Science.gov

Sample records for brake fluid service

  1. 49 CFR 236.701 - Application, brake; full service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Application, brake; full service. 236.701 Section... § 236.701 Application, brake; full service. An application of the brakes resulting from a continuous or a split reduction in brake pipe pressure at a service rate until maximum brake cylinder pressure...

  2. 49 CFR 236.701 - Application, brake; full service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Application, brake; full service. 236.701 Section... § 236.701 Application, brake; full service. An application of the brakes resulting from a continuous or a split reduction in brake pipe pressure at a service rate until maximum brake cylinder pressure...

  3. 49 CFR 236.701 - Application, brake; full service.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Application, brake; full service. 236.701 Section... § 236.701 Application, brake; full service. An application of the brakes resulting from a continuous or a split reduction in brake pipe pressure at a service rate until maximum brake cylinder pressure...

  4. 49 CFR 236.701 - Application, brake; full service.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Application, brake; full service. 236.701 Section... § 236.701 Application, brake; full service. An application of the brakes resulting from a continuous or a split reduction in brake pipe pressure at a service rate until maximum brake cylinder pressure...

  5. 49 CFR 236.701 - Application, brake; full service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... a split reduction in brake pipe pressure at a service rate until maximum brake cylinder pressure is... other than emergency which develops the maximum brake cylinder pressure, as determined by the design...

  6. 49 CFR 570.59 - Service brake system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 6 2013-10-01 2013-10-01 false Service brake system. 570.59 Section 570.59... 10,000 Pounds § 570.59 Service brake system. (a) Service brake performance. Compliance with any one... dimension or the rotor is embossed with a minimum safe thickness dimension, the drum or disc shall be...

  7. 49 CFR 236.507 - Brake application; full service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Brake application; full service. 236.507 Section... Train Stop, Train Control and Cab Signal Systems Standards § 236.507 Brake application; full service... application of the brakes....

  8. 49 CFR 236.507 - Brake application; full service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Brake application; full service. 236.507 Section... Train Stop, Train Control and Cab Signal Systems Standards § 236.507 Brake application; full service... application of the brakes....

  9. 49 CFR 236.507 - Brake application; full service.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Brake application; full service. 236.507 Section... Train Stop, Train Control and Cab Signal Systems Standards § 236.507 Brake application; full service... application of the brakes....

  10. 49 CFR 236.507 - Brake application; full service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Brake application; full service. 236.507 Section... Train Stop, Train Control and Cab Signal Systems Standards § 236.507 Brake application; full service... application of the brakes....

  11. 49 CFR 236.507 - Brake application; full service.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Brake application; full service. 236.507 Section... Train Stop, Train Control and Cab Signal Systems Standards § 236.507 Brake application; full service... application of the brakes....

  12. Intelligently Controllable Walker with Magnetorheological Fluid Brake

    NASA Astrophysics Data System (ADS)

    Kikuchi, Takehito; Tanida, Sosuke; Tanaka, Toshimasa; Kobayashi, Keigo; Mitobe, Kazuhisa

    Caster walkers are supporting frames with casters and wheels. These tools are regularly utilized as life support tools or walking rehabilitation tools in hospitals, nursing homes and individual residences. Users of the walkers can easily move it thanks to its wheels and casters. However falling accidents often happen when it moves without users. The falling accident is very serious problem and one of leading causes of secondary injuries. In the other case, it is hard to move to desired directions if users have imbalance in their motor functions or sensory functions, e.g., hemiplegic patients. To improve safeness and operability of the walkers, we installed compact MR fluid brakes on the wheels and controlled walking speed and direction of the walker. We named this intelligently controllable walker, “i-Walker” and discussed on the control methods and experimental results in this paper. Preliminary trials for direction control of the first-generation of the i-Walker (i-Walker1) are presented. On the basis of the results, we improved the control method and hardware of the i-Walker1, and developed the second-generation (i-Walker2). System description and experimental results of the i-Walker2 are also described. The i-Walker2 has better operability and lower energy consumption than that of the i-Walker1. The line-tracing controller of the i-Walker2 well controls human motions during walking experiments on the target straight line.

  13. Brake Fundamentals. Automotive Articulation Project.

    ERIC Educational Resources Information Center

    Cunningham, Larry; And Others

    Designed for secondary and postsecondary auto mechanics programs, this curriculum guide contains learning exercises in seven areas: (1) brake fundamentals; (2) brake lines, fluid, and hoses; (3) drum brakes; (4) disc brake system and service; (5) master cylinder, power boost, and control valves; (6) parking brakes; and (7) trouble shooting. Each…

  14. Computational thermo-fluid analysis of a disk brake

    NASA Astrophysics Data System (ADS)

    Takizawa, Kenji; Tezduyar, Tayfun E.; Kuraishi, Takashi; Tabata, Shinichiro; Takagi, Hirokazu

    2016-06-01

    We present computational thermo-fluid analysis of a disk brake, including thermo-fluid analysis of the flow around the brake and heat conduction analysis of the disk. The computational challenges include proper representation of the small-scale thermo-fluid behavior, high-resolution representation of the thermo-fluid boundary layers near the spinning solid surfaces, and bringing the heat transfer coefficient (HTC) calculated in the thermo-fluid analysis of the flow to the heat conduction analysis of the spinning disk. The disk brake model used in the analysis closely represents the actual configuration, and this adds to the computational challenges. The components of the method we have developed for computational analysis of the class of problems with these types of challenges include the Space-Time Variational Multiscale method for coupled incompressible flow and thermal transport, ST Slip Interface method for high-resolution representation of the thermo-fluid boundary layers near spinning solid surfaces, and a set of projection methods for different parts of the disk to bring the HTC calculated in the thermo-fluid analysis. With the HTC coming from the thermo-fluid analysis of the flow around the brake, we do the heat conduction analysis of the disk, from the start of the breaking until the disk spinning stops, demonstrating how the method developed works in computational analysis of this complex and challenging problem.

  15. 75 FR 5553 - Federal Motor Vehicle Safety Standards; Motor Vehicle Brake Fluids

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-03

    ... April 11, 2000 (65 FR 19477-78). FOR FURTHER INFORMATION CONTACT: For non-legal issues: Mr. Samuel... Brake Fluid, and SAE J1704, Borate Ether Based Brake Fluid. a. Definition of ``Brake Fluid'' To apply... (Federalism) NHTSA has examined today's NPRM pursuant to Executive Order 13132 (64 FR 43255, August 10,...

  16. Control of asbestos exposure during brake drum service

    SciTech Connect

    Sheehy, J.W.; Cooper, T.C.; O'Brien, D.M.; McGlothlin, J.D.; Froehlich, P.A.

    1989-08-01

    Earlier studies of airborne asbestos exposure to mechanics during brake maintenance operations showed overexposure to asbestos fibers during brake servicing, especially brake assembly cleaning. Because an estimated 150,000 brake mechanics and garage workers in the U.S. are potentially exposed to asbestos, a known carcinogen, and the lack of information available on the effectiveness of available controls, an evaluation of these methods was initiated. Detailed field surveys were conducted at five facilities employing five methods for controlling exposure to asbestos during brake repair. These included the use of two commercial enclosure devices with ventilation provided by HEPA filter-equipped vacuum, a HEPA filter-equipped vacuum alone, a brush with recirculating cleaning solution, and cleaning solvents in aerosol cans. These controls were evaluated while servicing brakes to automobiles, pickup trucks, vans, and vehicles with a 4-wheel rear axle. Detailed evaluations of these control measures involved a program consisting of traditional air sampling methods, incorporating phase contrast microscopy (PCM) and transmission electron microscopy (TEM), and a real-time analysis of brake dust exposure. Personal and area air samples were collected during brake repair to each vehicle.

  17. 49 CFR 570.5 - Service brake system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... CFR 571.105, on every new passenger car manufactured on or after January 1, 1968, and on other types... 49 Transportation 6 2013-10-01 2013-10-01 false Service brake system. 570.5 Section 570.5... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION VEHICLE IN USE INSPECTION STANDARDS Vehicles With GVWR of...

  18. Design of a squeeze film magnetorheological brake considering compression enhanced shear yield stress of magnetorheological fluid

    NASA Astrophysics Data System (ADS)

    Sarkar, C.; Hirani, H.

    2013-02-01

    A magnetorheological brake, consisting of rotating disks immersed in a MR fluid and enclosed in an electromagnet, is proposed to replace the conventional heavy weight low response hydraulic disk brake. The frictional characteristics of the proposed brake can be controlled by regulating the yield stress of the MR fluid as function of magnetic field and normal compressive force. The controllable yield stress retards the surfaces of rotating disks, thus MR fluid can be used as a brake lining material. The present research work attempts designing a squeeze film MR brake by accounting compression enhanced shear yield stress of magnetorheological fluid. Theoretical calculations indicate that the estimated braking torque of the six plate squeeze film MR brake, under compression, is in the order of 600Nm. To validate the theoretical design and its findings, a prototype of single-plate squeeze film MR disk brake has been developed. Experimental test setup helps to illustrate braking torque under different control currents (0.0 to 1.25 A).

  19. 49 CFR 571.116 - Standard No. 116; Motor vehicle brake fluids.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... packaged lot and tested simultaneously. Hydraulic system mineral oil means a mineral-oil-based fluid... humidified under controlled conditions; 350 ml. of SAE triethylene glycol monomethyl ether, brake fluid grade... DOT 5 fluids) followed by an acetone or ether rinse. Pass a slow stream of filtered dry air...

  20. 49 CFR 571.116 - Standard No. 116; Motor vehicle brake fluids.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... packaged lot and tested simultaneously. Hydraulic system mineral oil means a mineral-oil-based fluid... humidified under controlled conditions; 350 ml. of SAE triethylene glycol monomethyl ether, brake fluid grade... DOT 5 fluids) followed by an acetone or ether rinse. Pass a slow stream of filtered dry air...

  1. 49 CFR 571.116 - Standard No. 116; Motor vehicle brake fluids.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... packaged lot and tested simultaneously. Hydraulic system mineral oil means a mineral-oil-based fluid... humidified under controlled conditions; 350 ml. of SAE triethylene glycol monomethyl ether, brake fluid grade... when testing DOT 5 fluids) followed by an acetone or ether rinse. Pass a slow stream of filtered...

  2. 49 CFR 571.116 - Standard No. 116; Motor vehicle brake fluids.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... packaged lot and tested simultaneously. Hydraulic system mineral oil means a mineral-oil-based fluid... humidified under controlled conditions; 350 ml. of SAE triethylene glycol monomethyl ether, brake fluid grade... DOT 5 fluids) followed by an acetone or ether rinse. Pass a slow stream of filtered dry air...

  3. Continuous variable transmission and regenerative braking devices in bicycles utilizing magnetorheological fluids

    NASA Astrophysics Data System (ADS)

    Cheung, Wai Ming; Liao, Wei-Hsin

    2013-04-01

    The use of magnetorheological (MR) fluids in vehicles has been gaining popular recently due to its controllable nature, which gives automotive designers more dimensions of freedom in functional designs. However, not much attention has been paid to apply it to bicycles. This paper is aimed to study the feasibility of applying MR fluids in different dynamic parts of a bicycle such as the transmission and braking systems. MR continuous variable transmission (CVT) and power generator assisted in braking systems were designed and analyzed. Both prototypes were fabricated and tested to evaluate their performances. Experimental results showed that the proposed designs are promising to be used in bicycles.

  4. 49 CFR 214.529 - In-service failure of primary braking system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Maintenance Machines and Hi-Rail Vehicles § 214.529 In-service failure of primary braking system. (a) In the... machine may be operated for the remainder of its tour of duty with the use of a secondary braking system or by coupling to another machine, if such operations may be done safely. (b) If the total...

  5. Semi-active control of torsional vibrations using an MR fluid brake

    NASA Astrophysics Data System (ADS)

    Williams, Keith A.; Ye, Shaochun

    2004-07-01

    Control of torsional vibrations in an automotive crankshaft is a classical vibration control problem. The most common solution is to mount a crankshaft damper at one end of the crankshaft. Typical crankshaft dampers are composed of parallel stiffness and damping elements connecting a rotational inertia to the crankshaft. Appropriate design of the damper elements may result in substantial crankshaft vibration. Conventional couplings include elastomeric spring-damper elements and purely viscous fluid couplings. While those approaches result in satisfactory reduction of crankshaft vibration, it may be that a semi-active approach can achieve improved performance. To that end, an investigation of a semi-active crankshaft damper using magneto-rheological (MR) fluid has been initiated. A torsional MR fluid brake was obtained and applied to a scale model of a crankshaft for a common eight-cylinder engine. Experiments were performed with the MR brake as a fixed-friction device. In addition, a simple stick-slip control algorithm was developed such that the MR brake became an on-line variable friction device. While a good deal of work remains to be performed in future efforts, the preliminary experimental results have demonstrated that a torsional damper composed of an MR fluid brake has potential application in the field of torsional vibration control.

  6. 78 FR 21189 - Agency Requests for Approval of a New Information Collection: Motor Vehicle Brake Fluids

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-09

    ... performance and design requirements for motor vehicle brake fluids and hydraulic system mineral oils. Section... packagers of hydraulic system mineral oils. The information on the label of a container of motor vehicle... intention to request the Office of Management and Budget (OMB) approval for a new information...

  7. 49 CFR 571.116 - Standard No. 116; Motor vehicle brake fluids.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Standard No. 116; Motor vehicle brake fluids. 571.116 Section 571.116 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR VEHICLE SAFETY STANDARDS Federal Motor Vehicle Safety Standards...

  8. 49 CFR 214.529 - In-service failure of primary braking system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD WORKPLACE SAFETY On-Track Roadway Maintenance Machines and Hi-Rail Vehicles § 214.529 In-service failure of primary braking system. (a) In...

  9. 49 CFR 214.529 - In-service failure of primary braking system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD WORKPLACE SAFETY On-Track Roadway Maintenance Machines and Hi-Rail Vehicles § 214.529 In-service failure of primary braking system. (a) In...

  10. 49 CFR 214.529 - In-service failure of primary braking system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD WORKPLACE SAFETY On-Track Roadway Maintenance Machines and Hi-Rail Vehicles § 214.529 In-service failure of primary braking system. (a) In...

  11. A new method for on-line monitoring of brake fluid condition using an enclosed reference probe

    NASA Astrophysics Data System (ADS)

    Wang, Chuantong; Shida, Katsunori

    2007-11-01

    This paper presents a new method for on-line monitoring of the liquid level and water content of brake fluid using an enclosed reference probe as the capacitive sensing part. The probe has an enclosed cavity at the end which is designed to hold fresh brake fluid as an on-line reference. Three capacitances formed by four electrodes are used for the liquid level, water content and reference measurement and form the mutual calibrating output functions of the sensing probe. The liquid level measurement is calibrated to the permittivity changes by the capacitance for water content measurement. At the same time, the water content measurement is calibrated to temperature changes and variety of fluids by the capacitance of the reference measurement. Therefore, once the permittivity characteristics of brake fluids are experimentally modeled, the proposed method has a self-calibration ability to influence factors including temperature, water content (to liquid level measurement) and variety of brake fluids without an additional sensor supported by database as in conventional intelligent sensor systems. The design and implementation method are discussed with a prototype probe developed and tested. The permittivity characteristics of brake fluid samples are discussed. The calibration method and errors analysis are presented. The method presents a different way to construct a smart sensor which is useful in brake fluid condition monitoring and also other liquid measurement applications.

  12. 49 CFR 571.122a - Standard No. 122; Motorcycle brake systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... recommended type of brake fluid as specified in 49 CFR 571.116, e.g., DOT 3.) The lettering shall be: (a... application of not more than 20 pounds of pedal force upon the service brake. (2) Without the application of pedal force, when the level of brake fluid in a master cylinder reservoir drops to less than...

  13. Braking system

    DOEpatents

    Norgren, D.U.

    1982-09-23

    A balanced braking system comprising a plurality of braking assemblies located about a member to be braked. Each of the braking assemblies consists of a spring biased piston of a first material fitted into a body of a different material which has a greater contraction upon cooling than the piston material. The piston is provided with a recessed head portion over which is positioned a diaphragm and forming a space therebetween to which is connected a pressurized fluid supply. The diaphragm is controlled by the fluid in the space to contact or withdraw from the member to be braked. A cooling means causes the body within which the piston is fitted to contract more than the piston, producing a tight shrink fit therebetween. The braking system is particularly applicable for selectively braking an arbor of an electron microscope which immobilizes, for example, a vertically adjustable low temperature specimen holder during observation. The system provides balanced braking forces which can be easily removed and re-established with minimal disturbance to arbor location.

  14. 49 CFR 393.52 - Brake performance.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 5 2012-10-01 2012-10-01 false Brake performance. 393.52 Section 393.52... NECESSARY FOR SAFE OPERATION Brakes § 393.52 Brake performance. (a) Upon application of its service brakes... of the service brake pedal or control begins, that is not greater than the distance specified in...

  15. 49 CFR 393.52 - Brake performance.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 5 2014-10-01 2014-10-01 false Brake performance. 393.52 Section 393.52... NECESSARY FOR SAFE OPERATION Brakes § 393.52 Brake performance. (a) Upon application of its service brakes... of the service brake pedal or control begins, that is not greater than the distance specified in...

  16. Preliminary survey report: evaluation of brake drum service controls at Indianapolis Power and Light Company, Indianapolis, Indiana

    SciTech Connect

    Godbey, F.W.

    1988-08-01

    An evaluation was made of various control technologies designed to reduce asbestos exposures during brake drum servicing at Indianapolis Power and Light Company, Indianapolis, Indiana. The garage at this facility serviced about 425 vehicles each year with about 200 brake repair jobs being done annually. During servicing, a regular wet and dry vacuum cleaner was used, along with a steam jenny containing liquid soap, and a liquid spray can. Once the wheel was removed, the entire hub area was sprayed with steam foam at 90 pounds per square inch from the steam jenny containing liquid soap. The hub area was vacuumed prior to and following removal. The vacuum cleaner was not equipped with an HEPA filter. A liquid spray can was used to clean the plates. The brake shoe area was vacuumed. Once the brake area was free of all accumulated dust, the brakes were serviced. The author concludes that control measures did not appear to be sufficient to keep asbestos dust from emanating into the atmosphere. The facility was not selected for an in-depth evaluation.

  17. Design of an adaptive control for a magnetorheological fluid brake with model parameters depending on temperature and speed

    NASA Astrophysics Data System (ADS)

    Russo, R.; Terzo, M.

    2011-11-01

    This paper describes experimental/theoretical activities carried out on a magnetorheological fluid brake (MRFB) prototype. A device model is derived and a detailed evaluation of the influence of temperature and speed on its parameters is performed. It can be seen that temperature and speed act as modifying inputs for the system model and change the value of some of its parameters. More specifically, time constant and torque/current gain are affected by velocity whereas fluid viscosity is only affected by temperature. The presence of the above modifying input suggests the employment of an adaptive approach for MRFB feedback control based on the torque measurement only. Starting from the proposed model, a model reference adaptive control is designed, ensuring that the tracking error converges to zero as time t \\to \\infty . Simulation activity, carried out on the device validated model, confirms the effectiveness of the proposed adaptive controller.

  18. 49 CFR 571.122 - Standard No. 122; Motorcycle brake systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... application. Initial brake temperature means the temperature of the hottest service brake of the vehicle 0.2..., 1974) at 40 mph, omitting water delivery as specified in paragraphs 7.1 and 7.2 of that method... fluid as specified in 49 CFR 571.116, e.g., DOT 3.) The lettering shall be: (a) Permanently...

  19. Orbital fluid servicing and resupply operations

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.; Bailey, W. J.

    1987-01-01

    The capability to reservice spacecraft and satellites with expendable fluids will provide significant increases in the usability, operational efficiency and cost effectiveness of in-space systems. Initial resupply will be accomplished from the Orbiter cargo bay starting with monopropellant servicing which will eventually be extended to servicing of bipropellants and pressurants. Other fluids, such as freon, ammonia, methanol, superfluid helium, and liquid/gaseous nitrogen may also need to be resupplied once a space station becomes a reality. These fluids/gases are required for subsystem working fluid replacement and payload/experiment fluid replenishment. A logistics module operating on a 90 day schedule is planned for space station servicing. Resupplying hundreds of thousands of pounds of cryogenic propellants and reactants for users such as the Orbital Transfer Vehicle (OTV) also represents future logistics challenges. Implementation of on-orbit fluid transfer requires solving many problems including fluid management in the low-g environment, system docking and interface mating, configuration of user friendly avionics to monitor and control the entire servicing operation, and minimized maintenance and enhanced reliability. Candidate fluid transfer methods and possible gas transfer methods are discussed, and preliminary storable monopropellant and bipropellant tanker designs are summarized.

  20. Four-wheel dual braking for automobiles

    NASA Technical Reports Server (NTRS)

    Edwards, H. B.

    1981-01-01

    Each master cylinder applies braking power to all four wheels unlike conventional systems where cylinder operates only two wheels. If one master system fails because of fluid loss, other stops car by braking all four wheels although at half force.

  1. Asbestos bodies in bronchoalveolar lavage fluids of brake lining and asbestos cement workers.

    PubMed Central

    Dumortier, P; De Vuyst, P; Strauss, P; Yernault, J C

    1990-01-01

    Asbestos body (AB) concentrations in bronchoalveolar lavage samples of 15 brake lining (BL) workers exposed only to chrysotile have been determined and compared with those from 44 asbestos cement (AC) workers extensively exposed to amphiboles. The mean AB concentrations (263 +/- 802 and 842 +/- 2086 AB/ml respectively) for those groups did not differ significantly but were much higher than those found in control groups. Analytical electron microscopy of asbestos body cores showed that in the BL group 95.6% were chrysotile fibres whereas in the AC group amphiboles accounted for 93.1%. The size characteristics of the central fibres differed for chrysotile and amphibole AB, the former being shorter and thinner. Examination of repeated bronchoalveolar lavage samples showed that the mechanisms of clearance of chrysotile fibres do not affect AB concentration for at least 10 months after cessation of exposure. It thus appears that routine counting of ABs in BAL allows the assessment of current or recent occupational exposures to asbestos. Exposures to chrysotile lead to AB concentrations comparable with those encountered in exposures to amphiboles. Images PMID:2155652

  2. Gravity brake

    DOEpatents

    Lujan, Richard E.

    2001-01-01

    A mechanical gravity brake that prevents hoisted loads within a shaft from free-falling when a loss of hoisting force occurs. A loss of hoist lifting force may occur in a number of situations, for example if a hoist cable were to break, the brakes were to fail on a winch, or the hoist mechanism itself were to fail. Under normal hoisting conditions, the gravity brake of the invention is subject to an upward lifting force from the hoist and a downward pulling force from a suspended load. If the lifting force should suddenly cease, the loss of differential forces on the gravity brake in free-fall is translated to extend a set of brakes against the walls of the shaft to stop the free fall descent of the gravity brake and attached load.

  3. Better Brakes

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Through continuing studies on high-temperature space materials useful for better brake linings, Bendix Corporation worked with Ames Research Center to develop a novel composite. This team worked to fabricate several combinations of composite materials and evaluated results. The one selected increases wear rates and lowers costs. It exhibits constant coefficient of friction at temperatures as high as 650 degrees Fahrenheit, a region where conventional brake linings fade markedly. Other suitable markets include brakes for trucks and industrial equipment such as overhead cranes and hoists. Afterwards brake linings could find successful application in passenger cars.

  4. Magnetostrictive Brake

    NASA Technical Reports Server (NTRS)

    Diftler, Myron A.; Hulse, Aaron

    2010-01-01

    A magnetostrictive brake has been designed as a more energy-efficient alternative to a magnetic fail-safe brake in a robot. (In the specific application, failsafe signifies that the brake is normally engaged; that is, power must be supplied to allow free rotation.) The magnetic failsafe brake must be supplied with about 8 W of electric power to initiate and maintain disengagement. In contrast, the magnetostrictive brake, which would have about the same dimensions and the same torque rating as those of the magnetic fail-safe brake, would demand only about 2 W of power for disengagement. The brake (see figure) would include a stationary base plate and a hub mounted on the base plate. Two solenoid assemblies would be mounted in diametrically opposed recesses in the hub. The cores of the solenoids would be made of the magnetostrictive alloy Terfenol-D or equivalent. The rotating part of the brake would be a ring-and spring- disk subassembly. By means of leaf springs not shown in the figure, this subassembly would be coupled with the shaft that the brake is meant to restrain. With no power supplied to the solenoids, a permanent magnet would pull axially on a stepped disk and on a shelf in the hub, causing the ring to be squeezed axially between the stepped disk and the hub. The friction associated with this axial squeeze would effect the braking action. Supplying electric power to the solenoids would cause the magnetostrictive cylinders to push radially inward against a set of wedges that would be in axial contact with the stepped disk. The wedges would convert the radial magnetostrictive strain to a multiplied axial displacement of the stepped disk. This axial displacement would be just large enough to lift the stepped disk, against the permanent magnetic force, out of contact with the ring. The ring would then be free to turn because it would no longer be squeezed axially between the stepped disk and the hub.

  5. Magnetic fluid control for viscous loss reduction of high-speed MRF brakes and clutches with well-defined fail-safe behavior

    NASA Astrophysics Data System (ADS)

    Güth, Dirk; Schamoni, Markus; Maas, Jürgen

    2013-09-01

    No-load losses within brakes and clutches based on magnetorheological fluids are unavoidable and represent a major barrier towards their wide-spread commercial adoption. Completely torque free rotation is not yet possible due to persistent fluid contact within the shear gap. In this paper, a novel concept is presented that facilitates the controlled movement of the magnetorheological fluid from an active, torque-transmitting region into an inactive region of the shear gap. This concept enables complete decoupling of the fluid engaging surfaces such that viscous drag torque can be eliminated. In order to achieve the desired effect, motion in the magnetorheological fluid is induced by magnetic forces acting on the fluid, which requires an appropriate magnetic circuit design. In this investigation, we propose a methodology to determine suitable magnetic circuit designs with well-defined fail-safe behavior. The magnetically induced motion of magnetorheological fluids is modeled by the use of the Kelvin body force, and a multi-physics domain simulation is performed to elucidate various transitions between an engaged and disengaged operating mode. The modeling approach is validated by captured high-speed video frames which show the induced motion of the magnetorheological fluid due to the magnetic field. Finally, measurements performed with a prototype actuator prove that the induced viscous drag torque can be reduced significantly by the proposed magnetic fluid control methodology.

  6. Modelling and validation of magnetorheological brake responses using parametric approach

    NASA Astrophysics Data System (ADS)

    Z, Zainordin A.; A, Abdullah M.; K, Hudha

    2013-12-01

    Magnetorheological brake (MR Brake) is one x-by-wire systems which performs better than conventional brake systems. MR brake consists of a rotating disc that is immersed with Magnetorheological Fluid (MR Fluid) in an enclosure of an electromagnetic coil. The applied magnetic field will increase the yield strength of the MR fluid where this fluid was used to decrease the speed of the rotating shaft. The purpose of this paper is to develop a mathematical model to represent MR brake with a test rig. The MR brake model is developed based on actual torque characteristic which is coupled with motion of a test rig. Next, the experimental are performed using MR brake test rig and obtained three output responses known as angular velocity response, torque response and load displacement response. Furthermore, the MR brake was subjected to various current. Finally, the simulation results of MR brake model are then verified with experimental results.

  7. 49 CFR 238.231 - Brake system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Brake system. 238.231 Section 238.231... Equipment § 238.231 Brake system. Except as otherwise provided in this section, on or after September 9... train's primary brake system shall be capable of stopping the train with a service application from...

  8. 30 CFR 56.14101 - Brakes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Brakes. 56.14101 Section 56.14101 Mineral... Devices and Maintenance Requirements § 56.14101 Brakes. (a) Minimum requirements. (1) Self-propelled mobile equipment shall be equipped with a service brake system capable of stopping and holding...

  9. 30 CFR 57.14101 - Brakes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Brakes. 57.14101 Section 57.14101 Mineral... Devices and Maintenance Requirements § 57.14101 Brakes. (a) Minimum requirements. (1) Self-propelled mobile equipment shall be equipped with a service brake system capable of stopping and holding...

  10. Preliminary survey report: evaluation of brake-drum-service controls at Ohio Department of Transportation, Maintenance Facility, Lebanon, Ohio

    SciTech Connect

    Sheehy, J.W.

    1986-07-01

    The Ohio Department of Transportation, Maintenance Facility, Lebanon, Ohio, was visited as part of a study of asbestos control during the maintenance and repair of vehicular brakes. The effectiveness of various control technologies designed to reduce asbestos exposure were evaluated.

  11. BRAKE DEVICE

    DOEpatents

    O'Donnell, T.J.

    1959-03-10

    A brake device is described for utilization in connection with a control rod. The device comprises a pair of parallelogram link mechanisms, a control rod moveable rectilinearly therebetween in opposite directions, and shoes resiliently supported by the mechanism for frictional engagement with the control rod.

  12. Automotive Brake Systems.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This correspondence course, orginally developed for the Marine Corps, is designed to provide mechanics with an understanding of the basic operations of automotive brake systems on military vehicles. The course contains four study units covering hydraulic brakes, air brakes, power brakes, and auxiliary brake systems. A troubleshooting guide for…

  13. Optimal design of a novel configuration of MR brake with coils placed on the side housings

    NASA Astrophysics Data System (ADS)

    Nguyen, Quoc Hung; Nguyen, Ngoc Diep; Choi, Seung-Bok

    2014-03-01

    It is well known that in design of traditional magneto-rheological brake (MRB), coils are placed on the cylindrical housing of the brake. In this study, a new configuration of MR brake with coils placed on the side housings of the brake is proposed and analyzed. After briefly explaining the operating principle of the proposed configuration, the braking torque of the MR brake is analyze based on Bingham-plastic rheological model of MR fluid. The optimization of the proposed and conventional MR brakes is then performed considering maximum braking torque and mass of the brake. Based on the optimal results, a comparison between the proposed MR brakes and the conventional ones is undertaken. In addition, experimental test of the MR brakes is conducted and the results are presented in order to validate the performance characteristics of the proposed MR brake.

  14. Electric vehicle regenerative antiskid braking and traction control system

    DOEpatents

    Cikanek, Susan R.

    1995-01-01

    An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydrualic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control.

  15. Electric vehicle regenerative antiskid braking and traction control system

    DOEpatents

    Cikanek, S.R.

    1995-09-12

    An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydraulic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control. 10 figs.

  16. 49 CFR 396.25 - Qualifications of brake inspectors.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Qualifications of brake inspectors. 396.25 Section..., REPAIR, AND MAINTENANCE § 396.25 Qualifications of brake inspectors. (a) Motor carriers and intermodal equipment providers must ensure that all inspections, maintenance, repairs or service to the brakes of...

  17. 49 CFR 570.6 - Brake power unit.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Pounds or Less § 570.6 Brake power unit. (a) Vacuum hoses shall not be collapsed, abraded, broken, improperly mounted, or audibly leaking. With residual vacuum exhausted and a constant 25 pound force on the... engine and apply service brakes several times to destroy vacuum in system. Depress brake pedal with...

  18. 49 CFR 570.6 - Brake power unit.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Pounds or Less § 570.6 Brake power unit. (a) Vacuum hoses shall not be collapsed, abraded, broken, improperly mounted, or audibly leaking. With residual vacuum exhausted and a constant 25 pound force on the... engine and apply service brakes several times to destroy vacuum in system. Depress brake pedal with...

  19. 49 CFR 570.6 - Brake power unit.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Pounds or Less § 570.6 Brake power unit. (a) Vacuum hoses shall not be collapsed, abraded, broken, improperly mounted, or audibly leaking. With residual vacuum exhausted and a constant 25 pound force on the... engine and apply service brakes several times to destroy vacuum in system. Depress brake pedal with...

  20. 49 CFR 396.25 - Qualifications of brake inspectors.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 5 2012-10-01 2012-10-01 false Qualifications of brake inspectors. 396.25 Section..., REPAIR, AND MAINTENANCE § 396.25 Qualifications of brake inspectors. (a) Motor carriers and intermodal equipment providers must ensure that all inspections, maintenance, repairs or service to the brakes of...

  1. 49 CFR 396.25 - Qualifications of brake inspectors.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 5 2013-10-01 2013-10-01 false Qualifications of brake inspectors. 396.25 Section..., REPAIR, AND MAINTENANCE § 396.25 Qualifications of brake inspectors. (a) Motor carriers and intermodal equipment providers must ensure that all inspections, maintenance, repairs or service to the brakes of...

  2. 49 CFR 396.25 - Qualifications of brake inspectors.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false Qualifications of brake inspectors. 396.25 Section..., REPAIR, AND MAINTENANCE § 396.25 Qualifications of brake inspectors. (a) Motor carriers and intermodal equipment providers must ensure that all inspections, maintenance, repairs or service to the brakes of...

  3. 49 CFR 396.25 - Qualifications of brake inspectors.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 5 2014-10-01 2014-10-01 false Qualifications of brake inspectors. 396.25 Section..., REPAIR, AND MAINTENANCE § 396.25 Qualifications of brake inspectors. (a) Motor carriers and intermodal equipment providers must ensure that all inspections, maintenance, repairs or service to the brakes of...

  4. In-depth survey report: evaluation of brake drum service controls at United States Postal Service Vehicle Maintenance Facility, Louisville, Kentucky

    SciTech Connect

    Cooper, T.C.; Sheehy, J.W.; O'Brien, D.M.; McGlothlin, J.D.; Todd, W.F.

    1987-12-01

    A control technology assessment of various methods to control worker exposure to asbestos during brake repair was reported for the Vehicle Maintenance Facility at the U.S. Post Office Building in Louisville, Kentucky. Results indicated that effective control of asbestos dust was achieved with the system used; one of 22 samples had a detectable level. Recommendations for better work practices were presented.

  5. Optimal design and selection of magneto-rheological brake types based on braking torque and mass

    NASA Astrophysics Data System (ADS)

    Nguyen, Q. H.; Lang, V. T.; Choi, S. B.

    2015-06-01

    In developing magnetorheological brakes (MRBs), it is well known that the braking torque and the mass of the MRBs are important factors that should be considered in the product’s design. This research focuses on the optimal design of different types of MRBs, from which we identify an optimal selection of MRB types, considering braking torque and mass. In the optimization, common types of MRBs such as disc-type, drum-type, hybrid-type, and T-shape types are considered. The optimization problem is to find an optimal MRB structure that can produce the required braking torque while minimizing its mass. After a brief description of the configuration of the MRBs, the MRBs’ braking torque is derived based on the Herschel-Bulkley rheological model of the magnetorheological fluid. Then, the optimal designs of the MRBs are analyzed. The optimization objective is to minimize the mass of the brake while the braking torque is constrained to be greater than a required value. In addition, the power consumption of the MRBs is also considered as a reference parameter in the optimization. A finite element analysis integrated with an optimization tool is used to obtain optimal solutions for the MRBs. Optimal solutions of MRBs with different required braking torque values are obtained based on the proposed optimization procedure. From the results, we discuss the optimal selection of MRB types, considering braking torque and mass.

  6. TGV disc brake squeal

    NASA Astrophysics Data System (ADS)

    Lorang, X.; Foy-Margiocchi, F.; Nguyen, Q. S.; Gautier, P. E.

    2006-06-01

    The discomfort generated by the noise emission of braking systems in trains has aroused recently many studies on the mechanical modelling of brake noise in France. A theoretical and numerical discussion on the phenomenon of brake squeal is given in this paper in relation with some experimental data. This study is based upon a flutter instability analysis giving unstable modes of the brake system under the contact and Coulomb friction.

  7. Optimal design of a disc-type MR brake for middle-sized motorcycle

    NASA Astrophysics Data System (ADS)

    Nguyen, Quoc-Hung; Jeon, Juncheol; Choi, Seung-Bok

    2011-03-01

    This research work focuses on optimal design of a disc-type magneto-rheological (MR) brake that can replace a conventional hydraulic brake (CHB) of middle-sized motorcycles. Firstly, a MR brake configuration is proposed considering the available space and the simplicity to replace a CHB by the proposed MR brake. An optimal design of the proposed MR brake is then performed considering the required braking torque, operating temperature, mass and size of the brake. In order to perform the optimization of the brake, the braking torque of the brake is analyzed based on Herschel-Bulkley rheological model of MR fluid. The constrain on operating temperature of the MR brake is determined by considering the steady temperature of the brake when the motorcycle is cruising and the temperature increase during a braking process. An optimization procedure based on finite element analysis integrated with an optimization tool is employed to obtain optimal geometric dimensions of the MR brake. Optimal solution of the MR brake is then presented and simulated performance of the optimized brake is shown with remarkable discussions.

  8. The Friction of Vehicle Brake Tandem Master Cylinder

    NASA Astrophysics Data System (ADS)

    Kao, M. J.; Chang, H.; Tsung, T. T.; Lin, H. M.

    2006-10-01

    The behaviour of an elastomeric seal for vehicle brake Tandem master cylinder is measured and analyzed in temperature and brake fluids changed. Working conditions are simulated for different piston rod velocity and cylinder supply pressure, in temperature rising, brakefluid boundary and Nanoaluminum oxide brakefluid oxide brakefluid lubrication. The result shows that Nanoaluminum oxide brakefluid with its ball shape can highly reduce friction coefficient to avoid seal excessive wear and reduce slick slip in brake applications.

  9. Optimal design of an automotive magnetorheological brake considering geometric dimensions and zero-field friction heat

    NASA Astrophysics Data System (ADS)

    Nguyen, Q. H.; Choi, S. B.

    2010-11-01

    This paper presents an optimal design of a magnetorheological (MR) brake for a middle-sized passenger car which can replace a conventional hydraulic disc-type brake. In the optimization, the required braking torque, the temperature due to zero-field friction of MR fluid, the mass of the brake system and all significant geometric dimensions are considered. After describing the configuration, the braking torque of the proposed MR brake is derived on the basis of the field-dependent Bingham and Herschel-Bulkley rheological model of the MR fluid. The optimal design of the MR brake is then analyzed taking into account available space, mass, braking torque and steady heat generated by zero-field friction torque of the MR brake. The optimization procedure based on the finite element analysis integrated with an optimization tool is proposed to obtain optimal geometric dimensions of the MR brake. Based on the proposed procedure, optimal solutions of single and multiple disc-type MR brakes featuring different types of MR fluid are achieved. From the results, the most effective MR brake for the middle-sized passenger car is identified and some discussions on the performance improvement of the optimized MR brake are described.

  10. 49 CFR 571.122 - Standard No. 122; Motorcycle brake systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the recommended type of brake fluid as specified in accordance with 49 CFR 571.116, e.g., “DOT 3... CFR 571.101). S5.2Durability. S5.2.1Compensation for wear. Wear of the brakes shall be compensated for... rider in order to supply and regulate the energy required for braking the motorcycle. Driver mass...

  11. 49 CFR 571.105 - Standard No. 105; Hydraulic and electric brake systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... word, words or abbreviation, in accordance with the requirements of Standard No. 101 (49 CFR 571.101... of brake fluid as specified in 49 CFR 571.116, e.g., “DOT 3”). The lettering shall be— (a... the event of a primary brake power source failure. Brake power assist unit means a device installed...

  12. Reel safety brake

    NASA Technical Reports Server (NTRS)

    Carle, C. E. (Inventor)

    1976-01-01

    A braking apparatus is described for a tape transport device having two stacked coaxial reels and feelers mounted in proximity to the reels for sensing the tape being wound on each reel. A device is mounted in proximity to adjacent central hubs of the reels to a simultaneously, frictionally engage both hubs and brake both reels. A mechanical actuator is coupled to both feelers and to the brake device. The brake means comprises a pair of rubber shoulders that extend in opposite directions relative to a common axis, and turns about the axis in response to either of the feelers.

  13. An antilock molecular braking system.

    PubMed

    Sun, Wei-Ting; Huang, Shou-Ling; Yao, Hsuan-Hsiao; Chen, I-Chia; Lin, Ying-Chih; Yang, Jye-Shane

    2012-08-17

    A light-driven molecular brake displaying an antilock function is constructed by introducing a nonradiative photoinduced electron transfer (PET) decay channel to compete with the trans (brake-off) → cis (brake-on) photoisomerization. A fast release of the brake can be achieved by deactivating the PET process through addition of protons. The cycle of irradiation-protonation-irradiation-deprotonation conducts the brake function and mimics the antilock braking system (ABS) of vehicles. PMID:22853709

  14. Theoretical and experimental studies on a magnetorheological brake operating under compression plus shear mode

    NASA Astrophysics Data System (ADS)

    Sarkar, C.; Hirani, H.

    2013-11-01

    The torque characteristics of magnetorheological brakes, consisting of rotating disks immersed in a MR fluid and enclosed in an electromagnetic casing, are controlled by regulating the yield stress of the MR fluid. An increase in yield stress increases the braking torque, which means that the higher the yield strength of the MR fluid, the better the performance of the MR brake will be. In the present research an application of compressive force on MR fluid has been proposed to increase the torque capacity of MR brakes. The mathematical expressions to estimate the torque values for MR brake, operating under compression plus shear mode accounting Herschel-Bulkley shear thinning model, have been detailed. The required compressive force on MR fluid of the proposed brake has been applied using an electromagnetic actuator. The development of a single-plate MR disk brake and an experimental test rig are described. Experiments have been performed to illustrate braking torque under different control currents (0.0-2.0 A). The torque results have been plotted and compared with theoretical study. Experimental results as well as theoretical calculations indicate that the braking torque of the proposed MR brake is higher than that of the MR brake operating only under shear.

  15. Space transportation system disconnect. [replenishing fluids during orbital servicing

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The use of medium duty 300 psi fluid disconnects for orbital servicing was demonstrated to be both practical and technically feasible. A prototype disconnect was designed and tested, based on criteria formulated from a survey of expected usage requirements for orbital servicing concepts. Testing involved the comparison of three seal materials (EPR, Neoprene and Teflon), and two test media (helium and Freon 21), and was conducted over a temperature range of -150 F to +225 F. Results indicate low helium leakage (10 to the -4 power sccs) and extremely low engagement forces (56 lb sub f). Testing was also performed on a new seal design. Design concepts for a cryogenic disconnect and a high pressure disconnect were investigated. Results of an industry survey for usable orbital servicing disconnects and areas needing attention in future studies are discussed.

  16. 49 CFR 571.122 - Standard No. 122; Motorcycle brake systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ___ fluid from a sealed container. (Inserting the recommended type of brake fluid as specified in 49 CFR 571..., 1392, 1407); delegations of authority at 49 CFR 1.50 and 49 CFR 501.8) § 571.122, Nt. Effective Date... the recommended type of brake fluid as specified in accordance with 49 CFR 571.116, e.g., “DOT...

  17. A New Dynamometer Brake

    NASA Technical Reports Server (NTRS)

    Segre, Marco

    1921-01-01

    The mechanism here described belongs to the class of dynamometer brake in which the motive power is transformed into heat in the brake itself. This mechanism was invented by the writer for the purpose of measuring forces in which the two factors, torque and speed, vary within broad limits, the mechanism itself being of simple construction and of still simpler operation.

  18. 14 CFR 25.735 - Brakes and braking systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Brakes and braking systems. 25.735 Section 25.735 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Landing Gear § 25.735 Brakes and braking systems. (a) Approval....

  19. Improved Electromagnetic Brake

    NASA Technical Reports Server (NTRS)

    Martin, Toby B.

    2004-01-01

    A proposed design for an electromagnetic brake would increase the reliability while reducing the number of parts and the weight, relative to a prior commercially available electromagnetic brake. The reductions of weight and the number of parts could also lead to a reduction of cost. A description of the commercial brake is prerequisite to a description of the proposed electromagnetic brake. The commercial brake (see upper part of figure) includes (1) a permanent magnet and an electromagnet coil on a stator and (2) a rotor that includes a steel contact plate mounted, with tension spring loading, on an aluminum hub. The stator is mounted securely on a stationary object, which would ordinarily be the housing of a gear drive or a motor. The rotor is mounted on the shaft of the gear drive or motor. The commercial brake nominally operates in a fail-safe (in the sense of normally braking) mode: In the absence of current in the electromagnet coil, the permanent magnet pulls the contact plate, against the spring tension, into contact with the stator. To release the brake, one excites the electromagnet with a current of the magnitude and polarity chosen to cancel the magnetic flux of the permanent magnet, thereby enabling the spring tension to pull the contact plate out of contact with the stator. The fail-safe operation of the commercial brake depends on careful mounting of the rotor in relation to the stator. The rotor/stator gap must be set with a tolerance between 10 and 15 mils (between about 0.25 and about 0.38 mm). If the gap or the contact pad is thicker than the maximum allowable value, then the permanent magnetic field will not be strong enough to pull the steel plate across the gap. (For this reason, any contact pad between the contact plate and the stator must also be correspondingly thin.) If the gap exceeds the maximum allowable value because of shaft end play, it becomes impossible to set the brake by turning off the electromagnet current. Although it may

  20. Braking system for use with an arbor of a microscope

    DOEpatents

    Norgren, Duane U.

    1984-01-01

    A balanced braking system comprising a plurality of braking assemblies located about a member to be braked. Each of the braking assemblies consists of a spring biased piston of a first material fitted into a body of a different material which has a greater contraction upon cooling than the piston material. The piston is provided with a recessed head portion over which is positioned a diaphragm and forming a space therebetween to which is connected a pressurized fluid supply. The diaphragm is controlled by the fluid in the space to contact or withdraw from the member to be braked. A cooling device causes the body within which the piston is fitted to contract more than the piston, producing a tight shrink fit therebetween. The braking system is particularly applicable for selectively braking an arbor of an electron microscope which immobilizes, for example, a vertically adjustable low temperature specimen holder during observation. The system provides balanced braking forces which can be easily removed and re-established with minimal disturbance to arbor location.

  1. Development of a multi-pole magnetorheological brake

    NASA Astrophysics Data System (ADS)

    Shiao, Yaojung; Nguyen, Quang-Anh

    2013-06-01

    This paper presents a new approach in the design and optimization of a novel multi-pole magnetorheological (MR) brake that employs magnetic flux more effectively on the surface of the rotor. MR brakes with conventional single ring-type electromagnetic poles have reached the limits of torque enhancement. One major reason is the limitation of the magnetic field strength within the active area of the MR fluid due to the geometric constraints of the coil. The multi-pole MR brake design features multiple electromagnetic poles surrounded by several coils. As a result, the active chaining areas for the MR fluid are greatly increased, and significant brake torque improvement is achieved. The coil structure, as a part of the stator, becomes flexible and customizable in terms of space usage for the winding and bobbin design. In addition, this brake offers extra options in its dimensions for torque enhancement because either the radial or the axial dimensions of the rotor can be increased. Magnetic circuit analysis was conducted to analyze the effects of the design parameters on the field torque. After that, simulations were done to find the optimal design under all major geometric constraints with a given power supply. The results show that the multi-pole MR brake provides a considerable braking torque increase while maintaining a compact and solid design. This is confirmation of its feasibility in actual braking applications.

  2. Fuzzy logic electric vehicle regenerative antiskid braking and traction control system

    DOEpatents

    Cikanek, Susan R.

    1994-01-01

    An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control.

  3. Fuzzy logic electric vehicle regenerative antiskid braking and traction control system

    DOEpatents

    Cikanek, S.R.

    1994-10-25

    An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control. 123 figs.

  4. 49 CFR 232.205 - Class I brake test-initial terminal inspection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... as follows: (A) Charge the air brake system to the pressure at which the train will be operated, and the pressure at the rear of the train shall be within 15 psi of the pressure at which the train will... for maintaining brake pipe pressure at a constant level during a 20-psi brake pipe service...

  5. 49 CFR 232.205 - Class I brake test-initial terminal inspection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... as follows: (A) Charge the air brake system to the pressure at which the train will be operated, and the pressure at the rear of the train shall be within 15 psi of the pressure at which the train will... for maintaining brake pipe pressure at a constant level during a 20-psi brake pipe service...

  6. 49 CFR 232.205 - Class I brake test-initial terminal inspection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... as follows: (A) Charge the air brake system to the pressure at which the train will be operated, and the pressure at the rear of the train shall be within 15 psi of the pressure at which the train will... for maintaining brake pipe pressure at a constant level during a 20-psi brake pipe service...

  7. Vehicle brake testing system

    DOEpatents

    Stevens, Samuel S [Harriman, TN; Hodgson, Jeffrey W [Lenoir City, TN

    2002-11-19

    This invention relates to a force measuring system capable of measuring forces associated with vehicle braking and of evaluating braking performance. The disclosure concerns an invention which comprises a first row of linearly aligned plates, a force bearing surface extending beneath and beside the plates, vertically oriented links and horizontally oriented links connecting each plate to a force bearing surface, a force measuring device in each link, a transducer coupled to each force measuring device, and a computing device coupled to receive an output signal from the transducer indicative of measured force in each force measuring device. The present invention may be used for testing vehicle brake systems.

  8. Study on antilock brake system with elastic membrane vibration generated by controlled solenoid excitation

    NASA Astrophysics Data System (ADS)

    Wibowo, Zakaria, Lambang, Lullus; Triyono, Muhayat, Nurul

    2016-03-01

    The most effective chassis control system for improving vehicle safety during severe braking is anti-lock braking system (ABS). Antilock effect can be gained by vibrate the pad brake at 7 to 20 cycle per second. The aim of this study is to design a new method of antilock braking system with membrane elastic vibrated by solenoid. The influence of the pressure fluctuations of brake fluid is investigated. Vibration data is collected using a small portable accelerometer-slam stick. The experiment results that the vibration of brake pad caused by controlled solenoid excitation at 10 Hz is obtained by our new method. The result of measurements can be altered by varying brake fluid pressure.

  9. A preliminary assessment of asbestos awareness and control measures in brake and clutch repair services in Knoxville and Knox County, Tennessee

    SciTech Connect

    Phillips, C.C. ); Hamilton, C.B.

    1994-04-01

    The pending OSHA standard revision proposed in 1990 to lower the asbestos Permissible Exposure Limit (PEL) and to mandate effective asbestos control measures (ACM) in brake and clutch assembly work may have a profound effect on industries involved in such operations. Health protection of workers will be improved and costs of improved control methods and training will increase. Considering these facts, this preliminary study was designed to assess the level of worker and management awareness of asbestos hazards associated with brake and clutch repair and to determine what ACM had been implemented by businesses in Knoxville and Knox County, Tennessee. The study, in a metropolitan area of approximately 336,000 people, revealed eight different categories of businesses conducting brake and clutch repair work with an estimated 363 potentially exposed employees. Results of the study suggest that managers and employees of the 80 businesses studied were in need of asbestos hazard awareness training and more adequate asbestos control measures.

  10. Evaluation of materials and design modifications for aircraft brakes

    NASA Technical Reports Server (NTRS)

    Ho, T. L.; Kennedy, F. E.; Peterson, M. B.

    1975-01-01

    A test program is described which was carried out to evaluate several proposed design modifications and several high-temperature friction materials for use in aircraft disk brakes. The evaluation program was carried out on a specially built test apparatus utilizing a disk brake and wheel half from a small het aircraft. The apparatus enabled control of brake pressure, velocity, and braking time. Tests were run under both constant and variable velocity conditions and covered a kinetic energy range similar to that encountered in aircraft brake service. The results of the design evaluation program showed that some improvement in brake performance can be realized by making design changes in the components of the brake containing friction material. The materials evaluation showed that two friction materials show potential for use in aircraft disk brakes. One of the materials is a nickel-based sintered composite, while the other is a molybdenum-based material. Both materials show much lower wear rates than conventional copper-based materials and are better able to withstand the high temperatures encountered during braking. Additional materials improvement is necessary since both materials show a significant negative slope of the friction-velocity curve at low velocities.

  11. Load proportional safety brake

    NASA Technical Reports Server (NTRS)

    Cacciola, M. J.

    1979-01-01

    This brake is a self-energizing mechanical friction brake and is intended for use in a rotary drive system. It incorporates a torque sensor which cuts power to the power unit on any overload condition. The brake is capable of driving against an opposing load or driving, paying-out, an aiding load in either direction of rotation. The brake also acts as a no-back device when torque is applied to the output shaft. The advantages of using this type of device are: (1) low frictional drag when driving; (2) smooth paying-out of an aiding load with no runaway danger; (3) energy absorption proportional to load; (4) no-back activates within a few degrees of output shaft rotation and resets automatically; and (5) built-in overload protection.

  12. Design optimization of a magnetorheological brake in powered knee orthosis

    NASA Astrophysics Data System (ADS)

    Ma, Hao; Liao, Wei-Hsin

    2015-04-01

    Magneto-rheological (MR) fluids have been utilized in devices like orthoses and prostheses to generate controllable braking torque. In this paper, a flat shape rotary MR brake is designed for powered knee orthosis to provide adjustable resistance. Multiple disk structure with interior inner coil is adopted in the MR brake configuration. In order to increase the maximal magnetic flux, a novel internal structure design with smooth transition surface is proposed. Based on this design, a parameterized model of the MR brake is built for geometrical optimization. Multiple factors are considered in the optimization objective: braking torque, weight, and, particularly, average power consumption. The optimization is then performed with Finite Element Analysis (FEA), and the optimal design is obtained among the Pareto-optimal set considering the trade-offs in design objectives.

  13. 30 CFR 57.14101 - Brakes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Machinery and Equipment Safety... shall be maintained in functional condition. (b) Testing. (1) Service brake tests shall be conducted...

  14. 30 CFR 56.14101 - Brakes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Machinery and Equipment Safety... shall be maintained in functional condition. (b) Testing. (1) Service brake tests shall be...

  15. 30 CFR 57.14101 - Brakes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Machinery and Equipment Safety... shall be maintained in functional condition. (b) Testing. (1) Service brake tests shall be conducted...

  16. 30 CFR 56.14101 - Brakes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Machinery and Equipment Safety... shall be maintained in functional condition. (b) Testing. (1) Service brake tests shall be...

  17. 30 CFR 57.14101 - Brakes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Machinery and Equipment Safety... shall be maintained in functional condition. (b) Testing. (1) Service brake tests shall be conducted...

  18. 30 CFR 56.14101 - Brakes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Machinery and Equipment Safety... shall be maintained in functional condition. (b) Testing. (1) Service brake tests shall be...

  19. 14 CFR 25.735 - Brakes and braking systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... declared fully worn limit(s) of the brake heat sink, the wheel, brake and tire assembly is capable of... heat sink is worn to the permissible limit. The means must be reliable and readily visible....

  20. 14 CFR 25.735 - Brakes and braking systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... declared fully worn limit(s) of the brake heat sink, the wheel, brake and tire assembly is capable of... heat sink is worn to the permissible limit. The means must be reliable and readily visible....

  1. 14 CFR 25.735 - Brakes and braking systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... declared fully worn limit(s) of the brake heat sink, the wheel, brake and tire assembly is capable of... heat sink is worn to the permissible limit. The means must be reliable and readily visible....

  2. 14 CFR 25.735 - Brakes and braking systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... declared fully worn limit(s) of the brake heat sink, the wheel, brake and tire assembly is capable of... heat sink is worn to the permissible limit. The means must be reliable and readily visible....

  3. A model of heat dissipation for MR based brake

    NASA Astrophysics Data System (ADS)

    Wiehe, A.; Noack, V.; Maas, J.

    2009-02-01

    In contrast to conventional brakes actuators based on magnetorheological fluids (MRF) offer an advantage in short term, peak load decelerating. The dissipation of a high amount of energy in a short period of time results in a thermal destruction of conventional brakes. Due to the volume based energy dissipation of MR actuators, instead of the surface based energy dissipation of conventional brakes, the rise of temperature and the distribution of energy shows significant advantages. In this paper a design rule for special peak load MR actuators is derived. Furthermore the simplified model, which is the basis of the design rule, is compared to several simulation models, with different levels of detail.

  4. A Comparative Study on Automotive Brake Testing Standards

    NASA Astrophysics Data System (ADS)

    Kumbhar, Bhau Kashinath; Patil, Satyajit Ramchandra; Sawant, Suresh Maruti

    2016-06-01

    Performance testing of automotive brakes involves determination of stopping time, distance and deceleration level. Braking performance of an automobile is required to be ensured for various surfaces like dry, wet, concrete, bitumen etc. as well as for prolonged applications. Various brake testing standards are used worldwide to assure vehicle and pedestrian safety. This article presents methodologies used for automotive service brake testing for two wheelers. The main contribution of this work lies in comparative study of three main brake testing standards; viz. Indian Standards, Federal Motor Vehicle Safety Standards and European Economic Commission Standards. This study shall help the policy makers to choose the best criteria out of these three while formulating newer edition of testing standards.

  5. In-depth survey report: control technology for brake-drum service operations at Ohio Department of Transportation, Maintenance Facility, Lebanon, Ohio

    SciTech Connect

    Sheehy, J.W.; Godbey, F.W.; Cooper, T.C.; Lenihan, K.L.; Van Wagenen, H.D.

    1987-02-01

    A study of possible asbestos exposure was undertaken at an Ohio Department of Transportation regional headquarters, where repairs and maintenance procedures are conducted for cars, trucks, and specialized equipment. Personal air samples were collected in duplicate on cellulose-ester membrane filters for the duration of a single brake job, or two hours, whichever was longer. Area air-samples were also collected. Personal air sample results for brake mechanics indicate that asbestos concentrations averaged less than 0.004 fibers/cm/sup 3/, with no samples above this level. Mechanics' exposure was well below the NIOSH recommended exposure limit of 0.1 fibers/cc. The authors conclude that use of a vacuum enclosure unit resulted in very low asbestos exposures and that the unit appeared to be an effective device for dust control. A follow-up evaluation is recommended during cold weather with closed doors.

  6. Optimal design of a novel hybrid MR brake for motorcycles considering axial and radial magnetic flux

    NASA Astrophysics Data System (ADS)

    Nguyen, Q. H.; Choi, S. B.

    2012-05-01

    This work presents an optimal solution of a new type of motorcycle brake featuring different smart magnetorheological (MR) fluids. In this study, typical types of commercial MR fluid are considered there for the design of a motorcycle MR brake; MRF-122-2ED (low yield stress), MRF-132-DG (medium yield stress) and MRF-140-CG (high yield stress). As a first step, a new configuration featuring a T-shaped drum MR brake is introduced and a hybrid concept of magnetic circuit (using both axial and radial magnetic flux) to generate braking force is analyzed based on the finite element method. An optimal design of the MR brake considering the required braking torque, the temperature due to friction of the MR fluid, the mass of the brake system and all significant geometric dimensions is then performed. For the optimization, the finite element analysis (FEA) is used to achieve principal geometric dimensions of the MR brake. In addition, the size, mass and power consumption of three different MR motorcycle brakes are quantitatively analyzed and compared.

  7. Comparative analysis into the tractor-trailer braking dynamics: tractor with single axle brakes, tractor with all wheel brakes

    NASA Astrophysics Data System (ADS)

    Nastasoiu, Mircea; Ispas, Nicolae

    2014-06-01

    The paper elaborates a mathematical model in order to conduct a study into the dynamics of tractor-trailer systems during braking. The braking dynamics is analyzed by considering two versions for the braking system: 1) braking applied on the rear axle and 2) braking applied on all four wheels. In both versions the trailer is braked on all wheels. The mathematical model enables us to determine and graphically illustrate the evolution of the following parameters: braking deceleration, braking speed and the distance traveled by the tractor during braking. The mathematical model elaborated is applied on a tractor-trailer system completing transportation works.

  8. Optimal design of disc-type magneto-rheological brake for mid-sized motorcycle: experimental evaluation

    NASA Astrophysics Data System (ADS)

    Sohn, Jung Woo; Jeon, Juncheol; Nguyen, Quoc Hung; Choi, Seung-Bok

    2015-08-01

    In this paper, a disc-type magneto-rheological (MR) brake is designed for a mid-sized motorcycle and its performance is experimentally evaluated. The proposed MR brake consists of an outer housing, a rotating disc immersed in MR fluid, and a copper wire coiled around a bobbin to generate a magnetic field. The structural configuration of the MR brake is first presented with consideration of the installation space for the conventional hydraulic brake of a mid-sized motorcycle. The design parameters of the proposed MR brake are optimized to satisfy design requirements such as the braking torque, total mass of the MR brake, and cruising temperature caused by the magnetic-field friction of the MR fluid. In the optimization procedure, the braking torque is calculated based on the Herschel-Bulkley rheological model, which predicts MR fluid behavior well at high shear rate. An optimization tool based on finite element analysis is used to obtain the optimized dimensions of the MR brake. After manufacturing the MR brake, mechanical performances regarding the response time, braking torque and cruising temperature are experimentally evaluated.

  9. Sprag solenoid brake. [development and operations of electrically controlled brake

    NASA Technical Reports Server (NTRS)

    Dane, D. H. (Inventor)

    1974-01-01

    The development and characteristics of an electrically operated brake are discussed. The action of the brake depends on energizing a solenoid which causes internally spaced sprockets to contact the inner surface of the housing. A spring forces the control member to move to the braking position when the electrical function is interrupted. A diagram of the device is provided and detailed operating principles are explained.

  10. 49 CFR 571.105 - Standard No. 105; Hydraulic and electric brake systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... word, words or abbreviation, in accordance with the requirements of Standard No. 101 (49 CFR 571.101... of brake fluid as specified in 49 CFR 571.116, e.g., “DOT 3”). The lettering shall be— (a... stability and control during braking tests) are conducted on a 12-foot-wide, level roadway, having a...

  11. 49 CFR 571.105 - Standard No. 105; Hydraulic and electric brake systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... word, words or abbreviation, in accordance with the requirements of Standard No. 101 (49 CFR 571.101... of brake fluid as specified in 49 CFR 571.116, e.g., “DOT 3”). The lettering shall be— (a... stability and control during braking tests) are conducted on a 12-foot-wide, level roadway, having a...

  12. 49 CFR 571.135 - Standard No. 135; Light vehicle brake systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... of brake fluid as specified in 49 CFR 571.116, e.g., “DOT 3.”) The lettering shall be: (a... (49 CFR 571.101) and this section, which shall be legible to the driver under all daytime and... power source failure. Brake factor means the slope of the linear least squares regression equation...

  13. Experiments with airplane brakes

    NASA Technical Reports Server (NTRS)

    Michael, Franz

    1931-01-01

    This report begins by examining the forces on the brake shoes. For the determination of the load distribution over the shoes it was assumed that the brake linings follow Hooke's law, are neatly fitted and bedded in by wear. The assumption of Hooke's law, that is, the proportionality between compression of the lining and the absorption of force, is fulfilled to a certain extent for the loading, as becomes apparent from the load tests described further on. But there is a material discrepancy at unloading. From the load distribution we merely defined the position of the normal force resultant, while for the rest, the effect of the distribution was disregarded in the comparison of the different shoe dispositions.

  14. 49 CFR 570.56 - Vacuum brake assist unit and vacuum brake system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 6 2012-10-01 2012-10-01 false Vacuum brake assist unit and vacuum brake system... Vehicles With GVWR of More Than 10,000 Pounds § 570.56 Vacuum brake assist unit and vacuum brake system. The following requirements apply to vehicles with vacuum brake assist units and vacuum brake...

  15. 49 CFR 570.56 - Vacuum brake assist unit and vacuum brake system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 6 2014-10-01 2014-10-01 false Vacuum brake assist unit and vacuum brake system... Vehicles With GVWR of More Than 10,000 Pounds § 570.56 Vacuum brake assist unit and vacuum brake system. The following requirements apply to vehicles with vacuum brake assist units and vacuum brake...

  16. 49 CFR 570.56 - Vacuum brake assist unit and vacuum brake system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 6 2011-10-01 2011-10-01 false Vacuum brake assist unit and vacuum brake system... Vehicles With GVWR of More Than 10,000 Pounds § 570.56 Vacuum brake assist unit and vacuum brake system. The following requirements apply to vehicles with vacuum brake assist units and vacuum brake...

  17. 49 CFR 570.56 - Vacuum brake assist unit and vacuum brake system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 6 2013-10-01 2013-10-01 false Vacuum brake assist unit and vacuum brake system... Vehicles With GVWR of More Than 10,000 Pounds § 570.56 Vacuum brake assist unit and vacuum brake system. The following requirements apply to vehicles with vacuum brake assist units and vacuum brake...

  18. Tether Deployer And Brake

    NASA Technical Reports Server (NTRS)

    Carroll, Joseph A.; Alexander, Charles M.

    1993-01-01

    Design concept promises speed, control, and reliability. Scheme for deploying tether provides for fast, free, and snagless payout and fast, dependable braking. Developed for small, expendable tethers in outer space, scheme also useful in laying transoceanic cables, deploying guidance wires to torpedoes and missiles, paying out rescue lines from ship to ship via rockets, deploying antenna wires, releasing communication and power cables to sonobuoys and expendable bathythermographs, and in reeling out lines from fishing rods.

  19. Deployable Engine Air Brake

    NASA Technical Reports Server (NTRS)

    2014-01-01

    On approach, next-generation aircraft are likely to have airframe noise levels that are comparable to or in excess of engine noise. ATA Engineering, Inc. (ATA) is developing a novel quiet engine air brake (EAB), a device that generates "equivalent drag" within the engine through stream thrust reduction by creating a swirling outflow in the turbofan exhaust nozzle. Two Phase II projects were conducted to mature this technology: (1) a concept development program (CDP) and (2) a system development program (SDP).

  20. Combined hydraulic and regenerative braking system

    DOEpatents

    Venkataperumal, Rama R.; Mericle, Gerald E.

    1981-06-02

    A combined hydraulic and regenerative braking system and method for an electric vehicle, with the braking system being responsive to the applied hydraulic pressure in a brake line to control the braking of the vehicle to be completely hydraulic up to a first level of brake line pressure, to be partially hydraulic at a constant braking force and partially regenerative at a linearly increasing braking force from the first level of applied brake line pressure to a higher second level of brake line pressure, to be partially hydraulic at a linearly increasing braking force and partially regenerative at a linearly decreasing braking force from the second level of applied line pressure to a third and higher level of applied line pressure, and to be completely hydraulic at a linearly increasing braking force from the third level to all higher applied levels of line pressure.

  1. Combined hydraulic and regenerative braking system

    DOEpatents

    Venkataperumal, R.R.; Mericle, G.E.

    1979-08-09

    A combined hydraulic and regenerative braking system and method for an electric vehicle is disclosed. The braking system is responsive to the applied hydraulic pressure in a brake line to control the braking of the vehicle to be completely hydraulic up to a first level of brake line pressure, to be partially hydraulic at a constant braking force and partially regenerative at a linearly increasing braking force from the first level of applied brake line pressure to a higher second level of brake line pressure, to be partially hydraulic at a linearly increasing braking force and partially regenerative at a linearly decreasing braking force from the second level of applied line pressure to a third and higher level of applied line pressure, and to be completely hydraulic at a linearly increasing braking force from the third level to all higher applied levels of line pressure.

  2. Combined hydraulic and regenerative braking system

    SciTech Connect

    Mericle, G.E.; Venkataperumal, R.R.

    1981-06-02

    A combined hydraulic and regenerative braking system and method is disclosed for an electric vehicle. The braking system being responsive to the applied hydraulic pressure in a brake line to control the braking of the vehicle to be completely hydraulic up to a first level of brake line pressure, to be partially hydraulic at a constant braking force and partially regenerative at a linearly increasing braking force from the first level of applied brake line pressure to a higher second level of brake line pressure, to be partially hydraulic at a linearly increasing braking force and partially regenerative at a linearly decreasing braking force from the second level of applied line pressure to a third and higher level of applied line pressure, and to be completely hydraulic at a linearly increasing braking force from the third level to all higher applied levels of line pressure.

  3. Chaos in brake squeal noise

    NASA Astrophysics Data System (ADS)

    Oberst, S.; Lai, J. C. S.

    2011-02-01

    Brake squeal has become an increasing concern to the automotive industry because of warranty costs and the requirement for continued interior vehicle noise reduction. Most research has been directed to either analytical and experimental studies of brake squeal mechanisms or the prediction of brake squeal propensity using finite element methods. By comparison, there is a lack of systematic analysis of brake squeal data obtained from a noise dynamometer. It is well known that brake squeal is a nonlinear transient phenomenon and a number of studies using analytical and experimental models of brake systems (e.g., pin-on-disc) indicate that it could be treated as a chaotic phenomenon. Data obtained from a full brake system on a noise dynamometer were examined with nonlinear analysis techniques. The application of recurrence plots reveals chaotic structures even in noisy data from the squealing events. By separating the time series into different regimes, lower dimensional attractors are isolated and quantified by dynamic invariants such as correlation dimension estimates or Lyapunov exponents. Further analysis of the recurrence plot of squealing events by means of recurrence quantification analysis measures reveals different regimes of laminar and random behaviour, periodicity and chaos-forming recurrent transitions. These results help to classify brake squeal mechanisms and to enhance understanding of friction-related noise phenomena.

  4. Brake power servo booster

    SciTech Connect

    Kobayashi, M.; Shimamura, M.

    1988-04-19

    A brake power servo booster is described comprising: a power piston; a power piston return spring; at least two shells enclosing at least a portion of the power piston and defining a constant pressure chamber and a variable pressure chamber; a master cylinder for controlling the application of hydraulic pressure to a brake mechanism; an input shaft; a hollow cylindrical member integrally connected to the input shaft, a stopper member for limiting movement of the hollow cylindrical member in the second direction, a hollow output shaft integrally connected at one end thereof to the power piston; a connecting member integrally connected to the other end of the output shaft and slidably disposed inside the hollow cylindrical member, a valve member, a valve return spring for urging and valve member towards the first and second valve seats; and a key member provided between the connecting member and the hollow cylindrical member for allowing relative displacement between the connecting member and the hollow cylindrical member in the first and second directions within a predetermined range.

  5. 49 CFR 570.57 - Air brake system and air-over-hydraulic brake subsystem.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Air brake system and air-over-hydraulic brake... STANDARDS Vehicles With GVWR of More Than 10,000 Pounds § 570.57 Air brake system and air-over-hydraulic brake subsystem. The following requirements apply to vehicles with air brake and...

  6. 49 CFR 238.431 - Brake system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Brake system. 238.431 Section 238.431... Equipment § 238.431 Brake system. (a) A passenger train's brake system shall be capable of stopping the... train is operating under worst-case adhesion conditions. (b) The brake system shall be designed to...

  7. 30 CFR 57.10004 - Brakes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Brakes. 57.10004 Section 57.10004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Aerial Tramways § 57.10004 Brakes. Positive-action-type brakes and devices which apply the brakes automatically in the event of a...

  8. 30 CFR 56.10004 - Brakes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Brakes. 56.10004 Section 56.10004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Aerial Tramways § 56.10004 Brakes. Positive-action-type brakes and devices which apply the brakes automatically in the event of a...

  9. 49 CFR 229.46 - Brakes: General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Brakes: General. 229.46 Section 229.46..., DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Brake System § 229.46 Brakes: General. The carrier shall know before each trip that the locomotive brakes and devices...

  10. 30 CFR 57.19004 - Brakes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Brakes. 57.19004 Section 57.19004 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND....19004 Brakes. Any hoist used to hoist persons shall be equipped with a brake or brakes which shall...

  11. 30 CFR 56.19004 - Brakes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Brakes. 56.19004 Section 56.19004 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Brakes. Any hoist used to hoist persons shall be equipped with a brake or brakes which shall be...

  12. 30 CFR 57.10004 - Brakes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Brakes. 57.10004 Section 57.10004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Aerial Tramways § 57.10004 Brakes. Positive-action-type brakes and devices which apply the brakes automatically in the event of a...

  13. 30 CFR 57.19004 - Brakes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Brakes. 57.19004 Section 57.19004 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND....19004 Brakes. Any hoist used to hoist persons shall be equipped with a brake or brakes which shall...

  14. 30 CFR 56.10004 - Brakes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Brakes. 56.10004 Section 56.10004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Aerial Tramways § 56.10004 Brakes. Positive-action-type brakes and devices which apply the brakes automatically in the event of a...

  15. 30 CFR 56.19004 - Brakes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Brakes. 56.19004 Section 56.19004 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Brakes. Any hoist used to hoist persons shall be equipped with a brake or brakes which shall be...

  16. 30 CFR 56.10004 - Brakes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Brakes. 56.10004 Section 56.10004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Aerial Tramways § 56.10004 Brakes. Positive-action-type brakes and devices which apply the brakes automatically in the event of a...

  17. 30 CFR 56.10004 - Brakes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Brakes. 56.10004 Section 56.10004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Aerial Tramways § 56.10004 Brakes. Positive-action-type brakes and devices which apply the brakes automatically in the event of a...

  18. 49 CFR 238.431 - Brake system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Brake system. 238.431 Section 238.431... Equipment § 238.431 Brake system. (a) A passenger train's brake system shall be capable of stopping the... train is operating under worst-case adhesion conditions. (b) The brake system shall be designed to...

  19. 30 CFR 57.19004 - Brakes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Brakes. 57.19004 Section 57.19004 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND....19004 Brakes. Any hoist used to hoist persons shall be equipped with a brake or brakes which shall...

  20. 30 CFR 56.19004 - Brakes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Brakes. 56.19004 Section 56.19004 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Brakes. Any hoist used to hoist persons shall be equipped with a brake or brakes which shall be...

  1. 30 CFR 57.10004 - Brakes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Brakes. 57.10004 Section 57.10004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Aerial Tramways § 57.10004 Brakes. Positive-action-type brakes and devices which apply the brakes automatically in the event of a...

  2. 30 CFR 57.19004 - Brakes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Brakes. 57.19004 Section 57.19004 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND....19004 Brakes. Any hoist used to hoist persons shall be equipped with a brake or brakes which shall...

  3. 30 CFR 56.19004 - Brakes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Brakes. 56.19004 Section 56.19004 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Brakes. Any hoist used to hoist persons shall be equipped with a brake or brakes which shall be...

  4. 30 CFR 57.10004 - Brakes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Brakes. 57.10004 Section 57.10004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Aerial Tramways § 57.10004 Brakes. Positive-action-type brakes and devices which apply the brakes automatically in the event of a...

  5. 30 CFR 57.19004 - Brakes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Brakes. 57.19004 Section 57.19004 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND....19004 Brakes. Any hoist used to hoist persons shall be equipped with a brake or brakes which shall...

  6. 30 CFR 56.19004 - Brakes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Brakes. 56.19004 Section 56.19004 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Brakes. Any hoist used to hoist persons shall be equipped with a brake or brakes which shall be...

  7. 30 CFR 56.10004 - Brakes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Brakes. 56.10004 Section 56.10004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Aerial Tramways § 56.10004 Brakes. Positive-action-type brakes and devices which apply the brakes automatically in the event of a...

  8. 49 CFR 238.431 - Brake system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Brake system. 238.431 Section 238.431... Equipment § 238.431 Brake system. (a) A passenger train's brake system shall be capable of stopping the... train is operating under worst-case adhesion conditions. (b) The brake system shall be designed to...

  9. 49 CFR 238.431 - Brake system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Brake system. 238.431 Section 238.431... Equipment § 238.431 Brake system. (a) A passenger train's brake system shall be capable of stopping the... train is operating under worst-case adhesion conditions. (b) The brake system shall be designed to...

  10. 30 CFR 57.10004 - Brakes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Brakes. 57.10004 Section 57.10004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Aerial Tramways § 57.10004 Brakes. Positive-action-type brakes and devices which apply the brakes automatically in the event of a...

  11. Pulsar braking: magnetodipole vs. wind

    NASA Astrophysics Data System (ADS)

    Tong, Hao

    2016-01-01

    Pulsars are good clocks in the universe. One fundamental question is that why they are good clocks? This is related to the braking mechanism of pulsars. Nowadays pulsar timing is done with unprecedented accuracy. More pulsars have braking indices measured. The period derivative of intermittent pulsars and magnetars can vary by a factor of several. However, during pulsar studies, the magnetic dipole braking in vacuum is still often assumed. It is shown that the fundamental assumption of magnetic dipole braking (vacuum condition) does not exist and it is not consistent with the observations. The physical torque must consider the presence of the pulsar magnetosphere. Among various efforts, the wind braking model can explain many observations of pulsars and magnetars in a unified way. It is also consistent with the up-to-date observations. It is time for a paradigm shift in pulsar studies: from magnetic dipole braking to wind braking. As one alternative to the magnetospheric model, the fallback disk model is also discussed.

  12. Development of an Ultrasonic Brake

    NASA Astrophysics Data System (ADS)

    Koyama, Tatsuya; Takemura, Kenjiro; Maeno, Takashi

    In the present paper, a newly developed ultrasonic brake is proposed. The ultrasonic brake can solve problems of conventional passive elements, such as time delay, instability, and large size, by using unique characteristics of ultrasonic motor, as fast response, silent motion, and non-magnetic feature. It can also be designed to be smaller than conventional elements due to its simple structure. The brake locks or releases the rotor by use of ultrasonic levitation phenomenon. First, we have designed the structure of the ultrasonic brake using an equation of ultrasonic levitation phenomenon, results from structural analysis and finite element (FE) analysis of piezoelectric material of the vibrator. Then we have manufactured the ultrasonic brake and have conducted a driving experiment. Finally, we have demonstrated that the maximum levitation force is around 40 N and the friction torque of the ultrasonic brake is up to 0.38 Nm. Moreover, we have confirmed that both response time and torque/inertia ratio of the ultrasonic brake are much more superior to the conventional ones.

  13. Transient switching control strategy from regenerative braking to anti-lock braking with a semi-brake-by-wire system

    NASA Astrophysics Data System (ADS)

    Li, Liang; Li, Xujian; Wang, Xiangyu; Liu, Yahui; Song, Jian; Ran, Xu

    2016-02-01

    Regenerative braking is an important technology in improving fuel economy of an electric vehicle (EV). However, additional motor braking will change the dynamic characteristics of the vehicle, leading to braking instability, especially when the anti-lock braking system (ABS) is triggered. In this paper, a novel semi-brake-by-wire system, without the use of a pedal simulator and fail-safe device, is proposed. In order to compensate for the hysteretic characteristics of the designed brake system while ensure braking reliability and fuel economy when the ABS is triggered, a novel switching compensation control strategy using sliding mode control is brought forward. The proposed strategy converts the complex coupling braking process into independent control of hydraulic braking and regenerative braking, through which a balance between braking performance, braking reliability, braking safety and fuel economy is achieved. Simulation results show that the proposed strategy is effective and adaptable in different road conditions while the large wheel slip rate is triggered during a regenerative braking course. The research provides a new possibility of low-cost equipment and better control performance for the regenerative braking in the EV and the hybrid EV.

  14. Regenerative braking device

    DOEpatents

    Hoppie, Lyle O.

    1982-01-12

    Disclosed are several embodiments of a regenerative braking device for an automotive vehicle. The device includes a plurality of rubber rollers (24, 26) mounted for rotation between an input shaft (14) connectable to the vehicle drivetrain and an output shaft (16) which is drivingly connected to the input shaft by a variable ratio transmission (20). When the transmission ratio is such that the input shaft rotates faster than the output shaft, the rubber rollers are torsionally stressed to accumulate energy, thereby slowing the vehicle. When the transmission ratio is such that the output shaft rotates faster than the input shaft, the rubber rollers are torsionally relaxed to deliver accumulated energy, thereby accelerating or driving the vehicle.

  15. Brake Stops Both Rotation And Translation

    NASA Technical Reports Server (NTRS)

    Allred, Johnny W.; Fleck, Vincent J., Jr.

    1995-01-01

    Combination of braking and positioning mechanisms allows both rotation and translation before brake engaged. Designed for use in positioning model airplane in wind tunnel. Modified version used to position camera on tripod. Brake fast and convenient to use; contains single actuator energizing braking actions against both rotation and translation. Braking actuator electric, but pneumatic actuator could be used instead. Compact and lightweight, applies locking forces close to load, and presents minimal cross section to airflow.

  16. Wheel brakes and their application to aircraft

    NASA Technical Reports Server (NTRS)

    Dowty, G H

    1928-01-01

    The advantages to be gained from braking have not been ignored, and in the search for a suitable method many schemes have been suggested and tried. Some of the methods discussed in this paper include: 1) increasing the height of the landing gear; 2) air brakes of various forms; 3) sprags on tail skid and axle; and 4) wheel brakes. This report focuses on the design of wheel brakes and wheel brake controls.

  17. Prosthetic leg powered by MR brake and SMA wires

    NASA Astrophysics Data System (ADS)

    Nguyen, The; Munguia, Vicente; Calderon, Jose

    2014-04-01

    Current knee designs for prosthetic legs rely on electric motors for both moving and stationary states. The electric motors draw an especially high level of current to sustain a fixed position. The advantage of using magnetorheological (MR) fluid is that it requires less current and can have a variable braking torque. Besides, the proposed prosthetic leg is actuated by NiTinol wire, a popular shape memory alloy (SMA). The incorporation of NiTinol gives the leg more realistic weight distribution with appropriate arrangement of the batteries and wires. The prosthesis in this research was designed with MR brake as stopping component and SMA wire network as actuating component at the knee. The MR brake was designed with novel non-circular shape for the rotor that improved the braking torque while minimizing the power consumption. The design also helped simplify the control of braking process. The SMA wire network was design so that the knee motion was actively rotated in both directions. The SMA wires were arranged and played very similar role as the leg's muscles. The study started with the overall solid design of the knee including both MR and SMA parts. Theoretical models were derived and programmed in Simulink for both components. The simulation was capable of predicting the power required for moving the leg or hold it in a fixed position for a certain amount of time. Subsequently, the design was prototyped and tested to validate the theoretical prediction. The theoretical models were updated accordingly to correlate with the experimental data.

  18. Variable ratio regenerative braking device

    DOEpatents

    Hoppie, Lyle O.

    1981-12-15

    Disclosed is a regenerative braking device (10) for an automotive vehicle. The device includes an energy storage assembly (12) having a plurality of rubber rollers (26, 28) mounted for rotation between an input shaft (36) and an output shaft (42), clutches (38, 46) and brakes (40, 48) associated with each shaft, and a continuously variable transmission (22) connectable to a vehicle drivetrain and to the input and output shafts by the respective clutches. The rubber rollers are torsionally stressed to accumulate energy from the vehicle when the input shaft is clutched to the transmission while the brake on the output shaft is applied, and are torsionally relaxed to deliver energy to the vehicle when the output shaft is clutched to the transmission while the brake on the input shaft is applied. The transmission ratio is varied to control the rate of energy accumulation and delivery for a given rotational speed of the vehicle drivetrain.

  19. Slowly braked, rotating neutron stars

    NASA Technical Reports Server (NTRS)

    Sato, H.

    1975-01-01

    A slowly braked, rotating neutron star is believed to be a star which rapidly rotates, has no nebula, is nonpulsing, and has a long initial braking time of ten thousand to a million years because of a low magnetic field. Such an object might be observable as an extended weak source of infrared or radio wave radiation due to the scattering of low-frequency strong-wave photons by accelerated electrons. If these objects exist abundantly in the Galaxy, they would act as sources of relatively low-energy cosmic rays. Pulsars (rapidly braked neutron stars) are shown to have difficulties in providing an adequate amount of cosmic-ray matter, making these new sources seem necessary. The possibility that the acceleration mechanism around a slowly braked star may be not a direct acceleration by the strong wave but an acceleration due to plasma turbulence excited by the strong wave is briefly explored. It is shown that white dwarfs may also be slowly braked stars with braking times longer than 3.15 million years.

  20. Braking the Gas in the β Pictoris Disk

    NASA Astrophysics Data System (ADS)

    Fernández, Rodrigo; Brandeker, Alexis; Wu, Yanqin

    2006-05-01

    The star β Pictoris hosts the best studied circumstellar disk to date. Nonetheless, a long-standing puzzle has been around since the detection of metallic gas in the disk: radiation pressure from the star should blow the gas away, yet the observed motion is consistent with Keplerian rotation. In this work we search for braking mechanisms that can resolve this discrepancy. We find that all species affected by radiation force are largely ionized and dynamically coupled into a single fluid by Coulomb collisions, reducing the radiation force on species feeling the strongest acceleration. For a gas of solar composition, the effective radiation force still exceeds gravity, while a gas of enhanced carbon abundance could be self-braking. We also explore two other braking agents: collisions with dust grains and neutral gas. Grains surrounding β Pic are photoelectrically charged to a positive electrostatic potential. If a significant fraction of the grains are carbonaceous (10% in the midplane and larger at higher altitudes), ions can be slowed down to satisfy the observed velocity constraints. For neutral gas to brake the ion fluid, we find a minimum required mass ~0.03 M⊕, consistent with observed upper limits on the hydrogen column density and substantially reduced relative to previous estimates. Our results favor a scenario in which metallic gas is generated by grain evaporation in the disk, perhaps during grain-grain collisions. We exclude a primordial origin for the gas but cannot rule out its production by falling evaporating bodies near the star.

  1. Compression relief engine brake

    SciTech Connect

    Meneely, V.A.

    1987-10-06

    A compression relief brake is described for four cycle internal-combustion engines, comprising: a pressurized oil supply; means for selectively pressurizing a hydraulic circuit with oil from the oil supply; a master piston and cylinder communicating with a slave piston and cylinder via the hydraulic circuit; an engine exhaust valve mechanically coupled to the engine and timed to open during the exhaust cycle of the engine the exhaust valve coupled to the slave piston. The exhaust valve is spring-based in a closed state to contact a valve seat; a sleeve frictionally and slidably disposed within a cavity defined by the slave piston which cavity communicates with the hydraulic circuit. When the hydraulic circuit is selectively pressurized and the engine is operating the sleeve entraps an incompressible volume of oil within the cavity to generate a displacement of the slave piston within the slave cylinder, whereby a first gap is maintained between the exhaust valve and its associated seat; and means for reciprocally activating the master piston for increasing the pressure within the previously pressurized hydraulic circuit during at least a portion of the expansion cycle of the engine whereby a second gap is reciprocally maintained between the exhaust valve and its associated seat.

  2. 49 CFR 393.44 - Front brake lines, protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Front brake lines, protection. 393.44 Section 393... ACCESSORIES NECESSARY FOR SAFE OPERATION Brakes § 393.44 Front brake lines, protection. On every bus, if equipped with air brakes, the braking system shall be so constructed that in the event any brake line...

  3. 49 CFR 393.44 - Front brake lines, protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 5 2012-10-01 2012-10-01 false Front brake lines, protection. 393.44 Section 393... ACCESSORIES NECESSARY FOR SAFE OPERATION Brakes § 393.44 Front brake lines, protection. On every bus, if equipped with air brakes, the braking system shall be so constructed that in the event any brake line...

  4. 49 CFR 393.44 - Front brake lines, protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 5 2013-10-01 2013-10-01 false Front brake lines, protection. 393.44 Section 393... ACCESSORIES NECESSARY FOR SAFE OPERATION Brakes § 393.44 Front brake lines, protection. On every bus, if equipped with air brakes, the braking system shall be so constructed that in the event any brake line...

  5. 49 CFR 393.44 - Front brake lines, protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 5 2014-10-01 2014-10-01 false Front brake lines, protection. 393.44 Section 393... ACCESSORIES NECESSARY FOR SAFE OPERATION Brakes § 393.44 Front brake lines, protection. On every bus, if equipped with air brakes, the braking system shall be so constructed that in the event any brake line...

  6. 49 CFR 393.44 - Front brake lines, protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false Front brake lines, protection. 393.44 Section 393... ACCESSORIES NECESSARY FOR SAFE OPERATION Brakes § 393.44 Front brake lines, protection. On every bus, if equipped with air brakes, the braking system shall be so constructed that in the event any brake line...

  7. 49 CFR 236.508 - Interference with application of brakes by means of brake valve.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Interference with application of brakes by means of brake valve. 236.508 Section 236.508 Transportation Other Regulations Relating to Transportation... Interference with application of brakes by means of brake valve. The automatic train stop, train control,...

  8. 49 CFR 236.508 - Interference with application of brakes by means of brake valve.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Interference with application of brakes by means of brake valve. 236.508 Section 236.508 Transportation Other Regulations Relating to Transportation... Interference with application of brakes by means of brake valve. The automatic train stop, train control,...

  9. 49 CFR 236.508 - Interference with application of brakes by means of brake valve.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Interference with application of brakes by means of brake valve. 236.508 Section 236.508 Transportation Other Regulations Relating to Transportation... Interference with application of brakes by means of brake valve. The automatic train stop, train control,...

  10. 49 CFR 236.508 - Interference with application of brakes by means of brake valve.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Interference with application of brakes by means of brake valve. 236.508 Section 236.508 Transportation Other Regulations Relating to Transportation... Interference with application of brakes by means of brake valve. The automatic train stop, train control,...

  11. 49 CFR 236.508 - Interference with application of brakes by means of brake valve.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Interference with application of brakes by means of brake valve. 236.508 Section 236.508 Transportation Other Regulations Relating to Transportation... Interference with application of brakes by means of brake valve. The automatic train stop, train control,...

  12. 14 CFR 27.735 - Brakes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Landing Gear § 27.735 Brakes. For rotorcraft with wheel-type landing gear, a braking device must be installed that is— (a) Controllable by the...

  13. 14 CFR 29.735 - Brakes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Landing Gear § 29.735 Brakes. For rotorcraft with wheel-type landing gear, a braking device must be installed that is— (a) Controllable by...

  14. 14 CFR 29.735 - Brakes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Landing Gear § 29.735 Brakes. For rotorcraft with wheel-type landing gear, a braking device must be installed that is— (a) Controllable by...

  15. 14 CFR 27.735 - Brakes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Landing Gear § 27.735 Brakes. For rotorcraft with wheel-type landing gear, a braking device must be installed that is— (a) Controllable by the...

  16. A Demonstration of Car Braking Instabilities.

    ERIC Educational Resources Information Center

    Irwin, Jack; Swinson, Derek

    1990-01-01

    Detailed are the construction of a demonstration car, apparatus and procedures used in the demonstration, and the analysis of the effects of car braking. The cases of rear-wheel and front-wheel braking are considered. (CW)

  17. 49 CFR 238.231 - Brake system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... location so that nothing may interfere with the air flow to brake cylinder and inspected pursuant to the... reservoirs must be voided of all compressed air. When cutout cocks are provided in brake cylinder...

  18. 49 CFR 238.231 - Brake system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... location so that nothing may interfere with the air flow to brake cylinder and inspected pursuant to the... reservoirs must be voided of all compressed air. When cutout cocks are provided in brake cylinder...

  19. Friction brake cushions acceleration and vibration loads

    NASA Technical Reports Server (NTRS)

    Fraser, G. F.; Zawadski, G. Z.

    1966-01-01

    Friction brake cushions an object in a vehicle from axially applied vibration and steady-state acceleration forces. The brake incorporates a doubly tapered piston that applies a controlled radial force to friction brake segments bearing against the walls of a cylinder.

  20. 49 CFR 238.431 - Brake system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... train from its maximum operating speed within the signal spacing existing on the track over which the... to initiate an emergency brake application need only be provided at one location in the unit. (d) The... speed for safe operation of the train using only the friction brake portion of the blended brake with...

  1. 49 CFR 229.53 - Brake gauges.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Brake gauges. 229.53 Section 229.53 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Brake System § 229.53 Brake gauges....

  2. 30 CFR 36.29 - Brakes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Brakes. 36.29 Section 36.29 Mineral Resources... and Design Requirements § 36.29 Brakes. All mobile diesel-powered transportation equipment shall be equipped with adequate brakes acceptable to MSHA....

  3. Compact, Lightweight Servo-Controllable Brakes

    NASA Technical Reports Server (NTRS)

    Lovchik, Christopher S.; Townsend, William; Guertin, Jeffrey; Matsuoka, Yoky

    2010-01-01

    Compact, lightweight servo-controllable brakes capable of high torques are being developed for incorporation into robot joints. A brake of this type is based partly on the capstan effect of tension elements. In a brake of the type under development, a controllable intermediate state of torque is reached through on/off switching at a high frequency.

  4. 49 CFR 229.46 - Brakes: general.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Brakes: general. 229.46 Section 229.46 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Brake System § 229.46 Brakes: general. (a) Before each trip,...

  5. 49 CFR 229.46 - Brakes: General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Brakes: General. 229.46 Section 229.46 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Brake System § 229.46 Brakes: General. The carrier shall know...

  6. 49 CFR 236.712 - Brake pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Brake pipe. 236.712 Section 236.712 Transportation... OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.712 Brake pipe. A pipe running from the engineman's brake valve through the train, used for the transmission of air...

  7. 49 CFR 229.53 - Brake gauges.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Brake gauges. 229.53 Section 229.53 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Brake System § 229.53 Brake gauges....

  8. 30 CFR 36.29 - Brakes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Brakes. 36.29 Section 36.29 Mineral Resources... and Design Requirements § 36.29 Brakes. All mobile diesel-powered transportation equipment shall be equipped with adequate brakes acceptable to MSHA....

  9. 30 CFR 36.29 - Brakes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Brakes. 36.29 Section 36.29 Mineral Resources... and Design Requirements § 36.29 Brakes. All mobile diesel-powered transportation equipment shall be equipped with adequate brakes acceptable to MSHA....

  10. 30 CFR 36.29 - Brakes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Brakes. 36.29 Section 36.29 Mineral Resources... and Design Requirements § 36.29 Brakes. All mobile diesel-powered transportation equipment shall be equipped with adequate brakes acceptable to MSHA....

  11. 49 CFR 236.712 - Brake pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Brake pipe. 236.712 Section 236.712 Transportation... OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.712 Brake pipe. A pipe running from the engineman's brake valve through the train, used for the transmission of air...

  12. 30 CFR 36.29 - Brakes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Brakes. 36.29 Section 36.29 Mineral Resources... and Design Requirements § 36.29 Brakes. All mobile diesel-powered transportation equipment shall be equipped with adequate brakes acceptable to MSHA....

  13. 49 CFR 229.53 - Brake gauges.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Brake gauges. 229.53 Section 229.53 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Brake System § 229.53 Brake gauges....

  14. 49 CFR 236.712 - Brake pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Brake pipe. 236.712 Section 236.712 Transportation... OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.712 Brake pipe. A pipe running from the engineman's brake valve through the train, used for the transmission of air...

  15. 49 CFR 229.53 - Brake gauges.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Brake gauges. 229.53 Section 229.53 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Brake System § 229.53 Brake gauges....

  16. 49 CFR 229.53 - Brake gauges.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Brake gauges. 229.53 Section 229.53 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Brake System § 229.53 Brake gauges....

  17. 49 CFR 236.712 - Brake pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Brake pipe. 236.712 Section 236.712 Transportation... OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.712 Brake pipe. A pipe running from the engineman's brake valve through the train, used for the transmission of air...

  18. 49 CFR 229.46 - Brakes: general.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Brakes: general. 229.46 Section 229.46..., DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Brake System § 229.46 Brakes: general. (a) Before each trip, the railroad shall know the following: (1) The locomotive...

  19. Cycling and wind: does sidewind brake?

    NASA Astrophysics Data System (ADS)

    Íñiguez-de-la-Torre, I.; Íñiguez, J.

    2006-01-01

    It is well established that the presence of wind is crucial for the practice of numerous outdoor sports. Among them, the case of cycling competition is especially important because the speeds that are developed are perfectly comparable with moderate or strong winds, giving rise to great variability in race times. Conversely, the sidewind seems to behave as neutral in the race, and nevertheless all the cyclists know the difficulties that it causes. In this brief paper we show that the sidewind also produces an appreciable braking as a consequence of the quadratic dependence of the aerodynamic drag force on the air speed. Our work presents an interesting problem of mechanics and physics of fluids, which may be suitable as a task for intermediate level students in university courses.

  20. Evaluation of Corrosion Failure in Tractor-Trailer Brake System

    SciTech Connect

    Wilson, DF

    2002-10-22

    As reported to ORNL, concomitant with the introduction of different deicing and anti-icing compounds, there was an increase in the brake failure rate of tractor-trailer trucks. A forensic evaluation of a failed brake system was performed. Optical and scanning electron microscopic evaluation showed corrosion to be mostly confined to the brake table/lining interface. The corrosion is non-uniform as is to be expected for plain carbon steel in chloride environments. This initial analysis found no evidence for the chlorides of calcium and magnesium, which are the newly introduced deicing and antiicing compounds and are less soluble in water than the identified chlorides of sodium and potassium, in the scale. The result could be as a result of non-exposure of the examined brake table to calcium and magnesium chloride. The mechanisms for the increased failure rate are postulated as being an increased rate of corrosion due to positive shifts in the corrosion potential, and an increased amount of corrosion due to an increased ''time of wetness'' that results from the presence of hygroscopic salts. Laboratory scale evaluation of the corrosion of plain carbon steel in simulated deicing and anti-icing solutions need to be performed to determine corrosion rates and morphological development of corrosion product, to compare laboratory data to in-service data, and to rank economically feasible replacement materials for low carbon steel. In addition, the mechanical behavior of the lining attached to the brake shoe table needs to be assessed. It is opined that an appropriate adjustment of materials could easily allow for a doubling of a brake table/lining lifetime. Suggestions for additional work, to clarify the mechanisms of rust jacking and to develop possible solutions, are described.

  1. Design and evaluation of a novel magnetorheological brake with coils placed on the side housings

    NASA Astrophysics Data System (ADS)

    Nguyen, Quoc Hung; Diep Nguyen, Ngoc; Bok Choi, Seung

    2015-04-01

    In the design of a traditional magnetorheological brake (MRB), coils are often placed on the cylindrical housing of the brake. This results in many disadvantages such as a ‘bottle-neck’ problem of magnetic flux. Moreover, in this design a nonmagnetic bobbin is required, and difficulties in manufacturing and maintenance exist. In order to resolve this problem, in this study a new configuration of MRB with coils placed on the side housings of the brake is proposed, optimally designed and experimentally evaluated. After describing an introduction of the proposed configuration, braking torque of the MRB is analyzed based on the Bingham-plastic rheological model of magnetorheological fluid (MRF). The optimization of the proposed and conventional MRBs is then performed considering maximum braking torque and mass of the brakes. In the optimization, both rectangular and polygonal shapes of the brake housing are considered. Based on the optimal results, a comparison of the performance characteristics of the proposed MRB and the conventional one is undertaken. In addition, an experimental test of the MRBs is conducted, and the results are presented in order to validate the performance characteristics of the proposed MRB.

  2. Bidirectional drive and brake mechanism

    NASA Technical Reports Server (NTRS)

    Swan, Scott A. (Inventor)

    1991-01-01

    A space transport vehicle is disclosed as including a body which is arranged to be movably mounted on an elongated guide member disposed in outer space and driven therealong. A drive wheel is mounted on a drive shaft and arranged to be positioned in rolling engagement with the elongated guide carrying the vehicle. A brake member is arranged on the drive shaft for movement into and out of engagement with an adjacent surface of the drive wheel. An actuator is mounted on the body to be manually moved back and forth between spaced positions in an arc of movement. A ratchet-and-pawl mechanism is arranged to operate upon movements of the actuator in one direction between first and second positions for coupling the actuator to the drive wheel to incrementally rotate the wheel in one rotational direction and to operate upon movements of the actuator in the opposite direction for uncoupling the actuator from the wheel. The brake member is threadedly coupled to the drive shaft in order that the brake member will be operated only when the actuator is moved on beyond its first and second positions for shifting the brake member along the drive shaft and into frictional engagement with the adjacent surface on the drive wheel.

  3. Brake blending strategy for a hybrid vehicle

    DOEpatents

    Boberg, Evan S.

    2000-12-05

    A hybrid electric powertrain system is provided including a transmission for driving a pair of wheels of a vehicle and a heat engine and an electric motor/generator coupled to the transmission. A friction brake system is provided for applying a braking torque to said vehicle. A controller unit generates control signals to the electric motor/generator and the friction brake system for controllably braking the vehicle in response to a drivers brake command. The controller unit determines and amount of regenerative torque available and compares this value to a determined amount of brake torque requested for determining the control signals to the electric motor/generator and the friction brake system.

  4. Fuel cell assembly unit for promoting fluid service and electrical conductivity

    DOEpatents

    Jones, Daniel O.

    1999-01-01

    Fluid service and/or electrical conductivity for a fuel cell assembly is promoted. Open-faced flow channel(s) are formed in a flow field plate face, and extend in the flow field plate face between entry and exit fluid manifolds. A resilient gas diffusion layer is located between the flow field plate face and a membrane electrode assembly, fluidly serviced with the open-faced flow channel(s). The resilient gas diffusion layer is restrained against entering the open-faced flow channel(s) under a compressive force applied to the fuel cell assembly. In particular, a first side of a support member abuts the flow field plate face, and a second side of the support member abuts the resilient gas diffusion layer. The support member is formed with a plurality of openings extending between the first and second sides of the support member. In addition, a clamping pressure is maintained for an interface between the resilient gas diffusion layer and a portion of the membrane electrode assembly. Preferably, the support member is spikeless and/or substantially flat. Further, the support member is formed with an electrical path for conducting current between the resilient gas diffusion layer and position(s) on the flow field plate face.

  5. Titanium-alloy, metallic-fluid heat pipes for space service

    NASA Technical Reports Server (NTRS)

    Morris, J. F.

    1979-01-01

    Reactivities of titanium limit its long-term terrestrial use for unprotected heat-pipe envelopes to about 870 K (1100 F). But this external thermochemical limitation disappears when considerations shift to space applications. In such hard-vacuum utilization much higher operating temperatures are possible. Primary restrictions in space environment result from vaporization, thermal creep, and internal compatibilities. Unfortunately, a respected head-pipe reference indicates that titanium is compatible only with cesium from the alkali-metal working-fluid family. This problem and others are subjects of the present paper which advocates titanium-alloy, metallic-fluid heat pipes for long-lived, weight-effective space service between 500 and 1300 K (440 and 1880 F).

  6. 49 CFR 230.77 - Foundation brake gear.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Foundation brake gear. 230.77 Section 230.77... Tenders Brake and Signal Equipment § 230.77 Foundation brake gear. (a) Maintenance. Foundation brake gear...) Distance above the rails. No part of the foundation brake gear of the steam locomotive or tender shall...

  7. 49 CFR 230.77 - Foundation brake gear.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Foundation brake gear. 230.77 Section 230.77... Tenders Brake and Signal Equipment § 230.77 Foundation brake gear. (a) Maintenance. Foundation brake gear...) Distance above the rails. No part of the foundation brake gear of the steam locomotive or tender shall...

  8. 49 CFR 230.77 - Foundation brake gear.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Foundation brake gear. 230.77 Section 230.77... Tenders Brake and Signal Equipment § 230.77 Foundation brake gear. (a) Maintenance. Foundation brake gear...) Distance above the rails. No part of the foundation brake gear of the steam locomotive or tender shall...

  9. 49 CFR 230.77 - Foundation brake gear.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Foundation brake gear. 230.77 Section 230.77... Tenders Brake and Signal Equipment § 230.77 Foundation brake gear. (a) Maintenance. Foundation brake gear...) Distance above the rails. No part of the foundation brake gear of the steam locomotive or tender shall...

  10. 49 CFR 570.55 - Hydraulic brake system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Hydraulic brake system. 570.55 Section 570.55... 10,000 Pounds § 570.55 Hydraulic brake system. The following requirements apply to vehicles with hydraulic brake systems. (a) Brake system failure indicator. The hydraulic brake system failure...

  11. 49 CFR 393.49 - Control valves for brakes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 5 2014-10-01 2014-10-01 false Control valves for brakes. 393.49 Section 393.49... NECESSARY FOR SAFE OPERATION Brakes § 393.49 Control valves for brakes. (a) General rule. Except as provided..., which is equipped with power brakes, must have the braking system so arranged that one application...

  12. 49 CFR 393.49 - Control valves for brakes.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 5 2012-10-01 2012-10-01 false Control valves for brakes. 393.49 Section 393.49... NECESSARY FOR SAFE OPERATION Brakes § 393.49 Control valves for brakes. (a) General rule. Except as provided..., which is equipped with power brakes, must have the braking system so arranged that one application...

  13. 49 CFR 393.49 - Control valves for brakes.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 5 2013-10-01 2013-10-01 false Control valves for brakes. 393.49 Section 393.49... NECESSARY FOR SAFE OPERATION Brakes § 393.49 Control valves for brakes. (a) General rule. Except as provided..., which is equipped with power brakes, must have the braking system so arranged that one application...

  14. Space shuttle wheels and brakes

    NASA Technical Reports Server (NTRS)

    Carsley, R. B.

    1985-01-01

    The Space Shuttle Orbiter wheels were subjected to a combination of tests which are different than any previously conducted in the aerospace industry. The major testing difference is the computer generated dynamic landing profiles used during the certification process which subjected the wheels and tires to simulated landing loading conditions. The orbiter brakes use a unique combination of carbon composite linings and beryllium heat sink to minimize weight. The development of a new lining retention method was necessary in order to withstand the high temperature generated during the braking roll. As with many programs, the volume into which this hardware had to fit was established early in the program, with no provisions made for growth to offset the continuously increasing predicted orbiter landing weight.

  15. Falling Magnets and Electromagnetic Braking

    NASA Astrophysics Data System (ADS)

    Culbreath, Christopher; Palffy-Muhoray, Peter

    2009-03-01

    The slow fall of a rare earth magnet through a copper pipe is a striking example of electromagnetic braking; this remarkable phenomenon has been the subject of a number of scientific paper s [1, 2]. In a pipe having radius R and wall thickness D, the terminal velocity of the falling magnet is proportional to (R̂4)/D. It is interesting to ask what happens in the limit as D becomes very large. We report our experimental observations and theoretical predictions of the dependence of the terminal velocity on pipe radius R for large D. [1] Y. Levin, F.L. da Silveira, and F.B. Rizzato, ``Electromagnetic braking: A simple quantitative model''. American Journal of Physics, 74(9): p. 815-817 (2006). [2] J.A. Pelesko, M. Cesky, and S. Huertas, Lenz's law and dimensional analysis. American Journal of Physics, 3(1): p. 37-39. 2005.

  16. Electromagnetic braking for Mars spacecraft

    NASA Technical Reports Server (NTRS)

    Holt, A. C.

    1986-01-01

    Aerobraking concepts are being studied to improve performance and cost effectiveness of propulsion systems for Mars landers and Mars interplanetary spacecraft. Access to megawatt power levels (nuclear power coupled to high-storage inductive or capacitive devices) on a manned Mars interplanetary spacecraft may make feasible electromagnetic braking and lift modulation techniques which were previously impractical. Using pulsed microwave and magnetic field technology, potential plasmadynamic braking and hydromagnetic lift modulation techniques have been identified. Entry corridor modulation to reduce loads and heating, to reduce vertical descent rates, and to expand horizontal and lateral landing ranges are possible benefits. In-depth studies are needed to identify specific design concepts for feasibility assessments. Standing wave/plasma sheath interaction techniques appear to be promising. The techniques may require some tailoring of spacecraft external structures and materials. In addition, rapid response guidance and control systems may require the use of structurally embedded sensors coupled to expert systems or to artificial intelligence systems.

  17. What brakes the Crab pulsar?

    NASA Astrophysics Data System (ADS)

    Čadež, A.; Zampieri, L.; Barbieri, C.; Calvani, M.; Naletto, G.; Barbieri, M.; Ponikvar, D.

    2016-03-01

    Context. Optical observations provide convincing evidence that the optical phase of the Crab pulsar follows the radio one closely. Since optical data do not depend on dispersion measure variations, they provide a robust and independent confirmation of the radio timing solution. Aims: The aim of this paper is to find a global mathematical description of Crab pulsar's phase as a function of time for the complete set of published Jodrell Bank radio ephemerides (JBE) in the period 1988-2014. Methods: We apply the mathematical techniques developed for analyzing optical observations to the analysis of JBE. We break the whole period into a series of episodes and express the phase of the pulsar in each episode as the sum of two analytical functions. The first function is the best-fitting local braking index law, and the second function represents small residuals from this law with an amplitude of only a few turns, which rapidly relaxes to the local braking index law. Results: From our analysis, we demonstrate that the power law index undergoes "instantaneous" changes at the time of observed jumps in rotational frequency (glitches). We find that the phase evolution of the Crab pulsar is dominated by a series of constant braking law episodes, with the braking index changing abruptly after each episode in the range of values between 2.1 and 2.6. Deviations from such a regular phase description behave as oscillations triggered by glitches and amount to fewer than 40 turns during the above period, in which the pulsar has made more than 2 × 1010 turns. Conclusions: Our analysis does not favor the explanation that glitches are connected to phenomena occurring in the interior of the pulsar. On the contrary, timing irregularities and changes in slow down rate seem to point to electromagnetic interaction of the pulsar with the surrounding environment.

  18. 49 CFR 570.56 - Vacuum brake assist unit and vacuum brake system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... vacuum brakes shall operate in conjunction with the truck or truck tractor brake pedal. (2) Inspection procedure. (i) Check the trailer vacuum system by coupling trailer(s) to truck or truck tractor and...

  19. PREDICTING RANGES FOR PULSARS' BRAKING INDICES

    SciTech Connect

    Magalhaes, Nadja S.; Miranda, Thaysa A.; Frajuca, Carlos

    2012-08-10

    The theoretical determination of braking indices of pulsars is still an open problem. In this paper we report results of a study concerning such determination based on a modification of the canonical model, which admits that pulsars are rotating magnetic dipoles, and on data from the seven pulsars with known braking indices. In order to test the modified model, we predict ranges for the braking indices of other pulsars.

  20. Dynamics of Braking Vehicles: From Coulomb Friction to Anti-Lock Braking Systems

    ERIC Educational Resources Information Center

    Tavares, J. M.

    2009-01-01

    The dynamics of braking of wheeled vehicles is studied using the Coulomb approximation for the friction between road and wheels. The dependence of the stopping distance on the mass of the vehicle, on the number of its wheels and on the intensity of the braking torque is established. It is shown that there are two regimes of braking, with and…

  1. Bidirectional Drive-And-Brake Mechanism

    NASA Technical Reports Server (NTRS)

    Swan, Scott A.

    1991-01-01

    Vehicle that crawls along monorail combines features of both bicycle and railroad handcar. Bidirectional drive-and-brake mechanism includes selectable-pawl-and-ratchet overrunning clutch (drive mechanism) and mating stationary and rotating conical surfaces pressing against each other (brake mechanism). Operates similarly to bicycle drive-and-brake mechanism except limits rotation of sprocket in both directions and brakes at both limits. Conceived for use by astronaut traveling along structure in outer space, concept also applied on Earth to make very small railraod handcars or crawling vehicles for use on large structures, in pipelines under construction, or underwater.

  2. 49 CFR 393.43 - Breakaway and emergency braking.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., separate. (c) Emergency brake requirements, vacuum brakes. Every truck tractor and truck when used for towing other vehicles equipped with vacuum brakes, shall have, in addition to the single control...

  3. Design of a new MR brake mount system considering vertical and horizontal vibrations

    NASA Astrophysics Data System (ADS)

    Do, Xuan Phu; Quoc Hung, Nguyen; Park, Joon Hee; Choi, Seung-Bok

    2014-03-01

    In this paper, a new type of magnetorheological fluid (MRF) mount is proposed. This design is based on the well-known of two modes of MRF such as flow mode and shear mode. These modes are applied in the design which includes two components: MR mount for controlling vertical vibrations, and MR brake for controlling horizontal vibrations. The structure of MR valve is applied in design mount part, while the disk type of structure is employed in design brake part. These structures contribute to the initial requirements such as small structure, high damping force and high braking force. The theoretical analysis for the design is undertaken followed by design optimization using ANSYS ADPL software. The objective functions are concentrated on maximal damping force for MR mount and maximum braking force for MR brake. As traditional design, rubber mount is used in the proposed design for suffering static loads. It has been shown through computer simulation that the initial requirements with high damping force and high braking force have been successfully achieved.

  4. Research on Heat-Mechanical Coupling of Ventilated Disc Brakes under the Condition of Emergency Braking

    NASA Astrophysics Data System (ADS)

    Tan, Xuelong; Zhang, Jian; Tang, Wenxian; Zhang, Yang

    Taking the ventilated disc brake in some company as research object, and using UG to build 3D models of brake disc and pad, and making use of ABAQUS/Standard to set up two parts' finite element model, via the decelerated motion of actual simulation brake disc, which gets ventilated disc brake in the case of emergency breaking in time and space distribution of conditions of temperature and stress field, summarizes the distribution of temperature field and stress field, proves complex coupling between temperature, stress, and supplies the direct basis for brake's fatigue life analysis.

  5. Braking index of isolated pulsars

    NASA Astrophysics Data System (ADS)

    Hamil, O.; Stone, J. R.; Urbanec, M.; Urbancová, G.

    2015-03-01

    Isolated pulsars are rotating neutron stars with accurately measured angular velocities Ω , and their time derivatives that show unambiguously that the pulsars are slowing down. Although the exact mechanism of the spin-down is a question of detailed debate, the commonly accepted view is that it arises through emission of magnetic dipole radiation (MDR) from a rotating magnetized body. Other processes, including the emission of gravitational radiation, and of relativistic particles (pulsar wind), are also being considered. The calculated energy loss by a rotating pulsar with a constant moment of inertia is assumed proportional to a model dependent power of Ω . This relation leads to the power law Ω ˙ =-K Ωn where n is called the braking index. The MDR model predicts n exactly equal to 3. Selected observations of isolated pulsars provide rather precise values of n , individually accurate to a few percent or better, in the range 1 braking index within the MDR model. Four microscopic equations of state are employed as input to two different computational codes that solve Einstein's equations numerically, either exactly or using the perturbative Hartle-Thorne method, to calculate the

  6. Landing and Braking of Airplanes

    NASA Technical Reports Server (NTRS)

    Breguet, Louis

    1929-01-01

    In the numerical examples, we have considered an airplane landing in calm air in a fixed direction after crossing the border (with its obstacles) at a height of 30 m. Its stopping point is at a distance D from the obstacle, comprising: a distance D(sub 1) in regular gliding flight; a distance D(sub 2) in levelling off; a distance D(sub 3) in taxying on the ground. The calculations enable us to make out the following table, which gives an idea of the improvements to be expected in the use of various possible methods of braking in the air and on the ground.

  7. 14 CFR 25.507 - Reversed braking.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Reversed braking. 25.507 Section 25.507 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Ground Loads § 25.507 Reversed braking. (a) The airplane must be in a three point static...

  8. 14 CFR 25.507 - Reversed braking.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Reversed braking. 25.507 Section 25.507 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Ground Loads § 25.507 Reversed braking. (a) The airplane must be in a three point static...

  9. 14 CFR 25.507 - Reversed braking.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Reversed braking. 25.507 Section 25.507 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Ground Loads § 25.507 Reversed braking. (a) The airplane must be in a three point static...

  10. 14 CFR 25.507 - Reversed braking.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Reversed braking. 25.507 Section 25.507 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Ground Loads § 25.507 Reversed braking. (a) The airplane must be in a three point static...

  11. 14 CFR 25.507 - Reversed braking.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Reversed braking. 25.507 Section 25.507 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Ground Loads § 25.507 Reversed braking. (a) The airplane must be in a three point static...

  12. 14 CFR 27.921 - Rotor brake.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rotor brake. 27.921 Section 27.921... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 27.921 Rotor brake. If there is a means to control the rotation of the rotor drive system independently of the engine, any limitations...

  13. 14 CFR 29.921 - Rotor brake.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rotor brake. 29.921 Section 29.921... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 29.921 Rotor brake. If there is a means to control the rotation of the rotor drive system independently of the engine, any limitations...

  14. Air brake-dynamometer accurately measures torque

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Air brake-dynamometer assembly combines the principles of the air turbine and the air pump to apply braking torque. The assembly absorbs and measures power outputs of rotating machinery over a wide range of shaft speeds. It can also be used as an air turbine.

  15. 49 CFR 393.52 - Brake performance.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 5 2013-10-01 2013-10-01 false Brake performance. 393.52 Section 393.52 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS PARTS AND ACCESSORIES NECESSARY FOR SAFE OPERATION Brakes § 393.52...

  16. 14 CFR 27.735 - Brakes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Brakes. 27.735 Section 27.735 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Landing Gear § 27.735 Brakes. For...

  17. 14 CFR 29.921 - Rotor brake.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Rotor brake. 29.921 Section 29.921 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 29.921 Rotor brake. If there is...

  18. 14 CFR 27.921 - Rotor brake.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Rotor brake. 27.921 Section 27.921 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 27.921 Rotor brake. If there is...

  19. 14 CFR 29.921 - Rotor brake.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Rotor brake. 29.921 Section 29.921 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 29.921 Rotor brake. If there is...

  20. 14 CFR 27.735 - Brakes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Brakes. 27.735 Section 27.735 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Landing Gear § 27.735 Brakes. For...

  1. 14 CFR 29.735 - Brakes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Brakes. 29.735 Section 29.735 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Landing Gear § 29.735 Brakes....

  2. 14 CFR 29.921 - Rotor brake.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Rotor brake. 29.921 Section 29.921 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 29.921 Rotor brake. If there is...

  3. 14 CFR 29.735 - Brakes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Brakes. 29.735 Section 29.735 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Landing Gear § 29.735 Brakes....

  4. 14 CFR 27.921 - Rotor brake.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Rotor brake. 27.921 Section 27.921 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 27.921 Rotor brake. If there is...

  5. 14 CFR 27.921 - Rotor brake.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Rotor brake. 27.921 Section 27.921 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 27.921 Rotor brake. If there is...

  6. 14 CFR 29.735 - Brakes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Brakes. 29.735 Section 29.735 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Landing Gear § 29.735 Brakes....

  7. 14 CFR 29.921 - Rotor brake.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Rotor brake. 29.921 Section 29.921 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 29.921 Rotor brake. If there is...

  8. 14 CFR 27.921 - Rotor brake.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Rotor brake. 27.921 Section 27.921 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 27.921 Rotor brake. If there is...

  9. 14 CFR 27.735 - Brakes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Brakes. 27.735 Section 27.735 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Landing Gear § 27.735 Brakes. For...

  10. Constraining the braking indices of magnetars

    NASA Astrophysics Data System (ADS)

    Gao, Z. F.; Li, X.-D.; Wang, N.; Yuan, J. P.; Wang, P.; Peng, Q. H.; Du, Y. J.

    2016-02-01

    Because of the lack of long-term pulsed emission in quiescence and the strong timing noise, it is impossible to directly measure the braking index n of a magnetar. Based on the estimated ages of their potentially associated supernova remnants (SNRs), we estimate the values of the mean braking indices of eight magnetars with SNRs, and find that they cluster in the range of 1-42. Five magnetars have smaller mean braking indices of 1 < n < 3, and we interpret them within a combination of magneto-dipole radiation and wind-aided braking. The larger mean braking indices of n > 3 for the other three magnetars are attributed to the decay of external braking torque, which might be caused by magnetic field decay. We estimate the possible wind luminosities for the magnetars with 1 < n < 3, and the dipolar magnetic field decay rates for the magnetars with n > 3, within the updated magneto-thermal evolution models. Although the constrained range of the magnetars' braking indices is tentative, as a result of the uncertainties in the SNR ages due to distance uncertainties and the unknown conditions of the expanding shells, our method provides an effective way to constrain the magnetars' braking indices if the measurements of the SNR ages are reliable, which can be improved by future observations.