Science.gov

Sample records for brain surface electric

  1. Surface electrical properties experiment

    USGS Publications Warehouse

    Simmons, Gene; Strangway, David; Annan, Peter; Baker, Richard G.; Bannister, Lawrence; Brown, Raymon; Cooper, William; Cubley, Dean; deBettencourt, Joseph; England, Anthony W.; Groener, John; Kong, Jin-Au; LaTorraca, Gerald; Meyer, James; Nanda, Ved; Redman, David; Rossiter, James; Tsang, Leung; Urner, Joseph; Watts, Raymond

    1973-01-01

    The surface electrical properties (SEP) experiment was used to explore the subsurface material of the Apollo 17 landing site by means of electromagnetic radiation. The experiment was designed to detect electrical layering, discrete scattering bodies, and the possible presence of water. From the analysis of the data, it was expected that values of the electrical properties (dielectric constant and loss tangent) of lunar material in situ would be obtained.

  2. Visualizing Simulated Electrical Fields from Electroencephalography and Transcranial Electric Brain Stimulation: A Comparative Evaluation

    PubMed Central

    Eichelbaum, Sebastian; Dannhauer, Moritz; Hlawitschka, Mario; Brooks, Dana; Knösche, Thomas R.; Scheuermann, Gerik

    2014-01-01

    Electrical activity of neuronal populations is a crucial aspect of brain activity. This activity is not measured directly but recorded as electrical potential changes using head surface electrodes (electroencephalogram - EEG). Head surface electrodes can also be deployed to inject electrical currents in order to modulate brain activity (transcranial electric stimulation techniques) for therapeutic and neuroscientific purposes. In electroencephalography and noninvasive electric brain stimulation, electrical fields mediate between electrical signal sources and regions of interest (ROI). These fields can be very complicated in structure, and are influenced in a complex way by the conductivity profile of the human head. Visualization techniques play a central role to grasp the nature of those fields because such techniques allow for an effective conveyance of complex data and enable quick qualitative and quantitative assessments. The examination of volume conduction effects of particular head model parameterizations (e.g., skull thickness and layering), of brain anomalies (e.g., holes in the skull, tumors), location and extent of active brain areas (e.g., high concentrations of current densities) and around current injecting electrodes can be investigated using visualization. Here, we evaluate a number of widely used visualization techniques, based on either the potential distribution or on the current-flow. In particular, we focus on the extractability of quantitative and qualitative information from the obtained images, their effective integration of anatomical context information, and their interaction. We present illustrative examples from clinically and neuroscientifically relevant cases and discuss the pros and cons of the various visualization techniques. PMID:24821532

  3. Electrically Conductive Anodized Aluminum Surfaces

    NASA Technical Reports Server (NTRS)

    Nguyen, Trung Hung

    2006-01-01

    Anodized aluminum components can be treated to make them sufficiently electrically conductive to suppress discharges of static electricity. The treatment was conceived as a means of preventing static electric discharges on exterior satin-anodized aluminum (SAA) surfaces of spacecraft without adversely affecting the thermal-control/optical properties of the SAA and without need to apply electrically conductive paints, which eventually peel off in the harsh environment of outer space. The treatment can also be used to impart electrical conductivity to anodized housings of computers, medical electronic instruments, telephoneexchange equipment, and other terrestrial electronic equipment vulnerable to electrostatic discharge. The electrical resistivity of a typical anodized aluminum surface layer lies between 10(exp 11) and 10(exp 13) Omega-cm. To suppress electrostatic discharge, it is necessary to reduce the electrical resistivity significantly - preferably to < or = 10(exp 9) Omega-cm. The present treatment does this. The treatment is a direct electrodeposition process in which the outer anodized surface becomes covered and the pores in the surface filled with a transparent, electrically conductive metal oxide nanocomposite. Filling the pores with the nanocomposite reduces the transverse electrical resistivity and, in the original intended outer-space application, the exterior covering portion of the nanocomposite would afford the requisite electrical contact with the outer-space plasma. The electrical resistivity of the nanocomposite can be tailored to a value between 10(exp 7) and 10(exp 12) Omega-cm. Unlike electrically conductive paint, the nanocomposite becomes an integral part of the anodized aluminum substrate, without need for adhesive bonding material and without risk of subsequent peeling. The electrodeposition process is compatible with commercial anodizing production lines. At present, the electronics industry uses expensive, exotic

  4. Complex networks in brain electrical activity

    NASA Astrophysics Data System (ADS)

    Ray, C.; Ruffini, G.; Marco-Pallarés, J.; Fuentemilla, L.; Grau, C.

    2007-08-01

    This letter reports a method to extract a functional network of the human brain from electroencephalogram measurements. A network analysis was performed on the resultant network and the statistics of the cluster coefficient, node degree, path length, and physical distance of the links, were studied. Even given the low electrode count of the experimental data the method was able to extract networks with network parameters that clearly depend on the type of stimulus presented to the subject. This type of analysis opens a door to studying the cerebral networks underlying brain electrical activity, and links the fields of complex networks and cognitive neuroscience.

  5. Deep Brain Electrical Stimulation in Epilepsy

    NASA Astrophysics Data System (ADS)

    Rocha, Luisa L.

    2008-11-01

    The deep brain electrical stimulation has been used for the treatment of neurological disorders such as Parkinson's disease, chronic pain, depression and epilepsy. Studies carried out in human brain indicate that the application of high frequency electrical stimulation (HFS) at 130 Hz in limbic structures of patients with intractable temporal lobe epilepsy abolished clinical seizures and significantly decreased the number of interictal spikes at focus. The anticonvulsant effects of HFS seem to be more effective in patients with less severe epilepsy, an effect associated with a high GABA tissue content and a low rate of cell loss. In addition, experiments using models of epilepsy indicate that HFS (pulses of 60 μs width at 130 Hz at subthreshold current intensity) of specific brain areas avoids the acquisition of generalized seizures and enhances the postictal seizure suppression. HFS is also able to modify the status epilepticus. It is concluded that the effects of HFS may be a good strategy to reduce or avoid the epileptic activity.

  6. Using Brain Electrical Activity Mapping to Diagnose Learning Disabilities.

    ERIC Educational Resources Information Center

    Torello, Michael, W.; Duffy, Frank H.

    1985-01-01

    Cognitive neuroscience assumes that measurement of brain electrical activity should relate to cognition. Brain Electrical Activity Mapping (BEAM), a non-invasive technique, is used to record changes in activity from one brain area to another and is 80 to 90 percent successful in classifying subjects as dyslexic or normal. (MT)

  7. Conformable actively multiplexed high-density surface electrode array for brain interfacing

    DOEpatents

    Rogers, John; Kim, Dae-Hyeong; Litt, Brian; Viventi, Jonathan

    2015-01-13

    Provided are methods and devices for interfacing with brain tissue, specifically for monitoring and/or actuation of spatio-temporal electrical waveforms. The device is conformable having a high electrode density and high spatial and temporal resolution. A conformable substrate supports a conformable electronic circuit and a barrier layer. Electrodes are positioned to provide electrical contact with a brain tissue. A controller monitors or actuates the electrodes, thereby interfacing with the brain tissue. In an aspect, methods are provided to monitor or actuate spatio-temporal electrical waveform over large brain surface areas by any of the devices disclosed herein.

  8. Brain Surface Conformal Parameterization Using Riemann Surface Structure

    PubMed Central

    Wang, Yalin; Lui, Lok Ming; Gu, Xianfeng; Hayashi, Kiralee M.; Chan, Tony F.; Toga, Arthur W.; Thompson, Paul M.; Yau, Shing-Tung

    2011-01-01

    In medical imaging, parameterized 3-D surface models are useful for anatomical modeling and visualization, statistical comparisons of anatomy, and surface-based registration and signal processing. Here we introduce a parameterization method based on Riemann surface structure, which uses a special curvilinear net structure (conformal net) to partition the surface into a set of patches that can each be conformally mapped to a parallelogram. The resulting surface subdivision and the parameterizations of the components are intrinsic and stable (their solutions tend to be smooth functions and the boundary conditions of the Dirichlet problem can be enforced). Conformal parameterization also helps transform partial differential equations (PDEs) that may be defined on 3-D brain surface manifolds to modified PDEs on a two-dimensional parameter domain. Since the Jacobian matrix of a conformal parameterization is diagonal, the modified PDE on the parameter domain is readily solved. To illustrate our techniques, we computed parameterizations for several types of anatomical surfaces in 3-D magnetic resonance imaging scans of the brain, including the cerebral cortex, hippocampi, and lateral ventricles. For surfaces that are topologically homeomorphic to each other and have similar geometrical structures, we show that the parameterization results are consistent and the subdivided surfaces can be matched to each other. Finally, we present an automatic sulcal landmark location algorithm by solving PDEs on cortical surfaces. The landmark detection results are used as constraints for building conformal maps between surfaces that also match explicitly defined landmarks. PMID:17679336

  9. Nanoparticle Near-Surface Electric Field.

    PubMed

    Chkhartishvili, Levan

    2016-12-01

    Theoretical studies show that surface reconstruction in some crystals involves splitting the surface atomic layer into two-upper and lower-sublayers consisting of atoms with only positive or only negative effective electric charges, respectively. In a macroscopic crystal with an almost infinite surface, the electric field induced by such a surface-dipole is practically totally concentrated between the sublayers. However, when the material is powdered and its particles are of sufficiently small sizes, an electric field of a significant magnitude can be induced outside the sublayers as well. We have calculated the distribution of the electric field and its potential induced at the surface of a disc-shaped particle. The suggested novel nanoscale effect explains the increase in physical reactivity of nanopowders with decreasing particle sizes. PMID:26831686

  10. Broadband transverse electric surface wave in silicene

    NASA Astrophysics Data System (ADS)

    Ukhtary, M. Shoufie; Nugraha, Ahmad R. T.; Hasdeo, Eddwi H.; Saito, Riichiro

    2016-08-01

    Transverse electric (TE) surface wave in silicine is theoretically investigated. The TE surface wave in silicene is found to exhibit better characteristics compared with that in graphene, in terms of a broader frequency range and more confinement to the surface which originate from the buckled structure of silicene. We found that even undoped silicene can support the TE surface wave. We expect the similar characteristics of the TE surface wave in other two-dimensional materials that have a slightly buckled honeycomb lattice.

  11. Mortality from brain cancer and leukaemia among electrical workers.

    PubMed Central

    Loomis, D P; Savitz, D A

    1990-01-01

    The relation of brain cancer and mortality from leukaemia to electrical occupations was investigated in a case-control study based on all deaths in 1985 and 1986 in the 16 states in the United States that report occupational data from death certificates to the national vital statistics registry. The case series comprised all 2173 men who died of primary brain cancer (International Classification of Diseases-9 ((ICD-9) code 191) and all 3400 who died of leukaemia (ICD-9 codes 204-208). Each was matched with 10 controls who died of other causes in the same year. Men employed in any electrical occupation had age race adjusted odds ratios (ORs) of 1.4 (95% confidence interval (CI) 1.1-1.7) for brain cancer and 1.0 (95% CI 0.8-1.2) for leukaemia, compared with men in all other occupations. Brain cancer odds ratios were larger for electrical engineers and technicians (OR 2.7, 95% CI 2.1-3.4), telephone workers (OR 1.6, 95% CI 1.1-2.4), electric power workers (OR 1.7, 95% CI 1.1-2.7), and electrical workers in manufacturing industries (OR 2.1, 95% CI 1.3-3.4). There was some evidence of excess leukaemia among the same groups (ORs of 1.1-1.5) despite absence of an association for all electrical workers. The excess of deaths from brain cancer was concentrated among men aged 65 or older, whereas leukaemia was associated with electrical work only among younger decedents and those with acute lymphocytic leukaemia. These results from a large and geographically diverse population corroborate reports of increased mortality from brain cancer among electrical workers, but gives only limited support to suggestions of excess deaths from leukaemia. PMID:2207035

  12. BrainK for Structural Image Processing: Creating Electrical Models of the Human Head

    PubMed Central

    Li, Kai; Papademetris, Xenophon; Tucker, Don M.

    2016-01-01

    BrainK is a set of automated procedures for characterizing the tissues of the human head from MRI, CT, and photogrammetry images. The tissue segmentation and cortical surface extraction support the primary goal of modeling the propagation of electrical currents through head tissues with a finite difference model (FDM) or finite element model (FEM) created from the BrainK geometries. The electrical head model is necessary for accurate source localization of dense array electroencephalographic (dEEG) measures from head surface electrodes. It is also necessary for accurate targeting of cerebral structures with transcranial current injection from those surface electrodes. BrainK must achieve five major tasks: image segmentation, registration of the MRI, CT, and sensor photogrammetry images, cortical surface reconstruction, dipole tessellation of the cortical surface, and Talairach transformation. We describe the approach to each task, and we compare the accuracies for the key tasks of tissue segmentation and cortical surface extraction in relation to existing research tools (FreeSurfer, FSL, SPM, and BrainVisa). BrainK achieves good accuracy with minimal or no user intervention, it deals well with poor quality MR images and tissue abnormalities, and it provides improved computational efficiency over existing research packages. PMID:27293419

  13. BrainK for Structural Image Processing: Creating Electrical Models of the Human Head.

    PubMed

    Li, Kai; Papademetris, Xenophon; Tucker, Don M

    2016-01-01

    BrainK is a set of automated procedures for characterizing the tissues of the human head from MRI, CT, and photogrammetry images. The tissue segmentation and cortical surface extraction support the primary goal of modeling the propagation of electrical currents through head tissues with a finite difference model (FDM) or finite element model (FEM) created from the BrainK geometries. The electrical head model is necessary for accurate source localization of dense array electroencephalographic (dEEG) measures from head surface electrodes. It is also necessary for accurate targeting of cerebral structures with transcranial current injection from those surface electrodes. BrainK must achieve five major tasks: image segmentation, registration of the MRI, CT, and sensor photogrammetry images, cortical surface reconstruction, dipole tessellation of the cortical surface, and Talairach transformation. We describe the approach to each task, and we compare the accuracies for the key tasks of tissue segmentation and cortical surface extraction in relation to existing research tools (FreeSurfer, FSL, SPM, and BrainVisa). BrainK achieves good accuracy with minimal or no user intervention, it deals well with poor quality MR images and tissue abnormalities, and it provides improved computational efficiency over existing research packages. PMID:27293419

  14. Imaging fast electrical activity in the brain with electrical impedance tomography

    PubMed Central

    Aristovich, Kirill Y.; Packham, Brett C.; Koo, Hwan; Santos, Gustavo Sato dos; McEvoy, Andy; Holder, David S.

    2016-01-01

    Imaging of neuronal depolarization in the brain is a major goal in neuroscience, but no technique currently exists that could image neural activity over milliseconds throughout the whole brain. Electrical impedance tomography (EIT) is an emerging medical imaging technique which can produce tomographic images of impedance changes with non-invasive surface electrodes. We report EIT imaging of impedance changes in rat somatosensory cerebral cortex with a resolution of 2 ms and < 200 μm during evoked potentials using epicortical arrays with 30 electrodes. Images were validated with local field potential recordings and current source-sink density analysis. Our results demonstrate that EIT can image neural activity in a volume 7 × 5 × 2 mm in somatosensory cerebral cortex with reduced invasiveness, greater resolution and imaging volume than other methods. Modeling indicates similar resolutions are feasible throughout the entire brain so this technique, uniquely, has the potential to image functional connectivity of cortical and subcortical structures. PMID:26348559

  15. Electrically Conductive Polyimide Films Containing Gold Surface

    NASA Technical Reports Server (NTRS)

    Caplan, Maggie L.; Stoakley, Diane M.; St. Clair, Anne K.

    1994-01-01

    Polyimide films exhibiting high thermo-oxidative stability and including electrically conductive surface layers containing gold made by casting process. Many variations of basic process conditions, ingredients, and sequence of operations possible, and not all resulting versions of process yield electrically conductive films. Gold-containing layer formed on film surface during cure. These metallic gold-containing polyimides used in film and coating applications requiring electrical conductivity, high reflectivity, exceptional thermal stability, and/or mechanical integrity. They also find commercial potential in areas ranging from thin films for satellite antennas to decorative coatings and packaging.

  16. Measuring the local electrical conductivity of human brain tissue

    NASA Astrophysics Data System (ADS)

    Akhtari, M.; Emin, D.; Ellingson, B. M.; Woodworth, D.; Frew, A.; Mathern, G. W.

    2016-02-01

    The electrical conductivities of freshly excised brain tissues from 24 patients were measured. The diffusion-MRI of the hydrogen nuclei of water molecules from regions that were subsequently excised was also measured. Analysis of these measurements indicates that differences between samples' conductivities are primarily due to differences of their densities of solvated sodium cations. Concomitantly, the sample-to-sample variations of their diffusion constants are relatively small. This finding suggests that non-invasive in-vivo measurements of brain tissues' local sodium-cation density can be utilized to estimate its local electrical conductivity.

  17. Near-isometric flattening of brain surfaces

    PubMed Central

    Balasubramanian, Mukund; Polimeni, Jonathan R.; Schwartz, Eric L.

    2010-01-01

    Flattened representations of brain surfaces are often used to visualize and analyze spatial patterns of structural organization and functional activity. Here, we present a set of rigorous criteria and accompanying test cases with which to evaluate flattening algorithms that attempt to preserve shortest-path distances on the original surface. We also introduce a novel flattening algorithm that is the first to satisfy all of these criteria and demonstrate its ability to produce accurate flat maps of human and macaque visual cortex. Using this algorithm, we have recently obtained results showing a remarkable, unexpected degree of consistency in the shape and topographic structure of visual cortical areas within humans and macaques, as well as between these two species. PMID:20149886

  18. Electrically Responsive Surfaces: Experimental and Theoretical Investigations.

    PubMed

    Cantini, Eleonora; Wang, Xingyong; Koelsch, Patrick; Preece, Jon A; Ma, Jing; Mendes, Paula M

    2016-06-21

    Stimuli-responsive surfaces have sparked considerable interest in recent years, especially in view of their biomimetic nature and widespread biomedical applications. Significant efforts are continuously being directed at developing functional surfaces exhibiting specific property changes triggered by variations in electrical potential, temperature, pH and concentration, irradiation with light, or exposure to a magnetic field. In this respect, electrical stimulus offers several attractive features, including a high level of spatial and temporal controllability, rapid and reverse inducement, and noninvasiveness. In this Account, we discuss how surfaces can be designed and methodologies developed to produce electrically switchable systems, based on research by our groups. We aim to provide fundamental mechanistic and structural features of these dynamic systems, while highlighting their capabilities and potential applications. We begin by briefly describing the current state-of-the-art in integrating electroactive species on surfaces to control the immobilization of diverse biological entities. This premise leads us to portray our electrically switchable surfaces, capable of controlling nonspecific and specific biological interactions by exploiting molecular motions of surface-bound electroswitchable molecules. We demonstrate that our self-assembled monolayer-based electrically switchable surfaces can modulate the interactions of surfaces with proteins, mammalian and bacterial cells. We emphasize how these systems are ubiquitous in both switching biomolecular interactions in highly complex biological conditions while still offering antifouling properties. We also introduce how novel characterization techniques, such as surface sensitive vibrational sum-frequency generation (SFG) spectroscopy, can be used for probing the electrically switchable molecular surfaces in situ. SFG spectroscopy is a technique that not only allowed determining the structural orientation of

  19. Electrically Responsive Surfaces: Experimental and Theoretical Investigations

    PubMed Central

    2016-01-01

    Conspectus Stimuli-responsive surfaces have sparked considerable interest in recent years, especially in view of their biomimetic nature and widespread biomedical applications. Significant efforts are continuously being directed at developing functional surfaces exhibiting specific property changes triggered by variations in electrical potential, temperature, pH and concentration, irradiation with light, or exposure to a magnetic field. In this respect, electrical stimulus offers several attractive features, including a high level of spatial and temporal controllability, rapid and reverse inducement, and noninvasiveness. In this Account, we discuss how surfaces can be designed and methodologies developed to produce electrically switchable systems, based on research by our groups. We aim to provide fundamental mechanistic and structural features of these dynamic systems, while highlighting their capabilities and potential applications. We begin by briefly describing the current state-of-the-art in integrating electroactive species on surfaces to control the immobilization of diverse biological entities. This premise leads us to portray our electrically switchable surfaces, capable of controlling nonspecific and specific biological interactions by exploiting molecular motions of surface-bound electroswitchable molecules. We demonstrate that our self-assembled monolayer-based electrically switchable surfaces can modulate the interactions of surfaces with proteins, mammalian and bacterial cells. We emphasize how these systems are ubiquitous in both switching biomolecular interactions in highly complex biological conditions while still offering antifouling properties. We also introduce how novel characterization techniques, such as surface sensitive vibrational sum-frequency generation (SFG) spectroscopy, can be used for probing the electrically switchable molecular surfaces in situ. SFG spectroscopy is a technique that not only allowed determining the structural

  20. Brain Electrical Activity Changes and Cognitive Development.

    ERIC Educational Resources Information Center

    Hartley, Deborah; Thomas, David G.

    This study investigated the relationship of cognitive developmental changes to physiological and anatomical changes by measuring both types of data within the same subjects. Cortical electrical activity was measured in 24 males between 10 and 12 years of age. Event-related potentials (ERPs) were recorded from midline scalp electrodes during a…

  1. Electrical engram: how deep brain stimulation affects memory.

    PubMed

    Lee, Hweeling; Fell, Jürgen; Axmacher, Nikolai

    2013-11-01

    Deep brain stimulation (DBS) is a surgical procedure involving implantation of a pacemaker that sends electric impulses to specific brain regions. DBS has been applied in patients with Parkinson's disease, depression, and obsessive-compulsive disorder (among others), and more recently in patients with Alzheimer's disease to improve memory functions. Current DBS approaches are based on the concept that high-frequency stimulation inhibits or excites specific brain regions. However, because DBS entails the application of repetitive electrical stimuli, it primarily exerts an effect on extracellular field-potential oscillations similar to those recorded with electroencephalography. Here, we suggest a new perspective on how DBS may ameliorate memory dysfunction: it may enhance normal electrophysiological patterns underlying long-term memory processes within the medial temporal lobe. PMID:24126128

  2. Giovanni Aldini: from animal electricity to human brain stimulation.

    PubMed

    Parent, André

    2004-11-01

    Two hundred years ago, Giovanni Aldini published a highly influential book that reported experiments in which the principles of Luigi Galvani (animal electricity) and Alessandro Volta (bimetallic electricity) were used together for the first time. Aldini was born in Bologna in 1762 and graduated in physics at the University of his native town in 1782. As nephew and assistant of Galvani, he actively participated in a series of crucial experiments with frog's muscles that led to the idea that electricity was the long-sought vital force coursing from brain to muscles. Aldini became professor of experimental physics at the University of Bologna in 1798. He traveled extensively throughout Europe, spending much time defending the concept of his discreet uncle against the incessant attacks of Volta, who did not believe in animal electricity. Aldini used Volta's bimetallic pile to apply electric current to dismembered bodies of animals and humans; these spectacular galvanic reanimation experiments made a strong and enduring impression on his contemporaries. Aldini also treated patients with personality disorders and reported complete rehabilitation following transcranial administration of electric current. Aldini's work laid the ground for the development of various forms of electrotherapy that were heavily used later in the 19th century. Even today, deep brain stimulation, a procedure currently employed to relieve patients with motor or behavioral disorders, owes much to Aldini and galvanism. In recognition of his merits, Aldini was made a knight of the Iron Crown and a councillor of state at Milan, where he died in 1834. PMID:15595271

  3. Electric Arc and Electrochemical Surface Texturing Technologies

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.; Snyder, Scott A.

    1997-01-01

    Surface texturing of conductive materials can readily be accomplished by means of a moving electric arc which produces a plasma from the environmental gases as well as from the vaporized substrate and arc electrode materials. As the arc is forced to move across the substrate surface, a condensate from the plasma re-deposits an extremely rough surface which is intimately mixed and attached to the substrate material. The arc textured surfaces produce greatly enhanced thermal emittance and hold potential for use as high temperature radiator surfaces in space, as well as in systems which use radiative heat dissipation such as computer assisted tomography (CAT) scan systems. Electrochemical texturing of titanium alloys can be accomplished by using sodium chloride solutions along with ultrasonic agitation to produce a random distribution of craters on the surface. The crater size and density can be controlled to produce surface craters appropriately sized for direct bone in-growth of orthopaedic implants. Electric arc texturing and electrochemical texturing techniques, surface properties and potential applications will be presented.

  4. Multidimensional Plasma Sheaths over Electrically Inhomogeneous Surfaces

    NASA Astrophysics Data System (ADS)

    Economou, Demetre

    2004-09-01

    Multidimensional plasma sheaths are encountered in a number of applications including plasma immersion ion implantation, extraction of ions (or plasma) through grids, MEMS fabrication, neutral beam sources, and plasma in contact with internal reactor parts (e.g., wafer chuck edge). The sheath may be multidimensional when: (a) plasma is in contact with surface topography, and the size of the topographical features is comparable to or larger than the plasma sheath thickness, or (b) the surface is flat but inhomogeneous, i.e., a conducting surface next to an insulating surface. In either case, the flux, energy and angular distributions of energetic species incident on the substrate are of primary importance. These quantities depend critically on the shape of the meniscus (plasma-sheath boundary) formed over the surface. A two-dimensional fluid/Monte Carlo simulation model was developed to study multidimensional sheaths. The radio frequency (RF) sheath potential evolution, and ion density and flux profiles over the surface were predicted with a self-consistent fluid simulation. The trajectories of ions and energetic neutrals (resulting by ion neutralization on surfaces or charge exchange collisions in the gas phase) were then followed with a Monte Carlo simulation. Ion flow and energy and angular distributions of ions bombarding a flat but electrically inhomogeneous surface will be reported in detail. Ion flow over trenches and holes will also be reported. Work supported by the NSF, Sandia National Laboratories and NIST.

  5. Identification of Hematomas in Mild Traumatic Brain Injury Using an Index of Quantitative Brain Electrical Activity

    PubMed Central

    Naunheim, Rosanne; Bazarian, Jeffrey; Mould, W. Andrew; Hanley, Daniel

    2015-01-01

    Abstract Rapid identification of traumatic intracranial hematomas following closed head injury represents a significant health care need because of the potentially life-threatening risk they present. This study demonstrates the clinical utility of an index of brain electrical activity used to identify intracranial hematomas in traumatic brain injury (TBI) presenting to the emergency department (ED). Brain electrical activity was recorded from a limited montage located on the forehead of 394 closed head injured patients who were referred for CT scans as part of their standard ED assessment. A total of 116 of these patients were found to be CT positive (CT+), of which 46 patients with traumatic intracranial hematomas (CT+) were identified for study. A total of 278 patients were found to be CT negative (CT−) and were used as controls. CT scans were subjected to quanitative measurements of volume of blood and distance of bleed from recording electrodes by blinded independent experts, implementing a validated method for hematoma measurement. Using an algorithm based on brain electrical activity developed on a large independent cohort of TBI patients and controls (TBI-Index), patients were classified as either positive or negative for structural brain injury. Sensitivity to hematomas was found to be 95.7% (95% CI=85.2, 99.5), specificity was 43.9% (95% CI=38.0, 49.9). There was no significant relationship between the TBI-Index and distance of the bleed from recording sites (F=0.044, p=0.833), or volume of blood measured F=0.179, p=0.674). Results of this study are a validation and extension of previously published retrospective findings in an independent population, and provide evidence that a TBI-Index for structural brain injury is a highly sensitive measure for the detection of potentially life-threatening traumatic intracranial hematomas, and could contribute to the rapid, quantitative evaluation and treatment of such patients. PMID:25054838

  6. Use of brain electrical activity for the identification of hematomas in mild traumatic brain injury.

    PubMed

    Hanley, Daniel F; Chabot, Robert; Mould, W Andrew; Morgan, Timothy; Naunheim, Rosanne; Sheth, Kevin N; Chiang, William; Prichep, Leslie S

    2013-12-15

    This study investigates the potential clinical utility in the emergency department (ED) of an index of brain electrical activity to identify intracranial hematomas. The relationship between this index and depth, size, and type of hematoma was explored. Ten minutes of brain electrical activity was recorded from a limited montage in 38 adult patients with traumatic hematomas (CT scan positive) and 38 mild head injured controls (CT scan negative) in the ED. The volume of blood and distance from recording electrodes were measured by blinded independent experts. Brain electrical activity data were submitted to a classification algorithm independently developed traumatic brain injury (TBI) index to identify the probability of a CT+traumatic event. There was no significant relationship between the TBI-Index and type of hematoma, or distance of the bleed from recording sites. A significant correlation was found between TBI-Index and blood volume. The sensitivity to hematomas was 100%, positive predictive value was 74.5%, and positive likelihood ratio was 2.92. The TBI-Index, derived from brain electrical activity, demonstrates high accuracy for identification of traumatic hematomas. Further, this was not influenced by distance of the bleed from the recording electrodes, blood volume, or type of hematoma. Distance and volume limitations noted with other methods, (such as that based on near-infrared spectroscopy) were not found, thus suggesting the TBI-Index to be a potentially important adjunct to acute assessment of head injury. Because of the life-threatening risk of undetected hematomas (false negatives), specificity was permitted to be lower, 66%, in exchange for extremely high sensitivity. PMID:24040943

  7. Submillisecond unmasked subliminal visual stimuli evoke electrical brain responses.

    PubMed

    Sperdin, Holger F; Spierer, Lucas; Becker, Robert; Michel, Christoph M; Landis, Theodor

    2015-04-01

    Subliminal perception is strongly associated to the processing of meaningful or emotional information and has mostly been studied using visual masking. In this study, we used high density 256-channel EEG coupled with an liquid crystal display (LCD) tachistoscope to characterize the spatio-temporal dynamics of the brain response to visual checkerboard stimuli (Experiment 1) or blank stimuli (Experiment 2) presented without a mask for 1 ms (visible), 500 µs (partially visible), and 250 µs (subliminal) by applying time-wise, assumption-free nonparametric randomization statistics on the strength and on the topography of high-density scalp-recorded electric field. Stimulus visibility was assessed in a third separate behavioral experiment. Results revealed that unmasked checkerboards presented subliminally for 250 µs evoked weak but detectable visual evoked potential (VEP) responses. When the checkerboards were replaced by blank stimuli, there was no evidence for the presence of an evoked response anymore. Furthermore, the checkerboard VEPs were modulated topographically between 243 and 296 ms post-stimulus onset as a function of stimulus duration, indicative of the engagement of distinct configuration of active brain networks. A distributed electrical source analysis localized this modulation within the right superior parietal lobule near the precuneus. These results show the presence of a brain response to submillisecond unmasked subliminal visual stimuli independently of their emotional saliency or meaningfulness and opens an avenue for new investigations of subliminal stimulation without using visual masking. PMID:25487054

  8. Comparison of electrical conductivities of various brain phantom gels: Developing a 'Brain Gel Model'

    PubMed

    Kandadai, Madhuvanthi A; Raymond, Jason L; Shaw, George J

    2012-12-01

    The use of conducting gels to mimic brain and other tissues is of increasing interest in the development of new medical devices. Currently, there are few such models that can be utilized at physiologic temperatures. In this work, the conductivities of agar, agarose and gelatin gels were manipulated by varying NaCl concentration from 0-1 mg/ml. The AC conductivity was measured at room and physiological temperatures (37°C) in the 100-500 Hz frequency range. Conductivity (σ) was nearly independent of frequency but increased linearly with NaCl concentration and was higher at physiological temperatures in these gels. A formula for predicting conductivity as a function of NaCl concentration was derived for each gel type. The overall goal is to develop a 'brain gel model', for studying low frequency electrical properties of the brain and other tissues at physiological temperatures. PMID:23139442

  9. Comparison of electrical conductivities of various brain phantom gels: Developing a ‘Brain Gel Model’

    PubMed Central

    Kandadai, Madhuvanthi A.; Raymond, Jason L.; Shaw, George J.

    2012-01-01

    The use of conducting gels to mimic brain and other tissues is of increasing interest in the development of new medical devices. Currently, there are few such models that can be utilized at physiologic temperatures. In this work, the conductivities of agar, agarose and gelatin gels were manipulated by varying NaCl concentration from 0–1 mg/ml. The AC conductivity was measured at room and physiological temperatures (37°C) in the 100–500 Hz frequency range. Conductivity (σ) was nearly independent of frequency but increased linearly with NaCl concentration and was higher at physiological temperatures in these gels. A formula for predicting conductivity as a function of NaCl concentration was derived for each gel type. The overall goal is to develop a ‘brain gel model’, for studying low frequency electrical properties of the brain and other tissues at physiological temperatures. PMID:23139442

  10. Todd, Faraday, and the electrical basis of brain activity.

    PubMed

    Reynolds, Edward H

    2004-09-01

    Robert Bentley Todd (1809-60) was the UK's first eminent neurologist and neuroscientist. An anatomist, physiologist, and clinical scientist with an interest in the nervous system, he was the first to confirm the electrical basis of brain activity in the 1840s. He was influenced by his contemporary, Michael Faraday at the Royal Institution, and by two colleagues at King's College, John Daniell and Charles Wheatstone, who were also working at the cutting edge of electrical science. Todd conceived of nervous polarity (force) generated in nervous centres and compared this with the polar force of voltaic electricity developed in the galvanic battery. He brilliantly foresaw each nerve vesicle (cell) and its related fibres (ie, neuron) as a distinct apparatus for the development and transmission of nervous polarity. Epilepsy was the result of periodic unnatural development of nervous force leading to the "disruptive discharge" described by Faraday. Faraday, who studied animal electricity in the Gymnotus (electric eel), and Todd saw nervous polarity as a higher form of interchangeable energy. PMID:15324724

  11. Todd, Faraday and the electrical basis of brain activity.

    PubMed

    Reynolds, Edward

    2007-10-01

    The origins of our understanding of brain electricity and electrical discharges in epilepsy can be traced to Robert Bentley Todd (1809-60). Todd was influenced by his contemporary in London, Michael Faraday (1791-1867), who in the 1830 s and 1840 s was laying the foundations of our modern understanding of electromagnetism. Todd's concept of nervous polarity, generated in nerve vesicles and transmitted in nerve fibres (neurons in later terminology), was confirmed a century later by the Nobel Prize-winning work of Hodgkin and Huxley, who demonstrated the ionic basis of neuro-transmission, involving the same ions which had had been discovered by Faraday's mentor, Sir Humphry Davy (1778-1829). PMID:17885273

  12. Simultaneous recording of fluorescence and electrical signals by photometric patch electrode in deep brain regions in vivo

    PubMed Central

    Hirai, Yasuharu; Nishino, Eri

    2015-01-01

    Despite its widespread use, high-resolution imaging with multiphoton microscopy to record neuronal signals in vivo is limited to the surface of brain tissue because of limited light penetration. Moreover, most imaging studies do not simultaneously record electrical neural activity, which is, however, crucial to understanding brain function. Accordingly, we developed a photometric patch electrode (PME) to overcome the depth limitation of optical measurements and also enable the simultaneous recording of neural electrical responses in deep brain regions. The PME recoding system uses a patch electrode to excite a fluorescent dye and to measure the fluorescence signal as a light guide, to record electrical signal, and to apply chemicals to the recorded cells locally. The optical signal was analyzed by either a spectrometer of high light sensitivity or a photomultiplier tube depending on the kinetics of the responses. We used the PME in Oregon Green BAPTA-1 AM-loaded avian auditory nuclei in vivo to monitor calcium signals and electrical responses. We demonstrated distinct response patterns in three different nuclei of the ascending auditory pathway. On acoustic stimulation, a robust calcium fluorescence response occurred in auditory cortex (field L) neurons that outlasted the electrical response. In the auditory midbrain (inferior colliculus), both responses were transient. In the brain-stem cochlear nucleus magnocellularis, calcium response seemed to be effectively suppressed by the activity of metabotropic glutamate receptors. In conclusion, the PME provides a powerful tool to study brain function in vivo at a tissue depth inaccessible to conventional imaging devices. PMID:25761950

  13. Simultaneous recording of fluorescence and electrical signals by photometric patch electrode in deep brain regions in vivo.

    PubMed

    Hirai, Yasuharu; Nishino, Eri; Ohmori, Harunori

    2015-06-01

    Despite its widespread use, high-resolution imaging with multiphoton microscopy to record neuronal signals in vivo is limited to the surface of brain tissue because of limited light penetration. Moreover, most imaging studies do not simultaneously record electrical neural activity, which is, however, crucial to understanding brain function. Accordingly, we developed a photometric patch electrode (PME) to overcome the depth limitation of optical measurements and also enable the simultaneous recording of neural electrical responses in deep brain regions. The PME recoding system uses a patch electrode to excite a fluorescent dye and to measure the fluorescence signal as a light guide, to record electrical signal, and to apply chemicals to the recorded cells locally. The optical signal was analyzed by either a spectrometer of high light sensitivity or a photomultiplier tube depending on the kinetics of the responses. We used the PME in Oregon Green BAPTA-1 AM-loaded avian auditory nuclei in vivo to monitor calcium signals and electrical responses. We demonstrated distinct response patterns in three different nuclei of the ascending auditory pathway. On acoustic stimulation, a robust calcium fluorescence response occurred in auditory cortex (field L) neurons that outlasted the electrical response. In the auditory midbrain (inferior colliculus), both responses were transient. In the brain-stem cochlear nucleus magnocellularis, calcium response seemed to be effectively suppressed by the activity of metabotropic glutamate receptors. In conclusion, the PME provides a powerful tool to study brain function in vivo at a tissue depth inaccessible to conventional imaging devices. PMID:25761950

  14. MEASUREMENT OF SMALL MECHANICAL VIBRATIONS OF BRAIN TISSUE EXPOSED TO EXTREMELY-LOW-FREQUENCY ELECTRIC FIELDS

    EPA Science Inventory

    Electromagnetic fields can interact with biological tissue both electrically and mechanically. This study investigated the mechanical interaction between brain tissue and an extremely-low-frequency (ELF) electric field by measuring the resultant vibrational amplitude. The exposur...

  15. Surface electrical properties experiment, part 1. [for measuring lunar surface electrical properties

    NASA Technical Reports Server (NTRS)

    Kupfer, W. S. (Compiler)

    1973-01-01

    The design evolution, hardware development, and production history of the surface electrical properties (SEP) experiment are discussed. The SEP transmitter and receiver were designed to be used on the lunar surface during the Apollo 17 mission. The equipment was used to measure lunar surface electrical properties over traverses totalling more than 8 kilometers, for a duration of more than 100 minutes. A comprehensive outline of the techniques, is given along with a simplified detailed breakdown of equipment description and function to outline the principles of operation. A history of the design evolution with trade-off criteria and emphasis on changes caused by decisions reached in solving problems inherent in a fast-paced development program are presented from the viewpoint of overall design concept and in detail for each item of deliverable hardware. There is a brief account of lunar operations.

  16. Combining multi-atlas segmentation with brain surface estimation

    NASA Astrophysics Data System (ADS)

    Huo, Yuankai; Carass, Aaron; Resnick, Susan M.; Pham, Dzung L.; Prince, Jerry L.; Landman, Bennett A.

    2016-03-01

    Whole brain segmentation (with comprehensive cortical and subcortical labels) and cortical surface reconstruction are two essential techniques for investigating the human brain. The two tasks are typically conducted independently, however, which leads to spatial inconsistencies and hinders further integrated cortical analyses. To obtain self-consistent whole brain segmentations and surfaces, FreeSurfer segregates the subcortical and cortical segmentations before and after the cortical surface reconstruction. However, this "segmentation to surface to parcellation" strategy has shown limitation in various situations. In this work, we propose a novel "multi-atlas segmentation to surface" method called Multi-atlas CRUISE (MaCRUISE), which achieves self-consistent whole brain segmentations and cortical surfaces by combining multi-atlas segmentation with the cortical reconstruction method CRUISE. To our knowledge, this is the first work that achieves the reliability of state-of-the-art multi-atlas segmentation and labeling methods together with accurate and consistent cortical surface reconstruction. Compared with previous methods, MaCRUISE has three features: (1) MaCRUISE obtains 132 cortical/subcortical labels simultaneously from a single multi-atlas segmentation before reconstructing volume consistent surfaces; (2) Fuzzy tissue memberships are combined with multi-atlas segmentations to address partial volume effects; (3) MaCRUISE reconstructs topologically consistent cortical surfaces by using the sulci locations from multi-atlas segmentation. Two data sets, one consisting of five subjects with expertly traced landmarks and the other consisting of 100 volumes from elderly subjects are used for validation. Compared with CRUISE, MaCRUISE achieves self-consistent whole brain segmentation and cortical reconstruction without compromising on surface accuracy. MaCRUISE is comparably accurate to FreeSurfer while achieving greater robustness across an elderly population.

  17. Surface electrical stimulation to evoke referred sensation.

    PubMed

    Forst, Johanna C; Blok, Derek C; Slopsema, Julia P; Boss, John M; Heyboer, Lane A; Tobias, Carson M; Polasek, Katharine H

    2015-01-01

    Surface electrical stimulation (SES) is being investigated as a noninvasive method to evoke natural sensations distal to electrode location. This may improve treatment for phantom limb pain as well as provide an alternative method to deliver sensory feedback. The median and/or ulnar nerves of 35 subjects were stimulated at the elbow using surface electrodes. Strength-duration curves of hand sensation were found for each subject. All subjects experienced sensation in their hand, which was mostly described as a paresthesia-like sensation. The rheobase and chronaxie values were found to be lower for the median nerve than the ulnar nerve, with no significant difference between sexes. Repeated sessions with the same subject resulted in sufficient variability to suggest that recalculating the strength-duration curve for each electrode placement is necessary. Most of the recruitment curves in this study were generated with 28 to 36 data points. To quickly reproduce these curves with limited increase in error, we recommend 10 data points. Future studies will focus on obtaining different sensations using SES with the strength-duration curve defining the threshold of the effective parameter space. PMID:26348194

  18. Electrical cable connector-clamp has smooth exterior surface

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Electrical cable connector-clamp fitted with a collet has a smooth exterior surface that can be easily gripped. The collet clamps a portion of the cable and provides for connecting it to a standard electrical connector.

  19. Combining Multi-atlas Segmentation with Brain Surface Estimation

    PubMed Central

    Carass, Aaron; Resnick, Susan M.; Pham, Dzung L.; Prince, Jerry L.; Landman, Bennett A.

    2016-01-01

    Whole brain segmentation (with comprehensive cortical and subcortical labels) and cortical surface reconstruction are two essential techniques for investigating the human brain. The two tasks are typically conducted independently, however, which leads to spatial inconsistencies and hinders further integrated cortical analyses. To obtain self-consistent whole brain segmentations and surfaces, FreeSurfer segregates the subcortical and cortical segmentations before and after the cortical surface reconstruction. However, this “segmentation to surface to parcellation” strategy has shown limitations in various situations. In this work, we propose a novel “multi-atlas segmentation to surface” method called Multi-atlas CRUISE (MaCRUISE), which achieves self-consistent whole brain segmentations and cortical surfaces by combining multi-atlas segmentation with the cortical reconstruction method CRUISE. To our knowledge, this is the first work that achieves the reliability of state-of-the-art multi-atlas segmentation and labeling methods together with accurate and consistent cortical surface reconstruction. Compared with previous methods, MaCRUISE has three features: (1) MaCRUISE obtains 132 cortical/subcortical labels simultaneously from a single multi-atlas segmentation before reconstructing volume consistent surfaces; (2) Fuzzy tissue memberships are combined with multi-atlas segmentations to address partial volume effects; (3) MaCRUISE reconstructs topologically consistent cortical surfaces by using the sulci locations from multi-atlas segmentation. Two data sets, one consisting of five subjects with expertly traced landmarks and the other consisting of 100 volumes from elderly subjects are used for validation. Compared with CRUISE, MaCRUISE achieves self-consistent whole brain segmentation and cortical reconstruction without compromising on surface accuracy. MaCRUISE is comparably accurate to FreeSurfer while achieving greater robustness across an elderly

  20. Electric fields of motor and frontal tDCS in a standard brain space: A computer simulation study.

    PubMed

    Laakso, Ilkka; Tanaka, Satoshi; Mikkonen, Marko; Koyama, Soichiro; Sadato, Norihiro; Hirata, Akimasa

    2016-08-15

    The electric field produced in the brain is the main physical agent of transcranial direct current stimulation (tDCS). Inter-subject variations in the electric fields may help to explain the variability in the effects of tDCS. Here, we use multiple-subject analysis to study the strength and variability of the group-level electric fields in the standard brain space. Personalized anatomically-accurate models of 62 subjects were constructed from T1- and T2-weighted MRI. The finite-element method was used to computationally estimate the individual electric fields, which were registered to the standard space using surface based registration. Motor cortical and frontal tDCS were modelled for 16 electrode montages. For each electrode montage, the group-level electric fields had a consistent strength and direction in several brain regions, which could also be located at some distance from the electrodes. In other regions, the electric fields were more variable, and thus more likely to produce variable effects in each individual. Both the anode and cathode locations affected the group-level electric fields, both directly under the electrodes and elsewhere. For motor cortical tDCS, the electric fields could be controlled at the group level by moving the electrodes. However, for frontal tDCS, the group-level electric fields were more variable, and the electrode locations had only minor effects on the group average fields. Our results reveal the electric fields and their variability at the group level in the standard brain space, providing insights into the mechanisms of tDCS for plasticity induction. The data are useful for planning, analysing and interpreting tDCS studies. PMID:27188218

  1. Electrical conductivity changes during irreversible electroporation treatment of brain cancer.

    PubMed

    Garcia, Paulo A; Rossmeisl, John H; Davalos, Rafael V

    2011-01-01

    Irreversible electroporation (IRE) is a new minimally invasive technique to kill tumors and other undesirable tissue in a non-thermal manner. During an IRE treatment, a series of short and intense electric pulses are delivered to the region of interest to destabilize the cell membranes in the tissue and achieve spontaneous cell death. The alteration of the cellular membrane results in a dramatic increase in electrical conductivity during IRE as in other electroporation-based-therapies. In this study, we performed the planning and execution of an IRE brain cancer treatment using MRI reconstructions of the tumor and a multichannel array that served as a stereotactic fiducial and electrode guide. Using the tumor reconstructions within our numerical simulations, we developed equations relating the increase in tumor conductivity to calculated currents and volumes of tumor treated with IRE. We also correlated the experimental current measured during the procedure to an increase in tumor conductivity ranging between 3.42-3.67 times the baseline conductivity, confirming the physical phenomenon that has been detected in other tissues undergoing similar electroporation-based treatments. PMID:22254416

  2. Electrical stimulation of a small brain area reversibly disrupts consciousness.

    PubMed

    Koubeissi, Mohamad Z; Bartolomei, Fabrice; Beltagy, Abdelrahman; Picard, Fabienne

    2014-08-01

    The neural mechanisms that underlie consciousness are not fully understood. We describe a region in the human brain where electrical stimulation reproducibly disrupted consciousness. A 54-year-old woman with intractable epilepsy underwent depth electrode implantation and electrical stimulation mapping. The electrode whose stimulation disrupted consciousness was between the left claustrum and anterior-dorsal insula. Stimulation of electrodes within 5mm did not affect consciousness. We studied the interdependencies among depth recording signals as a function of time by nonlinear regression analysis (h(2) coefficient) during stimulations that altered consciousness and stimulations of the same electrode at lower current intensities that were asymptomatic. Stimulation of the claustral electrode reproducibly resulted in a complete arrest of volitional behavior, unresponsiveness, and amnesia without negative motor symptoms or mere aphasia. The disruption of consciousness did not outlast the stimulation and occurred without any epileptiform discharges. We found a significant increase in correlation for interactions affecting medial parietal and posterior frontal channels during stimulations that disrupted consciousness compared with those that did not. Our findings suggest that the left claustrum/anterior insula is an important part of a network that subserves consciousness and that disruption of consciousness is related to increased EEG signal synchrony within frontal-parietal networks. PMID:24967698

  3. Brain surface maps from 3-D medical images

    NASA Astrophysics Data System (ADS)

    Lu, Jiuhuai; Hansen, Eric W.; Gazzaniga, Michael S.

    1991-06-01

    The anatomic and functional localization of brain lesions for neurologic diagnosis and brain surgery is facilitated by labeling the cortical surface in 3D images. This paper presents a method which extracts cortical contours from magnetic resonance (MR) image series and then produces a planar surface map which preserves important anatomic features. The resultant map may be used for manual anatomic localization as well as for further automatic labeling. Outer contours are determined on MR cross-sectional images by following the clear boundaries between gray matter and cerebral-spinal fluid, skipping over sulci. Carrying this contour below the surface by shrinking it along its normal produces an inner contour that alternately intercepts gray matter (sulci) and white matter along its length. This procedure is applied to every section in the set, and the image (grayscale) values along the inner contours are radially projected and interpolated onto a semi-cylindrical surface with axis normal to the slices and large enough to cover the whole brain. A planar map of the cortical surface results by flattening this cylindrical surface. The projection from inner contour to cylindrical surface is unique in the sense that different points on the inner contour correspond to different points on the cylindrical surface. As the outer contours are readily obtained by automatic segmentation, cortical maps can be made directly from an MR series.

  4. Brain segmentation and the generation of cortical surfaces

    NASA Technical Reports Server (NTRS)

    Joshi, M.; Cui, J.; Doolittle, K.; Joshi, S.; Van Essen, D.; Wang, L.; Miller, M. I.

    1999-01-01

    This paper describes methods for white matter segmentation in brain images and the generation of cortical surfaces from the segmentations. We have developed a system that allows a user to start with a brain volume, obtained by modalities such as MRI or cryosection, and constructs a complete digital representation of the cortical surface. The methodology consists of three basic components: local parametric modeling and Bayesian segmentation; surface generation and local quadratic coordinate fitting; and surface editing. Segmentations are computed by parametrically fitting known density functions to the histogram of the image using the expectation maximization algorithm [DLR77]. The parametric fits are obtained locally rather than globally over the whole volume to overcome local variations in gray levels. To represent the boundary of the gray and white matter we use triangulated meshes generated using isosurface generation algorithms [GH95]. A complete system of local parametric quadratic charts [JWM+95] is superimposed on the triangulated graph to facilitate smoothing and geodesic curve tracking. Algorithms for surface editing include extraction of the largest closed surface. Results for several macaque brains are presented comparing automated and hand surface generation. Copyright 1999 Academic Press.

  5. Seeing surfaces: The brain's vision of the world

    NASA Astrophysics Data System (ADS)

    Neumann, Heiko; Yazdanbakhsh, Arash; Mingolla, Ennio

    2007-09-01

    Surfaces of environmental objects are the key to understanding the visual experience of primates. Surfaces create structure in patterns of light available for sampling by visual systems, and delineate potential interactions that an animal can have with its environment, such as approaching goals, avoiding obstacles, grasping an object, or identifying members of a social group. Recent progress in modeling the perception of visual surfaces highlights the importance of feedforward and feedback connections in visual neural networks that segregate and group visual input into coherent regions related to corresponding surfaces in the visual world. Rich non-linear network dynamics in the brain underlie surface perception, including the detection, regularization, and grouping of visual boundaries between surfaces, the determination of “ownership” of a boundary by a closer surface that partially occludes a background, and the apprehension of a surface's visual quality, such as color or texture. Recent modeling efforts on these fronts are reviewed.

  6. Study of electrical properties of meridian on human body surface

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Uematsu, Haruyuki; Otani, Nobuo

    2007-12-01

    This paper presents the study of the subcutaneous electrical impedance on the human body surface. Measurements of the electrical impedance on five adult male subjects were carried out and analyzed for the possible detection of the acupuncture meridian lines of ancient Chinese medicine on the human body. The distribution of electrical impedance measured at 40 points over the volar side of the right upper limb of the subjects. The results show that electrical impedance varies at different locations of the human body surface, and the locations with lower electrical impedance coincide with the locations where the meridian is believed to exist.

  7. Measuring electric fields from surface contaminants with neutral atoms

    SciTech Connect

    Obrecht, J. M.; Wild, R. J.; Cornell, E. A.

    2007-06-15

    In this paper we demonstrate a technique of utilizing magnetically trapped neutral {sup 87}Rb atoms to measure the magnitude and direction of stray electric fields emanating from surface contaminants. We apply an alternating external electric field that adds to (or subtracts from) the stray field in such a way as to resonantly drive the trapped atoms into a mechanical dipole oscillation. The growth rate of the oscillation's amplitude provides information about the magnitude and sign of the stray field gradient. Using this measurement technique, we are able to reconstruct the vector electric field produced by surface contaminants. In addition, we can accurately measure the electric fields generated from adsorbed atoms purposely placed onto the surface and account for their systematic effects, which can plague a precision surface-force measurement. We show that baking the substrate can reduce the electric fields emanating from adsorbate and that the mechanism for reduction is likely surface diffusion, not desorption.

  8. Electric currents and fields induced in cells in the human brain by radiation from hand-held cellular telephones

    NASA Astrophysics Data System (ADS)

    King, Ronold W. P.

    2000-01-01

    After a review of recent work on the interaction of electromagnetic fields from cellular telephones with the human head, the structural and radiating properties of two common types of transceivers are determined. These include the impedance and current amplitude distribution of the antennas. The tangential electric field maintained by the antennas on the adjacent surface of the head is next determined. From this, the electric field propagating through the skull into the brain is analyzed and, from it, the electric field in spherical and long cylindrical cells is determined. It ranges from 27 to 13.5 V/m in the first 3 cm inside the skull. Of interest is the fact that the induced field in the interior of all cells, regardless of their shape, is the same as the incident field in the brain. It is hoped that biomedical scientists will review these results and determine possible biological effects.

  9. MR image denoising method for brain surface 3D modeling

    NASA Astrophysics Data System (ADS)

    Zhao, De-xin; Liu, Peng-jie; Zhang, De-gan

    2014-11-01

    Three-dimensional (3D) modeling of medical images is a critical part of surgical simulation. In this paper, we focus on the magnetic resonance (MR) images denoising for brain modeling reconstruction, and exploit a practical solution. We attempt to remove the noise existing in the MR imaging signal and preserve the image characteristics. A wavelet-based adaptive curve shrinkage function is presented in spherical coordinates system. The comparative experiments show that the denoising method can preserve better image details and enhance the coefficients of contours. Using these denoised images, the brain 3D visualization is given through surface triangle mesh model, which demonstrates the effectiveness of the proposed method.

  10. Ionic surface electrical conductivity in sandstone

    NASA Astrophysics Data System (ADS)

    Glover, Paul W. J.; Meredith, Philip G.; Sammonds, Peter R.; Murrell, Stanley A. F.

    1994-11-01

    Recent analyses of complex conductivity measurements have indicated that high-frequency dispersions encountered in rocks saturated with low-salinity fluids are due to ionic surface conduction and that the form of these dispersions may be dependent upon the nature of the pore and crack surfaces within the rock (Ruffet et al., 1991). Unfortunately, the mechanisms of surface conduction are not well understood, and no model based on rigorous physical principles exists. This paper is split into two parts: an experimental section followed by the development of a theoretical description of adsorption of ions onto mineral surfaces. We have made complex conductivity measurements upon samples of sandstone saturated with a range of different types and concentrations of aqueous solution with a frequency range of 20 Hz to 1 MHz. The frequency dependence of complex conductivity was analyzed using the empirical model of Cole and Cole (1941). The 'fractal' surface models of Le Mehaute and Crepy (1983), Po Zen Wong (1987), the Ruffet el at. (1991) were used to calculate apparent fractal pore surface dimensions for samples saturated with different solution types and concentrations. These showed a pronounced decrease of apparent fractal surface dimension with decreasing electrolyte concentration and a decrease of apparent fractal dimension with increasing relative ionic radius of the dominant cation in solution. A model for ionic surface concentration (ISCOM I) has been developed as the first step in producing a rigorous physicochemical model of surface conduction in quartz-dominated rocks. The results from ISCOM I show that quartz surfaces are overwhelmingly dominated by adsorbed Na(+) when saturated with NaCl solutions of salinities and pH found in actual geological situations. ISCOM I also shows that the concentration threshold for dominance of surface conduction over bulk conduction is aided by depletion of ions from the bulk fluid as a result of their adsorption onto the mineral

  11. Surface electrical properties experiment, part 1. [flown on Apollo 17

    NASA Technical Reports Server (NTRS)

    Strangway, D. W.; Annan, A. P.; Redman, J. D.; Rossiter, J. R.; Rylaarsdam, J. A.; Watts, R. D.

    1974-01-01

    The work is reported which was performed on the Surface Electrical Properties Experiment Data Acquisition System. Areas discussed include: data handling and processing, installation and external signal application, operation of the equipment, and digital output. Detailed circuit descriptions are included.

  12. Surface electric fields for North America during historical geomagnetic storms

    USGS Publications Warehouse

    Wei, Lisa H.; Homeier, Nichole; Gannon, Jennifer L.

    2013-01-01

    To better understand the impact of geomagnetic disturbances on the electric grid, we recreate surface electric fields from two historical geomagnetic storms—the 1989 “Quebec” storm and the 2003 “Halloween” storms. Using the Spherical Elementary Current Systems method, we interpolate sparsely distributed magnetometer data across North America. We find good agreement between the measured and interpolated data, with larger RMS deviations at higher latitudes corresponding to larger magnetic field variations. The interpolated magnetic field data are combined with surface impedances for 25 unique physiographic regions from the United States Geological Survey and literature to estimate the horizontal, orthogonal surface electric fields in 1 min time steps. The induced horizontal electric field strongly depends on the local surface impedance, resulting in surprisingly strong electric field amplitudes along the Atlantic and Gulf Coast. The relative peak electric field amplitude of each physiographic region, normalized to the value in the Interior Plains region, varies by a factor of 2 for different input magnetic field time series. The order of peak electric field amplitudes (largest to smallest), however, does not depend much on the input. These results suggest that regions at lower magnetic latitudes with high ground resistivities are also at risk from the effect of geomagnetically induced currents. The historical electric field time series are useful for estimating the flow of the induced currents through long transmission lines to study power flow and grid stability during geomagnetic disturbances.

  13. Reduction of coherence of the human brain electric potentials

    NASA Astrophysics Data System (ADS)

    Novik, Oleg; Smirnov, Fedor

    Plenty of technological processes are known to be damaged by magnetic storms. But technology is controlled by men and their functional systems may be damaged as well. We are going to consider the electro-neurophysiological aspect of the general problem: men surrounded by physical fields including ones of cosmic origination. Magnetic storms’ influence had been observed for a group of 13 students (practically healthy girls and boys from 18 to 23 years old, Moscow). To control the main functional systems of the examinees, their electroencephalograms (EEG) were being registered along with electrocardiograms, respiratory rhythms, arterial blood pressure and other characteristics during a year. All of these characteristics, save for the EEG, were within the normal range for all of the examinees during measurements. According to the EEG investigations by implementation of the computer proof-reading test in absence of magnetic storms, the values of the coherence function of time series of the theta-rhythm oscillations (f = 4 - 7.9 Hz, A = 20 μV) of electric potentials of the frontal-polar and occipital areas of the head belong to the interval [0.3, 0.8] for all of the students under investigation. (As the proof-reading test, it was necessary to choose given symbols from a random sequence of ones demonstrated at a monitor and to enter the number of the symbols discovered in a computer. Everyone was known that the time for determination of symbols is unlimited. On the other hand, nobody was known that the EEG and other registrations mentioned are connected with electromagnetic geophysical researches and geomagnetic storms). Let us formulate the main result: by implementation of the same test during a magnetic storm, 5 ≤ K ≤ 6, or no later then 24 hours after its beginning (different types of moderate magnetic storms occurred, the data of IZMIRAN were used), the values of the theta-rhythm frontal - occipital coherence function of all of the students of the group under

  14. Inhibition of brain tumor cell proliferation by alternating electric fields

    SciTech Connect

    Jeong, Hyesun; Oh, Seung-ick; Hong, Sunghoi E-mail: radioyoon@korea.ac.kr; Sung, Jiwon; Jeong, Seonghoon; Yoon, Myonggeun E-mail: radioyoon@korea.ac.kr; Koh, Eui Kwan

    2014-11-17

    This study was designed to investigate the mechanism by which electric fields affect cell function, and to determine the optimal conditions for electric field inhibition of cancer cell proliferation. Low-intensity (<2 V/cm) and intermediate-frequency (100–300 kHz) alternating electric fields were applied to glioblastoma cell lines. These electric fields inhibited cell proliferation by inducing cell cycle arrest and abnormal mitosis due to the malformation of microtubules. These effects were significantly dependent on the intensity and frequency of applied electric fields.

  15. Determination of surface electric charge profile in pyroelectric crystals

    SciTech Connect

    Ghaderi, R.; Davani, F. Abbasi

    2014-12-08

    Pyroelectric crystals are used to produce high energy self-focused electron beams. Here, an experimental analysis in combination with simulation studies will be reported to investigate possible sources of this effect. In the experiments, the surface of crystal was divided into six separated parts and the rate of surface electric charge production was measured accordingly. A non-steady and spatially non-uniform distribution of the surface charge generation was observed, in which it tends to a uniform distribution in the course of experiment. The obtained surface electric charges from the experiments were used to simulate the electric field and potential around the crystal by COMSOL Multiphysics. It was observed that emitted electrons from the crystal surface were focused, and the non-uniformity in spatial charge is responsible for this phenomenon.

  16. Noninvasive Imaging of Head-Brain Conductivity Profiles Using Magnetic Resonance Electrical Impedance Imaging

    PubMed Central

    Zhang, Xiaotong; Yan, Dandan; Zhu, Shanan; He, Bin

    2008-01-01

    Magnetic resonance electrical impedance tomography (MREIT) is a recently introduced non-invasive conductivity imaging modality, which combines the magnetic resonance current density imaging (CDI) and the traditional electrical impedance tomography (EIT) techniques. MREIT is aimed at providing high spatial resolution images of electrical conductivity, by avoiding solving the well-known ill-posed problem in the traditional EIT. In this paper, we review our research activities in MREIT imaging of head-brain tissue conductivity profiles. We have developed several imaging algorithms and conducted a series of computer simulations for MREIT imaging of the head and brain tissues. Our work suggests MREIT brain imaging may become a useful tool in imaging conductivity distributions of the brain and head. PMID:18799394

  17. A combined voxel and surface based method for topology correction of brain surfaces

    NASA Astrophysics Data System (ADS)

    Gris, Florence; Favreau, Jean-Marie; Acosta, Oscar; Barra, Vincent; Salvado, Olivier

    2010-03-01

    Brain surfaces provide a reliable representation for cortical mapping. The construction of correct surfaces from magnetic resonance images (MRI) segmentation is a challenging task, especially when genus zero surfaces are required for further processing such as parameterization, partial inflation and registration. The generation of such surfaces has been approached either by correcting a binary image as part of the segmentation pipeline or by modifying the mesh representing the surface. During this task, the preservation of the structure may be compromised because of the convoluted nature of the brain and noisy/imperfect segmentations. In this paper, we propose a combined, voxel and surfacebased, topology correction method which preserves the structure of the brain while yielding genus zero surfaces. The topology of the binary segmentation is first corrected using a set of topology preserving operators applied sequentially. This results in a white matter/gray matter binary set with correct sulci delineation, homotopic to a filled sphere. Using the corrected segmentation, a marching cubes mesh is then generated and the tunnels and handles resulting from the meshing are finally removed with an algorithm based on the detection of nonseparating loops. The approach was validated using 20 young individuals MRI from the OASIS database, acquired at two different time-points. Reproducibility and robustness were evaluated using global and local criteria such as surface area, curvature and point to point distance. Results demonstrated the method capability to produce genus zero meshes while preserving geometry, two fundamental properties for reliable and accurate cortical mapping and further clinical studies.

  18. Atmospheric reactions on electrically charged surfaces.

    PubMed

    Phillips, Leon F

    2013-07-14

    It is proposed that tropospheric NO2 at concentrations in the parts-per-billion range can be efficiently converted to HONO in a dust storm, by a process that is initiated by electron capture by NO2 from a negatively-charged dust particle. The electron capture is visualized as a harpoon-type process that does not require the NO2 to be adsorbed on the particle. The resulting electronically excited [NO2(-)]* ion reacts with water to form an HONO molecule plus an OH(-)·(H2O)n cluster ion. It is suggested that analogous processes can occur on other atmospheric aerosol particles with both positive and negative charges, with other molecules of high electron affinity such as SO2, and also, because the earth's surface is effectively the negative plate of a planet-sized capacitor, at the surfaces of terrestrial solids, lakes and oceans. PMID:23689618

  19. Electricity and Magnetism: Insights into the brain from multimodal imaging.

    PubMed

    Cohen, M S

    2009-11-01

    The windows into brain function given us by the instruments of neuroimaging each are murky and their view is limited. Simultaneous collection of data from multiple modalities offers the potential to overcome the weaknesses of any tool alone. We argue that the combination of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) offers observations - and hypothesis testing - not possible using either single instrument. Because of their safety profiles and their non-invasive natures, EEG fMRI are among the best available devices for the study of human brain. These methods are complementary. EEG is fast, operating in a time domain comparable to single unit activity, but its localizing power is poor and the field of view is limited. While fMRI has the highest spatial resolution of any noninvasive imaging method and can reveal multiple centers of brain activity implicated in cognitive tasks, it is very slow compared to mental activity and is a poor choice for studying rapidly evolving processes. Here, we address theoretical models of the coupling between EEG and fMRI signals based on cellular physiology and energetics and argue that both tools observe principally synaptic activity. We discuss the technical problems of mutual interference then present several models of brain rhythms for which the joint EEG and fMRI observations provide significant evidence. PMID:25484491

  20. TOPICAL REVIEW: A survey of signal processing algorithms in brain computer interfaces based on electrical brain signals

    NASA Astrophysics Data System (ADS)

    Bashashati, Ali; Fatourechi, Mehrdad; Ward, Rabab K.; Birch, Gary E.

    2007-06-01

    Brain computer interfaces (BCIs) aim at providing a non-muscular channel for sending commands to the external world using the electroencephalographic activity or other electrophysiological measures of the brain function. An essential factor in the successful operation of BCI systems is the methods used to process the brain signals. In the BCI literature, however, there is no comprehensive review of the signal processing techniques used. This work presents the first such comprehensive survey of all BCI designs using electrical signal recordings published prior to January 2006. Detailed results from this survey are presented and discussed. The following key research questions are addressed: (1) what are the key signal processing components of a BCI, (2) what signal processing algorithms have been used in BCIs and (3) which signal processing techniques have received more attention?

  1. Electrically-tunable surface deformation of a soft elastomer.

    PubMed

    Shian, Samuel; Clarke, David R

    2016-04-01

    The flat surface of a thin elastomer on a conducting substrate can be deformed by applying an electric field to a percolating network of metallic nanowires randomly dispersed over the surface. The magnitude of the field-induced surface undulations increases with the applied field and can locally be several times the diameter of the nanowires. Optical imaging indicates that the effect is reversible and the surface flatness is recovered when the electric field is removed. It is found that it is the field-induced changes in the surface morphology rather than the nanowires themselves that strongly scatter light. The optical effects could be exploited in functional devices including tunable privacy windows, displays, and camouflage. There is also the potential for tuning the adhesion of elastomers to other materials. PMID:26959839

  2. Reversible Transitions on Electrically-Tunable Nanostructured Superhydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Krupenkin, Tom; Taylor, J. Ashley; Kolodner, Paul; Hodes, Marc; Aizenberg, Joanna

    2006-03-01

    Recently demonstrated electrically tunable nanostructured superhydrophobic surfaces provide a promising new way of manipulating liquids at both micro and macro scales. Dynamic control over the interaction of liquids with the solid substrate is of great interest to many research areas ranging from biology and chemistry to physics and nanotechnology. In this work the reversibility of the electrically induced superhydrophobic -- hydrophilic transition on nanostructured surfaces is addressed. Recently demonstrated approach based on momentarily induction of film boiling in a very thin layer of liquid adjacent to the solid-liquid interface is discussed. The dependence of the hydrophilic -- superhydrophobic transition on the topography of the nanostructured layer, as well as on the energy and duration of the electrical pulse is investigated. Several emerging applications of these surfaces, including lab-on-a-chip, chemical microreactor, and on-chip power sources are discussed.

  3. Solar Electric Power System Analyses for Mars Surface Missions

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Kohout, Lisa L.

    1999-01-01

    The electric power system is a crucial element of any architecture supporting human surface exploration of Mars. In this paper, we describe the conceptual design and detailed analysis of solar electric power system using photovoltaics and regenerative fuel cells to provide surface power on Mars. System performance, mass and deployed area predictions are discussed along with the myriad environmental factors and trade study results that helped to guide system design choices. Based on this work, we have developed a credible solar electric power option that satisfies the surface power requirements of a human Mars mission. The power system option described in this paper has a mass of approximately 10 metric tons, a approximately 5000-sq m deployable photovoltaic array using thin film solar cell technology.

  4. [Interest of EEG recording during direct electrical stimulation for brain mapping function in surgery].

    PubMed

    Trebuchon, A; Guye, M; Tcherniack, V; Tramoni, E; Bruder, N; Metellus, P

    2012-06-01

    Brain tumor surgery is at risk when lesions are located in eloquent areas. The interindividual anatomo-functional variability of the central nervous system implies that brain surgery within eloquent regions may induce neurological sequelae. Brain mapping using intraoperative direct electrical stimulation in awake patients has been for long validated as the standard for functional brain mapping. Direct electrical stimulation inducing a local transient electrical and functional disorganization is considered positive if the task performed by the patient is disturbed. The brain area stimulated is then considered as essential for the function tested. However, the exactitude of the information provided by this technique is cautious because the actual impact of cortical direct electrical stimulation is not known. Indeed, the possibility of false negative (insufficient intensity of the stimulation due to the heterogeneity of excitability threshold of different cortical areas) or false positive (current spread, interregional signal propagation responsible for remote effects, which make difficult the interpretation of positive or negative behavioural effects) constitute a limitation of this technique. To improve the sensitivity and specificity of this technique, we used an electrocorticographic recording system allowing a real time visualization of the local. We provide here evidence that direct cortical stimulation combined with electrocorticographic recording could be useful to detect remote after discharge and to adjust stimulation parameters. In addition this technique offers new perspective to better assess connectivity of cerebral networks. PMID:22683402

  5. Invasive and transcranial photoacoustic imaging of the vascular response to brain electrical stimulation

    NASA Astrophysics Data System (ADS)

    Tsytsarev, Vassiliy; Yao, Junjie; Hu, Song; Li, Li; Favazza, Christopher P.; Maslov, Konstantin I.; Wang, Lihong V.

    2010-02-01

    Advances in the brain functional imaging greatly facilitated the understanding of neurovascular coupling. For monitoring of the microvascular response to the brain electrical stimulation in vivo we used optical-resolution photoacoustic microscopy (OR-PAM) through the cranial openings as well as transcranially. Both types of the vascular response, vasoconstriction and vasodilatation, were clearly observed with good spatial and temporal resolution. Obtained results confirm one of the primary points of the neurovascular coupling theory that blood vessels could present vasoconstriction or vasodilatation in response to electrical stimulation, depending on the balance between inhibition and excitation of the different parts of the elements of the neurovascular coupling system.

  6. Electric-field-enhanced condensation on superhydrophobic nanostructured surfaces.

    PubMed

    Miljkovic, Nenad; Preston, Daniel J; Enright, Ryan; Wang, Evelyn N

    2013-12-23

    When condensed droplets coalesce on a superhydrophobic nanostructured surface, the resulting droplet can jump due to the conversion of excess surface energy into kinetic energy. This phenomenon has been shown to enhance condensation heat transfer by up to 30% compared to state-of-the-art dropwise condensing surfaces. However, after the droplets jump away from the surface, the existence of the vapor flow toward the condensing surface increases the drag on the jumping droplets, which can lead to complete droplet reversal and return to the surface. This effect limits the possible heat transfer enhancement because larger droplets form upon droplet return to the surface, which impedes heat transfer until they can be either removed by jumping again or finally shedding via gravity. By characterizing individual droplet trajectories during condensation on superhydrophobic nanostructured copper oxide (CuO) surfaces, we show that this vapor flow entrainment dominates droplet motion for droplets smaller than R ≈ 30 μm at moderate heat fluxes (q″ > 2 W/cm(2)). Subsequently, we demonstrate electric-field-enhanced condensation, whereby an externally applied electric field prevents jumping droplet return. This concept leverages our recent insight that these droplets gain a net positive charge due to charge separation of the electric double layer at the hydrophobic coating. As a result, with scalable superhydrophobic CuO surfaces, we experimentally demonstrated a 50% higher overall condensation heat transfer coefficient compared to that on a jumping-droplet surface with no applied field for low supersaturations (<1.12). This work not only shows significant condensation heat transfer enhancement but also offers avenues for improving the performance of self-cleaning and anti-icing surfaces as well as thermal diodes. PMID:24261667

  7. Predicting the electric field distribution in the brain for the treatment of glioblastoma

    NASA Astrophysics Data System (ADS)

    Miranda, Pedro C.; Mekonnen, Abeye; Salvador, Ricardo; Basser, Peter J.

    2014-08-01

    The use of alternating electric fields has been recently proposed for the treatment of recurrent glioblastoma. In order to predict the electric field distribution in the brain during the application of such tumor treating fields (TTF), we constructed a realistic head model from MRI data and placed transducer arrays on the scalp to mimic an FDA-approved medical device. Values for the tissue dielectric properties were taken from the literature; values for the device parameters were obtained from the manufacturer. The finite element method was used to calculate the electric field distribution in the brain. We also included a ‘virtual lesion’ in the model to simulate the presence of an idealized tumor. The calculated electric field in the brain varied mostly between 0.5 and 2.0 V cm - 1 and exceeded 1.0 V cm - 1 in 60% of the total brain volume. Regions of local field enhancement occurred near interfaces between tissues with different conductivities wherever the electric field was perpendicular to those interfaces. These increases were strongest near the ventricles but were also present outside the tumor’s necrotic core and in some parts of the gray matter-white matter interface. The electric field values predicted in this model brain are in reasonably good agreement with those that have been shown to reduce cancer cell proliferation in vitro. The electric field distribution is highly non-uniform and depends on tissue geometry and dielectric properties. This could explain some of the variability in treatment outcomes. The proposed modeling framework could be used to better understand the physical basis of TTF efficacy through retrospective analysis and to improve TTF treatment planning.

  8. Predicting the Electric Field Distribution in the Brain for the Treatment of Glioblastoma

    PubMed Central

    Miranda, Pedro C.; Mekonnen, Abeye; Salvador, Ricardo; Basser, Peter J.

    2014-01-01

    The use of alternating electric fields has been recently proposed for the treatment of recurrent glioblastoma. In order to predict the electric field distribution in the brain during the application of such tumor treating fields (TTF), we constructed a realistic head model from MRI data and placed transducer arrays on the scalp to mimic an FDA-approved medical device. Values for the tissue dielectric properties were taken from the literature; values for the device parameters were obtained from the manufacturer. The finite element method was used to calculate the electric field distribution in the brain. We also included a “virtual lesion” in the model to simulate the presence of an idealized tumor. The calculated electric field in the brain varied mostly between 0.5 and 2.0 V/cm and exceeded 1.0 V/cm in 60% of the total brain volume. Regions of local field enhancement occurred near interfaces between tissues with different conductivities wherever the electric field was perpendicular to those interfaces. These increases were strongest near the ventricles but were also present outside the tumor’s necrotic core and in some parts of the gray matter-white matter interface. The electric field values predicted in this model brain are in reasonably good agreement with those that have been shown to reduce cancer cell proliferation in vitro. The electric field distribution is highly non-uniform and depends on tissue geometry and dielectric properties. This could explain some of the variability in treatment outcomes. The proposed modeling framework could be used to better understand the physical basis of TTF efficacy through retrospective analysis and to improve TTF treatment planning. PMID:25003941

  9. Electrical switching of DNA monolayers investigated by surface plasmon resonance.

    PubMed

    Yang, Xiaohai; Wang, Qing; Wang, Kemin; Tan, Weihong; Yao, Jing; Li, Huimin

    2006-06-20

    The switching of DNA monolayers between a "lying" and a "standing" state initiated by applying electric field, and the subsequent DNA hybridization at different states were investigated in a contactless, label-free mode by surface plasmon resonance (SPR) technique. The results showed that the strength of the electric field and surface coverage could influence the switching of DNA monolayers. In addition, it was found that DNA hybridization efficiency could be enhanced or decreased when DNA probes stood straight up or lay flat on the gold surface, depending on the potential of the gold substrate. The enhancement of DNA hybridization efficiency reached the maximum when surface coverage reached 5.87 x 10(12) molecules/cm(2) and the potential of gold substrate was more negative than -0.7 V (versus ITO-coated glass). The research may be helpful for the construction of sensitive biosensors, biochips, and nanoscale electronic devices. PMID:16768490

  10. Graphene-enabled electrically switchable radar-absorbing surfaces.

    PubMed

    Balci, Osman; Polat, Emre O; Kakenov, Nurbek; Kocabas, Coskun

    2015-01-01

    Radar-absorbing materials are used in stealth technologies for concealment of an object from radar detection. Resistive and/or magnetic composite materials are used to reduce the backscattered microwave signals. Inability to control electrical properties of these materials, however, hinders the realization of active camouflage systems. Here, using large-area graphene electrodes, we demonstrate active surfaces that enable electrical control of reflection, transmission and absorption of microwaves. Instead of tuning bulk material property, our strategy relies on electrostatic tuning of the charge density on an atomically thin electrode, which operates as a tunable metal in microwave frequencies. Notably, we report large-area adaptive radar-absorbing surfaces with tunable reflection suppression ratio up to 50 dB with operation voltages <5 V. Using the developed surfaces, we demonstrate various device architectures including pixelated and curved surfaces. Our results provide a significant step in realization of active camouflage systems in microwave frequencies. PMID:25791719

  11. Graphene-enabled electrically switchable radar-absorbing surfaces

    NASA Astrophysics Data System (ADS)

    Balci, Osman; Polat, Emre O.; Kakenov, Nurbek; Kocabas, Coskun

    2015-03-01

    Radar-absorbing materials are used in stealth technologies for concealment of an object from radar detection. Resistive and/or magnetic composite materials are used to reduce the backscattered microwave signals. Inability to control electrical properties of these materials, however, hinders the realization of active camouflage systems. Here, using large-area graphene electrodes, we demonstrate active surfaces that enable electrical control of reflection, transmission and absorption of microwaves. Instead of tuning bulk material property, our strategy relies on electrostatic tuning of the charge density on an atomically thin electrode, which operates as a tunable metal in microwave frequencies. Notably, we report large-area adaptive radar-absorbing surfaces with tunable reflection suppression ratio up to 50 dB with operation voltages <5 V. Using the developed surfaces, we demonstrate various device architectures including pixelated and curved surfaces. Our results provide a significant step in realization of active camouflage systems in microwave frequencies.

  12. Electric field vector measurements in a surface ionization wave discharge

    NASA Astrophysics Data System (ADS)

    Goldberg, Benjamin M.; Böhm, Patrick S.; Czarnetzki, Uwe; Adamovich, Igor V.; Lempert, Walter R.

    2015-10-01

    This work presents the results of time-resolved electric field vector measurements in a short pulse duration (60 ns full width at half maximum), surface ionization wave discharge in hydrogen using a picosecond four-wave mixing technique. Electric field vector components are measured separately, using pump and Stokes beams linearly polarized in the horizontal and vertical planes, and a polarizer placed in front of the infrared detector. The time-resolved electric field vector is measured at three different locations across the discharge gap, and for three different heights above the alumina ceramic dielectric surface, ~100, 600, and 1100 μm (total of nine different locations). The results show that after breakdown, the discharge develops as an ionization wave propagating along the dielectric surface at an average speed of 1 mm ns-1. The surface ionization wave forms near the high voltage electrode, close to the dielectric surface (~100 μm). The wave front is characterized by significant overshoot of both vertical and horizontal electric field vector components. Behind the wave front, the vertical field component is rapidly reduced. As the wave propagates along the dielectric surface, it also extends further away from the dielectric surface, up to ~1 mm near the grounded electrode. The horizontal field component behind the wave front remains quite significant, to sustain the electron current toward the high voltage electrode. After the wave reaches the grounded electrode, the horizontal field component experiences a secondary rise in the quasi-dc discharge, where it sustains the current along the near-surface plasma sheet. The measurement results indicate presence of a cathode layer formed near the grounded electrode with significant cathode voltage fall, ≈3 kV, due to high current density in the discharge. The peak reduced electric field in the surface ionization wave is 85-95 Td, consistent with dc breakdown field estimated from the Paschen curve for

  13. Surface electrical properties experiment study phase, volume 2

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The choice of an antenna for a subsurface radio sounding experiment is discussed. The radiation properties of the antennas as placed on the surface of the medium is examined. The objective of the lunar surface electrical properties experiment is described. A numerical analysis of the dielectric permittivity and magnetic permeability of a subsurface domain is developed. The application of electromagnetic field measurements between one or more transmitting antennas and a roving receiving station is explained.

  14. Surface and Electrical Properties of Electro-Coagulated Thermal Waste

    NASA Astrophysics Data System (ADS)

    Yesilkaya, S. S.; Okutan, M.; Içelli, O.; Yalçın, Z.

    2015-05-01

    The Electro-Coagulated Thermal Waste (ECTW) sample of the impedance spectroscopy investigation for electrical modulus and conductivity are presented. Electrical properties via temperature and frequency dependent impedance spectroscopy were investigated. Real and imaginary parts of electrical modulus were measured at various frequencies and a related Cole-Cole plot was acquired as well. The surface resistivity of the ECTW was measured by the four-point probe measurement technique, yielding a relatively high surface resistivity. As a result of this study, an effective building shielding material, which is a cost effective alternative, is proposed. The activation energy values were calculated from the Arrhenius plots at different frequencies. The transition region in this plot may be attributed to activation of ionic conductivity at lower temperatures.

  15. Properties of bare strange stars associated with surface electric fields

    SciTech Connect

    Picanco Negreiros, Rodrigo; Mishustin, Igor N.; Schramm, Stefan; Weber, Fridolin

    2010-11-15

    In this paper we investigate the electrodynamic surface properties of bare strange quark stars. The surfaces of such objects are characterized by the formation of ultrahigh electric surface fields which might be as high as {approx}10{sup 19} V/cm. These fields result from the formation of electric dipole layers at the stellar surfaces. We calculate the increase in gravitational mass associated with the energy stored in the electric dipole field, which turns out to be only significant if the star possesses a sufficiently strong net electric charge distribution. In the second part of the paper, we explore the intriguing possibility of what happens when the electron layer (sphere) rotates with respect to the stellar strange matter body. We find that in this event magnetic fields can be generated which, for moderate effective rotational frequencies between the electron layer and the stellar body, agree with the magnetic fields inferred for several central compact objects. These objects could thus be comfortably interpreted as strange stars whose electron atmospheres rotate at frequencies that are moderately different ({approx}10 Hz) from the rotational frequencies of the strange star itself.

  16. Surface electrical charge of bloodstream trypomastigotes of Trypanosoma cruzi strains.

    PubMed

    de Sousa, M A

    1983-01-01

    Bloodstream trypomastigotes of some Trypanosoma cruzi strains were processed through DEAE-cellulose columns under standardized conditions. The results obtained suggest mainly that these strains present different surface charges, that there are subpopulations of bloodstream trypomastigotes as regards electrical charges and that the broad forms are less negative than the slender ones. PMID:6443631

  17. Enhanced osteoblast response to electrical discharge machining surface.

    PubMed

    Otsuka, Fukunaga; Kataoka, Yu; Miyazaki, Takashi

    2012-01-01

    The purpose of this study is to investigate the surface characteristics and biocompatibility of titanium (Ti) surfaces modified by wire electrical discharge machining (EDM). EDM surface characteristics were evaluated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), thin-film X-ray diffractometry (XRD) and contact angle measurements. MC3T3-E1 cell morphology, attachment and proliferation, as well as analysis of osteoblastic gene expressions, on machined surfaces and EDM surfaces were also evaluated. EDM surfaces exhibited high super hydrophilicity, due to high surface energy. XPS and XRD revealed that a passive oxide layer with certain developing thickness onto. EDM surfaces promoted cell attachment, but restrained proliferation. Counted cell numbers increased significantly on the machined surfaces as compared to the EDM surfaces. Real-time PCR analyses showed significantly higher relative mRNA expression levels of osteoblastic genes (ALP, osteocalcin, Runx2, Osterix) in cells cultured on the EDM surfaces as compared to cells cultured on the machined surfaces. PMID:22447066

  18. Manganese-enhanced MR imaging of brain activation evoked by noxious peripheral electrical stimulation.

    PubMed

    Cha, Myeounghoon; Lee, Kyuhong; Lee, Chulhyun; Cho, Jee-Hyun; Cheong, Chaejoon; Sohn, Jin-Hun; Lee, Bae Hwan

    2016-02-01

    As imaging technology develops, magnetic resonance imaging (MRI) has furthered our understanding of brain function by clarifying the anatomical structure and generating functional imaging data related to information processing in pain conditions. Recent studies have reported that manganese (Mn(2+))-enhanced MRI (MEMRI) provides valuable information about the functions of the central nervous system. The aim of this study was to identify specific brain regions activated during noxious electric stimulation using high-resolution MEMRI. Male Sprague Dawley rats were divided into three groups: naïve, sham electrical stimulation, and noxious electric stimulation. Under urethane with α-chloralose mixture anesthesia, a catheter was placed in the external carotid artery to administrate 20% mannitol and manganese chloride (25mM MnCl2). Noxious electric stimulation (2Hz, 10V) was applied to the hind paw with a needle electrode. Stimulation-induced neuronal activation was detected using 4.7-T MRI. In response to noxious electrical stimulation, remarkable Mn(2+)-enhanced signals were observed in the agranular insular cortex, auditory cortex, primary somatosensory cortex of the hind limb, and granular and dysgranular insular cortex, which correspond to sensory tactile electric stimulus to the hindpaws. These results indicate that the combination of MEMRI with activity-induced Mn(2+)-dependent contrast can delineate functional areas in the rat brain. PMID:26733299

  19. Multi circular-cavity surface coil for magnetic resonance imaging of monkey's brain at 4 Tesla

    NASA Astrophysics Data System (ADS)

    Osorio, A. I.; Solis-Najera, S. E.; Vázquez, F.; Wang, R. L.; Tomasi, D.; Rodriguez, A. O.

    2014-11-01

    Animal models in medical research has been used to study humans diseases for several decades. The use of different imaging techniques together with different animal models offers a great advantage due to the possibility to study some human pathologies without the necessity of chirurgical intervention. The employ of magnetic resonance imaging for the acquisition of anatomical and functional images is an excellent tool because its noninvasive nature. Dedicated coils to perform magnetic resonance imaging experiments are obligatory due to the improvement on the signal-to-noise ratio and reduced specific absorption ratio. A specifically designed surface coil for magnetic resonance imaging of monkey's brain is proposed based on the multi circular-slot coil. Numerical simulations of the magnetic and electric fields were also performed using the Finite Integration Method to solve Maxwell's equations for this particular coil design and, to study the behavior of various vector magnetic field configurations and specific absorption ratio. Monkey's brain images were then acquired with a research-dedicated magnetic resonance imaging system at 4T, to evaluate the anatomical images with conventional imaging sequences. This coil showed good quality images of a monkey's brain and full compatibility with standard pulse sequences implemented in research-dedicated imager.

  20. Structural brain aging and speech production: a surface-based brain morphometry study.

    PubMed

    Tremblay, Pascale; Deschamps, Isabelle

    2016-07-01

    While there has been a growing number of studies examining the neurofunctional correlates of speech production over the past decade, the neurostructural correlates of this immensely important human behaviour remain less well understood, despite the fact that previous studies have established links between brain structure and behaviour, including speech and language. In the present study, we thus examined, for the first time, the relationship between surface-based cortical thickness (CT) and three different behavioural indexes of sublexical speech production: response duration, reaction times and articulatory accuracy, in healthy young and older adults during the production of simple and complex meaningless sequences of syllables (e.g., /pa-pa-pa/ vs. /pa-ta-ka/). The results show that each behavioural speech measure was sensitive to the complexity of the sequences, as indicated by slower reaction times, longer response durations and decreased articulatory accuracy in both groups for the complex sequences. Older adults produced longer speech responses, particularly during the production of complex sequence. Unique age-independent and age-dependent relationships between brain structure and each of these behavioural measures were found in several cortical and subcortical regions known for their involvement in speech production, including the bilateral anterior insula, the left primary motor area, the rostral supramarginal gyrus, the right inferior frontal sulcus, the bilateral putamen and caudate, and in some region less typically associated with speech production, such as the posterior cingulate cortex. PMID:26336952

  1. The Measurement of Brain Electrical Activity and Its Significance to the Educator.

    ERIC Educational Resources Information Center

    Torello, Michael W.

    The article discusses the measurement of brain electrical activity and, in particular, the examination of electroencephalographic (EEG) data, as providing useful information in the diagnosis of dyslexia and other learning disabilities. Topographic imaging of EEG (TIE) is described as a procedure which provides functional data at comparatively low…

  2. Dynamic Variation in Pleasure in Children Predicts Nonlinear Change in Lateral Frontal Brain Electrical Activity

    ERIC Educational Resources Information Center

    Light, Sharee N.; Coan, James A.; Frye, Corrina; Goldsmith, H. Hill; Davidson, Richard J.

    2009-01-01

    Individual variation in the experience and expression of pleasure may relate to differential patterns of lateral frontal activity. Brain electrical measures have been used to study the asymmetric involvement of lateral frontal cortex in positive emotion, but the excellent time resolution of these measures has not been used to capture…

  3. EQUALIZING THE ELECTRIC FIELD INTENSITY WITHIN CHICK BRAIN IMMERSED IN BUFFER SOLUTION AT DIFFERENT CARRIER FREQUENCIES

    EPA Science Inventory

    Presented here are the numerical relationships between incident power densities that produce the same average electric field intensity within a chick brain half immersed in buffered saline solution and exposed to a uniform electromagnetic field at carrier frequencies of 50, 147, ...

  4. The Effect of Herrmann Whole Brain Teaching Method on Students' Understanding of Simple Electric Circuits

    ERIC Educational Resources Information Center

    Bawaneh, Ali Khalid Ali; Nurulazam Md Zain, Ahmad; Salmiza, Saleh

    2011-01-01

    The purpose of this study was to investigate the effect of Herrmann Whole Brain Teaching Method over conventional teaching method on eight graders in their understanding of simple electric circuits in Jordan. Participants (N = 273 students; M = 139, F = 134) were randomly selected from Bani Kenanah region-North of Jordan and randomly assigned to…

  5. Patterns of Brain-Electrical Activity during Declarative Memory Performance in 10-Month-Old Infants

    ERIC Educational Resources Information Center

    Morasch, Katherine C.; Bell, Martha Ann

    2009-01-01

    This study of infant declarative memory concurrently examined brain-electrical activity and deferred imitation performance in 10-month-old infants. Continuous electroencephalogram (EEG) measures were collected throughout the activity-matched baseline, encoding (modeling) and retrieval (delayed test) phases of a within-subjects deferred imitation…

  6. The Relations between Frontal Brain Electrical Activity and Cognitive Development during Infancy.

    ERIC Educational Resources Information Center

    Bell, Martha Ann; Fox, Nathan A.

    1992-01-01

    Examined the relationship between changes in electroencephalograms and the development of the ability to perform cognitive tasks involving frontal lobe functioning in infants of 7 to 12 months of age. Infants who successfully found a hidden object showed changes in the power of brain electrical activity in the frontal lobe. (BC)

  7. Electrical Transmission on the Lunar Surface. Part 1; DC Transmission

    NASA Technical Reports Server (NTRS)

    Gordon, Lloyd B.

    2001-01-01

    This report summarizes a portion of the results from a grant at Auburn University to study the electrical and thermal energy management for lunar facilities. Over the past year (June 1989 to May 1990) the following topics have been investigated: June 1989 to November 1989 - Literature survey, assessment of lunar power needs, and overview study of the requirements of a lunar power system; November 1989 to April 1990 - Develop models for the study of dc electrical power transmission lines for the lunar surface; March 1990 to May 1990 - Develop models for the study of ac electrical power transmission lines for the lunar surface. Because of the large amount of information in the model development and application to a wide parameter space this report is being bound separately. This report specifically contains the model development and parameter study for dc electrical power transmission lines. The end of the funding year (May 1990) will conclude with an annual report including the literature survey, the overview of the requirements of a lunar power system, and summaries of the dc and ac models of electrical transmission lines.

  8. Introductory overview of research instruments for recording the electrical activity of neurons in the human brain

    NASA Astrophysics Data System (ADS)

    Garell, P. C.; Granner, M. A.; Noh, M. D.; Howard, M. A.; Volkov, I. O.; Gillies, G. T.

    1998-12-01

    Scientific advancement is often spurred by the development of new instruments for investigation. Over the last several decades, many new instruments have been produced to further our understanding of the physiology of the human brain. We present a partial overview of some of these instruments, paying particular attention to those which record the electrical activity of the human brain. We preface the review with a brief primer on neuroanatomy and physiology, followed by a discussion of the latest types of apparatus used to investigate various properties of the central nervous system. A special focus is on microelectrode investigations that employ both intracellular and extracellular methods of recording the electrical activity of single neurons; another is on the modern electroencephalographic, electrocorticographic, and magnetoencephalographic methods used to study the spontaneous and evoked field potentials of the brain. Some examples of clinical applications are included, where appropriate.

  9. Durable Microstructured Surfaces: Combining Electrical Conductivity with Superoleophobicity.

    PubMed

    Pan, Zihe; Wang, Tianchang; Sun, Shaofan; Zhao, Boxin

    2016-01-27

    In this study, electrically conductive and superoleophobic polydimethylsiloxane (PDMS) has been fabricated through embedding Ag flakes (SFs) and Ag nanowires (SNWs) into microstructures of the trichloroperfluorooctylsilane (FDTS)-blended PDMS elastomer. Microstructured PDMS surfaces became conductive at the percolation surface coverage of 3.0 × 10(-2) mg/mm(2) for SFs; the highest conductivity was 1.12 × 10(5) S/m at the SFs surface coverage of 6.0 × 10(-2) mg/mm(2). A significant improvement of the conductivity (increased 3 times at the SNWs fraction of 11%) was achieved by using SNWs to replace some SFs because of the conductive pathways from the formed SNWs networks and its connections with SFs. These conductive fillers bonded strongly with microstructured FDTS-blended PDMS and retained surface properties under the sliding preload of 8.0 N. Stretching tests indicated that the resistance increased with the increasing strains and returned to its original state when the strain was released, showing highly stretchable and reversible electrical properties. Compared with SFs embedded surfaces, the resistances of SFs/SNWs embedded surfaces were less dependent on the strain because of bridging effect of SNWs. The superoleophobicity was achieved by the synergetic effect of surface modification through blending FDTS and the microstructures transferred from sand papers. The research findings demonstrate a simple approach to make the insulating elastomer to have the desired surface oleophobicity and electrical conductivity and help meet the needs for the development of conductive devices with microstructures and multifunctional properties. PMID:26714207

  10. Surface Coating of Tungsten Carbide by Electric Exploding of Contact

    SciTech Connect

    Grigoryev, Evgeny G.

    2011-01-17

    Electric exploding of a tungsten carbide--cobalt material near-by high-speed steel surface forms on it a hardening coating. The essential structure properties of the formed coatings are determined by parameters of contact exploding electrode at the pulse current amplitude from above 106 A/cm2 and duration less than 10-4 s. The metallographic investigations of coating structures were done by microscope 'Neophot-24'. They have shown that the contact electric exploding caused the transfer of tungsten carbide and cobalt on the surface of high-speed steel. The breakdown of tungsten carbide--cobalt material took place during electrical exploding. The hardening layers of tungsten carbide and pure nanocrystalline tungsten have been formed upon the surface of high-speed steel as a result of electric exploding. Crystalline grains of tungsten have an almost spherical form and their characteristic size less than 400 nanometers. Micro hardness of the coating layers and high-speed steel structures was measured.

  11. Proteins in the electric field near the surface of mica.

    PubMed

    Starzyk, Anna; Cieplak, Marek

    2013-07-28

    We elucidate the nature of the electric field produced by a model mica surface and show that above some 0.4 nm it is nearly uniform and of order 12 V/nm. The presence of ions in the solvent above the surface, up to the concentration of about 300 mM, does not modify the nature of the field much. We study the conformational changes of a small protein, the tryptophan cage, as induced by (a) uniform electric field and (b) the electric field near mica. We use all-atom molecular dynamics simulations and provide evidence for the existence of unfolded and deformed conformations in each of these cases. The two behaviors are characterized by distinct properties of the radius of gyration and of the distortion parameter that distinguishes between elongated and globular shapes. The overall geometry of the conformations shifts with the strengths of the uniform field in a manner that depends on the nature of the simulation box--whether it is bounded by neutral walls or not--and on the ionic concentration. Near the mica surface, on the other hand, the fraction of unfolded conformations is close to 1/6 at the ionic strength of 350 mM compared to 1/2 at 20 mM. When the electric charge on the mica is fully neutralized by bringing more ions of the opposite charge then unfolded conformations stay unfolded but an evolution from the native state does not lead to any unfolding. PMID:23902027

  12. Proteins in the electric field near the surface of mica

    NASA Astrophysics Data System (ADS)

    Starzyk, Anna; Cieplak, Marek

    2013-07-01

    We elucidate the nature of the electric field produced by a model mica surface and show that above some 0.4 nm it is nearly uniform and of order 12 V/nm. The presence of ions in the solvent above the surface, up to the concentration of about 300 mM, does not modify the nature of the field much. We study the conformational changes of a small protein, the tryptophan cage, as induced by (a) uniform electric field and (b) the electric field near mica. We use all-atom molecular dynamics simulations and provide evidence for the existence of unfolded and deformed conformations in each of these cases. The two behaviors are characterized by distinct properties of the radius of gyration and of the distortion parameter that distinguishes between elongated and globular shapes. The overall geometry of the conformations shifts with the strengths of the uniform field in a manner that depends on the nature of the simulation box — whether it is bounded by neutral walls or not — and on the ionic concentration. Near the mica surface, on the other hand, the fraction of unfolded conformations is close to 1/6 at the ionic strength of 350 mM compared to 1/2 at 20 mM. When the electric charge on the mica is fully neutralized by bringing more ions of the opposite charge then unfolded conformations stay unfolded but an evolution from the native state does not lead to any unfolding.

  13. Gradient-based Magnetic Resonance Electrical Properties Imaging of Brain Tissues

    PubMed Central

    Liu, Jiaen; Zhang, Xiaotong; Schmitter, Sebastian; Van de Moortele, Pierre-Francois; He, Bin

    2015-01-01

    Electrical properties tomography (EPT) holds promise for noninvasively mapping at high spatial resolution the electrical conductivity and permittivity of biological tissues in vivo using a magnetic resonance imaging (MRI) scanner. In the present study, we developed a novel gradient-based EPT approach with greatly improved tissue boundary reconstruction and largely elevated robustness against measurement noise compared to existing techniques. Using a 7 Tesla MRI system, we report high-quality in vivo human brain electrical property images with refined structural details, which can potentially merit clinical diagnosis (such as cancer detection) and high-field MRI applications (local SAR quantification) in the future. PMID:25571378

  14. UV-induced surface electrical conductivity jump of polymer nanocomposites

    SciTech Connect

    Chen Guangxin; Miyauchi, Masahiro; Shimizu, Hiroshi

    2008-05-19

    A method of improving the electrical conductivity of polymer nanocomposites under UV irradiation was described. An anatase TiO{sub 2}-grafted carbon nanotube could function as a conductive filler and a photocatalyst when it compounds with a poly(L-lactide) to produce a composite. After UV irradiation, the decomposition of the polymer only occurred on the surface of a poly(L-lactide)/TiO{sub 2} grafted carbon nanotube composite and not on bulk, resulting in an electrical conductivity jump as high as six orders of magnitude.

  15. Transverse electric surface mode in atomically thin Boron-Nitride.

    PubMed

    Merano, Michele

    2016-06-01

    The spatial confinement and the propagation length of surface waves in a single-layer two-dimensional atomic crystal are analyzed in terms of its surface susceptibility and its surface conductivity. Based on the values of these macroscopic parameters, extracted from experimental observations, it is confirmed that graphene supports a transverse magnetic nonradiating surface mode in the ultraviolet spectral region while a single-layer hexagonal Boron-Nitride is predicted to support a transverse electric nonradiating surface mode in the visible spectrum. This last mode, at a vacuum wavelength of 633 nm, has a spatial confinement of 15 μm and an intensity-propagation distance greater than 2 cm. PMID:27244441

  16. Transverse electric surface mode in atomically thin Boron–Nitride

    NASA Astrophysics Data System (ADS)

    Merano, Michele

    2016-06-01

    The spatial confinement and the propagation length of surface waves in a single-layer two-dimensional atomic crystal are analysed in term of its surface susceptibility and its surface conductivity. Based on the values of these macroscopic parameters, extracted from experimental observations, it is confirmed that graphene supports a transverse magnetic non-radiating surface mode in the ultraviolet spectral region while a single-layer hexagonal Boron-Nitride is predicted to support a transverse electric non-radiating surface mode in the visible spectrum. This last mode, at a vacuum wavelength of 633 nm, has a spatial confinement of 15 microns and an intensity-propagation distance greater than 2 cm.

  17. Self-reported electrical appliance use and risk of adult brain tumors.

    PubMed

    Kleinerman, Ruth A; Linet, Martha S; Hatch, Elizabeth E; Tarone, Robert E; Black, Peter M; Selker, Robert G; Shapiro, William R; Fine, Howard A; Inskip, Peter D

    2005-01-15

    Electrical appliances produce the highest intensity exposures to residential extremely low frequency electromagnetic fields. The authors investigated whether appliances may be associated with adult brain tumors in a hospital-based case-control study at three centers in the United States from 1994 to 1998. A total of 410 glioma, 178 meningioma, and 90 acoustic neuroma cases and 686 controls responded to a self-administered questionnaire about 14 electrical appliances. There was little evidence of association between brain tumors and curling iron, heating pad, vibrating massager, electric blanket, heated water bed, sound system, computer, television, humidifier, microwave oven, and electric stove. Ever use of hair dryers was associated with glioma (odds ratio = 1.7, 95% confidence interval: 1.1, 2.5), but there was no evidence of increasing risk with increasing amount of use. In men, meningioma was associated with electric shaver use (odds ratio = 10.9, 95% confidence interval: 2.3, 50), and odds ratios increased with cumulative minutes of use, although they were based on only two nonexposed cases. Recall bias for appliances used regularly near the head or chance may provide an alternative explanation for the observed associations. Overall, results indicate that extremely low frequency electromagnetic fields from commonly used household appliances are unlikely to increase the risk of brain tumors. PMID:15632263

  18. Graphene-enabled electrically switchable radar absorbing surfaces

    NASA Astrophysics Data System (ADS)

    Balci, Osman; Polat, Emre Ozan; Kakenov, Nurbek; Kocabas, Coskun

    2015-03-01

    Radar absorbing materials are used in stealth technologies for concealment of an object from radar detection. Resistive and/or magnetic composite materials are used to reduce the backscattered microwave signals. Inability to control electrical properties of these materials however, hinders the realization of active camouflage systems which require adaptive surfaces operating in microwave frequencies. Here, using large-area graphene electrodes, we demonstrate a new class of active surfaces which enables unprecedented ability to control reflection, transmission and absorption of microwaves by electrical means. Instead of tuning bulk material property, our strategy relies on electrostatic tuning of the charge density on an atomically thin electrode which operates as a tunable metal in microwave frequencies. Notably, we fabricated large area adaptive radar absorbing surfaces with tunable reflection suppression ratio up to 50 dB with operation voltages less than 5 V. These electrically switchable radar absorbing surfaces provide a significant step in realization of active camouflage systems and adaptive cloaking in microwave frequencies, which cannot be realized by conventional materials.

  19. Annotation: What Electrical Brain Activity Tells Us about Brain Function that Other Techniques Cannot Tell Us--A Child Psychiatric Perspective

    ERIC Educational Resources Information Center

    Banaschewski, Tobias; Brandeis, Daniel

    2007-01-01

    Background: Monitoring brain processes in real time requires genuine subsecond resolution to follow the typical timing and frequency of neural events. Non-invasive recordings of electric (EEG/ERP) and magnetic (MEG) fields provide this time resolution. They directly measure neural activations associated with a wide variety of brain states and…

  20. Superior electric storage on an amorphous perfluorinated polymer surface.

    PubMed

    Fukuhara, Mikio; Kuroda, Tomoyuki; Hasegawa, Fumihiko; Sueyoshi, Takashi

    2016-01-01

    Amorphous perfluoroalkenyl vinyl ether polymer devices can store a remarkably powerful electric charge because their surface contains nanometre-sized cavities that are sensitive to the so-called quantum-size effect. With a work function of approximately 10 eV, the devices show a near-vertical line in the Nyquist diagram and a horizontal line near the -90° phase angle in the Bode diagram. Moreover, they have an integrated effect on the surface area for constant current discharging. This effect can be explained by the distributed constant electric circuit with a parallel assembly of nanometre-sized capacitors on a highly insulating polymer. The device can illuminate a red LED light for 3 ms after charging it with 1 mA at 10 V. Further gains might be attained by integrating polymer sheets with a micro-electro mechanical system. PMID:26902953

  1. Superior electric storage on an amorphous perfluorinated polymer surface

    NASA Astrophysics Data System (ADS)

    Fukuhara, Mikio; Kuroda, Tomoyuki; Hasegawa, Fumihiko; Sueyoshi, Takashi

    2016-02-01

    Amorphous perfluoroalkenyl vinyl ether polymer devices can store a remarkably powerful electric charge because their surface contains nanometre-sized cavities that are sensitive to the so-called quantum-size effect. With a work function of approximately 10 eV, the devices show a near-vertical line in the Nyquist diagram and a horizontal line near the -90° phase angle in the Bode diagram. Moreover, they have an integrated effect on the surface area for constant current discharging. This effect can be explained by the distributed constant electric circuit with a parallel assembly of nanometre-sized capacitors on a highly insulating polymer. The device can illuminate a red LED light for 3 ms after charging it with 1 mA at 10 V. Further gains might be attained by integrating polymer sheets with a micro-electro mechanical system.

  2. Superior electric storage on an amorphous perfluorinated polymer surface

    PubMed Central

    Fukuhara, Mikio; Kuroda, Tomoyuki; Hasegawa, Fumihiko; Sueyoshi, Takashi

    2016-01-01

    Amorphous perfluoroalkenyl vinyl ether polymer devices can store a remarkably powerful electric charge because their surface contains nanometre-sized cavities that are sensitive to the so-called quantum-size effect. With a work function of approximately 10 eV, the devices show a near-vertical line in the Nyquist diagram and a horizontal line near the −90° phase angle in the Bode diagram. Moreover, they have an integrated effect on the surface area for constant current discharging. This effect can be explained by the distributed constant electric circuit with a parallel assembly of nanometre-sized capacitors on a highly insulating polymer. The device can illuminate a red LED light for 3 ms after charging it with 1 mA at 10 V. Further gains might be attained by integrating polymer sheets with a micro-electro mechanical system. PMID:26902953

  3. Surface Breakdown Characteristics of Silicone Oil for Electric Power Apparatus

    NASA Astrophysics Data System (ADS)

    Wada, Junichi; Nakajima, Akitoshi; Miyahara, Hideyuki; Takuma, Tadasu; Okabe, Shigemitu; Kohtoh, Masanori; Yanabu, Satoru

    This paper describes the surface breakdown characteristics of the silicone oil which has the possibility of the application to innovative switchgear as an insulating medium. At the first step, we have experimentally studied on the impulse breakdown characteristics of the configuration with a triple-junction where a solid insulator is in contact with the electrode. The test configurations consist of solid material (Nomex and pressboard) and liquid insulation oil (silicone and mineral oil). We have discussed the experimental results based on the maximal electric field at a triple-junction. As the second step, we have studied the configuration which may improve the surface breakdown characteristics by lowering the electric field near the triple-junction.

  4. Electrically injected visible vertical cavity surface emitting laser diodes

    DOEpatents

    Schneider, R.P.; Lott, J.A.

    1994-09-27

    Visible laser light output from an electrically injected vertical cavity surface emitting laser (VSCEL) diode is enabled by the addition of phase-matching spacer layers on either side of the active region to form the optical cavity. The spacer layers comprise InAlP which act as charge carrier confinement means. Distributed Bragg reflector layers are formed on either side of the optical cavity to act as mirrors. 5 figs.

  5. Electrically injected visible vertical cavity surface emitting laser diodes

    SciTech Connect

    Schneider, Richard P.; Lott, James A.

    1994-01-01

    Visible laser light output from an electrically injected vertical cavity surface emitting laser (VSCEL) diode is enabled by the addition of phase-matching spacer layers on either side of the active region to form the optical cavity. The spacer layers comprise InAlP which act as charge carrier confinement means. Distributed Bragg reflector layers are formed on either side of the optical cavity to act as mirrors.

  6. Surface structuring of particle laden drops using electric fields

    NASA Astrophysics Data System (ADS)

    Dommersnes, P.; Fossum, J. O.

    2016-07-01

    Emulsion drops readily adsorb particles at their surfaces, which may lead to a fluid or solid layer encapsulating the drop, known as an armored drop. In this review, we discuss how electric fields can be used to manipulate colloidal surface structures, by dielectrophoretic or electro-hydrodynamic mechanisms and we also compare this to related phenomena in lipid bilayer vesicles. The phenomena discussed are important for a wide range of uses of particle laden drops, including emulsion stabilization, Janus or patchy mesocapsule-, scaffold- or other materials-production.

  7. Cortical Surface Reconstruction from High-Resolution MR Brain Images

    PubMed Central

    Osechinskiy, Sergey; Kruggel, Frithjof

    2012-01-01

    Reconstruction of the cerebral cortex from magnetic resonance (MR) images is an important step in quantitative analysis of the human brain structure, for example, in sulcal morphometry and in studies of cortical thickness. Existing cortical reconstruction approaches are typically optimized for standard resolution (~1 mm) data and are not directly applicable to higher resolution images. A new PDE-based method is presented for the automated cortical reconstruction that is computationally efficient and scales well with grid resolution, and thus is particularly suitable for high-resolution MR images with submillimeter voxel size. The method uses a mathematical model of a field in an inhomogeneous dielectric. This field mapping, similarly to a Laplacian mapping, has nice laminar properties in the cortical layer, and helps to identify the unresolved boundaries between cortical banks in narrow sulci. The pial cortical surface is reconstructed by advection along the field gradient as a geometric deformable model constrained by topology-preserving level set approach. The method's performance is illustrated on exvivo images with 0.25–0.35 mm isotropic voxels. The method is further evaluated by cross-comparison with results of the FreeSurfer software on standard resolution data sets from the OASIS database featuring pairs of repeated scans for 20 healthy young subjects. PMID:22481909

  8. Predators inhibit brain cell proliferation in natural populations of electric fish, Brachyhypopomus occidentalis.

    PubMed

    Dunlap, Kent D; Tran, Alex; Ragazzi, Michael A; Krahe, Rüdiger; Salazar, Vielka L

    2016-02-10

    Compared with laboratory environments, complex natural environments promote brain cell proliferation and neurogenesis. Predators are one important feature of many natural environments, but, in the laboratory, predatory stimuli tend to inhibit brain cell proliferation. Often, laboratory predatory stimuli also elevate plasma glucocorticoids, which can then reduce brain cell proliferation. However, it is unknown how natural predators affect cell proliferation or whether glucocorticoids mediate the neurogenic response to natural predators. We examined brain cell proliferation in six populations of the electric fish, Brachyhypopomus occidentalis, exposed to three forms of predator stimuli: (i) natural variation in the density of predatory catfish; (ii) tail injury, presumably from predation attempts; and (iii) the acute stress of capture. Populations with higher predation pressure had lower density of proliferating (PCNA+) cells, and fish with injured tails had lower proliferating cell density than those with intact tails. However, plasma cortisol did not vary at the population level according to predation pressure or at the individual level according to tail injury. Capture stress significantly increased cortisol, but only marginally decreased cell proliferation. Thus, it appears that the presence of natural predators inhibits brain cell proliferation, but not via mechanisms that depend on changes in basal cortisol levels. This study is the first demonstration of predator-induced alteration of brain cell proliferation in a free-living vertebrate. PMID:26842566

  9. Electrical Properties of the Venus Surface from Bistatic Radar Observations

    PubMed

    Pettengill; Ford; Simpson

    1996-06-14

    A bistatic radar experiment in 1994, involving reception on Earth of a specularly reflected, linearly polarized 13-centimeter-wavelength signal transmitted from the Magellan spacecraft in orbit around Venus, has established that the surface materials viewed at low and intermediate altitudes on Venus have a relative dielectric permittivity of 4.0 ± 0.5. However, bistatic results for the Maxwell Montes highlands imply an electrically lossy surface with an imaginary dielectric permittivity of -i 100 ± 50, probably associated with a specific conductivity of about 13 mhos per meter. Candidates for highlands surface composition include ferroelectrics, a thin frost of elemental tellurium, or a plating of magnetite or pyrites. PMID:8662473

  10. A Closed Loop Brain-machine Interface for Epilepsy Control Using Dorsal Column Electrical Stimulation.

    PubMed

    Pais-Vieira, Miguel; Yadav, Amol P; Moreira, Derek; Guggenmos, David; Santos, Amílcar; Lebedev, Mikhail; Nicolelis, Miguel A L

    2016-01-01

    Although electrical neurostimulation has been proposed as an alternative treatment for drug-resistant cases of epilepsy, current procedures such as deep brain stimulation, vagus, and trigeminal nerve stimulation are effective only in a fraction of the patients. Here we demonstrate a closed loop brain-machine interface that delivers electrical stimulation to the dorsal column (DCS) of the spinal cord to suppress epileptic seizures. Rats were implanted with cortical recording microelectrodes and spinal cord stimulating electrodes, and then injected with pentylenetetrazole to induce seizures. Seizures were detected in real time from cortical local field potentials, after which DCS was applied. This method decreased seizure episode frequency by 44% and seizure duration by 38%. We argue that the therapeutic effect of DCS is related to modulation of cortical theta waves, and propose that this closed-loop interface has the potential to become an effective and semi-invasive treatment for refractory epilepsy and other neurological disorders. PMID:27605389

  11. A Closed Loop Brain-machine Interface for Epilepsy Control Using Dorsal Column Electrical Stimulation

    PubMed Central

    Pais-Vieira, Miguel; Yadav, Amol P.; Moreira, Derek; Guggenmos, David; Santos, Amílcar; Lebedev, Mikhail; Nicolelis, Miguel A. L.

    2016-01-01

    Although electrical neurostimulation has been proposed as an alternative treatment for drug-resistant cases of epilepsy, current procedures such as deep brain stimulation, vagus, and trigeminal nerve stimulation are effective only in a fraction of the patients. Here we demonstrate a closed loop brain-machine interface that delivers electrical stimulation to the dorsal column (DCS) of the spinal cord to suppress epileptic seizures. Rats were implanted with cortical recording microelectrodes and spinal cord stimulating electrodes, and then injected with pentylenetetrazole to induce seizures. Seizures were detected in real time from cortical local field potentials, after which DCS was applied. This method decreased seizure episode frequency by 44% and seizure duration by 38%. We argue that the therapeutic effect of DCS is related to modulation of cortical theta waves, and propose that this closed-loop interface has the potential to become an effective and semi-invasive treatment for refractory epilepsy and other neurological disorders. PMID:27605389

  12. Methodological Dimensions of Transcranial Brain Stimulation with the Electrical Current in Human

    PubMed Central

    Rostami, Maryam; Golesorkhi, Mehrshad; Ekhtiari, Hamed

    2013-01-01

    Transcranial current stimulation (TCS) is a neuromodulation method in which the patient is exposed to a mild electric current (direct or alternating) at 1-2 mA, resulting in an increase or a decrease in the brain excitability. This modification in neural activities can be used as a method for functional human brain mapping with causal inferences. This method might also facilitate the treatments of many neuropsychiatric disorders based on its inexpensive, simple, safe, noninvasive, painless, semi-focal excitatory and inhibitory effects. Given this, a comparison amongst different brain stimulation modalities has been made to determine the potential advantages of the TCS method. In addition, considerable methodological details on using TCS in basic and clinical neuroscience studies in human subjects have been introduced. Technical characteristics of TCS devices and their related accessories with regard to safety concerns have also been well articulated. Finally, some TCS application opportunities have been emphasized, including its potential use in the near future. PMID:25337348

  13. A reliable method for intracranial electrode implantation and chronic electrical stimulation in the mouse brain

    PubMed Central

    2013-01-01

    Background Electrical stimulation of brain structures has been widely used in rodent models for kindling or modeling deep brain stimulation used clinically. This requires surgical implantation of intracranial electrodes and subsequent chronic stimulation in individual animals for several weeks. Anchoring screws and dental acrylic have long been used to secure implanted intracranial electrodes in rats. However, such an approach is limited when carried out in mouse models as the thin mouse skull may not be strong enough to accommodate the anchoring screws. We describe here a screw-free, glue-based method for implanting bipolar stimulating electrodes in the mouse brain and validate this method in a mouse model of hippocampal electrical kindling. Methods Male C57 black mice (initial ages of 6–8 months) were used in the present experiments. Bipolar electrodes were implanted bilaterally in the hippocampal CA3 area for electrical stimulation and electroencephalographic recordings. The electrodes were secured onto the skull via glue and dental acrylic but without anchoring screws. A daily stimulation protocol was used to induce electrographic discharges and motor seizures. The locations of implanted electrodes were verified by hippocampal electrographic activities and later histological assessments. Results Using the glue-based implantation method, we implanted bilateral bipolar electrodes in 25 mice. Electrographic discharges and motor seizures were successfully induced via hippocampal electrical kindling. Importantly, no animal encountered infection in the implanted area or a loss of implanted electrodes after 4–6 months of repetitive stimulation/recording. Conclusion We suggest that the glue-based, screw-free method is reliable for chronic brain stimulation and high-quality electroencephalographic recordings in mice. The technical aspects described this study may help future studies in mouse models. PMID:23914984

  14. Magnetic field exposure in relation to leukemia and brain cancer mortality among electric utility workers.

    PubMed

    Savitz, D A; Loomis, D P

    1995-01-15

    Reports of leukemia and brain cancer among men in electrical occupations suggest a small increase in risk, but most previous studies have failed to classify magnetic field exposure accurately or to consider potential confounders. The authors conducted an historical cohort mortality study of 138,905 men employed at five large electric power companies in the United States between 1950 and 1986 with at least 6 months of work experience. Exposure was estimated by linking individual work histories to data from 2,842 workshift magnetic field measurements. Mortality follow-up identified 20,733 deaths based on 2,656,436 person-years of experience. Death rates were analyzed in relation to magnetic field exposure history with Poisson regression. Total mortality and cancer mortality rose slightly with increasing magnetic field exposure. Leukemia mortality, however, was not associated with indices of magnetic field exposure except for work as an electrician. Brain cancer mortality was modestly elevated in relation to duration of work in exposed jobs and much more strongly associated with magnetic field exposure indices. Brain cancer risk increased by an estimated factor of 1.94 per microtesla-year of magnetic field exposure in the previous 2-10 years, with a mortality rate ratio of 2.6 in the highest exposure category. In contrast to other studies, these data do not support an association between occupational magnetic field exposure and leukemia but do suggest a link to brain cancer. PMID:7817968

  15. Brain electrical activities of dancers and fast ball sports athletes are different.

    PubMed

    Ermutlu, Numan; Yücesir, Ilker; Eskikurt, Gökçer; Temel, Tan; İşoğlu-Alkaç, Ümmühan

    2015-04-01

    Exercise training has been shown not only to influence physical fitness positively but also cognition in healthy and impaired populations. However, some particular exercise types, even though comparable based on physical efforts, have distinct cognitive and sensorimotor features. In this study, the effects of different types of exercise, such as fast ball sports and dance training, on brain electrical activity were investigated. Electroencephalography (EEG) scans were recorded in professional dancer, professional fast ball sports athlete (FBSA) and healthy control volunteer groups consisting of twelve subjects each. In FBSA, power of delta and theta frequency activities of EEG was significantly higher than those of the dancers and the controls. Conversely, dancers had significantly higher amplitudes in alpha and beta bands compared to FBSA and significantly higher amplitudes in the alpha band in comparison with controls. The results suggest that cognitive features of physical training can be reflected in resting brain electrical oscillations. The differences in resting brain electrical oscillations between the dancers and the FBSA can be the result of innate network differences determining the talents and/or plastic changes induced by physical training. PMID:25834650

  16. The Effect of Surface Electrical Stimulation on Vocal Fold Position

    PubMed Central

    Humbert, Ianessa A.; Poletto, Christopher J.; Saxon, Keith G.; Kearney, Pamela R.; Ludlow, Christy L.

    2008-01-01

    Objectives/Hypothesis Closure of the true and false vocal folds is a normal part of airway protection during swallowing. Individuals with reduced or delayed true vocal fold closure can be at risk for aspiration and benefit from intervention to ameliorate the problem. Surface electrical stimulation is currently used during therapy for dysphagia, despite limited knowledge of its physiological effects. Design Prospective single effects study. Methods The immediate physiological effect of surface stimulation on true vocal fold angle was examined at rest in 27 healthy adults using ten different electrode placements on the submental and neck regions. Fiberoptic nasolaryngoscopic recordings during passive inspiration were used to measure change in true vocal fold angle with stimulation. Results Vocal fold angles changed only to a small extent during two electrode placements (p ≤ 0.05). When two sets of electrodes were placed vertically on the neck the mean true vocal fold abduction was 2.4 degrees; while horizontal placements of electrodes in the submental region produced a mean adduction of 2.8 degrees (p=0.03). Conclusions Surface electrical stimulation to the submental and neck regions does not produce immediate true vocal fold adduction adequate for airway protection during swallowing and one position may produce a slight increase in true vocal fold opening. PMID:18043496

  17. Brain

    MedlinePlus

    ... will return after updating. Resources Archived Modules Updates Brain Cerebrum The cerebrum is the part of the ... the outside of the brain and spinal cord. Brain Stem The brain stem is the part of ...

  18. Surface electrical properties experiment study phase, volume 1

    NASA Technical Reports Server (NTRS)

    Meyer, J. W.; Baker, R. H.; Johnson, L. B.

    1973-01-01

    The evolution of a conceptual design of the flight hardware for the surface electrical properties experiment (SEP), the definition of requests for proposals, the analysis of proposals submitted by prospective flight hardware subcontractors, and recommendations for the flight configuration to be implemented are discussed. Initial efforts were made to assess the electromagnetic environment of the SEP experiment. An EMI receiver and tri-loop antenna were constructed and tests of opportunity were performed with a lunar roving vehicle (LRV). Initial analyses were made of data from these tests with support from this contract, analyses which were continued in depth under the hardware contract.

  19. On the Photonic Cellular Interaction and the Electric Activity of Neurons in the Human Brain

    NASA Astrophysics Data System (ADS)

    Salari, V.; Tuszynski, J.; Bokkon, I.; Rahnama, M.; Cifra, M.

    2011-12-01

    The subject of Ultraweak Photon Emission (UPE) by biological systems is very fascinating, and both evidence of its effects and applications are growing rapidly due to improvements in experimental techniques. Since the relevant equipment should be ultrasensitive with high quantum efficiencies and very low noise levels, the subject of UPE is still hotly debated and some of the interpretations need stronger empirical evidence to be accepted at face value. In this paper we first review different types of interactions between light and living systems based on recent publications. We then discuss the feasibility of UPE production in the human brain. The subject of UPE in the brain is still in early stages of development and needs more accurate experimental methods for proper analysis. In this work we also discuss a possible role of mitochondria in the production of UPE in the neurons of the brain and the plausibility of their effects on microtubules (MTs). MTs have been implicated as playing an important role in the signal and information processing taking place in the mammalian (especially human) brain. Finally, we provide a short discussion about the feasible effects of MTs on electric neural activity in the human brain.

  20. Preliminary study of Alzheimer's Disease diagnosis based on brain electrical signals using wireless EEG

    NASA Astrophysics Data System (ADS)

    Handayani, N.; Akbar, Y.; Khotimah, S. N.; Haryanto, F.; Arif, I.; Taruno, W. P.

    2016-03-01

    This research aims to study brain's electrical signals recorded using EEG as a basis for the diagnosis of patients with Alzheimer's Disease (AD). The subjects consisted of patients with AD, and normal subjects are used as the control. Brain signals are recorded for 3 minutes in a relaxed condition and with eyes closed. The data is processed using power spectral analysis, brain mapping and chaos test to observe the level of complexity of EEG's data. The results show a shift in the power spectral in the low frequency band (delta and theta) in AD patients. The increase of delta and theta occurs in lobus frontal area and lobus parietal respectively. However, there is a decrease of alpha activity in AD patients where in the case of normal subjects with relaxed condition, brain alpha wave dominates the posterior area. This is confirmed by the results of brain mapping. While the results of chaos analysis show that the average value of MMLE is lower in AD patients than in normal subjects. The level of chaos associated with neural complexity in AD patients with lower neural complexity is due to neuronal damage caused by the beta amyloid plaques and tau protein in neurons.

  1. Exogenously induced brain activation regulates neuronal activity by top-down modulation: conceptualized model for electrical brain stimulation.

    PubMed

    Spezia Adachi, Lauren Naomi; Quevedo, Alexandre Silva; de Souza, Andressa; Scarabelot, Vanessa Leal; Rozisky, Joanna Ripoll; de Oliveira, Carla; Marques Filho, Paulo Ricardo; Medeiros, Liciane Fernandes; Fregni, Felipe; Caumo, Wolnei; Torres, Iraci L S

    2015-05-01

    Physiological and exogenous factors are able to adjust sensory processing by modulating activity at different levels of the nervous system hierarchy. Accordingly, transcranial direct current stimulation (tDCS) may use top-down mechanisms to control the access for incoming information along the neuroaxis. To test the hypothesis that brain activation induced by tCDS is able to initiate top-down modulation and that chronic stress disrupts this effect, 60-day-old male Wistar rats (n = 78) were divided into control; control + tDCS; control + sham-tDCS; stress; stress + tDCS; and stress + sham-tDCS. Chronic stress was induced using a restraint stress model for 11 weeks, and then, the treatment was applied over 8 days. BDNF levels were used to assess neuronal activity at spinal cord, brainstem, and hippocampus. Mechanical pain threshold was assessed by von Frey test immediately and 24 h after the last tDCS-intervention. tDCS was able to decrease BDNF levels in the structures involved in the descending systems (spinal cord and brainstem) only in unstressed animals. The treatment was able to reverse the stress-induced allodynia and to increase the pain threshold in unstressed animals. Furthermore, there was an inverse relation between pain sensitivity and spinal cord BDNF levels. Accordingly, we propose the addition of descending systems in the current brain electrical modulation model. PMID:25665871

  2. Gravity- and strain-induced electric fields outside metal surfaces

    NASA Astrophysics Data System (ADS)

    Rossi, F.; Opat, G. I.

    1992-05-01

    The gravity-induced electric field outside a metal object supported against gravity is predominantly due to its differential compression which arises in supporting its own weight. This Dessler-Michel-Rorschach-Trammell (DMRT) field, as it has come to be known, is expected to be proportional to the strain derivative of the work function of the surface. We report the results of an experiment designed to produce this effect with mechanically applied strain rather than with gravity. In essence, we have measured the strain-induced contact-potential variation between a metal surface of known strain gradient and an unstrained capacitive probe. We describe useful solutions to the problems faced in such an experiment, which were not adequately addressed by earlier workers. A knowledge of the DMRT field is of considerable importance to experiments designed to compare the gravitational acceleration of charged particles and antiparticles inside a metallic shield. Past experiments with electrons yielded results contrary to the then-expected DMRT field. We review and partially extend the theoretical background by drawing on later results based on the jellium model of metal surfaces. Our results for Cu and Au surfaces are consistent with jellium-based calculations which imply a DMRT field that is about an order of magnitude smaller and of opposite sign to the early estimates.

  3. Repeated electrical stimulation of reward-related brain regions affects cocaine but not "natural" reinforcement.

    PubMed

    Levy, Dino; Shabat-Simon, Maytal; Shalev, Uri; Barnea-Ygael, Noam; Cooper, Ayelet; Zangen, Abraham

    2007-12-19

    Drug addiction is associated with long-lasting neuronal adaptations including alterations in dopamine and glutamate receptors in the brain reward system. Treatment strategies for cocaine addiction and especially the prevention of craving and relapse are limited, and their effectiveness is still questionable. We hypothesized that repeated stimulation of the brain reward system can induce localized neuronal adaptations that may either potentiate or reduce addictive behaviors. The present study was designed to test how repeated interference with the brain reward system using localized electrical stimulation of the medial forebrain bundle at the lateral hypothalamus (LH) or the prefrontal cortex (PFC) affects cocaine addiction-associated behaviors and some of the neuronal adaptations induced by repeated exposure to cocaine. Repeated high-frequency stimulation in either site influenced cocaine, but not sucrose reward-related behaviors. Stimulation of the LH reduced cue-induced seeking behavior, whereas stimulation of the PFC reduced both cocaine-seeking behavior and the motivation for its consumption. The behavioral findings were accompanied by glutamate receptor subtype alterations in the nucleus accumbens and the ventral tegmental area, both key structures of the reward system. It is therefore suggested that repeated electrical stimulation of the PFC can become a novel strategy for treating addiction. PMID:18094257

  4. Wavelet entropy: a new tool for analysis of short duration brain electrical signals.

    PubMed

    Rosso, O A; Blanco, S; Yordanova, J; Kolev, V; Figliola, A; Schürmann, M; Başar, E

    2001-01-30

    Since traditional electrical brain signal analysis is mostly qualitative, the development of new quantitative methods is crucial for restricting the subjectivity in the study of brain signals. These methods are particularly fruitful when they are strongly correlated with intuitive physical concepts that allow a better understanding of brain dynamics. Here, new method based on orthogonal discrete wavelet transform (ODWT) is applied. It takes as a basic element the ODWT of the EEG signal, and defines the relative wavelet energy, the wavelet entropy (WE) and the relative wavelet entropy (RWE). The relative wavelet energy provides information about the relative energy associated with different frequency bands present in the EEG and their corresponding degree of importance. The WE carries information about the degree of order/disorder associated with a multi-frequency signal response, and the RWE measures the degree of similarity between different segments of the signal. In addition, the time evolution of the WE is calculated to give information about the dynamics in the EEG records. Within this framework, the major objective of the present work was to characterize in a quantitative way functional dynamics of order/disorder microstates in short duration EEG signals. For that aim, spontaneous EEG signals under different physiological conditions were analyzed. Further, specific quantifiers were derived to characterize how stimulus affects electrical events in terms of frequency synchronization (tuning) in the event related potentials. PMID:11166367

  5. The Morphological and Molecular Changes of Brain Cells Exposed to Direct Current Electric Field Stimulation

    PubMed Central

    Pelletier, Simon J.; Lagacé, Marie; St-Amour, Isabelle; Arsenault, Dany; Cisbani, Giulia; Chabrat, Audrey; Fecteau, Shirley; Lévesque, Martin

    2015-01-01

    Background: The application of low-intensity direct current electric fields has been experimentally used in the clinic to treat a number of brain disorders, predominantly using transcranial direct current stimulation approaches. However, the cellular and molecular changes induced by such treatment remain largely unknown. Methods: Here, we tested various intensities of direct current electric fields (0, 25, 50, and 100V/m) in a well-controlled in vitro environment in order to investigate the responses of neurons, microglia, and astrocytes to this type of stimulation. This included morphological assessments of the cells, viability, as well as shape and fiber outgrowth relative to the orientation of the direct current electric field. We also undertook enzyme-linked immunosorbent assays and western immunoblotting to identify which molecular pathways were affected by direct current electric fields. Results: In response to direct current electric field, neurons developed an elongated cell body shape with neurite outgrowth that was associated with a significant increase in growth associated protein-43. Fetal midbrain dopaminergic explants grown in a collagen gel matrix also showed a reorientation of their neurites towards the cathode. BV2 microglial cells adopted distinct morphological changes with an increase in cyclooxygenase-2 expression, but these were dependent on whether they had already been activated with lipopolysaccharide. Finally, astrocytes displayed elongated cell bodies with cellular filopodia that were oriented perpendicularly to the direct current electric field. Conclusion: We show that cells of the central nervous system can respond to direct current electric fields both in terms of their morphological shape and molecular expression of certain proteins, and this in turn can help us to begin understand the mechanisms underlying the clinical benefits of direct current electric field. PMID:25522422

  6. Influence of air ions on brain activity induced by electrical stimulation in the rat

    NASA Astrophysics Data System (ADS)

    Olivereau, J. M.; Lambert, J. F.; Truong-Ngoc, A.

    1981-03-01

    The brain induced activity was studied in 18 rats wearing chronically skull implanted electrodes. The stimulating factor was various electrical stimulations of the mesencephalic reticular activating formation, given during the slow wave state of sleep. The results of 300 stimulations were measured by amplitude and frequency changes in the EEG simultaneously recorded. Animals previously exposed to positive air ions (3 weeks 80,000 ions/ml) exhibited lowered excitability of the reticulocortical system. Significantly higher stimulations were necessary to induce arousal. Negative air ions induced more intricate effects: brain excitability was lowered when tested with weak stimulations, but normal when evaluated with medium high level stimilations. Sleep seems first more stable but as stimulation increases, arousal is soon as effective as in controls. These results are in agreement with others findings in behavioral fields and partly explains them.

  7. Magnetic and electrical responses of the human brain to texture-defined form and to textons.

    PubMed

    Regan, D; He, P

    1995-09-01

    1. We searched for a neurophysical correlate of preattentive texture discrimination by recording magnetic and electric evoked responses from the human brain during the first few hundred milliseconds following the presentation of texture-defined (TD) checkerboard form. The only two textons that changed when the TD checkerboard appeared or disappeared were the local orientation and line termination textons. (Textons are conspicuous local features within a texture pattern). 2. Our evidence that the magnetic response to TD form cannot be explained in terms of responses to the two associated textons is as follows: 1) by dissociating the two responses we showed that the magnetic response to TD form is almost entirely independent of the magnetic response to the local orientation texton; 2) a further distinction between the two responses is that their distributions over the head are different; and 3) the magnetic response to TD form differs from the magnetic response to the line termination texton in both distribution over the head and waveform. We conclude that this evidence identifies the existence of a brain response correlate of preattentive texture discrimination. 3. We also recorded brain responses to luminance-defined (LD) checkerboard form. Our grounds for concluding that magnetic brain responses to the onset of checkerboard form are generated by different and independent neural systems for TD and LD form are as follows: 1) magnetic responses to the onset of TD form and LD form had different distributions over the skull, had different waveforms, and depended differently on check size; and 2) the waveform of the response to superimposed TD and LD checks closely approximated the linear sum of responses to TD checks and LD checks alone. 4. One possible explanation for the observed differences between the magnetic and electric evoked responses is that responses to both onset and offset of TD form predominantly involve neurons aligned parallel to the skull, whereas that

  8. A silicon-based electrical source of surface plasmon polaritons

    NASA Astrophysics Data System (ADS)

    Walters, R. J.; van Loon, R. V. A.; Brunets, I.; Schmitz, J.; Polman, A.

    2010-01-01

    After decades of process scaling driven by Moore's law, the silicon microelectronics world is now defined by length scales that are many times smaller than the dimensions of typical micro-optical components. This size mismatch poses an important challenge for those working to integrate photonics with complementary metal oxide semiconductor (CMOS) electronics technology. One promising solution is to fabricate optical systems at metal/dielectric interfaces, where electromagnetic modes called surface plasmon polaritons (SPPs) offer unique opportunities to confine and control light at length scales below 100nm (refs 1, 2). Research groups working in the rapidly developing field of plasmonics have now demonstrated many passive components that suggest the potential of SPPs for applications in sensing and optical communication. Recently, active plasmonic devices based on III-V materials and organic materials have been reported. An electrical source of SPPs was recently demonstrated using organic semiconductors by Koller and colleagues. Here we show that a silicon-based electrical source for SPPs can be fabricated using established low-temperature microtechnology processes that are compatible with back-end CMOS technology.

  9. Spatio-temporal analysis of brain electrical activity in epilepsy based on cellular nonlinear networks

    NASA Astrophysics Data System (ADS)

    Gollas, Frank; Tetzlaff, Ronald

    2009-05-01

    Epilepsy is the most common chronic disorder of the nervous system. Generally, epileptic seizures appear without foregoing sign or warning. The problem of detecting a possible pre-seizure state in epilepsy from EEG signals has been addressed by many authors over the past decades. Different approaches of time series analysis of brain electrical activity already are providing valuable insights into the underlying complex dynamics. But the main goal the identification of an impending epileptic seizure with a sufficient specificity and reliability, has not been achieved up to now. An algorithm for a reliable, automated prediction of epileptic seizures would enable the realization of implantable seizure warning devices, which could provide valuable information to the patient and time/event specific drug delivery or possibly a direct electrical nerve stimulation. Cellular Nonlinear Networks (CNN) are promising candidates for future seizure warning devices. CNN are characterized by local couplings of comparatively simple dynamical systems. With this property these networks are well suited to be realized as highly parallel, analog computer chips. Today available CNN hardware realizations exhibit a processing speed in the range of TeraOps combined with low power consumption. In this contribution new algorithms based on the spatio-temporal dynamics of CNN are considered in order to analyze intracranial EEG signals and thus taking into account mutual dependencies between neighboring regions of the brain. In an identification procedure Reaction-Diffusion CNN (RD-CNN) are determined for short segments of brain electrical activity, by means of a supervised parameter optimization. RD-CNN are deduced from Reaction-Diffusion Systems, which usually are applied to investigate complex phenomena like nonlinear wave propagation or pattern formation. The Local Activity Theory provides a necessary condition for emergent behavior in RD-CNN. In comparison linear spatio

  10. [Methods of brain stimulation based on weak electric current--future tool for the clinician?].

    PubMed

    Kotilainen, Tuukka; Lehto, Soili M

    2016-01-01

    Methods of brain stimulation based on a weak electric current are non-invasive neuromodulation techniques. They include transcranial direct current, alternating current and random noise stimulation. These methods modify the membrane potential of neurons without triggering the action potential, and have been successfully utilized to influence cognition and regulation of emotions in healthy experimental subjects. In clinical studies, indications of the efficacy of these techniques have been obtained in the treatment of depression, schizophrenia, memory disorders and pain as well as in stroke rehabilitation. It is hoped that these techniques will become established as part of the care and rehabilitation of psychiatric and neurologic patients in the future. PMID:27017784

  11. Sub-millimeter resolution electrical conductivity images of brain tissues using magnetic resonance-based electrical impedance tomography

    NASA Astrophysics Data System (ADS)

    Oh, Tong In; Kim, Hyun Bum; Jeong, Woo Chul; Sajib, Saurav Z. K.; Kyung, Eun Jung; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2015-07-01

    Recent magnetic resonance (MR)-based electrical impedance tomography (MREIT) of in vivo animal and human subjects enabled the imaging of electromagnetic properties, such as conductivity and permittivity, on tissue structure and function with a few millimeter pixel size. At those resolutions, the conductivity contrast might be sufficient to distinguish different tissue type for certain applications. Since the precise measurement of electrical conductivity under the tissue levels can provide alternative information in a wide range of biomedical applications, it is necessary to develop high-resolution MREIT technique to enhance its availability. In this study, we provide the experimental evaluation of sub-millimeter resolution conductivity imaging method using a 3T MR scanner combined with a multi-echo MR pulse sequence, multi-channel RF coil, and phase optimization method. From the phantom and animal imaging results, sub-millimeter resolution exhibited similar signal-to-noise ratio of MR magnitude and noise levels in magnetic flux density comparing to the existing millimeter resolution. The reconstructed conductivity images at sub-millimeter resolution can distinguish different brain tissues with a pixel size as small as 350 μm.

  12. Sub-millimeter resolution electrical conductivity images of brain tissues using magnetic resonance-based electrical impedance tomography

    SciTech Connect

    Oh, Tong In; Jeong, Woo Chul; Sajib, Saurav Z. K.; Kim, Hyung Joong Woo, Eung Je; Kim, Hyun Bum; Kyung, Eun Jung; Kwon, Oh In

    2015-07-13

    Recent magnetic resonance (MR)-based electrical impedance tomography (MREIT) of in vivo animal and human subjects enabled the imaging of electromagnetic properties, such as conductivity and permittivity, on tissue structure and function with a few millimeter pixel size. At those resolutions, the conductivity contrast might be sufficient to distinguish different tissue type for certain applications. Since the precise measurement of electrical conductivity under the tissue levels can provide alternative information in a wide range of biomedical applications, it is necessary to develop high-resolution MREIT technique to enhance its availability. In this study, we provide the experimental evaluation of sub-millimeter resolution conductivity imaging method using a 3T MR scanner combined with a multi-echo MR pulse sequence, multi-channel RF coil, and phase optimization method. From the phantom and animal imaging results, sub-millimeter resolution exhibited similar signal-to-noise ratio of MR magnitude and noise levels in magnetic flux density comparing to the existing millimeter resolution. The reconstructed conductivity images at sub-millimeter resolution can distinguish different brain tissues with a pixel size as small as 350 μm.

  13. Environmental complexity, seasonality and brain cell proliferation in a weakly electric fish, Brachyhypopomus gauderio

    PubMed Central

    Dunlap, Kent D.; Silva, Ana C.; Chung, Michael

    2011-01-01

    Environmental complexity and season both influence brain cell proliferation in adult vertebrates, but their relative importance and interaction have not been directly assessed. We examined brain cell proliferation during both the breeding and non-breeding seasons in adult male electric fish, Brachyhypopomus gauderio, exposed to three environments that differed in complexity: (1) a complex natural habitat in northern Uruguay, (2) an enriched captive environment where fish were housed socially and (3) a simple laboratory setting where fish were isolated. We injected fish with BrdU 2.5 h before sacrifice to label newborn cells. We examined the hindbrain and midbrain and quantified the density of BrdU+ cells in whole transverse sections, proliferative zones and two brain nuclei in the electrocommunication circuitry (the pacemaker nucleus and the electrosensory lateral line lobe). Season had the largest effect on cell proliferation, with fish during the breeding season having three to seven times more BrdU+ cells than those during the non-breeding season. Although the effect was smaller, fish from a natural environment had greater rates of cell proliferation than fish in social or isolated captive environments. For most brain regions, fish in social and isolated captive environments had equivalent levels of cell proliferation. However, for brain regions in the electrocommunication circuitry, group-housed fish had more cell proliferation than isolated fish, but only during the breeding season (season × environment interaction). The regionally and seasonally specific effect of social environment on cell proliferation suggests that addition of new cells to these nuclei may contribute to seasonal changes in electrocommunication behavior. PMID:21307066

  14. REVIEWS OF TOPICAL PROBLEMS: Electrical activity of the brain: Mechanisms and interpretation

    NASA Astrophysics Data System (ADS)

    Osovets, S. M.; Ginzburg, D. A.; Gurfinkel', V. S.; Zenkov, L. P.; Latash, L. P.; Malkin, V. B.; Mel'nichuk, P. V.; Pasternak, E. B.

    1983-09-01

    Physical analogies are used to develop ideas on the origin of spontaneous oscillations in the electrical activity of the human brain and on the variation in these oscillations that accompany changes of state and of type of activity. A possible functional role of such oscillations in the overall activity of the brain and mechanisms responsible for certain pathologies of brain activity are examined. Existing phenomenology and current hypotheses are used as a basis for suggesting that: 1) spontaneous rhythms on the electroencephalogram (EEG) are due to the interaction between a finite number of autogenerators (pacemakers) formed by the neuronal populations of thalamic nuclei and functional units in the cortex that exhibit the properties of a passive oscillatory loop; 2) because of its well-defined nonlinearity, the interaction between thalamic autogenerators of different natural frequency leads to the generation of a great variety of observed EEG patterns that accompany different types of brain activity (including responses to external disturbances), all of which is a consequence of recent advances in the theory of nonlinear oscillations that have led to the discovery of "strange attractors"; 3) the subdivision in the brain of the pulsed flow of information into "specific" and "nonspecific", where the latter has a modifying influence on interactions between thalamic pacemakers and on the appearance of special multiperiodic patterns that are characteristic for different events, leads to a distributed fixation of long-term memory traces when the nonspecific and specific flows converge on a neuron memory substrate, and these traces can be read by a single characteristic multiperiodic pattern; and 4) the mechanism responsible for the appearance of paroxysmal discharges in certain specific types of epilepsy and the associated characteristic EEG phenomena (including frequency division) ensues from pathologically modified interaction between thalamic pacemakers and

  15. Surface area and cortical thickness descriptors reveal different attributes of the structural human brain networks.

    PubMed

    Sanabria-Diaz, Gretel; Melie-García, Lester; Iturria-Medina, Yasser; Alemán-Gómez, Yasser; Hernández-González, Gertrudis; Valdés-Urrutia, Lourdes; Galán, Lídice; Valdés-Sosa, Pedro

    2010-05-01

    Recently, a related morphometry-based connection concept has been introduced using local mean cortical thickness and volume to study the underlying complex architecture of the brain networks. In this article, the surface area is employed as a morphometric descriptor to study the concurrent changes between brain structures and to build binarized connectivity graphs. The statistical similarity in surface area between pair of regions was measured by computing the partial correlation coefficient across 186 normal subjects of the Cuban Human Brain Mapping Project. We demonstrated that connectivity matrices obtained follow a small-world behavior for two different parcellations of the brain gray matter. The properties of the connectivity matrices were compared to the matrices obtained using the mean cortical thickness for the same cortical parcellations. The topology of the cortical thickness and surface area networks were statistically different, demonstrating that both capture distinct properties of the interaction or different aspects of the same interaction (mechanical, anatomical, chemical, etc.) between brain structures. This finding could be explained by the fact that each descriptor is driven by distinct cellular mechanisms as result of a distinct genetic origin. To our knowledge, this is the first time that surface area is used to study the morphological connectivity of brain networks. PMID:20083210

  16. A Framework for Brain Registration via Simultaneous Surface and Volume Flow

    PubMed Central

    Joshi, Anand; Leahy, Richard; Toga, Arthur; Shattuck, David

    2015-01-01

    Volumetric registration of brain MR images presents a challenging problem due to the wide variety of sulcal folding patterns. We present a novel volumetric registration method based on an intermediate parameter space in which the shape differences are normalized. First, we generate a 3D harmonic map of each brain volume to unit ball which is used as an intermediate space. Cortical surface features and volumetric intensity are then used to find a simultaneous surface and volume registration. We present a finite element method for the registration by using a tetrahedral volumetric mesh for registering the interior volumetric information and the corresponding triangulated mesh at the surface points. This framework aligns the convoluted sulcal folding patterns as well as the subcortical structures by allowing simultaneous flow of surface and volumes for registration. We describe the methodology and FEM implementation and then evaluate the method in terms of the overlap between segmented structures in coregistered brains. PMID:19694295

  17. Mapping the distance between the brain and the inner surface of the skull and their global asymmetries

    NASA Astrophysics Data System (ADS)

    Fournier, Marc; Combès, Benoît; Roberts, Neil; Braga, José; Prima, Sylvain

    2011-03-01

    The primary goal of this paper is to describe i) the pattern of pointwise distances between the human brain (pial surface) and the inner surface of the skull (endocast) and ii) the pattern of pointwise bilateral asymmetries of these two structures. We use a database of MR images to segment meshes representing the outer surface of the brain and the endocast. We propose automated computational techniques to assess the endocast-to-brain distances and endocast-and-brain asymmetries, based on a simplified yet accurate representation of the brain surface, that we call the brain hull. We compute two meshes representing the mean endocast and the mean brain hull to assess the two patterns in a population of normal controls. The results show i) a pattern of endocast-to-brain distances which are symmetrically distributed with respect to the mid-sagittal plane and ii) a pattern of global endocast and brain hull asymmetries which are consistent with the well-known Yakovlevian torque. Our study is a first step to validate the endocranial surface as a surrogate for the brain in fossil studies, where a key question is to elucidate the evolutionary origins of the brain torque. It also offers some insights into the normal configuration of the brain/skull interface, which could be useful in medical imaging studies (e.g. understanding atrophy in neurodegenerative diseases or modeling the brain shift in neurosurgery).

  18. Diurnal patterns in brain biogenic amines of rats exposed to 60-Hz electric fields

    SciTech Connect

    Vasquez, B.J.; Anderson, L.E.; Lowery, C.I.; Adey, W.R.

    1988-01-01

    Levels of brain neurotransmitters and their metabolites, as well as concentrations of enzymes associated with their synthesis and metabolism, fluctuate during the day in patterns defined as circadian. The present study examined these rhythms in albino rats exposed to 60-Hz electric fields. Thirty-six animals were exposed to a 39 kV/m field for 4 weeks, 20 h/day, in a parallel-plate electrode system. A group of 36 sham animals was similarly handled and housed in a nonenergized exposure system. On the sampling day, animals were sacrificed at 4-h intervals throughout the 24-h day. Brains were removed, dissected, and kept frozen until chemically analyzed. The levels of biogenic amines and their acidic metabolites in the striatum, hypothalamus, and hippocampus were determined by high-performance liquid chromatography with electrochemical detection (HPLC-ECD) methods. Repeated exposure to 60-Hz electric fields produced significant alterations in the diurnal rhythms of several biogenic amines: dihydroxyphenylacetic acid (DOPAC, the primary metabolite of dopamine in the rat) in the striatum, and norepinephrine, dopamine, and 5-hydroxyindoleacetic acid (5-HIAA; serotonin metabolite) in the hypothalamus. Levels of serotonin in the striatum and hypothalamus showed clear circadian patterns that was not affected by the field. No diurnal or field-related changes were observed in the hippocampal amines.

  19. Feasibility of a Hybrid Brain-Computer Interface for Advanced Functional Electrical Therapy

    PubMed Central

    Savić, Andrej M.; Malešević, Nebojša M.; Popović, Mirjana B.

    2014-01-01

    We present a feasibility study of a novel hybrid brain-computer interface (BCI) system for advanced functional electrical therapy (FET) of grasp. FET procedure is improved with both automated stimulation pattern selection and stimulation triggering. The proposed hybrid BCI comprises the two BCI control signals: steady-state visual evoked potentials (SSVEP) and event-related desynchronization (ERD). The sequence of the two stages, SSVEP-BCI and ERD-BCI, runs in a closed-loop architecture. The first stage, SSVEP-BCI, acts as a selector of electrical stimulation pattern that corresponds to one of the three basic types of grasp: palmar, lateral, or precision. In the second stage, ERD-BCI operates as a brain switch which activates the stimulation pattern selected in the previous stage. The system was tested in 6 healthy subjects who were all able to control the device with accuracy in a range of 0.64–0.96. The results provided the reference data needed for the planned clinical study. This novel BCI may promote further restoration of the impaired motor function by closing the loop between the “will to move” and contingent temporally synchronized sensory feedback. PMID:24616644

  20. A Device for Long-Term Perfusion, Imaging, and Electrical Interfacing of Brain Tissue In vitro

    PubMed Central

    Killian, Nathaniel J.; Vernekar, Varadraj N.; Potter, Steve M.; Vukasinovic, Jelena

    2016-01-01

    Distributed microelectrode array (MEA) recordings from consistent, viable, ≥500 μm thick tissue preparations over time periods from days to weeks may aid in studying a wide range of problems in neurobiology that require in vivo-like organotypic morphology. Existing tools for electrically interfacing with organotypic slices do not address necrosis that inevitably occurs within thick slices with limited diffusion of nutrients and gas, and limited removal of waste. We developed an integrated device that enables long-term maintenance of thick, functionally active, brain tissue models using interstitial perfusion and distributed recordings from thick sections of explanted tissue on a perforated multi-electrode array. This novel device allows for automated culturing, in situ imaging, and extracellular multi-electrode interfacing with brain slices, 3-D cell cultures, and potentially other tissue culture models. The device is economical, easy to assemble, and integrable with standard electrophysiology tools. We found that convective perfusion through the culture thickness provided a functional benefit to the preparations as firing rates were generally higher in perfused cultures compared to their respective unperfused controls. This work is a step toward the development of integrated tools for days-long experiments with more consistent, healthier, thicker, and functionally more active tissue cultures with built-in distributed electrophysiological recording and stimulation functionality. The results may be useful for the study of normal processes, pathological conditions, and drug screening strategies currently hindered by the limitations of acute (a few hours long) brain slice preparations. PMID:27065793

  1. Core networks for visual-concrete and abstract thought content: a brain electric microstate analysis.

    PubMed

    Lehmann, Dietrich; Pascual-Marqui, Roberto D; Strik, Werner K; Koenig, Thomas

    2010-01-01

    Commonality of activation of spontaneously forming and stimulus-induced mental representations is an often made but rarely tested assumption in neuroscience. In a conjunction analysis of two earlier studies, brain electric activity during visual-concrete and abstract thoughts was studied. The conditions were: in study 1, spontaneous stimulus-independent thinking (post-hoc, visual imagery or abstract thought were identified); in study 2, reading of single nouns ranking high or low on a visual imagery scale. In both studies, subjects' tasks were similar: when prompted, they had to recall the last thought (study 1) or the last word (study 2). In both studies, subjects had no instruction to classify or to visually imagine their thoughts, and accordingly were not aware of the studies' aim. Brain electric data were analyzed into functional topographic brain images (using LORETA) of the last microstate before the prompt (study 1) and of the word-type discriminating event-related microstate after word onset (study 2). Conjunction analysis across the two studies yielded commonality of activation of core networks for abstract thought content in left anterior superior regions, and for visual-concrete thought content in right temporal-posterior inferior regions. The results suggest that two different core networks are automatedly activated when abstract or visual-concrete information, respectively, enters working memory, without a subject task or instruction about the two classes of information, and regardless of internal or external origin, and of input modality. These core machineries of working memory thus are invariant to source or modality of input when treating the two types of information. PMID:19646538

  2. Zinc uptake by brain cells: `surface' versus `bulk'

    NASA Astrophysics Data System (ADS)

    DeStasio, Gelsomina; Pochon, S.; Lorusso, G. F.; Tonner, B. P.; Mercanti, Delio; Ciotti, M. Teresa; Oddo, Nino; Galli, Paolo; Perfetti, P.; Margaritondo, G.

    1996-08-01

    The uptake of zinc by cerebellar rat cultures upon exposure to 0022-3727/29/8/023/img12 solutions was comparatively investigated using two well known condensed matter physics techniques: synchrotron photoelectron spectromicroscopy and inductively coupled plasma atomic emission spectroscopy. The objective was to apply a strategy - well known in surface physics - to distinguish between `surface' and `bulk' phenomena. The results clearly demonstrate that exposure significantly enhances the bulk (cell cytoplasm) Zn concentration with respect to the physiological level, whereas the effect on the surface (cell membrane) is negligible.

  3. Sensitivity analysis of brain morphometry based on MRI-derived surface models

    NASA Astrophysics Data System (ADS)

    Klein, Gregory J.; Teng, Xia; Schoenemann, P. T.; Budinger, Thomas F.

    1998-07-01

    Quantification of brain structure is important for evaluating changes in brain size with growth and aging and for characterizing neurodegeneration disorders. Previous quantification efforts using ex vivo techniques suffered considerable error due to shrinkage of the cerebrum after extraction from the skull, deformation of slices during sectioning, and numerous other factors. In vivo imaging studies of brain anatomy avoid these problems and allow repetitive studies following progression of brain structure changes due to disease or natural processes. We have developed a methodology for obtaining triangular mesh models of the cortical surface from MRI brain datasets. The cortex is segmented from nonbrain tissue using a 2D region-growing technique combined with occasional manual edits. Once segmented, thresholding and image morphological operations (erosions and openings) are used to expose the regions between adjacent surfaces in deep cortical folds. A 2D region- following procedure is then used to find a set of contours outlining the cortical boundary on each slice. The contours on all slices are tiled together to form a closed triangular mesh model approximating the cortical surface. This model can be used for calculation of cortical surface area and volume, as well as other parameters of interest. Except for the initial segmentation of the cortex from the skull, the technique is automatic and requires only modest computation time on modern workstations. Though the use of image data avoids many of the pitfalls of ex vivo and sectioning techniques, our MRI-based technique is still vulnerable to errors that may impact the accuracy of estimated brain structure parameters. Potential inaccuracies include segmentation errors due to incorrect thresholding, missed deep sulcal surfaces, falsely segmented holes due to image noise and surface tiling artifacts. The focus of this paper is the characterization of these errors and how they affect measurements of cortical surface

  4. Using electrical resistivity imaging to understand surface coal mine hydrogeology

    NASA Astrophysics Data System (ADS)

    Hester, E. T.; Greer, B. M.; Burbey, T. J.; Zipper, C. E.

    2015-12-01

    Understanding the hydrology of disturbed lands is important given the increasing human footprint on earth. Surface coal mining has caused significant land-use change in central Appalachia in the past few decades. The mining process breaks up overburden rock above coal seams, and then replaces that material at the mine location and in adjacent unmined valleys (valley fills). The freshly exposed rock surfaces undergo weathering which often alters water quality and ultimately aquatic communities in effluent streams. One of the most common water quality effects is increased total dissolved solids (TDS), which is usually measured via its surrogate, specific conductance (SC). The SC of valley fill effluent is a function of fill construction methods, materials, and age. Yet hydrologic studies that relate these variables to water quality are sparse due to the difficulty of implementing traditional hydrologic measurements in fill material. We tested the effectiveness of electrical resistivity imaging (ERI) to monitor subsurface geologic patterns and hydrologic flow paths in a test-case valley fill. We paired ERI with artificial rainfall experiments to track infiltrated water as it moved through the valley fill material. Results indicate that ERI can be used to identify the subsurface geologic structure and track advancing wetting fronts or preferential flow paths. We observed that the upper portion of the fill profile contains significant fines, while the deeper profile is primarily composed of large rocks and void spaces. The artificial rainfall experiments revealed that water ponded on the surface of compacted areas until it reached preferential flow paths, where it infiltrated quickly and deeply. We observed water moving from the surface down to >10 m depth within 75 minutes. In sum, vertical and lateral preferential flow paths were evident at both shallow (through compacted layers) and deep (among boulders) locations. Such extensive preferential flow suggests that a

  5. Electric Power System Technology Options for Lunar Surface Missions

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.

    2005-01-01

    In 2004, the President announced a 'Vision for Space Exploration' that is bold and forward-thinking, yet practical and responsible. The vision explores answers to longstanding questions of importance to science and society and will develop revolutionary technologies and capabilities for the future, while maintaining good stewardship of taxpayer dollars. One crucial technology area enabling all space exploration is electric power systems. In this paper, the author evaluates surface power technology options in order to identify leading candidate technologies that will accomplish lunar design reference mission three (LDRM-3). LDRM-3 mission consists of multiple, 90-day missions to the lunar South Pole with 4-person crews starting in the year 2020. Top-level power requirements included a nominal 50 kW continuous habitat power over a 5-year lifetime with back-up or redundant emergency power provisions and a nominal 2-kW, 2-person unpressurized rover. To help direct NASA's technology investment strategy, this lunar surface power technology evaluation assessed many figures of merit including: current technology readiness levels (TRLs), potential to advance to TRL 6 by 2014, effectiveness of the technology to meet the mission requirements in the specified time, mass, stowed volume, deployed area, complexity, required special ground facilities, safety, reliability/redundancy, strength of industrial base, applicability to other LDRM-3 elements, extensibility to Mars missions, costs, and risks. For the 50-kW habitat module, dozens of nuclear, radioisotope and solar power technologies were down-selected to a nuclear fission heat source with Brayton, Stirling or thermoelectric power conversion options. Preferred energy storage technologies included lithium-ion battery and Proton Exchange Membrane (PEM) Regenerative Fuel Cells (RFC). Several AC and DC power management and distribution architectures and component technologies were defined consistent with the preferred habitat

  6. Electrical stimulation of the human brain: perceptual and behavioral phenomena reported in the old and new literature.

    PubMed

    Selimbeyoglu, Aslihan; Parvizi, Josef

    2010-01-01

    In this review, we summarize the subjective experiential phenomena and behavioral changes that are caused by electrical stimulation of the cerebral cortex or subcortical nuclei in awake and conscious human subjects. Our comprehensive review contains a detailed summary of the data obtained from electrical brain stimulation (EBS) in humans in the last 100 years. Findings from the EBS studies may provide an additional layer of information about the neural correlates of cognition and behavior in healthy human subjects, or the neuroanatomy of illusions and hallucinations in patients with psychosis and the brain symptomatogenic zones in patients with epilepsy. We discuss some fundamental concepts, issues, and remaining questions that have defined the field of EBS, and review the current state of knowledge about the mechanism of action of EBS suggesting that the modulation of activity within a localized, but distributed, neuroanatomical network might explain the perceptual and behavioral phenomena that are reported during focal electrical stimulation of the human brain. PMID:20577584

  7. Electrically polarized micro-arc oxidized TiO2 coatings with enhanced surface hydrophilicity.

    PubMed

    Ma, Chufan; Nagai, Akiko; Yamazaki, Yuko; Toyama, Takeshi; Tsutsumi, Yusuke; Hanawa, Takao; Wang, Wei; Yamashita, Kimihiro

    2012-02-01

    The use of micro-arc oxidation titania (MAO TiO2) coatings to modify titanium surfaces improves the biocompatibility of implant surfaces. To obtain hydrophilic MAO TiO2 coating surfaces electric polarization, which induces surface electric fields in the materials and produces surface charges, was performed in this study. Electric polarization of the MAO TiO2 coatings was confirmed by measuring the thermally stimulated depolarization current. After electric polarization treatment the MAO TiO2 coatings did not exhibit any obvious changes in surface roughness, morphology, or phase components. X-ray photoelectron spectroscopy results indicated that electric polarization resulted in oxidation of the cathodic-faced surfaces and reduction of the anodic-faced surfaces. This result suggests that the existence of a concentration gradient of oxide ions/oxygen vacancies produced the stored space charge in the coatings. Reduction of the deionized water contact angle on the polarized MAO TiO2 surfaces was maintained for longer periods compared with the non-polarized surface. Our study demonstrated that metastable electric fields across the MAO TiO2 coating produced by electric polarization made it durably wettable by reducing the interfacial surface tension between the material and water. PMID:21971419

  8. White matter of the brain

    MedlinePlus

    ... improves the speed and transmission of electrical nerve signals. By comparison, gray matter is tissue found on the surface of the brain (cortical). It contains the cell bodies of neurons, which give gray matter its color.

  9. Dynamic spatiotemporal brain analyses using high-performance electrical neuroimaging, Part II: A step-by-step tutorial.

    PubMed

    Cacioppo, Stephanie; Cacioppo, John T

    2015-12-30

    Our recently published analytic toolbox (Cacioppo et al., 2014), running under MATLAB environment and Brainstorm, offered a theoretical framework and set of validation studies for the automatic detection of event-related changes in the global pattern and global field power of electrical brain activity. Here, we provide a step-by-step tutorial of this toolbox along with a detailed description of analytical plans (aka the Chicago Electrical Neuroimaging Analytics, CENA) for the statistical analysis of brain microstate configuration and global field power in within and between-subject designs. Available CENA functions include: (1) a difference wave function; (2) a high-performance microsegmentation suite (HPMS), which consists of three specific analytic tools: (i) a root mean square error (RMSE) metric for identifying stable states and transition states across discrete event-related brain microstates; (ii) a similarity metric based on cosine distance in n dimensional sensor space to determine whether template maps for successive brain microstates differ in configuration of brain activity, and (iii) global field power (GFP) metrics for identifying changes in the overall level of activation of the brain; (3) a bootstrapping function for assessing the extent to which the solutions identified in the HPMS are robust (reliable, generalizable) and for empirically deriving additional experimental hypotheses; and (4) step-by-step procedures for performing a priori contrasts for data analysis. CENA is freely available for brain data spatiotemporal analyses at https://hpenlaboratory.uchicago.edu/page/cena, with sample data, user tutorial videos, and documentation. PMID:26363189

  10. Resuscitation therapy for traumatic brain injury-induced coma in rats: mechanisms of median nerve electrical stimulation

    PubMed Central

    Feng, Zhen; Zhong, Ying-jun; Wang, Liang; Wei, Tian-qi

    2015-01-01

    In this study, rats were put into traumatic brain injury-induced coma and treated with median nerve electrical stimulation. We explored the wake-promoting effect, and possible mechanisms, of median nerve electrical stimulation. Electrical stimulation upregulated the expression levels of orexin-A and its receptor OX1R in the rat prefrontal cortex. Orexin-A expression gradually increased with increasing stimulation, while OX1R expression reached a peak at 12 hours and then decreased. In addition, after the OX1R antagonist, SB334867, was injected into the brain of rats after traumatic brain injury, fewer rats were restored to consciousness, and orexin-A and OXIR expression in the prefrontal cortex was downregulated. Our findings indicate that median nerve electrical stimulation induced an up-regulation of orexin-A and OX1R expression in the prefrontal cortex of traumatic brain injury-induced coma rats, which may be a potential mechanism involved in the wake-promoting effects of median nerve electrical stimulation. PMID:26170820

  11. [A case of serous surface papillary carcinoma of the peritoneum metastatic to the brain].

    PubMed

    Sakakibara, Yohtaro; Endo, Shu; Yoshida, Yasuyuki; Tanaka, Yuichiro; Hashimoto, Takuo; Ohara, Tatsuru

    2011-06-01

    A case of brain metastasis from peritoneal serous surface papillary carcinoma (SSPC) was reported. This 68-year-old woman was admitted to our department because of decreased consciousness level for the last few days. Her medical past history revealed breast cancer and SSPC of the peritoneum at the age of 64. On admission she was comatose and irritable. Serum and urine examination revealed the syndrome of inappropriate secretion of antidiuretic hormone that was treated with strict restriction of water intake. MRI of the brain demonstrated a nonspecific mass in the subcortical area of the right superior parietal lobule. The mass was successfully removed in en bloc fashion. Pathological diagnosis was SSPC that was compatible with the previous diagnosis obtained from the peritoneum four years previously. Although the patient received whole brain radiation therapy postoperatively, her condition deteriorated rapidly. She died four months after brain surgery. SSPC of the peritoneum is a rare malignant tumor that is defined as a primary tumor histologically indistinguishable from serous carcinoma of the ovary, diffusely involving the peritoneal surface but sparing or only superficially invading the ovaries. Because of the prolongation of survival resulting from advanced chemotherapy for SSPC of the peritoneum, more patients live long enough to develop brain metastasis. Therefore, SSPC of the peritoneum should be kept in mind in the differential diagnosis of a primary site for brain metastasis. PMID:21628741

  12. Converting chemical energy into electricity through a functionally cooperating device with diving-surfacing cycles.

    PubMed

    Song, Mengmeng; Cheng, Mengjiao; Ju, Guannan; Zhang, Yajun; Shi, Feng

    2014-11-01

    A smart device that can dive or surface in aqueous medium has been developed by combining a pH-responsive surface with acid-responsive magnesium. The diving-surfacing cycles can be used to convert chemical energy into electricity. During the diving-surfacing motion, the smart device cuts magnetic flux lines and produces a current, demonstrating that motional energy can be realized by consuming chemical energy of magnesium, thus producing electricity. PMID:25146589

  13. Coupling of surface energy with electric potential makes superhydrophobic surfaces corrosion-resistant.

    PubMed

    Ramachandran, Rahul; Nosonovsky, Michael

    2015-10-14

    We study the correlation of wetting properties and corrosion rates on hydrophobized cast iron. Samples of different surface roughnesses (abraded by sandpaper) are studied without coating and with two types of hydrophobic coatings (stearic acid and a liquid repelling spray). The contact angles and contact angle hysteresis are measured using a goniometer while corrosion rates are measured by a potentiodynamic polarization test. The data show a decrease in corrosion current density and an increase in corrosion potential after superhydrophobization. A similar trend is also found in the recent literature data. We conclude that a decrease in the corrosion rate can be attributed to the changing open circuit potential of a coated surface and increased surface area making the non-homogeneous (Cassie-Baxter) state possible. We interpret these results in light of the idea that the inherent surface energy is coupled with the electric potential in accordance with the Lippmann law of electrowetting and Le Châtelier's principle and, therefore, hydrophobization leads to a decrease in the corrosion potential. This approach can be used for novel anti-corrosive coatings. PMID:26344151

  14. Long-lasting hyperpolarization underlies seizure reduction by low frequency deep brain electrical stimulation

    PubMed Central

    Toprani, Sheela; Durand, Dominique M

    2013-01-01

    Mesial temporal lobe epilepsy (MTLE) is a common medically refractory neurological disease. Deep brain electrical stimulation (DBS) of grey matter has been used for MTLE with limited success. However, stimulation of a white matter tract connecting the hippocampi, the ventral hippocampal commissure (VHC), with low frequencies that simulate interictal discharges has shown promising results, with seizure reduction greater than 98% in bilateral hippocampi during stimulation and greater than 50% seizure reduction in bilateral hippocampi after treatment. A major hurdle to the implementation and optimization of this treatment is that the mechanisms of seizure reduction by low frequency electrical stimulation (LFS) are not known. The goal of this study is to understand how commissural fibre tract stimulation reduces bilateral hippocampal epileptic activity in an in vitro slice preparation containing bilateral hippocampi connected by the VHC. It is our hypothesis that electrical stimuli induce hyperpolarization lasting hundreds of milliseconds following each pulse which reduces spontaneous epileptic activity during each inter-stimulus interval (ISI). Stimulus-induced long-lasting-hyperpolarization (LLH) can be mediated by GABAB inhibitory post-synaptic potentials (IPSPs) or slow after-hyperpolarization (sAHP). To test the role of LLH in effective bilateral seizure reduction by fibre tract stimulation, we measured stimulus-induced hyperpolarization during LFS of the VHC using electrophysiology techniques. Antagonism of the GABAB IPSP and/or sAHP diminished stimulus-induced hyperpolarization concurrently with LFS efficacy (greater than 50% reduction). Blocking both the GABAB IPSP and sAHP simultaneously eliminated the effect of electrical stimulation on seizure reduction entirely. These data show that LFS of the VHC is an effective protocol for bilateral hippocampal seizure reduction and that its efficacy relies on the induction of long-lasting hyperpolarization mediated

  15. Whole brain diffeomorphic metric mapping via integration of sulcal and gyral curves, cortical surfaces, and images.

    PubMed

    Du, Jia; Younes, Laurent; Qiu, Anqi

    2011-05-01

    This paper introduces a novel large deformation diffeomorphic metric mapping algorithm for whole brain registration where sulcal and gyral curves, cortical surfaces, and intensity images are simultaneously carried from one subject to another through a flow of diffeomorphisms. To the best of our knowledge, this is the first time that the diffeomorphic metric from one brain to another is derived in a shape space of intensity images and point sets (such as curves and surfaces) in a unified manner. We describe the Euler-Lagrange equation associated with this algorithm with respect to momentum, a linear transformation of the velocity vector field of the diffeomorphic flow. The numerical implementation for solving this variational problem, which involves large-scale kernel convolution in an irregular grid, is made feasible by introducing a class of computationally friendly kernels. We apply this algorithm to align magnetic resonance brain data. Our whole brain mapping results show that our algorithm outperforms the image-based LDDMM algorithm in terms of the mapping accuracy of gyral/sulcal curves, sulcal regions, and cortical and subcortical segmentation. Moreover, our algorithm provides better whole brain alignment than combined volumetric and surface registration (Postelnicu et al., 2009) and hierarchical attribute matching mechanism for elastic registration (HAMMER) (Shen and Davatzikos, 2002) in terms of cortical and subcortical volume segmentation. PMID:21281722

  16. Multichannel biomagnetic system for study of electrical activity in the brain and heart.

    PubMed

    Schneider, S; Hoenig, E; Reichenberger, H; Abraham-Fuchs, K; Moshage, W; Oppelt, A; Stefan, H; Weikl, A; Wirth, A

    1990-09-01

    The authors designed a multichannel system for noninvasive measurement of the extremely weak magnetic fields generated by the brain and the heart. It uses a flat array of 37 superconducting magnetic field-sensing coils connected to sophisticated superconducting quantum interference devices. To prevent interference from external electromagnetic fields, the system is operated inside a shielded room. Complete sets of coherent data, even from spontaneous events, can be recorded. System performance was evaluated with phantom measurements and evoked-response studies. A spatial resolution of a few millimeters and a temporal resolution of a millisecond were obtained. First results in patients with partial epilepsy and investigations of the cardiac conductive pathway indicate that biomagnetism is now ready for a systematic clinical evaluation. Interpretation of measurements was facilitated by highlighting biomagnetically localized electrical activity in three-dimensional digital magnetic resonance images. PMID:2389043

  17. Electrical stimulation of the brain and the development of cortical visual prostheses: An historical perspective.

    PubMed

    Lewis, Philip M; Rosenfeld, Jeffrey V

    2016-01-01

    Rapid advances are occurring in neural engineering, bionics and the brain-computer interface. These milestones have been underpinned by staggering advances in micro-electronics, computing, and wireless technology in the last three decades. Several cortically-based visual prosthetic devices are currently being developed, but pioneering advances with early implants were achieved by Brindley followed by Dobelle in the 1960s and 1970s. We have reviewed these discoveries within the historical context of the medical uses of electricity including attempts to cure blindness, the discovery of the visual cortex, and opportunities for cortex stimulation experiments during neurosurgery. Further advances were made possible with improvements in electrode design, greater understanding of cortical electrophysiology and miniaturisation of electronic components. Human trials of a new generation of prototype cortical visual prostheses for the blind are imminent. This article is part of a Special Issue entitled Hold Item. PMID:26348986

  18. Applications of GRID in clinical neurophysiology and Electrical Impedance Tomography of brain function.

    PubMed

    Fritschy, J; Horesh, L; Holder, D; Bayford, R

    2005-01-01

    The computational requirements in Neurophysiology are increasing with the development of new analysis methods. The resources the GRID has to offer are ideally suited for this complex processing. A practical implementation of the GRID, Condor, has been assessed using a local cluster of 920 PCs. The reduction in processing time was assessed in spike recognition of the Electroencephalogram (EEG) in epilepsy using wavelets and the computationally demanding task of non-linear image reconstruction with Electrical Impedance Tomography (EIT). Processing times were decreased by 25 and 40 times respectively. This represents a substantial improvement in processing time, but is still sub optimal due to factors such as shared access to resources and lack of checkpoints so that interrupted jobs had to be restarted. Future work will be to use these methods in non-linear EIT image reconstruction of brain function and methods for automated EEG analysis, if possible with further optimized GRID middleware. PMID:15923723

  19. Functional asymmetry between the left and right human fusiform gyrus explored through electrical brain stimulation.

    PubMed

    Rangarajan, Vinitha; Parvizi, Josef

    2016-03-01

    The ventral temporal cortex (VTC) contains several areas with selective responses to words, numbers, faces, and objects as demonstrated by numerous human and primate imaging and electrophysiological studies. Our recent work using electrocorticography (ECoG) confirmed the presence of face-selective neuronal populations in the human fusiform gyrus (FG) in patients implanted with intracranial electrodes in either the left or right hemisphere. Electrical brain stimulation (EBS) disrupted the conscious perception of faces only when it was delivered in the right, but not left, FG. In contrast to our previous findings, here we report both negative and positive EBS effects in right and left FG, respectively. The presence of right hemisphere language dominance in the first, and strong left-handedness and poor language processing performance in the second case, provide indirect clues about the functional architecture of the human VTC in relation to hemispheric asymmetries in language processing and handedness. PMID:26277460

  20. Duration of Coherence Intervals in Electrical Brain Activity in Perceptual Organization

    PubMed Central

    Gepshtein, Sergei; Gong, Pulin; van Leeuwen, Cees

    2010-01-01

    We investigated the relationship between visual experience and temporal intervals of synchronized brain activity. Using high-density scalp electroencephalography, we examined how synchronized activity depends on visual stimulus information and on individual observer sensitivity. In a perceptual grouping task, we varied the ambiguity of visual stimuli and estimated observer sensitivity to this variation. We found that durations of synchronized activity in the beta frequency band were associated with both stimulus ambiguity and sensitivity: the lower the stimulus ambiguity and the higher individual observer sensitivity the longer were the episodes of synchronized activity. Durations of synchronized activity intervals followed an extreme value distribution, indicating that they were limited by the slowest mechanism among the multiple neural mechanisms engaged in the perceptual task. Because the degree of stimulus ambiguity is (inversely) related to the amount of stimulus information, the durations of synchronous episodes reflect the amount of stimulus information processed in the task. We therefore interpreted our results as evidence that the alternating episodes of desynchronized and synchronized electrical brain activity reflect, respectively, the processing of information within local regions and the transfer of information across regions. PMID:19596712

  1. Gender difference in electrical brain activity during presentation of various film excerpts with different emotional content.

    PubMed

    Dimpfel, W; Wedekind, W; Keplinger, I

    2003-05-30

    Electrical activity of the human brain has been monitored using socalled charge mode (Laplacian estimates) during the exposure with short video film excerpts of 7 min duration. Eighty subjects (50% male and female) watched 5 different film excerpts (disney, animal, comedy, erotic and sex scenes) separated by 3 min pause. Comparison to a reference period of 7 min without video exposure revealed strong decreases in alpha and beta power starting from the electrode position T6 (right temporal) and spread to other brain areas with stronger attentional stimuli e.g. during the erotic and sex films. Highly statistically significant differences were observed between male and female in temporal areas, who in general developed stronger decreases than males. Females on the other hand produced significant increases in fronto-central delta and theta power which could be interpreted as expression of higher appreciation, whereas the decreases in alpha power in general are understood as signs of higher attention. The data are further proof that recording the computer aided quantitative EEG is a very fruitful and promising approach in psychophysiology. PMID:12844473

  2. Imaging of molecular surface dynamics in brain slices using single-particle tracking

    PubMed Central

    Biermann, B.; Sokoll, S.; Klueva, J.; Missler, M.; Wiegert, J. S.; Sibarita, J. -B.; Heine, M.

    2014-01-01

    Organization of signalling molecules in biological membranes is crucial for cellular communication. Many receptors, ion channels and cell adhesion molecules are associated with proteins important for their trafficking, surface localization or function. These complexes are embedded in a lipid environment of varying composition. Binding affinities and stoichiometry of such complexes were so far experimentally accessible only in isolated systems or monolayers of cell culture. Visualization of molecular dynamics within signalling complexes and their correlation to specialized membrane compartments demand high temporal and spatial resolution and has been difficult to demonstrate in complex tissue like brain slices. Here we demonstrate the feasibility of single-particle tracking (SPT) in organotypic brain slices to measure molecular dynamics of lipids and transmembrane proteins in correlation to synaptic membrane compartments. This method will provide important information about the dynamics and organization of surface molecules in the complex environment of neuronal networks within brain slices. PMID:24429796

  3. Experimental evaluation of electrical conductivity imaging of anisotropic brain tissues using a combination of diffusion tensor imaging and magnetic resonance electrical impedance tomography

    NASA Astrophysics Data System (ADS)

    Sajib, Saurav Z. K.; Jeong, Woo Chul; Kyung, Eun Jung; Kim, Hyun Bum; Oh, Tong In; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2016-06-01

    Anisotropy of biological tissues is a low-frequency phenomenon that is associated with the function and structure of cell membranes. Imaging of anisotropic conductivity has potential for the analysis of interactions between electromagnetic fields and biological systems, such as the prediction of current pathways in electrical stimulation therapy. To improve application to the clinical environment, precise approaches are required to understand the exact responses inside the human body subjected to the stimulated currents. In this study, we experimentally evaluate the anisotropic conductivity tensor distribution of canine brain tissues, using a recently developed diffusion tensor-magnetic resonance electrical impedance tomography method. At low frequency, electrical conductivity of the biological tissues can be expressed as a product of the mobility and concentration of ions in the extracellular space. From diffusion tensor images of the brain, we can obtain directional information on diffusive movements of water molecules, which correspond to the mobility of ions. The position dependent scale factor, which provides information on ion concentration, was successfully calculated from the magnetic flux density, to obtain the equivalent conductivity tensor. By combining the information from both techniques, we can finally reconstruct the anisotropic conductivity tensor images of brain tissues. The reconstructed conductivity images better demonstrate the enhanced signal intensity in strongly anisotropic brain regions, compared with those resulting from previous methods using a global scale factor.

  4. Transcranial Electrical Currents to Probe EEG Brain Rhythms and Memory Consolidation during Sleep in Humans

    PubMed Central

    Marshall, Lisa; Kirov, Roumen; Brade, Julian; Mölle, Matthias; Born, Jan

    2011-01-01

    Previously the application of a weak electric anodal current oscillating with a frequency of the sleep slow oscillation (∼0.75 Hz) during non-rapid eye movement sleep (NonREM) sleep boosted endogenous slow oscillation activity and enhanced sleep-associated memory consolidation. The slow oscillations occurring during NonREM sleep and theta oscillations present during REM sleep have been considered of critical relevance for memory formation. Here transcranial direct current stimulation (tDCS) oscillating at 5 Hz, i.e., within the theta frequency range (theta-tDCS) is applied during NonREM and REM sleep. Theta-tDCS during NonREM sleep produced a global decrease in slow oscillatory activity conjoint with a local reduction of frontal slow EEG spindle power (8–12 Hz) and a decrement in consolidation of declarative memory, underlining the relevance of these cortical oscillations for sleep-dependent memory consolidation. In contrast, during REM sleep theta-tDCS appears to increase global gamma (25–45 Hz) activity, indicating a clear brain state-dependency of theta-tDCS. More generally, results demonstrate the suitability of oscillating-tDCS as a tool to analyze functions of endogenous EEG rhythms and underlying endogenous electric fields as well as the interactions between EEG rhythms of different frequencies. PMID:21340034

  5. Transcranial electrical currents to probe EEG brain rhythms and memory consolidation during sleep in humans.

    PubMed

    Marshall, Lisa; Kirov, Roumen; Brade, Julian; Mölle, Matthias; Born, Jan

    2011-01-01

    Previously the application of a weak electric anodal current oscillating with a frequency of the sleep slow oscillation (∼0.75 Hz) during non-rapid eye movement sleep (NonREM) sleep boosted endogenous slow oscillation activity and enhanced sleep-associated memory consolidation. The slow oscillations occurring during NonREM sleep and theta oscillations present during REM sleep have been considered of critical relevance for memory formation. Here transcranial direct current stimulation (tDCS) oscillating at 5 Hz, i.e., within the theta frequency range (theta-tDCS) is applied during NonREM and REM sleep. Theta-tDCS during NonREM sleep produced a global decrease in slow oscillatory activity conjoint with a local reduction of frontal slow EEG spindle power (8-12 Hz) and a decrement in consolidation of declarative memory, underlining the relevance of these cortical oscillations for sleep-dependent memory consolidation. In contrast, during REM sleep theta-tDCS appears to increase global gamma (25-45 Hz) activity, indicating a clear brain state-dependency of theta-tDCS. More generally, results demonstrate the suitability of oscillating-tDCS as a tool to analyze functions of endogenous EEG rhythms and underlying endogenous electric fields as well as the interactions between EEG rhythms of different frequencies. PMID:21340034

  6. Sources of Variability in Working Memory in Early Childhood: A Consideration of Age, Temperament, Language, and Brain Electrical Activity

    ERIC Educational Resources Information Center

    Wolfe, Christy D.; Bell, Martha Ann

    2007-01-01

    This study investigated age-related differences in working memory and inhibitory control (WMIC) in 3 1/2-, 4-, and 4 1/2-year-olds and how these differences were associated with differences in regulatory aspects of temperament, language comprehension, and brain electrical activity. A series of cognitive control tasks was administered to measure…

  7. Regional contraction of brain surface area involves three large-scale networks in schizophrenia.

    PubMed

    Palaniyappan, Lena; Mallikarjun, Pavan; Joseph, Verghese; White, Thomas P; Liddle, Peter F

    2011-07-01

    In schizophrenia, morphological changes in the cerebral cortex have been primarily investigated using volumetric or cortical thickness measurements. In healthy subjects, as the brain size increases, the surface area expands disproportionately when compared to the scaling of cortical thickness. In this structural MRI study, we investigated the changes in brain surface area in schizophrenia by constructing relative areal contraction/expansion maps showing group differences in surface area using Freesurfer software in 57 patients and 41 controls. We observed relative areal contraction affecting Default Mode Network, Central Executive Network and Salience Network, in addition to other regions in schizophrenia. We confirmed the surface area reduction across these three large-scale brain networks by undertaking further region-of-interest analysis of surface area. We also observed a significant hemispheric asymmetry in the surface area changes, with the left hemisphere showing a greater reduction in the areal contraction maps. Our findings suggest that a fundamental disturbance in cortical expansion is likely in individuals who develop schizophrenia. PMID:21497489

  8. Effects of brain-computer interface-based functional electrical stimulation on brain activation in stroke patients: a pilot randomized controlled trial

    PubMed Central

    Chung, EunJung; Kim, Jung-Hee; Park, Dae-Sung; Lee, Byoung-Hee

    2015-01-01

    [Purpose] This study sought to determine the effects of brain-computer interface-based functional electrical stimulation (BCI-FES) on brain activation in patients with stroke. [Subjects] The subjects were randomized to in a BCI-FES group (n=5) and a functional electrical stimulation (FES) group (n=5). [Methods] Patients in the BCI-FES group received ankle dorsiflexion training with FES for 30 minutes per day, 5 times under the brain-computer interface-based program. The FES group received ankle dorsiflexion training with FES for the same amount of time. [Results] The BCI-FES group demonstrated significant differences in the frontopolar regions 1 and 2 attention indexes, and frontopolar 1 activation index. The FES group demonstrated no significant differences. There were significant differences in the frontopolar 1 region activation index between the two groups after the interventions. [Conclusion] The results of this study suggest that BCI-FES training may be more effective in stimulating brain activation than only FES training in patients recovering from stroke. PMID:25931680

  9. In vivo bioimpedance measurement of healthy and ischaemic rat brain: implications for stroke imaging using electrical impedance tomography.

    PubMed

    Dowrick, T; Blochet, C; Holder, D

    2015-06-01

    In order to facilitate the imaging of haemorrhagic and ischaemic stroke using frequency difference electrical impedance tomography (EIT), impedance measurements of normal and ischaemic brain, and clotted blood during haemorrhage, were gathered using a four-terminal technique in an in vivo animal model, a first for ischaemic measurements. Differences of 5-10% in impedance were seen between the frequency spectrums of healthy and ischaemic brain, over the frequency range 0-3 kHz, while the spectrum of blood was predominately uniform. The implications of imaging blood/ischaemia in the brain using electrical impedance tomography are discussed, supporting the notion that it will be possible to differentiate stroke from haemorrhage. PMID:26006171

  10. Separation of the tumor and brain surface by "water jet" in cases of meningiomas.

    PubMed

    Toth, S; Vajda, J; Pasztor, E; Toth, Z

    1987-01-01

    In the surgery of meningiomas one of the most delicate problems is the separation of the tumor from the brain surface. The authors generally recommend microsurgery to preserve the brain surface anatomically and functionally. For this purpose we have developed a new surgical technique according to our concepts of tissue care. After excavating the tumor from inside the tumor brain surface was separated by repeated "water jets" into the tumor arachnoideal space. The "water jet" was produced by an ordinary bulb syringe. The front pressure of the jets was 300-1000 mm of water and the side pressure 100-300 mm of water. In the tumor-arachnoideal space the spreading water (phys. NaCl) separates the brain from the tumor with utmost care. We operated on 55 meningiomas of different types with the "water jet" technique. The immediate results were anatomically excellent. Intraoperative and postoperative acute and late edemas appeared only in a few cases. The functions of the nearby brain were generally preserved. The surgery was uneventful when the tumor surface was smooth and the tumor was spherical. When the tumor surface was uneven, one part of the tumor extended under the dura as a thin layer or the tumor was multilobulated with expanded vessels between the lobules, more microseparation was necessary. We compared the results of the "water jet" technique with the results of the "pre-water jet" series. The surgery with the "water jet" technique was much shorter and its results were better than those of microsurgery alone. PMID:3668608

  11. Nanostructured surface modification of ceramic-based microelectrodes to enhance biocompatibility for a direct brain-machine interface.

    PubMed

    Moxon, Karen A; Kalkhoran, Nader M; Markert, Mathew; Sambito, Marisa A; McKenzie, J L; Webster, J Thomas

    2004-06-01

    Many different types of microelectrodes have been developed for use as a direct Brain-Machine Interface (BMI) to chronically recording single neuron action potentials from ensembles of neurons. Unfortunately, the recordings from these microelectrode devices are not consistent and often last for only a few weeks. For most microelectrode types, the loss of these recordings is not due to failure of the electrodes but most likely due to damage to surrounding tissue that results in the formation of nonconductive glial-scar. Since the extracellular matrix consists of nanostructured microtubules, we have postulated that neurons may prefer a more complex surface structure than the smooth surface typical of thin-film microelectrodes. We, therefore, investigated the suitability of a nano-porous silicon surface layer to increase the biocompatibility of our thin film ceramic-insulated multisite electrodes. In-vitro testing demonstrated, for the first time, decreased adhesion of astrocytes and increased extension of neurites from pheochromocytoma cells on porous silicon surfaces compared to smooth silicon sufaces. Moreover, nano-porous surfaces were more biocompatible than macroporous surfaces. Collectively, these results support our hypothesis that nano-porous silicon may be an ideal material to improve biocompatibility of chronically implanted microelectrodes. We next developed a method to apply nano-porous surfaces to ceramic insulated, thin-film, microelectrodes and tested them in vivo. Chronic testing demonstrated that the nano-porous surface modification did not alter the electrical properties of the recording sites and did not interfere with proper functioning of the microelectrodes in vivo. PMID:15188854

  12. Effect of Direct Electric Current on the Cell Surface Properties of Phenol-Degrading Bacteria

    PubMed Central

    Luo, Qishi; Wang, Hui; Zhang, Xihui; Qian, Yi

    2005-01-01

    The change in cell surface properties in the presence of electric currents is of critical concern when the potential to manipulate bacterial movement with electric fields is evaluated. In this study, the effects of different direct electric currents on the cell surface properties involved in bacterial adhesion were investigated by using a mixed phenol-degrading bacterial culture in the exponential growth phase. The traits investigated were surface hydrophobicity (measured by adherence to n-octane), net surface electrostatic charge (determined by measurement of the zeta potential), and the cell surface shape and polymers (determined by scanning electron microscope analysis). The results showed that a lower current (less than 20 mA) induced no significant changes in the surface properties of phenol-degrading bacteria, that an electric current of 20 mA could increase the surface hydrophobicity and flatten the cell shape, and that a higher current (40 mA) could increase the surface extracellular substances and the net negative surface electrostatic charge. The results also revealed that the electric current effects on cell hydrophobicity varied with the suspending medium. We suggest that an electric current greater than 20 mA is not suitable for use in manipulation of the movement of the phenol-degrading bacteria, although such a current might favor the electrophoretic movement of the bacterial species. PMID:15640217

  13. Brain potentials evoked by intraepidermal electrical stimuli reflect the central sensitization of nociceptive pathways

    PubMed Central

    Lee, M. C.; O'Neill, J.; Dickenson, A. H.; Iannetti, G. D.

    2016-01-01

    Central sensitization (CS), the increased sensitivity of the central nervous system to somatosensory inputs, accounts for secondary hyperalgesia, a typical sign of several painful clinical conditions. Brain potentials elicited by mechanical punctate stimulation using flat-tip probes can provide neural correlates of CS, but their signal-to-noise ratio is limited by poor synchronization of the afferent nociceptive input. Additionally, mechanical punctate stimulation does not activate nociceptors exclusively. In contrast, low-intensity intraepidermal electrical stimulation (IES) allows selective activation of type II Aδ-mechano-heat nociceptors (II-AMHs) and elicits reproducible brain potentials. However, it is unclear whether hyperalgesia from IES occurs and coexists with secondary mechanical punctate hyperalgesia, and whether the magnitude of the electroencephalographic (EEG) responses evoked by IES within the hyperalgesic area is increased. To address these questions, we explored the modulation of the psychophysical and EEG responses to IES by intraepidermal injection of capsaicin in healthy human subjects. We obtained three main results. First, the intensity of the sensation elicited by IES was significantly increased in participants who developed robust mechanical punctate hyperalgesia after capsaicin injection (i.e., responders), indicating that hyperalgesia from IES coexists with punctate mechanical hyperalgesia. Second, the N2 peak magnitude of the EEG responses elicited by IES was significantly increased after the intraepidermal injection of capsaicin in responders only. Third, a receiver-operator characteristics analysis showed that the N2 peak amplitude is clearly predictive of the presence of CS. These findings suggest that the EEG responses elicited by IES reflect secondary hyperalgesia and therefore represent an objective correlate of CS. PMID:27098022

  14. Universal scaling for the spin-electricity conversion on surface states of topological insulators

    NASA Astrophysics Data System (ADS)

    Yamamoto, K. T.; Shiomi, Y.; Segawa, Kouji; Ando, Yoichi; Saitoh, E.

    2016-07-01

    We have investigated spin-electricity conversion on surface states of bulk-insulating topological insulator (TI) materials using a spin-pumping technique. The sample structure is Ni-Fe ∣Cu ∣TI trilayers, in which magnetic proximity effects on the TI surfaces are negligibly small owing to the inserted Cu layer. Voltage signals produced by the spin-electricity conversion are clearly observed and are enhanced with decreasing temperature, in line with the dominant surface transport at lower temperatures. The efficiency of the spin-electricity conversion is greater for TI samples with a higher resistivity of bulk states and longer mean free path of surface states, consistent with the surface spin-electricity conversion.

  15. Trajectories of cortical surface area and cortical volume maturation in normal brain development

    PubMed Central

    Ducharme, Simon; Albaugh, Matthew D.; Nguyen, Tuong-Vi; Hudziak, James J.; Mateos-Pérez, J.M.; Labbe, Aurelie; Evans, Alan C.; Karama, Sherif

    2015-01-01

    This is a report of developmental trajectories of cortical surface area and cortical volume in the NIH MRI Study of Normal Brain Development. The quality-controlled sample included 384 individual typically-developing subjects with repeated scanning (1–3 per subject, total scans n=753) from 4.9 to 22.3 years of age. The best-fit model (cubic, quadratic, or first-order linear) was identified at each vertex using mixed-effects models, with statistical correction for multiple comparisons using random field theory. Analyses were performed with and without controlling for total brain volume. These data are provided for reference and comparison with other databases. Further discussion and interpretation on cortical developmental trajectories can be found in the associated Ducharme et al.׳s article “Trajectories of cortical thickness maturation in normal brain development – the importance of quality control procedures” (Ducharme et al., 2015) [1]. PMID:26702424

  16. An electric field induced in the retina and brain at threshold magnetic flux density causing magnetophosphenes

    NASA Astrophysics Data System (ADS)

    Hirata, Akimasa; Takano, Yukinori; Fujiwara, Osamu; Dovan, Thanh; Kavet, Robert

    2011-07-01

    For magnetic field exposures at extremely low frequencies, the electrostimulatory response with the lowest threshold is the magnetophosphene, a response that corresponds to an adult exposed to a 20 Hz magnetic field of nominally 8.14 mT. In the IEEE standard C95.6 (2002), the corresponding in situ field in the retinal locus of an adult-sized ellipsoidal was calculated to be 53 mV m-1. However, the associated dose in the retina and brain at a high level of resolution in anatomically correct human models is incompletely characterized. Furthermore, the dose maxima in tissue computed with voxel human models are prone to staircasing errors, particularly for the low-frequency dosimetry. In the analyses presented in this paper, analytical and quasi-static finite-difference time-domain (FDTD) solutions were first compared for a three-layer sphere exposed to a uniform 50 Hz magnetic field. Staircasing errors in the FDTD results were observed at the tissue interface, and were greatest at the skin-air boundary. The 99th percentile value was within 3% of the analytic maximum, depending on model resolution, and thus may be considered a close approximation of the analytic maximum. For the adult anatomical model, TARO, exposed to a uniform magnetic field, the differences in the 99th percentile value of in situ electric fields for 2 mm and 1 mm voxel models were at most several per cent. For various human models exposed at the magnetophosphene threshold at three orthogonal field orientations, the in situ electric field in the brain was between 10% and 70% greater than the analytical IEEE threshold of 53 mV m-1, and in the retina was lower by roughly 50% for two horizontal orientations (anterior-posterior and lateral), and greater by about 15% for a vertically oriented field. Considering a reduction factor or safety factors of several folds applied to electrostimulatory thresholds, the 99th percentile dose to a tissue calculated with voxel human models may be used as an estimate of

  17. Automated cortical projection of head-surface locations for transcranial functional brain mapping.

    PubMed

    Okamoto, Masako; Dan, Ippeita

    2005-05-15

    Recent advancements in two noninvasive transcranial neuroimaging techniques, near-infrared spectroscopy (NIRS) and transcranial magnetic stimulation (TMS), signify the increasing importance of establishing structural compatibility between transcranial methods and conventional tomographic methods, such as functional magnetic resonance imaging (fMRI) and positron emission tomography (PET). The transcranial data obtained from the head surface should be projected onto the cortical surface to present the transcranial brain-mapping data on the same platform as tomographic methods. Thus, we developed two transcranial projection algorithms that project given head-surface points onto the cortical surface in structural images, and computer programs based on them. The convex-hull algorithm features geometric handling of the cortical surface, while the balloon-inflation algorithm is faster, and better reflects the local cortical structure. The automatic cortical projection methods proved to be as effective as the manual projection method described in our previous study. These methods achieved perfect correspondence between any given point on the head surface or a related nearby point in space, and its cortical projection point. Moreover, we developed a neighbor-reference method that enables transcranial cortical projection of a given head-surface point in reference to three neighboring points and one additional standard point, even when no structural image of the subject is available. We also calculated an error factor associated with these probabilistic estimations. The current study presents a close topological link between transcranial and tomographic brain-mapping modalities, which could contribute to inter-modal data standardization. PMID:15862201

  18. Surface coil spectroscopic imaging: Time and spatial evolution of lactate production following fluid percussion brain injury

    SciTech Connect

    Cohen, Y.; Sanada, T.; Pitts, L.H.; Chang, L.H.; Nishimura, M.C.; Weinstein, P.R.; Litt, L.; James, T.L. )

    1991-01-01

    Detailed temporal and spatial distributions of lactate production are presented for graded fluid-percussion brain injury in the rat. A one-dimensional proton spin-echo spectroscopic imaging (1D SESI) technique, performed with a surface coil, is presented and evaluated. This technique, which represents a practical compromise, provides spatially localized proton nuclear magnetic resonance (NMR) brain spectra from a series of small voxels (less than 0.15 cm3) in less than 10 min, thus enabling both spatial and temporal monitoring of lactate production. These high-resolution lactate maps are correlated with hyperintense regions observed in T2-weighted images taken 10 h after impact, which, in turn, correlate with histology. The data demonstrate that, following severe trauma there is delayed production and propagation of lactate to regions of the brain that are remote from the trauma site. The extent of lactate production depends on the severity of impact. More significantly, the data show that following severe trauma, local lactate concentrations exceed 15 mumol/g, the concentration that has been claimed as the threshold for brain injury. Therefore high lactate levels cannot be ruled out a priori as a possible factor in brain injury following severe head trauma.

  19. The Drosophila surface glia transcriptome: evolutionary conserved blood-brain barrier processes

    PubMed Central

    DeSalvo, Michael K.; Hindle, Samantha J.; Rusan, Zeid M.; Orng, Souvinh; Eddison, Mark; Halliwill, Kyle; Bainton, Roland J.

    2014-01-01

    Central nervous system (CNS) function is dependent on the stringent regulation of metabolites, drugs, cells, and pathogens exposed to the CNS space. Cellular blood-brain barrier (BBB) structures are highly specific checkpoints governing entry and exit of all small molecules to and from the brain interstitial space, but the precise mechanisms that regulate the BBB are not well understood. In addition, the BBB has long been a challenging obstacle to the pharmacologic treatment of CNS diseases; thus model systems that can parse the functions of the BBB are highly desirable. In this study, we sought to define the transcriptome of the adult Drosophila melanogaster BBB by isolating the BBB surface glia with fluorescence activated cell sorting (FACS) and profiling their gene expression with microarrays. By comparing the transcriptome of these surface glia to that of all brain glia, brain neurons, and whole brains, we present a catalog of transcripts that are selectively enriched at the Drosophila BBB. We found that the fly surface glia show high expression of many ATP-binding cassette (ABC) and solute carrier (SLC) transporters, cell adhesion molecules, metabolic enzymes, signaling molecules, and components of xenobiotic metabolism pathways. Using gene sequence-based alignments, we compare the Drosophila and Murine BBB transcriptomes and discover many shared chemoprotective and small molecule control pathways, thus affirming the relevance of invertebrate models for studying evolutionary conserved BBB properties. The Drosophila BBB transcriptome is valuable to vertebrate and insect biologists alike as a resource for studying proteins underlying diffusion barrier development and maintenance, glial biology, and regulation of drug transport at tissue barriers. PMID:25426014

  20. The behaviour of water droplets on the silicone rubber surface in an electric field

    NASA Astrophysics Data System (ADS)

    Bretuj, W.; Pelesz, A.

    2016-02-01

    This paper describes the influence of a water droplet placed on flat samples of silicone rubber for enhancement the local electric field and generate electrical discharges. Studies have shown a significant influence of the droplet geometry on the electric strength of the samples. For non-symmetrical arrangement of the three droplets in the inter-electrode space electrohydrodynamic phenomena was observed: a stable change in the droplets shape placed near the electrodes and stretching and tearing down of the water droplets placed far from the electrodes. Captured photos and films of the water droplets behavior placed on the surface of the samples provided data to perform the simulation of the distribution of electric field and an estimate the value of the electric field, which was followed by the development of electric surface discharges.

  1. Contactless electrical characterization of surface and interface of SOI materials

    NASA Astrophysics Data System (ADS)

    Nakamura, S.; Watanabe, D.; En, A.; Suhara, M.; Okumura, T.

    2003-06-01

    Electronic properties of the surface as well as the interface of silicon-on-insulator (SOI) materials have been characterized by the Kelvin method combined with surface photovoltage (SPV) measurements. In order to separate the interface properties from the surface ones, we used the data for the bulk Si surface, which was treated in the same manner, i.e. dipping in a diluted HF solution, as for the SOI surface. From the temperature dependence of the SPV for the bulk Si, the values of the built-in potential, the surface state density and the surface recombination velocity were determined to be about 0.60 eV, 6×10 11 cm -2 and 6×10 3 cm/s, respectively, for the HF-treated Si surface. By taking these values into account, we analyzed the SPV data for separation by implanted oxygen (SIMOX) wafer. The values of the interface state density and the interface recombination velocity at the buried-oxide/SIMOX interface were estimated to be about 3×10 12 cm -2 and 3×10 4 cm/s, respectively.

  2. Electrical characterization of surface passivation in III-V nanowires

    NASA Astrophysics Data System (ADS)

    Holloway, Gregory; Lapierre, Ray; Baugh, Jonathan

    III-V nanowires are promising for implementing many useful technologies including optical sensing and quantum information processing. However, most native nanowires have a significant density of surface states, which cause electron accumulation at the surface and make the optoelectronic characteristics very sensitive to surface conditions and variable from device to device. To achieve optimum device performance it is imperative to decrease the density of these defects, since they are responsible for charge noise (e.g. random telegraph noise) and decreased carrier mobility. Here we report on experimental results from low temperature transport studies of a series of InAs nanowire field effect transistors, each fabricated with a different surface passivation technique. The different surface treatments include combinations of chemical passivation, growth of a thermal oxide, and deposition of a high-k dielectric to determine the optimum process for passivating the surface states. To better quantify the density of surface states, we also study the axial field magnetoconductance of short-channel nanowire transistors, and show how the results can be used to estimate the degree of surface band-bending.

  3. Connectomic and Surface-Based Morphometric Correlates of Acute Mild Traumatic Brain Injury

    PubMed Central

    Dall'Acqua, Patrizia; Johannes, Sönke; Mica, Ladislav; Simmen, Hans-Peter; Glaab, Richard; Fandino, Javier; Schwendinger, Markus; Meier, Christoph; Ulbrich, Erika J.; Müller, Andreas; Jäncke, Lutz; Hänggi, Jürgen

    2016-01-01

    Reduced integrity of white matter (WM) pathways and subtle anomalies in gray matter (GM) morphology have been hypothesized as mechanisms in mild traumatic brain injury (mTBI). However, findings on structural brain changes in early stages after mTBI are inconsistent and findings related to early symptoms severity are rare. Fifty-one patients were assessed with multimodal neuroimaging and clinical methods exclusively within 7 days following mTBI and compared to 53 controls. Whole-brain connectivity based on diffusion tensor imaging was subjected to network-based statistics, whereas cortical surface area, thickness, and volume based on T1-weighted MRI scans were investigated using surface-based morphometric analysis. Reduced connectivity strength within a subnetwork of 59 edges located predominantly in bilateral frontal lobes was significantly associated with higher levels of self-reported symptoms. In addition, cortical surface area decreases were associated with stronger complaints in five clusters located in bilateral frontal and postcentral cortices, and in the right inferior temporal region. Alterations in WM and GM were localized in similar brain regions and moderately-to-strongly related to each other. Furthermore, the reduction of cortical surface area in the frontal regions was correlated with poorer attentive-executive performance in the mTBI group. Finally, group differences were detected in both the WM and GM, especially when focusing on a subgroup of patients with greater complaints, indicating the importance of classifying mTBI patients according to severity of symptoms. This study provides evidence that mTBI affects not only the integrity of WM networks by means of axonal damage but also the morphology of the cortex during the initial post-injury period. These anomalies might be greater in the acute period than previously believed and the involvement of frontal brain regions was consistently pronounced in both findings. The dysconnected subnetwork

  4. Connectomic and Surface-Based Morphometric Correlates of Acute Mild Traumatic Brain Injury.

    PubMed

    Dall'Acqua, Patrizia; Johannes, Sönke; Mica, Ladislav; Simmen, Hans-Peter; Glaab, Richard; Fandino, Javier; Schwendinger, Markus; Meier, Christoph; Ulbrich, Erika J; Müller, Andreas; Jäncke, Lutz; Hänggi, Jürgen

    2016-01-01

    Reduced integrity of white matter (WM) pathways and subtle anomalies in gray matter (GM) morphology have been hypothesized as mechanisms in mild traumatic brain injury (mTBI). However, findings on structural brain changes in early stages after mTBI are inconsistent and findings related to early symptoms severity are rare. Fifty-one patients were assessed with multimodal neuroimaging and clinical methods exclusively within 7 days following mTBI and compared to 53 controls. Whole-brain connectivity based on diffusion tensor imaging was subjected to network-based statistics, whereas cortical surface area, thickness, and volume based on T1-weighted MRI scans were investigated using surface-based morphometric analysis. Reduced connectivity strength within a subnetwork of 59 edges located predominantly in bilateral frontal lobes was significantly associated with higher levels of self-reported symptoms. In addition, cortical surface area decreases were associated with stronger complaints in five clusters located in bilateral frontal and postcentral cortices, and in the right inferior temporal region. Alterations in WM and GM were localized in similar brain regions and moderately-to-strongly related to each other. Furthermore, the reduction of cortical surface area in the frontal regions was correlated with poorer attentive-executive performance in the mTBI group. Finally, group differences were detected in both the WM and GM, especially when focusing on a subgroup of patients with greater complaints, indicating the importance of classifying mTBI patients according to severity of symptoms. This study provides evidence that mTBI affects not only the integrity of WM networks by means of axonal damage but also the morphology of the cortex during the initial post-injury period. These anomalies might be greater in the acute period than previously believed and the involvement of frontal brain regions was consistently pronounced in both findings. The dysconnected subnetwork

  5. Electric-Field-Induced Nanoscale Surface Patterning in Mexylaminotriazine-Functionalized Molecular Glass Derivatives.

    PubMed

    Umezawa, Hirohito; Nunzi, Jean-Michel; Lebel, Olivier; Sabat, Ribal Georges

    2016-06-01

    Nanoscale surface patterns were observed in thin films of mexylaminotriazine-functionalized glasses containing polar groups upon the application of an electric field at temperatures over their glass transition temperatures (Tg). This phenomenon occurred due to the surface deformation process initiated by external electric field instabilities on the films. The minimal surface deformation temperature (Tdewet) relative to Tg was found to increase as a function of the polarity of the substituents and the surface pattern roughness was observed to increase linearly with temperature for a fixed electric field and exposure time. Reversal of the electrical field polarity and the use of both hydrophilic and hydrophobic substrates did not significantly change the surface deformation behavior of the films, which is due to the deposition of charges at the free interface. The application of a mask between the electric field electrodes allowed to selectively pattern areas that are exposed. Furthermore, it was observed that this surface deformation behavior was reversible, since heating the films to a temperature above Tg in the absence of an electric field caused the erasure of all surface patterns. PMID:27186805

  6. Measuring and comparing brain cortical surface area and other areal quantities

    PubMed Central

    Winkler, Anderson M.; Sabuncu, Mert R.; Yeo, B.T. Thomas; Fischl, Bruce; Greve, Douglas N.; Kochunov, Peter; Nichols, Thomas E.; Blangero, John; Glahn, David C.

    2012-01-01

    Structural analysis of MRI data on the cortical surface usually focuses on cortical thickness. Cortical surface area, when considered, has been measured only over gross regions or approached indirectly via comparisons with a standard brain. Here we demonstrate that direct measurement and comparison of the surface area of the cerebral cortex at a fine scale is possible using mass conservative interpolation methods. We present a framework for analyses of the cortical surface area, as well as for any other measurement distributed across the cortex that is areal by nature. The method consists of the construction of a mesh representation of the ortex, registration to a common coordinate system and, crucially, interpolation using a pycnophylactic method. Statistical analysis of surface area is done with power-transformed data to address lognormality, and inference is done with permutation methods. We introduce the concept of facewise analysis, discuss its interpretation and potential applications. PMID:22446492

  7. Functional Magnetic Resonance Imaging of Electrical and Optogenetic Deep Brain Stimulation at the Rat Nucleus Accumbens.

    PubMed

    Albaugh, Daniel L; Salzwedel, Andrew; Van Den Berge, Nathalie; Gao, Wei; Stuber, Garret D; Shih, Yen-Yu Ian

    2016-01-01

    Deep brain stimulation of the nucleus accumbens (NAc-DBS) is an emerging therapy for diverse, refractory neuropsychiatric diseases. Although DBS therapy is broadly hypothesized to work through large-scale neural modulation, little is known regarding the neural circuits and networks affected by NAc-DBS. Using a healthy, sedated rat model of NAc-DBS, we employed both evoked- and functional connectivity (fc) MRI to examine the functional circuit and network changes achieved by electrical NAc stimulation. Optogenetic-fMRI experiments were also undertaken to evaluate the circuit modulation profile achieved by selective stimulation of NAc neurons. NAc-DBS directly modulated neural activity within prefrontal cortex and a large number of subcortical limbic areas (e.g., amygdala, lateral hypothalamus), and influenced functional connectivity among sensorimotor, executive, and limbic networks. The pattern and extent of circuit modulation measured by evoked-fMRI was relatively insensitive to DBS frequency. Optogenetic stimulation of NAc cell bodies induced a positive fMRI signal in the NAc, but no other detectable downstream responses, indicating that therapeutic NAc-DBS might exert its effect through antidromic stimulation. Our study provides a comprehensive mapping of circuit and network-level neuromodulation by NAc-DBS, which should facilitate our developing understanding of its therapeutic mechanisms of action. PMID:27601003

  8. Functional Magnetic Resonance Imaging of Electrical and Optogenetic Deep Brain Stimulation at the Rat Nucleus Accumbens

    PubMed Central

    Albaugh, Daniel L.; Salzwedel, Andrew; Van Den Berge, Nathalie; Gao, Wei; Stuber, Garret D.; Shih, Yen-Yu Ian

    2016-01-01

    Deep brain stimulation of the nucleus accumbens (NAc-DBS) is an emerging therapy for diverse, refractory neuropsychiatric diseases. Although DBS therapy is broadly hypothesized to work through large-scale neural modulation, little is known regarding the neural circuits and networks affected by NAc-DBS. Using a healthy, sedated rat model of NAc-DBS, we employed both evoked- and functional connectivity (fc) MRI to examine the functional circuit and network changes achieved by electrical NAc stimulation. Optogenetic-fMRI experiments were also undertaken to evaluate the circuit modulation profile achieved by selective stimulation of NAc neurons. NAc-DBS directly modulated neural activity within prefrontal cortex and a large number of subcortical limbic areas (e.g., amygdala, lateral hypothalamus), and influenced functional connectivity among sensorimotor, executive, and limbic networks. The pattern and extent of circuit modulation measured by evoked-fMRI was relatively insensitive to DBS frequency. Optogenetic stimulation of NAc cell bodies induced a positive fMRI signal in the NAc, but no other detectable downstream responses, indicating that therapeutic NAc-DBS might exert its effect through antidromic stimulation. Our study provides a comprehensive mapping of circuit and network-level neuromodulation by NAc-DBS, which should facilitate our developing understanding of its therapeutic mechanisms of action. PMID:27601003

  9. Brain-controlled functional electrical stimulation for lower-limb motor recovery in stroke survivors.

    PubMed

    McCrimmon, Colin M; King, Christine E; Wang, Po T; Cramer, Steven C; Nenadic, Zoran; Do, An H

    2014-01-01

    Despite the prevalence of stroke-induced gait impairment due to foot drop, current rehabilitative practices to improve gait function are limited, and orthoses can be uncomfortable and do not provide long-lasting benefits. Therefore, novel modalities that may facilitate lasting neurological and functional improvements, such as brain-computer interfaces (BCIs), have been explored. In this article, we assess the feasibility of BCI-controlled functional electrical stimulation (FES) as a novel physiotherapy for post-stroke foot drop. Three chronic stroke survivors with foot drop received three, 1-hour sessions of therapy during 1 week. All subjects were able to purposefully operate the BCI-FES system in real time. Furthermore, the salient electroencephalographic (EEG) features used for classification by the data-driven methodology were determined to be physiologically relevant. Over the course of this short therapy, the subjects' dorsiflexion active range of motion (AROM) improved by 3°, 4°, and 8°, respectively. These results indicate that chronic stroke survivors can operate the BCI-FES system, and that BCI-FES intervention may promote functional improvements. PMID:25570191

  10. Rough surface electrical contact resistance considering scale dependent properties and quantum effects

    SciTech Connect

    Jackson, Robert L.; Crandall, Erika R.; Bozack, Michael J.

    2015-05-21

    The objective of this work is to evaluate the effect of scale dependent mechanical and electrical properties on electrical contact resistance (ECR) between rough surfaces. This work attempts to build on existing ECR models that neglect potentially important quantum- and size-dependent contact and electrical conduction mechanisms present due to the asperity sizes on typical surfaces. The electrical conductance at small scales can quantize or show a stepping trend as the contact area is varied in the range of the free electron Fermi wavelength squared. This work then evaluates if these effects remain important for the interface between rough surfaces, which may include many small scale contacts of varying sizes. The results suggest that these effects may be significant in some cases, while insignificant for others. It depends on the load and the multiscale structure of the surface roughness.

  11. An iterative immersed finite element method for an electric potential interface problem based on given surface electric quantity

    NASA Astrophysics Data System (ADS)

    Cao, Yong; Chu, Yuchuan; He, Xiaoming; Lin, Tao

    2015-01-01

    Interface problems involving the non-homogeneous flux jump condition are critical for engineering designs in the magnetostatic/electrostatic field. In applications, such as plasma simulation, we often only know the total electric quantity on the surface of the object, not the charge density distribution on the surface which appears as the non-homogeneous flux jump condition in the usual interface problems considered in the literature for the magnetostatic/electrostatic field. Based on structured meshes independent of the interface, this article proposes an iterative method that employs both the immersed finite element (IFE) method with non-homogeneous flux jump conditions and the regular finite element method with ghost nodes introduced in the object to solve the 2D interface problem for the potential field according to the given total electric quantity on the surface of the object. Numerical experiments are provided to illustrate the accuracy and efficiency of the proposed method.

  12. Graphene transverse electric surface plasmon detection using nonreciprocity modal discrimination

    NASA Astrophysics Data System (ADS)

    Chamanara, Nima; Caloz, Christophe

    2016-08-01

    We present a magnetically biased graphene-ferrite structure discriminating the transverse electric (TE) and transverse magnetic (TM) plasmonic modes of graphene. In this structure, the graphene TM plasmons interact reciprocally with the structure. In contrast, the graphene TE plasmons exhibit nonreciprocity. This nonreciprocity is manifested in unidirectional TE propagation in a frequency band close to the interband threshold frequency. The proposed structure provides a unique platform for the experimental demonstration of the unusual existence of the TE plasmonic mode in graphene.

  13. Mapping drug distribution in brain tissue using liquid extraction surface analysis mass spectrometry imaging.

    PubMed

    Swales, John G; Tucker, James W; Spreadborough, Michael J; Iverson, Suzanne L; Clench, Malcolm R; Webborn, Peter J H; Goodwin, Richard J A

    2015-10-01

    Liquid extraction surface analysis mass spectrometry (LESA-MS) is a surface sampling technique that incorporates liquid extraction from the surface of tissue sections with nanoelectrospray mass spectrometry. Traditional tissue analysis techniques usually require homogenization of the sample prior to analysis via high-performance liquid chromatography mass spectrometry (HPLC-MS), but an intrinsic weakness of this is a loss of all spatial information and the inability of the technique to distinguish between actual tissue penetration and response caused by residual blood contamination. LESA-MS, in contrast, has the ability to spatially resolve drug distributions and has historically been used to profile discrete spots on the surface of tissue sections. Here, we use the technique as a mass spectrometry imaging (MSI) tool, extracting points at 1 mm spatial resolution across tissue sections to build an image of xenobiotic and endogenous compound distribution to assess drug blood-brain barrier penetration into brain tissue. A selection of penetrant and "nonpenetrant" drugs were dosed to rats via oral and intravenous administration. Whole brains were snap-frozen at necropsy and were subsequently sectioned prior to analysis by matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) and LESA-MSI. MALDI-MSI, as expected, was shown to effectively map the distribution of brain penetrative compounds but lacked sufficient sensitivity when compounds were marginally penetrative. LESA-MSI was used to effectively map the distribution of these poorly penetrative compounds, highlighting its value as a complementary technique to MALDI-MSI. The technique also showed benefits when compared to traditional homogenization, particularly for drugs that were considered nonpenetrant by homogenization but were shown to have a measurable penetration using LESA-MSI. PMID:26350423

  14. Nanoantenna for Electrical Generation of Surface Plasmon Polaritons.

    PubMed

    Bigourdan, Florian; Hugonin, Jean-Paul; Marquier, Francois; Sauvan, Christophe; Greffet, Jean-Jacques

    2016-03-11

    Light emission by inelastic tunneling has been known for many years. Recently, this technique has been used to generate surface plasmons using a scanning tunneling microscope tip. The emission process suffers from a very low efficiency lower than a photon in 10^{4} electrons. We introduce a resonant plasmonic nanoantenna that allows both enhancing the power conversion to surface plasmon polaritons by more than 2 orders of magnitude and narrowing the emission spectrum. The physics of the emission process is analyzed in terms of local density of states and the efficiency of the nanoantenna to radiate surface plasmon polaritons. PMID:27015503

  15. Global surface temperatures and the atmospheric electrical circuit

    NASA Technical Reports Server (NTRS)

    Price, Colin

    1993-01-01

    To monitor future global temperature trends, it would be extremely useful if parameters nonlinearly related to surface temperature could be found, thereby amplifying any warming signal that may exist. Evidence that global thunderstorm activity is nonlinearly related to diurnal, seasonal and interannual temperature variations is presented. Since global thunderstorm activity is also well correlated with the earth's ionospheric potential, it appears that variations of ionospheric potential, that can be measured at a single location, may be able to supply valuable information regarding global surface temperature fluctuations. The observations presented enable a prediction that a 1 percent increase in global surface temperatures may result in a 20 percent increase in ionospheric potential.

  16. Investigation of surface charge density on solid-liquid interfaces by modulating the electrical double layer.

    PubMed

    Moon, Jong Kyun; Song, Myung Won; Pak, Hyuk Kyu

    2015-05-20

    A solid surface in contact with water or aqueous solution usually carries specific electric charges. These surface charges attract counter ions from the liquid side. Since the geometry of opposite charge distribution parallel to the solid-liquid interface is similar to that of a capacitor, it is called an electrical double layer capacitor (EDLC). Therefore, there is an electrical potential difference across an EDLC in equilibrium. When a liquid bridge is formed between two conducting plates, the system behaves as two serially connected EDLCs. In this work, we propose a new method for investigating the surface charge density on solid-liquid interfaces. By mechanically modulating the electrical double layers and simultaneously applying a dc bias voltage across the plates, an ac electric current can be generated. By measuring the voltage drop across a load resistor as a function of bias voltage, we can study the surface charge density on solid-liquid interfaces. Our experimental results agree very well with the simple equivalent electrical circuit model proposed here. Furthermore, using this method, one can determine the polarity of the adsorbed state on the solid surface depending on the material used. We expect this method to aid in the study of electrical phenomena on solid-liquid interfaces. PMID:25923410

  17. From stereogram to surface: how the brain sees the world in depth.

    PubMed

    Fang, Liang; Grossberg, Stephen

    2009-01-01

    When we look at a scene, how do we consciously see surfaces infused with lightness and color at the correct depths? Random-Dot Stereograms (RDS) probe how binocular disparity between the two eyes can generate such conscious surface percepts. Dense RDS do so despite the fact that they include multiple false binocular matches. Sparse stereograms do so even across large contrast-free regions with no binocular matches. Stereograms that define occluding and occluded surfaces lead to surface percepts wherein partially occluded textured surfaces are completed behind occluding textured surfaces at a spatial scale much larger than that of the texture elements themselves. Earlier models suggest how the brain detects binocular disparity, but not how RDS generate conscious percepts of 3D surfaces. This article proposes a neural network model that predicts how the layered circuits of visual cortex generate these 3D surface percepts using interactions between visual boundary and surface representations that obey complementary computational rules. The model clarifies how interactions between layers 4, 3B and 2/3A in V1 and V2 contribute to stereopsis, and proposes how 3D perceptual grouping laws in V2 interact with 3D surface filling-in operations in V1, V2 and V4 to generate 3D surface percepts in which figures are separated from their backgrounds. The model explanations of 3D surface percepts raised by various RDS are demonstrated by computer simulations. The model hereby unifies the explanation of data about stereopsis and data about 3D figure-ground separation and completion of partially occluded object surfaces. It shows how these model mechanisms convert the complementary rules for boundary and surface formation into consistent visual percepts of 3D surfaces. PMID:19055887

  18. An ISO-surface folding analysis method applied to premature neonatal brain development

    NASA Astrophysics Data System (ADS)

    Rodriguez-Carranza, Claudia E.; Rousseau, Francois; Iordanova, Bistra; Glenn, Orit; Vigneron, Daniel; Barkovich, James; Studholme, Colin

    2006-03-01

    In this paper we describe the application of folding measures to tracking in vivo cortical brain development in premature neonatal brain anatomy. The outer gray matter and the gray-white matter interface surfaces were extracted from semi-interactively segmented high-resolution T1 MRI data. Nine curvature- and geometric descriptor-based folding measures were applied to six premature infants, aged 28-37 weeks, using a direct voxelwise iso-surface representation. We have shown that using such an approach it is feasible to extract meaningful surfaces of adequate quality from typical clinically acquired neonatal MRI data. We have shown that most of the folding measures, including a new proposed measure, are sensitive to changes in age and therefore applicable in developing a model that tracks development in premature infants. For the first time gyrification measures have been computed on the gray-white matter interface and on cases whose age is representative of a period of intense brain development.

  19. Analyzing the tradeoff between electrical complexity and accuracy in patient-specific computational models of deep brain stimulation

    NASA Astrophysics Data System (ADS)

    Howell, Bryan; McIntyre, Cameron C.

    2016-06-01

    Objective. Deep brain stimulation (DBS) is an adjunctive therapy that is effective in treating movement disorders and shows promise for treating psychiatric disorders. Computational models of DBS have begun to be utilized as tools to optimize the therapy. Despite advancements in the anatomical accuracy of these models, there is still uncertainty as to what level of electrical complexity is adequate for modeling the electric field in the brain and the subsequent neural response to the stimulation. Approach. We used magnetic resonance images to create an image-based computational model of subthalamic DBS. The complexity of the volume conductor model was increased by incrementally including heterogeneity, anisotropy, and dielectric dispersion in the electrical properties of the brain. We quantified changes in the load of the electrode, the electric potential distribution, and stimulation thresholds of descending corticofugal (DCF) axon models. Main results. Incorporation of heterogeneity altered the electric potentials and subsequent stimulation thresholds, but to a lesser degree than incorporation of anisotropy. Additionally, the results were sensitive to the choice of method for defining anisotropy, with stimulation thresholds of DCF axons changing by as much as 190%. Typical approaches for defining anisotropy underestimate the expected load of the stimulation electrode, which led to underestimation of the extent of stimulation. More accurate predictions of the electrode load were achieved with alternative approaches for defining anisotropy. The effects of dielectric dispersion were small compared to the effects of heterogeneity and anisotropy. Significance. The results of this study help delineate the level of detail that is required to accurately model electric fields generated by DBS electrodes.

  20. Non-contact monitoring of electrical characteristics of silicon surface and near-surface region

    NASA Astrophysics Data System (ADS)

    Roman, P.; Brubaker, M.; Staffa, J.; Kamieniecki, E.; Ruzyllo, J.

    1998-11-01

    The SPV-based method of Surface Charge Profiling (SCP) is discussed, and its applications in silicon surface monitoring in IC manufacturing are reviewed. The SCP method shows high sensitivity to changes in the condition of the Si surface (e.g. surface cleaning operations) and a very thin near-surface region (e.g. variations of active dopant concentration near the surface).

  1. Brain development during adolescence: A mixed-longitudinal investigation of cortical thickness, surface area, and volume.

    PubMed

    Vijayakumar, Nandita; Allen, Nicholas B; Youssef, George; Dennison, Meg; Yücel, Murat; Simmons, Julian G; Whittle, Sarah

    2016-06-01

    What we know about cortical development during adolescence largely stems from analyses of cross-sectional or cohort-sequential samples, with few studies investigating brain development using a longitudinal design. Further, cortical volume is a product of two evolutionarily and genetically distinct features of the cortex - thickness and surface area, and few studies have investigated development of these three characteristics within the same sample. The current study examined maturation of cortical thickness, surface area and volume during adolescence, as well as sex differences in development, using a mixed longitudinal design. 192 MRI scans were obtained from 90 healthy (i.e., free from lifetime psychopathology) adolescents (11-20 years) at three time points (with different MRI scanners used at time 1 compared to 2 and 3). Developmental trajectories were estimated using linear mixed models. Non-linear increases were present across most of the cortex for surface area. In comparison, thickness and volume were both characterised by a combination of non-linear decreasing and increasing trajectories. While sex differences in volume and surface area were observed across time, no differences in thickness were identified. Furthermore, few regions exhibited sex differences in the cortical development. Our findings clearly illustrate that volume is a product of surface area and thickness, with each exhibiting differential patterns of development during adolescence, particularly in regions known to contribute to the development of social-cognition and behavioral regulation. These findings suggest that thickness and surface area may be driven by different underlying mechanisms, with each measure potentially providing independent information about brain development. Hum Brain Mapp 37:2027-2038, 2016. © 2016 Wiley Periodicals, Inc. PMID:26946457

  2. Activity-dependent plasticity of electrical synapses: increasing evidence for its presence and functional roles in the mammalian brain.

    PubMed

    Haas, Julie S; Greenwald, Corey M; Pereda, Alberto E

    2016-01-01

    Gap junctions mediate electrical synaptic transmission between neurons. While the actions of neurotransmitter modulators on the conductance of gap junctions have been extensively documented, increasing evidence indicates they can also be influenced by the ongoing activity of neural networks, in most cases via local interactions with nearby glutamatergic synapses. We review here early evidence for the existence of activity-dependent regulatory mechanisms as well recent examples reported in mammalian brain. The ubiquitous distribution of both neuronal connexins and the molecules involved suggest this phenomenon is widespread and represents a property of electrical transmission in general. PMID:27230776

  3. Surface displacement based shape analysis of central brain structures in preterm-born children

    NASA Astrophysics Data System (ADS)

    Garg, Amanmeet; Grunau, Ruth E.; Popuri, Karteek; Miller, Steven; Bjornson, Bruce; Poskitt, Kenneth J.; Beg, Mirza Faisal

    2016-03-01

    Many studies using T1 magnetic resonance imaging (MRI) data have found associations between changes in global metrics (e.g. volume) of brain structures and preterm birth. In this work, we use the surface displacement feature extracted from the deformations of the surface models of the third ventricle, fourth ventricle and brainstem to capture the variation in shape in these structures at 8 years of age that may be due to differences in the trajectory of brain development as a result of very preterm birth (24-32 weeks gestation). Understanding the spatial patterns of shape alterations in these structures in children who were born very preterm as compared to those who were born at full term may lead to better insights into mechanisms of differing brain development between these two groups. The T1 MRI data for the brain was acquired from children born full term (FT, n=14, 8 males) and preterm (PT, n=51, 22 males) at age 8-years. Accurate segmentation labels for these structures were obtained via a multi-template fusion based segmentation method. A high dimensional non-rigid registration algorithm was utilized to register the target segmentation labels to a set of segmentation labels defined on an average-template. The surface displacement data for the brainstem and the third ventricle were found to be significantly different (p < 0.05) between the PT and FT groups. Further, spatially localized clusters with inward and outward deformation were found to be associated with lower gestational age. The results from this study present a shape analysis method for pediatric MRI data and reveal shape changes that may be due to preterm birth.

  4. An Analog of electrically induced transparency via surface delocalized modes

    NASA Astrophysics Data System (ADS)

    Xiao, Xiao; Zhou, Bingpu; Wang, Xinke; He, Jingwen; Hou, Bo; Zhang, Yan; Wen, Weijia

    2015-07-01

    We demonstrate theoretically and experimentally an interesting opaque state, which is based on an analog of electromagnetically induced transparency (EIT) in mechanism, in a metal hole array of the dimer lattice. By introducing a small difference to the dimer holes of each unit cell, the surface delocalized modes launching out from the dimer holes can have destructive interferences. Consequently, a narrow opaque window in the transparent background can be observed in the transmission spectrum. This surface-mode-induced opacity (SMIO) state is very sensitive to the difference of the dimer holes, which will promise various applications.

  5. Exposure to static electric fields leads to changes in biogenic amine levels in the brains of Drosophila

    PubMed Central

    Newland, Philip L.; Al Ghamdi, Mesfer S.; Sharkh, Suleiman; Aonuma, Hitoshi; Jackson, Christopher W.

    2015-01-01

    Natural and anthropogenic static electric fields are commonly found in the environment and can have both beneficial and harmful effects on many animals. Here, we asked how the fruitfly responds to these fields and what the consequences of exposure are on the levels of biogenic amines in the brain. When given a choice in a Y-tube bioassay Drosophila avoided electric fields, and the greater the field strength the more likely Drosophila were to avoid it. By comparing wild-type flies, flies with wings surgically removed and vestigial winged flies we found that the presence of intact wings was necessary to produce avoidance behaviour. We also show that Coulomb forces produced by electric fields physically lift excised wings, with the smaller wings of males being raised by lower field strengths than larger female wings. An analysis of neurochemical changes in the brains showed that a suite of changes in biogenic amine levels occurs following chronic exposure. Taken together we conclude that physical movements of the wings are used by Drosophila in generating avoidance behaviour and are accompanied by changes in the levels of amines in the brain, which in turn impact on behaviour. PMID:26224706

  6. Surface area generation and droplet size control in solvent extraction systems utilizing high intensity electric fields

    DOEpatents

    Scott, Timothy C.; Wham, Robert M.

    1988-01-01

    A method and system for solvent extraction where droplets are shattered by a high intensity electric field. These shattered droplets form a plurality of smaller droplets which have a greater combined surface area than the original droplet. Dispersion, coalescence and phase separation are accomplished in one vessel through the use of the single pulsing high intensity electric field. Electric field conditions are chosen so that simultaneous dispersion and coalescence are taking place in the emulsion formed in the electric field. The electric field creates a large amount of interfacial surface area for solvent extraction when the droplet is disintegrated and is capable of controlling droplet size and thus droplet stability. These operations take place in the presence of a counter current flow of the continuous phase.

  7. NeuroGrid: recording action potentials from the surface of the brain

    PubMed Central

    Khodagholy, Dion; Gelinas, Jennifer N.; Thesen, Thomas; Doyle, Werner; Devinsky, Orrin; Malliaras, George G.; Buzsáki, György

    2014-01-01

    Recording from neural networks at the resolution of action potentials is critical for understanding how information is processed in the brain. Here, we address this challenge by developing an organic material-based, ultra-conformable, biocompatible and scalable neural interface array (the ‘NeuroGrid’) that can record both LFP and action potentials from superficial cortical neurons without penetrating the brain surface. Spikes with features of interneurons and pyramidal cells were simultaneously acquired by multiple neighboring electrodes of the NeuroGrid, allowing for isolation of putative single neurons in rats. Spiking activity demonstrated consistent phase modulation by ongoing brain oscillations and was stable in recordings exceeding one week. We also recorded LFP-modulated spiking activity intra-operatively in patients undergoing epilepsy surgery. The NeuroGrid constitutes an effective method for large-scale, stable recording of neuronal spikes in concert with local population synaptic activity, enhancing comprehension of neural processes across spatiotemporal scales and potentially facilitating diagnosis and therapy for brain disorders. PMID:25531570

  8. Surface modified PLGA nanoparticles for brain targeting of Bacoside-A.

    PubMed

    Jose, S; Sowmya, S; Cinu, T A; Aleykutty, N A; Thomas, S; Souto, E B

    2014-10-15

    The present paper focuses on the development and in vitro/in vivo characterization of nanoparticles composed of poly-(D,L)-Lactide-co-Glycolide (PLGA) loading Bacoside-A, as a new approach for the brain delivery of the neuroprotective drug for the treatment of neurodegenerative disorders (e.g. Alzheimer Disease). Bacoside-A-loaded PLGA nanoparticles were prepared via o/w emulsion solvent evaporation technique. Surface of the nanoparticles were modified by coating with polysorbate 80 to facilitate the crossing of the blood brain barrier (BBB), and the processing parameters (i.e. sonication time, the concentration of polymer (PLGA) and surfactant (polysorbate 80), and drug-polymer ratio) were optimized with the aim to achieve a high production yield. Brain targeting potential of the nanoparticles was evaluated by in vivo studies using Wistar albino rats. The nanoparticles produced by optimal formulation were within the nanosized range (70-200 nm) with relatively low polydispersity index (0.391 ± 1.2). The encapsulation efficiency of Bacoside-A in PLGA nanoparticles was 57.11 ± 7.11%, with a drug loading capacity of 20.5 ± 1.98%. SEM images showed the spherical shape of the PLGA nanoparticles, whereas their low crystallinity was demonstrated by X-ray studies, which also confirmed no chemical interactions between the drug and polymer molecules. The in vitro release of Bacoside-A from the PLGA nanoparticles followed a sustained release pattern with a maximum release of up to 83.04 ± 2.55% in 48 h. When compared to pure drug solution (2.56 ± 1.23 μg/g tissue), in vivo study demonstrated higher brain concentration of Bacoside-A (23.94 ± 1.74 μg/g tissue) suggesting a significant role of surface coated nanoparticles on brain targeting. The results indicate the potential of surface modified PLGA nanoparticles for the delivery of Bacoside-A to the brain. PMID:25010261

  9. Electrical excitation of waveguided surface plasmons by a light-emitting tunneling optical gap antenna.

    PubMed

    Cazier, N; Buret, M; Uskov, A V; Markey, L; Arocas, J; Colas Des Francs, G; Bouhelier, A

    2016-02-22

    We introduce a new type of electroplasmonic interfacing component to electrically generate surface plasmons. Specifically, an electron-fed optical tunneling gap antenna is integrated on a plasmonic waveguiding platform. When electrical charges are injected in the tunneling barrier of the gap antenna, a broad-band radiation is emitted from the feed area by a process identified as a thermal emission of hot electrons. Part of the emitted photons couples to surface plasmon modes sustained by the waveguide geometry. The transducing optical antenna is thus acting as a localized electrical source of surface plasmon polaritons. The integration of electrically-activated optical antennas into a plasmonic architecture mitigates the need for complex coupling scheme and proposes a solution for realizing nanoscale units at the interface between nano-electronics and photonics. PMID:26907040

  10. Surface electrical conductivity of single crystal spinel in cesium vapor. Final report

    SciTech Connect

    Agnew, P.; Ing, J.L.

    1995-04-02

    The operation of a thermionic fuel element (TFE) requires the maintenance of good electrical resistance between the anode and cathode, and between the electrodes and the TFE body. A program of research was established as part of the TOPAZ International Program (TIP) with the purpose of investigating the degradation of TFE electrical insulators. The major emphasis of this research has been on the interactions of oxide ceramics with cesium (Cs) vapor, and the resurfacing decrease of surface resistivity. Previous work has studied the surface electrical conductivity of sapphire exposed to Cs. In this report the authors describe the results of an experimental investigation of the surface electrical conductivity of single crystal magnesium aluminate spinel at temperatures ranging from 573K to 923K, in the presence of cesium vapor at pressures up to 1 Torr. The interest in spinel has arisen in view of its apparent resistance to radiation damage.

  11. Effect of Anti-Sticking Nanostructured Surface Coating on Minimally Invasive Electrosurgical Device in Brain.

    PubMed

    Cheng, Han-Yi; Ou, Keng-Liang; Chiang, Hsi-Jen; Lin, Li-Hsiang

    2015-10-01

    The purpose of the present study was to examine the extent of thermal injury in the brain after the use of a minimally invasive electrosurgical device with a nanostructured copper-doped diamond-like carbon (DLC-Cu) surface coating. To effectively utilize an electrosurgical device in clinical surgery, it is important to decrease the thermal injury to the adjacent tissues. The surface characteristics and morphology of DLC-Cu thin film was evaluated using a contact angle goniometer, scanning electron microscopy, and atomic force microscopy. Three-dimensional biomedical brain models were reconstructed using magnetic resonance images to simulate the electrosurgical procedure. Results indicated that the temperature was reduced significantly when a minimally invasive electrosurgical device with a DLC-Cu thin film coating (DLC-Cu-SS) was used. Temperatures decreased with the use of devices with increasing film thickness. Thermographic data revealed that surgical temperatures in an animal model were significantly lower with the DLC-Cu-SS electrosurgical device compared to an untreated device. Furthermore, the DLC-Cu-SS device created a relatively small region of injury and lateral thermal range. As described above, the biomedical nanostructured film reduced excessive thermal injury with the use of a minimally invasive electrosurgical device in the brain. PMID:25851468

  12. Detection of small bleeds in the brain with electrical impedance tomography.

    PubMed

    Boverman, Gregory; Kao, Tzu-Jen; Wang, Xin; Ashe, Jeffrey M; Davenport, David M; Amm, Bruce C

    2016-06-01

    In this paper, we describe and assess feasibility of instrumentation and algorithms for detecting bleeding due to hemorrhagic strokes and traumatic brain injury using electrical impedance tomography, a novel biomedical diagnostic modality in which the body is probed noninvasively with generally imperceptible alternating currents applied in patterns to a set of electrodes placed in contact with the skin. We focus on the GENESIS instrument developed by GE Global Research and on the achievability of our goal to detect a bleed in the center of the head with a volume of several ml. Our main topic is compensation for the large changes in voltages that tend to occur when the electrodes are in contact with biological media, specifically either human subjects or with vegetable matter proxies which seem to exhibit the same 'drift' phenomenon. We show that these changes in voltages can be modeled by assuming that each electrode is attached to the body via a discrete complex impedance whose value is time-varying and describe how this discrete component value can be estimated and largely compensated-for. We compare this discrete model with changes in contact impedances estimated using the complete electrode model showing that the two models are roughly comparable in their ability to explain the data from a single human subject experiment with electrodes attached to the head. In a simulation study, we demonstrate that it is possible to detect a small bleed in the center of the head even in the case of large changes in electrode impedances, which can be treated as nuisance parameters. PMID:27203851

  13. 30 CFR 57.4130 - Surface electric substations and liquid storage facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Surface electric substations and liquid storage... substations and liquid storage facilities. The requirements of this standard apply to surface areas only. (a... liquid storage tanks. (3) Any group of containers used for storage of more than 60 gallons of...

  14. 30 CFR 57.4130 - Surface electric substations and liquid storage facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Surface electric substations and liquid storage... substations and liquid storage facilities. The requirements of this standard apply to surface areas only. (a... liquid storage tanks. (3) Any group of containers used for storage of more than 60 gallons of...

  15. 30 CFR 57.4130 - Surface electric substations and liquid storage facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Surface electric substations and liquid storage... substations and liquid storage facilities. The requirements of this standard apply to surface areas only. (a... liquid storage tanks. (3) Any group of containers used for storage of more than 60 gallons of...

  16. 30 CFR 57.4130 - Surface electric substations and liquid storage facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Surface electric substations and liquid storage... substations and liquid storage facilities. The requirements of this standard apply to surface areas only. (a... liquid storage tanks. (3) Any group of containers used for storage of more than 60 gallons of...

  17. 30 CFR 57.4130 - Surface electric substations and liquid storage facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Surface electric substations and liquid storage... substations and liquid storage facilities. The requirements of this standard apply to surface areas only. (a... liquid storage tanks. (3) Any group of containers used for storage of more than 60 gallons of...

  18. Carboplatin loaded Surface modified PLGA nanoparticles: Optimization, characterization, and in vivo brain targeting studies.

    PubMed

    Jose, S; Juna, B C; Cinu, T A; Jyoti, H; Aleykutty, N A

    2016-06-01

    The carboplatin (CP) loaded poly-lactide-co-glycolide (PLGA) nanoparticles (NPs) were formulated by modified solvent evaporation method. Its surface modification is done by 1% polysorbate80 (P80) to improve their entry into the brain after intraperitoneal administration (i.p) via receptor-mediated pathways. A formulation with maximum entrapment efficiency and minimal particle size was optimized by central composite design (CCD) based on mean particle size, and entrapment efficiencies as responses. The optimized formulation was characterized by mean particle size, entrapment efficiency, zeta potential, Fourier transform infrared (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) analysis. The surface modified NPs were analysed for mean particle, zeta potential, FTIR, and in vitro release studies. The spherical particles with mean particle size 161.9nm, 162.4nm and zeta potential value of -26.5, -23.9 were obtained for unmodified and surface modified NPs respectively. The in vitro release experiments of the surface modified PLGA NPs exhibited sustained release for more than 48h, which was in accordance with Higuchi's equation with Fickian diffusion-based release mechanism. The in vivo bio distribution of P80 coated CP loaded PLGA NPs was compared with CP solution, and CP loaded NPs, in adult wistar rats. In the brain, compared with CP solution, both types of NPs especially NPs coated with P80 increased the concentration of carboplatin by 3.27 fold. All these results suggest that the developed formulation may improve the targeted therapy for malignant brain tumors in future. PMID:26970818

  19. Differentiation of healthy brain tissue and tumors using surface-enhanced Raman scattering.

    PubMed

    Aydin, Omer; Altaş, Murat; Kahraman, Mehmet; Bayrak, Omer Faruk; Culha, Mustafa

    2009-10-01

    Surface-enhanced Raman scattering (SERS) is a powerful technique for characterization of biological samples. SERS spectra from healthy brain tissue and tumors are obtained by sudden freezing of tissue in liquid nitrogen and crashing and mixing it with a concentrated silver colloidal suspension. The acquired spectra from tissues show significant spectral differences that can be used to identify whether it is from a healthy region or tumor. The most significant change on SERS spectra from the healthy/peripheral brain tissue to tumor is the increase of the ratio of the peaks at around 723 to 655 cm(-1). In addition, the spectral changes indicate that the protein content in tumors increases compared to the peripheral/healthy tissue as observed with tumor invasion. The preliminary results show that SERS spectra can be used for a quick diagnosis due to the simplicity of the sample preparation and the speed of the spectral acquisition. PMID:19843358

  20. Nanoparticle technology for treatment of Parkinson's disease: the role of surface phenomena in reaching the brain.

    PubMed

    Leyva-Gómez, Gerardo; Cortés, Hernán; Magaña, Jonathan J; Leyva-García, Norberto; Quintanar-Guerrero, David; Florán, Benjamín

    2015-07-01

    The absence of a definitive treatment for Parkinson's disease has driven the emerging investigation in the search for novel therapeutic alternatives. At present, the formulation of different drugs on nanoparticles has represented several advantages over conventional treatments. This type of multifunctional carrier, owing to its size and composition, has different interactions in biological systems that can lead to a decrease in ability to cross the blood-brain barrier. Therefore, this review focuses on the latest advances in obtaining nanoparticles for Parkinson's disease and provides an overview of technical aspects in the design of brain drug delivery of nanoparticles and an analysis of surface phenomena, a key aspect in the development of functional nanoparticles for Parkinson's disease. PMID:25701281

  1. Electrical properties of polyimides containing a near-surface deposit of silver

    NASA Technical Reports Server (NTRS)

    Rancourt, J. D.; Porta, G. M.; Taylor, L. T.

    1987-01-01

    Films containing a surface or near-surface deposit of palladium, gold or copper metal as well as tin, cobalt, copper, or lithium oxides have been prepared by dissolving appropriate metal salts into poly(amide-acid)/N,N-dimethylacetamide solutions and curing the solvent cast films to temperatures up to 300 C. This preparation technique has been extended to evaluate the thermal, spectroscopic, and electrical characteristics of condensation polyimide films modified with silver nitrate. A near-surface deposit of metallic silver results but the reflective surface has high electrical resistivity (sheet resistivity) due to a polymer coating or overlayer above the metal. Details pertaining to the silver nitrate modified condensation polyimides are presented. Also, the applicability of the structural model and electrical model previously proposed for the cobalt oxide system are assessed.

  2. Imaging electric fields in the vicinity of cryogenic surfaces using Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Thiele, T.; Deiglmayr, J.; Stammeier, M.; Agner, J.-A.; Schmutz, H.; Merkt, F.; Wallraff, A.

    2015-12-01

    The ability to characterize static and time-dependent electric fields in situ is an important prerequisite for quantum-optics experiments with atoms close to surfaces. Especially in experiments which aim at coupling Rydberg atoms to the near field of superconducting circuits, the identification and subsequent elimination of sources of stray fields are crucial. We present a technique that allows the determination of stray-electric-field distributions [Fxstr(r ⃗) ,Fystr(r ⃗) ,Fzstr(r ⃗) ] at distances of less than 2 mm from (cryogenic) surfaces using coherent Rydberg-Stark spectroscopy in a pulsed supersonic beam of metastable 1 s12 s11S0 helium atoms. We demonstrate the capabilities of this technique by characterizing the electric stray field emanating from a structured superconducting surface. Exploiting coherent population transfer with microwave radiation from a coplanar waveguide, the same technique allows the characterization of the microwave-field distribution above the surface.

  3. Electrical resistivity imaging study of near-surface infiltration

    NASA Astrophysics Data System (ADS)

    Lampousis, Angelos

    High resolution electrical resistivity images (ERI method) were obtained during vadose zone infiltration experiments on agricultural soils in cooperation with Cornell University's Agricultural Stewardship Program, Cooperative Extension of Suffolk County, Extension Education Center, Riverhead, New York [ as well as Cornell University's Long Island Horticultural Research & Extension Center (LIHREC) in Riverhead, New York]. One natural soil was also studied. Infiltration was monitored by means of image analysis of two-dimensional array resistivity generated by a Syscal Kid Switch resistivity system (Griffiths et al., 1990). The data was inverted with the computer program RES2DINV (Loke, 2004). The agricultural soils considered were Riverhead sandy loam (RdA), Haven loam (HaA), and Bridgehampton silt loam (BgA). The natural site was located in the Catskill Mountains of New York State. The soils there are classified as Schoharie silty clay loam. The electrical images of the three sites were compared against established soil properties, including particle size distribution, available water capacity, and soluble salts (from the literature), as well as against site-specific soil samples and penetrometer data, which were collected along with the geophysical measurements. This research evaluates the potential of acquiring high resolution, non-destructive measurements of infiltration in the uppermost 1.5 meter of the vadose zone. The results demonstrate that resistivity differences can detect infiltration in soils typical of the north-eastern United States. Temporal and spatial variations of soil water content in the upper 1.5 meters (relevant to agriculture) of the subsurface can be monitored successfully and non-destructively with ERI. The sensitivity of the method is higher in subsurface environments that demonstrate high overall apparent resistivity values (e.g. high sand content). Under conditions of increased soil heterogeneity, instead of the formation of a continuous

  4. Detergency of stainless steel surface soiled with human brain homogenate: an XPS study

    NASA Astrophysics Data System (ADS)

    Richard, M.; Le Mogne, Th.; Perret-Liaudet, A.; Rauwel, G.; Criquelion, J.; De Barros, M. I.; Cêtre, J. C.; Martin, J. M.

    2005-02-01

    In the detergency field of re-usable medical devices, a special attention is focused on the non conventional transmissible agent called prions which is a proteinaceous infectious agent. Few cleaning procedures are effective against prions and few techniques are available to study cleaning effectiveness with respect to proteins in general. In our study, X-ray photoelectron spectroscopy (XPS) has been used to evaluate the effectiveness of detergent formulations to remove proteins from stainless steel surface soiled with a brain homogenate (BH) from human origin. Our results showed that XPS is a reliable surface analysis technique to study chemical species remaining on surface and substrate properties after cleaning procedures. A semi-quantitative evaluation of the detergency effectiveness could also be performed.

  5. Electrostatic-elastoplastic simulations of copper surface under high electric fields

    NASA Astrophysics Data System (ADS)

    Zadin, V.; Pohjonen, A.; Aabloo, A.; Nordlund, K.; Djurabekova, F.

    2014-10-01

    Maximizing the performance of modern linear accelerators working with high gradient electromagnetic fields depends to a large extent on ability to control breakdown rates near metal surfaces in the accelerating structures. Nanoscale voids, presumably forming in the surface layers of metals during the technological processing, can be responsible for the onset of the growth of a surface protrusion. We use finite element simulations to study the evolution of annealed copper, single crystal copper and stainless steel surfaces that contain a void under high electric fields. We use a fully coupled electrostatic-elastoplastic model in the steady state. Gradually increasing the value of an external electric field, we analyze the relationship of surface failure and depth of the void for the chosen materials with different elastoplastic properties. According to our results, the stainless steel and single crystal copper surfaces demonstrate the formation of well-defined protrusions, when the external electric field reaches a certain critical value. Among the three materials, annealed copper surface starts yielding at the lowest electric fields due to the lowest Young's modulus and yield stress. However, it produces the smallest protrusions due to a significant strain hardening characteristic for this material.

  6. Effects of mixed discrete surface charges on the electrical double layer.

    PubMed

    Jiménez-Ángeles, Felipe

    2012-08-01

    Adsorption of surface coions and charge reversal are induced at the electrical double layer of a wall charged with positive and negative surface sites next to an electrolyte solution. While for the considered surface charge density these effects are found over a wide range of conditions, they are not observed for the typically employed surface models in equivalent conditions. Important consequences in electrophoresis experiments for different colloids with equal effective surface charge density are foreseen. This study is carried out by means of molecular dynamics simulations. PMID:23005771

  7. Learned EEG-based brain self-regulation of motor-related oscillations during application of transcranial electric brain stimulation: feasibility and limitations

    PubMed Central

    Soekadar, Surjo R.; Witkowski, Matthias; Cossio, Eliana G.; Birbaumer, Niels; Cohen, Leonardo G.

    2014-01-01

    Objective: Transcranial direct current stimulation (tDCS) improves motor learning and can affect emotional processing and attention. However, it is unclear whether learned electroencephalography (EEG)-based brain-machine interface (BMI) control during tDCS is feasible, how application of transcranial electric currents during BMI control would interfere with feature-extraction of physiological brain signals and how it affects brain control performance. Here we tested this combination and evaluated stimulation-dependent artifacts across different EEG frequencies and stability of motor imagery-based BMI control. Approach: Ten healthy volunteers were invited to two BMI-sessions, each comprising two 60-trial blocks. During the trials, learned desynchronization of mu-rhythms (8–15 Hz) associated with motor imagery (MI) recorded over C4 was translated into online cursor movements on a computer screen. During block 2, either sham (session A) or anodal tDCS (session B) was applied at 1 mA with the stimulation electrode placed 1 cm anterior of C4. Main results: tDCS was associated with a significant signal power increase in the lower frequencies most evident in the signal spectrum of the EEG channel closest to the stimulation electrode. Stimulation-dependent signal power increase exhibited a decay of 12 dB per decade, leaving frequencies above 9 Hz unaffected. Analysis of BMI control performance did not indicate a difference between blocks and tDCS conditions. Conclusion: Application of tDCS during learned EEG-based self-regulation of brain oscillations above 9 Hz is feasible and safe, and might improve applicability of BMI systems. PMID:24672456

  8. Quality analysis of selective microparticle deposition on electrically programmable surfaces

    NASA Astrophysics Data System (ADS)

    Wagner, J.; Löffler, F.; König, K.; Fernandez, S.; Nesterov-Müller, A.; Breitling, F.; Bischoff, F. R.; Stadler, V.; Hausmann, M.; Lindenstruth, V.

    2010-07-01

    Image processing and pattern analysis can evaluate the deposition quality of triboelectrically charged microparticles on charged surfaces. The image processing method presented in this paper aims at controlling the quality of peptide arrays generated by particle based solid phase Merrifield combinatorial peptide synthesis. Incorrectly deposited particles are detected before the amino acids therein are coupled to the growing peptide. The calibration of the image acquisition is performed in a supervised training step in which all parameters of the quality analyzing algorithm are learnt given one representative image. Then, the correct deposition pattern is determined by a linear support vector machine. Knowing the pattern, contaminated areas can be detected by comparing the pattern with the actual deposition. Taking into account the resolution of the image acquisition system and its magnification factor, the number and size of contaminating particles can be calculated out of the number of connected foreground pixels.

  9. Modelling of Lunar Dust and Electrical Field for Future Lunar Surface Measurements

    NASA Astrophysics Data System (ADS)

    Lin, Yunlong

    Modelling of the lunar dust and electrical field is important to future human and robotic activities on the surface of the moon. Apollo astronauts had witnessed the maintaining of micron- and millimeter sized moon dust up to meters level while walked on the surface of the moon. The characterizations of the moon dust would enhance not only the scientific understanding of the history of the moon but also the future technology development for the surface operations on the moon. It has been proposed that the maintaining and/or settlement of the small-sized dry dust are related to the size and weight of the dust particles, the level of the surface electrical fields on the moon, and the impaction and interaction between lunar regolith and the solar particles. The moon dust distributions and settlements obviously affected the safety of long term operations of future lunar facilities. For the modelling of the lunar dust and the electrical field, we analyzed the imaging of the legs of the moon lander, the cover and the footwear of the space suits, and the envelope of the lunar mobiles, and estimated the size and charges associated with the small moon dust particles, the gravity and charging effects to them along with the lunar surface environment. We also did numerical simulation of the surface electrical fields due to the impaction of the solar winds in several conditions. The results showed that the maintaining of meters height of the micron size of moon dust is well related to the electrical field and the solar angle variations, as expected. These results could be verified and validated through future on site and/or remote sensing measurements and observations of the moon dust and the surface electrical field.

  10. Acupuncture-Related Modulation of Pain-Associated Brain Networks During Electrical Pain Stimulation: A Functional Magnetic Resonance Imaging Study

    PubMed Central

    Choi, Kyung-Eun; Gizewski, Elke R.; Wen, Ming; Rampp, Thomas; Gasser, Thomas; Dobos, Gustav J.; Forsting, Michael; Musial, Frauke

    2014-01-01

    Abstract Objective: Findings of existing functional MRI (fMRI) studies on the neural mechanisms that mediate effects of acupuncture analgesia are inconsistent. This study analyzes the effects of manual acupuncture on pain ratings and brain activation in response to experimental, electrical pain stimuli. Design: Fourteen healthy volunteers were examined by using a 1.5-T MRI scanner. The intensity of pain stimuli was adjusted to individual pain ratings on a numeric rating scale. Baseline fMRI was performed during electrical pain stimulation in a blocked design. For the second session, manual acupuncture with repeated stimulation was performed on contralateral acupoints—large intestine 4, liver 3, and stomach 36—before imaging. After imaging, subjective pain ratings and ratings of the de qi sensation were assessed. Results: Compared with baseline, volunteers showed modulated brain activity under pain conditions in the cingulate gyrus, insula, primary somatosensory cortex, and prefrontal areas after the acupuncture session. In accordance with the literature, anterior insular and prefrontal activity seemed to be correlated with acupuncture treatment. Conclusion: This study supports the existence of analgesic acupuncture effects that outlast the needling period. Pain-associated brain areas were modulated in direct response to a preceding acupuncture treatment. PMID:25389905

  11. Modulating protein behaviors on responsive surface by external electric fields: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Xie, Yun; Pan, Yufang; Zhang, Rong; Liang, Ying; Li, Zhanchao

    2015-01-01

    Molecular dynamics simulations were employed to investigate the modulation of protein behaviors on the electrically responsive zwitterionic phosphorylcholine self-assembled monolayers (PC-SAMs). Results show that PC-SAMs could sensitively respond to the applied electric fields and exhibit three states with different charge distributions, namely both the negatively charged phosphate groups and the positively charged choline groups are exposed to the solution in the absence of electric fields (state 1), phosphate groups exposed in the presence of positive electric fields (state 2), and choline groups exposed in the presence of negative electric fields (state 3). Under state 1, the adsorption of Cyt c on the PC-SAM is reversible and the orientations of Cyt c are randomly distributed. Under state 2, the adsorption of Cyt c is enhanced due to the electrostatic attractions between the exposed phosphate groups and the positively charged protein; when adsorbed on the PC-SAMs, Cyt c tends to adopt the orientation with the heme plane perpendicular to the surface plane, and the percentage of this orientation increases as the field strength rises up. Under state 3, the adsorption of Cyt c is retarded because of the electrostatic repulsions between the exposed choline groups and the protein; however, if the gaps between PC chains are large enough, Cyt c could insert into the PC-SAM and access the phosphate groups after overcoming a slight energy barrier. Under three states, the basic backbone structures of Cyt c are well kept within the simulation time since the conformation of Cyt c is mainly affected by the surface-generated electric fields, whose strengths are modulated by the external electric fields and are not strong enough to deform protein. The results indicate the possibility of regulating protein behaviors, including promoting or retarding protein adsorption and regulating protein orientations, on responsive surfaces by applying electric fields on the surfaces without

  12. Study of atmospheric surface layer electrical processes in case of varying intensity rain

    NASA Astrophysics Data System (ADS)

    Pustovalov, K. N.; Kobzev, A. A.; Nagorskiy, P. M.

    2015-11-01

    The variations of the surface potential gradient, and positive and negative air electric conductivities during the passage of the series of atmospheric fronts, which were accompanied by the showers and continuous rains, are investigated. According to the analysis of experimental data, the distortion of the related variations of the potential gradient and air electric conductivities occurred during rain. The value of this distortion depends on the rain type and the rain rate.

  13. The Hydrogen Abstraction from A Diamond(111) Surface in A Uniform Electric Field

    NASA Technical Reports Server (NTRS)

    Ricca, Alessandra; Bauschlicher, Charles W., Jr.; Kang, Jeung Ku.; Musgrave, Charles B.; Arnold, James O. (Technical Monitor)

    1998-01-01

    Bond breaking in a strong electric field is shown to arise from a crossing of the ionic and covalent asymptotes. The specific example of hydrogen abstraction from a diamond(111) surface is studied using a cluster model. The addition of nearby atoms in both the parallel and perpendicular direction to the electric field are found to have an effect. It is also shown that the barrier is not only related to the position of the ionic and covalent asymptotes.

  14. Wave tilt sounding of multilayered structures. [for probing of stratified planetary surface electrical properties and thickness

    NASA Technical Reports Server (NTRS)

    Warne, L.; Jaggard, D. L.; Elachi, C.

    1979-01-01

    The relationship between the wave tilt and the electrical parameters of a multilayered structure is investigated. Particular emphasis is placed on the inverse problem associated with the sounding planetary surfaces. An inversion technique, based on multifrequency wave tilt, is proposed and demonstrated with several computer models. It is determined that there is close agreement between the electrical parameters used in the models and those in the inversion values.

  15. Surface oxidation effect on the electrical behaviour of Bi2Te2Se nanoplatelets

    NASA Astrophysics Data System (ADS)

    Gehring, Pascal; Reusch, Frieder B.; Mashhadi, Soudabeh S.; Burghard, Marko; Kern, Klaus

    2016-07-01

    Charge transport in topological insulators is notably influenced by moisture and air in the surrounding environment. At present, however, little is known about the detailed composition of the oxidized surface and its impact on the electrical characteristics of these materials. Here, we investigate the surface oxide formation on the topological insulator Bi2Te2Se (BTS) and how this affects its electrical behavior. While ambient exposure of BTS nanoplatelets predominantly creates surface hydroxyl groups, oxygen plasma treatment yields a compact, few-nanometer thick surface oxide layer. The plasma causes p-type doping, accompanied by a decrease of the effective platelet thickness, the interplay of which is manifested in a resistance maximum as a function of plasma treatment time. It is furthermore demonstrated that the structural integrity of the plasma-derived surface oxide is sufficient to enable its use as a gate insulator layer in combination with a top gate.

  16. Surface oxidation effect on the electrical behaviour of Bi2Te2Se nanoplatelets.

    PubMed

    Gehring, Pascal; Reusch, Frieder B; Mashhadi, Soudabeh S; Burghard, Marko; Kern, Klaus

    2016-07-15

    Charge transport in topological insulators is notably influenced by moisture and air in the surrounding environment. At present, however, little is known about the detailed composition of the oxidized surface and its impact on the electrical characteristics of these materials. Here, we investigate the surface oxide formation on the topological insulator Bi2Te2Se (BTS) and how this affects its electrical behavior. While ambient exposure of BTS nanoplatelets predominantly creates surface hydroxyl groups, oxygen plasma treatment yields a compact, few-nanometer thick surface oxide layer. The plasma causes p-type doping, accompanied by a decrease of the effective platelet thickness, the interplay of which is manifested in a resistance maximum as a function of plasma treatment time. It is furthermore demonstrated that the structural integrity of the plasma-derived surface oxide is sufficient to enable its use as a gate insulator layer in combination with a top gate. PMID:27257792

  17. Cortical Surface-Based Construction of Individual Structural Network with Application to Early Brain Development Study

    PubMed Central

    Meng, Yu; Li, Gang; Lin, Weili; Gilmore, John H.; Shen, Dinggang

    2016-01-01

    Analysis of anatomical covariance for cortex morphology in individual subjects plays an important role in the study of human brains. However, the approaches for constructing individual structural networks have not been well developed yet. Existing methods based on patch-wise image intensity similarity suffer from several major drawbacks, i.e., 1) violation of cortical topological properties, 2) sensitivity to intensity heterogeneity, and 3) influence by patch size heterogeneity. To overcome these limitations, this paper presents a novel cortical surface-based method for constructing individual structural networks. Specifically, our method first maps the cortical surfaces onto a standard spherical surface atlas and then uniformly samples vertices on the spherical surface as the nodes of the networks. The similarity between any two nodes is computed based on the biologically-meaningful cortical attributes (e.g., cortical thickness) in the spherical neighborhood of their sampled vertices. The connection between any two nodes is established only if the similarity is larger than a user-specified threshold. Through leveraging spherical cortical surface patches, our method generates biologically-meaningful individual networks that are comparable across ages and subjects. The proposed method has been applied to construct cortical-thickness networks for 73 healthy infants, with each infant having two MRI scans at 0 and 1 year of age. The constructed networks during the two ages were compared using various network metrics, such as degree, clustering coefficient, shortest path length, small world property, global efficiency, and local efficiency. Experimental results demonstrate that our method can effectively construct individual structural networks and reveal meaningful patterns in early brain development. PMID:27169140

  18. Optimal spacing of surface electrode arrays for brain-machine interface applications

    NASA Astrophysics Data System (ADS)

    Slutzky, Marc W.; Jordan, Luke R.; Krieg, Todd; Chen, Ming; Mogul, David J.; Miller, Lee E.

    2010-04-01

    Brain-machine interfaces (BMIs) use signals recorded directly from the brain to control an external device, such as a computer cursor or a prosthetic limb. These control signals have been recorded from different levels of the brain, from field potentials at the scalp or cortical surface to single neuron action potentials. At present, the more invasive recordings have better signal quality, but also lower stability over time. Recently, subdural field potentials have been proposed as a stable, good quality source of control signals, with the potential for higher spatial and temporal bandwidth than EEG. Here we used finite element modeling in rats and humans and spatial spectral analysis in rats to compare the spatial resolution of signals recorded epidurally (outside the dura), with those recorded from subdural and scalp locations. Resolution of epidural and subdural signals was very similar in rats and somewhat less so in human models. Both were substantially better than signals recorded at the scalp. Resolution of epidural and subdural signals in humans was much more similar when the cerebrospinal fluid layer thickness was reduced. This suggests that the less invasive epidural recordings may yield signals of similar quality to subdural recordings, and hence may be more attractive as a source of control signals for BMIs.

  19. Range, Magnitude, and Ultrafast Dynamics of Electric Fields at the Hydrated DNA Surface.

    PubMed

    Siebert, Torsten; Guchhait, Biswajit; Liu, Yingliang; Fingerhut, Benjamin P; Elsaesser, Thomas

    2016-08-18

    Range and magnitude of electric fields at biomolecular interfaces and their fluctuations in a time window down to the subpicosecond regime have remained controversial, calling for electric-field mapping in space and time. Here, we trace fluctuating electric fields at the surface of native salmon DNA via their interactions with backbone vibrations in a wide range of hydration levels by building the water shell layer by layer. Femtosecond two-dimensional infrared spectroscopy and ab initio based theory establish water molecules in the first two layers as the predominant source of interfacial electric fields, which fluctuate on a 300 fs time scale with an amplitude of 25 MV/cm due to thermally excited water motions. The observed subnanometer range of these electric interactions is decisive for biochemical structure and function. PMID:27468144

  20. Electrical and Surface Morphology of Polyvinylchloride Composites Filled with Aluminum Powder

    SciTech Connect

    Singh, Dolly; Kishore, Sangeeta; Singh, N. L.

    2011-07-15

    In this work, the electrical and surface morphology of polyvinyl chloride (PVC) composites filled with different concentration of aluminum powder varying from 0 to 40 wt.% have been prepared by solution costing method. The electrical conductivity of these composites were investigated in the frequency range 100 Hz-10 MHz at room temperature. The conductivity of the composites system exhibited a strong frequency dependence particularly in the vicinity of percolation threshold (20 wt.%). It was observed that the electrical conductivity gradually increased with filler concentration and frequency and explained in terms of hopping conduction mechanism. The electrical conductivity of the composites obeys universal power law (i.e. {sigma} = Af{sup n}), where, n is power exponent. The scanning electron microscope (SEM) micrographs indicate the agglomeration of aluminum particles dispersed within the PVC at the higher aluminum concentration, yielding a conductive path through the composites. It is also corroborated with electrical conductivity result.

  1. Nanoscale Roughness and Morphology Affect the IsoElectric Point of Titania Surfaces

    PubMed Central

    Borghi, Francesca; Vyas, Varun; Podestà, Alessandro; Milani, Paolo

    2013-01-01

    We report on the systematic investigation of the role of surface nanoscale roughness and morphology on the charging behaviour of nanostructured titania (TiO2) surfaces in aqueous solutions. IsoElectric Points (IEPs) of surfaces have been characterized by direct measurement of the electrostatic double layer interactions between titania surfaces and the micrometer-sized spherical silica probe of an atomic force microscope in NaCl aqueous electrolyte. The use of a colloidal probe provides well-defined interaction geometry and allows effectively probing the overall effect of nanoscale morphology. By using supersonic cluster beam deposition to fabricate nanostructured titania films, we achieved a quantitative control over the surface morphological parameters. We performed a systematical exploration of the electrical double layer properties in different interaction regimes characterized by different ratios of characteristic nanometric lengths of the system: the surface rms roughness Rq, the correlation length ξ and the Debye length λD. We observed a remarkable reduction by several pH units of IEP on rough nanostructured surfaces, with respect to flat crystalline rutile TiO2. In order to explain the observed behavior of IEP, we consider the roughness-induced self-overlap of the electrical double layers as a potential source of deviation from the trend expected for flat surfaces. PMID:23874708

  2. Surface-roughness contributions to the electrical resistivity of polycrystalline metal films

    NASA Astrophysics Data System (ADS)

    Jacob, U.; Vancea, J.; Hoffmann, H.

    1990-06-01

    The influence of surface roughness on the electrical conductivity of polycrystalline metal films has to be considered at two different length scales. The large-scale surface roughness due to the granular arrangement of these films gives rise to a fluctuating film cross section. One-dimensional models of these fluctuations lead to roughness values consistent with scanning-tunneling-microscopy images of film surfaces. The microscopic surface roughness, mainly given by atomic steps on the crystallite surfaces, represents centers for surface scattering of conduction electrons. With this concept we were able to describe not only the thickness-dependent conductivity of films with natural (as-deposited) surface roughness, but also the increase in the resistance during subsequent coating with adatoms at 80 K owing to an artificial microscopic roughening of their surfaces.

  3. Laser-based surface preparation of composite laminates leads to improved electrodes for electrical measurements

    NASA Astrophysics Data System (ADS)

    Almuhammadi, Khaled; Selvakumaran, Lakshmi; Alfano, Marco; Yang, Yang; Bera, Tushar Kanti; Lubineau, Gilles

    2015-12-01

    Electrical impedance tomography (EIT) is a low-cost, fast and effective structural health monitoring technique that can be used on carbon fiber reinforced polymers (CFRP). Electrodes are a key component of any EIT system and as such they should feature low resistivity as well as high robustness and reproducibility. Surface preparation is required prior to bonding of electrodes. Currently this task is mostly carried out by traditional sanding. However this is a time consuming procedure which can also induce damage to surface fibers and lead to spurious electrode properties. Here we propose an alternative processing technique based on the use of pulsed laser irradiation. The processing parameters that result in selective removal of the electrically insulating resin with minimum surface fiber damage are identified. A quantitative analysis of the electrical contact resistance is presented and the results are compared with those obtained using sanding.

  4. Differential responsiveness of the right parahippocampal region to electrical stimulation in fixed human brains: Implications for historical surgical stimulation studies?

    PubMed

    Rouleau, Nicolas; Persinger, Michael A

    2016-07-01

    If structure dictates function within the living human brain, then the persistence of specific responses to weak electric currents in fixed, deceased brains could reflect "hardwired" properties. Different key structures from the left and right hemispheres of brains that had been fixed for over 20years with ethanol-formalin-acetic acid were stimulated with either 1-Hz, 7-Hz, 10-Hz, 20-Hz, or 30-Hz, sine-wave, square-wave, or pulsed currents while needle-recorded quantitative electroencephalographic responses were obtained. Differential responses occurred only within the right hippocampus and parahippocampal gyrus. The right hippocampus displayed frequency-independent increases in gamma power relative to the left hemispheric homologue. The parahippocampal region responded exclusively to 7-Hz pulsed currents with wideband (8-30Hz) power. These profiles are consistent with dynamic connections associated with memory and consciousness and may partially explain the interactions resultant of pulse type and hemisphere for experiential elicitations during the golden age of surgical stimulations. The results also indicate that there may be an essential "hardwiring" within the human brain that is maintained for decades when it is fixed appropriately. PMID:27208828

  5. The Effect of Variation in Permittivity of Different Tissues on Induced Electric Field in the Brain during Transcranial Magnetic Stimulation

    NASA Astrophysics Data System (ADS)

    Hadimani, Ravi; Porzig, Konstantin; Crowther, Lawrence; Brauer, Hartmut; Toepfer, Hannes; Jiles, David; Department of Electrical and Computer Engineering, Iowa State University Team; Department of Advanced Electromagnetics, Ilmenau University of Technology Team

    2013-03-01

    Estimation of electric field in the brain during Transcranial Magnetic Stimulation (TMS) requires knowledge of the electric property of brain tissue. Grey and white matters have unusually high relative permittivities of ~ 106 at low frequencies. However, relative permittivity of cerebrospinal fluid is ~ 102. With such a variation it is necessary to consider the effect of boundaries. A model consisting of 2 hemispheres was used in the model with the properties of one hemisphere kept constant at σ1 = 0.1Sm-1 and ɛr 1 = 10 while the properties of the second hemisphere were changed kept at σ2 = 0.1Sm-1 to 2Sm-1 and ɛr 2 = 102 to 105. A 70 mm diameter double coil was used as the source of the magnetic field. The amplitude of the current in the coil was 5488 A at a frequency of 2.9 kHz. The results show that the electric field, E induced during magnetic stimulation is independent of the relative permittivity, ɛr and varies with the conductivity. Thus the variation in E, calculated with homogeneous and heterogeneous head models was due to variation in conductivity of the tissues and not due to variation in permittivities.

  6. Cell surface modulation of gene expression in brain cells by down regulation of glucocorticoid receptors

    SciTech Connect

    McGinnis, J.F.; de Vellis, J.

    1981-02-01

    The concentration of glycerol-3-phosphate dehydrogenase (GPDH; sn-glycerol-3-phosphate:NAD/sup +/ 2-oxidoreductase, EC 1.1.1.8) had previously been determined to be regulated by glucocorticoids in rat brain cells in vivo and in cell culture. We now demonstrate that concanavalin A (Con A) can inhibit the induction of GPDH in a dose-dependent manner in C6 rat glioma cells and in primary cultures of rat brain oligodendrocytes. The inhibition specifically prevents the appearance of new molecules of GPDH, although Con A does not significantly inhibit protein synthesis in these cells, nor does it affect the activity of another solube enzyme, lactate dehydrogenase. The ability to block enzyme induction is not limited to Con A, because other lectins also inhibit induction. The molecular mechanism by which Con A inhibits GPDH induction appears to be by the down regulation of the cytoplasmic glucocorticoid receptors, because exposure to Con A results in the loss of more than 90% of the receptor activity. Con A does not inhibit the receptor assay and no direct interaction between the receptor and Con A could be demonstrated. This down regulation is not tumor cell specific and appears to be a general phenomenon, because it occurs in normal oligodendrocytes and even in normal astrocytes (a cell type in which the gene for GPDH is not expressed). The down regulation of glucocorticoid receptors in normal brain cells suggests two important corollaries. First, it demonstrates the existence of a rate-limiting step controlling the glucocorticoid-dependent gene expression in brain cells and possibly represents a regulatory site common to all glucocorticoid target cells. Second, it suggests that the response to glucocorticoids of oligodendrocytes and astrocytes can be regulated in vivo by cell surface contact with endogenous lectins, neighboring cells, or both.

  7. Not all brains are created equal: the relevance of individual differences in responsiveness to transcranial electrical stimulation

    PubMed Central

    Krause, Beatrix; Cohen Kadosh, Roi

    2014-01-01

    A current issue in the research of augmentation of brain functions using transcranial electrical stimulation (tES) is the diversity and inconsistency in outcome results. Similar studies often report different results, depending on the parameters and tasks used. Such inconsistencies have led to significant doubts about the efficacy of the method in the broader scientific community, despite its promising potential for patient recovery and treatment. Evidence on the large variability in individual cortical excitability and response to tES suggests that stimulation may affect individuals differently, depending on the subject’s age, gender, brain state, hormonal levels, and pre-existing regional excitability. Certain factors might even lead to the reversal of polarity-dependent effects, and therefore have crucial implications for neurorehabilitation and cognitive enhancement. Research paradigms may have to be refined in the future to avoid the confounding effects of such factors. PMID:24605090

  8. Parylene-based flexible neural probes with PEDOT coated surface for brain stimulation and recording.

    PubMed

    Castagnola, V; Descamps, E; Lecestre, A; Dahan, L; Remaud, J; Nowak, L G; Bergaud, C

    2015-05-15

    Implantable neural prosthetics devices offer a promising opportunity for the restoration of lost functions in patients affected by brain or spinal cord injury, by providing the brain with a non-muscular channel able to link machines to the nervous system. Nevertheless current neural microelectrodes suffer from high initial impedance and low charge-transfer capacity because of their small-feature geometry (Abidian et al., 2010; Cui and Zhou, 2007). In this work we have developed PEDOT-modified neural probes based on flexible substrate capable to answer to the three critical requirements for neuroprosthetic device: efficiency, lifetime and biocompatibility. We propose a simple procedure for the fabrication of neural electrodes fully made of Parylene-C, followed by an electropolymerization of the active area with the conductive polymer PEDOT that is shown to greatly enhance the electrical performances of the device. In addition, the biocompatibility and the very high SNR exhibited during signal recording make our device suitable for long-term implantation. PMID:25256782

  9. Resonant phase jump with enhanced electric field caused by surface phonon polariton in terahertz region.

    PubMed

    Okada, Takanori; Nagai, Masaya; Tanaka, Koichiro

    2008-04-14

    We investigated surface phonon polariton in cesium iodide with terahertz time-domain attenuated total reflection method in Otto configuration, which gives us both information on amplitude and phase of surface electromagnetic mode directly. Systematic experiments with precise control of the distance between a prism and an active material show that the abrupt change of pi-phase jump appears sensitively under polariton picture satisfied when the local electric field at the interface becomes a maximum. This demonstration will open the novel phase-detection terahertz sensor using the active medium causing the strong enhancement of terahertz electric field. PMID:18542668

  10. Kinetic model for electric-field induced point defect redistribution near semiconductor surfaces

    SciTech Connect

    Gorai, Prashun; Seebauer, Edmund G.

    2014-07-14

    The spatial distribution of point defects near semiconductor surfaces affects the efficiency of devices. Near-surface band bending generates electric fields that influence the spatial redistribution of charged mobile defects that exchange infrequently with the lattice, as recently demonstrated for pile-up of isotopic oxygen near rutile TiO{sub 2} (110). The present work derives a mathematical model to describe such redistribution and establishes its temporal dependence on defect injection rate and band bending. The model shows that band bending of only a few meV induces significant redistribution, and that the direction of the electric field governs formation of either a valley or a pile-up.