used broadly as a renal failure marker, as well as a risk factor for maternal and neonatal morbidity during pre-eclamptic pregnancies. High purine levels are observed in pre-eclamptic pregnancies, but the sources of these purines are unknown. However, there is evidence that pre-eclampsia (mainly severe pre-eclampsia) is associated with an increased release of cellular fragments (or microparticles) from the placenta to the maternal circulation. These in fact could be the substrate for purine metabolism. Considering this background, we propose that purines and uric acid are part of the same physiopathological phenomenon in pre-eclampsia (i.e., placental dysfunction) and could become biomarkers for placental dysfunction and postnatal adverse events. PMID:24356738

  6. Mapping Metabolic Brain Activity in Three Models of Hepatic Encephalopathy

    PubMed Central

    Méndez, Marta; Fidalgo, Camino; Aller, María Ángeles; Arias, Jaime; Arias, Jorge L.

    2013-01-01

    Cirrhosis is a common disease in Western countries. Liver failure, hyperammonemia, and portal hypertension are the main factors that contribute to human cirrhosis that frequently leads to a neuropsychiatric disorder known as hepatic encephalopathy (HE). In this study, we examined the differential contribution of these leading factors to the oxidative metabolism of diverse brain limbic system regions frequently involved in memory process by histochemical labelling of cytochrome oxidase (COx). We have analyzed cortical structures such as the infralimbic and prelimbic cotices, subcortical structures such as hippocampus and ventral striatum, at thalamic level like the anterodorsal, anteroventral, and mediodorsal thalamus, and, finally, the hypothalamus, where the mammillary nuclei (medial and lateral) were measured. The severest alteration is found in the model that mimics intoxication by ammonia, followed by the thioacetamide-treated group and the portal hypertension group. No changes were found at the mammillary bodies for any of the experimental groups. PMID:23573412

  7. Brain Insulin Resistance at the Crossroads of Metabolic and Cognitive Disorders in Humans.

    PubMed

    Kullmann, Stephanie; Heni, Martin; Hallschmid, Manfred; Fritsche, Andreas; Preissl, Hubert; Häring, Hans-Ulrich

    2016-10-01

    Ever since the brain was identified as an insulin-sensitive organ, evidence has rapidly accumulated that insulin action in the brain produces multiple behavioral and metabolic effects, influencing eating behavior, peripheral metabolism, and cognition. Disturbances in brain insulin action can be observed in obesity and type 2 diabetes (T2D), as well as in aging and dementia. Decreases in insulin sensitivity of central nervous pathways, i.e., brain insulin resistance, may therefore constitute a joint pathological feature of metabolic and cognitive dysfunctions. Modern neuroimaging methods have provided new means of probing brain insulin action, revealing the influence of insulin on both global and regional brain function. In this review, we highlight recent findings on brain insulin action in humans and its impact on metabolism and cognition. Furthermore, we elaborate on the most prominent factors associated with brain insulin resistance, i.e., obesity, T2D, genes, maternal metabolism, normal aging, inflammation, and dementia, and on their roles regarding causes and consequences of brain insulin resistance. We also describe the beneficial effects of enhanced brain insulin signaling on human eating behavior and cognition and discuss potential applications in the treatment of metabolic and cognitive disorders. PMID:27489306

  8. Purine import into malaria parasites as a target for antimalarial drug development

    PubMed Central

    Frame, I.J.; Deniskin, Roman; Arora, Avish; Akabas, Myles H.

    2014-01-01

    Infection with Plasmodium species parasites causes malaria. Plasmodium parasites are purine auxotrophs. In all life cycle stages, they require purines for RNA and DNA synthesis and other cellular metabolic processes. Purines are imported from the host erythrocyte by equilibrative nucleoside transporters (ENTs). They are processed via purine salvage–pathway enzymes to form the required purine nucleotides. The P. falciparum genome encodes four putative ENTs (PfENT1–4). Genetic, biochemical, and physiologic evidence suggest that PfENT1 is the primary purine transporter supplying the purine-salvage pathway. Protein mass spectrometry shows that PfENT1 is expressed in all parasite stages. PfENT1 knockout parasites are not viable in culture at purine concentrations found in human blood (< 10 µM). Thus, PfENT1 is a potential target for novel antimalarial drugs, but no PfENT1 inhibitors have been identified to test the hypothesis. Identifying inhibitors of PfENT1 is an essential step to validate PfENT1 as a potential antimalarial drug target. PMID:25424653

  9. Purine import into malaria parasites as a target for antimalarial drug development.

    PubMed

    Frame, I J; Deniskin, Roman; Arora, Avish; Akabas, Myles H

    2015-04-01

    Infection with Plasmodium species parasites causes malaria. Plasmodium parasites are purine auxotrophs. In all life cycle stages, they require purines for RNA and DNA synthesis and other cellular metabolic processes. Purines are imported from the host erythrocyte by equilibrative nucleoside transporters (ENTs). They are processed via purine salvage pathway enzymes to form the required purine nucleotides. The Plasmodium falciparum genome encodes four putative ENTs (PfENT1-4). Genetic, biochemical, and physiologic evidence suggest that PfENT1 is the primary purine transporter supplying the purine salvage pathway. Protein mass spectrometry shows that PfENT1 is expressed in all parasite stages. PfENT1 knockout parasites are not viable in culture at purine concentrations found in human blood (<10 μM). Thus, PfENT1 is a potential target for novel antimalarial drugs, but no PfENT1 inhibitors have been identified to test the hypothesis. Identifying inhibitors of PfENT1 is an essential step to validate PfENT1 as a potential antimalarial drug target. PMID:25424653

  10. Deregulation of purine pathway in Bacillus subtilis and its use in riboflavin biosynthesis

    PubMed Central

    2014-01-01

    Background Purine nucleotides are essential metabolites for living organisms because they are involved in many important processes, such as nucleic acid synthesis, energy supply, and biosynthesis of several amino acids and riboflavin. Owing to the pivotal roles of purines in cell physiology, the pool of intracellular purine nucleotides must be maintained under strict control, and hence the de novo purine biosynthetic pathway is tightly regulated by transcription repression and inhibition mechanism. Deregulation of purine pathway is essential for this pathway engineering in Bacillus subtilis. Results Deregulation of purine pathway was attempted to improve purine nucleotides supply, based on a riboflavin producer B. subtilis strain with modification of its rib operon. To eliminate transcription repression, the pur operon repressor PurR and the 5’-UTR of pur operon containing a guanine-sensing riboswitch were disrupted. Quantitative RT-PCR analysis revealed that the relative transcription levels of purine genes were up-regulated about 380 times. Furthermore, site-directed mutagenesis was successfully introduced into PRPP amidotransferase (encoded by purF) to remove feedback inhibition by homologous alignment and analysis. Overexpression of the novel mutant PurF (D293V, K316Q and S400W) significantly increased PRPP amidotransferase activity and triggered a strong refractory effect on purine nucleotides mediated inhibition. Intracellular metabolite target analysis indicated that the purine nucleotides supply in engineered strains was facilitated by a stepwise gene-targeted deregulation. With these genetic manipulations, we managed to enhance the metabolic flow through purine pathway and consequently increased riboflavin production 3-fold (826.52 mg/L) in the purF-VQW mutant strain. Conclusions A sequential optimization strategy was applied to deregulate the rib operon and purine pathway of B. subtilis to create genetic diversities and to improve riboflavin production

  11. Altered Lipid Metabolism in Brain Injury and Disorders

    PubMed Central

    Adibhatla, Rao Muralikrishna; Hatcher, J. F.

    2008-01-01

    Deregulated lipid metabolism may be of particular importance for CNS injuries and disorders, as this organ has the highest lipid concentration next to adipose tissue. Atherosclerosis (a risk factor for ischemic stroke) results from accumulation of LDL-derived lipids in the arterial wall. Pro-inflammatory cytokines (TNF-α and IL-1), secretory phospholipase A2 IIA and lipoprotein-PLA2 are implicated in vascular inflammation. These inflammatory responses promote atherosclerotic plaques, formation and release of the blood clot that can induce ischemic stroke. TNF-α and IL-1 alter lipid metabolism and stimulate production of eicosanoids, ceramide, and reactive oxygen species that potentiate CNS injuries and certain neurological disorders. Cholesterol is an important regulator of lipid organization and the precursor for neurosteroid biosynthesis. Low levels of neurosteroids were related to poor outcome in many brain pathologies. Apolipoprotein E is the principal cholesterol carrier protein in the brain, and the gene encoding the variant Apolipoprotein E4 is a significant risk factor for Alzheimer's disease. Parkinson's disease is to some degree caused by lipid peroxidation due to phospholipases activation. Niemann-Pick diseases A and B are due to acidic sphingomyelinase deficiency, resulting in sphingomyelin accumulation, while Niemann-Pick disease C is due to mutations in either the NPC1 or NPC2 genes, resulting in defective cholesterol transport and cholesterol accumulation. Multiple sclerosis is an autoimmune inflammatory demyelinating condition of the CNS. Inhibiting phospholipase A2 attenuated the onset and progression of experimental autoimmune encephalomyelitis. The endocannabinoid system is hypoactive in Huntington's disease. Ethyl-eicosapetaenoate showed promise in clinical trials. Amyotrophic lateral sclerosis causes loss of motorneurons. Cyclooxygenase-2 inhibition reduced spinal neurodegeneration in amyotrophic lateral sclerosis transgenic mice

  12. Traumatic Brain Injury Alters Methionine Metabolism: Implications for Pathophysiology

    PubMed Central

    Dash, Pramod K.; Hergenroeder, Georgene W.; Jeter, Cameron B.; Choi, H. Alex; Kobori, Nobuhide; Moore, Anthony N.

    2016-01-01

    Methionine is an essential proteinogenic amino acid that is obtained from the diet. In addition to its requirement for protein biosynthesis, methionine is metabolized to generate metabolites that play key roles in a number of cellular functions. Metabolism of methionine via the transmethylation pathway generates S-adenosylmethionine (SAM) that serves as the principal methyl (−CH3) donor for DNA and histone methyltransferases (MTs) to regulate epigenetic changes in gene expression. SAM is also required for methylation of other cellular proteins that serve various functions and phosphatidylcholine synthesis that participate in cellular signaling. Under conditions of oxidative stress, homocysteine (which is derived from SAM) enters the transsulfuration pathway to generate glutathione, an important cytoprotective molecule against oxidative damage. As both experimental and clinical studies have shown that traumatic brain injury (TBI) alters DNA and histone methylation and causes oxidative stress, we examined if TBI alters the plasma levels of methionine and its metabolites in human patients. Blood samples were collected from healthy volunteers (HV; n = 20) and patients with mild TBI (mTBI; GCS > 12; n = 20) or severe TBI (sTBI; GCS < 8; n = 20) within the first 24 h of injury. The levels of methionine and its metabolites in the plasma samples were analyzed by either liquid chromatography-mass spectrometry or gas chromatography-mass spectrometry (LC-MS or GC-MS). sTBI decreased the levels of methionine, SAM, betaine and 2-methylglycine as compared to HV, indicating a decrease in metabolism through the transmethylation cycle. In addition, precursors for the generation of glutathione, cysteine and glycine were also found to be decreased as were intermediate metabolites of the gamma-glutamyl cycle (gamma-glutamyl amino acids and 5-oxoproline). mTBI also decreased the levels of methionine, α-ketobutyrate, 2 hydroxybutyrate and glycine, albeit to lesser degrees than

  13. Traumatic Brain Injury Alters Methionine Metabolism: Implications for Pathophysiology.

    PubMed

    Dash, Pramod K; Hergenroeder, Georgene W; Jeter, Cameron B; Choi, H Alex; Kobori, Nobuhide; Moore, Anthony N

    2016-01-01

    Methionine is an essential proteinogenic amino acid that is obtained from the diet. In addition to its requirement for protein biosynthesis, methionine is metabolized to generate metabolites that play key roles in a number of cellular functions. Metabolism of methionine via the transmethylation pathway generates S-adenosylmethionine (SAM) that serves as the principal methyl (-CH3) donor for DNA and histone methyltransferases (MTs) to regulate epigenetic changes in gene expression. SAM is also required for methylation of other cellular proteins that serve various functions and phosphatidylcholine synthesis that participate in cellular signaling. Under conditions of oxidative stress, homocysteine (which is derived from SAM) enters the transsulfuration pathway to generate glutathione, an important cytoprotective molecule against oxidative damage. As both experimental and clinical studies have shown that traumatic brain injury (TBI) alters DNA and histone methylation and causes oxidative stress, we examined if TBI alters the plasma levels of methionine and its metabolites in human patients. Blood samples were collected from healthy volunteers (HV; n = 20) and patients with mild TBI (mTBI; GCS > 12; n = 20) or severe TBI (sTBI; GCS < 8; n = 20) within the first 24 h of injury. The levels of methionine and its metabolites in the plasma samples were analyzed by either liquid chromatography-mass spectrometry or gas chromatography-mass spectrometry (LC-MS or GC-MS). sTBI decreased the levels of methionine, SAM, betaine and 2-methylglycine as compared to HV, indicating a decrease in metabolism through the transmethylation cycle. In addition, precursors for the generation of glutathione, cysteine and glycine were also found to be decreased as were intermediate metabolites of the gamma-glutamyl cycle (gamma-glutamyl amino acids and 5-oxoproline). mTBI also decreased the levels of methionine, α-ketobutyrate, 2 hydroxybutyrate and glycine, albeit to lesser degrees than detected

  14. Drug Metabolism within the Brain Changes Drug Response: Selective Manipulation of Brain CYP2B Alters Propofol Effects

    PubMed Central

    Khokhar, Jibran Y; Tyndale, Rachel F

    2011-01-01

    Drug-metabolizing cytochrome P450 (CYPs) enzymes are expressed in the liver, as well as in extrahepatic tissues such as the brain. Here we show for the first time that drug metabolism by a CYP within the brain, illustrated using CYP2B and the anesthetic propofol (2, 6-diisopropylphenol, Diprivan), can meaningfully alter the pharmacological response to a CNS acting drug. CYP2B is expressed in the brains of animals and humans, and this CYP isoform is able to metabolize centrally acting substrates such as propofol, ecstasy, and serotonin. Rats were given intracerebroventricularly (i.c.v.) injections of vehicle, C8-xanthate, or 8-methoxypsoralen (CYP2B mechanism-based inhibitors) and then tested for sleep time following propofol (80 mg/kg intraperitoneally). Both inhibitors significantly increased sleep-time (1.8- to 2-fold) and brain propofol levels, while having no effect on plasma propofol levels. Seven days of nicotine treatment can induce the expression of brain, but not hepatic, CYP2B, and this induction reduced propofol sleep times by 2.5-fold. This reduction was reversed in a dose-dependent manner by i.c.v. injections of inhibitor. Sleep times correlated with brain (r=0.76, P=0.0009), but not plasma (r=0.24, P=0.39) propofol concentrations. Inhibitor treatments increased brain, but not plasma, propofol levels, and had no effect on hepatic enzyme activity. These data indicate that brain CYP2B can metabolize neuroactive substrates (eg, propofol) and can alter their pharmacological response. This has wider implications for localized CYP-mediated metabolism of drugs, neurotransmitters, and neurotoxins within the brain by this highly variable enzyme family and other CYP subfamilies expressed in the brain. PMID:21107310

  15. Energy metabolism in neuronal/glial induction and in iPSC models of brain disorders.

    PubMed

    Mlody, Barbara; Lorenz, Carmen; Inak, Gizem; Prigione, Alessandro

    2016-04-01

    The metabolic switch associated with the reprogramming of somatic cells to pluripotency has received increasing attention in recent years. However, the impact of mitochondrial and metabolic modulation on stem cell differentiation into neuronal/glial cells and related brain disease modeling still remains to be fully addressed. Here, we seek to focus on this aspect by first addressing brain energy metabolism and its inter-cellular metabolic compartmentalization. We then review the findings related to the mitochondrial and metabolic reconfiguration occurring upon neuronal/glial specification from pluripotent stem cells (PSCs). Finally, we provide an update of the PSC-based models of mitochondria-related brain disorders and discuss the challenges and opportunities that may exist on the road to develop a new era of brain disease modeling and therapy. PMID:26877213

  16. Thyroid hormone’s role in regulating brain glucose metabolism and potentially modulating hippocampal cognitive processes

    PubMed Central

    Jahagirdar, V; McNay, EC

    2012-01-01

    Cognitive performance is dependent on adequate glucose supply to the brain. Insulin, which regulates systemic glucose metabolism, has been recently shown both to regulate hippocampal metabolism and to be a mandatory component of hippocampally-mediated cognitive performance. Thyroid hormones (TH) regulate systemic glucose metabolism and may also be involved in regulation of brain glucose metabolism. Here we review potential mechanisms for such regulation. Importantly, TH imbalance is often encountered in combination with metabolic disorders, such as diabetes, and may cause additional metabolic dysregulation and hence worsening of disease states. TH’s potential as a regulator of brain glucose metabolism is heightened by interactions with insulin signaling, but there have been relatively few studies on this topic or on the actions of TH in a mature brain. This review discusses evidence for mechanistic links between TH, insulin, cognitive function, and brain glucose metabolism, and suggests that TH is a good candidate to be a modulator of memory processes, likely at least in part by modulation of central insulin signaling and glucose metabolism. PMID:22437199

  17. Acceleration of purine degradation by periodontal diseases.

    PubMed

    Barnes, V M; Teles, R; Trivedi, H M; Devizio, W; Xu, T; Mitchell, M W; Milburn, M V; Guo, L

    2009-09-01

    Periodontal diseases, such as gingivitis and periodontitis, are characterized by bacterial plaque accumulation around the gingival crevice and the subsequent inflammation and destruction of host tissues. To test the hypothesis that cellular metabolism is altered as a result of host-bacteria interaction, we performed an unbiased metabolomic profiling of gingival crevicular fluid (GCF) collected from healthy, gingivitis, and periodontitis sites in humans, by liquid and gas chromatography mass spectrometry. The purine degradation pathway, a major biochemical source for reactive oxygen species (ROS) production, was significantly accelerated at the disease sites. This suggests that periodontal-disease-induced oxidative stress and inflammation are mediated through this pathway. The complex host-bacterial interaction was further highlighted by depletion of anti-oxidants, degradation of host cellular components, and accumulation of bacterial products in GCF. These findings provide new mechanistic insights and a panel of comprehensive biomarkers for periodontal disease progression. PMID:19767584

  18. The Co-Metabolism within the Gut-Brain Metabolic Interaction: Potential Targets for Drug Treatment and Design.

    PubMed

    Obrenovich, Mark; Flückiger, Rudolf; Sykes, Lorraine; Donskey, Curtis

    2016-01-01

    We know that within the complex mammalian gut is any number of metabolic biomes. The gut has been sometimes called the "second brain" within the "gut-brain axis". A more informative term would be the gut-brain metabolic interactome, which is coined here to underscore the relationship between the digestive system and cognitive function or dysfunction as the case may be. Co-metabolism between the host and the intestinal microbiota is essential for life's processes. How diet, lifestyle, antibiotics and other factors shape the gut microbiome constitutes a rapidly growing area of research. Conversely, the gut microbiome also affects mammalian systems. Metabolites of the gut-brain axis are potential targets for treatment and drug design since the interaction or biochemical interplay results in net metabolite production or end-products with either positive or negative effects on human health. This review explores the gut-brain metabolic interactome, with particular emphasis on drug design and treatment strategies and how commensal bacteria or their disruption lead to dysbiosis and the effect this has on neurochemistry. Increasing data indicate that the intestinal microbiome can affect neurobiology, from mental and even behavioral health to memory, depression, mood, anxiety, obesity, cravings and even the creation and maintenance of the blood brain barrier. PMID:26831263

  19. Systematic analysis of transcription-level effects of neurodegenerative diseases on human brain metabolism by a newly reconstructed brain-specific metabolic network

    PubMed Central

    Sertbaş, Mustafa; Ülgen, Kutlu; Çakır, Tunahan

    2014-01-01

    Network-oriented analysis is essential to identify those parts of a cell affected by a given perturbation. The effect of neurodegenerative perturbations in the form of diseases of brain metabolism was investigated by using a newly reconstructed brain-specific metabolic network. The developed stoichiometric model correctly represents healthy brain metabolism, and includes 630 metabolic reactions in and between astrocytes and neurons, which are controlled by 570 genes. The integration of transcriptome data of six neurodegenerative diseases (Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, multiple sclerosis, schizophrenia) with the model was performed to identify reporter features specific and common for these diseases, which revealed metabolites and pathways around which the most significant changes occur. The identified metabolites are potential biomarkers for the pathology of the related diseases. Our model indicated perturbations in oxidative stress, energy metabolism including TCA cycle and lipid metabolism as well as several amino acid related pathways, in agreement with the role of these pathways in the studied diseases. The computational prediction of transcription factors that commonly regulate the reporter metabolites was achieved through binding-site analysis. Literature support for the identified transcription factors such as USF1, SP1 and those from FOX families are known from the literature to have regulatory roles in the identified reporter metabolic pathways as well as in the neurodegenerative diseases. In essence, the reconstructed brain model enables the elucidation of effects of a perturbation on brain metabolism and the illumination of possible machineries in which a specific metabolite or pathway acts as a regulatory spot for cellular reorganization. PMID:25061554

  20. Development of Purine-Derived 18F-Labeled Pro-drug Tracers for Imaging of MRP1 Activity with PET

    PubMed Central

    2014-01-01

    Multidrug resistance-associated protein 1 (MRP1) is a drug efflux transporter that has been implicated in the pathology of several neurological diseases and is associated with development of multidrug resistance. To enable measurement of MRP1 function in the living brain, a series of 6-halopurines decorated with fluorinated side chains have been synthesized and evaluated as putative pro-drug tracers. The tracers were designed to undergo conjugation with glutathione within the brain and hence form the corresponding MRP1 substrate tracers in situ. 6-Bromo-7-(2-[18F]fluoroethyl)purine showed good brain uptake and rapid metabolic conversion. Dynamic PET imaging demonstrated a marked difference in brain clearance rates between wild-type and mrp1 knockout mice, suggesting that the tracer can allow noninvasive assessment of MRP1 activity in vivo. PMID:24456310

  1. Brain polyphosphoinositide metabolism during focal ischemia in rat cortex

    SciTech Connect

    Lin, T.N.; Liu, T.H.; Xu, J.; Hsu, C.Y.; Sun, G.Y. )

    1991-04-01

    Using a rat model of stroke, we examined the effects of focal cerebral ischemia on the metabolism of polyphosphoinositides by injecting {sup 32}Pi into both the left and right cortices. After equilibration of the label for 2-3 hours, ischemia induced a significant decrease (p less than 0.001) in the concentrations of labeled phosphatidyl 4,5-bisphosphates (66-78%) and phosphatidylinositol 4-phosphate (64-67%) in the right middle cerebral artery cortex of four rats. The phospholipid labeling pattern in the left middle cerebral artery cortex, which sustained only mild ischemia and no permanent tissue damage, was not different from that of two sham-operated controls. However, when {sup 32}Pi was injected 1 hour after the ischemic insult, there was a significant decrease (p less than 0.01) in the incorporation of label into the phospholipids in both cortices of four ischemic rats compared with four sham-operated controls. Furthermore, differences in the phospholipid labeling pattern were observed in the left cortex compared with the sham-operated controls. The change in labeling pattern was attributed to the partial reduction in blood flow following ligation of the common carotid arteries. We provide a sensitive procedure for probing the effects of focal cerebral ischemia on the polyphosphoinositide signaling pathway in the brain, which may play an important role in the pathogenesis of tissue injury.

  2. Brain Metabolism during Hallucination-Like Auditory Stimulation in Schizophrenia

    PubMed Central

    Horga, Guillermo; Fernández-Egea, Emilio; Mané, Anna; Font, Mireia; Schatz, Kelly C.; Falcon, Carles; Lomeña, Francisco; Bernardo, Miguel; Parellada, Eduard

    2014-01-01

    Auditory verbal hallucinations (AVH) in schizophrenia are typically characterized by rich emotional content. Despite the prominent role of emotion in regulating normal perception, the neural interface between emotion-processing regions such as the amygdala and auditory regions involved in perception remains relatively unexplored in AVH. Here, we studied brain metabolism using FDG-PET in 9 remitted patients with schizophrenia that previously reported severe AVH during an acute psychotic episode and 8 matched healthy controls. Participants were scanned twice: (1) at rest and (2) during the perception of aversive auditory stimuli mimicking the content of AVH. Compared to controls, remitted patients showed an exaggerated response to the AVH-like stimuli in limbic and paralimbic regions, including the left amygdala. Furthermore, patients displayed abnormally strong connections between the amygdala and auditory regions of the cortex and thalamus, along with abnormally weak connections between the amygdala and medial prefrontal cortex. These results suggest that abnormal modulation of the auditory cortex by limbic-thalamic structures might be involved in the pathophysiology of AVH and may potentially account for the emotional features that characterize hallucinatory percepts in schizophrenia. PMID:24416328

  3. Graded perturbations of metabolism in multiple regions of human brain in Alzheimer's disease: Snapshot of a pervasive metabolic disorder

    PubMed Central

    Xu, Jingshu; Begley, Paul; Church, Stephanie J.; Patassini, Stefano; Hollywood, Katherine A.; Jüllig, Mia; Curtis, Maurice A.; Waldvogel, Henry J.; Faull, Richard L.M.; Unwin, Richard D.; Cooper, Garth J.S.

    2016-01-01

    Alzheimer's disease (AD) is an age-related neurodegenerative disorder that displays pathological characteristics including senile plaques and neurofibrillary tangles. Metabolic defects are also present in AD-brain: for example, signs of deficient cerebral glucose uptake may occur decades before onset of cognitive dysfunction and tissue damage. There have been few systematic studies of the metabolite content of AD human brain, possibly due to scarcity of high-quality brain tissue and/or lack of reliable experimental methodologies. Here we sought to: 1) elucidate the molecular basis of metabolic defects in human AD-brain; and 2) identify endogenous metabolites that might guide new approaches for therapeutic intervention, diagnosis or monitoring of AD. Brains were obtained from nine cases with confirmed clinical/neuropathological AD and nine controls matched for age, sex and post-mortem delay. Metabolite levels were measured in post-mortem tissue from seven regions: three that undergo severe neuronal damage (hippocampus, entorhinal cortex and middle-temporal gyrus); three less severely affected (cingulate gyrus, sensory cortex and motor cortex); and one (cerebellum) that is relatively spared. We report a total of 55 metabolites that were altered in at least one AD-brain region, with different regions showing alterations in between 16 and 33 metabolites. Overall, we detected prominent global alterations in metabolites from several pathways involved in glucose clearance/utilization, the urea cycle, and amino-acid metabolism. The finding that potentially toxigenic molecular perturbations are widespread throughout all brain regions including the cerebellum is consistent with a global brain disease process rather than a localized effect of AD on regional brain metabolism. PMID:26957286

  4. Graded perturbations of metabolism in multiple regions of human brain in Alzheimer's disease: Snapshot of a pervasive metabolic disorder.

    PubMed

    Xu, Jingshu; Begley, Paul; Church, Stephanie J; Patassini, Stefano; Hollywood, Katherine A; Jüllig, Mia; Curtis, Maurice A; Waldvogel, Henry J; Faull, Richard L M; Unwin, Richard D; Cooper, Garth J S

    2016-06-01

    Alzheimer's disease (AD) is an age-related neurodegenerative disorder that displays pathological characteristics including senile plaques and neurofibrillary tangles. Metabolic defects are also present in AD-brain: for example, signs of deficient cerebral glucose uptake may occur decades before onset of cognitive dysfunction and tissue damage. There have been few systematic studies of the metabolite content of AD human brain, possibly due to scarcity of high-quality brain tissue and/or lack of reliable experimental methodologies. Here we sought to: 1) elucidate the molecular basis of metabolic defects in human AD-brain; and 2) identify endogenous metabolites that might guide new approaches for therapeutic intervention, diagnosis or monitoring of AD. Brains were obtained from nine cases with confirmed clinical/neuropathological AD and nine controls matched for age, sex and post-mortem delay. Metabolite levels were measured in post-mortem tissue from seven regions: three that undergo severe neuronal damage (hippocampus, entorhinal cortex and middle-temporal gyrus); three less severely affected (cingulate gyrus, sensory cortex and motor cortex); and one (cerebellum) that is relatively spared. We report a total of 55 metabolites that were altered in at least one AD-brain region, with different regions showing alterations in between 16 and 33 metabolites. Overall, we detected prominent global alterations in metabolites from several pathways involved in glucose clearance/utilization, the urea cycle, and amino-acid metabolism. The finding that potentially toxigenic molecular perturbations are widespread throughout all brain regions including the cerebellum is consistent with a global brain disease process rather than a localized effect of AD on regional brain metabolism. PMID:26957286

  5. Non-invasive measurement of brain glycogen by NMR spectroscopy and its application to the study of brain metabolism

    PubMed Central

    Tesfaye, Nolawit; Seaquist, Elizabeth R.; Öz, Gülin

    2011-01-01

    Glycogen is the reservoir for glucose in the brain. Beyond the general agreement that glycogen serves as an energy source in the central nervous system, its exact role in brain energy metabolism has yet to be elucidated. Experiments performed in cell and tissue culture and animals have shown that glycogen content is affected by several factors including glucose, insulin, neurotransmitters, and neuronal activation. The study of in vivo glycogen metabolism has been hindered by the inability to measure glycogen non-invasively, but in the past several years, the development of a non-invasive localized 13C nuclear magnetic resonance (NMR) spectroscopy method has enabled the study of glycogen metabolism in the conscious human. With this technique, 13C-glucose is administered intravenously and its incorporation into and wash-out from brain glycogen is tracked. One application of this method has been to the study of brain glycogen metabolism in humans during hypoglycemia: data have shown that mobilization of brain glycogen is augmented during hypoglycemia and, after a single episode of hypoglycemia, glycogen synthesis rate is increased, suggesting that glycogen stores rebound to levels greater than baseline. Such studies suggest glycogen may serve as a potential energy reservoir in hypoglycemia and may participate in the brain's adaptation to recurrent hypoglycemia and eventual development of hypoglycemia unawareness. Beyond this focused area of study, 13C NMR spectroscopy has a broad potential for application in the study of brain glycogen metabolism and carries the promise of a better understanding of the role of brain glycogen in diabetes and other conditions. PMID:21732401

  6. Reassessing the relationship between brain size, life history, and metabolism at the marsupial/placental dichotomy.

    PubMed

    Weisbecker, Vera; Goswami, Anjali

    2014-09-01

    A vigorous discussion surrounds the question as to what enables some mammals--including primates and cetaceans--to evolve large brains. We recently published a study suggesting that the radiation of marsupial mammals is highly relevant to this question because of the unique reproductive and metabolic traits within this clade. In particular, we controversially suggested that marsupial brain sizes are not systematically smaller than those of placentals, and that elevated basal metabolic rates (BMR) are not linked to larger marsupial brains. As our dataset was found to contain some erroneous body size data, derived from a published source, we here use an updated and corrected dataset and employ standard as well as phylogenetically corrected analyses to re-assess and elaborate on our original conclusions. Our proposal that marsupials are not systematically smaller-brained than placentals remains supported, particularly when the unusually large-brained placental clade, Primates, is excluded. Use of the new dataset not only confirms that high metabolic rates are not associated with larger brain size in marsupials, but we additionally find some support for a striking negative correlation between BMR and brain size. The best supported correlates of large brain size remain the reproductive traits of weaning age and litter size. These results support our suggestion that mammalian brain sizes (including, by inference, those of monotremes) are predominantly constrained by the ability of females to fuel the growth of their offspring's large brains, rather than by the maintenance requirements of the adult brain. PMID:25186933

  7. Acute alcohol intoxication decreases glucose metabolism but increases acetate uptake in the human brain.

    PubMed

    Volkow, Nora D; Kim, Sung Won; Wang, Gene-Jack; Alexoff, David; Logan, Jean; Muench, Lisa; Shea, Colleen; Telang, Frank; Fowler, Joanna S; Wong, Christopher; Benveniste, Helene; Tomasi, Dardo

    2013-01-01

    Alcohol intoxication results in marked reductions in brain glucose metabolism, which we hypothesized reflect not just its GABAergic enhancing effects but also the metabolism of acetate as an alternative brain energy source. To test this hypothesis we separately assessed the effects of alcohol intoxication on brain glucose and acetate metabolism using Positron Emission Tomography (PET). We found that alcohol intoxication significantly decreased whole brain glucose metabolism (measured with FDG) with the largest decrements in cerebellum and occipital cortex and the smallest in the thalamus. In contrast, alcohol intoxication caused a significant increase in [1-(11)C]acetate brain uptake (measured as standard uptake value, SUV), with the largest increases occurring in the cerebellum and the smallest in the thalamus. In heavy alcohol drinkers [1-(11)C]acetate brain uptake during alcohol challenge tended to be higher than in occasional drinkers (p<0.06) and the increases in [1-(11)C]acetate uptake in cerebellum with alcohol were positively associated with the reported amount of alcohol consumed (r=0.66, p<0.01). Our findings corroborate a reduction of brain glucose metabolism during intoxication and document an increase in brain acetate uptake. The opposite changes observed between regional brain metabolic decrements and regional increases in [1-(11)C]acetate uptake support the hypothesis that during alcohol intoxication the brain may rely on acetate as an alternative brain energy source and provides preliminary evidence that heavy alcohol exposures may facilitate the use of acetate as an energy substrate. These findings raise the question of the potential therapeutic benefits that increasing plasma acetate concentration (i.e. ketogenic diets) may have in alcoholics undergoing alcohol detoxification. PMID:22947541

  8. Brain metabolism in autism. Resting cerebral glucose utilization rates as measured with positron emission tomography

    SciTech Connect

    Rumsey, J.M.; Duara, R.; Grady, C.; Rapoport, J.L.; Margolin, R.A.; Rapoport, S.I.; Cutler, N.R.

    1985-05-01

    The cerebral metabolic rate for glucose was studied in ten men (mean age = 26 years) with well-documented histories of infantile autism and in 15 age-matched normal male controls using positron emission tomography and (F-18) 2-fluoro-2-deoxy-D-glucose. Positron emission tomography was completed during rest, with reduced visual and auditory stimulation. While the autistic group as a whole showed significantly elevated glucose utilization in widespread regions of the brain, there was considerable overlap between the two groups. No brain region showed a reduced metabolic rate in the autistic group. Significantly more autistic, as compared with control, subjects showed extreme relative metabolic rates (ratios of regional metabolic rates to whole brain rates and asymmetries) in one or more brain regions.

  9. PET Radiotracers: crossing the blood-brain barrier and surviving metabolism

    PubMed Central

    Pike, Victor W.

    2009-01-01

    Radiotracers for imaging protein targets in living human brain with positron emission tomography (PET) are increasingly useful in clinical research and in drug development. Such radiotracers must fulfill many criteria, among which an ability to enter brain adequately and reversibly without contamination by troublesome radiometabolites is desirable for accurate measurement of the density of a target protein (e.g., neuroreceptor, transporter, enzyme or plaque). Candidate radiotracers may fail as a result of poor passive brain entry, rejection from brain by efflux transporters or undesirable metabolism. These issues are reviewed. Emerging PET radiotracers for measuring efflux transporter function, and new strategies for ameliorating radiotracer metabolism are discussed. A growing understanding of the molecular features affecting the brain penetration, metabolism and efflux transporter sensitivity of prospective radiotracers should ultimately lead to their more rational and efficient design, and also to their greater efficacy. PMID:19616318

  10. Childhood Brain Tumors, Residential Insecticide Exposure, and Pesticide Metabolism Genes

    PubMed Central

    Nielsen, Susan Searles; McKean-Cowdin, Roberta; Farin, Federico M.; Holly, Elizabeth A.; Preston-Martin, Susan; Mueller, Beth A.

    2010-01-01

    Background Insecticides that target the nervous system may play a role in the development of childhood brain tumors (CBTs). Constitutive genetic variation affects metabolism of these chemicals. Methods We analyzed population-based case–control data to examine whether CBT is associated with the functional genetic polymorphisms PON1C–108T, PON1Q192R, PON1L55M, BCHEA539T, FMO1C–9536A, FMO3E158K, ALDH3A1S134A, and GSTT1 (null). DNA was obtained from newborn screening archives for 201 cases and 285 controls, ≤ 10 years of age, and born in California or Washington State between 1978 and 1990. Conception-to-diagnosis home insecticide treatment history was ascertained by interview. Results We observed no biologically plausible main effects for any of the metabolic polymorphisms with CBT risk. However, we observed strong interactions between genotype and insecticide exposure during childhood. Among exposed children, CBT risk increased per PON1–108T allele [odds ratio (OR) = 1.8; 95% confidence interval (CI), 1.1–3.0] and FMO1–9536A (*6) allele (OR = 2.7; 95% CI, 1.2–5.9), whereas among children never exposed, CBT risk was not increased (PON1: OR = 0.7; 95% CI, 0.5–1.0, interaction p = 0.005; FMO1: OR = 1.0; 95% CI, 0.6–1.6, interaction p = 0.009). We observed a similar but statistically nonsignificant interaction between childhood exposure and BCHEA539T (interaction p = 0.08). These interactions were present among both Hispanic and non-Hispanic white children. Conclusion Based on known effects of these variants, these results suggest that exposure in childhood to organophosphorus and perhaps to carbamate insecticides in combination with a reduced ability to detoxify them may be associated with CBT. Confirmation in other studies is required. PMID:20056567

  11. Brain metabolism is significantly impaired at blood glucose below 6 mM and brain glucose below 1 mM in patients with severe traumatic brain injury

    PubMed Central

    2010-01-01

    Introduction The optimal blood glucose target following severe traumatic brain injury (TBI) must be defined. Cerebral microdialysis was used to investigate the influence of arterial blood and brain glucose on cerebral glucose, lactate, pyruvate, glutamate, and calculated indices of downstream metabolism. Methods In twenty TBI patients, microdialysis catheters inserted in the edematous frontal lobe were dialyzed at 1 μl/min, collecting samples at 60 minute intervals. Occult metabolic alterations were determined by calculating the lactate- pyruvate (L/P), lactate- glucose (L/Glc), and lactate- glutamate (L/Glu) ratios. Results Brain glucose was influenced by arterial blood glucose. Elevated L/P and L/Glc were significantly reduced at brain glucose above 1 mM, reaching lowest values at blood and brain glucose levels between 6-9 mM (P < 0.001). Lowest cerebral glutamate was measured at brain glucose 3-5 mM with a significant increase at brain glucose below 3 mM and above 6 mM. While L/Glu was significantly increased at low brain glucose levels, it was significantly decreased at brain glucose above 5 mM (P < 0.001). Insulin administration increased brain glutamate at low brain glucose, but prevented increase in L/Glu. Conclusions Arterial blood glucose levels appear to be optimal at 6-9 mM. While low brain glucose levels below 1 mM are detrimental, elevated brain glucose are to be targeted despite increased brain glutamate at brain glucose >5 mM. Pathogenity of elevated glutamate appears to be relativized by L/Glu and suggests to exclude insulin- induced brain injury. PMID:20141631

  12. Differential metabolism of 4-hydroxynonenal in liver, lung and brain of mice and rats

    SciTech Connect

    Zheng, Ruijin; Dragomir, Ana-Cristina; Mishin, Vladimir; Richardson, Jason R.; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2014-08-15

    The lipid peroxidation end-product 4-hydroxynonenal (4-HNE) is generated in tissues during oxidative stress. As a reactive aldehyde, it forms Michael adducts with nucleophiles, a process that disrupts cellular functioning. Liver, lung and brain are highly sensitive to xenobiotic-induced oxidative stress and readily generate 4-HNE. In the present studies, we compared 4-HNE metabolism in these tissues, a process that protects against tissue injury. 4-HNE was degraded slowly in total homogenates and S9 fractions of mouse liver, lung and brain. In liver, but not lung or brain, NAD(P)+ and NAD(P)H markedly stimulated 4-HNE metabolism. Similar results were observed in rat S9 fractions from these tissues. In liver, lung and brain S9 fractions, 4-HNE formed protein adducts. When NADH was used to stimulate 4-HNE metabolism, the formation of protein adducts was suppressed in liver, but not lung or brain. In both mouse and rat tissues, 4-HNE was also metabolized by glutathione S-transferases. The greatest activity was noted in livers of mice and in lungs of rats; relatively low glutathione S-transferase activity was detected in brain. In mouse hepatocytes, 4-HNE was rapidly taken up and metabolized. Simultaneously, 4-HNE-protein adducts were formed, suggesting that 4-HNE metabolism in intact cells does not prevent protein modifications. These data demonstrate that, in contrast to liver, lung and brain have a limited capacity to metabolize 4-HNE. The persistence of 4-HNE in these tissues may increase the likelihood of tissue injury during oxidative stress. - Highlights: • Lipid peroxidation generates 4-hydroxynonenal, a highly reactive aldehyde. • Rodent liver, but not lung or brain, is efficient in degrading 4-hydroxynonenal. • 4-hydroxynonenal persists in tissues with low metabolism, causing tissue damage.

  13. Brain glycogen—new perspectives on its metabolic function and regulation at the subcellular level

    PubMed Central

    Obel, Linea F.; Müller, Margit S.; Walls, Anne B.; Sickmann, Helle M.; Bak, Lasse K.; Waagepetersen, Helle S.; Schousboe, Arne

    2012-01-01

    Glycogen is a complex glucose polymer found in a variety of tissues, including brain, where it is localized primarily in astrocytes. The small quantity found in brain compared to e.g., liver has led to the understanding that brain glycogen is merely used during hypoglycemia or ischemia. In this review evidence is brought forward highlighting what has been an emerging understanding in brain energy metabolism: that glycogen is more than just a convenient way to store energy for use in emergencies—it is a highly dynamic molecule with versatile implications in brain function, i.e., synaptic activity and memory formation. In line with the great spatiotemporal complexity of the brain and thereof derived focus on the basis for ensuring the availability of the right amount of energy at the right time and place, we here encourage a closer look into the molecular and subcellular mechanisms underlying glycogen metabolism. Based on (1) the compartmentation of the interconnected second messenger pathways controlling glycogen metabolism (calcium and cAMP), (2) alterations in the subcellular location of glycogen-associated enzymes and proteins induced by the metabolic status and (3) a sequential component in the intermolecular mechanisms of glycogen metabolism, we suggest that glycogen metabolism in astrocytes is compartmentalized at the subcellular level. As a consequence, the meaning and importance of conventional terms used to describe glycogen metabolism (e.g., turnover) is challenged. Overall, this review represents an overview of contemporary knowledge about brain glycogen and its metabolism and function. However, it also has a sharp focus on what we do not know, which is perhaps even more important for the future quest of uncovering the roles of glycogen in brain physiology and pathology. PMID:22403540

  14. Extracellular Nucleotides in Exercise: Possible Effect on Brain Metabolism.

    ERIC Educational Resources Information Center

    Forrester, Tom

    1979-01-01

    A review of experiments which demonstrate the release of ATP from skeletal muscle, cardiac muscle, and active brain tissue. Effects of exogenously applied ATP to brain tissue are discussed in relation to whole body exercise. (Author/SA)

  15. New insights into coupling and uncoupling of cerebral blood flow and metabolism in the brain

    PubMed Central

    Venkat, Poornima; Chopp, Michael; Chen, Jieli

    2016-01-01

    The brain has high metabolic and energy needs and requires continuous cerebral blood flow (CBF), which is facilitated by a tight coupling between neuronal activity, CBF, and metabolism. Upon neuronal activation, there is an increase in energy demand, which is then met by a hemodynamic response that increases CBF. Such regional CBF increase in response to neuronal activation is observed using neuroimaging techniques such as functional magnetic resonance imaging and positron emission tomography. The mechanisms and mediators (eg, nitric oxide, astrocytes, and ion channels) that regulate CBF-metabolism coupling have been extensively studied. The neurovascular unit is a conceptual model encompassing the anatomical and metabolic interactions between the neurons, vascular components, and glial cells in the brain. It is compromised under disease states such as stroke, diabetes, hypertension, dementias, and with aging, all of which trigger a cascade of inflammatory responses that exacerbate brain damage. Hence, tight regulation and maintenance of neurovascular coupling is central for brain homeostasis. This review article also discusses the waste clearance pathways in the brain such as the glymphatic system. The glymphatic system is a functional waste clearance pathway that removes metabolic wastes and neurotoxins from the brain along paravascular channels. Disruption of the glymphatic system burdens the brain with accumulating waste and has been reported in aging as well as several neurological diseases. PMID:27374823

  16. New insights into coupling and uncoupling of cerebral blood flow and metabolism in the brain.

    PubMed

    Venkat, Poornima; Chopp, Michael; Chen, Jieli

    2016-06-30

    The brain has high metabolic and energy needs and requires continuous cerebral blood flow (CBF), which is facilitated by a tight coupling between neuronal activity, CBF, and metabolism. Upon neuronal activation, there is an increase in energy demand, which is then met by a hemodynamic response that increases CBF. Such regional CBF increase in response to neuronal activation is observed using neuroimaging techniques such as functional magnetic resonance imaging and positron emission tomography. The mechanisms and mediators (eg, nitric oxide, astrocytes, and ion channels) that regulate CBF-metabolism coupling have been extensively studied. The neurovascular unit is a conceptual model encompassing the anatomical and metabolic interactions between the neurons, vascular components, and glial cells in the brain. It is compromised under disease states such as stroke, diabetes, hypertension, dementias, and with aging, all of which trigger a cascade of inflammatory responses that exacerbate brain damage. Hence, tight regulation and maintenance of neurovascular coupling is central for brain homeostasis. This review article also discusses the waste clearance pathways in the brain such as the glymphatic system. The glymphatic system is a functional waste clearance pathway that removes metabolic wastes and neurotoxins from the brain along paravascular channels. Disruption of the glymphatic system burdens the brain with accumulating waste and has been reported in aging as well as several neurological diseases. PMID:27374823

  17. An ex Vivo Model for Evaluating Blood-Brain Barrier Permeability, Efflux, and Drug Metabolism.

    PubMed

    Hellman, Karin; Aadal Nielsen, Peter; Ek, Fredrik; Olsson, Roger

    2016-05-18

    The metabolism of drugs in the brain is difficult to study in most species because of enzymatic instability in vitro and interference from peripheral metabolism in vivo. A locust ex vivo model that combines brain barrier penetration, efflux, metabolism, and analysis of the unbound fraction in intact brains was evaluated using known drugs. Clozapine was analyzed, and its major metabolites, clozapine N-oxide (CNO) and N-desmethylclozapine (NDMC), were identified and quantified. The back-transformation of CNO into clozapine observed in humans was also observed in locusts. In addition, risperidone, citalopram, fluoxetine, and haloperidol were studied, and one preselected metabolite for each drug was analyzed, identified, and quantified. Metabolite identification studies of clozapine and midazolam showed that the locust brain was highly metabolically active, and 18 and 14 metabolites, respectively, were identified. The unbound drug fraction of clozapine, NDMC, carbamazepine, and risperidone was analyzed. In addition, coadministration of drugs with verapamil or fluvoxamine was performed to evaluate drug-drug interactions in all setups. All findings correlated well with the data in the literature for mammals except for the stated fact that CNO is a highly blood-brain barrier permeant compound. Overall, the experiments indicated that invertebrates might be useful for screening of blood-brain barrier permeation, efflux, metabolism, and analysis of the unbound fraction of drugs in the brain in early drug discovery. PMID:26930271

  18. Test-retest reproducibility for regional brain metabolic responses to lorazepam

    SciTech Connect

    Wang, G.J.; Volkow, N.D.; Overall, J. |||

    1996-05-01

    Changes in regional brain glucose metabolism as assessed with PET and FDG in response to acute administration of benzodiazepine agonists have been used as indicators of benzodiazepine-GABA receptor function. The purpose of this study was to assess the reproducibility of these responses. Sixteen healthy right-handed men were scanned with positron emission tomography (PET) and [F-18] fluorodeoxyglucose (FDG) twice: prior to placebo and prior to lorazepam (30 {mu}g/kg). The same double FDG procedure was repeated 6-8 weeks later to assess test-retest reproducibility. The regional absolute brain metabolic values obtained during the second evaluation were significantly lower than those obtained for the first evaluation regardless of condition (p {le} 0.001). Lorazepam significantly and consistently decreased whole brain metabolism and the magnitude as well as the regional pattern of the changes was comparable for both studies (12.3 {plus_minus} 6.9% and 13.7 {plus_minus} 7.4%). Lorazepam effects were largest in thalamus (22.2 {plus_minus} 8.9%). Relative metabolic measures ROI/global were highly reproducible both for drug as well as replication condition. This is the first study to measure test-retest reproducibility in regional brain metabolic response to a pharmacological challenge. While the global and regional absolute metabolic values were significantly lower for the repeated evaluation, the regional brain metabolic response to lorazepam was highly reproducible.

  19. Stressed-Out HSCs Turn Up p38α and Purine to Proliferate.

    PubMed

    Essers, Marieke A G

    2016-08-01

    Changes in cellular metabolism drive hematopoietic stem cell (HSC) behavior during homeostasis, although whether they control HSC behavior during stress conditions is unclear. In this issue of Cell Stem Cell, Karigane et al. (2016) identify a p38α-dependent pathway that alters purine metabolism in HSCs during stress hematopoiesis, promoting hematopoietic recovery. PMID:27494667

  20. Effects of Cell Phone Radiofrequency Signal Exposure on Brain Glucos Metabolism

    SciTech Connect

    Volkow, N.D.; Wang, G.; Volkow, N.D.; Tomasi, D.; Wang, G.-J.; Vaska, P.; Fowler, J.S.; Telang, F.; Alexoff, D.; Logan, J.; Wong, C.

    2011-03-01

    The dramatic increase in use of cellular telephones has generated concern about possible negative effects of radiofrequency signals delivered to the brain. However, whether acute cell phone exposure affects the human brain is unclear. To evaluate if acute cell phone exposure affects brain glucose metabolism, a marker of brain activity. Randomized crossover study conducted between January 1 and December 31, 2009, at a single US laboratory among 47 healthy participants recruited from the community. Cell phones were placed on the left and right ears and positron emission tomography with ({sup 18}F)fluorodeoxyglucose injection was used to measure brain glucose metabolism twice, once with the right cell phone activated (sound muted) for 50 minutes ('on' condition) and once with both cell phones deactivated ('off' condition). Statistical parametric mapping was used to compare metabolism between on and off conditions using paired t tests, and Pearson linear correlations were used to verify the association of metabolism and estimated amplitude of radiofrequency-modulated electromagnetic waves emitted by the cell phone. Clusters with at least 1000 voxels (volume >8 cm{sup 3}) and P < .05 (corrected for multiple comparisons) were considered significant. Brain glucose metabolism computed as absolute metabolism ({micro}mol/100 g per minute) and as normalized metabolism (region/whole brain). Whole-brain metabolism did not differ between on and off conditions. In contrast, metabolism in the region closest to the antenna (orbitofrontal cortex and temporal pole) was significantly higher for on than off conditions (35.7 vs 33.3 {micro}mol/100 g per minute; mean difference, 2.4 [95% confidence interval, 0.67-4.2]; P = .004). The increases were significantly correlated with the estimated electromagnetic field amplitudes both for absolute metabolism (R = 0.95, P < .001) and normalized metabolism (R = 0.89; P < .001). In healthy participants and compared with no exposure, 50-minute

  1. mTORC1 Induces Purine Synthesis Through Control of the Mitochondrial Tetrahydrofolate Cycle

    PubMed Central

    Ricoult, Stéphane J.H.; Asara, John M.; Manning, Brendan D.

    2016-01-01

    In response to growth signals, mTOR complex 1 (mTORC1) stimulates anabolic processes underlying cell growth. We found that mTORC1 increases metabolic flux through the de novo purine synthesis pathway in various mouse and human cells, thereby influencing the nucleotide pool available for nucleic acid synthesis. mTORC1 had transcriptional effects on multiple enzymes contributing to purine synthesis, with expression of the mitochondrial tetrahydrofolate (mTHF) cycle enzyme methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) being closely associated with mTORC1 signaling in both normal and cancer cells. MTHFD2 expression and purine synthesis were stimulated by ATF4, which was activated by mTORC1 independent of its canonical induction downstream of eIF2α phosphorylation. Thus, mTORC1 stimulates the mTHF cycle, which contributes one-carbon units to enhance production of purine nucleotides in response to growth signals. PMID:26912861

  2. Genetic and metabolomic analysis of AdeD and AdeI mutants of de novo purine biosynthesis: cellular models of de novo purine biosynthesis deficiency disorders

    PubMed Central

    Wilkinson, Terry G.; Baresova, Veronika; Skopova, Vaclava; Kmoch, Stanislav; Vacano, Guido N.; Zikanova, Marie; Patterson, David

    2014-01-01

    Purines are molecules essential for many cell processes, including RNA and DNA synthesis, regulation of enzyme activity, protein synthesis and function, energy metabolism and transfer, essential coenzyme function, and cell signaling. Purines are produced via the de novo purine biosynthesis pathway. Mutations in purine biosynthetic genes, for example phosphoribosylaminoimidazole carboxylase/phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS, E.C. 6.3.2.6/E.C. 4.1.1.21), can lead to developmental anomalies in lower vertebrates. Alterations in PAICS expression in humans have been associated with various types of cancer. Mutations in adenylosuccinate lyase (ADSL, E.C. 4.3.2.2) or 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase (ATIC, E.C. 2.1.2.3/E.C. 3.5.4.10) lead to inborn errors of metabolism with a range of clinical symptoms, including developmental delay, severe neurological symptoms, renal stones, combined immunodeficiency, and autistic features. The pathogenetic mechanism is unknown for any of these conditions, and no effective treatments exist. The study of cells carrying mutations in the various de novo purine biosynthesis pathway genes provides one approach to analysis of purine disorders. Here we report the characterization of AdeD Chinese hamster ovary (CHO) cells, which carry genetic mutations encoding p.E177K and p.W363* variants of PAICS. Both mutations impact PAICS structure and completely abolish its biosynthesis. Additionally, we describe a sensitive and rapid analytical method for detection of purine de novo biosynthesis intermediates based on high performance liquid chromatography with electrochemical detection. Using this technique we detected accumulation of AIR in AdeD cells. In AdeI cells, mutant for the ADSL gene, we detected accumulation of SAICAR and SAMP and, somewhat unexpectedly, accumulation of AIR. This method has great potential for metabolite profiling of de novo purine biosynthesis

  3. High-field proton magnetic resonance spectroscopy reveals metabolic effects of normal brain aging

    PubMed Central

    Harris, Janna L.; Yeh, Hung-Wen; Swerdlow, Russell H.; Choi, In-Young; Lee, Phil; Brooks, William M.

    2014-01-01

    Altered brain metabolism is likely to be an important contributor to normal cognitive decline and brain pathology in elderly individuals. To characterize the metabolic changes associated with normal brain aging, we used high-field proton magnetic resonance spectroscopy in vivo to quantify 20 neurochemicals in the hippocampus and sensorimotor cortex of young adult and aged rats. We found significant differences in the neurochemical profile of the aged brain when compared with younger adults, including lower aspartate, ascorbate, glutamate, and macromolecules, and higher glucose, myo-inositol, N-acetylaspartylglutamate, total choline, and glutamine. These neurochemical biomarkers point to specific cellular mechanisms that are altered in brain aging, such as bioenergetics, oxidative stress, inflammation, cell membrane turnover, and endogenous neuroprotection. Proton magnetic resonance spectroscopy may be a valuable translational approach for studying mechanisms of brain aging and pathology, and for investigating treatments to preserve or enhance cognitive function in aging. PMID:24559659

  4. EFFECTS OF CONTINUOUS-WAVE, PULSED, AND SINUSOIDAL-AMPLITUDE-MODULATED MICROWAVES ON BRAIN ENERGY METABOLISM

    EPA Science Inventory

    A comparison of the effects of continuous wave, sinusoidal-amplitude modulated, and pulsed square-wave-modulated 591-MHz microwave exposures on brain energy metabolism was made in male Sprague Dawley rats (175-225g). Brain NADH fluorescence, adensine triphosphate (ATP) concentrat...

  5. Brain Size and Cerebral Glucose Metabolic Rate in Nonspecific Retardation and Down Syndrome.

    ERIC Educational Resources Information Center

    Haier, Richard J.; And Others

    1995-01-01

    Brain size and cerebral glucose metabolic rate were determined for 10 individuals with mild mental retardation (MR), 7 individuals with Down syndrome (DS), and 10 matched controls. MR and DS groups both had brain volumes of about 80% compared to controls, with variance greatest within the MR group. (SLD)

  6. Purine Salvage Pathways among Borrelia Species▿

    PubMed Central

    Pettersson, Jonas; Schrumpf, Merry E.; Raffel, Sandra J.; Porcella, Stephen F.; Guyard, Cyril; Lawrence, Kevin; Gherardini, Frank C.; Schwan, Tom G.

    2007-01-01

    Genome sequencing projects on two relapsing fever spirochetes, Borrelia hermsii and Borrelia turicatae, revealed differences in genes involved in purine metabolism and salvage compared to those in the Lyme disease spirochete Borrelia burgdorferi. The relapsing fever spirochetes contained six open reading frames that are absent from the B. burgdorferi genome. These genes included those for hypoxanthine-guanine phosphoribosyltransferase (hpt), adenylosuccinate synthase (purA), adenylosuccinate lyase (purB), auxiliary protein (nrdI), the ribonucleotide-diphosphate reductase alpha subunit (nrdE), and the ribonucleotide-diphosphate reductase beta subunit (nrdF). Southern blot assays with multiple Borrelia species and isolates confirmed the presence of these genes in the relapsing fever group of spirochetes but not in B. burgdorferi and related species. TaqMan real-time reverse transcription-PCR demonstrated that the chromosomal genes (hpt, purA, and purB) were transcribed in vitro and in mice. Phosphoribosyltransferase assays revealed that, in general, B. hermsii exhibited significantly higher activity than did the B. burgdorferi cell lysate, and enzymatic activity was observed with adenine, hypoxanthine, and guanine as substrates. B. burgdorferi showed low but detectable phosphoribosyltransferase activity with hypoxanthine even though the genome lacks a discernible ortholog to the hpt gene in the relapsing fever spirochetes. B. hermsii incorporated radiolabeled hypoxanthine into RNA and DNA to a much greater extent than did B. burgdorferi. This complete pathway for purine salvage in the relapsing fever spirochetes may contribute, in part, to these spirochetes achieving high cell densities in blood. PMID:17502392

  7. Preserved pontine glucose metabolism in Alzheimer disease: A reference region for functional brain image (PET) analysis

    SciTech Connect

    Minoshima, Satoshi; Frey, K.A.; Foster, N.L.; Kuhl, D.W.

    1995-07-01

    Our goal was to examine regional preservation of energy metabolism in Alzheimer disease (AD) and to evaluate effects of PET data normalization to reference regions. Regional metabolic rates in the pons, thalamus, putamen, sensorimotor cortex, visual cortex, and cerebellum (reference regions) were determined stereotaxically and examined in 37 patients with probable AD and 22 normal controls based on quantitative {sup 18}FDG-PET measurements. Following normalization of metabolic rates of the parietotemporal association cortex and whole brain to each reference region, distinctions of the two groups were assessed. The pons showed the best preservation of glucose metabolism in AD. Other reference regions showed relatively preserved metabolism compared with the parietotemporal association cortex and whole brain, but had significant metabolic reduction. Data normalization to the pons not only enhanced statistical significance of metabolic reduction in the parietotemporal association cortex, but also preserved the presence of global cerebral metabolic reduction indicated in analysis of the quantitative data. Energy metabolism in the pons in probable AD is well preserved. The pons is a reliable reference for data normalization and will enhance diagnostic accuracy and efficiency of quantitative and nonquantitative functional brain imaging. 39 refs., 2 figs., 3 tabs.

  8. Divided attention and metabolic brain dysfunction in mild dementia of the Alzheimer's type.

    PubMed

    Nestor, P G; Parasuraman, R; Haxby, J V; Grady, C L

    1991-01-01

    The relationship between reaction time (RT) measures under single-task and dual-task conditions and resting levels of brain metabolism, as measured by positron emission tomography (PET), was examined in patients with mild dementia of the Alzheimer type (DAT) and age- and educationally-matched controls. Slowing of RT in dual-task but not single-task conditions correlated with reductions in brain metabolism in right premotor and right parietal association areas only for the mild DAT patients. The results suggest a relation between divided attention deficits and metabolic dysfunction of right frontal and parietal lobes in mild DAT patients. PMID:1886681

  9. Acute brain metabolic effects of cocaine in rhesus monkeys with a history of cocaine use.

    PubMed

    Henry, Porche' Kirkland; Murnane, Kevin S; Votaw, John R; Howell, Leonard L

    2010-12-01

    Cocaine addiction involves an escalation in drug intake which alters many brain functions. The present study documented cocaine-induced changes in brain metabolic activity as a function of cocaine self-administration history. Experimentally naive rhesus monkeys (N = 6) were given increasing access to cocaine under a fixed-ratio schedule of intravenous (i.v.) drug self-administration. PET imaging with F-18 labeled fluorodeoxyglucose (FDG) was used to measure acute intramuscular (i.m.) cocaine-induced changes in brain metabolism in the cocaine-naïve state, following 60 sessions under limited-access conditions (1 h/day), following 60 sessions under extended-access conditions (4 h/day), and following 4 weeks of drug withdrawal. In the cocaine-naïve state, cocaine-induced increases in brain metabolism were restricted to the prefrontal cortex. As cocaine exposure increased from limited to extended access, metabolic effects expanded throughout the frontal cortex and were induced within the striatum. Conversely, cocaine-induced activation was far less robust following withdrawal. The results highlight a progressive expansion of the metabolic effects of cocaine to include previously unaffected dopamine innervated brain regions as a consequence of cocaine self-administration history. The identification of brain regions progressively influenced by drug exposure may be highly relevant toward efforts to develop treatments for cocaine addiction. PMID:20680706

  10. Brain morphometric correlates of metabolic variables in HIV: the CHARTER study.

    PubMed

    Archibald, S L; McCutchan, J A; Sanders, C; Wolfson, T; Jernigan, T L; Ellis, R J; Ances, B M; Collier, A C; McArthur, J C; Morgello, S; Simpson, D M; Marra, C; Gelman, B B; Clifford, D B; Grant, I; Fennema-Notestine, C

    2014-12-01

    Obesity and other metabolic variables are associated with abnormal brain structural volumes and cognitive dysfunction in HIV-uninfected populations. Since individuals with HIV infection on combined antiretroviral therapy (CART) often have systemic metabolic abnormalities and changes in brain morphology and function, we examined associations among brain volumes and metabolic factors in the multisite CNS HIV AntiRetroviral Therapy Effects Research (CHARTER) cohort, cross-sectional study of 222 HIV-infected individuals. Metabolic variables included body mass index (BMI), total blood cholesterol (C), low- and high-density lipoprotein C (LDL-C and HDL-C), blood pressure, random blood glucose, and diabetes. MRI measured volumes of cerebral white matter, abnormal white matter, cortical and subcortical gray matter, and ventricular and sulcal CSF. Multiple linear regression models allowed us to examine metabolic variables separately and in combination to predict each regional volume. Greater BMI was associated with smaller cortical gray and larger white matter volumes. Higher total cholesterol (C) levels were associated with smaller cortex volumes; higher LDL-C was associated with larger cerebral white matter volumes, while higher HDL-C levels were associated with larger sulci. Higher blood glucose levels and diabetes were associated with more abnormal white matter. Multiple atherogenic metabolic factors contribute to regional brain volumes in HIV-infected, CART-treated patients, reflecting associations similar to those found in HIV-uninfected individuals. These risk factors may accelerate cerebral atherosclerosis and consequent brain alterations and cognitive dysfunction. PMID:25227933

  11. Relationship of impaired brain glucose metabolism to learning deficit in the senescence-accelerated mouse.

    PubMed

    Ohta, H; Nishikawa, H; Hirai, K; Kato, K; Miyamoto, M

    1996-10-11

    The relationship between brain glucose metabolism and learning deficit was examined in the senescence-accelerated-prone mouse (SAMP) 8, which has been proven to be a useful murine model of age-related behavioral disorders. SAMP8, 7 months old, exhibited marked learning impairment in the passive avoidance task, as compared with the control strain, senescence-accelerated-resistant mice (SAMR) 1. SAMP8 also exhibited a reduction in brain glucose metabolism, as indicated by a reduction in [14C]2-deoxyglucose accumulation in the brain following the intravenous injection impaired glucose metabolism correlated significantly with the learning impairment in all brain regions in SAMR1 and SAMP8. In the SAMP8, a significant correlation was observed in the posterior half of the cerebral cortex. These results suggest that the SAMP8 strain is a useful model of not only age-related behavioral disorders, but also glucose hypometabolism observed in aging and dementias. PMID:8905734

  12. Probing astrocyte metabolism in vivo: proton magnetic resonance spectroscopy in the injured and aging brain.

    PubMed

    Harris, Janna L; Choi, In-Young; Brooks, William M

    2015-01-01

    Following a brain injury, the mobilization of reactive astrocytes is part of a complex neuroinflammatory response that may have both harmful and beneficial effects. There is also evidence that astrocytes progressively accumulate in the normal aging brain, increasing in both number and size. These astrocyte changes in normal brain aging may, in the event of an injury, contribute to the exacerbated injury response and poorer outcomes observed in older traumatic brain injury (TBI) survivors. Here we present our view that proton magnetic resonance spectroscopy ((1)H-MRS), a neuroimaging approach that probes brain metabolism within a defined region of interest, is a promising technique that may provide insight into astrocyte metabolic changes in the injured and aging brain in vivo. Although (1)H-MRS does not specifically differentiate between cell types, it quantifies certain metabolites that are highly enriched in astrocytes (e.g., Myo-inositol, mlns), or that are involved in metabolic shuttling between astrocytes and neurons (e.g., glutamate and glutamine). Here we focus on metabolites detectable by (1)H-MRS that may serve as markers of astrocyte metabolic status. We review the physiological roles of these metabolites, discuss recent (1)H-MRS findings in the injured and aging brain, and describe how an astrocyte metabolite profile approach might be useful in clinical medicine and clinical trials. PMID:26578948

  13. Effects of brain amyloid deposition and reduced glucose metabolism on the default mode of brain function in normal aging.

    PubMed

    Kikuchi, Mitsuru; Hirosawa, Tetsu; Yokokura, Masamichi; Yagi, Shunsuke; Mori, Norio; Yoshikawa, Etsuji; Yoshihara, Yujiro; Sugihara, Genichi; Takebayashi, Kiyokazu; Iwata, Yasuhide; Suzuki, Katsuaki; Nakamura, Kazuhiko; Ueki, Takatoshi; Minabe, Yoshio; Ouchi, Yasuomi

    2011-08-01

    Brain β-amyloid (Aβ) deposition during normal aging is highlighted as an initial pathogenetic event in the development of Alzheimer's disease. Many recent brain imaging studies have focused on areas deactivated during cognitive tasks [the default mode network (DMN), i.e., medial frontal gyrus/anterior cingulate cortex and precuneus/posterior cingulate cortex], where the strength of functional coordination was more or less affected by cerebral Aβ deposits. In the present positron emission tomography study, to investigate whether regional glucose metabolic alterations and Aβ deposits seen in nondemented elderly human subjects (n = 22) are of pathophysiological importance in changes of brain hemodynamic coordination in DMN during normal aging, we measured cerebral glucose metabolism with [(18)F]FDG, Aβ deposits with [(11)C]PIB, and regional cerebral blood flow during control and working memory tasks by H(2)(15)O on the same day. Data were analyzed using both region of interest and statistical parametric mapping. Our results indicated that the amount of Aβ deposits was negatively correlated with hemodynamic similarity between medial frontal and medial posterior regions, and the lower similarity was associated with poorer working memory performance. In contrast, brain glucose metabolism was not related to this medial hemodynamic similarity. These findings suggest that traceable Aβ deposition, but not glucose hypometabolism, in the brain plays an important role in occurrence of neuronal discoordination in DMN along with poor working memory in healthy elderly people. PMID:21813680

  14. Molecular anatomy of the gut-brain axis revealed with transgenic technologies: implications in metabolic research

    PubMed Central

    Udit, Swalpa; Gautron, Laurent

    2013-01-01

    Neurons residing in the gut-brain axis remain understudied despite their important role in coordinating metabolic functions. This lack of knowledge is observed, in part, because labeling gut-brain axis neurons and their connections using conventional neuroanatomical methods is inherently challenging. This article summarizes genetic approaches that enable the labeling of distinct populations of gut-brain axis neurons in living laboratory rodents. In particular, we review the respective strengths and limitations of currently available genetic and viral approaches that permit the marking of gut-brain axis neurons without the need for antibodies or conventional neurotropic tracers. Finally, we discuss how these methodological advances are progressively transforming the study of the healthy and diseased gut-brain axis in the context of its role in chronic metabolic diseases, including diabetes and obesity. PMID:23914153

  15. Is lactate a volume transmitter of metabolic states of the brain?

    PubMed Central

    Bergersen, Linda H.; Gjedde, Albert

    2012-01-01

    We present the perspective that lactate is a volume transmitter of cellular signals in brain that acutely and chronically regulate the energy metabolism of large neuronal ensembles. From this perspective, we interpret recent evidence to mean that lactate transmission serves the maintenance of network metabolism by two different mechanisms, one by regulating the formation of cAMP via the lactate receptor GPR81, the other by adjusting the NADH/NAD+ redox ratios, both linked to the maintenance of brain energy turnover and possibly cerebral blood flow. The role of lactate as mediator of metabolic information rather than metabolic substrate answers a number of questions raised by the controversial oxidativeness of astrocytic metabolism and its contribution to neuronal function. PMID:22457647

  16. Large-scale in silico modeling of metabolic interactions between cell types in the human brain.

    PubMed

    Lewis, Nathan E; Schramm, Gunnar; Bordbar, Aarash; Schellenberger, Jan; Andersen, Michael P; Cheng, Jeffrey K; Patel, Nilam; Yee, Alex; Lewis, Randall A; Eils, Roland; König, Rainer; Palsson, Bernhard Ø

    2010-12-01

    Metabolic interactions between multiple cell types are difficult to model using existing approaches. Here we present a workflow that integrates gene expression data, proteomics data and literature-based manual curation to model human metabolism within and between different types of cells. Transport reactions are used to account for the transfer of metabolites between models of different cell types via the interstitial fluid. We apply the method to create models of brain energy metabolism that recapitulate metabolic interactions between astrocytes and various neuron types relevant to Alzheimer's disease. Analysis of the models identifies genes and pathways that may explain observed experimental phenomena, including the differential effects of the disease on cell types and regions of the brain. Constraint-based modeling can thus contribute to the study and analysis of multicellular metabolic processes in the human tissue microenvironment and provide detailed mechanistic insight into high-throughput data analysis. PMID:21102456

  17. Hypoxic and ischemic hypoxia exacerbate brain injury associated with metabolic encephalopathy in laboratory animals.

    PubMed Central

    Vexler, Z S; Ayus, J C; Roberts, T P; Fraser, C L; Kucharczyk, J; Arieff, A I

    1994-01-01

    Hypoxemia is a major comorbid factor for permanent brain damage in several metabolic encephalopathies. To determine whether hypoxia impairs brain adaptation to hyponatremia, worsening brain edema, we performed in vitro and in vivo studies in cats and rats with hyponatremia plus either ischemic or hypoxic hypoxia. Mortality with hypoxic hypoxia was 0%; with hyponatremia, 22%; and with hyponatremia+hypoxia, 100%. Hyponatremia in cats produced brain edema, with a compensatory decrease of brain sodium. Ischemic hypoxia also resulted in brain edema, but with elevation of brain sodium. However, when ischemic hypoxia was superimposed upon hyponatremia, there was elevation of brain sodium with further elevation of water. Outward sodium transport in cat cerebral cortex synaptosomes was measured via three major pathways through which brain osmolality can be decreased. After hyponatremia, sodium transport was significantly altered such that brain cell osmolality would decrease: 44% increase in Na(+)-K(+)-ATPase transport activity (ouabain inhibitable); 26% decrease in amiloride-sensitive sodium uptake. The change in veratridine-stimulated sodium uptake was not significant (P > 0.05). When ischemic hypoxia was superimposed upon hyponatremia, all of the cerebral adaptive changes induced by hyponatremia alone were eliminated. Thus, hypoxia combined with hyponatremia produces a major increase in brain edema and mortality, probably by eliminating the compensatory mechanisms of sodium transport initiated by hyponatremia that tend to minimize brain swelling. Images PMID:8282795

  18. The "selfish brain" hypothesis for metabolic abnormalities in bipolar disorder and schizophrenia.

    PubMed

    Mansur, Rodrigo Barbachan; Brietzke, Elisa

    2012-09-01

    Metabolic abnormalities are frequent in patients with schizophrenia and bipolar disorder (BD), leading to a high prevalence of diabetes and metabolic syndrome in this population. Moreover, mortality rates among patients are higher than in the general population, especially due to cardiovascular diseases. Several neurobiological systems involved in energy metabolism have been shown to be altered in both illnesses; however, the cause of metabolic abnormalities and how they relate to schizophrenia and BD pathophysiology are still largely unknown. The "selfish brain" theory is a recent paradigm postulating that, in order to maintain its own energy supply stable, the brain modulates energy metabolism in the periphery by regulation of both allocation and intake of nutrients. We hypothesize that the metabolic alterations observed in these disorders are a result of an inefficient regulation of the brain energy supply and its compensatory mechanisms. The selfish brain theory can also expand our understanding of stress adaptation and neuroprogression in schizophrenia and BD, and, overall, can have important clinical implications for both illnesses. PMID:25923003

  19. The collective therapeutic potential of cerebral ketone metabolism in traumatic brain injury

    PubMed Central

    Prins, Mayumi L.; Matsumoto, Joyce H.

    2014-01-01

    The postinjury period of glucose metabolic depression is accompanied by adenosine triphosphate decreases, increased flux of glucose through the pentose phosphate pathway, free radical production, activation of poly-ADP ribose polymerase via DNA damage, and inhibition of glyceraldehyde dehydrogenase (a key glycolytic enzyme) via depletion of the cytosolic NAD pool. Under these post-brain injury conditions of impaired glycolytic metabolism, glucose becomes a less favorable energy substrate. Ketone bodies are the only known natural alternative substrate to glucose for cerebral energy metabolism. While it has been demonstrated that other fuels (pyruvate, lactate, and acetyl-L-carnitine) can be metabolized by the brain, ketones are the only endogenous fuel that can contribute significantly to cerebral metabolism. Preclinical studies employing both pre- and postinjury implementation of the ketogenic diet have demonstrated improved structural and functional outcome in traumatic brain injury (TBI) models, mild TBI/concussion models, and spinal cord injury. Further clinical studies are required to determine the optimal method to induce cerebral ketone metabolism in the postinjury brain, and to validate the neuroprotective benefits of ketogenic therapy in humans. PMID:24721741

  20. Insulin Stimulates S100B Secretion and These Proteins Antagonistically Modulate Brain Glucose Metabolism.

    PubMed

    Wartchow, Krista Minéia; Tramontina, Ana Carolina; de Souza, Daniela F; Biasibetti, Regina; Bobermin, Larissa D; Gonçalves, Carlos-Alberto

    2016-06-01

    Brain metabolism is highly dependent on glucose, which is derived from the blood circulation and metabolized by the astrocytes and other neural cells via several pathways. Glucose uptake in the brain does not involve insulin-dependent glucose transporters; however, this hormone affects the glucose influx to the brain. Changes in cerebrospinal fluid levels of S100B (an astrocyte-derived protein) have been associated with alterations in glucose metabolism; however, there is no evidence whether insulin modulates glucose metabolism and S100B secretion. Herein, we investigated the effect of S100B on glucose metabolism, measuring D-(3)H-glucose incorporation in two preparations, C6 glioma cells and acute hippocampal slices, and we also investigated the effect of insulin on S100B secretion. Our results showed that: (a) S100B at physiological levels decreases glucose uptake, through the multiligand receptor RAGE and mitogen-activated protein kinase/ERK signaling, and (b) insulin stimulated S100B secretion via PI3K signaling. Our findings indicate the existence of insulin-S100B modulation of glucose utilization in the brain tissue, and may improve our understanding of glucose metabolism in several conditions such as ketosis, streptozotocin-induced dementia and pharmacological exposure to antipsychotics, situations that lead to changes in insulin signaling and extracellular levels of S100B. PMID:26875731

  1. Metabolite mapping reveals severe widespread perturbation of multiple metabolic processes in Huntington's disease human brain.

    PubMed

    Patassini, Stefano; Begley, Paul; Xu, Jingshu; Church, Stephanie J; Reid, Suzanne J; Kim, Eric H; Curtis, Maurice A; Dragunow, Mike; Waldvogel, Henry J; Snell, Russell G; Unwin, Richard D; Faull, Richard L M; Cooper, Garth J S

    2016-09-01

    Huntington's disease (HD) is a genetically-mediated neurodegenerative disorder wherein the aetiological defect is a mutation in the Huntington's gene (HTT), which alters the structure of the huntingtin protein (Htt) through lengthening of its polyglutamine tract, thus initiating a cascade that ultimately leads to premature death. However, neurodegeneration typically manifests in HD only in middle age, and mechanisms linking the causative mutation to brain disease are poorly understood. Brain metabolism is severely perturbed in HD, and some studies have indicated a potential role for mutant Htt as a driver of these metabolic aberrations. Here, our objective was to determine the effects of HD on brain metabolism by measuring levels of polar metabolites in regions known to undergo varying degrees of damage. We performed gas-chromatography/mass spectrometry-based metabolomic analyses in a case-control study of eleven brain regions in short post-mortem-delay human tissue from nine well-characterized HD patients and nine matched controls. In each patient, we measured metabolite content in representative tissue-samples from eleven brain regions that display varying degrees of damage in HD, thus identifying the presence and abundance of 63 different metabolites from several molecular classes, including carbohydrates, amino acids, nucleosides, and neurotransmitters. Robust alterations in regional brain-metabolite abundances were observed in HD patients: these included changes in levels of small molecules that play important roles as intermediates in the tricarboxylic-acid and urea cycles, and amino-acid metabolism. Our findings point to widespread disruption of brain metabolism and indicate a complex phenotype beyond the gradient of neuropathologic damage observed in HD brain. PMID:27267344

  2. Xanthine metabolism in Bacillus subtilis: characterization of the xpt-pbuX operon and evidence for purine- and nitrogen-controlled expression of genes involved in xanthine salvage and catabolism.

    PubMed Central

    Christiansen, L C; Schou, S; Nygaard, P; Saxild, H H

    1997-01-01

    The xpt and pbuX genes from Bacillus subtilis were cloned, and their nucleotide sequences were determined. The xpt gene encodes a specific xanthine phosphoribosyltransferase, and the pbuX gene encodes a xanthine-specific purine permease. The genes have overlapping coding regions, and Northern (RNA) blot analysis indicated an operon organization. The translation of the second gene, pbuX, was strongly dependent on the translation of the first gene, xpt. Expression of the operon was repressed by purines, and the effector molecules appear to be hypoxanthine and guanine. When hypoxanthine and guanine were added together, a 160-fold repression was observed. The regulation of expression was at the level of transcription, and we propose that a transcription termination-antitermination control mechanism similar to the one suggested for the regulation of the purine biosynthesis operon exists. The expression of the xpt-pbuX operon was reduced when hypoxanthine served as the sole nitrogen source. Under these conditions, the level of the hypoxanthine- and xanthine-degrading enzyme, xanthine dehydrogenase, was induced more than 80-fold. The xanthine dehydrogenase level was completely derepressed in a glnA (glutamine synthetase) genetic background. Although the regulation of the expression of the xpt-pbuX operon was found to be affected by the nitrogen source, it was normal in a glnA mutant strain. This result suggests the existence of different signalling pathways for repression of the transcription of the xpt-pbuX operon and the induction of xanthine dehydrogenase. PMID:9098051

  3. Preserved brain metabolic activity at the age of 96 years.

    PubMed

    Apostolova, Ivayla; Lange, Catharina; Spies, Lothar; Ritter, Kerstin; Mäurer, Anja; Seybold, Joachim; Fiebach, Jochen B; Steinhagen-Thiessen, Elisabeth; Buchert, Ralph

    2016-09-01

    Loss of brain tissue becomes notable to cerebral magnetic resonance imaging (MRI) at age 30 years, and progresses more rapidly from mid 60s. The incidence of dementia increases exponentially with age, and is all too frequent in the oldest old (≥ 90 years of age), the fastest growing age group in many countries. However, brain pathology and cognitive decline are not inevitable, even at extremely old age (den Dunnen et al., 2008). PMID:27160670

  4. Functional integration changes in regional brain glucose metabolism from childhood to adulthood.

    PubMed

    Trotta, Nicola; Archambaud, Frédérique; Goldman, Serge; Baete, Kristof; Van Laere, Koen; Wens, Vincent; Van Bogaert, Patrick; Chiron, Catherine; De Tiège, Xavier

    2016-08-01

    The aim of this study was to investigate the age-related changes in resting-state neurometabolic connectivity from childhood to adulthood (6-50 years old). Fifty-four healthy adult subjects and twenty-three pseudo-healthy children underwent [(18) F]-fluorodeoxyglucose positron emission tomography at rest. Using statistical parametric mapping (SPM8), age and age squared were first used as covariate of interest to identify linear and non-linear age effects on the regional distribution of glucose metabolism throughout the brain. Then, by selecting voxels of interest (VOI) within the regions showing significant age-related metabolic changes, a psychophysiological interaction (PPI) analysis was used to search for age-induced changes in the contribution of VOIs to the metabolic activity in other brain areas. Significant linear or non-linear age-related changes in regional glucose metabolism were found in prefrontal cortices (DMPFC/ACC), cerebellar lobules, and thalamo-hippocampal areas bilaterally. Decreases were found in the contribution of thalamic, hippocampal, and cerebellar regions to DMPFC/ACC metabolic activity as well as in the contribution of hippocampi to preSMA and right IFG metabolic activities. Increases were found in the contribution of the right hippocampus to insular cortex and of the cerebellar lobule IX to superior parietal cortex metabolic activities. This study evidences significant linear or non-linear age-related changes in regional glucose metabolism of mesial prefrontal, thalamic, mesiotemporal, and cerebellar areas, associated with significant modifications in neurometabolic connectivity involving fronto-thalamic, fronto-hippocampal, and fronto-cerebellar networks. These changes in functional brain integration likely represent a metabolic correlate of age-dependent effects on sensory, motor, and high-level cognitive functional networks. Hum Brain Mapp 37:3017-3030, 2016. © 2016 Wiley Periodicals, Inc. PMID:27133021

  5. Brain glucose metabolism in adults with ataxia-telangiectasia and their asymptomatic relatives.

    PubMed

    Volkow, Nora D; Tomasi, Dardo; Wang, Gene-Jack; Studentsova, Yana; Margus, Brad; Crawford, Thomas O

    2014-06-01

    Ataxia-telangiectasia is a recessive genetic disorder (ATM is the mutated gene) of childhood with severe motor impairments and whereas homozygotes manifest the disorder, heterozygotes are asymptomatic. Structural brain imaging and post-mortem studies in individuals with ataxia-telangiectasia have reported cerebellar atrophy; but abnormalities of motor control characteristic of extrapyramidal dysfunction suggest impairment of broader motor networks. Here, we investigated possible dysfunction in other brain areas in individuals with ataxia-telangiectasia and tested for brain changes in asymptomatic relatives to assess if heterozygocity affects brain function. We used positron emission tomography and (18)F-fluorodeoxyglucose to measure brain glucose metabolism (quantified as µmol/100 g/min), which serves as a marker of brain function, in 10 adults with ataxia-telangiectasia, 19 non-affected adult relatives (12 siblings, seven parents) and 29 age-matched healthy controls. Statistical parametric mapping and region of interest analyses were used to compare individuals with ataxia-telangiectasia, asymptomatic relatives, and unrelated controls. We found that participants with ataxia-telangiectasia had lower metabolism in cerebellar hemispheres (14%, P < 0.001), anterior vermis (40%, P < 0.001) and fusiform gyrus (20%, P < 0.001) compared with controls or siblings, and lower metabolism in hippocampus (12%, P = 0.05) compared with controls, and showed significant intersubject variability (decreases in vermis ranged from 18% to 60%). Participants with ataxia-telangiectasia also had higher metabolism in globus pallidus (16%, P = 0.05), which correlated negatively with motor performance. Asymptomatic relatives had lower metabolism in anterior vermis (12%; P = 0.01) and hippocampus (19%; P = 0.002) than controls. Our results indicate that, in addition to the expected decrease in cerebellar metabolism, participants with ataxia-telangiectasia had widespread changes in metabolic

  6. AMPK Activation via Modulation of De Novo Purine Biosynthesis with an Inhibitor of ATIC Homodimerization.

    PubMed

    Asby, Daniel J; Cuda, Francesco; Beyaert, Maxime; Houghton, Franchesca D; Cagampang, Felino R; Tavassoli, Ali

    2015-07-23

    5-Aminoimidazole-4-carboxamide ribonucleotide (known as ZMP) is a metabolite produced in de novo purine biosynthesis and histidine biosynthesis, but only utilized in the cell by a homodimeric bifunctional enzyme (called ATIC) that catalyzes the last two steps of de novo purine biosynthesis. ZMP is known to act as an allosteric activator of the cellular energy sensor adenosine monophosphate-activated protein kinase (AMPK), when exogenously administered as the corresponding cell-permeable ribonucleoside. Here, we demonstrate that endogenous ZMP, produced by the aforementioned metabolic pathways, is also capable of activating AMPK. Using an inhibitor of ATIC homodimerization to block the ninth step of de novo purine biosynthesis, we demonstrate that the subsequent increase in endogenous ZMP activates AMPK and its downstream signaling pathways. We go on to illustrate the viability of using this approach to AMPK activation as a therapeutic strategy with an in vivo mouse model for metabolic disorders. PMID:26144885

  7. Resting cerebral metabolism correlates with skin conductance and functional brain activation during fear conditioning.

    PubMed

    Linnman, Clas; Zeidan, Mohamed A; Pitman, Roger K; Milad, Mohammed R

    2012-02-01

    We investigated whether resting brain metabolism can be used to predict autonomic and neuronal responses during fear conditioning in 20 healthy humans. Regional cerebral metabolic rate for glucose was measured via positron emission tomography at rest. During conditioning, autonomic responses were measured via skin conductance, and blood oxygen level dependent signal was measured via functional magnetic resonance imaging. Resting dorsal anterior cingulate metabolism positively predicted differentially conditioned skin conductance responses. Midbrain and insula resting metabolism negatively predicted midbrain and insula functional reactivity, while dorsal anterior cingulate resting metabolism positively predicted midbrain functional reactivity. We conclude that resting metabolism in limbic areas can predict some aspects of psychophysiological and neuronal reactivity during fear learning. PMID:22207247

  8. Resting cerebral metabolism correlates with skin conductance and functional brain activation during fear conditioning

    PubMed Central

    Linnman, Clas; Zeidan, Mohamed A.; Pitman, Roger K; Milad, Mohammed R.

    2011-01-01

    We investigated whether resting brain metabolism can be used to predict autonomic and neuronal responses during fear conditioning in 20 healthy humans. Regional cerebral metabolic rate for glucose was measured via positron emission tomography at rest. During conditioning, autonomic responses were measured via skin conductance, and blood oxygen level dependent signal was measured via functional magnetic resonance imaging. Resting dorsal anterior cingulate metabolism positively predicted differentially conditioned skin conductance responses. Midbrain and insula resting metabolism negatively predicted midbrain and insula functional reactivity, while dorsal anterior cingulate resting metabolism positively predicted midbrain functional reactivity. We conclude that resting metabolism in limbic areas can predict some aspects of psychophysiological and neuronal reactivity during fear learning. PMID:22207247

  9. Brain metabolism and memory in age differentiated healthy adults

    SciTech Connect

    Riege, W.H.; Metter, E.J.; Kuhl, D.E.; Phelps, M.E.

    1984-01-01

    The (F-18)-fluorodeoxyglucose (FDG) scan method with positron emission tomography was used to determine age differences in factors underlying both the performances on 18 multivariate memory tests and the rates of cerebral glucose utilization in 9 left and 9 right hemispheric regions of 23 healthy adults in the age range of 27-78 years. Young persons below age 42 had higher scores than middle-aged (age 48-65 yrs) or old (age 66-78 yrs) persons on two of seven factors, reflecting memory for sequences of words or events together with metabolic indices of Broca's (and its mirror region) and Thalamic areas. Reliable correlations (critical r = 0.48, p<0.02) indicated that persons with high Superior Frontal and low Caudate-Thalamic metabolic measures were the same who performed well in tests of memory for sentences, story, designs, and complex patterns; while metabolic indices of Occipital and Posterior Temporal regions were correlated with the decision criteria adopted in testing. The mean metabolic ratio (b = -0.033, F = 5.47, p<0.03) and those of bilateral Broca's regions (b = -0.002, F = 13.65, p<0.001) significantly declined with age. The functional interrelation of frontal-subcortical metabolic ratios with memory processing was more prominent in younger persons under study and implicates decreasing thalamo-frontal interaction with age.

  10. Single-cell imaging tools for brain energy metabolism: a review

    PubMed Central

    San Martín, Alejandro; Sotelo-Hitschfeld, Tamara; Lerchundi, Rodrigo; Fernández-Moncada, Ignacio; Ceballo, Sebastian; Valdebenito, Rocío; Baeza-Lehnert, Felipe; Alegría, Karin; Contreras-Baeza, Yasna; Garrido-Gerter, Pamela; Romero-Gómez, Ignacio; Barros, L. Felipe

    2014-01-01

    Abstract. Neurophotonics comes to light at a time in which advances in microscopy and improved calcium reporters are paving the way toward high-resolution functional mapping of the brain. This review relates to a parallel revolution in metabolism. We argue that metabolism needs to be approached both in vitro and in vivo, and that it does not just exist as a low-level platform but is also a relevant player in information processing. In recent years, genetically encoded fluorescent nanosensors have been introduced to measure glucose, glutamate, ATP, NADH, lactate, and pyruvate in mammalian cells. Reporting relative metabolite levels, absolute concentrations, and metabolic fluxes, these sensors are instrumental for the discovery of new molecular mechanisms. Sensors continue to be developed, which together with a continued improvement in protein expression strategies and new imaging technologies, herald an exciting era of high-resolution characterization of metabolism in the brain and other organs. PMID:26157964

  11. Metabolic Profiling and Phenotyping of Central Nervous System Diseases: Metabolites Bring Insights into Brain Dysfunctions.

    PubMed

    Dumas, Marc-Emmanuel; Davidovic, Laetitia

    2015-09-01

    Metabolic phenotyping corresponds to the large-scale quantitative and qualitative analysis of the metabolome i.e., the low-molecular weight <1 KDa fraction in biological samples, and provides a key opportunity to advance neurosciences. Proton nuclear magnetic resonance and mass spectrometry are the main analytical platforms used for metabolic profiling, enabling detection and quantitation of a wide range of compounds of particular neuro-pharmacological and physiological relevance, including neurotransmitters, secondary messengers, structural lipids, as well as their precursors, intermediates and degradation products. Metabolic profiling is therefore particularly indicated for the study of central nervous system by probing metabolic and neurochemical profiles of the healthy or diseased brain, in preclinical models or in human samples. In this review, we introduce the analytical and statistical requirements for metabolic profiling. Then, we focus on key studies in the field of metabolic profiling applied to the characterization of animal models and human samples of central nervous system disorders. We highlight the potential of metabolic profiling for pharmacological and physiological evaluation, diagnosis and drug therapy monitoring of patients affected by brain disorders. Finally, we discuss the current challenges in the field, including the development of systems biology and pharmacology strategies improving our understanding of metabolic signatures and mechanisms of central nervous system diseases. PMID:25616565

  12. Metabolic acceleration and the evolution of human brain size and life history.

    PubMed

    Pontzer, Herman; Brown, Mary H; Raichlen, David A; Dunsworth, Holly; Hare, Brian; Walker, Kara; Luke, Amy; Dugas, Lara R; Durazo-Arvizu, Ramon; Schoeller, Dale; Plange-Rhule, Jacob; Bovet, Pascal; Forrester, Terrence E; Lambert, Estelle V; Thompson, Melissa Emery; Shumaker, Robert W; Ross, Stephen R

    2016-05-19

    Humans are distinguished from the other living apes in having larger brains and an unusual life history that combines high reproductive output with slow childhood growth and exceptional longevity. This suite of derived traits suggests major changes in energy expenditure and allocation in the human lineage, but direct measures of human and ape metabolism are needed to compare evolved energy strategies among hominoids. Here we used doubly labelled water measurements of total energy expenditure (TEE; kcal day(-1)) in humans, chimpanzees, bonobos, gorillas and orangutans to test the hypothesis that the human lineage has experienced an acceleration in metabolic rate, providing energy for larger brains and faster reproduction without sacrificing maintenance and longevity. In multivariate regressions including body size and physical activity, human TEE exceeded that of chimpanzees and bonobos, gorillas and orangutans by approximately 400, 635 and 820 kcal day(-1), respectively, readily accommodating the cost of humans' greater brain size and reproductive output. Much of the increase in TEE is attributable to humans' greater basal metabolic rate (kcal day(-1)), indicating increased organ metabolic activity. Humans also had the greatest body fat percentage. An increased metabolic rate, along with changes in energy allocation, was crucial in the evolution of human brain size and life history. PMID:27144364

  13. Energy Metabolism of the Brain, Including the Cooperation between Astrocytes and Neurons, Especially in the Context of Glycogen Metabolism.

    PubMed

    Falkowska, Anna; Gutowska, Izabela; Goschorska, Marta; Nowacki, Przemysław; Chlubek, Dariusz; Baranowska-Bosiacka, Irena

    2015-01-01

    Glycogen metabolism has important implications for the functioning of the brain, especially the cooperation between astrocytes and neurons. According to various research data, in a glycogen deficiency (for example during hypoglycemia) glycogen supplies are used to generate lactate, which is then transported to neighboring neurons. Likewise, during periods of intense activity of the nervous system, when the energy demand exceeds supply, astrocyte glycogen is immediately converted to lactate, some of which is transported to the neurons. Thus, glycogen from astrocytes functions as a kind of protection against hypoglycemia, ensuring preservation of neuronal function. The neuroprotective effect of lactate during hypoglycemia or cerebral ischemia has been reported in literature. This review goes on to emphasize that while neurons and astrocytes differ in metabolic profile, they interact to form a common metabolic cooperation. PMID:26528968

  14. Energy Metabolism of the Brain, Including the Cooperation between Astrocytes and Neurons, Especially in the Context of Glycogen Metabolism

    PubMed Central

    Falkowska, Anna; Gutowska, Izabela; Goschorska, Marta; Nowacki, Przemysław; Chlubek, Dariusz; Baranowska-Bosiacka, Irena

    2015-01-01

    Glycogen metabolism has important implications for the functioning of the brain, especially the cooperation between astrocytes and neurons. According to various research data, in a glycogen deficiency (for example during hypoglycemia) glycogen supplies are used to generate lactate, which is then transported to neighboring neurons. Likewise, during periods of intense activity of the nervous system, when the energy demand exceeds supply, astrocyte glycogen is immediately converted to lactate, some of which is transported to the neurons. Thus, glycogen from astrocytes functions as a kind of protection against hypoglycemia, ensuring preservation of neuronal function. The neuroprotective effect of lactate during hypoglycemia or cerebral ischemia has been reported in literature. This review goes on to emphasize that while neurons and astrocytes differ in metabolic profile, they interact to form a common metabolic cooperation. PMID:26528968

  15. Quantitative rates of brain glucose metabolism distinguish minimally conscious from vegetative state patients

    PubMed Central

    Stender, Johan; Kupers, Ron; Rodell, Anders; Thibaut, Aurore; Chatelle, Camille; Bruno, Marie-Aurélie; Gejl, Michael; Bernard, Claire; Hustinx, Roland; Laureys, Steven; Gjedde, Albert

    2015-01-01

    The differentiation of the vegetative or unresponsive wakefulness syndrome (VS/UWS) from the minimally conscious state (MCS) is an important clinical issue. The cerebral metabolic rate of glucose (CMRglc) declines when consciousness is lost, and may reveal the residual cognitive function of these patients. However, no quantitative comparisons of cerebral glucose metabolism in VS/UWS and MCS have yet been reported. We calculated the regional and whole-brain CMRglc of 41 patients in the states of VS/UWS (n=14), MCS (n=21) or emergence from MCS (EMCS, n=6), and healthy volunteers (n=29). Global cortical CMRglc in VS/UWS and MCS averaged 42% and 55% of normal, respectively. Differences between VS/UWS and MCS were most pronounced in the frontoparietal cortex, at 42% and 60% of normal. In brainstem and thalamus, metabolism declined equally in the two conditions. In EMCS, metabolic rates were indistinguishable from those of MCS. Ordinal logistic regression predicted that patients are likely to emerge into MCS at CMRglc above 45% of normal. Receiver-operating characteristics showed that patients in MCS and VS/UWS can be differentiated with 82% accuracy, based on cortical metabolism. Together these results reveal a significant correlation between whole-brain energy metabolism and level of consciousness, suggesting that quantitative values of CMRglc reveal consciousness in severely brain-injured patients. PMID:25294128

  16. Quantitative rates of brain glucose metabolism distinguish minimally conscious from vegetative state patients.

    PubMed

    Stender, Johan; Kupers, Ron; Rodell, Anders; Thibaut, Aurore; Chatelle, Camille; Bruno, Marie-Aurélie; Gejl, Michael; Bernard, Claire; Hustinx, Roland; Laureys, Steven; Gjedde, Albert

    2015-01-01

    The differentiation of the vegetative or unresponsive wakefulness syndrome (VS/UWS) from the minimally conscious state (MCS) is an important clinical issue. The cerebral metabolic rate of glucose (CMRglc) declines when consciousness is lost, and may reveal the residual cognitive function of these patients. However, no quantitative comparisons of cerebral glucose metabolism in VS/UWS and MCS have yet been reported. We calculated the regional and whole-brain CMRglc of 41 patients in the states of VS/UWS (n=14), MCS (n=21) or emergence from MCS (EMCS, n=6), and healthy volunteers (n=29). Global cortical CMRglc in VS/UWS and MCS averaged 42% and 55% of normal, respectively. Differences between VS/UWS and MCS were most pronounced in the frontoparietal cortex, at 42% and 60% of normal. In brainstem and thalamus, metabolism declined equally in the two conditions. In EMCS, metabolic rates were indistinguishable from those of MCS. Ordinal logistic regression predicted that patients are likely to emerge into MCS at CMRglc above 45% of normal. Receiver-operating characteristics showed that patients in MCS and VS/UWS can be differentiated with 82% accuracy, based on cortical metabolism. Together these results reveal a significant correlation between whole-brain energy metabolism and level of consciousness, suggesting that quantitative values of CMRglc reveal consciousness in severely brain-injured patients. PMID:25294128

  17. Metabolism of acetyl-L-carnitine for energy and neurotransmitter synthesis in the immature rat brain

    PubMed Central

    Scafidi, Susanna; Fiskum, Gary; Lindauer, Steven L.; Bamford, Penelope; Shi, Da; Hopkins, Irene; McKenna, Mary C.

    2016-01-01

    Acetyl-L-carnitine (ALCAR) is an endogenous metabolic intermediate that facilitates the influx and efflux of acetyl groups across the mitochondrial inner membrane. Exogenously administered ALCAR has been used as a nutritional supplement and also as an experimental drug with reported neuroprotective properties and effects on brain metabolism. The aim of this study was to determine oxidative metabolism of ALCAR in the immature rat forebrain. Metabolism was studied in 21 day old rat brain at 15, 60 and 120 minutes after an intraperitoneal injection of [2-13C]acetyl-L-carnitine. The amount, pattern, and fractional enrichment of 13C-labeled metabolites were determined by ex vivo 13C-NMR spectroscopy. Metabolism of the acetyl moiety from [2-13C]ALCAR via the tricarboxylic acid (TCA) cycle led to incorporation of label into the C4, C3 and C2 positions of glutamate (GLU), glutamine (GLN) and GABA. Labeling patterns indicated that [2-13C]ALCAR was metabolized by both neurons and glia; however, the percent enrichment was higher in GLN and GABA than in GLU, demonstrating high metabolism in astrocytes and GABAergic neurons. Incorporation of label into the C3 position of alanine, both C3 and C2 of lactate, and the C1 and C5 positions of glutamate and glutamine demonstrated that [2-13C]ALCAR was actively metabolized via the pyruvate recycling pathway. The enrichment of metabolites with 13C from metabolism of ALCAR was highest in alanine C3 (10%) and lactate C3 (9%), with considerable enrichment in GABA C4 (8%), GLN C3 (~4%) and GLN C5 (5%). Overall, our 13C-NMR studies reveal that the acetyl moiety of ALCAR is metabolized for energy in both astrocytes and neurons and the label incorporated into the neurotransmitters glutamate and GABA. Cycling ratios showed prolonged cycling of carbon from the acetyl moiety of ALCAR in the TCA cycle. Labeling of compounds formed from metabolism of [2-13C]ALCAR via the pyruvate recycling pathway was higher than values reported for other

  18. Multichannel optical brain imaging to separate cerebral vascular, tissue metabolic, and neuronal effects of cocaine

    NASA Astrophysics Data System (ADS)

    Ren, Hugang; Luo, Zhongchi; Yuan, Zhijia; Pan, Yingtian; Du, Congwu

    2012-02-01

    Characterization of cerebral hemodynamic and oxygenation metabolic changes, as well neuronal function is of great importance to study of brain functions and the relevant brain disorders such as drug addiction. Compared with other neuroimaging modalities, optical imaging techniques have the potential for high spatiotemporal resolution and dissection of the changes in cerebral blood flow (CBF), blood volume (CBV), and hemoglobing oxygenation and intracellular Ca ([Ca2+]i), which serves as markers of vascular function, tissue metabolism and neuronal activity, respectively. Recently, we developed a multiwavelength imaging system and integrated it into a surgical microscope. Three LEDs of λ1=530nm, λ2=570nm and λ3=630nm were used for exciting [Ca2+]i fluorescence labeled by Rhod2 (AM) and sensitizing total hemoglobin (i.e., CBV), and deoxygenated-hemoglobin, whereas one LD of λ1=830nm was used for laser speckle imaging to form a CBF mapping of the brain. These light sources were time-sharing for illumination on the brain and synchronized with the exposure of CCD camera for multichannel images of the brain. Our animal studies indicated that this optical approach enabled simultaneous mapping of cocaine-induced changes in CBF, CBV and oxygenated- and deoxygenated hemoglobin as well as [Ca2+]i in the cortical brain. Its high spatiotemporal resolution (30μm, 10Hz) and large field of view (4x5 mm2) are advanced as a neuroimaging tool for brain functional study.

  19. IMAGING BRAIN SIGNAL TRANSDUCTION AND METABOLISM VIA ARACHIDONIC AND DOCOSAHEXAENOIC ACID IN ANIMALS AND HUMANS

    PubMed Central

    Basselin, Mireille; Ramadan, Epolia; Rapoport, Stanley I.

    2012-01-01

    The polyunsaturated fatty acids (PUFAs), arachidonic acid (AA, 20:4n-6) and docosahexaenoic acid (DHA, 22:6n-3), important second messengers in brain, are released from membrane phospholipid following receptor-mediated activation of specific phospholipase A2 (PLA2) enzymes. We developed an in vivo method in rodents using quantitative autoradiography to image PUFA incorporation into brain from plasma, and showed that their incorporation rates equal their rates of metabolic consumption by brain. Thus, quantitative imaging of unesterified plasma AA or DHA incorporation into brain can be used as a biomarker of brain PUFA metabolism and neurotransmission. We have employed our method to image and quantify effects of mood stabilizers on brain AA/DHA incorporation during neurotransmission by muscarinic M1,3,5, serotonergic 5-HT2A/2C, dopaminergic D2-like (D2, D3, D4) or glutamatergic N-methyl-D-aspartic acid (NMDA) receptors, and effects of inhibition of acetylcholinesterase, of selective serotonin and dopamine reuptake transporter inhibitors, of neuroinflammation (HIV-1 and lipopolysaccharide) and excitotoxicity, and in genetically modified rodents. The method has been extended for the use with positron emission tomography (PET), and can be employed to determine how human brain AA/DHA signaling and consumption are influenced by diet, aging, disease and genetics. PMID:22178644

  20. Analysis of purine metabolites in maternal serum for evaluating the risk of gestosis.

    PubMed

    Senyavina, N V; Khaustova, S A; Grebennik, T K; Pavlovich, S V

    2013-09-01

    Metabolome analysis of the serum from pregnant patients aimed at detection of low-molecular-weight biomarkers of gestation process disorders indicated a relationship between the metabolic profile of maternal serum and risk of gestosis. In women with pre-eclampsia or preterm delivery, analysis of serum purine metabolites revealed changes in the metabolite concentrations, associated with pregnancy complications. PMID:24288739

  1. Ghrelin action in the brain controls adipocyte metabolism

    PubMed Central

    Theander-Carrillo, Claudia; Wiedmer, Petra; Cettour-Rose, Philippe; Nogueiras, Ruben; Perez-Tilve, Diego; Pfluger, Paul; Castaneda, Tamara R.; Muzzin, Patrick; Schürmann, Annette; Szanto, Ildiko; Tschöp, Matthias H.; Rohner-Jeanrenaud, Françoise

    2006-01-01

    Many homeostatic processes, including appetite and food intake, are controlled by neuroendocrine circuits involving the CNS. The CNS also directly regulates adipocyte metabolism, as we have shown here by examining central action of the orexigenic hormone ghrelin. Chronic central ghrelin infusion resulted in increases in the glucose utilization rate of white and brown adipose tissue without affecting skeletal muscle. In white adipocytes, mRNA expression of various fat storage–promoting enzymes such as lipoprotein lipase, acetyl-CoA carboxylase α, fatty acid synthase, and stearoyl-CoA desaturase–1 was markedly increased, while that of the rate-limiting step in fat oxidation, carnitine palmitoyl transferase–1α, was decreased. In brown adipocytes, central ghrelin infusion resulted in lowered expression of the thermogenesis-related mitochondrial uncoupling proteins 1 and 3. These ghrelin effects were dose dependent, occurred independently from ghrelin-induced hyperphagia, and seemed to be mediated by the sympathetic nervous system. Additionally, the expression of some fat storage enzymes was decreased in ghrelin-deficient mice, which led us to conclude that central ghrelin is of physiological relevance in the control of cell metabolism in adipose tissue. These results unravel the existence of what we believe to be a new CNS-based neuroendocrine circuit regulating metabolic homeostasis of adipose tissue. PMID:16767221

  2. DIFFERENTIAL EFFECTS OF 200, 591, AND 2,450 MHZ RADIATION ON RAT BRAIN ENERGY METABOLISM

    EPA Science Inventory

    Three key compounds in brain metabolism have been measured during and after exposure to continuous wave radiofrequency radiation at 200, 591, and 2,450 MHz. Frequency-dependent changes have been found for all three compounds. Changes in NADH fluorescence have been measured on the...

  3. Glucose and oxygen metabolism after penetrating ballistic-like brain injury

    PubMed Central

    Gajavelli, Shyam; Kentaro, Shimoda; Diaz, Julio; Yokobori, Shoji; Spurlock, Markus; Diaz, Daniel; Jackson, Clayton; Wick, Alexandra; Zhao, Weizhao; Leung, Lai Y; Shear, Deborah; Tortella, Frank; Bullock, M Ross

    2015-01-01

    Traumatic brain injury (TBI) is a major cause of death and disability in all age groups. Among TBI, penetrating traumatic brain injuries (PTBI) have the worst prognosis and represent the leading cause of TBI-related morbidity and death. However, there are no specific drugs/interventions due to unclear pathophysiology. To gain insights we looked at cerebral metabolism in a PTBI rat model: penetrating ballistic-like brain injury (PBBI). Early after injury, regional cerebral oxygen tension and consumption significantly decreased in the ipsilateral cortex in the PBBI group compared with the control group. At the same time point, glucose uptake was significantly reduced globally in the PBBI group compared with the control group. Examination of Fluorojade B-stained brain sections at 24 hours after PBBI revealed an incomplete overlap of metabolic impairment and neurodegeneration. As expected, the injury core had the most severe metabolic impairment and highest neurodegeneration. However, in the peri-lesional area, despite similar metabolic impairment, there was lesser neurodegeneration. Given our findings, the data suggest the presence of two distinct zones of primary injury, of which only one recovers. We anticipate the peri-lesional area encompassing the PBBI ischemic penumbra, could be salvaged by acute therapies. PMID:25669903

  4. Plasma Hypoxanthine-Guanine Phosphoribosyl Transferase Activity in Bottlenose Dolphins Contributes to Avoiding Accumulation of Non-recyclable Purines.

    PubMed

    López-Cruz, Roberto I; Crocker, Daniel E; Gaxiola-Robles, Ramón; Bernal, Jaime A; Real-Valle, Roberto A; Lugo-Lugo, Orlando; Zenteno-Savín, Tania

    2016-01-01

    Marine mammals are exposed to ischemia/reperfusion and hypoxia/reoxygenation during diving. During oxygen deprivation, adenosine triphosphate (ATP) breakdown implies purine metabolite accumulation, which in humans is associated with pathological conditions. Purine recycling in seals increases in response to prolonged fasting and ischemia. Concentrations of metabolites and activities of key enzymes in purine metabolism were examined in plasma and red blood cells from bottlenose dolphins (Tursiops truncatus) and humans. Hypoxanthine and inosine monophosphate concentrations were higher in plasma from dolphins than humans. Plasma hypoxanthine-guanine phosphoribosyl transferase (HGPRT) activity in dolphins suggests an elevated purine recycling rate, and a mechanism for avoiding accumulation of non-recyclable purines (xanthine and uric acid). Red blood cell concentrations of hypoxanthine, adenosine diphosphate, ATP and guanosine triphosphate were lower in dolphins than in humans; adenosine monophosphate and nicotinamide adenine dinucleotide concentrations were higher in dolphins. HGPRT activity in red blood cells was higher in humans than in dolphins. The lower concentrations of purine catabolism and recycling by-products in plasma from dolphins could be beneficial in providing substrates for recovery of ATP depleted during diving or vigorous swimming. These results suggest that purine salvage in dolphins could be a mechanism for delivering nucleotide precursors to tissues with high ATP and guanosine triphosphate requirements. PMID:27375492

  5. Plasma Hypoxanthine-Guanine Phosphoribosyl Transferase Activity in Bottlenose Dolphins Contributes to Avoiding Accumulation of Non-recyclable Purines

    PubMed Central

    López-Cruz, Roberto I.; Crocker, Daniel E.; Gaxiola-Robles, Ramón; Bernal, Jaime A.; Real-Valle, Roberto A.; Lugo-Lugo, Orlando; Zenteno-Savín, Tania

    2016-01-01

    Marine mammals are exposed to ischemia/reperfusion and hypoxia/reoxygenation during diving. During oxygen deprivation, adenosine triphosphate (ATP) breakdown implies purine metabolite accumulation, which in humans is associated with pathological conditions. Purine recycling in seals increases in response to prolonged fasting and ischemia. Concentrations of metabolites and activities of key enzymes in purine metabolism were examined in plasma and red blood cells from bottlenose dolphins (Tursiops truncatus) and humans. Hypoxanthine and inosine monophosphate concentrations were higher in plasma from dolphins than humans. Plasma hypoxanthine-guanine phosphoribosyl transferase (HGPRT) activity in dolphins suggests an elevated purine recycling rate, and a mechanism for avoiding accumulation of non-recyclable purines (xanthine and uric acid). Red blood cell concentrations of hypoxanthine, adenosine diphosphate, ATP and guanosine triphosphate were lower in dolphins than in humans; adenosine monophosphate and nicotinamide adenine dinucleotide concentrations were higher in dolphins. HGPRT activity in red blood cells was higher in humans than in dolphins. The lower concentrations of purine catabolism and recycling by-products in plasma from dolphins could be beneficial in providing substrates for recovery of ATP depleted during diving or vigorous swimming. These results suggest that purine salvage in dolphins could be a mechanism for delivering nucleotide precursors to tissues with high ATP and guanosine triphosphate requirements. PMID:27375492

  6. Metabolism of AM404 From Acetaminophen at Human Therapeutic Dosages in the Rat Brain

    PubMed Central

    Muramatsu, Shun; Shiraishi, Seiji; Miyano, Kanako; Sudo, Yuka; Toda, Akiko; Mogi, Masayuki; Hara, Mayumi; Yokoyama, Akinobu; Kawasaki, Yoshihiko; Taniguchi, Mikio; Uezono, Yasuhito

    2016-01-01

    Background: Acetaminophen, an analgesic and antipyretic drug, has been used clinically for more than a century. Previous studies showed that acetaminophen undergoes metabolic transformations to form an analgesic compound, N-(4-hydroxyphenyl) arachidonamide (AM404), in the rodent brain. However, these studies were performed with higher concentrations of acetaminophen than are used in humans. Objectives: The aim of the present study was to examine the metabolism of AM404 from acetaminophen in the rat brain at a concentration of 20 mg/kg, which is used in therapeutic practice in humans, and to compare the pharmacokinetics between them. Materials and Methods: We used rat brains to investigate the metabolism of AM404 from acetaminophen at concentrations (20 mg/kg) used in humans. In addition, we determined the mean pharmacokinetic parameters for acetaminophen and its metabolites, including AM404. Results: The maximum plasma concentrations of acetaminophen and AM404 in the rat brain were 15.8 µg/g and 150 pg/g, respectively, with corresponding AUC0-2h values of 8.96 μg hour/g and 117 pg hour/g. The tmax for both acetaminophen and AM404 was 0.25 hour. Conclusions: These data suggest that AM404’s concentration-time profile in the brain is similar to those of acetaminophen and its other metabolites. Measurement of blood acetaminophen concentration seems to reflect the concentration of the prospective bioactive substance, AM404. PMID:27110534

  7. Metabolic connectivity mapping reveals effective connectivity in the resting human brain.

    PubMed

    Riedl, Valentin; Utz, Lukas; Castrillón, Gabriel; Grimmer, Timo; Rauschecker, Josef P; Ploner, Markus; Friston, Karl J; Drzezga, Alexander; Sorg, Christian

    2016-01-12

    Directionality of signaling among brain regions provides essential information about human cognition and disease states. Assessing such effective connectivity (EC) across brain states using functional magnetic resonance imaging (fMRI) alone has proven difficult, however. We propose a novel measure of EC, termed metabolic connectivity mapping (MCM), that integrates undirected functional connectivity (FC) with local energy metabolism from fMRI and positron emission tomography (PET) data acquired simultaneously. This method is based on the concept that most energy required for neuronal communication is consumed postsynaptically, i.e., at the target neurons. We investigated MCM and possible changes in EC within the physiological range using "eyes open" versus "eyes closed" conditions in healthy subjects. Independent of condition, MCM reliably detected stable and bidirectional communication between early and higher visual regions. Moreover, we found stable top-down signaling from a frontoparietal network including frontal eye fields. In contrast, we found additional top-down signaling from all major clusters of the salience network to early visual cortex only in the eyes open condition. MCM revealed consistent bidirectional and unidirectional signaling across the entire cortex, along with prominent changes in network interactions across two simple brain states. We propose MCM as a novel approach for inferring EC from neuronal energy metabolism that is ideally suited to study signaling hierarchies in the brain and their defects in brain disorders. PMID:26712010

  8. Effect of MCI-186 on ischemia-induced changes in monoamine metabolism in rat brain.

    PubMed

    Oishi, R; Itoh, Y; Nishibori, M; Watanabe, T; Nishi, H; Saeki, K

    1989-11-01

    We examined the effects of MCI-186 (3-methyl-1-phenyl-2-pyrazolin-5-one), a novel free radical scavenger and an inhibitor of ischemia-induced brain edema, on monoamine metabolism in the brains of both normal and ischemic rats. In normal rats, 3 mg/kg i.v. MCI-186, a dose that prevents ischemic brain edema, had no significant effect on brain concentrations of dopamine, norepinephrine, 5-hydroxytryptamine, or their metabolites. After the injection of 5 microliters of 3% polyvinyl acetate into the left internal carotid artery, concentrations of 3,4-dihydroxyphenylacetic acid and homovanillic acid markedly increased, but that of norepinephrine decreased, in the left telencephalon of embolized rats compared with control rats injected with vehicle; the concentration of 5-hydroxyindoleacetic acid also increased slightly. These effects were maximal 2 hours after embolization. The turnover rate of dopamine between 6 and 8 hours after embolization was significantly higher but that of norepinephrine was slightly lower than that in vehicle-treated rats. When rats were treated with 3 mg/kg i.v. MCI-186 immediately after the injection of polyvinyl acetate, the embolization-induced changes in monoamine metabolism were less marked. Our results suggest that MCI-186 attenuates ischemia-induced changes in brain monoamine metabolism, probably due to its free radical scavenging action, although it has no marked effect in normal rats. PMID:2815191

  9. Metabolic connectivity mapping reveals effective connectivity in the resting human brain

    PubMed Central

    Riedl, Valentin; Utz, Lukas; Castrillón, Gabriel; Grimmer, Timo; Rauschecker, Josef P.; Drzezga, Alexander; Sorg, Christian

    2016-01-01

    Directionality of signaling among brain regions provides essential information about human cognition and disease states. Assessing such effective connectivity (EC) across brain states using functional magnetic resonance imaging (fMRI) alone has proven difficult, however. We propose a novel measure of EC, termed metabolic connectivity mapping (MCM), that integrates undirected functional connectivity (FC) with local energy metabolism from fMRI and positron emission tomography (PET) data acquired simultaneously. This method is based on the concept that most energy required for neuronal communication is consumed postsynaptically, i.e., at the target neurons. We investigated MCM and possible changes in EC within the physiological range using “eyes open” versus “eyes closed” conditions in healthy subjects. Independent of condition, MCM reliably detected stable and bidirectional communication between early and higher visual regions. Moreover, we found stable top-down signaling from a frontoparietal network including frontal eye fields. In contrast, we found additional top-down signaling from all major clusters of the salience network to early visual cortex only in the eyes open condition. MCM revealed consistent bidirectional and unidirectional signaling across the entire cortex, along with prominent changes in network interactions across two simple brain states. We propose MCM as a novel approach for inferring EC from neuronal energy metabolism that is ideally suited to study signaling hierarchies in the brain and their defects in brain disorders. PMID:26712010

  10. Refined Analysis of Brain Energy Metabolism Using In Vivo Dynamic Enrichment of 13C Multiplets

    PubMed Central

    Dehghani M., Masoumeh; Duarte, João M. N.; Kunz, Nicolas; Gruetter, Rolf

    2016-01-01

    Carbon-13 nuclear magnetic resonance spectroscopy in combination with the infusion of 13C-labeled precursors is a unique approach to study in vivo brain energy metabolism. Incorporating the maximum information available from in vivo localized 13C spectra is of importance to get broader knowledge on cerebral metabolic pathways. Metabolic rates can be quantitatively determined from the rate of 13C incorporation into amino acid neurotransmitters such as glutamate and glutamine using suitable mathematical models. The time course of multiplets arising from 13C-13C coupling between adjacent carbon atoms was expected to provide additional information for metabolic modeling leading to potential improvements in the estimation of metabolic parameters. The aim of the present study was to extend two-compartment neuronal/glial modeling to include dynamics of 13C isotopomers available from fine structure multiplets in 13C spectra of glutamate and glutamine measured in vivo in rats brain at 14.1 T, termed bonded cumomer approach. Incorporating the labeling time courses of 13C multiplets of glutamate and glutamine resulted in elevated precision of the estimated fluxes in rat brain as well as reduced correlations between them. PMID:26969691

  11. The brain at work: a cerebral metabolic manifestation of central fatigue?

    PubMed

    Dalsgaard, Mads K; Secher, Niels H

    2007-11-15

    Central fatigue refers to circumstances in which strength appears to be limited by the ability of the central nervous system to recruit motoneurons. Central fatigue manifests when the effort to contract skeletal muscles is intense and, thus, is aggravated when exercise is performed under stress, whereas it becomes attenuated following training. Central fatigue has not been explained, but the cerebral metabolic response to intense exercise, as to other modalities of cerebral activation, is a reduction in its "metabolic ratio" (MR), i.e., the brain's uptake of oxygen relative to that of carbohydrate. At rest the MR is close to 6 but during intense whole-body exercise it decreases to less than 3, with the uptake of lactate becoming as important as that of glucose. It remains debated what underlies this apparent inability of the brain to oxidize the carbohydrate taken up, but it may approach approximately 10 mmol glucose equivalents. In the case of exercise, a concomitant uptake of ammonium for formation of amino acids may account for only approximately 10% of this "extra" carbohydrate taken up. Also, accumulation of intermediates in metabolic pathways and compartmentalization of metabolism between astrocytes and neurons are avenues that have to be explored. Depletion of glycogen stores and subsequent supercompensation during periods of low neuronal activity may not only play a role but also link brain metabolism to its function. PMID:17394258

  12. Lactography as an approach to monitor glucose metabolism on-line in brain and muscle.

    PubMed

    Korf, J; de Boer, J

    1990-01-01

    1. Thus far metabolic processes in the intact animal (or man) have been studied either by the analysis of body fluids, of biopsies, of tissue obtained post mortem or by techniques, requiring dedicated and expensive equipment (such as positron emission tomography or magnetic resonance spectroscopy). 2. Here we describe a relatively simple and inexpensive technique, that can be applied in vivo to study metabolism in brain regions and muscle in the freely moving rat and in human peripheral tissue. 3. The method is based on microdialysis allowing continuous sampling from the extracellular space, the enzymatic conversion of lactate and the on-line detection of fluorescent NADH. 4. Examples of the application of our technique include the monitoring of lactate efflux from various brain regions of behaving animals under a variety of stress exposures, during ischemia or hypoxia and drug treatments. 5. The results indicate that in brain lactate is not exclusively formed under hypoxia and that neuronal activation leads also to lactate formation, possibly due to the compartmentation of both the involved enzymes and the energy metabolism. 6. The increase of lactate formation in contracting or ischemic muscle or during exercise could also be followed on-line in the rat, suggesting that our approach allows the continuous monitoring of anaerobic metabolism in man e.g. during traumatic or arteriosclerotic limb ischemia or lactic acidosis in shock states. 7. The principle of our approach can easily be adapted to other metabolites, thus enabling to monitor other metabolic pathways in vivo as well. PMID:2276411

  13. Purine salvage pathways of Bacillus subtilis and effect of guanine on growth of GMP reductase mutants.

    PubMed

    Endo, T; Uratani, B; Freese, E

    1983-07-01

    We have isolated numerous mutants containing mutations in the salvage pathways of purine synthesis. The mutations cause deficiencies in adenine phosphoribosyltransferase (adeF), in hypoxanthine-guanine phosphoribosyltransferase (guaF), in adenine deaminase (adeC), in inosine-guanosine phosphorylase, (guaP), and in GMP reductase (guaC). The physiological properties of mutants containing one or more of these mutations and corresponding enzyme measurements have been used to derive a metabolic chart of the purine salvage pathway of Bacillus subtilis. PMID:6408059

  14. Purine salvage pathways of Bacillus subtilis and effect of guanine on growth of GMP reductase mutants.

    PubMed Central

    Endo, T; Uratani, B; Freese, E

    1983-01-01

    We have isolated numerous mutants containing mutations in the salvage pathways of purine synthesis. The mutations cause deficiencies in adenine phosphoribosyltransferase (adeF), in hypoxanthine-guanine phosphoribosyltransferase (guaF), in adenine deaminase (adeC), in inosine-guanosine phosphorylase, (guaP), and in GMP reductase (guaC). The physiological properties of mutants containing one or more of these mutations and corresponding enzyme measurements have been used to derive a metabolic chart of the purine salvage pathway of Bacillus subtilis. PMID:6408059

  15. Studies on the control of 4-aminobutyrate metabolism in 'synaptosomal' and free rat brain mitochondria.

    PubMed Central

    Walsh, J M; Clark, J B

    1976-01-01

    1. The specific activities of 4-aminobutyrate aminotransferase (EC 2.6.1.19) and succinate semialdehyde dehydrogenase (EC 1.2.1.16) were significantly higher in brain mitochondria of non-synaptic origin (fraction M) than those derived from the lysis of synaptosomes (fraction SM2). 2. The metabolisms of 4-aminobutyrate in both 'free' (non-synaptic, fraction M) and 'synaptic' (fraction SM2) rat brain mitochondria was studied under various conditions. 3. It is proposed that 4-aminobutyrate enters both types of brain mitochondria by a non-carrier-mediated process. 4. The rate of 4-aminobutyrate metabolism was in all cases higher in the 'free' (fraction M) brain mitochondria than in the synaptic (fraction SM2) mitochondria, paralleling the differences in the specific activities of the 4-aminobutyrate-shunt enzymes. 5. The intramitochondrial concentration of 2-oxoglutarate appears to be an important controlling parameter in the rate of 4-aminobutyrate metabolism, since, although 2-oxoglutarate is required, high concentrations (2.5 mM) of extramitochondrial 2-oxoglutarate inhibit the formation of aspartate via the glutamate-oxaloacetate transaminase. 6. The redox state of the intramitochondrial NAD pool is also important in the control of 4-aminobutyrate metabolism; NADH exhibits competitive inhibition of 4-aminobutyrate metabolism by both mitochondrial populations with an apparent Ki of 102 muM. 7. Increased potassium concentrations stimulate 4-aminobutyrate metabolsim in the synaptic mitochondria but not in 'free' brain mitochondria. This is discussed with respect to the putative transmitter role of 4-aminobutyrate. PMID:188415

  16. The evaluation of insulin as a metabolic signal influencing behavior via the brain.

    PubMed

    Woods, S C; Chavez, M; Park, C R; Riedy, C; Kaiyala, K; Richardson, R D; Figlewicz, D P; Schwartz, M W; Porte, D; Seeley, R J

    1996-01-01

    The intent of this paper is to evaluate decreases of food intake and body weight that occur when a peptide is administered to an animal. Using the pancreatic hormone insulin as an example, the case is made that endogenous insulin is normally secreted in response to circulating nutrients as well as in proportion to the degree of adiposity. Hence, its levels in the blood are a reliable indicator of adiposity. A further case is then made demonstrating that insulin is transported through the blood-brain barrier into the brain, where it gains access to neurons containing specific insulin receptors that are important in the control of feeding and metabolism. Finally, experimentally-induced changes of insulin in the brain cause predictable changes of food intake and body weight. Given these observations, the question is then asked: since endogenous insulin, acting within the brain, appears to decrease food intake, can a decrease of food intake caused by exogenous insulin administered into the same area of the brain be ascribed to the same, naturally-occurring response system, or should it be attributed to malaise or a non-specific depression of behavior? Arguments are presented supporting the former position that exogenous insulin, when administered in small quantities directly into the brain, taps into the natural caloric/metabolic system and hence influences food intake and body weight. PMID:8622820

  17. Brain glycogen content and metabolism in subjects with type 1 diabetes and hypoglycemia unawareness.

    PubMed

    Öz, Gülin; Tesfaye, Nolawit; Kumar, Anjali; Deelchand, Dinesh K; Eberly, Lynn E; Seaquist, Elizabeth R

    2012-02-01

    Supercompensated brain glycogen may contribute to the development of hypoglycemia unawareness in patients with type 1 diabetes by providing energy for the brain during periods of hypoglycemia. Our goal was to determine if brain glycogen content is elevated in patients with type 1 diabetes and hypoglycemia unawareness. We used in vivo (13)C nuclear magnetic resonance spectroscopy in conjunction with [1-(13)C]glucose administration in five patients with type 1 diabetes and hypoglycemia unawareness and five age-, gender-, and body mass index-matched healthy volunteers to measure brain glycogen content and metabolism. Glucose and insulin were administered intravenously over ∼51 hours at a rate titrated to maintain a blood glucose concentration of 7 mmol/L. (13)C-glycogen levels in the occipital lobe were measured at ∼5, 8, 13, 23, 32, 37, and 50 hours, during label wash-in and wash-out. Newly synthesized glycogen levels were higher in controls than in patients (P<0.0001) for matched average blood glucose and insulin levels, which may be due to higher brain glycogen content or faster turnover in controls. Metabolic modeling indicated lower brain glycogen content in patients than in controls (P=0.07), implying that glycogen supercompensation does not contribute to the development of hypoglycemia unawareness in humans with type 1 diabetes. PMID:21971353

  18. Brain glycogen content and metabolism in subjects with type 1 diabetes and hypoglycemia unawareness

    PubMed Central

    Öz, Gülin; Tesfaye, Nolawit; Kumar, Anjali; Deelchand, Dinesh K; Eberly, Lynn E; Seaquist, Elizabeth R

    2012-01-01

    Supercompensated brain glycogen may contribute to the development of hypoglycemia unawareness in patients with type 1 diabetes by providing energy for the brain during periods of hypoglycemia. Our goal was to determine if brain glycogen content is elevated in patients with type 1 diabetes and hypoglycemia unawareness. We used in vivo 13C nuclear magnetic resonance spectroscopy in conjunction with [1-13C]glucose administration in five patients with type 1 diabetes and hypoglycemia unawareness and five age-, gender-, and body mass index-matched healthy volunteers to measure brain glycogen content and metabolism. Glucose and insulin were administered intravenously over ∼51 hours at a rate titrated to maintain a blood glucose concentration of 7 mmol/L. 13C-glycogen levels in the occipital lobe were measured at ∼5, 8, 13, 23, 32, 37, and 50 hours, during label wash-in and wash-out. Newly synthesized glycogen levels were higher in controls than in patients (P<0.0001) for matched average blood glucose and insulin levels, which may be due to higher brain glycogen content or faster turnover in controls. Metabolic modeling indicated lower brain glycogen content in patients than in controls (P=0.07), implying that glycogen supercompensation does not contribute to the development of hypoglycemia unawareness in humans with type 1 diabetes. PMID:21971353

  19. First demonstration that brain CYP2D-mediated opiate metabolic activation alters analgesia in vivo.

    PubMed

    Zhou, Kaidi; Khokhar, Jibran Y; Zhao, Bin; Tyndale, Rachel F

    2013-06-15

    The response to centrally acting drugs is highly variable between individuals and does not always correlate with plasma drug levels. Drug-metabolizing CYP enzymes in the brain may contribute to this variability by affecting local drug and metabolite concentrations. CYP2D metabolizes codeine to the active morphine metabolite. We investigated the effect of inhibiting brain, and not liver, CYP2D activity on codeine-induced analgesia. Rats received intracerebroventricular injections of CYP2D inhibitors (20 μg propranolol or 40 μg propafenone) or vehicle controls. Compared to vehicle-pretreated rats, inhibitor-pretreated rats had: (a) lower analgesia in the tail-flick test (p<0.05) and lower areas under the analgesia-time curve (p<0.02) within the first hour after 30 mg/kg subcutaneous codeine, (b) lower morphine concentrations and morphine to codeine ratios in the brain (p<0.02 and p<0.05, respectively), but not in plasma (p>0.6 and p>0.7, respectively), tested at 30 min after 30 mg/kg subcutaneous codeine, and (c) lower morphine formation from codeine ex vivo by brain membranes (p<0.04), but not by liver microsomes (p>0.9). Analgesia trended toward a correlation with brain morphine concentrations (p=0.07) and correlated with brain morphine to codeine ratios (p<0.005), but not with plasma morphine concentrations (p>0.8) or plasma morphine to codeine ratios (p>0.8). Our findings suggest that brain CYP2D affects brain morphine levels after peripheral codeine administration, and may thereby alter codeine's therapeutic efficacy, side-effect profile and abuse liability. Brain CYPs are highly variable due to genetics, environmental factors and age, and may therefore contribute to interindividual variation in the response to centrally acting drugs. PMID:23623752

  20. Inflammatory cause of metabolic syndrome via brain stress and NF-κB.

    PubMed

    Cai, Dongsheng; Liu, Tiewen

    2012-02-01

    Metabolic syndrome, a network of medical disorders that greatly increase the risk for developing metabolic and cardiovascular diseases, has reached epidemic levels in many areas of today's world. Despite this alarming medicare situation, scientific understandings on the root mechanisms of metabolic syndrome are still limited, and such insufficient knowledge contributes to the relative lack of effective treatments or preventions for related diseases. Recent interdisciplinary studies from neuroendocrinology and neuroimmunology fields have revealed that overnutrition can trigger intracellular stresses to cause inflammatory changes mediated by molecules that control innate immunity. This type of nutrition-related molecular inflammation in the central nervous system, particularly in the hypothalamus, can form a common pathogenic basis for the induction of various metabolic syndrome components such as obesity, insulin resistance, and hypertension. Proinflammatory NF-κB pathway has been revealed as a key molecular system for pathologic induction of brain inflammation, which translates overnutrition and resulting intracellular stresses into central neuroendocrine and neural dysregulations of energy, glucose, and cardiovascular homeostasis, collectively leading to metabolic syndrome. This article reviews recent research advances in the neural mechanisms of metabolic syndrome and related diseases from the perspective of pathogenic induction by intracellular stresses and NF-κB pathway of the brain. PMID:22328600

  1. Metabolic constraint imposes tradeoff between body size and number of brain neurons in human evolution

    PubMed Central

    Fonseca-Azevedo, Karina; Herculano-Houzel, Suzana

    2012-01-01

    Despite a general trend for larger mammals to have larger brains, humans are the primates with the largest brain and number of neurons, but not the largest body mass. Why are great apes, the largest primates, not also those endowed with the largest brains? Recently, we showed that the energetic cost of the brain is a linear function of its numbers of neurons. Here we show that metabolic limitations that result from the number of hours available for feeding and the low caloric yield of raw foods impose a tradeoff between body size and number of brain neurons, which explains the small brain size of great apes compared with their large body size. This limitation was probably overcome in Homo erectus with the shift to a cooked diet. Absent the requirement to spend most available hours of the day feeding, the combination of newly freed time and a large number of brain neurons affordable on a cooked diet may thus have been a major positive driving force to the rapid increased in brain size in human evolution. PMID:23090991

  2. Three-dimensional structure of E. Coli purine nucleoside phosphorylase at 0.99 Å resolution

    NASA Astrophysics Data System (ADS)

    Timofeev, V. I.; Abramchik, Yu. A.; Zhukhlistova, N. E.; Muravieva, T. I.; Esipov, R. S.; Kuranova, I. P.

    2016-03-01

    Purine nucleoside phosphorylases (PNPs) catalyze the reversible phosphorolysis of nucleosides and are key enzymes involved in nucleotide metabolism. They are essential for normal cell function and can catalyze the transglycosylation. Crystals of E. coli PNP were grown in microgravity by the capillary counterdiffusion method through a gel layer. The three-dimensional structure of the enzyme was determined by the molecular-replacement method at 0.99 Å resolution. The structural features are considered, and the structure of E. coli PNP is compared with the structures of the free enzyme and its complexes with purine base derivatives established earlier. A comparison of the environment of the purine base in the complex of PNP with formycin A and of the pyrimidine base in the complex of uridine phosphorylase with thymidine revealed the main structural features of the base-binding sites. Coordinates of the atomic model determined with high accuracy were deposited in the Protein Data Bank (PDB_ID: 4RJ2).

  3. Purine Catabolism in Plants 1

    PubMed Central

    Guranowski, Andrzej

    1982-01-01

    Inosine nucleosidase (EC 3.2.2.2), the enzyme which hydrolyzes inosine to hypoxanthine and ribose, has been partially purified from Lupinus luteus L. cv. Topaz seeds by extraction of the seed meal with low ionic strength buffer, ammonium sulfate fractionation, and chromatography on aminohexyl-Sepharose, Sephadex G-100, and hydroxyapatite. Molecular weight of the native enzyme is 62,000 as judged by gel filtration. The inosine nucleosidase exhibits optimum activity around pH 8. Energy of activation for inosine hydrolysis estimated from Arrhenius plot is 14.2 kilocalories per mole. The Km value computed for inosine is 65 micromolar. Among the inosine analogs tested, the following nucleosides are substrates for the lupin inosine nucleosidase: xanthosine, purine riboside (nebularine), 6-mercaptopurine riboside, 8-azainosine, adenosine, and guanosine. The ratio of the velocities measured at 500 micromolar concentration of inosine, adenosine, and guanosine was 100:11:1, respectively. Specificity (Vmax/Km) towards adenosine is 48 times lower than that towards inosine. In contrast to the adenosine nucleosidase activity which is absent from lupin seeds and appears in the cotyledons during germination (Guranowski, Pawełkiewicz 1978 Planta 139: 245-247), the inosine nucleosidase is present in both lupin seeds and seedlings. PMID:16662492

  4. Genetic and physiological characterization of Bacillus subtilis mutants resistant to purine analogs.

    PubMed Central

    Saxild, H H; Nygaard, P

    1987-01-01

    Bacillus subtilis mutants defective in purine metabolism have been isolated by selecting for resistance to purine analogs. Mutants resistant to 2-fluoroadenine were found to be defective in adenine phosphoribosyltransferase (apt) activity and slightly impaired in adenine uptake. By making use of apt mutants and mutants defective in adenosine phosphorylase activity, it was shown that adenine deamination is an essential step in the conversion of both adenine and adenosine to guanine nucleotides. Mutants resistant to 8-azaguanine, pbuG mutants, appeared to be defective in hypoxanthine and guanine transport and normal in hypoxanthine-guanine phosphoribosyltransferase activity. Purine auxotrophic pbuG mutants grew in a concentration-dependent way on hypoxanthine, while normal growth was observed on inosine as the purine source. Inosine was taken up by a different transport system and utilized after conversion to hypoxanthine. Two mutants resistant to 8-azaxanthine were isolated: one was defective in xanthine phosphoribosyltransferase (xpt) activity and xanthine transport, and another had reduced GMP synthetase activity. The results obtained with the various mutants provide evidence for the existence of specific purine base transport systems. The genetic lesions causing the mutant phenotypes, apt, pbuG, and xpt, have been located on the B. subtilis linkage map at 243, 55, and 198 degrees, respectively. PMID:3110131

  5. Identification of a chemoreceptor that specifically mediates chemotaxis toward metabolizable purine derivatives.

    PubMed

    Fernández, Matilde; Morel, Bertrand; Corral-Lugo, Andrés; Krell, Tino

    2016-01-01

    Chemotaxis is an essential mechanism that enables bacteria to move toward favorable ecological niches. Escherichia coli, the historical model organism for studying chemotaxis, has five well-studied chemoreceptors. However, many bacteria with different lifestyle have more chemoreceptors, most of unknown function. Using a high throughput screening approach, we identified a chemoreceptor from Pseudomonas putida KT2440, named McpH, which specifically recognizes purine and its derivatives, adenine, guanine, xanthine, hypoxanthine and uric acid. The latter five compounds form part of the purine degradation pathway, permitting their use as sole nitrogen sources. Isothermal titration calorimetry studies show that these six compounds bind McpH-Ligand Binding Domain (LBD) with very similar affinity. In contrast, non-metabolizable purine derivatives (caffeine, theophylline, theobromine), nucleotides, nucleosides or pyrimidines are unable to bind McpH-LBD. Mutation of mcpH abolished chemotaxis toward the McpH ligands identified - a phenotype that is restored by complementation. This is the first report on bacterial chemotaxis to purine derivatives and McpH the first chemoreceptor described that responds exclusively to intermediates of a catabolic pathway, illustrating a clear link between metabolism and chemotaxis. The evolution of McpH may reflect a saprophytic lifestyle, which would have exposed the studied bacterium to high concentrations of purines produced by nucleic acid degradation. PMID:26355499

  6. Brain Natriuretic Peptide Stimulates Lipid Metabolism through Its Receptor NPR1 and the Glycerolipid Metabolism Pathway in Chicken Adipocytes.

    PubMed

    Huang, H Y; Zhao, G P; Liu, R R; Li, Q H; Zheng, M Q; Li, S F; Liang, Z; Zhao, Z H; Wen, J

    2015-11-01

    Brain natriuretic peptide (BNP) is related to lipid metabolism in mammals, but its effect and the molecular mechanisms underlying it in chickens are incompletely understood. We found that the level of natriuretic peptide precursor B (NPPB, which encodes BNP) mRNA expression in high-abdominal-fat chicken groups was significantly higher than that of low-abdominal-fat groups. Partial correlations indicated that changes in the weight of abdominal fat were positively correlated with NPPB mRNA expression level. In vitro, compared with the control group, preadipocytes with NPPB interference showed reduced levels of proliferation, differentiation, and glycerin in media. Treatments of cells with BNP led to enhanced proliferation and differentiation of cells and glycerin concentration, and mRNA expression of its receptor natriuretic peptide receptor 1 (NPR1) was upregulated significantly. In cells exposed to BNP, 482 differentially expressed genes were identified compared with controls without BNP. Four genes known to be related to lipid metabolism (diacylglycerol kinase; lipase, endothelial; 1-acylglycerol-3-phosphate O-acyltransferase 1; and 1-acylglycerol-3-phosphate O-acyltransferase 2) were enriched in the glycerolipid metabolism pathway and expressed differentially. In conclusion, BNP stimulates the proliferation, differentiation, and lipolysis of preadipocytes through upregulation of the levels of expression of its receptor NPR1 and key genes enriched in the glycerolipid metabolic pathway. PMID:26463554

  7. Assessment of regional glucose metabolism in aging brain and dementia with positron-emission tomography

    SciTech Connect

    Reivich, M.; Alavi, A.; Ferris, S.; Christman, D.; Fowler, J.; MacGregor, R.; Farkas, T.; Greenberg, J.; Dann, R.; Wolf, A.

    1981-01-01

    This paper explores the alterations in regional glucose metabolism that occur in elderly subjects and those with senile dementia compared to normal young volunteers. Results showed a tendency for the frontal regions to have a lower metabolic rate in patients with dementia although this did not reach the level of significance when compared to the elderly control subjects. The changes in glucose metabolism were symmetrical in both the left and right hemispheres. There was a lack of correlation between the mean cortical metabolic rates for glucose and the global mental function in the patients with senile dementia. This is at variance with most of the regional cerebral blood flow data that has been collected. This may be partly related to the use of substrates other than glucose by the brain in elderly and demented subjects. (PSB)

  8. Role of long purine stretches in controlling the expression of genes associated with neurological disorders.

    PubMed

    Singh, Himanshu Narayan; Rajeswari, Moganty R

    2015-11-10

    Purine repeat sequences present in the human genome are known to act as hotspots for mutations leading to chromosomal imbalances. It is established that large purine repeats (PRs) form stable DNA triplex structure which can inhibit gene expression. Friedreich's ataxia (FRDA), the autosomal neurodegenerative disorder is the only human disease known so far, where a large purine (GAA) repeat in the FXN gene is known to inhibit the expression of frataxin protein. We explored the hidden purine repeats (PRn with n ≥ 200) if any, in the human genome to find out how they are associated with neurological disorders. The results showed 28 PRs, which are mostly restricted to the intronic regions. Interestingly, the transcriptome expression analysis of PR-carrying genes (PR-genes) revealed that most of them are down-regulated in neurological disorders (autism, Alzheimer's disease, schizophrenia, epilepsy, mental retardation, Parkinson's disease, brain tumor) as compared to that in healthy controls. The altered gene expression in brain disorders can be interpreted in terms of a possible expansion of purine repeats leading to formation of very stable DNA-triplex and/or alleviation of the repair enzymes and/or other unknown cellular factors. Interactome analysis identified four PR-genes in signaling pathways whose dysregulation is correlated directly with pathogenesis: GRK5 and KLK6 in Alzheimer's disease; FGF14 in craniosynostosis, mental retardation and FLT1 in neuroferritinopathy. By virtue of being mutational hotspots and their ability to form DNA-triplex, purine repeats in genome disturb the genome integrity and interfere with the transcriptional regulation. However, validation of the disease linkage of PR-genes can be validated using knock-out techniques. PMID:26149656

  9. Clinical Neurochemistry of Subarachnoid Hemorrhage: Toward Predicting Individual Outcomes via Biomarkers of Brain Energy Metabolism.

    PubMed

    Tholance, Yannick; Barcelos, Gleicy; Dailler, Frederic; Perret-Liaudet, Armand; Renaud, Bernard

    2015-12-16

    The functional outcome of patients with subarachnoid hemorrhage is difficult to predict at the individual level. The monitoring of brain energy metabolism has proven to be useful in improving the pathophysiological understanding of subarachnoid hemorrhage. Nonetheless, brain energy monitoring has not yet clearly been included in official guidelines for the management of subarachnoid hemorrhage patients, likely because previous studies compared only biological data between two groups of patients (unfavorable vs favorable outcomes) and did not determine decision thresholds that could be useful in clinical practice. Therefore, this Viewpoint discusses recent findings suggesting that monitoring biomarkers of brain energy metabolism at the level of individuals can be used to predict the outcomes of subarachnoid hemorrhage patients. Indeed, by taking into account specific neurochemical patterns obtained by local or global monitoring of brain energy metabolism, it may become possible to predict routinely, and with sufficient sensitivity and specificity, the individual outcomes of subarachnoid hemorrhage patients. Moreover, combining both local and global monitoring improves the overall performance of individual outcome prediction. Such a combined neurochemical monitoring approach may become, after prospective clinical validation, an important component in the management of subarachnoid hemorrhage patients to adapt individualized therapeutic interventions. PMID:26595414

  10. Brain Metabolism of Less-Educated Patients With Alzheimer Dementia Studied by Positron Emission Tomography

    PubMed Central

    Huang, Yu Ching; Yen, Pao Sheng; Wu, Shwu Tzy; Chen, Jung Tai; Hung, Gung Uei; Kao, Chia Hung; Chen, Tai Yee; Ho, Feng Ming

    2015-01-01

    Abstract Alzheimer dementia (AD) is the commonest form of dementia. Although illiteracy is associated with high prevalence of dementia of the Alzheimer type (DAT), their relationship is still unclear. Nevertheless, mild DAT in illiterate participants seems to be due to brain atrophy. In this study, we compared the impact of brain metabolism efficiency in healthy participants and less-educated patients with mild DAT using 2-fluoro-2-deoxy-d-glucose (18F-FDG-PET) positron emission tomography. Out of 43 eligible less-educated participants with dementia, only 23 (14 women and 9 men) met Diagnostic and Statistical Manual (DSM)-III-R or DSM-IV criteria for DAT and AD and were included. Participants with intracranial insults were excluded by brain magnetic resonance imaging and participants with metabolic or systemic conditions were excluded by blood sampling. In addition, 16 cognitively normal elderly (age >70 years), including 7 women and 9 men, were enrolled in the sham group. The PET imaging data were analyzed using statistical parametric mapping (SPM8) to determine reliability and specificity. Glucose metabolic rate was low in the DAT group, especially in the middle temporal gyrus, middle frontal gyrus, superior frontal gyrus, inferior frontal gyrus, posterior cingulate gyrus, angular gyrus, parahippocampal gyrus, middle occipital gyrus, rectal gyrus, and lingual gyrus. Our results showed that DAT patients with less education not only have prominent clinical signs and symptoms related to dementia but also decreased gray matter metabolism. PMID:26222866

  11. Brain metabolic stress and neuroinflammation at the basis of cognitive impairment in Alzheimer’s disease

    PubMed Central

    De Felice, Fernanda G.; Lourenco, Mychael V.

    2015-01-01

    Brain metabolic dysfunction is known to influence brain activity in several neurological disorders, including Alzheimer’s disease (AD). In fact, deregulation of neuronal metabolism has been postulated to play a key role leading to the clinical outcomes observed in AD. Besides deficits in glucose utilization in AD patients, recent evidence has implicated neuroinflammation and endoplasmic reticulum (ER) stress as components of a novel form of brain metabolic stress that develop in AD and other neurological disorders. Here we review findings supporting this novel paradigm and further discuss how these mechanisms seem to participate in synapse and cognitive impairments that are germane to AD. These deleterious processes resemble pathways that act in peripheral tissues leading to insulin resistance and glucose intolerance, in an intriguing molecular connection linking AD to diabetes. The discovery of detailed mechanisms leading to neuronal metabolic stress may be a key step that will allow the understanding how cognitive impairment develops in AD, thereby offering new avenues for effective disease prevention and therapeutic targeting. PMID:26042036

  12. Relationship of metabolic and endocrine parameters to brain glucose metabolism in older adults: do cognitively-normal older adults have a particular metabolic phenotype?

    PubMed

    Nugent, S; Castellano, C A; Bocti, C; Dionne, I; Fulop, T; Cunnane, S C

    2016-02-01

    Our primary objective in this study was to quantify whole brain and regional cerebral metabolic rates of glucose (CMRg) in young and older adults in order to determine age-normalized reference CMRg values for healthy older adults with normal cognition for age. Our secondary objectives were to--(i) report a broader range of metabolic and endocrine parameters including body fat composition that could form the basis for the concept of a 'metabolic phenotype' in cognitively normal, older adults, and (ii) to assess whether medications commonly used to control blood lipids, blood pressure or thyroxine affect CMRg values in older adults. Cognition assessed by a battery of tests was normal for age and education in both groups. Compared to the young group (25 years old; n = 34), the older group (72 years old; n = 41) had ~14% lower CMRg (μmol/100 g/min) specifically in the frontal cortex, and 18% lower CMRg in the caudate. Lower grey matter volume and cortical thickness was widespread in the older group. These differences in CMRg, grey matter volume and cortical thickness were present in the absence of any known evidence for prodromal Alzheimer's disease (AD). Percent total body fat was positively correlated with CMRg in many brain regions but only in the older group. Before and after controlling for body fat, HOMA2-IR was significantly positively correlated to CMRg in several brain regions in the older group. These data show that compared to a healthy younger adult, the metabolic phenotype of a cognitively-normal 72 year old person includes similar plasma glucose, insulin, cholesterol, triglycerides and TSH, higher hemoglobin A1c and percent body fat, lower CMRg in the superior frontal cortex and caudate, but the same CMRg in the hippocampus and white matter. Age-normalization of cognitive test results is standard practice and we would suggest that regional CMRg in cognitively healthy older adults should also be age-normalized. PMID:26364049

  13. Sex differences in metabolic aging of the brain: insights into female susceptibility to Alzheimer's disease.

    PubMed

    Zhao, Liqin; Mao, Zisu; Woody, Sarah K; Brinton, Roberta D

    2016-06-01

    Despite recent advances in the understanding of clinical aspects of sex differences in Alzheimer's disease (AD), the underlying mechanisms, for instance, how sex modifies AD risk and why the female brain is more susceptible to AD, are not clear. The purpose of this study is to elucidate sex disparities in brain aging profiles focusing on 2 major areas-energy and amyloid metabolism-that are most significantly affected in preclinical development of AD. Total RNA isolated from hippocampal tissues of both female and male 129/C57BL/6 mice at ages of 6, 9, 12, or 15 months were comparatively analyzed by custom-designed Taqman low-density arrays for quantitative real-time polymerase chain reaction detection of a total of 182 genes involved in a broad spectrum of biological processes modulating energy production and amyloid homeostasis. Gene expression profiles revealed substantial differences in the trajectory of aging changes between female and male brains. In female brains, 44.2% of genes were significantly changed from 6 months to 9 months and two-thirds showed downregulation. In contrast, in male brains, only 5.4% of genes were significantly altered at this age transition. Subsequent changes in female brains were at a much smaller magnitude, including 10.9% from 9 months to 12 months and 6.1% from 12 months to 15 months. In male brains, most changes occurred from 12 months to 15 months and the majority were upregulated. Furthermore, gene network analysis revealed that clusterin appeared to serve as a link between the overall decreased bioenergetic metabolism and increased amyloid dyshomeostasis associated with the earliest transition in female brains. Together, results from this study indicate that: (1) female and male brains follow profoundly dissimilar trajectories as they age; (2) female brains undergo age-related changes much earlier than male brains; (3) early changes in female brains signal the onset of a hypometabolic phenotype at risk for AD. These

  14. Pyruvate treatment attenuates cerebral metabolic depression and neuronal loss after experimental traumatic brain injury.

    PubMed

    Moro, Nobuhiro; Ghavim, Sima S; Harris, Neil G; Hovda, David A; Sutton, Richard L

    2016-07-01

    Experimental traumatic brain injury (TBI) is known to produce an acute increase in cerebral glucose utilization, followed rapidly by a generalized cerebral metabolic depression. The current studies determined effects of single or multiple treatments with sodium pyruvate (SP; 1000mg/kg, i.p.) or ethyl pyruvate (EP; 40mg/kg, i.p.) on cerebral glucose metabolism and neuronal injury in rats with unilateral controlled cortical impact (CCI) injury. In Experiment 1 a single treatment was given immediately after CCI. SP significantly improved glucose metabolism in 3 of 13 brain regions while EP improved metabolism in 7 regions compared to saline-treated controls at 24h post-injury. Both SP and EP produced equivalent and significant reductions in dead/dying neurons in cortex and hippocampus at 24h post-CCI. In Experiment 2 SP or EP were administered immediately (time 0) and at 1, 3 and 6h post-CCI. Multiple SP treatments also significantly attenuated TBI-induced reductions in cerebral glucose metabolism (in 4 brain regions) 24h post-CCI, as did multiple injections of EP (in 4 regions). The four pyruvate treatments produced significant neuroprotection in cortex and hippocampus 1day after CCI, similar to that found with a single SP or EP treatment. Thus, early administration of pyruvate compounds enhanced cerebral glucose metabolism and neuronal survival, with 40mg/kg of EP being as effective as 1000mg/kg of SP, and multiple treatments within 6h of injury did not improve upon outcomes seen following a single treatment. PMID:27059390

  15. Age-related increase of resting metabolic rate in the human brain

    PubMed Central

    Peng, Shin-Lei; Dumas, Julie A.; Park, Denise C.; Liu, Peiying; Filbey, Francesca M.; McAdams, Carrie J.; Pinkham, Amy E.; Adinoff, Bryon; Zhang, Rong; Lu, Hanzhang

    2014-01-01

    With age, many aspects of the brain structure undergo a pronounced decline, yet individuals generally function well until advanced old age. There appear to be several compensatory mechanisms in brain aging, but their precise nature is not well characterized. Here we provide evidence that the brain of older adults expends more energy when compared to younger adults, as manifested by an age-related increase (P=0.03) in cerebral metabolic rate of oxygen (CMRO2) (N=118, men=56, ages 18 to 74). We further showed that, before the mean menopausal age of 51 years old, female and male groups have similar rates of CMRO2 increase (P=0.015) and there was no interaction between age and sex effects (P=0.85). However, when using data from the entire age range, women have a slower rate of CMRO2 change when compared to men (P<0.001 for age × sex interaction term). Thus, menopause and estrogen level may have played a role in this sex difference. Our data also revealed a possible circadian rhythm of CMRO2 in that brain metabolic rate is greater at noon than in the morning (P=0.02). This study reveals a potential neurobiological mechanism for age-related compensation in brain function and also suggests a sex-difference in its temporal pattern. PMID:24814209

  16. Neuronal and astrocytic interactions modulate brain endothelial properties during metabolic stresses of in vitro cerebral ischemia

    PubMed Central

    2014-01-01

    Neurovascular and gliovascular interactions significantly affect endothelial phenotype. Physiologically, brain endothelium attains several of its properties by its intimate association with neurons and astrocytes. However, during cerebrovascular pathologies such as cerebral ischemia, the uncoupling of neurovascular and gliovascular units can result in several phenotypical changes in brain endothelium. The role of neurovascular and gliovascular uncoupling in modulating brain endothelial properties during cerebral ischemia is not clear. Specifically, the roles of metabolic stresses involved in cerebral ischemia, including aglycemia, hypoxia and combined aglycemia and hypoxia (oxygen glucose deprivation and re-oxygenation, OGDR) in modulating neurovascular and gliovascular interactions are not known. The complex intimate interactions in neurovascular and gliovascular units are highly difficult to recapitulate in vitro. However, in the present study, we used a 3D co-culture model of brain endothelium with neurons and astrocytes in vitro reflecting an intimate neurovascular and gliovascular interactions in vivo. While the cellular signaling interactions in neurovascular and gliovascular units in vivo are much more complex than the 3D co-culture models in vitro, we were still able to observe several important phenotypical changes in brain endothelial properties by metabolically stressed neurons and astrocytes including changes in barrier, lymphocyte adhesive properties, endothelial cell adhesion molecule expression and in vitro angiogenic potential. PMID:24438487

  17. Brain metabolism and oxygenation in healthy pigs receiving hypoventilation and hyperoxia.

    PubMed

    Rostami, Elham; Rocksén, David; Ekberg, Neda R; Goiny, Michel; Ungerstedt, Urban

    2013-12-01

    Modulation in ventilatory settings is one of the approaches and interventions used to treat and prevent secondary brain damage after traumatic brain injury (TBI). Here we investigate the effect of hyperoxia in combination with hypoventilation on brain oxygenation, metabolism and intracranial pressure. Twelve pigs were divided into three groups; group1-100% hyperoxia (n=4), group 2-100% hyperoxia and 20% decrease in minute volume (MV) (n=4) and group 3-100% hyperoxia and 50% decrease in MV (n=4). Neither of the ventilator settings affected the lactate/pyruvate ratio significantly. However, there was a significant decrease of brain lactate (2.6±1.7 to 1.8±1.6mM) and a rapid and marked increase in brain oxygenation (7.9±0.7 to 61.3±17.6mmHg) in group 3. Intracranial pressure (ICP) was not significantly affected in this group, however, the ICP increased significantly in group 2 with 100% hyperoxia plus 20% reduction in minute volume. We conclude that hyperoxia in combination with 50% decrease in MV showed pronounced increase in partial brain oxygen tension (pbrO2) and decrease in brain lactate. The ventilatory modification, used in this study should be considered for further investigation as a possible therapeutic intervention for TBI patients. PMID:24013004

  18. Generalized decrease in brain glucose metabolism during fasting in humans studied by PET

    SciTech Connect

    Redies, C.; Hoffer, L.J.; Beil, C.; Marliss, E.B.; Evans, A.C.; Lariviere, F.; Marrett, S.; Meyer, E.; Diksic, M.; Gjedde, A.

    1989-06-01

    In prolonged fasting, the brain derives a large portion of its oxidative energy from the ketone bodies, beta-hydroxybutyrate and acetoacetate, thereby reducing whole body glucose consumption. Energy substrate utilization differs regionally in the brain of fasting rat, but comparable information has hitherto been unavailable in humans. We used positron emission tomography (PET) to study regional brain glucose and oxygen metabolism, blood flow, and blood volume in four obese subjects before and after a 3-wk total fast. Whole brain glucose utilization fell to 54% of control (postabsorptive) values (P less than 0.002). The whole brain rate constant for glucose tracer phosphorylation fell to 51% of control values (P less than 0.002). Both parameters decreased uniformly throughout the brain. The 2-fluoro-2-deoxy-D-glucose lumped constant decreased from a control value of 0.57 to 0.43 (P less than 0.01). Regional blood-brain barrier transfer coefficients for glucose tracer, regional oxygen utilization, blood flow, and blood volume were unchanged.

  19. Alcohol Decreases Baseline Brain Glucose Metabolism More in Heavy Drinkers Than Controls But Has No Effect on Stimulation-Induced Metabolic Increases

    PubMed Central

    Wang, Gene-Jack; Shokri Kojori, Ehsan; Fowler, Joanna S.; Benveniste, Helene; Tomasi, Dardo

    2015-01-01

    During alcohol intoxication, the human brain increases metabolism of acetate and decreases metabolism of glucose as energy substrate. Here we hypothesized that chronic heavy drinking facilitates this energy substrate shift both for baseline and stimulation conditions. To test this hypothesis, we compared the effects of alcohol intoxication (0.75 g/kg alcohol vs placebo) on brain glucose metabolism during video stimulation (VS) versus when given with no stimulation (NS), in 25 heavy drinkers (HDs) and 23 healthy controls, each of whom underwent four PET-18FDG scans. We showed that resting whole-brain glucose metabolism (placebo-NS) was lower in HD than controls (13%, p = 0.04); that alcohol (compared with placebo) decreased metabolism more in HD (20 ± 13%) than controls (9 ± 11%, p = 0.005) and in proportion to daily alcohol consumption (r = 0.36, p = 0.01) but found that alcohol did not reduce the metabolic increases in visual cortex from VS in either group. Instead, VS reduced alcohol-induced decreases in whole-brain glucose metabolism (10 ± 12%) compared with NS in both groups (15 ± 13%, p = 0.04), consistent with stimulation-related glucose metabolism enhancement. These findings corroborate our hypothesis that heavy alcohol consumption facilitates use of alternative energy substrates (i.e., acetate) for resting activity during intoxication, which might persist through early sobriety, but indicate that glucose is still favored as energy substrate during brain stimulation. Our findings are consistent with reduced reliance on glucose as the main energy substrate for resting brain metabolism during intoxication (presumably shifting to acetate or other ketones) and a priming of this shift in HDs, which might make them vulnerable to energy deficits during withdrawal. PMID:25698759

  20. Alcohol decreases baseline brain glucose metabolism more in heavy drinkers than controls but has no effect on stimulation-induced metabolic increases

    DOE PAGESBeta

    Volkow, Nora D.; Fowler, Joanna S.; Wang, Gene-Jack; Kojori, Eshan Shokri; Benveniste, Helene; Tomasi, Dardo

    2015-02-18

    During alcohol intoxication the human brain increases metabolism of acetate and decreases metabolism of glucose as energy substrate. Here we hypothesized that chronic heavy drinking facilitates this energy substrate shift both for baseline and stimulation conditions. To test this hypothesis we compared the effects of alcohol intoxication (0.75g/kg alcohol versus placebo) on brain glucose metabolism during video-stimulation (VS) versus when given with no-stimulation (NS), in 25 heavy drinkers (HD) and 23 healthy controls each of whom underwent four PET-¹⁸FDG scans. We showed that resting whole-brain glucose metabolism (placebo-NS) was lower in HD than controls (13%, p=0.04); that alcohol (compared tomore » placebo) decreased metabolism more in HD (20±13%) than controls (9±11%, p=0.005) and in proportion to daily alcohol consumption (r=0.36, p=0.01) but found that alcohol did not reduce the metabolic increases in visual cortex from VS in either group. Instead, VS reduced alcohol-induced decreases in whole-brain glucose metabolism (10±12%) compared to NS in both groups (15±13%, p=0.04), consistent with stimulation-related glucose metabolism enhancement. These findings corroborate our hypothesis that heavy alcohol consumption facilitates use of alternative energy substrates (i.e. acetate) for resting activity during intoxication, which might persist through early sobriety, but indicate that glucose is still favored as energy substrate during brain stimulation. Our findings are consistent with reduced reliance on glucose as the main energy substrate for resting brain metabolism during intoxication (presumably shifting to acetate or other ketones) and a priming of this shift in heavy drinkers, which might make them vulnerable to energy deficits during withdrawal.« less

  1. Alcohol decreases baseline brain glucose metabolism more in heavy drinkers than controls but has no effect on stimulation-induced metabolic increases

    SciTech Connect

    Volkow, Nora D.; Fowler, Joanna S.; Wang, Gene-Jack; Kojori, Eshan Shokri; Benveniste, Helene; Tomasi, Dardo

    2015-02-18

    During alcohol intoxication the human brain increases metabolism of acetate and decreases metabolism of glucose as energy substrate. Here we hypothesized that chronic heavy drinking facilitates this energy substrate shift both for baseline and stimulation conditions. To test this hypothesis we compared the effects of alcohol intoxication (0.75g/kg alcohol versus placebo) on brain glucose metabolism during video-stimulation (VS) versus when given with no-stimulation (NS), in 25 heavy drinkers (HD) and 23 healthy controls each of whom underwent four PET-¹⁸FDG scans. We showed that resting whole-brain glucose metabolism (placebo-NS) was lower in HD than controls (13%, p=0.04); that alcohol (compared to placebo) decreased metabolism more in HD (20±13%) than controls (9±11%, p=0.005) and in proportion to daily alcohol consumption (r=0.36, p=0.01) but found that alcohol did not reduce the metabolic increases in visual cortex from VS in either group. Instead, VS reduced alcohol-induced decreases in whole-brain glucose metabolism (10±12%) compared to NS in both groups (15±13%, p=0.04), consistent with stimulation-related glucose metabolism enhancement. These findings corroborate our hypothesis that heavy alcohol consumption facilitates use of alternative energy substrates (i.e. acetate) for resting activity during intoxication, which might persist through early sobriety, but indicate that glucose is still favored as energy substrate during brain stimulation. Our findings are consistent with reduced reliance on glucose as the main energy substrate for resting brain metabolism during intoxication (presumably shifting to acetate or other ketones) and a priming of this shift in heavy drinkers, which might make them vulnerable to energy deficits during withdrawal.

  2. Prebiotic syntheses of purines and pyrimidines

    NASA Astrophysics Data System (ADS)

    Basile, B.; Lazcano, A.; Oró, J.

    The work done in many laboratories during the last two decades has confirmed that hydrogen cyanide and cyanoacetylene are the two major precursors for the prebiotic synthesis of purines and pyrimidines, respectively. Although several different pathways for the synthesis of purines have been described, they are all variations of the initial mechanism proposed by Oró and Kimball, where hydrogen cyanide leads first to the formation of a 4,5-disubstituted imidazole derivative, and then to the closing of the purine ring with a C1 compound. A number of experiments have shown that purines and pyrimidines can also be obtained from methane, ammonia (nitrogen), and water mixtures, provided an activating source of energy (radiation, electric discharges, etc.) is available. However, in this case the yields are lower by about two orders of magnitude because of the intermediate formation of hydrogen cyanide and cyanoacetylene. The latter two compounds have been found in interstellar space, Titan and other bodies of the solar system. They were probably present in the primordial parent bodies from the solar nebula in concentrations of 10-2 to 10-3 M as inferred from recent calculations by Miller and coworkers obtained for the Murchison meteorite. These concentrations should have been sufficient to generate relatively large amounts of purine and pyrimidine bases on the primitive Earth.

  3. Physical exercise in overweight to obese individuals induces metabolic- and neurotrophic-related structural brain plasticity

    PubMed Central

    Mueller, Karsten; Möller, Harald E.; Horstmann, Annette; Busse, Franziska; Lepsien, Jöran; Blüher, Matthias; Stumvoll, Michael; Villringer, Arno; Pleger, Burkhard

    2015-01-01

    Previous cross-sectional studies on body-weight-related alterations in brain structure revealed profound changes in the gray matter (GM) and white matter (WM) that resemble findings obtained from individuals with advancing age. This suggests that obesity may lead to structural brain changes that are comparable with brain aging. Here, we asked whether weight-loss-dependent improved metabolic and neurotrophic functioning parallels the reversal of obesity-related alterations in brain structure. To this end we applied magnetic resonance imaging (MRI) together with voxel-based morphometry and diffusion-tensor imaging in overweight to obese individuals who participated in a fitness course with intensive physical training twice a week over a period of 3 months. After the fitness course, participants presented, with inter-individual heterogeneity, a reduced body mass index (BMI), reduced serum leptin concentrations, elevated high-density lipoprotein-cholesterol (HDL-C), and alterations of serum brain-derived neurotrophic factor (BDNF) concentrations suggesting changes of metabolic and neurotrophic function. Exercise-dependent changes in BMI and serum concentration of BDNF, leptin, and HDL-C were related to an increase in GM density in the left hippocampus, the insular cortex, and the left cerebellar lobule. We also observed exercise-dependent changes of diffusivity parameters in surrounding WM structures as well as in the corpus callosum. These findings suggest that weight-loss due to physical exercise in overweight to obese participants induces profound structural brain plasticity, not primarily of sensorimotor brain regions involved in physical exercise, but of regions previously reported to be structurally affected by an increased body weight and functionally implemented in gustation and cognitive processing. PMID:26190989

  4. Dual roles of brain serine hydrolase KIAA1363 in ether lipid metabolism and organophosphate detoxification

    SciTech Connect

    Nomura, Daniel K.; Fujioka, Kazutoshi; Issa, Roger S.; Ward, Anna M.; Cravatt, Benjamin F.; Casida, John E.

    2008-04-01

    Serine hydrolase KIAA1363 is an acetyl monoalkylglycerol ether (AcMAGE) hydrolase involved in tumor cell invasiveness. It is also an organophosphate (OP) insecticide-detoxifying enzyme. The key to understanding these dual properties was the use of KIAA1363 +/+ (wildtype) and -/- (gene deficient) mice to define the role of this enzyme in brain and other tissues and its effectiveness in vivo in reducing OP toxicity. KIAA1363 was the primary AcMAGE hydrolase in brain, lung, heart and kidney and was highly sensitive to inactivation by chlorpyrifos oxon (CPO) (IC{sub 50} 2 nM) [the bioactivated metabolite of the major insecticide chlorpyrifos (CPF)]. Although there was no difference in hydrolysis product monoalkylglycerol ether (MAGE) levels in +/+ and -/- mouse brains in vivo, isopropyl dodecylfluorophosphonate (30 mg/kg) and CPF (100 mg/kg) resulted in 23-51% decrease in brain MAGE levels consistent with inhibition of AcMAGE hydrolase activity. On incubating +/+ and -/- brain membranes with AcMAGE and cytidine-5'-diphosphocholine, the absence of KIAA1363 activity dramatically increased de novo formation of platelet-activating factor (PAF) and lyso-PAF, signifying that metabolically-stabilized AcMAGE can be converted to this bioactive lipid in brain. On considering detoxification, KIAA1363 -/- mice were significantly more sensitive than +/+ mice to ip-administered CPF (100 mg/kg) and parathion (10 mg/kg) with increased tremoring and mortality that correlated for CPF with greater brain acetylcholinesterase inhibition. Docking AcMAGE and CPO in a KIAA1363 active site model showed similar positioning of their acetyl and trichloropyridinyl moieties, respectively. This study establishes the relevance of KIAA1363 in ether lipid metabolism and OP detoxification.

  5. Comparison of clinical types of Wilson's disease and glucose metabolism in extrapyramidal motor brain regions.

    PubMed

    Hermann, W; Barthel, H; Hesse, S; Grahmann, F; Kühn, H-J; Wagner, A; Villmann, T

    2002-07-01

    In Wilson's disease a disturbed glucose metabolism especially in striatal and cerebellar areas has been reported. This is correlated with the severity of extrapyramidal motor symptoms (EPS). These findings are only based on a small number of patients. Up to now it is unknown whether EPS are caused by various patterns of disturbed basal ganglia glucose metabolism. We investigated 37 patients and 9 normal volunteers to characterize the disturbed glucose metabolism in Wilson's disease more precisely. The glucose metabolism was determined in 5 cerebellar and cerebral areas (putamen, caput nuclei caudati, cerebellum, midbrain and thalamic area) by using (18)F-Fluorodesoxyglucose-Positron-Emission-Tomography ( [(18)F]FDG-PET). The database was evaluated by a cluster analysis. Additionally, the severity extrapyramidal motor symptoms were judged by a clinical score system. Three characteristic patterns of glucose metabolism in basal ganglia were obtained. Two of them may be assigned to patients with neurological symptoms whereas the third cluster corresponds to most patients without EPS or normal volunteers. The clusters can be identified by characteristic consumption rates in this 5 brain areas. The severity of EPS can not clearly be assigned to one of the clusters with disturbed glucose metabolism. However, the most severe cases are characterized by the lowest consumption in the striatal area. When there is marked improvement of EPS impaired glucose consumption reveals a persistent brain lesion. Finally, the neurological symptoms in Wilson's disease are caused by (at least) two different patterns of disturbed glucose metabolism in basal ganglia and cerebellum. The severity of EPS seems to be determined by a disturbed consumption in the striatal area. PMID:12140675

  6. Brain Metabolism Correlates of the Free and Cued Selective Reminding Test in Mild Cognitive Impairment.

    PubMed

    Caffarra, Paolo; Ghetti, Caterina; Ruffini, Livia; Spallazzi, Marco; Spotti, Annamaria; Barocco, Federica; Guzzo, Caterina; Marchi, Massimo; Gardini, Simona

    2016-01-01

    Free and Cued Selective Reminding Test (FCSRT) measures immediate and delayed episodic memory and cueing sensitivity and is suitable to detect prodromal Alzheimer's disease (AD). The present study aimed at investigating the segregation effect of FCSRT scores on brain metabolism of memory-related structures, usually affected by AD pathology, in the Mild Cognitive Impairment (MCI) stage. A cohort of forty-eight MCI patients underwent FCSRT and 18F-FDG-PET. Multiple regression analysis showed that Immediate Free Recall correlated with brain metabolism in the bilateral anterior cingulate and delayed free recall with the left anterior cingulate and medial frontal gyrus, whereas semantic cueing sensitivity with the left posterior cingulate. FCSRT in MCI is associated with neuro-functional activity of specific regions of memory-related structures connected to hippocampal formation, such as the cingulate cortex, usually damaged in AD. PMID:26836012

  7. Limbic Metabolic Abnormalities in Remote Traumatic Brain Injury and Correlation With Psychiatric Morbidity and Social Functioning

    PubMed Central

    Capizzano, Arístides A.; Jorge, Ricardo E.; Robinson, Robert G.

    2013-01-01

    The aim of this study was to investigate limbic metabolic abnormalities in remote traumatic brain injury (TBI) and their psychiatric correlates. Twenty patients and 13 age-matched comparison subjects received complete psychiatric evaluation and brain MRI and MR spectroscopy at 3 Tesla. Patients had reduced NAA to creatine ratio in the left hippocampus relative to comparison subjects (mean=1.3 [SD=0.21] compared with mean=1.55 [SD=0.21]; F=10.73, df=1, 30, p=0.003), which correlated with the Social Functioning Examination scores (rs=−0.502, p=0.034). Furthermore, patients with mood disorders had reduced NAA to creatine ratio in the left cingulate relative to patients without mood disorders (1.47 compared with 1.68; F=3.393, df=3, 19, p=0.044). Remote TBI displays limbic metabolic abnormalities, which correlate to social outcome and psychiatric status. PMID:21037120

  8. Aerobic glycolysis during brain activation: adrenergic regulation and influence of norepinephrine on astrocytic metabolism.

    PubMed

    Dienel, Gerald A; Cruz, Nancy F

    2016-07-01

    Aerobic glycolysis occurs during brain activation and is characterized by preferential up-regulation of glucose utilization compared with oxygen consumption even though oxygen level and delivery are adequate. Aerobic glycolysis is a widespread phenomenon that underlies energetics of diverse brain activities, such as alerting, sensory processing, cognition, memory, and pathophysiological conditions, but specific cellular functions fulfilled by aerobic glycolysis are poorly understood. Evaluation of evidence derived from different disciplines reveals that aerobic glycolysis is a complex, regulated phenomenon that is prevented by propranolol, a non-specific β-adrenoceptor antagonist. The metabolic pathways that contribute to excess utilization of glucose compared with oxygen include glycolysis, the pentose phosphate shunt pathway, the malate-aspartate shuttle, and astrocytic glycogen turnover. Increased lactate production by unidentified cells, and lactate dispersal from activated cells and lactate release from the brain, both facilitated by astrocytes, are major factors underlying aerobic glycolysis in subjects with low blood lactate levels. Astrocyte-neuron lactate shuttling with local oxidation is minor. Blockade of aerobic glycolysis by propranolol implicates adrenergic regulatory processes including adrenal release of epinephrine, signaling to brain via the vagus nerve, and increased norepinephrine release from the locus coeruleus. Norepinephrine has a powerful influence on astrocytic metabolism and glycogen turnover that can stimulate carbohydrate utilization more than oxygen consumption, whereas β-receptor blockade 're-balances' the stoichiometry of oxygen-glucose or -carbohydrate metabolism by suppressing glucose and glycogen utilization more than oxygen consumption. This conceptual framework may be helpful for design of future studies to elucidate functional roles of preferential non-oxidative glucose utilization and glycogen turnover during brain

  9. Metabolic Changes in the Rodent Brain after Acute Administration of Salvinorin A

    PubMed Central

    Hooker, Jacob M.; Patel, Vinal; Kothari, Shiva; Schiffer, Wynne K.

    2009-01-01

    Purpose Salvinorin A (SA) is a potent and highly selective kappa opioid receptor (KOR) agonist with rapid kinetics and commensurate behavioral effects; however, brain regions associated with these effects have not been determined. Procedures Freely moving adult male rats were given SA intraperitoneally during uptake and trapping of the brain metabolic radiotracer, 18FDG, followed by image acquisition in a dedicated animal PET system. Age-matched control animals received vehicle treatment. Animal behavior during 18FDG uptake was recorded digitally and later analyzed for locomotion. Group differences in regional 18FDG uptake normalized to whole brain were determined using Statistical Parametric Mapping (SPM) and verified by region of interest (ROI) analysis. Results SA treated animals demonstrated significant increases in 18FDG uptake compared to controls in several brain regions associated with the distribution of KOR such as the periaqueductal grey, bed nucleus of the stria terminalis and the cerbellar vermis, as well as in the hypothalamus. Significant bilateral activations were also observed in the auditory, sensory and frontal cortices. Regional decreases in metabolic demand were observed bilaterally in the dorsolateral striatum and hippocampus. Locomotor activity did not differ between SA and vehicle during 18FDG uptake. Conclusions We have provided the first extensive maps of cerebral metabolic activation due to the potent κ-opioid agonist, salvinorin A. A major finding from our small animal PET studies using 18FDG was that neural circuits affected by SA may not be limited to direct activation or inhibition of kappa receptor-expressing cells. Instead, salvinorin A may trigger brain circuits that mediate the effects of the drug on cognition, mood, fear and anxiety, and motor output. PMID:19132449

  10. Metabolic brain activity suggestive of persistent pain in a rat model of neuropathic pain

    PubMed Central

    Thompson, Scott J; Millecamps, Magali; Aliaga, Antonio; Seminowicz, David A; Low, Lucie A; Bedell, Barry J; Stone, Laura S; Schweinhardt, Petra; Bushnell, M Catherine

    2014-01-01

    Persistent pain is a central characteristic of neuropathic pain conditions in humans. Knowing whether rodent models of neuropathic pain produce persistent pain is therefore crucial to their translational applicability. We investigated the Spared Nerve Injury (SNI) model of neuropathic pain and the formalin pain model in rats using Positron Emission Tomography (PET) with the metabolic tracer [18F]fluorodeoxyglucose (FDG) to determine if there is ongoing brain activity suggestive of persistent pain. For the formalin model, under brief anesthesia we injected one hindpaw with 5% formalin and the FDG tracer into a tail vein. We then allowed the animals to awaken and observed pain behavior for 30 min during the FDG uptake period. The rat was then anesthetized and placed in the scanner for static image acquisition, which took place between minutes 45 and 75 post-tracer injection. A single reference rat brain magnetic resonance image (MRI) was used to align the PET images with the Paxinos and Watson rat brain atlas. Increased glucose metabolism was observed in the somatosensory region associated with the injection site (S1 hindlimb contralateral), S1 jaw/upper lip and cingulate cortex. Decreases were observed in the prelimbic cortex and hippocampus. Second, SNI rats were scanned 3 weeks post-surgery using the same scanning paradigm, and region-of-interest analyses revealed increased metabolic activity in the contralateral S1 hindlimb. Finally, a second cohort of SNI rats were scanned while anesthetized during the tracer uptake period, and the S1 hindlimb increase was not observed. Increased brain activity in the somatosensory cortex of SNI rats resembled the activity produced with the injection of formalin, suggesting that the SNI model may produce persistent pain. The lack of increased activity in S1 hindlimb with general anesthetic demonstrates that this effect can be blocked, as well as highlights the importance of investigating brain activity in awake and behaving

  11. APOE-by-sex interactions on brain structure and metabolism in healthy elderly controls

    PubMed Central

    de Leon, Mony J; Alcolea, Daniel; Pegueroles, Jordi; Montal, Victor; Carmona-Iragui, María; Sala, Isabel; Sánchez-Saudinos, María-Belén; Antón-Aguirre, Sofía; Morenas-Rodríguez, Estrella; Camacho, Valle; Falcón, Carles; Pavía, Javier; Ros, Domènec; Clarimón, Jordi; Blesa, Rafael; Lleó, Alberto; Fortea, Juan

    2015-01-01

    Background The APOE effect on Alzheimer Disease (AD) risk is stronger in women than in men but its mechanisms have not been established. We assessed the APOE-by-sex interaction on core CSF biomarkers, brain metabolism and structure in healthy elderly control individuals (HC). Methods Cross-sectional study. HC from the Alzheimer’s Disease Neuroimaging Initiative with available CSF (n = 274) and/or 3T-MRI (n = 168) and/or a FDG-PET analyses (n = 328) were selected. CSF amyloid-β1–42 (Aβ1–42), total-tau (t-tau) and phospho-tau (p-tau181p) levels were measured by Luminex assays. We analyzed the APOE-by-sex interaction on the CSF biomarkers in an analysis of covariance (ANCOVA). FDG uptake was analyzed by SPM8 and cortical thickness (CTh) was measured by FreeSurfer. FDG and CTh difference maps were derived from interaction and group analyses. Results APOE4 carriers had lower CSF Aβ1–42 and higher CSF p-tau181p values than non-carriers, but there was no APOE-by-sex interaction on CSF biomarkers. The APOE-by-sex interaction on brain metabolism and brain structure was significant. Sex stratification showed that female APOE4 carriers presented widespread brain hypometabolism and cortical thinning compared to female non-carriers whereas male APOE4 carriers showed only a small cluster of hypometabolism and regions of cortical thickening compared to male non-carriers. Conclusions The impact of APOE4 on brain metabolism and structure is modified by sex. Female APOE4 carriers show greater hypometabolism and atrophy than male carriers. This APOE-by-sex interaction should be considered in clinical trials in preclinical AD where APOE4 status is a selection criterion. PMID:26397226

  12. Prebiotic syntheses of purines and pyrimidines

    NASA Technical Reports Server (NTRS)

    Basile, B.; Oro, J.; Lazcano, A.

    1984-01-01

    The results of experimental and theoretical investigations of the prebiotic synthesis of purines and pyramidines are surveyed. Topics examined include the synthesis of purines from HCN via 4,5-disubstituted imidazole derivatives in aqueous solutions or liquid NH3, simultaneous formation of amino acids and purines by electron irradiation of CH4-NH3-H2O mixtures, synthesis of pyrimadines from cynoacetylene, energetics, formation of bases under anhydrous or concentrated conditions, formation of bases under dilute conditions, Fischer-Tropsch-type reactions, and the role of activated intermediates. It is pointed out that the precursor compounds have been detected in the interstellar medium, on Titan, and in other solar-system bodies, and that solar-nebula HCN concentrations of the order of 1-10 mM have been estimated on the basis of meteorite measurements.

  13. Mitochondrial Energy Metabolism and Redox Signaling in Brain Aging and Neurodegeneration

    PubMed Central

    Yin, Fei; Boveris, Alberto

    2014-01-01

    Abstract Significance: The mitochondrial energy-transducing capacity is essential for the maintenance of neuronal function, and the impairment of energy metabolism and redox homeostasis is a hallmark of brain aging, which is particularly accentuated in the early stages of neurodegenerative diseases. Recent Advances: The communications between mitochondria and the rest of the cell by energy- and redox-sensitive signaling establish a master regulatory device that controls cellular energy levels and the redox environment. Impairment of this regulatory devise is critical for aging and the early stages of neurodegenerative diseases. Critical Issues: This review focuses on a coordinated metabolic network—cytosolic signaling, transcriptional regulation, and mitochondrial function—that controls the cellular energy levels and redox status as well as factors which impair this metabolic network during brain aging and neurodegeneration. Future Directions: Characterization of mitochondrial function and mitochondria-cytosol communications will provide pivotal opportunities for identifying targets and developing new strategies aimed at restoring the mitochondrial energy-redox axis that is compromised in brain aging and neurodegeneration. Antioxid. Redox Signal. 20, 353–371. PMID:22793257

  14. Transferrin Receptor 2 Dependent Alterations of Brain Iron Metabolism Affect Anxiety Circuits in the Mouse

    PubMed Central

    Pellegrino, Rosa Maria; Boda, Enrica; Montarolo, Francesca; Boero, Martina; Mezzanotte, Mariarosa; Saglio, Giuseppe; Buffo, Annalisa; Roetto, Antonella

    2016-01-01

    The Transferrin Receptor 2 (Tfr2) modulates systemic iron metabolism through the regulation of iron regulator Hepcidin (Hepc) and Tfr2 inactivation causes systemic iron overload. Based on data demonstrating Tfr2 expression in brain, we analysed Tfr2-KO mice in order to examine the molecular, histological and behavioural consequences of Tfr2 silencing in this tissue. Tfr2 abrogation caused an accumulation of iron in specific districts in the nervous tissue that was not accompanied by a brain Hepc response. Moreover, Tfr2-KO mice presented a selective overactivation of neurons in the limbic circuit and the emergence of an anxious-like behaviour. Furthermore, microglial cells showed a particular sensitivity to iron perturbation. We conclude that Tfr2 is a key regulator of brain iron homeostasis and propose a role for Tfr2 alpha in the regulation of anxiety circuits. PMID:27477597

  15. [Metabolic effects of mexidol in complex treatment of chronic brain ischemia].

    PubMed

    Demchenko, E Iu; Kulakova, N V; Semiglazova, T A; Golovacheva, A B; Borodulina, E V; Udut, V V

    2008-01-01

    Patients with a chronic brain ischemia of stages I-II on the background of hypertension and/or cerebral atherosclerosis are characterized by energy insufficiency of the metabolism, as estimated by the activity of succinate dehydrogenase in peripheral blood lymphocytes. Within the framework of randomized comparative investigation of the efficiency of actovegin and mexidol in the complex therapy of a chronic brain ischemia, positive dynamics in reduction of the clinical semiology, restoration of cognitive processes in the brain, and reduction of the expression of subjective manifestations of the disease is established. On this background, the administration of mexidol led to restoration of the energy exchange due to substrate effects of the Krebs cycle intermediates present in its structure. PMID:19140508

  16. Transferrin Receptor 2 Dependent Alterations of Brain Iron Metabolism Affect Anxiety Circuits in the Mouse.

    PubMed

    Pellegrino, Rosa Maria; Boda, Enrica; Montarolo, Francesca; Boero, Martina; Mezzanotte, Mariarosa; Saglio, Giuseppe; Buffo, Annalisa; Roetto, Antonella

    2016-01-01

    The Transferrin Receptor 2 (Tfr2) modulates systemic iron metabolism through the regulation of iron regulator Hepcidin (Hepc) and Tfr2 inactivation causes systemic iron overload. Based on data demonstrating Tfr2 expression in brain, we analysed Tfr2-KO mice in order to examine the molecular, histological and behavioural consequences of Tfr2 silencing in this tissue. Tfr2 abrogation caused an accumulation of iron in specific districts in the nervous tissue that was not accompanied by a brain Hepc response. Moreover, Tfr2-KO mice presented a selective overactivation of neurons in the limbic circuit and the emergence of an anxious-like behaviour. Furthermore, microglial cells showed a particular sensitivity to iron perturbation. We conclude that Tfr2 is a key regulator of brain iron homeostasis and propose a role for Tfr2 alpha in the regulation of anxiety circuits. PMID:27477597

  17. The influence of carbon dioxide on brain activity and metabolism in conscious humans

    PubMed Central

    Xu, Feng; Uh, Jinsoo; Brier, Matthew R; Hart, John; Yezhuvath, Uma S; Gu, Hong; Yang, Yihong; Lu, Hanzhang

    2011-01-01

    A better understanding of carbon dioxide (CO2) effect on brain activity may have a profound impact on clinical studies using CO2 manipulation to assess cerebrovascular reserve and on the use of hypercapnia as a means to calibrate functional magnetic resonance imaging (fMRI) signal. This study investigates how an increase in blood CO2, via inhalation of 5% CO2, may alter brain activity in humans. Dynamic measurement of brain metabolism revealed that mild hypercapnia resulted in a suppression of cerebral metabolic rate of oxygen (CMRO2) by 13.4%±2.3% (N=14) and, furthermore, the CMRO2 change was proportional to the subject's end-tidal CO2 (Et-CO2) change. When using functional connectivity MRI (fcMRI) to assess the changes in resting-state neural activity, it was found that hypercapnia resulted in a reduction in all fcMRI indices assessed including cluster volume, cross-correlation coefficient, and amplitude of the fcMRI signal in the default-mode network (DMN). The extent of the reduction was more pronounced than similar indices obtained in visual-evoked fMRI, suggesting a selective suppression effect on resting-state neural activity. Scalp electroencephalogram (EEG) studies comparing hypercapnia with normocapnia conditions showed a relative increase in low frequency power in the EEG spectra, suggesting that the brain is entering a low arousal state on CO2 inhalation. PMID:20842164

  18. Relationship of blood flow and metabolism to acoustic processing centers of the dolphin brain.

    PubMed

    Houser, Dorian S; Moore, Patrick W; Johnson, Shawn; Lutmerding, Betsy; Branstetter, Brian; Ridgway, Sam H; Trickey, Jennifer; Finneran, James J; Jensen, Eric; Hoh, Carl

    2010-09-01

    Odontocete brain tissues associated with auditory processing are hypertrophied and modified relative to their terrestrial counterparts. The relationship between the functional demand on these tissues and metabolic substrate requirements is unknown. Using positron emission tomography (PET), relative cerebral blood flow was measured in a bottlenose dolphin. Approximately 60 mCi (13)NH(3) was administered to the dolphin via a catheter inserted into the hepatic vein and threaded proximate to the vena cava. Radiolabel initially appeared as distributed focal points in the cerebellum. Increasing scan time resulted in an increase in the number of focal regions and in the diffusivity of label activity throughout the brain. The time course and spatial distribution of radiolabel was consistent with a cerebral blood supply dominated by the spinal meningeal arteries. Blood flow was predominantly observed in the cerebellum and neocortex, particularly the auditory and visual cortex. Differential brain glucose uptake, previously measured in a separate dolphin, showed good agreement with the differential supply of blood to brain tissues. Rates of blood supply and glucose uptake in the auditory cortex, inferior colliculus, and cerebellum are consistent with a high metabolic demand of tissues which are important to the integration of auditory and other sensory inputs. PMID:20815480

  19. Cellular pathways of energy metabolism in the brain: is glucose used by neurons or astrocytes?

    PubMed

    Nehlig, Astrid; Coles, Jonathan A

    2007-09-01

    Most techniques presently available to measure cerebral activity in humans and animals, i.e. positron emission tomography (PET), autoradiography, and functional magnetic resonance imaging, do not record the activity of neurons directly. Furthermore, they do not allow the investigator to discriminate which cell type is using glucose, the predominant fuel provided to the brain by the blood. Here, we review the experimental approaches aimed at determining the percentage of glucose that is taken up by neurons and by astrocytes. This review is integrated in an overview of the current concepts on compartmentation and substrate trafficking between astrocytes and neurons. In the brain in vivo, about half of the glucose leaving the capillaries crosses the extracellular space and directly enters neurons. The other half is taken up by astrocytes. Calculations suggest that neurons consume more energy than do astrocytes, implying that astrocytes transfer an intermediate substrate to neurons. Experimental approaches in vitro on the honeybee drone retina and on the isolated vagus nerve also point to a continuous transfer of intermediate metabolites from glial cells to neurons in these tissues. Solid direct evidence of such transfer in the mammalian brain in vivo is still lacking. PET using [(18)F]fluorodeoxyglucose reflects in part glucose uptake by astrocytes but does not indicate to which step the glucose taken up is metabolized within this cell type. Finally, the sequence of metabolic changes occurring during a transient increase of electrical activity in specific regions of the brain remains to be clarified. PMID:17659529

  20. Simulation of Preterm Neonatal Brain Metabolism During Functional Neuronal Activation Using a Computational Model.

    PubMed

    Hapuarachchi, T; Scholkmann, F; Caldwell, M; Hagmann, C; Kleiser, S; Metz, A J; Pastewski, M; Wolf, M; Tachtsidis, I

    2016-01-01

    We present a computational model of metabolism in the preterm neonatal brain. The model has the capacity to mimic haemodynamic and metabolic changes during functional activation and simulate functional near-infrared spectroscopy (fNIRS) data. As an initial test of the model's efficacy, we simulate data obtained from published studies investigating functional activity in preterm neonates. In addition we simulated recently collected data from preterm neonates during visual activation. The model is well able to predict the haemodynamic and metabolic changes from these observations. In particular, we found that changes in cerebral blood flow and blood pressure may account for the observed variability of the magnitude and sign of stimulus-evoked haemodynamic changes reported in preterm infants. PMID:26782202

  1. Glucose metabolism in different regions of the rat brain under hypokinetic stress influence

    NASA Technical Reports Server (NTRS)

    Konitzer, K.; Voigt, S.

    1980-01-01

    Glucose metabolism in rats kept under long term hypokinetic stress was studied in 7 brain regions. Determination was made of the regional levels of glucose, lactate, glutamate, glutamine, aspartate, gamma-aminobutyrate and the incorporation of C-14 from plasma glucose into these metabolites, in glycogen and protein. From the content and activity data the regional glucose flux was approximated quantitatively. Under normal conditions the activity gradient cortex and frontal pole cerebellum, thalamus and mesencephalon, hypothalamus and pons and medulla is identical with that of the regional blood supply (measured with I131 serum albumin as the blood marker). Within the first days of immobilization a functional hypoxia occurred in all brain regions and the utilization of cycle amino acids for protein synthesis was strongly diminished. After the first week of stress the capillary volumes of all regions increased, aerobic glucose metabolism was enhanced (factors 1.3 - 2.0) and the incorporation of glucose C-14 via cycle amino acids into protein was considerably potentiated. The metabolic parameters normalized between the 7th and 11th week of stress. Blood supply and metabolic rate increased most in the hypothalamus.

  2. Purine nucleoside phosphorylase and xanthine oxidase activities in erythrocytes and plasma from marine, semiaquatic and terrestrial mammals.

    PubMed

    López-Cruz, Roberto I; Pérez-Milicua, Myrna Barjau; Crocker, Daniel E; Gaxiola-Robles, Ramón; Bernal-Vertiz, Jaime A; de la Rosa, Alejandro; Vázquez-Medina, José P; Zenteno-Savín, Tania

    2014-05-01

    Purine nucleoside phosphorylase (PNP) and xanthine oxidase (XO) are key enzymes involved in the purine salvage pathway. PNP metabolizes purine bases to synthetize purine nucleotides whereas XO catalyzes the oxidation of purines to uric acid. In humans, PNP activity is reported to be high in erythrocytes and XO activity to be low in plasma; however, XO activity increases after ischemic events. XO activity in plasma of northern elephant seals has been reported during prolonged fasting and rest and voluntary associated apneas. The objective of this study was to analyze circulating PNP and XO activities in marine mammals adapted to tolerate repeated cycles of ischemia/reperfusion associated with diving (bottlenose dolphin, northern elephant seal) in comparison with semiaquatic (river otter) and terrestrial mammals (human, pig). PNP activities in plasma and erythrocytes, as well as XO activity in plasma, from all species were quantified by spectrophotometry. No clear relationship in circulating PNP or XO activity could be established between marine, semiaquatic and terrestrial mammals. Erythrocytes from bottlenose dolphins and humans are highly permeable to nucleosides and glucose, intraerythrocyte PNP activity may be related to a release of purine nucleotides from the liver. High-energy costs will probably mean a higher ATP degradation rate in river otters, as compared to northern elephant seals or dolphins. Lower erythrocyte PNP activity and elevated plasma XO activity in northern elephant seal could be associated with fasting and/or sleep- and dive-associated apneas. PMID:24530799

  3. Changes in brain oxidative metabolism induced by inhibitory avoidance learning and acute administration of amitriptyline.

    PubMed

    González-Pardo, Héctor; Conejo, Nélida M; Arias, Jorge L; Monleón, Santiago; Vinader-Caerols, Concepción; Parra, Andrés

    2008-05-01

    The effects of antidepressant drugs on memory have been somewhat ignored, having been considered a mere side effect of these compounds. However, the memory impairment caused by several antidepressants could be considered to form part of their therapeutic effects. Amitriptyline is currently one of the most prescribed tricyclic antidepressants, and exerts marked anticholinergic and antihistaminergic effects. In this study, we evaluated the effects of inhibitory avoidance (IA) learning and acute administration of amitriptyline on brain oxidative metabolism. Brain oxidative metabolism was measured in several limbic regions using cytochrome oxidase (CO) quantitative histochemistry. Amitriptyline produced a clear impairment in the IA task. In animals exposed only to the apparatus, amitriptyline decreased CO activity in nine brain regions, without affecting the remaining regions. In animals that underwent the IA training phase, amitriptyline reduced CO activity in only three of these nine regions. In animals treated with saline, IA acquisition increased CO activity in the medial prefrontal cortex, the prelimbic cortex, and the medial mammillary body, and diminished it in the medial septum and the nucleus basalis of Meynert with respect to animals exposed only to the IA apparatus. In animals treated with amitriptyline, IA acquisition did not modify CO activity in any of these regions, but increased it in the anteromedial nucleus of the thalamus, the diagonal band of Broca, and the dentate gyrus. The results reveal a pattern of changes in brain oxidative metabolism induced by IA training in saline-treated animals that was clearly absent in animals submitted to the same behavioural training but treated with amitriptyline. PMID:18313125

  4. Biopharmaceutical characterization, metabolism, and brain penetration of the triple reuptake inhibitor amitifadine.

    PubMed

    Bymaster, Frank P; Chao, Piyun; Schulze, Heidi; Tran, Pierre V; Marshall, Randall D

    2013-03-01

    Amitifadine (EB-1010, formerly DOV 21,947) is a serotonin-preferring triple reuptake inhibitor that is a drug candidate for major depressive disorder. We investigated several relevant biopharmaceutic and drug-like characteristics of amitifadine using in vitro methodology and additionally determined the in vivo brain to plasma ratio of the drug in rats. Amitifadine was highly plasma protein bound with over 99% of drug bound to human plasma proteins. Using Caco-2 cell lines, amitifadine was bidirectionally highly permeable and showed no evidence of active secretion. Amitifadine was metabolized slowly by human hepatocytes and the major metabolite was the lactam EB-10101. In vitro studies using human liver microsomes demonstrated that EB-10101 was formed by monoamine oxidase A (MAO-A) and a NADPHdependent enzyme, possibly a cytochrome P450 (CYP) isoform. Amitifadine was a moderate inhibitor of the human isoforms of the major drug metabolizing enzymes CYP2D6, CYP3A4, CYP2C9, and CYP2C19 (IC50 = 9 - 100 μM), but was a potent inhibitor of human CYP2B6 (IC50 = 1.8 μM). The brain to plasma ratio for amitifadine varied from 3.7 - 6.5 at various time points, indicating preferential partitioning into rat brain versus plasma. The low affinity for the major drug metabolizing CYP enzymes and metabolism by multiple pathways may reduce pharmacokinetic drug-drug interactions and effects of enzyme polymorphisms. Overall, these studies suggest that amitifadine has drug-like characteristics favorable for drug development. PMID:23826879

  5. Glucose and amino acid metabolism in rat brain during sustained hypoglycemia

    SciTech Connect

    Wong, K.L.; Tyce, G.M.

    1983-04-01

    The metabolism of glucose in brains during sustained hypoglycemia was studied. (U-/sup 14/C)Glucose (20 microCi) was injected into control rats, and into rats at 2.5 hr after a bolus injection of 2 units of insulin followed by a continuous infusion of 0.2 units/100 g rat/hr. This regimen of insulin injection was found to result in steady-state plasma glucose levels between 2.5 and 3.5 mumol per ml. In the brains of control rats carbon was transferred rapidly from glucose to glutamate, glutamine, gamma-aminobutyric acid and aspartate and this carbon was retained in the amino acids for at least 60 min. In the brains of hypoglycemic rats, the conversion of carbon from glucose to amino acids was increased in the first 15 min after injection. After 15 min, the specific activity of the amino acids decreased in insulin-treated rats but not in the controls. The concentrations of alanine, glutamate, and gamma-amino-butyric acid decreased, and the concentration of aspartate increased, in the brains of the hypoglycemic rats. The concentration of pyridoxal-5'-phosphate, a cofactor in many of the reactions whereby these amino acids are formed from tricarboxylic acid cycle intermediates, was less in the insulin-treated rats than in the controls. These data provide evidence that glutamate, glutamine, aspartate, and GABA can serve as energy sources in brain during insulin-induced hypoglycemia.

  6. Glucose Metabolic Brain Networks in Early-Onset vs. Late-Onset Alzheimer's Disease

    PubMed Central

    Chung, Jinyong; Yoo, Kwangsun; Kim, Eunjoo; Na, Duk L.; Jeong, Yong

    2016-01-01

    Objective: Early-onset Alzheimer's disease (EAD) shows distinct features from late-onset Alzheimer's disease (LAD). To explore the characteristics of EAD, clinical, neuropsychological, and functional imaging studies have been conducted. However, differences between EAD and LAD are not clear, especially in terms of brain connectivity and networks. In this study, we investigated the differences in metabolic connectivity between EAD and LAD by adopting graph theory measures. Methods: We analyzed 18F-fluorodeoxyglucose-positron emission tomography (FDG-PET) images to investigate the distinct features of metabolic connectivity between EAD and LAD. Using metabolic connectivity and graph theory analysis, metabolic network differences between LAD and EAD were explored. Results: Results showed the decreased connectivity centered in the cingulate gyri and occipital regions in EAD, whereas decreased connectivity in the occipital and temporal regions as well as increased connectivity in the supplementary motor area were observed in LAD when compared with age-matched control groups. Global efficiency and clustering coefficients were decreased in EAD but not in LAD. EAD showed progressive network deterioration as a function of disease severity and clinical dementia rating (CDR) scores, mainly in terms of connectivity between the cingulate gyri and occipital regions. Global efficiency and clustering coefficients were also decreased along with disease severity. Conclusion: These results indicate that EAD and LAD have distinguished features in terms of metabolic connectivity, with EAD demonstrating more extensive and progressive deterioration. PMID:27445800

  7. Localized proton magnetic resonance spectroscopy of the brain differentiates the inborn metabolic encephalopathies in children.

    PubMed

    Chabrol, B; Salvan, A M; Confort-Gouny, S; Vion-Dury, J; Cozzone, P J

    1995-09-01

    Localized brain proton magnetic resonance spectroscopy (MRS) has been performed using a STEAM (stimulated echo-acquisition mode) method with a short-echo time (20 ms) in 10 children suffering from different lysosomal diseases, 6 boys with X-linked adrenoleukodystrophy (X-ALD) and 5 healthy children. Metabolic data from localized spectra were processed by principal component analysis (PCA) of 7 metabolic variables recorded on the MR spectra. PCA allows to delineate different clusters corresponding to the 2 pathological groups which are separated from each other and from the control group. The position of each spectrum on the patient map correlates with the clinical data and to the evolution of the patients subjected to a follow-up. These results also confirm the metabolic features characterizing the pathologies of the lysosome (increase in inositol) and the peroxisome (increase in choline and free lipids). PCA constitutes an alternative to the classical statistical methods to analyze and compare metabolic modifications in small populations of patients and allows to identify the most critical parameters defining the organization of the pathological populations. This analysis clearly increases the discrimination among pathologies based on the metabolic profiles obtained by MRS. PMID:8521083

  8. Antiparasitic chemotherapy: tinkering with the purine salvage pathway.

    PubMed

    Datta, Alok Kumar; Datta, Rupak; Sen, Banibrata

    2008-01-01

    Distinguishable differences between infectine organisms and their respective hosts with respect to metabolism and macromolecular structure provide scopes for detailed characterization of target proteins and/or macromolecules as the focus for the development of selective inhibitors. In order to develop a rational approach to antiparasitic chemotherapy, finding differences in the biochemical pathways of the parasite with respect to the host it infects is therefore of primary importance. Like most parasitic protozoan, the genus Leishmania is an obligate auxotroph of purines and hence for requirement of purine bases depends on its own purine salvage pathways. Among various purine acquisition routes used by the parasite, the pathway involved in assimilation of adenosine nucleotide is unique and differs significantly in the extracellular form of the parasite (promastigotes) from its corresponding intracellular form (amastigotes). Adenosine kinase (AdK) is the gateway enzyme of this pathway and displays stage-specific activity pattern. Therefore, understanding the catalytic mechanism of the enzyme, its structural complexities and mode of its regulation have emerged as one of the major areas of investigation. This review, in general, discusses possible strategies to validate several purine salvage enzymes as targets for chemotherapeutic manipulation with special reference to adenosine kinase of Leishmania donovani. Systemic endotheliosis, commonly known as Kala-azar in India, is caused by the parasitic protozoon Leishmania donovani. The spread of leishmaniases follows the distribution of these vectors in the temperate, tropical and subtropical regions of the world leading to loss of thousands of human lives.' WHO has declared leishmaniasis among one of the six major diseases namely leishmaniasis, malaria, amoebiasis, filariasis, Chagas disease and schistosomiasis in its Special Programme for Research and Training in Tropical Diseases. Strategies for better prophylaxis and

  9. Three-dimensional brain metabolic imaging in patients with toxic encephalopathy

    SciTech Connect

    Callender, T.J.; Duhon, D.; Ristovv, M. ); Morrow, L. ); Subramanian, K. )

    1993-02-01

    Thirty-three workers, ages 24 to 63, developed clinical toxic encephalopathy after exposure to neurotoxins and were studied by SPECT brain scans. Five were exposed to pesticides, 13 were acutely exposed to mixtures of solvents, 8 were chronically exposed to mixtures of hazardous wastes that contained organic solvents, 2 were acutely exposed to phosgene and other toxins, and 5 had exposures to hydrogen sulfide. Twenty-nine had neuropsychological testing and all had a medical history and physical. Of the workers who had a clinical diagnosis of toxic encephalopathy, 31 (93.9%) had abnormal SPECT brain scans with the most frequent areas of abnormality being temporal lobes (67.7%), frontal lobes (61.3%), basal ganglia (45.2%), thalamus (29.0%), parietal lobes (12.9%), motorstrip (9.68%), cerebral hemisphere (6.45%), occipital lobes (3.23%), and caudate nucleus (3.23%). Twenty-three out of 29 (79.3%) neuropsychological evaluations were abnormal. Other modalities when performed included the following percentages of abnormals: NCV, 33.3%; CPT sensory nerve testing, 91.3%, vestibular function testing, 71.4%; olfactory testing, 89.2%; sleep EEG analysis, 85.7%; EEG, 8.33%; CT, 7.14%; and MRI brain scans, 28.6%. The complex of symptoms seen in toxic encephalopathy implies dysfunction involving several CNS regions. This series of patients adds to the previous experience of brain metabolic imaging and demonstrates that certain areas of the brain are typically affected despite differences in toxin structure, that these lesions can be globally defined by SPECT/PET brain scans, that these lesions correlate well with clinical and neuropsychological testing, and that such testing is a useful adjunct to previous methods. EEG and structural brain imaging such as CT and MRI are observed to have poor sensitivity in this type of patient. 32 refs., 5 tabs.

  10. Different brain networks underlying the acquisition and expression of contextual fear conditioning: a metabolic mapping study.

    PubMed

    González-Pardo, H; Conejo, N M; Lana, G; Arias, J L

    2012-01-27

    The specific brain regions and circuits involved in the acquisition and expression of contextual fear conditioning are still a matter of debate. To address this issue, regional changes in brain metabolic capacity were mapped during the acquisition and expression of contextual fear conditioning using cytochrome oxidase (CO) quantitative histochemistry. In comparison with a group briefly exposed to a conditioning chamber, rats that received a series of randomly presented footshocks in the same conditioning chamber (fear acquisition group) showed increased CO activity in anxiety-related brain regions like the ventral periaqueductal gray, the ventral hippocampus, the lateral habenula, the mammillary bodies, and the laterodorsal thalamic nucleus. Another group received randomly presented footshocks, and it was re-exposed to the same conditioning chamber one week later (fear expression group). The conditioned group had significantly higher CO activity as compared with the matched control group in the following brain regions: the ventral periaqueductal gray, the central and lateral nuclei of the amygdala, and the bed nucleus of the stria terminalis. In addition, analysis of functional brain networks using interregional CO activity correlations revealed different patterns of functional connectivity between fear acquisition and fear expression groups. In particular, a network comprising the ventral hippocampus and amygdala nuclei was found in the fear acquisition group, whereas a closed reciprocal dorsal hippocampal network was detected in the fear expression group. These results suggest that contextual fear acquisition and expression differ as regards to the brain networks involved, although they share common brain regions involved in fear, anxiety, and defensive behavior. PMID:22173014

  11. Changes in adrenoceptors and monoamine metabolism in neonatal and adult rat brain after postnatal exposure to the antihypertensive labetalol.

    PubMed Central

    Erdtsieck-Ernste, E. B.; Feenstra, M. G.; Botterblom, M. H.; De Barrios, J.; Boer, G. J.

    1992-01-01

    1. The purpose of the present study was to investigate the acute (single injection), direct (chronic treatment) and the long-lasting effects after exposure to the alpha 1/beta-adrenoceptor antagonist labetalol during rat brain development on adrenoceptors and monoamine metabolism. 2. In 10-day-old rat pups, subcutaneously administered labetalol (10 mg kg-1) passed the blood-brain barrier, reaching a level of 2.1 micrograms g-1 tissue in the brain 90 min after injection. 3. Chronic labetalol treatment (10 mg kg-1, s.c., twice daily) during the first 10 days of life significantly increased alpha 1-adrenoceptor binding in the hypothalamus (+39%), but not in the occipital cortex. 4. This chronic postnatal labetalol treatment did not result in long-lasting changes in alpha 1- and beta-receptors measured on day 60. 5. A single labetalol injection (10 mg kg-1, s.c.) on postnatal day 10 significantly increased noradrenaline (NA) metabolism in all brain regions tested (+25 to 105%), but had no effects on 5-hydroxytryptamine (5-HT) or dopamine metabolism. 6. Chronic labetalol treatment between postnatal (PN) days 1 and 10 also increased NA metabolism on PN 10 (3-methoxy-4-hydroxyphenylglycol (MHPG)/NA, +20 to 100%), suggesting that tolerance to the acute effect of labetalol did not occur. A slight increase in 5-HT metabolism (20%) was induced by the chronic labetalol treatment in the hippocampus and meso-limbic system. 7. In general, long-lasting effects on NA metabolism could not be detected on day 60 more than one month after the treatment. However, 5-HT metabolism was significantly increased in all four brain regions measured (+20 to 70%). 8. We conclude that chronic labetalol exposure during early postnatal rat brain development does not cause long-lasting changes in beta-receptor number or NA metabolism, but appears to be critical for the rate of 5-HT metabolism in later life. PMID:1596689

  12. Mapping Human Brain Capillary Water Lifetime: High-Resolution Metabolic Neuromaging

    PubMed Central

    Rooney, William D.; Li, Xin; Sammi, Manoj K.; Bourdette, Dennis N.; Neuwelt, Edward A.; Springer, Charles S.

    2016-01-01

    Shutter-speed analysis of Dynamic-Contrast-Agent-(CA)-Enhanced normal, multiple sclerosis [MS], and glioblastoma [GBM] human brain data gives the mean capillary water molecule lifetime [τb] and blood volume fraction [vb; capillary density·volume product (′†·V)] in a high-resolution 1H2O MRI voxel [40 μL] or ROI. The equilibrium water extravasation rate constant, kpo [τb−1], averages 3.2 and 2.9 s−1 in resting-state normal white matter [NWM] and gray matter [NGM], respectively [n = 6]. The results {parenthesized} lead to three major conclusions. A) kpo differences are dominated by capillary water permeability [PW†], not size, differences. {NWM and NGM voxel kpo and vb values are independent. Quantitative analyses of concomitant population-averaged kpo,vb variations in normal and normal-appearing MS brain ROIs confirm PW† dominance.} B) PW† is dominated [> 95%] by a trans[endothelial]cellular pathway, not the PCA† para-cellular route. {In MS lesions and GBM tumors, PCA† increases but PW† decreases.} C) kpo tracks steady-state ATP production/consumption flux per capillary. {In normal, MS, and GBM brain, regional kpo correlates with literature MRSI ATP [positively] and Na+ [negatively] tissue concentrations. These suggest the PW† pathway is metabolically active. Excellent agreement of the relative NGM/NWM kpo·vb product ratio with the literature 31PMRSI-MT CMRoxphos ratio confirms the flux property.} We have previously shown the cellular water molecule efflux rate constant [kio] is proportional to plasma membrane P-type ATPase turnover, likely due to active trans-membrane water cycling. With synaptic proximities and synergistic metabolic co-operativities, polar brain endothelial, neuroglial, and neuronal cells form “gliovascular units.” We hypothesize a chain of water cycling processes transmits brain metabolic activity to kpo, letting it report neurogliovascular unit Na+,K+-ATPase activity. Cerebral kpo maps represent metabolic

  13. Emerging roles for brain drug-metabolizing cytochrome P450 enzymes in neuropsychiatric conditions and responses to drugs.

    PubMed

    Toselli, Francesca; Dodd, Peter R; Gillam, Elizabeth M J

    2016-08-01

    P450s in the human brain were originally considered unlikely to contribute significantly to the clearance of drugs and other xenobiotic chemicals, since their overall expression was a small fraction of that found in the liver. However, it is now recognized that P450s play substantial roles in the metabolism of both exogenous and endogenous chemicals in the brain, but in a highly cell type- and region-specific manner, in line with the greater functional heterogeneity of the brain compared to the liver. Studies of brain P450 expression and the characterization of the catalytic activity of specific forms expressed as recombinant enzymes have suggested possible roles for xenobiotic-metabolizing P450s in the brain. It is now possible to confirm these roles through the use of intracerebroventricular administration of selective P450 inhibitors in animal models, coupled with brain sampling techniques to measure drug concentrations in vivo, and modern neuroimaging techniques. The purpose of this review is to discuss the evidence behind the functional importance of P450s from the "xenobiotic-metabolizing" families, CYP1, CYP2 and CYP3 in the brain. Approaches used to define the quantitative and qualitative significance of these P450s in determining tissue-specific levels of xenobiotics in brain will be considered. Finally, the possible roles of these enzymes in brain biochemistry will be examined in light of the demonstrated activity of these enzymes in vitro and the association of particular P450 forms with disease states. PMID:27498925

  14. Caloric restriction increases ketone bodies metabolism and preserves blood flow in aging brain

    PubMed Central

    Lin, Ai-Ling; Zhang, Wei; Gao, Xiaoli; Watts, Lora

    2015-01-01

    Caloric restriction (CR) has been shown to increase the life span and health span of a broad range of species. However, CR effects on in vivo brain functions are far from explored. In this study, we used multimetric neuroimaging methods to characterize the CR-induced changes of brain metabolic and vascular functions in aging rats. We found that old rats (24 months of age) with CR diet had reduced glucose uptake and lactate concentration, but increased ketone bodies level, compared with the age-matched and young (5 months of age) controls. The shifted metabolism was associated with preserved vascular function: old CR rats also had maintained cerebral blood flow relative to the age-matched controls. When investigating the metabolites in mitochondrial tricarboxylic acid cycle, we found that citrate and α-ketoglutarate were preserved in the old CR rats. We suggest that CR is neuroprotective; ketone bodies, cerebral blood flow, and α-ketoglutarate may play important roles in preserving brain physiology in aging. PMID:25896951

  15. Reduced cerebral glucose metabolism and increased brain capillary permeability following high-dose methotrexate chemotherapy: a positron emission tomographic study

    SciTech Connect

    Phillips, P.C.; Dhawan, V.; Strother, S.C.; Sidtis, J.J.; Evans, A.C.; Allen, J.C.; Rottenberg, D.A.

    1987-01-01

    Regional glucose metabolic rate constants and blood-to-brain transport of rubidium were estimated using positron emission tomography in an adolescent patient with a brain tumor, before and after chemotherapy with intravenous high-dose methotrexate. Widespread depression of cerebral glucose metabolism was apparent 24 hours after drug administration, which may reflect reduced glucose phosphorylation, and the influx rate constant for /sup 82/Rb was increased, indicating a drug-induced alteration in blood-brain barrier function. Associated changes in neuropsychological performance, electroencephalogram, and plasma amino acid concentration were identified in the absence of evidence of systemic methotrexate toxicity, suggesting primary methotrexate neurotoxicity.

  16. GMP synthase is essential for viability and infectivity of Trypanosoma brucei despite a redundant purine salvage pathway.

    PubMed

    Li, Qiong; Leija, Christopher; Rijo-Ferreira, Filipa; Chen, Jun; Cestari, Igor; Stuart, Kenneth; Tu, Benjamin P; Phillips, Margaret A

    2015-09-01

    The causative agent of human African trypanosomiasis, Trypanosoma brucei, lacks de novo purine biosynthesis and depends on purine salvage from the host. The purine salvage pathway is redundant and contains two routes to guanosine-5'-monophosphate (GMP) formation: conversion from xanthosine-5'-monophosphate (XMP) by GMP synthase (GMPS) or direct salvage of guanine by hypoxanthine-guanine phosphoribosyltransferase (HGPRT). We show recombinant T. brucei GMPS efficiently catalyzes GMP formation. Genetic knockout of GMPS in bloodstream parasites led to depletion of guanine nucleotide pools and was lethal. Growth of gmps null cells was only rescued by supraphysiological guanine concentrations (100 μM) or by expression of an extrachromosomal copy of GMPS. Hypoxanthine was a competitive inhibitor of guanine rescue, consistent with a common uptake/metabolic conversion mechanism. In mice, gmps null parasites were unable to establish an infection demonstrating that GMPS is essential for virulence and that plasma guanine is insufficient to support parasite purine requirements. These data validate GMPS as a potential therapeutic target for treatment of human African trypanosomiasis. The ability to strategically inhibit key metabolic enzymes in the purine pathway unexpectedly bypasses its functional redundancy by exploiting both the nature of pathway flux and the limited nutrient environment of the parasite's extracellular niche. PMID:26043892

  17. GMP synthase is essential for viability and infectivity of Trypanosoma brucei despite a redundant purine salvage pathway

    PubMed Central

    Li, Qiong; Leija, Christopher; Rijo-Ferreira, Filipa; Chen, Jun; Cestari, Igor; Stuart, Kenneth; Tu, Benjamin P.; Phillips, Margaret A.

    2015-01-01

    Summary The causative agent of human African trypanosomiasis, Trypanosoma brucei, lacks de novo purine biosynthesis and depends on purine salvage from the host. The purine salvage pathway is redundant and contains two routes to guanosine-5′-monophosphate (GMP) formation: conversion from xanthosine-5′-monophosphate (XMP) by GMP synthase (GMPS) or direct salvage of guanine by hypoxanthine-guanine phosphoribosyltransferase (HGPRT). We show recombinant T. brucei GMPS efficiently catalyzes GMP formation. Genetic knockout of GMPS in bloodstream parasites led to depletion of guanine nucleotide pools and was lethal. Growth of gmps null cells was only rescued by supraphysiological guanine concentrations (100 μM) or by expression of an extrachromosomal copy of GMPS. Hypoxanthine was a competitive inhibitor of guanine rescue, consistent with a common uptake/metabolic conversion mechanism. In mice, gmps null parasites were unable to establish an infection demonstrating that GMPS is essential for virulence and that plasma guanine is insufficient to support parasite purine requirements. These data validate GMPS as a potential therapeutic target for treatment of HAT. The ability to strategically inhibit key metabolic enzymes in the purine pathway unexpectedly bypasses its functional redundancy by exploiting both the nature of pathway flux and the limited nutrient environment of the parasite's extracellular niche. PMID:26043892

  18. Differences in Brain Metabolic Impairment between Chronic Mild/Moderate TBI Patients with and without Visible Brain Lesions Based on MRI.

    PubMed

    Ito, Keiichi; Asano, Yoshitaka; Ikegame, Yuka; Shinoda, Jun

    2016-01-01

    Introduction. Many patients with mild/moderate traumatic brain injury (m/mTBI) in the chronic stage suffer from executive brain function impairment. Analyzing brain metabolism is important for elucidating the pathological mechanisms associated with their symptoms. This study aimed to determine the differences in brain glucose metabolism between m/mTBI patients with and without visible traumatic brain lesions based on MRI. Methods. Ninety patients with chronic m/mTBI due to traffic accidents were enrolled and divided into two groups based on their MRI findings. Group A comprised 50 patients with visible lesions. Group B comprised 40 patients without visible lesions. Patients underwent FDG-PET scans following cognitive tests. FDG-PET images were analyzed using voxel-by-voxel univariate statistical tests. Results. There were no significant differences in the cognitive tests between Group A and Group B. Based on FDG-PET findings, brain metabolism significantly decreased in the orbital gyrus, cingulate gyrus, and medial thalamus but increased in the parietal and occipital convexity in Group A compared with that in the control. Compared with the control, patients in Group B exhibited no significant changes. Conclusions. These results suggest that different pathological mechanisms may underlie cognitive impairment in m/mTBI patients with and without organic brain damage. PMID:27529067

  19. Differences in Brain Metabolic Impairment between Chronic Mild/Moderate TBI Patients with and without Visible Brain Lesions Based on MRI

    PubMed Central

    Asano, Yoshitaka; Ikegame, Yuka

    2016-01-01

    Introduction. Many patients with mild/moderate traumatic brain injury (m/mTBI) in the chronic stage suffer from executive brain function impairment. Analyzing brain metabolism is important for elucidating the pathological mechanisms associated with their symptoms. This study aimed to determine the differences in brain glucose metabolism between m/mTBI patients with and without visible traumatic brain lesions based on MRI. Methods. Ninety patients with chronic m/mTBI due to traffic accidents were enrolled and divided into two groups based on their MRI findings. Group A comprised 50 patients with visible lesions. Group B comprised 40 patients without visible lesions. Patients underwent FDG-PET scans following cognitive tests. FDG-PET images were analyzed using voxel-by-voxel univariate statistical tests. Results. There were no significant differences in the cognitive tests between Group A and Group B. Based on FDG-PET findings, brain metabolism significantly decreased in the orbital gyrus, cingulate gyrus, and medial thalamus but increased in the parietal and occipital convexity in Group A compared with that in the control. Compared with the control, patients in Group B exhibited no significant changes. Conclusions. These results suggest that different pathological mechanisms may underlie cognitive impairment in m/mTBI patients with and without organic brain damage. PMID:27529067

  20. Purine pathway implicated in mechanism of resistance to aspirin therapy: pharmacometabolomics-informed pharmacogenomics.

    PubMed

    Yerges-Armstrong, L M; Ellero-Simatos, S; Georgiades, A; Zhu, H; Lewis, J P; Horenstein, R B; Beitelshees, A L; Dane, A; Reijmers, T; Hankemeier, T; Fiehn, O; Shuldiner, A R; Kaddurah-Daouk, R

    2013-10-01

    Although aspirin is a well-established antiplatelet agent, the mechanisms of aspirin resistance remain poorly understood. Metabolomics allows for measurement of hundreds of small molecules in biological samples, enabling detailed mapping of pathways involved in drug response. We defined the metabolic signature of aspirin exposure in subjects from the Heredity and Phenotype Intervention Heart Study. Many metabolites, including known aspirin catabolites, changed on exposure to aspirin, and pathway enrichment analysis identified purine metabolism as significantly affected by drug exposure. Furthermore, purines were associated with aspirin response, and poor responders had higher postaspirin adenosine and inosine levels than did good responders (n = 76; both P < 4 × 10(-3)). Using our established "pharmacometabolomics-informed pharmacogenomics" approach, we identified genetic variants in adenosine kinase associated with aspirin response. Combining metabolomics and genomics allowed for more comprehensive interrogation of mechanisms of variation in aspirin response--an important step toward personalized treatment approaches for cardiovascular disease. PMID:23839601

  1. Arginylation regulates purine nucleotide biosynthesis by enhancing the activity of phosphoribosyl pyrophosphate synthase.

    PubMed

    Zhang, Fangliang; Patel, Devang M; Colavita, Kristen; Rodionova, Irina; Buckley, Brian; Scott, David A; Kumar, Akhilesh; Shabalina, Svetlana A; Saha, Sougata; Chernov, Mikhail; Osterman, Andrei L; Kashina, Anna

    2015-01-01

    Protein arginylation is an emerging post-translational modification that targets a number of metabolic enzymes; however, the mechanisms and downstream effects of this modification are unknown. Here we show that lack of arginylation renders cells vulnerable to purine nucleotide synthesis inhibitors and affects the related glycine and serine biosynthesis pathways. We show that the purine nucleotide biosynthesis enzyme PRPS2 is selectively arginylated, unlike its close homologue PRPS1, and that arginylation of PRPS2 directly facilitates its biological activity. Moreover, selective arginylation of PRPS2 but not PRPS1 is regulated through a coding sequence-dependent mechanism that combines elements of mRNA secondary structure with lysine residues encoded near the N-terminus of PRPS1. This mechanism promotes arginylation-specific degradation of PRPS1 and selective retention of arginylated PRPS2 in vivo. We therefore demonstrate that arginylation affects both the activity and stability of a major metabolic enzyme. PMID:26175007

  2. Evidence that the tri-cellular metabolism of N-acetylaspartate functions as the brain's "operating system": how NAA metabolism supports meaningful intercellular frequency-encoded communications.

    PubMed

    Baslow, Morris H

    2010-11-01

    N-acetylaspartate (NAA), an acetylated derivative of L-aspartate (Asp), and N-acetylaspartylglutamate (NAAG), a derivative of NAA and L-glutamate (Glu), are synthesized by neurons in brain. However, neurons cannot catabolize either of these substances, and so their metabolism requires the participation of two other cell types. Neurons release both NAA and NAAG to extra-cellular fluid (ECF) upon stimulation, where astrocytes, the target cells for NAAG, hydrolyze it releasing NAA back into ECF, and oligodendrocytes, the target cells for NAA, hydrolyze it releasing Asp to ECF for recycling to neurons. This sequence is unique as it is the only known amino acid metabolic cycle in brain that requires three cell types for its completion. The results of this cycling are two-fold. First, neuronal metabolic water is transported to ECF for its removal from brain. Second, the rate of neuronal activity is coupled with focal hyperemia, providing stimulated neurons with the energy required for transmission of meaningful frequency-encoded messages. In this paper, it is proposed that the tri-cellular metabolism of NAA functions as the "operating system" of the brain, and is essential for normal cognitive and motor activities. Evidence in support of this hypothesis is provided by the outcomes of two human inborn errors in NAA metabolism. PMID:20563610

  3. Parallel-stranded duplex DNA containing blocks of trans purine-purine and purine-pyrimidine base pairs.

    PubMed Central

    Evertsz, E M; Rippe, K; Jovin, T M

    1994-01-01

    A 30 base pair parallel-stranded (ps) duplex ps-L1.L2 composed of two adjoined purine-purine and purine-pyrimidine sequence blocks has been characterized thermodynamically and spectroscopically. The 5'-terminal 15 residues in both strands ('left-half') consisted of the alternating d(GA)7G sequence that forms a ps homoduplex secondary structure stabilized by d(G.G) and d(A.A) base pairs. The 3'-terminal 15 positions of the sequence ('right-half') were combinations of A and T with complementary reverse Watson-Crick d(A.T) base pairing between the two strands. The characteristics of the full length duplex were compared to those of the constituent left and right halves in order to determine the compatibility of the two ps helical forms. The thermal denaturation curves and hyperchromicity profiles of all three duplexes determined by UV absorption spectroscopy were characteristic of ps-DNA, in accordance with previous studies. The thermodynamic properties of the 30 bp duplex corresponded within experimental error to the linear combination of the two 15-mers. Thus, the Tm and delta HvH of ps-L1.L2 in 10 mM MgCl2, derived from analyses according to a statistical mechanical formulation for the helix-coil transition, were 43 degrees C and 569 kJ mol-1, compared to 21 degrees C, 315 kJ mol-1 (ps-F5.F6) and 22 degrees C, 236 kJ mol-1 (ps-GA15). The UV absorption and CD spectra of ps-L1.L2 and the individual 15-mer ps motifs were also compared quantitatively. The sums of the two constituent native spectra (left+right halves) accurately matched that of the 30 bp duplex, with only small deviations in the 195-215 nm (CD) and 220-240 nm (absorption) regions. Based on analysis by native gel electrophoresis, the sequences studied formed duplex structures exclusively; there were no indications of higher order species. Chemical modification with diethyl pyrocarbonate showed no hyperreactivity of the junctional bases, indicating a smooth transition between the two parallel

  4. Brain magnetic resonance imaging in suspected extrapyramidal cerebral palsy: observations in distinguishing genetic-metabolic from acquired causes.

    PubMed

    Hoon, A H; Reinhardt, E M; Kelley, R I; Breiter, S N; Morton, D H; Naidu, S B; Johnston, M V

    1997-08-01

    Experienced clinicians recognize that some children who appear to have static cerebral palsy (CP) actually have underlying genetic-metabolic disorders. We report a series of patients with motor disorders seen in children with extrapyramidal CP in whom brain magnetic resonance imaging abnormalities provided important diagnostic clues in distinguishing genetic-metabolic disorders from other causes. One cause of static extrapyramidal CP, hypoxic-ischemic encephalopathy at the end of a term gestation, produces a characteristic pattern of hyperintense signal and atrophy in the putamen and thalamus. Other signal abnormalities and atrophy in the putamen, globus pallidus, or caudate can point to genetic-metabolic diseases, including disorders of mitochondrial and organic acid metabolism. Progress in understanding and treating genetic diseases of the developing brain makes it essential to diagnose disorders that masquerade as static CP. Brain magnetic resonance imaging is a useful diagnostic tool in the initial evaluation of children who appear to have CP. PMID:9290610

  5. mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle.

    PubMed

    Ben-Sahra, Issam; Hoxhaj, Gerta; Ricoult, Stéphane J H; Asara, John M; Manning, Brendan D

    2016-02-12

    In response to growth signals, mechanistic target of rapamycin complex 1 (mTORC1) stimulates anabolic processes underlying cell growth. We found that mTORC1 increases metabolic flux through the de novo purine synthesis pathway in various mouse and human cells, thereby influencing the nucleotide pool available for nucleic acid synthesis. mTORC1 had transcriptional effects on multiple enzymes contributing to purine synthesis, with expression of the mitochondrial tetrahydrofolate (mTHF) cycle enzyme methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) being closely associated with mTORC1 signaling in both normal and cancer cells. MTHFD2 expression and purine synthesis were stimulated by activating transcription factor 4 (ATF4), which was activated by mTORC1 independent of its canonical induction downstream of eukaryotic initiation factor 2α eIF2α phosphorylation. Thus, mTORC1 stimulates the mTHF cycle, which contributes one-carbon units to enhance production of purine nucleotides in response to growth signals. PMID:26912861

  6. A disease-specific metabolic brain network associated with corticobasal degeneration.

    PubMed

    Niethammer, Martin; Tang, Chris C; Feigin, Andrew; Allen, Patricia J; Heinen, Lisette; Hellwig, Sabine; Amtage, Florian; Hanspal, Era; Vonsattel, Jean Paul; Poston, Kathleen L; Meyer, Philipp T; Leenders, Klaus L; Eidelberg, David

    2014-11-01

    Corticobasal degeneration is an uncommon parkinsonian variant condition that is diagnosed mainly on clinical examination. To facilitate the differential diagnosis of this disorder, we used metabolic brain imaging to characterize a specific network that can be used to discriminate corticobasal degeneration from other atypical parkinsonian syndromes. Ten non-demented patients (eight females/two males; age 73.9 ± 5.7 years) underwent metabolic brain imaging with (18)F-fluorodeoxyglucose positron emission tomography for atypical parkinsonism. These individuals were diagnosed clinically with probable corticobasal degeneration. This diagnosis was confirmed in the three subjects who additionally underwent post-mortem examination. Ten age-matched healthy subjects (five females/five males; age 71.7 ± 6.7 years) served as controls for the imaging studies. Spatial covariance analysis was applied to scan data from the combined group to identify a significant corticobasal degeneration-related metabolic pattern that discriminated (P < 0.001) the patients from the healthy control group. This pattern was characterized by bilateral, asymmetric metabolic reductions involving frontal and parietal cortex, thalamus, and caudate nucleus. These pattern-related changes were greater in magnitude in the cerebral hemisphere opposite the more clinically affected body side. The presence of this corticobasal degeneration-related metabolic topography was confirmed in two independent testing sets of patient and control scans, with elevated pattern expression (P < 0.001) in both disease groups relative to corresponding normal values. We next determined whether prospectively computed expression values for this pattern accurately discriminated corticobasal degeneration from multiple system atrophy and progressive supranuclear palsy (the two most common atypical parkinsonian syndromes) on a single case basis. Based upon this measure, corticobasal degeneration was successfully distinguished from

  7. Brain metabolic dysfunction at the core of Alzheimer’s disease

    PubMed Central

    de la Monte, Suzanne M.; Tong, Ming

    2015-01-01

    Growing evidence supports the concept that Alzheimer’s disease (AD) is fundamentally a metabolic disease with molecular and biochemical features that correspond with diabetes mellitus and other peripheral insulin resistance disorders. Brain insulin/IGF resistance and its consequences can readily account for most of the structural and functional abnormalities in AD. However, disease pathogenesis is complicated by the fact that AD can occur as a separate disease process, or arise in association with systemic insulin resistance diseases, including diabetes, obesity, and non-alcoholic fatty liver disease. Whether primary or secondary in origin, brain insulin/IGF resistance initiates a cascade of neurodegeneration that is propagated by metabolic dysfunction, increased oxidative and ER stress, neuro-inflammation, impaired cell survival, and dysregulated lipid metabolism. These injurious processes compromise neuronal and glial functions, reduce neurotransmitter homeostasis, and cause toxic oligomeric pTau and (amyloid beta peptide of amyloid beta precursor protein) AβPP-Aβ fibrils and insoluble aggregates (neurofibrillary tangles and plaques) to accumulate in brain. AD progresses due to: (1) activation of a harmful positive feedback loop that progressively worsens the effects of insulin resistance; and (2) the formation of ROS- and RNS-related lipid, protein, and DNA adducts that permanently damage basic cellular and molecular functions. Epidemiologic data suggest that insulin resistance diseases, including AD, are exposure-related in etiology. Furthermore, experimental and lifestyle trend data suggest chronic low-level nitrosamine exposures are responsible. These concepts offer opportunities to discover and implement new treatments and devise preventive measures to conquer the AD and other insulin resistance disease epidemics. PMID:24380887

  8. Regional brain glucose metabolism in chronic schizophrenia. A positron emission transaxial tomographic study

    SciTech Connect

    Farkas, T.; Wolf, A.P.; Jaeger, J.; Brodie, J.D.; Christman, D.R.; Fowler, J.S.

    1984-03-01

    Thirteen diagnosed schizophrenics and 11 normal controls were studied with a method using the PETT III positron emission tomograph (PET) and fluorodeoxyglucose labeled with fluorine 18. Each subject also had a computed tomographic (CT) scan. For each subject, two brain levels, one through the basal ganglia and one through the semioval center, were analyzed for the mean regional metabolic glucose rate. Specifically, relationships between frontal and posterior regions were evaluated. The CT scans of matching levels were superimposed on the functional PET images to provide anatomic criteria for region of interest selection. While no whole-slice metabolic differences were apparent between groups, schizophrenics had significantly lower activity in the frontal lobes, relative to posterior regions. The medicated and drug-free groups did not differ from one another in these regards. Trait v state dependency of the phenomenon was analyzed, and several technological limitations were considered.

  9. Brain energy metabolism and dopaminergic function in Huntington's disease measured in vivo using positron emission tomography

    SciTech Connect

    Leenders, K.L.; Frackowiak, R.S.; Quinn, N.; Marsden, C.D.

    1986-01-01

    A 48-year-old man with typical Huntington's disease was investigated with computed tomography (CT) and positron emission tomography. Regional cerebral blood flow, oxygen extraction, oxygen and glucose utilization, L-Dopa uptake, and dopamine (D2) receptor binding were measured using several positron-labelled tracers. CT showed slight atrophy of the head of caudate but no cortical atrophy, although distinct frontal lobe dysfunction was present on psychometric testing. Oxygen and glucose metabolism and cerebral blood flow were decreased in the striata and to a lesser extent in frontal cortex. Cerebral blood flow was in the low normal range throughout the remainder of the brain. A normal metabolic ratio was found in all regions, since the changes in glucose utilization paralleled those in oxygen consumption. The capacity of the striatum to store dopamine as assessed by L-( YF)-fluorodopa uptake was normal, but dopamine (D2) receptor binding was decreased when compared to normal subjects.

  10. Metabolic footprinting of extracellular metabolites of brain endothelium infected with Neospora caninum in vitro

    PubMed Central

    2014-01-01

    Background The survival of the intracellular protozoan parasite Neospora caninum depends on its ability to adapt to changing metabolic conditions of the host cell. Thus, defining cellular and metabolic changes in affected target tissues may aid in delineating pathogenetic mechanism. We undertook this study to assess the metabolic response of human brain microvascular endothelial cells (HBMECs) to N. caninum infection in vitro. Methods HBMECs were exposed to N. caninum infection and the cytotoxic effects of infection were analyzed by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazoliumbromidin (MTT) assay and lactate dehydrogenase (LDH) release assay. Metabolic footprinting of the extracellular metabolites of parasite-infected and non-infected culture supernatant was determined by using targeted (Randox RX Imola clinical chemistry analyser) and unbiased RS (Raman microspectroscopy) approaches. Results The MTT assay did not reveal any cytotoxic effect of N. caninum challenge on host cell viability. Measurement of LDH activity showed that N. caninum significantly induced loss of cell membrane integrity in a time-dependent and dose-dependent manner compared to control cells. Targeted biochemical analysis revealed that beta hydroxybutyrate, pyruvate, ATP, total protein, non-esterified fatty acids, and triglycerides are significantly different in infected cells compared to controls. RS-based footprinting with principal component analysis (PCA) were able to correctly distinguish extracellular metabolites obtained from infected and control cultures, and revealed infection-related spectral signatures at 865 cm−1, 984 cm−1, 1046 cm−1, and 1420 cm−1, which are attributed to variations in the content of lipids and nucleic acids in infected cultures. Conclusions The changing pattern of extracellular metabolites suggests that HBMECs are target of metabolic alterations in N. caninum infection, which seem to reflect the changing metabolic state of infected

  11. The Ketogenic Diet and Brain Metabolism of Amino Acids: Relationship to the Anticonvulsant Effect

    PubMed Central

    Yudkoff, Marc; Daikhin, Yevgeny; Melø, Torun Margareta; Nissim, Ilana; Sonnewald, Ursula; Nissim, Itzhak

    2014-01-01

    In many epileptic patients, anticonvulsant drugs either fail adequately to control seizures or they cause serious side effects. An important adjunct to pharmacologic therapy is the ketogenic diet, which often improves seizure control, even in patients who respond poorly to medications. The mechanisms that explain the therapeutic effect are incompletely understood. Evidence points to an effect on brain handling of amino acids, especially glutamic acid, the major excitatory neurotransmitter of the central nervous system. The diet may limit the availability of oxaloacetate to the aspartate aminotransferase reaction, an important route of brain glutamate handling. As a result, more glutamate becomes accessible to the glutamate decarboxylase reaction to yield gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter and an important antiseizure agent. In addition, the ketogenic diet appears to favor the synthesis of glutamine, an essential precursor to GABA. This occurs both because ketone body carbon is metabolized to glutamine and because in ketosis there is increased consumption of acetate, which astrocytes in the brain quickly convert to glutamine. The ketogenic diet also may facilitate mechanisms by which the brain exports to blood compounds such as glutamine and alanine, in the process favoring the removal of glutamate carbon and nitrogen. PMID:17444813

  12. Cerebral circulation, metabolism, and blood-brain barrier of rats in hypocapnic hypoxia

    SciTech Connect

    Beck, T.; Krieglstein, J.

    1987-03-01

    The effects of hypoxic hypoxia on physiological variables, cerebral circulation, cerebral metabolism, and blood-brain barrier were investigated in conscious, spontaneously breathing rats by exposing them to an atmosphere containing 7% O/sub 2/. Hypoxia affected a marked hypotension, hypocapnia and alkalosis. Cortical tissue high-energy phosphates and glucose content were not affected by hypoxia, glucose 6-phosphate lactate, and pyruvate levels were significantly increased. Blood-brain barrier permeability, regional brain glucose content and lumped constant were not changed by hypoxia. Local cerebral glucose utilization (LCGU) rose by 40-70% of control values in gray matter and by 80-90% in white matter. Under hypoxia, columns of increased and decreased LCGU and were detectable in cortical gray matter. Color-coded (/sup 14/C)2-deoxy-D-glucose autoradiograms of rat brain are shown. Local cerebral blood flow (LCBF) increased by 50-90% in gray matter and by up to 180% in white matter. Coupling between LCGU and LCBF in hypoxia remained unchanged. The data suggests a stimulation of glycolysis, increased glucose transport into the cell, and increased hexokinase activity. The physiological response of gray and white matter to hypoxia obviously differs. Uncoupling of the relation between LCGU and LCBF does not occur.

  13. Effect of ginkgolide B on brain metabolism and tissue oxygenation in severe haemorrhagic stroke

    PubMed Central

    Chi, Chun-Ling; Shen, Dong-Fang; Wang, Peng-Jun; Li, Hu-Lun; Zhang, Li

    2015-01-01

    Ginkgolide B, a diterpene, is an herbal constituent isolated from the leaves of Ginkgo biloba tree. The present study demonstrates the effect of ginkgolide B in osmotherapy on brain metabolism and tissue oxygenation. Multimodality monitoring including intracranial pressure (ICP), cerebral perfusion pressure (CPP), partial pressure of brain tissue oxygen (PbtO2), lactate/pyruvate ratio (LPR) and microdialysis were employed to study the effect of ginkgolide B osmotherapy. The results demonstrated that administration of 15% solution of ginkgolide B to the comatose patients with raised ICP (> 20 mm Hg) and resistant to standard therapy led to a significant decrease in ICP. The cerebral microdialysis was used to compare mean arterial blood pressure (MAP), ICP, CPP, PbtO2, brain lactate, pyruvate and glucose level after hourly intervals starting 3 h before and up to 4 h after hyperosmolar therapy. There was a decrease in ICP in 45 min from 23 ± 14 mm Hg (P < 0.001) to 18 ± 24 mm Hg and increase in CPP after 1 h of gingkolide B infusion from 74 ± 18 to 85 ± 22 mm Hg (P < 0.002). However there was no significant effect on MAP but PbtO2 was maintained in the range of 22-26. The peak lactate/pyruvate ratio was recorded at the time of initiation of osmotherapy (44 ± 20) with an 18% decrease over 2 h following gingkolide B therapy. Also the brain glucose remained unaffected. PMID:26064244

  14. Physical Activity Protects the Human Brain against Metabolic Stress Induced by a Postprandial and Chronic Inflammation

    PubMed Central

    Pruimboom, Leo; Raison, Charles L.; Muskiet, Frits A. J.

    2015-01-01

    In recent years, it has become clear that chronic systemic low-grade inflammation is at the root of many, if not all, typically Western diseases associated with the metabolic syndrome. While much focus has been given to sedentary lifestyle as a cause of chronic inflammation, it is less often appreciated that chronic inflammation may also promote a sedentary lifestyle, which in turn causes chronic inflammation. Given that even minor increases in chronic inflammation reduce brain volume in otherwise healthy individuals, the bidirectional relationship between inflammation and sedentary behaviour may explain why humans have lost brain volume in the last 30,000 years and also intelligence in the last 30 years. We review evidence that lack of physical activity induces chronic low-grade inflammation and, consequently, an energy conflict between the selfish immune system and the selfish brain. Although the notion that increased physical activity would improve health in the modern world is widespread, here we provide a novel perspective on this truism by providing evidence that recovery of normal human behaviour, such as spontaneous physical activity, would calm proinflammatory activity, thereby allocating more energy to the brain and other organs, and by doing so would improve human health. PMID:26074674

  15. Relationships between brain metabolism decrease in normal aging and changes in structural and functional connectivity.

    PubMed

    Chételat, Gaël; Landeau, Brigitte; Salmon, Eric; Yakushev, Igor; Bahri, Mohamed Ali; Mézenge, Florence; Perrotin, Audrey; Bastin, Christine; Manrique, Alain; Scheurich, Armin; Scheckenberger, Mathias; Desgranges, Béatrice; Eustache, Francis; Fellgiebel, Andreas

    2013-08-01

    Normal aging is characterized by brain glucose metabolism decline predominantly in the prefrontal cortex. The goal of the present study was to assess whether this change was associated with age-related alteration of white matter (WM) structural integrity and/or functional connectivity. FDG-PET data from 40 young and 57 elderly healthy participants from two research centers (n=49/48 in Center 1/2) were analyzed. WM volume from T1-weighted MRI (Center 1), fractional anisotropy from diffusion-tensor imaging (Center 2), and resting-state fMRI data (Center 1) were also obtained. Group comparisons were performed within each imaging modality. Then, positive correlations were assessed, within the elderly, between metabolism in the most affected region and the other neuroimaging modalities. Metabolism decline in the elderly predominated in the left inferior frontal junction (LIFJ). LIFJ hypometabolism was significantly associated with macrostructural and microstructural WM disturbances in long association fronto-temporo-occipital fibers, while no relationship was found with functional connectivity. The findings offer new perspectives to understand normal aging processes and open avenues for future studies to explore causality between age-related metabolism and connectivity changes. PMID:23518010

  16. Brain catecholamine metabolism in catechol-O-methyltransferase (COMT)-deficient mice.

    PubMed

    Huotari, Marko; Gogos, Joseph A; Karayiorgou, Maria; Koponen, Olli; Forsberg, Markus; Raasmaja, Atso; Hyttinen, Juha; Männistö, Pekka T

    2002-01-01

    Catechol-O-methyltransferase (COMT) catalyses the O-methylation of compounds having a catechol structure and its main function involves the elimination of biologically active or toxic catechols and their metabolites. By means of homologous recombination in embryonic stem cells, a strain of mice has been produced in which the gene encoding the COMT enzyme is disrupted. We report here the levels of catecholamines and their metabolites in striatal extracellular fluid in these mice as well as in homogenates from different parts of the brain, under normal conditions and after acute levodopa administration. In immunoblotting studies, COMT-knockout mice had no COMT protein in brain or kidney tissues but the amounts of catecholamine synthesizing and other metabolizing enzyme proteins were normal. Under normal conditions, COMT deficiency does not appear to affect significantly brain dopamine and noradrenaline levels in spite of relevant changes in their metabolites. This finding is consistent with previous pharmacological studies with COMT inhibitors and confirms the pivotal role of synaptic reuptake processes and monoamine oxidase-dependent metabolism in terminating the actions of catecholamines at nerve terminals. In contrast, when COMT-deficient mice are challenged with l-dihydroxyphenylalanine, they show an extensive accumulation of 3,4-dihydroxyphenylacetic acid and dihydroxyphenylglycol and even dopamine, revealing an important role for COMT under such situations. Notably, in some cases these changes appear to be Comt gene dosage-dependent, brain-region specific and sexually dimorphic. Our results may have implications for improving the treatment of Parkinson's disease and for understanding the contribution of the natural variation in COMT activity to psychiatric phenotypes. PMID:11849292

  17. Metabolic, enzymatic and gene involvement in cerebral glucose dysmetabolism after traumatic brain injury.

    PubMed

    Amorini, Angela Maria; Lazzarino, Giacomo; Di Pietro, Valentina; Signoretti, Stefano; Lazzarino, Giuseppe; Belli, Antonio; Tavazzi, Barbara

    2016-04-01

    In this study, the metabolic, enzymatic and gene changes causing cerebral glucose dysmetabolism following graded diffuse traumatic brain injury (TBI) were evaluated. TBI was induced in rats by dropping 450g from 1 (mild TBI; mTBI) or 2m height (severe TBI; sTBI). After 6, 12, 24, 48, and 120h gene expressions and enzymatic activities of glycolysis and pentose phosphate pathway (PPP) enzymes, and levels of lactate, ATP, ADP, ATP/ADP (indexing mitochondrial phosphorylating capacity), NADP(+), NADPH and GSH were determined in whole brain extracts (n=9 rats at each time for both TBI levels). Sham-operated animals (n=9) were used as controls. Results demonstrated that mTBI caused a late increase (48-120h post injury) of glycolytic gene expression and enzymatic activities, concomitantly with mitochondrial functional recovery (ATP and ATP/ADP normalization). No changes in lactate and PPP genes and enzymes, were accompanied by transient decrease in GSH, NADP(+), NADPH and NADPH/NADP(+). Animals following sTBI showed early increase (6-24h post injury) of glycolytic gene expression and enzymatic activities, occurring during mitochondrial malfunctioning (50% decrease in ATP and ATP/ADP). Higher lactate and lower GSH, NADP(+), NADPH, NADPH/NADP(+) than controls were recorded at anytime post injury (p<0.01). Both TBI levels caused metabolic and gene changes affecting glucose metabolism. Following mTBI, increased glucose flux through glycolysis is coupled to mitochondrial glucose oxidation. "True" hyperglycolysis occurs only after sTBI, where metabolic changes, caused by depressed mitochondrial phosphorylating capacity, act on genes causing net glycolytic flux increase uncoupled from mitochondrial glucose oxidation. PMID:26844378

  18. Dissociation between Brain Amyloid Deposition and Metabolism in Early Mild Cognitive Impairment

    PubMed Central

    Wu, Liyong; Rowley, Jared; Mohades, Sara; Leuzy, Antoine; Dauar, Marina Tedeschi; Shin, Monica; Fonov, Vladimir; Jia, Jianping; Gauthier, Serge; Rosa-Neto, Pedro

    2012-01-01

    Background The hypothetical model of dynamic biomarkers for Alzheimer’s disease (AD) describes high amyloid deposition and hypometabolism at the mild cognitive impairment (MCI) stage. However, it remains unknown whether brain amyloidosis and hypometabolism follow the same trajectories in MCI individuals. We used the concept of early MCI (EMCI) and late MCI (LMCI) as defined by the Alzheimer’s disease Neuroimaging Initiative (ADNI)-Go in order to compare the biomarker profile between EMCI and LMCI. Objectives To examine the global and voxel-based neocortical amyloid burden and metabolism among individuals who are cognitively normal (CN), as well as those with EMCI, LMCI and mild AD. Methods In the present study, 354 participants, including CN (n = 109), EMCI (n = 157), LMCI (n = 39) and AD (n = 49), were enrolled between September 2009 and November 2011 through ADNI-GO and ADNI-2. Brain amyloid load and metabolism were estimated using [18F]AV45 and [18F]fluorodeoxyglucose ([18F]FDG) PET, respectively. Uptake ratio images of [18F]AV45 and [18F]FDG were calculated by dividing the summed PET image by the median counts of the grey matter of the cerebellum and pons, respectively. Group differences of global [18F]AV45 and [18F]FDG were analyzed using ANOVA, while the voxel-based group differences were estimated using statistic parametric mapping (SPM). Results EMCI patients showed higher global [18F]AV45 retention compared to CN and lower uptake compared to LMCI. SPM detected higher [18F]AV45 uptake in EMCI compared to CN in the precuneus, posterior cingulate, medial and dorsal lateral prefrontal cortices, bilaterally. EMCI showed lower [18F]AV45 retention than LMCI in the superior temporal, inferior parietal, as well as dorsal lateral prefrontal cortices, bilaterally. Regarding to the global [18F]FDG, EMCI patients showed no significant difference from CN and a higher uptake ratio compared to LMCI. At the voxel level, EMCI showed higher metabolism in

  19. Nerve growth factor metabolic dysfunction in Down’s syndrome brains

    PubMed Central

    Iulita, M. Florencia; Do Carmo, Sonia; Ower, Alison K.; Fortress, Ashley M.; Aguilar, Lisi Flores; Hanna, Michael; Wisniewski, Thomas; Granholm, Ann-Charlotte; Buhusi, Mona; Busciglio, Jorge

    2014-01-01

    Basal forebrain cholinergic neurons play a key role in cognition. This neuronal system is highly dependent on NGF for its synaptic integrity and the phenotypic maintenance of its cell bodies. Basal forebrain cholinergic neurons progressively degenerate in Alzheimer’s disease and Down’s syndrome, and their atrophy contributes to the manifestation of dementia. Paradoxically, in Alzheimer’s disease brains, the synthesis of NGF is not affected and there is abundance of the NGF precursor, proNGF. We have shown that this phenomenon is the result of a deficit in NGF’s extracellular metabolism that compromises proNGF maturation and exacerbates its subsequent degradation. We hypothesized that a similar imbalance should be present in Down’s syndrome. Using a combination of quantitative reverse transcription-polymerase chain reaction, enzyme-linked immunosorbent assay, western blotting and zymography, we investigated signs of NGF metabolic dysfunction in post-mortem brains from the temporal (n = 14), frontal (n = 34) and parietal (n = 20) cortex obtained from subjects with Down’s syndrome and age-matched controls (age range 31–68 years). We further examined primary cultures of human foetal Down’s syndrome cortex (17–21 gestational age weeks) and brains from Ts65Dn mice (12–22 months), a widely used animal model of Down’s syndrome. We report a significant increase in proNGF levels in human and mouse Down’s syndrome brains, with a concomitant reduction in the levels of plasminogen and tissue plasminogen activator messenger RNA as well as an increment in neuroserpin expression; enzymes that partake in proNGF maturation. Human Down’s syndrome brains also exhibited elevated zymogenic activity of MMP9, the major NGF-degrading protease. Our results indicate a failure in NGF precursor maturation in Down’s syndrome brains and a likely enhanced proteolytic degradation of NGF, changes which can compromise the trophic support of basal forebrain cholinergic

  20. The role of nest surface temperatures and the brain in influencing ant metabolic rates.

    PubMed

    Andrew, Nigel R; Ghaedi, Behnaz; Groenewald, Berlizé

    2016-08-01

    Thermal limits of insects can be influenced by recent thermal history: here we used thermolimit respirometry to determine metabolic rate responses and thermal limits of the dominant meat ant, Iridomyrmex purpureus. Firstly, we tested the hypothesis that nest surface temperatures have a pervasive influence on thermal limits. Metabolic rates and activity of freshly field collected individuals were measured continuously while ramping temperatures from 44°C to 62°C at 0.25°C/minute. At all the stages of thermolimit respirometry, metabolic rates were independent of nest surface temperatures, and CTmax did not differ between ants collected from nest with different surface temperatures. Secondly, we tested the effect of brain control on upper thermal limits of meat ants via ant decapitation experiments ('headedness'). Decapitated ants exhibited similar upper critical temperature (CTmax) results to living ants (Decapitated 50.3±1.2°C: Living 50.1±1.8°C). Throughout the temperature ramping process, 'headedness' had a significant effect on metabolic rate in total (Decapitated V̇CO2 140±30µlCO2mg(-1)min(-1): Living V̇CO2 250±50 CO2mg(-1)min(-1)), as well as at temperatures below and above CTmax. At high temperatures (>44°C) pre- CTmax the relationships between I. purpureus CTmax values and mass specific metabolic rates for living ants exhibited a negative slope whilst decapitated ants exhibited a positive slope. The decapitated ants also had a significantly higher Q10:25-35°C when compared to living ants (1.91±0.43 vs. 1.29±0.35). Our findings suggest that physiological responses of ants may be able to cope with increasing surface temperatures, as shown by metabolic rates across the thermolimit continuum, making them physiologically resilient to a rapidly changing climate. We also demonstrate that the brain plays a role in respiration, but critical thermal limits are independent of respiration levels. PMID:27503725

  1. Glucose Metabolism during Resting State Reveals Abnormal Brain Networks Organization in the Alzheimer’s Disease and Mild Cognitive Impairment

    PubMed Central

    Martínez-Montes, Eduardo

    2013-01-01

    This paper aims to study the abnormal patterns of brain glucose metabolism co-variations in Alzheimer disease (AD) and Mild Cognitive Impairment (MCI) patients compared to Normal healthy controls (NC) using the Alzheimer Disease Neuroimaging Initiative (ADNI) database. The local cerebral metabolic rate for glucose (CMRgl) in a set of 90 structures belonging to the AAL atlas was obtained from Fluro-Deoxyglucose Positron Emission Tomography data in resting state. It is assumed that brain regions whose CMRgl values are significantly correlated are functionally associated; therefore, when metabolism is altered in a single region, the alteration will affect the metabolism of other brain areas with which it interrelates. The glucose metabolism network (represented by the matrix of the CMRgl co-variations among all pairs of structures) was studied using the graph theory framework. The highest concurrent fluctuations in CMRgl were basically identified between homologous cortical regions in all groups. Significant differences in CMRgl co-variations in AD and MCI groups as compared to NC were found. The AD and MCI patients showed aberrant patterns in comparison to NC subjects, as detected by global and local network properties (global and local efficiency, clustering index, and others). MCI network’s attributes showed an intermediate position between NC and AD, corroborating it as a transitional stage from normal aging to Alzheimer disease. Our study is an attempt at exploring the complex association between glucose metabolism, CMRgl covariations and the attributes of the brain network organization in AD and MCI. PMID:23894356

  2. [BLOOD AND CEREBROSPINAL FLUID PURINES IN PREGNANT].

    PubMed

    Oreshnikov, E V; Oreshnikov, S F

    2015-01-01

    The research includes 88 pregnant women, that had their purine basis and malondialdehyde in water thermocoagulate extract of venous blood and cerebrospinal fluid examined (along with common standards clinical-laboratory tests) before the spinal anesthesia for the caesarian section was provided It was detected that preeclampsy and HELLP-syndine feature the increased adenine guanine hypoxantine and uric acid levels in cerebrospinal fluid, as well as increased concentrations of blood malondyaldehyde (higher than upper normal level), accompany with the increased hemotaencephalic barrier permeability for adenine, guanine and hypoxantine. It's demonstrated that level of guanine in blood serum can be used as a prognostic factor of spinal anesthesia quality in obstetrics. It is supposed to examine purine levels in pregnant women not only in blood but also in cere brospinal fluid. PMID:26596029

  3. Cerebral metabolism following traumatic brain injury: new discoveries with implications for treatment

    PubMed Central

    Brooks, George A.; Martin, Neil A.

    2015-01-01

    Because it is the product of glycolysis and main substrate for mitochondrial respiration, lactate is the central metabolic intermediate in cerebral energy substrate delivery. Our recent studies on healthy controls and patients following traumatic brain injury (TBI) using [6,6-2H2]glucose and [3-13C]lactate, along with cerebral blood flow (CBF) and arterial-venous (jugular bulb) difference measurements for oxygen, metabolite levels, isotopic enrichments and 13CO2 show a massive and previously unrecognized mobilization of lactate from corporeal (muscle, skin, and other) glycogen reserves in TBI patients who were studied 5.7 ± 2.2 days after injury at which time brain oxygen consumption and glucose uptake (CMRO2 and CMRgluc, respectively) were depressed. By tracking the incorporation of the 13C from lactate tracer we found that gluconeogenesis (GNG) from lactate accounted for 67.1 ± 6.9%, of whole-body glucose appearance rate (Ra) in TBI, which was compared to 15.2 ± 2.8% (mean ± SD, respectively) in healthy, well-nourished controls. Standard of care treatment of TBI patients in state-of-the-art facilities by talented and dedicated heath care professionals reveals presence of a catabolic Body Energy State (BES). Results are interpreted to mean that additional nutritive support is required to fuel the body and brain following TBI. Use of a diagnostic to monitor BES to provide health care professionals with actionable data in providing nutritive formulations to fuel the body and brain and achieve exquisite glycemic control are discussed. In particular, the advantages of using inorganic and organic lactate salts, esters and other compounds are examined. To date, several investigations on brain-injured patients with intact hepatic and renal functions show that compared to dextrose + insulin treatment, exogenous lactate infusion results in normal glycemia. PMID:25709562

  4. Lysine metabolism in mammalian brain: an update on the importance of recent discoveries

    PubMed Central

    Hallen, André; Jamie, Joanne F.; Cooper, Arthur J. L.

    2013-01-01

    The lysine catabolism pathway differs in adult mammalian brain from that in extracerebral tissues. The saccharopine pathway is the predominant lysine degradative pathway in extracerebral tissues, whereas the pipecolate pathway predominates in adult brain. The two pathways converge at the level of Δ1-piperideine-6-carboxylate (P6C), which is in equilibrium with its open-chain aldehyde form, namely, α-aminoadipate δ-semialdehyde (AAS). A unique feature of the pipecolate pathway is the formation of the cyclic ketimine intermediate Δ1-piperideine-2-carboxylate (P2C) and its reduced metabolite l-pipecolate. A cerebral ketimine reductase (KR) has recently been identified that catalyzes the reduction of P2C to l-pipecolate. The discovery that this KR, which is capable of reducing not only P2C but also other cyclic imines, is identical to a previously well-described thyroid hormone-binding protein [μ-crystallin (CRYM)], may hold the key to understanding the biological relevance of the pipecolate pathway and its importance in the brain. The finding that the KR activity of CRYM is strongly inhibited by the thyroid hormone 3,5,3′-triiodothyronine (T3) has far-reaching biomedical and clinical implications. The interrelationship between tryptophan and lysine catabolic pathways is discussed in the context of shared degradative enzymes and also potential regulation by thyroid hormones. This review traces the discoveries of enzymes involved in lysine metabolism in mammalian brain. However, there still remain unanswered questions as regards the importance of the pipecolate pathway in normal or diseased brain, including the nature of the first step in the pathway and the relationship of the pipecolate pathway to the tryptophan degradation pathway. PMID:24043460

  5. Pyruvate dehydrogenase complex: metabolic link to ischemic brain injury and target of oxidative stress.

    PubMed

    Martin, Erica; Rosenthal, Robert E; Fiskum, Gary

    The mammalian pyruvate dehydrogenase complex (PDHC) is a mitochondrial matrix enzyme complex (greater than 7 million Daltons) that catalyzes the oxidative decarboxylation of pyruvate to form acetyl CoA, nicotinamide adenine dinucleotide (the reduced form, NADH), and CO(2). This reaction constitutes the bridge between anaerobic and aerobic cerebral energy metabolism. PDHC enzyme activity and immunoreactivity are lost in selectively vulnerable neurons after cerebral ischemia and reperfusion. Evidence from experiments carried out in vitro suggests that reperfusion-dependent loss of activity is caused by oxidative protein modifications. Impaired enzyme activity may explain the reduced cerebral glucose and oxygen consumption that occurs after cerebral ischemia. This hypothesis is supported by the hyperoxidation of mitochondrial electron transport chain components and NAD(H) that occurs during reperfusion, indicating that NADH production, rather than utilization, is rate limiting. Additional support comes from the findings that immediate postischemic administration of acetyl-L-carnitine both reduces brain lactate/pyruvate ratios and improves neurologic outcome after cardiac arrest in animals. As acetyl-L-carnitine is converted to acetyl CoA, the product of the PDHC reaction, it follows that impaired production of NADH is due to reduced activity of either PDHC or one or more steps in glycolysis. Impaired cerebral energy metabolism and PDHC activity are associated also with neurodegenerative disorders including Alzheimer's disease and Wernicke-Korsakoff syndrome, suggesting that this enzyme is an important link in the pathophysiology of both acute brain injury and chronic neurodegeneration. PMID:15562436

  6. Brain Cholesterol Metabolism and Its Defects: Linkage to Neurodegenerative Diseases and Synaptic Dysfunction.

    PubMed

    Petrov, A M; Kasimov, M R; Zefirov, A L

    2016-01-01

    Cholesterol is an important constituent of cell membranes and plays a crucial role in the compartmentalization of the plasma membrane and signaling. Brain cholesterol accounts for a large proportion of the body's total cholesterol, existing in two pools: the plasma membranes of neurons and glial cells and the myelin membranes . Cholesterol has been recently shown to be important for synaptic transmission, and a link between cholesterol metabolism defects and neurodegenerative disorders is now recognized. Many neurodegenerative diseases are characterized by impaired cholesterol turnover in the brain. However, at which stage the cholesterol biosynthetic pathway is perturbed and how this contributes to pathogenesis remains unknown. Cognitive deficits and neurodegeneration may be associated with impaired synaptic transduction. Defects in cholesterol biosynthesis can trigger dysfunction of synaptic transmission. In this review, an overview of cholesterol turnover under physiological and pathological conditions is presented (Huntington's, Niemann-Pick type C diseases, Smith-Lemli-Opitz syndrome). We will discuss possible mechanisms by which cholesterol content in the plasma membrane influences synaptic processes. Changes in cholesterol metabolism in Alzheimer's disease, Parkinson's disease, and autistic disorders are beyond the scope of this review and will be summarized in our next paper. PMID:27099785

  7. Brain Cholesterol Metabolism and Its Defects: Linkage to Neurodegenerative Diseases and Synaptic Dysfunction

    PubMed Central

    Petrov, A. M.; Kasimov, M. R.; Zefirov, A. L.

    2016-01-01

    Cholesterol is an important constituent of cell membranes and plays a crucial role in the compartmentalization of the plasma membrane and signaling. Brain cholesterol accounts for a large proportion of the body’s total cholesterol, existing in two pools: the plasma membranes of neurons and glial cells and the myelin membranes . Cholesterol has been recently shown to be important for synaptic transmission, and a link between cholesterol metabolism defects and neurodegenerative disorders is now recognized. Many neurodegenerative diseases are characterized by impaired cholesterol turnover in the brain. However, at which stage the cholesterol biosynthetic pathway is perturbed and how this contributes to pathogenesis remains unknown. Cognitive deficits and neurodegeneration may be associated with impaired synaptic transduction. Defects in cholesterol biosynthesis can trigger dysfunction of synaptic transmission. In this review, an overview of cholesterol turnover under physiological and pathological conditions is presented (Huntington’s, Niemann-Pick type C diseases, Smith-Lemli-Opitz syndrome). We will discuss possible mechanisms by which cholesterol content in the plasma membrane influences synaptic processes. Changes in cholesterol metabolism in Alzheimer’s disease, Parkinson’s disease, and autistic disorders are beyond the scope of this review and will be summarized in our next paper. PMID:27099785

  8. Decreased carbon shunting from glucose towards oxidative metabolism in diet-induced ketotic rat brain

    PubMed Central

    Zhang, Yifan; Zhang, Shenghui; Marin-Valencia, Isaac; Puchowicz, Michelle A.

    2014-01-01

    The mechanistic link of ketosis to neuroprotection under certain pathological conditions continues to be explored. We investigated whether chronic ketosis induced by ketogenic diet results in the partitioning of ketone bodies towards oxidative metabolism in brain. We hypothesized that diet-induced ketosis results in increased shunting of ketone bodies towards citric acid cycle (CAC) and amino acids with decreased carbon shunting from glucose. Rats were fed standard (STD) or ketogenic (KG) diets for 3.5 weeks and then infused with [U-13C]glucose or [U-13C]acetoacetate tracers. Concentrations and 13C-labeling pattern of CAC intermediates and amino acids were analyzed from brain homogenates using stable isotopomer mass spectrometry analysis. The contribution of [U-13C]glucose to acetyl-CoA and amino acids decreased by ~30% in the KG group vs STD, whereas [U-13C]acetoacetate contributions were more than 2-fold higher. The concentration of GABA remained constant across all groups; however, the 13C-labeling of GABA was markedly increased in the KG group infused with [U-13C]acetoacetate compared to STD. This study reveals that there is a significant contribution of ketone bodies to oxidative metabolism and GABA in diet-induced ketosis. We propose that this represents a fundamental mechanism of neuroprotection under pathological conditions. PMID:25314677

  9. Decreased carbon shunting from glucose toward oxidative metabolism in diet-induced ketotic rat brain.

    PubMed

    Zhang, Yifan; Zhang, Shenghui; Marin-Valencia, Isaac; Puchowicz, Michelle A

    2015-02-01

    The mechanistic link of ketosis to neuroprotection under certain pathological conditions continues to be explored. We investigated whether chronic ketosis induced by ketogenic diet results in the partitioning of ketone bodies toward oxidative metabolism in brain. We hypothesized that diet-induced ketosis results in increased shunting of ketone bodies toward citric acid cycle and amino acids with decreased carbon shunting from glucose. Rats were fed standard (STD) or ketogenic (KG) diets for 3.5 weeks and then infused with [U-(13) C]glucose or [U-(13) C]acetoacetate tracers. Concentrations and (13) C-labeling pattern of citric acid cycle intermediates and amino acids were analyzed from brain homogenates using stable isotopomer mass spectrometry analysis. The contribution of [U-(13) C]glucose to acetyl-CoA and amino acids decreased by ~ 30% in the KG group versus STD, whereas [U-(13) C]acetoacetate contributions were more than two-fold higher. The concentration of GABA remained constant across groups; however, the (13) C labeling of GABA was markedly increased in the KG group infused with [U-(13) C]acetoacetate compared to STD. This study reveals that there is a significant contribution of ketone bodies to oxidative metabolism and GABA in diet-induced ketosis. We propose that this represents a fundamental mechanism of neuroprotection under pathological conditions. PMID:25314677

  10. Pyruvate Dehydrogenase Complex: Metabolic Link to Ischemic Brain Injury and Target of Oxidative Stress

    PubMed Central

    Martin, Erica; Rosenthal, Robert E.; Fiskum, Gary

    2008-01-01

    The mammalian pyruvate dehydrogenase complex (PDHC) is a mitochondrial matrix enzyme complex (greater than 7 million Daltons) that catalyzes the oxidative decarboxylation of pyruvate to form acetyl CoA, nicotinamide adenine dinucleotide (the reduced form, NADH), and CO2. This reaction constitutes the bridge between anaerobic and aerobic cerebral energy metabolism. PDHC enzyme activity and immunoreactivity are lost in selectively vulnerable neurons after cerebral ischemia and reperfusion. Evidence from experiments carried out in vitro suggests that reperfusion-dependent loss of activity is caused by oxidative protein modifications. Impaired enzyme activity may explain the reduced cerebral glucose and oxygen consumption that occurs after cerebral ischemia. This hypothesis is supported by the hyperoxidation of mitochondrial electron transport chain components and NAD(H) that occurs during reperfusion, indicating that NADH production, rather than utilization, is rate limiting. Additional support comes from the findings that immediate postischemic administration of acetyl-l-carnitine both reduces brain lactate/pyruvate ratios and improves neurologic outcome after cardiac arrest in animals. As acetyl-l-carnitine is converted to acetyl CoA, the product of the PDHC reaction, it follows that impaired production of NADH is due to reduced activity of either PDHC or one or more steps in glycolysis. Impaired cerebral energy metabolism and PDHC activity are associated also with neurodegenerative disorders including Alzheimer's disease and Wernicke-Korsakoff syndrome, suggesting that this enzyme is an important link in the pathophysiology of both acute brain injury and chronic neurodegeneration. PMID:15562436

  11. Modelling Blood Flow and Metabolism in the Preclinical Neonatal Brain during and Following Hypoxic-Ischaemia

    PubMed Central

    Bainbridge, Alan; Robertson, Nicola J.; Cooper, Chris E.

    2015-01-01

    Hypoxia-ischaemia (HI) is a major cause of neonatal brain injury, often leading to long-term damage or death. In order to improve understanding and test new treatments, piglets are used as preclinical models for human neonates. We have extended an earlier computational model of piglet cerebral physiology for application to multimodal experimental data recorded during episodes of induced HI. The data include monitoring with near-infrared spectroscopy (NIRS) and magnetic resonance spectroscopy (MRS), and the model simulates the circulatory and metabolic processes that give rise to the measured signals. Model extensions include simulation of the carotid arterial occlusion used to induce HI, inclusion of cytoplasmic pH, and loss of metabolic function due to cell death. Model behaviour is compared to data from two piglets, one of which recovered following HI while the other did not. Behaviourally-important model parameters are identified via sensitivity analysis, and these are optimised to simulate the experimental data. For the non-recovering piglet, we investigate several state changes that might explain why some MRS and NIRS signals do not return to their baseline values following the HI insult. We discover that the model can explain this failure better when we include, among other factors such as mitochondrial uncoupling and poor cerebral blood flow restoration, the death of around 40% of the brain tissue. PMID:26445281

  12. Early Shifts of Brain Metabolism by Caloric Restriction Preserve White Matter Integrity and Long-Term Memory in Aging Mice

    PubMed Central

    Guo, Janet; Bakshi, Vikas; Lin, Ai-Ling

    2015-01-01

    Preservation of brain integrity with age is highly associated with lifespan determination. Caloric restriction (CR) has been shown to increase longevity and healthspan in various species; however, its effects on preserving living brain functions in aging remain largely unexplored. In the study, we used multimodal, non-invasive neuroimaging (PET/MRI/MRS) to determine in vivo brain glucose metabolism, energy metabolites, and white matter structural integrity in young and old mice fed with either control or 40% CR diet. In addition, we determined the animals’ memory and learning ability with behavioral assessments. Blood glucose, blood ketone bodies, and body weight were also measured. We found distinct patterns between normal aging and CR aging on brain functions – normal aging showed reductions in brain glucose metabolism, white matter integrity, and long-term memory, resembling human brain aging. CR aging, in contrast, displayed an early shift from glucose to ketone bodies metabolism, which was associated with preservations of brain energy production, white matter integrity, and long-term memory in aging mice. Among all the mice, we found a positive correlation between blood glucose level and body weight, but an inverse association between blood glucose level and lifespan. Our findings suggest that CR could slow down brain aging, in part due to the early shift of energy metabolism caused by lower caloric intake, and we were able to identify the age-dependent effects of CR non-invasively using neuroimaging. These results provide a rationale for CR-induced sustenance of brain health with extended longevity. PMID:26617514

  13. Brain metabolic maps in Mild Cognitive Impairment predict heterogeneity of progression to dementia

    PubMed Central

    Cerami, Chiara; Della Rosa, Pasquale Anthony; Magnani, Giuseppe; Santangelo, Roberto; Marcone, Alessandra; Cappa, Stefano F.; Perani, Daniela

    2014-01-01

    [18F]FDG-PET imaging has been recognized as a crucial diagnostic marker in Mild Cognitive Impairment (MCI), supporting the presence or the exclusion of Alzheimer's Disease (AD) pathology. A clinical heterogeneity, however, underlies MCI definition. In this study, we aimed to evaluate the predictive role of single-subject voxel-based maps of [18F]FDG distribution generated through statistical parametric mapping (SPM) in the progression to different dementia subtypes in a sample of 45 MCI. Their scans were compared to a large normal reference dataset developed and validated for comparison at single-subject level. Additionally, Aβ42 and Tau CSF values were available in 34 MCI subjects. Clinical follow-up (mean 28.5 ± 7.8 months) assessed subsequent progression to AD or non-AD dementias. The SPM analysis showed: 1) normal brain metabolism in 14 MCI cases, none of them progressing to dementia; 2) the typical temporo-parietal pattern suggestive for prodromal AD in 15 cases, 11 of them progressing to AD; 3) brain hypometabolism suggestive of frontotemporal lobar degeneration (FTLD) subtypes in 7 and dementia with Lewy bodies (DLB) in 2 subjects (all fulfilled FTLD or DLB clinical criteria at follow-up); and 4) 7 MCI cases showed a selective unilateral or bilateral temporo-medial hypometabolism without the typical AD pattern, and they all remained stable. In our sample, objective voxel-based analysis of [18F]FDG-PET scans showed high predictive prognostic value, by identifying either normal brain metabolism or hypometabolic patterns suggestive of different underlying pathologies, as confirmed by progression at follow-up. These data support the potential usefulness of this SPM [18F]FDG PET analysis in the early dementia diagnosis and for improving subject selection in clinical trials based on MCI definition. PMID:25610780

  14. Regulation of brain glutamate metabolism by nitric oxide and S-nitrosylation

    PubMed Central

    Raju, Karthik; Doulias, Paschalis-Thomas; Evans, Perry; Krizman, Elizabeth N.; Jackson, Joshua G.; Horyn, Oksana; Daikhin, Yevgeny; Nissim, Ilana; Yudkoff, Marc; Nissim, Itzhak; Sharp, Kim A.; Robinson, Michael B.; Ischiropoulos, Harry

    2016-01-01

    Nitric oxide (NO) is a signaling intermediate during glutamatergic neurotransmission in the central nervous system (CNS). NO signaling is in part accomplished through cysteine S-nitrosylation, a posttranslational modification by which NO regulates protein function and signaling. In our investigation of the protein targets and functional impact of S-nitrosylation in the CNS under physiological conditions, we identified 269 S-nitrosocysteine residues in 136 proteins in the wild-type mouse brain. The number of sites was significantly reduced in the brains of mice lacking endothelial nitric oxide synthase (eNOS−/−) or neuronal nitric oxide synthase (nNOS−/−). In particular, nNOS−/− animals showed decreased S-nitrosylation of proteins that participate in the glutamate/glutamine cycle, a metabolic process by which synaptic glutamate is recycled or oxidized to provide energy. 15N-glutamine–based metabolomic profiling and enzymatic activity assays indicated that brain extracts from nNOS−/− mice converted less glutamate to glutamine and oxidized more glutamate than those from mice of the other genotypes. GLT1 [also known as EAAT2 (excitatory amino acid transporter 2)], a glutamate transporter in astrocytes, was S-nitrosylated at Cys373 and Cys561 in wild-type and eNOS−/− mice, but not in nNOS−/− mice. A form of rat GLT1 that could not be S-nitrosylated at the equivalent sites had increased glutamate uptake compared to wild-type GLT1 in cells exposed to an S-nitrosylating agent. Thus, NO modulates glutamatergic neurotransmission through the selective, nNOS-dependent S-nitrosylation of proteins that govern glutamate transport and metabolism. PMID:26152695

  15. Preventing Flow-Metabolism Uncoupling Acutely Reduces Axonal Injury after Traumatic Brain Injury

    PubMed Central

    Mironova, Yevgeniya A.; Chen, Szu-Fu; Richards, Hugh K.; Pickard, John D.

    2012-01-01

    Abstract We have previously presented evidence that the development of secondary traumatic axonal injury is related to the degree of local cerebral blood flow (LCBF) and flow-metabolism uncoupling. We have now tested the hypothesis that augmenting LCBF in the acute stages after brain injury prevents further axonal injury. Data were acquired from rats with or without acetazolamide (ACZ) that was administered immediately following controlled cortical impact injury to increase cortical LCBF. Local cerebral metabolic rate for glucose (LCMRglc) and LCBF measurements were obtained 3 h post-trauma in the same rat via 18F-fluorodeoxyglucose and 14C-iodoantipyrine co-registered autoradiographic images, and compared to the density of damaged axonal profiles in adjacent sections, and in additional groups at 24 h used to assess different populations of injured axons stereologically. ACZ treatment significantly and globally elevated LCBF twofold above untreated-injured rats at 3 h (p<0.05), but did not significantly affect LCMRglc. As a result, ipsilateral LCMRglc:LCBF ratios were reduced by twofold to sham-control levels, and the density of β-APP-stained axons at 24 h was significantly reduced in most brain regions compared to the untreated-injured group (p<0.01). Furthermore, early LCBF augmentation prevented the injury-associated increase in the number of stained axons from 3–24 h. Additional robust stereological analysis of impaired axonal transport and neurofilament compaction in the corpus callosum and cingulum underlying the injury core confirmed the amelioration of β-APP axon density, and showed a trend, but no significant effect, on RMO14-positive axons. These data underline the importance of maintaining flow-metabolism coupling immediately after injury in order to prevent further axonal injury, in at least one population of injured axons. PMID:22321027

  16. Expression Profile of Genes Related to Drug Metabolism in Human Brain Tumors

    PubMed Central

    Stavrinou, Pantelis; Mavrogiorgou, Maria-Christina; Polyzoidis, Konstantinos; Kreft-Kerekes, Vincenzo; Timmer, Marco; Marselos, Marios; Pappas, Periklis

    2015-01-01

    Background Endogenous and exogenous compounds as well as carcinogens are metabolized and detoxified by phase I and II enzymes, the activity of which could be crucial to the inactivation and hence susceptibility to carcinogenic factors. The expression of these enzymes in human brain tumor tissue has not been investigated sufficiently. We studied the association between tumor pathology and the expression profile of seven phase I and II drug metabolizing genes (CYP1A1, CYP1B1, ALDH3A1, AOX1, GSTP1, GSTT1 and GSTM3) and some of their proteins. Methods Using qRT-PCR and western blotting analysis the gene and protein expression in a cohort of 77 tumors were investigated. The major tumor subtypes were meningioma, astrocytoma and brain metastases, -the later all adenocarcinomas from a lung primary. Results Meningeal tumors showed higher expression levels for AOX1, CYP1B1, GSTM3 and GSTP1. For AOX1, GSTM and GSTP1 this could be verified on a protein level as well. A negative correlation between the WHO degree of malignancy and the strength of expression was identified on both transcriptional and translational level for AOX1, GSTM3 and GSTP1, although the results could have been biased by the prevalence of meningiomas and glioblastomas in the inevitably bipolar distribution of the WHO grades. A correlation between the gene expression and the protein product was observed for AOX1, GSTP1 and GSTM3 in astrocytomas. Conclusions The various CNS tumors show different patterns of drug metabolizing gene expression. Our results suggest that the most important factor governing the expression of these enzymes is the histological subtype and to a far lesser extent the degree of malignancy itself. PMID:26580399

  17. Prenatal alcohol exposure alters methyl metabolism and programs serotonin transporter and glucocorticoid receptor expression in brain.

    PubMed

    Ngai, Ying Fai; Sulistyoningrum, Dian C; O'Neill, Ryan; Innis, Sheila M; Weinberg, Joanne; Devlin, Angela M

    2015-09-01

    Prenatal alcohol exposure (PAE) programs the fetal hypothalamic-pituitary-adrenal (HPA) axis, resulting in HPA dysregulation and hyperresponsiveness to stressors in adulthood. Molecular mechanisms mediating these alterations are not fully understood. Disturbances in one-carbon metabolism, a source of methyl donors for epigenetic processes, contributes to alcoholic liver disease. We assessed whether PAE affects one-carbon metabolism (including Mtr, Mat2a, Mthfr, and Cbs mRNA) and programming of HPA function genes (Nr3c1, Nr3c2, and Slc6a4) in offspring from ethanol-fed (E), pair-fed (PF), and ad libitum-fed control (C) dams. At gestation day 21, plasma total homocysteine and methionine concentrations were higher in E compared with C dams, and E fetuses had higher plasma methionine concentrations and lower whole brain Mtr and Mat2a mRNA compared with C fetuses. In adulthood (55 days), hippocampal Mtr and Cbs mRNA was lower in E compared with C males, whereas Mtr, Mat2a, Mthfr, and Cbs mRNA were higher in E compared with C females. We found lower Nr3c1 mRNA and lower nerve growth factor inducible protein A (NGFI-A) protein in the hippocampus of E compared with PF females, whereas hippocampal Slc6a4 mRNA was higher in E than C males. By contrast, hypothalamic Slc6a4 mRNA was lower in E males and females compared with C offspring. This was accompanied by higher hypothalamic Slc6a4 mean promoter methylation in E compared with PF females. These findings demonstrate that PAE is associated with alterations in one-carbon metabolism and has long-term and region-specific effects on gene expression in the brain. These findings advance our understanding of mechanisms of HPA dysregulation associated with PAE. PMID:26180184

  18. In vivo metabolic labeling of sialoglycans in the mouse brain by using a liposome-assisted bioorthogonal reporter strategy.

    PubMed

    Xie, Ran; Dong, Lu; Du, Yifei; Zhu, Yuntao; Hua, Rui; Zhang, Chen; Chen, Xing

    2016-05-10

    Mammalian brains are highly enriched with sialoglycans, which have been implicated in brain development and disease progression. However, in vivo labeling and visualization of sialoglycans in the mouse brain remain a challenge because of the blood-brain barrier. Here we introduce a liposome-assisted bioorthogonal reporter (LABOR) strategy for shuttling 9-azido sialic acid (9AzSia), a sialic acid reporter, into the brain to metabolically label sialoglycoconjugates, including sialylated glycoproteins and glycolipids. Subsequent bioorthogonal conjugation of the incorporated 9AzSia with fluorescent probes via click chemistry enabled fluorescence imaging of brain sialoglycans in living animals and in brain sections. Newly synthesized sialoglycans were found to widely distribute on neuronal cell surfaces, in particular at synaptic sites. Furthermore, large-scale proteomic profiling identified 140 brain sialylated glycoproteins, including a wealth of synapse-associated proteins. Finally, by performing a pulse-chase experiment, we showed that dynamic sialylation is spatially regulated, and that turnover of sialoglycans in the hippocampus is significantly slower than that in other brain regions. The LABOR strategy provides a means to directly visualize and monitor the sialoglycan biosynthesis in the mouse brain and will facilitate elucidating the functional role of brain sialylation. PMID:27125855

  19. Lactate receptor sites link neurotransmission, neurovascular coupling, and brain energy metabolism.

    PubMed

    Lauritzen, Knut H; Morland, Cecilie; Puchades, Maja; Holm-Hansen, Signe; Hagelin, Else Marie; Lauritzen, Fredrik; Attramadal, Håvard; Storm-Mathisen, Jon; Gjedde, Albert; Bergersen, Linda H

    2014-10-01

    The G-protein-coupled lactate receptor, GPR81 (HCA1), is known to promote lipid storage in adipocytes by downregulating cAMP levels. Here, we show that GPR81 is also present in the mammalian brain, including regions of the cerebral neocortex and hippocampus, where it can be activated by physiological concentrations of lactate and by the specific GPR81 agonist 3,5-dihydroxybenzoate to reduce cAMP. Cerebral GPR81 is concentrated on the synaptic membranes of excitatory synapses, with a postsynaptic predominance. GPR81 is also enriched at the blood-brain-barrier: the GPR81 densities at endothelial cell membranes are about twice the GPR81 density at membranes of perivascular astrocytic processes, but about one-seventh of that on synaptic membranes. There is only a slight signal in perisynaptic processes of astrocytes. In synaptic spines, as well as in adipocytes, GPR81 immunoreactivity is located on subplasmalemmal vesicular organelles, suggesting trafficking of the protein to and from the plasma membrane. The results indicate roles of lactate in brain signaling, including a neuronal glucose and glycogen saving response to the supply of lactate. We propose that lactate, through activation of GPR81 receptors, can act as a volume transmitter that links neuronal activity, cerebral energy metabolism and energy substrate availability. PMID:23696276

  20. Hippocampal inactivation with TTX impairs long-term spatial memory retrieval and modifies brain metabolic activity.

    PubMed

    Conejo, Nélida María; Cimadevilla, José Manuel; González-Pardo, Héctor; Méndez-Couz, Marta; Arias, Jorge Luis

    2013-01-01

    Functional inactivation techniques enable studying the hippocampal involvement in each phase of spatial memory formation in the rat. In this study, we applied tetrodotoxin unilaterally or bilaterally into the dorsal hippocampus to evaluate the role of this brain structure in retrieval of memories acquired 28 days before in the Morris water maze. We combined hippocampal inactivation with the assessment of brain metabolism using cytochrome oxidase histochemistry. Several brain regions were considered, including the hippocampus and other related structures. Results showed that both unilateral and bilateral hippocampal inactivation impaired spatial memory retrieval. Hence, whereas subjects with bilateral hippocampal inactivation showed a circular swim pattern at the side walls of the pool, unilateral inactivation favoured swimming in the quadrants adjacent to the target one. Analysis of cytochrome oxidase activity disclosed regional differences according to the degree of hippocampal functional blockade. In comparison to control group, animals with bilateral inactivation showed increased CO activity in CA1 and CA3 areas of the hippocampus during retrieval, while the activity of the dentate gyrus substantially decreased. However, unilateral inactivated animals showed decreased CO activity in Ammon's horn and the dentate gyrus. This study demonstrated that retrieval recruits differentially the hippocampal subregions and the balance between them is altered with hippocampal functional lesions. PMID:23724089

  1. Hippocampal Inactivation with TTX Impairs Long-Term Spatial Memory Retrieval and Modifies Brain Metabolic Activity

    PubMed Central

    Conejo, Nélida María; Cimadevilla, José Manuel; González-Pardo, Héctor; Méndez-Couz, Marta; Arias, Jorge Luis

    2013-01-01

    Functional inactivation techniques enable studying the hippocampal involvement in each phase of spatial memory formation in the rat. In this study, we applied tetrodotoxin unilaterally or bilaterally into the dorsal hippocampus to evaluate the role of this brain structure in retrieval of memories acquired 28 days before in the Morris water maze. We combined hippocampal inactivation with the assessment of brain metabolism using cytochrome oxidase histochemistry. Several brain regions were considered, including the hippocampus and other related structures. Results showed that both unilateral and bilateral hippocampal inactivation impaired spatial memory retrieval. Hence, whereas subjects with bilateral hippocampal inactivation showed a circular swim pattern at the side walls of the pool, unilateral inactivation favoured swimming in the quadrants adjacent to the target one. Analysis of cytochrome oxidase activity disclosed regional differences according to the degree of hippocampal functional blockade. In comparison to control group, animals with bilateral inactivation showed increased CO activity in CA1 and CA3 areas of the hippocampus during retrieval, while the activity of the dentate gyrus substantially decreased. However, unilateral inactivated animals showed decreased CO activity in Ammon's horn and the dentate gyrus. This study demonstrated that retrieval recruits differentially the hippocampal subregions and the balance between them is altered with hippocampal functional lesions. PMID:23724089

  2. The effect of hyperphenylalaninaemia on glycine metabolism in developing rat brain.

    PubMed Central

    Isaacs, C E; Greengard, O

    1980-01-01

    The brains of 3--16-day-old rats that were rendered hyperphenylalaninaemic by daily injections of alpha-methylphenylalanine plus phenylalanine were subjected to biochemical analysis. Fluctuations throughout the treatment period in the concentrations of branched-chain amino acids, methionine and serotonin were in agreement with the known interference of excess plasma phenylalanine with transport. The glycine content, however, became abnormal only by day 5, remained so through the treatment, and the elevation was equally apparent at 4, 8 or 24 h after the last daily injections. On the last day of treatment there were small increases in the taurine, glutamate, aspartate and 4-aminobutyrate concentrations, attributable mainly to the diencephalon or brain stem. After day 3 of treatment there were persistent elevations in the specific activity of phosphoserine phosphatase and glycine synthase (but not serine hydroxymethyltransferase) of the brain in each of the regions analysed. The observations indicate that chronic hyperphenylalaninaemia interferes with the normal regulation of intracerebral glycine metabolism during a critical period of early postnatal development, and suggest that the resulting excess in this amino acid (particularly marked in the cortex) contributes to the behavioural abnormalities that these animals exhibit in later life. PMID:6112983

  3. [2,4-13C2]-β-Hydroxybutyrate Metabolism in Human Brain

    PubMed Central

    Pan, Jullie W.; de Graaf, Robin A.; Petersen, Kitt F.; Shulman, Gerald I.; Hetherington, Hoby P.; Rothman, Douglas L.

    2010-01-01

    Summary Infusions of [2,4-13C2]-β-hydroxybutyrate and 1H–13C polarization transfer spectroscopy were used in normal human subjects to detect the entry and metabolism of β-hydroxybutyrate in the brain. During the 2-hour infusion study, 13C label was detectable in the β-hydroxybutyrate resonance positions and in the amino acid pools of glutamate, glutamine, and aspartate. With a plasma concentration of 2.25 ± 0.24 mmol/L (four volunteers), the apparent tissue β-hydroxybutyrate concentration reached 0.18 ± 0.06 mmol/L during the last 20 minutes of the study. The relative fractional enrichment of 13C-4-glutamate labeling was 6.78 ± 1.71%, whereas 13C-4-glutamine was 5.68 ± 1.84%. Steady-state modeling of the 13C label distribution in glutamate and glutamine suggests that, under these conditions, the consumption of the β-hydroxybutyrate is predominantly neuronal, used at a rate of 0.032 ± 0.009 mmol · kg−1 · min−1, and accounts for 6.4 ± 1.6% of total acetyl coenzyme A oxidation. These results are consistent with minimal accumulation of cerebral ketones with rapid utilization, implying blood–brain barrier control of ketone oxidation in the nonfasted adult human brain. PMID:12142574

  4. [2,4-13 C2 ]-beta-Hydroxybutyrate metabolism in human brain.

    PubMed

    Pan, Jullie W; de Graaf, Robin A; Petersen, Kitt F; Shulman, Gerald I; Hetherington, Hoby P; Rothman, Douglas L

    2002-07-01

    Infusions of [2,4-13C2]-beta-hydroxybutyrate and 1H-13C polarization transfer spectroscopy were used in normal human subjects to detect the entry and metabolism of beta-hydroxybutyrate in the brain. During the 2-hour infusion study, 13C label was detectable in the beta-hydroxybutyrate resonance positions and in the amino acid pools of glutamate, glutamine, and aspartate. With a plasma concentration of 2.25 +/- 0.24 mmol/L (four volunteers), the apparent tissue beta-hydroxybutyrate concentration reached 0.18 +/- 0.06 mmol/L during the last 20 minutes of the study. The relative fractional enrichment of 13C-4-glutamate labeling was 6.78 +/- 1.71%, whereas 13C-4-glutamine was 5.68 +/- 1.84%. Steady-state modeling of the 13C label distribution in glutamate and glutamine suggests that, under these conditions, the consumption of the beta-hydroxybutyrate is predominantly neuronal, used at a rate of 0.032 +/- 0.009 mmol. kg-1. min-1, and accounts for 6.4 +/- 1.6% of total acetyl coenzyme A oxidation. These results are consistent with minimal accumulation of cerebral ketones with rapid utilization, implying blood-brain barrier control of ketone oxidation in the nonfasted adult human brain. PMID:12142574

  5. Adenosine, ketogenic diet and epilepsy: the emerging therapeutic relationship between metabolism and brain activity.

    PubMed

    Masino, S A; Kawamura, M; Wasser, C D; Wasser, C A; Pomeroy, L T; Ruskin, D N

    2009-09-01

    For many years the neuromodulator adenosine has been recognized as an endogenous anticonvulsant molecule and termed a "retaliatory metabolite." As the core molecule of ATP, adenosine forms a unique link between cell energy and neuronal excitability. In parallel, a ketogenic (high-fat, low-carbohydrate) diet is a metabolic therapy that influences neuronal activity significantly, and ketogenic diets have been used successfully to treat medically-refractory epilepsy, particularly in children, for decades. To date the key neural mechanisms underlying the success of dietary therapy are unclear, hindering development of analogous pharmacological solutions. Similarly, adenosine receptor-based therapies for epilepsy and myriad other disorders remain elusive. In this review we explore the physiological regulation of adenosine as an anticonvulsant strategy and suggest a critical role for adenosine in the success of ketogenic diet therapy for epilepsy. While the current focus is on the regulation of adenosine, ketogenic metabolism and epilepsy, the therapeutic implications extend to acute and chronic neurological disorders as diverse as brain injury, inflammatory and neuropathic pain, autism and hyperdopaminergic disorders. Emerging evidence for broad clinical relevance of the metabolic regulation of adenosine will be discussed. PMID:20190967

  6. Brain stem as a target site for the metabolic side effects of olanzapine.

    PubMed

    Anwar, Imran J; Miyata, Kayoko; Zsombok, Andrea

    2016-03-01

    Olanzapine, an atypical antipsychotic, is widely prescribed for the treatment of schizophrenia and bipolar disorder despite causing undesirable metabolic side effects. A variety of mechanisms and brain sites have been proposed as contributors to the side effects; however, the role of the dorsal motor nucleus of the vagus nerve (DMV), which plays a crucial role in the regulation of subdiaphragmatic organs and thus governs energy and glucose homeostasis, is largely unknown. Identifying the effect of olanzapine on the excitability of DMV neurons in both sexes is thus crucial to understanding possible underlying mechanisms. Whole cell patch-clamp electrophysiological recordings were conducted in stomach- and liver-related DMV neurons identified with retrograde viral tracers and in random DMV neurons. The effect of olanzapine on the neuronal excitability of DMV neurons both in male and female mice was established. Our data demonstrate that olanzapine hyperpolarizes the DMV neurons in both sexes and this effect is reversible. The hyperpolarization is associated with decreased firing rate and input resistance. Olanzapine also decreases the excitability of a subset of stomach- and liver-related DMV neurons. Our study demonstrates that olanzapine has a powerful effect on DMV neurons in both sexes, indicating its ability to reduce vagal output to the subdiaphragmatic organs, which likely contributes to the metabolic side effects observed in both humans and experimental models. These findings suggest that the metabolic side effects of olanzapine may partially originate in the DMV. PMID:26719086

  7. Early-life exercise may promote lasting brain and metabolic health through gut bacterial metabolites.

    PubMed

    Mika, Agnieszka; Fleshner, Monika

    2016-02-01

    The 100 trillion microorganisms residing within our intestines contribute roughly 5 million additional genes to our genetic gestalt, thus posing the potential to influence many aspects of our physiology. Microbial colonization of the gut shortly after birth is vital for the proper development of immune, neural and metabolic systems, while sustaining a balanced, diverse gut flora populated with beneficial bacteria is necessary for maintaining optimal function of these systems. Although symbiotic host-microbial interactions are important throughout the lifespan, these interactions can have greater and longer lasting impacts during certain critical developmental periods. A better understanding of these sensitive periods is necessary to improve the impact and effectiveness of health-promoting interventions that target the microbial ecosystem. We have recently reported that exercise initiated in early life increases gut bacterial species involved in promoting psychological and metabolic health. In this review, we emphasize the ability of exercise during this developmentally receptive time to promote optimal brain and metabolic function across the lifespan through microbial signals. PMID:26647967

  8. Intermittent administration of brain-derived neurotrophic factor ameliorates glucose metabolism in obese diabetic mice.

    PubMed

    Ono, M; Itakura, Y; Nonomura, T; Nakagawa, T; Nakayama, C; Taiji, M; Noguchi, H

    2000-01-01

    We have previously shown that brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, interacts with the endocrine system in obese diabetic mice, and systemic peripheral administration of BDNF regulates glucose metabolism in this model. Results from the present study show that the hypoglycemic effect induced by 2 weeks' daily administration of BDNF (20 mg/kg/d) to db/db mice lasts for several weeks after treatment cessation, irrespective of food reduction. On the other hand, the antidiabetic agent, metformin had no lasting effect. This duration of the BDNF hypoglycemic action prompted us to examine the efficacy of BDNF intermittent administration on glucose metabolism. BDNF administered once or twice per week (70 mg/kg/wk) to db/db mice for 3 weeks significantly reduced blood glucose concentrations and hemoglobin A(1c), (HbA(1c)) as compared with ad libitum-fed phosphate-buffered saline (PBS)-treated and pair-fed PBS-treated groups. This suggests that BDNF not only temporarily reduced blood glucose concentrations but also ameliorated systemic glucose balance in this obese diabetic mouse model during the experimental period. Our results indicate that BDNF could be a novel hypoglycemic agent with an exceptional ability to normalize glucose metabolism even with treatment as infrequently as once per week. PMID:10647076

  9. 1,3,5-Triazine-based analogues of purine: from isosteres to privileged scaffolds in medicinal chemistry.

    PubMed

    Lim, Felicia Phei Lin; Dolzhenko, Anton V

    2014-10-01

    Purines can be considered as the most ubiquitous and functional N-heterocyclic compounds in nature. Structural modifications of natural purines, particularly using isosteric ring systems, have been in the focus of many drug discovery programs. Fusion of 1,3,5-triazine ring with pyrrole, pyrazole, imidazole, 1,2,3-triazole or 1,2,4-triazole results in seven bicyclic heterocyclic systems isosteric to purine. Application of the isosterism concept for the development of new compounds with therapeutic potential in areas involving purinergic regulation or purine metabolism led to significant advances in medicinal chemistry of the azolo[1,3,5]triazines. These 1,3,5-triazine-based purine-like scaffolds significantly increase level of molecular diversity and allow covering chemical space in the important areas of medicinal chemistry. Some of these azolo[1,3,5]triazine systems have become privileged scaffolds in the development of inhibitors of various kinases, phosphodiesterase, xanthine oxidase, and thymidine phosphorylase, antagonists of adenosine and corticotropin-releasing hormone receptors, anticancer and antiviral agents. PMID:25105925

  10. Effects of Chronic Consumption of Sugar-Enriched Diets on Brain Metabolism and Insulin Sensitivity in Adult Yucatan Minipigs.

    PubMed

    Ochoa, Melissa; Malbert, Charles-Henri; Meurice, Paul; Val-Laillet, David

    2016-01-01

    Excessive sugar intake might increase the risk to develop eating disorders via an altered reward circuitry, but it remains unknown whether different sugar sources induce different neural effects and whether these effects are dependent from body weight. Therefore, we compared the effects of three high-fat and isocaloric diets varying only in their carbohydrate sources on brain activity of reward-related regions, and assessed whether brain activity is dependent on insulin sensitivity. Twenty-four minipigs underwent 18FDG PET brain imaging following 7-month intake of high-fat diets of which 20% in dry matter weight (36.3% of metabolisable energy) was provided by starch, glucose or fructose (n = 8 per diet). Animals were then subjected to a euglycemic hyperinsulinemic clamp to determine peripheral insulin sensitivity. After a 7-month diet treatment, all groups had substantial increases in body weight (from 36.02±0.85 to 63.33±0.81 kg; P<0.0001), regardless of the diet. All groups presented similar insulin sensitivity index (ISI = 1.39±0.10 mL·min-1·μUI·kg). Compared to starch, chronic exposure to fructose and glucose induced bilateral brain activations, i.e. increased basal cerebral glucose metabolism, in several reward-related brain regions including the anterior and dorsolateral prefrontal cortex, the orbitofrontal cortex, the anterior cingulate cortex, the caudate and putamen. The lack of differences in insulin sensitivity index and body weight suggests that the observed differences in basal brain glucose metabolism are not related to differences in peripheral insulin sensitivity and weight gain. The differences in basal brain metabolism in reward-related brain areas suggest the onset of cerebral functional alterations induced by chronic consumption of dietary sugars. Further studies should explore the underlying mechanisms, such as the availability of intestinal and brain sugar transporter, or the appearance of addictive-like behavioral correlates of these

  11. The effects of laboratory housing and spatial enrichment on brain size and metabolic rate in the eastern mosquitofish, Gambusia holbrooki

    PubMed Central

    Turschwell, Mischa P.; White, Craig R.

    2016-01-01

    ABSTRACT It has long been hypothesised that there is a functional correlation between brain size and metabolic rate in vertebrates. The present study tested this hypothesis in wild-caught adult mosquitofish Gambusia holbrooki by testing for an intra-specific association between resting metabolic rate (RMR) and brain size while controlling for variation in body size, and through the examination of the effects of spatial enrichment and laboratory housing on body mass-independent measures of brain size and RMR. Controlling for body mass, there was no relationship between brain size and RMR in wild-caught fish. Contrary to predictions, spatial enrichment caused a decrease in mass-independent brain size, highlighting phenotypic plasticity in the adult brain. As expected, after controlling for differences in body size, wild-caught fish had relatively larger brains than fish that had been maintained in the laboratory for a minimum of six weeks, but wild-caught fish also had significantly lower mass-independent RMR. This study demonstrates that an organisms' housing environment can cause significant plastic changes to fitness related traits including brain size and RMR. We therefore conclude that current standard laboratory housing conditions may cause captive animals to be non-representative of their wild counterparts, potentially undermining the transferability of previous laboratory-based studies of aquatic ectothermic vertebrates to wild populations. PMID:26794608

  12. The effects of laboratory housing and spatial enrichment on brain size and metabolic rate in the eastern mosquitofish, Gambusia holbrooki.

    PubMed

    Turschwell, Mischa P; White, Craig R

    2016-01-01

    It has long been hypothesised that there is a functional correlation between brain size and metabolic rate in vertebrates. The present study tested this hypothesis in wild-caught adult mosquitofish Gambusia holbrooki by testing for an intra-specific association between resting metabolic rate (RMR) and brain size while controlling for variation in body size, and through the examination of the effects of spatial enrichment and laboratory housing on body mass-independent measures of brain size and RMR. Controlling for body mass, there was no relationship between brain size and RMR in wild-caught fish. Contrary to predictions, spatial enrichment caused a decrease in mass-independent brain size, highlighting phenotypic plasticity in the adult brain. As expected, after controlling for differences in body size, wild-caught fish had relatively larger brains than fish that had been maintained in the laboratory for a minimum of six weeks, but wild-caught fish also had significantly lower mass-independent RMR. This study demonstrates that an organisms' housing environment can cause significant plastic changes to fitness related traits including brain size and RMR. We therefore conclude that current standard laboratory housing conditions may cause captive animals to be non-representative of their wild counterparts, potentially undermining the transferability of previous laboratory-based studies of aquatic ectothermic vertebrates to wild populations. PMID:26794608

  13. Genetic Deletion of Rheb1 in the Brain Reduces Food Intake and Causes Hypoglycemia with Altered Peripheral Metabolism

    PubMed Central

    Yang, Wanchun; Jiang, Wanxiang; Luo, Liping; Bu, Jicheng; Pang, Dejiang; Wei, Jing; Du, Chongyangzi; Xia, Xiaoqiang; Cui, Yiyuan; Liu, Shuang; Mao, Qing; Chen, Mina

    2014-01-01

    Excessive food/energy intake is linked to obesity and metabolic disorders, such as diabetes. The hypothalamus in the brain plays a critical role in the control of food intake and peripheral metabolism. The signaling pathways in hypothalamic neurons that regulate food intake and peripheral metabolism need to be better understood for developing pharmacological interventions to manage eating behavior and obesity. Mammalian target of rapamycin (mTOR), a serine/threonine kinase, is a master regulator of cellular metabolism in different cell types. Pharmacological manipulations of mTOR complex 1 (mTORC1) activity in hypothalamic neurons alter food intake and body weight. Our previous study identified Rheb1 (Ras homolog enriched in brain 1) as an essential activator of mTORC1 activity in the brain. Here we examine whether central Rheb1 regulates food intake and peripheral metabolism through mTORC1 signaling. We find that genetic deletion of Rheb1 in the brain causes a reduction in mTORC1 activity and impairs normal food intake. As a result, Rheb1 knockout mice exhibit hypoglycemia and increased lipid mobilization in adipose tissue and ketogenesis in the liver. Our work highlights the importance of central Rheb1 signaling in euglycemia and energy homeostasis in animals. PMID:24451134

  14. Hemodynamic and metabolic efficacy of dopamine versus norepinephrine in a brain-dead swine model.

    PubMed

    Zaky, Ahmed; Pretto, Ernesto A; Earle, Steven A; Piraccini, Emanuele; Zuccarelli, Jennifer E; Arheart, Kristopher L; Proctor, Kenneth G

    2008-09-01

    We tested the hypothesis that hepatosplanchnic and systemic hemodynamics are improved with equi-effective doses of dopamine (DA) versus norepinephrine (NE) in a brain-dead swine model. Pigs (n = 18) were anesthetized and ventilated. Brain death was induced by epidural balloon inflation, hypoventilation, and hypoxia. After 30 minutes, mechanical ventilation was restored without anesthesia. During 60 and until 480 minutes, half received DA (10 microg/kg/minute) and half received NE (0.1 microg/kg/minute) titrated to a mean arterial pressure (MAP) > 60 mm Hg with supplemental fluid to maintain a central venous pressure > 8 mm Hg. Hemodynamics, hepatic laser Doppler blood flow, and hepatic and gastric tissue oxygenation with near-infrared spectroscopy were continuously monitored. Serial blood samples were analyzed for blood gases and electrolytes, coagulation changes, and serum chemistries. Balloon inflation caused brain death and autonomic storm, and 8 of 18 were nonsurvivors. After 30 minutes, the MAP, mixed venous O(2) saturation, and partial pressure of arterial oxygen values decreased to 37 +/- 2 mm Hg, 38 +/- 4, and 49 +/- 8 mm Hg, respectively. Serum lactate increased to 5.4 +/- 0.7 mM. Among survivors (n = 10), MAP stabilized with either pressor. Urine output was maintained (>1 mL/kg/hour), but creatinine increased >30% with respect to the baseline. Tachyphylaxis developed with NE but not with DA (P < 0.05). Cardiac index was higher with DA versus NE (P < 0.05). There were no differences in stroke volume, metabolic indices, or liver blood flow. Liver tissue O(2) was higher with DA versus NE at 8 hours (P < 0.05). Coagulation tests and liver enzymes were similar with NE versus DA (P > 0.05). In conclusion, after brain death, cardiac index and hepatic oxygenation were significantly improved with equi-effective doses of DA versus NE. PMID:18756452

  15. Neuropsychological, Metabolic, and GABAA Receptor Studies in Subjects with Repetitive Traumatic Brain Injury.

    PubMed

    Bang, Seong Ae; Song, Yoo Sung; Moon, Byung Seok; Lee, Byung Chul; Lee, Ho-Young; Kim, Jong-Min; Kim, Sang Eun

    2016-06-01

    Repetitive traumatic brain injury (rTBI) occurs as a result of mild and accumulative brain damage. A prototype of rTBI is chronic traumatic encephalopathy (CTE), which is a degenerative disease that occurs in patients with histories of multiple concussions or head injuries. Boxers have been the most commonly studied patient group because they may experience thousands of subconcussive hits over the course of a career. This study examined the consequences of rTBI with structural brain imaging and biomolecular imaging and investigated whether the neuropsychological features of rTBI were related to the findings of the imaging studies. Five retired professional boxers (mean age, 46.8 ± 3.19 years) and four age-matched controls (mean age, 48.5 ± 3.32 years) were studied. Cognitive-motor related functional impairment was assessed, and all subjects underwent neuropsychological evaluation and behavioral tasks, as well as structural brain imaging and functional-molecular imaging. In neuropsychological tests, boxers showed deficits in delayed retrieval of visuospatial memory and motor coordination, which had a meaningful relationship with biomolecular imaging results indicative of neuronal injury. Morphometric abnormalities were not found in professional boxers by structural magnetic resonance imaging (MRI). Glucose metabolism was impaired in frontal areas associated with cognitive dysfunction, similar to findings in Alzheimer's disease. Low binding potential (BP) of (18)F-flumazenil (FMZ) was found in the angular gyrus and temporal cortical regions, revealing neuronal deficits. These results suggested that cognitive impairment and motor dysfunction reflect chronic damage to neurons in professional boxers with rTBI. PMID:26414498

  16. Decreased Zinc Availability Affects Glutathione Metabolism in Neuronal Cells and in the Developing Brain

    PubMed Central

    Omata, Yo; Salvador, Gabriela A.; Oteiza, Patricia I.

    2013-01-01

    A deficit in zinc (Zn) availability can increase cell oxidant production, affect the antioxidant defense system, and trigger oxidant-sensitive signals in neuronal cells. This work tested the hypothesis that a decreased Zn availability can affect glutathione (GSH) metabolism in the developing rat brain and in neuronal cells in culture, as well as the capacity of human neuroblastoma IMR-32 cells to upregulate GSH when challenged with dopamine (DA). GSH levels were low in the brain of gestation day 19 (GD19) fetuses from dams fed marginal Zn diets throughout gestation and in Zn-deficient IMR-32 cells. γ-Glutamylcysteine synthetase (GCL), the first enzyme in the GSH synthetic pathway, was altered by Zn deficiency (ZD). The protein and mRNA levels of the GCL modifier (GCLM) and catalytic (GCLC) subunits were lower in the Zn-deficient GD19 fetal brain and in IMR-32 cells compared with controls. The nuclear translocation of transcription factor nuclear factor (erythroid-derived 2)-like 2, which controls GCL transcription, was impaired by ZD. Posttranslationally, the caspase-3-dependent GCLC cleavage was high in Zn-deficient IMR-32 cells. Cells challenged with DA showed an increase in GCLM and GCLC protein and mRNA levels and a consequent increase in GSH concentration. Although Zn-deficient cells partially upregulated GCL subunits after exposure to DA, GSH content remained low. In summary, results show that a low Zn availability affects the GSH synthetic pathway in neuronal cells and fetal brain both at transcriptional and posttranslational levels. This can in part underlie the GSH depletion associated with ZD and the high sensitivity of Zn-deficient neurons to pro-oxidative stressors. PMID:23377617

  17. Disruption of circadian clocks has ramifications for metabolism, brain, and behavior

    PubMed Central

    Karatsoreos, Ilia N.; Bhagat, Sarah; Bloss, Erik B.; Morrison, John H.; McEwen, Bruce S.

    2011-01-01

    Circadian (daily) rhythms are present in almost all plants and animals. In mammals, a brain clock located in the hypothalamic suprachiasmatic nucleus maintains synchrony between environmental light/dark cycles and physiology and behavior. Over the past 100 y, especially with the advent of electric lighting, modern society has resulted in a round-the-clock lifestyle, in which natural connections between rest/activity cycles and environmental light/dark cycles have been degraded or even broken. Instances in which rapid changes to sleep patterns are necessary, such as transmeridian air travel, demonstrate negative effects of acute circadian disruption on physiology and behavior. However, the ramifications of chronic disruption of the circadian clock for mental and physical health are not yet fully understood. By housing mice in 20-h light/dark cycles, incongruous with their endogenous ∼24-h circadian period, we were able to model the effects of chronic circadian disruption noninvasively. Housing in these conditions results in accelerated weight gain and obesity, as well as changes in metabolic hormones. In the brain, circadian-disrupted mice exhibit a loss of dendritic length and decreased complexity of neurons in the prelimbic prefrontal cortex, a brain region important in executive function and emotional control. Disrupted animals show decreases in cognitive flexibility and changes in emotionality consistent with the changes seen in neural architecture. How our findings translate to humans living and working in chronic circadian disruption is unknown, but we believe that this model can provide a foundation to understand how environmental disruption of circadian rhythms impacts the brain, behavior, and physiology. PMID:21220317

  18. Purification and characterization of aspartate N-acetyltransferase: A critical enzyme in brain metabolism.

    PubMed

    Wang, Qinzhe; Zhao, Mojun; Parungao, Gwenn G; Viola, Ronald E

    2016-03-01

    Canavan disease (CD) is a neurological disorder caused by an interruption in the metabolism of N-acetylaspartate (NAA). Numerous mutations have been found in the enzyme that hydrolyzes NAA, and the catalytic activity of aspartoacylase is significantly impaired in CD patients. Recent studies have also supported an important role in CD for the enzyme that catalyzes the synthesis of NAA in the brain. However, previous attempts to study this enzyme had not succeeded in obtaining a soluble, stable and active form of this membrane-associated protein. We have now utilized fusion constructs with solubilizing protein partners to obtain an active and soluble form of aspartate N-acetyltransferase. Characterization of the properties of this enzyme has set the stage for the development of selective inhibitors that can lower the elevated levels of NAA that are observed in CD patients and potentially serve as a new treatment therapy. PMID:26550943

  19. Brain metabolism and Alzheimer's disease: the prospect of a metabolite-based therapy.

    PubMed

    Thomas, S C; Alhasawi, A; Appanna, V P; Auger, C; Appanna, V D

    2015-01-01

    The brain is one of the most energy-demanding organs in the body. It has evolved intricate metabolic networks to fulfill this need and utilizes a variety of substrates to generate ATP, the universal energy currency. Any disruption in the supply of energy results in various abnormalities including Alzheimer's disease (AD), a condition with markedly diminished cognitive ability. Astrocytes are an important participant in maintaining the cerebral ATP budget. However, under oxidative stress induced by numerous factors including aluminum toxicity, the ability of astroctyes to generate ATP is impaired due to dysfunctional mitochondria. This leads to globular, glycolytic, lipogenic and ATP-deficient astrocytes, cerebral characteristics common in AD patients. The reversal of these perturbations by such natural metabolites as pyruvate, α-ketoglutarate, acetoacetate and L-carnitine provides valuable therapeutic cues against AD. PMID:25560817

  20. Injury timing alters metabolic, inflammatory and functional outcomes following repeated mild traumatic brain injury.

    PubMed

    Weil, Zachary M; Gaier, Kristopher R; Karelina, Kate

    2014-10-01

    Repeated head injuries are a major public health concern both for athletes, and members of the police and armed forces. There is ample experimental and clinical evidence that there is a period of enhanced vulnerability to subsequent injury following head trauma. Injuries that occur close together in time produce greater cognitive, histological, and behavioral impairments than do injuries separated by a longer period. Traumatic brain injuries alter cerebral glucose metabolism and the resolution of altered glucose metabolism may signal the end of the period of greater vulnerability. Here, we injured mice either once or twice separated by three or 20days. Repeated injuries that were separated by three days were associated with greater axonal degeneration, enhanced inflammatory responses, and poorer performance in a spatial learning and memory task. A single injury induced a transient but marked increase in local cerebral glucose utilization in the injured hippocampus and sensorimotor cortex, whereas a second injury, three days after the first, failed to induce an increase in glucose utilization at the same time point. In contrast, when the second injury occurred substantially later (20days after the first injury), an increase in glucose utilization occurred that paralleled the increase observed following a single injury. The increased glucose utilization observed after a single injury appears to be an adaptive component of recovery, while mice with 2 injuries separated by three days were not able to mount this response, thus this second injury may have produced a significant energetic crisis such that energetic demands outstripped the ability of the damaged cells to utilize energy. These data strongly reinforce the idea that too rapid return to activity after a traumatic brain injury can induce permanent damage and disability, and that monitoring cerebral energy utilization may be a tool to determine when it is safe to return to the activity that caused the initial

  1. Changes in Brain Metallome/Metabolome Pattern due to a Single i.v. Injection of Manganese in Rats

    PubMed Central

    Neth, Katharina; Lucio, Marianna; Walker, Alesia; Zorn, Julia; Schmitt-Kopplin, Philippe; Michalke, Bernhard

    2015-01-01

    Exposure to high concentrations of Manganese (Mn) is known to potentially induce an accumulation in the brain, leading to a Parkinson related disease, called manganism. Versatile mechanisms of Mn-induced brain injury are discussed, with inactivation of mitochondrial defense against oxidative stress being a major one. So far, studies indicate that the main Mn-species entering the brain are low molecular mass (LMM) compounds such as Mn-citrate. Applying a single low dose MnCl2 injection in rats, we observed alterations in Mn-species pattern within the brain by analysis of aqueous brain extracts by size-exclusion chromatography—inductively coupled plasma mass spectrometry (SEC-ICP-MS). Additionally, electrospray ionization—ion cyclotron resonance-Fourier transform-mass spectrometry (ESI-ICR/FT-MS) measurement of methanolic brain extracts revealed a comprehensive analysis of changes in brain metabolisms after the single MnCl2 injection. Major alterations were observed for amino acid, fatty acid, glutathione, glucose and purine/pyrimidine metabolism. The power of this metabolomic approach is the broad and detailed overview of affected brain metabolisms. We also correlated results from the metallomic investigations (Mn concentrations and Mn-species in brain) with the findings from metabolomics. This strategy might help to unravel the role of different Mn-species during Mn-induced alterations in brain metabolism. PMID:26383269

  2. Distinct Purine Distribution in Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Callahan, Michael P.; Smith, Karen E.; Cleaves, Henderson J.; Ruzicka, Josef; Stern, Jennifer C.; Glavin, Daniel P.; House, Christopher H.; Dworkin, Jason P.

    2011-01-01

    Carbonaceous chondrite meteorites are known to contain a diverse suite of organic compounds, many of which are essential components of biochemistry. Amino acids, which are the monomers of proteins, have been extensively studied in such meteorites (e.g. Botta and Bada 2002; Pizzarello et aI., 2006). The origin of amino acids in meteorites has been firmly established as extraterrestrial based on their detection typically as racemic mixtures of amino acids, the presence of many non-protein amino acids, and non-terrestrial values for compound-specific deuterium, carbon, and nitrogen isotopic measurements. In contrast to amino acids, nucleobases in meteorites have been far less studied. Nucleobases are substituted one-ring (pyrimidine) or two-ring (purine) nitrogen heterocyclic compounds and serve as the information carriers of nucleic acids and in numerous coenzymes. All of the purines (adenine, guanine, hypoxanthine, and xanthine) and pyrimidines (uracil) previously reported in meteorites are biologically common and could be interpreted as the result of terrestrial contamination (e.g. van del' Velden and Schwartz, 1974.) Unlike other meteoritic organics, there have been no observations of stochastic molecular diversity of purines and pyrimidines in meteorites, which has been a criterion for establishing extraterrestrial origin. Maltins et al. (2008) performed compound-specific stable carbon isotope measurements for uracil and xanthine in the Murchison meteorite. They assigned a non-terrestrial origin for these nucleobases; however, the possibility that interfering indigenous molecules (e.g. carboxylic acids) contributed to the 13C-enriched isotope values for these nucleobases cannot be completely ruled out. Thus, the origin of these meteoritic nucleobases has never been established unequivocally. Here we report on our investigation of extracts of II different carbonaceous chondrites covering various petrographic types (Cl, CM, and CR) and degrees of aqueous alteration

  3. Structure, stability, and thermodynamics of a short intermolecular purine-purine-pyrimidine triple helix

    SciTech Connect

    Pilch, D.S.; Shafer, R.H. ); Levenson, C. )

    1991-06-25

    The authors have investigated the structure and physical chemistry of the d(C{sub 3}T{sub 4}C{sub 3}){center dot}2(d(G{sub 3}A{sub 4}G{sub 3})) triple helix by polyacrylamide gel electrophoresis (PAGE), {sup 1}H NMR, and ultraviolet (UV) absorption spectroscopy. The triplex was stabilized with MgCl{sub 2} at neutral pH. PAGE studies verify the stoichiometry of the strands comprising the triplex and indicate that the orientation of the third strand in purine-purine-pyrimidine (pur-pur-pyr) triplexes is antiparallel with respect to the purine strand of the underlying duplex. Imino proton NMR spectra provide evidence for the existence of new purine-purine (pur{center dot}pur) hydrogen bonds, in addition to those of the Watson-Crick (W-C) base pairs, in the triplex structure. These new hydrogen bonds are likely to correspond to the interaction between third-strand guanine NH1 imino protons and the N7 atoms of guanine residues on the puring strand of the underlying duplex. Thermal denaturation of the triplex proceeds to single strands in one step, under the conditions used in this study. Binding of the third strand appears to enhance the thermal stability of the duplex by 1-3 C, depending on the DNA concentration. This marked enhancement in stability, coupled with the lack of an acidic pH requirement, suggests that pur-pur-pyr triplexes are appealing choices for use in applications involving oligonucleotide targeting of duplex DNA in vitro and in vivo.

  4. BOLD-based Techniques for Quantifying Brain Hemodynamic and Metabolic Properties – Theoretical Models and Experimental Approaches

    PubMed Central

    Yablonskiy, Dmitriy A.; Sukstanskii, Alexander L.; He, Xiang

    2012-01-01

    Quantitative evaluation of brain hemodynamics and metabolism, particularly the relationship between brain function and oxygen utilization, is important for understanding normal human brain operation as well as pathophysiology of neurological disorders. It can also be of great importance for evaluation of hypoxia within tumors of the brain and other organs. A fundamental discovery by Ogawa and co-workers of the BOLD (Blood Oxygenation Level Dependent) contrast opened a possibility to use this effect to study brain hemodynamic and metabolic properties by means of MRI measurements. Such measurements require developing theoretical models connecting MRI signal to brain structure and functioning and designing experimental techniques allowing MR measurements of salient features of theoretical models. In our review we discuss several such theoretical models and experimental methods for quantification brain hemodynamic and metabolic properties. Our review aims mostly at methods for measuring oxygen extraction fraction, OEF, based on measuring blood oxygenation level. Combining measurement of OEF with measurement of CBF allows evaluation of oxygen consumption, CMRO2. We first consider in detail magnetic properties of blood – magnetic susceptibility, MR relaxation and theoretical models of intravascular contribution to MR signal under different experimental conditions. Then, we describe a “through-space” effect – the influence of inhomogeneous magnetic fields, created in the extravascular space by intravascular deoxygenated blood, on the MR signal formation. Further we describe several experimental techniques taking advantage of these theoretical models. Some of these techniques - MR susceptometry, and T2-based quantification of oxygen OEF – utilize intravascular MR signal. Another technique – qBOLD – evaluates OEF by making use of through-space effects. In this review we targeted both scientists just entering the MR field and more experienced MR researchers

  5. Alterations in rat brain polyphosphoinositide metabolism due to acute ethanol administration.

    PubMed

    Chandrasekhar, R; Huang, H M; Sun, G Y

    1988-04-01

    The effects of acute ethanol administration on the polyphosphoinositide metabolism of rat brain cerebral cortex were examined. Intracerebral injections of [gamma-32P]ATP proved to be an effective in vivo method to prelabel brain phospholipids, especially the polyphosphoinositides. High acute doses of ethanol (8 or 6 g/kg b.wt.) administered by gavage significantly inhibited the breakdown of polyphosphoinositides as judged by an elevation in the concentration as well as the labeling of these compounds. Concomitantly, there was a significant reduction in the level of diacylglycerols. Low acute doses of ethanol (2 g/kg b.wt.) did not seem to have any effects on the basal levels or labeling of these compounds. The changes in polyphosphoinositide labeling due to ethanol intoxication were reverted to near control values when animals regained their righting reflex (approximately 4 hr). These studies demonstrate that, under normal conditions, polyphosphoinositides and diacylglycerols are maintained in a dynamic equilibrium and that acute doses of ethanol can suppress the signal transduction process and disturb this equilibrium. PMID:2834532

  6. Changes in Cerebral Oxidative Metabolism during Neonatal Seizures Following Hypoxic–Ischemic Brain Injury

    PubMed Central

    Mitra, Subhabrata; Bale, Gemma; Mathieson, Sean; Uria-Avellanal, Cristina; Meek, Judith; Tachtsidis, Ilias; Robertson, Nicola J.

    2016-01-01

    Seizures are common following hypoxic–ischemic brain injury in newborn infants. Prolonged or recurrent seizures have been shown to exacerbate neuronal damage in the developing brain; however, the precise mechanism is not fully understood. Cytochrome-c-oxidase is responsible for more than 90% of ATP production inside mitochondria. Using a novel broadband near-infrared spectroscopy system, we measured the concentration changes in the oxidation state of cerebral cytochrome-c-oxidase (Δ[oxCCO]) and hemodynamics during recurrent neonatal seizures following hypoxic–ischemic encephalopathy in a newborn infant. A rapid increase in Δ[oxCCO] was noted at the onset of seizures along with a rise in the baseline of amplitude-integrated electroencephalogram. Cerebral oxygenation and cerebral blood volume fell just prior to the seizure onset but recovered rapidly during seizures. Δ[oxCCO] during seizures correlated with changes in mean electroencephalogram voltage indicating an increase in neuronal activation and energy demand. The progressive decline in the Δ[oxCCO] baseline during seizures suggests a progressive decrease of mitochondrial oxidative metabolism. PMID:27559538

  7. Changes in Cerebral Oxidative Metabolism during Neonatal Seizures Following Hypoxic-Ischemic Brain Injury.

    PubMed

    Mitra, Subhabrata; Bale, Gemma; Mathieson, Sean; Uria-Avellanal, Cristina; Meek, Judith; Tachtsidis, Ilias; Robertson, Nicola J

    2016-01-01

    Seizures are common following hypoxic-ischemic brain injury in newborn infants. Prolonged or recurrent seizures have been shown to exacerbate neuronal damage in the developing brain; however, the precise mechanism is not fully understood. Cytochrome-c-oxidase is responsible for more than 90% of ATP production inside mitochondria. Using a novel broadband near-infrared spectroscopy system, we measured the concentration changes in the oxidation state of cerebral cytochrome-c-oxidase (Δ[oxCCO]) and hemodynamics during recurrent neonatal seizures following hypoxic-ischemic encephalopathy in a newborn infant. A rapid increase in Δ[oxCCO] was noted at the onset of seizures along with a rise in the baseline of amplitude-integrated electroencephalogram. Cerebral oxygenation and cerebral blood volume fell just prior to the seizure onset but recovered rapidly during seizures. Δ[oxCCO] during seizures correlated with changes in mean electroencephalogram voltage indicating an increase in neuronal activation and energy demand. The progressive decline in the Δ[oxCCO] baseline during seizures suggests a progressive decrease of mitochondrial oxidative metabolism. PMID:27559538

  8. Review of transcranial photobiomodulation for major depressive disorder: targeting brain metabolism, inflammation, oxidative stress, and neurogenesis.

    PubMed

    Cassano, Paolo; Petrie, Samuel R; Hamblin, Michael R; Henderson, Theodore A; Iosifescu, Dan V

    2016-07-01

    We examined the use of near-infrared and red radiation (photobiomodulation, PBM) for treating major depressive disorder (MDD). While still experimental, preliminary data on the use of PBM for brain disorders are promising. PBM is low-cost with potential for wide dissemination; further research on PBM is sorely needed. We found clinical and preclinical studies via PubMed search (2015), using the following keywords: "near-infrared radiation," "NIR," "low-level light therapy," "low-level laser therapy," or "LLLT" plus "depression." We chose clinically focused studies and excluded studies involving near-infrared spectroscopy. In addition, we used PubMed to find articles that examine the link between PBM and relevant biological processes including metabolism, inflammation, oxidative stress, and neurogenesis. Studies suggest the processes aforementioned are potentially effective targets for PBM to treat depression. There is also clinical preliminary evidence suggesting the efficacy of PBM in treating MDD, and comorbid anxiety disorders, suicidal ideation, and traumatic brain injury. Based on the data collected to date, PBM appears to be a promising treatment for depression that is safe and well-tolerated. However, large randomized controlled trials are still needed to establish the safety and effectiveness of this new treatment for MDD. PMID:26989758

  9. Homeostatic adaptations in brain energy metabolism in mouse models of Huntington disease

    PubMed Central

    Tkac, Ivan; Henry, Pierre-Gilles; Zacharoff, Lori; Wedel, Michael; Gong, Wuming; Deelchand, Dinesh K; Li, Tongbin; Dubinsky, Janet M

    2012-01-01

    Impairment of energy metabolism is a key feature of Huntington disease (HD). Recently, we reported longitudinal neurochemical changes in R6/2 mice measured by in-vivo proton magnetic resonance spectroscopy (1H MRS; Zacharoff et al, 2012). Here, we present similar 1H MRS measurements at an early stage in the milder Q111 mouse model. In addition, we measured the concentration of ATP and inorganic phosphate (Pi), key energy metabolites not accessible with 1H MRS, using 31P MRS both in Q111 and in R6/2 mice. Significant changes in striatal creatine and phosphocreatine were observed in Q111 mice at 6 weeks relative to control, and these changes were largely reversed at 13 weeks. No significant change was detected in ATP concentration, in either HD mouse, compared with control. Calculated values of [ADP], phosphorylation potential, relative rate of ATP synthase (v/Vmax(ATP)), and relative rate of creatine kinase (v/Vmax(CK)) were calculated from the measured data. ADP concentration and v/Vmax(ATP) were increased in Q111 mice at 6 weeks, and returned close to normal at 13 weeks. In contrast, these parameters were normal in R6/2 mice. These results suggest that early changes in brain energy metabolism are followed by compensatory shifts to maintain energetic homeostasis from early ages through manifest disease. PMID:22805874

  10. Litter Environment Affects Behavior and Brain Metabolic Activity of Adult Knockout Mice

    PubMed Central

    Crews, David; Rushworth, David; Gonzalez-Lima, Francisco; Ogawa, Sonoko

    2009-01-01

    In mammals, the formative environment for social and anxiety-related behaviors is the family unit; in the case of rodents, this is the litter and the mother-young bond. A deciding factor in this environment is the sex ratio of the litter and, in the case of mice lacking functional copies of gene(s), the ratio of the various genotypes in the litter. Both Sex and Genotype ratios of the litter affect the nature and quality of the individual's behavior later in adulthood, as well as metabolic activity in brain nuclei that underlie these behaviors. Mice were raised in litters reconstituted shortly after to birth to control for sex ratio and genotype ratio (wild type pups versus pups lacking a functional estrogen receptor α). In both males and females, the Sex and Genotype of siblings in the litter affected aggressive behaviors as well as patterns of metabolic activity in limbic nuclei in the social behavior network later in adulthood. Further, this pattern in males varied depending upon the Genotype of their brothers and sisters. Principal Components Analysis revealed two components comprised of several amygdalar and hypothalamic nuclei; the VMH showed strong correlations in both clusters, suggesting its pivotal nature in the organization of two neural networks. PMID:19707539

  11. Metabolic Profiling and Quantification of Neurotransmitters in Mouse Brain by Gas Chromatography-Mass Spectrometry.

    PubMed

    Jäger, Christian; Hiller, Karsten; Buttini, Manuel

    2016-01-01

    Metabolites are key mediators of cellular functions, and have emerged as important modulators in a variety of diseases. Recent developments in translational biomedicine have highlighted the importance of not looking at just one disease marker or disease inducing molecule, but at populations thereof to gain a global understanding of cellular function in health and disease. The goal of metabolomics is the systematic identification and quantification of metabolite populations. One of the most pressing issues of our times is the understanding of normal and diseased nervous tissue functions. To ensure high quality data, proper sample processing is crucial. Here, we present a method for the extraction of metabolites from brain tissue, their subsequent preparation for non-targeted gas chromatography-mass spectrometry (GC-MS) measurement, as well as giving some guidelines for processing of raw data. In addition, we present a sensitive screening method for neurotransmitters based on GC-MS in selected ion monitoring mode. The precise multi-analyte detection and quantification of amino acid and monoamine neurotransmitters can be used for further studies such as metabolic modeling. Our protocol can be applied to shed light on nervous tissue function in health, as well as neurodegenerative disease mechanisms and the effect of experimental therapeutics at the metabolic level. © 2016 by John Wiley & Sons, Inc. PMID:27584556

  12. What Metabolic Syndrome Contributes to Brain Outcomes in African American & Caucasian Cohorts.

    PubMed

    Lamar, Melissa; Rubin, Leah H; Ajilore, Olusola; Charlton, Rebecca; Zhang, Aifeng; Yang, Shaolin; Cohen, Jamie; Kumar, Anand

    2015-01-01

    Metabolic syndrome (MetS), i.e., meeting criteria for any three of the following: hyperglycemia, hypertension, hypertriglyceridemia, low high-density lipoprotein and/or abdominal obesity, is associated with negative health outcomes. For example, MetS negatively impacts cognition; however, less is known about incremental MetS risk, i.e., meeting 1 or 2 as opposed to 3 or more criteria. We hypothesized incremental MetS risk would negatively contribute to cognition and relevant neuroanatomy, e.g., memory and hippocampal volumes, and that this risk extends to affective functioning. 119 non-demented/non-depressed participants (age=60.1+12.9;~50% African American) grouped by incremental MetS risk-no (0 criteria met), low (1-2 criteria met), or high (3+ criteria met)-were compared across cognition, affect and relevant neuroanatomy using multivariable linear regressions. Exploratory analyses, stratified by race, consider the role of health disparities in disease severity of individual MetS component (e.g., actual blood pressure readings) on significant results from primary analyses. Incremental MetS risk contributed to depressive symptomatology (nolow=high) after controlling for age, race (n.s.) and IQ. Different indices of disease severity contributed to different aspects of brain structure and function by race providing empirical support for future studies of the impact distinct health disparities in vascular risk have on brain aging. MetS compromised mood, cognition and hippocampal structure with incremental risk applying to some but not all of these outcomes. Care providers may wish to monitor a broader spectrum of risk including components of MetS like blood pressure and cholesterol levels when considering brain-behavior relationships in adults from diverse populations. PMID:26239040

  13. Neurophysiological activity underlying altered brain metabolism in epileptic encephalopathies with CSWS.

    PubMed

    De Tiège, Xavier; Trotta, Nicola; Op de Beeck, Marc; Bourguignon, Mathieu; Marty, Brice; Wens, Vincent; Nonclercq, Antoine; Goldman, Serge; Van Bogaert, Patrick

    2013-08-01

    We investigated the neurophysiological correlate of altered regional cerebral glucose metabolism observed in children with epileptic encephalopathy with continuous spike-waves during sleep (CSWS) by using a multimodal approach combining time-sensitive magnetic source imaging (MSI) and positron emission tomography with [(18)F]-fluorodeoxyglucose (FDG-PET). Six patients (4 boys and 2 girls, age range: 4-8 years, 3 patients with Landau-Kleffner syndrome (LKS), 3 patients with atypical rolandic epilepsy (ARE)) were investigated by FDG-PET and MSI at the acute phase of CSWS. In all patients, the onset(s) of spike-waves discharges were associated with significant focal hypermetabolism. The propagation of epileptic discharges to other brain areas was associated with focal hypermetabolism (five patients), hypometabolism (one patient) or the absence of any significant metabolic change (one patient). Interestingly, most of the hypometabolic areas were not involved in the epileptic network per se. This study shows that focal hypermetabolism observed at the acute phase of CSWS are related to the onset or propagation sites of spike-wave discharges. Spike-wave discharges propagation can be associated to other types of metabolic changes, suggesting the occurrence of various neurophysiological mechanisms at the cellular level. Most of the hypometabolic areas are not involved in the epileptic network as such and are probably related to a mechanism of remote inhibition. These findings highlight the critical value of combining FDG-PET with time-sensitive functional neuroimaging approaches such as MSI to assess CSWS epileptic network when surgery is considered as a therapeutic approach. PMID:23561286

  14. A New Functional MRI Approach for Investigating Modulations of Brain Oxygen Metabolism.

    PubMed

    Griffeth, Valerie E M; Blockley, Nicholas P; Simon, Aaron B; Buxton, Richard B

    2013-01-01

    Functional MRI (fMRI) using the blood oxygenation level dependent (BOLD) signal is a common technique in the study of brain function. The BOLD signal is sensitive to the complex interaction of physiological changes including cerebral blood flow (CBF), cerebral blood volume (CBV), and cerebral oxygen metabolism (CMRO2). A primary goal of quantitative fMRI methods is to combine BOLD imaging with other measurements (such as CBF measured with arterial spin labeling) to derive information about CMRO2. This requires an accurate mathematical model to relate the BOLD signal to the physiological and hemodynamic changes; the most commonly used of these is the Davis model. Here, we propose a new nonlinear model that is straightforward and shows heuristic value in clearly relating the BOLD signal to blood flow, blood volume and the blood flow-oxygen metabolism coupling ratio. The model was tested for accuracy against a more detailed model adapted for magnetic fields of 1.5, 3 and 7T. The mathematical form of the heuristic model suggests a new ratio method for comparing combined BOLD and CBF data from two different stimulus responses to determine whether CBF and CMRO2 coupling differs. The method does not require a calibration experiment or knowledge of parameter values as long as the exponential parameter describing the CBF-CBV relationship remains constant between stimuli. The method was found to work well for 1.5 and 3T but is prone to systematic error at 7T. If more specific information regarding changes in CMRO2 is required, then with accuracy similar to that of the Davis model, the heuristic model can be applied to calibrated BOLD data at 1.5T, 3T and 7T. Both models work well over a reasonable range of blood flow and oxygen metabolism changes but are less accurate when applied to a simulated caffeine experiment in which CBF decreases and CMRO2 increases. PMID:23826367

  15. Astrocyte sodium signaling and neuro-metabolic coupling in the brain.

    PubMed

    Rose, C R; Chatton, J-Y

    2016-05-26

    At tripartite synapses, astrocytes undergo calcium signaling in response to release of neurotransmitters and this calcium signaling has been proposed to play a critical role in neuron-glia interaction. Recent work has now firmly established that, in addition, neuronal activity also evokes sodium transients in astrocytes, which can be local or global depending on the number of activated synapses and the duration of activity. Furthermore, astrocyte sodium signals can be transmitted to adjacent cells through gap junctions and following release of gliotransmitters. A main pathway for activity-related sodium influx into astrocytes is via high-affinity sodium-dependent glutamate transporters. Astrocyte sodium signals differ in many respects from the well-described glial calcium signals both in terms of their temporal as well as spatial distribution. There are no known buffering systems for sodium ions, nor is there store-mediated release of sodium. Sodium signals thus seem to represent rather direct and unbiased indicators of the site and strength of neuronal inputs. As such they have an immediate influence on the activity of sodium-dependent transporters which may even reverse in response to sodium signaling, as has been shown for GABA transporters for example. Furthermore, recovery from sodium transients through Na(+)/K(+)-ATPase requires a measurable amount of ATP, resulting in an activation of glial metabolism. In this review, we present basic principles of sodium regulation and the current state of knowledge concerning the occurrence and properties of activity-related sodium transients in astrocytes. We then discuss different aspects of the relationship between sodium changes in astrocytes and neuro-metabolic coupling, putting forward the idea that indeed sodium might serve as a new type of intracellular ion signal playing an important role in neuron-glia interaction and neuro-metabolic coupling in the healthy and diseased brain. PMID:25791228

  16. Purine inhibitors of protein kinases, G proteins and polymerases

    DOEpatents

    Gray, Nathanael S.; Schultz, Peter; Kim, Sung-Hou; Meijer, Laurent

    2001-07-03

    The present invention relates to purine analogs that inhibit, inter alia, protein kinases, G-proteins and polymerases. In addition, the present invention relates to methods of using such purine analogs to inhibit protein kinases, G-proteins, polymerases and other cellular processes and to treat cellular proliferative diseases.

  17. Toxic synergism between quinolinic acid and organic acids accumulating in glutaric acidemia type I and in disorders of propionate metabolism in rat brain synaptosomes: Relevance for metabolic acidemias.

    PubMed

    Colín-González, A L; Paz-Loyola, A L; Serratos, I; Seminotti, B; Ribeiro, C A J; Leipnitz, G; Souza, D O; Wajner, M; Santamaría, A

    2015-11-12

    The brain of children affected by organic acidemias develop acute neurodegeneration linked to accumulation of endogenous toxic metabolites like glutaric (GA), 3-hydroxyglutaric (3-OHGA), methylmalonic (MMA) and propionic (PA) acids. Excitotoxic and oxidative events are involved in the toxic patterns elicited by these organic acids, although their single actions cannot explain the extent of brain damage observed in organic acidemias. The characterization of co-adjuvant factors involved in the magnification of early toxic processes evoked by these metabolites is essential to infer their actions in the human brain. Alterations in the kynurenine pathway (KP) - a metabolic route devoted to degrade tryptophan to form NAD(+) - produce increased levels of the excitotoxic metabolite quinolinic acid (QUIN), which has been involved in neurodegenerative disorders. Herein we investigated the effects of subtoxic concentrations of GA, 3-OHGA, MMA and PA, either alone or in combination with QUIN, on early toxic endpoints in rat brain synaptosomes. To establish specific mechanisms, we pre-incubated synaptosomes with different protective agents, including the endogenous N-methyl-d-aspartate (NMDA) receptor antagonist kynurenic acid (KA), the antioxidant S-allylcysteine (SAC) and the nitric oxide synthase (NOS) inhibitor nitro-l-arginine methyl ester (l-NAME). While the incubation of synaptosomes with toxic metabolites at subtoxic concentrations produced no effects, their co-incubation (QUIN+GA, +3-OHGA, +MMA or +PA) decreased the mitochondrial function and increased reactive oxygen species (ROS) formation and lipid peroxidation. For all cases, this effect was partially prevented by KA and l-NAME, and completely avoided by SAC. These findings suggest that early damaging events elicited by organic acids involved in metabolic acidemias can be magnified by toxic synergism with QUIN, and this process is mostly mediated by oxidative stress, and in a lesser extent by excitotoxicity and

  18. Transient postnatal fluoxetine leads to decreased brain arachidonic acid metabolism and cytochrome P450 4A in adult mice

    PubMed Central

    Ramadan, Epolia; Blanchard, Helene; Cheon, Yewon; Fox, Meredith A.; Chang, Lisa; Chen, Mei; Ma, Kaizong; Rapoport, Stanley I.; Basselin, Mireille

    2014-01-01

    Fetal and perinatal exposure to selective serotonin (5-HT) reuptake inhibitors (SSRIs) has been reported to alter childhood behavior, while transient early exposure in rodents is reported to alter their behavior and decrease brain extracellular 5-HT in adulthood. Since 5-HT2A/2C receptor-mediated neurotransmission can involve G-protein coupled activation of cytosolic phospholipase A2 (cPLA2), releasing arachidonic acid (ARA) from synaptic membrane phospholipid, we hypothesized that transient postnatal exposure to fluoxetine would decrease brain ARA metabolism in adult mice. Brain ARA incorporation coefficients k* and rates Jin were quantitatively imaged following intravenous [1-14C]ARA infusion of unanesthetized adult mice that had been injected daily with fluoxetine (10 mg/kg i.p.) or saline during postnatal days P4–P21. Expression of brain ARA metabolic enzymes and other relevant markers also was measured. On neuroimaging, k* and Jin was decreased widely in early fluoxetine- compared to saline-treated adult mice. Of the enzymes measured, cPLA2 activity was unchanged, while Ca2+-independent iPLA2 activity was increased. There was a significant 74% reduced protein level of cytochrome P450 (CYP) 4A, which can convert ARA to 20-HETE. Reduced brain ARA metabolism in adult mice transiently exposed to postnatal fluoxetine, and a 74% reduction in CYP4A protein, suggest long-term effects independent of drug presence in brain ARA metabolism, and in CYP4A metabolites. Comparable changes in humans might contribute to reported altered behavior following early SSRI. PMID:24529827

  19. Imaging decreased brain docosahexaenoic acid metabolism and signaling in iPLA(2)β (VIA)-deficient mice.

    PubMed

    Basselin, Mireille; Rosa, Angelo O; Ramadan, Epolia; Cheon, Yewon; Chang, Lisa; Chen, Mei; Greenstein, Deanna; Wohltmann, Mary; Turk, John; Rapoport, Stanley I

    2010-11-01

    Ca(2+)-independent phospholipase A(2)β (iPLA(2)β) selectively hydrolyzes docosahexaenoic acid (DHA, 22:6n-3) in vitro from phospholipid. Mutations in the PLA2G6 gene encoding this enzyme occur in patients with idiopathic neurodegeneration plus brain iron accumulation and dystonia-parkinsonism without iron accumulation, whereas mice lacking PLA2G6 show neurological dysfunction and neuropathology after 13 months. We hypothesized that brain DHA metabolism and signaling would be reduced in 4-month-old iPLA(2)β-deficient mice without overt neuropathology. Saline or the cholinergic muscarinic M(1,3,5) receptor agonist arecoline (30 mg/kg) was administered to unanesthetized iPLA(2)β(-/-), iPLA(2)β(+/-), and iPLA(2)β(+/+) mice, and [1-(14)C]DHA was infused intravenously. DHA incorporation coefficients k* and rates J(in), representing DHA metabolism, were determined using quantitative autoradiography in 81 brain regions. iPLA(2)β(-/-) or iPLA(2)β(+/-) compared with iPLA(2)β(+/+) mice showed widespread and significant baseline reductions in k* and J(in) for DHA. Arecoline increased both parameters in brain regions of iPLA(2)β(+/+) mice but quantitatively less so in iPLA(2)β(-/-) and iPLA(2)β(+/-) mice. Consistent with iPLA(2)β's reported ability to selectively hydrolyze DHA from phospholipid in vitro, iPLA(2)β deficiency reduces brain DHA metabolism and signaling in vivo at baseline and following M(1,3,5) receptor activation. Positron emission tomography might be used to image disturbed brain DHA metabolism in patients with PLA2G6 mutations. PMID:20686114

  20. Experimental Periodontitis Results in Prediabetes and Metabolic Alterations in Brain, Liver and Heart: Global Untargeted Metabolomic Analyses

    PubMed Central

    Ilievski, Vladimir; Kinchen, Jason M; Prabhu, Ramya; Rim, Fadi; Leoni, Lara; Unterman, Terry G.; Watanabe, Keiko

    2016-01-01

    Results from epidemiological studies suggest that there is an association between periodontitis and prediabetes, however, causality is not known. The results from our previous studies suggest that induction of periodontitis leads to hyperinsulinemia glucose intolerance and insulin resistance, all hallmarks of prediabetes. However, global effects of periodontitis on critical organs in terms of metabolic alterations are unknown. We determined the metabolic effects of periodontitis on brain, liver, heart and plasma resulting from Porphyromonas gingivalis induced periodontitis in mice. Periodontitis was induced by oral application of the periodontal pathogen, Porphyromonas gingivalis for 22 weeks. Global untargeted biochemical profiles in samples from these organs/plasma were determined by liquid and gas chromatography/mass spectrometry and compared between controls and animals with periodontitis. Oral application of Porphyromonas gingivalis induced chronic periodontitis and hallmarks of prediabetes. The results of sample analyses indicated a number of changes in metabolic readouts, including changes in metabolites related to glucose and arginine metabolism, inflammation and redox homeostasis. Changes in biochemicals suggested subtle systemic effects related to periodontal disease, with increases in markers of inflammation and oxidative stress most prominent in the liver. Signs of changes in redox homeostasis were also seen in the brain and heart. Elevated bile acids in liver were suggestive of increased biosynthesis, which may reflect changes in liver function. Interestingly, signs of decreasing glucose availability were seen in the brain. In all three organs and plasma, there was a significant increase in the microbiome-derived bioactive metabolite 4-ethylphenylsulfate sulfate in animals with periodontitis. The results of metabolic profiling suggest that periodontitis/bacterial products alter metabolomic signatures of brain, heart, liver, and plasma in the

  1. Altered metabolic activity in the developing brain of rats predisposed to high versus low depression-like behavior.

    PubMed

    McCoy, C R; Golf, S R; Melendez-Ferro, M; Perez-Costas, E; Glover, M E; Jackson, N L; Stringfellow, S A; Pugh, P C; Fant, A D; Clinton, S M

    2016-06-01

    Individual differences in human temperament can increase the risk of psychiatric disorders like depression and anxiety. Our laboratory utilized a rat model of temperamental differences to assess neurodevelopmental factors underlying emotional behavior differences. Rats selectively bred for low novelty exploration (Low Responders, LR) display high levels of anxiety- and depression-like behavior compared to High Novelty Responder (HR) rats. Using transcriptome profiling, the present study uncovered vast gene expression differences in the early postnatal HR versus LR limbic brain, including changes in genes involved in cellular metabolism. These data led us to hypothesize that rats prone to high (versus low) anxiety/depression-like behavior exhibit distinct patterns of brain metabolism during the first weeks of life, which may reflect disparate patterns of synaptogenesis and brain circuit development. Thus, in a second experiment we examined activity of cytochrome C oxidase (COX), an enzyme responsible for ATP production and a correlate of metabolic activity, to explore functional energetic differences in the HR/LR early postnatal brain. We found that HR rats display higher COX activity in the amygdala and specific hippocampal subregions compared to LRs during the first 2 weeks of life. Correlational analysis examining COX levels across several brain regions and multiple early postnatal time points suggested desynchronization in the developmental timeline of the limbic HR versus LR brain during the first two postnatal weeks. These early divergent COX activity levels may reflect altered circuitry or synaptic activity in the early postnatal HR/LR brain, which could contribute to the emergence of their distinct behavioral phenotypes. PMID:26979051

  2. Identification of elevated urea as a severe, ubiquitous metabolic defect in the brain of patients with Huntington's disease.

    PubMed

    Patassini, Stefano; Begley, Paul; Reid, Suzanne J; Xu, Jingshu; Church, Stephanie J; Curtis, Maurice; Dragunow, Mike; Waldvogel, Henry J; Unwin, Richard D; Snell, Russell G; Faull, Richard L M; Cooper, Garth J S

    Huntington's disease (HD) is a neurodegenerative disorder wherein the aetiological defect is a mutation in the Huntington's gene (HTT), which alters the structure of the huntingtin protein through the lengthening of a polyglutamine tract and initiates a cascade that ultimately leads to dementia and premature death. However, neurodegeneration typically manifests in HD only in middle age, and processes linking the causative mutation to brain disease are poorly understood. Here, our objective was to elucidate further the processes that cause neurodegeneration in HD, by measuring levels of metabolites in brain regions known to undergo varying degrees of damage. We applied gas-chromatography/mass spectrometry-based metabolomics in a case-control study of eleven brain regions in short post-mortem-delay human tissue from nine well-characterized HD patients and nine controls. Unexpectedly, a single major abnormality was evident in all eleven brain regions studied across the forebrain, midbrain and hindbrain, namely marked elevation of urea, a metabolite formed in the urea cycle by arginase-mediated cleavage of arginine. Urea cycle activity localizes primarily in the liver, where it functions to incorporate protein-derived amine-nitrogen into urea for recycling or urinary excretion. It also occurs in other cell-types, but systemic over-production of urea is not known in HD. These findings are consistent with impaired local urea regulation in brain, by up-regulation of synthesis and/or defective clearance. We hypothesize that defective brain urea metabolism could play a substantive role in the pathogenesis of neurodegeneration, perhaps via defects in osmoregulation or nitrogen metabolism. Brain urea metabolism is therefore a target for generating novel monitoring/imaging strategies and/or therapeutic interventions aimed at ameliorating the impact of HD in patients. PMID:26522227

  3. Abnormal Brain Iron Metabolism in Irp2 Deficient Mice Is Associated with Mild Neurological and Behavioral Impairments

    PubMed Central

    Zumbrennen-Bullough, Kimberly B.; Becker, Lore; Garrett, Lillian; Hölter, Sabine M.; Calzada-Wack, Julia; Mossbrugger, Ilona; Quintanilla-Fend, Leticia; Racz, Ildiko; Rathkolb, Birgit; Klopstock, Thomas; Wurst, Wolfgang; Zimmer, Andreas; Wolf, Eckhard; Fuchs, Helmut; Gailus-Durner, Valerie; de Angelis, Martin Hrabě; Romney, Steven J.; Leibold, Elizabeth A.

    2014-01-01

    Iron Regulatory Protein 2 (Irp2, Ireb2) is a central regulator of cellular iron homeostasis in vertebrates. Two global knockout mouse models have been generated to explore the role of Irp2 in regulating iron metabolism. While both mouse models show that loss of Irp2 results in microcytic anemia and altered body iron distribution, discrepant results have drawn into question the role of Irp2 in regulating brain iron metabolism. One model shows that aged Irp2 deficient mice develop adult-onset progressive neurodegeneration that is associated with axonal degeneration and loss of Purkinje cells in the central nervous system. These mice show iron deposition in white matter tracts and oligodendrocyte soma throughout the brain. A contrasting model of global Irp2 deficiency shows no overt or pathological signs of neurodegeneration or brain iron accumulation, and display only mild motor coordination and balance deficits when challenged by specific tests. Explanations for conflicting findings in the severity of the clinical phenotype, brain iron accumulation and neuronal degeneration remain unclear. Here, we describe an additional mouse model of global Irp2 deficiency. Our aged Irp2−/− mice show marked iron deposition in white matter and in oligodendrocytes while iron content is significantly reduced in neurons. Ferritin and transferrin receptor 1 (TfR1, Tfrc), expression are increased and decreased, respectively, in the brain from Irp2−/− mice. These mice show impairments in locomotion, exploration, motor coordination/balance and nociception when assessed by neurological and behavioral tests, but lack overt signs of neurodegenerative disease. Ultrastructural studies of specific brain regions show no evidence of neurodegeneration. Our data suggest that Irp2 deficiency dysregulates brain iron metabolism causing cellular dysfunction that ultimately leads to mild neurological, behavioral and nociceptive impairments. PMID:24896637

  4. The effect of education on regional brain metabolism and its functional connectivity in an aged population utilizing positron emission tomography.

    PubMed

    Kim, Jaeik; Chey, Jeanyung; Kim, Sang-Eun; Kim, Hoyoung

    2015-05-01

    Education involves learning new information and acquiring cognitive skills. These require various cognitive processes including learning, memory, and language. Since cognitive processes activate associated brain areas, we proposed that the brains of elderly people with longer education periods would show traces of repeated activation as increased synaptic connectivity and capillary in brain areas involved in learning, memory, and language. Utilizing positron emission topography (PET), this study examined the effect of education in the human brain utilizing the regional cerebral glucose metabolism rates (rCMRglcs). 26 elderly women with high-level education (HEG) and 26 with low-level education (LEG) were compared with regard to their regional brain activation and association between the regions. Further, graphical theoretical analysis using rCMRglcs was applied to examine differences in the functional network properties of the brain. The results showed that the HEG had higher rCMRglc in the ventral cerebral regions that are mainly involved in memory, language, and neurogenesis, while the LEG had higher rCMRglc in apical areas of the cerebrum mainly involved in motor and somatosensory functions. Functional connectivity investigated with graph theoretical analysis illustrated that the brain of the HEG compared to those of the LEG were overall more efficient, more resilient, and characterized by small-worldness. This may be one of the brain's mechanisms mediating the reserve effects found in people with higher education. PMID:25557900

  5. The association of the kynurenine pathway of tryptophan metabolism with acute brain dysfunction during critical illness*

    PubMed Central

    Adams Wilson, Jessica R.; Morandi, Alessandro; Girard, Timothy D.; Thompson, Jennifer L.; Boomershine, Chad S.; Shintani, Ayumi K.; Ely, E. Wesley; Pandharipande, Pratik P.

    2013-01-01

    Objectives Plasma tryptophan levels are associated with delirium in critically ill patients. Although tryptophan has been linked to the pathogenesis of other neurocognitive diseases through metabolism to neurotoxins via the kynurenine pathway, a role for kynurenine pathway activity in intensive care unit brain dysfunction (delirium and coma) remains unknown. This study examined the association between kynurenine pathway activity as determined by plasma kynurenine concentrations and kynurenine/tryptophan ratios and presence or absence of acute brain dysfunction (defined as delirium/coma-free days) in intensive care unit patients. Design, Setting, and Patients This was a prospective cohort study that utilized patient data and blood samples from the Maximizing Efficacy of Targeted Sedation and Reducing Neurologic Dysfunction trial, which compared sedation with dexmedetomidine vs. lorazepam in mechanically ventilated patients. Measurements and Main Results Baseline plasma kynurenine and tryptophan concentrations were measured using high-performance liquid chromatography with or without tandem mass spectrometry. Delirium was assessed daily using the Confusion Assessment Method for the Intensive Care Unit. Linear regression examined associations between kynurenine pathway activity and delirium/coma-free days after adjusting for sedative exposure, age, and severity of illness. Among 84 patients studied, median age was 60 yrs and Acute Physiology and Chronic Health Evaluation II score was 28.5. Elevated plasma kynurenine and kynurenine/tryptophan ratio were both independently associated with significantly fewer delirium/coma-free days (i.e., fewer days without acute brain dysfunction). Specifically, patients with plasma kynurenine or kynurenine/tryptophan ratios at the 75th percentile of our population had an average of 1.8 (95% confidence interval 0.6–3.1) and 2.1 (95% confidence interval 1.0–3.2) fewer delirium/coma-free days than those patients with values at the 25

  6. 2-Methylcitric acid impairs glutamate metabolism and induces permeability transition in brain mitochondria.

    PubMed

    Amaral, Alexandre Umpierrez; Cecatto, Cristiane; Castilho, Roger Frigério; Wajner, Moacir

    2016-04-01

    Accumulation of 2-methylcitric acid (2MCA) is observed in methylmalonic and propionic acidemias, which are clinically characterized by severe neurological symptoms. The exact pathogenetic mechanisms of brain abnormalities in these diseases are poorly established and very little has been reported on the role of 2MCA. In the present work we found that 2MCA markedly inhibited ADP-stimulated and uncoupled respiration in mitochondria supported by glutamate, with a less significant inhibition in pyruvate plus malate respiring mitochondria. However, no alterations occurred when α-ketoglutarate or succinate was used as respiratory substrates, suggesting a defect on glutamate oxidative metabolism. It was also observed that 2MCA decreased ATP formation in glutamate plus malate or pyruvate plus malate-supported mitochondria. Furthermore, 2MCA inhibited glutamate dehydrogenase activity at concentrations as low as 0.5 mM. Kinetic studies revealed that this inhibitory effect was competitive in relation to glutamate. In contrast, assays of osmotic swelling in non-respiring mitochondria suggested that 2MCA did not significantly impair mitochondrial glutamate transport. Finally, 2MCA provoked a significant decrease in mitochondrial membrane potential and induced swelling in Ca(2+)-loaded mitochondria supported by different substrates. These effects were totally prevented by cyclosporine A plus ADP or ruthenium red, indicating induction of mitochondrial permeability transition. Taken together, our data strongly indicate that 2MCA behaves as a potent inhibitor of glutamate oxidation by inhibiting glutamate dehydrogenase activity and as a permeability transition inducer, disturbing mitochondrial energy homeostasis. We presume that 2MCA-induced mitochondrial deleterious effects may contribute to the pathogenesis of brain damage in patients affected by methylmalonic and propionic acidemias. We propose that brain glutamate oxidation is disturbed by 2-methylcitric acid (2MCA), which

  7. Regional cerebral metabolic patterns demonstrate the role of anterior forebrain mesocircuit dysfunction in the severely injured brain

    PubMed Central

    Fridman, Esteban A.; Beattie, Bradley J.; Broft, Allegra; Laureys, Steven; Schiff, Nicholas D.

    2014-01-01

    Although disorders of consciousness (DOCs) demonstrate widely varying clinical presentations and patterns of structural injury, global down-regulation and bilateral reductions in metabolism of the thalamus and frontoparietal network are consistent findings. We test the hypothesis that global reductions of background synaptic activity in DOCs will associate with changes in the pattern of metabolic activity in the central thalamus and globus pallidus. We compared 32 [18F]fluorodeoxyglucose PETs obtained from severely brain-injured patients (BIs) and 10 normal volunteers (NVs). We defined components of the anterior forebrain mesocircuit on high-resolution T1-MRI (ventral, associative, and sensorimotor striatum; globus pallidus; central thalamus and noncentral thalamus). Metabolic profiles for BI and NV demonstrated distinct changes in the pattern of uptake: ventral and association striatum (but not sensorimotor) were significantly reduced relative to global mean uptake after BI; a relative increase in globus pallidus metabolism was evident in BI subjects who also showed a relative reduction of metabolism in the central thalamus. The reversal of globus pallidus and central thalamus profiles across BIs and NVs supports the mesocircuit hypothesis that broad functional (or anatomic) deafferentation may combine to reduce central thalamus activity and release globus pallidus activity in DOCs. In addition, BI subjects showed broad frontoparietal metabolic down-regulation consistent with prior studies supporting the link between central thalamic/pallidal metabolism and down-regulation of the frontoparietal network. Recovery of left hemisphere frontoparietal metabolic activity was further associated with command following. PMID:24733913

  8. Regional cerebral metabolic patterns demonstrate the role of anterior forebrain mesocircuit dysfunction in the severely injured brain.

    PubMed

    Fridman, Esteban A; Beattie, Bradley J; Broft, Allegra; Laureys, Steven; Schiff, Nicholas D

    2014-04-29

    Although disorders of consciousness (DOCs) demonstrate widely varying clinical presentations and patterns of structural injury, global down-regulation and bilateral reductions in metabolism of the thalamus and frontoparietal network are consistent findings. We test the hypothesis that global reductions of background synaptic activity in DOCs will associate with changes in the pattern of metabolic activity in the central thalamus and globus pallidus. We compared 32 [(18)F]fluorodeoxyglucose PETs obtained from severely brain-injured patients (BIs) and 10 normal volunteers (NVs). We defined components of the anterior forebrain mesocircuit on high-resolution T1-MRI (ventral, associative, and sensorimotor striatum; globus pallidus; central thalamus and noncentral thalamus). Metabolic profiles for BI and NV demonstrated distinct changes in the pattern of uptake: ventral and association striatum (but not sensorimotor) were significantly reduced relative to global mean uptake after BI; a relative increase in globus pallidus metabolism was evident in BI subjects who also showed a relative reduction of metabolism in the central thalamus. The reversal of globus pallidus and central thalamus profiles across BIs and NVs supports the mesocircuit hypothesis that broad functional (or anatomic) deafferentation may combine to reduce central thalamus activity and release globus pallidus activity in DOCs. In addition, BI subjects showed broad frontoparietal metabolic down-regulation consistent with prior studies supporting the link between central thalamic/pallidal metabolism and down-regulation of the frontoparietal network. Recovery of left hemisphere frontoparietal metabolic activity was further associated with command following. PMID:24733913

  9. Purine biosynthetic genes are required for cadmium tolerance in Schizosaccharomyces pombe

    SciTech Connect

    Speiser, D.M.; Ortiz, D.F.; Kreppel, L.; Scheel, G.; McDonald, G.; Ow, D.W. Univ. of California, Berkeley )

    1992-12-01

    Phytochelatins (PCs) are metal-chelating peptides produced in plants and some fungi in response to heavy metal exposure. A Cd-sensitive mutant of the fission yeast Schizosaccharomyces pombe, defective in production of a PC-Cd-sulfide complex essential for metal tolerance, was found to harbor mutations in specific genes of the purine biosynthetic pathway. Genetic analysis of the link between metal complex accumulation and purine biosynthesis enzymes revealed that genetic lesions blocking two segments of the pathway, before and after the IMP branchpoint, are required to produce the Cd-sensitive phenotype. The biochemical functions of these two segments of the pathway are similar, and a model based on the alternate use of a sulfur analog substrate is presented. The novel participation of purine biosynthesis enzymes in the conversion of the PC-Cd complex to the PC-Cd-sulfide complex in the fission yeast raises an intriguing possibility that these same enzymes might have a role in sulfur metabolism in the fission yeast S. pombe, and perhaps in other biological systems. 41 refs., 8 figs., 2 tabs.

  10. Mutations in the Chinese hamster ovary cell GART gene of de novo purine synthesis

    PubMed Central

    Knox, Aaron J.; Graham, Christine; Bleskan, John; Brodsky, Gary; Patterson, David

    2009-01-01

    Mutations in several steps of de novo purine synthesis lead to human inborn errors of metabolism often characterized by mental retardation, hypotonia, sensorineural hearing loss, optic atrophy, and other features. In animals, the phosphoribosylglycinamide transformylase (GART) gene encodes a trifunctional protein carrying out 3 steps of de novo purine synthesis, phosphoribosylglycinamide synthase (GARS), phosphoribosylglycinamide transformylase (also abbreviated as GART), and phosphoribosylaminoimidazole synthetase (AIRS) and a smaller protein that contains only the GARS domain of GART as a functional protein. The GART gene is located on human chromosome 21 and is aberrantly regulated and overexpressed in individuals with Down syndrome (DS), and may be involved in the phenotype of DS. The GART activity of GART requires 10-formyltetrahydrofolate and has been a target for anti-cancer drugs. Thus, a considerable amount of information is available about GART, while less is known about the GARS and AIRS domains. Here we demonstrate that the amino acid residue glu75 is essential for the activity of the GARS enzyme and that the gly684 residue is essential for the activity of the AIRS enzyme by analysis of mutations in the Chinese hamster ovary (CHO-K1) cell that require purines for growth. We report the effects of these mutations on mRNA and protein content for GART and GARS. Further, we discuss the likely mechanisms by which mutations inactivating the GART protein might arise in CHO-K1 cells. PMID:19007868

  11. Evidence for incorporation of intact dietary pyrimidine (but not purine) nucleosides into hepatic RNA.

    PubMed Central

    Berthold, H K; Crain, P F; Gouni, I; Reeds, P J; Klein, P D

    1995-01-01

    The absorption and metabolism of dietary nucleic acids have received less attention than those of other organic nutrients, largely because of methodological difficulties. We supplemented the rations of poultry and mice with the edible alga Spirulina platensis, which had been uniformly labeled with 13C by hydroponic culture in 13CO2. The rations were ingested by a hen for 4 wk and by four mice for 6 days; two mice were fed a normal diet and two were fed a nucleic acid-deficient diet. The animals were killed and nucleosides were isolated from hepatic RNA. The isotopic enrichment of all mass isotopomers of the nucleosides was analyzed by selected ion monitoring of the negative chemical ionization mass spectrum and the labeling pattern was deconvoluted by reference to the enrichment pattern of the tracer material. We found a distinct difference in the 13C enrichment pattern between pyrimidine and purine nucleosides; the isotopic enrichment of uniformly labeled [M + 9] isotopomers of pyrimidines exceeded that of purines [M + 10] by > 2 orders of magnitude in the avian nucleic acids and by 7- and 14-fold in the murine nucleic acids. The purines were more enriched in lower mass isotopomers, those less than [M + 3], than the pyrimidines. Our results suggest that large quantities of dietary pyrimidine nucleosides and almost no dietary purine nucleosides are incorporated into hepatic nucleic acids without hydrolytic removal of the ribose moiety. In addition, our results support a potential nutritional role for nucleosides and suggest that pyrimidines are conditionally essential organic nutrients. PMID:7479738

  12. Prolonged fasting increases purine recycling in post-weaned northern elephant seals

    PubMed Central

    Soñanez-Organis, José Guadalupe; Vázquez-Medina, José Pablo; Zenteno-Savín, Tania; Aguilar, Andres; Crocker, Daniel E.; Ortiz, Rudy M.

    2012-01-01

    SUMMARY Northern elephant seals are naturally adapted to prolonged periods (1–2 months) of absolute food and water deprivation (fasting). In terrestrial mammals, food deprivation stimulates ATP degradation and decreases ATP synthesis, resulting in the accumulation of purines (ATP degradation byproducts). Hypoxanthine-guanine phosphoribosyl transferase (HGPRT) salvages ATP by recycling the purine degradation products derived from xanthine oxidase (XO) metabolism, which also promotes oxidant production. The contributions of HGPRT to purine recycling during prolonged food deprivation in marine mammals are not well defined. In the present study we cloned and characterized the complete and partial cDNA sequences that encode for HGPRT and xanthine oxidoreductase (XOR) in northern elephant seals. We also measured XO protein expression and circulating activity, along with xanthine and hypoxanthine plasma content in fasting northern elephant seal pups. Blood, adipose and muscle tissue samples were collected from animals after 1, 3, 5 and 7 weeks of their natural post-weaning fast. The complete HGPRT and partial XOR cDNA sequences are 771 and 345 bp long and encode proteins of 218 and 115 amino acids, respectively, with conserved domains important for their function and regulation. XOR mRNA and XO protein expression increased 3-fold and 1.7-fold with fasting, respectively, whereas HGPRT mRNA (4-fold) and protein (2-fold) expression increased after 7 weeks in adipose tissue and muscle. Plasma xanthine (3-fold) and hypoxanthine (2.5-fold) levels, and XO (1.7- to 20-fold) and HGPRT (1.5- to 1.7-fold) activities increased during the last 2 weeks of fasting. Results suggest that prolonged fasting in elephant seal pups is associated with increased capacity to recycle purines, which may contribute to ameliorating oxidant production and enhancing the supply of ATP, both of which would be beneficial during prolonged food deprivation and appear to be adaptive in this species. PMID

  13. Brain

    MedlinePlus

    ... will return after updating. Resources Archived Modules Updates Brain Cerebrum The cerebrum is the part of the ... the outside of the brain and spinal cord. Brain Stem The brain stem is the part of ...

  14. Regulation of uric acid metabolism and excretion.

    PubMed

    Maiuolo, Jessica; Oppedisano, Francesca; Gratteri, Santo; Muscoli, Carolina; Mollace, Vincenzo

    2016-06-15

    Purines perform many important functions in the cell, being the formation of the monomeric precursors of nucleic acids DNA and RNA the most relevant one. Purines which also contribute to modulate energy metabolism and signal transduction, are structural components of some coenzymes and have been shown to play important roles in the physiology of platelets, muscles and neurotransmission. All cells require a balanced quantity of purines for growth, proliferation and survival. Under physiological conditions the enzymes involved in the purine metabolism maintain in the cell a balanced ratio between their synthesis and degradation. In humans the final compound of purines catabolism is uric acid. All other mammals possess the enzyme uricase that converts uric acid to allantoin that is easily eliminated through urine. Overproduction of uric acid, generated from the metabolism of purines, has been proven to play emerging roles in human disease. In fact the increase of serum uric acid is inversely associated with disease severity and especially with cardiovascular disease states. This review describes the enzymatic pathways involved in the degradation of purines, getting into their structure and biochemistry until the uric acid formation. PMID:26316329

  15. Metabolic Brain Covariant Networks as Revealed by FDG-PET with Reference to Resting-State fMRI Networks

    PubMed Central

    Di, Xin

    2012-01-01

    Abstract The human brain is inherently organized as separate networks, as has been widely revealed by resting-state functional magnetic resonance imaging (fMRI). Although the large-scale functional connectivity can be partially explained by the underlying white-matter structural connectivity, the question of whether the underlying functional connectivity is related to brain metabolic factors is still largely unanswered. The present study investigated the presence of metabolic covariant networks across subjects using a set of fluorodeoxyglucose (18F, FDG) positron-emission tomography (PET) images. Spatial-independent component analysis was performed on the subject series of FDG-PET images. A number of networks that were mainly homotopic regions could be identified, including visual, auditory, motor, cerebellar, and subcortical networks. However, the anterior-posterior networks such as the default-mode and left frontoparietal networks could not be observed. Region-of-interest-based correlation analysis confirmed that the intersubject metabolic covariances within the default-mode and left frontoparietal networks were reduced as compared with corresponding time-series correlations using resting-state fMRI from an independent sample. In contrast, homotopic intersubject metabolic covariances observed using PET were comparable to the corresponding fMRI resting-state time-series correlations. The current study provides preliminary illustration, suggesting that the human brain metabolism pertains to organized covariance patterns that might partially reflect functional connectivity as revealed by resting-state blood oxygen level dependent (BOLD). The discrepancy between the PET covariance and BOLD functional connectivity might reflect the differences of energy consumption coupling and ongoing neural synchronization within these brain networks. PMID:23025619

  16. Oestradiol modulation of serotonin reuptake transporter and serotonin metabolism in the brain of monkeys.

    PubMed

    Sánchez, M G; Morissette, M; Di Paolo, T

    2013-06-01

    Serotonin (5-hydroxytryptamine; 5-HT) is an important brain neurotransmitter that is implicated in mental and neurodegenerative diseases and is modulated by ovarian hormones. Nevertheless, the effect of oestrogens on 5-HT neurotransmission in the primate caudate nucleus, putamen and nucleus accumbens, which are major components of the basal ganglia, and the anterior cerebral cortex, mainly the frontal and cingulate gyrus, is not well documented. The present study evaluated 5-HT reuptake transporter (SERT) and 5-HT metabolism in these brain regions in response to 1-month treatment with 17β-oestradiol in short-term (1 month) ovariectomised (OVX) monkeys (Macaca fascicularis). SERT-specific binding was measured by autoradiography using the radioligand [³H]citalopram. Biogenic amine concentrations were quantified by high-performance liquid chromatography. 17β-Oestradiol increased SERT in the superior frontal cortex and in the anterior cingulate cortex, in the nucleus accumbens, and in subregions of the caudate nucleus of OVX monkeys. 17β-Oestradiol left [³H]citalopram-specific binding unchanged in the putamen, as well as the dorsal and medial raphe nucleus. 17β-Oestradiol treatment decreased striatal concentrations of the precursor of 5-HT, 5-hydroxytryptophan, and increased 5-HT, dopamine and 3-methoxytyramine concentrations in the nucleus accumbens, caudate nucleus and putamen, whereas the concentrations of the metabolites 5-hydroxyindoleacetic acid, 3,4-dihydroxyphenylacetic acid and homovanillic acid remained unchanged. No effect of 17β-oestradiol treatment was observed for biogenic amine concentrations in the cortical regions. A significant positive correlation was observed between [³H]citalopram-specific binding and 5-HT concentrations in the caudate nucleus, putamen and nucleus accumbens, suggesting their link. These results have translational value for women with low oestrogen, such as those in surgical menopause or perimenopause. PMID:23414342

  17. Interaction of Metabolic Stress with Chronic Mild Stress in Altering Brain Cytokines and Sucrose Preference

    PubMed Central

    Remus, Jennifer L.; Stewart, Luke T.; Camp, Robert M.; Novak, Colleen M.; Johnson, John D.

    2015-01-01

    There is growing evidence that metabolic stressors increase an organism’s risk of depression. Chronic mild stress is a popular animal model of depression and several serendipitous findings have suggested that food deprivation prior to sucrose testing in this model is necessary to observe anhedonic behaviors. Here, we directly tested this hypothesis by exposing animals to chronic mild stress and used an overnight two bottle sucrose test (food ad libitum) on day 5 and 10, then food and water deprive animals overnight and tested their sucrose consumption and preference in a 1h sucrose test the following morning. Approximately 65% of stressed animals consumed sucrose and showed a sucrose preference similar to non-stressed controls in an overnight sucrose test, while 35% showed a decrease in sucrose intake and preference. Following overnight food and water deprivation the previously ‘resilient’ animals showed a significant decrease in sucrose preference and greatly reduced sucrose intake. In addition, we evaluated whether the onset of anhedonia following food and water deprivation corresponds to alterations in corticosterone, epinephrine, circulating glucose, or interleukin-1 beta expression in limbic brain areas. While all stressed animals showed adrenal hypertrophy and elevated circulating epinephrine, only stressed animals that were food deprived were hypoglycemic compared to food deprived controls. Additionally, food and water deprivation significantly increased hippocampus IL-1β while food and water deprivation only increased hypothalamus IL-1β in stress susceptible animals. These data demonstrate that metabolic stress of food and water deprivation interacts with chronic stressor exposure to induce physiological and anhedonic responses. PMID:25914924

  18. Cobalamin inactivation decreases purine and methionine synthesis in cultured lymphoblasts.

    PubMed

    Boss, G R

    1985-07-01

    The megaloblastic anemia of cobalamin deficiency appears secondary to decreased methionine synthetase activity. Decreased activity of this enzyme should cause 5-methyltetrahydrofolate to accumulate intracellularly, and consequently, decrease purine and DNA synthesis; this is the basis of the "methylfolate trap" hypothesis of cobalamin deficiency. However, only some of the clinical and biochemical manifestations of cobalamin deficiency can be explained by the methylfolate trap. We investigated cobalamin deficiency by treating cultured human lymphoblasts with N2O since N2O inhibits methionine synthetase activity by inactivating cobalamin. We found that 4 h of N2O exposure reduced rates of methionine synthesis by 89%. Rates of purine synthesis were not significantly reduced by N2O when folate and methionine were present at 100 microM in the medium; however, at the physiologic methionine concentration of 10 microM, N2O decreased rates of purine synthesis by 33 and 57% in the presence of 100 microM folate and in the absence of folate, respectively. The dependency of rates of purine synthesis on methionine availability would be expected in cells with restricted methionine synthetic capacity because methionine is the immediate precursor of S-adenosylmethionine, a potent inhibitor of 5-methyltetrahydrofolate synthesis; methionine serves as a source of formate for purine synthesis; and rates of purine synthesis are dependent on the intracellular availability of essential amino acids. We conclude that cobalamin inactivation decreases purine synthesis by both methylfolate trapping and reduction of intracellular methionine synthesis. PMID:2862163

  19. Post-traumatic hypoxia exacerbates neurological deficit, neuroinflammation and cerebral metabolism in rats with diffuse traumatic brain injury

    PubMed Central

    2011-01-01

    Background The combination of diffuse brain injury with a hypoxic insult is associated with poor outcomes in patients with traumatic brain injury. In this study, we investigated the impact of post-traumatic hypoxia in amplifying secondary brain damage using a rat model of diffuse traumatic axonal injury (TAI). Rats were examined for behavioral and sensorimotor deficits, increased brain production of inflammatory cytokines, formation of cerebral edema, changes in brain metabolism and enlargement of the lateral ventricles. Methods Adult male Sprague-Dawley rats were subjected to diffuse TAI using the Marmarou impact-acceleration model. Subsequently, rats underwent a 30-minute period of hypoxic (12% O2/88% N2) or normoxic (22% O2/78% N2) ventilation. Hypoxia-only and sham surgery groups (without TAI) received 30 minutes of hypoxic or normoxic ventilation, respectively. The parameters examined included: 1) behavioural and sensorimotor deficit using the Rotarod, beam walk and adhesive tape removal tests, and voluntary open field exploration behavior; 2) formation of cerebral edema by the wet-dry tissue weight ratio method; 3) enlargement of the lateral ventricles; 4) production of inflammatory cytokines; and 5) real-time brain metabolite changes as assessed by microdialysis technique. Results TAI rats showed significant deficits in sensorimotor function, and developed substantial edema and ventricular enlargement when compared to shams. The additional hypoxic insult significantly exacerbated behavioural deficits and the cortical production of the pro-inflammatory cytokines IL-6, IL-1β and TNF but did not further enhance edema. TAI and particularly TAI+Hx rats experienced a substantial metabolic depression with respect to glucose, lactate, and glutamate levels. Conclusion Altogether, aggravated behavioural deficits observed in rats with diffuse TAI combined with hypoxia may be induced by enhanced neuroinflammation, and a prolonged period of metabolic dysfunction. PMID

  20. Glutamatergic and GABAergic energy metabolism measured in the rat brain by (13) C NMR spectroscopy at 14.1 T.

    PubMed

    Duarte, João M N; Gruetter, Rolf

    2013-09-01

    Energy metabolism supports both inhibitory and excitatory neurotransmission processes. This study investigated the specific contribution of astrocytic metabolism to γ-aminobutyric acid (GABA) synthesis and inhibitory GABAergic neurotransmission that remained to be ilucidated in vivo. Therefore, we measured (13)C incorporation into brain metabolites by dynamic (13)C nuclear magnetic resonance spectroscopy at 14.1 T in rats under α-chloralose anaesthesia during infusion of [1,6-(13)C]glucose. The enhanced sensitivity at 14.1 T allowed to quantify incorporation of (13) C into the three aliphatic carbons of GABA non-invasively. Metabolic fluxes were determined with a mathematical model of brain metabolism comprising glial, glutamatergic and GABAergic compartments. GABA synthesis rate was 0.11 ± 0.01 μmol/g/min. GABA-glutamine cycle was 0.053 ± 0.003 μmol/g/min and accounted for 22 ± 1% of total neurotransmitter cycling between neurons and glia. Cerebral glucose oxidation was 0.47 ± 0.02 μmol/g/min, of which 35 ± 1% and 7 ± 1% was diverted to the glutamatergic and GABAergic tricarboxylic acid cycles, respectively. The remaining fraction of glucose oxidation was in glia, where 12 ± 1% of the TCA cycle flux was dedicated to oxidation of GABA. 16 ± 2% of glutamine synthesis was provided to GABAergic neurons. We conclude that substantial metabolic activity occurs in GABAergic neurons and that glial metabolism supports both glutamatergic and GABAergic neurons in the living rat brain. PMID:23745684

  1. The UDP-glucuronosyltransferases of the blood-brain barrier: their role in drug metabolism and detoxication

    PubMed Central

    Ouzzine, Mohamed; Gulberti, Sandrine; Ramalanjaona, Nick; Magdalou, Jacques; Fournel-Gigleux, Sylvie

    2014-01-01

    UDP-glucuronosyltransferases (UGTs) form a multigenic family of membrane-bound enzymes expressed in various tissues, including brain. They catalyze the formation of β-D-glucuronides from structurally unrelated substances (drugs, other xenobiotics, as well as endogenous compounds) by the linkage of glucuronic acid from the high energy donor, UDP-α-D-glucuronic acid. In brain, UGTs actively participate to the overall protection of the tissue against the intrusion of potentially harmful lipophilic substances that are metabolized as hydrophilic glucuronides. These metabolites are generally inactive, except for important pharmacologically glucuronides such as morphine-6-glucuronide. UGTs are mainly expressed in endothelial cells and astrocytes of the blood brain barrier (BBB). They are also associated to brain interfaces devoid of BBB, such as circumventricular organ, pineal gland, pituitary gland and neuro-olfactory tissues. Beside their key-role as a detoxication barrier, UGTs play a role in the steady-state of endogenous compounds, like steroids or dopamine (DA) that participate to the function of the brain. UGT isoforms of family 1A, 2A, 2B and 3A are expressed in brain tissues to various levels and are known to present distinct but overlapping substrate specificity. The importance of these enzyme species with regard to the formation of toxic, pharmacologically or physiologically relevant glucuronides in the brain will be discussed. PMID:25389387

  2. Brain magnetic resonance imaging, aerobic power, and metabolic parameters among 30 asymptomatic scuba divers.

    PubMed

    Tripodi, D; Dupas, B; Potiron, M; Louvet, S; Geraut, C

    2004-11-01

    The aim of the study was to evaluate the presence of cerebral lesions in asymptomatic scuba divers and explain the causes of them: potential risk factors associating cardiovascular risk factors, low aerobic capacity, or characteristics of diving (maximum depth, ascent rate). Experienced scuba divers, over 40 years of age, without any decompression sickness (DCS) history were included. We studied 30 scuba divers (instructors) without any clinical symptoms. For all of them, we carried out a clinical examination with fatty body mass determination and we questioned them about their diving habits. A brain Magnetic Resonance imaging (MRI), an assessment of maximal oxygen uptake, glycemia, triglyceridemia, and cholesterolemia were systematically carried out. Cerebral spots of high intensity were found at 33 % in the scuba diving group and 30 % in the control group. In the diving group, abnormalities were related to unsafe scuba-diving or metabolic abnormalities. In our study, we did not find a significant relationship between the lesions of the central nervous system, and the age, depth of the dives, number of dives, and ergometric performances (maximal oxygen uptake, V.O (2max), serum level of blood lactate). Nevertheless, we found a significant relationship between the lesions of the central nervous system and ascent rate faster than 10 meters per minute (r = 0.57; p = 0.003) or presence of high level of cholesterolemia (r = 0.6; p = 0.001). We found concordant results using the Cochran's Test: meaningful link between the number of brain lesions and the speed of decompression (Uexp = 14 < Utable = 43; alpha = 0.05, p < 0.01). We concluded that hyperintensities can be explained by preformed nitrogen gas microbubbles and particularly in presence of cholesterol, when the ascent rate is up to 10 meters per minute. So, it was remarkable to note that asymptomatic patients practicing scuba diving either professionally or recreationally, presented lesions of the central nervous

  3. Determination and profiling of purines in foods by using HPLC and LC-MS.

    PubMed

    Inazawa, K; Sato, A; Kato, Y; Yamaoka, N; Fukuuchi, T; Yasuda, M; Mawatari, K; Nakagomi, K; Kaneko, K

    2014-01-01

    Purines in food are known to raise serum uric acid levels. We determined the purine content of sweet potato and beef by high-performance liquid chromatography and liquid chromatography-mass spectrometry. The purine content of the samples was 118-1,034 μmol/100 g. The total purine content was also divided into purine bases, nucleosides, nucleotides, and nucleic acids. Our results suggest that differences in total purine content and in the ratio of purine types between vegetables and beef cause a difference in elevation of serum uric acid levels. PMID:24940702

  4. Oxidative stress alters arginine metabolism in rat brain: effect of sub-convulsive hyperbaric oxygen exposure.

    PubMed

    Ito, T; Yufu, K; Mori, A; Packer, L

    1996-08-01

    The effect of hyperbaric oxygenation on arginine metabolism was investigated. Rats were exposed to oxygen at 3 atmospheres absolute for 2 h. Under these conditions, lipid peroxidation and activation of the anti-oxidant system were observed. Levels of thiobarbiturate reactive substances and carbon-centered radicals were increased in the cerebral cortex, while superoxide dismutase activity was also increased in the mitochondrial and cytosolic fraction of cerebrocortical homogenates. This suggested that the increase of both Mn and Cu,Zn-superoxide dismutase activities was probably an early compensatory reaction to oxidative stress. Levels of arginine as well as its metabolite, guanidinoacetic acid, were increased in the cerebral cortex. This increase seemed to be, at least in part, explained by a decrease in the arginase activity in the same region. Moreover, arginase activity in the brain showed heterogeneous distribution. Arginine: glycine amidinotransferase activity was decreased in the pons-medulla oblongata. The observed effects of hyperbaric oxygenation seem to favor nitric oxide generation. PMID:8837048

  5. Brain-derived neurotrophic factor regulates cholesterol metabolism for synapse development.

    PubMed

    Suzuki, Shingo; Kiyosue, Kazuyuki; Hazama, Shunsuke; Ogura, Akihiko; Kashihara, Megumi; Hara, Tomoko; Koshimizu, Hisatsugu; Kojima, Masami

    2007-06-13

    Brain-derived neurotrophic factor (BDNF) exerts multiple biological functions in the CNS. Although BDNF can control transcription and protein synthesis, it still remains open to question whether BDNF regulates lipid biosynthesis. Here we show that BDNF elicits cholesterol biosynthesis in cultured cortical and hippocampal neurons. Importantly, BDNF elicited cholesterol synthesis in neurons, but not in glial cells. Quantitative reverse transcriptase-PCR revealed that BDNF stimulated the transcription of enzymes in the cholesterol biosynthetic pathway. BDNF-induced cholesterol increases were blocked by specific inhibitors of cholesterol synthesis, mevastatin and zaragozic acid, suggesting that BDNF stimulates de novo synthesis of cholesterol rather than the incorporation of extracellular cholesterol. Because cholesterol is a major component of lipid rafts, we investigated whether BDNF would increase the cholesterol content in lipid rafts or nonraft membrane domains. Interestingly, the BDNF-mediated increase in cholesterol occurred in rafts, but not in nonrafts, suggesting that BDNF promotes the development of neuronal lipid rafts. Consistent with this notion, BDNF raised the level of the lipid raft marker protein caveolin-2 in rafts. Remarkably, BDNF increased the levels of presynaptic proteins in lipid rafts, but not in nonrafts. An electrophysiological study revealed that BDNF-dependent cholesterol biosynthesis plays an important role for the development of a readily releasable pool of synaptic vesicles. Together, these results suggest a novel role for BDNF in cholesterol metabolism and synapse development. PMID:17567802

  6. Micro-positron emission tomography imaging of rat brain metabolism during expression of contextual conditioning.

    PubMed

    Luyten, Laura; Casteels, Cindy; Vansteenwegen, Debora; van Kuyck, Kris; Koole, Michel; Van Laere, Koen; Nuttin, Bart

    2012-01-01

    Using (18)F-fluorodeoxyglucose microPET imaging, we investigated the neurocircuitry of contextual anxiety versus control in awake, conditioned rats (n = 7-10 per group). In addition, we imaged a group expressing cued fear. Simultaneous measurements of startle amplitude and freezing time were used to assess conditioning. To the best of our knowledge, no neuroimaging studies in conditioned rats have been conducted thus far, although visualizing and quantifying the metabolism of the intact brain in behaving animals is clearly of interest. In addition, more insight into the neurocircuitry involved in contextual anxiety may stimulate the development of new treatments for anxiety disorders. Our main finding was hypermetabolism in a cluster comprising the bed nucleus of the stria terminalis (BST) in rats expressing contextual anxiety compared with controls. Analysis of a subset of rats showing the best behavioral results (n = 5 per subgroup) confirmed this finding. We also observed hypermetabolism in the same cluster in rats expressing contextual anxiety compared with rats expressing cued fear. Our results provide novel evidence for a role of the BST in the expression of contextual anxiety. PMID:22219287

  7. Metabolic acidosis induced by Plasmodium falciparum intraerythrocytic stages alters blood–brain barrier integrity

    PubMed Central

    Zougbédé, Sergine; Miller, Florence; Ravassard, Philippe; Rebollo, Angelita; Cicéron, Liliane; Couraud, Pierre-Olivier; Mazier, Dominique; Moreno, Alicia

    2011-01-01

    The pathogenesis of cerebral malaria (CM) remains largely unknown. There is growing evidence that combination of both parasite and host factors could be involved in blood–brain barrier (BBB) breakdown. However, lack of adequate in vitro model of human BBB so far hampered molecular studies. In this article, we propose the use of hCMEC/D3 cells, a well-established human cerebral microvascular endothelial cell (EC) line, to study BBB breakdown induced by Plasmodium falciparum-parasitized red blood cells and environmental conditions. We show that coculture of parasitized erythrocytes with hCMEC/D3 cells induces cell adhesion and paracellular permeability increase, which correlates with disorganization of zonula occludens protein 1 expression pattern. Permeability increase and modification of tight junction proteins distribution are cytoadhesion independent. Finally, we show that permeability of hCMEC/D3 cell monolayers is mediated through parasite induced metabolic acidosis, which in turns correlates with apoptosis of parasitized erythrocytes. This new coculture model represents a very useful tool, which will improve the knowledge of BBB breakdown and the development of adjuvant therapies, together with antiparasitic drugs. PMID:20683453

  8. In vivo imaging of brain metabolism activity using a phosphorescent oxygen-sensitive probe

    PubMed Central

    Tsytsarev, Vassiliy; Arakawa, Hiroyuki; Borisov, Sergei; Pumbo, Elena; Erzurumlu, Reha S.; Papkovsky, Dmitri B.

    2013-01-01

    Several approaches have been adopted for real-time imaging of neural activity in vivo. We tested a new cell-penetrating phosphorescent oxygen-sensitive probe, NanO2-IR, to monitor temporal and spatial dynamics of oxygen metabolism in the neocortex following peripheral sensory stimulation. Probe solution was applied to the surface of anesthetized mouse brain; optical imaging was performed using a MiCAM-02 system. Trains of whisker stimuli were delivered and associated changes in phosphorescent signal were recorded in the contralateral somatosensory (“barrel”) cortex. Sensory stimulation led to changes in oxygenation of activated areas of the barrel cortex. The oxygen imaging results were compared to those produced by the voltage-sensitive dye RH-1691. While the signals emitted by the two probes differed in shape and amplitude, they both faithfully indicated specific whisker evoked cortical activity. Thus, NanO2-IR probe can be used as a tool in visualization and realtime analysis of sensory- evoked neural activity in vivo. PMID:23624034

  9. Myc-dependent purine biosynthesis affects nucleolar stress and therapy response in prostate cancer

    PubMed Central

    Barfeld, Stefan J.; Fazli, Ladan; Persson, Margareta; Marjavaara, Lisette; Urbanucci, Alfonso; Kaukoniemi, Kirsi M.; Rennie, Paul S.; Ceder, Yvonne; Chabes, Andrei; Visakorpi, Tapio; Mills, Ian G.

    2015-01-01

    The androgen receptor is a key transcription factor contributing to the development of all stages of prostate cancer (PCa). In addition, other transcription factors have been associated with poor prognosis in PCa, amongst which c-Myc (MYC) is a well-established oncogene in many other cancers. We have previously reported that the AR promotes glycolysis and anabolic metabolism; many of these metabolic pathways are also MYC-regulated in other cancers. In this study, we report that in PCa cells de novo purine biosynthesis and the subsequent conversion to XMP is tightly regulated by MYC and independent of AR activity. We characterized two enzymes, PAICS and IMPDH2, within the pathway as PCa biomarkers in tissue samples and report increased efficacy of established anti-androgens in combination with a clinically approved IMPDH inhibitor, mycophenolic acid (MPA). Treatment with MPA led to a significant reduction in cellular guanosine triphosphate (GTP) levels accompanied by nucleolar stress and p53 stabilization. In conclusion, targeting purine biosynthesis provides an opportunity to perturb PCa metabolism and enhance tumour suppressive stress responses. PMID:25869206

  10. Gout and hyperuricemia in Japan: perspectives for international research on purines and pyrimidines in man.

    PubMed

    Hosoya, Tatsuo; Ohno, Iwao; Ichida, Kimiyoshi; Peters, Godefridus J

    2011-12-01

    One of the best-known disorders in purine metabolism is accumulation of uric acid leading to gout. Gout is a lifestyle disease, which was nicely illustrated in the joint symposium of the Japanese Society of Gout and Nucleic Acid Metabolism and of the Purine and Pyrimidine Society held in February 2011 in Tokyo, Japan. The westernization of the Japanese diet led to an increase in hyperuricemia in Japanese, which subsequently boosted research in this field, as illustrated in this symposium. As a consequence, Japanese nucleotide research also expanded, leading to the development of not only new drugs for treatment of gout, but also for other diseases such as cancer, viral infections, and cardiovascular diseases. The research on inborn errors led to the identification of various genetic polymorphisms affecting drug metabolism, revealing differences between Asians and non-Asians. Such genetic differences may also affect the enzymatic properties of an enzyme or a transporter, necessitating specific inhibitors. This knowledge will help to introduce personalization of treatment. In this symposium, the interaction between various specialties formed an excellent basis for translational research between these specialties but also from the bench to the clinic. PMID:22132949

  11. [Aspartate aminotransferase--key enzyme in the human systemic metabolism].

    PubMed

    Otto-Ślusarczyk, Dagmara; Graboń, Wojciech; Mielczarek-Puta, Magdalena

    2016-01-01

    Aspartate aminotransferase is an organ-nonspecific enzyme located in many tissues of the human body where it catalyzes reversible reaction of transamination. There are two aspartate aminotransferase isoforms--cytoplasmic (AST1) and mitochondrial (AST2), that usually occur together and interact with each other metabolically. Both isoforms are homodimers containing highly conservative regions responsible for catalytic properties of enzyme. The common feature of all aspartate aminotransfeses is Lys - 259 residue covalent binding with prosthetic group - pyridoxal phosphate. The differences in the primary structure of AST isoforms determine their physico-chemical, kinetic and immunological properties. Because of the low concentration of L-aspartate (L-Asp) in the blood, AST is the only enzyme, which supply of this amino acid as a substrate for many metabolic processes, such as urea cycle or purine and pyrimidine nucleotides in the liver, synthesis of L-arginine in the kidney and purine nucleotide cycle in the brain and the skeletal muscle. AST is also involved in D-aspartate production that regulates the metabolic activity at the auto-, para- and endocrine level. Aspartate aminotransferase is a part of the malate-aspartate shuttle in the myocardium, is involved in gluconeogenesis in the liver and kidney, glyceroneogenesis in the adipose tissue, and synthesis of neurotransmitters and neuro-glial pathway in the brain. Recently, the significant role of AST in glutaminolysis - normal metabolic pathway in tumor cells, was demonstrated. The article is devoted the role of AST, known primarily as a diagnostic liver enzyme, in metabolism of various human tissues and organs. PMID:27117097

  12. Dual-wavelength laser speckle imaging for monitoring brain metabolic and hemodynamic response to closed head traumatic brain injury in mice

    NASA Astrophysics Data System (ADS)

    Kofman, Itamar; Abookasis, David

    2015-10-01

    The measurement of dynamic changes in brain hemodynamic and metabolism events following head trauma could be valuable for injury prognosis and for planning of optimal medical treatment. Specifically, variations in blood flow and oxygenation levels serve as important biomarkers of numerous pathophysiological processes. We employed the dual-wavelength laser speckle imaging (DW-LSI) technique for simultaneous monitoring of changes in brain hemodynamics and cerebral blood flow (CBF) at early stages of head trauma in a mouse model of intact head injury (n=10). For induction of head injury, we used a weight-drop device involving a metal mass (˜50 g) striking the mouse's head in a regulated manner from a height of ˜90 cm. In comparison to baseline measurements, noticeable dynamic variations were revealed immediately and up to 1 h postinjury, which indicate the severity of brain damage and highlight the ability of the DW-LSI arrangement to track brain pathophysiology induced by injury. To validate the monitoring of CBF by DW-LSI, measurements with laser Doppler flowmetry (LDF) were also performed (n=5), which confirmed reduction in CBF following injury. A secondary focus of the study was to investigate the effectiveness of hypertonic saline as a neuroprotective agent, inhibiting the development of complications after brain injury in a subgroup of injured mice (n=5), further demonstrating the ability of DW-LSI to monitor the effects upon brain dynamics of drug treatment. Overall, our findings further support the use of DW-LSI as a noninvasive, cost-effective tool to assess changes in hemodynamics under a variety of pathological conditions, suggesting its potential contribution to the biomedical field. To the best of our knowledge, this work is the first to make use of the DW-LSI modality in a small animal model to (1) investigate brain function during the critical first hour of closed head injury trauma, (2) correlate between injury parameters of LDF measurements, and (3

  13. The Contribution of Blood Lactate to Brain Energy Metabolism in Humans Measured by Dynamic 13C Nuclear Magnetic Resonance Spectroscopy

    PubMed Central

    BOUMEZBEUR, Fawzi; PETERSEN, Kitt F.; CLINE, Gary W.; MASON, Graeme F.; BEHAR, Kevin L; SHULMAN, Gerald I.; ROTHMAN, Douglas L.

    2010-01-01

    To determine whether plasma lactate can be a significant fuel for human brain energy metabolism infusions of [3-13C]lactate and 1H-13C polarization transfer spectroscopy were used to detect the entry and utilization of lactate. During the 2-hour infusion study, 13C incorporation in the amino acid pools of glutamate and glutamine were measured with a 5 minutes time-resolution. With a plasma concentration ([Lac]P) being in the 0.8–2.8 mmol/L range, the tissue lactate concentration ([Lac]B) was assessed as well as the fractional contribution of lactate to brain energy metabolism (CMRlac). From the measured relationship between unidirectional lactate influx (Vin) and plasma and brain lactate concentrations lactate transport constants were calculated using a reversible Michaelis-Menten model. The results show (i) that in the physiological range plasma lactate unidirectional transport (Vin) and concentration in tissue increases close to linearly with the lactate concentration in plasma, (ii) the maximum potential contribution of plasma lactate to brain metabolism is 10% under basal plasma lactate conditions of ~ 1.0 mmol/L and as much as 60% at supra-physiological plasma lactate concentrations when the transporters are saturated, (iii) the half-saturation constant KT is 5.1±2.7 mmol/L and VMAX is 0.40±0.13 μmol/g/min (68% confidence interval), (iv) the majority of plasma lactate is metabolized in neurons similar to glucose. PMID:20962220

  14. Multimodal neuroimaging provides a highly consistent picture of energy metabolism, validating 31P MRS for measuring brain ATP synthesis

    PubMed Central

    Chaumeil, Myriam M.; Valette, Julien; Guillermier, Martine; Brouillet, Emmanuel; Boumezbeur, Fawzi; Herard, Anne-Sophie; Bloch, Gilles; Hantraye, Philippe; Lebon, Vincent

    2009-01-01

    Neuroimaging methods have considerably developed over the last decades and offer various noninvasive approaches for measuring cerebral metabolic fluxes connected to energy metabolism, including PET and magnetic resonance spectroscopy (MRS). Among these methods, 31P MRS has the particularity and advantage to directly measure cerebral ATP synthesis without injection of labeled precursor. However, this approach is methodologically challenging, and further validation studies are required to establish 31P MRS as a robust method to measure brain energy synthesis. In the present study, we performed a multimodal imaging study based on the combination of 3 neuroimaging techniques, which allowed us to obtain an integrated picture of brain energy metabolism and, at the same time, to validate the saturation transfer 31P MRS method as a quantitative measurement of brain ATP synthesis. A total of 29 imaging sessions were conducted to measure glucose consumption (CMRglc), TCA cycle flux (VTCA), and the rate of ATP synthesis (VATP) in primate monkeys by using 18F-FDG PET scan, indirect 13C MRS, and saturation transfer 31P MRS, respectively. These 3 complementary measurements were performed within the exact same area of the brain under identical physiological conditions, leading to: CMRglc = 0.27 ± 0.07 μmol·g−1·min−1, VTCA = 0.63 ± 0.12 μmol·g−1·min−1, and VATP = 7.8 ± 2.3 μmol·g−1·min−1. The consistency of these 3 fluxes with literature and, more interestingly, one with each other, demonstrates the robustness of saturation transfer 31P MRS for directly evaluating ATP synthesis in the living brain. PMID:19234118

  15. Brain glucose metabolism is associated with hormone level in Cushing's disease: A voxel-based study using FDG-PET.

    PubMed

    Liu, Shuai; Wang, Yinyan; Xu, Kaibin; Ping, Fan; Wang, Renzhi; Li, Fang; Cheng, Xin

    2016-01-01

    Chronic exposure to elevated levels of glucocorticoids can exert a neurotoxic effect in patients, possibly manifesting as molecular imaging alterations in patients. The aim of this study was to investigate the potential association between brain metabolism and elevated hormone level using (18)F-fluorodeoxyglucose positron emission tomography. We retrospectively enrolled 92 consecutive patients with confirmed diagnosis of Cushing's disease. A voxel-based analysis was performed to investigate the association between cerebral (18)F-fluorodeoxyglucose uptake and serum cortisol level. Relatively impaired metabolism of specific brain regions correlated with serum cortisol level was found. Specifically, notable correlations were found in the hippocampus, amygdala, and cerebellum, regions considered to be involved in the regulation and central action of glucocorticoids. Moreover, some hormone-associated regions were found in the frontal and occipital cortex, possibly mediating the cognitive changes seen in Cushing's disease. Our findings link patterns of perturbed brain metabolism relates to individual hormone level, thus presenting a substrate for cognitive disturbances seen in Cushing's disease patients, as well as in other conditions with abnormal cortisol levels. PMID:27622138

  16. Brain, Liver, and Serum Salusin-alpha and -beta Alterations in Sprague-Dawley Rats with or without Metabolic Syndrome

    PubMed Central

    Citil, Cihan; Konar, Vahit; Aydin, Suleyman; Yilmaz, Musa; Albayrak, Serdal; Ozercan, Ibrahim Hanifi; Ozkan, Yusuf

    2014-01-01

    Background This metabolic syndrome (MetS) study was designed to investigate changes in expression of the neuropeptides salusin-α (Sal-α) and salusin-β (Sal-β) in brain and liver tissue in response to obesity and related changes induced by high-fructose diet and explored how these changes were reflected in the circulating levels of Sal-α and Sal-β, as well as revealing how the lipid profile and concentrations of glucose and uric acid were altered. Material/Methods The study included 14 Sprague-Dawley rats. The control group was fed ad libitum on standard rat pellets, while the intervention group was given water with 10% fructose in addition to the standard rat pellet for 3 months. Sal-α and Sal-β concentrations in the serum and tissue supernatants were measured by ELISA, and immunohistochemical staining was used to demonstrate expression of the hormones in brain and liver. Results Sal-α and Sal-β levels in both the serum and the brain and liver tissue supernatants were lower in the MetS group than the control group. Sal-α and Sal-β were shown by immunohistochemistry to be produced in the brain epithelium, the supraoptic nucleus of the hypothalamus, and the liver hepatocytes. Conclusions The decrease in Sal-α and Sal-β might be involved in the etiopathology of the metabolic syndrome induced by fructose. PMID:25070707

  17. Alterations in the Vaginal Microbiome by Maternal Stress Are Associated With Metabolic Reprogramming of the Offspring Gut and Brain.

    PubMed

    Jašarević, Eldin; Howerton, Christopher L; Howard, Christopher D; Bale, Tracy L

    2015-09-01

    The neonate is exposed to the maternal vaginal microbiota during parturition, providing the primary source for normal gut colonization, host immune maturation, and metabolism. These early interactions between the host and microbiota occur during a critical window of neurodevelopment, suggesting early life as an important period of cross talk between the developing gut and brain. Because perturbations in the prenatal environment such as maternal stress increase neurodevelopmental disease risk, disruptions to the vaginal ecosystem could be a contributing factor in significant and long-term consequences for the offspring. Therefore, to examine the hypothesis that changes in the vaginal microbiome are associated with effects on the offspring gut microbiota and on the developing brain, we used genomic, proteomic and metabolomic technologies to examine outcomes in our mouse model of early prenatal stress. Multivariate modeling identified broad proteomic changes to the maternal vaginal environment that influence offspring microbiota composition and metabolic processes essential for normal neurodevelopment. Maternal stress altered proteins related to vaginal immunity and abundance of Lactobacillus, the prominent taxa in the maternal vagina. Loss of maternal vaginal Lactobacillus resulted in decreased transmission of this bacterium to offspring. Further, altered microbiota composition in the neonate gut corresponded with changes in metabolite profiles involved in energy balance, and with region- and sex-specific disruptions of amino acid profiles in the developing brain. Taken together, these results identify the vaginal microbiota as a novel factor by which maternal stress may contribute to reprogramming of the developing brain that may predispose individuals to neurodevelopmental disorders. PMID:26079804

  18. Purines and pyrimidines in sediments from lake erie.

    PubMed

    Van Der Velden, W; Schwartz, A W

    1974-08-23

    Quantitative analyses of purines and pyrimidines in sequential sections of cores from the central and eastern basins of Lake Erie show steeply increasing concentrations in the youngest sediments. This may be related to increased loading of nutrients and recent cultural eutrophication of the lake. The purine and pyrimidine distributions suggest the operation of a specific degradative process for uracil at an extremely early stage in, or prior to, sediment formation. PMID:17736373

  19. Metabolism

    MedlinePlus

    Metabolism refers to all the physical and chemical processes in the body that convert or use energy, ... Tortora GJ, Derrickson BH. Metabolism. In: Tortora GJ, Derrickson BH. Principles of Anatomy and Physiology . 14th ed. Hoboken, NJ: John H Wiley and Sons; 2013: ...

  20. NMR-Based Metabolic Profiling Reveals Neurochemical Alterations in the Brain of Rats Treated with Sorafenib.

    PubMed

    Du, Changman; Shao, Xue; Zhu, Ruiming; Li, Yan; Zhao, Qian; Fu, Dengqi; Gu, Hui; Kong, Jueying; Luo, Li; Long, Hailei; Deng, Pengchi; Wang, Huijuan; Hu, Chunyan; Zhao, Yinglan; Cen, Xiaobo

    2015-11-01

    Sorafenib, an active multi-kinase inhibitor, has been widely used as a chemotherapy drug to treat advanced clear-cell renal cell carcinoma patients. In spite of the relative safety, sorafenib has been shown to exert a negative impact on cognitive functioning in cancer patients, specifically on learning and memory; however, the underlying mechanism remains unclear. In this study, an NMR-based metabolomics approach was applied to investigate the neurochemical effects of sorafenib in rats. Male rats were once daily administrated with 120 mg/kg sorafenib by gavage for 3, 7, and 28 days, respectively. NMR-based metabolomics coupled with histopathology examinations for hippocampus, prefrontal cortex (PFC), and striatum were performed. The (1)H NMR spectra data were analyzed by using multivariate pattern recognition techniques to show the time-dependent biochemical variations induced by sorafenib. Excellent separation was obtained and distinguishing metabolites were observed between sorafenib-treated and control rats. A total of 36 differential metabolites in hippocampus of rats treated with sorafenib were identified, some of which were significantly changed. Furthermore, these modified metabolites mainly reflected the disturbances in neurotransmitters, energy metabolism, membrane, and amino acids. However, only a few metabolites in PFC and striatum were altered by sorafenib. Additionally, no apparent histological changes in these three brain regions were observed in sorafenib-treated rats. Together, our findings demonstrate the disturbed metabonomics pathways, especially, in hippocampus, which may underlie the sorafenib-induced cognitive deficits in patients. This work also shows the advantage of NMR-based metabolomics over traditional approach on the study of biochemical effects of drugs. PMID:26233726

  1. Metabolic Mapping of the Brain's Response to Visual Stimulation: Studies in Humans.

    ERIC Educational Resources Information Center

    Phelps, Michael E.; Kuhl, David E.

    1981-01-01

    Studies demonstrate increasing glucose metabolic rates in human primary (PVC) and association (AVC) visual cortex as complexity of visual scenes increase. AVC increased more rapidly with scene complexity than PVC and increased local metabolic activities above control subject with eyes closed; indicates wide range and metabolic reserve of visual…

  2. D-(U-11C)glucose uptake and metabolism in the brain of insulin-dependent diabetic subjects

    SciTech Connect

    Gutniak, M.; Blomqvist, G.; Widen, L.; Stone-Elander, S.; Hamberger, B.; Grill, V. )

    1990-05-01

    We used D-(U-11C)glucose to evaluate transport and metabolism of glucose in the brain in eight nondiabetic and six insulin-dependent diabetes mellitus (IDDM) subjects. IDDM subjects were treated by continuous subcutaneous insulin infusion. Blood glucose was regulated by a Biostator-controlled glucose infusion during a constant insulin infusion. D-(U-11C)-glucose was injected for positron emission tomography studies during normoglycemia as well as during moderate hypoglycemia (arterial plasma glucose 2.74 +/- 0.14 in nondiabetic and 2.80 +/- 0.26 mmol/l (means +/- SE) in IDDM subjects). Levels of free insulin were constant and similar in both groups. The tracer data were analyzed using a three-compartment model with a fixed correction for 11CO2 egression. During normoglycemia the influx rate constant (k1) and blood-brain glucose flux did not differ between the two groups. During hypoglycemia k1 increased significantly and similarly in both groups (from 0.061 +/- 0.007 to 0.090 +/- 0.006 in nondiabetic and from 0.061 +/- 0.006 to 0.093 +/- 0.013 ml.g-1.min-1 in IDDM subjects). During normoglycemia the tracer-calculated metabolism of glucose was higher in the whole brain in the nondiabetic than in the diabetic subjects (22.0 +/- 1.9 vs. 15.6 +/- 1.1 mumol.100 g-1.min-1, P less than 0.01). During hypoglycemia tracer-calculated metabolism was decreased by 40% in nondiabetic subjects and by 28% in diabetic subjects. The results indicate that uptake of glucose is normal, but some aspect of glucose metabolism is abnormal in a group of well-controlled IDDM subjects.

  3. Changes of Brain Glucose Metabolism in the Pretreatment Patients with Non-Small Cell Lung Cancer: A Retrospective PET/CT Study

    PubMed Central

    Zhang, Weishan; Ning, Ning; Li, Xianjun; Niu, Gang; Bai, Lijun; Guo, Youmin; Yang, Jian

    2016-01-01

    Objective The tumor-to-brain communication has been emphasized by recent converging evidences. This study aimed to compare the difference of brain glucose metabolism between patients with non-small cell lung cancer (NSCLC) and control subjects. Methods NSCLC patients prior to oncotherapy and control subjects without malignancy confirmed by 6 months follow-up were collected and underwent the resting state 18F-fluoro-D-glucose (FDG) PET/CT. Normalized FDG metabolism was calculated by a signal intensity ratio of each brain region to whole brain. Brain glucose metabolism was compared between NSCLC patients and control group using two samples t-test and multivariate test by statistical parametric maps (SPM) software. Results Compared with the control subjects (n = 76), both brain glucose hyper- and hypometabolism regions with significant statistical differences (P<0.01) were found in the NSCLC patients (n = 83). The hypermetabolism regions (bilateral insula, putamen, pallidum, thalamus, hippocampus and amygdala, the right side of cerebellum, orbital part of right inferior frontal gyrus and vermis) were component parts of visceral to brain signal transduction pathways, and the hypometabolism regions (the left superior parietal lobule, bilateral inferior parietal lobule and left fusiform gyrus) lied in dorsal attention network and visuospatial function areas. Conclusions The changes of brain glucose metabolism exist in NSCLC patients prior to oncotherapy, which might be attributed to lung-cancer related visceral sympathetic activation and decrease of dorsal attention network function. PMID:27529342

  4. Purines and sensory neuropeptides in human asthma.

    PubMed

    Karlsson, J A

    1987-01-01

    Mediators acting on different cells in the lung may produce features of asthma such as bronchoconstriction, plasma leakage from the tracheobronchial microcirculation and mucus secretion. The clinical effectiveness of anticholinergic agents has stimulated the search for mediators other than acetyolcholine and the hope that specific antagonists would improve asthma therapy. The purine, nucleoside adenosine, produces certain asthma-like signs such as bronchoconstriction in asthmatics. Studies with theophylline and nonadenosine-blocking bronchodilator xanthines have, however, demonstrated that adenosine is unlikely to be an asthma mediator, although it may still possess significant extrapulmonary actions. Sensory nerves within the lung show immunoreactivity to a wide variety of peptides, including substance P and other tachykinins. Tachykinins produce bronchoconstriction and plasma extravasation in guinea-pig and rat lungs. In asthmatic subjects, nebulized neurokinin A reduces specific airways conductance. Inhalation of capsaicin, which presumably acts through stimulation of chemosensitive afferent C-fibres, produces cough and a transient upper airway constriction. Elucidation of a role in asthma must await the development of a clinically useful tachykinin antagonist. Accumulating data seems to indicate that asthma pathology is caused by released substances acting in conjunction on target cells in the lung. Functional antagonism, rather than inhibition of a single mediator, thus appears to be essential for clinically effective antiasthma drugs. PMID:2822185

  5. Targeting a Novel Plasmodium falciparum Purine Recycling Pathway with Specific Immucillins

    SciTech Connect

    Ting, L; Shi, W; Lewandowicz, A; Singh, V; Mwakingwe, A; Birck, M R; Taylor Ringia, E A; Bench, G; Madrid, D C; Tyler, P C; Evans, G B; Furneaux, R H; Schramm, V L; Kim, K

    2004-05-19

    Plasmodium falciparum is unable to synthesize purine bases and relies upon purine salvage and purine recycling to meet its purine needs. We report that purines formed as products of the polyamine pathway are recycled in a novel pathway in which 5'-methylthioinosine is generated by adenosine deaminase. The action of P. falciparum purine nucleoside phosphorylase is a convergent step of purine salvage, converting both 5'-methylthioinosine and inosine to hypoxanthine. We used accelerator mass spectrometry to verify that 5'-methylthioinosine is an active nucleic acid precursor in P. falciparum. Prior studies have shown that inhibitors of purine salvage enzymes kill malaria, but potent malaria-specific inhibitors of these enzymes have not previously been described. 5'-methylthio-Immucillin-H, a transition state analogue inhibitor that is selective for malarial over human purine nucleoside phosphorylase, kills P. falciparum in culture. Immucillins are currently in clinical trials for other indications and may have application as antimalarials.

  6. Photoperiodic responses of depression-like behavior, the brain serotonergic system, and peripheral metabolism in laboratory mice.

    PubMed

    Otsuka, Tsuyoshi; Kawai, Misato; Togo, Yuki; Goda, Ryosei; Kawase, Takahiro; Matsuo, Haruka; Iwamoto, Ayaka; Nagasawa, Mao; Furuse, Mitsuhiro; Yasuo, Shinobu

    2014-02-01

    Seasonal affective disorder (SAD) is characterized by depression during specific seasons, generally winter. The pathophysiological mechanisms underlying SAD remain elusive due to a limited number of animal models with high availability and validity. Here we show that laboratory C57BL/6J mice display photoperiodic changes in depression-like behavior and brain serotonin content. C57BL/6J mice maintained under short-day conditions, as compared to those under long-day conditions, demonstrated prolonged immobility times in the forced swimming test with lower brain levels of serotonin and its precursor l-tryptophan. Furthermore, photoperiod altered multiple parameters reflective of peripheral metabolism, including the ratio of plasma l-tryptophan to the sum of other large neutral amino acids that compete for transport across the blood-brain barrier, responses of circulating glucose and insulin to glucose load, sucrose intake under restricted feeding condition, and sensitivity of the brain serotonergic system to peripherally administered glucose. These data suggest that the mechanisms underlying SAD involve the brain-peripheral tissue network, and C57BL/6J mice can serve as a powerful tool for investigating the link between seasons and mood. PMID:24485474

  7. Brain mitochondrial metabolic dysfunction and glutamate level reduction in the pilocarpine model of temporal lobe epilepsy in mice

    PubMed Central

    Smeland, Olav B; Hadera, Mussie G; McDonald, Tanya S; Sonnewald, Ursula; Borges, Karin

    2013-01-01

    Although certain metabolic characteristics such as interictal glucose hypometabolism are well established for temporal lobe epilepsy (TLE), its pathogenesis still remains unclear. Here, we performed a comprehensive study of brain metabolism in a mouse model of TLE, induced by pilocarpine–status epilepticus (SE). To investigate glucose metabolism, we injected mice 3.5–4 weeks after SE with [1,2-13C]glucose before microwave fixation of the head. Using 1H and 13C nuclear magnetic resonance spectroscopy, gas chromatography—mass spectrometry and high-pressure liquid chromatography, we quantified metabolites and 13C labeling in extracts of cortex and hippocampal formation (HF). Hippocampal levels of glutamate, glutathione and alanine were decreased in pilocarpine–SE mice compared with controls. Moreover, the contents of N-acetyl aspartate, succinate and reduced nicotinamide adenine dinucleotide (phosphate) NAD(P)H were decreased in HF indicating impairment of mitochondrial function. In addition, the reduction in 13C enrichment of hippocampal citrate and malate suggests decreased tricarboxylic acid (TCA) cycle turnover in this region. In cortex, we found reduced 13C labeling of glutamate, glutamine and aspartate via the pyruvate carboxylation and pyruvate dehydrogenation pathways, suggesting slower turnover of these amino acids and/or the TCA cycle. In conclusion, mitochondrial metabolic dysfunction and altered amino-acid metabolism is found in both cortex and HF in this epilepsy model. PMID:23611869

  8. Structure and Function of Nucleoside Hydrolases from Physcomitrella patens and Maize Catalyzing the Hydrolysis of Purine, Pyrimidine, and Cytokinin Ribosides1[W

    PubMed Central

    Kopečná, Martina; Blaschke, Hanna; Kopečný, David; Vigouroux, Armelle; Končitíková, Radka; Novák, Ondřej; Kotland, Ondřej; Strnad, Miroslav; Moréra, Solange; von Schwartzenberg, Klaus

    2013-01-01

    We present a comprehensive characterization of the nucleoside N-ribohydrolase (NRH) family in two model plants, Physcomitrella patens (PpNRH) and maize (Zea mays; ZmNRH), using in vitro and in planta approaches. We identified two NRH subclasses in the plant kingdom; one preferentially targets the purine ribosides inosine and xanthosine, while the other is more active toward uridine and xanthosine. Both subclasses can hydrolyze plant hormones such as cytokinin ribosides. We also solved the crystal structures of two purine NRHs, PpNRH1 and ZmNRH3. Structural analyses, site-directed mutagenesis experiments, and phylogenetic studies were conducted to identify the residues responsible for the observed differences in substrate specificity between the NRH isoforms. The presence of a tyrosine at position 249 (PpNRH1 numbering) confers high hydrolase activity for purine ribosides, while an aspartate residue in this position confers high activity for uridine. Bud formation is delayed by knocking out single NRH genes in P. patens, and under conditions of nitrogen shortage, PpNRH1-deficient plants cannot salvage adenosine-bound nitrogen. All PpNRH knockout plants display elevated levels of certain purine and pyrimidine ribosides and cytokinins that reflect the substrate preferences of the knocked out enzymes. NRH enzymes thus have functions in cytokinin conversion and activation as well as in purine and pyrimidine metabolism. PMID:24170203

  9. Parental Smoking and Risk of Childhood Brain Tumors by Functional Polymorphisms in Polycyclic Aromatic Hydrocarbon Metabolism Genes

    PubMed Central

    Barrington-Trimis, Jessica L.; Searles Nielsen, Susan; Preston-Martin, Susan; Gauderman, W. James; Holly, Elizabeth A.; Farin, Federico M.; Mueller, Beth A.; McKean-Cowdin, Roberta

    2013-01-01

    Background A recent meta-analysis suggested an association between exposure to paternal smoking during pregnancy and childhood brain tumor risk, but no studies have evaluated whether this association differs by polymorphisms in genes that metabolize tobacco-smoke chemicals. Methods We assessed 9 functional polymorphisms in 6 genes that affect the metabolism of polycyclic aromatic hydrocarbons (PAH) to evaluate potential interactions with parental smoking during pregnancy in a population-based case-control study of childhood brain tumors. Cases (N = 202) were ≤10 years old, diagnosed from 1984–1991 and identified in three Surveillance, Epidemiology, and End Results (SEER) registries in the western U.S. Controls in the same regions (N = 286) were frequency matched by age, sex, and study center. DNA for genotyping was obtained from archived newborn dried blood spots. Results We found positive interaction odds ratios (ORs) for both maternal and paternal smoking during pregnancy, EPHX1 H139R, and childhood brain tumors (Pinteraction = 0.02; 0.10), such that children with the high-risk (greater PAH activation) genotype were at a higher risk of brain tumors relative to children with the low-risk genotype when exposed to tobacco smoke during pregnancy. A dose-response pattern for paternal smoking was observed among children with the EPHX1 H139R high-risk genotype only (ORno exposure = 1.0; OR≤3 hours/day = 1.32, 95% CI: 0.52–3.34; OR>3hours/day = 3.18, 95% CI: 0.92–11.0; Ptrend = 0.07). Conclusion Parental smoking during pregnancy may be a risk factor for childhood brain tumors among genetically susceptible children who more rapidly activate PAH in tobacco smoke. PMID:24260161

  10. Metabolism

    MedlinePlus

    ... convert or use energy, such as: Breathing Circulating blood Controlling body temperature Contracting muscles Digesting food and nutrients Eliminating waste through urine and feces Functioning of the brain and nerves

  11. Polyamine effects on purine-purine-pyrimidine triple helix formation by phosphodiester and phosphorothioate oligodeoxyribonucleotides.

    PubMed Central

    Musso, M; Van Dyke, M W

    1995-01-01

    Utilization of oligodeoxyribonucleotides to inhibit specific gene transcription in vivo (antigene strategy) requires the efficient formation of triple helices under physiological conditions. However, pyrimidine-motif triplexes are not favored at physiological pH, and physiological concentrations of potassium cations hamper purine-motif triplex formation. Here we investigated the effects of polyamines on promoting triplex formation by G/T-rich oligodeoxyribonucleotides containing either phosphodiester or a diastereomeric mixture of phosphorothioate linkages. Compared with Mg2+, equimolar concentrations of polyamines greatly facilitated purine-motif triplex formation with the following order of effectiveness: spermine > spermidine > putrescine. At low polyamine concentrations, phosphorothioate oligonucleotides were better at triplex formation than the corresponding phosphodiester oligonucleotides. Kinetic studies indicated that polyamines facilitated triplex formation by increasing the rate of oligonucleotide-duplex DNA association. However, triplex accumulation with either oligonucleotide was still low under physiological conditions (140 mM K+, 10 mM Mg2+, 1 mM spermine). The inhibitory effects of K+ could be partially overcome with high concentrations of Mg2+ or spermine, with phosphodiester oligonucleotides being better able to form triplexes than phosphorothioates under these conditions. Images PMID:7610062

  12. Metabolic profiling of rat brain and cognitive behavioral tasks: potential complementary strategies in preclinical cognition enhancement research.

    PubMed

    Goh, Dilys P Q; Neo, Aveline H; Goh, Catherine W; Aw, Chiu Cheong; New, Lee Sun; Chen, Woei Shin; Atcha, Zeenat; Browne, Edward R; Chan, Eric C Y

    2009-12-01

    In this study, the correlation between the metabolic profiles of rats undergoing cognition enhancement drug therapy and their associated cognitive behavioral outcomes were investigated. Male Lister Hooded rats were administered either with donepezil, galantamine, or vehicle and subjected to Atlantis watermaze training and novel object recognition tests. An UPLC/MS/MS method was developed to profile 21 neurologically related metabolites in the rat brains. Pharmacologically induced behavioral changes were compared subsequently with the metabolic fluctuations of neurologically related metabolites from multiple neurotransmitter pathways using multivariate and univariate statistical analyses. Significant improvements in cognitive behavioral outcomes were demonstrated in the rats administered with donepezil and galantamine using both AWM training (P < 0.05) and NOR (P < 0.05) tests as compared to those dosed with the vehicle. This corroborated with the significant elevation of eight prominent biomarkers after the cognitive enhancement therapy. An orthogonal partial least-squares discriminant analysis model generated using only the 8 metabolites identified as discriminating the drug-dosed rats from the vehicle-dosed rats gave a Q(2) = 0.566, receiver operator characteristic (ROC) AUC = 1.000, using 7-fold cross validation. Our study suggests that metabolic profiling of rat brain is a potential complementary strategy to the cognitive behavioral tasks for characterizing neurobiological responses to cognition enhancement drug testing. PMID:19845403

  13. Multiple genetic imaging study of the association between cholesterol metabolism and brain functional alterations in individuals with risk factors for Alzheimer's disease

    PubMed Central

    Bai, Feng; Yuan, Yonggui; Shi, Yongmei; Zhang, Zhijun

    2016-01-01

    Alzheimer's disease (AD) is a clinically and genetically heterogeneous neurodegenerative disease. Genes involved in cholesterol metabolism may play a role in the pathological changes of AD. However, the imaging genetics-based endophenotypes derived from polymorphisms in multiple functionally related genes are unclear in individuals with risk factors for AD. Forty-three amnestic mild cognitive impairment (aMCI) subjects and 30 healthy controls underwent resting-state functional magnetic resonance imaging (fMRI) measurements of brain topological organization. Thirty-three previously suggested tagging single nucleotide polymorphisms (SNPs) from 12 candidate genes in the cholesterol metabolism pathway were further investigated. A cholesterol metabolism pathway gene-based imaging genetics approach was then utilized to investigate disease-related differences between the groups based on genotype-by-aMCI interactions. The cholesterol metabolism pathway genes exerted widespread effects on the cortico-subcortical-cerebellar spontaneous brain activity. Meanwhile, left lateralization of global brain connectivity was associated with cholesterol metabolism pathway genes. The APOE rs429358 variation significantly influenced the brain network characteristics, affecting the activation of nodes as well as the connectivity of edges in aMCI subjects. The cholesterol metabolism pathway gene-based imaging genetics approach may provide new opportunities to understand the mechanisms underlying AD and suggested that APOE rs429358 is a core genetic variation that is associated with disease-related differences in brain function. PMID:26985771

  14. Escherichia coli pfs transcription: regulation and proposed roles in autoinducer-2 synthesis and purine excretion.

    PubMed

    Kim, Youngbae; Lew, Chih M; Gralla, Jay D

    2006-11-01

    Pfs expression is required for several metabolic pathways and limits the production of autoinducer-2, a molecule proposed to play a central role in interspecies quorum sensing. The present study reveals physiological conditions and promoter DNA elements that regulate Escherichia coli pfs transcription. Pfs transcription is shown to rely on both sigma 70 and sigma 38 (rpoS), and the latter is subject to induction that increases pfs expression. Transcription is maximal as the cells approach stationary phase, and this level can be increased by salt stress through induction of sigma 38-dependent expression. The pfs promoter is shown to contain both positive and negative elements, which can be used by both forms of RNA polymerase. The negative element is contained within the overlapping dgt promoter, which is involved in purine metabolism. Consideration of the physiological roles of sigma 38 and dgt leads to a model for how autoinducer production is controlled under changing physiological conditions. PMID:16950920

  15. Purine receptor antagonist modulates serology and affective behaviors in lupus-prone mice: evidence of autoimmune-induced pain?

    PubMed Central

    Ballok, David A.; Sakic, Boris

    2008-01-01

    Neurologic and psychiatric (NP) manifestations are severe complications of systemic lupus erythematosus (SLE). As commonly seen in patients, spontaneous disease onset in the MRL/MpJ-Faslpr/ J (MRL-lpr) mouse model of NP-SLE is accompanied by increased autoantibodies, proinflammatorycytokines and behavioral dysfunction which precede neuroinflammation and structural brain lesions. The role of purinergic receptors in the regulation of immunity and behavior remains largely unexplored in the field of neuropsychiatry. To examine the possibility that purinoception is involved in the development of affective behaviors, the P2X purinoceptor antagonist, suramin, was administered to lupus-prone mice from 5 to 14 weeks of age. In addition to food and water measures, novel object and sucrose preference tests were performed to assess neophobic anxiety- and anhedonic-like behaviors. Enzyme-linked immunosorbant assays for anti-nuclear antibodies (ANA) and pro-inflammatory cytokines were employed in immunopathological analyses. Changes in dendritic morphology in the hippocampal CA1 region were examined by a Golgi impregnation method. Suramin significantly lowered serum ANA and prevented behavioral deficits, but did not prevent neuronal atrophy in MRL-lpr animals. In a new batch of asymptomatic mice, systemic administration of corticosterone was found to induce aberrations in CA1 dendrites, comparable to the “stress” of chronic disease. The precise mechanism(s) through which purine receptor inhibition exerted beneficial effects is not known. The present data supports the hypothesis that activation of the peripheral immune system induces nociceptive-related behavioral symptomatology which is attenuated by the analgesic effects of suramin. Hypercortisolemia may also initiate neuronal damage, and metabolic perturbations may underlie neuro-immuno-endocrine imbalances in MRL-lpr mice. PMID:18601998

  16. Guanine-based purines modulate the effect of L-NAME on learning and memory in rats.

    PubMed

    Giuliani, P; Buccella, P; Ballerini, P; Ciccarelli, R; D'alimonte, I; Cicchitti, S; Petragnani, N; Natale, S; Iacovella, G; Caciagli, F; Di Iorio, P

    2012-11-01

    Guanosine has been reported to exert neuroprotective effects. We recently reported that, following intraperitoneal (i.p.) injection to rats, it resulted to be widely distributed. Its metabolic product guanine also rapidly increased in all the tissues, including brain, after i.p. injection of guanosine and consistently we found a significant enzymatic activity of a soluble purine nucleoside phosphorylase in the plasma of the treated animals. In this study the effect of per os administration of guanosine or guanine to rats submitted to passive avoidance task has been evaluated. Guanosine (4 and 8 mg/kg) administered pretraining impaired retention in the passive avoidance task and was unable to prevent the amnesic effect caused by 100 mg/kg N-omega-nitro-l-arginine methyl ester (L-NAME), an inhibitor of the nitric oxide synthase (NOS) known to reduce the capability of treated animals to acquire or retain informations in several learning tasks. On the contrary, guanine (4 and 8 mg/kg), which per se did not modify the latency to step-trough in the passive avoidance task, when administered pretraining 15 min before L-NAME prevented, in a dose dependent manner, the amnesic effect of the NOS inihibitor. Moreover the nucleobase was able to rescue the memory trace also when administered after training. Neither guanosine nor guanine had effects on locomotor activity. These results indicate that guanine can exert important biological activities which may be different from those mediated by its precursor guanosine, thus this evenience should be taken into account when the biological effects of guanosine are evaluated. PMID:23138719

  17. Guanine-based purines modulate the effect of L-NAME on learning and memory in rats.

    PubMed

    Giuliani, P; Buccella, S; Ballerini, P; Ciccarelli, R; D'Alimonte, I; Cicchitti, S; Petragnani, N; Natale, S; Iacovella, G; Caciagli, F; Di Iorio, P

    2012-12-01

    Guanosine has been reported to exert neuroprotective effects. We recently reported that, following intraperitoneal (i.p.) injection to rats, it resulted to be widely distributed. Its metabolic product guanine also rapidly increased in all the tissues, including brain, after i.p. injection of guanosine and consistently we found a significant enzymatic activity of a soluble purine nucleoside phosphorylase in the plasma of the treated animals. In this study the effect of per os administration of guanosine or guanine to rats submitted to passive avoidance task has been evaluated. Guanosine (4 and 8 mg/kg) administered pretraining impaired retention in the passive avoidance task and was unable to prevent the amnesic effect caused by 100 mg/kg N-omega-nitro-l-arginine methyl ester (L-NAME), an inhibitor of the nitric oxide synthase (NOS) known to reduce the capability of treated animals to acquire or retain informations in several learning tasks. On the contrary, guanine (4 and 8 mg/kg), which per se did not modify the latency to step-trough in the passive avoidance task, when administered pretraining 15 min before L-NAME prevented, in a dose dependent manner, the amnesic effect of the NOS inhibitor. Moreover the nucleobase was able to rescue the memory trace also when administered after training. Neither guanosine nor guanine had effects on locomotor activity. These results indicate that guanine can exert important biological activities which may be different from those mediated by its precursor guanosine, thus this evenience should be taken into account when the biological effects of guanosine are evaluated. PMID:23241935

  18. Development of a new HPLC method using fluorescence detection without derivatization for determining purine nucleoside phosphorylase activity in human plasma.

    PubMed

    Giuliani, Patricia; Zuccarini, Mariachiara; Buccella, Silvana; Rossini, Margherita; D'Alimonte, Iolanda; Ciccarelli, Renata; Marzo, Matteo; Marzo, Antonio; Di Iorio, Patrizia; Caciagli, Francesco

    2016-01-15

    Purine nucleoside phosphorylase (PNP) activity is involved in cell survival and function, since PNP is a key enzyme in the purine metabolic pathway where it catalyzes the phosphorolysis of the nucleosides to the corresponding nucleobases. Its dysfunction has been found in relevant pathological conditions (such as inflammation and cancer), so the detection of PNP activity in plasma could represent an attractive marker for early diagnosis or assessment of disease progression. Thus the aim of this study was to develop a simple, fast and sensitive HPLC method for the determination of PNP activity in plasma. The separation was achieved on a Phenomenex Kinetex PFP column using 0.1% formic acid in water and methanol as mobile phases in gradient elution mode at a flow rate of 1ml/min and purine compounds were detected using UV absorption and fluorescence. The analysis was fast since the run was achieved within 13min. This method improved the separation of the different purines, allowing the UV-based quantification of the natural PNP substrates (inosine and guanosine) or products (hypoxanthine and guanine) and its subsequent metabolic products (xanthine and uric acid) with a good precision and accuracy. The most interesting innovation is the simultaneous use of a fluorescence detector (excitation/emission wavelength of 260/375nm) that allowed the quantification of guanosine and guanine without derivatization. Compared with UV, the fluorescence detection improved the sensitivity for guanine detection by about 10-fold and abolished almost completely the baseline noise due to the presence of plasma in the enzymatic reaction mixture. Thus, the validated method allowed an excellent evaluation of PNP activity in plasma which could be useful as an indicator of several pathological conditions. PMID:26720700

  19. Isolation of Purines and Pyrimidines from the Murchison Meteorite

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Bada, J. K.

    2003-01-01

    The origin of life on Earth, and possibly on other planets such as Mars, would have required the presence of liquid water and a continuous supply of prebiotic organic compounds. The delivery of organic matter by asteroids, comets, and carbonaceous meteorites could have contributed to the early Earth's prebiotic inventory by seeding the planet with biologically important organic compounds. A wide variety of prebiotic organic compounds have previously been detected in the Murchison CM type carbonaceous chondrite including amino acids, purines and pyrimidines'. These compounds play a major role in terrestrial biochemistry and are integral components of proteins, DNA and RNA. In this study we developed a new extraction technique using sublimation in order to isolate purines and pyrimidines from Murchison2, which is cleaner and more time efficient that traditional methods3. Several purines including adenine, guanine, hypoxanthine and xanthine were positively identified by high performance liquid chromatography and ultraviolet absorption detection in our Murchison extracts. The purines detected in Murchison do not correlate with the distribution of nucleobases found in geological environments on Earth4. Moreover, the abundance of extraterrestrial amino acids and the low level of terrestrial amino acid contaminants found in Murchison', support the idea that the purines in t h s meteorite are extraterrestrial in origin.

  20. A high fat diet alters metabolic and bioenergetic function in the brain: A magnetic resonance spectroscopy study.

    PubMed

    Raider, Kayla; Ma, Delin; Harris, Janna L; Fuentes, Isabella; Rogers, Robert S; Wheatley, Joshua L; Geiger, Paige C; Yeh, Hung-Wen; Choi, In-Young; Brooks, William M; Stanford, John A

    2016-07-01

    Diet-induced obesity and associated metabolic effects can lead to neurological dysfunction and increase the risk of developing Alzheimer's disease (AD) and Parkinson's disease (PD). Despite these risks, the effects of a high-fat diet on the central nervous system are not well understood. To better understand the mechanisms underlying the effects of high fat consumption on brain regions affected by AD and PD, we used proton magnetic resonance spectroscopy ((1)H-MRS) to measure neurochemicals in the hippocampus and striatum of rats fed a high fat diet vs. normal low fat chow. We detected lower concentrations of total creatine (tCr) and a lower glutamate-to-glutamine ratio in the hippocampus of high fat rats. Additional effects observed in the hippocampus of high fat rats included higher N-acetylaspartylglutamic acid (NAAG), and lower myo-inositol (mIns) and serine (Ser) concentrations. Post-mortem tissue analyses revealed lower phosphorylated AMP-activated protein kinase (pAMPK) in the striatum but not in the hippocampus of high fat rats. Hippocampal pAMPK levels correlated significantly with tCr, aspartate (Asp), phosphoethanolamine (PE), and taurine (Tau), indicating beneficial effects of AMPK activation on brain metabolic and energetic function, membrane turnover, and edema. A negative correlation between pAMPK and glucose (Glc) indicates a detrimental effect of brain Glc on cellular energy response. Overall, these changes indicate alterations in neurotransmission and in metabolic and bioenergetic function in the hippocampus and in the striatum of rats fed a high fat diet. PMID:27125544

  1. Characterization of cerebral glutamine uptake from blood in the mouse brain: implications for metabolic modeling of 13C NMR data

    PubMed Central

    Bagga, Puneet; Behar, Kevin L; Mason, Graeme F; De Feyter, Henk M; Rothman, Douglas L; Patel, Anant B

    2014-01-01

    13C Nuclear Magnetic Resonance (NMR) studies of rodent and human brain using [1-13C]/[1,6-13C2]glucose as labeled substrate have consistently found a lower enrichment (∼25% to 30%) of glutamine-C4 compared with glutamate-C4 at isotopic steady state. The source of this isotope dilution has not been established experimentally but may potentially arise either from blood/brain exchange of glutamine or from metabolism of unlabeled substrates in astrocytes, where glutamine synthesis occurs. In this study, the contribution of the former was evaluated ex vivo using 1H-[13C]-NMR spectroscopy together with intravenous infusion of [U-13C5]glutamine for 3, 15, 30, and 60 minutes in mice. 13C labeling of brain glutamine was found to be saturated at plasma glutamine levels >1.0 mmol/L. Fitting a blood–astrocyte–neuron metabolic model to the 13C enrichment time courses of glutamate and glutamine yielded the value of glutamine influx, VGln(in), 0.036±0.002 μmol/g per minute for plasma glutamine of 1.8 mmol/L. For physiologic plasma glutamine level (∼0.6 mmol/L), VGln(in) would be ∼0.010 μmol/g per minute, which corresponds to ∼6% of the glutamine synthesis rate and rises to ∼11% for saturating blood glutamine concentrations. Thus, glutamine influx from blood contributes at most ∼20% to the dilution of astroglial glutamine-C4 consistently seen in metabolic studies using [1-13C]glucose. PMID:25074745

  2. Inflammatory-Induced Hibernation in the Fetus: Priming of Fetal Sheep Metabolism Correlates with Developmental Brain Injury

    PubMed Central

    Keller, Matthias; Enot, David P.; Hodson, Mark P.; Igwe, Emeka I.; Deigner, Hans-Peter; Dean, Justin; Bolouri, Hayde; Hagberg, Henrik; Mallard, Carina

    2011-01-01

    Prenatal inflammation is considered an important factor contributing to preterm birth and neonatal mortality and morbidity. The impact of prenatal inflammation on fetal bioenergetic status and the correlation of specific metabolites to inflammatory-induced developmental brain injury are unknown. We used a global metabolomics approach to examine plasma metabolites differentially regulated by intrauterine inflammation. Preterm-equivalent sheep fetuses were randomized to i.v. bolus infusion of either saline-vehicle or LPS. Blood samples were collected at baseline 2 h, 6 h and daily up to 10 days for metabolite quantification. Animals were killed at 10 days after LPS injection, and brain injury was assessed by histopathology. We detected both acute and delayed effects of LPS on fetal metabolism, with a long-term down-regulation of fetal energy metabolism. Within the first 3 days after LPS, 121 metabolites were up-regulated or down-regulated. A transient phase (4–6 days), in which metabolite levels recovered to baseline, was followed by a second phase marked by an opposing down-regulation of energy metabolites, increased pO2 and increased markers of inflammation and ADMA. The characteristics of the metabolite response to LPS in these two phases, defined as 2 h to 2 days and at 6–9 days, respectively, were strongly correlated with white and grey matter volumes at 10 days recovery. Based on these results we propose a novel concept of inflammatory-induced hibernation of the fetus. Inflammatory priming of fetal metabolism correlated with measures of brain injury, suggesting potential for future biomarker research and the identification of therapeutic targets. PMID:22242129

  3. Saguenay Youth Study: a multi-generational approach to studying virtual trajectories of the brain and cardio-metabolic health.

    PubMed

    Paus, T; Pausova, Z; Abrahamowicz, M; Gaudet, D; Leonard, G; Pike, G B; Richer, L

    2015-02-01

    This paper provides an overview of the Saguenay Youth Study (SYS) and its parental arm. The overarching goal of this effort is to develop trans-generational models of developmental cascades contributing to the emergence of common chronic disorders, such as depression, addictions, dementia and cardio-metabolic diseases. Over the past 10 years, we have acquired detailed brain and cardio-metabolic phenotypes, and genome-wide genotypes, in 1029 adolescents recruited in a population with a known genetic founder effect. At present, we are extending this dataset to acquire comparable phenotypes and genotypes in the biological parents of these individuals. After providing conceptual background for this work (transactions across time, systems and organs), we describe briefly the tools employed in the adolescent arm of this cohort and highlight some of the initial accomplishments. We then outline in detail the phenotyping protocol used to acquire comparable data in the parents. PMID:25454417

  4. Effect of ethanol in utero on higher nervous activity and protein and lipid metabolism in the rat brain

    SciTech Connect

    Zabbudovskii, A.L.; Zhulin, V.V.

    1985-10-01

    The authors study parameters of protein phosphorylation and glycoprotein and phospholipid synthesis in the neocortex and hippocampus of adult rats and compare the findings with the results of an investigation of formation and preservation of defensive conditioned reflexes. The pattern of changes in these metabolic parameters are studied in response to stress. For the biochemical tests, the animals were lightly anesthetized with ether and injected with a mixture of (P 32)-orthophosphate and (H 3)-fucose. Phospholipids were identified with molybdate reagent and radioactivity of the protein digest and lipids was measured in Bray's scintillator. The study shows that the use of stress brought metabolic differences between the brain of the experimental and control rats more clearly to light.

  5. Comments on "Brain Size and Cerebral Glucose Metabolic Rate in Nonspecific Mental Retardation and Down Syndrome."

    ERIC Educational Resources Information Center

    Willerman, Lee; Schultz, Robert T.

    1995-01-01

    The relationship between mental retardation and brain size is discussed. Research suggests that a common path for many otherwise idiopathic mild retardation cases (genetic or environmental) could be small brain size, indicating reduced information processing capacity. Suggestions are made for further research on neuron number. (SLD)

  6. Important roles of brain-specific carnitine palmitoyltransferase and ceramide metabolism in leptin hypothalamic control of feeding

    PubMed Central

    Gao, Su; Zhu, Guangjing; Gao, Xuefei; Wu, Donghai; Carrasco, Patricia; Casals, Núria; Hegardt, Fausto G.; Moran, Timothy H.; Lopaschuk, Gary D.

    2011-01-01

    Brain-specific carnitine palmitoyltransferase-1 (CPT-1c) is implicated in CNS control of food intake. In this article, we explore the role of hypothalamic CPT-1c in leptin's anorexigenic actions. We first show that adenoviral overexpression of CPT-1c in hypothalamic arcuate nucleus of rats increases food intake and concomitantly up-regulates orexigenic neuropeptide Y (NPY) and Bsx (a transcription factor of NPY). Then, we demonstrate that this overexpression antagonizes the anorectic actions induced by central leptin or compound cerulenin (an inhibitor of fatty acid synthase). The overexpression of CPT-1c also blocks leptin-induced down-regulations of NPY and Bsx. Furthermore, the anorectic actions of central leptin or cerulenin are impaired in mice with brain CPT-1c deleted. Both anorectic effects require elevated levels of hypothalamic arcuate nucleus (Arc) malonyl-CoA, a fatty acid-metabolism intermediate that has emerged as a mediator in hypothalamic control of food intake. Thus, these data suggest that CPT-1c is implicated in malonyl-CoA action in leptin's hypothalamic anorectic signaling pathways. Moreover, ceramide metabolism appears to play a role in leptin's central control of feeding. Leptin treatment decreases Arc ceramide levels, with the decrease being important in leptin-induced anorectic actions and down-regulations of NPY and Bsx. Of interest, our data indicate that leptin impacts ceramide metabolism through malonyl-CoA and CPT-1c, and ceramide de novo biosynthesis acts downstream of both malonyl-CoA and CPT-1c in mediating their effects on feeding and expressions of NPY and Bsx. In summary, we provide insights into the important roles of malonyl-CoA, CPT-1c, and ceramide metabolism in leptin's hypothalamic signaling pathways. PMID:21593415

  7. Important roles of brain-specific carnitine palmitoyltransferase and ceramide metabolism in leptin hypothalamic control of feeding.

    PubMed

    Gao, Su; Zhu, Guangjing; Gao, Xuefei; Wu, Donghai; Carrasco, Patricia; Casals, Núria; Hegardt, Fausto G; Moran, Timothy H; Lopaschuk, Gary D

    2011-06-01

    Brain-specific carnitine palmitoyltransferase-1 (CPT-1c) is implicated in CNS control of food intake. In this article, we explore the role of hypothalamic CPT-1c in leptin's anorexigenic actions. We first show that adenoviral overexpression of CPT-1c in hypothalamic arcuate nucleus of rats increases food intake and concomitantly up-regulates orexigenic neuropeptide Y (NPY) and Bsx (a transcription factor of NPY). Then, we demonstrate that this overexpression antagonizes the anorectic actions induced by central leptin or compound cerulenin (an inhibitor of fatty acid synthase). The overexpression of CPT-1c also blocks leptin-induced down-regulations of NPY and Bsx. Furthermore, the anorectic actions of central leptin or cerulenin are impaired in mice with brain CPT-1c deleted. Both anorectic effects require elevated levels of hypothalamic arcuate nucleus (Arc) malonyl-CoA, a fatty acid-metabolism intermediate that has emerged as a mediator in hypothalamic control of food intake. Thus, these data suggest that CPT-1c is implicated in malonyl-CoA action in leptin's hypothalamic anorectic signaling pathways. Moreover, ceramide metabolism appears to play a role in leptin's central control of feeding. Leptin treatment decreases Arc ceramide levels, with the decrease being important in leptin-induced anorectic actions and down-regulations of NPY and Bsx. Of interest, our data indicate that leptin impacts ceramide metabolism through malonyl-CoA and CPT-1c, and ceramide de novo biosynthesis acts downstream of both malonyl-CoA and CPT-1c in mediating their effects on feeding and expressions of NPY and Bsx. In summary, we provide insights into the important roles of malonyl-CoA, CPT-1c, and ceramide metabolism in leptin's hypothalamic signaling pathways. PMID:21593415

  8. Pharmacokinetic and metabolic studies of busulfan in rat plasma and brain.

    PubMed

    Hassan, M; Ehrsson, H; Wallin, I; Eksborg, S

    1988-01-01

    Busulfan kinetics were studied in the rat plasma and brain after an I.P. dose of 14C-busulfan or busulfan (15 mg/kg). The distribution of busulfan to the brain was rapid and the ratio brain/plasma concentration was 0.74 during the time-course of busulfan. The elimination half-lives in plasma and brain were 3h for intact busulfan and 8h for the 14C-radioactivity. The radioactivity remaining in plasma and brain after 24h was mostly busulfan metabolites e.g. sulfolane, 3-hydroxysulfolane and tetrahydrothiophene-1-oxide as identified by gas chromatography-mass spectrometry. The protein binding to rat plasma was low (9.2 +/- 4.4%). PMID:3243326

  9. Double functionalization of carbon nanotubes with purine and pyrimidine derivatives.

    PubMed

    Singh, Prabhpreet; Ménard-Moyon, Cécilia; Battigelli, Alessia; Toma, Francesca Maria; Raya, Jesus; Kumar, Jitendra; Nidamanuri, Nagapradeep; Verma, Sandeep; Bianco, Alberto

    2013-07-01

    Herein, we have developed a synthetic strategy for the covalent double functionalization of single-walled carbon nanotubes (SWCNTs) with a combination of purine-pyrimidine and purine-purine nucleobase systems. The nucleobases were introduced on the sidewall of oxidized SWCNTs through 1,3-dipolar cycloaddition and by amidation of the carboxylic acids located at the tips and defect sites of the nanotubes. The new nanohybrids were characterized by transmission electron microscopy, thermogravimetric analysis, FTIR and Raman spectroscopy, magic-angle spinning NMR spectroscopy, and Kaiser test. The nucleobase/SWCNT conjugates can be envisaged for the modulation of the interactions with nucleic acids by means of base pairing, thereby opening new possibilities in the development of DNA/CNT nanobioconjugates. PMID:23703975

  10. Phylogenetic Analysis and Comparative Genomics of Purine Riboswitch Distribution in Prokaryotes

    PubMed Central

    Singh, Payal; Sengupta, Supratim

    2012-01-01

    Riboswitches are regulatory RNA that control gene expression by undergoing conformational changes on ligand binding. Using phylogenetic analysis and comparative genomics we have been able to identify the class of genes/operons regulated by the purine riboswitch and obtain a high-resolution map of purine riboswitch distribution across all bacterial groups. In the process, we are able to explain the absence of purine riboswitches upstream to specific genes in certain genomes. We also identify the point of origin of various purine riboswitches and argue that not all purine riboswitches are of primordial origin, and that some purine riboswitches must have originated after the divergence of certain Firmicute orders in the course of evolution. Our study also reveals the role of horizontal transfer events in accounting for the presence of purine riboswitches in some gammaproteobacterial species. Our work provides significant insights into the origin, distribution and regulatory role of purine riboswitches in prokaryotes. PMID:23170063

  11. Effects of dieldrin, picrotoxin and Telodrin on the metabolism of ammonia in brain

    PubMed Central

    Hathway, D. E.; Mallinson, A.; Akintonwa, D. A. A.

    1965-01-01

    1. Increases in the concentrations of lactic acid and pyruvic acid in rat brain during acute dieldrin poisoning are associated with hyperactivity of the brain, whereas an increase in the cerebral alanine concentration occurs before the convulsions. Throughout the dieldrin-induced seizure pattern, fluctuations in the concentration of brain ammonia are out of phase with the actual convulsions. 2. Increases in the concentrations of alanine, ammonia and lactic acid in rat brain accompany picrotoxin-induced seizures; there is no increase in the concentration of glutamine. These changes are consistent with the inhibition of glutamine synthesis. 3. In addition to previously reported changes in the concentrations of intermediary metabolites of the brain after the administration of Telodrin (Hathway & Mallinson, 1964), increases have now been found in the alanine and lactic acid concentrations. Since increases in the alanine and glutamine concentrations occur before the convulsions, liberation of ammonia also occurs before the onset of convulsions and throughout their course. Ammonia-binding mechanisms later become inadequate and free ammonia accumulates in cerebral tissues. 4. An increase in the pyruvic acid concentration of the brain after the intraperitoneal injection of either dieldrin or Telodrin is endogenous in origin. 5. The parenteral administration of a small dose of glutamine increases the cerebral concentrations of alanine and glutamic acid. Some animals previously treated with glutamine resisted Telodrin convulsions. 6. Mechanisms for the disposal of ammonia liberated in brain are discussed. PMID:14340058

  12. Early metabolic/cellular-level resuscitation following terminal brain stem herniation: implications for organ transplantation.

    PubMed

    Arbour, Richard B

    2013-01-01

    Patients with terminal brain stem herniation experience global physiological consequences and represent a challenging population in critical care practice as a result of multiple factors. The first factor is severe depression of consciousness, with resulting compromise in airway stability and lung ventilation. Second, with increasing severity of brain trauma, progressive brain edema, mass effect, herniation syndromes, and subsequent distortion/displacement of the brain stem follow. Third, with progression of intracranial pathophysiology to terminal brain stem herniation, multisystem consequences occur, including dysfunction of the hypothalamic-pituitary axis, depletion of stress hormones, and decreased thyroid hormone bioavailability as well as biphasic cardiovascular state. Cardiovascular dysfunction in phase 1 is a hyperdynamic and hypertensive state characterized by elevated systemic vascular resistance and cardiac contractility. Cardiovascular dysfunction in phase 2 is a hypotensive state characterized by decreased systemic vascular resistance and tissue perfusion. Rapid changes along the continuum of hyperperfusion versus hypoperfusion increase risk of end-organ damage, specifically pulmonary dysfunction from hemodynamic stress and high-flow states as well as ischemic changes consequent to low-flow states. A pronounced inflammatory state occurs, affecting pulmonary function and gas exchange and contributing to hemodynamic instability as a result of additional vasodilatation. Coagulopathy also occurs as a result of consumption of clotting factors as well as dilution of clotting factors and platelets consequent to aggressive crystalloid administration. Each consequence of terminal brain stem injury complicates clinical management within this patient demographic. In general, these multisystem consequences are managed with mechanism-based interventions within the context of caring for the donor's organs (liver, kidneys, heart, etc.) after death by neurological

  13. Metabolic tinkering by the gut microbiome: Implications for brain development and function.

    PubMed

    Selkrig, Joel; Wong, Peiyan; Zhang, Xiaodong; Pettersson, Sven

    2014-01-01

    Brain development is an energy demanding process that relies heavily upon diet derived nutrients. Gut microbiota enhance the host's ability to extract otherwise inaccessible energy from the diet via fermentation of complex oligosaccharides in the colon. This nutrient yield is estimated to contribute up to 10% of the host's daily caloric requirement in humans and fluctuates in response to environmental variations. Research over the past decade has demonstrated a surprising role for the gut microbiome in normal brain development and function. In this review we postulate that perturbations in the gut microbial-derived nutrient supply, driven by environmental variation, profoundly impacts upon normal brain development and function. PMID:24685620

  14. Beyond Crystallography: Investigating the Conformational Dynamics of the Purine Riboswitch

    NASA Astrophysics Data System (ADS)

    Stoddard, Colby D.; Batey, Robert T.

    Riboswitches are structured elements located in the 5'-untranslated regions of numerous bacterial mRNAs that serve to regulate gene expression via their ability to specifically bind metabolites. The purine riboswitch ligand-binding domain has emerged as an important model system for investigating the relationship between RNA structure and function. Directed by NMR and crystallographically generated structures of this RNA, a variety of biophysical and biochemical techniques have been utilized to understand its dynamic nature. In this review, we describe these various approaches and what they reveal about the purine riboswitch.

  15. Working memory dysfunction associated with brain functional deficits and cellular metabolic changes in patients with generalized anxiety disorder.

    PubMed

    Moon, Chung-Man; Sundaram, Thirunavukkarasu; Choi, Nam-Gil; Jeong, Gwang-Woo

    2016-08-30

    Generalized anxiety disorder (GAD) is associated with brain functional and morphological changes in connected with emotional dysregulation and cognitive deficit. This study dealt with the neural functional deficits and metabolic abnormalities in working memory (WM) task with emotion-inducing distractors in patients with GAD. Fourteen patients with GAD and 14 healthy controls underwent functional magnetic resonance imaging (fMRI) and proton magnetic resonance spectroscopy ((1)H-MRS) at 3T. In response to the emotional distractors in WM tasks, the patients concurrently showed higher activity in the hippocampus and lower activities in the superior occipital gyrus, superior parietal gyrus, dorsolateral prefrontal cortex (DLPFC) and precentral gyrus compared to the controls. MRS revealed significantly lower choline/creatine (Cho/Cr) and choline/N-acetylaspartate (Cho/NAA) ratios in the DLPFC. In particular, the Cho ratios were positively correlated with the brain activities based on blood oxygenation level-dependent signal change in the DLPFC. This study provides the first evidence for the association between the metabolic alterations and functional deficit in WM processing with emotion-inducing distractors in GAD. These findings will be helpful to understand the neural dysfunction in connection with WM impairment in GAD. PMID:27442922

  16. BRAIN-SPECIFIC CARNITINE PALMITOYLTRANSFERASE-1C: ROLE IN CNS FATTY ACID METABOLISM, FOOD INTAKE AND BODY WEIGHT

    PubMed Central

    Wolfgang, Michael J.; Cha, Seung Hun; Millington, David S.; Cline, Gary; Shulman, Gerald I; Suwa, Akira; Asaumi, Makoto; Kurama, Takeshi; Shimokawa, Teruhiko; Lane, M. Daniel

    2014-01-01

    While the brain does not utilize fatty acids as a primary energy source, recent evidence shows that intermediates of fatty acid metabolism serve as hypothalamic sensors of energy status. Increased hypothalamic malonyl-CoA, an intermediate in fatty acid synthesis, is indicative of energy surplus and leads to the suppression of food intake and increased energy expenditure. Malonyl-CoA functions as an inhibitor of CPT1, a mitochondrial outer membrane enzyme that initiates translocation of fatty acids into mitochondria for oxidation. The mammalian brain expresses a unique homologous CPT1, CPT1c, that binds malonyl-CoA tightly but does not support fatty acid oxidation in vivo, in hypothalamic explants or in heterologous cell culture systems. CPT1c KO mice under fasted or refed conditions do not exhibit an altered CNS transcriptome of genes known to be involved in fatty acid metabolism. CPT1c KO mice exhibit normal levels of metabolites and of hypothalamic malonyl-CoA and fatty acyl-CoA levels either in the fasted or refed states. However, CPT1c KO mice exhibit decreased food intake and lower body weight than WT littermates. In contrast, CPT1c KO mice gain excessive body weight and body fat when fed a high-fat diet while maintaining lower or equivalent food intake. Heterozygous mice display an intermediate phenotype. These findings provide further evidence that CPT1c plays a role in maintaining energy homeostasis, but not through altered fatty acid oxidation. PMID:18248603

  17. [Effect of Low-Intensity 900 MHz Frequency Electromagnetic Radiation on Rat Brain Enzyme Activities Linked to Energy Metabolism].

    PubMed

    Petrosyan, M S; Nersesova, L S; Gazaryants, M G; Meliksetyan, G O; Malakyan, M G; Bajinyan, S A; Akopian, J I

    2015-01-01

    The research deals with the effect of low-intensity 900 MHz frequency electromagnetic radiation (EMR), power density 25 μW/cm2, on the following rat brain and blood serum enzyme activities: creatine kinase (CK), playing a central role in the process of storing and distributing the cell energy, as well as alanine aminotransferase (ALT) and aspartate aminotransferase (AST) that play a key role in providing the conjunction of carbohydrate and amino acid metabolism. The comparative analysis of the changes in the enzyme activity studied at different times following the two-hour single, as well as fractional, radiation equivalent of the total time showed that the most radiosensitive enzyme is the brain creatine kinase, which may then be recommended as a marker of the radio frequency radiation impact. According to the analysis of the changing dynamics of the CK, ALT and AST activity level, with time these changes acquire the adaptive character and are directed to compensate the damaged cell energy metabolism. PMID:26964348

  18. EFFECTS OF HYPERTHERMIA AND HYPERTHERMIA PLUS MICROWAVES ON RAT BRAIN ENERGY METABOLISM

    EPA Science Inventory

    The effects of hyperthermia, alone and in conjunction with microwave exposure, on brain energetics were studied in anesthetized male Sprague-Dawley rats. The effects of temperature on adenosine triphosphate concentration (ATP) and creatine phosphate concentration (CP) was determi...

  19. Sustainable synthesis and automated deposition: an accessible discovery screening library of fragment-like purines.

    PubMed

    Kamper, Christoph; Korpis, Katharina; Specker, Edgar; Anger, Lennart; Neuenschwander, Martin; Bednarski, Patrick J; Link, Andreas

    2012-08-01

    A sub-library of 88 information-rich lead-like purine derivatives were prepared and deposited in an open access academic screening facility. The rationale for the synthesis of these rigid low complexity structures was the privileged character of the purine heterocycle associated with its inherent probability of interactions with multiple adenine-related targets. Although generally expected to be weak binders in many assays, such fragment-like compounds are estimated to match diverse binding sites. It is suggested that heterocycles with many anchor points for hydrogen bonds can be anticipated to undergo very specific interactions to produce more negative enthalpies and thus provide superior starting points for lead optimization than compounds that owe their activity to entropic effects. The in vitro cytotoxicity of the small compounds on a panel of human cancer cell lines has been investigated and some of them showed marked unselective or selective toxicity. This data may be useful if these fragments are to be incorporated into drug-like structures via metabolically cleavable connections. The sub-library will be implemented as part of the ChemBioNet ( www.chembionet.info ) library, and it is open to screening campaigns of academic research groups striving for a fragment-based approach in their biological assays. PMID:22890959

  20. Metabolism of choline in brain of the aged CBF-1 mouse

    SciTech Connect

    Saito, M.; Kindel, G.; Karczmar, A.G.; Rosenberg, A.

    1986-01-01

    In order to quantify the changes that occur in the cholinergic central nervous system with aging, we have compared acetylcholine (Ach) formation in brain cortex slice preparations from 2-year-old aged CBF-1 mouse brains and compared the findings with those in 2-4-month-old young adult mouse brain slices. Incorporation of exogenous radioactively labelled choline (31 nM (/sup 3/H) choline) into acetyl choline in incubated brain slices was linear with time for 90 min. Percentage of total choline label distributed into Ach remained constant from 5 min after starting the incubation to 90 min. In contrast, distribution of label into intracellular free choline (Ch) and phosphorylcholine (Pch) changed continuously over this period suggesting that the Ch pool for Ach synthesis in brain cortex is different from that for Pch synthesis. Incorporation of radioactivity into Ach was not influenced by administration of 10 microM eserine, showing that the increment of radioactivity in Ach reflects rate of Ach formation, independently from degradation by acetylcholine esterases. Under our experimental conditions, slices from cortices of aged 24-month-old mouse brain showed a significantly greater (27%) incorporation of radioactivity into intracellular Ach than those from young, 2-4-month-old, brain cortices. Inhibitors of Ach release, 1 mM ATP or GABA, had no effect. Since concentration of radioactive precursor in the incubation medium was very low (31 nM), the Ch pool for Ach synthesis in slices was labelled without measurably changing the size of the endogenous pool. These data suggest a compensatory acceleration of Ach synthesis or else a smaller precursor pool specific for Ach synthesis into which labelled Ch migrated in aged brain.

  1. 40 CFR 721.4685 - Substituted purine metal salt (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Substituted purine metal salt (generic... Specific Chemical Substances § 721.4685 Substituted purine metal salt (generic name). (a) Chemical... as a substituted purine metal salt (PMN P-95-175) is subject to reporting under this section for...

  2. 40 CFR 721.4685 - Substituted purine metal salt (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Substituted purine metal salt (generic... Specific Chemical Substances § 721.4685 Substituted purine metal salt (generic name). (a) Chemical... as a substituted purine metal salt (PMN P-95-175) is subject to reporting under this section for...

  3. 40 CFR 721.4685 - Substituted purine metal salt (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Substituted purine metal salt (generic... Specific Chemical Substances § 721.4685 Substituted purine metal salt (generic name). (a) Chemical... as a substituted purine metal salt (PMN P-95-175) is subject to reporting under this section for...

  4. 40 CFR 721.4685 - Substituted purine metal salt (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Substituted purine metal salt (generic... Specific Chemical Substances § 721.4685 Substituted purine metal salt (generic name). (a) Chemical... as a substituted purine metal salt (PMN P-95-175) is subject to reporting under this section for...

  5. Simultaneous double-isotope autoradiographic measurement of local cerebral glucose metabolic rate and acid-base status in rat brain.

    PubMed

    Lockwood, A H; Peek, K E; Berridge, M; Bogue, L; Yap, E

    1987-03-01

    We developed a double-isotope autoradiographic method for the simultaneous measurement of the local cerebral metabolic rate for glucose (1CMRG) and index of regional acid-base status (rABI) in single brain slices using [2-14C]deoxy-D-glucose (DG) and 5,5-dimethyl-[2-14C]oxazolidine-2,4,dione (DMO). After iv isotope administration, paper chromatography separates plasma DMO from DG activity using a methanol-methylene chloride solvent system. Initial tissue autoradiograms depict regional DMO plus DG and DG metabolite distribution. After 14 days in a well-ventilated hood, 97.5 +/- 0.5% of all DMO is lost from tissue sections by sublimation, and a second autoradiogram depicts DG plus DG metabolite distribution. Retention of brain lipids does not alter beta-particle self-absorption, avoiding problems associated with isotope extraction with solvents. Autoradiograms are digitized and converted to isotope-content images. The second autoradiogram is used for 1CMRG computation. After subtracting the second regional isotope-content value from the first, the DMO content is obtained and used to compute rABI. Application of this method to normal animals yields expected values for 1CMRG and rABI. This method is amenable to whole-slice digitization and creation of functional images of 1CMRG and ABI followed by pixel-by-pixel correlations of the two variables, making this a potentially valuable tool for the investigation of the relationships between glucose metabolism and brain acid-base balance. PMID:3505334

  6. Effect of perinatally supplemented flavonoids on brain structure, circulation, cognition, and metabolism in C57BL/6J mice.

    PubMed

    Janssen, Carola I F; Zerbi, Valerio; Mutsaers, Martina P C; Jochems, Mieke; Vos, Claudia A; Vos, Julle O; Berg, Brian M; van Tol, Eric A F; Gross, Gabriele; Jouni, Zeina E; Heerschap, Arend; Kiliaan, Amanda J

    2015-10-01

    Evidence suggests that flavanol consumption can beneficially affect cognition in adults, but little is known about the effect of flavanol intake early in life. The present study aims to assess the effect of dietary flavanol intake during the gestational and postnatal period on brain structure, cerebral blood flow (CBF), cognition, and brain metabolism in C57BL/6J mice. Female wild-type C57BL/6J mice were randomly assigned to either a flavanol supplemented diet or a control diet at gestational day 0. Male offspring remained on the corresponding diets throughout life and performed cognitive and behavioral tests during puberty and adulthood assessing locomotion and exploration (Phenotyper and open field), sensorimotor integration (Rotarod and prepulse inhibition), and spatial learning and memory (Morris water maze, MWM). Magnetic resonance spectroscopy and imaging at 11.7T measured brain metabolism, CBF, and white and gray matter integrity in adult mice. Biochemical and immunohistochemical analyses evaluated inflammation, synaptic plasticity, neurogenesis, and vascular density. Cognitive and behavioral tests demonstrated increased locomotion in Phenotypers during puberty after flavanol supplementation (p = 0.041) but not in adulthood. Rotarod and prepulse inhibition demonstrated no differences in sensorimotor integration. Flavanols altered spatial learning in the MWM in adulthood (p = 0.039), while spatial memory remained unaffected. Additionally, flavanols increased diffusion coherence in the visual cortex (p = 0.014) and possibly the corpus callosum (p = 0.066) in adulthood. Mean diffusion remained unaffected, a finding that corresponds with our immunohistochemical data showing no effect on neurogenesis, synaptic plasticity, and vascular density. However, flavanols decreased CBF in the cortex (p = 0.001) and thalamus (p = 0.009) in adulthood. Brain metabolite levels and neuroinflammation remained unaffected by flavanols. These data suggest

  7. Brain energy metabolism and neurotransmission at near-freezing temperatures: in vivo (1)H MRS study of a hibernating mammal.

    PubMed

    Henry, Pierre-Gilles; Russeth, Kevin P; Tkac, Ivan; Drewes, Lester R; Andrews, Matthew T; Gruetter, Rolf

    2007-06-01

    The brain of a hibernating mammal withstands physiological extremes that would result in cerebral damage and death in a non-hibernating species such as humans. To examine the possibility that this neuroprotection results from alterations in cerebral metabolism, we used in vivo(1)H NMR spectroscopy at high field (9.4 T) to measure the concentration of 18 metabolites (neurochemical profile) in the brain of 13-lined ground squirrels (Spermophilus tridecemlineatus) before, during, and after hibernation. Resolved in vivo(1)H NMR spectra were obtained even at low temperature in torpid hibernators ( approximately 7 degrees C). The phosphocreatine-to-creatine ratio was increased during torpor (+143%) indicating energy storage, and remained increased to a lesser extent during interbout arousal (IBA) (+83%). The total gamma-aminobutyric acid concentration was increased during torpor (+135%) and quickly returned to baseline during IBA. Glutamine (Gln) was decreased (-54%) during torpor but quickly returned to normal levels during IBA and after terminal arousal in the spring. Glutamate (Glu) was also decreased during torpor (-17%), but remained decreased during IBA (-20% compared with fall), and returned to normal level in the spring. Our observation that Glu and Gln levels are depressed in the brain of hibernators suggests that the balance between anaplerosis and loss of Glu and Gln (because of glutamatergic neurotransmission or other mechanisms) is altered in hibernation. PMID:17437538

  8. Data set of interactomes and metabolic pathways of proteins differentially expressed in brains with Alzheimer׳s disease.

    PubMed

    Minjarez, Benito; Calderón-González, Karla Grisel; Valero Rustarazo, Ma Luz; Herrera-Aguirre, María Esther; Labra-Barrios, María Luisa; Rincon-Limas, Diego E; Sánchez Del Pino, Manuel M; Mena, Raul; Luna-Arias, Juan Pedro

    2016-06-01

    Alzheimer׳s disease is one of the main causes of dementia in the elderly and its frequency is on the rise worldwide. It is considered the result of complex interactions between genetic and environmental factors, being many of them unknown. Therefore, there is a dire necessity for the identification of novel molecular players for the understanding of this disease. In this data article we determined the protein expression profiles of whole protein extracts from cortex regions of brains from patients with Alzheimer׳s disease in comparison to a normal brain. We identified 721 iTRAQ-labeled polypeptides with more than 95% in confidence. We analyzed all proteins that changed in their expression level and located them in the KEGG metabolic pathways, as well as in the mitochondrial complexes of the electron transport chain and ATP synthase. In addition, we analyzed the over- and sub-expressed polypeptides through IPA software, specifically Core I and Biomarkers I modules. Data in this article is related to the research article "Identification of proteins that are differentially expressed in brains with Alzheimer's disease using iTRAQ labeling and tandem mass spectrometry" (Minjarez et al., 2016) [1]. PMID:27257613

  9. Aluminium induced structural, metabolic alterations and protective effects of desferrioxamine in the brain tissue of mice: An FTIR study

    NASA Astrophysics Data System (ADS)

    Sivakumar, S.; Sivasubramanian, J.; Raja, B.

    2012-12-01

    In this study, we intended to made a new approach to evaluate aluminium induced metabolic changes in mice brain tissue using Fourier transform infrared spectroscopy. Results demonstrate that FTIR can successfully indicate the molecular changes that occur in all groups. The overall findings demonstrate the alterations on the major biochemical constituents, such as lipids, proteins and nucleic acids of the brain tissues of mice. The significant decrease in the area value of amide A peak and Olefinicdbnd CH stretching band suggests an alteration in the protein profile and lipid levels due to aluminium exposure, respectively. The significant shift in the amide I and amide II protein peaks may indicate the progression of aluminium induced Alzheimer's disease. Further the administration of DFO significantly improved the level of protein and brought back the amide I and II peaks nearer to the control value. Histopathological results also revealed impairment of Aluminium induced alterations in brain tissue. The results of the FTIR study were found to be in agreement with biochemical studies.

  10. Lactate and the Lactate-to-Pyruvate Molar Ratio Cannot Be Used as Independent Biomarkers for Monitoring Brain Energetic Metabolism: A Microdialysis Study in Patients with Traumatic Brain Injuries

    PubMed Central

    Sahuquillo, Juan; Merino, Maria-Angels; Sánchez-Guerrero, Angela; Arikan, Fuat; Vidal-Jorge, Marian; Martínez-Valverde, Tamara; Rey, Anna; Riveiro, Marilyn; Poca, Maria-Antonia

    2014-01-01

    Background For decades, lactate has been considered an excellent biomarker for oxygen limitation and therefore of organ ischemia. The aim of the present study was to evaluate the frequency of increased brain lactate levels and the LP ratio (LPR) in a cohort of patients with severe or moderate traumatic brain injury (TBI) subjected to brain microdialysis monitoring to analyze the agreement between these two biomarkers and to indicate brain energy metabolism dysfunction. Methods Forty-six patients with an admission Glasgow coma scale score of ≤13 after resuscitation admitted to a dedicated 10-bed Neurotraumatology Intensive Care Unit were included, and 5305 verified samples of good microdialysis data were analyzed. Results Lactate levels were above 2.5 mmol/L in 56.9% of the samples. The relationships between lactate and the LPR could not be adequately modeled by any linear or non-linear model. Neither Cohen’s kappa nor Gwet’s statistic showed an acceptable agreement between both biomarkers to classify the samples in regard to normal or abnormal metabolism. The dataset was divided into four patterns defined by the lactate concentrations and the LPR. A potential interpretation for these patterns is suggested and discussed. Pattern 4 (low pyruvate levels) was found in 10.7% of the samples and was characterized by a significantly low concentration of brain glucose compared with the other groups. Conclusions Our study shows that metabolic abnormalities are frequent in the macroscopically normal brain in patients with traumatic brain injuries and a very poor agreement between lactate and the LPR when classifying metabolism. The concentration of lactate in the dialysates must be interpreted while taking into consideration the LPR to distinguish between anaerobic metabolism and aerobic hyperglycolysis. PMID:25025772

  11. Dopamine D4 receptors modulate brain metabolic activity in the prefrontal cortex and cerebellum at rest and in response to methylphenidate

    SciTech Connect

    Michaelides, M.; Wang, G.; Michaelides, M.; Pascau, J.; Gispert, J.-D.; Delis, F.; Grandy, D.K.; Wang, G.-J.; Desco, M.; Rubinstein, M.; Volkow, N.D.; Thanos, P.K.

    2010-07-16

    Methylphenidate (MP) is widely used to treat attention deficit hyperactivity disorder (ADHD). Variable number of tandem repeats polymorphisms in the dopamine D4 receptor (D{sub 4}) gene have been implicated in vulnerability to ADHD and the response to MP. Here we examined the contribution of dopamine D4 receptors (D4Rs) to baseline brain glucose metabolism and to the regional metabolic responses to MP. We compared brain glucose metabolism (measured with micro-positron emission tomography and [{sup 18}F]2-fluoro-2-deoxy-D-glucose) at baseline and after MP (10 mg/kg, i.p.) administration in mice with genetic deletion of the D{sub 4}. Images were analyzed using a novel automated image registration procedure. Baseline D{sub 4}{sup -/-} mice had lower metabolism in the prefrontal cortex (PFC) and greater metabolism in the cerebellar vermis (CBV) than D{sub 4}{sup +/+} and D{sub 4}{sup +/-} mice; when given MP, D{sub 4}{sup -/-} mice increased metabolism in the PFC and decreased it in the CBV, whereas in D{sub 4}{sup +/+} and D{sub 4}{sup +/-} mice, MP decreased metabolism in the PFC and increased it in the CBV. These findings provide evidence that D4Rs modulate not only the PFC, which may reflect the activation by dopamine of D4Rs located in this region, but also the CBV, which may reflect an indirect modulation as D4Rs are minimally expressed in this region. As individuals with ADHD show structural and/or functional abnormalities in these brain regions, the association of ADHD with D4Rs may reflect its modulation of these brain regions. The differential response to MP as a function of genotype could explain differences in brain functional responses to MP between patients with ADHD and healthy controls and between patients with ADHD with different D{sub 4} polymorphisms.

  12. Acute effects of oral or parenteral aspartame on catecholamine metabolism in various regions of rat brain.

    PubMed

    Yokogoshi, H; Wurtman, R J

    1986-03-01

    Hypertensive (SHR) and nonhypertensive [Wistar-Kyoto (WKY); Sprague-Dawley (SD)] strains of rats received the dipeptide sweetener aspartame (200 mg/kg) or, as a positive control, tyrosine (200 mg/kg) by gavage or parenterally, after a brief (2-h) fast. Two hours later, compared with those of saline controls brain levels of the norepinephrine metabolite 3-methoxy-4-hydroxyphenylethylethyleneglycol (MHPG) sulfate were significantly higher in the hypothalamus (WKY), locus coeruleus (SD and SHR) and brain stem (SHR) in tyrosine-treated animals, and in the locus coeruleus (SD) of those given aspartame. Brain norepinephrine levels were also higher, compared with those of saline-treated control rats, in the cerebral cortex (SD and SHR), amygdala (SD) and locus coeruleus (WKY) after tyrosine administration, and in the amygdala (SD) and cerebral cortex (SHR) after aspartame administration. In another study, oral aspartame was found to be at least as effective as the parenterally administered sweetener in raising regional brain levels of tyrosine or MHPG sulfate (i.e., compared with corresponding levels in saline-treated rats). Animals receiving oral aspartame also exhibited higher plasma tyrosine and phenylalanine ratios (i.e., the ratios of their plasma concentrations to the summed concentrations of other large neutral amino acids that compete with them for uptake into the brain), than animals receiving saline. PMID:3950762

  13. A subconvulsive dose of kainate selectively compromises astrocytic metabolism in the mouse brain in vivo

    PubMed Central

    Walls, Anne B; Eyjolfsson, Elvar M; Schousboe, Arne; Sonnewald, Ursula; Waagepetersen, Helle S

    2014-01-01

    Despite the well-established use of kainate as a model for seizure activity and temporal lobe epilepsy, most studies have been performed at doses giving rise to general limbic seizures and have mainly focused on neuronal function. Little is known about the effect of lower doses of kainate on cerebral metabolism and particularly that associated with astrocytes. We investigated astrocytic and neuronal metabolism in the cerebral cortex of adult mice after treatment with saline (controls), a subconvulsive or a mildly convulsive dose of kainate. A combination of [1,2-13C]acetate and [1-13C]glucose was injected and subsequent nuclear magnetic resonance spectroscopy of cortical extracts was employed to distinctively map astrocytic and neuronal metabolism. The subconvulsive dose of kainate led to an instantaneous increase in the cortical lactate content, a subsequent reduction in the amount of [4,5-13C]glutamine and an increase in the calculated astrocytic TCA cycle activity. In contrast, the convulsive dose led to decrements in the cortical content and 13C labeling of glutamate, glutamine, GABA, and aspartate. Evidence is provided that astrocytic metabolism is affected by a subconvulsive dose of kainate, whereas a higher dose is required to affect neuronal metabolism. The cerebral glycogen content was dose-dependently reduced by kainate supporting a role for glycogen during seizure activity. PMID:24824917

  14. Functional and metabolic changes in the brain in neuropathic pain syndrome against the background of chronic epidural electrostimulation of the spinal cord.

    PubMed

    Sufianov, A A; Shapkin, A G; Sufianova, G Z; Elishev, V G; Barashin, D A; Berdichevskii, V B; Churkin, S V

    2014-08-01

    Changes in functional and metabolic activities of the brain were evaluated by EEG and positron-emission/computer tomography with 18F-fluorodeoxyglucose in patients with neuropathic pain syndrome previous to and 3 months after implantation of a system for chronic epidural spinal cord stimulation. In most cases, the use of a nerve stimulator was followed by alleviation of neuropathic pain and partial normalization of functional and metabolic activities of brain structures responsible for pain perception, emotiogenic, behavioral, and autonomic responses. PMID:25113605

  15. Distinct Distribution of Purines in CM and CR Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Callahan, Michael P.; Stern, Jennifer C.; Glavin, Daniel P.; Smith, Karen E.; Martin, Mildred G.; Dworkin, Jason P.

    2010-01-01

    Carbonaceous meteorites contain a diverse suite of organic molecules and delivered pre biotic organic compounds, including purines and pyrimidines, to the early Earth (and other planetary bodies), seeding it with the ingredients likely required for the first genetic material. We have investigated the distribution of nucleobases in six different CM and CR type carbonaceous chondrites, including fivc Antarctic meteorites never before analyzed for nucleobases. We employed a traditional formic acid extraction protocol and a recently developed solid phase extraction method to isolate nucleobases. We analyzed these extracts by high performance liquid chromatography with UV absorbance detection and tandem mass spectrometry (HPLC-UV -MS/MS) targeting the five canonical RNAIDNA bases and hypoxanthine and xanthine. We detected parts-per-billion levels of nucleobases in both CM and CR meteorites. The relative abundances of the purines found in Antarctic CM and CR meteorites were clearly distinct from each other suggesting that these compounds are not terrestrial contaminants. One likely source of these purines is formation by HCN oligomerization (with other small molecules) during aqueous alteration inside the meteorite parent body. The detection of the purines adenine (A), guanine (0), hypoxanthine (HX), and xanthine (X) in carbonaceous meteorites indicates that these compounds should have been available on the early Earth prior to the origin of the first genetic material.

  16. Copper-catalyzed synthesis of purine-fused polycyclics.

    PubMed

    Qu, Gui-Rong; Liang, Lei; Niu, Hong-Ying; Rao, Wei-Hao; Guo, Hai-Ming; Fossey, John S

    2012-09-01

    A novel protocol for a Cu-catalyzed direct C((sp(2)))-H activation/intramolecular amination reaction of 6-anilinopurine nucleosides has been developed. This approach provides a new access to a variety of multiheterocyclic compounds from purine compounds via Cu-catalyzed intramolecular N-H bond tautomerism which are endowed with fluorescence. PMID:22900616

  17. A Role for Astrocytes in Sensing the Brain Microenvironment and Neuro-Metabolic Integration.

    PubMed

    Teschemacher, A G; Gourine, A V; Kasparov, S

    2015-12-01

    Astrocytes occupy a strategic position in the brain where they can act as an interface between neurones and blood vessels, and neurones and the cerebro-spinal fluid. This location is ideal for functioning as interoceptors, as they may sense changes in brain microenvironment and contribute to the adaptive homeostatic responses coordinated by neuronal networks. Here we briefly review some of the recent evidence, which implicates the involvement of astrocytes in the central nervous control of breathing, sympathetic tone and blood glucose levels. L-lactate appears a potentially crucial signaling molecule in the communication between astrocytes and neurones. Based on the available evidence, we conclude that astrocytes contribute to the homeostasis by playing a significant role in the brain's interoceptive mechanisms. PMID:25837670

  18. Preweaning cocaine exposure alters brain glucose metabolic rates following repeated amphetamine administration in the adult rat.

    PubMed

    Melnick, Susan M; Torres-Reveron, Annelyn; Dow-Edwards, Diana L

    2004-10-15

    Developmental cocaine exposure produces long-term alterations in function of many neuronal circuits. This study examined glucose metabolic rates following repeated amphetamine administration in adult male and female rats pretreated with cocaine during postnatal days (PND) 11-20. PND11-20 cocaine increased the response to amphetamine in many components of the motor system and the dorsal caudate-putamen, in particular, and decreased the metabolic response in the hypothalamus. While amphetamine alone produced widespread increases in metabolism, there were no cocaine-related effects in the mesolimbic, limbic or sensory structures. These data suggest that a brief cocaine exposure during development can alter ontogeny and result in abnormal neuronal responses to repeated psychostimulant administration in adulthood. PMID:15464226

  19. [Effect of paeoniflorin on oxidative stress and energy metabolism in mice with lipopolysaccharide (LPS)-induced brain injury].

    PubMed

    Liu, Ling; Qiu, Xiang-jun; He, Su-na; Yang, Hui; Wang, Deng; Yang, Xue-mei

    2015-07-01

    Paeoniflorin is the main active ingredient of Chinese herbaceous peony. This study is to investigate the protective effect of paeoniflorin (Pae) on acute brain damage induced by lipopolysaccharide (LPS) in mice. The mice were randomly assigned to the normal control, model control (LPS), as well as groups of paeoniflorin and lipopolysaccharide (Pae + LPS). Then the mice were administered intraperitioneally with normal saline or Pae (10, 30 mg · kg(-1)) once daily for 6 d. One hour after intrapertioneally treatment on the seventh day, each group were injected LPS (5 mg · kg(-1)) to establish the endotoxin lipopolysaccharide inflammation model except the normal group. The mice were sacrificed after 6 h and the brain homogenates were prepared and measured. The malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC), hydrogen peroxide (H2O2), succinatedehydrogenase (SDH), Na(+)-K(+)-ATPase and Ca(2+)-Mg(2+)-ATPase were dectected by the colorimetric method. The levels of HO-1 and Nrf2 protein in subcellular fractions of brain tissue were detected by Western blot. The results demonstrated that the administration with paeoniflorin reduced the levels of the MDA production; significantly increase the activities of antioxidant enzyme (SOD and GSH-PX). In addition, paeoniflorin could enhance the total antioxidant capacity, decrease the level of H2O2, and increase the activities of SDH, Na(+)-K(+)-ATPase and Ca(2+)-Mg(2+)-ATPase. Furthermore, paeoniflorin can increase the expression of HO-1 and activate the nuclear transfer of Nrf2. Taking together, these findings suggest that paeoniflorin alleviate the acute inflammation in mice brain damage induced by LPS, which is related with its antioxidant effect and improvement of energy metabolism. PMID:26666042

  20. The involvement of nitric oxide in the hemodynamic and metabolic activities of the brain and small intestine

    NASA Astrophysics Data System (ADS)

    Tolmasov, M.; Barbiro-Michaely, E.; Mayevsky, A.

    2009-02-01

    Nitric oxide is a mediator in many physiological processes including vasodilatation of blood vessels, neurotransmission and prevention of platelet aggregation. It has also a role in the pathophysiology of sepsis, hemorrhagic shock, various traumatic events and critical conditions involved with circulatory abnormalities. The last one is accompanied by blood flow redistribution and is considered to be the putative cause of altered oxygen metabolism in various pathophysiological conditions. The present study tested the involvement of NO in the brain as a vital organ versus the small intestine, a less vital organ using the non-specific nitric oxide synthase inhibitor L-NAME and exogenous NO donor - nitrite. The parameters that were simultaneously monitored in both organs included mean arterial blood pressure (MAP), tissue blood flow (TBF), using laser Doppler flowmetery and NADH fluorescence using the fluorometric technique. Three groups were tested. Group 1 - L-NAME +nitrite, group 2 - control L-NAME and group 3 - control nitrite. Following LNAME, MAP significantly increased and remained elevated through the entire experiment. TBF decreased in both organs with full recovery in the brain and no recovery in the intestine, whereas NADH showed no significant changes. Nitrite alone had no significant effect on the parameters in any of the organs. In group 1 the infusion of nitrite decreased the level of elevated MAP earlier induced by L-NAME. Nitrite also recovered the reduced TBF in the brain whereas it had no beneficial effect on intestinal blood flow indicating for its regulatory role in the brain but not in the intestine.

  1. Hurdles with using in vitro models to predict human blood-brain barrier drug permeability: a special focus on transporters and metabolizing enzymes.

    PubMed

    Shawahna, Ramzi; Decleves, Xavier; Scherrmann, Jean-Michel

    2013-01-01

    The penetration of drugs into the human brain through the blood-brain barrier (BBB) is a major obstacle limiting the development of successful neuropharmaceuticals. This restricted permeability is due to the delicate intercellular junctions, efflux transporters and metabolizing enzymes present at the BBB. The pharmaceutical industry and academic research relies heavily on permeability studies conducted in animals and in vitro models of the BBB. This text reviews the available animal and in vitro BBB models with special emphasis on the situation in freshly isolated human brain microvessels and the unique tightness between brain endothelial cells, drug transport pathways and metabolic capacity. We first outline the delicate structure of the intercellular junctions and the particular interaction between the brain endothelial cells and other components of the neurovascular unit. We then examine the differences in transporters and metabolizing enzymes between species and in vitro systems and those found in isolated brain microvessels. Finally, we review the possibilities of benchmarking in vitro models of the BBB in terms of gene and protein expression. PMID:23215812

  2. Solution structure of ligands involved in purine salvage pathway.

    PubMed

    Karnawat, Vishakha; Puranik, Mrinalini

    2015-12-01

    Analogues of intermediates involved in the purine salvage pathway can be exploited as potential drug molecules against enzymes of protozoan parasites. To develop such analogues we need knowledge of the solution structures, predominant tautomer at physiological pH and protonation-state of the corresponding natural ligand. In this regard, we have employed ultraviolet resonance Raman spectroscopy (UVRR) in combination with density functional theory (DFT) to study the solution structures of two relatively unexplored intermediates, 6-phosphoryl IMP (6-pIMP) and succinyl adenosine-5'-monophosphate (sAMP), of purine salvage pathway. These molecules are intermediates in a two step enzymatic process that converts inosine-5'-monpophosphate (IMP) to adenosine-5'-monophosphate (AMP). Experimental data on the molecular structure of these ligands is lacking. We report UVRR spectra of these two ligands, obtained at an excitation wavelength of 260 nm. Using isotope induced shifts and DFT calculations we assigned observed spectra to computed normal modes. We find that sAMP exists as neutral species at physiological pH and the predominant tautomer in solution bears proton at N10 position of purine ring. Though transient in solution, 6-pIMP is captured in the enzyme-bound form. This work provides the structural information of these ligands in solution state at physiological pH. We further compare these structures with the structures of AMP and IMP. Despite the presence of similar purine rings in AMP and sAMP, their UVRR spectra are found to be very different. Similarly, though the purine ring in 6-pIMP resembles that of IMP, UVRR spectra of the two molecules are distinct. These differences in the vibrational spectra provide direct information on the effects of exocyclic groups on the skeletal structures of these molecules. Our results identify key bands in the vibrational spectra of these ligands which may serve as markers of hydrogen bonding interactions upon binding to the active

  3. Metabolism of deoxypyrimidines and deoxypyrimidine antiviral analogs in isolated brain mitochondria

    PubMed Central

    McCann, Kathleen A.; Williams, David W.; McKee, Edward E.

    2012-01-01

    The goal of this project was to characterize deoxypyrimidine salvage pathways used to maintain deoxynucleoside triphosphate pools in isolated brain mitochondria and to determine the extent that antiviral pyrimidine analogs utilize or affect these pathways. Mitochondria from rat brains were incubated in media with labeled and unlabeled deoxynucleosides and deoxynucleoside analogs. Products were analyzed by HPLC coupled to an inline UV monitor and liquid scintillation counter. Isolated mitochondria transported thymidine and deoxycytidine into the matrix, and readily phosphorylated both of these to mono-, di, and tri-phosphate nucleotides. Rates of phosphorylation were much higher than rates observed in mitochondria from heart and liver. Deoxyuridine was phosphorylated much more slowly than thymidine and only to dUMP. AZT, an antiviral thymidine analog, was phosphorylated to AZT-MP as readily as thymidine was phosphorylated to TMP, but little if any AZT-DP or AZT-TP was observed. AZT at 5.5 ± 1.7 μM was shown to inhibit thymidine phosphorylation by 50%, but was not observed to inhibit deoxycytidine phosphorylation except at levels > 100 μM. Stavudine and lamivudine were inert when incubated with isolated brain mitochondria. The kinetics of phosphorylation of thymidine, dC and AZT were significantly different in brain mitochondria compared to mitochondria from liver and heart. PMID:22530558

  4. Investigating brain metabolism at high fields using localized 13C NMR spectroscopy without 1H decoupling.

    PubMed

    Deelchand, Dinesh Kumar; Uğurbil, Kâmil; Henry, Pierre-Gilles

    2006-02-01

    Most in vivo 13C NMR spectroscopy studies in the brain have been performed using 1H decoupling during acquisition. Decoupling imposes significant constraints on the experimental setup (particularly for human studies at high magnetic field) in order to stay within safety limits for power deposition. We show here that incorporation of the 13C label from 13C-labeled glucose into brain amino acids can be monitored accurately using localized 13C NMR spectroscopy without the application of 1H decoupling. Using LCModel quantification with prior knowledge of one-bond and multiple-bond J(CH) coupling constants, the uncertainty on metabolites concentrations was only 35% to 91% higher (depending on the carbon resonance of interest) in undecoupled spectra compared to decoupled spectra in the rat brain at 9.4 Tesla. Although less sensitive, 13C NMR without decoupling dramatically reduces experimental constraints on coil setup and pulse sequence design required to keep power deposition within safety guidelines. This opens the prospect of safely measuring 13C NMR spectra in humans at varied brain locations (not only the occipital lobe) and at very high magnetic fields above 4 Tesla. PMID:16345037

  5. Level of satiety: In vitro energy metabolism in brain during hypophagic and hyperphagic body weight recovery

    SciTech Connect

    Kasser, T.R.; Harris, R.B.; Martin, R.J. )

    1989-12-01

    Rates of in vitro glucose and fatty acid oxidation were examined in four brain sites during hypophagic and hyperphagic recovery of normal body weight. Rats were fed 40, 100, or 160% of normal intake, via gastric intubation, for 3 wk. Another group of rats was starved until body weight loss was equivalent to weight loss in 40%-fed rats. Groups of rats were killed at the conclusion of tube feeding or fasting and at specific periods during recovery of body weight. Brain sites examined were the ventrolateral hypothalamus (VLH), ventromedial hypothalamus (VMH), a caudal brain stem site encompassing the area postrema-nucleus of the solitary tract (AP-NTS), and cortex. During recovery, rats previously fed 160% of normal intake (anorectic) maintained low rates of VLH fatty acid oxidation and were hypophagic until most excess fat was depleted. Conversely, rats previously fed 40% of normal intake (hungry) maintained high rates of VLH fatty acid oxidation and were hyperphagic until most deficient fat was repleted. Rats previously starved maintained high rates of VLH fatty acid oxidation during hyperphagic recovery, although levels of VLH fatty acid oxidation and food intake were initially low on refeeding. Rates of glucose oxidation in the brain sites examined did not relate well to energy balance status and the needed adjustments in food intake. The results indicated that the level of glucose oxidation in the VLH and AP-NTS responded to the level of energy immediately coming into the system (food intake).

  6. Attention Performance in Autism and Regional Brain Metabolic Rate Assessed by Positron Emission Tomography. Brief Report.

    ERIC Educational Resources